[Possibile application of X-ray and high resolution CT in pneumoconiosis management].
Vlasov, V G; Laptev, V Ia; Logvinenko, I I; Smirnova, E L; Brovchenko, E P; Mironova, M V
2011-01-01
The article covers results of clinical and roentgenologic data analysis. The data were obtained in the study that covered 447 pneumoconiosis patients, 75 of which were subjected to high resolution CT. If compared to chest X-ray, high resolution CT helps more precise forecast of further course in pneumoconiosis.
Deformable image registration for multimodal lung-cancer staging
NASA Astrophysics Data System (ADS)
Cheirsilp, Ronnarit; Zang, Xiaonan; Bascom, Rebecca; Allen, Thomas W.; Mahraj, Rickhesvar P. M.; Higgins, William E.
2016-03-01
Positron emission tomography (PET) and X-ray computed tomography (CT) serve as major diagnostic imaging modalities in the lung-cancer staging process. Modern scanners provide co-registered whole-body PET/CT studies, collected while the patient breathes freely, and high-resolution chest CT scans, collected under a brief patient breath hold. Unfortunately, no method exists for registering a PET/CT study into the space of a high-resolution chest CT scan. If this could be done, vital diagnostic information offered by the PET/CT study could be brought seamlessly into the procedure plan used during live cancer-staging bronchoscopy. We propose a method for the deformable registration of whole-body PET/CT data into the space of a high-resolution chest CT study. We then demonstrate its potential for procedure planning and subsequent use in multimodal image-guided bronchoscopy.
Umehara, Kensuke; Ota, Junko; Ishida, Takayuki
2017-10-18
In this study, the super-resolution convolutional neural network (SRCNN) scheme, which is the emerging deep-learning-based super-resolution method for enhancing image resolution in chest CT images, was applied and evaluated using the post-processing approach. For evaluation, 89 chest CT cases were sampled from The Cancer Imaging Archive. The 89 CT cases were divided randomly into 45 training cases and 44 external test cases. The SRCNN was trained using the training dataset. With the trained SRCNN, a high-resolution image was reconstructed from a low-resolution image, which was down-sampled from an original test image. For quantitative evaluation, two image quality metrics were measured and compared to those of the conventional linear interpolation methods. The image restoration quality of the SRCNN scheme was significantly higher than that of the linear interpolation methods (p < 0.001 or p < 0.05). The high-resolution image reconstructed by the SRCNN scheme was highly restored and comparable to the original reference image, in particular, for a ×2 magnification. These results indicate that the SRCNN scheme significantly outperforms the linear interpolation methods for enhancing image resolution in chest CT images. The results also suggest that SRCNN may become a potential solution for generating high-resolution CT images from standard CT images.
[Comparative study of cone-beam CT and spiral CT in measuring the length of styloid process].
Song, Y S; Liu, L F
2018-06-19
Objective: To compare the difference of measuring the length of styloid process between spiral CT with high resolution and cone-beam CT(CBCT). Methods: Five specimens (including 5 pairs of styloid processes) were selected randomly from the Anatomy Laboratory of Otolaryngology Department, all the specimens underwent spiral CT with high resolution and cone-beam CT retrospectively.With the original DICOM data, the styloid processes were shown in one plate by multiple plate reconstruction technique, and later the length of styloid processes of each specimen were measured separately by software NNT Viewer (to CBCT) or Osrix (to spiral CT with high resolution). Results: The length of styloid processes measured by CBCT and spiral CT was (26.8±5.5) mm and (27.1±5.4) mm respectively, and there was no statistical difference between the two groups. Conclusion: In respect of measuring the length of styloid process, the CBCT has the same value in clinical practice comparing to spiral CT with high resolution.
Physics of cardiac imaging with multiple-row detector CT.
Mahesh, Mahadevappa; Cody, Dianna D
2007-01-01
Cardiac imaging with multiple-row detector computed tomography (CT) has become possible due to rapid advances in CT technologies. Images with high temporal and spatial resolution can be obtained with multiple-row detector CT scanners; however, the radiation dose associated with cardiac imaging is high. Understanding the physics of cardiac imaging with multiple-row detector CT scanners allows optimization of cardiac CT protocols in terms of image quality and radiation dose. Knowledge of the trade-offs between various scan parameters that affect image quality--such as temporal resolution, spatial resolution, and pitch--is the key to optimized cardiac CT protocols, which can minimize the radiation risks associated with these studies. Factors affecting temporal resolution include gantry rotation time, acquisition mode, and reconstruction method; factors affecting spatial resolution include detector size and reconstruction interval. Cardiac CT has the potential to become a reliable tool for noninvasive diagnosis and prevention of cardiac and coronary artery disease. (c) RSNA, 2007.
Comparison of computed tomography and complex motion tomography in the evaluation of cholesteatoma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shaffer, K.A.
1984-08-01
High-resolution axial and coronal computed tomographic (CT) scans were compared with coronal and sagittal complex motion tomograms in patients with suspected middle ear cholesteatomas. Information on CT scans equaled or exceeded that on conventional complex motion tomograms in 16 of 17 patients, and in 11 it provided additional information. Soft-tissue resolution was superior with CT. In 14 patients who underwent surgery, CT provided information that was valuable to the surgeon. On the basis of this study, high-resolution CT is recommended as the preferred method for evaluating most patients with cholesteatomas of the temporal bone.
Image quality improvement in cone-beam CT using the super-resolution technique.
Oyama, Asuka; Kumagai, Shinobu; Arai, Norikazu; Takata, Takeshi; Saikawa, Yusuke; Shiraishi, Kenshiro; Kobayashi, Takenori; Kotoku, Jun'ichi
2018-04-05
This study was conducted to improve cone-beam computed tomography (CBCT) image quality using the super-resolution technique, a method of inferring a high-resolution image from a low-resolution image. This technique is used with two matrices, so-called dictionaries, constructed respectively from high-resolution and low-resolution image bases. For this study, a CBCT image, as a low-resolution image, is represented as a linear combination of atoms, the image bases in the low-resolution dictionary. The corresponding super-resolution image was inferred by multiplying the coefficients and the high-resolution dictionary atoms extracted from planning CT images. To evaluate the proposed method, we computed the root mean square error (RMSE) and structural similarity (SSIM). The resulting RMSE and SSIM between the super-resolution images and the planning CT images were, respectively, as much as 0.81 and 1.29 times better than those obtained without using the super-resolution technique. We used super-resolution technique to improve the CBCT image quality.
Super resolution reconstruction of μ-CT image of rock sample using neighbour embedding algorithm
NASA Astrophysics Data System (ADS)
Wang, Yuzhu; Rahman, Sheik S.; Arns, Christoph H.
2018-03-01
X-ray computed tomography (μ-CT) is considered to be the most effective way to obtain the inner structure of rock sample without destructions. However, its limited resolution hampers its ability to probe sub-micro structures which is critical for flow transportation of rock sample. In this study, we propose an innovative methodology to improve the resolution of μ-CT image using neighbour embedding algorithm where low frequency information is provided by μ-CT image itself while high frequency information is supplemented by high resolution scanning electron microscopy (SEM) image. In order to obtain prior for reconstruction, a large number of image patch pairs contain high- and low- image patches are extracted from the Gaussian image pyramid generated by SEM image. These image patch pairs contain abundant information about tomographic evolution of local porous structures under different resolution spaces. Relying on the assumption of self-similarity of porous structure, this prior information can be used to supervise the reconstruction of high resolution μ-CT image effectively. The experimental results show that the proposed method is able to achieve the state-of-the-art performance.
An electron beam linear scanning mode for industrial limited-angle nano-computed tomography.
Wang, Chengxiang; Zeng, Li; Yu, Wei; Zhang, Lingli; Guo, Yumeng; Gong, Changcheng
2018-01-01
Nano-computed tomography (nano-CT), which utilizes X-rays to research the inner structure of some small objects and has been widely utilized in biomedical research, electronic technology, geology, material sciences, etc., is a high spatial resolution and non-destructive research technique. A traditional nano-CT scanning model with a very high mechanical precision and stability of object manipulator, which is difficult to reach when the scanned object is continuously rotated, is required for high resolution imaging. To reduce the scanning time and attain a stable and high resolution imaging in industrial non-destructive testing, we study an electron beam linear scanning mode of nano-CT system that can avoid mechanical vibration and object movement caused by the continuously rotated object. Furthermore, to further save the scanning time and study how small the scanning range could be considered with acceptable spatial resolution, an alternating iterative algorithm based on ℓ 0 minimization is utilized to limited-angle nano-CT reconstruction problem with the electron beam linear scanning mode. The experimental results confirm the feasibility of the electron beam linear scanning mode of nano-CT system.
An electron beam linear scanning mode for industrial limited-angle nano-computed tomography
NASA Astrophysics Data System (ADS)
Wang, Chengxiang; Zeng, Li; Yu, Wei; Zhang, Lingli; Guo, Yumeng; Gong, Changcheng
2018-01-01
Nano-computed tomography (nano-CT), which utilizes X-rays to research the inner structure of some small objects and has been widely utilized in biomedical research, electronic technology, geology, material sciences, etc., is a high spatial resolution and non-destructive research technique. A traditional nano-CT scanning model with a very high mechanical precision and stability of object manipulator, which is difficult to reach when the scanned object is continuously rotated, is required for high resolution imaging. To reduce the scanning time and attain a stable and high resolution imaging in industrial non-destructive testing, we study an electron beam linear scanning mode of nano-CT system that can avoid mechanical vibration and object movement caused by the continuously rotated object. Furthermore, to further save the scanning time and study how small the scanning range could be considered with acceptable spatial resolution, an alternating iterative algorithm based on ℓ0 minimization is utilized to limited-angle nano-CT reconstruction problem with the electron beam linear scanning mode. The experimental results confirm the feasibility of the electron beam linear scanning mode of nano-CT system.
NASA Astrophysics Data System (ADS)
Ota, Junko; Umehara, Kensuke; Ishimaru, Naoki; Ohno, Shunsuke; Okamoto, Kentaro; Suzuki, Takanori; Shirai, Naoki; Ishida, Takayuki
2017-02-01
As the capability of high-resolution displays grows, high-resolution images are often required in Computed Tomography (CT). However, acquiring high-resolution images takes a higher radiation dose and a longer scanning time. In this study, we applied the Sparse-coding-based Super-Resolution (ScSR) method to generate high-resolution images without increasing the radiation dose. We prepared the over-complete dictionary learned the mapping between low- and highresolution patches and seek a sparse representation of each patch of the low-resolution input. These coefficients were used to generate the high-resolution output. For evaluation, 44 CT cases were used as the test dataset. We up-sampled images up to 2 or 4 times and compared the image quality of the ScSR scheme and bilinear and bicubic interpolations, which are the traditional interpolation schemes. We also compared the image quality of three learning datasets. A total of 45 CT images, 91 non-medical images, and 93 chest radiographs were used for dictionary preparation respectively. The image quality was evaluated by measuring peak signal-to-noise ratio (PSNR) and structure similarity (SSIM). The differences of PSNRs and SSIMs between the ScSR method and interpolation methods were statistically significant. Visual assessment confirmed that the ScSR method generated a high-resolution image with sharpness, whereas conventional interpolation methods generated over-smoothed images. To compare three different training datasets, there were no significance between the CT, the CXR and non-medical datasets. These results suggest that the ScSR provides a robust approach for application of up-sampling CT images and yields substantial high image quality of extended images in CT.
NASA Astrophysics Data System (ADS)
Luo, Shouhua; Shen, Tao; Sun, Yi; Li, Jing; Li, Guang; Tang, Xiangyang
2018-04-01
In high resolution (microscopic) CT applications, the scan field of view should cover the entire specimen or sample to allow complete data acquisition and image reconstruction. However, truncation may occur in projection data and results in artifacts in reconstructed images. In this study, we propose a low resolution image constrained reconstruction algorithm (LRICR) for interior tomography in microscopic CT at high resolution. In general, the multi-resolution acquisition based methods can be employed to solve the data truncation problem if the project data acquired at low resolution are utilized to fill up the truncated projection data acquired at high resolution. However, most existing methods place quite strict restrictions on the data acquisition geometry, which greatly limits their utility in practice. In the proposed LRICR algorithm, full and partial data acquisition (scan) at low and high resolutions, respectively, are carried out. Using the image reconstructed from sparse projection data acquired at low resolution as the prior, a microscopic image at high resolution is reconstructed from the truncated projection data acquired at high resolution. Two synthesized digital phantoms, a raw bamboo culm and a specimen of mouse femur, were utilized to evaluate and verify performance of the proposed LRICR algorithm. Compared with the conventional TV minimization based algorithm and the multi-resolution scout-reconstruction algorithm, the proposed LRICR algorithm shows significant improvement in reduction of the artifacts caused by data truncation, providing a practical solution for high quality and reliable interior tomography in microscopic CT applications. The proposed LRICR algorithm outperforms the multi-resolution scout-reconstruction method and the TV minimization based reconstruction for interior tomography in microscopic CT.
NASA Astrophysics Data System (ADS)
Liu, Junting; Tian, Jie; Liang, Jimin; Li, Xiangsi; Yang, Xiang; Chen, Xiaofeng; Chen, Yi; Zhou, Yuanfang; Wang, Xiaorui
2011-03-01
Immunocytochemical and immunofluorescence staining are used for identifying the characteristics of metastasis in traditional ways. Micro-computed tomography (micro-CT) is a useful tool for monitoring and longitudinal imaging of tumor in small animal in vivo. In present study, we evaluated the feasibility of the detection for metastasis of gastric carcinoma by high-resolution micro-CT system with omnipaque accumulative enhancement method in the organs. Firstly, a high-resolution micro-CT ZKKS-MCT-sharp micro-CT was developed by our research group and Guangzhou Zhongke Kaisheng Medical Technology Co., Ltd. Secondly, several gastric carcinoma models were established through inoculating 2x106 BGC-823 gastric carcinoma cells subcutaneously. Thirdly, micro-CT scanning was performed after accumulative enhancement method of intraperitoneal injection of omnipaque contrast agent containing 360 mg iodine with a concentration of 350 mg I/ml. Finally, we obtained high-resolution anatomical information of the metastasis in vivo in a BALB/c NuNu nude mouse, the 3D tumor architecture is revealed in exquisite detail at about 35 μm spatial resolution. In addition, the accurate shape and volume of the micrometastasis as small as 0.78 mm3 can be calculated with our software. Overall, our data suggest that this imaging approach and system could be used to enhance the understanding of tumor proliferation, metastasis and could be the basis for evaluating anti-tumor therapies.
Morgalla, Matthias; Fortunato, Marcos; Azam, Ala; Tatagiba, Marcos; Lepski, Guillherme
2016-07-01
The assessment of the functionality of intrathecal drug delivery (IDD) systems remains difficult and time-consuming. Catheter-related problems are still very common, and sometimes difficult to diagnose. The aim of the present study is to investigate the accuracy of high-resolution three-dimensional computed tomography (CT) in order to detect catheter-related pump dysfunction. An observational, retrospective investigation. Academic medical center in Germany. We used high-resolution three dimensional (3D) computed tomography with volume rendering technique (VRT) or fluoroscopy and conventional axial-CT to assess IDD-related complications in 51 patients from our institution who had IDD systems implanted for the treatment of chronic pain or spasticity. Twelve patients (23.5%) presented a total of 22 complications. The main type of complication in our series was catheter-related (50%), followed by pump failure, infection, and inappropriate refilling. Fluoroscopy and conventional CT were used in 12 cases. High-resolution 3D CT VRT scan was used in 35 instances with suspected yet unclear complications. Using 3D-CT (VRT) the sensitivity was 58.93% - 100% (CI 95%) and the specificity 87.54% - 100% (CI 95%).The positive predictive value was 58.93% - 100% (CI 95%) and the negative predictive value: 87.54% - 100% (CI 95%).Fluoroscopy and axial CT as a combined diagnostic tool had a sensitivity of 8.3% - 91.7% (CI 95%) and a specificity of 62.9% - 100% (CI 95%). The positive predictive value was 19.29% - 100% (CI 95%) and the negative predictive value: 44.43% - 96.89% (CI 95%). This study is limited by its observational design and the small number of cases. High-resolution 3D CT VRT is a non- invasive method that can identify IDD-related complications with more precision than axial CT and fluoroscopy.
NASA Astrophysics Data System (ADS)
Mulyadin; Dewang, Syamsir; Abdullah, Bualkar; Tahir, Dahlang
2018-03-01
In this study, the image quality of CT scan using phantom American College of Radiology (ACR) was determined. Scanning multidetector CT is used to know the image quality parameters by using a solid phantom containing four modules and primarily from materials that are equivalent to water. Each module is 4 cm in diameter and 20 cm in diameter. There is white alignment marks painted white to reflect the alignment laser and there are also “HEAD”, “FOOT”, and “TOP” marks on the phantom to help align. This test obtains CT images of each module according to the routine inspection protocol of the head. Acceptance of image quality obtained for determination: CT Number Accuracy (CTN), CT Number Uniformity and Noise, Linearity CT Number, Slice Technique, Low Contrast Resolution and High Contrast Resolution represent image quality parameters. In testing CT Number Accuracy (CTN), CT Uniform number and Noise are in the range of tolerable values allowed. In the test, Linearity CT Number obtained correlation value above 0.99 is the relationship between electron density and CT Number. In a low contrast resolution test, the smallest contrast groups are visible. In contrast, the high resolution is seen up to 7 lp/cm. The quality of GE CT Scan is very high, as all the image quality tests obtained are within the tolerance brackets of values permitted by the Nuclear Power Control Agency (BAPETEN). Image quality test is a way to get very important information about the accuracy of snoring result by using phantom ACR.
Nano-Computed Tomography: Technique and Applications.
Kampschulte, M; Langheinirch, A C; Sender, J; Litzlbauer, H D; Althöhn, U; Schwab, J D; Alejandre-Lafont, E; Martels, G; Krombach, G A
2016-02-01
Nano-computed tomography (nano-CT) is an emerging, high-resolution cross-sectional imaging technique and represents a technical advancement of the established micro-CT technology. Based on the application of a transmission target X-ray tube, the focal spot size can be decreased down to diameters less than 400 nanometers (nm). Together with specific detectors and examination protocols, a superior spatial resolution up to 400 nm (10 % MTF) can be achieved, thereby exceeding the resolution capacity of typical micro-CT systems. The technical concept of nano-CT imaging as well as the basics of specimen preparation are demonstrated exemplarily. Characteristics of atherosclerotic plaques (intraplaque hemorrhage and calcifications) in a murine model of atherosclerosis (ApoE (-/-)/LDLR(-/-) double knockout mouse) are demonstrated in the context of superior spatial resolution in comparison to micro-CT. Furthermore, this article presents the application of nano-CT for imaging cerebral microcirculation (murine), lung structures (porcine), and trabecular microstructure (ovine) in contrast to micro-CT imaging. This review shows the potential of nano-CT as a radiological method in biomedical basic research and discusses the application of experimental, high resolution CT techniques in consideration of other high resolution cross-sectional imaging techniques. Nano-computed tomography is a high resolution CT-technology for 3D imaging at sub-micrometer resolution. The technical concept bases on a further development of the established ex-vivo-micro-CT technology. By improvement of the spatial resolution, structures at a cellular level become visible (e.g. osteocyte lacunae). © Georg Thieme Verlag KG Stuttgart · New York.
Application of high resolution synchrotron micro-CT radiation in dental implant osseointegration.
Neldam, Camilla Albeck; Lauridsen, Torsten; Rack, Alexander; Lefolii, Tore Tranberg; Jørgensen, Niklas Rye; Feidenhans'l, Robert; Pinholt, Else Marie
2015-06-01
The purpose of this study was to describe a refined method using high-resolution synchrotron radiation microtomography (SRmicro-CT) to evaluate osseointegration and peri-implant bone volume fraction after titanium dental implant insertion. SRmicro-CT is considered gold standard evaluating bone microarchitecture. Its high resolution, high contrast, and excellent high signal-to-noise-ratio all contribute to the highest spatial resolutions achievable today. Using SRmicro-CT at a voxel size of 5 μm in an experimental goat mandible model, the peri-implant bone volume fraction was found to quickly increase to 50% as the radial distance from the implant surface increased, and levelled out to approximately 80% at a distance of 400 μm. This method has been successful in depicting the bone and cavities in three dimensions thereby enabling us to give a more precise answer to the fraction of the bone-to-implant contact compared to previous methods. Copyright © 2015 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
CT volumetry of the skeletal tissues
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brindle, James M.; Alexandre Trindade, A.; Pichardo, Jose C.
2006-10-15
Computed tomography (CT) is an important and widely used modality in the diagnosis and treatment of various cancers. In the field of molecular radiotherapy, the use of spongiosa volume (combined tissues of the bone marrow and bone trabeculae) has been suggested as a means to improve the patient-specificity of bone marrow dose estimates. The noninvasive estimation of an organ volume comes with some degree of error or variation from the true organ volume. The present study explores the ability to obtain estimates of spongiosa volume or its surrogate via manual image segmentation. The variation among different segmentation raters was exploredmore » and found not to be statistically significant (p value >0.05). Accuracy was assessed by having several raters manually segment a polyvinyl chloride (PVC) pipe with known volumes. Segmentation of the outer region of the PVC pipe resulted in mean percent errors as great as 15% while segmentation of the pipe's inner region resulted in mean percent errors within {approx}5%. Differences between volumes estimated with the high-resolution CT data set (typical of ex vivo skeletal scans) and the low-resolution CT data set (typical of in vivo skeletal scans) were also explored using both patient CT images and a PVC pipe phantom. While a statistically significant difference (p value <0.002) between the high-resolution and low-resolution data sets was observed with excised femoral heads obtained following total hip arthroplasty, the mean difference between high-resolution and low-resolution data sets was found to be only 1.24 and 2.18 cm{sup 3} for spongiosa and cortical bone, respectively. With respect to differences observed with the PVC pipe, the variation between the high-resolution and low-resolution mean percent errors was a high as {approx}20% for the outer region volume estimates and only as high as {approx}6% for the inner region volume estimates. The findings from this study suggest that manual segmentation is a reasonably accurate and reliable means for the in vivo estimation of spongiosa volume. This work also provides a foundation for future studies where spongiosa volumes are estimated by various raters in more comprehensive CT data sets.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoon, S; Dewhirst, M; Oldham, M
2016-06-15
Purpose: Optical transmission and emission computed tomography (optical-CT/ECT) provides high-resolution 3D attenuation and emission maps in unsectioned large (∼1cm{sup 3}) ex vivo tissue samples at a resolution of 12.9µm{sup 3} per voxel. Here we apply optical-CT/ECT to investigate high-resolution structure and auto-fluorescence in a range of optically cleared mice organs, including, for the first time, mouse bone (femur), opening the potential for study of bone metastasis and bone-mediated immune response. Methods: Three BALBc mice containing 4T1 flank tumors were sacrificed to obtain spleen, brain, tumor, and femur. Tissues were washed in 4% PFA, fixed in EtOH solution (for 5, 10,more » 10, and 2 days respectively), and then optically cleared for 3 days in BABBs. The femur was also placed in 0.25M aqueous EDTA for 15–30 days to remove calcium. Optical-CT/ECT attenuation and emission maps at 633nm (the latter using 530nm excitation light) were obtained for all samples. Bi-telecentric optical-CT was compared side-by-side with conventional optical projection tomography (OPT) imaging to evaluate imaging capability of these two rival techniques. Results: Auto-fluorescence mapping of femurs reveals vasculatures and fluorescence heterogeneity. High signals (A.U.=10) are reported in the medullary cavity but not in the cortical bone (A.U.=1). The brain strongly and uniform auto-fluoresces (A.U.=5). Thick, optically dense organs such as the spleen and the tumor (0.12, 0.46OD/mm) are reconstructed at depth without significant loss of resolution, which we attribute to the bi-telecentric optics of optical-CT. The attenuation map of tumor reveals vasculature, attenuation heterogeneity, and possibly necrotic tissue. Conclusion: We demonstrate the feasibility of optical-CT/ECT imaging of un-sectioned mice bones (femurs) and spleen with high resolution. This result, and the characterization of unstained organs, are important steps enabling future studies involving optical-CT/ECT applied to study metastasis and immunologic responses via fluorescence staining.« less
Nuclear and chloroplast DNA differentiation in Andean potatoes.
Sukhotu, Thitaporn; Kamijima, Osamu; Hosaka, Kazuyoshi
2004-02-01
Over 3500 accessions of Andean landraces have been known in potato, classified into 7 cultivated species ranging from 2x to 5x (Hawkes 1990). Chloroplast DNA (ctDNA), distinguished into T, W, C, S, and A types, showed extensive overlaps in their frequencies among cultivated species and between cultivated and putative ancestral wild species. In this study, 76 accessions of cultivated and 19 accessions of wild species were evaluated for ctDNA types and examined by ctDNA high-resolution markers (ctDNA microsatellites and H3 marker) and nuclear DNA restriction fragment length polymorphisms (RFLPs). ctDNA high-resolution markers identified 25 different ctDNA haplotypes. The S- and A-type ctDNAs were discriminated as unique haplotypes from 12 haplotypes having C-type ctDNA and T-type ctDNA from 10 haplotypes having W-type ctDNA. Differences among ctDNA types were strongly correlated with those of ctDNA high-resolution markers (r = 0.822). Differentiation between W-type ctDNA and C-, S-, and A-type ctDNAs was supported by nDNA RFLPs in most species except for those of recent or immediate hybrid origin. However, differentiation among C-, S-, and A-type ctDNAs was not clearly supported by nDNA RFLPs, suggesting that frequent genetic exchange occurred among them and (or) they shared the same gene pool owing to common ancestry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Jianzhong; Cao, Yong; Wu, Tianding
2014-10-15
Purpose: Understanding the three-dimensional (3D) morphology of the spinal cord microvasculature has been limited by the lack of an effective high-resolution imaging technique. In this study, synchrotron radiation microcomputed tomography (SRµCT), a novel imaging technique based on absorption imaging, was evaluated with regard to the detection of the 3D morphology of the rat spinal cord microvasculature. Methods: Ten Sprague-Dawley rats were used in this ex vivo study. After contrast agent perfusion, their spinal cords were isolated and scanned using conventional x-rays, conventional micro-CT (CµCT), and SRµCT. Results: Based on contrast agent perfusion, the microvasculature of the rat spinal cord wasmore » clearly visualized for the first time ex vivo in 3D by means of SRµCT scanning. Compared to conventional imaging techniques, SRµCT achieved higher resolution 3D vascular imaging, with the smallest vessel that could be distinguished approximately 7.4 μm in diameter. Additionally, a 3D pseudocolored image of the spinal cord microvasculature was generated in a single session of SRµCT imaging, which was conducive to detailed observation of the vessel morphology. Conclusions: The results of this study indicated that SRµCT scanning could provide higher resolution images of the vascular network of the spinal cord. This modality also has the potential to serve as a powerful imaging tool for the investigation of morphology changes in the 3D angioarchitecture of the neurovasculature in preclinical research.« less
Cuijpers, Vincent M J I; Jaroszewicz, Jacub; Anil, Sukumaran; Al Farraj Aldosari, Abdullah; Walboomers, X Frank; Jansen, John A
2014-03-01
The aims of this study were (i) to determine the spatial resolution and sensitivity of micro- versus nano-computed tomography (CT) techniques and (ii) to validate micro- versus nano-CT in a dog dental implant model, comparative to histological analysis. To determine spatial resolution and sensitivity, standardized reference samples containing standardized nano- and microspheres were prepared in polymer and ceramic matrices. Thereafter, 10 titanium-coated polymer dental implants (3.2 mm in Ø by 4 mm in length) were placed in the mandible of Beagle dogs. Both micro- and nano-CT, as well as histological analyses, were performed. The reference samples confirmed the high resolution of the nano-CT system, which was capable of revealing sub-micron structures embedded in radiodense matrices. The dog implantation study and subsequent statistical analysis showed equal values for bone area and bone-implant contact measurements between micro-CT and histology. However, because of the limited sample size and field of view, nano-CT was not rendering reliable data representative of the entire bone-implant specimen. Micro-CT analysis is an efficient tool to quantitate bone healing parameters at the bone-implant interface, especially when using titanium-coated PMMA implants. Nano-CT is not suitable for such quantification, but reveals complementary morphological information rivaling histology, yet with the advantage of a 3D visualization. © 2013 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.
ERIC Educational Resources Information Center
Chen, Jian; Smith, Andrew D.; Khan, Majid A.; Sinning, Allan R.; Conway, Marianne L.; Cui, Dongmei
2017-01-01
Recent improvements in three-dimensional (3D) virtual modeling software allows anatomists to generate high-resolution, visually appealing, colored, anatomical 3D models from computed tomography (CT) images. In this study, high-resolution CT images of a cadaver were used to develop clinically relevant anatomic models including facial skull, nasal…
High-resolution CT assessment of the pediatric airways: structure and function
NASA Astrophysics Data System (ADS)
Kramer, Sandra S.; Hoffman, Eric A.; Amirav, Israel
1994-05-01
The airway has always been a central focus for respiratory pathology in infants and children. Imaging of the larynx, trachea, and the central bronchi can be readily accomplished by radiographic or conventional CT techniques. Newer high resolution CT (HRCT) techniques have extended our view of the bronchi peripherally to the limits of scanner resolution, i.e., to bronchial generations 7 - 9, and rapid volumetric CT data acquisitions have made it possible to follow the same lung anatomic level through the rapidly occurring changes in a series of experimental protocols. These techniques together with a custom designed computer software program for image display and analysis have enabled us to objectively study changes in airway caliber and lung density that occurred in an animal mode of airway reactivity and thereby relate structure with function in the airways.
Gas scintillation glass GEM detector for high-resolution X-ray imaging and CT
NASA Astrophysics Data System (ADS)
Fujiwara, T.; Mitsuya, Y.; Fushie, T.; Murata, K.; Kawamura, A.; Koishikawa, A.; Toyokawa, H.; Takahashi, H.
2017-04-01
A high-spatial-resolution X-ray-imaging gaseous detector has been developed with a single high-gas-gain glass gas electron multiplier (G-GEM), scintillation gas, and optical camera. High-resolution X-ray imaging of soft elements is performed with a spatial resolution of 281 μm rms and an effective area of 100×100 mm. In addition, high-resolution X-ray 3D computed tomography (CT) is successfully demonstrated with the gaseous detector. It shows high sensitivity to low-energy X-rays, which results in high-contrast radiographs of objects containing elements with low atomic numbers. In addition, the high yield of scintillation light enables fast X-ray imaging, which is an advantage for constructing CT images with low-energy X-rays.
Längkvist, Martin; Jendeberg, Johan; Thunberg, Per; Loutfi, Amy; Lidén, Mats
2018-06-01
Computed tomography (CT) is the method of choice for diagnosing ureteral stones - kidney stones that obstruct the ureter. The purpose of this study is to develop a computer aided detection (CAD) algorithm for identifying a ureteral stone in thin slice CT volumes. The challenge in CAD for urinary stones lies in the similarity in shape and intensity of stones with non-stone structures and how to efficiently deal with large high-resolution CT volumes. We address these challenges by using a Convolutional Neural Network (CNN) that works directly on the high resolution CT volumes. The method is evaluated on a large data base of 465 clinically acquired high-resolution CT volumes of the urinary tract with labeling of ureteral stones performed by a radiologist. The best model using 2.5D input data and anatomical information achieved a sensitivity of 100% and an average of 2.68 false-positives per patient on a test set of 88 scans. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
A quality assurance phantom for the performance evaluation of volumetric micro-CT systems
NASA Astrophysics Data System (ADS)
Du, Louise Y.; Umoh, Joseph; Nikolov, Hristo N.; Pollmann, Steven I.; Lee, Ting-Yim; Holdsworth, David W.
2007-12-01
Small-animal imaging has recently become an area of increased interest because more human diseases can be modeled in transgenic and knockout rodents. As a result, micro-computed tomography (micro-CT) systems are becoming more common in research laboratories, due to their ability to achieve spatial resolution as high as 10 µm, giving highly detailed anatomical information. Most recently, a volumetric cone-beam micro-CT system using a flat-panel detector (eXplore Ultra, GE Healthcare, London, ON) has been developed that combines the high resolution of micro-CT and the fast scanning speed of clinical CT, so that dynamic perfusion imaging can be performed in mice and rats, providing functional physiological information in addition to anatomical information. This and other commercially available micro-CT systems all promise to deliver precise and accurate high-resolution measurements in small animals. However, no comprehensive quality assurance phantom has been developed to evaluate the performance of these micro-CT systems on a routine basis. We have designed and fabricated a single comprehensive device for the purpose of performance evaluation of micro-CT systems. This quality assurance phantom was applied to assess multiple image-quality parameters of a current flat-panel cone-beam micro-CT system accurately and quantitatively, in terms of spatial resolution, geometric accuracy, CT number accuracy, linearity, noise and image uniformity. Our investigations show that 3D images can be obtained with a limiting spatial resolution of 2.5 mm-1 and noise of ±35 HU, using an acquisition interval of 8 s at an entrance dose of 6.4 cGy.
Geith, Tobias; Brun, Emmanuel; Mittone, Alberto; Gasilov, Sergei; Weber, Loriane; Adam-Neumair, Silvia; Bravin, Alberto; Reiser, Maximilian; Coan, Paola; Horng, Annie
2018-06-01
The aim of this study was to quantitatively assess hyaline cartilage and subchondral bone conditions in a fully preserved cadaveric human knee joint using high-resolution x-ray propagation-based phase-contrast imaging (PBI) CT and to compare the performance of the new technique with conventional CT and MRI. A cadaveric human knee was examined using an x-ray beam of 60 keV, a detector with a 90-mm 2 FOV, and a pixel size of 46 × 46 μm 2 . PBI CT images were reconstructed with both the filtered back projection algorithm and the equally sloped tomography method. Conventional 3-T MRI and CT were also performed. Measurements of cartilage thickness, cartilage lesions, International Cartilage Repair Society scoring, and detection of subchondral bone changes were evaluated. Visual inspection of the specimen akin to arthroscopy was conducted and served as a standard of reference for lesion detection. Loss of cartilage height was visible on PBI CT and MRI. Quantification of cartilage thickness showed a strong correlation between the two modalities. Cartilage lesions appeared darker than the adjacent cartilage on PBI CT. PBI CT showed similar agreement to MRI for depicting cartilage substance defects or lesions compared with the visual inspection. The assessment of subchondral bone cysts showed moderate to strong agreement between PBI CT and CT. In contrast to the standard clinical methods of MRI and CT, PBI CT is able to simultaneously depict cartilage and bony changes at high resolution. Though still an experimental technique, PBI CT is a promising high-resolution imaging method to evaluate comprehensive changes of osteoarthritic disease in a clinical setting.
NASA Astrophysics Data System (ADS)
Ding, Huanjun; Gao, Hao; Zhao, Bo; Cho, Hyo-Min; Molloi, Sabee
2014-10-01
Both computer simulations and experimental phantom studies were carried out to investigate the radiation dose reduction with tensor framelet based iterative image reconstruction (TFIR) for a dedicated high-resolution spectral breast computed tomography (CT) based on a silicon strip photon-counting detector. The simulation was performed with a 10 cm-diameter water phantom including three contrast materials (polyethylene, 8 mg ml-1 iodine and B-100 bone-equivalent plastic). In the experimental study, the data were acquired with a 1.3 cm-diameter polymethylmethacrylate (PMMA) phantom containing iodine in three concentrations (8, 16 and 32 mg ml-1) at various radiation doses (1.2, 2.4 and 3.6 mGy) and then CT images were reconstructed using the filtered-back-projection (FBP) technique and the TFIR technique, respectively. The image quality between these two techniques was evaluated by the quantitative analysis on contrast-to-noise ratio (CNR) and spatial resolution that was evaluated using the task-based modulation transfer function (MTF). Both the simulation and experimental results indicated that the task-based MTF obtained from TFIR reconstruction with one-third of the radiation dose was comparable to that from the FBP reconstruction for low contrast target. For high contrast target, the TFIR was substantially superior to the FBP reconstruction in terms of spatial resolution. In addition, TFIR was able to achieve a factor of 1.6-1.8 increase in CNR, depending on the target contrast level. This study demonstrates that the TFIR can reduce the required radiation dose by a factor of two-thirds for a CT image reconstruction compared to the FBP technique. It achieves much better CNR and spatial resolution for high contrast target in addition to retaining similar spatial resolution for low contrast target. This TFIR technique has been implemented with a graphic processing unit system and it takes approximately 10 s to reconstruct a single-slice CT image, which can potentially be used in a future multi-slit multi-slice spiral CT system.
NASA Astrophysics Data System (ADS)
Raylman, Raymond R.; Stolin, Alexander V.; Sompalli, Prashanth; Randall, Nicole Bunda; Martone, Peter F.; Clinthorne, Neal H.
2015-10-01
Staging of head and neck cancer (HNC) is often hindered by the limited resolution of standard whole body PET scanners, which can make it challenging to detect small areas of metastatic disease in regional lymph nodes and accurately delineate tumor boundaries. In this investigation, the performance of a proposed high resolution PET/CT scanner designed specifically for imaging of the head and neck region was explored. The goal is to create a dedicated PET/CT system that will enhance the staging and treatment of HNCs. Its performance was assessed by simulating the scanning of a three-dimensional Rose-Burger contrast phantom. To extend the results from the simulation studies, an existing scanner with a similar geometry to the dedicated system and a whole body, clinical PET/CT scanner were used to image a Rose-Burger contrast phantom and a phantom simulating the neck of an HNC patient (out-of-field-of-view sources of activity were not included). Images of the contrast detail phantom acquired with Breast-PET/CT and simulated head and neck scanner both produced object contrasts larger than the images created by the clinical scanner. Images of a neck phantom acquired with the Breast-PET/CT scanner permitted the identification of all of the simulated metastases, while it was not possible to identify any of the simulated metastasis with the clinical scanner. The initial results from this study demonstrate the potential benefits of high-resolution PET systems for improving the diagnosis and treatment of HNC.
NASA Astrophysics Data System (ADS)
Sztrókay, A.; Diemoz, P. C.; Schlossbauer, T.; Brun, E.; Bamberg, F.; Mayr, D.; Reiser, M. F.; Bravin, A.; Coan, P.
2012-05-01
Previous studies on phase contrast imaging (PCI) mammography have demonstrated an enhancement of breast morphology and cancerous tissue visualization compared to conventional imaging. We show here the first results of the PCI analyser-based imaging (ABI) in computed tomography (CT) mode on whole and large (>12 cm) tumour-bearing breast tissues. We demonstrate in this work the capability of the technique of working at high x-ray energies and producing high-contrast images of large and complex specimens. One entire breast of an 80-year-old woman with invasive ductal cancer was imaged using ABI-CT with monochromatic 70 keV x-rays and an area detector of 92×92 µm2 pixel size. Sagittal slices were reconstructed from the acquired data, and compared to corresponding histological sections. Comparison with conventional absorption-based CT was also performed. Five blinded radiologists quantitatively evaluated the visual aspects of the ABI-CT images with respect to sharpness, soft tissue contrast, tissue boundaries and the discrimination of different structures/tissues. ABI-CT excellently depicted the entire 3D architecture of the breast volume by providing high-resolution and high-contrast images of the normal and cancerous breast tissues. These results are an important step in the evolution of PCI-CT towards its clinical implementation.
Shelmerdine, Susan C; Simcock, Ian C; Hutchinson, John Ciaran; Aughwane, Rosalind; Melbourne, Andrew; Nikitichev, Daniil I; Ong, Ju-Ling; Borghi, Alessandro; Cole, Garrard; Kingham, Emilia; Calder, Alistair D; Capelli, Claudio; Akhtar, Aadam; Cook, Andrew C; Schievano, Silvia; David, Anna; Ourselin, Sebastian; Sebire, Neil J; Arthurs, Owen J
2018-06-14
Microfocus CT (micro-CT) is an imaging method that provides three-dimensional digital data sets with comparable resolution to light microscopy. Although it has traditionally been used for non-destructive testing in engineering, aerospace industries and in preclinical animal studies, new applications are rapidly becoming available in the clinical setting including post-mortem fetal imaging and pathological specimen analysis. Printing three-dimensional models from imaging data sets for educational purposes is well established in the medical literature, but typically using low resolution (0.7 mm voxel size) data acquired from CT or MR examinations. With higher resolution imaging (voxel sizes below 1 micron, <0.001 mm) at micro-CT, smaller structures can be better characterised, and data sets post-processed to create accurate anatomical models for review and handling. In this review, we provide examples of how three-dimensional printing of micro-CT imaged specimens can provide insight into craniofacial surgical applications, developmental cardiac anatomy, placental imaging, archaeological remains and high-resolution bone imaging. We conclude with other potential future usages of this emerging technique.
NASA Astrophysics Data System (ADS)
Li, Zhengji; Teng, Qizhi; He, Xiaohai; Yue, Guihua; Wang, Zhengyong
2017-09-01
The parameter evaluation of reservoir rocks can help us to identify components and calculate the permeability and other parameters, and it plays an important role in the petroleum industry. Until now, computed tomography (CT) has remained an irreplaceable way to acquire the microstructure of reservoir rocks. During the evaluation and analysis, large samples and high-resolution images are required in order to obtain accurate results. Owing to the inherent limitations of CT, however, a large field of view results in low-resolution images, and high-resolution images entail a smaller field of view. Our method is a promising solution to these data collection limitations. In this study, a framework for sparse representation-based 3D volumetric super-resolution is proposed to enhance the resolution of 3D voxel images of reservoirs scanned with CT. A single reservoir structure and its downgraded model are divided into a large number of 3D cubes of voxel pairs and these cube pairs are used to calculate two overcomplete dictionaries and the sparse-representation coefficients in order to estimate the high frequency component. Future more, to better result, a new feature extract method with combine BM4D together with Laplacian filter are introduced. In addition, we conducted a visual evaluation of the method, and used the PSNR and FSIM to evaluate it qualitatively.
NASA Astrophysics Data System (ADS)
Ishimori, Hiroyuki; Kawata, Yoshiki; Niki, Noboru; Nakaya, Yoshihiro; Ohmatsu, Hironobu; Matsui, Eisuke; Fujii, Masashi; Moriyama, Noriyuki
2007-03-01
We have developed a Micro CT system for understanding lung function at a high resolution of the micrometer order (up to 5µm in spatial resolution). Micro CT system enables the removal specimen of lungs to be observed at micro level, has expected a big contribution for micro internal organs morphology and the image diagnosis study. In this research, we develop system to visualize lung microstructures in three dimensions from micro CT images and analyze them. They characterize in that high CT value of the noise area is, and the difficulty of only using threshold processing to extract the alveolar wall of micro CT images. Thus, we are developing a method of extracting the alveolar wall with surface thinning algorithm. In this report, we propose the method which reduces the excessive degeneracy of figure which caused by surface thinning process. And, we apply this algorithm to the micro CT image of the actual pulmonary specimen. It is shown that the extraction of the alveolus wall becomes possible in the high precision.
Silvent, Jeremie; Akiva, Anat; Brumfeld, Vlad; Reznikov, Natalie; Rechav, Katya; Yaniv, Karina; Addadi, Lia; Weiner, Steve
2017-01-01
Although bone is one of the most studied living materials, many questions about the manner in which bones form remain unresolved, including fine details of the skeletal structure during development. In this study, we monitored skeleton development of zebrafish larvae, using calcein fluorescence, high-resolution micro-CT 3D images and FIB-SEM in the block surface serial imaging mode. We compared calcein staining of the skeletons of the wild type and nacre mutants, which are transparent zebrafish, with micro-CT for the first 30 days post fertilization embryos, and identified significant differences. We quantified the bone volumes and mineral contents of bones, including otoliths, during development, and showed that such developmental differences, including otolith development, could be helpful in identifying phenotypes. In addition, high-resolution imaging revealed the presence of mineralized aggregates in the notochord, before the formation of the first bone in the axial skeleton. These structures might play a role in the storage of the mineral. Our results highlight the potential of these high-resolution 3D approaches to characterize the zebrafish skeleton, which in turn could prove invaluable information for better understanding the development and the characterization of skeletal phenotypes. PMID:29220379
NASA Astrophysics Data System (ADS)
Mori, Shinichiro; Endo, Masahiro; Kohno, Ryosuke; Minohara, Shinichi; Kohno, Kazutoshi; Asakura, Hiroshi; Fujiwara, Hideaki; Murase, Kenya
2005-04-01
The conventional respiratory-gated CT scan technique includes anatomic motion induced artifacts due to the low temporal resolution. They are a significant source of error in radiotherapy treatment planning for the thorax and upper abdomen. Temporal resolution and image quality are important factors to minimize planning target volume margin due to the respiratory motion. To achieve high temporal resolution and high signal-to-noise ratio, we developed a respiratory gated segment reconstruction algorithm and adapted it to Feldkamp-Davis-Kress algorithm (FDK) with a 256-detector row CT. The 256-detector row CT could scan approximately 100 mm in the cranio-caudal direction with 0.5 mm slice thickness in one rotation. Data acquisition for the RS-FDK relies on the assistance of the respiratory sensing system by a cine scan mode (table remains stationary). We evaluated RS-FDK in phantom study with the 256-detector row CT and compared it with full scan (FS-FDK) and HS-FDK results with regard to volume accuracy and image noise, and finally adapted the RS-FDK to an animal study. The RS-FDK gave a more accurate volume than the others and it had the same signal-to-noise ratio as the FS-FDK. In the animal study, the RS-FDK visualized the clearest edges of the liver and pulmonary vessels of all the algorithms. In conclusion, the RS-FDK algorithm has a capability of high temporal resolution and high signal-to-noise ratio. Therefore it will be useful when combined with new radiotherapy techniques including image guided radiation therapy (IGRT) and 4D radiation therapy.
NASA Astrophysics Data System (ADS)
Tajik, Jehangir K.; Kugelmass, Steven D.; Hoffman, Eric A.
1993-07-01
We have developed a method utilizing x-ray CT for relating pulmonary perfusion to global and regional anatomy, allowing for detailed study of structure to function relationships. A thick slice, high temporal resolution mode is used to follow a bolus contrast agent for blood flow evaluation and is fused with a high spatial resolution, thin slice mode to obtain structure- function detail. To aid analysis of blood flow, we have developed a software module, for our image analysis package (VIDA), to produce the combined structure-function image. Color coded images representing blood flow, mean transit time, regional tissue content, regional blood volume, regional air content, etc. are generated and imbedded in the high resolution volume image. A text file containing these values along with a voxel's 3-D coordinates is also generated. User input can be minimized to identifying the location of the pulmonary artery from which the input function to a blood flow model is derived. Any flow model utilizing one input and one output function can be easily added to a user selectable list. We present examples from our physiologic based research findings to demonstrate the strengths of combining dynamic CT and HRCT relative to other scanning modalities to uniquely characterize pulmonary normal and pathophysiology.
Yanagawa, Masahiro; Hata, Akinori; Honda, Osamu; Kikuchi, Noriko; Miyata, Tomo; Uranishi, Ayumi; Tsukagoshi, Shinsuke; Tomiyama, Noriyuki
2018-05-29
To compare the image quality of the lungs between ultra-high-resolution CT (U-HRCT) and conventional area detector CT (AD-CT) images. Image data of slit phantoms (0.35, 0.30, and 0.15 mm) and 11 cadaveric human lungs were acquired by both U-HRCT and AD-CT devices. U-HRCT images were obtained with three acquisition modes: normal mode (U-HRCT N : 896 channels, 0.5 mm × 80 rows; 512 matrix), super-high-resolution mode (U-HRCT SHR : 1792 channels, 0.25 mm × 160 rows; 1024 matrix), and volume mode (U-HRCT SHR-VOL : non-helical acquisition with U-HRCT SHR ). AD-CT images were obtained with the same conditions as U-HRCT N . Three independent observers scored normal anatomical structures (vessels and bronchi), abnormal CT findings (faint nodules, solid nodules, ground-glass opacity, consolidation, emphysema, interlobular septal thickening, intralobular reticular opacities, bronchovascular bundle thickening, bronchiectasis, and honeycombing), noise, artifacts, and overall image quality on a 3-point scale (1 = worst, 2 = equal, 3 = best) compared with U-HRCT N . Noise values were calculated quantitatively. U-HRCT could depict a 0.15-mm slit. Both U-HRCT SHR and U-HRCT SHR-VOL significantly improved visualization of normal anatomical structures and abnormal CT findings, except for intralobular reticular opacities and reduced artifacts, compared with AD-CT (p < 0.014). Visually, U-HRCT SHR-VOL has less noise than U-HRCT SHR and AD-CT (p < 0.00001). Quantitative noise values were significantly higher in the following order: U-HRCT SHR (mean, 30.41), U-HRCT SHR-VOL (26.84), AD-CT (16.03), and U-HRCT N (15.14) (p < 0.0001). U-HRCT SHR and U-HRCT SHR-VOL resulted in significantly higher overall image quality than AD-CT and were almost equal to U-HRCT N (p < 0.0001). Both U-HRCT SHR and U-HRCT SHR-VOL can provide higher image quality than AD-CT, while U-HRCT SHR-VOL was less noisy than U-HRCT SHR . • Ultra-high-resolution CT (U-HRCT) can improve spatial resolution. • U-HRCT can reduce streak and dark band artifacts. • U-HRCT can provide higher image quality than conventional area detector CT. • In U-HRCT, the volume mode is less noisy than the super-high-resolution mode. • U-HRCT may provide more detailed information about the lung anatomy and pathology.
Yuki, I; Kambayashi, Y; Ikemura, A; Abe, Y; Kan, I; Mohamed, A; Dahmani, C; Suzuki, T; Ishibashi, T; Takao, H; Urashima, M; Murayama, Y
2016-02-01
Combination of high-resolution C-arm CT and novel metal artifact reduction software may contribute to the assessment of aneurysms treated with stent-assisted coil embolization. This study aimed to evaluate the efficacy of a novel Metal Artifact Reduction prototype software combined with the currently available high spatial-resolution C-arm CT prototype implementation by using an experimental aneurysm model treated with stent-assisted coil embolization. Eight experimental aneurysms were created in 6 swine. Coil embolization of each aneurysm was performed by using a stent-assisted technique. High-resolution C-arm CT with intra-arterial contrast injection was performed immediately after the treatment. The obtained images were processed with Metal Artifact Reduction. Five neurointerventional specialists reviewed the image quality before and after Metal Artifact Reduction. Observational and quantitative analyses (via image analysis software) were performed. Every aneurysm was successfully created and treated with stent-assisted coil embolization. Before Metal Artifact Reduction, coil loops protruding through the stent lumen were not visualized due to the prominent metal artifacts produced by the coils. These became visible after Metal Artifact Reduction processing. Contrast filling in the residual aneurysm was also visualized after Metal Artifact Reduction in every aneurysm. Both the observational (P < .0001) and quantitative (P < .001) analyses showed significant reduction of the metal artifacts after application of the Metal Artifact Reduction prototype software. The combination of high-resolution C-arm CT and Metal Artifact Reduction enables differentiation of the coil mass, stent, and contrast material on the same image by significantly reducing the metal artifacts produced by the platinum coils. This novel image technique may improve the assessment of aneurysms treated with stent-assisted coil embolization. © 2016 by American Journal of Neuroradiology.
Experimental flat-panel high-spatial-resolution volume CT of the temporal bone.
Gupta, Rajiv; Bartling, Soenke H; Basu, Samit K; Ross, William R; Becker, Hartmut; Pfoh, Armin; Brady, Thomas; Curtin, Hugh D
2004-09-01
A CT scanner employing a digital flat-panel detector is capable of very high spatial resolution as compared with a multi-section CT (MSCT) scanner. Our purpose was to determine how well a prototypical volume CT (VCT) scanner with a flat-panel detector system defines fine structures in temporal bone. Four partially manipulated temporal-bone specimens were imaged by use of a prototypical cone-beam VCT scanner with a flat-panel detector system at an isometric resolution of 150 microm at the isocenter. These specimens were also depicted by state-of-the-art multisection CT (MSCT). Forty-two structures imaged by both scanners were qualitatively assessed and rated, and scores assigned to VCT findings were compared with those of MSCT. Qualitative assessment of anatomic structures, lesions, cochlear implants, and middle-ear hearing aids indicated that image quality was significantly better with VCT (P < .001). Structures near the spatial-resolution limit of MSCT (e.g., bony covering of the tympanic segment of the facial canal, the incudo-stapedial joint, the proximal vestibular aqueduct, the interscalar septum, and the modiolus) had higher contrast and less partial-volume effect with VCT. The flat-panel prototype provides better definition of fine osseous structures of temporal bone than that of currently available MSCT scanners. This study provides impetus for further research in increasing spatial resolution beyond that offered by the current state-of-the-art scanners.
[Roentgenological semiotics of sarcoidosis].
Terpigorev, S A; Stashuk, G A; Dubrova, S E
2008-01-01
The aim of this review was to summarize semiotics of X-ray and CT-observable manifestations of intrathoracic sarcoidosis and clarify the role of conventional X-ray examination and CT (including high resolution CT) in the diagnosis of this disease and its complications. Also analysed are changes in pulmonary parenchyma compared with those detected in morphological studies.
Lab-based x-ray nanoCT imaging
NASA Astrophysics Data System (ADS)
Müller, Mark; Allner, Sebastian; Ferstl, Simone; Dierolf, Martin; Tuohimaa, Tomi; Pfeiffer, Franz
2017-03-01
Due to the recent development of transmission X-ray tubes with very small focal spot sizes, laboratory-based CT imaging with sub-micron resolutions is nowadays possible. We recently developed a novel X-ray nanoCT setup featuring a prototype nanofocus X-ray source and a single-photon counting detector. The system is based on mere geometrical magnification and can reach resolutions of 200 nm. To demonstrate the potential of the nanoCT system for biomedical applications we show high resolution nanoCT data of a small piece of human tooth comprising coronal dentin. The reconstructed CT data clearly visualize the dentin tubules within the tooth piece.
Lim, Kyungjae; Kwon, Heejin; Cho, Jinhan; Oh, Jongyoung; Yoon, Seongkuk; Kang, Myungjin; Ha, Dongho; Lee, Jinhwa; Kang, Eunju
2015-01-01
The purpose of this study was to assess the image quality of a novel advanced iterative reconstruction (IR) method called as "adaptive statistical IR V" (ASIR-V) by comparing the image noise, contrast-to-noise ratio (CNR), and spatial resolution from those of filtered back projection (FBP) and adaptive statistical IR (ASIR) on computed tomography (CT) phantom image. We performed CT scans at 5 different tube currents (50, 70, 100, 150, and 200 mA) using 3 types of CT phantoms. Scanned images were subsequently reconstructed in 7 different scan settings, such as FBP, and 3 levels of ASIR and ASIR-V (30%, 50%, and 70%). The image noise was measured in the first study using body phantom. The CNR was measured in the second study using contrast phantom and the spatial resolutions were measured in the third study using a high-resolution phantom. We compared the image noise, CNR, and spatial resolution among the 7 reconstructed image scan settings to determine whether noise reduction, high CNR, and high spatial resolution could be achieved at ASIR-V. At quantitative analysis of the first and second studies, it showed that the images reconstructed using ASIR-V had reduced image noise and improved CNR compared with those of FBP and ASIR (P < 0.001). At qualitative analysis of the third study, it also showed that the images reconstructed using ASIR-V had significantly improved spatial resolution than those of FBP and ASIR (P < 0.001). Our phantom studies showed that ASIR-V provides a significant reduction in image noise and a significant improvement in CNR as well as spatial resolution. Therefore, this technique has the potential to reduce the radiation dose further without compromising image quality.
Computed Tomography Studies of Lung Mechanics
Simon, Brett A.; Christensen, Gary E.; Low, Daniel A.; Reinhardt, Joseph M.
2005-01-01
The study of lung mechanics has progressed from global descriptions of lung pressure and volume relationships to the high-resolution, three-dimensional, quantitative measurement of dynamic regional mechanical properties and displacements. X-ray computed tomography (CT) imaging is ideally suited to the study of regional lung mechanics in intact subjects because of its high spatial and temporal resolution, correlation of functional data with anatomic detail, increasing volumetric data acquisition, and the unique relationship between CT density and lung air content. This review presents an overview of CT measurement principles and limitations for the study of regional mechanics, reviews some of the early work that set the stage for modern imaging approaches and impacted the understanding and management of patients with acute lung injury, and presents evolving novel approaches for the analysis and application of dynamic volumetric lung image data. PMID:16352757
Perz, Rafał; Toczyski, Jacek; Subit, Damien
2015-01-01
Computational models of the human body are commonly used for injury prediction in automobile safety research. To create these models, the geometry of the human body is typically obtained from segmentation of medical images such as computed tomography (CT) images that have a resolution between 0.2 and 1mm/pixel. While the accuracy of the geometrical and structural information obtained from these images depend greatly on their resolution, the effect of image resolution on the estimation of the ribs geometrical properties has yet to be established. To do so, each of the thirty-four sections of ribs obtained from a Post Mortem Human Surrogate (PMHS) was imaged using three different CT modalities: standard clinical CT (clinCT), high resolution clinical CT (HRclinCT), and microCT. The images were processed to estimate the rib cross-section geometry and mechanical properties, and the results were compared to those obtained from the microCT images by computing the 'deviation factor', a metric that quantifies the relative difference between results obtained from clinCT and HRclinCT to those obtained from microCT. Overall, clinCT images gave a deviation greater than 100%, and were therefore deemed inadequate for the purpose of this study. HRclinCT overestimated the rib cross-sectional area by 7.6%, the moments of inertia by about 50%, and the cortical shell area by 40.2%, while underestimating the trabecular area by 14.7%. Next, a parametric analysis was performed to quantify how the variations in the estimate of the geometrical properties affected the rib predicted mechanical response under antero-posterior loading. A variation of up to 45% for the predicted peak force and up to 50% for the predicted stiffness was observed. These results provide a quantitative estimate of the sensitivity of the response of the FE model to the resolution of the images used to generate it. They also suggest that a correction factor could be derived from the comparison between microCT and HRclinCT images to improve the response of the model developed based on HRclinCT images. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zacher, Gerhard; Eickhorst, Thilo; Schmidt, Hannes; Halisch, Matthias
2016-04-01
Today's high-resolution X-ray CT with its powerful tubes and great detail detectability lends itself naturally to geological and pedological applications. Those include the non-destructive interior examination and textural analysis of rock and soil samples and their permeability and porosity - to name only a few. Especially spatial distribution and geometry of pores, mineral phases and fractures are important for the evaluation of hydrologic and aeration properties in soils as well as for root development in the soil matrix. The possibility to visualize a whole soil aggregate or root tissue in a non-destructive way is undoubtedly the most valuable feature of this type of analysis and is a new area for routine application of high resolution X-ray micro-CT. The paper outlines recent developments in hard- and software requirements for high resolution CT. It highlights several pedological applications which were performed with the phoenix nanotom m, the first 180 kV nanofocus CT system tailored specifically for extremely high-resolution scans of variable sized samples with voxel-resolutions down to < 300 nm. In addition very good contrast resolution can be obtained as well which is necessary to distinguish biogenic material in soil aggregates amongst others. We will address visualization and quantification of porous networks in 3D in different environmental samples ranging from clastic sedimentary rock to soil cores and individual soil aggregates. As several processes and habitat functions are related to various pore sizes imaging of the intact soil matrix will be presented on different scales of interest - from the mm-scale representing the connectivity of macro-pores down to the micro-scale representing the space of microbial habitats. Therefore, soils were impregnated with resin and scanned via X-ray CT. Scans at higher resolution were obtained from sub-volumes cut from the entire resin impregnated block and from crop roots surrounded by rhizosphere soil. Within the scanned structures we will highlight interfaces i.e. pore-solid interface and soil-root interface. The latter will be linked to examples of fluorescent microscopy and scanning electron microscopy obtained from 2D sections revealing additional biological and chemical information in the respective microenvironment. Based on the combination of all 3D and 2D imaging data habitat features of soils can be characterized and combined with studies analyzing microbial rhizosphere colonization.
Hierarchical imaging of the human knee
NASA Astrophysics Data System (ADS)
Schulz, Georg; Götz, Christian; Deyhle, Hans; Müller-Gerbl, Magdalena; Zanette, Irene; Zdora, Marie-Christine; Khimchenko, Anna; Thalmann, Peter; Rack, Alexander; Müller, Bert
2016-10-01
Among the clinically relevant imaging techniques, computed tomography (CT) reaches the best spatial resolution. Sub-millimeter voxel sizes are regularly obtained. For investigations on true micrometer level lab-based μCT has become gold standard. The aim of the present study is the hierarchical investigation of a human knee post mortem using hard X-ray μCT. After the visualization of the entire knee using a clinical CT with a spatial resolution on the sub-millimeter range, a hierarchical imaging study was performed using a laboratory μCT system nanotom m. Due to the size of the whole knee the pixel length could not be reduced below 65 μm. These first two data sets were directly compared after a rigid registration using a cross-correlation algorithm. The μCT data set allowed an investigation of the trabecular structures of the bones. The further reduction of the pixel length down to 25 μm could be achieved by removing the skin and soft tissues and measuring the tibia and the femur separately. True micrometer resolution could be achieved after extracting cylinders of several millimeters diameters from the two bones. The high resolution scans revealed the mineralized cartilage zone including the tide mark line as well as individual calcified chondrocytes. The visualization of soft tissues including cartilage, was arranged by X-ray grating interferometry (XGI) at ESRF and Diamond Light Source. Whereas the high-energy measurements at ESRF allowed the simultaneous visualization of soft and hard tissues, the low-energy results from Diamond Light Source made individual chondrocytes within the cartilage visual.
Micro CT characterization of a coastal mine tailings deposit, Portmán Bay, SE Spain
NASA Astrophysics Data System (ADS)
Frigola, Jaime; Cerdà-Domènech, Marc; Barriuso, Eduardo; Sanchez-Vidal, Anna; Amblas, David; Canals, Miquel
2017-04-01
Scanning of sediment cores by means of high-resolution non-destructive techniques provides researchers with huge amounts of highly valuable data allowing fast and detailed characterization of the materials. In the last decades several devoted instruments have been developed and applied to the study of sedimentary sequences, mainly multi-sensor core loggers (MSCL) for the physical properties and XRF core scanners for the chemical elemental composition. The geoscientific community started using computed tomography (CT) systems about two decades ago. These were mainly medical systems as dedicated instruments were essentially lacking by that time. The resolution of those medical systems was limited to several hundreds of micrometres voxel size. Micro computed tomography (micro-CT) systems have also spread into geoscientific research, although their limited workspace dimensions prevents their use for large objects, such as long sediment cores. Recently, a new micro-CT system, the MultiTom Core X-ray CT, conceived by University of Barcelona (UB) researchers and developed by X-ray Engineering, became operational. It is able of scanning sediment cores up to 1.5 m long, and allows adjustable resolutions from 300 microns down to 3-4 microns. The system is now installed at UB's CORELAB Laboratory for non-destructive analyses of geological materials. Here we present, as an example, the results of MultiTom scans of a set of sediment cores recovered offshore Portmán Bay, SE Spain, in order to characterize at very high-resolution the metal-enriched deposit generated after 33 years of direct discharge into the sea of mine tailings resulting from the exploitation of Pb and Zn ores. In total 52 short cores and 6 long gravity cores from the mine tailings infilled bay were scanned with the MultiTom system at a mean voxel resolution of 125 microns. The integrated study of micro-CT data allowed differentiating the main tailings units from deposits formed after disposal cessation. Tailings units show higher radio-density values, which correspond to metal enrichments. A lower unit consists of highly laminated interbedded low radio-density and very high radio-density layers, while an upper mine tailings unit is more homogeneous and shows intermediate radio-density values. The limit between the tailings and the post-mining deposits is defined by a sharp surface associated with an abrupt decrease in the radio-densities. Post-mining deposits are also characterized by an increment in bioturbation marks, which are practically absent in the tailings units, and an increase in carbonate particles and organic matter patches. Micro CT scans allow observation of very small structures, which are indicative of the complexity of the sedimentation processes involved in the transport and final deposition of the mine tailings. Integration of micro CT scans together with XRF core scanner and MSCL data allows a better characterization of the metal concentrations and their distribution within the deposit, directly demonstrating the great value of non-destructive techniques for actually high-resolution sedimentological studies.
Dual-resolution image reconstruction for region-of-interest CT scan
NASA Astrophysics Data System (ADS)
Jin, S. O.; Shin, K. Y.; Yoo, S. K.; Kim, J. G.; Kim, K. H.; Huh, Y.; Lee, S. Y.; Kwon, O.-K.
2014-07-01
In ordinary CT scan, so called full field-of-view (FFOV) scan, in which the x-ray beam span covers the whole section of the body, a large number of projections are necessary to reconstruct high resolution images. However, excessive x-ray dose is a great concern in FFOV scan. Region-of-interest (ROI) scan is a method to visualize the ROI in high resolution while reducing the x-ray dose. But, ROI scan suffers from bright-band artifacts which may hamper CT-number accuracy. In this study, we propose an image reconstruction method to eliminate the band artifacts in the ROI scan. In addition to the ROI scan with high sampling rate in the view direction, we get FFOV projection data with much lower sampling rate. Then, we reconstruct images in the compressed sensing (CS) framework with dual resolutions, that is, high resolution in the ROI and low resolution outside the ROI. For the dual-resolution image reconstruction, we implemented the dual-CS reconstruction algorithm in which data fidelity and total variation (TV) terms were enforced twice in the framework of adaptive steepest descent projection onto convex sets (ASD-POCS). The proposed method has remarkably reduced the bright-band artifacts at around the ROI boundary, and it has also effectively suppressed the streak artifacts over the entire image. We expect the proposed method can be greatly used for dual-resolution imaging with reducing the radiation dose, artifacts and scan time.
Makeev, Andrey; Clajus, Martin; Snyder, Scott; Wang, Xiaolang; Glick, Stephen J.
2015-01-01
Abstract. Semiconductor photon-counting detectors based on high atomic number, high density materials [cadmium zinc telluride (CZT)/cadmium telluride (CdTe)] for x-ray computed tomography (CT) provide advantages over conventional energy-integrating detectors, including reduced electronic and Swank noise, wider dynamic range, capability of spectral CT, and improved signal-to-noise ratio. Certain CT applications require high spatial resolution. In breast CT, for example, visualization of microcalcifications and assessment of tumor microvasculature after contrast enhancement require resolution on the order of 100 μm. A straightforward approach to increasing spatial resolution of pixellated CZT-based radiation detectors by merely decreasing the pixel size leads to two problems: (1) fabricating circuitry with small pixels becomes costly and (2) inter-pixel charge spreading can obviate any improvement in spatial resolution. We have used computer simulations to investigate position estimation algorithms that utilize charge sharing to achieve subpixel position resolution. To study these algorithms, we model a simple detector geometry with a 5×5 array of 200 μm pixels, and use a conditional probability function to model charge transport in CZT. We used COMSOL finite element method software to map the distribution of charge pulses and the Monte Carlo package PENELOPE for simulating fluorescent radiation. Performance of two x-ray interaction position estimation algorithms was evaluated: the method of maximum-likelihood estimation and a fast, practical algorithm that can be implemented in a readout application-specific integrated circuit and allows for identification of a quadrant of the pixel in which the interaction occurred. Both methods demonstrate good subpixel resolution; however, their actual efficiency is limited by the presence of fluorescent K-escape photons. Current experimental breast CT systems typically use detectors with a pixel size of 194 μm, with 2×2 binning during the acquisition giving an effective pixel size of 388 μm. Thus, it would be expected that the position estimate accuracy reported in this study would improve detection and visualization of microcalcifications as compared to that with conventional detectors. PMID:26158095
Makeev, Andrey; Clajus, Martin; Snyder, Scott; Wang, Xiaolang; Glick, Stephen J
2015-04-01
Semiconductor photon-counting detectors based on high atomic number, high density materials [cadmium zinc telluride (CZT)/cadmium telluride (CdTe)] for x-ray computed tomography (CT) provide advantages over conventional energy-integrating detectors, including reduced electronic and Swank noise, wider dynamic range, capability of spectral CT, and improved signal-to-noise ratio. Certain CT applications require high spatial resolution. In breast CT, for example, visualization of microcalcifications and assessment of tumor microvasculature after contrast enhancement require resolution on the order of [Formula: see text]. A straightforward approach to increasing spatial resolution of pixellated CZT-based radiation detectors by merely decreasing the pixel size leads to two problems: (1) fabricating circuitry with small pixels becomes costly and (2) inter-pixel charge spreading can obviate any improvement in spatial resolution. We have used computer simulations to investigate position estimation algorithms that utilize charge sharing to achieve subpixel position resolution. To study these algorithms, we model a simple detector geometry with a [Formula: see text] array of [Formula: see text] pixels, and use a conditional probability function to model charge transport in CZT. We used COMSOL finite element method software to map the distribution of charge pulses and the Monte Carlo package PENELOPE for simulating fluorescent radiation. Performance of two x-ray interaction position estimation algorithms was evaluated: the method of maximum-likelihood estimation and a fast, practical algorithm that can be implemented in a readout application-specific integrated circuit and allows for identification of a quadrant of the pixel in which the interaction occurred. Both methods demonstrate good subpixel resolution; however, their actual efficiency is limited by the presence of fluorescent [Formula: see text]-escape photons. Current experimental breast CT systems typically use detectors with a pixel size of [Formula: see text], with [Formula: see text] binning during the acquisition giving an effective pixel size of [Formula: see text]. Thus, it would be expected that the position estimate accuracy reported in this study would improve detection and visualization of microcalcifications as compared to that with conventional detectors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duke, Daniel J.; Finney, Charles E. A.; Kastengren, Alan
Given the importance of the fuel-injection process on the combustion and emissions performance of gasoline direct injected engines, there has been significant recent interest in understanding the fluid dynamics within the injector, particularly around the needle and through the nozzles. Furthermore, the pressure losses and transients that occur in the flow passages above the needle are also of interest. Simulations of these injectors typically use the nominal design geometry, which does not always match the production geometry. Computed tomography (CT) using x-ray and neutron sources can be used to obtain the real geometry from production injectors, but there are trade-offsmore » in using these techniques. X-ray CT provides high resolution, but cannot penetrate through the thicker parts of the injector. Neutron CT has excellent penetrating power but lower resolution. Here, we present results from a joint effort to characterize a gasoline direct injector representative of the Spray G injector as defined by the Engine Combustion Network. High-resolution (1.2 to 3 µm) x-ray CT measurements from the Advanced Photon Source at Argonne National Laboratory were combined with moderate-resolution (40 µm) neutron CT measurements from the High Flux Isotope Reactor at Oak Ridge National Laboratory to generate a complete internal geometry for the injector. This effort combined the strengths of both facilities’ capabilities, with extremely fine spatially resolved features in the nozzles and injector tips and fine resolution of internal features of the needle along the length of injector. Analysis of the resulting surface model of the internal fluid flow volumes of the injector reveals how the internal cross-sectional area and nozzle hole geometry differs slightly from the design dimensions. A simplified numerical simulation of the internal flow shows how deviations from the design geometry can alter the flow inside the sac and holes. Our results of this study will provide computational modelers with very accurate solid and surface models for use in computational fluid dynamics studies and experimentalists with increased insight into the operating characteristics of their injectors.« less
Duke, Daniel J.; Finney, Charles E. A.; Kastengren, Alan; ...
2017-03-14
Given the importance of the fuel-injection process on the combustion and emissions performance of gasoline direct injected engines, there has been significant recent interest in understanding the fluid dynamics within the injector, particularly around the needle and through the nozzles. Furthermore, the pressure losses and transients that occur in the flow passages above the needle are also of interest. Simulations of these injectors typically use the nominal design geometry, which does not always match the production geometry. Computed tomography (CT) using x-ray and neutron sources can be used to obtain the real geometry from production injectors, but there are trade-offsmore » in using these techniques. X-ray CT provides high resolution, but cannot penetrate through the thicker parts of the injector. Neutron CT has excellent penetrating power but lower resolution. Here, we present results from a joint effort to characterize a gasoline direct injector representative of the Spray G injector as defined by the Engine Combustion Network. High-resolution (1.2 to 3 µm) x-ray CT measurements from the Advanced Photon Source at Argonne National Laboratory were combined with moderate-resolution (40 µm) neutron CT measurements from the High Flux Isotope Reactor at Oak Ridge National Laboratory to generate a complete internal geometry for the injector. This effort combined the strengths of both facilities’ capabilities, with extremely fine spatially resolved features in the nozzles and injector tips and fine resolution of internal features of the needle along the length of injector. Analysis of the resulting surface model of the internal fluid flow volumes of the injector reveals how the internal cross-sectional area and nozzle hole geometry differs slightly from the design dimensions. A simplified numerical simulation of the internal flow shows how deviations from the design geometry can alter the flow inside the sac and holes. Our results of this study will provide computational modelers with very accurate solid and surface models for use in computational fluid dynamics studies and experimentalists with increased insight into the operating characteristics of their injectors.« less
NASA Astrophysics Data System (ADS)
Clift, Corey; Thomas, Andrew; Adamovics, John; Chang, Zheng; Das, Indra; Oldham, Mark
2010-03-01
Achieving accurate small field dosimetry is challenging. This study investigates the utility of a radiochromic plastic PRESAGE® read with optical-CT for the acquisition of radiosurgery field commissioning data from a Novalis Tx system with a high-definition multileaf collimator (HDMLC). Total scatter factors (Sc, p), beam profiles, and penumbrae were measured for five different radiosurgery fields (5, 10, 20, 30 and 40 mm) using a commercially available optical-CT scanner (OCTOPUS, MGS Research). The percent depth dose (PDD), beam profile and penumbra of the 10 mm field were also measured using a higher resolution in-house prototype CCD-based scanner. Gafchromic EBT® film was used for independent verification. Measurements of Sc, p made with PRESAGE® and film agreed with mini-ion chamber commissioning data to within 4% for every field (range 0.2-3.6% for PRESAGE®, and 1.6-3.6% for EBT). PDD, beam profile and penumbra measurements made with the two PRESAGE®/optical-CT systems and film showed good agreement with the high-resolution diode commissioning measurements with a competitive resolution (0.5 mm pixels). The in-house prototype optical-CT scanner allowed much finer resolution compared with previous applications of PRESAGE®. The advantages of the PRESAGE® system for small field dosimetry include 3D measurements, negligible volume averaging, directional insensitivity, an absence of beam perturbations, energy and dose rate independence.
Clift, Corey; Thomas, Andrew; Adamovics, John; Chang, Zheng; Das, Indra; Oldham, Mark
2010-01-01
Achieving accurate small field dosimetry is challenging. This study investigates the utility of a radiochromic plastic PRESAGE® read with optical-CT for the acquisition of radiosurgery field commissioning data from a Novalis Tx system with a high-definition multileaf collimator (HDMLC). Total scatter factors (Sc, p), beam profiles, and penumbrae were measured for five different radiosurgery fields (5, 10, 20, 30 and 40 mm) using a commercially available optical-CT scanner (OCTOPUS, MGS Research). The percent depth dose (PDD), beam profile and penumbra of the 10 mm field were also measured using a higher resolution in-house prototype CCD-based scanner. Gafchromic EBT® film was used for independent verification. Measurements of Sc, p made with PRESAGE® and film agreed with mini-ion chamber commissioning data to within 4% for every field (range 0.2–3.6% for PRESAGE®, and 1.6–3.6% for EBT). PDD, beam profile and penumbra measurements made with the two PRESAGE®/optical-CT systems and film showed good agreement with the high-resolution diode commissioning measurements with a competitive resolution (0.5 mm pixels). The in-house prototype optical-CT scanner allowed much finer resolution compared with previous applications of PRESAGE®. The advantages of the PRESAGE® system for small field dosimetry include 3D measurements, negligible volume averaging, directional insensitivity, an absence of beam perturbations, energy and dose rate independence. PMID:20134082
Optimization of CT image reconstruction algorithms for the lung tissue research consortium (LTRC)
NASA Astrophysics Data System (ADS)
McCollough, Cynthia; Zhang, Jie; Bruesewitz, Michael; Bartholmai, Brian
2006-03-01
To create a repository of clinical data, CT images and tissue samples and to more clearly understand the pathogenetic features of pulmonary fibrosis and emphysema, the National Heart, Lung, and Blood Institute (NHLBI) launched a cooperative effort known as the Lung Tissue Resource Consortium (LTRC). The CT images for the LTRC effort must contain accurate CT numbers in order to characterize tissues, and must have high-spatial resolution to show fine anatomic structures. This study was performed to optimize the CT image reconstruction algorithms to achieve these criteria. Quantitative analyses of phantom and clinical images were conducted. The ACR CT accreditation phantom containing five regions of distinct CT attenuations (CT numbers of approximately -1000 HU, -80 HU, 0 HU, 130 HU and 900 HU), and a high-contrast spatial resolution test pattern, was scanned using CT systems from two manufacturers (General Electric (GE) Healthcare and Siemens Medical Solutions). Phantom images were reconstructed using all relevant reconstruction algorithms. Mean CT numbers and image noise (standard deviation) were measured and compared for the five materials. Clinical high-resolution chest CT images acquired on a GE CT system for a patient with diffuse lung disease were reconstructed using BONE and STANDARD algorithms and evaluated by a thoracic radiologist in terms of image quality and disease extent. The clinical BONE images were processed with a 3 x 3 x 3 median filter to simulate a thicker slice reconstructed in smoother algorithms, which have traditionally been proven to provide an accurate estimation of emphysema extent in the lungs. Using a threshold technique, the volume of emphysema (defined as the percentage of lung voxels having a CT number lower than -950 HU) was computed for the STANDARD, BONE, and BONE filtered. The CT numbers measured in the ACR CT Phantom images were accurate for all reconstruction kernels for both manufacturers. As expected, visual evaluation of the spatial resolution bar patterns demonstrated that the BONE (GE) and B46f (Siemens) showed higher spatial resolution compared to the STANDARD (GE) or B30f (Siemens) reconstruction algorithms typically used for routine body CT imaging. Only the sharper images were deemed clinically acceptable for the evaluation of diffuse lung disease (e.g. emphysema). Quantitative analyses of the extent of emphysema in patient data showed the percent volumes above the -950 HU threshold as 9.4% for the BONE reconstruction, 5.9% for the STANDARD reconstruction, and 4.7% for the BONE filtered images. Contrary to the practice of using standard resolution CT images for the quantitation of diffuse lung disease, these data demonstrate that a single sharp reconstruction (BONE/B46f) should be used for both the qualitative and quantitative evaluation of diffuse lung disease. The sharper reconstruction images, which are required for diagnostic interpretation, provide accurate CT numbers over the range of -1000 to +900 HU and preserve the fidelity of small structures in the reconstructed images. A filtered version of the sharper images can be accurately substituted for images reconstructed with smoother kernels for comparison to previously published results.
Yang, Y X; Teo, S-K; Van Reeth, E; Tan, C H; Tham, I W K; Poh, C L
2015-08-01
Accurate visualization of lung motion is important in many clinical applications, such as radiotherapy of lung cancer. Advancement in imaging modalities [e.g., computed tomography (CT) and MRI] has allowed dynamic imaging of lung and lung tumor motion. However, each imaging modality has its advantages and disadvantages. The study presented in this paper aims at generating synthetic 4D-CT dataset for lung cancer patients by combining both continuous three-dimensional (3D) motion captured by 4D-MRI and the high spatial resolution captured by CT using the authors' proposed approach. A novel hybrid approach based on deformable image registration (DIR) and finite element method simulation was developed to fuse a static 3D-CT volume (acquired under breath-hold) and the 3D motion information extracted from 4D-MRI dataset, creating a synthetic 4D-CT dataset. The study focuses on imaging of lung and lung tumor. Comparing the synthetic 4D-CT dataset with the acquired 4D-CT dataset of six lung cancer patients based on 420 landmarks, accurate results (average error <2 mm) were achieved using the authors' proposed approach. Their hybrid approach achieved a 40% error reduction (based on landmarks assessment) over using only DIR techniques. The synthetic 4D-CT dataset generated has high spatial resolution, has excellent lung details, and is able to show movement of lung and lung tumor over multiple breathing cycles.
Vasilescu, Dragoş M.; Klinge, Christine; Knudsen, Lars; Yin, Leilei; Wang, Ge; Weibel, Ewald R.; Ochs, Matthias
2013-01-01
Quantitative assessment of the lung microstructure using standard stereological methods such as volume fractions of tissue, alveolar surface area, or number of alveoli, are essential for understanding the state of normal and diseased lung. These measures are traditionally obtained from histological sections of the lung tissue, a process that ultimately destroys the three-dimensional (3-D) anatomy of the tissue. In comparison, a novel X-ray-based imaging method that allows nondestructive sectioning and imaging of fixed lungs at multiple resolutions can overcome this limitation. Scanning of the whole lung at high resolution and subsequent regional sampling at ultrahigh resolution without physically dissecting the organ allows the application of design-based stereology for assessment of the whole lung structure. Here we validate multiple stereological estimates performed on micro–computed tomography (μCT) images by comparing them with those obtained via conventional histology on the same mouse lungs. We explore and discuss the potentials and limitations of the two approaches. Histological examination offers higher resolution and the qualitative differentiation of tissues by staining, but ultimately loses 3-D tissue relationships, whereas μCT allows for the integration of morphometric data with the spatial complexity of lung structure. However, μCT has limited resolution satisfactory for the sterological estimates presented in this study but not for differentiation of tissues. We conclude that introducing stereological methods in μCT studies adds value by providing quantitative information on internal structures while not curtailing more complex approaches to the study of lung architecture in the context of physiological or pathological studies. PMID:23264542
High-resolution computed tomography of the middle ear and mastoid. Part II. Tubotympanic disease
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swartz, J.D.; Goodman, R.S.; Russell, K.B.
1983-08-01
Of more than 200 patients who underwent high-resolution computed tomography (CT) of the middle ear, the vast majority had tubotympanic disease in one of its forms: middle ear effusion, tympanosclerosis, granulation tissue, tympanic membrane retractions, or acquired cholesteatoma. The CT appearance of each of these conditions is discussed and illustrated. Emphasis is placed on the differential diagnosis of tubotympanic disease by determining dependent from nondependent soft-tissue opacity using two CT projections.
Thimm, Benjamin W; Hofmann, Sandra; Schneider, Philipp; Carretta, Roberto; Müller, Ralph
2012-03-01
Computed tomography (CT) represents a truly three-dimensional (3D) imaging technique that can provide high-resolution images on the cellular level. Thus, one approach to detect single cells is X-ray absorption-based CT, where cells are labeled with a dense, opaque material providing the required contrast for CT imaging. Within the present work, a novel cell-labeling method has been developed showing the feasibility of labeling fixed cells with iron oxide (FeO) particles for subsequent CT imaging and quantitative morphometry. A biotin-streptavidin detection system was exploited to bind FeO particles to its target endothelial cells. The binding of the particles was predominantly close to the cell centers on 2D surfaces as shown by light microscopy, scanning electron microscopy, and CT. When cells were cultured on porous, 3D polyurethane surfaces, significantly more FeO particles were detected compared with surfaces without cells and FeO particle labeling using CT. Here, we report on the implementation and evaluation of a novel cell detection method based on high-resolution CT. This system has potential in cell tracking for 3D in vitro imaging in the future.
High Resolution X-Ray Micro-CT of Ultra-Thin Wall Space Components
NASA Technical Reports Server (NTRS)
Roth, Don J.; Rauser, R. W.; Bowman, Randy R.; Bonacuse, Peter; Martin, Richard E.; Locci, I. E.; Kelley, M.
2012-01-01
A high resolution micro-CT system has been assembled and is being used to provide optimal characterization for ultra-thin wall space components. The Glenn Research Center NDE Sciences Team, using this CT system, has assumed the role of inspection vendor for the Advanced Stirling Convertor (ASC) project at NASA. This article will discuss many aspects of the development of the CT scanning for this type of component, including CT system overview; inspection requirements; process development, software utilized and developed to visualize, process, and analyze results; calibration sample development; results on actual samples; correlation with optical/SEM characterization; CT modeling; and development of automatic flaw recognition software. Keywords: Nondestructive Evaluation, NDE, Computed Tomography, Imaging, X-ray, Metallic Components, Thin Wall Inspection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swartz, J.D.; Goodman, R.S.; Russell, K.B.
1983-08-01
High-resolution computed tomography (CT) provides an excellent method for examination of the surgically altered middle ear and mastoid. Closed-cavity and open-cavity types of mastoidectomy are illustrated. Recurrent cholesteatoma in the mastoid bowl is easily diagnosed. Different types of tympanoplasty are discussed and illustrated, as are tympanostomy tubes and various ossicular reconstructive procedures. Baseline high-resolution CT of the postoperative middle ear and mastoid is recommended at approximately 3 months following the surgical procedure.
Three-dimensional rotational micro-angiography
NASA Astrophysics Data System (ADS)
Patel, Vikas
Computed tomography (CT) is state-of-the-art for 3D imaging in which images are acquired about the patient and are used to reconstruct the data. But the commercial CT systems suffer from low spatial resolution (0.5-2 lp/mm). Micro-CT (microCT) systems have high resolution 3D reconstruction (>10 lp/mm), but are currently limited to small objects, e.g., small animals. To achieve artifact free reconstructions, geometric calibration of the rotating-object cone-beam microCT (CBmicroCT) system is performed using new techniques that use only the projection images of the object, i.e., no calibration objects are required. Translations (up to 0.2 mm) occurring during the acquisition in the horizontal direction are detected, quantified, and corrected based on sinogram analysis. The parameters describing the physical axis of rotation determined using our image-based method (aligning anti-posed images) agree well (within 0.1 mm and 0.3 degrees) with those determined using other techniques that use calibration objects. Geometric calibrations of the rotational angiography (RA) systems (clinical cone-beam CT systems with fluoroscopic capabilities provided by flat-panel detectors (FPD)) are performed using a simple single projection technique (SPT), which aligns a known 3D model of a calibration phantom with the projection data. The calibration parameters obtained by the SPT are found to be reproducible (angles within 0.2° and x- and y-translations less than 2 mm) for over 7 months. The spatial resolution of the RA systems is found to be virtually unaffected by such small geometric variations. Finally, using our understanding of the geometric calibrations, we have developed methods to combine relatively low-resolution RA acquisitions (2-3 lp/mm) with high resolution microCT acquisitions (using a high-resolution micro-angiographic fluoroscope (MAF) attached to the RA gantry) to produce the first-ever 3D rotational micro-angiography (3D-RmicroA) system on a clinical gantry. Images of a rabbit with a coronary stent placed in an artery were obtained and reconstructed. To eliminate artifacts due to image truncation, lower-dose (compared to the MAF acquisition) full-FOV (FFOV) FPD RA sequences are also obtained. To ensure high-quality high-resolution reconstruction, the high-resolution images from the MAF are aligned spatially with the lower-dose FPD images (average correlation coefficient before and after alignment: 0.65 and 0.97 respectively), and the pixel values in the FPD image data are scaled (using linear regression) to match those of the MAF. Greater details without any visible truncation artifacts are seen in 3D RmicroA (MAF-FPD) images than in those of the FPD alone. The FWHM of line profiles of stent struts (100 micron diameter) are approximately 192 +/- 21 and 313 +/- 38 microns for the 3D RmicroA and FPD data, respectively. Thus, with the RmicroA system, we have essentially developed a high resolution CBmicroCT system for clinical use.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Sun Mo, E-mail: Sunmo.Kim@rmp.uhn.on.ca; Haider, Masoom A.; Jaffray, David A.
Purpose: A previously proposed method to reduce radiation dose to patient in dynamic contrast-enhanced (DCE) CT is enhanced by principal component analysis (PCA) filtering which improves the signal-to-noise ratio (SNR) of time-concentration curves in the DCE-CT study. The efficacy of the combined method to maintain the accuracy of kinetic parameter estimates at low temporal resolution is investigated with pixel-by-pixel kinetic analysis of DCE-CT data. Methods: The method is based on DCE-CT scanning performed with low temporal resolution to reduce the radiation dose to the patient. The arterial input function (AIF) with high temporal resolution can be generated with a coarselymore » sampled AIF through a previously published method of AIF estimation. To increase the SNR of time-concentration curves (tissue curves), first, a region-of-interest is segmented into squares composed of 3 × 3 pixels in size. Subsequently, the PCA filtering combined with a fraction of residual information criterion is applied to all the segmented squares for further improvement of their SNRs. The proposed method was applied to each DCE-CT data set of a cohort of 14 patients at varying levels of down-sampling. The kinetic analyses using the modified Tofts’ model and singular value decomposition method, then, were carried out for each of the down-sampling schemes between the intervals from 2 to 15 s. The results were compared with analyses done with the measured data in high temporal resolution (i.e., original scanning frequency) as the reference. Results: The patients’ AIFs were estimated to high accuracy based on the 11 orthonormal bases of arterial impulse responses established in the previous paper. In addition, noise in the images was effectively reduced by using five principal components of the tissue curves for filtering. Kinetic analyses using the proposed method showed superior results compared to those with down-sampling alone; they were able to maintain the accuracy in the quantitative histogram parameters of volume transfer constant [standard deviation (SD), 98th percentile, and range], rate constant (SD), blood volume fraction (mean, SD, 98th percentile, and range), and blood flow (mean, SD, median, 98th percentile, and range) for sampling intervals between 10 and 15 s. Conclusions: The proposed method of PCA filtering combined with the AIF estimation technique allows low frequency scanning for DCE-CT study to reduce patient radiation dose. The results indicate that the method is useful in pixel-by-pixel kinetic analysis of DCE-CT data for patients with cervical cancer.« less
Stadelmann, Vincent A; Zderic, Ivan; Baur, Annick; Unholz, Cynthia; Eberli, Ursula; Gueorguiev, Boyko
2016-02-01
Vertebroplasty has been shown to reinforce weak vertebral bodies and reduce fracture risks, yet cement leakage is a major problem that can cause severe complications. Since cement flow is nearly impossible to control during surgery, small volumes of cement are injected, but then mechanical benefits might be limited. A better understanding of cement flows within bone structure is required to further optimize vertebroplasty and bone augmentation in general. We developed a novel imaging method, composite time-lapse CT, to characterize cement flow during injection. In brief, composite-resolution time-lapse CT exploits the qualities of microCT and clinical CT. The method consists in overlaying low-resolution time-lapse CT scans acquired during injection onto pre-operative high-resolution microCT scans, generating composite-resolution time-lapse CT series of cement flow within bone. In this in vitro study, composite-resolution time-lapse CT was applied to eight intact and five artificially fractured cadaveric vertebrae during vertebroplasty. The time-lapse scans were acquired at one-milliliter cement injection steps until a total of 10 ml cement was injected. The composite-resolution series were then converted into micro finite element models to compute strains distribution under virtual axial loading. Relocation of strain energy density within bone structure was observed throughout the progression of the procedure. Interestingly, the normalized effect of cement injection on the overall stiffness of the vertebrae was similar between intact and fractured specimens, although at different orders of magnitude. In conclusion, composite time-lapse CT can picture cement flows during bone augmentation. The composite images can also be easily converted into finite element models to compute virtual strain distributions under loading at every step of an injection, providing deeper understanding on the biomechanics of vertebroplasty. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Karhula, Sakari S.; Finnilä, Mikko A.; Freedman, Jonathan D.; Kauppinen, Sami; Valkealahti, Maarit; Lehenkari, Petri; Pritzker, Kenneth P. H.; Nieminen, Heikki J.; Snyder, Brian D.; Grinstaff, Mark W.; Saarakkala, Simo
2017-08-01
Contrast-enhanced micro-computed tomography (CEµCT) with cationic and anionic contrast agents reveals glycosaminoglycan (GAG) content and distribution in articular cartilage (AC). The advantage of using cationic stains (e.g. CA4+) compared to anionic stains (e.g. Hexabrix®), is that it distributes proportionally with GAGs, while anionic stain distribution in AC is inversely proportional to the GAG content. To date, studies using cationic stains have been conducted with sufficient resolution to study its distributions on the macro-scale, but with insufficient resolution to study its distributions on the micro-scale. Therefore, it is not known whether the cationic contrast agents accumulate in extra/pericellular matrix and if they interact with chondrocytes. The insufficient resolution has also prevented to answer the question whether CA4+ accumulation in chondrons could lead to an erroneous quantification of GAG distribution with low-resolution µCT setups. In this study, we use high-resolution µCT to investigate whether CA4+ accumulates in chondrocytes, and further, to determine whether it affects the low-resolution ex vivo µCT studies of CA4+ stained human AC with varying degree of osteoarthritis. Human osteochondral samples were immersed in three different concentrations of CA4+ (3 mgI/ml, 6mgI/ml, and 24 mgI/ml) and imaged with high-resolution µCT at several timepoints. Different uptake diffusion profiles of CA4+ were observed between the segmented chondrons and the rest of the tissue. While the X-ray -detected CA4+ concentration in chondrons was greater than in the rest of the AC, its contribution to the uptake into the whole tissue was negligible and in line with macro-scale GAG content detected from histology. The efficient uptake of CA4+ into chondrons and surrounding territorial matrix can be explained by the micro-scale distribution of GAG content. CA4+ uptake in chondrons occurred regardless of the progression stage of osteoarthritis in the samples and the relative difference between the interterritorial matrix and segmented chondron area was less than 4%. To conclude, our results suggest that GAG quantification with CEµCT is not affected by the chondron uptake of CA4+. This further confirms the use of CA4+ for macro-scale assessment of GAG throughout the AC, and highlight the capability of studying chondron properties in 3D at the micro scale.
Evaluation of the low dose cardiac CT imaging using ASIR technique
NASA Astrophysics Data System (ADS)
Fan, Jiahua; Hsieh, Jiang; Deubig, Amy; Sainath, Paavana; Crandall, Peter
2010-04-01
Today Cardiac imaging is one of the key driving forces for the research and development activities of Computed Tomography (CT) imaging. It requires high spatial and temporal resolution and is often associated with high radiation dose. The newly introduced ASIR technique presents an efficient method that offers the dose reduction benefits while maintaining image quality and providing fast reconstruction speed. This paper discusses the study of image quality of the ASIR technique for Cardiac CT imaging. Phantoms as well as clinical data have been evaluated to demonstrate the effectiveness of ASIR technique for Cardiac CT applications.
NASA Astrophysics Data System (ADS)
Kennedy, A. M.; Lane, J.; Ebert, M. A.
2014-03-01
Plan review systems often allow dose volume histogram (DVH) recalculation as part of a quality assurance process for trials. A review of the algorithms provided by a number of systems indicated that they are often very similar. One notable point of variation between implementations is in the location and frequency of dose sampling. This study explored the impact such variations can have on DVH based plan evaluation metrics (Normal Tissue Complication Probability (NTCP), min, mean and max dose), for a plan with small structures placed over areas of high dose gradient. Dose grids considered were exported from the original planning system at a range of resolutions. We found that for the CT based resolutions used in all but one plan review systems (CT and CT with guaranteed minimum number of sampling voxels in the x and y direction) results were very similar and changed in a similar manner with changes in the dose grid resolution despite the extreme conditions. Differences became noticeable however when resolution was increased in the axial (z) direction. Evaluation metrics also varied differently with changing dose grid for CT based resolutions compared to dose grid based resolutions. This suggests that if DVHs are being compared between systems that use a different basis for selecting sampling resolution it may become important to confirm that a similar resolution was used during calculation.
High resolution extremity CT for biomechanics modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ashby, A.E.; Brand, H.; Hollerbach, K.
1995-09-23
With the advent of ever more powerful computing and finite element analysis (FEA) capabilities, the bone and joint geometry detail available from either commercial surface definitions or from medical CT scans is inadequate. For dynamic FEA modeling of joints, precise articular contours are necessary to get appropriate contact definition. In this project, a fresh cadaver extremity was suspended in parafin in a lucite cylinder and then scanned with an industrial CT system to generate a high resolution data set for use in biomechanics modeling.
Okuda, Kyohei; Sakimoto, Shota; Fujii, Susumu; Ida, Tomonobu; Moriyama, Shigeru
The frame-of-reference using computed-tomography (CT) coordinate system on single-photon emission computed tomography (SPECT) reconstruction is one of the advanced characteristics of the xSPECT reconstruction system. The aim of this study was to reveal the influence of the high-resolution frame-of-reference on the xSPECT reconstruction. 99m Tc line-source phantom and National Electrical Manufacturers Association (NEMA) image quality phantom were scanned using the SPECT/CT system. xSPECT reconstructions were performed with the reference CT images in different sizes of the display field-of-view (DFOV) and pixel. The pixel sizes of the reconstructed xSPECT images were close to 2.4 mm, which is acquired as originally projection data, even if the reference CT resolution was varied. The full width at half maximum (FWHM) of the line-source, absolute recovery coefficient, and background variability of image quality phantom were independent on the sizes of DFOV in the reference CT images. The results of this study revealed that the image quality of the reconstructed xSPECT images is not influenced by the resolution of frame-of-reference on SPECT reconstruction.
Li, Ke; Garrett, John; Ge, Yongshuai; Chen, Guang-Hong
2014-07-01
Statistical model based iterative reconstruction (MBIR) methods have been introduced to clinical CT systems and are being used in some clinical diagnostic applications. The purpose of this paper is to experimentally assess the unique spatial resolution characteristics of this nonlinear reconstruction method and identify its potential impact on the detectabilities and the associated radiation dose levels for specific imaging tasks. The thoracic section of a pediatric phantom was repeatedly scanned 50 or 100 times using a 64-slice clinical CT scanner at four different dose levels [CTDIvol =4, 8, 12, 16 (mGy)]. Both filtered backprojection (FBP) and MBIR (Veo(®), GE Healthcare, Waukesha, WI) were used for image reconstruction and results were compared with one another. Eight test objects in the phantom with contrast levels ranging from 13 to 1710 HU were used to assess spatial resolution. The axial spatial resolution was quantified with the point spread function (PSF), while the z resolution was quantified with the slice sensitivity profile. Both were measured locally on the test objects and in the image domain. The dependence of spatial resolution on contrast and dose levels was studied. The study also features a systematic investigation of the potential trade-off between spatial resolution and locally defined noise and their joint impact on the overall image quality, which was quantified by the image domain-based channelized Hotelling observer (CHO) detectability index d'. (1) The axial spatial resolution of MBIR depends on both radiation dose level and image contrast level, whereas it is supposedly independent of these two factors in FBP. The axial spatial resolution of MBIR always improved with an increasing radiation dose level and/or contrast level. (2) The axial spatial resolution of MBIR became equivalent to that of FBP at some transitional contrast level, above which MBIR demonstrated superior spatial resolution than FBP (and vice versa); the value of this transitional contrast highly depended on the dose level. (3) The PSFs of MBIR could be approximated as Gaussian functions with reasonably good accuracy. (4) Thez resolution of MBIR showed similar contrast and dose dependence. (5) Noise standard deviation assessed on the edges of objects demonstrated a trade-off with spatial resolution in MBIR. (5) When both spatial resolution and image noise were considered using the CHO analysis, MBIR led to significant improvement in the overall CT image quality for both high and low contrast detection tasks at both standard and low dose levels. Due to the intrinsic nonlinearity of the MBIR method, many well-known CT spatial resolution and noise properties have been modified. In particular, dose dependence and contrast dependence have been introduced to the spatial resolution of CT images by MBIR. The method has also introduced some novel noise-resolution trade-off not seen in traditional CT images. While the benefits of MBIR regarding the overall image quality, as demonstrated in this work, are significant, the optimal use of this method in clinical practice demands a thorough understanding of its unique physical characteristics.
Yan, Liwei; Guo, Yongze; Qi, Jian; Zhu, Qingtang; Gu, Liqiang; Zheng, Canbin; Lin, Tao; Lu, Yutong; Zeng, Zitao; Yu, Sha; Zhu, Shuang; Zhou, Xiang; Zhang, Xi; Du, Yunfei; Yao, Zhi; Lu, Yao; Liu, Xiaolin
2017-08-01
The precise annotation and accurate identification of the topography of fascicles to the end organs are prerequisites for studying human peripheral nerves. In this study, we present a feasible imaging method that acquires 3D high-resolution (HR) topography of peripheral nerve fascicles using an iodine and freeze-drying (IFD) micro-computed tomography (microCT) method to greatly increase the contrast of fascicle images. The enhanced microCT imaging method can facilitate the reconstruction of high-contrast HR fascicle images, fascicle segmentation and extraction, feature analysis, and the tracing of fascicle topography to end organs, which define fascicle functions. The complex intraneural aggregation and distribution of fascicles is typically assessed using histological techniques or MR imaging to acquire coarse axial three-dimensional (3D) maps. However, the disadvantages of histological techniques (static, axial manual registration, and data instability) and MR imaging (low-resolution) limit these applications in reconstructing the topography of nerve fascicles. Thus, enhanced microCT is a new technique for acquiring 3D intraneural topography of the human peripheral nerve fascicles both to improve our understanding of neurobiological principles and to guide accurate repair in the clinic. Additionally, 3D microstructure data can be used as a biofabrication model, which in turn can be used to fabricate scaffolds to repair long nerve gaps. Copyright © 2017 Elsevier B.V. All rights reserved.
High resolution laboratory grating-based x-ray phase-contrast CT
NASA Astrophysics Data System (ADS)
Viermetz, Manuel P.; Birnbacher, Lorenz J. B.; Fehringer, Andreas; Willner, Marian; Noel, Peter B.; Pfeiffer, Franz; Herzen, Julia
2017-03-01
Grating-based phase-contrast computed tomography (gbPC-CT) is a promising imaging method for imaging of soft tissue contrast without the need of any contrast agent. The focus of this study is the increase in spatial resolution without loss in sensitivity to allow visualization of pathologies comparable to the convincing results obtained at the synchrotron. To improve the effective pixel size a super-resolution reconstruction based on subpixel shifts involving a deconvolution of the image is applied on differential phase-contrast data. In our study we could achieve an effective pixel sizes of 28mm without any drawback in terms of sensitivity or the ability to measure quantitative data.
High resolution multidetector CT aided tissue analysis and quantification of lung fibrosis
NASA Astrophysics Data System (ADS)
Zavaletta, Vanessa A.; Karwoski, Ronald A.; Bartholmai, Brian; Robb, Richard A.
2006-03-01
Idiopathic pulmonary fibrosis (IPF, also known as Idiopathic Usual Interstitial Pneumontis, pathologically) is a progressive diffuse lung disease which has a median survival rate of less than four years with a prevalence of 15-20/100,000 in the United States. Global function changes are measured by pulmonary function tests and the diagnosis and extent of pulmonary structural changes are typically assessed by acquiring two-dimensional high resolution CT (HRCT) images. The acquisition and analysis of volumetric high resolution Multi-Detector CT (MDCT) images with nearly isotropic pixels offers the potential to measure both lung function and structure. This paper presents a new approach to three dimensional lung image analysis and classification of normal and abnormal structures in lungs with IPF.
Grandl, Susanne; Sztrókay-Gaul, Anikó; Mittone, Alberto; Gasilov, Sergey; Brun, Emmanuel; Bravin, Alberto; Mayr, Doris; Auweter, Sigrid D; Hellerhoff, Karin; Reiser, Maximilian; Coan, Paola
2016-01-01
Neoadjuvant chemotherapy is the state-of-the-art treatment in advanced breast cancer. A correct visualization of the post-therapeutic tumor size is of high prognostic relevance. X-ray phase-contrast computed tomography (PC-CT) has been shown to provide improved soft-tissue contrast at a resolution formerly restricted to histopathology, at low doses. This study aimed at assessing ex-vivo the potential use of PC-CT for visualizing the effects of neoadjuvant chemotherapy on breast carcinoma. The analysis was performed on two ex-vivo formalin-fixed mastectomy samples containing an invasive carcinoma removed from two patients treated with neoadjuvant chemotherapy. Images were matched with corresponding histological slices. The visibility of typical post-therapeutic tissue changes was assessed and compared to results obtained with conventional clinical imaging modalities. PC-CT depicted the different tissue types with an excellent correlation to histopathology. Post-therapeutic tissue changes were correctly visualized and the residual tumor mass could be detected. PC-CT outperformed clinical imaging modalities in the detection of chemotherapy-induced tissue alterations including post-therapeutic tumor size. PC-CT might become a unique diagnostic tool in the prediction of tumor response to neoadjuvant chemotherapy. PC-CT might be used to assist during histopathological diagnosis, offering a high-resolution and high-contrast virtual histological tool for the accurate delineation of tumor boundaries.
NASA Astrophysics Data System (ADS)
Elfarnawany, Mai; Alam, S. Riyahi; Agrawal, Sumit K.; Ladak, Hanif M.
2017-02-01
Cochlear implant surgery is a hearing restoration procedure for patients with profound hearing loss. In this surgery, an electrode is inserted into the cochlea to stimulate the auditory nerve and restore the patient's hearing. Clinical computed tomography (CT) images are used for planning and evaluation of electrode placement, but their low resolution limits the visualization of internal cochlear structures. Therefore, high resolution micro-CT images are used to develop atlas-based segmentation methods to extract these nonvisible anatomical features in clinical CT images. Accurate registration of the high and low resolution CT images is a prerequisite for reliable atlas-based segmentation. In this study, we evaluate and compare different non-rigid B-spline registration parameters using micro-CT and clinical CT images of five cadaveric human cochleae. The varying registration parameters are cost function (normalized correlation (NC), mutual information and mean square error), interpolation method (linear, windowed-sinc and B-spline) and sampling percentage (1%, 10% and 100%). We compare the registration results visually and quantitatively using the Dice similarity coefficient (DSC), Hausdorff distance (HD) and absolute percentage error in cochlear volume. Using MI or MSE cost functions and linear or windowed-sinc interpolation resulted in visually undesirable deformation of internal cochlear structures. Quantitatively, the transforms using 100% sampling percentage yielded the highest DSC and smallest HD (0.828+/-0.021 and 0.25+/-0.09mm respectively). Therefore, B-spline registration with cost function: NC, interpolation: B-spline and sampling percentage: moments 100% can be the foundation of developing an optimized atlas-based segmentation algorithm of intracochlear structures in clinical CT images.
Three-rooted premolar analyzed by high-resolution and cone beam CT.
Marca, Caroline; Dummer, Paul M H; Bryant, Susan; Vier-Pelisser, Fabiana Vieira; Só, Marcus Vinicius Reis; Fontanella, Vania; Dutra, Vinicius D'avila; de Figueiredo, José Antonio Poli
2013-07-01
The aim of this study was to analyze the variations in canal and root cross-sectional area in three-rooted maxillary premolars between high-resolution computed tomography (μCT) and cone beam computed tomography (CBCT). Sixteen extracted maxillary premolars with three distinct roots and fully formed apices were scanned using μCT and CBCT. Photoshop CS software was used to measure root and canal cross-sectional areas at the most cervical and the most apical points of each root third in images obtained using the two tomographic computed (CT) techniques, and at 30 root sections equidistant from both root ends using μCT images. Canal and root areas were compared between each method using the Student t test for paired samples and 95 % confidence intervals. Images using μCT were sharper than those obtained using CBCT. There were statistically significant differences in mean area measurements of roots and canals between the μCT and CBCT techniques (P < 0.05). Root and canal areas had similar variations in cross-sectional μCT images and became proportionally smaller in a cervical to apical direction as the cementodentinal junction was approached, from where the area then increased apically. Although variation was similar in the roots and canals under study, CBCT produced poorer image details than μCT. Although CBCT is a strong diagnosis tool, it still needs improvement to provide accuracy in details of the root canal system, especially in cases with anatomical variations, such as the three-rooted maxillary premolars.
NASA Astrophysics Data System (ADS)
Astolfo, Alberto; Arfelli, Fulvia; Schültke, Elisabeth; James, Simon; Mancini, Lucia; Menk, Ralf-Hendrik
2013-03-01
In the present study complementary high-resolution imaging techniques on different length scales are applied to elucidate a cellular loading protocol of gold nanoparticles and subsequently its impact on long term and high-resolution cell-tracking utilizing X-ray technology. Although demonstrated for malignant cell lines the results can be applied to non-malignant cell lines as well. In particular the accumulation of the gold marker per cell has been assessed quantitatively by virtue of electron microscopy, two-dimensional X-ray fluorescence imaging techniques and X-ray CT with micrometric and sub-micrometric resolution. Moreover, utilizing these techniques the three dimensional distribution of the incorporated nanoparticles, which are sequestered in lysosomes as a permanent marker, could be determined. The latter allowed elucidation of the gold partition during mitosis and the cell size, which subsequently enabled us to define the optimal instrument settings of a compact microCT system to visualize gold loaded cells. The results obtained demonstrate the feasibility of cell-tracking using X-ray CT with compact sources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Y. X.; Van Reeth, E.; Poh, C. L., E-mail: clpoh@ntu.edu.sg
2015-08-15
Purpose: Accurate visualization of lung motion is important in many clinical applications, such as radiotherapy of lung cancer. Advancement in imaging modalities [e.g., computed tomography (CT) and MRI] has allowed dynamic imaging of lung and lung tumor motion. However, each imaging modality has its advantages and disadvantages. The study presented in this paper aims at generating synthetic 4D-CT dataset for lung cancer patients by combining both continuous three-dimensional (3D) motion captured by 4D-MRI and the high spatial resolution captured by CT using the authors’ proposed approach. Methods: A novel hybrid approach based on deformable image registration (DIR) and finite elementmore » method simulation was developed to fuse a static 3D-CT volume (acquired under breath-hold) and the 3D motion information extracted from 4D-MRI dataset, creating a synthetic 4D-CT dataset. Results: The study focuses on imaging of lung and lung tumor. Comparing the synthetic 4D-CT dataset with the acquired 4D-CT dataset of six lung cancer patients based on 420 landmarks, accurate results (average error <2 mm) were achieved using the authors’ proposed approach. Their hybrid approach achieved a 40% error reduction (based on landmarks assessment) over using only DIR techniques. Conclusions: The synthetic 4D-CT dataset generated has high spatial resolution, has excellent lung details, and is able to show movement of lung and lung tumor over multiple breathing cycles.« less
A cochlear implant phantom for evaluating CT acquisition parameters
NASA Astrophysics Data System (ADS)
Chakravorti, Srijata; Bussey, Brian J.; Zhao, Yiyuan; Dawant, Benoit M.; Labadie, Robert F.; Noble, Jack H.
2017-03-01
Cochlear Implants (CIs) are surgically implantable neural prosthetic devices used to treat profound hearing loss. Recent literature indicates that there is a correlation between the positioning of the electrode array within the cochlea and the ultimate hearing outcome of the patient, indicating that further studies aimed at better understanding the relationship between electrode position and outcomes could have significant implications for future surgical techniques, array design, and processor programming methods. Post-implantation high resolution CT imaging is the best modality for localizing electrodes and provides the resolution necessary to visually identify electrode position, albeit with an unknown degree of accuracy depending on image acquisition parameters, like the HU range of reconstruction, radiation dose, and resolution of the image. In this paper, we report on the development of a phantom that will both permit studying which CT acquisition parameters are best for accurately identifying electrode position and serve as a ground truth for evaluating how different electrode localization methods perform when using different CT scanners and acquisition parameters. We conclude based on our tests that image resolution and HU range of reconstruction strongly affect how accurately the true position of the electrode array can be found by both experts and automatic analysis techniques. The results presented in this paper demonstrate that our phantom is a versatile tool for assessing how CT acquisition parameters affect the localization of CIs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flores-M, E.; Gamboa de Buen, I.; Buenfil, A. E.
Computed Tomography (CT) is a high dose X ray imaging procedure and its use has rapidly increased in the last two decades fueled by the development of helical CT. The aim of this study is to present values of the dosimetric quantities for CT paediatric examinations of thoracic and abdominal regions. The protocols studied were those of chest, lung-mediastine, chest-abdomen, pulmonary high resolution and mediastine-abdomen, which are the more common examinations performed at ''Hospital Infantil de Mexico Federico Gomez'' in the thoracic-abdominal region. The measurements were performed on a Siemens SOMATOM Sensation 16 CT Scanner and the equipment used wasmore » a CT pencil ionization chamber, connected to an electrometer. This system was calibrated for RQT9 CT beam quality. A PMMA head phantom with diameter of 16 cm and length of 15 cm was also used. The dosimetric quantities measured were the weighted air kerma index (C{sub w}), the volumetric dose index (C{sub vol}) and the CT air kerma-length product. It was found that the pulmonary high resolution examination presented the highest values for the C{sub w}(31.1 mGy) and C{sub vol}(11.1 mGy). The examination with the lowest values of these two quantities was the chest-abdomen protocol with 10.5 mGy for C{sub w} and 5.5 mGy for C{sub vol}. However, this protocol presented the highest value for P{sub KL,CT}(282.2 mGy cm) when considering the average clinical length of the examinations.« less
Development and performance evaluation of an experimental fine pitch detector multislice CT scanner.
Imai, Yasuhiro; Nukui, Masatake; Ishihara, Yotaro; Fujishige, Takashi; Ogata, Kentaro; Moritake, Masahiro; Kurochi, Haruo; Ogata, Tsuyoshi; Yahata, Mitsuru; Tang, Xiangyang
2009-04-01
The authors have developed an experimental fine pitch detector multislice CT scanner with an ultrasmall focal spot x-ray tube and a high-density matrix detector through current CT technology. The latitudinal size of the x-ray tube focal spot was 0.4 mm. The detector dimension was 1824 channels (azimuthal direction) x 32 rows (longitudinal direction) at row width of 0.3125 mm, in which a thinner reflected separator surrounds each detector cell coupled with a large active area photodiode. They were mounted on a commercial 64-slice CT scanner gantry while the scan field of view (50 cm) and gantry rotation speed (0.35 s) can be maintained. The experimental CT scanner demonstrated the spatial resolution of 0.21-0.22 mm (23.8-22.7 lp/cm) with the acrylic slit phantom and in-plane 50%-MTF 9.0 lp/cm and 10%-MTF 22.0 lp/cm. In the longitudinal direction, it demonstrated the spatial resolution of 0.24 mm with the high-resolution insert of the CATPHAN phantom and 0.34 mm as the full width at half maximum of the slice sensitivity profile. In low-contrast detectability, 3 mm at 0.3% was visualized at the CTDI(vol) of 47.2 mGy. Two types of 2.75 mm diameter vessel phantoms with in-stent stenosis at 25%, 50%, and 75% stair steps were scanned, and the reconstructed images can clearly resolve the stenosis at each case. The experimental CT scanner provides high-resolution imaging while maintaining low-contrast detectability, demonstrating the potentiality for clinical applications demanding high spatial resolution, such as imaging of inner ear, lung, and bone, or low-contrast detectability, such as imaging of coronary artery.
Geisler, W M; Black, C M; Bandea, C I; Morrison, S G
2008-12-01
To investigate the relationship of Chlamydia trachomatis (CT) outer membrane protein A (OmpA) type to the clearance of CT infection before treatment. CT OmpA genotyping, with amplification and sequencing of ompA, was utilised to study the natural history of CT infection (spontaneous resolution vs persistence) in 102 individuals with chlamydia-positive screening tests returning for treatment. CT OmpA distribution was associated with spontaneous resolution of CT, most notably with CT OmpA genotype J/Ja detected more often from the initial screening CT test than other genotypes in those who then had spontaneous resolution of CT noted at the time of treatment. Five individuals with presumed persisting CT infection had discordant CT OmpA genotypes at the screening and treatment visits, suggesting possible new interval CT infection. Clearance of chlamydia by the host before treatment may be influenced by the CT OmpA genotype infecting the host. CT OmpA genotyping may be a valuable tool in understanding the natural history of chlamydial infections.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weir, V; Zhang, J; Bruner, A
Purpose: The AIRO Mobile CT system was recently introduced which overcomes the limitations from existing CT, CT fluoroscopy, and intraoperative O-arm. With an integrated table and a large diameter bore, the system is suitable for cranial, spine and trauma procedures, making it a highly versatile intraoperative imaging system. This study is to investigate radiation dose and image quality of the AIRO and compared with those from a routine CT scanner. Methods: Radiation dose was measured using a conventional 100mm pencil ionization chamber and CT polymethylmetacrylate (PMMA) body and head phantoms. Image quality was evaluated with a CATPHAN 500 phantom. Spatialmore » resolution, low contrast resolution (CNR), Modulation Transfer Function (MTF), and Normalized Noise Power Spectrum (NNPS) were analyzed. Results: Under identical technique conditions, radiation dose (mGy/mAs) from the AIRO mobile CT system (AIRO) is higher than that from a 64 slice CT scanner. MTFs show that both Soft and Standard filters of the AIRO system lost resolution quickly compared to the Sensation 64 slice CT. With the Standard kernel, the spatial resolutions of the AIRO system are 3lp/cm and 4lp/cm for the body and head FOVs, respectively. NNPSs show low frequency noise due to ring-like artifacts. Due to a higher dose in terms of mGy/mAs at both head and body FOV, CNR of the AIRO system is higher than that of the Siemens scanner. However detectability of the low contrast objects is poorer in the AIRO due to the presence of ring artifacts in the location of the targets. Conclusion: For image guided surgery applications, the AIRO has some advantages over a routine CT scanner due to its versatility, large bore size, and acceptable image quality. Our evaluation of the physical performance helps its future improvements.« less
Angeli, Roberto D; Lavinsky, Joel; Setogutti, Enio T; Lavinsky, Luiz
2017-01-01
The aim of this work was to describe the dimensions of the crista fenestra and determine its presence by means of high-resolution computed tomography (CT) for the purpose of cochlear implantation via the round window approach. A series of 10 adult human temporal bones underwent high-resolution CT scanning and were further dissected for microscopic study of the round window niche. In all of the specimens, the round window membrane was fully visualized after the complete removal of bony overhangs. The crista fenestra was identified as a sharp bony crest located in the anterior and inferior borders of the niche; its area ranged from 0.28 to 0.80 mm2 (mean 0.51 ± 0.18). The proportion of the area occupied by the crista fenestra in the whole circumference of the round window ranged from 23 to 50% (mean 36%). We found a moderate positive correlation between the area of the niche and the dimensions of the crista fenestra (Spearman rho: 0.491). In every case, high-resolution CT scanning was unable to determine the presence of the crista fenestra. The crista fenestra occupies a variable but expressive area within the bony round window niche. Narrower round window niches tended to house smaller crests. The presence of the crista fenestra is an important obstacle to adequate access to the scala tympani. Nevertheless, a high-resolution CT scan provides no additional preoperative information with regard to its presence for the purpose of surgical access to the scala tympani via the round window niche. © 2017 S. Karger AG, Basel.
MicroCT angiography detects vascular formation and regression in skin wound healing
Urao, Norifumi; Okonkwo, Uzoagu A.; Fang, Milie M.; Zhuang, Zhen W.; Koh, Timothy J.; DiPietro, Luisa A.
2016-01-01
Properly regulated angiogenesis and arteriogenesis are essential for effective wound healing. Tissue injury induces robust new vessel formation and subsequent vessel maturation, which involves vessel regression and remodeling. Although formation of functional vasculature is essential for healing, alterations in vascular structure over the time course of skin wound healing are not well understood. Here, using high-resolution ex vivo X-ray micro-computed tomography (microCT), we describe the vascular network during healing of skin excisional wounds with highly detailed three-dimensional (3D) reconstructed images and associated quantitative analysis. We found that relative vessel volume, surface area and branching number are significantly decreased in wounds from day 7 to day 14 and 21. Segmentation and skeletonization analysis of selected branches from high-resolution images as small as 2.5 μm voxel size show that branching orders are decreased in the wound vessels during healing. In histological analysis, we found that the contrast agent fills mainly arterioles, but not small capillaries nor large veins. In summary, high-resolution microCT revealed dynamic alterations of vessel structures during wound healing. This technique may be useful as a key tool in the study of the formation and regression of wound vessels. PMID:27009591
An iterative reconstruction method for high-pitch helical luggage CT
NASA Astrophysics Data System (ADS)
Xue, Hui; Zhang, Li; Chen, Zhiqiang; Jin, Xin
2012-10-01
X-ray luggage CT is widely used in airports and railway stations for the purpose of detecting contrabands and dangerous goods that may be potential threaten to public safety, playing an important role in homeland security. An X-ray luggage CT is usually in a helical trajectory with a high pitch for achieving a high passing speed of the luggage. The disadvantage of high pitch is that conventional filtered back-projection (FBP) requires a very large slice thickness, leading to bad axial resolution and helical artifacts. Especially when severe data inconsistencies are present in the z-direction, like the ends of a scanning object, the partial volume effect leads to inaccuracy value and may cause a wrong identification. In this paper, an iterative reconstruction method is developed to improve the image quality and accuracy for a large-spacing multi-detector high-pitch helical luggage CT system. In this method, the slice thickness is set to be much smaller than the pitch. Each slice involves projection data collected in a rather small angular range, being an ill-conditioned limited-angle problem. Firstly a low-resolution reconstruction is employed to obtain images, which are used as prior images in the following process. Then iterative reconstruction is performed to obtain high-resolution images. This method enables a high volume coverage speed and a thin reconstruction slice for the helical luggage CT. We validate this method with data collected in a commercial X-ray luggage CT.
Computed tomography imaging and angiography - principles.
Kamalian, Shervin; Lev, Michael H; Gupta, Rajiv
2016-01-01
The evaluation of patients with diverse neurologic disorders was forever changed in the summer of 1973, when the first commercial computed tomography (CT) scanners were introduced. Until then, the detection and characterization of intracranial or spinal lesions could only be inferred by limited spatial resolution radioisotope scans, or by the patterns of tissue and vascular displacement on invasive pneumoencaphalography and direct carotid puncture catheter arteriography. Even the earliest-generation CT scanners - which required tens of minutes for the acquisition and reconstruction of low-resolution images (128×128 matrix) - could, based on density, noninvasively distinguish infarct, hemorrhage, and other mass lesions with unprecedented accuracy. Iodinated, intravenous contrast added further sensitivity and specificity in regions of blood-brain barrier breakdown. The advent of rapid multidetector row CT scanning in the early 1990s created renewed enthusiasm for CT, with CT angiography largely replacing direct catheter angiography. More recently, iterative reconstruction postprocessing techniques have made possible high spatial resolution, reduced noise, very low radiation dose CT scanning. The speed, spatial resolution, contrast resolution, and low radiation dose capability of present-day scanners have also facilitated dual-energy imaging which, like magnetic resonance imaging, for the first time, has allowed tissue-specific CT imaging characterization of intracranial pathology. © 2016 Elsevier B.V. All rights reserved.
Cui, Xiaoming; Li, Tao; Li, Xin; Zhou, Weihua
2015-05-01
The aim of this study was to evaluate the in vivo performance of four image reconstruction algorithms in a high-definition CT (HDCT) scanner with improved spatial resolution for the evaluation of coronary artery stents and intrastent lumina. Thirty-nine consecutive patients with a total of 71 implanted coronary stents underwent coronary CT angiography (CCTA) on a HDCT (Discovery CT 750 HD; GE Healthcare) with the high-resolution scanning mode. Four different reconstruction algorithms (HD-stand, HD-detail; HD-stand-plus; HD-detail-plus) were applied to reconstruct the stented coronary arteries. Image quality for stent characterization was assessed. Image noise and intrastent luminal diameter were measured. The relationship between the measurement of inner stent diameter (ISD) and the true stent diameter (TSD) and stent type were analysed. The stent-dedicated kernel (HD-detail) offered the highest percentage (53.5%) of good image quality for stent characterization and the highest ratio (68.0±8.4%) of visible stent lumen/true stent lumen for luminal diameter measurement at the expense of an increased overall image noise. The Pearson correlation coefficient between the ISD and TSD measurement and spearman correlation coefficient between the ISD measurement and stent type were 0.83 and 0.48, respectively. Compared with standard reconstruction algorithms, high-definition CT imaging technique with dedicated high-resolution reconstruction algorithm provides more accurate stent characterization and intrastent luminal diameter measurement. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Vassalou, Evangelia E; Raissaki, Maria; Magkanas, Eleftherios; Antoniou, Katerina M; Karantanas, Apostolos H
2018-03-01
To compare a simplified ultrasonographic (US) protocol in 2 patient positions with the same-positioned comprehensive US assessments and high-resolution computed tomographic (CT) findings in patients with idiopathic pulmonary fibrosis. Twenty-five consecutive patients with idiopathic pulmonary fibrosis were prospectively enrolled and examined in 2 sessions. During session 1, patients were examined with a US protocol including 56 lung intercostal spaces in supine/sitting (supine/sitting comprehensive protocol) and lateral decubitus (decubitus comprehensive protocol) positions. During session 2, patients were evaluated with a 16-intercostal space US protocol in sitting (sitting simplified protocol) and left/right decubitus (decubitus simplified protocol) positions. The 16 intercostal spaces were chosen according to the prevalence of idiopathic pulmonary fibrosis-related changes on high-resolution CT. The sum of B-lines counted in each intercostal space formed the US scores for all 4 US protocols: supine/sitting and decubitus comprehensive US scores and sitting and decubitus simplified US scores. High-resolution CT-related Warrick scores (J Rheumatol 1991; 18:1520-1528) were compared to US scores. The duration of each protocol was recorded. A significant correlation was found between all US scores and Warrick scores and between simplified and corresponding comprehensive scores (P < .0001). Decubitus simplified US scores showed a slightly higher correlation with Warrick scores compared to sitting simplified US scores. Mean durations of decubitus and sitting simplified protocols were 4.76 and 6.20 minutes, respectively (P < .005). Simplified 16-intercostal space protocols correlated with comprehensive protocols and high-resolution CT findings in patients with idiopathic pulmonary fibrosis. The 16-intercostal space simplified protocol in the lateral decubitus position correlated better with high-resolution CT findings and was less time-consuming compared to the sitting position. © 2017 by the American Institute of Ultrasound in Medicine.
High resolution collimator system for X-ray detector
Eberhard, Jeffrey W.; Cain, Dallas E.
1987-01-01
High resolution in an X-ray computerized tomography (CT) inspection system is achieved by using a collimator/detector combination to limit the beam width of the X-ray beam incident on a detector element to the desired resolution width. In a detector such as a high pressure Xenon detector array, a narrow tapered collimator is provided above a wide detector element. The collimator slits have any desired width, as small as a few mils at the top, the slit width is easily controlled, and they are fabricated on standard machines. The slit length determines the slice thickness of the CT image.
NASA Astrophysics Data System (ADS)
Zikmund, T.; Novotná, M.; Kavková, M.; Tesařová, M.; Kaucká, M.; Szarowská, B.; Adameyko, I.; Hrubá, E.; Buchtová, M.; Dražanová, E.; Starčuk, Z.; Kaiser, J.
2018-02-01
The biomedically focused brain research is largely performed on laboratory mice considering a high homology between the human and mouse genomes. A brain has an intricate and highly complex geometrical structure that is hard to display and analyse using only 2D methods. Applying some fast and efficient methods of brain visualization in 3D will be crucial for the neurobiology in the future. A post-mortem analysis of experimental animals' brains usually involves techniques such as magnetic resonance and computed tomography. These techniques are employed to visualize abnormalities in the brains' morphology or reparation processes. The X-ray computed microtomography (micro CT) plays an important role in the 3D imaging of internal structures of a large variety of soft and hard tissues. This non-destructive technique is applied in biological studies because the lab-based CT devices enable to obtain a several-micrometer resolution. However, this technique is always used along with some visualization methods, which are based on the tissue staining and thus differentiate soft tissues in biological samples. Here, a modified chemical contrasting protocol of tissues for a micro CT usage is introduced as the best tool for ex vivo 3D imaging of a post-mortem mouse brain. This way, the micro CT provides a high spatial resolution of the brain microscopic anatomy together with a high tissue differentiation contrast enabling to identify more anatomical details in the brain. As the micro CT allows a consequent reconstruction of the brain structures into a coherent 3D model, some small morphological changes can be given into context of their mutual spatial relationships.
X-Ray Nanofocus CT: Visualising Of Internal 3D-Structures With Submicrometer Resolution
NASA Astrophysics Data System (ADS)
Weinekoetter, Christian
2008-09-01
High-resolution X-ray Computed Tomography (CT) allows the visualization and failure analysis of the internal micro structure of objects—even if they have complicated 3D-structures where 2D X-ray microscopy would give unclear information. During the past several years, computed tomography has progressed to higher resolution and quicker reconstruction of the 3D-volume. Most recently it even allows a three-dimensional look into the inside of materials with submicron resolution. With the use of nanofocus® tube technology, nanoCT®-systems are pushing forward into application fields that were exclusive to high cost and rare available synchrotron techniques. The study was performed with the new nanotom, a very compact laboratory system which allows the analysis of samples up to 120 mm in diameter and weighing up to 1 kg with exceptional voxel-resolution down to <500 nm (<0.5 microns). It is the first 180 kV nanofocus® computed tomography system in the world which is tailored specifically to the highest-resolution applications in the fields of material science, micro electronics, geology and biology. Therefore it is particularly suitable for nanoCT-examinations e.g. of synthetic materials, metals, ceramics, composite materials, mineral and organic samples. There are a few physical effects influencing the CT quality, such as beam-hardening within the sample or ring-artefacts, which can not be completely avoided. To optimize the quality of high resolution 3D volumes, the nanotom® includes a variety of effective software tools to reduce ring-artefacts and correct beam hardenings or drift effects which occurred during data acquisition. The resulting CT volume data set can be displayed in various ways, for example by virtual slicing and sectional views in any direction of the volume. By the fact that this requires only a mouse click, this technique will substitute destructive mechanical slicing and cutting in many applications. The initial CT results obtained with the nanotom® demonstrate that it is now possible to analyze the three-dimensional micro structure of materials and small objects with submicrometer resolution. Any internal difference in material, density or porosity within a sample can be visualized and data like distances can be measured. NanoCT® widely expands the spectrum of detectable micro-structures. The nanotom® opens a new dimension of 3D-microanalysis and will replace more destructive methods—saving costs and time per sample inspected.
Barrett, H E; Cunnane, E M; O Brien, J M; Moloney, M A; Kavanagh, E G; Walsh, M T
2017-10-01
The purpose of this study is to determine the optimal target CT spatial resolution for accurately imaging abdominal aortic aneurysm (AAA) wall characteristics, distinguishing between tissue and calcification components, for an accurate assessment of rupture risk. Ruptured and non-ruptured AAA-wall samples were acquired from eight patients undergoing open surgical aneurysm repair upon institutional review board approval and informed consent was obtained from all patients. Physical measurements of AAA-wall cross-section were made using scanning electron microscopy. Samples were scanned using high resolution micro-CT scanning. A resolution range of 15.5-155μm was used to quantify the influence of decreasing resolution on wall area measurements, in terms of tissue and calcification. A statistical comparison between the reference resolution (15.5μm) and multi-detector CT resolution (744μm) was also made. Electron microscopy examination of ruptured AAAs revealed extremely thin outer tissue structure <200μm in radial distribution which is supporting the aneurysm wall along with large areas of adjacent medial calcifications far greater in area than the tissue layer. The spatial resolution of 155μm is a significant predictor of the reference AAA-wall tissue and calcification area measurements (r=0.850; p<0.001; r=0.999; p<0.001 respectively). The tissue and calcification area at 155μm is correct within 8.8%±1.86 and 26.13%±9.40 respectively with sensitivity of 87.17% when compared to the reference. The inclusion of AAA-wall measurements, through the use of high resolution-CT will elucidate the variations in AAA-wall tissue and calcification distributions across the wall which may help to leverage an improved assessment of AAA rupture risk. Copyright © 2017 Elsevier B.V. All rights reserved.
Image quality assessment of a pre-clinical flat-panel volumetric micro-CT scanner
NASA Astrophysics Data System (ADS)
Du, Louise Y.; Lee, Ting-Yim; Holdsworth, David W.
2006-03-01
Small animal imaging has recently become an area of increased interest because more human diseases can be modeled in transgenic and knockout rodents. Current micro-CT systems are capable of achieving spatial resolution on the order of 10 μm, giving highly detailed anatomical information. However, the speed of data acquisition of these systems is relatively slow, when compared with clinical CT systems. Dynamic CT perfusion imaging has proven to be a powerful tool clinically in detecting and diagnosing cancer, stroke, pulmonary and ischemic heart diseases. In order to perform this technique in mice and rats, quantitative CT images must be acquired at a rate of at least 1 Hz. Recently, a research pre-clinical CT scanner (eXplore Ultra, GE Healthcare) has been designed specifically for dynamic perfusion imaging in small animals. Using an amorphous silicon flat-panel detector and a clinical slip-ring gantry, this system is capable of acquiring volumetric image data at a rate of 1 Hz, with in-plane resolution of 150 μm, while covering the entire thoracic region of a mouse or whole organs of a rat. The purpose of this study was to evaluate the principal imaging performance of the micro-CT system, in terms of spatial resolution, image uniformity, linearity, dose and voxel noise for the feasibility of imaging mice and rats. Our investigations show that 3D images can be obtained with a limiting spatial resolution of 2.7 line pairs per mm and noise of 42 HU, using an acquisition interval of 8 seconds at an entrance dose of 6.4 cGy.
Equally sloped tomography based X-ray full-field nano-CT at Shanghai Synchrotron Radiation Facility
NASA Astrophysics Data System (ADS)
Wang, Yudan; Ren, Yuqi; Zhou, Guangzhao; Du, Guohao; Xie, Honglan; Deng, Biao; Xiao, Tiqiao
2018-07-01
X-ray full-field nano-computed tomography (nano-CT) has non-destructive three-dimensional imaging capabilities with high spatial resolution, and has been widely applied to investigate morphology and structures in various areas. Conventional tomography reconstructs a 3D object from a large number of equal-angle projections. For nano-CT, it takes long collecting time due to the large projection numbers and long exposure time. Here, equally-sloped tomography (EST) based nano-CT was implemented and constructed on X-ray imaging beamline at the Shanghai Synchrotron Radiation Facility (SSRF) to overcome or alleviate these difficulties. Preliminary results show that hard TXM with the spatial resolution of 100 nm and the EST-based nano-CT with the ability of 3D nano non-destructive characterization have been realized. This technique promotes hard X-ray imaging capability to nano scales at SSRF and could have applications in many fields including nanomaterials, new energy and life sciences. The study will be helpful for the construction of the new full field X-ray nano-imaging beamline with the spatial resolution of 20 nm at SSRF phase II project.
Grover, Steven P; Saha, Prakash; Jenkins, Julia; Mukkavilli, Arun; Lyons, Oliver T; Patel, Ashish S; Sunassee, Kavitha; Modarai, Bijan; Smith, Alberto
2015-12-01
The assessment of thrombus size following treatments directed at preventing thrombosis or enhancing its resolution has generally relied on physical or histological methods. This cross-sectional design imposes the need for increased numbers of animals for experiments. Micro-computed tomography (microCT) has been used to detect the presence of venous thrombus in experimental models but has yet to be used in a quantitative manner. In this study, we investigate the use of contrast-enhanced microCT for the longitudinal assessment of experimental venous thrombus resolution. Thrombi induced by stenosis of the inferior vena cava in mice were imaged by contrast-enhanced microCT at 1, 7 and 14 days post-induction (n=18). Thrombus volumes were determined longitudinally by segmentation and 3D volume reconstruction of microCT scans and by standard end-point histological analysis at day 14. An additional group of thrombi were analysed solely by histology at 1, 7 and 14 days post-induction (n=15). IVC resident thrombus was readily detectable by contrast-enhanced microCT. MicroCT-derived measurements of thrombus volume correlated well with time-matched histological analyses (ICC=0.75, P<0.01). Thrombus volumes measured by microCT were significantly greater than those derived from histological analysis (P<0.001). Intra- and inter-observer analyses were highly correlated (ICC=0.99 and 0.91 respectively, P<0.0001). Further histological analysis revealed noticeable levels of contrast agent extravasation into the thrombus that was associated with the presence of neovascular channels, macrophages and intracellular iron deposits. Contrast-enhanced microCT represents a reliable and reproducible method for the longitudinal assessment of venous thrombus resolution providing powerful paired data. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Commissioning and Characterization of a Dedicated High-Resolution Breast PET Camera
2014-02-01
aim to achieve 1 mm3 resolution using a unique detector design that is able to measure annihilation radiation coming from the PET tracer in 3...undergoing a regular staging PET /CT. We will image with the novel two-panel system after the standard PET /CT scan , in order not to interfere with the...Resolution Breast PET Camera PRINCIPAL INVESTIGATOR: Arne Vandenbroucke, Ph.D. CONTRACTING ORGANIZATION: Stanford University
SU-C-207A-01: A Novel Maximum Likelihood Method for High-Resolution Proton Radiography/proton CT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collins-Fekete, C; Centre Hospitalier University de Quebec, Quebec, QC; Mass General Hospital
2016-06-15
Purpose: Multiple Coulomb scattering is the largest contributor to blurring in proton imaging. Here we tested a maximum likelihood least squares estimator (MLLSE) to improve the spatial resolution of proton radiography (pRad) and proton computed tomography (pCT). Methods: The object is discretized into voxels and the average relative stopping power through voxel columns defined from the source to the detector pixels is optimized such that it maximizes the likelihood of the proton energy loss. The length spent by individual protons in each column is calculated through an optimized cubic spline estimate. pRad images were first produced using Geant4 simulations. Anmore » anthropomorphic head phantom and the Catphan line-pair module for 3-D spatial resolution were studied and resulting images were analyzed. Both parallel and conical beam have been investigated for simulated pRad acquisition. Then, experimental data of a pediatric head phantom (CIRS) were acquired using a recently completed experimental pCT scanner. Specific filters were applied on proton angle and energy loss data to remove proton histories that underwent nuclear interactions. The MTF10% (lp/mm) was used to evaluate and compare spatial resolution. Results: Numerical simulations showed improvement in the pRad spatial resolution for the parallel (2.75 to 6.71 lp/cm) and conical beam (3.08 to 5.83 lp/cm) reconstructed with the MLLSE compared to averaging detector pixel signals. For full tomographic reconstruction, the improved pRad were used as input into a simultaneous algebraic reconstruction algorithm. The Catphan pCT reconstruction based on the MLLSE-enhanced projection showed spatial resolution improvement for the parallel (2.83 to 5.86 lp/cm) and conical beam (3.03 to 5.15 lp/cm). The anthropomorphic head pCT displayed important contrast gains in high-gradient regions. Experimental results also demonstrated significant improvement in spatial resolution of the pediatric head radiography. Conclusion: The proposed MLLSE shows promising potential to increase the spatial resolution (up to 244%) in proton imaging.« less
Phase-contrast tomography of neuronal tissues: from laboratory- to high resolution synchrotron CT
NASA Astrophysics Data System (ADS)
Töpperwien, Mareike; Krenkel, Martin; Müller, Kristin; Salditt, Tim
2016-10-01
Assessing the three-dimensional architecture of neuronal tissues with sub-cellular resolution presents a significant analytical challenge. Overcoming the limitations associated with serial slicing, phase-contrast x-ray tomography has the potential to contribute to this goal. Even compact laboratory CT at an optimized liquid-metal jet micro- focus source combined with suitable phase-retrieval algorithms and preparation protocols can yield renderings with single cell sensitivity in millimeter sized brain areas of mouse. Here, we show the capabilities of the setup by imaging a Golgi-Cox impregnated mouse brain. Towards higher resolution we extend these studies at our recently upgraded waveguide-based cone-beam holo-tomography instrument GINIX at DESY. This setup allows high resolution recordings with adjustable field of view and resolution, down to the voxel sizes in the range of a few ten nanometers. The recent results make us confident that important issues of neuronal connectivity can be addressed by these methods, and that 3D (virtual) histology with nanoscale resolution will become an attractive modality for neuroscience research.
Instrumentation in molecular imaging.
Wells, R Glenn
2016-12-01
In vivo molecular imaging is a challenging task and no single type of imaging system provides an ideal solution. Nuclear medicine techniques like SPECT and PET provide excellent sensitivity but have poor spatial resolution. Optical imaging has excellent sensitivity and spatial resolution, but light photons interact strongly with tissues and so only small animals and targets near the surface can be accurately visualized. CT and MRI have exquisite spatial resolution, but greatly reduced sensitivity. To overcome the limitations of individual modalities, molecular imaging systems often combine individual cameras together, for example, merging nuclear medicine cameras with CT or MRI to allow the visualization of molecular processes with both high sensitivity and high spatial resolution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Ke; Chen, Guang-Hong, E-mail: gchen7@wisc.edu; Garrett, John
Purpose: Statistical model based iterative reconstruction (MBIR) methods have been introduced to clinical CT systems and are being used in some clinical diagnostic applications. The purpose of this paper is to experimentally assess the unique spatial resolution characteristics of this nonlinear reconstruction method and identify its potential impact on the detectabilities and the associated radiation dose levels for specific imaging tasks. Methods: The thoracic section of a pediatric phantom was repeatedly scanned 50 or 100 times using a 64-slice clinical CT scanner at four different dose levels [CTDI{sub vol} =4, 8, 12, 16 (mGy)]. Both filtered backprojection (FBP) and MBIRmore » (Veo{sup ®}, GE Healthcare, Waukesha, WI) were used for image reconstruction and results were compared with one another. Eight test objects in the phantom with contrast levels ranging from 13 to 1710 HU were used to assess spatial resolution. The axial spatial resolution was quantified with the point spread function (PSF), while the z resolution was quantified with the slice sensitivity profile. Both were measured locally on the test objects and in the image domain. The dependence of spatial resolution on contrast and dose levels was studied. The study also features a systematic investigation of the potential trade-off between spatial resolution and locally defined noise and their joint impact on the overall image quality, which was quantified by the image domain-based channelized Hotelling observer (CHO) detectability index d′. Results: (1) The axial spatial resolution of MBIR depends on both radiation dose level and image contrast level, whereas it is supposedly independent of these two factors in FBP. The axial spatial resolution of MBIR always improved with an increasing radiation dose level and/or contrast level. (2) The axial spatial resolution of MBIR became equivalent to that of FBP at some transitional contrast level, above which MBIR demonstrated superior spatial resolution than FBP (and vice versa); the value of this transitional contrast highly depended on the dose level. (3) The PSFs of MBIR could be approximated as Gaussian functions with reasonably good accuracy. (4) Thez resolution of MBIR showed similar contrast and dose dependence. (5) Noise standard deviation assessed on the edges of objects demonstrated a trade-off with spatial resolution in MBIR. (5) When both spatial resolution and image noise were considered using the CHO analysis, MBIR led to significant improvement in the overall CT image quality for both high and low contrast detection tasks at both standard and low dose levels. Conclusions: Due to the intrinsic nonlinearity of the MBIR method, many well-known CT spatial resolution and noise properties have been modified. In particular, dose dependence and contrast dependence have been introduced to the spatial resolution of CT images by MBIR. The method has also introduced some novel noise-resolution trade-off not seen in traditional CT images. While the benefits of MBIR regarding the overall image quality, as demonstrated in this work, are significant, the optimal use of this method in clinical practice demands a thorough understanding of its unique physical characteristics.« less
Panetta, Daniele; Pelosi, Gualtiero; Viglione, Federica; Kusmic, Claudia; Terreni, Marianna; Belcari, Nicola; Guerra, Alberto Del; Athanasiou, Lambros; Exarchos, Themistoklis; Fotiadis, Dimitrios I; Filipovic, Nenad; Trivella, Maria Giovanna; Salvadori, Piero A; Parodi, Oberdan
2015-01-01
Micro-CT is an established imaging technique for high-resolution non-destructive assessment of vascular samples, which is gaining growing interest for investigations of atherosclerotic arteries both in humans and in animal models. However, there is still a lack in the definition of micro-CT image metrics suitable for comprehensive evaluation and quantification of features of interest in the field of experimental atherosclerosis (ATS). A novel approach to micro-CT image processing for profiling of coronary ATS is described, providing comprehensive visualization and quantification of contrast agent-free 3D high-resolution reconstruction of full-length artery walls. Accelerated coronary ATS has been induced by high fat cholesterol-enriched diet in swine and left coronary artery (LCA) harvested en bloc for micro-CT scanning and histologic processing. A cylindrical coordinate system has been defined on the image space after curved multiplanar reformation of the coronary vessel for the comprehensive visualization of the main vessel features such as wall thickening and calcium content. A novel semi-automatic segmentation procedure based on 2D histograms has been implemented and the quantitative results validated by histology. The potentiality of attenuation-based micro-CT at low kV to reliably separate arterial wall layers from adjacent tissue as well as identify wall and plaque contours and major tissue components has been validated by histology. Morphometric indexes from histological data corresponding to several micro-CT slices have been derived (double observer evaluation at different coronary ATS stages) and highly significant correlations (R2 > 0.90) evidenced. Semi-automatic morphometry has been validated by double observer manual morphometry of micro-CT slices and highly significant correlations were found (R2 > 0.92). The micro-CT methodology described represents a handy and reliable tool for quantitative high resolution and contrast agent free full length coronary wall profiling, able to assist atherosclerotic vessels morphometry in a preclinical experimental model of coronary ATS and providing a link between in vivo imaging and histology.
NASA Astrophysics Data System (ADS)
Lienemann, Philipp S.; Metzger, Stéphanie; Kiveliö, Anna-Sofia; Blanc, Alain; Papageorgiou, Panagiota; Astolfo, Alberto; Pinzer, Bernd R.; Cinelli, Paolo; Weber, Franz E.; Schibli, Roger; Béhé, Martin; Ehrbar, Martin
2015-05-01
Over the last decades, great strides were made in the development of novel implants for the treatment of bone defects. The increasing versatility and complexity of these implant designs request for concurrent advances in means to assess in vivo the course of induced bone formation in preclinical models. Since its discovery, micro-computed tomography (micro-CT) has excelled as powerful high-resolution technique for non-invasive assessment of newly formed bone tissue. However, micro-CT fails to provide spatiotemporal information on biological processes ongoing during bone regeneration. Conversely, due to the versatile applicability and cost-effectiveness, single photon emission computed tomography (SPECT) would be an ideal technique for assessing such biological processes with high sensitivity and for nuclear imaging comparably high resolution (<1 mm). Herein, we employ modular designed poly(ethylene glycol)-based hydrogels that release bone morphogenetic protein to guide the healing of critical sized calvarial bone defects. By combined in vivo longitudinal multi-pinhole SPECT and micro-CT evaluations we determine the spatiotemporal course of bone formation and remodeling within this synthetic hydrogel implant. End point evaluations by high resolution micro-CT and histological evaluation confirm the value of this approach to follow and optimize bone-inducing biomaterials.
Lung imaging of laboratory rodents in vivo
NASA Astrophysics Data System (ADS)
Cody, Dianna D.; Cavanaugh, Dawn; Price, Roger E.; Rivera, Belinda; Gladish, Gregory; Travis, Elizabeth
2004-10-01
We have been acquiring respiratory-gated micro-CT images of live mice and rats for over a year with our General Electric (formerly Enhanced Vision Systems) hybrid scanner. This technique is especially well suited for the lung due to the inherent high tissue contrast. Our current studies focus on the assessment of lung tumors and their response to experimental agents, and the assessment of lung damage due to chemotherapy agents. We have recently installed a custom-built dual flat-panel cone-beam CT scanner with the ability to scan laboratory animals that vary in size from mice to large dogs. A breath-hold technique is used in place of respiratory gating on this scanner. The objective of this pilot study was to converge on scan acquisition parameters and optimize the visualization of lung damage in a mouse model of fibrosis. Example images from both the micro-CT scanner and the flat-panel CT scanner will be presented, as well as preliminary data describing spatial resolution, low contrast resolution, and radiation dose parameters.
NASA Astrophysics Data System (ADS)
Rettmann, M. E.; Holmes, D. R., III; Gunawan, M. S.; Ge, X.; Karwoski, R. A.; Breen, J. F.; Packer, D. L.; Robb, R. A.
2012-03-01
Geometric analysis of the left atrium and pulmonary veins is important for studying reverse structural remodeling following cardiac ablation therapy. It has been shown that the left atrium decreases in volume and the pulmonary vein ostia decrease in diameter following ablation therapy. Most analysis techniques, however, require laborious manual tracing of image cross-sections. Pulmonary vein diameters are typically measured at the junction between the left atrium and pulmonary veins, called the pulmonary vein ostia, with manually drawn lines on volume renderings or on image cross-sections. In this work, we describe a technique for making semi-automatic measurements of the left atrium and pulmonary vein ostial diameters from high resolution CT scans and multi-phase datasets. The left atrium and pulmonary veins are segmented from a CT volume using a 3D volume approach and cut planes are interactively positioned to separate the pulmonary veins from the body of the left atrium. The cut plane is also used to compute the pulmonary vein ostial diameter. Validation experiments are presented which demonstrate the ability to repeatedly measure left atrial volume and pulmonary vein diameters from high resolution CT scans, as well as the feasibility of this approach for analyzing dynamic, multi-phase datasets. In the high resolution CT scans the left atrial volume measurements show high repeatability with approximately 4% intra-rater repeatability and 8% inter-rater repeatability. Intra- and inter-rater repeatability for pulmonary vein diameter measurements range from approximately 2 to 4 mm. For the multi-phase CT datasets, differences in left atrial volumes between a standard slice-by-slice approach and the proposed 3D volume approach are small, with percent differences on the order of 3% to 6%.
NASA Astrophysics Data System (ADS)
Kawata, Y.; Niki, N.; Ohmatsu, H.; Aokage, K.; Kusumoto, M.; Tsuchida, T.; Eguchi, K.; Kaneko, M.
2015-03-01
Advantages of CT scanners with high resolution have allowed the improved detection of lung cancers. In the recent release of positive results from the National Lung Screening Trial (NLST) in the US showing that CT screening does in fact have a positive impact on the reduction of lung cancer related mortality. While this study does show the efficacy of CT based screening, physicians often face the problems of deciding appropriate management strategies for maximizing patient survival and for preserving lung function. Several key manifold-learning approaches efficiently reveal intrinsic low-dimensional structures latent in high-dimensional data spaces. This study was performed to investigate whether the dimensionality reduction can identify embedded structures from the CT histogram feature of non-small-cell lung cancer (NSCLC) space to improve the performance in predicting the likelihood of RFS for patients with NSCLC.
MicroCT angiography detects vascular formation and regression in skin wound healing.
Urao, Norifumi; Okonkwo, Uzoagu A; Fang, Milie M; Zhuang, Zhen W; Koh, Timothy J; DiPietro, Luisa A
2016-07-01
Properly regulated angiogenesis and arteriogenesis are essential for effective wound healing. Tissue injury induces robust new vessel formation and subsequent vessel maturation, which involves vessel regression and remodeling. Although formation of functional vasculature is essential for healing, alterations in vascular structure over the time course of skin wound healing are not well understood. Here, using high-resolution ex vivo X-ray micro-computed tomography (microCT), we describe the vascular network during healing of skin excisional wounds with highly detailed three-dimensional (3D) reconstructed images and associated quantitative analysis. We found that relative vessel volume, surface area and branching number are significantly decreased in wounds from day 7 to days 14 and 21. Segmentation and skeletonization analysis of selected branches from high-resolution images as small as 2.5μm voxel size show that branching orders are decreased in the wound vessels during healing. In histological analysis, we found that the contrast agent fills mainly arterioles, but not small capillaries nor large veins. In summary, high-resolution microCT revealed dynamic alterations of vessel structures during wound healing. This technique may be useful as a key tool in the study of the formation and regression of wound vessels. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Ferrero, A.; Gutjahr, R.; Henning, A.; Kappler, S.; Halaweish, A.; Abdurakhimova, D.; Peterson, Z.; Montoya, J.; Leng, S.; McCollough, C.
2017-03-01
In addition to the standard-resolution (SR) acquisition mode, a high-resolution (HR) mode is available on a research photon-counting-detector (PCD) whole-body CT system. In the HR mode each detector consists of a 2x2 array of 0.225 mm x 0.225 mm subpixel elements. This is in contrast to the SR mode that consists of a 4x4 array of the same subelements, and results in 0.25 mm isotropic resolution at iso-center for the HR mode. In this study, we quantified ex vivo the capabilities of the HR mode to characterize renal stones in terms of morphology and mineral composition. Forty pure stones - 10 uric acid (UA), 10 cystine (CYS), 10 calcium oxalate monohydrate (COM) and 10 apatite (APA) - and 14 mixed stones were placed in a 20 cm water phantom and scanned in HR mode, at radiation dose matched to that of routine dual-energy stone exams. Data from micro CT provided a reference for the quantification of morphology and mineral composition of the mixed stones. The area under the ROC curve was 1.0 for discriminating UA from CYS, 0.89 for CYS vs COM and 0.84 for COM vs APA. The root mean square error (RMSE) of the percent UA in mixed stones was 11.0% with a medium-sharp kernel and 15.6% with the sharpest kernel. The HR showed qualitatively accurate characterization of stone morphology relative to micro CT.
Ferrero, A; Gutjahr, R; Henning, A; Kappler, S; Halaweish, A; Abdurakhimova, D; Peterson, Z; Montoya, J; Leng, S; McCollough, C
2017-03-09
In addition to the standard-resolution (SR) acquisition mode, a high-resolution (HR) mode is available on a research photon-counting-detector (PCD) whole-body CT system. In the HR mode each detector consists of a 2x2 array of 0.225 mm × 0.225 mm subpixel elements. This is in contrast to the SR mode that consists of a 4x4 array of the same sub-elements, and results in 0.25 mm isotropic resolution at iso-center for the HR mode. In this study, we quantified ex vivo the capabilities of the HR mode to characterize renal stones in terms of morphology and mineral composition. Forty pure stones - 10 uric acid (UA), 10 cystine (CYS), 10 calcium oxalate monohydrate (COM) and 10 apatite (APA) - and 14 mixed stones were placed in a 20 cm water phantom and scanned in HR mode, at radiation dose matched to that of routine dual-energy stone exams. Data from micro CT provided a reference for the quantification of morphology and mineral composition of the mixed stones. The area under the ROC curve was 1.0 for discriminating UA from CYS, 0.89 for CYS vs COM and 0.84 for COM vs APA. The root mean square error (RMSE) of the percent UA in mixed stones was 11.0% with a medium-sharp kernel and 15.6% with the sharpest kernel. The HR showed qualitatively accurate characterization of stone morphology relative to micro CT.
Pai, Vinay M; Kozlowski, Megan; Donahue, Danielle; Miller, Elishiah; Xiao, Xianghui; Chen, Marcus Y; Yu, Zu-Xi; Connelly, Patricia; Jeffries, Kenneth; Wen, Han
2012-05-01
The high spatial resolution of micro-computed tomography (micro-CT) is ideal for 3D imaging of coronary arteries in intact mouse heart specimens. Previously, micro-CT of mouse heart specimens utilized intravascular contrast agents that hardened within the vessel lumen and allowed a vascular cast to be made. However, for mouse coronary artery disease models, it is highly desirable to image coronary artery walls and highlight plaques. For this purpose, we describe an ex vivo contrast-enhanced micro-CT imaging technique based on tissue staining with osmium tetroxide (OsO(4) ) solution. As a tissue-staining contrast agent, OsO(4) is retained in the vessel wall and surrounding tissue during the fixation process and cleared from the vessel lumens. Its high X-ray attenuation makes the artery wall visible in CT. Additionally, since OsO(4) preferentially binds to lipids, it highlights lipid deposition in the artery wall. We performed micro-CT of heart specimens of 5- to 25-week-old C57BL/6 wild-type mice and 5- to 13-week-old apolipoprotein E knockout (apoE(-/-) ) mice at 10 μm resolution. The results show that walls of coronary arteries as small as 45 μm in diameter are visible using a table-top micro-CT scanner. Similar image clarity was achieved with 1/2000th the scan time using a synchrotron CT scanner. In 13-week-old apoE mice, lipid-rich plaques are visible in the aorta. Our study shows that the combination of OsO(4) and micro-CT permits the visualization of the coronary artery wall in intact mouse hearts. Published 2012. This article is a US Government work and is in the public domain in the USA. Journal of Anatomy © 2012 Anatomical Society.
Coronary artery wall imaging in mice using osmium tetroxide and micro-computed tomography (micro-CT)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pai, Vinay M.; Kozlowski, Megan; Donahue, Danielle
2012-05-10
The high spatial resolution of micro-computed tomography (micro-CT) is ideal for 3D imaging of coronary arteries in intact mouse heart specimens. Previously, micro-CT of mouse heart specimens utilized intravascular contrast agents that hardened within the vessel lumen and allowed a vascular cast to be made. However, for mouse coronary artery disease models, it is highly desirable to image coronary artery walls and highlight plaques. For this purpose, we describe an ex vivo contrast-enhanced micro-CT imaging technique based on tissue staining with osmium tetroxide (OsO{sub 4}) solution. As a tissue-staining contrast agent, OsO{sub 4} is retained in the vessel wall andmore » surrounding tissue during the fixation process and cleared from the vessel lumens. Its high X-ray attenuation makes the artery wall visible in CT. Additionally, since OsO{sub 4} preferentially binds to lipids, it highlights lipid deposition in the artery wall. We performed micro-CT of heart specimens of 5- to 25-week-old C57BL/6 wild-type mice and 5- to 13-week-old apolipoprotein E knockout (apoE{sup -/-}) mice at 10 {mu}m resolution. The results show that walls of coronary arteries as small as 45 {mu}m in diameter are visible using a table-top micro-CT scanner. Similar image clarity was achieved with 1/2000th the scan time using a synchrotron CT scanner. In 13-week-old apoE mice, lipid-rich plaques are visible in the aorta. Our study shows that the combination of OsO{sub 4} and micro-CT permits the visualization of the coronary artery wall in intact mouse hearts.« less
Performance evaluation of G8, a high sensitivity benchtop preclinical PET/CT tomograph.
Gu, Zheng; Taschereau, Richard; Vu, Nam; Prout, David L; Silverman, Robert W; Lee, Jason; Chatziioannou, Arion F
2018-06-14
G8 is a bench top integrated PET/CT scanner dedicated to high sensitivity and high resolution imaging of mice. This work characterizes its National Electrical Manufacturers Association (NEMA) NU4-2008 performance where applicable and also provides an assessment of the basic imaging performance of the CT subsystem. Methods: The PET subsystem in G8 consists of four flat-panel type detectors arranged in a box like geometry. Each panel consists of two modules of a 26 × 26 pixelated bismuth germanate (BGO) scintillator array with individual crystals measuring 1.75 × 1.75 × 7.2 mm. The crystal arrays are coupled to multichannel photomultiplier tubes via a tapered, pixelated glass lightguide. A cone-beam CT consisting of a micro focus X-ray source and a Complementary Metal Oxide Semiconductor (CMOS) detector provides anatomical information. Sensitivity, spatial resolution, energy resolution, scatter fraction, count-rate performance and the capability of phantom and mouse imaging were evaluated for the PET subsystem. Noise, dose level, contrast and resolution were evaluated for the CT subsystem. Results: With an energy window of 350-650 keV, the peak sensitivity was measured to be 9.0% near the center of the field of view (CFOV). The crystal energy resolution ranged from 15.0% to 69.6% full width at half maximum (FWHM), with a mean of 19.3 ± 3.7%. The average detector intrinsic spatial resolution was 1.30 mm and 1.38 mm FWHM in the transverse and axial directions. The maximum likelihood expectation maximization (ML-EM) reconstructed image of a point source in air, averaged 0.81 ± 0.11 mm FWHM. The peak noise equivalent count rate (NECR) for the mouse-sized phantom was 44 kcps for a total activity of 2.9 MBq (78 µCi) and the scatter fraction was 11%. For the CT subsystem, the value of the modulation transfer function (MTF) at 10% was 2.05 cycles/mm. Conclusion: The overall performance demonstrates that the G8 can produce high quality images for molecular imaging based biomedical research. Copyright © 2018 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Development of a combined microSPECT/CT system for small animal imaging
NASA Astrophysics Data System (ADS)
Sun, Mingshan
Modern advances in the biomedical sciences have placed increased attention on small animals such as mice and rats as models of human biology and disease in biological research and pharmaceutical development. Their small size and fast breeding rate, their physiologic similarity to human, and, more importantly, the availability of sophisticated genetic manipulations, all have made mice and rats the laboratory mammals of choice in these experimental studies. However, the increased use of small animals in biomedical research also calls for new instruments that can measure the anatomic and metabolic information noninvasively with adequate spatial resolution and measurement sensitivity to facilitate these studies. This dissertation describes the engineering development of a combined single photon emission computed tomography (SPECT) and X-ray computed tomography (CT) system dedicated for small animals imaging. The system aims to obtain both the anatomic and metabolic images with submillimeter spatial resolution in a way that the data can be correlated to provide improved image quality and to offer more complete biological evaluation for biomedical studies involving small animals. The project requires development of complete microSPECT and microCT subsystems. Both subsystems are configured with a shared gantry and animal bed with integrated instrumentation for data acquisition and system control. The microCT employs a microfocus X-ray tube and a CCD-based detector for low noise, high resolution imaging. The microSPECT utilizes three semiconductor detectors coupled with pinhole collimators. A significant contribution of this dissertation project is the development of iterative algorithms with geometrical compensation that allows radionuclide images to be reconstructed at submillimeter spatial resolution, but with significantly higher detection efficiency than conventional methods. Both subsystems are capable of helical scans, offering lengthened field of view and improved axial resolution. System performance of both modalities is characterized with phantoms and animals. The microSPECT shows 0.6 mm resolution and 60 cps/MBq detection efficiency for imaging mice with 0.5 mm pinholes. The microCT achieves 120 mum spatial resolution on detector but with a relatively low detective quantum efficiency of 0.2 at the zero frequency. The combined system demonstrates a flexible platform for instrumentation development and a valuable tool for biomedical research. In summary, this dissertation describes the development of a combined SPECT/CT system for imaging the physiological function and anatomical structure in small animals.
Synchrotron radiation μCT and histology evaluation of bone-to-implant contact.
Neldam, Camilla Albeck; Sporring, Jon; Rack, Alexander; Lauridsen, Torsten; Hauge, Ellen-Margrethe; Jørgensen, Henrik L; Jørgensen, Niklas Rye; Feidenhansl, Robert; Pinholt, Else Marie
2017-09-01
The purpose of this study was to evaluate bone-to-implant contact (BIC) in two-dimensional (2D) histology compared to high-resolution three-dimensional (3D) synchrotron radiation micro computed tomography (SR micro-CT). High spatial resolution, excellent signal-to-noise ratio, and contrast establish SR micro-CT as the leading imaging modality for hard X-ray microtomography. Using SR micro-CT at voxel size 5 μm in an experimental goat mandible model, no statistically significant difference was found between the different treatment modalities nor between recipient and reconstructed bone. The histological evaluation showed a statistically significant difference between BIC in reconstructed and recipient bone (p < 0.0001). Further, no statistically significant difference was found between the different treatment modalities which we found was due to large variation and subsequently due to low power. Comparing histology and SR micro-CT evaluation a bias of 5.2% was found in reconstructed area, and 15.3% in recipient bone. We conclude that for evaluation of BIC with histology and SR micro-CT, SR micro-CT cannot be proven more precise than histology for evaluation of BIC, however, with this SR micro-CT method, one histologic bone section is comparable to the 3D evaluation. Further, the two methods complement each other with knowledge on BIC in 2D and 3D. Copyright © 2017 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
[Preoperative CT Scan in middle ear cholesteatoma].
Sethom, Anissa; Akkari, Khemaies; Dridi, Inès; Tmimi, S; Mardassi, Ali; Benzarti, Sonia; Miled, Imed; Chebbi, Mohamed Kamel
2011-03-01
To compare preoperative CT scan finding and per-operative lesions in patients operated for middle ear cholesteatoma, A retrospective study including 60 patients with cholesteatoma otitis diagnosed and treated within a period of 5 years, from 2001 to 2005, at ENT department of Military Hospital of Tunis. All patients had computed tomography of the middle and inner ear. High resolution CT scan imaging was performed using millimetric incidences (3 to 5 millimetres). All patients had surgical removal of their cholesteatoma using down wall technic. We evaluated sensitivity, specificity and predictive value of CT-scan comparing otitic damages and CT finding, in order to examine the real contribution of computed tomography in cholesteatoma otitis. CT scan analysis of middle ear bone structures shows satisfaction (with 83% of sensibility). The rate of sensibility decrease (63%) for the tympanic raff. Predictive value of CT scan for the diagnosis of cholesteatoma was low. However, we have noticed an excellent sensibility in the analysis of ossicular damages (90%). Comparative frontal incidence seems to be less sensible for the detection of facial nerve lesions (42%). But when evident on CT scan findings, lesions of facial nerve were usually observed preoperatively (spécificity 78%). Predictive value of computed tomography for the diagnosis of perilymphatic fistulae (FL) was low. In fact, CT scan imaging have showed FL only for four patients among eight. Best results can be obtained if using inframillimetric incidences with performed high resolution computed tomography. Preoperative computed tomography is necessary for the diagnosis and the evaluation of chronic middle ear cholesteatoma in order to show extending lesion and to detect complications. This CT analysis and surgical correlation have showed that sensibility, specificity and predictive value of CT-scan depend on the anatomic structure implicated in cholesteatoma damages.
A prototype table-top inverse-geometry volumetric CT system.
Schmidt, Taly Gilat; Star-Lack, Josh; Bennett, N Robert; Mazin, Samuel R; Solomon, Edward G; Fahrig, Rebecca; Pelc, Norbert J
2006-06-01
A table-top volumetric CT system has been implemented that is able to image a 5-cm-thick volume in one circular scan with no cone-beam artifacts. The prototype inverse-geometry CT (IGCT) scanner consists of a large-area, scanned x-ray source and a detector array that is smaller in the transverse direction. The IGCT geometry provides sufficient volumetric sampling because the source and detector have the same axial, or slice direction, extent. This paper describes the implementation of the table-top IGCT scanner, which is based on the NexRay Scanning-Beam Digital X-ray system (NexRay, Inc., Los Gatos, CA) and an investigation of the system performance. The alignment and flat-field calibration procedures are described, along with a summary of the reconstruction algorithm. The resolution and noise performance of the prototype IGCT system are studied through experiments and further supported by analytical predictions and simulations. To study the presence of cone-beam artifacts, a "Defrise" phantom was scanned on both the prototype IGCT scanner and a micro CT system with a +/-5 cone angle for a 4.5-cm volume thickness. Images of inner ear specimens are presented and compared to those from clinical CT systems. Results showed that the prototype IGCT system has a 0.25-mm isotropic resolution and that noise comparable to that from a clinical scanner with equivalent spatial resolution is achievable. The measured MTF and noise values agreed reasonably well with theoretical predictions and computer simulations. The IGCT system was able to faithfully reconstruct the laminated pattern of the Defrise phantom while the micro CT system suffered severe cone-beam artifacts for the same object. The inner ear acquisition verified that the IGCT system can image a complex anatomical object, and the resulting images exhibited more high-resolution details than the clinical CT acquisition. Overall, the successful implementation of the prototype system supports the IGCT concept for single-rotation volumetric scanning free from cone-beam artifacts.
Medipix-based Spectral Micro-CT.
Yu, Hengyong; Xu, Qiong; He, Peng; Bennett, James; Amir, Raja; Dobbs, Bruce; Mou, Xuanqin; Wei, Biao; Butler, Anthony; Butler, Phillip; Wang, Ge
2012-12-01
Since Hounsfield's Nobel Prize winning breakthrough decades ago, X-ray CT has been widely applied in the clinical and preclinical applications - producing a huge number of tomographic gray-scale images. However, these images are often insufficient to distinguish crucial differences needed for diagnosis. They have poor soft tissue contrast due to inherent photon-count issues, involving high radiation dose. By physics, the X-ray spectrum is polychromatic, and it is now feasible to obtain multi-energy, spectral, or true-color, CT images. Such spectral images promise powerful new diagnostic information. The emerging Medipix technology promises energy-sensitive, high-resolution, accurate and rapid X-ray detection. In this paper, we will review the recent progress of Medipix-based spectral micro-CT with the emphasis on the results obtained by our team. It includes the state- of-the-art Medipix detector, the system and method of a commercial MARS (Medipix All Resolution System) spectral micro-CT, and the design and color diffusion of a hybrid spectral micro-CT.
Four-arm variable-resolution x-ray detector for CT target imaging
NASA Astrophysics Data System (ADS)
DiBianca, Frank A.; Gulabani, Daya; Jordan, Lawrence M.; Vangala, Sravanthi; Rendon, David; Laughter, Joseph S.; Melnyk, Roman; Gaber, M. W.; Keyes, Gary S.
2005-04-01
The basic VRX technique boosts spatial resolution of a CT scanner in the scan plane by two or more orders of magnitude by reducing the angle of incidence of the x-ray beam with respect to the detector surface. A four-arm Variable-Resolution X-ray (VRX) detector has been developed for CT scanning. The detector allows for "target imaging" in which an area of interest is scanned at higher resolution than the remainder of the subject, yielding even higher resolution for the focal area than that obtained from the basic VRX technique. The new VRX-CT detector comprises four quasi-identical arms each containing six 24-cell modules (576 cells total). The modules are made of individual custom CdWO4 scintillators optically-coupled to custom photodiode arrays. The maximum scan field is 40 cm for a magnification of 1.4. A significant advantage of the four-arm geometry is that it can transform quickly to the two-arm, or even the single-arm geometry, for comparison studies. These simpler geometries have already been shown experimentally to yield in-plane CT detector resolution exceeding 60 cy/mm (<8μ) for small fields of view. Geometrical size and resolution limits of the target VRX field are calculated. Two-arm VRX-CT data are used to simulate and establish the feasibility of VRX CT target imaging. A prototype target VRX-CT scanner has been built and is undergoing initial testing.
Yu, Zhicong; Leng, Shuai; Jorgensen, Steven M; Li, Zhoubo; Gutjahr, Ralf; Chen, Baiyu; Halaweish, Ahmed F; Kappler, Steffen; Yu, Lifeng; Ritman, Erik L; McCollough, Cynthia H
2016-02-21
This study evaluated the conventional imaging performance of a research whole-body photon-counting CT system and investigated its feasibility for imaging using clinically realistic levels of x-ray photon flux. This research system was built on the platform of a 2nd generation dual-source CT system: one source coupled to an energy integrating detector (EID) and the other coupled to a photon-counting detector (PCD). Phantom studies were conducted to measure CT number accuracy and uniformity for water, CT number energy dependency for high-Z materials, spatial resolution, noise, and contrast-to-noise ratio. The results from the EID and PCD subsystems were compared. The impact of high photon flux, such as pulse pile-up, was assessed by studying the noise-to-tube-current relationship using a neonate water phantom and high x-ray photon flux. Finally, clinical feasibility of the PCD subsystem was investigated using anthropomorphic phantoms, a cadaveric head, and a whole-body cadaver, which were scanned at dose levels equivalent to or higher than those used clinically. Phantom measurements demonstrated that the PCD subsystem provided comparable image quality to the EID subsystem, except that the PCD subsystem provided slightly better longitudinal spatial resolution and about 25% improvement in contrast-to-noise ratio for iodine. The impact of high photon flux was found to be negligible for the PCD subsystem: only subtle high-flux effects were noticed for tube currents higher than 300 mA in images of the neonate water phantom. Results of the anthropomorphic phantom and cadaver scans demonstrated comparable image quality between the EID and PCD subsystems. There were no noticeable ring, streaking, or cupping/capping artifacts in the PCD images. In addition, the PCD subsystem provided spectral information. Our experiments demonstrated that the research whole-body photon-counting CT system is capable of providing clinical image quality at clinically realistic levels of x-ray photon flux.
NASA Astrophysics Data System (ADS)
Yu, Zhicong; Leng, Shuai; Jorgensen, Steven M.; Li, Zhoubo; Gutjahr, Ralf; Chen, Baiyu; Halaweish, Ahmed F.; Kappler, Steffen; Yu, Lifeng; Ritman, Erik L.; McCollough, Cynthia H.
2016-02-01
This study evaluated the conventional imaging performance of a research whole-body photon-counting CT system and investigated its feasibility for imaging using clinically realistic levels of x-ray photon flux. This research system was built on the platform of a 2nd generation dual-source CT system: one source coupled to an energy integrating detector (EID) and the other coupled to a photon-counting detector (PCD). Phantom studies were conducted to measure CT number accuracy and uniformity for water, CT number energy dependency for high-Z materials, spatial resolution, noise, and contrast-to-noise ratio. The results from the EID and PCD subsystems were compared. The impact of high photon flux, such as pulse pile-up, was assessed by studying the noise-to-tube-current relationship using a neonate water phantom and high x-ray photon flux. Finally, clinical feasibility of the PCD subsystem was investigated using anthropomorphic phantoms, a cadaveric head, and a whole-body cadaver, which were scanned at dose levels equivalent to or higher than those used clinically. Phantom measurements demonstrated that the PCD subsystem provided comparable image quality to the EID subsystem, except that the PCD subsystem provided slightly better longitudinal spatial resolution and about 25% improvement in contrast-to-noise ratio for iodine. The impact of high photon flux was found to be negligible for the PCD subsystem: only subtle high-flux effects were noticed for tube currents higher than 300 mA in images of the neonate water phantom. Results of the anthropomorphic phantom and cadaver scans demonstrated comparable image quality between the EID and PCD subsystems. There were no noticeable ring, streaking, or cupping/capping artifacts in the PCD images. In addition, the PCD subsystem provided spectral information. Our experiments demonstrated that the research whole-body photon-counting CT system is capable of providing clinical image quality at clinically realistic levels of x-ray photon flux.
Bone suppression in CT angiography data by region-based multiresolution segmentation
NASA Astrophysics Data System (ADS)
Blaffert, Thomas; Wiemker, Rafael; Lin, Zhong Min
2003-05-01
Multi slice CT (MSCT) scanners have the advantage of high and isotropic image resolution, which broadens the range of examinations for CT angiography (CTA). A very important method to present the large amount of high-resolution 3D data is the visualization by maximum intensity projections (MIP). A problem with MIP projections in angiography is that bones often hide the vessels of interest, especially the scull and vertebral column. Software tools for a manual selection of bone regions and their suppression in the MIP are available, but processing is time-consuming and tedious. A highly computer-assisted of even fully automated suppression of bones would considerably speed up the examination and probably increase the number of examined cases. In this paper we investigate the suppression (or removal) of bone regions in 3D CT data sets for vascular examinations of the head with a visualization of the carotids and the circle of Willis.
Hutchinson, J Ciaran; Shelmerdine, Susan C; Simcock, Ian C; Sebire, Neil J; Arthurs, Owen J
2017-07-01
Microfocus CT (micro-CT) has traditionally been used in industry and preclinical studies, although it may find new applicability in the routine clinical setting. It can provide high-resolution three-dimensional digital imaging data sets to the same level of detail as microscopic examination without the need for tissue dissection. Micro-CT is already enabling non-invasive detailed internal assessment of various tissue specimens, particularly in breast imaging and early gestational fetal autopsy, not previously possible from more conventional modalities such as MRI or CT. In this review, we discuss the technical aspects behind micro-CT image acquisition, how early work with small animal studies have informed our knowledge of human disease and the imaging performed so far on human tissue specimens. We conclude with potential future clinical applications of this novel and emerging technique.
Meyer, Markus R; Maurer, Hans H
2016-07-13
The field of new psychoactive substances (NPS) is highly dynamic and the situation changes from year to year. Therefore, the current review provides a timely update about the latest developments to help analysts keep the pace with NPS distribution. It covers PubMed-listed studies published between January 2014 and January 2016 dealing with the application of liquid chromatography (LC) coupled low- and high-resolution mass spectrometry (MS) for broad screenings for NPS in clinical (CT) and forensic (FT) toxicology. Latest developments and applications are highlighted and selected papers critically discussed. Comprehensive tables summarizing all discussed articles complete the overview. Finally, an outlook on the future of LC coupled MS in CT and FT is provided and readers will learn why low-resolution mass spectrometry might remain the standard for the next couple of years at least for easy-to-use quantitative screening procedures. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Reilly, B. T.; Stoner, J. S.; Wiest, J.; Abbott, M. B.; Francus, P.; Lapointe, F.
2015-12-01
Computed Tomography (CT) of sediment cores allow for high resolution images, three dimensional volumes, and down core profiles, generated through the attenuation of X-rays as a function of density and atomic number. When using a medical CT-Scanner, these quantitative data are stored in pixels using the Hounsfield scale, which are relative to the attenuation of X-rays in water and air at standard temperature and pressure. Here we present MATLAB based software specifically designed for sedimentary applications with a user friendly graphical interface to process DICOM files and stitch overlapping CT scans. For visualization, the software allows easy generation of core slice images with grayscale and false color relative to a user defined Hounsfield number range. For comparison to other high resolution non-destructive methods, down core Hounsfield number profiles are extracted using a method robust to coring imperfections, like deformation, bowing, gaps, and gas expansion. We demonstrate the usefulness of this technique with lacustrine sediment cores from the Western United States and Canadian High Arctic, including Fish Lake, Oregon, and Sawtooth Lake, Ellesmere Island. These sites represent two different depositional environments and provide examples for a variety of common coring defects and lithologies. The Hounsfield profiles and images can be used in combination with other high resolution data sets, including sediment magnetic parameters, XRF core scans and many other types of data, to provide unique insights into how lithology influences paleoenvironmental and paleomagnetic records and their interpretations.
Pandit, Prachi; Johnston, Samuel M; Qi, Yi; Story, Jennifer; Nelson, Rendon; Johnson, G Allan
2013-04-01
Liver is a common site for distal metastases in colon and rectal cancer. Numerous clinical studies have analyzed the relative merits of different imaging modalities for detection of liver metastases. Several exciting new therapies are being investigated in preclinical models. But, technical challenges in preclinical imaging make it difficult to translate conclusions from clinical studies to the preclinical environment. This study addresses the technical challenges of preclinical magnetic resonance imaging (MRI) and micro-computed tomography (CT) to enable comparison of state-of-the-art methods for following metastatic liver disease. We optimized two promising preclinical protocols to enable a parallel longitudinal study tracking metastatic human colon carcinoma growth in a mouse model: T2-weighted MRI using two-shot PROPELLER (Periodically Rotated Overlapping ParallEL Lines with Enhanced Reconstruction) and contrast-enhanced micro-CT using a liposomal contrast agent. Both methods were tailored for high throughput with attention to animal support and anesthesia to limit biological stress. Each modality has its strengths. Micro-CT permitted more rapid acquisition (<10 minutes) with the highest spatial resolution (88-micron isotropic resolution). But detection of metastatic lesions requires the use of a blood pool contrast agent, which could introduce a confound in the evaluation of new therapies. MRI was slower (30 minutes) and had lower anisotropic spatial resolution. But MRI eliminates the need for a contrast agent and the contrast-to-noise between tumor and normal parenchyma was higher, making earlier detection of small lesions possible. Both methods supported a relatively high-throughput, longitudinal study of the development of metastatic lesions. Copyright © 2013 AUR. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Dogan, M.; Moysey, S. M.; Mamun, A. A.; DeVol, T. A.; Powell, B. A.; Murdoch, L. C.
2017-12-01
Single Photon Emission Computed Tomography (SPECT) and x-ray Computed Tomography (CT) are both high-resolution imaging methods for investigating laboratory scale samples. We have recently conducted several experiments to determine the capabilities of two preclinical imaging systems; the imaging resolution of the two systems studied were found to be 0.2 mm for CT and 2-4 mm for SPECT depending on the tracer and scan times. While the resolution of these instruments is not sufficient for imaging the pore structure of most soils, it is sufficient to resolve macropore structures such as cracks and root channels and to observe their impact on transport. For example, we have used CT scans to monitor the formation of desiccation cracks within soils obtained from the Savannah River Site. We were then able to observe the interaction between the crack network and pore matrix during an infiltration experiment by spiking the infiltrating water with an iodide contrast agent as a tracer. We found a complex interaction between the flow systems, where flow shifted from matrix dominated at low flow rates to macropore dominated at high flow rates. SPECT imaging is capable of monitoring the distribution of gamma-ray emitting radionuclides in 3D. It is therefore also a useful tool for monitoring transport processes, but is particularly powerful when a redox sensitive isotope like 99mTc is used as the tracer. We show an example of a transport experiment where a 99mTc solution is passed through a column containing zones with different redox properties, i.e., a zone amended with titanomagnetite, another with anatase, and a third with silica flour. The 99mTc is captured by the strongly reducing materials, but not the zone with silica flour. The example illustrates how these imaging modalities can be used to discriminate between chemical and physical processes controlling fate and transport of the radionuclide. In particular, CT and SPECT can be used to image contaminant transport in lab scale columns by combining the structural information obtained from CT with the concentration distributions from SPECT.
Espigares, Jorge; Sadr, Alireza; Hamba, Hidenori; Shimada, Yasushi; Otsuki, Masayuki; Tagami, Junji; Sumi, Yasunori
2015-01-01
Abstract. A technology to characterize early enamel lesions is needed in dentistry. Optical coherence tomography (OCT) is a noninvasive method that provides high-resolution cross-sectional images. The aim of this study is to compare OCT with microfocus x-ray computed tomography (μCT) for assessment of natural enamel lesions in vitro. Ten human teeth with visible white spot-like changes on the enamel smooth surface and no cavitation (ICDAS code 2) were subjected to imaging by μCT (SMX-100CT, Shimadzu) and 1300-nm swept-source OCT (Dental SS-OCT, Panasonic Health Care). In μCT, the lesions appeared as radiolucent dark areas, while in SS-OCT, they appeared as areas of increased signal intensity beneath the surface. An SS-OCT attenuation coefficient based on Beer–Lambert law could discriminate lesions from sound enamel. Lesion depth ranged from 175 to 606 μm in SS-OCT. A correlation between μCT and SS-OCT was found regarding lesion depth (R=0.81, p<0.001) and also surface layer thickness (R=0.76, p<0.005). The images obtained clinically in real time using the dental SS-OCT system are suitable for the assessment of natural subsurface lesions and their surface layer, providing comparable images to a laboratory high-resolution μCT without the use of x-ray. PMID:26158079
Longitudinal in vivo microcomputed tomography of mouse lungs: No evidence for radiotoxicity
Vande Velde, Greetje; De Langhe, Ellen; Poelmans, Jennifer; Bruyndonckx, Peter; d'Agostino, Emiliano; Verbeken, Erik; Bogaerts, Ria; Himmelreich, Uwe
2015-01-01
Before microcomputed tomography (micro-CT) can be exploited to its full potential for longitudinal monitoring of transgenic and experimental mouse models of lung diseases, radiotoxic side effects such as inflammation or fibrosis must be considered. We evaluated dose and potential radiotoxicity to the lungs for long-term respiratory-gated high-resolution micro-CT protocols. Free-breathing C57Bl/6 mice underwent four different retrospectively respiratory gated micro-CT imaging schedules of repeated scans during 5 or 12 wk, followed by ex vivo micro-CT and detailed histological and biochemical assessment of lung damage. Radiation exposure, dose, and absorbed dose were determined by ionization chamber, thermoluminescent dosimeter measurements and Monte Carlo calculations. Despite the relatively large radiation dose delivered per micro-CT acquisition, mice did not show any signs of radiation-induced lung damage or fibrosis when scanned weekly during 5 and up to 12 wk. Doubling the scanning frequency and once tripling the radiation dose as to mimic the instant repetition of a failed scan also stayed without detectable toxicity after 5 wk of scanning. Histological analyses confirmed the absence of radiotoxic damage to the lungs, thereby demonstrating that long-term monitoring of mouse lungs using high-resolution micro-CT is safe. This opens perspectives for longitudinal monitoring of (transgenic) mouse models of lung diseases and therapeutic response on an individual basis with high spatial and temporal resolution, without concerns for radiation toxicity that could potentially influence the readout of micro-CT-derived lung biomarkers. This work further supports the introduction of micro-CT for routine use in the preclinical pulmonary research field where postmortem histological approaches are still the gold standard. PMID:26024893
Stationary digital chest tomosynthesis for coronary artery calcium scoring
NASA Astrophysics Data System (ADS)
Wu, Gongting; Wang, Jiong; Potuzko, Marci; Harman, Allison; Pearce, Caleb; Shan, Jing; Lee, Yueh Z.; Zhou, Otto; Lu, Jianping
2016-03-01
The coronary artery calcium score (CACS) measures the buildup of calcium on the coronary artery wall and has been shown to be an important predictor of the risk of coronary artery diseases (CAD). Currently CACS is measured using CT, though the relatively high cost and high radiation dose has limited its adoption as a routine screening procedure. Digital Chest Tomosynthesis (DCT), a low dose and low cost alternative to CT, and has been shown to achieve 90% of sensitivity of CT in lung disease screening. However commercial DCT requires long scanning time and cannot be adapted for high resolution gated cardiac imaging, necessary for CACS. The stationary DCT system (s- DCT), developed in our lab, has the potential to significantly shorten the scanning time and enables high resolution cardiac gated imaging. Here we report the preliminary results of using s-DCT to estimate the CACS. A phantom heart model was developed and scanned by the s-DCT system and a clinical CT in a phantom model with realistic coronary calcifications. The adapted fan-beam volume reconstruction (AFVR) method, developed specifically for stationary tomosynthesis systems, is used to obtain high resolution tomosynthesis images. A trained cardiologist segmented out the calcifications and the CACS was obtained. We observed a strong correlation between the tomosynthesis derived CACS and CT CACS (r2 = 0.88). Our results shows s-DCT imaging has the potential to estimate CACS, thus providing a possible low cost and low dose imaging protocol for screening and monitoring CAD.
High-resolution μCT of a mouse embryo using a compact laser-driven X-ray betatron source.
Cole, Jason M; Symes, Daniel R; Lopes, Nelson C; Wood, Jonathan C; Poder, Kristjan; Alatabi, Saleh; Botchway, Stanley W; Foster, Peta S; Gratton, Sarah; Johnson, Sara; Kamperidis, Christos; Kononenko, Olena; De Lazzari, Michael; Palmer, Charlotte A J; Rusby, Dean; Sanderson, Jeremy; Sandholzer, Michael; Sarri, Gianluca; Szoke-Kovacs, Zsombor; Teboul, Lydia; Thompson, James M; Warwick, Jonathan R; Westerberg, Henrik; Hill, Mark A; Norris, Dominic P; Mangles, Stuart P D; Najmudin, Zulfikar
2018-06-19
In the field of X-ray microcomputed tomography (μCT) there is a growing need to reduce acquisition times at high spatial resolution (approximate micrometers) to facilitate in vivo and high-throughput operations. The state of the art represented by synchrotron light sources is not practical for certain applications, and therefore the development of high-brightness laboratory-scale sources is crucial. We present here imaging of a fixed embryonic mouse sample using a compact laser-plasma-based X-ray light source and compare the results to images obtained using a commercial X-ray μCT scanner. The radiation is generated by the betatron motion of electrons inside a dilute and transient plasma, which circumvents the flux limitations imposed by the solid or liquid anodes used in conventional electron-impact X-ray tubes. This X-ray source is pulsed (duration <30 fs), bright (>10 10 photons per pulse), small (diameter <1 μm), and has a critical energy >15 keV. Stable X-ray performance enabled tomographic imaging of equivalent quality to that of the μCT scanner, an important confirmation of the suitability of the laser-driven source for applications. The X-ray flux achievable with this approach scales with the laser repetition rate without compromising the source size, which will allow the recording of high-resolution μCT scans in minutes. Copyright © 2018 the Author(s). Published by PNAS.
Establishing national diagnostic reference levels (DRLs) for computed tomography in Egypt.
Salama, Dina Husseiny; Vassileva, Jenia; Mahdaly, Gamal; Shawki, Mona; Salama, Ahmad; Gilley, Debbie; Rehani, Madan Mohan
2017-07-01
To establish national diagnostic reference levels (DRLs) in Egypt for computed tomography (CT) examinations of adults and identify the potential for optimization. Data from 3762 individual patient's undergoing CT scans of head, chest (high resolution), abdomen, abdomen-pelvis, chest-abdomen-pelvis and CT angiography (aorta and both lower limbs) examinations in 50 CT facilities were collected. This represents 20% of facilities in the country and all of the 27 Governorates. Results were compared with DRLs of UK, USA, Canada, Japan, Australia and France. The Egyptian DRLs for CTDI vol in mGy are for head: 30, chest (high resolution): 22, abdomen (liver metastasis): 31, abdomen-pelvis: 31, chest-abdomen-pelvis: 33 and CT angiography (aorta and lower limbs): 37. The corresponding DRLs for DLP in mGy.cm are 1360, 420, 1425, 1325, 1320 and 1320. For head CT, the Egyptian DRL for CTDI vol is 2-3 times lower than the DRLs from other countries. However, the DRL in terms of DLP is in the same range or higher as compared to others. The Egyptian DRL for chest CT (high resolution) is similar to others for DLP but higher for CTDI vol . For abdomen and abdomen-pelvis DRLs for CTDI vol are higher than others. For DLP, the DRLs for abdomen are higher than DRL in UK and lower than those in Japan, while for abdomen-pelvis they are higher than other countries. Despite lower DRLs for CTDI vol , an important consistent problem appears to be higher scan range as DRLs for DLP are higher. Copyright © 2017 Associazione Italiana di Fisica Medica. All rights reserved.
Automated segmentations of skin, soft-tissue, and skeleton, from torso CT images
NASA Astrophysics Data System (ADS)
Zhou, Xiangrong; Hara, Takeshi; Fujita, Hiroshi; Yokoyama, Ryujiro; Kiryu, Takuji; Hoshi, Hiroaki
2004-05-01
We have been developing a computer-aided diagnosis (CAD) scheme for automatically recognizing human tissue and organ regions from high-resolution torso CT images. We show some initial results for extracting skin, soft-tissue and skeleton regions. 139 patient cases of torso CT images (male 92, female 47; age: 12-88) were used in this study. Each case was imaged with a common protocol (120kV/320mA) and covered the whole torso with isotopic spatial resolution of about 0.63 mm and density resolution of 12 bits. A gray-level thresholding based procedure was applied to separate the human body from background. The density and distance features to body surface were used to determine the skin, and separate soft-tissue from the others. A 3-D region growing based method was used to extract the skeleton. We applied this system to the 139 cases and found that the skin, soft-tissue and skeleton regions were recognized correctly for 93% of the patient cases. The accuracy of segmentation results was acceptable by evaluating the results slice by slice. This scheme will be included in CAD systems for detecting and diagnosing the abnormal lesions in multi-slice torso CT images.
Crackle analysis for chest auscultation and comparison with high-resolution CT findings.
Kawamura, Takeo; Matsumoto, Tsuneo; Tanaka, Nobuyuki; Kido, Shoji; Jiang, Zhongwei; Matsunaga, Naofumi
2003-01-01
The purpose of our study was to clarify the correlation between respiratory sounds and the high-resolution CT (HRCT) findings of lung diseases. Respiratory sounds were recorded using a stethoscope in 41 patients with crackles. All had undergone inspiratory and expiratory CT. Subjects included 18 patients with interstitial pneumonia and 23 without interstitial pneumonia. Two parameters, two-cycle duration (2CD) and initial deflection width (IDW) of the "crackle," were induced by time-expanded waveform analysis. Two radiologists independently assessed 11 HRCT findings. An evaluation was carried out to determine whether there was a significant difference in the two parameters between the presence and absence of each HRCT finding. The two parameters of crackles were significantly shorter in the interstitial pneumonia group than the non-interstitial pneumonia group. Ground-glass opacity, honeycombing, lung volume reduction, traction bronchiectasis, centrilobular nodules, emphysematous change, and attenuation and volume change between inspiratory and expiratory CT were correlated with one or two parameters in all patients, whereas the other three findings were not. Among the interstitial pneumonia group, traction bronchiectasis, emphysematous change, and attenuation and volume change between inspiratory and expiratory CT were significantly correlated with one or two parameters. Abnormal respiratory sounds were correlated with some HRCT findings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yu, E-mail: yuzhang@smu.edu.cn, E-mail: qianjinfeng08@gmail.com; Wu, Xiuxiu; Yang, Wei
2014-11-01
Purpose: The use of 4D computed tomography (4D-CT) of the lung is important in lung cancer radiotherapy for tumor localization and treatment planning. Sometimes, dense sampling is not acquired along the superior–inferior direction. This disadvantage results in an interslice thickness that is much greater than in-plane voxel resolutions. Isotropic resolution is necessary for multiplanar display, but the commonly used interpolation operation blurs images. This paper presents a super-resolution (SR) reconstruction method to enhance 4D-CT resolution. Methods: The authors assume that the low-resolution images of different phases at the same position can be regarded as input “frames” to reconstruct high-resolution images.more » The SR technique is used to recover high-resolution images. Specifically, the Demons deformable registration algorithm is used to estimate the motion field between different “frames.” Then, the projection onto convex sets approach is implemented to reconstruct high-resolution lung images. Results: The performance of the SR algorithm is evaluated using both simulated and real datasets. Their method can generate clearer lung images and enhance image structure compared with cubic spline interpolation and back projection (BP) method. Quantitative analysis shows that the proposed algorithm decreases the root mean square error by 40.8% relative to cubic spline interpolation and 10.2% versus BP. Conclusions: A new algorithm has been developed to improve the resolution of 4D-CT. The algorithm outperforms the cubic spline interpolation and BP approaches by producing images with markedly improved structural clarity and greatly reduced artifacts.« less
Development of high-resolution x-ray CT system using parallel beam geometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoneyama, Akio, E-mail: akio.yoneyama.bu@hitachi.com; Baba, Rika; Hyodo, Kazuyuki
2016-01-28
For fine three-dimensional observations of large biomedical and organic material samples, we developed a high-resolution X-ray CT system. The system consists of a sample positioner, a 5-μm scintillator, microscopy lenses, and a water-cooled sCMOS detector. Parallel beam geometry was adopted to attain a field of view of a few mm square. A fine three-dimensional image of birch branch was obtained using a 9-keV X-ray at BL16XU of SPring-8 in Japan. The spatial resolution estimated from the line profile of a sectional image was about 3 μm.
Performance tests for ray-scan 64 PET/CT based on NEMA NU-2 2007
NASA Astrophysics Data System (ADS)
Li, Suying; Zhou, Kun; Zhang, Qiushi; Zhang, Jinming; Yang, Kun; Xu, Baixuan; Ren, Qiushi
2015-03-01
This paper focuses on evaluating the performance of the Ray-Scan 64 PET/CT system, a newly developed PET/CT in China. It combines a 64 slice helical CT scanner with a high resolution PET scanner based on BGO crystals assembled in 36 rings. The energy window is 350~ 650 keV, and the coincidence window is set at 12 ns in both 2D and 3D mode. The transaxial field of view (FOV) is 600 mm in diameter, and the axial FOV is 163 mm. Method: Performance measurements were conducted focusing on PET scanners based on NEMA NU-2 2007 standard. We reported the full characterization (spatial resolution, sensitivity, count rate performance, scatter fraction, accuracy of correction, and image quality) in both 2D and 3D mode. In addition, the clinical images from two patients of different types of tumor were presented to further demonstrate this PET/CT system performance in clinical application. Results: using the NEMA NU-2 2007 standard, the main results: (1) the transaxial resolution at 1cm from the gantry center for 2D and 3D was both 4.5mm (FWHM), and at 10cm from the gantry center, the radial (tangential) resolution were 5.6mm (5.3mm) and 5.4mm (5.2mm) in 2D and 3D mode respectively. The axial resolution at 1cm and 10cm off axis was 3.4mm (4.8mm) and 5.5mm (5.8mm) in 2D (3D) mode respectively; (2) the sensitivity for the radial position R0(r=0mm) and R100(r=100mm) were 1.741 kcps/MBq and 1.767 kcps/MBq respectively in 2D mode and 7.157 kcps/MBq and 7.513 kcps/MBq in 3D mode; (3) the scatter fraction was calculated as 18.36% and 42.92% in 2D and 3D mode, respectively; (4) contrast of hot spheres in the image quality phantom in 2D mode was 50.33% (52.87%), 33.34% (40.86%), 20.64% (26.36%), and 10.99% (15.82%), respectively, in N=4 (N=8). Besides, in clinical study, the diameter of lymph tumor was about 2.4 cm, and the diameter of lung cancer was 4.2 cm. This PET/CT system can distinguish the position of cancer easily. Conclusion: The results show that the performance of the newly developed PET/CT system is of high resolution, and low scatter characteristics, and is suitable for clinical applications.
NASA Astrophysics Data System (ADS)
Mojica, Edson; Pertuz, Said; Arguello, Henry
2017-12-01
One of the main challenges in Computed Tomography (CT) is obtaining accurate reconstructions of the imaged object while keeping a low radiation dose in the acquisition process. In order to solve this problem, several researchers have proposed the use of compressed sensing for reducing the amount of measurements required to perform CT. This paper tackles the problem of designing high-resolution coded apertures for compressed sensing computed tomography. In contrast to previous approaches, we aim at designing apertures to be used with low-resolution detectors in order to achieve super-resolution. The proposed method iteratively improves random coded apertures using a gradient descent algorithm subject to constraints in the coherence and homogeneity of the compressive sensing matrix induced by the coded aperture. Experiments with different test sets show consistent results for different transmittances, number of shots and super-resolution factors.
Technical considerations for implementation of x-ray CT polymer gel dosimetry.
Hilts, M; Jirasek, A; Duzenli, C
2005-04-21
Gel dosimetry is the most promising 3D dosimetry technique in current radiation therapy practice. X-ray CT has been shown to be a feasible method of reading out polymer gel dosimeters and, with the high accessibility of CT scanners to cancer hospitals, presents an exciting possibility for clinical implementation of gel dosimetry. In this study we report on technical considerations for implementation of x-ray CT polymer gel dosimetry. Specifically phantom design, CT imaging methods, imaging time requirements and gel dose response are investigated. Where possible, recommendations are made for optimizing parameters to enhance system performance. The dose resolution achievable with an optimized system is calculated given voxel size and imaging time constraints. Results are compared with MRI and optical CT polymer gel dosimetry results available in the literature.
Effect of low-dose CT and iterative reconstruction on trabecular bone microstructure assessment
NASA Astrophysics Data System (ADS)
Kopp, Felix K.; Baum, Thomas; Nasirudin, Radin A.; Mei, Kai; Garcia, Eduardo G.; Burgkart, Rainer; Rummeny, Ernst J.; Bauer, Jan S.; Noël, Peter B.
2016-03-01
The trabecular bone microstructure is an important factor in the development of osteoporosis. It is well known that its deterioration is one effect when osteoporosis occurs. Previous research showed that the analysis of trabecular bone microstructure enables more precise diagnoses of osteoporosis compared to a sole measurement of the mineral density. Microstructure parameters are assessed on volumetric images of the bone acquired either with high-resolution magnetic resonance imaging, high-resolution peripheral quantitative computed tomography or high-resolution computed tomography (CT), with only CT being applicable to the spine, which is one of clinically most relevant fracture sites. However, due to the high radiation exposure for imaging the whole spine these measurements are not applicable in current clinical routine. In this work, twelve vertebrae from three different donors were scanned with standard and low radiation dose. Trabecular bone microstructure parameters were assessed for CT images reconstructed with statistical iterative reconstruction (SIR) and analytical filtered backprojection (FBP). The resulting structure parameters were correlated to the biomechanically determined fracture load of each vertebra. Microstructure parameters assessed for low-dose data reconstructed with SIR significantly correlated with fracture loads as well as parameters assessed for standard-dose data reconstructed with FBP. Ideal results were achieved with low to zero regularization strength yielding microstructure parameters not significantly different from those assessed for standard-dose FPB data. Moreover, in comparison to other approaches, superior noise-resolution trade-offs can be found with the proposed methods.
Image quality of conventional images of dual-layer SPECTRAL CT: A phantom study.
van Ommen, Fasco; Bennink, Edwin; Vlassenbroek, Alain; Dankbaar, Jan Willem; Schilham, Arnold M R; Viergever, Max A; de Jong, Hugo W A M
2018-05-10
Spectral CT using a dual layer detector offers the possibility of retrospectively introducing spectral information to conventional CT images. In theory, the dual-layer technology should not come with a dose or image quality penalty for conventional images. In this study, we evaluate the influence of a dual-layer detector (IQon Spectral CT, Philips Healthcare) on the image quality of conventional CT images, by comparing these images with those of a conventional but otherwise technically comparable single-layer CT scanner (Brilliance iCT, Philips Healthcare), by means of phantom experiments. For both CT scanners, conventional CT images were acquired using four adult scanning protocols: (a) body helical, (b) body axial, (c) head helical, and (d) head axial. A CATPHAN 600 phantom was scanned to conduct an assessment of image quality metrics at equivalent (CTDI) dose levels. Noise was characterized by means of noise power spectra (NPS) and standard deviation (SD) of a uniform region, and spatial resolution was evaluated with modulation transfer functions (MTF) of a tungsten wire. In addition, contrast-to-noise ratio (CNR), image uniformity, CT number linearity, slice thickness, slice spacing, and spatial linearity were measured and evaluated. Additional measurements of CNR, resolution and noise were performed in two larger phantoms. The resolution levels at 50%, 10%, and 5% MTF of the iCT and IQon showed small, but significant differences up to 0.25 lp/cm for body scans, and up to 0.2 lp/cm for head scans in favor of the IQon. The iCT and IQon showed perfect CT linearity for body scans, but for head scans both scanners showed an underestimation of the CT numbers of materials with a high opacity. Slice thickness was slightly overestimated for both scanners. Slice spacing was comparable and reconstructed correctly. In addition, spatial linearity was excellent for both scanners, with a maximum error of 0.11 mm. CNR was higher on the IQon compared to the iCT for both normal and larger phantoms with differences up to 0.51. Spatial resolution did not change with phantom size, but noise levels increased significantly. For head scans, IQon had a noise level that was significantly lower than the iCT, on the other hand IQon showed noise levels significantly higher than the iCT for body scans. Still, these differences were well within the specified range of performance of iCT scanners. At equivalent dose levels, this study showed similar quality of conventional images acquired on iCT and IQon for medium-sized phantoms and slightly degraded image quality for (very) large phantoms at lower tube voltages on the IQon. Accordingly, it may be concluded that the introduction of a dual-layer detector neither compromises image quality of conventional images nor increases radiation dose for normal-sized patients, and slightly degrades dose efficiency for large patients at 120 kVp and lower tube voltages. © 2018 The Authors. Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
Development of a high resolution voxelised head phantom for medical physics applications.
Giacometti, V; Guatelli, S; Bazalova-Carter, M; Rosenfeld, A B; Schulte, R W
2017-01-01
Computational anthropomorphic phantoms have become an important investigation tool for medical imaging and dosimetry for radiotherapy and radiation protection. The development of computational phantoms with realistic anatomical features contribute significantly to the development of novel methods in medical physics. For many applications, it is desirable that such computational phantoms have a real-world physical counterpart in order to verify the obtained results. In this work, we report the development of a voxelised phantom, the HIGH_RES_HEAD, modelling a paediatric head based on the commercial phantom 715-HN (CIRS). HIGH_RES_HEAD is unique for its anatomical details and high spatial resolution (0.18×0.18mm 2 pixel size). The development of such a phantom was required to investigate the performance of a new proton computed tomography (pCT) system, in terms of detector technology and image reconstruction algorithms. The HIGH_RES_HEAD was used in an ad-hoc Geant4 simulation modelling the pCT system. The simulation application was previously validated with respect to experimental results. When compared to a standard spatial resolution voxelised phantom of the same paediatric head, it was shown that in pCT reconstruction studies, the use of the HIGH_RES_HEAD translates into a reduction from 2% to 0.7% of the average relative stopping power difference between experimental and simulated results thus improving the overall quality of the head phantom simulation. The HIGH_RES_HEAD can also be used for other medical physics applications such as treatment planning studies. A second version of the voxelised phantom was created that contains a prototypic base of skull tumour and surrounding organs at risk. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Flohr, Thomas G; Leng, Shuai; Yu, Lifeng; Aiimendinger, Thomas; Bruder, Herbert; Petersilka, Martin; Eusemann, Christian D; Stierstorfer, Karl; Schmidt, Bernhard; McCollough, Cynthia H
2009-12-01
To present the theory for image reconstruction of a high-pitch, high-temporal-resolution spiral scan mode for dual-source CT (DSCT) and evaluate its image quality and dose. With the use of two x-ray sources and two data acquisition systems, spiral CT exams having a nominal temporal resolution per image of up to one-quarter of the gantry rotation time can be acquired using pitch values up to 3.2. The scan field of view (SFOV) for this mode, however, is limited to the SFOV of the second detector as a maximum, depending on the pitch. Spatial and low contrast resolution, image uniformity and noise, CT number accuracy and linearity, and radiation dose were assessed using the ACR CT accreditation phantom, a 30 cm diameter cylindrical water phantom or a 32 cm diameter cylindrical PMMA CTDI phantom. Slice sensitivity profiles (SSPs) were measured for different nominal slice thicknesses, and an anthropomorphic phantom was used to assess image artifacts. Results were compared between single-source scans at pitch = 1.0 and dual-source scans at pitch = 3.2. In addition, image quality and temporal resolution of an ECG-triggered version of the DSCT high-pitch spiral scan mode were evaluated with a moving coronary artery phantom, and radiation dose was assessed in comparison with other existing cardiac scan techniques. No significant differences in quantitative measures of image quality were found between single-source scans at pitch = 1.0 and dual-source scans at pitch = 3.2 for spatial and low contrast resolution, CT number accuracy and linearity, SSPs, image uniformity, and noise. The pitch value (1.6 pitch 3.2) had only a minor impact on radiation dose and image noise when the effective tube current time product (mA s/pitch) was kept constant. However, while not severe, artifacts were found to be more prevalent for the dual-source pitch = 3.2 scan mode when structures varied markedly along the z axis, particularly for head scans. Images of the moving coronary artery phantom acquired with the ECG-triggered high-pitch scan mode were visually free from motion artifacts at heart rates of 60 and 70 bpm. However, image quality started to deteriorate for higher heart rates. At equivalent image quality, the ECG-triggered high-pitch scan mode demonstrated lower radiation dose than other cardiac scan techniques on the same DSCT equipment (25% and 60% dose reduction compared to ECG-triggered sequential step-and-shoot and ECG-gated spiral with x-ray pulsing). A high-pitch (up to pitch = 3.2), high-temporal-resolution (up to 75 ms) dual-source CT scan mode produced equivalent image quality relative to single-source scans using a more typical pitch value (pitch = 1.0). The resultant reduction in the overall acquisition time may offer clinical advantage for cardiovascular, trauma, and pediatric CT applications. In addition, ECG-triggered high-pitch scanning may be useful as an alternative to ECG-triggered sequential scanning for patients with low to moderate heart rates up to 70 bpm, with the potential to scan the heart within one heart beat at reduced radiation dose.
Rationale and Application of Tangential Scanning to Industrial Inspection of Hardwood Logs
Nand K. Gupta; Daniel L. Schmoldt; Bruce Isaacson
1998-01-01
Industrial computed tomography (CT) inspection of hardwood logs has some unique requirements not found in other CT applications. Sawmill operations demand that large volumes of wood be scanned quickly at high spatial resolution for extended duty cycles. Current CT scanning geometries and commercial systems have both technical and economic [imitations. Tangential...
Wang, Ying Yi; Wang, Kai; Xu, Zuo Yu; Song, Yan; Wang, Chu Nan; Zhang, Chong Qing; Sun, Xi Lin; Shen, Bao Zhong
2017-01-01
Considering the general application of dedicated small-animal positron emission tomography/computed tomography is limited, an acceptable alternative in many situations might be clinical PET/CT. To estimate the feasibility of using clinical PET/CT with [F-18]-fluoro-2-deoxy-D-glucose for high-resolution dynamic imaging and quantitative analysis of cancer xenografts in nude mice. Dynamic clinical PET/CT scans were performed on xenografts for 60 min after injection with [F-18]-fluoro-2-deoxy-D-glucose. Scans were reconstructed with or without SharpIR method in two phases. And mice were sacrificed to extracting major organs and tumors, using ex vivo γ-counting as a reference. Strikingly, we observed that the image quality and the correlation between the all quantitive data from clinical PET/CT and the ex vivo counting was better with the SharpIR reconstructions than without. Our data demonstrate that clinical PET/CT scanner with SharpIR reconstruction is a valuable tool for imaging small animals in preclinical cancer research, offering dynamic imaging parameters, good image quality and accurate data quatification. PMID:28881772
Wang, Ying Yi; Wang, Kai; Xu, Zuo Yu; Song, Yan; Wang, Chu Nan; Zhang, Chong Qing; Sun, Xi Lin; Shen, Bao Zhong
2017-08-08
Considering the general application of dedicated small-animal positron emission tomography/computed tomography is limited, an acceptable alternative in many situations might be clinical PET/CT. To estimate the feasibility of using clinical PET/CT with [F-18]-fluoro-2-deoxy-D-glucose for high-resolution dynamic imaging and quantitative analysis of cancer xenografts in nude mice. Dynamic clinical PET/CT scans were performed on xenografts for 60 min after injection with [F-18]-fluoro-2-deoxy-D-glucose. Scans were reconstructed with or without SharpIR method in two phases. And mice were sacrificed to extracting major organs and tumors, using ex vivo γ-counting as a reference. Strikingly, we observed that the image quality and the correlation between the all quantitive data from clinical PET/CT and the ex vivo counting was better with the SharpIR reconstructions than without. Our data demonstrate that clinical PET/CT scanner with SharpIR reconstruction is a valuable tool for imaging small animals in preclinical cancer research, offering dynamic imaging parameters, good image quality and accurate data quatification.
Synchrotron radiation microimaging in rabbit models of cancer for preclinical testing
NASA Astrophysics Data System (ADS)
Umetani, Keiji; Uesugi, Kentaro; Kobatake, Makito; Yamamoto, Akira; Yamashita, Takenori; Imai, Shigeki
2009-10-01
Preclinical laboratory animal imaging modalities such as microangiography and micro-computed tomography (micro-CT) have been developed at the SPring-8 BL20B2 bending magnet beamline. The objective of this paper is to demonstrate the usefulness of microangiography systems for physiological examinations of live animals and micro-CT systems for postmortem morphological examinations. Synchrotron radiation microangiography and micro-CT with contrast agents present the main advantageous capability of depicting the anatomy of small blood vessels with tens of micrometers' diameter. This paper reports two imaging instrument types and their respective applications to preclinical imaging of tumor angiogenic blood vessels in tumor-bearing rabbits, where tumor angiogenesis is characterized morphologically by an increased number of blood vessels. A microangiography system with spatial resolution around 10 μm has been used for therapeutically evaluating angiogenic vessels in a rabbit model of cancer for evaluating embolization materials in transcatheter arterial embolization and for radiation therapy. After an iodine contrast agent was injected into an artery, in vivo imaging was carried out using a high-resolution real-time detector incorporating an X-ray direct-conversion-type SATICON pickup tube. On the other hand, a micro-CT system capably performed three-dimensional visualization of tumor angiogenic blood vessels using tumor-transplanted rabbit specimens with a barium sulfate contrast agent injected into the blood vessels. For specimen imaging, a large-field high-resolution micro-CT system based on a 10-megapixel CCD camera was developed to study tumor-associated alterations in angioarchitecture. Evidence of increased vascularity by tumor angiogenesis and decreased vascularity by tumor treatments was achieved by physiological evaluation of angiogenic small blood vessels in microangiographic imaging and by morphological assessment in micro-CT imaging. These results demonstrate the accuracy and usefulness of microangiography and micro-CT systems for quantitative examination of animals' angioarchitecture, respectively, during live and postmortem examinations.
Ultrahigh-resolution CT and DR scanner
NASA Astrophysics Data System (ADS)
DiBianca, Frank A.; Gupta, Vivek; Zou, Ping; Jordan, Lawrence M.; Laughter, Joseph S.; Zeman, Herbert D.; Sebes, Jeno I.
1999-05-01
A new technique called Variable-Resolution X-ray (VRX) detection that dramatically increases the spatial resolution in computed tomography (CT) and digital radiography (DR) is presented. The technique is based on a principle called 'projective compression' that allows the resolution element of a CT detector to scale with the subject or field size. For very large (40 - 50 cm) field sizes, resolution exceeding 2 cy/mm is possible and for very small fields, microscopy is attainable with resolution exceeding 100 cy/mm. Several effects that could limit the performance of VRX detectors are considered. Experimental measurements on a 16-channel, CdWO4 scintillator + photodiode test array yield a limiting MTF of 64 cy/mm (8(mu) ) in the highest-resolution configuration reported. Preliminary CT images have been made of small anatomical specimens and small animals using a storage phosphor screen in the VRX mode. Measured detector resolution of the CT projection data exceeds 20 cy/mm (less than 25 (mu) ); however, the final, reconstructed CT images produced thus far exhibit 10 cy/mm (50 (mu) ) resolution because of non-flatness of the storage phosphor plates, focal spot effects and the use of a rudimentary CT reconstruction algorithm. A 576-channel solid-state detector is being fabricated that is expected to achieve CT image resolution in excess of that of the 26-channel test array.
Optimization of an on-board imaging system for extremely rapid radiation therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cherry Kemmerling, Erica M.; Wu, Meng, E-mail: mengwu@stanford.edu; Yang, He
2015-11-15
Purpose: Next-generation extremely rapid radiation therapy systems could mitigate the need for motion management, improve patient comfort during the treatment, and increase patient throughput for cost effectiveness. Such systems require an on-board imaging system that is competitively priced, fast, and of sufficiently high quality to allow good registration between the image taken on the day of treatment and the image taken the day of treatment planning. In this study, three different detectors for a custom on-board CT system were investigated to select the best design for integration with an extremely rapid radiation therapy system. Methods: Three different CT detectors aremore » proposed: low-resolution (all 4 × 4 mm pixels), medium-resolution (a combination of 4 × 4 mm pixels and 2 × 2 mm pixels), and high-resolution (all 1 × 1 mm pixels). An in-house program was used to generate projection images of a numerical anthropomorphic phantom and to reconstruct the projections into CT datasets, henceforth called “realistic” images. Scatter was calculated using a separate Monte Carlo simulation, and the model included an antiscatter grid and bowtie filter. Diagnostic-quality images of the phantom were generated to represent the patient scan at the time of treatment planning. Commercial deformable registration software was used to register the diagnostic-quality scan to images produced by the various on-board detector configurations. The deformation fields were compared against a “gold standard” deformation field generated by registering initial and deformed images of the numerical phantoms that were used to make the diagnostic and treatment-day images. Registrations of on-board imaging system data were judged by the amount their deformation fields differed from the corresponding gold standard deformation fields—the smaller the difference, the better the system. To evaluate the registrations, the pointwise distance between gold standard and realistic registration deformation fields was computed. Results: By most global metrics (e.g., mean, median, and maximum pointwise distance), the high-resolution detector had the best performance but the medium-resolution detector was comparable. For all medium- and high-resolution detector registrations, mean error between the realistic and gold standard deformation fields was less than 4 mm. By pointwise metrics (e.g., tracking a small lesion), the high- and medium-resolution detectors performed similarly. For these detectors, the smallest error between the realistic and gold standard registrations was 0.6 mm and the largest error was 3.6 mm. Conclusions: The medium-resolution CT detector was selected as the best for an extremely rapid radiation therapy system. In essentially all test cases, data from this detector produced a significantly better registration than data from the low-resolution detector and a comparable registration to data from the high-resolution detector. The medium-resolution detector provides an appropriate compromise between registration accuracy and system cost.« less
Fayad, Laura M; Johnson, Pamela; Fishman, Elliot K
2005-01-01
Computed tomography (CT) plays an important role in the evaluation of musculoskeletal disease in the pediatric patient. With the advent of high-performance 16-section multidetector CT, images can be produced with subsecond gantry rotation times and with submillimeter acquisition, which yields true isotropic high-resolution volume data sets; these features are not attainable with older spiral CT technology. Such capabilities are particularly helpful in the evaluation of pediatric patients by virtually eliminating the need for sedation and minimizing dependence on patient cooperation. The role of three-dimensional (3D) volume imaging in the evaluation of pediatric musculoskeletal disease continues to evolve, with this technique becoming increasingly important in detection and characterization of lesions as well as in decisions about patient care. Specific designs and protocols for multidetector CT studies can be selected to minimize radiation dose to the patient. Principal clinical applications of 3D CT in evaluation of the pediatric musculoskeletal system include developmental abnormalities, trauma, neoplasms, and postoperative imaging.
A distance-driven deconvolution method for CT image-resolution improvement
NASA Astrophysics Data System (ADS)
Han, Seokmin; Choi, Kihwan; Yoo, Sang Wook; Yi, Jonghyon
2016-12-01
The purpose of this research is to achieve high spatial resolution in CT (computed tomography) images without hardware modification. The main idea is to consider geometry optics model, which can provide the approximate blurring PSF (point spread function) kernel, which varies according to the distance from the X-ray tube to each point. The FOV (field of view) is divided into several band regions based on the distance from the X-ray source, and each region is deconvolved with a different deconvolution kernel. As the number of subbands increases, the overshoot of the MTF (modulation transfer function) curve increases first. After that, the overshoot begins to decrease while still showing a larger MTF than the normal FBP (filtered backprojection). The case of five subbands seems to show balanced performance between MTF boost and overshoot minimization. It can be seen that, as the number of subbands increases, the noise (STD) can be seen to show a tendency to decrease. The results shows that spatial resolution in CT images can be improved without using high-resolution detectors or focal spot wobbling. The proposed algorithm shows promising results in improving spatial resolution while avoiding excessive noise boost.
A dual cone-beam CT system for image guided radiotherapy: initial performance characterization.
Li, Hao; Giles, William; Bowsher, James; Yin, Fang-Fang
2013-02-01
The purpose of this study is to evaluate the performance of a recently developed benchtop dual cone-beam computed tomography (CBCT) system with two orthogonally placed tube∕detector sets. The benchtop dual CBCT system consists of two orthogonally placed 40 × 30 cm flat-panel detectors and two conventional x-ray tubes with two individual high-voltage generators sharing the same rotational axis. The x-ray source to detector distance is 150 cm and x-ray source to rotational axis distance is 100 cm for both subsystems. The objects are scanned through 200° of rotation. The dual CBCT system utilized 110° of projection data from one detector and 90° from the other while the two individual single CBCTs utilized 200° data from each detector. The system performance was characterized in terms of uniformity, contrast, spatial resolution, noise power spectrum, and CT number linearity. The uniformities, within the axial slice and along the longitudinal direction, and noise power spectrum were assessed by scanning a water bucket; the contrast and CT number linearity were measured using the Catphan phantom; and the spatial resolution was evaluated using a tungsten wire phantom. A skull phantom and a ham were also scanned to provide qualitative evaluation of high- and low-contrast resolution. Each measurement was compared between dual and single CBCT systems. Compared to single CBCT, the dual CBCT presented: (1) a decrease in uniformity by 1.9% in axial view and 1.1% in the longitudinal view, as averaged for four energies (80, 100, 125, and 150 kVp); (2) comparable or slightly better contrast (0∼25 HU) for low-contrast objects and comparable contrast for high-contrast objects; (3) comparable spatial resolution; (4) comparable CT number linearity with R(2) ≥ 0.99 for all four tested energies; (5) lower noise power spectrum in magnitude. Dual CBCT images of the skull phantom and the ham demonstrated both high-contrast resolution and good soft-tissue contrast. The performance of a benchtop dual CBCT imaging system has been characterized and is comparable to that of a single CBCT.
Advanced imaging of the macrostructure and microstructure of bone
NASA Technical Reports Server (NTRS)
Genant, H. K.; Gordon, C.; Jiang, Y.; Link, T. M.; Hans, D.; Majumdar, S.; Lang, T. F.
2000-01-01
Noninvasive and/or nondestructive techniques are capable of providing more macro- or microstructural information about bone than standard bone densitometry. Although the latter provides important information about osteoporotic fracture risk, numerous studies indicate that bone strength is only partially explained by bone mineral density. Quantitative assessment of macro- and microstructural features may improve our ability to estimate bone strength. The methods available for quantitatively assessing macrostructure include (besides conventional radiographs) quantitative computed tomography (QCT) and volumetric quantitative computed tomography (vQCT). Methods for assessing microstructure of trabecular bone noninvasively and/or nondestructively include high-resolution computed tomography (hrCT), micro-computed tomography (muCT), high-resolution magnetic resonance (hrMR), and micromagnetic resonance (muMR). vQCT, hrCT and hrMR are generally applicable in vivo; muCT and muMR are principally applicable in vitro. Although considerable progress has been made in the noninvasive and/or nondestructive imaging of the macro- and microstructure of bone, considerable challenges and dilemmas remain. From a technical perspective, the balance between spatial resolution versus sampling size, or between signal-to-noise versus radiation dose or acquisition time, needs further consideration, as do the trade-offs between the complexity and expense of equipment and the availability and accessibility of the methods. The relative merits of in vitro imaging and its ultrahigh resolution but invasiveness versus those of in vivo imaging and its modest resolution but noninvasiveness also deserve careful attention. From a clinical perspective, the challenges for bone imaging include balancing the relative advantages of simple bone densitometry against the more complex architectural features of bone or, similarly, the deeper research requirements against the broader clinical needs. The considerable potential biological differences between the peripheral appendicular skeleton and the central axial skeleton have to be addressed further. Finally, the relative merits of these sophisticated imaging techniques have to be weighed with respect to their applications as diagnostic procedures requiring high accuracy or reliability on one hand and their monitoring applications requiring high precision or reproducibility on the other. Copyright 2000 S. Karger AG, Basel.
Development of a Carbon Nanotube-Based Micro-CT and its Applications in Preclinical Research
NASA Astrophysics Data System (ADS)
Burk, Laurel May
Due to the dependence of researchers on mouse models for the study of human disease, diagnostic tools available in the clinic must be modified for use on these much smaller subjects. In addition to high spatial resolution, cardiac and lung imaging of mice presents extreme temporal challenges, and physiological gating methods must be developed in order to image these organs without motion blur. Commercially available micro-CT imaging devices are equipped with conventional thermionic x-ray sources and have a limited temporal response and are not ideal for in vivo small animal studies. Recent development of a field-emission x-ray source with carbon nanotube (CNT) cathode in our lab presented the opportunity to create a micro-CT device well-suited for in vivo lung and cardiac imaging of murine models for human disease. The goal of this thesis work was to present such a device, to develop and refine protocols which allow high resolution in vivo imaging of free-breathing mice, and to demonstrate the use of this new imaging tool for the study many different disease models. In Chapter 1, I provide background information about x-rays, CT imaging, and small animal micro-CT. In Chapter 2, CNT-based x-ray sources are explained, and details of a micro-focus x-ray tube specialized for micro-CT imaging are presented. In Chapter 3, the first and second generation CNT micro-CT devices are characterized, and successful respiratory- and cardiac-gated live animal imaging on normal, wild-type mice is achieved. In Chapter 4, respiratory-gated imaging of mouse disease models is demonstrated, limitations to the method are discussed, and a new contactless respiration sensor is presented which addresses many of these limitations. In Chapter 5, cardiac-gated imaging of disease models is demonstrated, including studies of aortic calcification, left ventricular hypertrophy, and myocardial infarction. In Chapter 6, several methods for image and system improvement are explored, and radiation therapy-related micro-CT imaging is present. Finally, in Chapter 7 I discuss future directions for this research and for the CNT micro-CT.
Three-dimensional imaging of sediment cores: a multi-scale approach
NASA Astrophysics Data System (ADS)
Deprez, Maxim; Van Daele, Maarten; Boone, Marijn; Anselmetti, Flavio; Cnudde, Veerle
2017-04-01
Downscaling is a method used in building-material research, where several imaging methods are applied to obtain information on the petrological and petrophysical properties of materials from a centimetre to a sub-micrometre scale (De Boever et al., 2015). However, to reach better resolutions, the sample size is necessarily adjusted as well. If, for instance, X-ray micro computed tomography (µCT) is applied on the material, the resolution can increase as the sample size decreases. In sedimentological research, X-ray computed tomography (CT) is a commonly used technique (Cnudde & Boone, 2013). The ability to visualise materials with different X-ray attenuations reveals structures in sediment cores that cannot be seen with the bare eye. This results in discoveries of sedimentary structures that can lead to a reconstruction of parts of the depositional history in a sedimentary basin (Van Daele et al., 2014). Up to now, most of the CT data used for this kind of research are acquired with a medical CT scanner, of which the highest obtainable resolution is about 250 µm (Cnudde et al., 2006). As the size of most sediment grains is smaller than 250 µm, a lot of information, concerning sediment fabric, grain-size and shape, is not obtained when using medical CT. Therefore, downscaling could be a useful method in sedimentological research. After identifying a region of interest within the sediment core with medical CT, a subsample of several millimetres diameter can be taken and imaged with µCT, allowing images with a resolution of a few micrometres. The subsampling process, however, needs to be considered thoroughly. As the goal is to image the structure and fabric of the sediments, deformation of the sediments during subsampling should be avoided as much as possible. After acquiring the CT data, image processing and analysis are performed in order to retrieve shape and orientation parameters of single grains, mud clasts and organic material. This single-grain data can then be combined for a physical layer of sediments to collect data on the sediment fabric within the subsample. Additionally, it can be upscaled further to help reconstructing the depositional history of the sedimentary basin. As a proof of principle, a workflow was developed on an oriented sediment core retrieved from Lake Lucerne, Switzerland. After identifying a megaturbidite with medical CT, a part of that deposit was subsampled using a U-channel with a cross section of 2 by 2 cm, to perform a high-resolution µCT scan. The resulting 3D images with a spatial resolution of 15.2 µm enable us to attribute absolute flow directions to sand layers from different pulses within the turbidite. Yet, the limits of this method have not been explored fully, as applying different sampling methods can lead to higher resolutions and, therefore, more revelations on smaller-grained sediments. References: Cnudde, V., Masschaele, B., Dierick, M., Vlassenbroeck, J., Van Hoorebeke, L., Jacobs, P. (2006). Recent progress in X-ray CT as a geoscience tool. Applied Geochemistry, 21(5), 826-832. Cnudde, V., Boone, M. (2013). High-resolution X-ray computed tomography in geosciences: a review of the current technology and applications. Earth-science reviews, 123, 1-17. De Boever, W., Derluyn, H., Van Loo, D., Van Hoorebeke, L., Cnudde, V. (2015). Data-fusion of high resolution X-ray CT, SEM and EDS for 3D and pseudo-3D chemical and structural characterization of sandstone. Micron, 74, 15-21. Van Daele, M., Cnudde, V., Duyck, P., Pino, M. (2014). Multidirectional, synchronously triggered seismo-turbiditesand debrites revealed by X-ray computed tomography. Sedimentology, 61, 861-880
High speed imaging of dynamic processes with a switched source x-ray CT system
NASA Astrophysics Data System (ADS)
Thompson, William M.; Lionheart, William R. B.; Morton, Edward J.; Cunningham, Mike; Luggar, Russell D.
2015-05-01
Conventional x-ray computed tomography (CT) scanners are limited in their scanning speed by the mechanical constraints of their rotating gantries and as such do not provide the necessary temporal resolution for imaging of fast-moving dynamic processes, such as moving fluid flows. The Real Time Tomography (RTT) system is a family of fast cone beam CT scanners which instead use multiple fixed discrete sources and complete rings of detectors in an offset geometry. We demonstrate the potential of this system for use in the imaging of such high speed dynamic processes and give results using simulated and real experimental data. The unusual scanning geometry results in some challenges in image reconstruction, which are overcome using algebraic iterative reconstruction techniques and explicit regularisation. Through the use of a simple temporal regularisation term and by optimising the source firing pattern, we show that temporal resolution of the system may be increased at the expense of spatial resolution, which may be advantageous in some situations. Results are given showing temporal resolution of approximately 500 µs with simulated data and 3 ms with real experimental data.
High-resolution computed tomography of single breast cancer microcalcifications in vivo.
Inoue, Kazumasa; Liu, Fangbing; Hoppin, Jack; Lunsford, Elaine P; Lackas, Christian; Hesterman, Jacob; Lenkinski, Robert E; Fujii, Hirofumi; Frangioni, John V
2011-08-01
Microcalcification is a hallmark of breast cancer and a key diagnostic feature for mammography. We recently described the first robust animal model of breast cancer microcalcification. In this study, we hypothesized that high-resolution computed tomography (CT) could potentially detect the genesis of a single microcalcification in vivo and quantify its growth over time. Using a commercial CT scanner, we systematically optimized acquisition and reconstruction parameters. Two ray-tracing image reconstruction algorithms were tested: a voxel-driven "fast" cone beam algorithm (FCBA) and a detector-driven "exact" cone beam algorithm (ECBA). By optimizing acquisition and reconstruction parameters, we were able to achieve a resolution of 104 μm full width at half-maximum (FWHM). At an optimal detector sampling frequency, the ECBA provided a 28 μm (21%) FWHM improvement in resolution over the FCBA. In vitro, we were able to image a single 300 μm × 100 μm hydroxyapatite crystal. In a syngeneic rat model of breast cancer, we were able to detect the genesis of a single microcalcification in vivo and follow its growth longitudinally over weeks. Taken together, this study provides an in vivo "gold standard" for the development of calcification-specific contrast agents and a model system for studying the mechanism of breast cancer microcalcification.
Giffard, Philip M; Andersson, Patiyan; Wilson, Judith; Buckley, Cameron; Lilliebridge, Rachael; Harris, Tegan M; Kleinecke, Mariana; O'Grady, Kerry-Ann F; Huston, Wilhelmina M; Lambert, Stephen B; Whiley, David M; Holt, Deborah C
2018-01-01
Chlamydia trachomatis infects the urogenital tract (UGT) and eyes. Anatomical tropism is correlated with variation in the major outer membrane protein encoded by ompA. Strains possessing the ocular ompA variants A, B, Ba and C are typically found within the phylogenetically coherent "classical ocular lineage". However, variants B, Ba and C have also been found within three distinct strains in Australia, all associated with ocular disease in children and outside the classical ocular lineage. CtGEM genotyping is a method for detecting and discriminating ocular strains and also the major phylogenetic lineages. The rationale was facilitation of surveillance to inform responses to C. trachomatis detection in UGT specimens from young children. CtGEM typing is based on high resolution melting analysis (HRMA) of two PCR amplified fragments with high combinatorial resolving power, as defined by computerised comparison of 65 whole genomes. One fragment is from the hypothetical gene defined by Jali-1891 in the C. trachomatis B_Jali20 genome, while the other is from ompA. Twenty combinatorial CtGEM types have been shown to exist, and these encompass unique genotypes for all known ocular strains, and also delineate the TI and T2 major phylogenetic lineages, identify LGV strains and provide additional resolution beyond this. CtGEM typing and Sanger sequencing were compared with 42 C. trachomatis positive clinical specimens, and there were no disjunctions. CtGEM typing is a highly efficient method designed and tested using large scale comparative genomics. It divides C. trachomatis into clinically and biologically meaningful groups, and may have broad application in surveillance.
Wang, Yali; Hamal, Preeti; You, Xiaofang; Mao, Haixia; Li, Fei; Sun, Xiwen
2017-01-01
The aim of this study was to assess whether CT imaging using an ultra-high-resolution CT (UHRCT) scan with a small scan field of view (FOV) provides higher image quality and helps to reduce the follow-up period compared with a conventional high-resolution CT (CHRCT) scan. We identified patients with at least one pulmonary nodule at our hospital from July 2015 to November 2015. CHRCT and UHRCT scans were conducted in all enrolled patients. Three experienced radiologists evaluated the image quality using a 5-point score and made diagnoses. The paired images were displayed side by side in a random manner and annotations of scan information were removed. The following parameters including image quality, diagnostic confidence of radiologists, follow-up recommendations and diagnostic accuracy were assessed. A total of 52 patients (62 nodules) were included in this study. UHRCT scan provides a better image quality regarding the margin of nodules and solid internal component compared to that of CHRCT (P < 0.05). Readers have higher diagnostic confidence based on the UHRCT images than of CHRCT images (P<0.05). The follow-up recommendations were significantly different between UHRCT and CHRCT images (P<0.05). Compared with the surgical pathological findings, UHRCT had a relative higher diagnostic accuracy than CHRCT (P > 0.05). These findings suggest that the UHRCT prototype scanner provides a better image quality of subsolid nodules compared to CHRCT and contributes significantly to reduce the patients' follow-up period. PMID:28231320
Adaptive nonlocal means filtering based on local noise level for CT denoising
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Zhoubo; Trzasko, Joshua D.; Lake, David S.
2014-01-15
Purpose: To develop and evaluate an image-domain noise reduction method based on a modified nonlocal means (NLM) algorithm that is adaptive to local noise level of CT images and to implement this method in a time frame consistent with clinical workflow. Methods: A computationally efficient technique for local noise estimation directly from CT images was developed. A forward projection, based on a 2D fan-beam approximation, was used to generate the projection data, with a noise model incorporating the effects of the bowtie filter and automatic exposure control. The noise propagation from projection data to images was analytically derived. The analyticalmore » noise map was validated using repeated scans of a phantom. A 3D NLM denoising algorithm was modified to adapt its denoising strength locally based on this noise map. The performance of this adaptive NLM filter was evaluated in phantom studies in terms of in-plane and cross-plane high-contrast spatial resolution, noise power spectrum (NPS), subjective low-contrast spatial resolution using the American College of Radiology (ACR) accreditation phantom, and objective low-contrast spatial resolution using a channelized Hotelling model observer (CHO). Graphical processing units (GPU) implementation of this noise map calculation and the adaptive NLM filtering were developed to meet demands of clinical workflow. Adaptive NLM was piloted on lower dose scans in clinical practice. Results: The local noise level estimation matches the noise distribution determined from multiple repetitive scans of a phantom, demonstrated by small variations in the ratio map between the analytical noise map and the one calculated from repeated scans. The phantom studies demonstrated that the adaptive NLM filter can reduce noise substantially without degrading the high-contrast spatial resolution, as illustrated by modulation transfer function and slice sensitivity profile results. The NPS results show that adaptive NLM denoising preserves the shape and peak frequency of the noise power spectrum better than commercial smoothing kernels, and indicate that the spatial resolution at low contrast levels is not significantly degraded. Both the subjective evaluation using the ACR phantom and the objective evaluation on a low-contrast detection task using a CHO model observer demonstrate an improvement on low-contrast performance. The GPU implementation can process and transfer 300 slice images within 5 min. On patient data, the adaptive NLM algorithm provides more effective denoising of CT data throughout a volume than standard NLM, and may allow significant lowering of radiation dose. After a two week pilot study of lower dose CT urography and CT enterography exams, both GI and GU radiology groups elected to proceed with permanent implementation of adaptive NLM in their GI and GU CT practices. Conclusions: This work describes and validates a computationally efficient technique for noise map estimation directly from CT images, and an adaptive NLM filtering based on this noise map, on phantom and patient data. Both the noise map calculation and the adaptive NLM filtering can be performed in times that allow integration with clinical workflow. The adaptive NLM algorithm provides effective denoising of CT data throughout a volume, and may allow significant lowering of radiation dose.« less
WE-FG-207B-04: Noise Suppression for Energy-Resolved CT Via Variance Weighted Non-Local Filtration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harms, J; Zhu, L
Purpose: The photon starvation problem is exacerbated in energy-resolved CT, since the detected photons are shared by multiple energy channels. Using pixel similarity-based non-local filtration, we aim to produce accurate and high-resolution energy-resolved CT images with significantly reduced noise. Methods: Averaging CT images reconstructed from different energy channels reduces noise at the price of losing spectral information, while conventional denoising techniques inevitably degrade image resolution. Inspired by the fact that CT images of the same object at different energies share the same structures, we aim to reduce noise of energy-resolved CT by averaging only pixels of similar materials - amore » non-local filtration technique. For each CT image, an empirical exponential model is used to calculate the material similarity between two pixels based on their CT values and the similarity values are organized in a matrix form. A final similarity matrix is generated by averaging these similarity matrices, with weights inversely proportional to the estimated total noise variance in the sinogram of different energy channels. Noise suppression is achieved for each energy channel via multiplying the image vector by the similarity matrix. Results: Multiple scans on a tabletop CT system are used to simulate 6-channel energy-resolved CT, with energies ranging from 75 to 125 kVp. On a low-dose acquisition at 15 mA of the Catphan©600 phantom, our method achieves the same image spatial resolution as a high-dose scan at 80 mA with a noise standard deviation (STD) lower by a factor of >2. Compared with another non-local noise suppression algorithm (ndiNLM), the proposed algorithms obtains images with substantially improved resolution at the same level of noise reduction. Conclusion: We propose a noise-suppression method for energy-resolved CT. Our method takes full advantage of the additional structural information provided by energy-resolved CT and preserves image values at each energy level. Research reported in this publication was supported by the National Institute Of Biomedical Imaging And Bioengineering of the National Institutes of Health under Award Number R21EB019597. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, D
2015-06-15
Purpose: AAPM radiation therapy committee task group No. 66 (TG-66) published a report which described a general approach to CT simulator QA. The report outlines the testing procedures and specifications for the evaluation of patient dose, radiation safety, electromechanical components, and image quality for a CT simulator. The purpose of this study is to thoroughly evaluate the performance of a second generation Toshiba Aquilion Large Bore CT simulator with 90 cm bore size (Toshiba, Nasu, JP) based on the TG-66 criteria. The testing procedures and results from this study provide baselines for a routine QA program. Methods: Different measurements andmore » analysis were performed including CTDIvol measurements, alignment and orientation of gantry lasers, orientation of the tabletop with respect to the imaging plane, table movement and indexing accuracy, Scanogram location accuracy, high contrast spatial resolution, low contrast resolution, field uniformity, CT number accuracy, mA linearity and mA reproducibility using a number of different phantoms and measuring devices, such as CTDI phantom, ACR image quality phantom, TG-66 laser QA phantom, pencil ion chamber (Fluke Victoreen) and electrometer (RTI Solidose 400). Results: The CTDI measurements were within 20% of the console displayed values. The alignment and orientation for both gantry laser and tabletop, as well as the table movement and indexing and scanogram location accuracy were within 2mm as specified in TG66. The spatial resolution, low contrast resolution, field uniformity and CT number accuracy were all within ACR’s recommended limits. The mA linearity and reproducibility were both well below the TG66 threshold. Conclusion: The 90 cm bore size second generation Toshiba Aquilion Large Bore CT simulator that comes with 70 cm true FOV can consistently meet various clinical needs. The results demonstrated that this simulator complies with the TG-66 protocol in all aspects including electromechanical component, radiation safety component, and image quality component. Employee of Toshiba America Medical Systems.« less
A synchrotron radiation microtomography system for the analysis of trabecular bone samples.
Salomé, M; Peyrin, F; Cloetens, P; Odet, C; Laval-Jeantet, A M; Baruchel, J; Spanne, P
1999-10-01
X-ray computed microtomography is particularly well suited for studying trabecular bone architecture, which requires three-dimensional (3-D) images with high spatial resolution. For this purpose, we describe a three-dimensional computed microtomography (microCT) system using synchrotron radiation, developed at ESRF. Since synchrotron radiation provides a monochromatic and high photon flux x-ray beam, it allows high resolution and a high signal-to-noise ratio imaging. The principle of the system is based on truly three-dimensional parallel tomographic acquisition. It uses a two-dimensional (2-D) CCD-based detector to record 2-D radiographs of the transmitted beam through the sample under different angles of view. The 3-D tomographic reconstruction, performed by an exact 3-D filtered backprojection algorithm, yields 3-D images with cubic voxels. The spatial resolution of the detector was experimentally measured. For the application to bone investigation, the voxel size was set to 6.65 microm, and the experimental spatial resolution was found to be 11 microm. The reconstructed linear attenuation coefficient was calibrated from hydroxyapatite phantoms. Image processing tools are being developed to extract structural parameters quantifying trabecular bone architecture from the 3-D microCT images. First results on human trabecular bone samples are presented.
2017-01-01
Purpose Optical coherence tomography (OCT) is a noninvasive diagnostic technique that may be useful for both qualitative and quantitative analyses of the periodontium. Micro-computed tomography (micro-CT) is another noninvasive imaging technique capable of providing submicron spatial resolution. The purpose of this study was to present periodontal images obtained using ex vivo dental OCT and to compare OCT images with micro-CT images and histologic sections. Methods Images of ex vivo canine periodontal structures were obtained using OCT. Biologic depth measurements made using OCT were compared to measurements made on histologic sections prepared from the same sites. Visual comparisons were made among OCT, micro-CT, and histologic sections to evaluate whether anatomical details were accurately revealed by OCT. Results The periodontal tissue contour, gingival sulcus, and the presence of supragingival and subgingival calculus could be visualized using OCT. OCT was able to depict the surface topography of the dentogingival complex with higher resolution than micro-CT, but the imaging depth was typically limited to 1.2–1.5 mm. Biologic depth measurements made using OCT were a mean of 0.51 mm shallower than the histologic measurements. Conclusions Dental OCT as used in this study was able to generate high-resolution, cross-sectional images of the superficial portions of periodontal structures. Improvements in imaging depth and the development of an intraoral sensor are likely to make OCT a useful technique for periodontal applications. PMID:28261522
High Resolution X-ray-Induced Acoustic Tomography
Xiang, Liangzhong; Tang, Shanshan; Ahmad, Moiz; Xing, Lei
2016-01-01
Absorption based CT imaging has been an invaluable tool in medical diagnosis, biology, and materials science. However, CT requires a large set of projection data and high radiation dose to achieve superior image quality. In this letter, we report a new imaging modality, X-ray Induced Acoustic Tomography (XACT), which takes advantages of high sensitivity to X-ray absorption and high ultrasonic resolution in a single modality. A single projection X-ray exposure is sufficient to generate acoustic signals in 3D space because the X-ray generated acoustic waves are of a spherical nature and propagate in all directions from their point of generation. We demonstrate the successful reconstruction of gold fiducial markers with a spatial resolution of about 350 μm. XACT reveals a new imaging mechanism and provides uncharted opportunities for structural determination with X-ray. PMID:27189746
NASA Astrophysics Data System (ADS)
Haneda, Eri; Luo, Jiajia; Can, Ali; Ramani, Sathish; Fu, Lin; De Man, Bruno
2016-05-01
In this study, we implement and compare model based iterative reconstruction (MBIR) with dictionary learning (DL) over MBIR with pairwise pixel-difference regularization, in the context of transportation security. DL is a technique of sparse signal representation using an over complete dictionary which has provided promising results in image processing applications including denoising,1 as well as medical CT reconstruction.2 It has been previously reported that DL produces promising results in terms of noise reduction and preservation of structural details, especially for low dose and few-view CT acquisitions.2 A distinguishing feature of transportation security CT is that scanned baggage may contain items with a wide range of material densities. While medical CT typically scans soft tissues, blood with and without contrast agents, and bones, luggage typically contains more high density materials (i.e. metals and glass), which can produce severe distortions such as metal streaking artifacts. Important factors of security CT are the emphasis on image quality such as resolution, contrast, noise level, and CT number accuracy for target detection. While MBIR has shown exemplary performance in the trade-off of noise reduction and resolution preservation, we demonstrate that DL may further improve this trade-off. In this study, we used the KSVD-based DL3 combined with the MBIR cost-minimization framework and compared results to Filtered Back Projection (FBP) and MBIR with pairwise pixel-difference regularization. We performed a parameter analysis to show the image quality impact of each parameter. We also investigated few-view CT acquisitions where DL can show an additional advantage relative to pairwise pixel difference regularization.
Frueh, Florian S.; Körbel, Christina; Gassert, Laura; Müller, Andreas; Gousopoulos, Epameinondas; Lindenblatt, Nicole; Giovanoli, Pietro; Laschke, Matthias W.; Menger, Michael D.
2016-01-01
Secondary lymphedema is a common complication of cancer treatment characterized by chronic limb swelling with interstitial inflammation. The rodent hindlimb is a widely used model for the evaluation of novel lymphedema treatments. However, the assessment of limb volume in small animals is challenging. Recently, high-resolution three-dimensional (3D) imaging modalities have been introduced for rodent limb volumetry. In the present study we evaluated the validity of microcomputed tomography (μCT), magnetic resonance imaging (MRI) and ultrasound in comparison to conventional measuring techniques. For this purpose, acute lymphedema was induced in the mouse hindlimb by a modified popliteal lymphadenectomy. The 4-week course of this type of lymphedema was first assessed in 6 animals. In additional 12 animals, limb volumes were analyzed by μCT, 9.4 T MRI and 30 MHz ultrasound as well as by planimetry, circumferential length and paw thickness measurements. Interobserver correlation was high for all modalities, in particular for μCT analysis (r = 0.975, p < 0.001). Importantly, caliper-measured paw thickness correlated well with μCT (r = 0.861), MRI (r = 0.821) and ultrasound (r = 0.800). Because the assessment of paw thickness represents a time- and cost-effective approach, it may be ideally suited for the quantification of rodent hindlimb lymphedema. PMID:27698469
NASA Astrophysics Data System (ADS)
Wong, Wai-Hoi; Li, Hongdi; Zhang, Yuxuan; Ramirez, Rocio; An, Shaohui; Wang, Chao; Liu, Shitao; Dong, Yun; Baghaei, Hossain
2015-10-01
We developed a high-resolution Photomultiplier-Quadrant-Sharing (PQS) PET system for human imaging. This system is made up of 24 detector panels. Each panel (bank) consists of 3 ×7 detector blocks, and each block has 16 ×16 LYSO crystals of 2.35 ×2.35 ×15.2 mm3. We used a novel detector-grinding scheme that is compatible with the PQS detector-pixel-decoding requirements to make a gapless cylindrical detector ring for maximizing detection efficiency while delivering an ultrahigh spatial-resolution for a whole-body PET camera with a ring diameter of 87 cm and axial field of view of 27.6 cm. This grinding scheme enables two adjacent gapless panels to share one row of the PMTs to extend the PQS configuration beyond one panel and thus maximize the economic benefit (in PMT usage) of the PQS design. The entire detector ring has 129,024 crystals, all of which are clearly decoded using only 576 PMTs (38-mm diameter). Thus, each PMT on average decodes 224 crystals to achieve a high crystal-pitch resolution of 2.44 mm ×2.44 mm. The detector blocks were mass-produced with our slab-sandwich-slice technique using a set of optimized mirror-film patterns (between crystals) to maximize light output and achieve high spatial and timing resolution. This detection system with time-of-flight capability was placed in a human PET/CT gantry. The reconstructed image resolution of the system was about 2.87 mm using 2D-filtered back-projection. The time-of-flight resolution was 473 ps. The preliminary images of phantoms and clinical studies presented in this work demonstrate the capability of this new PET/CT system to produce high-quality images.
Koddenberg, Tim; Militz, Holger
2018-05-05
The popularity of X-ray based imaging methods has continued to increase in research domains. In wood research, X-ray micro-computed tomography (XμCT) is useful for structural studies examining the three-dimensional and complex xylem tissue of trees qualitatively and quantitatively. In this study, XμCT made it possible to visualize and quantify the spatial xylem organization of the angiosperm species Fraxinus excelsior L. on the microscopic level. Through image analysis, it was possible to determine morphological characteristics of the cellular axial tissue (vessel elements, fibers, and axial parenchyma cells) three-dimensionally. X-ray imaging at high resolutions provides very distinct visual insight into the xylem structure. Numerical analyses performed through semi-automatic procedures made it possible to quickly quantify cell characteristics (length, diameter, and volume of cells). Use of various spatial resolutions (0.87-5 μm) revealed boundaries users should be aware of. Nevertheless, our findings, both qualitative and quantitative, demonstrate XμCT to be a valuable tool for studying the spatial cell morphology of F. excelsior. Copyright © 2018. Published by Elsevier Ltd.
Ghoshhajra, Brian B; Sidhu, Manavjot S; El-Sherief, Ahmed; Rojas, Carlos; Yeh, Doreen Defaria; Engel, Leif-Christopher; Liberthson, Richard; Abbara, Suhny; Bhatt, Ami
2012-01-01
Adult congenital heart disease patients present a unique challenge to the cardiac imager. Patients may present with both acute and chronic manifestations of their complex congenital heart disease and also require surveillance for sequelae of their medical and surgical interventions. Multimodality imaging is often required to clarify their anatomy and physiology. Radiation dose is of particular concern in these patients with lifelong imaging needs for their chronic disease. The second-generation dual-source scanner is a recently available advanced clinical cardiac computed tomography (CT) scanner. It offers a combination of the high-spatial resolution of modern CT, the high-temporal resolution of dual-source technology, and the wide z-axis coverage of modern cone-beam geometry CT scanners. These advances in technology allow novel protocols that markedly reduce scan time, significantly reduce radiation exposure, and expand the physiologic imaging capabilities of cardiac CT. We present a case series of complicated adult congenital heart disease patients imaged by the second-generation dual-source CT scanner with extremely low-radiation doses and excellent image quality. © 2012 Wiley Periodicals, Inc.
Almeida, Diogo F; Ruben, Rui B; Folgado, João; Fernandes, Paulo R; Audenaert, Emmanuel; Verhegghe, Benedict; De Beule, Matthieu
2016-12-01
Femur segmentation can be an important tool in orthopedic surgical planning. However, in order to overcome the need of an experienced user with extensive knowledge on the techniques, segmentation should be fully automatic. In this paper a new fully automatic femur segmentation method for CT images is presented. This method is also able to define automatically the medullary canal and performs well even in low resolution CT scans. Fully automatic femoral segmentation was performed adapting a template mesh of the femoral volume to medical images. In order to achieve this, an adaptation of the active shape model (ASM) technique based on the statistical shape model (SSM) and local appearance model (LAM) of the femur with a novel initialization method was used, to drive the template mesh deformation in order to fit the in-image femoral shape in a time effective approach. With the proposed method a 98% convergence rate was achieved. For high resolution CT images group the average error is less than 1mm. For the low resolution image group the results are also accurate and the average error is less than 1.5mm. The proposed segmentation pipeline is accurate, robust and completely user free. The method is robust to patient orientation, image artifacts and poorly defined edges. The results excelled even in CT images with a significant slice thickness, i.e., above 5mm. Medullary canal segmentation increases the geometric information that can be used in orthopedic surgical planning or in finite element analysis. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.
Scout-view Assisted Interior Micro-CT
Sen Sharma, Kriti; Holzner, Christian; Vasilescu, Dragoş M.; Jin, Xin; Narayanan, Shree; Agah, Masoud; Hoffman, Eric A.; Yu, Hengyong; Wang, Ge
2013-01-01
Micro computed tomography (micro-CT) is a widely-used imaging technique. A challenge of micro-CT is to quantitatively reconstruct a sample larger than the field-of-view (FOV) of the detector. This scenario is characterized by truncated projections and associated image artifacts. However, for such truncated scans, a low resolution scout scan with an increased FOV is frequently acquired so as to position the sample properly. This study shows that the otherwise discarded scout scans can provide sufficient additional information to uniquely and stably reconstruct the interior region of interest. Two interior reconstruction methods are designed to utilize the multi-resolution data without a significant computational overhead. While most previous studies used numerically truncated global projections as interior data, this study uses truly hybrid scans where global and interior scans were carried out at different resolutions. Additionally, owing to the lack of standard interior micro-CT phantoms, we designed and fabricated novel interior micro-CT phantoms for this study to provide means of validation for our algorithms. Finally, two characteristic samples from separate studies were scanned to show the effect of our reconstructions. The presented methods show significant improvements over existing reconstruction algorithms. PMID:23732478
Van Dessel, Jeroen; Nicolielo, Laura Ferreira Pinheiro; Huang, Yan; Slagmolen, Pieter; Politis, Constantinus; Lambrichts, Ivo; Jacobs, Reinhilde
To determine the accuracy of the latest cone beam computed tomography (CBCT) machines in comparison to multi-slice computer tomography (MSCT) and micro computed tomography (micro-CT) for objectively assessing trabecular and cortical bone quality prior to implant placement. Eight edentulous human mandibular bone samples were scanned with seven CBCT scanners (3D Accuitomo 170, i-CAT Next Generation, ProMax 3D Max, Scanora 3D, Cranex 3D, Newtom GiANO and Carestream 9300) and one MSCT system (Somatom Definition Flash) using the clinical exposure protocol with the highest resolution. Micro-CT (SkyScan 1174) images served as a gold standard. A volume of interest (VOI) comprising trabecular and cortical bone only was delineated on the micro-CT. After spatial alignment of all scan types, micro-CT VOIs were overlaid on the CBCT and MSCT images. Segmentation was applied and morphometric parameters were calculated for each scanner. CBCT and MSCT morphometric parameters were compared with micro-CT using mixed-effect models. Intraclass correlation analysis was used to grade the accuracy of each scanner in assessing trabecular and cortical quality in comparison with the gold standard. Bone structure patterns of each scanner were compared with micro-CT in 2D and 3D to facilitate the interpretation of the morphometric analysis. Morphometric analysis showed an overestimation of the cortical and trabecular bone quantity during CBCT and MSCT evaluation compared to the gold standard micro-CT. The trabecular thickness (Tb.Th) was found to be significantly (P < 0.05) different and the smallest overestimation was found for the ProMax 3D Max (180 µm), followed by the 3D Accuitomo 170 (200 µm), Carestream 9300 (220 µm), Newtom GiANO (240 µm), Cranex 3D (280 µm), Scanora 3D (300 µm), high resolution MSCT (310 µm), i-CAT Next Generation (430 µm) and standard resolution MSCT (510 µm). The underestimation of the cortical thickness (Ct.Th) in ProMax 3D Max (-10 µm), the overestimation in Newtom GiANO (10 µm) and the high resolution MSCT (10 µm) were neglible. However, a significant overestimation (P < 0.05) was found for 3D Accuitomo 170 (110 µm), Scanora 3D (140 µm), standard resolution MSCT (150 µm), Carestream 9300 (190 µm), Cranex 3D (190 µm) and i-CAT Next Generation (230 µm). Comparison of the 2D network and 3D surface distance confirmed the overestimation in bone quantity, but only demonstrated a deviant trabecular network for the i-CAT Next Generation and the standard resolution MSCT. Intraclass correlation coefficients (ICCs) showed a significant (P < 0.05) high intra-observer reliability (ICC > 0.70) in morphometric evaluation between micro-CT and commercially available CBCT scanners (3D Accuitomo 170, Newtom GiANO and ProMax 3D Max). The ICC for Tb.Th and Ct.Th were 0.72 and 0.98 (3D Accuitomo 170), 0.71 and 0.96 (Newtom GiANO), and 0.87 and 0.92 (ProMax 3D Max), respectively. High resolution CBCT offers a clinical alternative to MSCT to objectively determine the bone quality prior to implant placement. However, not all tested CBCT machines have sufficient resolution to accurately depict the trabecular network or cortical bone. Conflict-of-interest statement: There is no conflict of interest to declare. Fellowship support came from Research Foundation Flanders (FWO) from the Belgian government, and Coordination for the Improvement of Higher Education Personnel (CAPES) program and Science without borders from the Brazilian government.
Performance evaluation of the Ingenuity TF PET/CT scanner with a focus on high count-rate conditions
NASA Astrophysics Data System (ADS)
Kolthammer, Jeffrey A.; Su, Kuan-Hao; Grover, Anu; Narayanan, Manoj; Jordan, David W.; Muzic, Raymond F.
2014-07-01
This study evaluated the positron emission tomography (PET) imaging performance of the Ingenuity TF 128 PET/computed tomography (CT) scanner which has a PET component that was designed to support a wider radioactivity range than is possible with those of Gemini TF PET/CT and Ingenuity TF PET/MR. Spatial resolution, sensitivity, count rate characteristics and image quality were evaluated according to the NEMA NU 2-2007 standard and ACR phantom accreditation procedures; these were supplemented by additional measurements intended to characterize the system under conditions that would be encountered during quantitative cardiac imaging with 82Rb. Image quality was evaluated using a hot spheres phantom, and various contrast recovery and noise measurements were made from replicated images. Timing and energy resolution, dead time, and the linearity of the image activity concentration, were all measured over a wide range of count rates. Spatial resolution (4.8-5.1 mm FWHM), sensitivity (7.3 cps kBq-1), peak noise-equivalent count rate (124 kcps), and peak trues rate (365 kcps) were similar to those of the Gemini TF PET/CT. Contrast recovery was higher with a 2 mm, body-detail reconstruction than with a 4 mm, body reconstruction, although the precision was reduced. The noise equivalent count rate peak was broad (within 10% of peak from 241-609 MBq). The activity measured in phantom images was within 10% of the true activity for count rates up to those observed in 82Rb cardiac PET studies.
Wide coverage by volume CT: benefits for cardiac imaging
NASA Astrophysics Data System (ADS)
Sablayrolles, Jean-Louis; Cesmeli, Erdogan; Mintandjian, Laura; Adda, Olivier; Dessalles-Martin, Diane
2005-04-01
With the development of new technologies, computed tomography (CT) is becoming a strong candidate for non-invasive imaging based tool for cardiac disease assessment. One of the challenges of cardiac CT is that a typical scan involves a breath hold period consisting of several heartbeats, about 20 sec with scanners having a longitudinal coverage of 2 cm, and causing the image quality (IQ) to be negatively impacted since beat to beat variation is high likely to occur without any medication, e.g. beta blockers. Because of this and the preference for shorter breath hold durations, a CT scanner with a wide coverage without the compromise in the spatial and temporal resolution of great clinical value. In this study, we aimed at determining the optimum scan duration and the delay relative to beginning of breath hold, to achieve high IQ. We acquired EKG data from 91 consecutive patients (77 M, 14 F; Age: 57 +/- 14) undergoing cardiac CT exams with contrast, performed on LightSpeed 16 and LightSpeed Pro16. As an IQ metric, we adopted the standard deviation of "beat-to-beat variation" (stdBBV) within a virtual scan period. Two radiologists evaluated images by assigning a score of 1 (worst) to 4 best). We validated stdBBV with the radiologist scores, which resulted in a population distribution of 9.5, 9.5, 31, and 50% for the score groups 1, 2, 3, and 4, respectively. Based on the scores, we defined a threshold for stdBBV and identified an optimum combination of virtual scan period and a delay. With the assumption that the relationship between the stdBBV and diagnosable scan IQ holds, our analysis suggested that the success rate can be improved to 100% with scan durations equal or less than 5 sec with a delay of 1 - 2 sec. We confirmed the suggested conclusion with LightSpeed VCT (GE Healthcare Technologies, Waukesha, WI), which has a wide longitudinal coverage, fine isotropic spatial resolution, and high temporal resolution, e.g. 40 mm coverage per rotation of 0.35 sec. Under the light of this study, LightSpeed VCT lends itself to be a clinically tested unique platform to achieve routine cardiac imaging.
Gay, F; Pavia, Y; Pierrat, N; Lasalle, S; Neuenschwander, S; Brisse, H J
2014-01-01
To assess the benefit and limits of iterative reconstruction of paediatric chest and abdominal computed tomography (CT). The study compared adaptive statistical iterative reconstruction (ASIR) with filtered back projection (FBP) on 64-channel MDCT. A phantom study was first performed using variable tube potential, tube current and ASIR settings. The assessed image quality indices were the signal-to-noise ratio (SNR), the noise power spectrum, low contrast detectability (LCD) and spatial resolution. A clinical retrospective study of 26 children (M:F = 14/12, mean age: 4 years, range: 1-9 years) was secondarily performed allowing comparison of 18 chest and 14 abdominal CT pairs, one with a routine CT dose and FBP reconstruction, and the other with 30 % lower dose and 40 % ASIR reconstruction. Two radiologists independently compared the images for overall image quality, noise, sharpness and artefacts, and measured image noise. The phantom study demonstrated a significant increase in SNR without impairment of the LCD or spatial resolution, except for tube current values below 30-50 mA. On clinical images, no significant difference was observed between FBP and reduced dose ASIR images. Iterative reconstruction allows at least 30 % dose reduction in paediatric chest and abdominal CT, without impairment of image quality. • Iterative reconstruction helps lower radiation exposure levels in children undergoing CT. • Adaptive statistical iterative reconstruction (ASIR) significantly increases SNR without impairing spatial resolution. • For abdomen and chest CT, ASIR allows at least a 30 % dose reduction.
The influence of focal spot blooming on high-contrast spatial resolution in CT imaging.
Grimes, Joshua; Duan, Xinhui; Yu, Lifeng; Halaweish, Ahmed F; Haag, Nicole; Leng, Shuai; McCollough, Cynthia
2015-10-01
The objective of this work was to investigate focal spot blooming effects on the spatial resolution of CT images and to evaluate an x-ray tube that uses dynamic focal spot control for minimizing focal spot blooming. The influence of increasing tube current at a fixed tube potential of 80 kV on high-contrast spatial resolution of seven different CT scanner models (scanners A-G), including one scanner that uses dynamic focal spot control to reduce focal spot blooming (scanner A), was evaluated. Spatial resolution was assessed using a wire phantom for the modulation transfer function (MTF) calculation and a copper disc phantom for measuring the slice sensitivity profile (SSP). The impact of varying the tube potential was investigated on two scanner models (scanners A and B) by measuring the MTF and SSP and also by using the resolution bar pattern module of the ACR CT phantom. The phantoms were scanned at 70-150 kV on scanner A and 80-140 kV on scanner B, with tube currents from 100 mA up to the maximum tube current available on each scanner. The images were reconstructed using a slice thickness of 0.6 mm with both smooth and sharp kernels. Additionally, focal spot size at varying tube potentials and currents was directly measured using pinhole and slit camera techniques. Evaluation of the MTF and SSP data from the 7 CT scanner models evaluated demonstrated decreased focal spot blooming for newer scanners, as evidenced by decreasing deviations in MTF and SSP as tube current varied. For scanners A and B, where focal spot blooming effects as a function of tube potential were assessed, the spatial resolution variation in the axial plane was much smaller on scanner A compared to scanner B as tube potential and current changed. On scanner A, the 50% MTF never decreased by more than 2% from the 50% MTF measured at 100 mA. On scanner B, the 50% MTF decreased by as much as 19% from the 50% MTF measured at 100 mA. Assessments of the SSP, the bar patterns in the ACR phantom and the pinhole and slit camera measurements were consistent with the MTF calculations. Focal spot blooming has a noticeable effect on spatial resolution in CT imaging. The focal spot shaping technology of scanner A greatly reduced blooming effects.
Zhao, B; Ding, H; Lu, Y; Wang, G; Zhao, J; Molloi, S
2012-06-01
To investigate the feasibility of an Iterative Reconstruction (IR) method utilizing the algebraic reconstruction technique coupled with dual-dictionary learning for the application of dedicated breast computed tomography (CT) based on a photon-counting detector. Postmortem breast samples were scanned in an experimental fan beam CT system based on a Cadmium-Zinc-Telluride (CZT) photon-counting detector. Images were reconstructed from various numbers of projections with both IR and Filtered-Back-Projection (FBP) methods. Contrast-to-Noise Ratio (CNR) between the glandular and adipose tissue of postmortem breast samples were calculated to evaluate the quality of images reconstructed from IR and FBP. In addition to CNR, the spatial resolution was also used as a metric to evaluate the quality of images reconstructed from the two methods. This is further studied with a high-resolution phantom consisting of a 14 cm diameter, 10 cm length polymethylmethacrylate (PMMA) cylinder. A 5 cm diameter coaxial volume of Interest insert that contains fine Aluminum wires of various diameters was used to determine spatial resolution. The spatial resolution and CNR were better when identical sinograms were reconstructed in IR as compared to FBP. In comparison with FBP reconstruction, a similar CNR was achieved using IR method with up to a factor of 5 fewer projections. The results of this study suggest that IR method can significantly reduce the required number of projections for a CT reconstruction compared to FBP method to achieve an equivalent CNR. Therefore, the scanning time of a CZT-based CT system using the IR method can potentially be reduced. © 2012 American Association of Physicists in Medicine.
Bache, Steven T; Juang, Titania; Belley, Matthew D; Koontz, Bridget F; Adamovics, John; Yoshizumi, Terry T; Kirsch, David G; Oldham, Mark
2015-02-01
Sophisticated small animal irradiators, incorporating cone-beam-CT image-guidance, have recently been developed which enable exploration of the efficacy of advanced radiation treatments in the preclinical setting. Microstereotactic-body-radiation-therapy (microSBRT) is one technique of interest, utilizing field sizes in the range of 1-15 mm. Verification of the accuracy of microSBRT treatment delivery is challenging due to the lack of available methods to comprehensively measure dose distributions in representative phantoms with sufficiently high spatial resolution and in 3 dimensions (3D). This work introduces a potential solution in the form of anatomically accurate rodent-morphic 3D dosimeters compatible with ultrahigh resolution (0.3 mm(3)) optical computed tomography (optical-CT) dose read-out. Rodent-morphic dosimeters were produced by 3D-printing molds of rodent anatomy directly from contours defined on x-ray CT data sets of rats and mice, and using these molds to create tissue-equivalent radiochromic 3D dosimeters from Presage. Anatomically accurate spines were incorporated into some dosimeters, by first 3D printing the spine mold, then forming a high-Z bone equivalent spine insert. This spine insert was then set inside the tissue equivalent body mold. The high-Z spinal insert enabled representative cone-beam CT IGRT targeting. On irradiation, a linear radiochromic change in optical-density occurs in the dosimeter, which is proportional to absorbed dose, and was read out using optical-CT in high-resolution (0.5 mm isotropic voxels). Optical-CT data were converted to absolute dose in two ways: (i) using a calibration curve derived from other Presage dosimeters from the same batch, and (ii) by independent measurement of calibrated dose at a point using a novel detector comprised of a yttrium oxide based nanocrystalline scintillator, with a submillimeter active length. A microSBRT spinal treatment was delivered consisting of a 180° continuous arc at 225 kVp with a 20 × 10 mm field size. Dose response was evaluated using both the Presage/optical-CT 3D dosimetry system described above, and independent verification in select planes using EBT2 radiochromic film placed inside rodent-morphic dosimeters that had been sectioned in half. Rodent-morphic 3D dosimeters were successfully produced from Presage radiochromic material by utilizing 3D printed molds of rat CT contours. The dosimeters were found to be compatible with optical-CT dose readout in high-resolution 3D (0.5 mm isotropic voxels) with minimal artifacts or noise. Cone-beam CT image guidance was possible with these dosimeters due to sufficient contrast between high-Z spinal inserts and tissue equivalent Presage material (CNR ∼10 on CBCT images). Dose at isocenter measured with optical-CT was found to agree with nanoscintillator measurement to within 2.8%. Maximum dose in line profiles taken through Presage and film dose slices agreed within 3%, with FWHM measurements through each profile found to agree within 2%. This work demonstrates the feasibility of using 3D printing technology to make anatomically accurate Presage rodent-morphic dosimeters incorporating spinal-mimicking inserts. High quality optical-CT 3D dosimetry is feasible on these dosimeters, despite the irregular surfaces and implanted inserts. The ability to measure dose distributions in anatomically accurate phantoms represents a powerful useful additional verification tool for preclinical microSBRT.
Bache, Steven T.; Juang, Titania; Belley, Matthew D.; Koontz, Bridget F.; Adamovics, John; Yoshizumi, Terry T.; Kirsch, David G.; Oldham, Mark
2015-01-01
Purpose: Sophisticated small animal irradiators, incorporating cone-beam-CT image-guidance, have recently been developed which enable exploration of the efficacy of advanced radiation treatments in the preclinical setting. Microstereotactic-body-radiation-therapy (microSBRT) is one technique of interest, utilizing field sizes in the range of 1–15 mm. Verification of the accuracy of microSBRT treatment delivery is challenging due to the lack of available methods to comprehensively measure dose distributions in representative phantoms with sufficiently high spatial resolution and in 3 dimensions (3D). This work introduces a potential solution in the form of anatomically accurate rodent-morphic 3D dosimeters compatible with ultrahigh resolution (0.3 mm3) optical computed tomography (optical-CT) dose read-out. Methods: Rodent-morphic dosimeters were produced by 3D-printing molds of rodent anatomy directly from contours defined on x-ray CT data sets of rats and mice, and using these molds to create tissue-equivalent radiochromic 3D dosimeters from Presage. Anatomically accurate spines were incorporated into some dosimeters, by first 3D printing the spine mold, then forming a high-Z bone equivalent spine insert. This spine insert was then set inside the tissue equivalent body mold. The high-Z spinal insert enabled representative cone-beam CT IGRT targeting. On irradiation, a linear radiochromic change in optical-density occurs in the dosimeter, which is proportional to absorbed dose, and was read out using optical-CT in high-resolution (0.5 mm isotropic voxels). Optical-CT data were converted to absolute dose in two ways: (i) using a calibration curve derived from other Presage dosimeters from the same batch, and (ii) by independent measurement of calibrated dose at a point using a novel detector comprised of a yttrium oxide based nanocrystalline scintillator, with a submillimeter active length. A microSBRT spinal treatment was delivered consisting of a 180° continuous arc at 225 kVp with a 20 × 10 mm field size. Dose response was evaluated using both the Presage/optical-CT 3D dosimetry system described above, and independent verification in select planes using EBT2 radiochromic film placed inside rodent-morphic dosimeters that had been sectioned in half. Results: Rodent-morphic 3D dosimeters were successfully produced from Presage radiochromic material by utilizing 3D printed molds of rat CT contours. The dosimeters were found to be compatible with optical-CT dose readout in high-resolution 3D (0.5 mm isotropic voxels) with minimal artifacts or noise. Cone-beam CT image guidance was possible with these dosimeters due to sufficient contrast between high-Z spinal inserts and tissue equivalent Presage material (CNR ∼10 on CBCT images). Dose at isocenter measured with optical-CT was found to agree with nanoscintillator measurement to within 2.8%. Maximum dose in line profiles taken through Presage and film dose slices agreed within 3%, with FWHM measurements through each profile found to agree within 2%. Conclusions: This work demonstrates the feasibility of using 3D printing technology to make anatomically accurate Presage rodent-morphic dosimeters incorporating spinal-mimicking inserts. High quality optical-CT 3D dosimetry is feasible on these dosimeters, despite the irregular surfaces and implanted inserts. The ability to measure dose distributions in anatomically accurate phantoms represents a powerful useful additional verification tool for preclinical microSBRT. PMID:25652497
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bache, Steven T.; Juang, Titania; Belley, Matthew D.
Purpose: Sophisticated small animal irradiators, incorporating cone-beam-CT image-guidance, have recently been developed which enable exploration of the efficacy of advanced radiation treatments in the preclinical setting. Microstereotactic-body-radiation-therapy (microSBRT) is one technique of interest, utilizing field sizes in the range of 1–15 mm. Verification of the accuracy of microSBRT treatment delivery is challenging due to the lack of available methods to comprehensively measure dose distributions in representative phantoms with sufficiently high spatial resolution and in 3 dimensions (3D). This work introduces a potential solution in the form of anatomically accurate rodent-morphic 3D dosimeters compatible with ultrahigh resolution (0.3 mm{sup 3}) opticalmore » computed tomography (optical-CT) dose read-out. Methods: Rodent-morphic dosimeters were produced by 3D-printing molds of rodent anatomy directly from contours defined on x-ray CT data sets of rats and mice, and using these molds to create tissue-equivalent radiochromic 3D dosimeters from Presage. Anatomically accurate spines were incorporated into some dosimeters, by first 3D printing the spine mold, then forming a high-Z bone equivalent spine insert. This spine insert was then set inside the tissue equivalent body mold. The high-Z spinal insert enabled representative cone-beam CT IGRT targeting. On irradiation, a linear radiochromic change in optical-density occurs in the dosimeter, which is proportional to absorbed dose, and was read out using optical-CT in high-resolution (0.5 mm isotropic voxels). Optical-CT data were converted to absolute dose in two ways: (i) using a calibration curve derived from other Presage dosimeters from the same batch, and (ii) by independent measurement of calibrated dose at a point using a novel detector comprised of a yttrium oxide based nanocrystalline scintillator, with a submillimeter active length. A microSBRT spinal treatment was delivered consisting of a 180° continuous arc at 225 kVp with a 20 × 10 mm field size. Dose response was evaluated using both the Presage/optical-CT 3D dosimetry system described above, and independent verification in select planes using EBT2 radiochromic film placed inside rodent-morphic dosimeters that had been sectioned in half. Results: Rodent-morphic 3D dosimeters were successfully produced from Presage radiochromic material by utilizing 3D printed molds of rat CT contours. The dosimeters were found to be compatible with optical-CT dose readout in high-resolution 3D (0.5 mm isotropic voxels) with minimal artifacts or noise. Cone-beam CT image guidance was possible with these dosimeters due to sufficient contrast between high-Z spinal inserts and tissue equivalent Presage material (CNR ∼10 on CBCT images). Dose at isocenter measured with optical-CT was found to agree with nanoscintillator measurement to within 2.8%. Maximum dose in line profiles taken through Presage and film dose slices agreed within 3%, with FWHM measurements through each profile found to agree within 2%. Conclusions: This work demonstrates the feasibility of using 3D printing technology to make anatomically accurate Presage rodent-morphic dosimeters incorporating spinal-mimicking inserts. High quality optical-CT 3D dosimetry is feasible on these dosimeters, despite the irregular surfaces and implanted inserts. The ability to measure dose distributions in anatomically accurate phantoms represents a powerful useful additional verification tool for preclinical microSBRT.« less
Hi-Res scan mode in clinical MDCT systems: Experimental assessment of spatial resolution performance
Cruz-Bastida, Juan P.; Gomez-Cardona, Daniel; Li, Ke; Sun, Heyi; Hsieh, Jiang; Szczykutowicz, Timothy P.; Chen, Guang-Hong
2016-01-01
Purpose: The introduction of a High-Resolution (Hi-Res) scan mode and another associated option that combines Hi-Res mode with the so-called High Definition (HD) reconstruction kernels (referred to as a Hi-Res/HD mode in this paper) in some multi-detector CT (MDCT) systems offers new opportunities to increase spatial resolution for some clinical applications that demand high spatial resolution. The purpose of this work was to quantify the in-plane spatial resolution along both the radial direction and tangential direction for the Hi-Res and Hi-Res/HD scan modes at different off-center positions. Methods: A technique was introduced and validated to address the signal saturation problem encountered in the attempt to quantify spatial resolution for the Hi-Res and Hi-Res/HD scan modes. Using the proposed method, the modulation transfer functions (MTFs) of a 64-slice MDCT system (Discovery CT750 HD, GE Healthcare) equipped with both Hi-Res and Hi-Res/HD modes were measured using a metal bead at nine different off-centered positions (0–16 cm with a step size of 2 cm); at each position, both conventional scans and Hi-Res scans were performed. For each type of scan and position, 80 repeated acquisitions were performed to reduce noise induced uncertainties in the MTF measurements. A total of 15 reconstruction kernels, including eight conventional kernels and seven HD kernels, were used to reconstruct CT images of the bead. An ex vivo animal study consisting of a bone fracture model was performed to corroborate the MTF results, as the detection of this high-contrast and high frequency task is predominantly determined by spatial resolution. Images of this animal model generated by different scan modes and reconstruction kernels were qualitatively compared with the MTF results. Results: At the centered position, the use of Hi-Res mode resulted in a slight improvement in the MTF; each HD kernel generated higher spatial resolution than its counterpart conventional kernel. However, the MTF along the tangential direction of the scan field of view (SFOV) was significantly degraded at off-centered positions, yet the combined Hi-Res/HD mode reduced this azimuthal MTF degradation. Images of the animal bone fracture model confirmed the improved spatial resolution at the off-centered positions through the use of the Hi-Res mode and HD kernels. Conclusions: The Hi-Res/HD scan improve spatial resolution of MDCT systems at both centered and off-centered positions. PMID:27147351
Cruz-Bastida, Juan P; Gomez-Cardona, Daniel; Li, Ke; Sun, Heyi; Hsieh, Jiang; Szczykutowicz, Timothy P; Chen, Guang-Hong
2016-05-01
The introduction of a High-Resolution (Hi-Res) scan mode and another associated option that combines Hi-Res mode with the so-called High Definition (HD) reconstruction kernels (referred to as a Hi-Res/HD mode in this paper) in some multi-detector CT (MDCT) systems offers new opportunities to increase spatial resolution for some clinical applications that demand high spatial resolution. The purpose of this work was to quantify the in-plane spatial resolution along both the radial direction and tangential direction for the Hi-Res and Hi-Res/HD scan modes at different off-center positions. A technique was introduced and validated to address the signal saturation problem encountered in the attempt to quantify spatial resolution for the Hi-Res and Hi-Res/HD scan modes. Using the proposed method, the modulation transfer functions (MTFs) of a 64-slice MDCT system (Discovery CT750 HD, GE Healthcare) equipped with both Hi-Res and Hi-Res/HD modes were measured using a metal bead at nine different off-centered positions (0-16 cm with a step size of 2 cm); at each position, both conventional scans and Hi-Res scans were performed. For each type of scan and position, 80 repeated acquisitions were performed to reduce noise induced uncertainties in the MTF measurements. A total of 15 reconstruction kernels, including eight conventional kernels and seven HD kernels, were used to reconstruct CT images of the bead. An ex vivo animal study consisting of a bone fracture model was performed to corroborate the MTF results, as the detection of this high-contrast and high frequency task is predominantly determined by spatial resolution. Images of this animal model generated by different scan modes and reconstruction kernels were qualitatively compared with the MTF results. At the centered position, the use of Hi-Res mode resulted in a slight improvement in the MTF; each HD kernel generated higher spatial resolution than its counterpart conventional kernel. However, the MTF along the tangential direction of the scan field of view (SFOV) was significantly degraded at off-centered positions, yet the combined Hi-Res/HD mode reduced this azimuthal MTF degradation. Images of the animal bone fracture model confirmed the improved spatial resolution at the off-centered positions through the use of the Hi-Res mode and HD kernels. The Hi-Res/HD scan improve spatial resolution of MDCT systems at both centered and off-centered positions.
Larsson, Daniel H; Lundström, Ulf; Westermark, Ulrica K; Arsenian Henriksson, Marie; Burvall, Anna; Hertz, Hans M
2013-02-01
Small-animal studies require images with high spatial resolution and high contrast due to the small scale of the structures. X-ray imaging systems for small animals are often limited by the microfocus source. Here, the authors investigate the applicability of liquid-metal-jet x-ray sources for such high-resolution small-animal imaging, both in tomography based on absorption and in soft-tissue tumor imaging based on in-line phase contrast. The experimental arrangement consists of a liquid-metal-jet x-ray source, the small-animal object on a rotating stage, and an imaging detector. The source-to-object and object-to-detector distances are adjusted for the preferred contrast mechanism. Two different liquid-metal-jet sources are used, one circulating a Ga∕In∕Sn alloy and the other an In∕Ga alloy for higher penetration through thick tissue. Both sources are operated at 40-50 W electron-beam power with ∼7 μm x-ray spots, providing high spatial resolution in absorption imaging and high spatial coherence for the phase-contrast imaging. High-resolution absorption imaging is demonstrated on mice with CT, showing 50 μm bone details in the reconstructed slices. High-resolution phase-contrast soft-tissue imaging shows clear demarcation of mm-sized tumors at much lower dose than is required in absorption. This is the first application of liquid-metal-jet x-ray sources for whole-body small-animal x-ray imaging. In absorption, the method allows high-resolution tomographic skeletal imaging with potential for significantly shorter exposure times due to the power scalability of liquid-metal-jet sources. In phase contrast, the authors use a simple in-line arrangement to show distinct tumor demarcation of few-mm-sized tumors. This is, to their knowledge, the first small-animal tumor visualization with a laboratory phase-contrast system.
A high-resolution imaging technique using a whole-body, research photon counting detector CT system
NASA Astrophysics Data System (ADS)
Leng, S.; Yu, Z.; Halaweish, A.; Kappler, S.; Hahn, K.; Henning, A.; Li, Z.; Lane, J.; Levin, D. L.; Jorgensen, S.; Ritman, E.; McCollough, C.
2016-03-01
A high-resolution (HR) data collection mode has been introduced to a whole-body, research photon-counting-detector CT system installed in our laboratory. In this mode, 64 rows of 0.45 mm x 0.45 mm detector pixels were used, which corresponded to a pixel size of 0.25 mm x 0.25 mm at the iso-center. Spatial resolution of this HR mode was quantified by measuring the MTF from a scan of a 50 micron wire phantom. An anthropomorphic lung phantom, cadaveric swine lung, temporal bone and heart specimens were scanned using the HR mode, and image quality was subjectively assessed by two experienced radiologists. High spatial resolution of the HR mode was evidenced by the MTF measurement, with 15 lp/cm and 20 lp/cm at 10% and 2% modulation. Images from anthropomorphic phantom and cadaveric specimens showed clear delineation of small structures, such as lung vessels, lung nodules, temporal bone structures, and coronary arteries. Temporal bone images showed critical anatomy (i.e. stapes superstructure) that was clearly visible in the PCD system. These results demonstrated the potential application of this imaging mode in lung, temporal bone, and vascular imaging. Other clinical applications that require high spatial resolution, such as musculoskeletal imaging, may also benefit from this high resolution mode.
Comparison of VRX CT scanners geometries
NASA Astrophysics Data System (ADS)
DiBianca, Frank A.; Melnyk, Roman; Duckworth, Christopher N.; Russ, Stephan; Jordan, Lawrence M.; Laughter, Joseph S.
2001-06-01
A technique called Variable-Resolution X-ray (VRX) detection greatly increases the spatial resolution in computed tomography (CT) and digital radiography (DR) as the field size decreases. The technique is based on a principle called `projective compression' that allows both the resolution element and the sampling distance of a CT detector to scale with the subject or field size. For very large (40 - 50 cm) field sizes, resolution exceeding 2 cy/mm is possible and for very small fields, microscopy is attainable with resolution exceeding 100 cy/mm. This paper compares the benefits obtainable with two different VRX detector geometries: the single-arm geometry and the dual-arm geometry. The analysis is based on Monte Carlo simulations and direct calculations. The results of this study indicate that the dual-arm system appears to have more advantages than the single-arm technique.
Multiscale and multimodality computed tomography for cortical bone analysis
NASA Astrophysics Data System (ADS)
Ostertag, A.; Peyrin, F.; Gouttenoire, P. J.; Laredo, J. D.; DeVernejoul, M. C.; Cohen Solal, M.; Chappard, C.
2016-12-01
In clinical studies, high resolution peripheral quantitative computed tomography (HR-pQCT) is used to separately evaluate cortical bone and trabecular bone with an isotropic voxel of 82 µm3, and typical cortical parameters are cortical density (D.comp), thickness (Ct.Th), and porosity (Ct.Po). In vitro, micro-computed tomography (micro-CT) is used to explore the internal cortical bone micro-structure with isotropic voxels and high resolution synchrotron radiation (SR); micro-CT is considered the ‘gold standard’. In 16 tibias and 8 femurs, HR-pQCT measurements were compared to conventional micro-CT measurements. To test modality effects, conventional micro-CT measurements were compared to SR micro-CT measurements at 7.5 µm3 SR micro-CT measurements were also tested at different voxel sizes for the femurs, specifically, 7.5 µm3 versus 2.8 µm3. D.comp (r = -0.88, p < 10-3) was the parameter best correlated with porosity (Po.V/TV). The correlation was not affected by the removal of pores under 130 µm. Ct.Th was also significantly highly correlated (r = -0.89 p < 10-3), while Ct.Po was correlated with its counterpart Po.V/TV (r = 0.74, p < 10-3). From SR micro-CT and conventional micro-CT at 7.5 µm3 in matching areas, Po.V/TV and pore diameter were underestimated in conventional micro-CT with mean ± standard deviation (SD) biases of -2.5 ± 1.9% and -0.08 ± 0.08 mm, respectively. In contrast, pore number (Po.N) and pore separation (Po.Sp) were overestimated with mean ± SD biases of +0.03 ± 0.04 mm-1 and +0.02 ± 0.04 mm, respectively. The results from the tibia and femur were similar when the results of SR micro-CT at 7.5 µm3 and 2.8 µm3 were compared. Po.V/TV, specific surface of pores (Po.S/Po.V), and Po.N were underestimated with mean biases of -1.7 ± 0.9%, -4.6 ± 4.4 mm-1, and -0.26 ± 0.15 mm-1, respectively. In contrast, pore spacing was overestimated at 7.5 µm3 compared to 2.8 µm3 with mean biases of 0.05 ± 0.03 mm. Cortical bone measurements from HR-pQCT images provided consistent results compared to those obtained using conventional micro-CT at the distal tibia. D.comp was highly correlated to Po.V/TV because it considers both the micro-porosity (Haversian systems) and macro-porosity (resorption lacunae) of cortical bone. The complexity of canal organization, (including shape, connectivity, and surface) are not fully considered in conventional micro-CT in relation to beam hardening and cone beam reconstruction artifacts. With the exception of Po.V/TV measurements, morphological and topological measurements depend on the characteristics of the x-ray beam, and to a lesser extent, on image resolution.
NASA Astrophysics Data System (ADS)
Badea, C. T.; Samei, E.; Ghaghada, K.; Saunders, R.; Yuan, H.; Qi, Y.; Hedlund, L. W.; Mukundan, S.
2008-03-01
Imaging tumor angiogenesis in small animals is extremely challenging due to the size of the tumor vessels. Consequently, both dedicated small animal imaging systems and specialized intravascular contrast agents are required. The goal of this study was to investigate the use of a liposomal contrast agent for high-resolution micro-CT imaging of breast tumors in small animals. A liposomal blood pool agent encapsulating iodine with a concentration of 65.5 mg/ml was used with a Duke Center for In Vivo Microscopy (CIVM) prototype micro-computed tomography (micro-CT) system to image the R3230AC mammary carcinoma implanted in rats. The animals were injected with equivalent volume doses (0.02 ml/kg) of contrast agent. Micro-CT with the liposomal blood pool contrast agent ensured a signal difference between the blood and the muscle higher than 450 HU allowing the visualization of the tumors 3D vascular architecture in exquisite detail at 100-micron resolution. The micro-CT data correlated well with the histological examination of tumor tissue. We also studied the ability to detect vascular enhancement with limited angle based reconstruction, i.e. tomosynthesis. Tumor volumes and their regional vascular percentage were estimated. This imaging approach could be used to better understand tumor angiogenesis and be the basis for evaluating anti-angiogenic therapies.
Szanda, Istvan; Mackewn, Jane; Patay, Gergely; Major, Peter; Sunassee, Kavitha; Mullen, Gregory E; Nemeth, Gabor; Haemisch, York; Blower, Philip J; Marsden, Paul K
2011-11-01
The NanoPET/CT represents the latest generation of commercial preclinical PET/CT systems. This article presents a performance evaluation of the PET component of the system according to the National Electrical Manufacturers Association (NEMA) NU-4 2008 standard. The NanoPET/CT consists of 12 lutetium yttrium orthosilicate:cerium modular detectors forming 1 ring, with 9.5-cm axial coverage and a 16-cm animal port. Each detector crystal is 1.12 × 1.12 × 13 mm, and 1 module contains 81 × 39 of these crystals. An optical light guide transmits the scintillation light to the flat-panel multianode position-sensitive photomultiplier tubes. Analog-to-digital converter cards and a field-programmable gate array-based data-collecting card provide the readout. Spatial resolution, sensitivity, counting rate capabilities, and image quality were evaluated in accordance with the NEMA NU-4 standard. Energy and temporal resolution measurements and a mouse imaging study were performed in addition to the standard. Energy resolution was 19% at 511 keV. The spatial resolution, measured as full width at half maximum on single-slice rebinning/filtered backprojection-reconstructed images, approached 1 mm on the axis and remained below 2.5 mm in the central 5-cm transaxial region both in the axial center and at one-quarter field of view. The maximum absolute sensitivity for a point source at the center of the field of view was 7.7%. The maximum noise equivalent counting rates were 430 kcps at 36 MBq and 130 kcps at 27 MBq for the mouse- and rat-sized phantoms, respectively. The uniformity and recovery coefficients were measured with the image-quality phantom, giving good-quality images. In a mouse study with an (18)F-labeled thyroid-specific tracer, the 2 lobes of the thyroid were clearly distinguishable, despite the small size of this organ. The flexible readout system allowed experiments to be performed in an efficient manner, and the system remained stable throughout. The large number of detector crystals, arranged with a fine pitch, results in excellent spatial resolution, which is the best reported for currently available commercial systems. The absolute sensitivity is high over the field of view. Combined with the excellent image quality, these features make the NanoPET/CT a powerful tool for preclinical research.
Cone-beam micro computed tomography dedicated to the breast.
Sarno, Antonio; Mettivier, Giovanni; Di Lillo, Francesca; Cesarelli, Mario; Bifulco, Paolo; Russo, Paolo
2016-12-01
We developed a scanner for micro computed tomography dedicated to the breast (BµCT) with a high resolution flat-panel detector and a microfocus X-ray tube. We evaluated the system spatial resolution via the 3D modulation transfer function (MTF). In addition to conventional absorption-based X-ray imaging, such a prototype showed capabilities for propagation-based phase-contrast and related edge enhancement effects in 3D imaging. The system limiting spatial resolution is 6.2mm -1 (MTF at 10%) in the vertical direction and 3.8mm -1 in the radial direction, values which compare favorably with the spatial resolution reached by mini focus breast CT scanners of other groups. The BµCT scanner was able to detect both microcalcification clusters and masses in an anthropomorphic breast phantom at a dose comparable to that of two-view mammography. The use of a breast holder is proposed in order to have 1-2min long scan times without breast motion artifacts. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harms, Joseph; Wang, Tonghe; Petrongolo, Michael
Purpose: Dual-energy CT (DECT) expands applications of CT imaging in its capability to decompose CT images into material images. However, decomposition via direct matrix inversion leads to large noise amplification and limits quantitative use of DECT. Their group has previously developed a noise suppression algorithm via penalized weighted least-square optimization with edge-preservation regularization (PWLS-EPR). In this paper, the authors improve method performance using the same framework of penalized weighted least-square optimization but with similarity-based regularization (PWLS-SBR), which substantially enhances the quality of decomposed images by retaining a more uniform noise power spectrum (NPS). Methods: The design of PWLS-SBR is basedmore » on the fact that averaging pixels of similar materials gives a low-noise image. For each pixel, the authors calculate the similarity to other pixels in its neighborhood by comparing CT values. Using an empirical Gaussian model, the authors assign high/low similarity value to one neighboring pixel if its CT value is close/far to the CT value of the pixel of interest. These similarity values are organized in matrix form, such that multiplication of the similarity matrix to the image vector reduces image noise. The similarity matrices are calculated on both high- and low-energy CT images and averaged. In PWLS-SBR, the authors include a regularization term to minimize the L-2 norm of the difference between the images without and with noise suppression via similarity matrix multiplication. By using all pixel information of the initial CT images rather than just those lying on or near edges, PWLS-SBR is superior to the previously developed PWLS-EPR, as supported by comparison studies on phantoms and a head-and-neck patient. Results: On the line-pair slice of the Catphan{sup ©}600 phantom, PWLS-SBR outperforms PWLS-EPR and retains spatial resolution of 8 lp/cm, comparable to the original CT images, even at 90% reduction in noise standard deviation (STD). Similar performance on spatial resolution is observed on an anthropomorphic head phantom. In addition, results of PWLS-SBR show substantially improved image quality due to preservation of image NPS. On the Catphan{sup ©}600 phantom, NPS using PWLS-SBR has a correlation of 93% with that via direct matrix inversion, while the correlation drops to −52% for PWLS-EPR. Electron density measurement studies indicate high accuracy of PWLS-SBR. On seven different materials, the measured electron densities calculated from the decomposed material images using PWLS-SBR have a root-mean-square error (RMSE) of 1.20%, while the results of PWLS-EPR have a RMSE of 2.21%. In the study on a head-and-neck patient, PWLS-SBR is shown to reduce noise STD by a factor of 3 on material images with image qualities comparable to CT images, whereas fine structures are lost in the PWLS-EPR result. Additionally, PWLS-SBR better preserves low contrast on the tissue image. Conclusions: The authors propose improvements to the regularization term of an optimization framework which performs iterative image-domain decomposition for DECT with noise suppression. The regularization term avoids calculation of image gradient and is based on pixel similarity. The proposed method not only achieves a high decomposition accuracy, but also improves over the previous algorithm on NPS as well as spatial resolution.« less
Harms, Joseph; Wang, Tonghe; Petrongolo, Michael; Niu, Tianye; Zhu, Lei
2016-01-01
Purpose: Dual-energy CT (DECT) expands applications of CT imaging in its capability to decompose CT images into material images. However, decomposition via direct matrix inversion leads to large noise amplification and limits quantitative use of DECT. Their group has previously developed a noise suppression algorithm via penalized weighted least-square optimization with edge-preservation regularization (PWLS-EPR). In this paper, the authors improve method performance using the same framework of penalized weighted least-square optimization but with similarity-based regularization (PWLS-SBR), which substantially enhances the quality of decomposed images by retaining a more uniform noise power spectrum (NPS). Methods: The design of PWLS-SBR is based on the fact that averaging pixels of similar materials gives a low-noise image. For each pixel, the authors calculate the similarity to other pixels in its neighborhood by comparing CT values. Using an empirical Gaussian model, the authors assign high/low similarity value to one neighboring pixel if its CT value is close/far to the CT value of the pixel of interest. These similarity values are organized in matrix form, such that multiplication of the similarity matrix to the image vector reduces image noise. The similarity matrices are calculated on both high- and low-energy CT images and averaged. In PWLS-SBR, the authors include a regularization term to minimize the L-2 norm of the difference between the images without and with noise suppression via similarity matrix multiplication. By using all pixel information of the initial CT images rather than just those lying on or near edges, PWLS-SBR is superior to the previously developed PWLS-EPR, as supported by comparison studies on phantoms and a head-and-neck patient. Results: On the line-pair slice of the Catphan©600 phantom, PWLS-SBR outperforms PWLS-EPR and retains spatial resolution of 8 lp/cm, comparable to the original CT images, even at 90% reduction in noise standard deviation (STD). Similar performance on spatial resolution is observed on an anthropomorphic head phantom. In addition, results of PWLS-SBR show substantially improved image quality due to preservation of image NPS. On the Catphan©600 phantom, NPS using PWLS-SBR has a correlation of 93% with that via direct matrix inversion, while the correlation drops to −52% for PWLS-EPR. Electron density measurement studies indicate high accuracy of PWLS-SBR. On seven different materials, the measured electron densities calculated from the decomposed material images using PWLS-SBR have a root-mean-square error (RMSE) of 1.20%, while the results of PWLS-EPR have a RMSE of 2.21%. In the study on a head-and-neck patient, PWLS-SBR is shown to reduce noise STD by a factor of 3 on material images with image qualities comparable to CT images, whereas fine structures are lost in the PWLS-EPR result. Additionally, PWLS-SBR better preserves low contrast on the tissue image. Conclusions: The authors propose improvements to the regularization term of an optimization framework which performs iterative image-domain decomposition for DECT with noise suppression. The regularization term avoids calculation of image gradient and is based on pixel similarity. The proposed method not only achieves a high decomposition accuracy, but also improves over the previous algorithm on NPS as well as spatial resolution. PMID:27147376
High resolution X-ray CT for advanced electronics packaging
NASA Astrophysics Data System (ADS)
Oppermann, M.; Zerna, T.
2017-02-01
Advanced electronics packaging is a challenge for non-destructive Testing (NDT). More, smaller and mostly hidden interconnects dominate modern electronics components and systems. To solve the demands of customers to get products with a high functionality by low volume, weight and price (e.g. mobile phones, personal medical monitoring systems) often the designers use System-in-Package solutions (SiP). The non-destructive testing of such devices is a big challenge. So our paper will impart fundamentals and applications for non-destructive evaluation of inner structures of electronics packaging for quality assurance and reliability investigations with a focus on X-ray methods, especially on high resolution X-ray computed tomography (CT).
Chen, Jian; Smith, Andrew D; Khan, Majid A; Sinning, Allan R; Conway, Marianne L; Cui, Dongmei
2017-11-01
Recent improvements in three-dimensional (3D) virtual modeling software allows anatomists to generate high-resolution, visually appealing, colored, anatomical 3D models from computed tomography (CT) images. In this study, high-resolution CT images of a cadaver were used to develop clinically relevant anatomic models including facial skull, nasal cavity, septum, turbinates, paranasal sinuses, optic nerve, pituitary gland, carotid artery, cervical vertebrae, atlanto-axial joint, cervical spinal cord, cervical nerve root, and vertebral artery that can be used to teach clinical trainees (students, residents, and fellows) approaches for trans-sphenoidal pituitary surgery and cervical spine injection procedure. Volume, surface rendering and a new rendering technique, semi-auto-combined, were applied in the study. These models enable visualization, manipulation, and interaction on a computer and can be presented in a stereoscopic 3D virtual environment, which makes users feel as if they are inside the model. Anat Sci Educ 10: 598-606. © 2017 American Association of Anatomists. © 2017 American Association of Anatomists.
The new frontiers of multimodality and multi-isotope imaging
NASA Astrophysics Data System (ADS)
Behnam Azad, Babak; Nimmagadda, Sridhar
2014-06-01
Technological advances in imaging systems and the development of target specific imaging tracers has been rapidly growing over the past two decades. Recent progress in "all-in-one" imaging systems that allow for automated image coregistration has significantly added to the growth of this field. These developments include ultra high resolution PET and SPECT scanners that can be integrated with CT or MR resulting in PET/CT, SPECT/CT, SPECT/PET and PET/MRI scanners for simultaneous high resolution high sensitivity anatomical and functional imaging. These technological developments have also resulted in drastic enhancements in image quality and acquisition time while eliminating cross compatibility issues between modalities. Furthermore, the most cutting edge technology, though mostly preclinical, also allows for simultaneous multimodality multi-isotope image acquisition and image reconstruction based on radioisotope decay characteristics. These scientific advances, in conjunction with the explosion in the development of highly specific multimodality molecular imaging agents, may aid in realizing simultaneous imaging of multiple biological processes and pave the way towards more efficient diagnosis and improved patient care.
Energy dispersive CdTe and CdZnTe detectors for spectral clinical CT and NDT applications
NASA Astrophysics Data System (ADS)
Barber, W. C.; Wessel, J. C.; Nygard, E.; Iwanczyk, J. S.
2015-06-01
We are developing room temperature compound semiconductor detectors for applications in energy-resolved high-flux single x-ray photon-counting spectral computed tomography (CT), including functional imaging with nanoparticle contrast agents for medical applications and non-destructive testing (NDT) for security applications. Energy-resolved photon-counting can provide reduced patient dose through optimal energy weighting for a particular imaging task in CT, functional contrast enhancement through spectroscopic imaging of metal nanoparticles in CT, and compositional analysis through multiple basis function material decomposition in CT and NDT. These applications produce high input count rates from an x-ray generator delivered to the detector. Therefore, in order to achieve energy-resolved single photon counting in these applications, a high output count rate (OCR) for an energy-dispersive detector must be achieved at the required spatial resolution and across the required dynamic range for the application. The required performance in terms of the OCR, spatial resolution, and dynamic range must be obtained with sufficient field of view (FOV) for the application thus requiring the tiling of pixel arrays and scanning techniques. Room temperature cadmium telluride (CdTe) and cadmium zinc telluride (CdZnTe) compound semiconductors, operating as direct conversion x-ray sensors, can provide the required speed when connected to application specific integrated circuits (ASICs) operating at fast peaking times with multiple fixed thresholds per pixel provided the sensors are designed for rapid signal formation across the x-ray energy ranges of the application at the required energy and spatial resolutions, and at a sufficiently high detective quantum efficiency (DQE). We have developed high-flux energy-resolved photon-counting x-ray imaging array sensors using pixellated CdTe and CdZnTe semiconductors optimized for clinical CT and security NDT. We have also fabricated high-flux ASICs with a two dimensional (2D) array of inputs for readout from the sensors. The sensors are guard ring free and have a 2D array of pixels and can be tiled in 2D while preserving pixel pitch. The 2D ASICs have four energy bins with a linear energy response across sufficient dynamic range for clinical CT and some NDT applications. The ASICs can also be tiled in 2D and are designed to fit within the active area of the sensors. We have measured several important performance parameters including: the output count rate (OCR) in excess of 20 million counts per second per square mm with a minimum loss of counts due to pulse pile-up, an energy resolution of 7 keV full width at half-maximum (FWHM) across the entire dynamic range, and a noise floor about 20 keV. This is achieved by directly interconnecting the ASIC inputs to the pixels of the CdZnTe sensors incurring very little input capacitance to the ASICs. We present measurements of the performance of the CdTe and CdZnTe sensors including the OCR, FWHM energy resolution, noise floor, as well as the temporal stability and uniformity under the rapidly varying high flux expected in CT and NDT applications.
Energy dispersive CdTe and CdZnTe detectors for spectral clinical CT and NDT applications
Barber, W. C.; Wessel, J. C.; Nygard, E.; Iwanczyk, J. S.
2014-01-01
We are developing room temperature compound semiconductor detectors for applications in energy-resolved high-flux single x-ray photon-counting spectral computed tomography (CT), including functional imaging with nanoparticle contrast agents for medical applications and non destructive testing (NDT) for security applications. Energy-resolved photon-counting can provide reduced patient dose through optimal energy weighting for a particular imaging task in CT, functional contrast enhancement through spectroscopic imaging of metal nanoparticles in CT, and compositional analysis through multiple basis function material decomposition in CT and NDT. These applications produce high input count rates from an x-ray generator delivered to the detector. Therefore, in order to achieve energy-resolved single photon counting in these applications, a high output count rate (OCR) for an energy-dispersive detector must be achieved at the required spatial resolution and across the required dynamic range for the application. The required performance in terms of the OCR, spatial resolution, and dynamic range must be obtained with sufficient field of view (FOV) for the application thus requiring the tiling of pixel arrays and scanning techniques. Room temperature cadmium telluride (CdTe) and cadmium zinc telluride (CdZnTe) compound semiconductors, operating as direct conversion x-ray sensors, can provide the required speed when connected to application specific integrated circuits (ASICs) operating at fast peaking times with multiple fixed thresholds per pixel provided the sensors are designed for rapid signal formation across the x-ray energy ranges of the application at the required energy and spatial resolutions, and at a sufficiently high detective quantum efficiency (DQE). We have developed high-flux energy-resolved photon-counting x-ray imaging array sensors using pixellated CdTe and CdZnTe semiconductors optimized for clinical CT and security NDT. We have also fabricated high-flux ASICs with a two dimensional (2D) array of inputs for readout from the sensors. The sensors are guard ring free and have a 2D array of pixels and can be tiled in 2D while preserving pixel pitch. The 2D ASICs have four energy bins with a linear energy response across sufficient dynamic range for clinical CT and some NDT applications. The ASICs can also be tiled in 2D and are designed to fit within the active area of the sensors. We have measured several important performance parameters including; the output count rate (OCR) in excess of 20 million counts per second per square mm with a minimum loss of counts due to pulse pile-up, an energy resolution of 7 keV full width at half maximum (FWHM) across the entire dynamic range, and a noise floor about 20keV. This is achieved by directly interconnecting the ASIC inputs to the pixels of the CdZnTe sensors incurring very little input capacitance to the ASICs. We present measurements of the performance of the CdTe and CdZnTe sensors including the OCR, FWHM energy resolution, noise floor, as well as the temporal stability and uniformity under the rapidly varying high flux expected in CT and NDT applications. PMID:25937684
Energy dispersive CdTe and CdZnTe detectors for spectral clinical CT and NDT applications.
Barber, W C; Wessel, J C; Nygard, E; Iwanczyk, J S
2015-06-01
We are developing room temperature compound semiconductor detectors for applications in energy-resolved high-flux single x-ray photon-counting spectral computed tomography (CT), including functional imaging with nanoparticle contrast agents for medical applications and non destructive testing (NDT) for security applications. Energy-resolved photon-counting can provide reduced patient dose through optimal energy weighting for a particular imaging task in CT, functional contrast enhancement through spectroscopic imaging of metal nanoparticles in CT, and compositional analysis through multiple basis function material decomposition in CT and NDT. These applications produce high input count rates from an x-ray generator delivered to the detector. Therefore, in order to achieve energy-resolved single photon counting in these applications, a high output count rate (OCR) for an energy-dispersive detector must be achieved at the required spatial resolution and across the required dynamic range for the application. The required performance in terms of the OCR, spatial resolution, and dynamic range must be obtained with sufficient field of view (FOV) for the application thus requiring the tiling of pixel arrays and scanning techniques. Room temperature cadmium telluride (CdTe) and cadmium zinc telluride (CdZnTe) compound semiconductors, operating as direct conversion x-ray sensors, can provide the required speed when connected to application specific integrated circuits (ASICs) operating at fast peaking times with multiple fixed thresholds per pixel provided the sensors are designed for rapid signal formation across the x-ray energy ranges of the application at the required energy and spatial resolutions, and at a sufficiently high detective quantum efficiency (DQE). We have developed high-flux energy-resolved photon-counting x-ray imaging array sensors using pixellated CdTe and CdZnTe semiconductors optimized for clinical CT and security NDT. We have also fabricated high-flux ASICs with a two dimensional (2D) array of inputs for readout from the sensors. The sensors are guard ring free and have a 2D array of pixels and can be tiled in 2D while preserving pixel pitch. The 2D ASICs have four energy bins with a linear energy response across sufficient dynamic range for clinical CT and some NDT applications. The ASICs can also be tiled in 2D and are designed to fit within the active area of the sensors. We have measured several important performance parameters including; the output count rate (OCR) in excess of 20 million counts per second per square mm with a minimum loss of counts due to pulse pile-up, an energy resolution of 7 keV full width at half maximum (FWHM) across the entire dynamic range, and a noise floor about 20keV. This is achieved by directly interconnecting the ASIC inputs to the pixels of the CdZnTe sensors incurring very little input capacitance to the ASICs. We present measurements of the performance of the CdTe and CdZnTe sensors including the OCR, FWHM energy resolution, noise floor, as well as the temporal stability and uniformity under the rapidly varying high flux expected in CT and NDT applications.
High-Resolution 4D Imaging of Technetium Transport in Porous Media using Preclinical SPECT-CT
NASA Astrophysics Data System (ADS)
Dogan, M.; DeVol, T. A.; Groen, H.; Moysey, S. M.; Ramakers, R.; Powell, B. A.
2015-12-01
Preclinical SPECT-CT (single-photon emission computed tomography with integrated X-ray computed tomography) offers the potential to quantitatively image the dynamic three-dimensional distribution of radioisotopes with sub-millimeter resolution, overlaid with structural CT images (20-200 micron resolution), making this an attractive method for studying transport in porous media. A preclinical SPECT-CT system (U-SPECT4CT, MILabs BV. Utrecht, The Netherlands) was evaluated for imaging flow and transport of 99mTc (t1/2=6hrs) using a 46,5mm by 156,4mm column packed with individual layers consisting of <0.2mm diameter silica gel, 0.2-0.25, 0.5, 1.0, 2.0, 3.0, and 4.0mm diameter glass beads, and a natural soil sample obtained from the Savannah River Site. The column was saturated with water prior to injecting the 99mTc solution. During the injection the flow was interrupted intermittently for 10 minute periods to allow for the acquisition of a SPECT image of the transport front. Non-uniformity of the front was clearly observed in the images as well as the retarded movement of 99mTc in the soil layer. The latter is suggesting good potential for monitoring transport processes occurring on the timescale of hours. After breakthrough of 99mTc was achieved, the flow was stopped and SPECT data were collected in one hour increments to evaluate the sensitivity of the instrument as the isotope decayed. Fused SPECT- CT images allowed for improved interpretation of 99mTc distributions within individual pore spaces. With ~3 MBq remaining in the column, the lowest activity imaged, it was not possible to clearly discriminate any of the pore spaces.
Landschoff, Jannes; Du Plessis, Anton; Griffiths, Charles L
2015-01-01
Brooding brittle stars have a special mode of reproduction whereby they retain their eggs and juveniles inside respiratory body sacs called bursae. In the past, studying this phenomenon required disturbance of the sample by dissecting the adult. This caused irreversible damage and made the sample unsuitable for future studies. Micro X-ray computed tomography (μCT) is a promising technique, not only to visualise juveniles inside the bursae, but also to keep the sample intact and make the dataset of the scan available for future reference. Seven μCT scans of five freshly fixed (70 % ethanol) individuals, representing three differently sized brittle star species, provided adequate image quality to determine the numbers, sizes and postures of internally brooded young, as well as anatomy and morphology of adults. No staining agents were necessary to achieve high-resolution, high-contrast images, which permitted visualisations of both calcified and soft tissue. The raw data (projection and reconstruction images) are publicly available for download from GigaDB. Brittle stars of all sizes are suitable candidates for μCT imaging. This explicitly adds a new technique to the suite of tools available for studying the development of internally brooded young. The purpose of applying the technique was to visualise juveniles inside the adult, but because of the universally good quality of the dataset, the images can also be used for anatomical or comparative morphology-related studies of adult structures.
NASA Astrophysics Data System (ADS)
Pisana, Francesco; Henzler, Thomas; Schönberg, Stefan; Klotz, Ernst; Schmidt, Bernhard; Kachelrieß, Marc
2017-03-01
Dynamic CT perfusion acquisitions are intrinsically high-dose examinations, due to repeated scanning. To keep radiation dose under control, relatively noisy images are acquired. Noise is then further enhanced during the extraction of functional parameters from the post-processing of the time attenuation curves of the voxels (TACs) and normally some smoothing filter needs to be employed to better visualize any perfusion abnormality, but sacrificing spatial resolution. In this study we propose a new method to detect perfusion abnormalities keeping both high spatial resolution and high CNR. To do this we first perform the singular value decomposition (SVD) of the original noisy spatial temporal data matrix to extract basis functions of the TACs. Then we iteratively cluster the voxels based on a smoothed version of the three most significant singular vectors. Finally, we create high spatial resolution 3D volumes where to each voxel is assigned a distance from the centroid of each cluster, showing how functionally similar each voxel is compared to the others. The method was tested on three noisy clinical datasets: one brain perfusion case with an occlusion in the left internal carotid, one healthy brain perfusion case, and one liver case with an enhancing lesion. Our method successfully detected all perfusion abnormalities with higher spatial precision when compared to the functional maps obtained with a commercially available software. We conclude this method might be employed to have a rapid qualitative indication of functional abnormalities in low dose dynamic CT perfusion datasets. The method seems to be very robust with respect to both spatial and temporal noise and does not require any special a priori assumption. While being more robust respect to noise and with higher spatial resolution and CNR when compared to the functional maps, our method is not quantitative and a potential usage in clinical routine could be as a second reader to assist in the maps evaluation, or to guide a dataset smoothing before the modeling part.
Integrated image presentation of transmission and fluorescent X-ray CT using synchrotron radiation
NASA Astrophysics Data System (ADS)
Zeniya, T.; Takeda, T.; Yu, Q.; Hasegawa, Y.; Hyodo, K.; Yuasa, T.; Hiranaka, Y.; Itai, Y.; Akatsuka, T.
2001-07-01
We have developed a computed tomography (CT) system with synchrotron radiation (SR) to detect fluorescent X-rays and transmitted X-rays simultaneously. Both SR transmission X-ray CT (SR-TXCT) and SR fluorescent X-ray CT (SR-FXCT) can describe cross-sectional images with high spatial and contrast resolutions as compared to conventional CT. TXCT gives morphological information and FXCT gives functional information of organs. So, superposed display system for SR-FXCT and SR-TXCT images has been developed for clinical diagnosis with higher reliability. Preliminary experiment with brain phantom was carried out and the superposition of both images was performed. The superposed SR-CT image gave us both functional and morphological information easily with high reliability, thus demonstrating the usefulness of this system.
Schmidt, Jodi L; Cole, Theodore M; Silcox, Mary T
2011-08-01
Previous study of the ear ossicles in Primates has demonstrated that they vary on both functional and phylogenetic bases. Such studies have generally employed two-dimensional linear measurements rather than three-dimensional data. The availability of Ultra- high-resolution X-ray computed tomography (UhrCT) has made it possible to accurately image the ossicles so that broadly accepted methodologies for acquiring and studying morphometric data can be applied. Using UhrCT data also allows for the ossicular chain to be studied in anatomical position, so that it is possible to consider the spatial and size relationships of all three bones. One issue impeding the morphometric study of the ear ossicles is a lack of broadly recognized landmarks. Distinguishing landmarks on the ossicles is difficult in part because there are only two areas of articulation in the ossicular chain, one of which (the malleus/incus articulation) has a complex three-dimensional form. A measurement error study is presented demonstrating that a suite of 16 landmarks can be precisely located on reconstructions of the ossicles from UhrCT data. Estimates of measurement error showed that most landmarks were highly replicable, with an average CV for associated interlandmark distances of less than 3%. The positions of these landmarks are chosen to reflect not only the overall shape of the bones in the chain and their relative positions, but also functional parameters. This study should provide a basis for further examination of the smallest bones in the body in three dimensions. Copyright © 2011 Wiley-Liss, Inc.
Micro-CT scouting for transmission electron microscopy of human tissue specimens
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morales, A. G.; Stempinski, E. S.; XIAO, X.
Transmission electron microscopy (TEM) provides sub-nanometre-scale details in volumetric samples. Samples such as pathology tissue specimens are often stained with a metal element to enhance contrast, which makes them opaque to optical microscopes. As a result, it can be a lengthy procedure to find the region of interest inside a sample through sectioning. Here, we describe micro-CT scouting for TEM that allows noninvasive identification of regions of interest within a block sample to guide the sectioning step. In a tissue pathology study, a bench-top micro-CT scanner with 10 m resolution was used to determine the location of patches of themore » mucous membrane in osmium-stained human nasal scraping samples. Furthermore, once the regions of interest were located, the sample block was sectioned to expose that location, followed by ultra-thin sectioning and TEM to inspect the internal structure of the cilia of the membrane epithelial cells with nanometre resolution. This method substantially reduced the time and labour of the search process from typically 20 sections for light microscopy to three sections with no added sample preparation. Lay description Electron microscopy provides very high levels of detail in a small area, and thus the question of where to look in an opaque sample, such as a stained tissue specimen, needs to be answered by sectioning the sample in small steps and examining the sections under a light microscope, until the region of interest is found. The search process can be lengthy and labor intensive, especially for a study involving a large number of samples. Small areas of interest can be missed in the process if not enough regions are examined. We also describe a method to directly locate the region of interest within a whole sample using micro-CT imaging, bypassing the need of blindly sectioning. Micro-CT enables locating the region within 3D space; this information provides a guide for sectioning the sample to expose that precise location for high resolution electron microscopy imaging. In a human tissue specimen study, this method considerably reduced the time and labor of the search process.« less
Micro-CT scouting for transmission electron microscopy of human tissue specimens
Morales, A. G.; Stempinski, E. S.; XIAO, X.; ...
2016-02-08
Transmission electron microscopy (TEM) provides sub-nanometre-scale details in volumetric samples. Samples such as pathology tissue specimens are often stained with a metal element to enhance contrast, which makes them opaque to optical microscopes. As a result, it can be a lengthy procedure to find the region of interest inside a sample through sectioning. Here, we describe micro-CT scouting for TEM that allows noninvasive identification of regions of interest within a block sample to guide the sectioning step. In a tissue pathology study, a bench-top micro-CT scanner with 10 m resolution was used to determine the location of patches of themore » mucous membrane in osmium-stained human nasal scraping samples. Furthermore, once the regions of interest were located, the sample block was sectioned to expose that location, followed by ultra-thin sectioning and TEM to inspect the internal structure of the cilia of the membrane epithelial cells with nanometre resolution. This method substantially reduced the time and labour of the search process from typically 20 sections for light microscopy to three sections with no added sample preparation. Lay description Electron microscopy provides very high levels of detail in a small area, and thus the question of where to look in an opaque sample, such as a stained tissue specimen, needs to be answered by sectioning the sample in small steps and examining the sections under a light microscope, until the region of interest is found. The search process can be lengthy and labor intensive, especially for a study involving a large number of samples. Small areas of interest can be missed in the process if not enough regions are examined. We also describe a method to directly locate the region of interest within a whole sample using micro-CT imaging, bypassing the need of blindly sectioning. Micro-CT enables locating the region within 3D space; this information provides a guide for sectioning the sample to expose that precise location for high resolution electron microscopy imaging. In a human tissue specimen study, this method considerably reduced the time and labor of the search process.« less
Modeling and measurement of the detector presampling MTF of a variable resolution x-ray CT scanner.
Melnyk, Roman; DiBianca, Frank A
2007-03-01
The detector presampling modulation transfer function (MTF) of a 576-channel variable resolution x-ray (VRX) computed tomography (CT) scanner was evaluated in this study. The scanner employs a VRX detector, which provides increased spatial resolution by matching the scanner's field of view (FOV) to the size of an object being imaged. Because spatial resolution is the parameter the scanner promises to improve, the evaluation of this resolution is important. The scanner's pre-reconstruction spatial resolution, represented by the detector presampling MTF, was evaluated using both modeling (Monte Carlo simulation) and measurement (the moving slit method). The theoretical results show the increase in the cutoff frequency of the detector presampling MTF from 1.39 to 43.38 cycles/mm as the FOV of the VRX CT scanner decreases from 32 to 1 cm. The experimental results are in reasonable agreement with the theoretical data. Some discrepancies between the measured and the modeled detector presampling MTFs can be explained by the limitations of the model. At small FOVs (1-8 cm), the MTF measurements were limited by the size of the focal spot. The obtained results are important for further development of the VRX CT scanner.
Modeling and measurement of the detector presampling MTF of a variable resolution x-ray CT scanner
Melnyk, Roman; DiBianca, Frank A.
2007-01-01
The detector presampling MTF of a 576-channel variable resolution x-ray (VRX) CT scanner was evaluated in this study. The scanner employs a VRX detector, which provides increased spatial resolution by matching the scanner’s field of view (FOV) to the size of an object being imaged. Because spatial resolution is the parameter the scanner promises to improve, the evaluation of this resolution is important. The scanner’s pre-reconstruction spatial resolution, represented by the detector presampling MTF, was evaluated using both modeling (Monte Carlo simulation) and measurement (the moving slit method). The theoretical results show the increase in the cutoff frequency of the detector presampling MTF from 1.39 cy/mm to 43.38 cy/mm as the FOV of the VRX CT scanner decreases from 32 cm to 1 cm. The experimental results are in reasonable agreement with the theoretical data. Some discrepancies between the measured and the modeled detector presampling MTFs can be explained by the limitations of the model. At small FOVs (1–8 cm), the MTF measurements were limited by the size of the focal spot. The obtained results are important for further development of the VRX CT scanner. PMID:17369872
Rucher, Guillaume; Cameliere, Lucie; Fendri, Jihene; Abbas, Ahmed; Dupont, Kevin; Kamel, Said; Delcroix, Nicolas; Dupont, Axel; Berger, Ludovic; Manrique, Alain
2018-04-30
The purpose of this study was to assess the impact of positron emission tomography/X-ray computed tomography (PET/CT) acquisition and reconstruction parameters on the assessment of mineralization process in a mouse model of atherosclerosis. All experiments were performed on a dedicated preclinical PET/CT system. CT was evaluated using five acquisition configurations using both a tungsten wire phantom for in-plane resolution assessment and a bar pattern phantom for cross-plane resolution. Furthermore, the radiation dose of these acquisition configurations was calculated. The PET system was assessed using longitudinal line sources to determine the optimal reconstruction parameters by measuring central resolution and its coefficient of variation. An in vivo PET study was performed using uremic ApoE -/- , non-uremic ApoE -/- , and control mice to evaluate optimal PET reconstruction parameters for the detection of sodium [ 18 F]fluoride (Na[ 18 F]F) aortic uptake and for quantitative measurement of Na[ 18 F]F bone influx (Ki) with a Patlak analysis. For CT, the use of 1 × 1 and 2 × 2 binning detector mode increased both in-plane and cross-plane resolution. However, resolution improvement (163 to 62 μm for in-plane resolution) was associated with an important radiation dose increase (1.67 to 32.78 Gy). With PET, 3D-ordered subset expectation maximization (3D-OSEM) algorithm increased the central resolution compared to filtered back projection (1.42 ± 0.35 mm vs. 1.91 ± 0.08, p < 0.001). The use of 3D-OSEM with eight iterations and a zoom factor 2 yielded optimal PET resolution for preclinical study (FWHM = 0.98 mm). These PET reconstruction parameters allowed the detection of Na[ 18 F]F aortic uptake in 3/14 ApoE -/- mice and demonstrated a decreased Ki in uremic ApoE -/- compared to non-uremic ApoE -/- and control mice (p < 0.006). Optimizing reconstruction parameters significantly impacted on the assessment of mineralization process in a preclinical model of accelerated atherosclerosis using Na[ 18 F]F PET. In addition, improving the CT resolution was associated with a dramatic radiation dose increase.
Role of CT in Congenital Heart Disease.
Rajiah, Prabhakar; Saboo, Sachin S; Abbara, Suhny
2017-01-01
Congenital heart diseases (CHD) are being increasingly encountered in cardiac imaging due to improved outcomes from surgical and interventional techniques. Imaging plays an important role in the evaluation of CHD, both prior to and after surgeries and interventions. Computed tomography (CT) has several advantages in the evaluation of these disorders, particularly its high spatial resolution, multi-planar reconstruction capabilities at sub-millimeter isotropic resolution, good temporal resolution, wide field of view, and rapid turnaround time, which minimizes the need for sedation and anesthesia in young children or children with disabilities. With modern scanners, images can be acquired as fast as within one heartbeat. Although there is a risk of ionizing radiation, the radiation dose can be minimized by using several dose reduction strategies. There is a risk of contrast nephrotoxicity in patients with renal dysfunction. In this article, we will review the role of CT in the evaluation of several congenital heart diseases, both in children and adults.
Yang, Xiaofeng; Wu, Shengyong; Sechopoulos, Ioannis; Fei, Baowei
2012-10-01
To develop and test an automated algorithm to classify the different tissues present in dedicated breast CT images. The original CT images are first corrected to overcome cupping artifacts, and then a multiscale bilateral filter is used to reduce noise while keeping edge information on the images. As skin and glandular tissues have similar CT values on breast CT images, morphologic processing is used to identify the skin mask based on its position information. A modified fuzzy C-means (FCM) classification method is then used to classify breast tissue as fat and glandular tissue. By combining the results of the skin mask with the FCM, the breast tissue is classified as skin, fat, and glandular tissue. To evaluate the authors' classification method, the authors use Dice overlap ratios to compare the results of the automated classification to those obtained by manual segmentation on eight patient images. The correction method was able to correct the cupping artifacts and improve the quality of the breast CT images. For glandular tissue, the overlap ratios between the authors' automatic classification and manual segmentation were 91.6% ± 2.0%. A cupping artifact correction method and an automatic classification method were applied and evaluated for high-resolution dedicated breast CT images. Breast tissue classification can provide quantitative measurements regarding breast composition, density, and tissue distribution.
Micro-CT of rodents: state-of-the-art and future perspectives
Clark, D. P.; Badea, C. T.
2014-01-01
Micron-scale computed tomography (micro-CT) is an essential tool for phenotyping and for elucidating diseases and their therapies. This work is focused on preclinical micro-CT imaging, reviewing relevant principles, technologies, and applications. Commonly, micro-CT provides high-resolution anatomic information, either on its own or in conjunction with lower-resolution functional imaging modalities such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT). More recently, however, advanced applications of micro-CT produce functional information by translating clinical applications to model systems (e.g. measuring cardiac functional metrics) and by pioneering new ones (e.g. measuring tumor vascular permeability with nanoparticle contrast agents). The primary limitations of micro-CT imaging are the associated radiation dose and relatively poor soft tissue contrast. We review several image reconstruction strategies based on iterative, statistical, and gradient sparsity regularization, demonstrating that high image quality is achievable with low radiation dose given ever more powerful computational resources. We also review two contrast mechanisms under intense development. The first is spectral contrast for quantitative material discrimination in combination with passive or actively targeted nanoparticle contrast agents. The second is phase contrast which measures refraction in biological tissues for improved contrast and potentially reduced radiation dose relative to standard absorption imaging. These technological advancements promise to develop micro-CT into a commonplace, functional and even molecular imaging modality. PMID:24974176
Yang, Xiaofeng; Wu, Shengyong; Sechopoulos, Ioannis; Fei, Baowei
2012-01-01
Purpose: To develop and test an automated algorithm to classify the different tissues present in dedicated breast CT images. Methods: The original CT images are first corrected to overcome cupping artifacts, and then a multiscale bilateral filter is used to reduce noise while keeping edge information on the images. As skin and glandular tissues have similar CT values on breast CT images, morphologic processing is used to identify the skin mask based on its position information. A modified fuzzy C-means (FCM) classification method is then used to classify breast tissue as fat and glandular tissue. By combining the results of the skin mask with the FCM, the breast tissue is classified as skin, fat, and glandular tissue. To evaluate the authors’ classification method, the authors use Dice overlap ratios to compare the results of the automated classification to those obtained by manual segmentation on eight patient images. Results: The correction method was able to correct the cupping artifacts and improve the quality of the breast CT images. For glandular tissue, the overlap ratios between the authors’ automatic classification and manual segmentation were 91.6% ± 2.0%. Conclusions: A cupping artifact correction method and an automatic classification method were applied and evaluated for high-resolution dedicated breast CT images. Breast tissue classification can provide quantitative measurements regarding breast composition, density, and tissue distribution. PMID:23039675
Buytaert, Jan A N; Salih, Wasil H M; Dierick, Manual; Jacobs, Patric; Dirckx, Joris J J
2011-12-01
In order to improve realism in middle ear (ME) finite-element modeling (FEM), comprehensive and precise morphological data are needed. To date, micro-scale X-ray computed tomography (μCT) recordings have been used as geometric input data for FEM models of the ME ossicles. Previously, attempts were made to obtain these data on ME soft tissue structures as well. However, due to low X-ray absorption of soft tissue, quality of these images is limited. Another popular approach is using histological sections as data for 3D models, delivering high in-plane resolution for the sections, but the technique is destructive in nature and registration of the sections is difficult. We combine data from high-resolution μCT recordings with data from high-resolution orthogonal-plane fluorescence optical-sectioning microscopy (OPFOS), both obtained on the same gerbil specimen. State-of-the-art μCT delivers high-resolution data on the 3D shape of ossicles and other ME bony structures, while the OPFOS setup generates data of unprecedented quality both on bone and soft tissue ME structures. Each of these techniques is tomographic and non-destructive and delivers sets of automatically aligned virtual sections. The datasets coming from different techniques need to be registered with respect to each other. By combining both datasets, we obtain a complete high-resolution morphological model of all functional components in the gerbil ME. The resulting 3D model can be readily imported in FEM software and is made freely available to the research community. In this paper, we discuss the methods used, present the resulting merged model, and discuss the morphological properties of the soft tissue structures, such as muscles and ligaments.
Larsson, Emanuel; Martin, Sabine; Lazzarini, Marcio; Tromba, Giuliana; Missbach-Guentner, Jeannine; Pinkert-Leetsch, Diana; Katschinski, Dörthe M.; Alves, Frauke
2017-01-01
The small size of the adult and developing mouse heart poses a great challenge for imaging in preclinical research. The aim of the study was to establish a phosphotungstic acid (PTA) ex-vivo staining approach that efficiently enhances the x-ray attenuation of soft-tissue to allow high resolution 3D visualization of mouse hearts by synchrotron radiation based μCT (SRμCT) and classical μCT. We demonstrate that SRμCT of PTA stained mouse hearts ex-vivo allows imaging of the cardiac atrium, ventricles, myocardium especially its fibre structure and vessel walls in great detail and furthermore enables the depiction of growth and anatomical changes during distinct developmental stages of hearts in mouse embryos. Our x-ray based virtual histology approach is not limited to SRμCT as it does not require monochromatic and/or coherent x-ray sources and even more importantly can be combined with conventional histological procedures. Furthermore, it permits volumetric measurements as we show for the assessment of the plaque volumes in the aortic valve region of mice from an ApoE-/- mouse model. Subsequent, Masson-Goldner trichrome staining of paraffin sections of PTA stained samples revealed intact collagen and muscle fibres and positive staining of CD31 on endothelial cells by immunohistochemistry illustrates that our approach does not prevent immunochemistry analysis. The feasibility to scan hearts already embedded in paraffin ensured a 100% correlation between virtual cut sections of the CT data sets and histological heart sections of the same sample and may allow in future guiding the cutting process to specific regions of interest. In summary, since our CT based virtual histology approach is a powerful tool for the 3D depiction of morphological alterations in hearts and embryos in high resolution and can be combined with classical histological analysis it may be used in preclinical research to unravel structural alterations of various heart diseases. PMID:28178293
Lab-X-ray multidimensional imaging of processes inside porous media
NASA Astrophysics Data System (ADS)
Godinho, Jose
2017-04-01
Time-lapse and other multidimensional X-ray imaging techniques have mostly been applied using synchrotron radiation, which limits accessibility and complicates data analysis. Here, we present new time-lapse imaging approaches using laboratory X-ray computed microtomography (CT) to study transformations inside porous media. Specifically, three methods will be presented: 1) Quantitative time-lapse radiography to study sub-second processes. For example to study the penetration of particles into fractures and pores, which is essential to understand how proppants keep fractures opened during hydraulic fracturing and how filter cakes form during borehole drilling. 2) Combination of time-lapse CT with diffraction tomography to study the transformation between bio-inspired polymorphs in 6D, e.g. mineral phase transformation between ACC, Vaterite and Calcite - CaCO3, and between ACS, Anhydrite and Gypsum - CaSO4. Crystals can be resolved in nanopores down to 7 nm (over 100 times smaller than the resolution of CT), which allows studying the effect of confinement on phase stability and growth rates. 3) Fast iterative helical micro-CT scanning to study samples of high ratio height to width (e.g. long cores) with optimal resolution. Here we show how this can be useful to study the distribution of the products from fluid-mediated mineral reactions throughout longer reaction paths and more representative volumes. Using state of the art reconstruction algorithms allows reducing the scanning times from over ten hours to below two hours enabling time-lapse studies. It is expected that these new techniques will open new possibilities for time-lapse imaging of a wider range of geological processes using laboratory X-ray CT, thereby increasing the accessibility of multidimensional imaging to a larger number of users and applications in geology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hofmann, Christian; Sawall, Stefan; Knaup, Michael
2014-06-15
Purpose: Iterative image reconstruction gains more and more interest in clinical routine, as it promises to reduce image noise (and thereby patient dose), to reduce artifacts, or to improve spatial resolution. Among vendors and researchers, however, there is no consensus of how to best achieve these aims. The general approach is to incorporatea priori knowledge into iterative image reconstruction, for example, by adding additional constraints to the cost function, which penalize variations between neighboring voxels. However, this approach to regularization in general poses a resolution noise trade-off because the stronger the regularization, and thus the noise reduction, the stronger themore » loss of spatial resolution and thus loss of anatomical detail. The authors propose a method which tries to improve this trade-off. The proposed reconstruction algorithm is called alpha image reconstruction (AIR). One starts with generating basis images, which emphasize certain desired image properties, like high resolution or low noise. The AIR algorithm reconstructs voxel-specific weighting coefficients that are applied to combine the basis images. By combining the desired properties of each basis image, one can generate an image with lower noise and maintained high contrast resolution thus improving the resolution noise trade-off. Methods: All simulations and reconstructions are performed in native fan-beam geometry. A water phantom with resolution bar patterns and low contrast disks is simulated. A filtered backprojection (FBP) reconstruction with a Ram-Lak kernel is used as a reference reconstruction. The results of AIR are compared against the FBP results and against a penalized weighted least squares reconstruction which uses total variation as regularization. The simulations are based on the geometry of the Siemens Somatom Definition Flash scanner. To quantitatively assess image quality, the authors analyze line profiles through resolution patterns to define a contrast factor for contrast-resolution plots. Furthermore, the authors calculate the contrast-to-noise ratio with the low contrast disks and the authors compare the agreement of the reconstructions with the ground truth by calculating the normalized cross-correlation and the root-mean-square deviation. To evaluate the clinical performance of the proposed method, the authors reconstruct patient data acquired with a Somatom Definition Flash dual source CT scanner (Siemens Healthcare, Forchheim, Germany). Results: The results of the simulation study show that among the compared algorithms AIR achieves the highest resolution and the highest agreement with the ground truth. Compared to the reference FBP reconstruction AIR is able to reduce the relative pixel noise by up to 50% and at the same time achieve a higher resolution by maintaining the edge information from the basis images. These results can be confirmed with the patient data. Conclusions: To evaluate the AIR algorithm simulated and measured patient data of a state-of-the-art clinical CT system were processed. It is shown, that generating CT images through the reconstruction of weighting coefficients has the potential to improve the resolution noise trade-off and thus to improve the dose usage in clinical CT.« less
Patient doses from CT examinations in Turkey.
Ataç, Gökçe Kaan; Parmaksız, Aydın; İnal, Tolga; Bulur, Emine; Bulgurlu, Figen; Öncü, Tolga; Gündoğdu, Sadi
2015-01-01
We aimed to establish the first diagnostic reference levels (DRLs) for computed tomography (CT) examinations in adult and pediatric patients in Turkey and compare these with international DRLs. CT performance information and examination parameters (for head, chest, high-resolution CT of the chest [HRCT-chest], abdominal, and pelvic protocols) from 1607 hospitals were collected via a survey. Dose length products and effective doses for standard patient sizes were calculated from the reported volume CT dose index (CTDIvol). The median number of protocols reported from the 167 responding hospitals (10% response rate) was 102 across five different age groups. Third quartile CTDIvol values for adult pelvic and all pediatric body protocols were higher than the European Commission standards but were comparable to studies conducted in other countries. The radiation dose indicators for adult patients were similar to those reported in the literature, except for those associated with head protocols. CT protocol optimization is necessary for adult head and pediatric chest, HRCT-chest, abdominal, and pelvic protocols. The findings from this study are recommended for use as national DRLs in Turkey.
Micro-CT study of the anatomy of the Leafhopper Homalodisca vitripennis (Hemiptera: Cicadellidae)
USDA-ARS?s Scientific Manuscript database
A Digital Anatomy Library, DAL, was produced to the anatomy of the glassy-winged sharpshooter adult, Homalodisca vitripennis (Hemiptera: Cicadellidae), vector of bacteria which cause Pierce’s disease of grapevines. The insect anatomy was elucidated using a high resolution Bruker Skyscan 1172 micro t...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Na, Y; Black, P; Wuu, C
2016-06-15
Purpose: With an increasing use of small field size and high dose rate irradiation in the advances of radiotherapy techniques, such as stereotactic body radiotherapy (SBRT) and stereotactic radiosurgery (SRS), an in-depth quality assurance (QA) system is required. The purpose of this study is to investigate a high resolution optical CT-based 3D radiochromic dosimetry system for SBRT with intensity modulated radiotherapy (IMRT) and flattening filter free (FFF) volumetric modulated arc therapy (VMAT). Methods: Cylindrical PRESAGE radiochromic dosimeters of 10cm height and 11cm diameter were used to validate SBRT. Four external landmarks were placed on the surface of each dosimeter tomore » define the isocenter of target. SBRT plans were delivered using a Varian TrueBeam™ linear accelerator (LINAC). Three validation plans, SBRT with IMRT (6MV 600MU/min), FFF-VMAT (10MV 2400MU/min), and mixed FFF-VMAT (6MV 1400MU/min, 10MV 2400MU/min), were delivered to the PRESAGE dosimeters. Each irradiated PRESAGE dosimeter was scanned using a single laser beam optical CT scanner and reconstructed with a 1mm × 1mm high spatial resolution. The comparison of measured dose distributions of irradiated PRESAGE dosimeters to those calculated by Pinnacle{sup 3} treatment planning system (TPS) were performed with a 10% dose threshold, 3% dose difference (DD), and 3mm distance-to-agreement (DTA) Gamma criteria. Results: The average pass rates for the gamma comparisons between PRESAGE and Pinnacle{sup 3} in the transverse, sagittal, coronal planes were 94.6%, 95.9%, and 96.4% for SBRT with IMRT, FFF-VMAT, and mixed FFF-VMAT plans, respectively. A good agreement of the isodose distributions of those comparisons were shown at the isodose lines 50%, 70%, 80%, 90% and 98%. Conclusion: This study demonstrates the feasibility of the high resolution optical CT-based 3D radiochromic dosimetry system for validation of SBRT with IMRT and FFF-VMAT. This dosimetry system offers higher precision QA with 3D dose information for small beams compared to what is currently available.« less
[Virtual otoscopy--technique, indications and initial experiences with multislice spiral CT].
Klingebiel, R; Bauknecht, H C; Lehmann, R; Rogalla, P; Werbs, M; Behrbohm, H; Kaschke, O
2000-11-01
We report the standardized postprocessing of high-resolution CT data acquired by incremental CT and multi-slice CT in patients with suspected middle ear disorders to generate three-dimensional endoluminal views known as virtual otoscopy. Subsequent to the definition of a postprocessing protocol, standardized endoluminal views of the middle ear were generated according to their otological relevance. The HRCT data sets of 26 ENT patients were transferred to a workstation and postprocessed to 52 virtual otoscopies. Generation of predefined endoluminal views from the HRCT data sets was possible in all patients. Virtual endoscopic views added meaningful information to the primary cross-sectional data in patients suffering from ossicular pathology, having contraindications for invasive tympanic endoscopy or being assessed for surgery of the tympanic cavity. Multi slice CT improved the visualization of subtle anatomic details such as the stapes suprastructure and reduced the scanning time. Virtual endoscopy allows for the non invasive endoluminal visualization of various tympanic lesions. Use of the multi-slice CT technique reduces the scanning time and improves image quality in terms of detail resolution.
Meyer, Mathias; Haubenreisser, Holger; Raupach, Rainer; Schmidt, Bernhard; Lietzmann, Florian; Leidecker, Christianne; Allmendinger, Thomas; Flohr, Thomas; Schad, Lothar R; Schoenberg, Stefan O; Henzler, Thomas
2015-01-01
To prospectively evaluate radiation dose and image quality of a third generation dual-source CT (DSCT) without z-axis filter behind the patient for temporal bone CT. Forty-five patients were either examined on a first, second, or third generation DSCT in an ultra-high-resolution (UHR) temporal bone-imaging mode. On the third generation DSCT system, the tighter focal spot of 0.2 mm(2) removes the necessity for an additional z-axis-filter, leading to an improved z-axis radiation dose efficiency. Images of 0.4 mm were reconstructed using standard filtered-back-projection or iterative reconstruction (IR) technique for previous generations of DSCT and a novel IR algorithm for the third generation DSCT. Radiation dose and image quality were compared between the three DSCT systems. The statistically significantly highest subjective and objective image quality was evaluated for the third generation DSCT when compared to the first or second generation DSCT systems (all p < 0.05). Total effective dose was 63%/39% lower for the third generation examination as compared to the first and second generation DSCT. Temporal bone imaging without z-axis-UHR-filter and a novel third generation IR algorithm allows for significantly higher image quality while lowering effective dose when compared to the first two generations of DSCTs. • Omitting the z-axis-filter allows a reduction in radiation dose of 50% • A smaller focal spot of 0.2 mm (2) significantly improves spatial resolution • Ultra-high-resolution temporal-bone-CT helps to gain diagnostic information of the middle/inner ear.
Analysis of axial spatial resolution in a variable resolution x-ray cone beam CT (VRX-CBCT) system
NASA Astrophysics Data System (ADS)
Dahi, Bahram; Keyes, Gary S.; Rendon, David A.; DiBianca, Frank A.
2008-03-01
The Variable Resolution X-ray (VRX) technique has been successfully used in a Cone-Beam CT (CBCT) system to increase the spatial resolution of CT images in the transverse plane. This was achieved by tilting the Flat Panel Detector (FPD) to smaller vrx y angles in a VRX Cone Beam CT (VRX-CBCT) system. In this paper, the effect on the axial spatial resolution of CT images created by the VRX-CBCT system is examined at different vrx x angles, where vrx x is the tilting angle of the FPD about its x-axis. An amorphous silicon FPD with a CsI scintillator is coupled with a micro-focus x-ray tube to form a CBCT. The FPD is installed on a rotating frame that allows rotation of up to 90° about x and y axes of the FPD. There is no rotation about the z-axis (i.e. normal to the imaging surface). Tilting the FPD about its x-axis (i.e. decreasing the vrx x angle) reduces both the width of the line-spread function and the sampling distance by a factor of sin vrx x, thereby increasing the theoretical detector pre-sampling spatial resolution proportionately. This results in thinner CT slices that in turn help increase the axial spatial resolution of the CT images. An in-house phantom is used to measure the MTF of the reconstructed CT images at different vrx x angles.
NASA Astrophysics Data System (ADS)
Wei, Qingyang; Wang, Shi; Ma, Tianyu; Wu, Jing; Liu, Hui; Xu, Tianpeng; Xia, Yan; Fan, Peng; Lyu, Zhenlei; Liu, Yaqiang
2015-06-01
PET, SPECT and CT imaging techniques are widely used in preclinical small animal imaging applications. In this paper, we present a compact small animal PET/SPECT/CT tri-modality system. A dual-functional, shared detector design is implemented which enables PET and SPECT imaging with a same LYSO ring detector. A multi-pinhole collimator is mounted on the system and inserted into the detector ring in SPECT imaging mode. A cone-beam CT consisting of a micro focus X-ray tube and a CMOS detector is implemented. The detailed design and the performance evaluations are reported in this paper. In PET imaging mode, the measured NEMA based spatial resolution is 2.12 mm (FWHM), and the sensitivity at the central field of view (CFOV) is 3.2%. The FOV size is 50 mm (∅)×100 mm (L). The SPECT has a spatial resolution of 1.32 mm (FWHM) and an average sensitivity of 0.031% at the center axial, and a 30 mm (∅)×90 mm (L) FOV. The CT spatial resolution is 8.32 lp/mm @10%MTF, and the contrast discrimination function value is 2.06% with 1.5 mm size cubic box object. In conclusion, a compact, tri-modality PET/SPECT/CT system was successfully built with low cost and high performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hernandez, M. R.; Gamboa-deBuen, I.; Dies, P.
Computerised tomography (CT) is a favourite method of medical diagnosis. Its use has thus increased rapidly throughout the world, particularly in studies relating to children. However to avoid administering unnecessarily high doses of radiation to paediatric patients it is important to have correct dose reference levels to minimize risk. The research is being developed within the public health sector at the Hospital Infantil de Mexico 'Dr. Federico Gomez.' We measured the entrance surface air kerma (K{sub P}) in paediatric patients, during the radiological studies of control in CT (studies of head, thorax and abdomen). Phantom was used to evaluate imagemore » quality as the tomograph requires a high resolution image in order to operate at its optimum level.« less
4D XMT of Reaction in Carbonates: Reactive Transport Dynamics at Multiples Scales
NASA Astrophysics Data System (ADS)
Menke, H. P.; Reynolds, C. A.; Andrew, M. G.; Nunes, J. P. P.; Bijeljic, B.; Blunt, M. J.
2016-12-01
Upscaling pore scale rock-fluid interaction processes for predictive modelling poses a challenge to underground carbon storage. We have completed experiments and flow modelling to investigate the impact of pore-space heterogeneity and scale on the dissolution of two limestones at both the mm and cm scales. Two samples were reacted with reservoir condition CO2-saturated brine at both scales and scanned dynamically as dissolution took place. First, 1-cm long 4-mm diameter micro cores were scanned during reactive flow at a 4-μm resolution between 4 and 40 times using 4D X-ray micro-tomography over the course of 1.5 hours using a laboratory μ-CT. Second, 3.8-cm diameter, 8-cm long macro cores were reacted at the same conditions inside a reservoir condition flow rig and imaged using a medical CT scanner. Each sample was imaged 10 times over the course of 1.5 hours at a 250 x 250 x 500-μm resolution. The reacted macro cores were then scanned inside a μ-CT at a 27-μm resolution to assess the alteration in pore-scale reaction-induced heterogeneity. It was found that both limestones showed channel formation at the pore-scale and progressive high porosity pathway dissolution at the core-scale with the more heterogeneous rock having dissolution progressing along direction of flow more quickly. Additionally, upon analysis of the high-resolution macro core images it was found that the dissolution pathways contained a distinct microstructure that was not visible at the resolution of the medical CT, where the reactive fluid had not completely dissolved the internal pore-structure. Flow was modelled in connected pathways, the flow streamlines were traced and streamline density for each voxel was calculated. It was found that the streamline density was highest in the most well-connected pathways and that density increased with increasing heterogeneity as the number of connected pathways decreased and flow was consolidated along fewer pathways. This work represents the first study of scale dependency using reservoir condition 4D X-ray tomography and provides insight into the mechanisms that control local reaction rates at multiple scales.
Liu, Chih-Hao; Du, Yong; Singh, Manmohan; Wu, Chen; Han, Zhaolong; Li, Jiasong; Chang, Anthony; Mohan, Chandra; Larin, Kirill V
2016-08-01
Acute glomerulonephritis caused by antiglomerular basement membrane marked by high mortality. The primary reason for this is delayed diagnosis via blood examination, urine analysis, tissue biopsy, or ultrasound and X-ray computed tomography imaging. Blood, urine, and tissue-based diagnoses can be time consuming, while ultrasound and CT imaging have relatively low spatial resolution, with reduced sensitivity. Optical coherence tomography is a noninvasive and high-resolution imaging technique that provides superior spatial resolution (micrometer scale) as compared to ultrasound and CT. Changes in tissue properties can be detected based on the optical metrics analyzed from the OCT signals, such as optical attenuation and speckle variance. Furthermore, OCT does not rely on ionizing radiation as with CT imaging. In addition to structural changes, the elasticity of the kidney can significantly change due to nephritis. In this work, OCT has been utilized to quantify the difference in tissue properties between healthy and nephritic murine kidneys. Although OCT imaging could identify the diseased tissue, its classification accuracy is clinically inadequate. By combining optical metrics with elasticity, the classification accuracy improves from 76% to 95%. These results show that OCT combined with OCE can be a powerful tool for identifying and classifying nephritis. Therefore, the OCT/OCE method could potentially be used as a minimally invasive tool for longitudinal studies during the progression and therapy of glomerulonephritis as well as complement and, perhaps, substitute highly invasive tissue biopsies. Elastic-wave propagation in mouse healthy and nephritic kidneys. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Gasparetto, Emerson L; Souza, Carolina A; Tazoniero, Priscilla; Davaus, Taisa; Escuissato, Dante L; Marchiori, Edson
2007-02-01
The aim of this study was to present the clinical and high-resolution CT scan findings of angioinvasive pulmonary aspergillosis (APA) in 12 patients who underwent allogeneic bone marrow transplantation (BMT). The CT scans were reviewed by three chest radiologists who assessed the pattern and distribution of findings by consent. There were 7 (58%) female and 5 (42%) male patients, with aging between 5 and 50 years (average of 26 years). All patients were submitted to BMT for the treatment of hematological conditions. The diagnosis of APA was defined between 5 and 373 days after BMT, with average of 111 days. Three cases (25%) were diagnosed in the neutropenic phase after the BMT, five (42%) in the early phase and four patients in the late phase post-BMT. Regarding high-resolution CT (HRCT) scan findings, nodules were found in 75% of the cases (9/12), most of the cases with more than 10 lesions (7/9) and of centrilobular localization (6/9). Consolidations were identified in seven patients (58%), being single in six, and commonly presenting ill defined borders (n=3) and subsegmental localization (n=5). Ground glass attenuation was found in six patients (50%). The halo sign was observed in nine cases (75%). Cavitations were seen in two air-space consolidations and one large nodule (2.5 cm). Patients submitted to BMT presenting respiratory symptoms and nodules or consolidations with halo sign at HRCT scan need to have the diagnosis of angioinvasive pulmonary aspergillosis included in all the post BMT phases.
Cao, Q; Brehler, M; Sisniega, A; Stayman, J W; Yorkston, J; Siewerdsen, J H; Zbijewski, W
2017-03-01
CMOS x-ray detectors offer small pixel sizes and low electronic noise that may support the development of novel high-resolution imaging applications of cone-beam CT (CBCT). We investigate the effects of CsI scintillator thickness on the performance of CMOS detectors in high resolution imaging tasks, in particular in quantitative imaging of bone microstructure in extremity CBCT. A scintillator thickness-dependent cascaded systems model of CMOS x-ray detectors was developed. Detectability in low-, high- and ultra-high resolution imaging tasks (Gaussian with FWHM of ~250 μ m, ~80 μ m and ~40 μ m, respectively) was studied as a function of scintillator thickness using the theoretical model. Experimental studies were performed on a CBCT test bench equipped with DALSA Xineos3030 CMOS detectors (99 μ m pixels) with CsI scintillator thicknesses of 400 μ m and 700 μ m, and a 0.3 FS compact rotating anode x-ray source. The evaluation involved a radiographic resolution gauge (0.6-5.0 lp/mm), a 127 μm tungsten wire for assessment of 3D resolution, a contrast phantom with tissue-mimicking inserts, and an excised fragment of human tibia for visual assessment of fine trabecular detail. Experimental studies show ~35% improvement in the frequency of 50% MTF modulation when using the 400 μ m scintillator compared to the standard nominal CsI thickness of 700 μ m. Even though the high-frequency DQE of the two detectors is comparable, theoretical studies show a 14% to 28% increase in detectability index ( d' 2 ) of high- and ultrahigh resolution tasks, respectively, for the detector with 400 μ m CsI compared to 700 μ m CsI. Experiments confirm the theoretical findings, showing improvements with the adoption of 400 μ m panel in the visibility of the radiographic pattern (2× improvement in peak-to-through distance at 4.6 lp/mm) and a 12.5% decrease in the FWHM of the tungsten wire. Reconstructions of the tibial plateau reveal enhanced visibility of trabecular structures with the CMOS detector with 400 μ m scinitllator. Applications on CMOS detectors in high resolution CBCT imaging of trabecular bone will benefit from using a thinner scintillator than the current standard in general radiography. The results support the translation of the CMOS sensor with 400 μ m CsI onto the clinical prototype of CMOS-based extremity CBCT.
Cao, Q.; Brehler, M.; Sisniega, A.; Stayman, J. W.; Yorkston, J.; Siewerdsen, J. H.; Zbijewski, W.
2017-01-01
Purpose CMOS x-ray detectors offer small pixel sizes and low electronic noise that may support the development of novel high-resolution imaging applications of cone-beam CT (CBCT). We investigate the effects of CsI scintillator thickness on the performance of CMOS detectors in high resolution imaging tasks, in particular in quantitative imaging of bone microstructure in extremity CBCT. Methods A scintillator thickness-dependent cascaded systems model of CMOS x-ray detectors was developed. Detectability in low-, high- and ultra-high resolution imaging tasks (Gaussian with FWHM of ~250 μm, ~80 μm and ~40 μm, respectively) was studied as a function of scintillator thickness using the theoretical model. Experimental studies were performed on a CBCT test bench equipped with DALSA Xineos3030 CMOS detectors (99 μm pixels) with CsI scintillator thicknesses of 400 μm and 700 μm, and a 0.3 FS compact rotating anode x-ray source. The evaluation involved a radiographic resolution gauge (0.6–5.0 lp/mm), a 127 μm tungsten wire for assessment of 3D resolution, a contrast phantom with tissue-mimicking inserts, and an excised fragment of human tibia for visual assessment of fine trabecular detail. Results Experimental studies show ~35% improvement in the frequency of 50% MTF modulation when using the 400 μm scintillator compared to the standard nominal CsI thickness of 700 μm. Even though the high-frequency DQE of the two detectors is comparable, theoretical studies show a 14% to 28% increase in detectability index (d′2) of high- and ultrahigh resolution tasks, respectively, for the detector with 400 μm CsI compared to 700 μm CsI. Experiments confirm the theoretical findings, showing improvements with the adoption of 400 μm panel in the visibility of the radiographic pattern (2× improvement in peak-to-through distance at 4.6 lp/mm) and a 12.5% decrease in the FWHM of the tungsten wire. Reconstructions of the tibial plateau reveal enhanced visibility of trabecular structures with the CMOS detector with 400 μm scinitllator. Conclusion Applications on CMOS detectors in high resolution CBCT imaging of trabecular bone will benefit from using a thinner scintillator than the current standard in general radiography. The results support the translation of the CMOS sensor with 400 μm CsI onto the clinical prototype of CMOS-based extremity CBCT. PMID:28989220
Gregg, Chelsea L; Recknagel, Andrew K; Butcher, Jonathan T
2015-01-01
Tissue morphogenesis and embryonic development are dynamic events challenging to quantify, especially considering the intricate events that happen simultaneously in different locations and time. Micro- and more recently nano-computed tomography (micro/nanoCT) has been used for the past 15 years to characterize large 3D fields of tortuous geometries at high spatial resolution. We and others have advanced micro/nanoCT imaging strategies for quantifying tissue- and organ-level fate changes throughout morphogenesis. Exogenous soft tissue contrast media enables visualization of vascular lumens and tissues via extravasation. Furthermore, the emergence of antigen-specific tissue contrast enables direct quantitative visualization of protein and mRNA expression. Micro-CT X-ray doses appear to be non-embryotoxic, enabling longitudinal imaging studies in live embryos. In this chapter we present established soft tissue contrast protocols for obtaining high-quality micro/nanoCT images and the image processing techniques useful for quantifying anatomical and physiological information from the data sets.
NASA Astrophysics Data System (ADS)
Kallergi, Maria; Menychtas, Dimitrios; Georgakopoulos, Alexandros; Pianou, Nikoletta; Metaxas, Marinos; Chatziioannou, Sofia
2013-03-01
The purpose of this study was to determine whether image characteristics could be used to predict the outcome of ROC studies in PET/CT imaging. Patients suspected for recurrent thyroid cancer underwent a standard whole body (WB) examination and an additional high-resolution head-and-neck (HN) F18-FDG PET/CT scan. The value of the latter was determined with an ROC study, the results of which showed that the WB+HN combination was better than WB alone for thyroid cancer detection and diagnosis. Following the ROC experiment, the WB and HN images of confirmed benign or malignant thyroid disease were analyzed and first and second order textural features were determined. Features included minimum, mean, and maximum intensity, as well as contrast in regions of interest encircling the thyroid lesions. Lesion size and standard uptake values (SUV) were also determined. Bivariate analysis was applied to determine relationships between WB and HN features and between observer ROC responses and the various feature values. The two sets showed significant associations in the values of SUV, contrast, and lesion size. They were completely different when the intensities were considered; no relationship was found between the WB minimum, maximum, and mean ROI values and their HN counterparts. SUV and contrast were the strongest predictors of ROC performance on PET/CT examinations of thyroid cancer. The high resolution HN images seem to enhance these relationships but without a single dramatic effect as was projected from the ROC results. A combination of features from both WB and HN datasets may possibly be a more robust predictor of ROC performance.
Mid-Frequency Sonar Interactions with Beaked Whales
2011-06-30
Beaked Whale, was not completed. However, several other goals were achieved, including synthesis of a morphometric model of a beaked whale. This and work...induced acoustic fields inside beaked whales and other marine mammals. Another high-level goal was to acquire new high-resolution morphometric and...range 1-10 kHz; collecting high-resolution morphometric data through computerized tomography (CT) scans on marine mammal specimens, and constructing
Intravenous volume tomographic pulmonary angiography imaging
NASA Astrophysics Data System (ADS)
Ning, Ruola; Strang, John G.; Chen, Biao; Conover, David L.; Yu, Rongfeng
1999-05-01
This study presents a new intravenous (IV) tomographic angiography imaging technique, called intravenous volume tomographic digital angiography (VTDA) for cross sectional pulmonary angiography. While the advantages of IV-VTDA over spiral CT in terms of volume scanning time and resolution have been validated and reported in our previous papers for head and neck vascular imaging, the superiority of IV-VTDA over spiral CT for cross sectional pulmonary angiography has not been explored yet. The purpose of this study is to demonstrate the advantage of isotropic resolution of IV-VTDA in the x, y and z directions through phantom and animal studies, and to explore its clinical application for detecting clots in pulmonary angiography. A prototype image intensifier-based VTDA imaging system has been designed and constructed by modifying a GE 8800 CT scanner. This system was used for a series of phantom and dog studies. A pulmonary vascular phantom was designed and constructed. The phantom was scanned using the prototype VTDA system for direct 3D reconstruction. Then the same phantom was scanned using a GE CT/i spiral CT scanner using the routine pulmonary CT angiography protocols. IV contrast injection and volume scanning protocols were developed during the dog studies. Both VTDA reconstructed images and spiral CT images of the specially designed phantom were analyzed and compared. The detectability of simulated vessels and clots was assessed as the function of iodine concentration levels, oriented angles, and diameters of the vessels and clots. A set of 3D VTDA reconstruction images of dog pulmonary arteries was obtained with different IV injection rates and isotropic resolution in the x, y and z directions. The results of clot detection studies in dog pulmonary arteries have also been shown. This study presents a new tomographic IV angiography imaging technique for cross sectional pulmonary angiography. The results of phantom and animal studies indicate that IV-VTDA is superior to spiral CT for cross sectional pulmonary angiography.
Small-animal CT: Its difference from, and impact on, clinical CT
NASA Astrophysics Data System (ADS)
Ritman, Erik L.
2007-10-01
For whole-body computed tomography (CT) images of small rodents, a voxel resolution of at least 10 -3 mm 3 is needed for scale-equivalence to that currently achieved in clinical CT scanners (˜1 mm 3) in adult humans. These "mini-CT" images generally require minutes rather than seconds to complete a scan. The radiation exposure resulting from these mini-CT scans, while higher than clinical CT scans, is below the level resulting in acute tissue damage. Hence, these scans are useful for performing clinical-type diagnostic and monitoring scans for animal models of disease and their response to treatment. "Micro-CT", with voxel size <10 -5 mm 3, has been useful for imaging isolated, intact organs at an almost cellular level of resolution. Micro-CT has the great advantage over traditional microscopic methods in that it generates detailed three-dimensional images in relatively large, opaque volumes such as an intact rodent heart or kidney. The radiation exposure needed in these scans results in acute tissue damage if used in living animals. Experience with micro-CT is contributing to exploration of new applications for clinical CT imaging by providing insights into different modes of X-ray image formation as follows: Spatial resolution should be sufficient to detect an individual Basic Functional Unit (BFU, the smallest collection of diverse cells, such as hepatic lobule, that behaves like the organ), which requires voxels ˜10 -3 mm 3 in volume, so that the BFUs can be counted. Contrast resolution sufficient to allow quantitation of: New microvascular growth, which manifests as increased tissue contrast due to X-ray contrast agent in those vessels' lumens during passage of injected contrast agent in blood. Impaired endothelial integrity which manifests as increased opacification and delayed washout of contrast from tissues. Discrimination of pathological accumulations of metals such as Fe and Ca, which occur in the arterial wall following hemorrhage or tissue damage. Micro-CT can also be used as a test bed for exploring the utility of several modes of X-ray image formation, such as the use of dual-energy X-ray subtraction, X-ray scatter, phase delay and refraction-based imaging for increasing the contrast amongst soft tissue components. With the recent commercial availability of high speed, multi-slice CT scanners which can be operated in dual-energy mode, some of these micro-CT scanner capabilities and insights are becoming implementable in those CT scanners. As a result, the potential diagnostic spectrum that can be addressed with those scanners is broadened considerably.
Micro-CT X-ray imaging exposes structured diffusion barriers within biofilms.
Keren-Paz, Alona; Brumfeld, Vlad; Oppenheimer-Shaanan, Yaara; Kolodkin-Gal, Ilana
2018-01-01
In nature, bacteria predominantly exist as highly structured biofilms, which are held together by extracellular polymeric substance and protect their residents from environmental insults, such as antibiotics. The mechanisms supporting this phenotypic resistance are poorly understood. Recently, we identified a new mechanism maintaining biofilms - an active production of calcite minerals. In this work, a high-resolution and robust µCT technique is used to study the mineralized areas within intact bacterial biofilms. µCT is a vital tool for visualizing bacterial communities that can provide insights into the relationship between bacterial biofilm structure and function. Our results imply that dense and structured calcium carbonate lamina forms a diffusion barrier sheltering the inner cell mass of the biofilm colony. Therefore, µCT can be employed in clinical settings to predict the permeability of the biofilms. It is demonstrated that chemical interference with urease, a key enzyme in biomineralization, inhibits the assembly of complex bacterial structures, prevents the formation of mineral diffusion barriers and increases biofilm permeability. Therefore, biomineralization enzymes emerge as novel therapeutic targets for highly resistant infections.
NASA Astrophysics Data System (ADS)
Suzuki, Yuki; Fung, George S. K.; Shen, Zeyang; Otake, Yoshito; Lee, Okkyun; Ciuffo, Luisa; Ashikaga, Hiroshi; Sato, Yoshinobu; Taguchi, Katsuyuki
2017-03-01
Cardiac motion (or functional) analysis has shown promise not only for non-invasive diagnosis of cardiovascular diseases but also for prediction of cardiac future events. Current imaging modalities has limitations that could degrade the accuracy of the analysis indices. In this paper, we present a projection-based motion estimation method for x-ray CT that estimates cardiac motion with high spatio-temporal resolution using projection data and a reference 3D volume image. The experiment using a synthesized digital phantom showed promising results for motion analysis.
Studies of a Next-Generation Silicon-Photomultiplier-Based Time-of-Flight PET/CT System.
Hsu, David F C; Ilan, Ezgi; Peterson, William T; Uribe, Jorge; Lubberink, Mark; Levin, Craig S
2017-09-01
This article presents system performance studies for the Discovery MI PET/CT system, a new time-of-flight system based on silicon photomultipliers. System performance and clinical imaging were compared between this next-generation system and other commercially available PET/CT and PET/MR systems, as well as between different reconstruction algorithms. Methods: Spatial resolution, sensitivity, noise-equivalent counting rate, scatter fraction, counting rate accuracy, and image quality were characterized with the National Electrical Manufacturers Association NU-2 2012 standards. Energy resolution and coincidence time resolution were measured. Tests were conducted independently on two Discovery MI scanners installed at Stanford University and Uppsala University, and the results were averaged. Back-to-back patient scans were also performed between the Discovery MI, Discovery 690 PET/CT, and SIGNA PET/MR systems. Clinical images were reconstructed using both ordered-subset expectation maximization and Q.Clear (block-sequential regularized expectation maximization with point-spread function modeling) and were examined qualitatively. Results: The averaged full widths at half maximum (FWHMs) of the radial/tangential/axial spatial resolution reconstructed with filtered backprojection at 1, 10, and 20 cm from the system center were, respectively, 4.10/4.19/4.48 mm, 5.47/4.49/6.01 mm, and 7.53/4.90/6.10 mm. The averaged sensitivity was 13.7 cps/kBq at the center of the field of view. The averaged peak noise-equivalent counting rate was 193.4 kcps at 21.9 kBq/mL, with a scatter fraction of 40.6%. The averaged contrast recovery coefficients for the image-quality phantom were 53.7, 64.0, 73.1, 82.7, 86.8, and 90.7 for the 10-, 13-, 17-, 22-, 28-, and 37-mm-diameter spheres, respectively. The average photopeak energy resolution was 9.40% FWHM, and the average coincidence time resolution was 375.4 ps FWHM. Clinical image comparisons between the PET/CT systems demonstrated the high quality of the Discovery MI. Comparisons between the Discovery MI and SIGNA showed a similar spatial resolution and overall imaging performance. Lastly, the results indicated significantly enhanced image quality and contrast-to-noise performance for Q.Clear, compared with ordered-subset expectation maximization. Conclusion: Excellent performance was achieved with the Discovery MI, including 375 ps FWHM coincidence time resolution and sensitivity of 14 cps/kBq. Comparisons between reconstruction algorithms and other multimodal silicon photomultiplier and non-silicon photomultiplier PET detector system designs indicated that performance can be substantially enhanced with this next-generation system. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.
Multiple-energy Techniques in Industrial Computerized Tomography
DOE R&D Accomplishments Database
Schneberk, D.; Martz, H.; Azevedo, S.
1990-08-01
Considerable effort is being applied to develop multiple-energy industrial CT techniques for materials characterization. Multiple-energy CT can provide reliable estimates of effective Z (Z{sub eff}), weight fraction, and rigorous calculations of absolute density, all at the spatial resolution of the scanner. Currently, a wide variety of techniques exist for CT scanners, but each has certain problems and limitations. Ultimately, the best multi-energy CT technique would combine the qualities of accuracy, reliability, and wide range of application, and would require the smallest number of additional measurements. We have developed techniques for calculating material properties of industrial objects that differ somewhat from currently used methods. In this paper, we present our methods for calculating Z{sub eff}, weight fraction, and density. We begin with the simplest case -- methods for multiple-energy CT using isotopic sources -- and proceed to multiple-energy work with x-ray machine sources. The methods discussed here are illustrated on CT scans of PBX-9502 high explosives, a lexan-aluminum phantom, and a cylinder of glass beads used in a preliminary study to determine if CT can resolve three phases: air, water, and a high-Z oil. In the CT project at LLNL, we have constructed several CT scanners of varying scanning geometries using {gamma}- and x-ray sources. In our research, we employed two of these scanners: pencil-beam CAT for CT data using isotopic sources and video-CAT equipped with an IRT micro-focal x-ray machine source.
NASA Astrophysics Data System (ADS)
Tang, Xiangyang; Hsieh, Jiang; Taha, Basel H.; Vass, Melissa L.; Seamans, John L.; Okerlund, Darin R.
2009-02-01
With increasing longitudinal detector dimension available in diagnostic volumetric CT, step-and-shoot scan is becoming popular for cardiac imaging. In comparison to helical scan, step-and-shoot scan decouples patient table movement from cardiac gating/triggering, which facilitates the cardiac imaging via multi-sector data acquisition, as well as the administration of inter-cycle heart beat variation (arrhythmia) and radiation dose efficiency. Ideally, a multi-sector data acquisition can improve temporal resolution at a factor the same as the number of sectors (best scenario). In reality, however, the effective temporal resolution is jointly determined by gantry rotation speed and patient heart beat rate, which may significantly lower than the ideal or no improvement (worst scenario). Hence, it is clinically relevant to investigate the behavior of effective temporal resolution in cardiac imaging with multi-sector data acquisition. In this study, a 5-second cine scan of a porcine heart, which cascades 6 porcine cardiac cycles, is acquired. In addition to theoretical analysis and motion phantom study, the clinical consequences due to the effective temporal resolution variation are evaluated qualitative or quantitatively. By employing a 2-sector image reconstruction strategy, a total of 15 (the permutation of P(6, 2)) cases between the best and worst scenarios are studied, providing informative guidance for the design and optimization of CT cardiac imaging in volumetric CT with multi-sector data acquisition.
NASA Astrophysics Data System (ADS)
Dang, H.; Stayman, J. W.; Xu, J.; Sisniega, A.; Zbijewski, W.; Wang, X.; Foos, D. H.; Aygun, N.; Koliatsos, V. E.; Siewerdsen, J. H.
2016-03-01
Intracranial hemorrhage (ICH) is associated with pathologies such as hemorrhagic stroke and traumatic brain injury. Multi-detector CT is the current front-line imaging modality for detecting ICH (fresh blood contrast 40-80 HU, down to 1 mm). Flat-panel detector (FPD) cone-beam CT (CBCT) offers a potential alternative with a smaller scanner footprint, greater portability, and lower cost potentially well suited to deployment at the point of care outside standard diagnostic radiology and emergency room settings. Previous studies have suggested reliable detection of ICH down to 3 mm in CBCT using high-fidelity artifact correction and penalized weighted least-squared (PWLS) image reconstruction with a post-artifact-correction noise model. However, ICH reconstructed by traditional image regularization exhibits nonuniform spatial resolution and noise due to interaction between the statistical weights and regularization, which potentially degrades the detectability of ICH. In this work, we propose three regularization methods designed to overcome these challenges. The first two compute spatially varying certainty for uniform spatial resolution and noise, respectively. The third computes spatially varying regularization strength to achieve uniform "detectability," combining both spatial resolution and noise in a manner analogous to a delta-function detection task. Experiments were conducted on a CBCT test-bench, and image quality was evaluated for simulated ICH in different regions of an anthropomorphic head. The first two methods improved the uniformity in spatial resolution and noise compared to traditional regularization. The third exhibited the highest uniformity in detectability among all methods and best overall image quality. The proposed regularization provides a valuable means to achieve uniform image quality in CBCT of ICH and is being incorporated in a CBCT prototype for ICH imaging.
Direct microCT imaging of non-mineralized connective tissues at high resolution.
Naveh, Gili R S; Brumfeld, Vlad; Dean, Mason; Shahar, Ron; Weiner, Steve
2014-01-01
The 3D imaging of soft tissues in their native state is challenging, especially when high resolution is required. An X-ray-based microCT is, to date, the best choice for high resolution 3D imaging of soft tissues. However, since X-ray attenuation of soft tissues is very low, contrasting enhancement using different staining materials is needed. The staining procedure, which also usually involves tissue fixation, causes unwanted and to some extent unknown tissue alterations. Here, we demonstrate that a method that enables 3D imaging of soft tissues without fixing and staining using an X-ray-based bench-top microCT can be applied to a variety of different tissues. With the sample mounted in a custom-made loading device inside a humidity chamber, we obtained soft tissue contrast and generated 3D images of fresh, soft tissues with a resolution of 1 micron voxel size. We identified three critical conditions which make it possible to image soft tissues: humidified environment, mechanical stabilization of the sample and phase enhancement. We demonstrate the capability of the technique using different specimens: an intervertebral disc, the non-mineralized growth plate, stingray tessellated radials (calcified cartilage) and the collagenous network of the periodontal ligament. Since the scanned specimen is fresh an interesting advantage of this technique is the ability to scan a specimen under load and track the changes of the different structures. This method offers a unique opportunity for obtaining valuable insights into 3D structure-function relationships of soft tissues.
Okada, Tohru; Iwano, Shingo; Ishigaki, Takeo; Kitasaka, Takayuki; Hirano, Yasushi; Mori, Kensaku; Suenaga, Yasuhito; Naganawa, Shinji
2009-02-01
The ground-glass opacity (GGO) of lung cancer is identified only subjectively on computed tomography (CT) images as no quantitative characteristic has been defined for GGOs. We sought to define GGOs quantitatively and to differentiate between GGOs and solid-type lung cancers semiautomatically with a computer-aided diagnosis (CAD). High-resolution CT images of 100 pulmonary nodules (all peripheral lung cancers) were collected from our clinical records. Two radiologists traced the contours of nodules and distinguished GGOs from solid areas. The CT attenuation value of each area was measured. Differentiation between cancer types was assessed by a receiver-operating characteristic (ROC) analysis. The mean CT attenuation of the GGO areas was -618.4 +/- 212.2 HU, whereas that of solid areas was -68.1 +/- 230.3 HU. CAD differentiated between solidand GGO-type lung cancers with a sensitivity of 86.0% and specificity of 96.5% when the threshold value was -370 HU. Four nodules of mixed GGOs were incorrectly classified as the solid type. CAD detected 96.3% of GGO areas when the threshold between GGO and solid areas was 194 HU. Objective definition of GGO area by CT attenuation is feasible. This method is useful for semiautomatic differentiation between GGOs and solid types of lung cancer.
Kersemans, Veerle; Kannan, Pavitra; Beech, John S.; Bates, Russell; Irving, Benjamin; Gilchrist, Stuart; Allen, Philip D.; Thompson, James; Kinchesh, Paul; Casteleyn, Christophe; Schnabel, Julia; Partridge, Mike; Muschel, Ruth J.; Smart, Sean C.
2015-01-01
Introduction Preclinical in vivo CT is commonly used to visualise vessels at a macroscopic scale. However, it is prone to many artefacts which can degrade the quality of CT images significantly. Although some artefacts can be partially corrected for during image processing, they are best avoided during acquisition. Here, a novel imaging cradle and tumour holder was designed to maximise CT resolution. This approach was used to improve preclinical in vivo imaging of the tumour vasculature. Procedures A custom built cradle containing a tumour holder was developed and fix-mounted to the CT system gantry to avoid artefacts arising from scanner vibrations and out-of-field sample positioning. The tumour holder separated the tumour from bones along the axis of rotation of the CT scanner to avoid bone-streaking. It also kept the tumour stationary and insensitive to respiratory motion. System performance was evaluated in terms of tumour immobilisation and reduction of motion and bone artefacts. Pre- and post-contrast CT followed by sequential DCE-MRI of the tumour vasculature in xenograft transplanted mice was performed to confirm vessel patency and demonstrate the multimodal capacity of the new cradle. Vessel characteristics such as diameter, and branching were quantified. Results Image artefacts originating from bones and out-of-field sample positioning were avoided whilst those resulting from motions were reduced significantly, thereby maximising the resolution that can be achieved with CT imaging in vivo. Tumour vessels ≥ 77 μm could be resolved and blood flow to the tumour remained functional. The diameter of each tumour vessel was determined and plotted as histograms and vessel branching maps were created. Multimodal imaging using this cradle assembly was preserved and demonstrated. Conclusions The presented imaging workflow minimised image artefacts arising from scanner induced vibrations, respiratory motion and radiopaque structures and enabled in vivo CT imaging and quantitative analysis of the tumour vasculature at higher resolution than was possible before. Moreover, it can be applied in a multimodal setting, therefore combining anatomical and dynamic information. PMID:26046526
Li, Cheng; Jin, Dakai; Chen, Cheng; Letuchy, Elena M.; Janz, Kathleen F.; Burns, Trudy L.; Torner, James C; Levy, Steven M.; Saha, Punam K
2015-01-01
Purpose: Cortical bone supports and protects human skeletal functions and plays an important role in determining bone strength and fracture risk. Cortical bone segmentation at a peripheral site using multirow-detector CT (MD-CT) imaging is useful for in vivo assessment of bone strength and fracture risk. Major challenges for the task emerge from limited spatial resolution, low signal-to-noise ratio, presence of cortical pores, and structural complexity over the transition between trabecular and cortical bones. An automated algorithm for cortical bone segmentation at the distal tibia from in vivo MD-CT imaging is presented and its performance and application are examined. Methods: The algorithm is completed in two major steps—(1) bone filling, alignment, and region-of-interest computation and (2) segmentation of cortical bone. After the first step, the following sequence of tasks is performed to accomplish cortical bone segmentation—(1) detection of marrow space and possible pores, (2) computation of cortical bone thickness, detection of recession points, and confirmation and filling of true pores, and (3) detection of endosteal boundary and delineation of cortical bone. Effective generalizations of several digital topologic and geometric techniques are introduced and a fully automated algorithm is presented for cortical bone segmentation. Results: An accuracy of 95.1% in terms of volume of agreement with manual outlining of cortical bone was observed in human MD-CT scans, while an accuracy of 88.5% was achieved when compared with manual outlining on postregistered high resolution micro-CT imaging. An intraclass correlation coefficient of 0.98 was obtained in cadaveric repeat scans. A pilot study was conducted to describe gender differences in cortical bone properties. This study involved 51 female and 46 male participants (age: 19–20 yr) from the Iowa Bone Development Study. Results from this pilot study suggest that, on average after adjustment for height and weight differences, males have thicker cortex (mean difference 0.33 mm and effect size 0.92 at the anterior region) with lower bone mineral density (mean difference −28.73 mg/cm3 and effect size 1.35 at the posterior region) as compared to females. Conclusions: The algorithm presented is suitable for fully automated segmentation of cortical bone in MD-CT imaging of the distal tibia with high accuracy and reproducibility. Analysis of data from a pilot study demonstrated that the cortical bone indices allow quantification of gender differences in cortical bone from MD-CT imaging. Application to larger population groups, including those with compromised bone, is needed. PMID:26233184
Schnabl, Johannes; Glueckert, Rudolf; Feuchtner, Gudrun; Recheis, Wolfgang; Potrusil, Thomas; Kuhn, Volker; Wolf-Magele, Astrid; Riechelmann, Herbert; Sprinzl, Georg M
2012-04-01
Currently, no large animal model exists for surgical-experimental exploratory analysis of implantable hearing devices. In a histomorphometric study, we sought to investigate whether sheep or pig cochleae are suitable for this purpose and whether device implantation is feasible. Skulls of pig and sheep cadavers were examined using high-resolution 128-slice computed tomography (CT) to study anatomic relationships. A cochlear implant and an active middle ear implant could be successfully implanted into the sheep's inner and middle ear, respectively. Correct device placement was verified by CT and histology. The cochlear anatomy of the sheep was further studied by micro-CT and histology. Our investigations indicate that the sheep is a suitable animal model for implantation of implantable hearing devices. The implantation of the devices was successfully performed by access through a mastoidectomy. The histologic, morphologic, and micro-CT study of the sheep cochlea showed that it is highly similar to the human cochlea. The temporal bone of the pig was not suitable for these microsurgical procedures because the middle and inner ear were not accessible owing to distinct soft and fatty tissue coverage of the mastoid. The sheep is an appropriate large animal model for experimental studies with implantable hearing devices, whereas the pig is not.
NASA Astrophysics Data System (ADS)
Vonlanthen, Pierre; Rausch, Juanita; Ketcham, Richard A.; Putlitz, Benita; Baumgartner, Lukas P.; Grobéty, Bernard
2015-02-01
The morphology of small volcanic ash particles is fundamental to our understanding of magma fragmentation, and in transport modeling of volcanic plumes and clouds. Until recently, the analysis of 3D features in small objects (< 250 μm) was either restricted to extrapolations from 2D approaches, partial stereo-imaging, or CT methods having limited spatial resolution and/or accessibility. In this study, an X-ray computed-tomography technique known as SEM micro-CT, also called 3D X-ray ultramicroscopy (3D XuM), was used to investigate the 3D morphology of small volcanic ash particles (125-250 μm sieve fraction), as well as their vesicle and microcrystal distribution. The samples were selected from four stratigraphically well-established tephra layers of the Meerfelder Maar (West Eifel Volcanic Field, Germany). Resolution tests performed on a Beametr v1 pattern sample along with Monte Carlo simulations of X-ray emission volumes indicated that a spatial resolution of 0.65 μm was obtained for X-ray shadow projections using a standard thermionic SEM and a bulk brass target as X-ray source. Analysis of a smaller volcanic ash particle (64-125 μm sieve fraction) showed that features with volumes > 20 μm3 (~ 3.5 μm in diameter) can be successfully reconstructed and quantified. In addition, new functionalities of the Blob3D software were developed to allow the particle shape factors frequently used as input parameters in ash transport and dispersion models to be calculated. This study indicates that SEM micro-CT is very well suited to quantify the various aspects of shape in fine volcanic ash, and potentially also to investigate the 3D morphology and internal structure of any object < 0.1 mm3.
Routine colonic endoscopic evaluation following resolution of acute diverticulitis: Is it necessary?
Agarwal, Amit K; Karanjawala, Burzeen E; Maykel, Justin A; Johnson, Eric K; Steele, Scott R
2014-01-01
Diverticular disease incidence is increasing up to 65% by age 85 in industrialized nations, low fiber diets, and in younger and obese patients. Twenty-five percent of patients with diverticulosis will develop acute diverticulitis. This imposes a significant burden on healthcare systems, resulting in greater than 300000 admissions per year with an estimated annual cost of $3 billion USD. Abdominal computed tomography (CT) is the diagnostic study of choice, with a sensitivity and specificity greater than 95%. Unfortunately, similar CT findings can be present in colonic neoplasia, especially when perforated or inflamed. This prompted professional societies such as the American Society of Colon Rectal Surgeons to recommend patients undergo routine colonoscopy after an episode of acute diverticulitis to rule out malignancy. Yet, the data supporting routine colonoscopy after acute diverticulitis is sparse and based small cohort studies utilizing outdated technology. While any patient with an indication for a colonoscopy should undergo appropriate endoscopic evaluation, in the era of widespread use of high-resolution computed tomography, routine colonic endoscopic evaluation following resolution of acute uncomplicated diverticulitis poses additional costs, comes with inherent risks, and may require further study. In this manuscript, we review the current data related to this recommendation. PMID:25253951
Wang, Haipeng; Yang, Yushuang; Yang, Jianli; Nie, Yihang; Jia, Jing; Wang, Yudan
2015-01-01
Multiscale nondestructive characterization of coal microscopic physical structure can provide important information for coal conversion and coal-bed methane extraction. In this study, the physical structure of a coal sample was investigated by synchrotron-based multiple-energy X-ray CT at three beam energies and two different spatial resolutions. A data-constrained modeling (DCM) approach was used to quantitatively characterize the multiscale compositional distributions at the two resolutions. The volume fractions of each voxel for four different composition groups were obtained at the two resolutions. Between the two resolutions, the difference for DCM computed volume fractions of coal matrix and pores is less than 0.3%, and the difference for mineral composition groups is less than 0.17%. This demonstrates that the DCM approach can account for compositions beyond the X-ray CT imaging resolution with adequate accuracy. By using DCM, it is possible to characterize a relatively large coal sample at a relatively low spatial resolution with minimal loss of the effect due to subpixel fine length scale structures.
Combination of CT scanning and fluoroscopy imaging on a flat-panel CT scanner
NASA Astrophysics Data System (ADS)
Grasruck, M.; Gupta, R.; Reichardt, B.; Suess, Ch.; Schmidt, B.; Stierstorfer, K.; Popescu, S.; Brady, T.; Flohr, T.
2006-03-01
We developed and evaluated a prototype flat-panel detector based Volume CT (fpVCT) scanner. The fpVCT scanner consists of a Varian 4030CB a-Si flat-panel detector mounted in a multi slice CT-gantry (Siemens Medical Solutions). It provides a 25 cm field of view with 18 cm z-coverage at the isocenter. In addition to the standard tomographic scanning, fpVCT allows two new scan modes: (1) fluoroscopic imaging from any arbitrary rotation angle, and (2) continuous, time-resolved tomographic scanning of a dynamically changing viewing volume. Fluoroscopic imaging is feasible by modifying the standard CT gantry so that the imaging chain can be oriented along any user-selected rotation angle. Scanning with a stationary gantry, after it has been oriented, is equivalent to a conventional fluoroscopic examination. This scan mode enables combined use of high-resolution tomography and real-time fluoroscopy with a clinically usable field of view in the z direction. The second scan mode allows continuous observation of a timeevolving process such as perfusion. The gantry can be continuously rotated for up to 80 sec, with the rotation time ranging from 3 to 20 sec, to gather projection images of a dynamic process. The projection data, that provides a temporal log of the viewing volume, is then converted into multiple image stacks that capture the temporal evolution of a dynamic process. Studies using phantoms, ex vivo specimens, and live animals have confirmed that these new scanning modes are clinically usable and offer a unique view of the anatomy and physiology that heretofore has not been feasible using static CT scanning. At the current level of image quality and temporal resolution, several clinical applications such a dynamic angiography, tumor enhancement pattern and vascularity studies, organ perfusion, and interventional applications are in reach.
NASA Astrophysics Data System (ADS)
Jin, Xiao; Chan, Chung; Mulnix, Tim; Panin, Vladimir; Casey, Michael E.; Liu, Chi; Carson, Richard E.
2013-08-01
Whole-body PET/CT scanners are important clinical and research tools to study tracer distribution throughout the body. In whole-body studies, respiratory motion results in image artifacts. We have previously demonstrated for brain imaging that, when provided with accurate motion data, event-by-event correction has better accuracy than frame-based methods. Therefore, the goal of this work was to develop a list-mode reconstruction with novel physics modeling for the Siemens Biograph mCT with event-by-event motion correction, based on the MOLAR platform (Motion-compensation OSEM List-mode Algorithm for Resolution-Recovery Reconstruction). Application of MOLAR for the mCT required two algorithmic developments. First, in routine studies, the mCT collects list-mode data in 32 bit packets, where averaging of lines-of-response (LORs) by axial span and angular mashing reduced the number of LORs so that 32 bits are sufficient to address all sinogram bins. This degrades spatial resolution. In this work, we proposed a probabilistic LOR (pLOR) position technique that addresses axial and transaxial LOR grouping in 32 bit data. Second, two simplified approaches for 3D time-of-flight (TOF) scatter estimation were developed to accelerate the computationally intensive calculation without compromising accuracy. The proposed list-mode reconstruction algorithm was compared to the manufacturer's point spread function + TOF (PSF+TOF) algorithm. Phantom, animal, and human studies demonstrated that MOLAR with pLOR gives slightly faster contrast recovery than the PSF+TOF algorithm that uses the average 32 bit LOR sinogram positioning. Moving phantom and a whole-body human study suggested that event-by-event motion correction reduces image blurring caused by respiratory motion. We conclude that list-mode reconstruction with pLOR positioning provides a platform to generate high quality images for the mCT, and to recover fine structures in whole-body PET scans through event-by-event motion correction.
Jin, Xiao; Chan, Chung; Mulnix, Tim; Panin, Vladimir; Casey, Michael E.; Liu, Chi; Carson, Richard E.
2013-01-01
Whole-body PET/CT scanners are important clinical and research tools to study tracer distribution throughout the body. In whole-body studies, respiratory motion results in image artifacts. We have previously demonstrated for brain imaging that, when provided accurate motion data, event-by-event correction has better accuracy than frame-based methods. Therefore, the goal of this work was to develop a list-mode reconstruction with novel physics modeling for the Siemens Biograph mCT with event-by-event motion correction, based on the MOLAR platform (Motion-compensation OSEM List-mode Algorithm for Resolution-Recovery Reconstruction). Application of MOLAR for the mCT required two algorithmic developments. First, in routine studies, the mCT collects list-mode data in 32-bit packets, where averaging of lines of response (LORs) by axial span and angular mashing reduced the number of LORs so that 32 bits are sufficient to address all sinogram bins. This degrades spatial resolution. In this work, we proposed a probabilistic assignment of LOR positions (pLOR) that addresses axial and transaxial LOR grouping in 32-bit data. Second, two simplified approaches for 3D TOF scatter estimation were developed to accelerate the computationally intensive calculation without compromising accuracy. The proposed list-mode reconstruction algorithm was compared to the manufacturer's point spread function + time-of-flight (PSF+TOF) algorithm. Phantom, animal, and human studies demonstrated that MOLAR with pLOR gives slightly faster contrast recovery than the PSF+TOF algorithm that uses the average 32-bit LOR sinogram positioning. Moving phantom and a whole-body human study suggested that event-by-event motion correction reduces image blurring caused by respiratory motion. We conclude that list-mode reconstruction with pLOR positioning provides a platform to generate high quality images for the mCT, and to recover fine structures in whole-body PET scans through event-by-event motion correction. PMID:23892635
DOE Office of Scientific and Technical Information (OSTI.GOV)
Montoya, J; Ferrero, A; Yu, L
Purpose: To investigate the noise and spatial resolution properties of virtual non-contrast (VNC) dual-energy CT images compared to true non-contrast (TNC) images across multiple patient sizes and CT systems. Methods: Torso-shaped water phantoms with lateral widths of 25, 30, 35, 40 and 45 cm and a high resolution bar pattern phantom (Catphan CTP528) were scanned using 2nd and 3rd generation dual-source CT systems (Scanner A: Somatom Definition Flash, Scanner B: Somatom Force, Siemens Healthcare) in dual-energy scan mode with the same radiation dose for a given phantom size. Tube potentials of 80/Sn140 and 100/Sn140 on Scanner A and 80/Sn150, 90/Sn150more » and 100/Sn150 on Scanner B were evaluated to examine the impact of spectral separation. Images were reconstructed using a medium sharp quantitative kernel (Qr40), 1.0-mm thickness, 1.0-mm interval and 20 cm field of view. Mixed images served as TNC images. VNC images were created using commercial software (Virtual Unenhanced, Syngo VIA Version VA30, Siemens Healthcare). The noise power spectrum (NPS), area under the NPS, peak frequency of the NPS and image noise were measured for every phantom size and tube potential combination in TNC and VNC images. Results were compared within and between CT systems. Results: Minimal shift in NPS peak frequencies was observed in VNC images compared to TNC for NPS having pronounced peaks. Image noise and area under the NPS were higher in VNC images compared to TNC images across all tube potentials and for scanner A compared to scanner B. Limiting spatial resolution was deemed to be identical between VNC and TNC images. Conclusion: Quantitative assessment of image quality in VNC images demonstrated higher noise but equivalent spatial resolution compared to TNC images. Decreased noise was observed in the 3rd generation dual-source CT system for tube potential pairs having greater spectral separation. Dr. McCollough receives research support from Siemens Healthcare.« less
Thoracic cavity definition for 3D PET/CT analysis and visualization.
Cheirsilp, Ronnarit; Bascom, Rebecca; Allen, Thomas W; Higgins, William E
2015-07-01
X-ray computed tomography (CT) and positron emission tomography (PET) serve as the standard imaging modalities for lung-cancer management. CT gives anatomical details on diagnostic regions of interest (ROIs), while PET gives highly specific functional information. During the lung-cancer management process, a patient receives a co-registered whole-body PET/CT scan pair and a dedicated high-resolution chest CT scan. With these data, multimodal PET/CT ROI information can be gleaned to facilitate disease management. Effective image segmentation of the thoracic cavity, however, is needed to focus attention on the central chest. We present an automatic method for thoracic cavity segmentation from 3D CT scans. We then demonstrate how the method facilitates 3D ROI localization and visualization in patient multimodal imaging studies. Our segmentation method draws upon digital topological and morphological operations, active-contour analysis, and key organ landmarks. Using a large patient database, the method showed high agreement to ground-truth regions, with a mean coverage=99.2% and leakage=0.52%. Furthermore, it enabled extremely fast computation. For PET/CT lesion analysis, the segmentation method reduced ROI search space by 97.7% for a whole-body scan, or nearly 3 times greater than that achieved by a lung mask. Despite this reduction, we achieved 100% true-positive ROI detection, while also reducing the false-positive (FP) detection rate by >5 times over that achieved with a lung mask. Finally, the method greatly improved PET/CT visualization by eliminating false PET-avid obscurations arising from the heart, bones, and liver. In particular, PET MIP views and fused PET/CT renderings depicted unprecedented clarity of the lesions and neighboring anatomical structures truly relevant to lung-cancer assessment. Copyright © 2015 Elsevier Ltd. All rights reserved.
Thoracic Cavity Definition for 3D PET/CT Analysis and Visualization
Cheirsilp, Ronnarit; Bascom, Rebecca; Allen, Thomas W.; Higgins, William E.
2015-01-01
X-ray computed tomography (CT) and positron emission tomography (PET) serve as the standard imaging modalities for lung-cancer management. CT gives anatomical detail on diagnostic regions of interest (ROIs), while PET gives highly specific functional information. During the lung-cancer management process, a patient receives a co-registered whole-body PET/CT scan pair and a dedicated high-resolution chest CT scan. With these data, multimodal PET/CT ROI information can be gleaned to facilitate disease management. Effective image segmentation of the thoracic cavity, however, is needed to focus attention on the central chest. We present an automatic method for thoracic cavity segmentation from 3D CT scans. We then demonstrate how the method facilitates 3D ROI localization and visualization in patient multimodal imaging studies. Our segmentation method draws upon digital topological and morphological operations, active-contour analysis, and key organ landmarks. Using a large patient database, the method showed high agreement to ground-truth regions, with a mean coverage = 99.2% and leakage = 0.52%. Furthermore, it enabled extremely fast computation. For PET/CT lesion analysis, the segmentation method reduced ROI search space by 97.7% for a whole-body scan, or nearly 3 times greater than that achieved by a lung mask. Despite this reduction, we achieved 100% true-positive ROI detection, while also reducing the false-positive (FP) detection rate by >5 times over that achieved with a lung mask. Finally, the method greatly improved PET/CT visualization by eliminating false PET-avid obscurations arising from the heart, bones, and liver. In particular, PET MIP views and fused PET/CT renderings depicted unprecedented clarity of the lesions and neighboring anatomical structures truly relevant to lung-cancer assessment. PMID:25957746
Temporal resolution improvement using PICCS in MDCT cardiac imaging
Chen, Guang-Hong; Tang, Jie; Hsieh, Jiang
2009-01-01
The current paradigm for temporal resolution improvement is to add more source-detector units and∕or increase the gantry rotation speed. The purpose of this article is to present an innovative alternative method to potentially improve temporal resolution by approximately a factor of 2 for all MDCT scanners without requiring hardware modification. The central enabling technology is a most recently developed image reconstruction method: Prior image constrained compressed sensing (PICCS). Using the method, cardiac CT images can be accurately reconstructed using the projection data acquired in an angular range of about 120°, which is roughly 50% of the standard short-scan angular range (∼240° for an MDCT scanner). As a result, the temporal resolution of MDCT cardiac imaging can be universally improved by approximately a factor of 2. In order to validate the proposed method, two in vivo animal experiments were conducted using a state-of-the-art 64-slice CT scanner (GE Healthcare, Waukesha, WI) at different gantry rotation times and different heart rates. One animal was scanned at heart rate of 83 beats per minute (bpm) using 400 ms gantry rotation time and the second animal was scanned at 94 bpm using 350 ms gantry rotation time, respectively. Cardiac coronary CT imaging can be successfully performed at high heart rates using a single-source MDCT scanner and projection data from a single heart beat with gantry rotation times of 400 and 350 ms. Using the proposed PICCS method, the temporal resolution of cardiac CT imaging can be effectively improved by approximately a factor of 2 without modifying any scanner hardware. This potentially provides a new method for single-source MDCT scanners to achieve reliable coronary CT imaging for patients at higher heart rates than the current heart rate limit of 70 bpm without using the well-known multisegment FBP reconstruction algorithm. This method also enables dual-source MDCT scanner to achieve higher temporal resolution without further hardware modifications. PMID:19610302
Temporal resolution improvement using PICCS in MDCT cardiac imaging.
Chen, Guang-Hong; Tang, Jie; Hsieh, Jiang
2009-06-01
The current paradigm for temporal resolution improvement is to add more source-detector units and/or increase the gantry rotation speed. The purpose of this article is to present an innovative alternative method to potentially improve temporal resolution by approximately a factor of 2 for all MDCT scanners without requiring hardware modification. The central enabling technology is a most recently developed image reconstruction method: Prior image constrained compressed sensing (PICCS). Using the method, cardiac CT images can be accurately reconstructed using the projection data acquired in an angular range of about 120 degrees, which is roughly 50% of the standard short-scan angular range (approximately 240 degrees for an MDCT scanner). As a result, the temporal resolution of MDCT cardiac imaging can be universally improved by approximately a factor of 2. In order to validate the proposed method, two in vivo animal experiments were conducted using a state-of-the-art 64-slice CT scanner (GE Healthcare, Waukesha, WI) at different gantry rotation times and different heart rates. One animal was scanned at heart rate of 83 beats per minute (bpm) using 400 ms gantry rotation time and the second animal was scanned at 94 bpm using 350 ms gantry rotation time, respectively. Cardiac coronary CT imaging can be successfully performed at high heart rates using a single-source MDCT scanner and projection data from a single heart beat with gantry rotation times of 400 and 350 ms. Using the proposed PICCS method, the temporal resolution of cardiac CT imaging can be effectively improved by approximately a factor of 2 without modifying any scanner hardware. This potentially provides a new method for single-source MDCT scanners to achieve reliable coronary CT imaging for patients at higher heart rates than the current heart rate limit of 70 bpm without using the well-known multisegment FBP reconstruction algorithm. This method also enables dual-source MDCT scanner to achieve higher temporal resolution without further hardware modifications.
Imaging in rectal cancer with emphasis on local staging with MRI
Arya, Supreeta; Das, Deepak; Engineer, Reena; Saklani, Avanish
2015-01-01
Imaging in rectal cancer has a vital role in staging disease, and in selecting and optimizing treatment planning. High-resolution MRI (HR-MRI) is the recommended method of first choice for local staging of rectal cancer for both primary staging and for restaging after preoperative chemoradiation (CT-RT). HR-MRI helps decide between upfront surgery and preoperative CT-RT. It provides high accuracy for prediction of circumferential resection margin at surgery, T category, and nodal status in that order. MRI also helps assess resectability after preoperative CT-RT and decide between sphincter saving or more radical surgery. Accurate technique is crucial for obtaining high-resolution images in the appropriate planes for correct staging. The phased array external coil has replaced the endorectal coil that is no longer recommended. Non-fat suppressed 2D T2-weighted (T2W) sequences in orthogonal planes to the tumor are sufficient for primary staging. Contrast-enhanced MRI is considered inappropriate for both primary staging and restaging. Diffusion-weighted sequence may be of value in restaging. Multidetector CT cannot replace MRI in local staging, but has an important role for evaluating distant metastases. Positron emission tomography-computed tomography (PET/CT) has a limited role in the initial staging of rectal cancer and is reserved for cases with resectable metastatic disease before contemplating surgery. This article briefly reviews the comprehensive role of imaging in rectal cancer, describes the role of MRI in local staging in detail, discusses the optimal MRI technique, and provides a synoptic report for both primary staging and restaging after CT-RT in routine practice. PMID:25969638
Van Dessel, Jeroen; Nicolielo, Laura Ferreira Pinheiro; Huang, Yan; Coudyzer, Walter; Salmon, Benjamin; Lambrichts, Ivo; Jacobs, Reinhilde
The aim of this study was to assess whether cone beam computed tomography (CBCT) may be used for clinically reliable alveolar bone quality assessment in comparison to its clinical alternatives, multislice computed tomography and the gold standard (micro-CT). Six dentate mandibular bone samples were scanned with seven CBCT devices (ProMax 3D Max, NewTom GiANO, Cranex 3D, 3D Accuitomo 170, Carestream 9300, Scanora 3D, I-CAT Next generation), one micro-CT scanner (SkyScan 1174) and one MSCT machine (Somatom Definition Flash) using two protocols (standard and high-resolution). MSCT and CBCT images were automatically spatially aligned on the micro-CT scan of the corresponding sample. A volume of interest was manually delineated on the micro-CT image and overlaid on the other scanning devices. Alveolar bone structures were automatically extracted using the adaptive thresholding algorithm. Based on the resulting binary images, an automatic 3D morphometric quantification was performed in a CT-Analyser (Bruker, Kontich, Belgium). The reliability and measurement errors were calculated for each modality compared to the gold standard micro-CT. Both MSCT and CBCT were associated with a clinically and statistically (P <0.05) significant measurement error. Bone quantity-related morphometric indices (bone volume fraction 8.41% min to 17.90% max, bone surface density -0.47 mm-1 min to 0.16 mm-1 max and trabecular thickness 0.15 mm min to 0.31 mm max) were significantly (P <0.05) overestimated, resulting in significantly (P <0.05) closer trabecular pores (total porosity percentage -8.41% min to -17.90% max and fractal dimension 0.08 min to 0.17 max) in all scanners compared to micro-CT. However, the structural pattern of the alveolar bone remained similar compared to that of the micro-CT for the ProMax 3D Max, NewTom GiANO, Cranex 3D, 3D Accuitomo 170 and Carestream 9300. On the other hand, the Scanora 3D, i-CAT Next Generation, standard and high-resolution MSCT displayed an overrated bone quantity and aberrant structural pattern compared to other scanning devices. The calculation of morphometric indices had an overall high reliability (intraclass correlation coefficient [ICC] 0.62 min to 0.99 max), except for the i-CAT Next Generation CBCT (ICC 0.26 min to 0.86 max) and standard resolution MSCT (ICC 0.10 min to 0.62 max). This study demonstrated that most CBCT machines may be able to quantitatively assess alveolar bone quality, with a level of accuracy and reliability that approaches micro-CT. One may therefore propose to extrapolate this to clinical CBCT imaging, certainly when there is a need for implant rehabilitation in dentate jaw bones. Conflict-of-interest statement: There is no conflict of interest to declare. Fellowship support was received from Research Foundation Flanders (FWO) from the Belgian government and from the Coordination for the Improvement of Higher Education Personnel (CAPES) programme, Science without Borders, from the Brazilian government.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leng, Shuai; Yu, Lifeng; Wang, Jia
Purpose: Our purpose was to reduce image noise in spectral CT by exploiting data redundancies in the energy domain to allow flexible selection of the number, width, and location of the energy bins. Methods: Using a variety of spectral CT imaging methods, conventional filtered backprojection (FBP) reconstructions were performed and resulting images were compared to those processed using a Local HighlY constrained backPRojection Reconstruction (HYPR-LR) algorithm. The mean and standard deviation of CT numbers were measured within regions of interest (ROIs), and results were compared between FBP and HYPR-LR. For these comparisons, the following spectral CT imaging methods were used:(i)more » numerical simulations based on a photon-counting, detector-based CT system, (ii) a photon-counting, detector-based micro CT system using rubidium and potassium chloride solutions, (iii) a commercial CT system equipped with integrating detectors utilizing tube potentials of 80, 100, 120, and 140 kV, and (iv) a clinical dual-energy CT examination. The effects of tube energy and energy bin width were evaluated appropriate to each CT system. Results: The mean CT number in each ROI was unchanged between FBP and HYPR-LR images for each of the spectral CT imaging scenarios, irrespective of bin width or tube potential. However, image noise, as represented by the standard deviation of CT numbers in each ROI, was reduced by 36%-76%. In all scenarios, image noise after HYPR-LR algorithm was similar to that of composite images, which used all available photons. No difference in spatial resolution was observed between HYPR-LR processing and FBP. Dual energy patient data processed using HYPR-LR demonstrated reduced noise in the individual, low- and high-energy images, as well as in the material-specific basis images. Conclusions: Noise reduction can be accomplished for spectral CT by exploiting data redundancies in the energy domain. HYPR-LR is a robust method for reducing image noise in a variety of spectral CT imaging systems without losing spatial resolution or CT number accuracy. This method improves the flexibility to select energy bins in the manner that optimizes material identification and separation without paying the penalty of increased image noise or its corollary, increased patient dose.« less
Computed tomography in pulmonary sarcoidosis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lynch, D.A.; Webb, W.R.; Gamsu, G.
1989-05-01
We studied the high resolution CT (HRCT) scans of 15 patients with biopsy-proven sarcoidosis and correlated the findings with pulmonary function tests (12 patients), 67Ga scans (10 patients), bronchoalveolar lavage (five patients), recent transbronchial biopsy (six patients), and recent open lung biopsy (three patients). The HRCT features included small nodules, thickened interlobular septa, patchy focal increase in lung density, honeycombing, and central conglomeration of vessels and bronchi. Active alveolitis was present by gallium scanning criteria in 5 of 10 cases. By bronchoalveolar lavage criteria, activity was present in three of five cases. Patchy increase in density may correlate with activemore » alveolitis as seen on /sup 67/Ga scanning. High resolution CT was better than chest X-radiography for demonstration of patchy increase in density and for distinguishing nodules from septal thickening. Both nodules and patchy density were partly reversible following therapy. Nodular densities seen on CT correlated with the presence of granulomata on histology. Resting pulmonary function tests correlated poorly with presence and extent of lung disease on HRCT. The presence on HRCT of focal fine nodules, patchy focal increase in lung density, and central crowding of bronchi and vessels should suggest the diagnosis of sarcoidosis. In some patients, HRCT can identify unsuspected parenchymal lung disease and document the reversible components of sarcoid lung disease.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bache, S; Belley, M; Benning, R
2014-06-15
Purpose: Pre-clinical micro-radiation therapy studies often utilize very small beams (∼0.5-5mm), and require accurate dose delivery in order to effectively investigate treatment efficacy. Here we present a novel high-resolution absolute 3D dosimetry procedure, capable of ∼100-micron isotopic dosimetry in anatomically accurate rodent-morphic phantoms Methods: Anatomically accurate rat-shaped 3D dosimeters were made using 3D printing techniques from outer body contours and spinal contours outlined on CT. The dosimeters were made from a radiochromic plastic material PRESAGE, and incorporated high-Z PRESASGE inserts mimicking the spine. A simulated 180-degree spinal arc treatment was delivered through a 2 step process: (i) cone-beam-CT image-guided positioningmore » was performed to precisely position the rat-dosimeter for treatment on the XRad225 small animal irradiator, then (ii) treatment was delivered with a simulated spine-treatment with a 180-degree arc with 20mm x 10mm cone at 225 kVp. Dose distribution was determined from the optical density change using a high-resolution in-house optical-CT system. Absolute dosimetry was enabled through calibration against a novel nano-particle scintillation detector positioned in a channel in the center of the distribution. Results: Sufficient contrast between regular PRESAGE (tissue equivalent) and high-Z PRESAGE (spinal insert) was observed to enable highly accurate image-guided alignment and targeting. The PRESAGE was found to have linear optical density (OD) change sensitivity with respect to dose (R{sup 2} = 0.9993). Absolute dose for 360-second irradiation at isocenter was found to be 9.21Gy when measured with OD change, and 9.4Gy with nano-particle detector- an agreement within 2%. The 3D dose distribution was measured at 500-micron resolution Conclusion: This work demonstrates for the first time, the feasibility of accurate absolute 3D dose measurement in anatomically accurate rat phantoms containing variable density PRESAGE material (tissue equivalent and bone equivalent). This method enables precise treatment verification of micro-radiation therapies, and enhances the robustness of tumor radio-response studies. This work was supported by NIH R01CA100835.« less
Intraoperative computed tomography.
Tonn, J C; Schichor, C; Schnell, O; Zausinger, S; Uhl, E; Morhard, D; Reiser, M
2011-01-01
Intraoperative computed tomography (iCT) has gained increasing impact among modern neurosurgical techniques. Multislice CT with a sliding gantry in the OR provides excellent diagnostic image quality in the visualization of vascular lesions as well as bony structures including skull base and spine. Due to short acquisition times and a high spatial and temporal resolution, various modalities such as iCT-angiography, iCT-cerebral perfusion and the integration of intraoperative navigation with automatic re-registration after scanning can be performed. This allows a variety of applications, e.g. intraoperative angiography, intraoperative cerebral perfusion studies, update of cerebral and spinal navigation, stereotactic procedures as well as resection control in tumour surgery. Its versatility promotes its use in a multidisciplinary setting. Radiation exposure is comparable to standard CT systems outside the OR. For neurosurgical purposes, however, new hardware components (e.g. a radiolucent headholder system) had to be developed. Having a different range of applications compared to intraoperative MRI, it is an attractive modality for intraoperative imaging being comparatively easy to install and cost efficient.
TH-AB-209-07: High Resolution X-Ray-Induced Acoustic Computed Tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiang, L; Tang, S; Ahmad, M
Purpose: X-ray radiographic absorption imaging is an invaluable tool in medical diagnostics, biology and materials science. However, the use of conventional CT is limited by two factors: the detection sensitivity to weak absorption material and the radiation dose from CT scanning. The purpose of this study is to explore X-ray induced acoustic computed tomography (XACT), a new imaging modality, which combines X-ray absorption contrast and high ultrasonic resolution to address these challenges. Methods: First, theoretical models was built to analyze the XACT sensitivity to X-ray absorption and calculate the minimal radiation dose in XACT imaging. Then, an XACT system comprisedmore » of an ultrashort X-ray pulse, a low noise ultrasound detector and a signal acquisition system was built to evaluate the X-ray induced acoustic signal generation. A piece of chicken bone and a phantom with two golden fiducial markers were exposed to 270 kVp X-ray source with 60 ns exposure time, and the X-ray induced acoustic signal was received by a 2.25MHz ultrasound transducer in 200 positions. XACT images were reconstructed by a filtered back-projection algorithm. Results: The theoretical analysis shows that X-ray induced acoustic signals have 100% relative sensitivity to X-ray absorption, but not to X-ray scattering. Applying this innovative technology to breast imaging, we can reduce radiation dose by a factor of 50 compared with newly FDA approved breast CT. The reconstructed images of chicken bone and golden fiducial marker phantom reveal that the spatial resolution of the built XACT system is 350µm. Conclusion: In XACT, the imaging sensitivity to X-ray absorption is improved and the imaging dose is dramatically reduced by using ultrashort pulsed X-ray. Taking advantage of the high ultrasonic resolution, we can also perform 3D imaging with a single X-ray pulse. This new modality has the potential to revolutionize x-ray imaging applications in medicine and biology.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Xue; Niu, Tianye; Zhu, Lei, E-mail: leizhu@gatech.edu
2014-05-15
Purpose: Dual-energy CT (DECT) is being increasingly used for its capability of material decomposition and energy-selective imaging. A generic problem of DECT, however, is that the decomposition process is unstable in the sense that the relative magnitude of decomposed signals is reduced due to signal cancellation while the image noise is accumulating from the two CT images of independent scans. Direct image decomposition, therefore, leads to severe degradation of signal-to-noise ratio on the resultant images. Existing noise suppression techniques are typically implemented in DECT with the procedures of reconstruction and decomposition performed independently, which do not explore the statistical propertiesmore » of decomposed images during the reconstruction for noise reduction. In this work, the authors propose an iterative approach that combines the reconstruction and the signal decomposition procedures to minimize the DECT image noise without noticeable loss of resolution. Methods: The proposed algorithm is formulated as an optimization problem, which balances the data fidelity and total variation of decomposed images in one framework, and the decomposition step is carried out iteratively together with reconstruction. The noise in the CT images from the proposed algorithm becomes well correlated even though the noise of the raw projections is independent on the two CT scans. Due to this feature, the proposed algorithm avoids noise accumulation during the decomposition process. The authors evaluate the method performance on noise suppression and spatial resolution using phantom studies and compare the algorithm with conventional denoising approaches as well as combined iterative reconstruction methods with different forms of regularization. Results: On the Catphan©600 phantom, the proposed method outperforms the existing denoising methods on preserving spatial resolution at the same level of noise suppression, i.e., a reduction of noise standard deviation by one order of magnitude. This improvement is mainly attributed to the high noise correlation in the CT images reconstructed by the proposed algorithm. Iterative reconstruction using different regularization, including quadratic orq-generalized Gaussian Markov random field regularization, achieves similar noise suppression from high noise correlation. However, the proposed TV regularization obtains a better edge preserving performance. Studies of electron density measurement also show that our method reduces the average estimation error from 9.5% to 7.1%. On the anthropomorphic head phantom, the proposed method suppresses the noise standard deviation of the decomposed images by a factor of ∼14 without blurring the fine structures in the sinus area. Conclusions: The authors propose a practical method for DECT imaging reconstruction, which combines the image reconstruction and material decomposition into one optimization framework. Compared to the existing approaches, our method achieves a superior performance on DECT imaging with respect to decomposition accuracy, noise reduction, and spatial resolution.« less
Predictors of rapid spontaneous resolution of acute subdural hematoma.
Fujimoto, Kenji; Otsuka, Tadahiro; Yoshizato, Kimio; Kuratsu, Jun-ichi
2014-03-01
Acute subdural hematoma (ASDH) usually requires emergency surgical decompression, but rare cases exhibit rapid spontaneous resolution. The aim of this retrospective study was to identify factors predictive of spontaneous ASDH resolution. A total of 366 consecutive patients with ASDH treated between January 2006 and September 2012 were identified in our hospital database. Patients with ASDH clot thickness >10mm in the frontoparietotemporal region and showing a midline shift >10mm on the initial computed tomography (CT) scan were divided into two groups according to subsequent spontaneous resolution. Univariate and multivariate logistic regression analyses were used to identify factors predictive of rapid spontaneous ASDH resolution. Fifty-six ASDH patients met study criteria and 18 demonstrated rapid spontaneous resolution (32%). Majority of these patients were not operated because of poor prognosis/condition and in accordance to family wishes. Univariate analysis revealed significant differences in use of antiplatelet agents before head injury and in the incidence of a low-density band between the hematoma and inner wall of the skull bone on the initial CT. Use of antiplatelet agents before head injury (OR 19.6, 95% CI 1.5-260.1, p=0.02) and the low-density band on CT images (OR 40.3, 95% CI 3.1-520.2, p=0.005) were identified as independent predictive factors by multivariate analysis. Our analysis suggested that use of antiplatelet agents before head injury and a low-density band between the hematoma and inner skull bone on CT images (indicative of cerebrospinal fluid infusion into the subdural space) increase the probability of rapid spontaneous resolution. Copyright © 2013 Elsevier B.V. All rights reserved.
Tanaka, N; Kunihiro, Y; Kubo, M; Kawano, R; Oishi, K; Ueda, K; Gondo, T
2018-05-29
To identify characteristic high-resolution computed tomography (CT) findings for individual collagen vascular disease (CVD)-related interstitial pneumonias (IPs). The HRCT findings of 187 patients with CVD, including 55 patients with rheumatoid arthritis (RA), 50 with systemic sclerosis (SSc), 46 with polymyositis/dermatomyositis (PM/DM), 15 with mixed connective tissue disease, 11 with primary Sjögren's syndrome, and 10 with systemic lupus erythematosus, were evaluated. Lung parenchymal abnormalities were compared among CVDs using χ 2 test, Kruskal-Wallis test, and multiple logistic regression analysis. A CT-pathology correlation was performed in 23 patients. In RA-IP, honeycombing was identified as the significant indicator based on multiple logistic regression analyses. Traction bronchiectasis (81.8%) was further identified as the most frequent finding based on χ 2 test. In SSc IP, lymph node enlargement and oesophageal dilatation were identified as the indicators based on multiple logistic regression analyses, and ground-glass opacity (GGO) was the most extensive based on Kruskal-Wallis test, which reflects the higher frequency of the pathological nonspecific interstitial pneumonia (NSIP) pattern present in the CT-pathology correlation. In PM/DM IP, airspace consolidation and the absence of honeycombing were identified as the indicators based on multiple logistic regression analyses, and predominance of consolidation over GGO (32.6%) and predominant subpleural distribution of GGO/consolidation (41.3%) were further identified as the most frequent findings based on χ 2 test, which reflects the higher frequency of the pathological NSIP and/or the organising pneumonia patterns present in the CT-pathology correlation. Several characteristic high-resolution CT findings with utility for estimating underlying CVD were identified. Copyright © 2018 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
Three-dimensional surface reconstruction for industrial computed tomography
NASA Technical Reports Server (NTRS)
Vannier, M. W.; Knapp, R. H.; Gayou, D. E.; Sammon, N. P.; Butterfield, R. L.; Larson, J. W.
1985-01-01
Modern high resolution medical computed tomography (CT) scanners can produce geometrically accurate sectional images of many types of industrial objects. Computer software has been developed to convert serial CT scans into a three-dimensional surface form, suitable for display on the scanner itself. This software, originally developed for imaging the skull, has been adapted for application to industrial CT scanning, where serial CT scans thrrough an object of interest may be reconstructed to demonstrate spatial relationships in three dimensions that cannot be easily understood using the original slices. The methods of three-dimensional reconstruction and solid modeling are reviewed, and reconstruction in three dimensions from CT scans through familiar objects is demonstrated.
Freitag, Martin T; Kesch, Claudia; Cardinale, Jens; Flechsig, Paul; Floca, Ralf; Eiber, Matthias; Bonekamp, David; Radtke, Jan P; Kratochwil, Clemens; Kopka, Klaus; Hohenfellner, Markus; Stenzinger, Albrecht; Schlemmer, Heinz-Peter; Haberkorn, Uwe; Giesel, Frederik
2018-03-01
The aim of the present study was to explore the clinical feasibility and reproducibility of a comprehensive whole-body 18 F-PSMA-1007-PET/MRI protocol for imaging prostate cancer (PC) patients. Eight patients with high-risk biopsy-proven PC underwent a whole-body PET/MRI (3 h p.i.) including a multi-parametric prostate MRI after 18 F-PSMA-1007-PET/CT (1 h p.i.) which served as reference. Seven patients presented with non-treated PC, whereas one patient presented with biochemical recurrence. SUV mean -quantification was performed using a 3D-isocontour volume-of-interest. Imaging data was consulted for TNM-staging and compared with histopathology. PC was confirmed in 4/7 patients additionally by histopathology after surgery. PET-artifacts, co-registration of pelvic PET/MRI and MRI-data were assessed (PI-RADS 2.0). The examinations were well accepted by patients and comprised 1 h. SUV mean -values between PET/CT (1 h p.i.) and PET/MRI (3 h p.i.) were significantly correlated (p < 0.0001, respectively) and similar to literature of 18 F-PSMA-1007-PET/CT 1 h vs 3 h p.i. The dominant intraprostatic lesion could be detected in all seven patients in both PET and MRI. T2c, T3a, T3b and T4 features were detected complimentarily by PET and MRI in five patients. PET/MRI demonstrated moderate photopenic PET-artifacts surrounding liver and kidneys representing high-contrast areas, no PET-artifacts were observed for PET/CT. Simultaneous PET-readout during prostate MRI achieved optimal co-registration results. The presented 18 F-PSMA-1007-PET/MRI protocol combines efficient whole-body assessment with high-resolution co-registered PET/MRI of the prostatic fossa for comprehensive oncological staging of patients with PC.
Kimoto, Hideshi; Nozaki, Ken; Kudo, Setsuko; Kato, Ken; Negishi, Akira; Kayanne, Hajime
2002-03-01
A fully automated, continuous-flow-through type analyzer was developed to observe rapid changes in the concentration of total inorganic carbon (CT) in coastal zones. Seawater and an H3PO4 solution were fed into the analyzer's mixing coil by two high-precision valveless piston pumps. The CO2 was stripped from the seawater and moved into a carrier gas, using a newly developed continuous-flow-through CO2 extractor. A mass flow controller was used to assure a precise flow rate of the carrier gas. The CO2 concentration was then determined with a nondispersive infrared gas analyzer. This analyzer achieved a time-resolution of as good as 1 min. In field experiments on a shallow reef flat of Shiraho (Ishigaki Island, Southwest Japan), the analyzer detected short-term, yet extreme, variations in CT which manual sampling missed. Analytical values obtained by the analyzer on the boat were compared with those determined by potentiometric titration with a closed cell in a laboratory: CT(flow-through) = 0.980 x CT(titration) + 38.8 with r2 = 0.995 (n = 34; September 1998).
Image analysis of pulmonary nodules using micro CT
NASA Astrophysics Data System (ADS)
Niki, Noboru; Kawata, Yoshiki; Fujii, Masashi; Kakinuma, Ryutaro; Moriyama, Noriyuki; Tateno, Yukio; Matsui, Eisuke
2001-07-01
We are developing a micro-computed tomography (micro CT) system for imaging pulmonary nodules. The purpose is to enhance the physician performance in accessing the micro- architecture of the nodule for classification between malignant and benign nodules. The basic components of the micro CT system consist of microfocus X-ray source, a specimen manipulator, and an image intensifier detector coupled to charge-coupled device (CCD) camera. 3D image reconstruction was performed by the slice. A standard fan- beam convolution and backprojection algorithm was used to reconstruct the center plane intersecting the X-ray source. The preprocessing of the 3D image reconstruction included the correction of the geometrical distortions and the shading artifact introduced by the image intensifier. The main advantage of the system is to obtain a high spatial resolution which ranges between b micrometers and 25 micrometers . In this work we report on preliminary studies performed with the micro CT for imaging resected tissues of normal and abnormal lung. Experimental results reveal micro architecture of lung tissues, such as alveolar wall, septal wall of pulmonary lobule, and bronchiole. From the results, the micro CT system is expected to have interesting potentials for high confidential differential diagnosis.
NASA Astrophysics Data System (ADS)
Hofmann, Michael; Weitzel, Thilo; Krause, Thomas
2006-12-01
As radio peptide tracers have been developed in recent years for the high sensitive detection of neuroendocrine tumors, still the broad application of other peptides to breast and prostate cancer is missing. A rapid screening of new peptides can, in theory, be based on in vivo screening in animals by PET/CT. To test this hypothesis and to asses the minimum screening time needed per animal, we used the application of Ga-68-DOTATOC PET/CT in rats as test system. The Ga-68-DOTATOC yields in a hot spot imaging with minimal background. To delineate liver and spleen, we performed PET/CT of 10 animals on a SIEMENS Biograph 16 LSO HIGHREZ after intravenous injection of 1.5 MBq Ga-68-DOTATOC per animal. Animals were mounted in an '18 slot' holding device and scanned for a single-bed position. The emission times for the PET scan was varied from 1 to 20 min. The images were assessed first for "PET only" and afterwards in PET/CT fusion mode. The detection of the two organs was good at emission times down to 1 min in PET/CT fusion mode. In the "PET only" scans, the liver was clearly to be identified down to 1 min emission in all animals. But the spleen could only be delineated only by 1 min of emission in the PET/CT-fusion mode. In conclusion the screening of "hot spot" enriching peptides is feasible. "PET only" is in terms of delineation of small organs by far inferior to PET/CT fusion. If animal tumors are above a diameter of 10 mm small, animal PET/CT using clinical high resolution scanners will enable rapid screening. Even the determination of bio-distributions becomes feasible by using list mode tools. The time for the whole survey of 18 animals including anesthesia, preparation and mounting was approximately 20 min. By use of several holding devices mounted simultaneously, a survey time of less than 1 h for 180 animals can be expected.
Region-of-interest image reconstruction in circular cone-beam microCT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cho, Seungryong; Bian, Junguo; Pelizzari, Charles A.
2007-12-15
Cone-beam microcomputed tomography (microCT) is one of the most popular choices for small animal imaging which is becoming an important tool for studying animal models with transplanted diseases. Region-of-interest (ROI) imaging techniques in CT, which can reconstruct an ROI image from the projection data set of the ROI, can be used not only for reducing imaging-radiation exposure to the subject and scatters to the detector but also for potentially increasing spatial resolution of the reconstructed images. Increasing spatial resolution in microCT images can facilitate improved accuracy in many assessment tasks. A method proposed previously for increasing CT image spatial resolutionmore » entails the exploitation of the geometric magnification in cone-beam CT. Due to finite detector size, however, this method can lead to data truncation for a large geometric magnification. The Feldkamp-Davis-Kress (FDK) algorithm yields images with artifacts when truncated data are used, whereas the recently developed backprojection filtration (BPF) algorithm is capable of reconstructing ROI images without truncation artifacts from truncated cone-beam data. We apply the BPF algorithm to reconstructing ROI images from truncated data of three different objects acquired by our circular cone-beam microCT system. Reconstructed images by use of the FDK and BPF algorithms from both truncated and nontruncated cone-beam data are compared. The results of the experimental studies demonstrate that, from certain truncated data, the BPF algorithm can reconstruct ROI images with quality comparable to that reconstructed from nontruncated data. In contrast, the FDK algorithm yields ROI images with truncation artifacts. Therefore, an implication of the studies is that, when truncated data are acquired with a configuration of a large geometric magnification, the BPF algorithm can be used for effective enhancement of the spatial resolution of a ROI image.« less
A variable resolution x-ray detector for computed tomography: II. Imaging theory and performance.
DiBianca, F A; Zou, P; Jordan, L M; Laughter, J S; Zeman, H D; Sebes, J
2000-08-01
A computed tomography (CT) imaging technique called variable resolution x-ray (VRX) detection provides variable image resolution ranging from that of clinical body scanning (1 cy/mm) to that of microscopy (100 cy/mm). In this paper, an experimental VRX CT scanner based on a rotating subject table and an angulated storage phosphor screen detector is described and tested. The measured projection resolution of the scanner is > or = 20 lp/mm. Using this scanner, 4.8-s CT scans are made of specimens of human extremities and of in vivo hamsters. In addition, the system's projected spatial resolution is calculated to exceed 100 cy/mm for a future on-line CT scanner incorporating smaller focal spots (0.1 mm) than those currently used and a 1008-channel VRX detector with 0.6-mm cell spacing.
Mori, Shinichiro; Inaniwa, Taku; Kumagai, Motoki; Kuwae, Tsunekazu; Matsuzaki, Yuka; Furukawa, Takuji; Shirai, Toshiyuki; Noda, Koji
2012-06-01
To increase the accuracy of carbon ion beam scanning therapy, we have developed a graphical user interface-based digitally-reconstructed radiograph (DRR) software system for use in routine clinical practice at our center. The DRR software is used in particular scenarios in the new treatment facility to achieve the same level of geometrical accuracy at the treatment as at the imaging session. DRR calculation is implemented simply as the summation of CT image voxel values along the X-ray projection ray. Since we implemented graphics processing unit-based computation, the DRR images are calculated with a speed sufficient for the particular clinical practice requirements. Since high spatial resolution flat panel detector (FPD) images should be registered to the reference DRR images in patient setup process in any scenarios, the DRR images also needs higher spatial resolution close to that of FPD images. To overcome the limitation of the CT spatial resolution imposed by the CT voxel size, we applied image processing to improve the calculated DRR spatial resolution. The DRR software introduced here enabled patient positioning with sufficient accuracy for the implementation of carbon-ion beam scanning therapy at our center.
Multiresolution Iterative Reconstruction in High-Resolution Extremity Cone-Beam CT
Cao, Qian; Zbijewski, Wojciech; Sisniega, Alejandro; Yorkston, John; Siewerdsen, Jeffrey H; Stayman, J Webster
2016-01-01
Application of model-based iterative reconstruction (MBIR) to high resolution cone-beam CT (CBCT) is computationally challenging because of the very fine discretization (voxel size <100 µm) of the reconstructed volume. Moreover, standard MBIR techniques require that the complete transaxial support for the acquired projections is reconstructed, thus precluding acceleration by restricting the reconstruction to a region-of-interest. To reduce the computational burden of high resolution MBIR, we propose a multiresolution Penalized-Weighted Least Squares (PWLS) algorithm, where the volume is parameterized as a union of fine and coarse voxel grids as well as selective binning of detector pixels. We introduce a penalty function designed to regularize across the boundaries between the two grids. The algorithm was evaluated in simulation studies emulating an extremity CBCT system and in a physical study on a test-bench. Artifacts arising from the mismatched discretization of the fine and coarse sub-volumes were investigated. The fine grid region was parameterized using 0.15 mm voxels and the voxel size in the coarse grid region was varied by changing a downsampling factor. No significant artifacts were found in either of the regions for downsampling factors of up to 4×. For a typical extremities CBCT volume size, this downsampling corresponds to an acceleration of the reconstruction that is more than five times faster than a brute force solution that applies fine voxel parameterization to the entire volume. For certain configurations of the coarse and fine grid regions, in particular when the boundary between the regions does not cross high attenuation gradients, downsampling factors as high as 10× can be used without introducing artifacts, yielding a ~50× speedup in PWLS. The proposed multiresolution algorithm significantly reduces the computational burden of high resolution iterative CBCT reconstruction and can be extended to other applications of MBIR where computationally expensive, high-fidelity forward models are applied only to a sub-region of the field-of-view. PMID:27694701
High-resolution PET [Positron Emission Tomography] for Medical Science Studies
DOE R&D Accomplishments Database
Budinger, T. F.; Derenzo, S. E.; Huesman, R. H.; Jagust, W. J.; Valk, P. E.
1989-09-01
One of the unexpected fruits of basic physics research and the computer revolution is the noninvasive imaging power available to today's physician. Technologies that were strictly the province of research scientists only a decade or two ago now serve as the foundations for such standard diagnostic tools as x-ray computer tomography (CT), magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS), ultrasound, single photon emission computed tomography (SPECT), and positron emission tomography (PET). Furthermore, prompted by the needs of both the practicing physician and the clinical researcher, efforts to improve these technologies continue. This booklet endeavors to describe the advantages of achieving high resolution in PET imaging.
In vivo small animal micro-CT using nanoparticle contrast agents
Ashton, Jeffrey R.; West, Jennifer L.; Badea, Cristian T.
2015-01-01
Computed tomography (CT) is one of the most valuable modalities for in vivo imaging because it is fast, high-resolution, cost-effective, and non-invasive. Moreover, CT is heavily used not only in the clinic (for both diagnostics and treatment planning) but also in preclinical research as micro-CT. Although CT is inherently effective for lung and bone imaging, soft tissue imaging requires the use of contrast agents. For small animal micro-CT, nanoparticle contrast agents are used in order to avoid rapid renal clearance. A variety of nanoparticles have been used for micro-CT imaging, but the majority of research has focused on the use of iodine-containing nanoparticles and gold nanoparticles. Both nanoparticle types can act as highly effective blood pool contrast agents or can be targeted using a wide variety of targeting mechanisms. CT imaging can be further enhanced by adding spectral capabilities to separate multiple co-injected nanoparticles in vivo. Spectral CT, using both energy-integrating and energy-resolving detectors, has been used with multiple contrast agents to enable functional and molecular imaging. This review focuses on new developments for in vivo small animal micro-CT using novel nanoparticle probes applied in preclinical research. PMID:26581654
TLD assessment of mouse dosimetry during microCT imaging
Figueroa, Said Daibes; Winkelmann, Christopher T.; Miller, William H.; Volkert, Wynn A.; Hoffman, Timothy J.
2008-01-01
Advances in laboratory animal imaging have provided new resources for noninvasive biomedical research. Among these technologies is microcomputed tomography (microCT) which is widely used to obtain high resolution anatomic images of small animals. Because microCT utilizes ionizing radiation for image formation, radiation exposure during imaging is a concern. The objective of this study was to quantify the radiation dose delivered during a standard microCT scan. Radiation dose was measured using thermoluminescent dosimeters (TLDs), which were irradiated employing an 80 kVp x-ray source, with 0.5 mm Al filtration and a total of 54 mA s for a full 360 deg rotation of the unit. The TLD data were validated using a 3.2 cm3 CT ion chamber probe. TLD results showed a single microCT scan air kerma of 78.0±5.0 mGy when using a poly(methylmethacrylate) (PMMA) anesthesia support module and an air kerma of 92.0±6.0 mGy without the use of the anesthesia module. The validation CT ion chamber study provided a measured radiation air kerma of 81.0±4.0 mGy and 97.0±5.0 mGy with and without the PMMA anesthesia module, respectively. Internal TLD analysis demonstrated an average mouse organ radiation absorbed dose of 76.0±5.0 mGy. The author’s results have defined x-ray exposure for a routine microCT study which must be taken into consideration when performing serial molecular imaging studies involving the microCT imaging modality. PMID:18841837
[Adult transient intestinal intussusception: can abdominal CT guide resolution?].
Stabile Ianora, Amato Antonio; Telegrafo, Michele; Lorusso, Valentina; Rella, Leonarda; Niccoli Asabella, Artor; La Porta, Michele; Moschetta, Marco
2013-01-01
The purpose of this study was to evaluate the adult transient intestinal intussusceptions on CT before and after the administration of gastrointestinal contrast material. We evaluated two different gastrointestinal contrast materials: hyperdense and hypodense. In all cases the gastrointestinal contrast agent solved the invaginations. In the group of patients treated with hypodense contrast medium relapses occurred in the short and long term; no recurrence was observed in the other group. CT is useful in the recognition of intestinal intussusception. The gastrointestinal contrast agent could define the real transience of intussusceptions and hyperdense contrast agent could be more effective in short and long term resolution.
Novel application of three-dimensional technologies in a case of dismemberment.
Baier, Waltraud; Norman, Danielle G; Warnett, Jason M; Payne, Mark; Harrison, Nigel P; Hunt, Nicholas C A; Burnett, Brian A; Williams, Mark A
2017-01-01
This case study reports the novel application of three-dimensional technologies such as micro-CT and 3D printing to the forensic investigation of a complex case of dismemberment. Micro-CT was successfully employed to virtually align severed skeletal elements found in different locations, analyse tool marks created during the dismemberment process, and virtually dissect a charred piece of evidence. High resolution 3D prints of the burnt human bone contained within were created for physical visualisation to assist the investigation team. Micro-CT as a forensic radiological method provided vital information and the basis for visualisation both during the investigation and in the subsequent trial making it one of the first examples of such technology in a UK court. Copyright © 2016. Published by Elsevier B.V.
Exploring Hominin and Non-hominin Primate Dental Fossil Remains with Neutron Microtomography
NASA Astrophysics Data System (ADS)
Zanolli, Clément; Schillinger, Burkhard; Beaudet, Amélie; Kullmer, Ottmar; Macchiarelli, Roberto; Mancini, Lucia; Schrenk, Friedemann; Tuniz, Claudio; Vodopivec, Vladimira
Fossil dental remains are an archive of unique information for paleobiological studies. Computed microtomography based on X-ray microfocus sources (X-μCT) and Synchrotron Radiation (SR-μCT) allow subtle quantification at the micron and sub-micron scale of the meso- and microstructural signature imprinted in the mineralized tissues, such as enamel and dentine, through high-resolution ;virtual histology;. Nonetheless, depending on the degree of alterations undergone during fossilization, X-ray analyses of tooth tissues do not always provide distinct imaging contrasts, thus preventing the extraction of essential morphological and anatomical details. We illustrate here by three examples the successful application of neutron microtomography (n-μCT) in cases where X-rays have previously failed to deliver contrasts between dental tissues of fossilized specimen.
A super-resolution ultrasound method for brain vascular mapping
O'Reilly, Meaghan A.; Hynynen, Kullervo
2013-01-01
Purpose: High-resolution vascular imaging has not been achieved in the brain due to limitations of current clinical imaging modalities. The authors present a method for transcranial ultrasound imaging of single micrometer-size bubbles within a tube phantom. Methods: Emissions from single bubbles within a tube phantom were mapped through an ex vivo human skull using a sparse hemispherical receiver array and a passive beamforming algorithm. Noninvasive phase and amplitude correction techniques were applied to compensate for the aberrating effects of the skull bone. The positions of the individual bubbles were estimated beyond the diffraction limit of ultrasound to produce a super-resolution image of the tube phantom, which was compared with microcomputed tomography (micro-CT). Results: The resulting super-resolution ultrasound image is comparable to results obtained via the micro-CT for small tissue specimen imaging. Conclusions: This method provides superior resolution to deep-tissue contrast ultrasound and has the potential to be extended to provide complete vascular network imaging in the brain. PMID:24320408
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noid, G; Tai, A; Li, X
2015-06-15
Purpose: Iterative reconstruction (IR) algorithms are developed to improve CT image quality (IQ) by reducing noise without diminishing spatial resolution or contrast. The CT IQ for patients with a high Body Mass Index (BMI) can suffer from increased noise due to photon starvation. The purpose of this study is to investigate and to quantify the IQ enhancement for high BMI patients through the application of IR algorithms. Methods: CT raw data collected for 6 radiotherapy (RT) patients with BMI, greater than or equal to 30 were retrospectively analyzed. All CT data were acquired using a CT scanner (Somaton Definition ASmore » Open, Siemens) installed in a linac room (CT-on-rails) using standard imaging protocols. The CT data were reconstructed using the Sinogram Affirmed Iterative Reconstruction (SAFIRE) and Filtered Back Projection (FBP) methods. IQ metrics of the obtained CTs were compared and correlated with patient depth and BMI. The patient depth was defined as the largest distance from anterior to posterior along the bilateral symmetry axis. Results: IR techniques are demonstrated to preserve contrast and reduce noise in comparison to traditional FBP. Driven by the reduction in noise, the contrast to noise ratio is roughly doubled by adopting the highest SAFIRE strength. A significant correlation was observed between patient depth and IR noise reduction through Pearson’s correlation test (R = 0.9429/P = 0.0167). The mean patient depth was 30.4 cm and the average relative noise reduction for the strongest iterative reconstruction was 55%. Conclusion: The IR techniques produce a measureable enhancement to CT IQ by reducing the noise. Dramatic noise reduction is evident for the high BMI patients. The improved CT IQ enables more accurate delineation of tumors and organs at risk and more accuarte dose calculations for RT planning and delivery guidance. Supported by Siemens.« less
Arabi, Hosein; Asl, Ali Reza Kamali; Ay, Mohammad Reza; Zaidi, Habib
2011-03-01
The variable resolution x-ray (VRX) CT scanner provides substantial improvement in the spatial resolution by matching the scanner's field of view (FOV) to the size of the object being imaged. Intercell x-ray cross-talk is one of the most important factors limiting the spatial resolution of the VRX detector. In this work, a new cell arrangement in the VRX detector is suggested to decrease the intercell x-ray cross-talk. The idea is to orient the detector cells toward the opening end of the detector. Monte Carlo simulations were used for performance assessment of the oriented cell detector design. Previously published design parameters and simulation results of x-ray cross-talk for the VRX detector were used for model validation using the GATE Monte Carlo package. In the first step, the intercell x-ray cross-talk of the actual VRX detector model was calculated as a function of the FOV. The obtained results indicated an optimum cell orientation angle of 28 degrees to minimize the x-ray cross-talk in the VRX detector. Thereafter, the intercell x-ray cross-talk in the oriented cell detector was modeled and quantified. The intercell x-ray cross-talk in the actual detector model was considerably high, reaching up to 12% at FOVs from 24 to 38 cm. The x-ray cross-talk in the oriented cell detector was less than 5% for all possible FOVs, except 40 cm (maximum FOV). The oriented cell detector could provide considerable decrease in the intercell x-ray cross-talk for the VRX detector, thus leading to significant improvement in the spatial resolution and reduction in the spatial resolution nonuniformity across the detector length. The proposed oriented cell detector is the first dedicated detector design for the VRX CT scanners. Application of this concept to multislice and flat-panel VRX detectors would also result in higher spatial resolution.
Lechuga, Lawrence; Weidlich, Georg A
2016-09-12
A comparison of image quality and dose delivered between two differing computed tomography (CT) imaging modalities-fan beam and cone beam-was performed. A literature review of quantitative analyses for various image quality aspects such as uniformity, signal-to-noise ratio, artifact presence, spatial resolution, modulation transfer function (MTF), and low contrast resolution was generated. With these aspects quantified, cone beam computed tomography (CBCT) shows a superior spatial resolution to that of fan beam, while fan beam shows a greater ability to produce clear and anatomically correct images with better soft tissue differentiation. The results indicate that fan beam CT produces superior images to that of on-board imaging (OBI) cone beam CT systems, while providing a considerably less dose to the patient.
Weidlich, Georg A.
2016-01-01
A comparison of image quality and dose delivered between two differing computed tomography (CT) imaging modalities—fan beam and cone beam—was performed. A literature review of quantitative analyses for various image quality aspects such as uniformity, signal-to-noise ratio, artifact presence, spatial resolution, modulation transfer function (MTF), and low contrast resolution was generated. With these aspects quantified, cone beam computed tomography (CBCT) shows a superior spatial resolution to that of fan beam, while fan beam shows a greater ability to produce clear and anatomically correct images with better soft tissue differentiation. The results indicate that fan beam CT produces superior images to that of on-board imaging (OBI) cone beam CT systems, while providing a considerably less dose to the patient. PMID:27752404
Temporal resolution and motion artifacts in single-source and dual-source cardiac CT.
Schöndube, Harald; Allmendinger, Thomas; Stierstorfer, Karl; Bruder, Herbert; Flohr, Thomas
2013-03-01
The temporal resolution of a given image in cardiac computed tomography (CT) has so far mostly been determined from the amount of CT data employed for the reconstruction of that image. The purpose of this paper is to examine the applicability of such measures to the newly introduced modality of dual-source CT as well as to methods aiming to provide improved temporal resolution by means of an advanced image reconstruction algorithm. To provide a solid base for the examinations described in this paper, an extensive review of temporal resolution in conventional single-source CT is given first. Two different measures for assessing temporal resolution with respect to the amount of data involved are introduced, namely, either taking the full width at half maximum of the respective data weighting function (FWHM-TR) or the total width of the weighting function (total TR) as a base of the assessment. Image reconstruction using both a direct fan-beam filtered backprojection with Parker weighting as well as using a parallel-beam rebinning step are considered. The theory of assessing temporal resolution by means of the data involved is then extended to dual-source CT. Finally, three different advanced iterative reconstruction methods that all use the same input data are compared with respect to the resulting motion artifact level. For brevity and simplicity, the examinations are limited to two-dimensional data acquisition and reconstruction. However, all results and conclusions presented in this paper are also directly applicable to both circular and helical cone-beam CT. While the concept of total TR can directly be applied to dual-source CT, the definition of the FWHM of a weighting function needs to be slightly extended to be applicable to this modality. The three different advanced iterative reconstruction methods examined in this paper result in significantly different images with respect to their motion artifact level, despite exactly the same amount of data being used in the reconstruction process. The concept of assessing temporal resolution by means of the data employed for reconstruction can nicely be extended from single-source to dual-source CT. However, for advanced (possibly nonlinear iterative) reconstruction algorithms the examined approach fails to deliver accurate results. New methods and measures to assess the temporal resolution of CT images need to be developed to be able to accurately compare the performance of such algorithms.
Aubry, S; Pousse, A; Sarliève, P; Laborie, L; Delabrousse, E; Kastler, B
2006-11-01
To model vertebrae in 3D to improve radioanatomic knowledge of the spine with the vascular and nerve environment and simulate CT-guided interventions. Vertebra acquisitions were made with multidetector CT. We developed segmentation software and specific viewer software using the Delphi programming environment. This segmentation software makes it possible to model 3D high-resolution segments of vertebrae and their environment from multidetector CT acquisitions. Then the specific viewer software provides multiplanar reconstructions of the CT volume and the possibility to select different 3D objects of interest. This software package improves radiologists' radioanatomic knowledge through a new 3D anatomy presentation. Furthermore, the possibility of inserting virtual 3D objects in the volume can simulate CT-guided intervention. The first volumetric radioanatomic software has been born. Furthermore, it simulates CT-guided intervention and consequently has the potential to facilitate learning interventions using CT guidance.
Quantitative imaging of peripheral trabecular bone microarchitecture using MDCT.
Chen, Cheng; Zhang, Xiaoliu; Guo, Junfeng; Jin, Dakai; Letuchy, Elena M; Burns, Trudy L; Levy, Steven M; Hoffman, Eric A; Saha, Punam K
2018-01-01
Osteoporosis associated with reduced bone mineral density (BMD) and microarchitectural changes puts patients at an elevated risk of fracture. Modern multidetector row CT (MDCT) technology, producing high spatial resolution at increasingly lower dose radiation, is emerging as a viable modality for trabecular bone (Tb) imaging. Wide variation in CT scanners raises concerns of data uniformity in multisite and longitudinal studies. A comprehensive cadaveric study was performed to evaluate MDCT-derived Tb microarchitectural measures. A human pilot study was performed comparing continuity of Tb measures estimated from two MDCT scanners with significantly different image resolution features. Micro-CT imaging of cadaveric ankle specimens (n=25) was used to examine the validity of MDCT-derived Tb microarchitectural measures. Repeat scan reproducibility of MDCT-based Tb measures and their ability to predict mechanical properties were examined. To assess multiscanner data continuity of Tb measures, the distal tibias of 20 volunteers (age:26.2±4.5Y,10F) were scanned using the Siemens SOMATOM Definition Flash and the higher resolution Siemens SOMATOM Force scanners with an average 45-day time gap between scans. The correlation of Tb measures derived from the two scanners over 30% and 60% peel regions at the 4% to 8% of distal tibia was analyzed. MDCT-based Tb measures characterizing bone network area density, plate-rod microarchitecture, and transverse trabeculae showed good correlations (r∈0.85,0.92) with the gold standard micro-CT-derived values of matching Tb measures. However, other MDCT-derived Tb measures characterizing trabecular thickness and separation, erosion index, and structure model index produced weak correlation (r<0.8) with their micro-CT-derived values. Most MDCT Tb measures were found repeatable (ICC∈0.94,0.98). The Tb plate-width measure showed a strong correlation (r = 0.89) with experimental yield stress, while the transverse trabecular measure produced the highest correlation (r = 0.81) with Young's modulus. The data continuity experiment showed that, despite significant differences in image resolution between two scanners (10% MTF along xy-plane and z-direction - Flash: 16.2 and 17.9 lp/cm; Force: 24.8 and 21.0 lp/cm), most Tb measures had high Pearson correlations (r > 0.95) between values estimated from the two scanners. Relatively lower correlation coefficients were observed for the bone network area density (r = 0.91) and Tb separation (r = 0.93) measures. Most MDCT-derived Tb microarchitectural measures are reproducible and their values derived from two scanners strongly correlate with each other as well as with bone strength. This study has highlighted those MDCT-derived measures which show the greatest promise for characterization of bone network area density, plate-rod and transverse trabecular distributions with a good correlation (r ≥ 0.85) compared with their micro-CT-derived values. At the same time, other measures representing trabecular thickness and separation, erosion index, and structure model index produced weak correlations (r < 0.8) with their micro-CT-derived values, failing to accurately portray the projected trabecular microarchitectural features. Strong correlations of Tb measures estimated from two scanners suggest that image data from different scanners can be used successfully in multisite and longitudinal studies with linear calibration required for some measures. In summary, modern MDCT scanners are suitable for effective quantitative imaging of peripheral Tb microarchitecture if care is taken to focus on appropriate quantitative metrics. © 2017 American Association of Physicists in Medicine.
Evaluation of a High-Resolution Benchtop Micro-CT Scanner for Application in Porous Media Research
NASA Astrophysics Data System (ADS)
Tuller, M.; Vaz, C. M.; Lasso, P. O.; Kulkarni, R.; Ferre, T. A.
2010-12-01
Recent advances in Micro Computed Tomography (MCT) provided the motivation to thoroughly evaluate and optimize scanning, image reconstruction/segmentation and pore-space analysis capabilities of a new generation benchtop MCT scanner and associated software package. To demonstrate applicability to soil research the project was focused on determination of porosities and pore size distributions of two Brazilian Oxisols from segmented MCT-data. Effects of metal filters and various acquisition parameters (e.g. total rotation, rotation step, and radiograph frame averaging) on image quality and acquisition time are evaluated. Impacts of sample size and scanning resolution on CT-derived porosities and pore-size distributions are illustrated.
NASA Astrophysics Data System (ADS)
Dall'Ara, Enrico; Peña-Fernández, Marta; Palanca, Marco; Giorgi, Mario; Cristofolini, Luca; Tozzi, Gianluca
2017-11-01
Accurate measurement of local strain in heterogeneous and anisotropic bone tissue is fundamental to understand the pathophysiology of musculoskeletal diseases, to evaluate the effect of interventions from preclinical studies, and to optimize the design and delivery of biomaterials. Digital volume correlation (DVC) can be used to measure the three-dimensional displacement and strain fields from micro-Computed Tomography (µCT) images of loaded specimens. However, this approach is affected by the quality of the input images, by the morphology and density of the tissue under investigation, by the correlation scheme, and by the operational parameters used in the computation. Therefore, for each application the precision of the method should be evaluated. In this paper we present the results collected from datasets analyzed in previous studies as well as new data from a recent experimental campaign for characterizing the relationship between the precision of two different DVC approaches and the spatial resolution of the outputs. Different bone structures scanned with laboratory source µCT or Synchrotron light µCT (SRµCT) were processed in zero-strain tests to evaluate the precision of the DVC methods as a function of the subvolume size that ranged from 8 to 2500 micrometers. The results confirmed that for every microstructure the precision of DVC improves for larger subvolume size, following power laws. However, for the first time large differences in the precision of both local and global DVC approaches have been highlighted when SRµCT or in vivo µCT images were used instead of conventional ex vivo µCT. These findings suggest that in situ mechanical testing protocols applied in SRµCT facilities should be optimized in order to allow DVC analyses of localized strain measurements. Moreover, for in vivo µCT applications DVC analyses should be performed only with relatively course spatial resolution for achieving a reasonable precision of the method. In conclusion, we have extensively shown that the precision of both tested DVC approaches is affected by different bone structures, different input image resolution and different subvolume sizes. Before each specific application DVC users should always apply a similar approach to find the best compromise between precision and spatial resolution of the measurements.
Penalized weighted least-squares approach for low-dose x-ray computed tomography
NASA Astrophysics Data System (ADS)
Wang, Jing; Li, Tianfang; Lu, Hongbing; Liang, Zhengrong
2006-03-01
The noise of low-dose computed tomography (CT) sinogram follows approximately a Gaussian distribution with nonlinear dependence between the sample mean and variance. The noise is statistically uncorrelated among detector bins at any view angle. However the correlation coefficient matrix of data signal indicates a strong signal correlation among neighboring views. Based on above observations, Karhunen-Loeve (KL) transform can be used to de-correlate the signal among the neighboring views. In each KL component, a penalized weighted least-squares (PWLS) objective function can be constructed and optimal sinogram can be estimated by minimizing the objective function, followed by filtered backprojection (FBP) for CT image reconstruction. In this work, we compared the KL-PWLS method with an iterative image reconstruction algorithm, which uses the Gauss-Seidel iterative calculation to minimize the PWLS objective function in image domain. We also compared the KL-PWLS with an iterative sinogram smoothing algorithm, which uses the iterated conditional mode calculation to minimize the PWLS objective function in sinogram space, followed by FBP for image reconstruction. Phantom experiments show a comparable performance of these three PWLS methods in suppressing the noise-induced artifacts and preserving resolution in reconstructed images. Computer simulation concurs with the phantom experiments in terms of noise-resolution tradeoff and detectability in low contrast environment. The KL-PWLS noise reduction may have the advantage in computation for low-dose CT imaging, especially for dynamic high-resolution studies.
Fusion of MRIs and CT scans for surgical treatment of cholesteatoma of the middle ear in children.
Plouin-Gaudon, Isabelle; Bossard, Denis; Ayari-Khalfallah, Sonia; Froehlich, Patrick
2010-09-01
To evaluate the efficiency of diffusion-weighted magnetic resonance imaging (MRI) and high-resolution computed tomographic (CT) scan coregistration in predicting and adequately locating primary or recurrent cholesteatoma in children. Prospective study. Tertiary care university hospital. Ten patients aged 2 to 17 years (mean age, 8.5 years) with cholesteatoma of the middle ear, some of which were previously treated, were included for follow-up with systematic CT scanning and MRI between 2007 and 2008. Computed tomographic scanning was performed on a Siemens Somaton 128 (0.5/0.2-mm slices reformatted in 0.5/0.3-mm images). Fine cuts were obtained parallel and perpendicular to the lateral semicircular canal in each ear (100 × 100-mm field of view). Magnetic resonance imaging was undertaken on a Siemens Avanto 1.5T unit, with a protocol adapted for young children. Diffusion-weighted imaging was acquired using a single-shot turbo spin-echo mode. To allow for diagnosis and localization of the cholesteatoma, CT and diffusion-weighted MRIs were fused for each case. In 10 children, fusion technique allowed for correct diagnosis and precise localization (hypotympanum, epitympanum, mastoid recess, and attical space) as confirmed by subsequent standard surgery (positive predictive value, 100%). In 3 cases, the surgical approach was adequately determined from the fusion results. Lesion sizes on the CT-MRI fusion corresponded with perioperative findings. Recent developments in imaging techniques have made diffusion-weighted MRI more effective for detecting recurrent cholesteatoma. The major drawback of this technique, however, has been its poor anatomical and spatial discrimination. Fusion imaging using high-resolution CT and diffusion-weighted MRI appears to be a promising technique for both the diagnosis and precise localization of cholesteatomas. It provides useful information for surgical planning and, furthermore, is easy to use in pediatric cases.
Transmission electron microscopy study of the MgS–Tm{sub 2}S{sub 3} system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Varadé-López, R., E-mail: rebeca.varade@ucm.es; Ávila-Brande, D., E-mail: davilabr@ucm.es; Urones-Garrote, E., E-mail: esteban.urones@pdi.ucm.es
2015-09-15
This work presents the structural–microstructural characterization of the NaCl-derivative MgS–Tm{sub 2}S{sub 3} system, which can be formulated by the expression Mg{sub (1−x)}Tm{sub (2/3)x}□{sub (1/3)x}S (□→cation vacancy). Transmission electron microscopy observations show the transition between NaCl-type and spinel-type structures when 0 ≤x≤ 0.75. The increase of Tm content in the solid solution provokes the increase of the spinel-type phase proportion, which intergrows with the NaCl-type crystals. When x≥0.75, some phases derived from NaCl-type structure through the chemical twinning at the unit cell level crystallographic operation are observed, such as CT-MgTm{sub 2}S{sub 4} and CT-MgTm{sub 4}S{sub 7}. The existence and nature ofmore » the extended defects observed along the c direction of these structures are characterized by means of Scanning-Transmission electron microscopy high-angle dark field imaging, which allows observing the presence of quasi ordered crystals with new possible complex stoichiometries at atomic resolution. - Graphical abstract: HAADF-STEM image of a disordered CT-MgYb{sub 2}S{sub 4} crystal. The disordered twin-slab sequences are marked by arrows. - Highlights: • Structural evolution of the Mg{sub (1−x)}Tm{sub (2/3)x}□{sub (1/3)x}S system was characterized by means of TEM. • The increase in Tm content provokes the transition from NaCl to spinel-type structure up to x=0.75. • Chemical twinned phases CT-MgTm{sub 2}S{sub 4} and CT-MgTm{sub 4}S{sub 7} are observed at high Tm contents. • Extended defects in CT-crystals are characterized with atomic resolution STEM-HAADF images.« less
Arteriovenous fistula complicating iliac artery pseudo aneurysm: diagnosis by CT angiography.
Huawei, L; Bei, D; Huan, Z; Zilai, P; Aorong, T; Kemin, C
2002-01-01
Fistula formation to the inferior vena cava is a rare complication of aortic aneurysm which is often misdiagnosed clinically. In one hundred of reported arteriocaval fistulae, none was originating from the right common iliac artery. We report a case of ileo-caval fistula due to a iatrogenic pseudoaneurysm. High resolution 3D imaging using breath-hold CT angiography is highly specific in identifying the location, extent of the aortocaval fistula as well as the neighbouring anatomic structures.
Sarikaya, Ismet; Elgazzar, Abdelhamid H; Sarikaya, Ali; Alfeeli, Mahmoud
2017-10-01
Fluorine-18-sodium fluoride (F-NaF) PET/CT is a relatively new and high-resolution bone imaging modality. Since the use of F-NaF PET/CT has been increasing, it is important to accurately assess the images and be aware of normal distribution and major artifacts. In this pictorial review article, we will describe the normal uptake patterns of F-NaF in the bone tissues, particularly in complex structures, as well as its physiologic soft tissue distribution and certain artifacts seen on F-NaF PET/CT images.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kofler, J.
2016-06-15
Digital radiography, CT, PET, and MR are complicated imaging modalities which are composed of many hardware and software components. These components work together in a highly coordinated chain of events with the intent to produce high quality images. Acquisition, processing and reconstruction of data must occur in a precise way for optimum image quality to be achieved. Any error or unexpected event in the entire process can produce unwanted pixel intensities in the final images which may contribute to visible image artifacts. The diagnostic imaging physicist is uniquely qualified to investigate and contribute to resolution of image artifacts. This coursemore » will teach the participant to identify common artifacts found clinically in digital radiography, CT, PET, and MR, to determine the causes of artifacts, and to make recommendations for how to resolve artifacts. Learning Objectives: Identify common artifacts found clinically in digital radiography, CT, PET and MR. Determine causes of various clinical artifacts from digital radiography, CT, PET and MR. Describe how to resolve various clinical artifacts from digital radiography, CT, PET and MR.« less
High-resolution clustered pinhole (131)Iodine SPECT imaging in mice.
van der Have, Frans; Ivashchenko, Oleksandra; Goorden, Marlies C; Ramakers, Ruud M; Beekman, Freek J
2016-08-01
High-resolution pre-clinical (131)I SPECT can facilitate development of new radioiodine therapies for cancer. To this end, it is important to limit resolution-degrading effects of pinhole edge penetration by the high-energy γ-photons of iodine. Here we introduce, optimize and validate (131)I SPECT performed with a dedicated high-energy clustered multi-pinhole collimator. A SPECT-CT system (VECTor/CT) with stationary gamma-detectors was equipped with a tungsten collimator with clustered pinholes. Images were reconstructed with pixel-based OSEM, using a dedicated (131)I system matrix that models the distance- and energy-dependent resolution and sensitivity of each pinhole, as well as the intrinsic detector blurring and variable depth of interaction in the detector. The system performance was characterized with phantoms and in vivo static and dynamic (131)I-NaI scans of mice. Reconstructed image resolution reached 0.6mm, while quantitative accuracy measured with a (131)I filled syringe reaches an accuracy of +3.6±3.5% of the gold standard value. In vivo mice scans illustrated a clear shape of the thyroid and biodistribution of (131)I within the animal. Pharmacokinetics of (131)I was assessed with 15-s time frames from the sequence of dynamic images and time-activity curves of (131)I-NaI. High-resolution quantitative and fast dynamic (131)I SPECT in mice is possible by means of a high-energy collimator and optimized system modeling. This enables analysis of (131)I uptake even within small organs in mice, which can be highly valuable for development and optimization of targeted cancer therapies. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Kerckhofs, G.; Durand, M.; Vangoitsenhoven, R.; Marin, C.; van der Schueren, B.; Carmeliet, G.; Luyten, F. P.; Geris, L.; Vandamme, K.
2016-10-01
High resolution microfocus X-ray computed tomography (HR-microCT) was employed to characterize the structural alterations of the cortical and trabecular bone in a mouse model of obesity-driven type 2 diabetes (T2DM). C57Bl/6J mice were randomly assigned for 14 weeks to either a control diet-fed (CTRL) or a high fat diet (HFD)-fed group developing obesity, hyperglycaemia and insulin resistance. The HFD group showed an increased trabecular thickness and a decreased trabecular number compared to CTRL animals. Midshaft tibia intracortical porosity was assessed at two spatial image resolutions. At 2 μm scale, no change was observed in the intracortical structure. At 1 μm scale, a decrease in the cortical vascular porosity of the HFD bone was evidenced. The study of a group of 8 week old animals corresponding to animals at the start of the diet challenge revealed that the decreased vascular porosity was T2DM-dependant and not related to the ageing process. Our results offer an unprecedented ultra-characterization of the T2DM compromised skeletal micro-architecture and highlight an unrevealed T2DM-related decrease in the cortical vascular porosity, potentially affecting the bone health and fragility. Additionally, it provides some insights into the technical challenge facing the assessment of the rodent bone structure using HR-microCT imaging.
An extraction algorithm of pulmonary fissures from multislice CT image
NASA Astrophysics Data System (ADS)
Tachibana, Hiroyuki; Saita, Shinsuke; Yasutomo, Motokatsu; Kubo, Mitsuru; Kawata, Yoshiki; Niki, Noboru; Nakano, Yasutaka; Sasagawa, Michizo; Eguchi, Kenji; Moriyama, Noriyuki
2005-04-01
Aging and smoking history increases number of pulmonary emphysema. Alveoli restoration destroyed by pulmonary emphysema is difficult and early direction is important. Multi-slice CT technology has been improving 3-D image analysis with higher body axis resolution and shorter scan time. And low-dose high accuracy scanning becomes available. Multi-slice CT image helps physicians with accurate measuring but huge volume of the image data takes time and cost. This paper is intended for computer added emphysema region analysis and proves effectiveness of proposed algorithm.
Leng, Shuai; Yu, Lifeng; Wang, Jia; Fletcher, Joel G; Mistretta, Charles A; McCollough, Cynthia H
2011-09-01
Our purpose was to reduce image noise in spectral CT by exploiting data redundancies in the energy domain to allow flexible selection of the number, width, and location of the energy bins. Using a variety of spectral CT imaging methods, conventional filtered backprojection (FBP) reconstructions were performed and resulting images were compared to those processed using a Local HighlY constrained backPRojection Reconstruction (HYPR-LR) algorithm. The mean and standard deviation of CT numbers were measured within regions of interest (ROIs), and results were compared between FBP and HYPR-LR. For these comparisons, the following spectral CT imaging methods were used:(i) numerical simulations based on a photon-counting, detector-based CT system, (ii) a photon-counting, detector-based micro CT system using rubidium and potassium chloride solutions, (iii) a commercial CT system equipped with integrating detectors utilizing tube potentials of 80, 100, 120, and 140 kV, and (iv) a clinical dual-energy CT examination. The effects of tube energy and energy bin width were evaluated appropriate to each CT system. The mean CT number in each ROI was unchanged between FBP and HYPR-LR images for each of the spectral CT imaging scenarios, irrespective of bin width or tube potential. However, image noise, as represented by the standard deviation of CT numbers in each ROI, was reduced by 36%-76%. In all scenarios, image noise after HYPR-LR algorithm was similar to that of composite images, which used all available photons. No difference in spatial resolution was observed between HYPR-LR processing and FBP. Dual energy patient data processed using HYPR-LR demonstrated reduced noise in the individual, low- and high-energy images, as well as in the material-specific basis images. Noise reduction can be accomplished for spectral CT by exploiting data redundancies in the energy domain. HYPR-LR is a robust method for reducing image noise in a variety of spectral CT imaging systems without losing spatial resolution or CT number accuracy. This method improves the flexibility to select energy bins in the manner that optimizes material identification and separation without paying the penalty of increased image noise or its corollary, increased patient dose.
4D nano-tomography of electrochemical energy devices using lab-based X-ray imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heenan, T. M. M.; Finegan, D. P.; Tjaden, B.
Electrochemical energy devices offer a variety of alternate means for low-carbon, multi-scale energy conversion and storage. Reactions in these devices are supported by electrodes with characteristically complex microstructures. To meet the increasing capacity and lifetime demands across a range of applications, it is essential to understand microstructural evolutions at a cell and electrode level which are thought to be critical aspects influencing material and device lifetime and performance. X-ray computed tomography (CT) has become a highly employed method for non-destructive characterisation of such microstructures with high spatial resolution. However, sub-micron resolutions present significant challenges for sample preparation and handling particularlymore » in 4D studies, (three spatial dimensions plus time). Here, microstructural information is collected from the same region of interest within two electrode materials: a solid oxide fuel cell and the positive electrode from a lithium-ion battery. Using a lab-based X-ray instrument, tomograms with sub-micron resolutions were obtained between thermal cycling. The intricate microstructural evolutions captured within these two materials provide model examples of 4D X-ray nano-CT capabilities in tracking challenging degradation mechanisms. This technique is valuable in the advancement of electrochemical research as well as broader applications for materials characterisation.« less
Yoo, Sylvia H; Rootman, Dan B; Goh, Alice; Savar, Aaron; Goldberg, Robert A
2016-01-01
A patient was found to have a metallic foreign body in the left anterior orbit on CT imaging, but the foreign body was not evident on clinical examination. On high-resolution ultrasonography, an object was identified in the left upper eyelid; however, the typical shadow with metallic foreign bodies was not seen. A high-power oscillating magnet was then applied to the eyelid, which revealed a subcutaneous metallic foreign body in the left upper eyelid. When used in conjunction, the high-resolution ultrasound and oscillating magnet successfully localized and facilitated retrieval of the metallic foreign body from the left upper eyelid.
Fast 3D registration of multimodality tibial images with significant structural mismatch
NASA Astrophysics Data System (ADS)
Rajapakse, C. S.; Wald, M. J.; Magland, J.; Zhang, X. H.; Liu, X. S.; Guo, X. E.; Wehrli, F. W.
2009-02-01
Recently, micro-magnetic resonance imaging (μMRI) in conjunction with micro-finite element analysis has shown great potential in estimating mechanical properties - stiffness and elastic moduli - of bone in patients at risk of osteoporosis. Due to limited spatial resolution and signal-to-noise ratio achievable in vivo, the validity of estimated properties is often established by comparison to those derived from high-resolution micro-CT (μCT) images of cadaveric specimens. For accurate comparison of mechanical parameters derived from μMR and μCT images, analyzed 3D volumes have to be closely matched. The alignment of the micro structure (and the cortex) is often hampered by the fundamental differences of μMR and μCT images and variations in marrow content and cortical bone thickness. Here we present an intensity cross-correlation based registration algorithm coupled with segmentation for registering 3D tibial specimen images acquired by μMRI and μCT in the context of finite-element modeling to assess the bone's mechanical constants. The algorithm first generates three translational and three rotational parameters required to align segmented μMR and CT images from sub regions with high micro-structural similarities. These transformation parameters are then used to register the grayscale μMR and μCT images, which include both the cortex and trabecular bone. The intensity crosscorrelation maximization based registration algorithm described here is suitable for 3D rigid-body image registration applications where through-plane rotations are known to be relatively small. The close alignment of the resulting images is demonstrated quantitatively based on a voxel-overlap measure and qualitatively using visual inspection of the micro structure.
NASA Astrophysics Data System (ADS)
Chan, P.; Halfar, J.; Norley, C. J. D.; Pollmann, S. I.; Adey, W.; Holdsworth, D. W.
2017-09-01
Warming and acidification of the world's oceans are expected to have widespread consequences for marine biodiversity and ecosystem functioning. However, due to the relatively short record of instrumental observations, one has to rely upon geochemical and physical proxy information stored in biomineralized shells and skeletons of calcareous marine organisms as in situ recorders of past environments. Of particular interest is the response of marine calcifiers to ocean acidification through the examination of structural growth characteristics. Here we demonstrate the application of micro-computed tomography (micro-CT) for three-dimensional visualization and analysis of growth, skeletal density, and calcification in a slow-growing, annually banded crustose coralline alga Clathromorphum nereostratum (increment width ˜380 µm). X-ray images and time series of skeletal density were generated at 20 µm resolution and rebinned to 40, 60, 80, and 100 µm for comparison in a sensitivity analysis. Calcification rates were subsequently calculated as the product of density and growth (linear extension). While both skeletal density and calcification rates do not significantly differ at varying spatial resolutions (the latter being strongly influenced by growth rates), clear visualization of micron-scale growth features and the quantification of structural changes on subannual time scales requires higher scanning resolutions. In the present study, imaging at 20 µm resolution reveals seasonal cycles in density that correspond to summer/winter variations in skeletal structure observed using scanning electron microscopy (SEM). Micro-CT is a fast, nondestructive, and high-resolution technique for structural and morphometric analyses of temporally banded paleoclimate archives, particularly those that exhibit slow or compressed growth or micron-scale structures.
MO-FG-204-01: Improved Noise Suppression for Dual-Energy CT Through Entropy Minimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petrongolo, M; Zhu, L
2015-06-15
Purpose: In dual energy CT (DECT), noise amplification during signal decomposition significantly limits the utility of basis material images. Since clinically relevant objects contain a limited number of materials, we propose to suppress noise for DECT based on image entropy minimization. An adaptive weighting scheme is employed during noise suppression to improve decomposition accuracy with limited effect on spatial resolution and image texture preservation. Methods: From decomposed images, we first generate a 2D plot of scattered data points, using basis material densities as coordinates. Data points representing the same material generate a highly asymmetric cluster. We orient an axis bymore » minimizing the entropy in a 1D histogram of these points projected onto the axis. To suppress noise, we replace pixel values of decomposed images with center-of-mass values in the direction perpendicular to the optimal axis. To limit errors due to cluster overlap, we weight each data point’s contribution based on its high and low energy CT values and location within the image. The proposed method’s performance is assessed on physical phantom studies. Electron density is used as the quality metric for decomposition accuracy. Our results are compared to those without noise suppression and with a recently developed iterative method. Results: The proposed method reduces noise standard deviations of the decomposed images by at least one order of magnitude. On the Catphan phantom, this method greatly preserves the spatial resolution and texture of the CT images and limits induced error in measured electron density to below 1.2%. In the head phantom study, the proposed method performs the best in retaining fine, intricate structures. Conclusion: The entropy minimization based algorithm with adaptive weighting substantially reduces DECT noise while preserving image spatial resolution and texture. Future investigations will include extensive investigations on material decomposition accuracy that go beyond the current electron density calculations. This work was supported in part by the National Institutes of Health (NIH) under Grant Number R21 EB012700.« less
Panetta, D; Belcari, N; Del Guerra, A; Bartolomei, A; Salvadori, P A
2012-04-01
This study investigates the reproducibility of the reconstructed image sharpness, after modifications of the geometry setup, for a variable magnification micro-CT (μCT) scanner. All the measurements were performed on a novel engineered μCT scanner for in vivo imaging of small animals (Xalt), which has been recently built at the Institute of Clinical Physiology of the National Research Council (IFC-CNR, Pisa, Italy), in partnership with the University of Pisa. The Xalt scanner is equipped with an integrated software for on-line geometric recalibration, which will be used throughout the experiments. In order to evaluate the losses of image quality due to modifications of the geometry setup, we have made 22 consecutive acquisitions by changing alternatively the system geometry between two different setups (Large FoV - LF, and High Resolution - HR). For each acquisition, the tomographic images have been reconstructed before and after the on-line geometric recalibration. For each reconstruction, the image sharpness was evaluated using two different figures of merit: (i) the percentage contrast on a small bar pattern of fixed frequency (f = 5.5 lp/mm for the LF setup and f = 10 lp/mm for the HR setup) and (ii) the image entropy. We have found that, due to the small-scale mechanical uncertainty (in the order of the voxel size), a recalibration is necessary for each geometric setup after repositioning of the system's components; the resolution losses due to the lack of recalibration are worse for the HR setup (voxel size = 18.4 μm). The integrated on-line recalibration algorithm of the Xalt scanner allowed to perform the recalibration quickly, by restoring the spatial resolution of the system to the reference resolution obtained after the initial (off-line) calibration. Copyright © 2011 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Body-wide anatomy recognition in PET/CT images
NASA Astrophysics Data System (ADS)
Wang, Huiqian; Udupa, Jayaram K.; Odhner, Dewey; Tong, Yubing; Zhao, Liming; Torigian, Drew A.
2015-03-01
With the rapid growth of positron emission tomography/computed tomography (PET/CT)-based medical applications, body-wide anatomy recognition on whole-body PET/CT images becomes crucial for quantifying body-wide disease burden. This, however, is a challenging problem and seldom studied due to unclear anatomy reference frame and low spatial resolution of PET images as well as low contrast and spatial resolution of the associated low-dose CT images. We previously developed an automatic anatomy recognition (AAR) system [15] whose applicability was demonstrated on diagnostic computed tomography (CT) and magnetic resonance (MR) images in different body regions on 35 objects. The aim of the present work is to investigate strategies for adapting the previous AAR system to low-dose CT and PET images toward automated body-wide disease quantification. Our adaptation of the previous AAR methodology to PET/CT images in this paper focuses on 16 objects in three body regions - thorax, abdomen, and pelvis - and consists of the following steps: collecting whole-body PET/CT images from existing patient image databases, delineating all objects in these images, modifying the previous hierarchical models built from diagnostic CT images to account for differences in appearance in low-dose CT and PET images, automatically locating objects in these images following object hierarchy, and evaluating performance. Our preliminary evaluations indicate that the performance of the AAR approach on low-dose CT images achieves object localization accuracy within about 2 voxels, which is comparable to the accuracies achieved on diagnostic contrast-enhanced CT images. Object recognition on low-dose CT images from PET/CT examinations without requiring diagnostic contrast-enhanced CT seems feasible.
Characterization of operating parameters of an in vivo micro CT system
NASA Astrophysics Data System (ADS)
Ghani, Muhammad U.; Ren, Liqiang; Yang, Kai; Chen, Wei R.; Wu, Xizeng; Liu, Hong
2016-03-01
The objective of this study was to characterize the operating parameters of an in-vivo micro CT system. In-plane spatial resolution, noise, geometric accuracy, CT number uniformity and linearity, and phase effects were evaluated using various phantoms. The system employs a flat panel detector with a 127 μm pixel pitch, and a micro focus x-ray tube with a focal spot size ranging from 5-30 μm. The system accommodates three magnification sets of 1.72, 2.54 and 5.10. The in-plane cutoff frequencies (10% MTF) ranged from 2.31 lp/mm (60 mm FOV, M=1.72, 2×2 binning) to 13 lp/mm (10 mm FOV, M=5.10, 1×1 binning). The results were qualitatively validated by a resolution bar pattern phantom and the smallest visible lines were in 30-40 μm range. Noise power spectrum (NPS) curves revealed that the noise peaks exponentially increased as the geometric magnification (M) increased. True in-plane pixel spacing and slice thickness were within 2% of the system's specifications. The CT numbers in cone beam modality are greatly affected by scattering and thus they do not remain the same in the three magnifications. A high linear relationship (R2 > 0.999) was found between the measured CT numbers and Hydroxyapatite (HA) loadings of the rods of a water filled mouse phantom. Projection images of a laser cut acrylic edge acquired at a small focal spot size of 5 μm with 1.5 fps revealed that noticeable phase effects occur at M=5.10 in the form of overshooting at the boundary of air and acrylic. In order to make the CT numbers consistent across all the scan settings, scatter correction methods may be a valuable improvement for this system.
Benz, Mark G; Benz, Matthew W; Birnbaum, Steven B; Chason, Eric; Sheldon, Brian W; McGuire, Dale
2014-08-01
This feasibility study has shown that improved spatial resolution and reduced radiation dose can be achieved in pediatric CT by narrowing the X-ray photon energy spectrum. This is done by placing a hafnium filter between the X-ray generator and a pediatric abdominal phantom. A CT system manufactured in 1999 that was in the process of being remanufactured was used as the platform for this study. This system had the advantage of easy access to the X-ray generator for modifications to change the X-ray photon energy spectrum; it also had the disadvantage of not employing the latest post-imaging noise reduction iterative reconstruction technology. Because we observed improvements after changing the X-ray photon energy spectrum, we recommend a future study combining this change with an optimized iterative reconstruction noise reduction technique.
Mueller, D; Kulkarni, Harshad; Baum, Richard P; Odparlik, Andreas
2017-04-01
99m Tc-labeled MAA is commonly used for single photon emission computed tomography SPECT. In contrast, positron emission tomography/CT (PET/CT) delivers images with significantly higher resolution. The generator produced radionuclide 68 Ga is widely used for PET/CT imaging agents and 68 Ga-labeled MAA represents an attractive alternative to 99m Tc-labeled MAA. We report a simple and rapid NaCl based labeling procedure for the labeling of MAA with 68 Ga using a commercially available MAA labeling kit for 99m Tc. The procedure delivers 68 Ga-labeled MAA with a high specific activity and a high labeling efficiency (>99%). The synthesis does not require a final step of separation or the use of organic solvents. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Jackson, Amiee; Ray, Lawrence A.; Dangi, Shusil; Ben-Zikri, Yehuda K.; Linte, Cristian A.
2017-03-01
With increasing resolution in image acquisition, the project explores capabilities of printing toward faithfully reflecting detail and features depicted in medical images. To improve safety and efficiency of orthopedic surgery and spatial conceptualization in training and education, this project focused on generating virtual models of orthopedic anatomy from clinical quality computed tomography (CT) image datasets and manufacturing life-size physical models of the anatomy using 3D printing tools. Beginning with raw micro CT data, several image segmentation techniques including thresholding, edge recognition, and region-growing algorithms available in packages such as ITK-SNAP, MITK, or Mimics, were utilized to separate bone from surrounding soft tissue. After converting the resulting data to a standard 3D printing format, stereolithography (STL), the STL file was edited using Meshlab, Netfabb, and Meshmixer. The editing process was necessary to ensure a fully connected surface (no loose elements), positive volume with manifold geometry (geometry possible in the 3D physical world), and a single, closed shell. The resulting surface was then imported into a "slicing" software to scale and orient for printing on a Flashforge Creator Pro. In printing, relationships between orientation, print bed volume, model quality, material use and cost, and print time were considered. We generated anatomical models of the hand, elbow, knee, ankle, and foot from both low-dose high-resolution cone-beam CT images acquired using the soon to be released scanner developed by Carestream, as well as scaled models of the skeletal anatomy of the arm and leg, together with life-size models of the hand and foot.
Postnov, A; Zarowski, A; De Clerck, N; Vanpoucke, F; Offeciers, F E; Van Dyck, D; Peeters, S
2006-05-01
X-ray microtomography (micro-CT) is a new technique allowing for visualization of the internal structure of opaque specimens with a quasi-histological quality. Among multiple potential applications, the use of this technique in otology is very promising. Micro-CT appears to be ideally suited for in vitro visualization of the inner ear tissues as well as for evaluation of the electrode damage and/or surgical insertion trauma during implantation of the cochlear implant electrodes. This technique can greatly aid in design and development of new cochlear implant electrodes and is applicable for temporal bone studies. The main advantage of micro-CT is the practically artefact-free preparation of the samples and the possibility of evaluation of the interesting parameters along the whole insertion depth of the electrode. This paper presents the results of the first application of micro-CT for visualization of the inner ear structures in human temporal bones and for evaluation of the surgical positioning of the cochlear implant electrodes relative to the intracochlear soft tissues.
Optimization of dose and image quality in adult and pediatric computed tomography scans
NASA Astrophysics Data System (ADS)
Chang, Kwo-Ping; Hsu, Tzu-Kun; Lin, Wei-Ting; Hsu, Wen-Lin
2017-11-01
Exploration to maximize CT image and reduce radiation dose was conducted while controlling for multiple factors. The kVp, mAs, and iteration reconstruction (IR), affect the CT image quality and radiation dose absorbed. The optimal protocols (kVp, mAs, IR) are derived by figure of merit (FOM) based on CT image quality (CNR) and CT dose index (CTDIvol). CT image quality metrics such as CT number accuracy, SNR, low contrast materials' CNR and line pair resolution were also analyzed as auxiliary assessments. CT protocols were carried out with an ACR accreditation phantom and a five-year-old pediatric head phantom. The threshold values of the adult CT scan parameters, 100 kVp and 150 mAs, were determined from the CT number test and line pairs in ACR phantom module 1and module 4 respectively. The findings of this study suggest that the optimal scanning parameters for adults be set at 100 kVp and 150-250 mAs. However, for improved low- contrast resolution, 120 kVp and 150-250 mAs are optimal. Optimal settings for pediatric head CT scan were 80 kVp/50 mAs, for maxillary sinus and brain stem, while 80 kVp /300 mAs for temporal bone. SNR is not reliable as the independent image parameter nor the metric for determining optimal CT scan parameters. The iteration reconstruction (IR) approach is strongly recommended for both adult and pediatric CT scanning as it markedly improves image quality without affecting radiation dose.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Q; Juang, T; Bache, S
2014-06-15
Purpose: The feasibility of MRT has recently been demonstrated utilizing a new technology of Carbon-Nano-Tube(CNT) field emission x-ray sources.This approach can deliver very high dose(10's of Gy) in narrow stripes(sub-mm) of radiation which enables the study of novel radiation treatment approaches. Here we investigate the application of highresolution (50um isotropic) PRESAGE/Optical-CT 3D dosimetry techniques to characterize the radiation delivered in this extremely dosimetrically challenging scenario. Methods: The CNT field emission x-ray source irradiator comprises of a linear cathode array and a novel collimator alignment system. This allows a precise delivery of high-energy small beams up to 160 kVp. A cylindricalmore » dosimeter (∼2.2cm in height ∼2.5cm in diameter) was irradiated by CNT MRT delivering 3 strips of radiation with a nominal entrance dose of 32 Gy.A second dosimeter was irradiated with similar entrance dose, with a regular x-ray irradiator collimated to microscopical strip-beams. 50um (isotropic) 3D dosimetry was performed using an in-house optical-CT system designed and optimized for high resolution imaging (including a stray light deconvolution correction).The percentage depth dose (PDD), peak-to-valley ratio (PVR) and beam width (FWHM) data were obtained and analyzed in both cases. Results: High resolution 3D images were successfully achieved with the prototype system, enabling extraction of PDD and dose profiles. The PDDs for the CNT irradiation showed pronounced attenuation, but less build-up effect than that from the multibeam irradiation. The beam spacing between the three strips has an average value of 0.9mm while that for the 13 strips is 1.5 mm at a depth of 16.5 mm. The stray light corrected image shows line profiles with reduced noise and consistent PVR values. Conclusion: MRT dosimetry is extremely challenging due to the ultra small fields involved.This preliminary application of a novel, ultra-high resolution, optical-CT 3D dosimetry system shows promise, but further work is required to validate and investigate accuracy and artifacts. This work was supported by NIH R01CA100835.« less
Ultra-high spatial resolution multi-energy CT using photon counting detector technology
NASA Astrophysics Data System (ADS)
Leng, S.; Gutjahr, R.; Ferrero, A.; Kappler, S.; Henning, A.; Halaweish, A.; Zhou, W.; Montoya, J.; McCollough, C.
2017-03-01
Two ultra-high-resolution (UHR) imaging modes, each with two energy thresholds, were implemented on a research, whole-body photon-counting-detector (PCD) CT scanner, referred to as sharp and UHR, respectively. The UHR mode has a pixel size of 0.25 mm at iso-center for both energy thresholds, with a collimation of 32 × 0.25 mm. The sharp mode has a 0.25 mm pixel for the low-energy threshold and 0.5 mm for the high-energy threshold, with a collimation of 48 × 0.25 mm. Kidney stones with mixed mineral composition and lung nodules with different shapes were scanned using both modes, and with the standard imaging mode, referred to as macro mode (0.5 mm pixel and 32 × 0.5 mm collimation). Evaluation and comparison of the three modes focused on the ability to accurately delineate anatomic structures using the high-spatial resolution capability and the ability to quantify stone composition using the multi-energy capability. The low-energy threshold images of the sharp and UHR modes showed better shape and texture information due to the achieved higher spatial resolution, although noise was also higher. No noticeable benefit was shown in multi-energy analysis using UHR compared to standard resolution (macro mode) when standard doses were used. This was due to excessive noise in the higher resolution images. However, UHR scans at higher dose showed improvement in multi-energy analysis over macro mode with regular dose. To fully take advantage of the higher spatial resolution in multi-energy analysis, either increased radiation dose, or application of noise reduction techniques, is needed.
NASA Astrophysics Data System (ADS)
Mubarok, S.; Lubis, L. E.; Pawiro, S. A.
2016-03-01
Compromise between radiation dose and image quality is essential in the use of CT imaging. CT dose index (CTDI) is currently the primary dosimetric formalisms in CT scan, while the low and high contrast resolutions are aspects indicating the image quality. This study was aimed to estimate CTDIvol and image quality measures through a range of exposure parameters variation. CTDI measurements were performed using PMMA (polymethyl methacrylate) phantom of 16 cm diameter, while the image quality test was conducted by using catphan ® 600. CTDI measurements were carried out according to IAEA TRS 457 protocol using axial scan mode, under varied parameters of tube voltage, collimation or slice thickness, and tube current. Image quality test was conducted accordingly under the same exposure parameters with CTDI measurements. An Android™ based software was also result of this study. The software was designed to estimate the value of CTDIvol with maximum difference compared to actual CTDIvol measurement of 8.97%. Image quality can also be estimated through CNR parameter with maximum difference to actual CNR measurement of 21.65%.
Attenuation correction of emission PET images with average CT: Interpolation from breath-hold CT
NASA Astrophysics Data System (ADS)
Huang, Tzung-Chi; Zhang, Geoffrey; Chen, Chih-Hao; Yang, Bang-Hung; Wu, Nien-Yun; Wang, Shyh-Jen; Wu, Tung-Hsin
2011-05-01
Misregistration resulting from the difference of temporal resolution in PET and CT scans occur frequently in PET/CT imaging, which causes distortion in tumor quantification in PET. Respiration cine average CT (CACT) for PET attenuation correction has been reported to improve the misalignment effectively by several papers. However, the radiation dose to the patient from a four-dimensional CT scan is relatively high. In this study, we propose a method to interpolate respiratory CT images over a respiratory cycle from inhalation and exhalation breath-hold CT images, and use the average CT from the generated CT set for PET attenuation correction. The radiation dose to the patient is reduced using this method. Six cancer patients of various lesion sites underwent routine free-breath helical CT (HCT), respiration CACT, interpolated average CT (IACT), and 18F-FDG PET. Deformable image registration was used to interpolate the middle phases of a respiratory cycle based on the end-inspiration and end-expiration breath-hold CT scans. The average CT image was calculated from the eight interpolated CT image sets of middle respiratory phases and the two original inspiration and expiration CT images. Then the PET images were reconstructed by these three methods for attenuation correction using HCT, CACT, and IACT. Misalignment of PET image using either CACT or IACT for attenuation correction in PET/CT was improved. The difference in standard uptake value (SUV) from tumor in PET images was most significant between the use of HCT and CACT, while the least significant between the use of CACT and IACT. Besides the similar improvement in tumor quantification compared to the use of CACT, using IACT for PET attenuation correction reduces the radiation dose to the patient.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yue, Yong, E-mail: yong.yue@cshs.org; Yang, Wensha; McKenzie, Elizabeth
Purpose: MRI is increasingly being used for radiotherapy planning, simulation, and in-treatment-room motion monitoring. To provide more detailed temporal and spatial MR data for these tasks, we have recently developed a novel self-gated (SG) MRI technique with advantage of k-space phase sorting, high isotropic spatial resolution, and high temporal resolution. The current work describes the validation of this 4D-MRI technique using a MRI- and CT-compatible respiratory motion phantom and comparison to 4D-CT. Methods: The 4D-MRI sequence is based on a spoiled gradient echo-based 3D projection reconstruction sequence with self-gating for 4D-MRI at 3 T. Respiratory phase is resolved by usingmore » SG k-space lines as the motion surrogate. 4D-MRI images are reconstructed into ten temporal bins with spatial resolution 1.56 × 1.56 × 1.56 mm{sup 3}. A MRI-CT compatible phantom was designed to validate the performance of the 4D-MRI sequence and 4D-CT imaging. A spherical target (diameter 23 mm, volume 6.37 ml) filled with high-concentration gadolinium (Gd) gel is embedded into a plastic box (35 × 40 × 63 mm{sup 3}) and stabilized with low-concentration Gd gel. The phantom, driven by an air pump, is able to produce human-type breathing patterns between 4 and 30 respiratory cycles/min. 4D-CT of the phantom has been acquired in cine mode, and reconstructed into ten phases with slice thickness 1.25 mm. The 4D images sets were imported into a treatment planning software for target contouring. The geometrical accuracy of the 4D MRI and CT images has been quantified using target volume, flattening, and eccentricity. The target motion was measured by tracking the centroids of the spheres in each individual phase. Motion ground-truth was obtained from input signals and real-time video recordings. Results: The dynamic phantom has been operated in four respiratory rate (RR) settings, 6, 10, 15, and 20/min, and was scanned with 4D-MRI and 4D-CT. 4D-CT images have target-stretching, partial-missing, and other motion artifacts in various phases, whereas the 4D-MRI images are visually free of those artifacts. Volume percentage difference for the 6.37 ml target ranged from 5.3% ± 4.3% to 10.3% ± 5.9% for 4D-CT, and 1.47 ± 0.52 to 2.12 ± 1.60 for 4D-MRI. With an increase of respiratory rate, the target volumetric and geometric deviations increase for 4D-CT images while remaining stable for the 4D-MRI images. Target motion amplitude errors at different RRs were measured with a range of 0.66–1.25 mm for 4D-CT and 0.2–0.42 mm for 4D-MRI. The results of Mann–Whitney tests indicated that 4D-MRI significantly outperforms 4D-CT in phase-based target volumetric (p = 0.027) and geometric (p < 0.001) measures. Both modalities achieve equivalent accuracy in measuring motion amplitude (p = 0.828). Conclusions: The k-space self-gated 4D-MRI technique provides a robust method for accurately imaging phase-based target motion and geometry. Compared to 4D-CT, the current 4D-MRI technique demonstrates superior spatiotemporal resolution, and robust resistance to motion artifacts caused by fast target motion and irregular breathing patterns. The technique can be used extensively in abdominal targeting, motion gating, and toward implementing MRI-based adaptive radiotherapy.« less
Evaluation of trabecular bone patterns on dental radiographic images: influence of cortical bone
NASA Astrophysics Data System (ADS)
Amouriq, Yves; Evenou, Pierre; Arlicot, Aurore; Normand, Nicolas; Layrolle, Pierre; Weiss, Pierre; Guédon, Jean-Pierre
2010-03-01
For some authors trabecular bone is highly visible in intraoral radiographs. For other authors, the observed intrabony trabecular pattern is a representation of only the endosteal surface of cortical bone, not of intermedullary striae. The purpose of this preliminary study was to investigate the true anatomical structures that are visible in routine dental radiographs and classically denoted trabecular bone. This is a major point for bone texture analysis on radiographs. Computed radiography (CR) images of dog mandible section in molar region were compared with simulations calculated from high-resolution micro-CT volumes. Calculated simulations were obtained using the Mojette Transform. By digitally editing the CT volume, the simulations were separated into trabecular and cortical components into a region of interest. Different images were compared and correlated, some bone micro-architecture parameters calculated. A high correlation was found between computed radiographs and calculated simulations from micro-CT. The Mojette transform was successful to obtain high quality images. Cortical bone did not contribute to change in a major way simulated images. These first results imply that intrabony trabecular pattern observed on radiographs can not only be a representation of the cortical bone endosteal surface and that trabecular bone is highly visible in intraoral radiographs.
Cho, Hyo-Min; Barber, William C.; Ding, Huanjun; Iwanczyk, Jan S.; Molloi, Sabee
2014-01-01
Purpose: The possible clinical applications which can be performed using a newly developed detector depend on the detector's characteristic performance in a number of metrics including the dynamic range, resolution, uniformity, and stability. The authors have evaluated a prototype energy resolved fast photon counting x-ray detector based on a silicon (Si) strip sensor used in an edge-on geometry with an application specific integrated circuit to record the number of x-rays and their energies at high flux and fast frame rates. The investigated detector was integrated with a dedicated breast spectral computed tomography (CT) system to make use of the detector's high spatial and energy resolution and low noise performance under conditions suitable for clinical breast imaging. The aim of this article is to investigate the intrinsic characteristics of the detector, in terms of maximum output count rate, spatial and energy resolution, and noise performance of the imaging system. Methods: The maximum output count rate was obtained with a 50 W x-ray tube with a maximum continuous output of 50 kVp at 1.0 mA. A109Cd source, with a characteristic x-ray peak at 22 keV from Ag, was used to measure the energy resolution of the detector. The axial plane modulation transfer function (MTF) was measured using a 67 μm diameter tungsten wire. The two-dimensional (2D) noise power spectrum (NPS) was measured using flat field images and noise equivalent quanta (NEQ) were calculated using the MTF and NPS results. The image quality parameters were studied as a function of various radiation doses and reconstruction filters. The one-dimensional (1D) NPS was used to investigate the effect of electronic noise elimination by varying the minimum energy threshold. Results: A maximum output count rate of 100 million counts per second per square millimeter (cps/mm2) has been obtained (1 million cps per 100 × 100 μm pixel). The electrical noise floor was less than 4 keV. The energy resolution measured with the 22 keV photons from a 109Cd source was less than 9%. A reduction of image noise was shown in all the spatial frequencies in 1D NPS as a result of the elimination of the electronic noise. The spatial resolution was measured just above 5 line pairs per mm (lp/mm) where 10% of MTF corresponded to 5.4 mm−1. The 2D NPS and NEQ shows a low noise floor and a linear dependence on dose. The reconstruction filter choice affected both of the MTF and NPS results, but had a weak effect on the NEQ. Conclusions: The prototype energy resolved photon counting Si strip detector can offer superior imaging performance for dedicated breast CT as compared to a conventional energy-integrating detector due to its high output count rate, high spatial and energy resolution, and low noise characteristics, which are essential characteristics for spectral breast CT imaging. PMID:25186390
Fabricating High-Resolution X-Ray Collimators
NASA Technical Reports Server (NTRS)
Appleby, Michael; Atkinson, James E.; Fraser, Iain; Klinger, Jill
2008-01-01
A process and method for fabricating multi-grid, high-resolution rotating modulation collimators for arcsecond and sub-arcsecond x-ray and gamma-ray imaging involves photochemical machining and precision stack lamination. The special fixturing and etching techniques that have been developed are used for the fabrication of multiple high-resolution grids on a single array substrate. This technology has application in solar and astrophysics and in a number of medical imaging applications including mammography, computed tomography (CT), single photon emission computed tomography (SPECT), and gamma cameras used in nuclear medicine. This collimator improvement can also be used in non-destructive testing, hydrodynamic weapons testing, and microbeam radiation therapy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melnyk, Roman; DiBianca, Frank A.
The detector presampling modulation transfer function (MTF) of a 576-channel variable resolution x-ray (VRX) computed tomography (CT) scanner was evaluated in this study. The scanner employs a VRX detector, which provides increased spatial resolution by matching the scanner's field of view (FOV) to the size of an object being imaged. Because spatial resolution is the parameter the scanner promises to improve, the evaluation of this resolution is important. The scanner's pre-reconstruction spatial resolution, represented by the detector presampling MTF, was evaluated using both modeling (Monte Carlo simulation) and measurement (the moving slit method). The theoretical results show the increase inmore » the cutoff frequency of the detector presampling MTF from 1.39 to 43.38 cycles/mm as the FOV of the VRX CT scanner decreases from 32 to 1 cm. The experimental results are in reasonable agreement with the theoretical data. Some discrepancies between the measured and the modeled detector presampling MTFs can be explained by the limitations of the model. At small FOVs (1-8 cm), the MTF measurements were limited by the size of the focal spot. The obtained results are important for further development of the VRX CT scanner.« less
Computed tomography, anatomy and morphometry of the lower extremity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoogewoud, H.M.; Rager, G.; Burch, H.
1989-01-01
This book presents up-to-date information on CT imaging of the lower extremity. It includes an atlas correlating new, high-resolution CT scans with identical thin anatomical slices covering the lower extremity from the crista iliaca to the planta pedis. Additional figures, including CT arthrograms of the hip, knee and ankle, depict the anatomy in detail The technique and clinical relevance of CT measurements especially in orthopedic surgery are also clearly explained. Of special interest is the new method developed by the authors for assessing the coverage of the femoral head. The special morphometry software and a 3D program allowing representation inmore » space make it possible to precisely and accurately measure the coverage with normal CT scans of the hip.« less
Peripheral Quantitative CT (pQCT) Using a Dedicated Extremity Cone-Beam CT Scanner
Muhit, A. A.; Arora, S.; Ogawa, M.; Ding, Y.; Zbijewski, W.; Stayman, J. W.; Thawait, G.; Packard, N.; Senn, R.; Yang, D.; Yorkston, J.; Bingham, C.O.; Means, K.; Carrino, J. A.; Siewerdsen, J. H.
2014-01-01
Purpose We describe the initial assessment of the peripheral quantitative CT (pQCT) imaging capabilities of a cone-beam CT (CBCT) scanner dedicated to musculoskeletal extremity imaging. The aim is to accurately measure and quantify bone and joint morphology using information automatically acquired with each CBCT scan, thereby reducing the need for a separate pQCT exam. Methods A prototype CBCT scanner providing isotropic, sub-millimeter spatial resolution and soft-tissue contrast resolution comparable or superior to standard multi-detector CT (MDCT) has been developed for extremity imaging, including the capability for weight-bearing exams and multi-mode (radiography, fluoroscopy, and volumetric) imaging. Assessment of pQCT performance included measurement of bone mineral density (BMD), morphometric parameters of subchondral bone architecture, and joint space analysis. Measurements employed phantoms, cadavers, and patients from an ongoing pilot study imaged with the CBCT prototype (at various acquisition, calibration, and reconstruction techniques) in comparison to MDCT (using pQCT protocols for analysis of BMD) and micro-CT (for analysis of subchondral morphometry). Results The CBCT extremity scanner yielded BMD measurement within ±2–3% error in both phantom studies and cadaver extremity specimens. Subchondral bone architecture (bone volume fraction, trabecular thickness, degree of anisotropy, and structure model index) exhibited good correlation with gold standard micro-CT (error ~5%), surpassing the conventional limitations of spatial resolution in clinical MDCT scanners. Joint space analysis demonstrated the potential for sensitive 3D joint space mapping beyond that of qualitative radiographic scores in application to non-weight-bearing versus weight-bearing lower extremities and assessment of phalangeal joint space integrity in the upper extremities. Conclusion The CBCT extremity scanner demonstrated promising initial results in accurate pQCT analysis from images acquired with each CBCT scan. Future studies will include improved x-ray scatter correction and image reconstruction techniques to further improve accuracy and to correlate pQCT metrics with known pathology. PMID:25076823
Fan-beam scanning laser optical computed tomography for large volume dosimetry
NASA Astrophysics Data System (ADS)
Dekker, K. H.; Battista, J. J.; Jordan, K. J.
2017-05-01
A prototype scanning-laser fan beam optical CT scanner is reported which is capable of high resolution, large volume dosimetry with reasonable scan time. An acylindrical, asymmetric aquarium design is presented which serves to 1) generate parallel-beam scan geometry, 2) focus light towards a small acceptance angle detector, and 3) avoid interference fringe-related artifacts. Preliminary experiments with uniform solution phantoms (11 and 15 cm diameter) and finger phantoms (13.5 mm diameter FEP tubing) demonstrate that the design allows accurate optical CT imaging, with optical CT measurements agreeing within 3% of independent Beer-Lambert law calculations.
Image Reconstruction for Hybrid True-Color Micro-CT
Xu, Qiong; Yu, Hengyong; Bennett, James; He, Peng; Zainon, Rafidah; Doesburg, Robert; Opie, Alex; Walsh, Mike; Shen, Haiou; Butler, Anthony; Butler, Phillip; Mou, Xuanqin; Wang, Ge
2013-01-01
X-ray micro-CT is an important imaging tool for biomedical researchers. Our group has recently proposed a hybrid “true-color” micro-CT system to improve contrast resolution with lower system cost and radiation dose. The system incorporates an energy-resolved photon-counting true-color detector into a conventional micro-CT configuration, and can be used for material decomposition. In this paper, we demonstrate an interior color-CT image reconstruction algorithm developed for this hybrid true-color micro-CT system. A compressive sensing-based statistical interior tomography method is employed to reconstruct each channel in the local spectral imaging chain, where the reconstructed global gray-scale image from the conventional imaging chain served as the initial guess. Principal component analysis was used to map the spectral reconstructions into the color space. The proposed algorithm was evaluated by numerical simulations, physical phantom experiments, and animal studies. The results confirm the merits of the proposed algorithm, and demonstrate the feasibility of the hybrid true-color micro-CT system. Additionally, a “color diffusion” phenomenon was observed whereby high-quality true-color images are produced not only inside the region of interest, but also in neighboring regions. It appears harnessing that this phenomenon could potentially reduce the color detector size for a given ROI, further reducing system cost and radiation dose. PMID:22481806
Dudley-Javoroski, S; Petrie, M A; McHenry, C L; Amelon, R E; Saha, P K; Shields, R K
2016-03-01
This study examined the effect of a controlled dose of vibration upon bone density and architecture in people with spinal cord injury (who eventually develop severe osteoporosis). Very sensitive computed tomography (CT) imaging revealed no effect of vibration after 12 months, but other doses of vibration may still be useful to test. The purposes of this report were to determine the effect of a controlled dose of vibratory mechanical input upon individual trabecular bone regions in people with chronic spinal cord injury (SCI) and to examine the longitudinal bone architecture changes in both the acute and chronic state of SCI. Participants with SCI received unilateral vibration of the constrained lower limb segment while sitting in a wheelchair (0.6g, 30 Hz, 20 min, three times weekly). The opposite limb served as a control. Bone mineral density (BMD) and trabecular micro-architecture were measured with high-resolution multi-detector CT. For comparison, one participant was studied from the acute (0.14 year) to the chronic state (2.7 years). Twelve months of vibration training did not yield adaptations of BMD or trabecular micro-architecture for the distal tibia or the distal femur. BMD and trabecular network length continued to decline at several distal femur sub-regions, contrary to previous reports suggesting a "steady state" of bone in chronic SCI. In the participant followed from acute to chronic SCI, BMD and architecture decline varied systematically across different anatomical segments of the tibia and femur. This study supports that vibration training, using this study's dose parameters, is not an effective anti-osteoporosis intervention for people with chronic SCI. Using a high-spatial-resolution CT methodology and segmental analysis, we illustrate novel longitudinal changes in bone that occur after spinal cord injury.
Tight-frame based iterative image reconstruction for spectral breast CT
Zhao, Bo; Gao, Hao; Ding, Huanjun; Molloi, Sabee
2013-01-01
Purpose: To investigate tight-frame based iterative reconstruction (TFIR) technique for spectral breast computed tomography (CT) using fewer projections while achieving greater image quality. Methods: The experimental data were acquired with a fan-beam breast CT system based on a cadmium zinc telluride photon-counting detector. The images were reconstructed with a varying number of projections using the TFIR and filtered backprojection (FBP) techniques. The image quality between these two techniques was evaluated. The image's spatial resolution was evaluated using a high-resolution phantom, and the contrast to noise ratio (CNR) was evaluated using a postmortem breast sample. The postmortem breast samples were decomposed into water, lipid, and protein contents based on images reconstructed from TFIR with 204 projections and FBP with 614 projections. The volumetric fractions of water, lipid, and protein from the image-based measurements in both TFIR and FBP were compared to the chemical analysis. Results: The spatial resolution and CNR were comparable for the images reconstructed by TFIR with 204 projections and FBP with 614 projections. Both reconstruction techniques provided accurate quantification of water, lipid, and protein composition of the breast tissue when compared with data from the reference standard chemical analysis. Conclusions: Accurate breast tissue decomposition can be done with three fold fewer projection images by the TFIR technique without any reduction in image spatial resolution and CNR. This can result in a two-third reduction of the patient dose in a multislit and multislice spiral CT system in addition to the reduced scanning time in this system. PMID:23464320
Kemege, Kyle E.; Hickey, John M.; Lovell, Scott; Battaile, Kevin P.; Zhang, Yang; Hefty, P. Scott
2011-01-01
Chlamydia trachomatis is a medically important pathogen that encodes a relatively high percentage of proteins with unknown function. The three-dimensional structure of a protein can be very informative regarding the protein's functional characteristics; however, determining protein structures experimentally can be very challenging. Computational methods that model protein structures with sufficient accuracy to facilitate functional studies have had notable successes. To evaluate the accuracy and potential impact of computational protein structure modeling of hypothetical proteins encoded by Chlamydia, a successful computational method termed I-TASSER was utilized to model the three-dimensional structure of a hypothetical protein encoded by open reading frame (ORF) CT296. CT296 has been reported to exhibit functional properties of a divalent cation transcription repressor (DcrA), with similarity to the Escherichia coli iron-responsive transcriptional repressor, Fur. Unexpectedly, the I-TASSER model of CT296 exhibited no structural similarity to any DNA-interacting proteins or motifs. To validate the I-TASSER-generated model, the structure of CT296 was solved experimentally using X-ray crystallography. Impressively, the ab initio I-TASSER-generated model closely matched (2.72-Å Cα root mean square deviation [RMSD]) the high-resolution (1.8-Å) crystal structure of CT296. Modeled and experimentally determined structures of CT296 share structural characteristics of non-heme Fe(II) 2-oxoglutarate-dependent enzymes, although key enzymatic residues are not conserved, suggesting a unique biochemical process is likely associated with CT296 function. Additionally, functional analyses did not support prior reports that CT296 has properties shared with divalent cation repressors such as Fur. PMID:21965559
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kemege, Kyle E.; Hickey, John M.; Lovell, Scott
2012-02-13
Chlamydia trachomatis is a medically important pathogen that encodes a relatively high percentage of proteins with unknown function. The three-dimensional structure of a protein can be very informative regarding the protein's functional characteristics; however, determining protein structures experimentally can be very challenging. Computational methods that model protein structures with sufficient accuracy to facilitate functional studies have had notable successes. To evaluate the accuracy and potential impact of computational protein structure modeling of hypothetical proteins encoded by Chlamydia, a successful computational method termed I-TASSER was utilized to model the three-dimensional structure of a hypothetical protein encoded by open reading frame (ORF)more » CT296. CT296 has been reported to exhibit functional properties of a divalent cation transcription repressor (DcrA), with similarity to the Escherichia coli iron-responsive transcriptional repressor, Fur. Unexpectedly, the I-TASSER model of CT296 exhibited no structural similarity to any DNA-interacting proteins or motifs. To validate the I-TASSER-generated model, the structure of CT296 was solved experimentally using X-ray crystallography. Impressively, the ab initio I-TASSER-generated model closely matched (2.72-{angstrom} C{alpha} root mean square deviation [RMSD]) the high-resolution (1.8-{angstrom}) crystal structure of CT296. Modeled and experimentally determined structures of CT296 share structural characteristics of non-heme Fe(II) 2-oxoglutarate-dependent enzymes, although key enzymatic residues are not conserved, suggesting a unique biochemical process is likely associated with CT296 function. Additionally, functional analyses did not support prior reports that CT296 has properties shared with divalent cation repressors such as Fur.« less
BrachyView: multiple seed position reconstruction and comparison with CT post-implant dosimetry
NASA Astrophysics Data System (ADS)
Alnaghy, S.; Loo, K. J.; Cutajar, D. L.; Jalayer, M.; Tenconi, C.; Favoino, M.; Rietti, R.; Tartaglia, M.; Carriero, F.; Safavi-Naeini, M.; Bucci, J.; Jakubek, J.; Pospisil, S.; Zaider, M.; Lerch, M. L. F.; Rosenfeld, A. B.; Petasecca, M.
2016-05-01
BrachyView is a novel in-body imaging system utilising high-resolution pixelated silicon detectors (Timepix) and a pinhole collimator for brachytherapy source localisation. Recent studies have investigated various options for real-time intraoperative dynamic dose treatment planning to increase the quality of implants. In a previous proof-of-concept study, the justification of the pinhole concept was shown, allowing for the next step whereby multiple active seeds are implanted into a PMMA phantom to simulate a more realistic clinical scenario. In this study, 20 seeds were implanted and imaged using a lead pinhole of 400 μ m diameter. BrachyView was able to resolve the seed positions within 1-2 mm of expected positions, which was verified by co-registering with a full clinical post-implant CT scan.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kemp, B.
2016-06-15
Digital radiography, CT, PET, and MR are complicated imaging modalities which are composed of many hardware and software components. These components work together in a highly coordinated chain of events with the intent to produce high quality images. Acquisition, processing and reconstruction of data must occur in a precise way for optimum image quality to be achieved. Any error or unexpected event in the entire process can produce unwanted pixel intensities in the final images which may contribute to visible image artifacts. The diagnostic imaging physicist is uniquely qualified to investigate and contribute to resolution of image artifacts. This coursemore » will teach the participant to identify common artifacts found clinically in digital radiography, CT, PET, and MR, to determine the causes of artifacts, and to make recommendations for how to resolve artifacts. Learning Objectives: Identify common artifacts found clinically in digital radiography, CT, PET and MR. Determine causes of various clinical artifacts from digital radiography, CT, PET and MR. Describe how to resolve various clinical artifacts from digital radiography, CT, PET and MR.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pooley, R.
2016-06-15
Digital radiography, CT, PET, and MR are complicated imaging modalities which are composed of many hardware and software components. These components work together in a highly coordinated chain of events with the intent to produce high quality images. Acquisition, processing and reconstruction of data must occur in a precise way for optimum image quality to be achieved. Any error or unexpected event in the entire process can produce unwanted pixel intensities in the final images which may contribute to visible image artifacts. The diagnostic imaging physicist is uniquely qualified to investigate and contribute to resolution of image artifacts. This coursemore » will teach the participant to identify common artifacts found clinically in digital radiography, CT, PET, and MR, to determine the causes of artifacts, and to make recommendations for how to resolve artifacts. Learning Objectives: Identify common artifacts found clinically in digital radiography, CT, PET and MR. Determine causes of various clinical artifacts from digital radiography, CT, PET and MR. Describe how to resolve various clinical artifacts from digital radiography, CT, PET and MR.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, H; Fatemi, A; Sahgal, A
Purpose: Investigating a new approach in MRI based treatment planning using the combination of (Ultrashort Echo Time) UTE and T1 weighted spin echo pulse sequences to delineate air, bone and water (soft tissues) in generating pseudo CT images comparable with CT. Methods: A gel phantom containing chicken bones, ping pang balls filled with distilled water and air bubbles, was made. It scanned with MRI using UTE and 2D T1W SE pulse sequences with (in plane resolution= 0.53mm, slice thickness= 2 mm) and CT with (in plane resolution= 0.5 mm and slice thickness= 0.75mm) as a ground truth for geometrical accuracy.more » The UTE and T1W SE images were registered with CT using mutual information registration algorithm provided by Philips Pinnacle treatment planning system. The phantom boundaries were detected using Canny edge detection algorithm for CT, and MR images. The bone, air bubbles and water in ping pong balls were segmented from CT images using threshold 300HU, - 950HU and 0HU, respectively. These tissue inserts were automatically segmented from combined UTE and T1W SE images using edge detection and relative intensity histograms of the phantom. The obtained segmentations of air, bone and water inserts were evaluated with those obtained from CT. Results: Bone and air can be clearly differentiated in UTE images comparable to CT. Combining UTE and T1W SE images successfully segmented the air, bone and water. The maximum segmentation differences from combine MRI images (UTE and T1W SE) and CT are within 1.3 mm, 1.1mm for bone, air, respectively. The geometric distortion of UTE sequence is small less than 1 pixel (0.53 mm) of MR image resolution. Conclusion: Our approach indicates that MRI can be used solely for treatment planning and its quality is comparable with CT.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pinkham, D; Schueler, E; Diehn, M
Purpose: To demonstrate the efficacy of a novel functional lung imaging method that utilizes single-inhalation, single-energy xenon CT (Xe-CT) lung ventilation scans, and to compare it against the current clinical standard, ventilation single-photon emission CT (V-SPECT). Methods: In an IRB-approved clinical study, 14 patients undergoing thoracic radiotherapy received two successive single inhalation, single energy (80keV) CT images of the entire lung using 100% oxygen and a 70%/30% xenon-oxygen mixture. A subset of ten patients also received concurrent SPECT ventilation scans. Anatomic reproducibility between the two scans was achieved using a custom video biofeedback apparatus. The CT images were registered tomore » each other by deformable registration, and a calculated difference image served as surrogate xenon ventilation map. Both lungs were partitioned into twelve sectors, and a sector-wise correlation was performed between the xenon and V-SPECT scans. A linear regression model was developed with forced expiratory volume (FEV) as a predictor and the coefficient of variation (CoV) as the outcome. Results: The ventilation comparison for five of the patients had either moderate to strong Pearson correlation coefficients (0.47 to 0.69, p<0.05). Of these, four also had moderate to strong Spearman correlation coefficients (0.46 to 0.80, p<0.03). The patients with the strongest correlation had clear regional ventilation deficits. The patient comparisons with the weakest correlations had more homogeneous ventilation distributions, and those patients also had diminished lung function as assessed by spirometry. Analysis of the relationship between CoV and FEV yielded a non-significant trend toward negative correlation (Pearson coefficient −0.60, p<0.15). Conclusion: Significant correlations were found between the Xe-CT and V-SPECT ventilation imagery. The results from this small cohort of patients indicate that single inhalation, single energy Xe-CT has the potential to quantify regional lung ventilation volumetrically with high resolution using widely accessible radiologic equipment. Bill Loo and Peter Maxim are founders of TibaRay, Inc. Bill Loo is also a board member. Bill Loo and Peter Maxim have received research grants from Varian Medical Systems, Inc. and RaySearch Laboratory.« less
A maximum likelihood method for high resolution proton radiography/proton CT
NASA Astrophysics Data System (ADS)
Collins-Fekete, Charles-Antoine; Brousmiche, Sébastien; Portillo, Stephen K. N.; Beaulieu, Luc; Seco, Joao
2016-12-01
Multiple Coulomb scattering (MCS) is the largest contributor to blurring in proton imaging. In this work, we developed a maximum likelihood least squares estimator that improves proton radiography’s spatial resolution. The water equivalent thickness (WET) through projections defined from the source to the detector pixels were estimated such that they maximizes the likelihood of the energy loss of every proton crossing the volume. The length spent in each projection was calculated through the optimized cubic spline path estimate. The proton radiographies were produced using Geant4 simulations. Three phantoms were studied here: a slanted cube in a tank of water to measure 2D spatial resolution, a voxelized head phantom for clinical performance evaluation as well as a parametric Catphan phantom (CTP528) for 3D spatial resolution. Two proton beam configurations were used: a parallel and a conical beam. Proton beams of 200 and 330 MeV were simulated to acquire the radiography. Spatial resolution is increased from 2.44 lp cm-1 to 4.53 lp cm-1 in the 200 MeV beam and from 3.49 lp cm-1 to 5.76 lp cm-1 in the 330 MeV beam. Beam configurations do not affect the reconstructed spatial resolution as investigated between a radiography acquired with the parallel (3.49 lp cm-1 to 5.76 lp cm-1) or conical beam (from 3.49 lp cm-1 to 5.56 lp cm-1). The improved images were then used as input in a photon tomography algorithm. The proton CT reconstruction of the Catphan phantom shows high spatial resolution (from 2.79 to 5.55 lp cm-1 for the parallel beam and from 3.03 to 5.15 lp cm-1 for the conical beam) and the reconstruction of the head phantom, although qualitative, shows high contrast in the gradient region. The proposed formulation of the optimization demonstrates serious potential to increase the spatial resolution (up by 65 % ) in proton radiography and greatly accelerate proton computed tomography reconstruction.
A maximum likelihood method for high resolution proton radiography/proton CT.
Collins-Fekete, Charles-Antoine; Brousmiche, Sébastien; Portillo, Stephen K N; Beaulieu, Luc; Seco, Joao
2016-12-07
Multiple Coulomb scattering (MCS) is the largest contributor to blurring in proton imaging. In this work, we developed a maximum likelihood least squares estimator that improves proton radiography's spatial resolution. The water equivalent thickness (WET) through projections defined from the source to the detector pixels were estimated such that they maximizes the likelihood of the energy loss of every proton crossing the volume. The length spent in each projection was calculated through the optimized cubic spline path estimate. The proton radiographies were produced using Geant4 simulations. Three phantoms were studied here: a slanted cube in a tank of water to measure 2D spatial resolution, a voxelized head phantom for clinical performance evaluation as well as a parametric Catphan phantom (CTP528) for 3D spatial resolution. Two proton beam configurations were used: a parallel and a conical beam. Proton beams of 200 and 330 MeV were simulated to acquire the radiography. Spatial resolution is increased from 2.44 lp cm -1 to 4.53 lp cm -1 in the 200 MeV beam and from 3.49 lp cm -1 to 5.76 lp cm -1 in the 330 MeV beam. Beam configurations do not affect the reconstructed spatial resolution as investigated between a radiography acquired with the parallel (3.49 lp cm -1 to 5.76 lp cm -1 ) or conical beam (from 3.49 lp cm -1 to 5.56 lp cm -1 ). The improved images were then used as input in a photon tomography algorithm. The proton CT reconstruction of the Catphan phantom shows high spatial resolution (from 2.79 to 5.55 lp cm -1 for the parallel beam and from 3.03 to 5.15 lp cm -1 for the conical beam) and the reconstruction of the head phantom, although qualitative, shows high contrast in the gradient region. The proposed formulation of the optimization demonstrates serious potential to increase the spatial resolution (up by 65[Formula: see text]) in proton radiography and greatly accelerate proton computed tomography reconstruction.
2D-3D registration using gradient-based MI for image guided surgery systems
NASA Astrophysics Data System (ADS)
Yim, Yeny; Chen, Xuanyi; Wakid, Mike; Bielamowicz, Steve; Hahn, James
2011-03-01
Registration of preoperative CT data to intra-operative video images is necessary not only to compare the outcome of the vocal fold after surgery with the preplanned shape but also to provide the image guidance for fusion of all imaging modalities. We propose a 2D-3D registration method using gradient-based mutual information. The 3D CT scan is aligned to 2D endoscopic images by finding the corresponding viewpoint between the real camera for endoscopic images and the virtual camera for CT scans. Even though mutual information has been successfully used to register different imaging modalities, it is difficult to robustly register the CT rendered image to the endoscopic image due to varying light patterns and shape of the vocal fold. The proposed method calculates the mutual information in the gradient images as well as original images, assigning more weight to the high gradient regions. The proposed method can emphasize the effect of vocal fold and allow a robust matching regardless of the surface illumination. To find the viewpoint with maximum mutual information, a downhill simplex method is applied in a conditional multi-resolution scheme which leads to a less-sensitive result to local maxima. To validate the registration accuracy, we evaluated the sensitivity to initial viewpoint of preoperative CT. Experimental results showed that gradient-based mutual information provided robust matching not only for two identical images with different viewpoints but also for different images acquired before and after surgery. The results also showed that conditional multi-resolution scheme led to a more accurate registration than single-resolution.
Kerckhofs, G.; Durand, M.; Vangoitsenhoven, R.; Marin, C.; Van der Schueren, B.; Carmeliet, G.; Luyten, F. P.; Geris, L.; Vandamme, K.
2016-01-01
High resolution microfocus X-ray computed tomography (HR-microCT) was employed to characterize the structural alterations of the cortical and trabecular bone in a mouse model of obesity-driven type 2 diabetes (T2DM). C57Bl/6J mice were randomly assigned for 14 weeks to either a control diet-fed (CTRL) or a high fat diet (HFD)-fed group developing obesity, hyperglycaemia and insulin resistance. The HFD group showed an increased trabecular thickness and a decreased trabecular number compared to CTRL animals. Midshaft tibia intracortical porosity was assessed at two spatial image resolutions. At 2 μm scale, no change was observed in the intracortical structure. At 1 μm scale, a decrease in the cortical vascular porosity of the HFD bone was evidenced. The study of a group of 8 week old animals corresponding to animals at the start of the diet challenge revealed that the decreased vascular porosity was T2DM-dependant and not related to the ageing process. Our results offer an unprecedented ultra-characterization of the T2DM compromised skeletal micro-architecture and highlight an unrevealed T2DM-related decrease in the cortical vascular porosity, potentially affecting the bone health and fragility. Additionally, it provides some insights into the technical challenge facing the assessment of the rodent bone structure using HR-microCT imaging. PMID:27759061
Fong, Wai-Ying; Ho, Chi-Chun; Poon, Wing-Tat
2017-05-12
Thiopurine intolerance and treatment-related toxicity, such as fatal myelosuppression, is related to non-function genetic variants encoding thiopurine S-methyltransferase (TPMT) and Nudix hydrolase 15 (NUDT15). Genetic testing of the common variants NUDT15:NM_018283.2:c.415C>T (Arg139Cys, dbSNP rs116855232 T allele) and TPMT: NM_000367.4:c.719A>G (TPMT*3C, dbSNP rs1142345 G allele) in East Asians including Chinese can potentially prevent treatment-related complications. Two complementary genotyping approaches, real-time PCR-high resolution melt (PCR-HRM) and PCR-restriction fragment length morphism (PCR-RFLP) analysis were evaluated using conventional PCR and Sanger sequencing genotyping as the gold standard. Sixty patient samples were tested, revealing seven patients (11.7%) heterozygous for NUDT15 c.415C>T, one patient homozygous for the variant and one patient heterozygous for the TPMT*3C non-function allele. No patient was found to harbor both variants. In total, nine out of 60 (15%) patients tested had genotypic evidence of thiopurine intolerance, which may require dosage adjustment or alternative medication should they be started on azathioprine, mercaptopurine or thioguanine. The two newly developed assays were more efficient and showed complete concordance (60/60, 100%) compared to the Sanger sequencing results. Accurate and cost-effective genotyping assays by real-time PCR-HRM and PCR-RFLP for NUDT15 c.415C>T and TPMT*3C were successfully developed. Further studies may establish their roles in genotype-informed clinical decision-making in the prevention of morbidity and mortality due to thiopurine intolerance.
Ahmadian, Alireza; Ay, Mohammad R; Bidgoli, Javad H; Sarkar, Saeed; Zaidi, Habib
2008-10-01
Oral contrast is usually administered in most X-ray computed tomography (CT) examinations of the abdomen and the pelvis as it allows more accurate identification of the bowel and facilitates the interpretation of abdominal and pelvic CT studies. However, the misclassification of contrast medium with high-density bone in CT-based attenuation correction (CTAC) is known to generate artifacts in the attenuation map (mumap), thus resulting in overcorrection for attenuation of positron emission tomography (PET) images. In this study, we developed an automated algorithm for segmentation and classification of regions containing oral contrast medium to correct for artifacts in CT-attenuation-corrected PET images using the segmented contrast correction (SCC) algorithm. The proposed algorithm consists of two steps: first, high CT number object segmentation using combined region- and boundary-based segmentation and second, object classification to bone and contrast agent using a knowledge-based nonlinear fuzzy classifier. Thereafter, the CT numbers of pixels belonging to the region classified as contrast medium are substituted with their equivalent effective bone CT numbers using the SCC algorithm. The generated CT images are then down-sampled followed by Gaussian smoothing to match the resolution of PET images. A piecewise calibration curve was then used to convert CT pixel values to linear attenuation coefficients at 511 keV. The visual assessment of segmented regions performed by an experienced radiologist confirmed the accuracy of the segmentation and classification algorithms for delineation of contrast-enhanced regions in clinical CT images. The quantitative analysis of generated mumaps of 21 clinical CT colonoscopy datasets showed an overestimation ranging between 24.4% and 37.3% in the 3D-classified regions depending on their volume and the concentration of contrast medium. Two PET/CT studies known to be problematic demonstrated the applicability of the technique in clinical setting. More importantly, correction of oral contrast artifacts improved the readability and interpretation of the PET scan and showed substantial decrease of the SUV (104.3%) after correction. An automated segmentation algorithm for classification of irregular shapes of regions containing contrast medium was developed for wider applicability of the SCC algorithm for correction of oral contrast artifacts during the CTAC procedure. The algorithm is being refined and further validated in clinical setting.
Kaneta, Tomohiro; Ogawa, Matsuyoshi; Motomura, Nobutoku; Iizuka, Hitoshi; Arisawa, Tetsu; Hino-Shishikura, Ayako; Yoshida, Keisuke; Inoue, Tomio
2017-10-11
The goal of this study was to evaluate the performance of the Celesteion positron emission tomography/computed tomography (PET/CT) scanner, which is characterized by a large-bore and time-of-flight (TOF) function, in accordance with the NEMA NU-2 2012 standard and version 2.0 of the Japanese guideline for oncology fluorodeoxyglucose PET/CT data acquisition protocol. Spatial resolution, sensitivity, count rate characteristic, scatter fraction, energy resolution, TOF timing resolution, and image quality were evaluated according to the NEMA NU-2 2012 standard. Phantom experiments were performed using 18 F-solution and an IEC body phantom of the type described in the NEMA NU-2 2012 standard. The minimum scanning time required for the detection of a 10-mm hot sphere with a 4:1 target-to-background ratio, the phantom noise equivalent count (NEC phantom ), % background variability (N 10mm ), % contrast (Q H,10mm ), and recovery coefficient (RC) were calculated according to the Japanese guideline. The measured spatial resolution ranged from 4.5- to 5-mm full width at half maximum (FWHM). The sensitivity and scatter fraction were 3.8 cps/kBq and 37.3%, respectively. The peak noise-equivalent count rate was 70 kcps in the presence of 29.6 kBq mL -1 in the phantom. The system energy resolution was 12.4% and the TOF timing resolution was 411 ps at FWHM. Minimum scanning times of 2, 7, 6, and 2 min per bed position, respectively, are recommended for visual score, noise-equivalent count (NEC) phantom , N 10mm , and the Q H,10mm to N 10mm ratio (QNR) by the Japanese guideline. The RC of a 10-mm-diameter sphere was 0.49, which exceeded the minimum recommended value. The Celesteion large-bore PET/CT system had low sensitivity and NEC, but good spatial and time resolution when compared to other PET/CT scanners. The QNR met the recommended values of the Japanese guideline even at 2 min. The Celesteion is therefore thought to provide acceptable image quality with 2 min/bed position acquisition, which is the most common scan protocol in Japan.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Na, Y; Qian, X; Wuu, C
Purpose: To verify the dosimetric characteristics of a small animal image-guided irradiator using a high-resolution of optical CT imaging of 3D dosimeters. Methods: PRESAEGE 3D dosimeters were used to determine dosimetric characteristics of a small animal image-guided irradiator and compared with EBT2 films. Cylindrical PRESAGE dosimeters with 7cm height and 6cm diameter were placed along the central axis of the beam. The films were positioned between 6×6cm{sup 2} cubed plastic water phantoms perpendicular to the beam direction with multiple depths. PRESAGE dosimeters and EBT2 films were then irradiated with the irradiator beams at 220kVp and 13mA. Each of irradiated PRESAGEmore » dosimeters named PA1, PA2, PB1, and PB2, was independently scanned using a high-resolution single laser beam optical CT scanner. The transverse images were reconstructed with a 0.1mm high-resolution pixel. A commercial Epson Expression 10000XL flatbed scanner was used for readout of irradiated EBT2 films at a 0.4mm pixel resolution. PDD curves and beam profiles were measured for the irradiated PRESAGE dosimeters and EBT2 films. Results: The PDD agreements between the irradiated PRESAGE dosimeter PA1, PA2, PB1, PB2 and the EB2 films were 1.7, 2.3, 1.9, and 1.9% for the multiple depths at 1, 5, 10, 15, 20, 30, 40 and 50mm, respectively. The FWHM measurements for each PRESAEGE dosimeter and film agreed with 0.5, 1.1, 0.4, and 1.7%, respectively, at 30mm depth. Both PDD and FWHM measurements for the PRESAGE dosimeters and the films agreed overall within 2%. The 20%–80% penumbral widths of each PRESAGE dosimeter and the film at a given depth were respectively found to be 0.97, 0.91, 0.79, 0.88, and 0.37mm. Conclusion: Dosimetric characteristics of a small animal image-guided irradiator have been demonstrated with the measurements of PRESAGE dosimeter and EB2 film. With the high resolution and accuracy obtained from this 3D dosimetry system, precise targeting small animal irradiation can be achieved.« less
Multimodal imaging of the human knee down to the cellular level
NASA Astrophysics Data System (ADS)
Schulz, G.; Götz, C.; Müller-Gerbl, M.; Zanette, I.; Zdora, M.-C.; Khimchenko, A.; Deyhle, H.; Thalmann, P.; Müller, B.
2017-06-01
Computed tomography reaches the best spatial resolution for the three-dimensional visualization of human tissues among the available nondestructive clinical imaging techniques. Nowadays, sub-millimeter voxel sizes are regularly obtained. Regarding investigations on true micrometer level, lab-based micro-CT (μCT) has become gold standard. The aim of the present study is firstly the hierarchical investigation of a human knee post mortem using hard X-ray μCT and secondly a multimodal imaging using absorption and phase contrast modes in order to investigate hard (bone) and soft (cartilage) tissues on the cellular level. After the visualization of the entire knee using a clinical CT, a hierarchical imaging study was performed using the lab-system nanotom® m. First, the entire knee was measured with a pixel length of 65 μm. The highest resolution with a pixel length of 3 μm could be achieved after extracting cylindrically shaped plugs from the femoral bones. For the visualization of the cartilage, grating-based phase contrast μCT (I13-2, Diamond Light Source) was performed. With an effective voxel size of 2.3 μm it was possible to visualize individual chondrocytes within the cartilage.
Poschenrieder, Andreas; Schottelius, Margret; Osl, Theresa; Schwaiger, Markus; Wester, Hans-Jürgen
2017-01-01
The chemokine receptor 4 (CXCR4) is an important molecular target for both visualization and therapy of tumors. The aim of the present study was the synthesis and preclinical evaluation of a 64 Cu-labeled, CXCR4-targeting peptide for positron emission tomography (PET) imaging of CXCR4 expression in vivo. For this purpose, 1,4,7-triazacyclononane,1-glutaric acid-4,7-acetic acid (NODAGA), or 1,4,7-triazacyclononane-triacetic acid (NOTA) was conjugated to the highly affine CXCR4-targeting pentixather scaffold. Affinities were determined using Jurkat T-lymphocytes in competitive binding assays employing [ 125 I]FC131 as the radioligand. Internalization and efflux studies of [ 64 Cu]NOTA-pentixather were performed in chem-1 cells, stably transfected with hCXCR4. The stability of the tracer was evaluated in vitro and in vivo . Small-animal PET and biodistribution studies at different time points were performed in Daudi lymphoma-bearing severe combined immunodeficiency (SCID) mice. [ 64 Cu]NOTA-pentixather was rapidly radiolabeled at 60 °C with high radiochemical yields ≥90% and purities >99%. [ 64 Cu]NOTA-pentixather offered the highest affinity of the evaluated peptides in this study (IC 50 = 14.9 ± 2.1 nM), showed efficient CXCR4-targeting in vitro and was stable in blood and urine with high resistance to transchelation in ethylenediaminetetraacetic acid (EDTA) challenge studies. Due to the enhanced lipophilicity of [ 64 Cu]NOTA-pentixather (logP = -1.2), biodistribution studies showed some nonspecific accumulation in the liver and intestines. However, tumor accumulation (13.1 ± 1.5% ID/g, 1.5 h p.i.) was CXCR4-specific and higher than in all other organs and resulted in high resolution delineation of Daudi tumors in PET/CT images in vivo. [ 64 Cu]NOTA-pentixather was fast and efficiently radiolabeled, showed effective CXCR4-targeting, high stability in vitro and in vivo and resulted in high resolution PET/CT images accompanied with a suitable biodistribution profile, making [ 64 Cu]NOTA-pentixather a promising tracer for future application in humans.
Rapid ex vivo imaging of PAIII prostate to bone tumor with SWIFT-MRI.
Luhach, Ihor; Idiyatullin, Djaudat; Lynch, Conor C; Corum, Curt; Martinez, Gary V; Garwood, Michael; Gillies, Robert J
2014-09-01
The limiting factor for MRI of skeletal/mineralized tissue is fast transverse relaxation. A recent advancement in MRI technology, SWIFT (Sweep Imaging with Fourier Transform), is emerging as a new approach to overcome this difficulty. Among other techniques like UTE, ZTE, and WASPI, the application of SWIFT technology has the strong potential to impact preclinical and clinical imaging, particularly in the context of primary or metastatic bone cancers because it has the added advantage of imaging water in mineralized tissues of bone allowing MRI images to be obtained of tissues previously visible only with modalities such as computed tomography (CT). The goal of the current study is to examine the feasibility of SWIFT for the assessment of the prostate cancer induced changes in bone formation (osteogenesis) and destruction (osteolysis) in ex vivo specimens. A luciferase expressing prostate cancer cell line (PAIII) or saline control was inoculated directly into the tibia of 6-week-old immunocompromised male mice. Tumor growth was assessed weekly for 3 weeks before euthanasia and dissection of the tumor bearing and sham tibias. The ex vivo mouse tibia specimens were imaged with a 9.4 Tesla (T) and 7T MRI systems. SWIFT images are compared with traditional gradient-echo and spin-echo MRI images as well as CT and histological sections. SWIFT images with nominal resolution of 78 μm are obtained with the tumor and different bone structures identified. Prostate cancer induced changes in the bone microstructure are visible in SWIFT images, which is supported by spin-echo, high resolution CT and histological analysis. SWIFT MRI is capable of high-quality high-resolution ex vivo imaging of bone tumor and surrounding bone and soft tissues. Furthermore, SWIFT MRI shows promise for in vivo bone tumor imaging, with the added benefits of nonexposure to ionizing radiation, quietness, and speed. Copyright © 2013 Wiley Periodicals, Inc.
Micro-computed tomography of false starts produced on bone by different hand-saws.
Pelletti, Guido; Viel, Guido; Fais, Paolo; Viero, Alessia; Visentin, Sindi; Miotto, Diego; Montisci, Massimo; Cecchetto, Giovanni; Giraudo, Chiara
2017-05-01
The analysis of macro- and microscopic characteristics of saw marks on bones can provide useful information about the class of the tool utilized to produce the injury. The aim of the present study was to test micro-computed tomography (micro-CT) for the analysis of false starts experimentally produced on 32 human bone sections using 4 different hand-saws in order to verify the potential utility of micro-CT for distinguishing false starts produced by different saws and to correlate the morphology of the tool with that of the bone mark. Each sample was analysed through stereomicroscopy and micro-CT. Stereomicroscopic analysis allowed the identification of the false starts and the detection of the number of tool marks left by each saw. Micro-CT scans, through the integration of 3D renders and multiplanar reconstructions (MPR), allowed the identification of the shape of each false start correlating it to the injuring tool. Our results suggest that micro-CT could be a useful technique for assessing false starts produced by different classes of saws, providing accurate morphological profiles of the bone marks with all the advantages of high resolution 3D imaging (e.g., high accuracy, non-destructive analysis, preservation and documentation of evidence). However, further studies are necessary to integrate qualitative data with quantitative metrical analysis in order to further characterize the false start and the related injuring tool. Copyright © 2017 Elsevier B.V. All rights reserved.
Hybrid setup for micro- and nano-computed tomography in the hard X-ray range
NASA Astrophysics Data System (ADS)
Fella, Christian; Balles, Andreas; Hanke, Randolf; Last, Arndt; Zabler, Simon
2017-12-01
With increasing miniaturization in industry and medical technology, non-destructive testing techniques are an area of ever-increasing importance. In this framework, X-ray microscopy offers an efficient tool for the analysis, understanding, and quality assurance of microscopic samples, in particular as it allows reconstructing three-dimensional data sets of the whole sample's volume via computed tomography (CT). The following article describes a compact X-ray microscope in the hard X-ray regime around 9 keV, based on a highly brilliant liquid-metal-jet source. In comparison to commercially available instruments, it is a hybrid that works in two different modes. The first one is a micro-CT mode without optics, which uses a high-resolution detector to allow scans of samples in the millimeter range with a resolution of 1 μm. The second mode is a microscope, which contains an X-ray optical element to magnify the sample and allows resolving 150 nm features. Changing between the modes is possible without moving the sample. Thus, the instrument represents an important step towards establishing high-resolution laboratory-based multi-mode X-ray microscopy as a standard investigation method.
Markerless laser registration in image-guided oral and maxillofacial surgery.
Marmulla, Rüdiger; Lüth, Tim; Mühling, Joachim; Hassfeld, Stefan
2004-07-01
The use of registration markers in computer-assisted surgery is combined with high logistic costs and efforts. Markerless patient registration using laser scan surface registration techniques is a new challenging method. The present study was performed to evaluate the clinical accuracy in finding defined target points within the surgical site after markerless patient registration in image-guided oral and maxillofacial surgery. Twenty consecutive patients with different cranial diseases were scheduled for computer-assisted surgery. Data set alignment between the surgical site and the computed tomography (CT) data set was performed by markerless laser scan surface registration of the patient's face. Intraoral rigidly attached registration markers were used as target points, which had to be detected by an infrared pointer. The Surgical Segment Navigator SSN++ has been used for all procedures. SSN++ is an investigative product based on the SSN system that had previously been developed by the presenting authors with the support of Carl Zeiss (Oberkochen, Germany). SSN++ is connected to a Polaris infrared camera (Northern Digital, Waterloo, Ontario, Canada) and to a Minolta VI 900 3D digitizer (Tokyo, Japan) for high-resolution laser scanning. Minimal differences in shape between the laser scan surface and the surface generated from the CT data set could be detected. Nevertheless, high-resolution laser scan of the skin surface allows for a precise patient registration (mean deviation 1.1 mm, maximum deviation 1.8 mm). Radiation load, logistic costs, and efforts arising from the planning of computer-assisted surgery of the head can be reduced because native (markerless) CT data sets can be used for laser scan-based surface registration.
Nesterets, Yakov I; Gureyev, Timur E; Mayo, Sheridan C; Stevenson, Andrew W; Thompson, Darren; Brown, Jeremy M C; Kitchen, Marcus J; Pavlov, Konstantin M; Lockie, Darren; Brun, Francesco; Tromba, Giuliana
2015-11-01
Results are presented of a recent experiment at the Imaging and Medical beamline of the Australian Synchrotron intended to contribute to the implementation of low-dose high-sensitivity three-dimensional mammographic phase-contrast imaging, initially at synchrotrons and subsequently in hospitals and medical imaging clinics. The effect of such imaging parameters as X-ray energy, source size, detector resolution, sample-to-detector distance, scanning and data processing strategies in the case of propagation-based phase-contrast computed tomography (CT) have been tested, quantified, evaluated and optimized using a plastic phantom simulating relevant breast-tissue characteristics. Analysis of the data collected using a Hamamatsu CMOS Flat Panel Sensor, with a pixel size of 100 µm, revealed the presence of propagation-based phase contrast and demonstrated significant improvement of the quality of phase-contrast CT imaging compared with conventional (absorption-based) CT, at medically acceptable radiation doses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanders, Jeremiah, E-mail: jeremiah.sanders@duke.e
Purpose: To develop and validate an automated technique for evaluating the spatial resolution characteristics of clinical computed tomography (CT) images. Methods: Twenty one chest and abdominopelvic clinical CT datasets were examined in this study. An algorithm was developed to extract a CT resolution index (RI) analogous to the modulation transfer function from clinical CT images by measuring the edge-spread function (ESF) across the patient’s skin. A polygon mesh of the air-skin boundary was created. The faces of the mesh were then used to measure the ESF across the air-skin interface. The ESF was differentiated to obtain the line-spread function (LSF),more » and the LSF was Fourier transformed to obtain the RI. The algorithm’s ability to detect the radial dependence of the RI was investigated. RIs measured with the proposed method were compared with a conventional phantom-based method across two reconstruction algorithms (FBP and iterative) using the spatial frequency at 50% RI, f{sub 50}, as the metric for comparison. Three reconstruction kernels were investigated for each reconstruction algorithm. Finally, an observer study was conducted to determine if observers could visually perceive the differences in the measured blurriness of images reconstructed with a given reconstruction method. Results: RI measurements performed with the proposed technique exhibited the expected dependencies on the image reconstruction. The measured f{sub 50} values increased with harder kernels for both FBP and iterative reconstruction. Furthermore, the proposed algorithm was able to detect the radial dependence of the RI. Patient-specific measurements of the RI were comparable to the phantom-based technique, but the patient data exhibited a large spread in the measured f{sub 50}, indicating that some datasets were blurrier than others even when the projection data were reconstructed with the same reconstruction algorithm and kernel. Results from the observer study substantiated this finding. Conclusions: Clinically informed, patient-specific spatial resolution can be measured from clinical datasets. The method is sufficiently sensitive to reflect changes in spatial resolution due to different reconstruction parameters. The method can be applied to automatically assess the spatial resolution of patient images and quantify dependencies that may not be captured in phantom data.« less
Automated segmentation of pulmonary structures in thoracic computed tomography scans: a review
NASA Astrophysics Data System (ADS)
van Rikxoort, Eva M.; van Ginneken, Bram
2013-09-01
Computed tomography (CT) is the modality of choice for imaging the lungs in vivo. Sub-millimeter isotropic images of the lungs can be obtained within seconds, allowing the detection of small lesions and detailed analysis of disease processes. The high resolution of thoracic CT and the high prevalence of lung diseases require a high degree of automation in the analysis pipeline. The automated segmentation of pulmonary structures in thoracic CT has been an important research topic for over a decade now. This systematic review provides an overview of current literature. We discuss segmentation methods for the lungs, the pulmonary vasculature, the airways, including airway tree construction and airway wall segmentation, the fissures, the lobes and the pulmonary segments. For each topic, the current state of the art is summarized, and topics for future research are identified.
NASA Astrophysics Data System (ADS)
Kumpová, I.; Vavřík, D.; Fíla, T.; Koudelka, P.; Jandejsek, I.; Jakůbek, J.; Kytýř, D.; Zlámal, P.; Vopálenský, M.; Gantar, A.
2016-02-01
To overcome certain limitations of contemporary materials used for bone tissue engineering, such as inflammatory response after implantation, a whole new class of materials based on polysaccharide compounds is being developed. Here, nanoparticulate bioactive glass reinforced gelan-gum (GG-BAG) has recently been proposed for the production of bone scaffolds. This material offers promising biocompatibility properties, including bioactivity and biodegradability, with the possibility of producing scaffolds with directly controlled microgeometry. However, to utilize such a scaffold with application-optimized properties, large sets of complex numerical simulations using the real microgeometry of the material have to be carried out during the development process. Because the GG-BAG is a material with intrinsically very low attenuation to X-rays, its radiographical imaging, including tomographical scanning and reconstructions, with resolution required by numerical simulations might be a very challenging task. In this paper, we present a study on X-ray imaging of GG-BAG samples. High-resolution volumetric images of investigated specimens were generated on the basis of micro-CT measurements using a large area flat-panel detector and a large area photon-counting detector. The photon-counting detector was composed of a 010× 1 matrix of Timepix edgeless silicon pixelated detectors with tiling based on overlaying rows (i.e. assembled so that no gap is present between individual rows of detectors). We compare the results from both detectors with the scanning electron microscopy on selected slices in transversal plane. It has been shown that the photon counting detector can provide approx. 3× better resolution of the details in low-attenuating materials than the integrating flat panel detectors. We demonstrate that employment of a large area photon counting detector is a good choice for imaging of low attenuating materials with the resolution sufficient for numerical simulations.
2012-08-01
respiratory motions using 4D tagged magnetic resonance imaging ( MRI ) data and 4D high-resolution respiratory-gated CT data respectively. Both...dimensional segmented human anatomy. Medical Physics, 1994. 21(2): p. 299-302. 6. Zubal, I.G., et al. High resolution, MRI -based, segmented...the beam direction. T2-weighted images were acquired after 24 hours with a 3T- MRI scanner using a turbo spin-echo sequence. Imaging parameters were
Chest CT scan findings in World Trade Center workers.
de la Hoz, Rafael E; Weber, Jonathan; Xu, Dongming; Doucette, John T; Liu, Xiaoyu; Carson, Deborah A; Celedón, Juan C
2018-03-15
We examined the chest CT scans of 1,453 WTC responders using the International Classification of High-resolution CT for Occupational and Environmental Respiratory Diseases. Univariate and bivariate analyses of potential work-related pleural abnormalities were performed with pre-WTC and WTC-related occupational exposure data, spirometry, demographics and quantitative CT measurements. Logistic regression was used to evaluate occupational predictors of those abnormalities. Chest CT scans were performed first at a median of 6.8 years after 9/11/2001. Pleural abnormalities were the most frequent (21.1%) across all occupational groups In multivariable analyses, significant pre-WTC occupational asbestos exposure, and work as laborer/cleaner were predictive of pleural abnormalities, with prevalence being highest for the Polish subgroup (n = 237) of our population. Continued occupational lung disease surveillance is warranted in this cohort.
Contrast agent comparison for three-dimensional micro-CT angiography: A cadaveric study.
Kingston, Mitchell J; Perriman, Diana M; Neeman, Teresa; Smith, Paul N; Webb, Alexandra L
2016-07-01
Barium sulfate and lead oxide contrast media are frequently used for cadaver-based angiography studies. These contrast media have not previously been compared to determine which is optimal for the visualisation and measurement of blood vessels. In this study, the lower limb vessels of 16 embalmed Wistar rats, and four sets of cannulae of known diameter, were injected with one of three different contrast agents (barium sulfate and resin, barium sulfate and gelatin, and lead oxide combined with milk powder). All were then scanned using micro-computed tomography (CT) angiography and 3-D reconstructions generated. The number of branching generations of the rat lower limb vessels were counted and compared between the contrast agents using ANOVA. The diameter of the contrast-filled cannulae, were measured and used to calculate the accuracy of the measurements by comparing the bias and variance of the estimates. Intra- and inter-observer reliability were calculated using intra-class correlation coefficients. There was no significant difference (mean difference [MD] 0.05; MD 95% confidence interval [CI] -0.83 to 0.93) between the number of branching generations for barium sulfate-resin and lead oxide-milk powder. Barium sulfate-resin demonstrated less bias and less variance of the estimates (MD 0.03; standard deviation [SD] 1.96 mm) compared to lead oxide-milk powder (MD 0.11; SD 1.96 mm) for measurements of contrast-filled cannulae scanned at high resolution. Barium sulfate-resin proved to be more accurate than lead oxide-milk powder for high resolution micro-CT scans and is preferred due to its non-toxicity. This technique could be applied to any embalmed specimen model. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
High Resolution Diffusion Tensor Imaging of Cortical-Subcortical White Matter Tracts in TBI
2009-10-01
other words, CT perfusion is a change in CT intensity (or Hounsfield Unit , HU) over time following a bolus of iodine based contrast agent. Although...E-Mail: little@uic.edu 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT...estimates of the eigenvalues and decrease the signal-to-noise ratio, a background noise level of 125 (MR Units ) was applied prior to calculation of
NASA Astrophysics Data System (ADS)
DiBianca, Frank A.; Melnyk, Roman; Sambari, Aniket; Jordan, Lawrence M.; Laughter, Joseph S.; Zou, Ping
2000-04-01
A technique called Variable-Resolution X-ray (VRX) detection that greatly increases the spatial resolution in computed tomography (CT) and digital radiography (DR) is presented. The technique is based on a principle called 'projective compression' that allows the resolution element of a CT detector to scale with the subject or field size. For very large (40 - 50 cm) field sizes, resolution exceeding 2 cy/mm is possible and for very small fields, microscopy is attainable with resolution exceeding 100 cy/mm. Preliminary results from a 576-channel solid-state detector are presented. The detector has a dual-arm geometry and is comprised of CdWO4 scintillator crystals arranged in 24 modules of 24 channels/module. The scintillators are 0.85 mm wide and placed on 1 mm centers. Measurements of signal level, MTF and SNR, all versus detector angle, are presented.
Bronchiectasis: correlation of high-resolution CT findings with health-related quality of life.
Eshed, I; Minski, I; Katz, R; Jones, P W; Priel, I E
2007-02-01
To evaluate the relationship between the severity of bronchiectatic diseases, as evident on high-resolution computed tomography (HRCT) and the patient's quality of life measured using the St George's Respiratory Questionnaire (SGRQ). Forty-six patients (25 women, 21 men, mean age: 63 years) with bronchiectatic disease as evident on recent HRCT examinations were recruited. Each patient completed the SGRQ and underwent respiratory function tests. HRCT findings were blindly and independently scored by two radiologists, using the modified Bhalla scoring system. The relationships between HRCT scores, SGRQ scores and pulmonary function tests were evaluated. The patients' total CT score did not correlate with the SGRQ scores. However, patients with more advanced disease on HRCT, significantly differed in their SGRQ scores from patients with milder bronchiectatic disease. A significant correlation was found between the CT scores for the middle and distal lung zones and the activity, impacts and total SGRQ scores. No correlation was found between CT scores and respiratory function test indices. However, a significant correlation was found between the SGRQ scores and most of the respiratory function test indices. A correlation between the severity of bronchiectatic disease as expressed in HRCT and the health-related quality of life exists in patients with a more severe bronchiectatic disease but not in patients with mild disease. Such correlation depends on the location of the bronchiectasis in the pulmonary tree.
Oravec, Daniel; Quazi, Abrar; Xiao, Angela; Yang, Ellen; Zauel, Roger; Flynn, Michael J; Yeni, Yener N
2015-12-01
Endplate morphology is understood to play an important role in the mechanical behavior of vertebral bone as well as degenerative processes in spinal tissues; however, the utility of clinical imaging modalities in assessment of the vertebral endplate has been limited. The objective of this study was to evaluate the ability of two clinical imaging modalities (digital tomosynthesis, DTS; high resolution computed tomography, HRCT) to assess endplate topography by correlating the measurements to a microcomputed tomography (μCT) standard. DTS, HRCT, and μCT images of 117 cadaveric thoracolumbar vertebrae (T10-L1; 23 male, 19 female; ages 36-100 years) were segmented, and inferior and superior endplate surface topographical distribution parameters were calculated. Both DTS and HRCT showed statistically significant correlations with μCT approaching a moderate level of correlation at the superior endplate for all measured parameters (R(2)Adj=0.19-0.57), including averages, variability, and higher order statistical moments. Correlation of average depths at the inferior endplate was comparable to the superior case for both DTS and HRCT (R(2)Adj=0.14-0.51), while correlations became weak or nonsignificant for higher moments of the topography distribution. DTS was able to capture variations in the endplate topography to a slightly better extent than HRCT, and taken together with the higher speed and lower radiation cost of DTS than HRCT, DTS appears preferable for endplate measurements. Copyright © 2015 Elsevier Inc. All rights reserved.
Qu, Yanjuan; Cao, Yiyuan; Liao, Meiyan; Lu, Zhiyan
2017-07-01
This study aimed at investigating the capability of sagittal-lung computed tomography (CT) measurements in differentiating chronic obstructive pulmonary disease (COPD) and asthma-COPD overlap syndrome (ACOS). Clinical and high-resolution CT of 229 patients including 123 pure COPD patients and 106 ACOS patients were included. Sagittal-lung CT measurements in terms of bilateral lung height (LH), anterior-posterior lung diameter (APLD), diaphragm height (DH), and anterior sterno-diaphragmatic angle (ASDA), as well as inter-pulmonary septum length (IPSL) on axial images were measured both before and after bronchodilator (BD) administration. Comparisons of clinical characteristics and CT measurements between patient groups were performed. All pre-BD quantitative sagittal features measuring diaphragm flattening and hyperinflation were not significantly different between patients with COPD and patients with ACOS (P values all >0.05). Following BD administration, the ACOS patients exhibited lower left LH, bilateral APLD, and bilateral ASDA, but higher right DH, compared to pure COPD patients (P values all <0.05). Right LH, left DH and IPSL were not significantly different between patient groups. Besides, variations of all sagittal-lung CT measurements were significantly larger in patients with ACOS than in patients with pure COPD (P values all <0.001) and showed high performance in differentiating these two kinds of patient, with diagnostic sensitivities ranging from 76.4 to 97.2%, specificities ranging from 86.2 to 100.0%, and accuracies ranging from 80.9 to 90.7%. Sagittal-lung CT measurements allow for differentiating patients with ACOS from those with pure COPD. The ACOS patients had larger post-BD variations of sagittal-lung CT measurements than patients with pure COPD.
Tympanic plate fractures in temporal bone trauma: prevalence and associated injuries.
Wood, C P; Hunt, C H; Bergen, D C; Carlson, M L; Diehn, F E; Schwartz, K M; McKenzie, G A; Morreale, R F; Lane, J I
2014-01-01
The prevalence of tympanic plate fractures, which are associated with an increased risk of external auditory canal stenosis following temporal bone trauma, is unknown. A review of posttraumatic high-resolution CT temporal bone examinations was performed to determine the prevalence of tympanic plate fractures and to identify any associated temporal bone injuries. A retrospective review was performed to evaluate patients with head trauma who underwent emergent high-resolution CT examinations of the temporal bone from July 2006 to March 2012. Fractures were identified and assessed for orientation; involvement of the tympanic plate, scutum, bony labyrinth, facial nerve canal, and temporomandibular joint; and ossicular chain disruption. Thirty-nine patients (41.3 ± 17.2 years of age) had a total of 46 temporal bone fractures (7 bilateral). Tympanic plate fractures were identified in 27 (58.7%) of these 46 fractures. Ossicular disruption occurred in 17 (37.0%). Fractures involving the scutum occurred in 25 (54.4%). None of the 46 fractured temporal bones had a mandibular condyle dislocation or fracture. Of the 27 cases of tympanic plate fractures, 14 (51.8%) had ossicular disruption (P = .016) and 18 (66.6%) had a fracture of the scutum (P = .044). Temporomandibular joint gas was seen in 15 (33%) but was not statistically associated with tympanic plate fracture (P = .21). Tympanic plate fractures are commonly seen on high-resolution CT performed for evaluation of temporal bone trauma. It is important to recognize these fractures to avoid the preventable complication of external auditory canal stenosis and the potential for conductive hearing loss due to a fracture involving the scutum or ossicular chain.
Spontaneous rapid reduction of a large acute subdural hematoma.
Lee, Chul-Hee; Kang, Dong Ho; Hwang, Soo Hyun; Park, In Sung; Jung, Jin-Myung; Han, Jong Woo
2009-12-01
The majority of acute post-traumatic subdural hematomas (ASDH) require urgent surgical evacuation. Spontaneous resolution of ASDH has been reported in some cases. We report here on a case of a patient with a large amount of ASDH that was rapidly reduced. A 61-yr-old man was found unconscious following a high speed motor vehicle accident. On initial examination, his Glasgow Coma Score scale was 4/15. His pupils were fully dilated and non-reactive to bright light. Brain computed tomography (CT) showed a massive right-sided ASDH. The decision was made to treat him conservatively because of his poor clinical condition. Another brain CT approximately 14 hr after the initial scan demonstrated a remarkable reduction of the previous ASDH and there was the new appearance of high density in the subdural space adjacent to the falx and the tentorium. Thirty days after his admission, brain CT revealed chronic SDH and the patient underwent surgery. The patient is currently able to obey simple commands. In conclusion, spontaneous rapid resolution/reduction of ASDH may occur in some patients. The mechanisms are most likely the result of dilution by cerebrospinal fluid and the redistribution of hematoma especially in patients with brain atrophy.
Spontaneous Rapid Reduction of a Large Acute Subdural Hematoma
Kang, Dong Ho; Hwang, Soo Hyun; Park, In Sung; Jung, Jin-Myung; Han, Jong Woo
2009-01-01
The majority of acute post-traumatic subdural hematomas (ASDH) require urgent surgical evacuation. Spontaneous resolution of ASDH has been reported in some cases. We report here on a case of a patient with a large amount of ASDH that was rapidly reduced. A 61-yr-old man was found unconscious following a high speed motor vehicle accident. On initial examination, his Glasgow Coma Score scale was 4/15. His pupils were fully dilated and non-reactive to bright light. Brain computed tomography (CT) showed a massive right-sided ASDH. The decision was made to treat him conservatively because of his poor clinical condition. Another brain CT approximately 14 hr after the initial scan demonstrated a remarkable reduction of the previous ASDH and there was the new appearance of high density in the subdural space adjacent to the falx and the tentorium. Thirty days after his admission, brain CT revealed chronic SDH and the patient underwent surgery. The patient is currently able to obey simple commands. In conclusion, spontaneous rapid resolution/reduction of ASDH may occur in some patients. The mechanisms are most likely the result of dilution by cerebrospinal fluid and the redistribution of hematoma especially in patients with brain atrophy. PMID:19949689
NASA Astrophysics Data System (ADS)
Zavaletta, Vanessa A.; Bartholmai, Brian J.; Robb, Richard A.
2007-03-01
Diffuse lung diseases, such as idiopathic pulmonary fibrosis (IPF), can be characterized and quantified by analysis of volumetric high resolution CT scans of the lungs. These data sets typically have dimensions of 512 x 512 x 400. It is too subjective and labor intensive for a radiologist to analyze each slice and quantify regional abnormalities manually. Thus, computer aided techniques are necessary, particularly texture analysis techniques which classify various lung tissue types. Second and higher order statistics which relate the spatial variation of the intensity values are good discriminatory features for various textures. The intensity values in lung CT scans range between [-1024, 1024]. Calculation of second order statistics on this range is too computationally intensive so the data is typically binned between 16 or 32 gray levels. There are more effective ways of binning the gray level range to improve classification. An optimal and very efficient way to nonlinearly bin the histogram is to use a dynamic programming algorithm. The objective of this paper is to show that nonlinear binning using dynamic programming is computationally efficient and improves the discriminatory power of the second and higher order statistics for more accurate quantification of diffuse lung disease.
NASA Astrophysics Data System (ADS)
Wiemker, Rafael; Opfer, Roland; Bülow, Thomas; Rogalla, Patrik; Steinberg, Amnon; Dharaiya, Ekta; Subramanyan, Krishna
2007-03-01
Computer aided quantification of emphysema in high resolution CT data is based on identifying low attenuation areas below clinically determined Hounsfield thresholds. However, the emphysema quantification is prone to error since a gravity effect can influence the mean attenuation of healthy lung parenchyma up to +/- 50 HU between ventral and dorsal lung areas. Comparing ultra-low-dose (7 mAs) and standard-dose (70 mAs) CT scans of each patient we show that measurement of the ventrodorsal gravity effect is patient specific but reproducible. It can be measured and corrected in an unsupervised way using robust fitting of a linear function.
NASA Astrophysics Data System (ADS)
Qi, Dongchen; Su, Haibin; Bastjan, M.; Jurchescu, O. D.; Palstra, T. M.; Wee, Andrew T. S.; Rübhausen, M.; Rusydi, A.
2013-09-01
We report on the emerging and admixture of Frenkel and charge transfer (CT) excitons near the absorption onset in pentacene single crystals. Using high energy-resolution spectroscopic generalized ellipsometry with in-plane polarization dependence, the excitonic nature of three lowest lying excitations is discussed. Their distinct polarization dependence strongly indicates the presence of both Frenkel and CT types of excitons near the excitation onset. In particular, the peculiar polarization behavior of the second excitation can only be rationalized by taking into account the inherent CT transition dipole moment. This observation has important implications for the pentacene-based optoelectronic devices.
Early bronchiectasis in cystic fibrosis detected by surveillance CT.
Pillarisetti, Naveen; Linnane, Barry; Ranganathan, Sarath
2010-08-01
There is emerging evidence that cystic fibrosis lung disease begins early in infancy. Newborn screening allows early detection and surveillance of pulmonary disease and the possibility of early intervention in this life-shortening condition. We report two children with cystic fibrosis who underwent a comprehensive assessment from diagnosis that included measurement of lung function, limited-slice high-resolution CT and BAL performed annually. Early aggressive surveillance enabled significant lung disease and bronchiectasis to be detected during the first few years of life and led to a change in management, highlighting a clinical role for CT scanning during the preschool years in children with cystic fibrosis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, J; Szczykutowicz, T; Bayouth, J
Purpose: To compare the ability of two dual-energy CT techniques, a novel split-filter single-source technique of superior temporal resolution against an established sequential-scan technique, to remove iodine contrast from images with minimal impact on CT number accuracy. Methods: A phantom containing 8 tissue substitute materials and vials of varying iodine concentrations (1.7–20.1 mg I /mL) was imaged using a Siemens Edge CT scanner. Dual-energy virtual non-contrast (VNC) images were generated using the novel split-filter technique, in which a 120kVp spectrum is filtered by tin and gold to create high- and low-energy spectra with < 1 second temporal separation between themore » acquisition of low- and high-energy data. Additionally, VNC images were generated with the sequential-scan technique (80 and 140kVp) for comparison. CT number accuracy was evaluated for all materials at 15, 25, and 35mGy CTDIvol. Results: The spectral separation was greater for the sequential-scan technique than the split-filter technique with dual-energy ratios of 2.18 and 1.26, respectively. Both techniques successfully removed iodine contrast, resulting in mean CT numbers within 60HU of 0HU (split-filter) and 40HU of 0HU (sequential-scan) for all iodine concentrations. Additionally, for iodine vials of varying diameter (2–20 mm) with the same concentration (9.9 mg I /mL), the system accurately detected iodine for all sizes investigated. Both dual-energy techniques resulted in reduced CT numbers for bone materials (by >400HU for the densest bone). Increasing the imaging dose did not improve the CT number accuracy for bone in VNC images. Conclusion: VNC images from the split-filter technique successfully removed iodine contrast. These results demonstrate a potential for improving dose calculation accuracy and reducing patient imaging dose, while achieving superior temporal resolution in comparison sequential scans. For both techniques, inaccuracies in CT numbers for bone materials necessitate consideration for radiation therapy treatment planning.« less
NASA Astrophysics Data System (ADS)
Eck, Brendan L.; Fahmi, Rachid; Levi, Jacob; Fares, Anas; Wu, Hao; Li, Yuemeng; Vembar, Mani; Dhanantwari, Amar; Bezerra, Hiram G.; Wilson, David L.
2016-03-01
Myocardial perfusion imaging using CT (MPI-CT) has the potential to provide quantitative measures of myocardial blood flow (MBF) which can aid the diagnosis of coronary artery disease. We evaluated the quantitative accuracy of MPI-CT in a porcine model of balloon-induced LAD coronary artery ischemia guided by fractional flow reserve (FFR). We quantified MBF at baseline (FFR=1.0) and under moderate ischemia (FFR=0.7) using MPI-CT and compared to fluorescent microsphere-based MBF from high-resolution cryo-images. Dynamic, contrast-enhanced CT images were obtained using a spectral detector CT (Philips Healthcare). Projection-based mono-energetic images were reconstructed and processed to obtain MBF. Three MBF quantification approaches were evaluated: singular value decomposition (SVD) with fixed Tikhonov regularization (ThSVD), SVD with regularization determined by the L-Curve criterion (LSVD), and Johnson-Wilson parameter estimation (JW). The three approaches over-estimated MBF compared to cryo-images. JW produced the most accurate MBF, with average error 33.3+/-19.2mL/min/100g, whereas LSVD and ThSVD had greater over-estimation, 59.5+/-28.3mL/min/100g and 78.3+/-25.6 mL/min/100g, respectively. Relative blood flow as assessed by a flow ratio of LAD-to-remote myocardium was strongly correlated between JW and cryo-imaging, with R2=0.97, compared to R2=0.88 and 0.78 for LSVD and ThSVD, respectively. We assessed tissue impulse response functions (IRFs) from each approach for sources of error. While JW was constrained to physiologic solutions, both LSVD and ThSVD produced IRFs with non-physiologic properties due to noise. The L-curve provided noise-adaptive regularization but did not eliminate non-physiologic IRF properties or optimize for MBF accuracy. These findings suggest that model-based MPI-CT approaches may be more appropriate for quantitative MBF estimation and that cryo-imaging can support the development of MPI-CT by providing spatial distributions of MBF.
Volumetric Assessment of Swallowing Muscles: A Comparison of CT and MRI Segmentation.
Sporns, Kim Barbara; Hanning, Uta; Schmidt, Rene; Muhle, Paul; Wirth, Rainer; Zimmer, Sebastian; Dziewas, Rainer; Suntrup-Krueger, Sonja; Sporns, Peter Bernhard; Heindel, Walter; Schwindt, Wolfram
2018-05-01
Recent retrospective studies have proposed a high correlation between atrophy of swallowing muscles, age, severity of dysphagia and aspiration status based on computed tomography (CT). However, ionizing radiation poses an ethical barrier to research in prospective non-patient populations. Hence, there is a need to prove the efficacy of techniques that rely on noninvasive methods and produce high-resolution soft tissue images such as magnetic resonance imaging (MRI). The objective of this study was therefore to compare the segmentation results of swallowing muscles using CT and MRI. Retrospective study of 21 patients (median age: 46.6; gender: 11 female) who underwent CT and MRI of the head and neck region within a time frame of less than 50 days because of suspected head and neck cancer using contrast agent. CT and MR images were segmented by two blinded readers using Medical Imaging Toolkit (MITK) and both modalities were tested (with the equivalence test) regarding the segmented muscle volumes. Adjustment for multiple testing was performed using the Bonferroni test and the potential time effect of the muscle volumes and the time interval between the modalities was assessed by a spearman correlation. The study was approved by the local ethics committee. The median volumes for each muscle belly of the digastric muscle derived from CT were 3051 mm 3 (left) and 2969 mm 3 (right), and from MRI they were 3218 mm 3 (left) and 3027 mm 3 (right). The median volume of the geniohyoid muscle was 6580 mm 3 on CT and 6648 mm 3 on MRI. The interrater reliability was high for all segmented muscles. The mean time interval between the CT and MRI examinations was 34 days (IQR 25; 41). The muscle differences of each muscle between the two modalities did not reveal significant correlation to the time interval between the examinations (digastric left r = 0.003 and digastric right r = -0.008; geniohyoid muscle r = 0.075). CT-based segmentation and MRI-based segmentation of the digastric and geniohyoid muscle are equally feasible. The potential advantage of MRI for prospective studies is the absence of ionizing radiation. · CT-based segmentation and MRI-based segmentation of the swallowing muscles are equally feasible.. · The advantage of MRI is the absence of ionizing radiation.. · MRI should therefore be deployed for future prospective studies.. · Sporns KB, Hanning U, Schmidt R et al. Volumetric Assessment of Swallowing Muscles: A Comparison of CT and MRI Segmentation. Fortschr Röntgenstr 2018; 190: 441 - 446. © Georg Thieme Verlag KG Stuttgart · New York.
Macori, F; Iacari, V; Falchetto Osti, M; Potente, G; Anaveri, G
1998-01-01
High Resolution Computed Tomography (HRCT) has been used by many authors to study the early complications of lung transplantation. Bronchoscopy, transbronchial biopsy and the clinical parameters are the tools of choice to diagnose such complications; HRCT showed excellent sensitivity (100%) and good specificity (93%) especially in detecting bronchial stenoses. We report the preliminary results of HRCT in detecting early/late complications in lung transplant recipients. Sixteen lung transplant recipients (5 single and 11 double transplants) were examined with HRCT at the Servizio Speciale Diagnostica V of "La Sapienza" University (Rome, Italy). The CT findings were compared with the results of bronchoscopy and respiratory function tests. The patients (8 men and 8 women; age range: 18-57 years, mean: 37.5) had cystic fibrosis (9), emphysema (3), alpha-1-antitrypsin deficiency (1), idiopathic pulmonary fibrosis (2), and bronchiectasis (1). During the follow-up, one patient died of pulmonary edema. CT findings were normal in 3 patients and mild pleural effusion was seen in 2. The other HRCT findings were: bronchial stenosis in 5 cases (which was bilateral in 1) and bronchial dehiscence in 1 patient; four cases of infection (1 CMV, 1 aspecific bacterial pneumonia, 1 Chlamydia psittacea and 1 Aspergillosis) and one of brochiolitis obliterans. A patient was treated for acute and one for chronic rejection. A CMV infection involved only the native lung in a patient. CT is easy to perform and a repeatable and well-tolerated tool with high sensitivity (100%) and good specificity (93%) in the early diagnosis of complications, particularly bronchial stenoses, which complications are often missed at bronchoscopy or clinically silent. CT should be always performed before bronchoscopy because it can provide valuable information for bronchoscopy targeting. In agreement with other authors we consider HRCT a very useful tool in the early diagnosis of the complications following lung transplantation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noid, G; Chen, G; Tai, A
2014-06-01
Purpose: Iterative reconstruction (IR) algorithms are developed to improve CT image quality (IQ) by reducing noise without diminishing spatial resolution or contrast. For CT in radiation therapy (RT), slightly increasing imaging dose to improve IQ may be justified if it can substantially enhance structure delineation. The purpose of this study is to investigate and to quantify the IQ enhancement as a result of increasing imaging doses and using IR algorithms. Methods: CT images were acquired for phantoms, built to evaluate IQ metrics including spatial resolution, contrast and noise, with a variety of imaging protocols using a CT scanner (Definition ASmore » Open, Siemens) installed inside a Linac room. Representative patients were scanned once the protocols were optimized. Both phantom and patient scans were reconstructed using the Sinogram Affirmed Iterative Reconstruction (SAFIRE) and the Filtered Back Projection (FBP) methods. IQ metrics of the obtained CTs were compared. Results: IR techniques are demonstrated to preserve spatial resolution as measured by the point spread function and reduce noise in comparison to traditional FBP. Driven by the reduction in noise, the contrast to noise ratio is doubled by adopting the highest SAFIRE strength. As expected, increasing imaging dose reduces noise for both SAFIRE and FBP reconstructions. The contrast to noise increases from 3 to 5 by increasing the dose by a factor of 4. Similar IQ improvement was observed on the CTs for selected patients with pancreas and prostrate cancers. Conclusion: The IR techniques produce a measurable enhancement to CT IQ by reducing the noise. Increasing imaging dose further reduces noise independent of the IR techniques. The improved CT enables more accurate delineation of tumors and/or organs at risk during RT planning and delivery guidance.« less
Wong, Wai-Hoi; Li, Hongdi; Baghaei, Hossain; Zhang, Yuxuan; Ramirez, Rocio A; Liu, Shitao; Wang, Chao; An, Shaohui
2012-11-01
The dedicated murine PET (MuPET) scanner is a high-resolution, high-sensitivity, and low-cost preclinical PET camera designed and manufactured at our laboratory. In this article, we report its performance according to the NU 4-2008 standards of the National Electrical Manufacturers Association (NEMA). We also report the results of additional phantom and mouse studies. The MuPET scanner, which is integrated with a CT camera, is based on the photomultiplier-quadrant-sharing concept and comprises 180 blocks of 13 × 13 lutetium yttrium oxyorthosilicate crystals (1.24 × 1.4 × 9.5 mm(3)) and 210 low-cost 19-mm photomultipliers. The camera has 78 detector rings, with an 11.6-cm axial field of view and a ring diameter of 16.6 cm. We measured the energy resolution, scatter fraction, sensitivity, spatial resolution, and counting rate performance of the scanner. In addition, we scanned the NEMA image-quality phantom, Micro Deluxe and Ultra-Micro Hot Spot phantoms, and 2 healthy mice. The system average energy resolution was 14% at 511 keV. The average spatial resolution at the center of the field of view was about 1.2 mm, improving to 0.8 mm and remaining below 1.2 mm in the central 6-cm field of view when a resolution-recovery method was used. The absolute sensitivity of the camera was 6.38% for an energy window of 350-650 keV and a coincidence timing window of 3.4 ns. The system scatter fraction was 11.9% for the NEMA mouselike phantom and 28% for the ratlike phantom. The maximum noise-equivalent counting rate was 1,100 at 57 MBq for the mouselike phantom and 352 kcps at 65 MBq for the ratlike phantom. The 1-mm fillable rod was clearly observable using the NEMA image-quality phantom. The images of the Ultra-Micro Hot Spot phantom also showed the 1-mm hot rods. In the mouse studies, both the left and right ventricle walls were clearly observable, as were the Harderian glands. The MuPET camera has excellent resolution, sensitivity, counting rate, and imaging performance. The data show it is a powerful scanner for preclinical animal study and pharmaceutical development.
CT imaging with a mobile C-arm prototype
NASA Astrophysics Data System (ADS)
Cheryauka, Arvi; Tubbs, David; Langille, Vinton; Kalya, Prabhanjana; Smith, Brady; Cherone, Rocco
2008-03-01
Mobile X-ray imagery is an omnipresent tool in conventional musculoskeletal and soft tissue applications. The next generation of mobile C-arm systems can provide clinicians of minimally-invasive surgery and pain management procedures with both real-time high-resolution fluoroscopy and intra-operative CT imaging modalities. In this study, we research two C-arm CT experimental system configurations and evaluate their imaging capabilities. In a non-destructive evaluation configuration, the X-ray Tube - Detector assembly is stationary while an imaging object is placed on a rotating table. In a medical imaging configuration, the C-arm gantry moves around the patient and the table. In our research setting, we connect the participating devices through a Mobile X-Ray Imaging Environment known as MOXIE. MOXIE is a set of software applications for internal research at GE Healthcare - Surgery and used to examine imaging performance of experimental systems. Anthropomorphic phantom volume renderings and orthogonal slices of reconstructed images are obtained and displayed. The experimental C-arm CT results show CT-like image quality that may be suitable for interventional procedures, real-time data management, and, therefore, have great potential for effective use on the clinical floor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berg, Kyra B.; Anderson, Nigel G.; Butler, Alexandra P.
2009-07-23
NAFLD, liver component of the 'metabolic' syndrome, has become the most common liver disease in western nations. Non-invasive imaging techniques exist, but have limitations, especially in detection and quantification of mild to moderate fatty liver. In this pilot study, we produced attenuation curves from biomedical-quality projection images of liver and fat using the MARS spectroscopic-CT scanner. Difficulties obtaining attenuation spectra after reconstruction demonstrated that standard reconstruction programs do not preserve spectral information.
NASA Astrophysics Data System (ADS)
Berg, Kyra B.; Carr, James M.; Clark, Michael J.; Cook, Nick J.; Anderson, Nigel G.; Scott, Nicola J.; Butler, Alexandra P.; Butler, Philip H.; Butler, Anthony P.
2009-07-01
NAFLD, liver component of the "metabolic" syndrome, has become the most common liver disease in western nations. Non-invasive imaging techniques exist, but have limitations, especially in detection and quantification of mild to moderate fatty liver. In this pilot study, we produced attenuation curves from biomedical-quality projection images of liver and fat using the MARS spectroscopic-CT scanner. Difficulties obtaining attenuation spectra after reconstruction demonstrated that standard reconstruction programs do not preserve spectral information.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fallal, Mohammadi Gh.; Riyahi, Alam N.; Graily, Gh.
Purpose: Clinical use of multi detector computed tomography(MDCT) in diagnosis of diseases due to high speed in data acquisition and high spatial resolution is significantly increased. Regarding to the high radiation dose in CT and necessity of patient specific radiation risk assessment, the adoption of new method in the calculation of organ dose is completely required and necessary. In this study by introducing a conversion factor, patient organ dose in thorax region based on CT image data using MC system was calculated. Methods: The geometry of x-ray tube, inherent filter, bow tie filter and collimator were designed using EGSnrc/BEAMnrc MC-systemmore » component modules according to GE-Light-speed 64-slices CT-scanner geometry. CT-scan image of patient thorax as a specific phantom was voxellised with 6.25mm3 in voxel and 64×64×20 matrix size. Dose to thorax organ include esophagus, lung, heart, breast, ribs, muscle, spine, spinal cord with imaging technical condition of prospectively-gated-coronary CT-Angiography(PGT) as a step and shoot method, were calculated. Irradiation of patient specific phantom was performed using a dedicated MC-code as DOSXYZnrc with PGT-irradiation model. The ratio of organ dose value calculated in MC-method to the volume CT dose index(CTDIvol) reported by CT-scanner machine according to PGT radiation technique has been introduced as conversion factor. Results: In PGT method, CTDIvol was 10.6mGy and Organ Dose/CTDIvol conversion factor for esophagus, lung, heart, breast, ribs, muscle, spine and spinal cord were obtained as; 0.96, 1.46, 1.2, 3.28. 6.68. 1.35, 3.41 and 0.93 respectively. Conclusion: The results showed while, underestimation of patient dose was found in dose calculation based on CTDIvol, also dose to breast is higher than the other studies. Therefore, the method in this study can be used to provide the actual patient organ dose in CT imaging based on CTDIvol in order to calculation of real effective dose(ED) based on organ dose. This work has been supported by the research chancellor of tehran university of medical sciences(tums), school of medicine, Tehran, Iran.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, G; Li, K; Gomez-Cardona, D
Purpose: Although the anatomy of interest should be positioned as close as possible to the isocenter of CT scanners, off-centering may be inevitable during certain exams in clinical practice such as lumbar spine and elbow imaging. Off-centering degrades image sharpness, generates streak artifacts, and sometimes creates blooming artifacts due to truncation. The purpose of this work was to investigate whether the use of model-based image reconstruction (MBIR) can alleviate the negative impacts of off-centering to achieve high quality CT bone imaging. Methods: Both an anthropomorphic phantom and an ex vivo swine elbow sample were scanned at centered and off-centered positionsmore » using clinical CT bone scan protocols. The magnitude of off-centering was determined from localizer radiographs. Both FBP and MBIR reconstructions were performed. For FBP, both standard and Bone Plus kernels commonly used in bone imaging were used. Objective assessment of image sharpness, noise standard deviation, and noise nonuniformity were performed. Additionally, we retrospectively analyzed human subject data acquired under off-centered conditions as a validation study. Results: In FBP images of the phantom, off-centering by 10 cm led to a 14% increase in noise (p<1e-3) and a 68% increase in noise nonuniformity (p<0.02). A visible drop in bone sharpness was observed. In contrast, no significant difference in the noise magnitude or the noise nonuniformity between the centered and off-centered MBIR images was found. The image sharpness of off-centered MBIR images outperformed that of FBP images reconstructed with the Bone Plus kernel. In images of the swine elbow off-centered by 20 cm, not only was the noise and spatial resolution performance improved by MBIR, truncation artifacts were also elliminated. The human subject study generated similar results, in which the visibility of the off-centered lumbar spine was significantly improved. Conclusion: High quality CT bone imaging at off-centered positions can be achieved using MBIR. This work was partially supported by an NIH grant R01CA169331 and GE Healthcare. K. Li, D. Gomez-Cardona: Nothing to disclose. G.-H. Chen: Research funded, GE Healthcare; Research funded, Siemens AX. A. Budde, J. Hsieh: Employee, GE Healthcare.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brady, Samuel L., E-mail: samuel.brady@stjude.org; Shulkin, Barry L.
2015-02-15
Purpose: To develop ultralow dose computed tomography (CT) attenuation correction (CTAC) acquisition protocols for pediatric positron emission tomography CT (PET CT). Methods: A GE Discovery 690 PET CT hybrid scanner was used to investigate the change to quantitative PET and CT measurements when operated at ultralow doses (10–35 mA s). CT quantitation: noise, low-contrast resolution, and CT numbers for 11 tissue substitutes were analyzed in-phantom. CT quantitation was analyzed to a reduction of 90% volume computed tomography dose index (0.39/3.64; mGy) from baseline. To minimize noise infiltration, 100% adaptive statistical iterative reconstruction (ASiR) was used for CT reconstruction. PET imagesmore » were reconstructed with the lower-dose CTAC iterations and analyzed for: maximum body weight standardized uptake value (SUV{sub bw}) of various diameter targets (range 8–37 mm), background uniformity, and spatial resolution. Radiation dose and CTAC noise magnitude were compared for 140 patient examinations (76 post-ASiR implementation) to determine relative dose reduction and noise control. Results: CT numbers were constant to within 10% from the nondose reduced CTAC image for 90% dose reduction. No change in SUV{sub bw}, background percent uniformity, or spatial resolution for PET images reconstructed with CTAC protocols was found down to 90% dose reduction. Patient population effective dose analysis demonstrated relative CTAC dose reductions between 62% and 86% (3.2/8.3–0.9/6.2). Noise magnitude in dose-reduced patient images increased but was not statistically different from predose-reduced patient images. Conclusions: Using ASiR allowed for aggressive reduction in CT dose with no change in PET reconstructed images while maintaining sufficient image quality for colocalization of hybrid CT anatomy and PET radioisotope uptake.« less
An evaluation of spatial resolution of a prototype proton CT scanner.
Plautz, Tia E; Bashkirov, V; Giacometti, V; Hurley, R F; Johnson, R P; Piersimoni, P; Sadrozinski, H F-W; Schulte, R W; Zatserklyaniy, A
2016-12-01
To evaluate the spatial resolution of proton CT using both a prototype proton CT scanner and Monte Carlo simulations. A custom cylindrical edge phantom containing twelve tissue-equivalent inserts with four different compositions at varying radial displacements from the axis of rotation was developed for measuring the modulation transfer function (MTF) of a prototype proton CT scanner. Two scans of the phantom, centered on the axis of rotation, were obtained with a 200 MeV, low-intensity proton beam: one scan with steps of 4°, and one scan with the phantom continuously rotating. In addition, Monte Carlo simulations of the phantom scan were performed using scanners idealized to various degrees. The data were reconstructed using an iterative projection method with added total variation superiorization based on individual proton histories. Edge spread functions in the radial and azimuthal directions were obtained using the oversampling technique. These were then used to obtain the modulation transfer functions. The spatial resolution was defined by the 10% value of the modulation transfer function (MTF 10% ) in units of line pairs per centimeter (lp/cm). Data from the simulations were used to better understand the contributions of multiple Coulomb scattering in the phantom and the scanner hardware, as well as the effect of discretization of proton location. The radial spatial resolution of the prototype proton CT scanner depends on the total path length, W, of the proton in the phantom, whereas the azimuthal spatial resolution depends both on W and the position, u - , at which the most-likely path uncertainty is evaluated along the path. For protons contributing to radial spatial resolution, W varies with the radial position of the edge, whereas for protons contributing to azimuthal spatial resolution, W is approximately constant. For a pixel size of 0.625 mm, the radial spatial resolution of the image reconstructed from the fully idealized simulation data ranged between 6.31 ± 0.36 lp/cm for W = 197 mm i.e., close to the center of the phantom, and 13.79 ± 0.36 lp/cm for W = 97 mm, near the periphery of the phantom. The azimuthal spatial resolution ranged from 6.99 ± 0.23 lp/cm at u - = 75 mm (near the center) to 11.20 ± 0.26 lp/cm at u - = 20 mm (near the periphery). Multiple Coulomb scattering limits the radial spatial resolution for path lengths greater than approximately 130 mm, and the azimuthal spatial resolution for positions of evaluation greater than approximately 40 mm for W = 199 mm. The radial spatial resolution of the image reconstructed from data from the 4° stepped experimental scan ranged from 5.11 ± 0.61 lp/cm for W = 197 mm to 8.58 ± 0.50 lp/cm for W = 97 mm. In the azimuthal direction, the spatial resolution ranged from 5.37 ± 0.40 lp/cm at u - = 75 mm to 7.27 ± 0.39 lp/cm at u - = 20 mm. The continuous scan achieved the same spatial resolution as that of the stepped scan. Multiple Coulomb scattering in the phantom is the limiting physical factor of the achievable spatial resolution of proton CT; additional loss of spatial resolution in the prototype system is associated with scattering in the proton tracking system and inadequacies of the proton path estimate used in the iterative reconstruction algorithm. Improvement in spatial resolution may be achievable by improving the most likely path estimate by incorporating information about high and low density materials, and by minimizing multiple Coulomb scattering in the proton tracking system.
An evaluation of spatial resolution of a prototype proton CT scanner
Plautz, Tia E.; Bashkirov, V.; Giacometti, V.; Hurley, R. F.; Piersimoni, P.; Sadrozinski, H. F.-W.; Schulte, R. W.; Zatserklyaniy, A.
2016-01-01
Purpose: To evaluate the spatial resolution of proton CT using both a prototype proton CT scanner and Monte Carlo simulations. Methods: A custom cylindrical edge phantom containing twelve tissue-equivalent inserts with four different compositions at varying radial displacements from the axis of rotation was developed for measuring the modulation transfer function (MTF) of a prototype proton CT scanner. Two scans of the phantom, centered on the axis of rotation, were obtained with a 200 MeV, low-intensity proton beam: one scan with steps of 4°, and one scan with the phantom continuously rotating. In addition, Monte Carlo simulations of the phantom scan were performed using scanners idealized to various degrees. The data were reconstructed using an iterative projection method with added total variation superiorization based on individual proton histories. Edge spread functions in the radial and azimuthal directions were obtained using the oversampling technique. These were then used to obtain the modulation transfer functions. The spatial resolution was defined by the 10% value of the modulation transfer function (MTF10%) in units of line pairs per centimeter (lp/cm). Data from the simulations were used to better understand the contributions of multiple Coulomb scattering in the phantom and the scanner hardware, as well as the effect of discretization of proton location. Results: The radial spatial resolution of the prototype proton CT scanner depends on the total path length, W, of the proton in the phantom, whereas the azimuthal spatial resolution depends both on W and the position, u−, at which the most-likely path uncertainty is evaluated along the path. For protons contributing to radial spatial resolution, W varies with the radial position of the edge, whereas for protons contributing to azimuthal spatial resolution, W is approximately constant. For a pixel size of 0.625 mm, the radial spatial resolution of the image reconstructed from the fully idealized simulation data ranged between 6.31 ± 0.36 lp/cm for W = 197 mm i.e., close to the center of the phantom, and 13.79 ± 0.36 lp/cm for W = 97 mm, near the periphery of the phantom. The azimuthal spatial resolution ranged from 6.99 ± 0.23 lp/cm at u− = 75 mm (near the center) to 11.20 ± 0.26 lp/cm at u− = 20 mm (near the periphery). Multiple Coulomb scattering limits the radial spatial resolution for path lengths greater than approximately 130 mm, and the azimuthal spatial resolution for positions of evaluation greater than approximately 40 mm for W = 199 mm. The radial spatial resolution of the image reconstructed from data from the 4° stepped experimental scan ranged from 5.11 ± 0.61 lp/cm for W = 197 mm to 8.58 ± 0.50 lp/cm for W = 97 mm. In the azimuthal direction, the spatial resolution ranged from 5.37 ± 0.40 lp/cm at u− = 75 mm to 7.27 ± 0.39 lp/cm at u− = 20 mm. The continuous scan achieved the same spatial resolution as that of the stepped scan. Conclusions: Multiple Coulomb scattering in the phantom is the limiting physical factor of the achievable spatial resolution of proton CT; additional loss of spatial resolution in the prototype system is associated with scattering in the proton tracking system and inadequacies of the proton path estimate used in the iterative reconstruction algorithm. Improvement in spatial resolution may be achievable by improving the most likely path estimate by incorporating information about high and low density materials, and by minimizing multiple Coulomb scattering in the proton tracking system. PMID:27908179
NASA Astrophysics Data System (ADS)
Preissner, M.; Murrie, R. P.; Pinar, I.; Werdiger, F.; Carnibella, R. P.; Zosky, G. R.; Fouras, A.; Dubsky, S.
2018-04-01
We have developed an x-ray imaging system for in vivo four-dimensional computed tomography (4DCT) of small animals for pre-clinical lung investigations. Our customized laboratory facility is capable of high resolution in vivo imaging at high frame rates. Characterization using phantoms demonstrate a spatial resolution of slightly below 50 μm at imaging rates of 30 Hz, and the ability to quantify material density differences of at least 3%. We benchmark our system against existing small animal pre-clinical CT scanners using a quality factor that combines spatial resolution, image noise, dose and scan time. In vivo 4DCT images obtained on our system demonstrate resolution of important features such as blood vessels and small airways, of which the smallest discernible were measured as 55–60 μm in cross section. Quantitative analysis of the images demonstrate regional differences in ventilation between injured and healthy lungs.
SU-D-BRF-04: Digital Tomosynthesis for Improved Daily Setup in Treatment of Liver Lesions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Armstrong, H; Jones, B; Miften, M
Purpose: Daily localization of liver lesions with cone-beam CT (CBCT) is difficult due to poor image quality caused by scatter, respiratory motion, and the lack of radiographic contrast between the liver parenchyma and the lesion(s). Digital tomosynthesis (DTS) is investigated as a modality to improve liver visualization and lesion/parenchyma contrast for daily setup. Methods: An in-house tool was developed to generate DTS images using a point-by-point filtered back-projection method from on-board CBCT projection data. DTS image planes are generated in a user defined orientation to visualize the anatomy at various depths. Reference DTS images are obtained from forward projection ofmore » the planning CT dataset at each projection angle. The CBCT DTS image set can then be registered to the reference DTS image set as a means for localization. Contour data from the planning CT's associate RT Structure file and forward projected similarly to the planning CT data. DTS images are created for each contoured structure, which can then be overlaid onto the DTS images for organ volume visualization. Results: High resolution DTS images generated from CBCT projections show fine anatomical detail, including small blood vessels, within the patient. However, the reference DTS images generated from forward projection of the planning CT lacks this level of detail due to the low resolution of the CT voxels as compared to the pixel size in the projection images; typically 1mm-by-1mm-by-3mm (lat, vrt, lng) for the planning CT vs. 0.4mm-by-0.4mm for CBCT projections. Overlaying of the contours onto the DTS image allows for visualization of structures of interest. Conclusion: The ability to generate DTS images over a limited range of projection angles allows for reduction in the amount of respiratory motion within each acquisition. DTS may provide improved visualization of structures and lesions as compared to CBCT for highly mobile tumors.« less
NASA Astrophysics Data System (ADS)
Jacobs, P. Js; Cnudde, V.
2003-04-01
X-ray computed micro-tomography (μCT) is a promising non-destructive imaging technique to study building materials. μCT analysis provides information on the internal structure and petrophysical properties of small samples (size up to 2 cm diameter and 6 cm height), with to date a maximum resolution of 10 μm for commercial systems (Skyscan 1072). μCT allows visualising and measuring complete three-dimensional object structures without sample preparation. Possible applications of the μCT-technique for the monitoring of natural building stones are multiple: (i) to determine non-destructively porosity based on 3D images, (ii) to visualise weathering phenomena at the μ-scale, (iii) to understand the rationale of weathering processes, (iv) to visualise the presence of waterrepellents and consolidation products, (v) to monitor the protective effects of these products during weathering in order to understand the underlying weathering mechanisms and (vi) to provide advise on the suitability of products for the treatment of a particular rock-type. μCT-technique in combination with micro-Raman spectroscopy could prove to be a powerful tool for the future, as the combination of 3D visualisation and 2D chemical determination of inorganic as well as organic components could provide new insights to optimise conservation and restoration techniques of building materials. Determining the penetration depth of restoration products, used to consolidate or to protect natural building stones from weathering, is crucial if the application of conservation products is planned. Every type of natural building stone has its own petrophysical characteristics and each rock type reacts differently on the various restoration products available on the market. To assess the penetration depth and the effectiveness of a certain restoration product, μCT technology in combination with micro-Raman spectroscopy could be applied. Due to its non-destructive character and its resolution down to porosity scale, the technology of μCT offers a large potential of application. μCT-technique in combination with micro-Raman spectroscopy could prove to be a powerful tool for the future, as the combination of 3D visualisation and 2D chemical determination could provide new insights to optimise conservation and restoration techniques of building materials. These principles will be demonstrated for Maastricht limestone and Bray sandstone that have been selected for this study because of their high porosity and their very pure composition.
Micro CT based truth estimation of nodule volume
NASA Astrophysics Data System (ADS)
Kinnard, L. M.; Gavrielides, M. A.; Myers, K. J.; Zeng, R.; Whiting, B.; Lin-Gibson, S.; Petrick, N.
2010-03-01
With the advent of high-resolution CT, three-dimensional (3D) methods for nodule volumetry have been introduced, with the hope that such methods will be more accurate and consistent than currently used planar measures of size. However, the error associated with volume estimation methods still needs to be quantified. Volume estimation error is multi-faceted in the sense that there is variability associated with the patient, the software tool and the CT system. A primary goal of our current research efforts is to quantify the various sources of measurement error and, when possible, minimize their effects. In order to assess the bias of an estimate, the actual value, or "truth," must be known. In this work we investigate the reliability of micro CT to determine the "true" volume of synthetic nodules. The advantage of micro CT over other truthing methods is that it can provide both absolute volume and shape information in a single measurement. In the current study we compare micro CT volume truth to weight-density truth for spherical, elliptical, spiculated and lobulated nodules with diameters from 5 to 40 mm, and densities of -630 and +100 HU. The percent differences between micro CT and weight-density volume for -630 HU nodules range from [-21.7%, -0.6%] (mean= -11.9%) and the differences for +100 HU nodules range from [-0.9%, 3.0%] (mean=1.7%).
Fanchon, Louise M; Dogan, Snjezana; Moreira, Andre L; Carlin, Sean A; Schmidtlein, C Ross; Yorke, Ellen; Apte, Aditya P; Burger, Irene A; Durack, Jeremy C; Erinjeri, Joseph P; Maybody, Majid; Schöder, Heiko; Siegelbaum, Robert H; Sofocleous, Constantinos T; Deasy, Joseph O; Solomon, Stephen B; Humm, John L; Kirov, Assen S
2015-04-01
Core biopsies obtained using PET/CT guidance contain bound radiotracer and therefore provide information about tracer uptake in situ. Our goal was to develop a method for quantitative autoradiography of biopsy specimens (QABS), to use this method to correlate (18)F-FDG tracer uptake in situ with histopathology findings, and to briefly discuss its potential application. Twenty-seven patients referred for a PET/CT-guided biopsy of (18)F-FDG-avid primary or metastatic lesions in different locations consented to participate in this institutional review board-approved study, which complied with the Health Insurance Portability and Accountability Act. Autoradiography of biopsy specimens obtained using 5 types of needles was performed immediately after extraction. The response of autoradiography imaging plates was calibrated using dummy specimens with known activity obtained using 2 core-biopsy needle sizes. The calibration curves were used to quantify the activity along biopsy specimens obtained with these 2 needles and to calculate the standardized uptake value, SUVARG. Autoradiography images were correlated with histopathologic findings and fused with PET/CT images demonstrating the position of the biopsy needle within the lesion. Logistic regression analysis was performed to search for an SUVARG threshold distinguishing benign from malignant tissue in liver biopsy specimens. Pearson correlation between SUVARG of the whole biopsy specimen and average SUVPET over the voxels intersected by the needle in the fused PET/CT image was calculated. Activity concentrations were obtained using autoradiography for 20 specimens extracted with 18- and 20-gauge needles. The probability of finding malignancy in a specimen is greater than 50% (95% confidence) if SUVARG is greater than 7.3. For core specimens with preserved shape and orientation and in the absence of motion, one can achieve autoradiography, CT, and PET image registration with spatial accuracy better than 2 mm. The correlation coefficient between the mean specimen SUVARG and SUVPET was 0.66. Performing QABS on core-biopsy specimens obtained using PET/CT guidance enables in situ correlation of (18)F-FDG tracer uptake and histopathology on a millimeter scale. QABS promises to provide useful information for guiding interventional radiology procedures and localized therapies and for in situ high-spatial-resolution validation of radiopharmaceutical uptake. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Improving image quality in laboratory x-ray phase-contrast imaging
NASA Astrophysics Data System (ADS)
De Marco, F.; Marschner, M.; Birnbacher, L.; Viermetz, M.; Noël, P.; Herzen, J.; Pfeiffer, F.
2017-03-01
Grating-based X-ray phase-contrast (gbPC) is known to provide significant benefits for biomedical imaging. To investigate these benefits, a high-sensitivity gbPC micro-CT setup for small (≍ 5 cm) biological samples has been constructed. Unfortunately, high differential-phase sensitivity leads to an increased magnitude of data processing artifacts, limiting the quality of tomographic reconstructions. Most importantly, processing of phase-stepping data with incorrect stepping positions can introduce artifacts resembling Moiré fringes to the projections. Additionally, the focal spot size of the X-ray source limits resolution of tomograms. Here we present a set of algorithms to minimize artifacts, increase resolution and improve visual impression of projections and tomograms from the examined setup. We assessed two algorithms for artifact reduction: Firstly, a correction algorithm exploiting correlations of the artifacts and differential-phase data was developed and tested. Artifacts were reliably removed without compromising image data. Secondly, we implemented a new algorithm for flatfield selection, which was shown to exclude flat-fields with strong artifacts. Both procedures successfully improved image quality of projections and tomograms. Deconvolution of all projections of a CT scan can minimize blurring introduced by the finite size of the X-ray source focal spot. Application of the Richardson-Lucy deconvolution algorithm to gbPC-CT projections resulted in an improved resolution of phase-contrast tomograms. Additionally, we found that nearest-neighbor interpolation of projections can improve the visual impression of very small features in phase-contrast tomograms. In conclusion, we achieved an increase in image resolution and quality for the investigated setup, which may lead to an improved detection of very small sample features, thereby maximizing the setup's utility.
Myoanatomy of the velvet worm leg revealed by laboratory-based nanofocus X-ray source tomography.
Müller, Mark; de Sena Oliveira, Ivo; Allner, Sebastian; Ferstl, Simone; Bidola, Pidassa; Mechlem, Korbinian; Fehringer, Andreas; Hehn, Lorenz; Dierolf, Martin; Achterhold, Klaus; Gleich, Bernhard; Hammel, Jörg U; Jahn, Henry; Mayer, Georg; Pfeiffer, Franz
2017-11-21
X-ray computed tomography (CT) is a powerful noninvasive technique for investigating the inner structure of objects and organisms. However, the resolution of laboratory CT systems is typically limited to the micrometer range. In this paper, we present a table-top nanoCT system in conjunction with standard processing tools that is able to routinely reach resolutions down to 100 nm without using X-ray optics. We demonstrate its potential for biological investigations by imaging a walking appendage of Euperipatoides rowelli , a representative of Onychophora-an invertebrate group pivotal for understanding animal evolution. Comparative analyses proved that the nanoCT can depict the external morphology of the limb with an image quality similar to scanning electron microscopy, while simultaneously visualizing internal muscular structures at higher resolutions than confocal laser scanning microscopy. The obtained nanoCT data revealed hitherto unknown aspects of the onychophoran limb musculature, enabling the 3D reconstruction of individual muscle fibers, which was previously impossible using any laboratory-based imaging technique.
CT Imaging Findings after Craniosynostosis Reconstructive Surgery.
Ginat, Daniel Thomas; Lam, Daniel; Kuhn, Andrew Scott; Reid, Russell
2018-06-06
Several surgical options are available for treating the different types of craniosynostosis, including fronto-orbital advancement and remodeling, total or subtotal cranial vault remodeling, barrel stave osteotomy with cranial remodeling, endoscopic suturectomy, monobloc advancement and cranioplasty, and revision cranioplasty. High-resolution, low-dose CT with 3D reconstructed images and volumetric analysis can be useful for evaluating the craniofacial skeleton following surgery. The various types of craniosynostosis surgery and corresponding imaging findings are reviewed in this article. © 2018 S. Karger AG, Basel.
Lumbar vertebral pedicles: radiologic anatomy and pathology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patel, N.P.; Kumar, R.; Kinkhabwala, M.
1988-01-01
With the advancement of high-resolution computed tomography (CT) scanning the spine has added new knowledge to the various conditions affecting the pedicles. We wish to review the entire spectrum of pedicular lesions: the embryology, normal anatomy, normal variants, pitfalls, congenital anomalies, and pathological conditions are discussed. Different imaging modalities involving CT, isotope bone scanning, and Magnetic Resonance Imaging (MRI) are used to complement plain films of the lumbar spine. This subject review is an excellent source for future reference to lumbar pedicular lesions. 27 references.
Optimisation of a propagation-based x-ray phase-contrast micro-CT system
NASA Astrophysics Data System (ADS)
Nesterets, Yakov I.; Gureyev, Timur E.; Dimmock, Matthew R.
2018-03-01
Micro-CT scanners find applications in many areas ranging from biomedical research to material sciences. In order to provide spatial resolution on a micron scale, these scanners are usually equipped with micro-focus, low-power x-ray sources and hence require long scanning times to produce high resolution 3D images of the object with acceptable contrast-to-noise. Propagation-based phase-contrast tomography (PB-PCT) has the potential to significantly improve the contrast-to-noise ratio (CNR) or, alternatively, reduce the image acquisition time while preserving the CNR and the spatial resolution. We propose a general approach for the optimisation of the PB-PCT imaging system. When applied to an imaging system with fixed parameters of the source and detector this approach requires optimisation of only two independent geometrical parameters of the imaging system, i.e. the source-to-object distance R 1 and geometrical magnification M, in order to produce the best spatial resolution and CNR. If, in addition to R 1 and M, the system parameter space also includes the source size and the anode potential this approach allows one to find a unique configuration of the imaging system that produces the required spatial resolution and the best CNR.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yue, Y; Fan, Z; Yang, W
Purpose: 4D-CT is often limited by motion artifacts, low temporal resolution, and poor phase-based target definition. We recently developed a novel k-space self-gated 4D-MRI technique with high spatial and temporal resolution. The goal here is to geometrically validate 4D-MRI using a MRI-CT compatible respiratory motion phantom and comparison to 4D-CT. Methods: 4D-MRI was acquired using 3T spoiled gradient echo-based 3D projection sequences. Respiratory phases were resolved using self-gated k-space lines as the motion surrogate. Images were reconstructed into 10 temporal bins with 1.56×1.56×1.56mm3. A MRI-CT compatible phantom was designed with a 23mm diameter ball target filled with highconcentration gadolinium(Gd) gelmore » embedded in a 35×40×63mm3 plastic box stabilized with low-concentration Gd gel. The whole phantom was driven by an air pump. Human respiratory motion was mimicked using the controller from a commercial dynamic phantom (RSD). Four breathing settings (rates/depths: 10s/20mm, 6s/15mm, 4s/10mm, 3s/7mm) were scanned with 4D-MRI and 4D-CT (slice thickness 1.25mm). Motion ground-truth was obtained from input signals and real-time video recordings. Reconstructed images were imported into Eclipse(Varian) for target contouring. Volumes and target positions were compared with ground-truth. Initial human study was investigated on a liver patient. Results: 4D-MRI and 4D-CT scans for the different breathing cycles were reconstructed with 10 phases. Target volume in each phase was measured for both 4D-CT and 4D-MRI. Volume percentage difference for the 6.37ml target ranged from 6.67±5.33 to 11.63±5.57 for 4D-CT and from 1.47±0.52 to 2.12±1.60 for 4D-MRI. The Mann-Whitney U-test shows the 4D-MRI is significantly superior to 4D-CT (p=0.021) for phase-based target definition. Centroid motion error ranges were 1.35–1.25mm (4D-CT), and 0.31–0.12mm (4D-MRI). Conclusion: The k-space self-gated 4D-MRI we recently developed can accurately determine phase-based target volume while avoiding typical motion artifacts found in 4D-CT, and is being further studied for use in GI targeting and motion management. This work supported in part by grant 1R03CA173273-01.« less
Laverty, Sheila; Lacourt, Mathieu; Gao, Chan; Henderson, Janet E.; Boyde, Alan
2015-01-01
We studied changes in articular calcified cartilage (ACC) and subchondral bone (SCB) in the third carpal bones (C3) of Standardbred racehorses with naturally-occurring repetitive loading-induced osteoarthritis (OA). Two osteochondral cores were harvested from dorsal sites from each of 15 post-mortem C3 and classified as control or as showing early or advanced OA changes from visual inspection. We re-examined X-ray micro-computed tomography (µCT) image sets for the presence of high-density mineral infill (HDMI) in ACC cracks and possible high-density mineralized protrusions (HDMP) from the ACC mineralizing (tidemark) front (MF) into hyaline articular cartilage (HAC). We hypothesized and we show that 20-µm µCT resolution in 10-mm diameter samples is sufficient to detect HDMI and HDMP: these are lost upon tissue decalcification for routine paraffin wax histology owing to their predominant mineral content. The findings show that µCT is sufficient to discover HDMI and HDMP, which were seen in 2/10 controls, 6/9 early OA and 8/10 advanced OA cases. This is the first report of HDMI and HDMP in the equine carpus and in the Standardbred breed and the first to rely solely on µCT. HDMP are a candidate cause for mechanical tissue destruction in OA. PMID:25927581
Afzelius, P; Bergmann, A; Henriksen, J H
2015-09-15
It is generally assumed that the lungs possess arterial autoregulation associated with bronchial obstruction. A patient with pneumonia and congestive heart failure unexpectedly developed frequent haemoptysis. High-resolution CT and diagnostic CT were performed as well as ventilation/perfusion (V/Q) scintigraphy with single-photon emission CT (SPECT)/CT. V/Q SPECT/CT demonstrated abolished ventilation due to obstruction of the left main bronchus and markedly reduced perfusion of the entire left lung, a condition that was completely reversed after removal of a blood clot. We present the first pictorially documented case of hypoxia-induced pulmonary vasoconstriction and flow shift in a main pulmonary artery due to a complete intrinsic obstruction of the ipsilateral main bronchus. The condition is reversible, contingent on being relieved within a few days. 2015 BMJ Publishing Group Ltd.
Computer aided detection system for Osteoporosis using low dose thoracic 3D CT images
NASA Astrophysics Data System (ADS)
Tsuji, Daisuke; Matsuhiro, Mikio; Suzuki, Hidenobu; Kawata, Yoshiki; Niki, Noboru; Nakano, Yasutaka; Harada, Masafumi; Kusumoto, Masahiko; Tsuchida, Takaaki; Eguchi, Kenji; Kaneko, Masahiro
2018-02-01
The patient of osteoporosis is about 13 million people in Japan and it is one of healthy life problems in the aging society. It is necessary to do early stage detection and treatment in order to prevent the osteoporosis. Multi-slice CT technology has been improving the three dimensional (3D) image analysis with higher resolution and shorter scan time. The 3D image analysis of thoracic vertebra can be used for supporting to diagnosis of osteoporosis. This analysis can be used for lung cancer detection at the same time. We develop method of shape analysis and CT values of spongy bone for the detection osteoporosis. Osteoporosis and lung cancer screening show high extraction rate by the thoracic vertebral evaluation CT images. In addition, we created standard pattern of CT value per thoracic vertebra for male age group using 298 low dose data.
The Road to the Common PET/CT Detector
NASA Astrophysics Data System (ADS)
Nassalski, Antoni; Moszynski, Marek; Szczesniak, Tomasz; Wolski, Dariusz; Batsch, Tadeusz
2007-10-01
Growing interest in the development of dual modality positron emission/X-rays tomography (PET/CT) systems prompts researchers to face a new challenge: to acquire both the anatomical and functional information in the same measurement, simultaneously using the same detection system and electronics. The aim of this work was to study a detector consisting of LaBr3, LSO or LYSO pixel crystals coupled to an avalanche photodiode (APD). The measurements covered tests of the detectors in PET and CT modes, respectively. The measurements included the determination of light output, energy resolution, the non-proportionality of the light yield and the time resolution for 511 keV annihilation quanta; analysis also included characterizing the PET detector, and determining the dependence of counting rate versus mean current of the APD in the X-ray detection. In the present experiment, the use of counting and current modes in the CT detection increases the dynamic range of the measured dose of X-rays by a factor of 20, compared to the counting mode alone.
WE-G-209-00: Identifying Image Artifacts, Their Causes, and How to Fix Them
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
Digital radiography, CT, PET, and MR are complicated imaging modalities which are composed of many hardware and software components. These components work together in a highly coordinated chain of events with the intent to produce high quality images. Acquisition, processing and reconstruction of data must occur in a precise way for optimum image quality to be achieved. Any error or unexpected event in the entire process can produce unwanted pixel intensities in the final images which may contribute to visible image artifacts. The diagnostic imaging physicist is uniquely qualified to investigate and contribute to resolution of image artifacts. This coursemore » will teach the participant to identify common artifacts found clinically in digital radiography, CT, PET, and MR, to determine the causes of artifacts, and to make recommendations for how to resolve artifacts. Learning Objectives: Identify common artifacts found clinically in digital radiography, CT, PET and MR. Determine causes of various clinical artifacts from digital radiography, CT, PET and MR. Describe how to resolve various clinical artifacts from digital radiography, CT, PET and MR.« less
WE-G-209-01: Digital Radiography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schueler, B.
Digital radiography, CT, PET, and MR are complicated imaging modalities which are composed of many hardware and software components. These components work together in a highly coordinated chain of events with the intent to produce high quality images. Acquisition, processing and reconstruction of data must occur in a precise way for optimum image quality to be achieved. Any error or unexpected event in the entire process can produce unwanted pixel intensities in the final images which may contribute to visible image artifacts. The diagnostic imaging physicist is uniquely qualified to investigate and contribute to resolution of image artifacts. This coursemore » will teach the participant to identify common artifacts found clinically in digital radiography, CT, PET, and MR, to determine the causes of artifacts, and to make recommendations for how to resolve artifacts. Learning Objectives: Identify common artifacts found clinically in digital radiography, CT, PET and MR. Determine causes of various clinical artifacts from digital radiography, CT, PET and MR. Describe how to resolve various clinical artifacts from digital radiography, CT, PET and MR.« less
Silva, Chinthaka M.; Snead, Lance Lewis; Hunn, John D.; ...
2015-08-03
X-ray microcomputed tomography (µCT) was applied in characterizing the internal structures of a number of irradiated materials, including carbon-carbon fibre composites, nuclear-grade graphite and tristructural isotropic-coated fuel particles. Local cracks in carbon-carbon fibre composites associated with their synthesis process were observed with µCT without any destructive sample preparation. Pore analysis of graphite samples was performed quantitatively, and qualitative analysis of pore distribution was accomplished. It was also shown that high-resolution µCT can be used to probe internal layer defects of tristructural isotropic-coated fuel particles to elucidate the resulting high release of radioisotopes. Layer defects of sizes ranging from 1 tomore » 5 µm and up could be isolated by to-mography. As an added advantage, µCT could also be used to identify regions with high densities of radioisotopes to deter-mine the proper plane and orientation of particle mounting for further analytical characterization, such as materialographic sectioning followed by optical and electron microscopy. Lastly, in fully ceramic matrix fuel forms, despite the highly absorbing matrix, characterization of tristructural isotropic-coated particles embedded in a silicon carbide matrix was accomplished usingµCT and related advanced image analysis techniques.« less
Mitsuhata, Yuji; Nishiwaki, Junko; Kawabe, Yoshishige; Utsuzawa, Shin; Jinguuji, Motoharu
2010-01-01
Non-destructive measurements of contaminated soil core samples are desirable prior to destructive measurements because they allow obtaining gross information from the core samples without touching harmful chemical species. Medical X-ray computed tomography (CT) and time-domain low-field nuclear magnetic resonance (NMR) relaxometry were applied to non-destructive measurements of sandy soil core samples from a real site contaminated with heavy oil. The medical CT visualized the spatial distribution of the bulk density averaged over the voxel of 0.31 × 0.31 × 2 mm3. The obtained CT images clearly showed an increase in the bulk density with increasing depth. Coupled analysis with in situ time-domain reflectometry logging suggests that this increase is derived from an increase in the water volume fraction of soils with depth (i.e., unsaturated to saturated transition). This was confirmed by supplementary analysis using high-resolution micro-focus X-ray CT at a resolution of ∼10 μm, which directly imaged the increase in pore water with depth. NMR transverse relaxation waveforms of protons were acquired non-destructively at 2.7 MHz by the Carr–Purcell–Meiboom–Gill (CPMG) pulse sequence. The nature of viscous petroleum molecules having short transverse relaxation times (T2) compared to water molecules enabled us to distinguish the water-saturated portion from the oil-contaminated portion in the core sample using an M0–T2 plot, where M0 is the initial amplitude of the CPMG signal. The present study demonstrates that non-destructive core measurements by medical X-ray CT and low-field NMR provide information on the groundwater saturation level and oil-contaminated intervals, which is useful for constructing an adequate plan for subsequent destructive laboratory measurements of cores. PMID:21258437
Synchrotron microCT imaging of soft tissue in juvenile zebrafish reveals retinotectal projections
NASA Astrophysics Data System (ADS)
Xin, Xuying; Clark, Darin; Ang, Khai Chung; van Rossum, Damian B.; Copper, Jean; Xiao, Xianghui; La Riviere, Patrick J.; Cheng, Keith C.
2017-02-01
Biomedical research and clinical diagnosis would benefit greatly from full volume determinations of anatomical phenotype. Comprehensive tools for morphological phenotyping are central for the emerging field of phenomics, which requires high-throughput, systematic, accurate, and reproducible data collection from organisms affected by genetic, disease, or environmental variables. Theoretically, complete anatomical phenotyping requires the assessment of every cell type in the whole organism, but this ideal is presently untenable due to the lack of an unbiased 3D imaging method that allows histopathological assessment of any cell type despite optical opacity. Histopathology, the current clinical standard for diagnostic phenotyping, involves the microscopic study of tissue sections to assess qualitative aspects of tissue architecture, disease mechanisms, and physiological state. However, quantitative features of tissue architecture such as cellular composition and cell counting in tissue volumes can only be approximated due to characteristics of tissue sectioning, including incomplete sampling and the constraints of 2D imaging of 5 micron thick tissue slabs. We have used a small, vertebrate organism, the zebrafish, to test the potential of microCT for systematic macroscopic and microscopic morphological phenotyping. While cell resolution is routinely achieved using methods such as light sheet fluorescence microscopy and optical tomography, these methods do not provide the pancellular perspective characteristic of histology, and are constrained by the limited penetration of visible light through pigmented and opaque specimens, as characterizes zebrafish juveniles. Here, we provide an example of neuroanatomy that can be studied by microCT of stained soft tissue at 1.43 micron isotropic voxel resolution. We conclude that synchrotron microCT is a form of 3D imaging that may potentially be adopted towards more reproducible, large-scale, morphological phenotyping of optically opaque tissues. Further development of soft tissue microCT, visualization and quantitative tool development will enhance its utility.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, X; Cheng, Z; Deen, J
Purposes: Photon counting CT is a new imaging technology that can provide tissue composition information such as calcium/iodine content quantification. Cadmium zinc telluride CZT is considered a good candidate the photon counting CT due to its relatively high atomic number and band gap. One potential challenge is the degradation of both spatial and energy resolution as the fine electrode pitch is deployed (<50 µm). We investigated the extent of charge sharing effect as functions of gap width, bias voltage and depth-of-interaction (DOI). Methods: The initial electron cloud size and diffusion process were modeled analytically. The valid range of charge sharingmore » effect refers to the range over which both signals of adjacent electrodes are above the triggering threshold (10% of the amplitude of 60keV X-ray photons). The intensity ratios of output in three regions (I1/I2/I3: left pixel, gap area and right pixel) were calculated. With Gaussian white noises modeled (a SNR of 5 based upon the preliminary experiments), the sub-pitch resolution as a function of the spatial position in-between two pixels was studied. Results: The valid range of charge sharing increases linearly with depth-of-interaction (DOI) but decreases with gap width and bias voltage. For a 1.5mm thickness CZT detector (pitch: 50µm, bias: 400 V), the range increase from ∼90µm up to ∼110µm. Such an increase can be attributed to a longer travel distance and the associated electron cloud broadening. The achievable sub-pitch resolution is in the range of ∼10–30µm. Conclusion: The preliminary results demonstrate that sub-pixel spatial resolution can be achieved using the ratio of amplitudes of two neighboring pixels. Such ratio may also be used to correct charge loss and help improve energy resolution of a CZT detector. The impact of characteristic X-rays hitting adjacent pixels (i.e., multiple interaction) on charge sharing is currently being investigated.« less
Mehta, Nehal N; Torigian, Drew A; Gelfand, Joel M; Saboury, Babak; Alavi, Abass
2012-05-02
Conventional non-invasive imaging modalities of atherosclerosis such as coronary artery calcium (CAC) and carotid intimal medial thickness (C-IMT) provide information about the burden of disease. However, despite multiple validation studies of CAC, and C-IMT, these modalities do not accurately assess plaque characteristics, and the composition and inflammatory state of the plaque determine its stability and, therefore, the risk of clinical events. [(18)F]-2-fluoro-2-deoxy-D-glucose (FDG) imaging using positron-emission tomography (PET)/computed tomography (CT) has been extensively studied in oncologic metabolism. Studies using animal models and immunohistochemistry in humans show that FDG-PET/CT is exquisitely sensitive for detecting macrophage activity, an important source of cellular inflammation in vessel walls. More recently, we and others have shown that FDG-PET/CT enables highly precise, novel measurements of inflammatory activity of activity of atherosclerotic plaques in large and medium-sized arteries. FDG-PET/CT studies have many advantages over other imaging modalities: 1) high contrast resolution; 2) quantification of plaque volume and metabolic activity allowing for multi-modal atherosclerotic plaque quantification; 3) dynamic, real-time, in vivo imaging; 4) minimal operator dependence. Finally, vascular inflammation detected by FDG-PET/CT has been shown to predict cardiovascular (CV) events independent of traditional risk factors and is also highly associated with overall burden of atherosclerosis. Plaque activity by FDG-PET/CT is modulated by known beneficial CV interventions such as short term (12 week) statin therapy as well as longer term therapeutic lifestyle changes (16 months). The current methodology for quantification of FDG uptake in atherosclerotic plaque involves measurement of the standardized uptake value (SUV) of an artery of interest and of the venous blood pool in order to calculate a target to background ratio (TBR), which is calculated by dividing the arterial SUV by the venous blood pool SUV. This method has shown to represent a stable, reproducible phenotype over time, has a high sensitivity for detection of vascular inflammation, and also has high inter-and intra-reader reliability. Here we present our methodology for patient preparation, image acquisition, and quantification of atherosclerotic plaque activity and vascular inflammation using SUV, TBR, and a global parameter called the metabolic volumetric product (MVP). These approaches may be applied to assess vascular inflammation in various study samples of interest in a consistent fashion as we have shown in several prior publications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kazakia,G.; Burghardt, A.; Cheung, S.
2008-01-01
Assessment of bone tissue mineral density (TMD) may provide information critical to the understanding of mineralization processes and bone biomechanics. High-resolution three-dimensional assessment of TMD has recently been demonstrated using synchrotron radiation microcomputed tomography (SR{mu}CT); however, this imaging modality is relatively inaccessible due to the scarcity of SR facilities. Conventional desktop {mu}CT systems are widely available and have been used extensively to assess bone microarchitecture. However, the polychromatic source and cone-shaped beam geometry complicate assessment of TMD by conventional {mu}CT. The goal of this study was to evaluate {mu}CT-based measurement of degree and distribution of tissue mineralization in a quantitative,more » spatially resolved manner. Specifically, {mu}CT measures of bone mineral content (BMC) and TMD were compared to those obtained by SR{mu}CT and gravimetric methods. Cylinders of trabecular bone were machined from human femoral heads (n=5), vertebrae (n=5), and proximal tibiae (n=4). Cylinders were imaged in saline on a polychromatic {mu}CT system at an isotropic voxel size of 8 {mu}m. Volumes were reconstructed using beam hardening correction algorithms based on hydroxyapatite (HA)-resin wedge phantoms of 200 and 1200 mgHA/cm3. SR{mu}CT imaging was performed at an isotropic voxel size of 7.50 {mu}m at the National Synchrotron Light Source. Attenuation values were converted to HA concentration using a linear regression derived by imaging a calibration phantom. Architecture and mineralization parameters were calculated from the image data. Specimens were processed using gravimetric methods to determine ash mass and density. {mu}CT-based BMC values were not affected by altering the beam hardening correction. Volume-averaged TMD values calculated by the two corrections were significantly different (p=0.008) in high volume fraction specimens only, with the 1200 mgHA/cm3 correction resulting in a 4.7% higher TMD value. {mu}CT and SR{mu}CT provided significantly different measurements of both BMC and TMD (p<0.05). In high volume fraction specimens, {mu}CT with 1200 mgHA/cm3 correction resulted in BMC and TMD values 16.7% and 15.0% lower, respectively, than SR{mu}CT values. In low volume fraction specimens, {mu}CT with 1200 mgHA/cm3 correction resulted in BMC and TMD values 12.8% and 12.9% lower, respectively, than SR{mu}CT values. {mu}CT and SR{mu}CT values were well-correlated when volume fraction groups were considered individually (BMC R2=0.97-1.00; TMD R2=0.78-0.99). Ash mass and density were higher than the SR{mu}CT equivalents by 8.6% in high volume fraction specimens and 10.9% in low volume fraction specimens (p<0.05). BMC values calculated by tomography were highly correlated with ash mass (ash versus {mu}CT R2=0.96-1.00; ash versus SR{mu}CT R2=0.99-1.00). TMD values calculated by tomography were moderately correlated with ash density (ash versus {mu}CT R2=0.64-0.72; ash versus SR{mu}CT R2=0.64). Spatially resolved comparisons highlighted substantial geometric nonuniformity in the {mu}CT data, which were reduced (but not eliminated) using the 1200 mg HA/cm3 beam hardening correction, and did not exist in the SR{mu}CT data. This study represents the first quantitative comparison of {mu}CT mineralization evaluation against SR{mu}CT and gravimetry. Our results indicate that {mu}CT mineralization measures are underestimated but well-correlated with SR{mu}CT and gravimetric data, particularly when volume fraction groups are considered individually.« less
Kazakia, G. J.; Burghardt, A. J.; Cheung, S.; Majumdar, S.
2008-01-01
Assessment of bone tissue mineral density (TMD) may provide information critical to the understanding of mineralization processes and bone biomechanics. High-resolution three-dimensional assessment of TMD has recently been demonstrated using synchrotron radiation microcomputed tomography (SRμCT); however, this imaging modality is relatively inaccessible due to the scarcity of SR facilities. Conventional desktop μCT systems are widely available and have been used extensively to assess bone microarchitecture. However, the polychromatic source and cone-shaped beam geometry complicate assessment of TMD by conventional μCT. The goal of this study was to evaluate μCT-based measurement of degree and distribution of tissue mineralization in a quantitative, spatially resolved manner. Specifically, μCT measures of bone mineral content (BMC) and TMD were compared to those obtained by SRμCT and gravimetric methods. Cylinders of trabecular bone were machined from human femoral heads (n=5), vertebrae (n=5), and proximal tibiae (n=4). Cylinders were imaged in saline on a polychromatic μCT system at an isotropic voxel size of 8 μm. Volumes were reconstructed using beam hardening correction algorithms based on hydroxyapatite (HA)-resin wedge phantoms of 200 and 1200 mg HA∕cm3. SRμCT imaging was performed at an isotropic voxel size of 7.50 μm at the National Synchrotron Light Source. Attenuation values were converted to HA concentration using a linear regression derived by imaging a calibration phantom. Architecture and mineralization parameters were calculated from the image data. Specimens were processed using gravimetric methods to determine ash mass and density. μCT-based BMC values were not affected by altering the beam hardening correction. Volume-averaged TMD values calculated by the two corrections were significantly different (p=0.008) in high volume fraction specimens only, with the 1200 mg HA∕cm3 correction resulting in a 4.7% higher TMD value. μCT and SRμCT provided significantly different measurements of both BMC and TMD (p<0.05). In high volume fraction specimens, μCT with 1200 mg HA∕cm3 correction resulted in BMC and TMD values 16.7% and 15.0% lower, respectively, than SRμCT values. In low volume fraction specimens, μCT with 1200 mg HA∕cm3 correction resulted in BMC and TMD values 12.8% and 12.9% lower, respectively, than SRμCT values. μCT and SRμCT values were well-correlated when volume fraction groups were considered individually (BMC R2=0.97−1.00; TMD R2=0.78−0.99). Ash mass and density were higher than the SRμCT equivalents by 8.6% in high volume fraction specimens and 10.9% in low volume fraction specimens (p<0.05). BMC values calculated by tomography were highly correlated with ash mass (ash versus μCT R2=0.96−1.00; ash versus SRμCT R2=0.99−1.00). TMD values calculated by tomography were moderately correlated with ash density (ash versus μCT R2=0.64−0.72; ash versus SRμCT R2=0.64). Spatially resolved comparisons highlighted substantial geometric nonuniformity in the μCT data, which were reduced (but not eliminated) using the 1200 mg HA∕cm3 beam hardening correction, and did not exist in the SRμCT data. This study represents the first quantitative comparison of μCT mineralization evaluation against SRμCT and gravimetry. Our results indicate that μCT mineralization measures are underestimated but well-correlated with SRμCT and gravimetric data, particularly when volume fraction groups are considered individually. PMID:18697542
Trabecular bone class mapping across resolutions: translating methods from HR-pQCT to clinical CT
NASA Astrophysics Data System (ADS)
Valentinitsch, Alexander; Fischer, Lukas; Patsch, Janina M.; Bauer, Jan; Kainberger, Franz; Langs, Georg; DiFranco, Matthew
2015-03-01
Quantitative assessment of 3D bone microarchitecture in high-resolution peripheral quantitative computed tomography (HR-pQCT) has shown promise in fracture risk assessment and biomechanics, but is limited to the distal radius and tibia. Trabecular microarchitecture classes (TMACs), based on voxel-wise clustering texture and structure tensor features in HRpQCT, is extended in this paper to quantify trabecular bone classes in clinical multi-detector CT (MDCT) images. Our comparison of TMACs in 12 cadaver radii imaged using both HRpQCT and MDCT yields a mean Dice score of up to 0.717+/-0.40 and visually concordant bone quality maps. Further work to develop clinically viable bone quantitative imaging using HR-pQCT validation could have a significant impact on overall bone health assessment.
Lee-Fowler, Tekla M; Cole, Robert C; Dillon, A Ray; Tillson, D Michael; Garbarino, Rachel; Barney, Sharron
2017-10-01
Objectives Bronchial lumen to pulmonary artery diameter (BA) ratio has been utilized to investigate pulmonary pathology on high-resolution CT images. Diseases affecting both the bronchi and pulmonary arteries render the BA ratio less useful. The purpose of the study was to establish bronchial lumen diameter to vertebral body diameter (BV) and pulmonary artery diameter to vertebral body diameter (AV) ratios in normal cats. Methods Using high-resolution CT images, 16 sets of measurements (sixth thoracic vertebral body [mid-body], each lobar bronchi and companion pulmonary artery diameter) were acquired from young adult female cats and 41 sets from pubertal female cats. Results Young adult and pubertal cat BV ratios were not statistically different from each other in any lung lobe. Significant differences between individual lung lobe BV ratios were noted on combined age group analysis. Caudal lung lobe AV ratios were significantly different between young adult and pubertal cats. All other lung lobe AV ratios were not significantly different. Caudal lung lobe AV ratios were significantly different from all other lung lobes but not from each other in both the young adult and pubertal cats. Conclusions and relevance BV ratio reference intervals determined for individual lung lobes could be applied to both young adult and pubertal cats. Separate AV ratios for individual lung lobes would be required for young adult and pubertal cats. These ratios should allow more accurate evaluation of cats with concurrent bronchial and pulmonary arterial disease.
Glick, Stephen J.; Didier, Clay
2013-01-01
A number of research groups have been investigating the use of dedicated breast computerized tomography (CT). Preliminary results have been encouraging, suggesting an improved visualization of masses on breast CT as compared to conventional mammography. Nonetheless, there are many challenges to overcome before breast CT can become a routine clinical reality. One potential improvement over current breast CT prototypes would be the use of photon counting detectors with cadmium zinc telluride (CZT) (or CdTe) semiconductor material. These detectors can operate at room temperature and provide high detection efficiency and the capability of multi-energy imaging; however, one factor in particular that limits image quality is the emission of characteristic x-rays. In this study, the degradative effects of characteristic x-rays are examined when using a CZT detector under breast CT operating conditions. Monte Carlo simulation software was used to evaluate the effect of characteristic x-rays and the detector element size on spatial and spectral resolution for a CZT detector used under breast CT operating conditions. In particular, lower kVp spectra and thinner CZT thicknesses were studied than that typically used with CZT based conventional CT detectors. In addition, the effect of characteristic x-rays on the accuracy of material decomposition in spectral CT imaging was explored. It was observed that when imaging with 50-60 kVp spectra, the x-ray transmission through CZT was very low for all detector thicknesses studied (0.5–3.0 mm), thus retaining dose efficiency. As expected, characteristic x-ray escape from the detector element of x-ray interaction increased with decreasing detector element size, approaching a 50% escape fraction for a 100 μm size detector element. The detector point spread function was observed to have only minor degradation with detector element size greater than 200 μm and lower kV settings. Characteristic x-rays produced increasing distortion in the spectral response with decreasing detector element size. If not corrected for, this caused a large bias in estimating tissue density parameters for material decomposition. It was also observed that degradation of the spectral response due to characteristic x-rays caused worsening precision in the estimation of tissue density parameters. It was observed that characteristic x-rays do cause some degradation in the spatial and spectral resolution of thin CZT detectors operating under breast CT conditions. These degradations should be manageable with careful selection of the detector element size. Even with the observed spectral distortion from characteristic x-rays, it is still possible to correctly estimate tissue parameters for material decomposition using spectral CT if accurate modeling is used. PMID:24187383
Yanamadala, Vijay; Sheth, Sameer A; Walcott, Brian P; Buchbinder, Bradley R; Buckley, Deidre; Ogilvy, Christopher S
2013-08-01
The preoperative evaluation of patients with intracranial aneurysms typically includes a contrast-enhanced vascular study, such as computed tomography angiography (CTA), magnetic resonance angiography (MRA), or digital subtraction angiography. However, there are numerous absolute and relative contraindications to the administration of imaging contrast agents, including pregnancy, severe contrast allergy, and renal insufficiency. Evaluation of patients with contrast contraindications thus presents a unique challenge. We identified three patients with absolute contrast contraindications who presented with intracranial aneurysms. One patient was pregnant, while the other two had previous severe anaphylactic reactions to iodinated contrast. Because of these contraindications to intravenous contrast, we performed non-contrast time-of-flight MRA with 3D reconstruction (TOF MRA with 3DR) with maximum intensity projections and volume renderings as part of the preoperative evaluation prior to successful open surgical clipping of the aneurysms. In the case of one paraclinoid aneurysm, a high-resolution non-contrast CT scan was also performed to assess the relationship of the aneurysm to the anterior clinoid process. TOF MRA with 3DR successfully identified the intracranial aneurysms and adequately depicted the surrounding microanatomy. Intraoperative findings were as predicted by the preoperative imaging studies. The aneurysms were successfully clip-obliterated, and the patients had uneventful post-operative courses. These cases demonstrate that non-contrast imaging is a viable modality to assess intracranial aneurysms as part of the surgical planning process in patients with contrast contraindications. TOF MRA with 3DR, in conjunction with high-resolution non-contrast CT when indicated, provides adequate visualization of the microanatomy of the aneurysm and surrounding structures. Copyright © 2013 Elsevier Ltd. All rights reserved.
Estimation of skull table thickness with clinical CT and validation with microCT.
Lillie, Elizabeth M; Urban, Jillian E; Weaver, Ashley A; Powers, Alexander K; Stitzel, Joel D
2015-01-01
Brain injuries resulting from motor vehicle crashes (MVC) are extremely common yet the details of the mechanism of injury remain to be well characterized. Skull deformation is believed to be a contributing factor to some types of traumatic brain injury (TBI). Understanding biomechanical contributors to skull deformation would provide further insight into the mechanism of head injury resulting from blunt trauma. In particular, skull thickness is thought be a very important factor governing deformation of the skull and its propensity for fracture. Current computed tomography (CT) technology is limited in its ability to accurately measure cortical thickness using standard techniques. A method to evaluate cortical thickness using cortical density measured from CT data has been developed previously. This effort validates this technique for measurement of skull table thickness in clinical head CT scans using two postmortem human specimens. Bone samples were harvested from the skulls of two cadavers and scanned with microCT to evaluate the accuracy of the estimated cortical thickness measured from clinical CT. Clinical scans were collected at 0.488 and 0.625 mm in plane resolution with 0.625 mm thickness. The overall cortical thickness error was determined to be 0.078 ± 0.58 mm for cortical samples thinner than 4 mm. It was determined that 91.3% of these differences fell within the scanner resolution. Color maps of clinical CT thickness estimations are comparable to color maps of microCT thickness measurements, indicating good quantitative agreement. These data confirm that the cortical density algorithm successfully estimates skull table thickness from clinical CT scans. The application of this technique to clinical CT scans enables evaluation of cortical thickness in population-based studies. © 2014 Anatomical Society.
Katsura, Masaki; Sato, Jiro; Akahane, Masaaki; Mise, Yoko; Sumida, Kaoru; Abe, Osamu
2017-08-01
To compare image quality characteristics of high-resolution computed tomography (HRCT) in the evaluation of interstitial lung disease using three different reconstruction methods: model-based iterative reconstruction (MBIR), adaptive statistical iterative reconstruction (ASIR), and filtered back projection (FBP). Eighty-nine consecutive patients with interstitial lung disease underwent standard-of-care chest CT with 64-row multi-detector CT. HRCT images were reconstructed in 0.625-mm contiguous axial slices using FBP, ASIR, and MBIR. Two radiologists independently assessed the images in a blinded manner for subjective image noise, streak artifacts, and visualization of normal and pathologic structures. Objective image noise was measured in the lung parenchyma. Spatial resolution was assessed by measuring the modulation transfer function (MTF). MBIR offered significantly lower objective image noise (22.24±4.53, P<0.01 among all pairs, Student's t-test) compared with ASIR (39.76±7.41) and FBP (51.91±9.71). MTF (spatial resolution) was increased using MBIR compared with ASIR and FBP. MBIR showed improvements in visualization of normal and pathologic structures over ASIR and FBP, while ASIR was rated quite similarly to FBP. MBIR significantly improved subjective image noise (P<0.01 among all pairs, the sign test), and streak artifacts (P<0.01 each for MBIR vs. the other 2 image data sets). MBIR provides high-quality HRCT images for interstitial lung disease by reducing image noise and streak artifacts and improving spatial resolution compared with ASIR and FBP. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Tianfang; Wang, Jing; Wen, Junhai; Li, Xiang; Lu, Hongbing; Hsieh, Jiang; Liang, Zhengrong
2004-05-01
To treat the noise in low-dose x-ray CT projection data more accurately, analysis of the noise properties of the data and development of a corresponding efficient noise treatment method are two major problems to be addressed. In order to obtain an accurate and realistic model to describe the x-ray CT system, we acquired thousands of repeated measurements on different phantoms at several fixed scan angles by a GE high-speed multi-slice spiral CT scanner. The collected data were calibrated and log-transformed by the sophisticated system software, which converts the detected photon energy into sinogram data that satisfies the Radon transform. From the analysis of these experimental data, a nonlinear relation between mean and variance for each datum of the sinogram was obtained. In this paper, we integrated this nonlinear relation into a penalized likelihood statistical framework for a SNR (signal-to-noise ratio) adaptive smoothing of noise in the sinogram. After the proposed preprocessing, the sinograms were reconstructed with unapodized FBP (filtered backprojection) method. The resulted images were evaluated quantitatively, in terms of noise uniformity and noise-resolution tradeoff, with comparison to other noise smoothing methods such as Hanning filter and Butterworth filter at different cutoff frequencies. Significant improvement on noise and resolution tradeoff and noise property was demonstrated.
al Mahbub, Asheque; Haque, Asadul
2016-01-01
This paper presents the results of X-ray CT imaging of the microstructure of sand particles subjected to high pressure one-dimensional compression leading to particle crushing. A high resolution X-ray CT machine capable of in situ imaging was employed to capture images of the whole volume of a sand sample subjected to compressive stresses up to 79.3 MPa. Images of the whole sample obtained at different load stages were analysed using a commercial image processing software (Avizo) to reveal various microstructural properties, such as pore and particle volume distributions, spatial distribution of void ratios, relative breakage, and anisotropy of particles. PMID:28774011
Al Mahbub, Asheque; Haque, Asadul
2016-11-03
This paper presents the results of X-ray CT imaging of the microstructure of sand particles subjected to high pressure one-dimensional compression leading to particle crushing. A high resolution X-ray CT machine capable of in situ imaging was employed to capture images of the whole volume of a sand sample subjected to compressive stresses up to 79.3 MPa. Images of the whole sample obtained at different load stages were analysed using a commercial image processing software (Avizo) to reveal various microstructural properties, such as pore and particle volume distributions, spatial distribution of void ratios, relative breakage, and anisotropy of particles.
Ruschin, Mark; Komljenovic, Philip T; Ansell, Steve; Ménard, Cynthia; Bootsma, Gregory; Cho, Young-Bin; Chung, Caroline; Jaffray, David
2013-01-01
Image guidance has improved the precision of fractionated radiation treatment delivery on linear accelerators. Precise radiation delivery is particularly critical when high doses are delivered to complex shapes with steep dose gradients near critical structures, as is the case for intracranial radiosurgery. To reduce potential geometric uncertainties, a cone beam computed tomography (CT) image guidance system was developed in-house to generate high-resolution images of the head at the time of treatment, using a dedicated radiosurgery unit. The performance and initial clinical use of this imaging system are described. A kilovoltage cone beam CT system was integrated with a Leksell Gamma Knife Perfexion radiosurgery unit. The X-ray tube and flat-panel detector are mounted on a translational arm, which is parked above the treatment unit when not in use. Upon descent, a rotational axis provides 210° of rotation for cone beam CT scans. Mechanical integrity of the system was evaluated over a 6-month period. Subsequent clinical commissioning included end-to-end testing of targeting performance and subjective image quality performance in phantoms. The system has been used to image 2 patients, 1 of whom received single-fraction radiosurgery and 1 who received 3 fractions, using a relocatable head frame. Images of phantoms demonstrated soft tissue contrast visibility and submillimeter spatial resolution. A contrast difference of 35 HU was easily detected at a calibration dose of 1.2 cGy (center of head phantom). The shape of the mechanical flex vs scan angle was highly reproducible and exhibited <0.2 mm peak-to-peak variation. With a 0.5-mm voxel pitch, the maximum targeting error was 0.4 mm. Images of 2 patients were analyzed offline and submillimeter agreement was confirmed with conventional frame. A cone beam CT image guidance system was successfully adapted to a radiosurgery unit. The system is capable of producing high-resolution images of bone and soft tissue. The system is in clinical use and provides excellent image guidance without invasive frames. Copyright © 2013 Elsevier Inc. All rights reserved.
Performance evaluation of a 64-slice CT system with z-flying focal spot.
Flohr, T; Stierstorfer, K; Raupach, R; Ulzheimer, S; Bruder, H
2004-12-01
The meanwhile established generation of 16-slice CT systems enables routine sub-millimeter imaging at short breath-hold times. Clinical progress in the development of multidetector row CT (MDCT) technology beyond 16 slices can more likely be expected from further improvement in spatial and temporal resolution rather than from a mere increase in the speed of volume coverage. We present an evaluation of a recently introduced 64-slice CT system (SOMATOM Sensation 64, Siemens AG, Forchheim, Germany), which uses a periodic motion of the focal spot in longitudinal direction (z-flying focal spot) to double the number of simultaneously acquired slices. This technique acquires 64 overlapping 0.6 mm slices per rotation. The sampling scheme corresponds to that of a 64 x 0.3 mm detector, with the goal of improved longitudinal resolution and reduced spiral artifacts. After an introduction to the detector design, we discuss the basics of z-flying focal spot technology (z-Sharp). We present phantom and specimen scans for performance evaluation. The measured full width at half maximum (FWHM) of the thinnest spiral slice is 0.65 mm. All spiral slice widths are almost independent of the pitch, with deviations of less than 0.1 mm from the nominal value. Using a high-resolution bar pattern phantom (CATPHAN, Phantom Laboratories, Salem, NY), the longitudinal resolution can be demonstrated to be up to 15 lp/cm at the isocenter independent of the pitch, corresponding to a bar diameter of 0.33 mm. Longitudinal resolution is only slightly degraded for off-center locations. At a distance of 100 mm from the isocenter, 14 lp/cm can be resolved in the z-direction, corresponding to a bar diameter of 0.36 mm. Spiral "windmill" artifacts presenting as hyper- and hypodense structures around osseous edges are effectively reduced by the z-flying focal spot technique. Cardiac scanning benefits from the short gantry rotation time of 0.33 s, providing up to 83 ms temporal resolution with 2-segment ECG-gated reconstruction.
Uosyte, Raimonda; Shaw, Darren J; Gunn-Moore, Danielle A; Fraga-Manteiga, Eduardo; Schwarz, Tobias
2015-01-01
Turbinate destruction is an important diagnostic criterion in canine and feline nasal computed tomography (CT). However decreased turbinate visibility may also be caused by technical CT settings and nasal fluid. The purpose of this experimental, crossover study was to determine whether fluid reduces conspicuity of canine and feline nasal turbinates in CT and if so, whether CT settings can maximize conspicuity. Three canine and three feline cadaver heads were used. Nasal slabs were CT-scanned before and after submerging them in a water bath; using sequential, helical, and ultrahigh resolution modes; with images in low, medium, and high frequency image reconstruction kernels; and with application of additional posterior fossa optimization and high contrast enhancing filters. Visible turbinate length was measured by a single observer using manual tracing. Nasal density heterogeneity was measured using the standard deviation (SD) of mean nasal density from a region of interest in each nasal cavity. Linear mixed-effect models using the R package ‘nlme’, multivariable models and standard post hoc Tukey pair-wise comparisons were performed to investigate the effect of several variables (nasal content, scanning mode, image reconstruction kernel, application of post reconstruction filters) on measured visible total turbinate length and SD of mean nasal density. All canine and feline water-filled nasal slabs showed significantly decreased visibility of nasal turbinates (P < 0.001). High frequency kernels provided the best turbinate visibility and highest SD of aerated nasal slabs, whereas medium frequency kernels were optimal for water-filled nasal slabs. Scanning mode and filter application had no effect on turbinate visibility. PMID:25867935
Li, Jonathan G.; Liu, Chihray; Olivier, Kenneth R.; Dempsey, James F.
2009-01-01
The aim of this study was to investigate the relative accuracy of megavoltage photon‐beam dose calculations employing either five bulk densities or independent voxel densities determined by calibration of the CT Houndsfield number. Full‐resolution CT and bulk density treatment plans were generated for 70 lung or esophageal cancer tumors (66 cases) using a commercial treatment planning system with an adaptive convolution dose calculation algorithm (Pinnacle3, Philips Medicals Systems). Bulk densities were applied to segmented regions. Individual and population average densities were compared to the full‐resolution plan for each case. Monitor units were kept constant and no normalizations were employed. Dose volume histograms (DVH) and dose difference distributions were examined for all cases. The average densities of the segmented air, lung, fat, soft tissue, and bone for the entire set were found to be 0.14, 0.26, 0.89, 1.02, and 1.12 g/cm3, respectively. In all cases, the normal tissue DVH agreed to better than 2% in dose. In 62 of 70 DVHs of the planning target volume (PTV), agreement to better than 3% in dose was observed. Six cases demonstrated emphysema, one with bullous formations and one with a hiatus hernia having a large volume of gas. These required the additional assignment of density to the emphysemic lung and inflammatory changes to the lung, the regions of collapsed lung, the bullous formations, and the hernia gas. Bulk tissue density dose calculation provides an accurate method of heterogeneous dose calculation. However, patients with advanced emphysema may require high‐resolution CT studies for accurate treatment planning. PACS number: 87.53.Tf
NASA Astrophysics Data System (ADS)
Carlson, W. D.; Ketcham, R. A.; Rowe, T. B.
2002-12-01
An NSF-sponsored (EAR-IF) shared multi-user facility dedicated to research applications of high-resolution X-ray computed tomography (CT) in the geological sciences has been in operation since 1997 at the University of Texas at Austin. The centerpiece of the facility is an industrial CT scanner custom-designed for geological applications. Because the instrument can optimize trade-offs among penetrating ability, spatial resolution, density discrimination, imaging modes, and scan times, it can image a very broad range of geological specimens and materials, and thus offers significant advantages over medical scanners and desktop microtomographs. Two tungsten-target X-ray sources (200-kV microfocal and 420-kV) and three X-ray detectors (image-intensifier, high-sensitivity cadmium tungstate linear array, and high-resolution gadolinium-oxysulfide radiographic line scanner) can be used in various combinations to meet specific imaging goals. Further flexibility is provided by multiple imaging modes: second-generation (translate-rotate), third-generation (rotate-only; centered and variably offset), and cone-beam (volume CT). The instrument can accommodate specimens as small as about 1 mm on a side, and as large as 0.5 m in diameter and 1.5 m tall. Applications in petrology and structural geology include measuring crystal sizes and locations to identify mechanisms governing the kinetics of metamorphic reactions; visualizing relationships between alteration zones and abundant macrodiamonds in Siberian eclogites to elucidate metasomatic processes in the mantle; characterizing morphologies of spiral inclusion trails in garnet to test hypotheses of porphyroblast rotation during growth; measuring vesicle size distributions in basaltic flows for determination of elevation at the time of eruption to constrain timing and rates of continental uplift; analysis of the geometry, connectivity, and tortuosity of migmatite leucosomes to define the topology of melt flow paths, for numerical modeling of melt extraction during anatexis, and visualizing and quantifying the deformation of continuous 3-D plagioclase-chain networks in slowly cooled basalt flows to evaluate differentiation by compaction of a crystal mush. Meteoritical research includes measuring sizes of chondrules and metal-troilite particles in chondritic meteorites to test hypotheses of sorting during condensation of the solar nebula; visualizing paths of migration for molten metal in rare lodranite meteorites to gain insight into processes of core segregation in terrestrial planets; measurement of vesicles and voids in basaltic meteorites to examine flow rates and mechanisms; and imaging of metal/clast relationships in a brecciated chondrite to demonstrate impact-induced metamorphism, metal fusion, and brecciation on the meteorite's parent body. Paleontological studies include analysis of fossil jaws of Mesozoic marsupials to establish the antiquity of distinctive patterns of tooth replacement and reproductive strategies seen in modern marsupials; comparisons of the internal cranial anatomy of mammals and their closest extinct relatives to pinpoint the evolutionary origin of the mammalian neocortex, the locus of advanced sensory perception and integration; and description of the evolution of the avian brain and braincase from those of non-avian dinosaurs, from CT data on skulls of the oldest known dinosaurs and complete skeletal analysis of the world's second oldest bird.
Braun, Katharina; Böhnke, Frank; Stark, Thomas
2012-06-01
We present a complete geometric model of the human cochlea, including the segmentation and reconstruction of the fluid-filled chambers scala tympani and scala vestibuli, the lamina spiralis ossea and the vibrating structure (cochlear partition). Future fluid-structure coupled simulations require a reliable geometric model of the cochlea. The aim of this study was to present an anatomical model of the human cochlea, which can be used for further numerical calculations. Using high resolution micro-computed tomography (µCT), we obtained images of a cut human temporal bone with a spatial resolution of 5.9 µm. Images were manually segmented to obtain the three-dimensional reconstruction of the cochlea. Due to the high resolution of the µCT data, a detailed examination of the geometry of the twisted cochlear partition near the oval and the round window as well as the precise illustration of the helicotrema was possible. After reconstruction of the lamina spiralis ossea, the cochlear partition and the curved geometry of the scala vestibuli and the scala tympani were presented. The obtained data sets were exported as standard lithography (stl) files. These files represented a complete framework for future numerical simulations of mechanical (acoustic) wave propagation on the cochlear partition in the form of mathematical mechanical cochlea models. Additional quantitative information concerning heights, lengths and volumes of the scalae was found and compared with previous results.
Caroff, J; Mihalea, C; Neki, H; Ruijters, D; Ikka, L; Benachour, N; Moret, J; Spelle, L
2014-07-01
The WEB aneurysm embolization system is still under evaluation but seems to be a promising technique to treat wide-neck bifurcation aneurysms. However, this device is barely visible using conventional DSA; thus, high-resolution contrast-enhanced flat panel detector CT (VasoCT) may be useful before detachment to assess the sizing and positioning of the WEB. The purpose of this study was to evaluate the interest of VasoCT during WEB procedures. From March 2012 to July 2013, twelve patients (10 women and 2 men; age range, 44-55 years) were treated for 13 intracranial aneurysms with the WEB device. DSA and VasoCT were used and compared to depict any protrusion of the device in parent arteries before detachment. Two neuroradiologists reviewed each VasoCT scan, and the quality was graded on a subjective quality scale. The mesh of the WEB was very well-depicted in all cases, allowing a very good assessment of its deployment. Device protrusion was clearly detected with VasoCT in 5 cases, leading to WEB repositioning or size substitution. During follow-up, VasoCT also allows good assessment of eventual residual blood flow inside the aneurysm or the WEB device. Unlike DSA, VasoCT is an excellent tool to assess WEB deployment and positioning. In our experience, it allowed a precise evaluation of the WEB sizing and its relation to the parent vessel. Such information very likely enhances the ability to safely use this device, avoiding potential thromboembolic events in cases of protrusion in the parent arteries. © 2014 by American Journal of Neuroradiology.
Relationship between noise, dose, and pitch in cardiac multi-detector row CT.
Primak, Andrew N; McCollough, Cynthia H; Bruesewitz, Michael R; Zhang, Jie; Fletcher, Joel G
2006-01-01
In spiral computed tomography (CT), dose is always inversely proportional to pitch. However, the relationship between noise and pitch (and hence noise and dose) depends on the scanner type (single vs multi-detector row) and reconstruction mode (cardiac vs noncardiac). In single detector row spiral CT, noise is independent of pitch. Conversely, in noncardiac multi-detector row CT, noise depends on pitch because the spiral interpolation algorithm makes use of redundant data from different detector rows to decrease noise for pitch values less than 1 (and increase noise for pitch values > 1). However, in cardiac spiral CT, redundant data cannot be used because such data averaging would degrade the temporal resolution. Therefore, the behavior of noise versus pitch returns to the single detector row paradigm, with noise being independent of pitch. Consequently, since faster rotation times require lower pitch values in cardiac multi-detector row CT, dose is increased without a commensurate decrease in noise. Thus, the use of faster rotation times will improve temporal resolution, not alter noise, and increase dose. For a particular application, the higher dose resulting from faster rotation speeds should be justified by the clinical benefits of the improved temporal resolution. RSNA, 2006
Hamed, Maged Abdel Galil; Basha, Mohammad Abd Alkhalik; Ahmed, Hussien; Obaya, Ahmed Ali; Afifi, Amira Hamed Mohamed; Abdelbary, Eman H
2018-06-20
68 Ga-prostate-specific membrane antigen-11 ( 68 Ga-PSMA-11) is a recently developed positron emission tomography (PET) tracer that can detect prostate cancer (PC) relapses and metastases with high contrast resolution. The aim of this study was to assess the detection efficacy and diagnostic accuracy of 68 Ga-PSMA PET/CT image in patients with rising prostatic-specific antigen (PSA) after treatment of PC. The present prospective study included 188 patients who exhibited rising of PSA level on a routine follow-up examination after definitive treatment of PC. All patients underwent a 68 Ga-PSMA PET/CT examination. For each patient, we determined the disease stage, the Gleason score, and the maximum standardized uptake value of the local recurrence and extraprostatic metastases. The detection efficacy and diagnostic accuracy of 68 Ga-PSMA PET/CT were established by histopathology and clinical and imaging follow-up as the reference standards. 68 Ga-PSMA PET/CT detected tumour relapse in 165 patients (35 patients had local recurrence, 106 patients had extraprostatic metastases, and 24 patients had combined lesions). The sensitivity, specificity, and accuracy values of 68 Ga-PSMA PET/CT examination in the detection of PC recurrence were 98.8%, 100%, and 98.8%, respectively. 68 Ga-PSMA PET/CT revealed an overall detection rate of 87.8% (165/188) in patients with rising PSA (median of 2.2 ng/mL, and range of 0.01-70 ng/mL). 68 Ga-PSMA PET/CT is a valuable tool for the detection of PC local recurrence or extraprostatic metastases following rising PSA levels after primary definitive therapy and should be incorporated during routine work-up. Copyright © 2018. Published by Elsevier Inc.
Vassalou, Evangelia E; Raissaki, Maria; Magkanas, Eleftherios; Antoniou, Katerina M; Karantanas, Apostolos H
2017-12-01
To compare lung ultrasonography (US) in the sitting or supine positions and the lateral decubitus position, with regard to the feasibility, duration, patient convenience, and assessment of B-lines, in patients with idiopathic pulmonary fibrosis. Twenty consecutive patients with idiopathic pulmonary fibrosis were prospectively enrolled. Lung US included scanning of 56 intercostal spaces. Each patient was examined twice by 2 protocols. During protocol 1, patients were examined in the supine and sitting positions for the anterior and dorsal chest, respectively. During protocol 2, patients were examined in the left lateral decubitus position for the evaluation of the right hemithorax and the reverse. Total, anterior, and posterior US scores resulted from the sum of B-lines at the whole, anterior, and posterior chest, respectively. High-resolution computed tomography (CT) was considered the reference standard. The duration of each protocol was recorded. Patients were questioned about which protocol they preferred. There was no difference regarding feasibility between the protocols. A significant correlation was found between total US scores for both protocols and high-resolution CT findings (P < .0001), with protocol 2 showing a slightly higher correlation. A positive correlation was found between the protocols regarding total, anterior, and posterior US scores (P < .0001). The mean duration of protocol 2 was less than that of protocol 1 (P < .005). Nineteen patients (95%) reported a preference for protocol 2. Lung US in the lateral decubitus position seems to be faster and more convenient. There appears to be no difference regarding feasibility and the number of B-lines, whereas it shows slightly higher correlation with high-resolution CT, compared with the sitting or supine positions in patients with idiopathic pulmonary fibrosis. © 2017 by the American Institute of Ultrasound in Medicine.
Feasibility of fabricating personalized 3D-printed bone grafts guided by high-resolution imaging
NASA Astrophysics Data System (ADS)
Hong, Abigail L.; Newman, Benjamin T.; Khalid, Arbab; Teter, Olivia M.; Kobe, Elizabeth A.; Shukurova, Malika; Shinde, Rohit; Sipzner, Daniel; Pignolo, Robert J.; Udupa, Jayaram K.; Rajapakse, Chamith S.
2017-03-01
Current methods of bone graft treatment for critical size bone defects can give way to several clinical complications such as limited available bone for autografts, non-matching bone structure, lack of strength which can compromise a patient's skeletal system, and sterilization processes that can prevent osteogenesis in the case of allografts. We intend to overcome these disadvantages by generating a patient-specific 3D printed bone graft guided by high-resolution medical imaging. Our synthetic model allows us to customize the graft for the patients' macro- and microstructure and correct any structural deficiencies in the re-meshing process. These 3D-printed models can presumptively serve as the scaffolding for human mesenchymal stem cell (hMSC) engraftment in order to facilitate bone growth. We performed highresolution CT imaging of a cadaveric human proximal femur at 0.030-mm isotropic voxels. We used these images to generate a 3D computer model that mimics bone geometry from micro to macro scale represented by STereoLithography (STL) format. These models were then reformatted to a format that can be interpreted by the 3D printer. To assess how much of the microstructure was replicated, 3D-printed models were re-imaged using micro-CT at 0.025-mm isotropic voxels and compared to original high-resolution CT images used to generate the 3D model in 32 sub-regions. We found a strong correlation between 3D-printed bone volume and volume of bone in the original images used for 3D printing (R2 = 0.97). We expect to further refine our approach with additional testing to create a viable synthetic bone graft with clinical functionality.
Dudekula, Rizwan Ahmed
2017-01-01
Mycoplasma pneumoniae is an atypical bacterium that most commonly causes upper respiratory tract infections, but it can also cause pneumonia, referred to as “walking pneumonia.” Although cavitary lesions are present in a wide variety of infectious and noninfectious processes, those attributable to M. pneumoniae are extremely uncommon; thus, to date, epidemiological studies are lacking. Here, we present a rare case of a 20-year-old male, referred to us from a psychiatric facility for evaluation of a cough, who was found to have a cavitary lesion in the right upper lobe. An extensive workup for cavitary lesion was negative, but his mycoplasma IgM level was high. A computed tomography (CT) of the chest confirmed the presence of a cavitary lesion. After treatment with levofloxacin antibiotics, a follow-up CT showed complete resolution of the lesion. Our case is a rare presentation of mycoplasma pneumonia as a cavitary lesion in a patient without any known risk factors predisposing to mycoplasma infection. Early recognition and treatment with an appropriate antibiotic may lead to complete resolution of the cavitary lesion. PMID:28912822
Grating-based X-ray Dark-field Computed Tomography of Living Mice.
Velroyen, A; Yaroshenko, A; Hahn, D; Fehringer, A; Tapfer, A; Müller, M; Noël, P B; Pauwels, B; Sasov, A; Yildirim, A Ö; Eickelberg, O; Hellbach, K; Auweter, S D; Meinel, F G; Reiser, M F; Bech, M; Pfeiffer, F
2015-10-01
Changes in x-ray attenuating tissue caused by lung disorders like emphysema or fibrosis are subtle and thus only resolved by high-resolution computed tomography (CT). The structural reorganization, however, is of strong influence for lung function. Dark-field CT (DFCT), based on small-angle scattering of x-rays, reveals such structural changes even at resolutions coarser than the pulmonary network and thus provides access to their anatomical distribution. In this proof-of-concept study we present x-ray in vivo DFCTs of lungs of a healthy, an emphysematous and a fibrotic mouse. The tomographies show excellent depiction of the distribution of structural - and thus indirectly functional - changes in lung parenchyma, on single-modality slices in dark field as well as on multimodal fusion images. Therefore, we anticipate numerous applications of DFCT in diagnostic lung imaging. We introduce a scatter-based Hounsfield Unit (sHU) scale to facilitate comparability of scans. In this newly defined sHU scale, the pathophysiological changes by emphysema and fibrosis cause a shift towards lower numbers, compared to healthy lung tissue.
Grating-based X-ray Dark-field Computed Tomography of Living Mice
Velroyen, A.; Yaroshenko, A.; Hahn, D.; Fehringer, A.; Tapfer, A.; Müller, M.; Noël, P.B.; Pauwels, B.; Sasov, A.; Yildirim, A.Ö.; Eickelberg, O.; Hellbach, K.; Auweter, S.D.; Meinel, F.G.; Reiser, M.F.; Bech, M.; Pfeiffer, F.
2015-01-01
Changes in x-ray attenuating tissue caused by lung disorders like emphysema or fibrosis are subtle and thus only resolved by high-resolution computed tomography (CT). The structural reorganization, however, is of strong influence for lung function. Dark-field CT (DFCT), based on small-angle scattering of x-rays, reveals such structural changes even at resolutions coarser than the pulmonary network and thus provides access to their anatomical distribution. In this proof-of-concept study we present x-ray in vivo DFCTs of lungs of a healthy, an emphysematous and a fibrotic mouse. The tomographies show excellent depiction of the distribution of structural – and thus indirectly functional – changes in lung parenchyma, on single-modality slices in dark field as well as on multimodal fusion images. Therefore, we anticipate numerous applications of DFCT in diagnostic lung imaging. We introduce a scatter-based Hounsfield Unit (sHU) scale to facilitate comparability of scans. In this newly defined sHU scale, the pathophysiological changes by emphysema and fibrosis cause a shift towards lower numbers, compared to healthy lung tissue. PMID:26629545
Conebeam CT of the head and neck, part 1: physical principles.
Miracle, A C; Mukherji, S K
2009-06-01
Conebeam x-ray CT (CBCT) is a developing imaging technique designed to provide relatively low-dose high-spatial-resolution visualization of high-contrast structures in the head and neck and other anatomic areas. This first installment in a 2-part review will address the physical principles underlying CBCT imaging as it is used in dedicated head and neck scanners. Concepts related to CBCT acquisition geometry, flat panel detection, and image quality will be explored in detail. Particular emphasis will be placed on technical limitations to low-contrast detectability and radiation dose. Proposed methods of x-ray scatter reduction will also be discussed.
Mhlanga, Joyce C; Carrino, John A; Lodge, Martin; Wang, Hao; Wahl, Richard L
2014-12-01
The aim of this study was to prospectively determine the feasibility and compare the novel use of a positron emission mammography (PEM) scanner with standard PET/CT for evaluating hand osteoarthritis (OA) with (18)F-FDG. Institutional review board approval and written informed consent were obtained for this HIPAA-compliant prospective study in which 14 adults referred for oncological (18)F-FDG PET/CT underwent dedicated hand PET/CT followed by arthro-PET using the PEM device. Hand radiographs were obtained and scored for the presence and severity of OA. Summed qualitative and quantitative joint glycolytic scores for each modality were compared with the findings on plain radiography and clinical features. Eight patients with clinical and/or radiographic evidence of OA comprised the OA group (mean age 73 ± 7.7 years). Six patients served as the control group (53.7 ± 9.3 years). Arthro-PET quantitative and qualitative joint glycolytic scores were highly correlated with PET/CT findings in the OA patients (r = 0.86. p = 0.007; r = 0.94, p = 0.001). Qualitative arthro-PET and PET/CT joint scores were significantly higher in the OA patients than in controls (38.7 ± 6.6 vs. 32.2 ± 0.4, p = 0.02; 37.5 ± 5.4 vs. 32.2 ± 0.4, p = 0.03, respectively). Quantitative arthro-PET and PET/CT maximum SUV-lean joint scores were higher in the OA patients, although they did not reach statistical significance (20.8 ± 4.2 vs. 18 ± 1.8, p = 0.13; 22.8 ± 5.38 vs. 20.1 ± 1.54, p = 0.21). By definition, OA patients had higher radiographic joint scores than controls (30.9 ± 31.3 vs. 0, p = 0.03). Hand imaging using a small field of view PEM system (arthro-PET) with FDG is feasible, performing comparably to PET/CT in assessing metabolic joint activity. Arthro-PET and PET/CT showed higher joint FDG uptake in OA. Further exploration of arthro-PET in arthritis management is warranted.
Mhlanga, Joyce C.; Carrino, John A.; Lodge, Martin; Wang, Hao
2015-01-01
Purpose The aim of this study was to prospectively determine the feasibility and compare the novel use of a positron emission mammography (PEM) scanner with standard PET/CT for evaluating hand osteoarthritis (OA) with 18F-FDG. Methods Institutional review board approval and written informed consent were obtained for this HIPAA-compliant prospective study in which 14 adults referred for oncological 18F-FDG PET/CT underwent dedicated hand PET/CT followed by arthro-PET using the PEM device. Hand radiographs were obtained and scored for the presence and severity of OA. Summed qualitative and quantitative joint glycolytic scores for each modality were compared with the findings on plain radiography and clinical features. Results Eight patients with clinical and/or radiographic evidence of OA comprised the OA group (mean age 73±7.7 years). Six patients served as the control group (53.7±9.3 years). Arthro-PET quantitative and qualitative joint glycolytic scores were highly correlated with PET/CT findings in the OA patients (r=0.86. p =0.007; r=0.94, p=0.001). Qualitative arthro-PET and PET/CT joint scores were significantly higher in the OA patients than in controls (38.7±6.6 vs. 32.2±0.4, p=0.02; 37.5±5.4 vs. 32.2±0.4, p=0.03, respectively). Quantitative arthro-PET and PET/CT maximum SUV-lean joint scores were higher in the OA patients, although they did not reach statistical significance (20.8±4.2 vs. 18±1.8, p= 0.13; 22.8±5.38 vs. 20.1±1.54, p=0.21). By definition, OA patients had higher radiographic joint scores than controls (30.9±31.3 vs. 0, p=0.03). Conclusion Hand imaging using a small field of view PEM system (arthro-PET) with FDG is feasible, performing comparably to PET/CT in assessing metabolic joint activity. Arthro-PET and PET/CT showed higher joint FDG uptake in OA. Further exploration of arthro-PET in arthritis management is warranted. PMID:25134669
Young, Simon; Kretlow, James D; Nguyen, Charles; Bashoura, Alex G; Baggett, L Scott; Jansen, John A; Wong, Mark; Mikos, Antonios G
2008-09-01
Vasculogenesis and angiogenesis have been studied for decades using numerous in vitro and in vivo systems, fulfilling the need to elucidate the mechanisms involved in these processes and to test potential therapeutic agents that inhibit or promote neovascularization. Bone tissue engineering in particular has benefited from the application of proangiogenic strategies, considering the need for an adequate vascular supply during healing and the challenges associated with the vascularization of scaffolds implanted in vivo. Conventional methods of assessing the in vivo angiogenic response to tissue-engineered constructs tend to rely on a two-dimensional assessment of microvessel density within representative histological sections without elaboration of the true vascular tree. The introduction of microcomputed tomography (micro-CT) has recently allowed investigators to obtain a diverse range of high-resolution, three-dimensional characterization of structures, including renal, coronary, and hepatic vascular networks, as well as bone formation within healing defects. To date, few studies have utilized micro-CT to study the vascular response to an implanted tissue engineering scaffold. In this paper, conventional in vitro and in vivo models for studying angiogenesis will be discussed, followed by recent developments in the use of micro-CT for vessel imaging in bone tissue engineering research. A new study demonstrating the potential of contrast-enhanced micro-CT for the evaluation of in vivo neovascularization in bony defects is described, which offers significant potential in the evaluation of bone tissue engineering constructs.
Nonlocal low-rank and sparse matrix decomposition for spectral CT reconstruction
NASA Astrophysics Data System (ADS)
Niu, Shanzhou; Yu, Gaohang; Ma, Jianhua; Wang, Jing
2018-02-01
Spectral computed tomography (CT) has been a promising technique in research and clinics because of its ability to produce improved energy resolution images with narrow energy bins. However, the narrow energy bin image is often affected by serious quantum noise because of the limited number of photons used in the corresponding energy bin. To address this problem, we present an iterative reconstruction method for spectral CT using nonlocal low-rank and sparse matrix decomposition (NLSMD), which exploits the self-similarity of patches that are collected in multi-energy images. Specifically, each set of patches can be decomposed into a low-rank component and a sparse component, and the low-rank component represents the stationary background over different energy bins, while the sparse component represents the rest of the different spectral features in individual energy bins. Subsequently, an effective alternating optimization algorithm was developed to minimize the associated objective function. To validate and evaluate the NLSMD method, qualitative and quantitative studies were conducted by using simulated and real spectral CT data. Experimental results show that the NLSMD method improves spectral CT images in terms of noise reduction, artifact suppression and resolution preservation.
Possibilities of CT Scanning as Analysis Method in Laser Additive Manufacturing
NASA Astrophysics Data System (ADS)
Karme, Aleksis; Kallonen, Aki; Matilainen, Ville-Pekka; Piili, Heidi; Salminen, Antti
Laser additive manufacturing is an established and constantly developing technique. Structural assessment should be a key component to ensure directed evolution towards higher level of manufacturing. The macroscopic properties of metallic structures are determined by their internal microscopic features, which are difficult to assess using conventional surface measuring methodologies. X-ray microtomography (CT) is a promising technique for three-dimensional non-destructive probing of internal composition and build of various materials. Aim of this study is to define the possibilities of using CT scanning as quality control method in LAM fabricated parts. Since the parts fabricated with LAM are very often used in high quality and accuracy demanding applications in various industries such as medical and aerospace, it is important to be able to define the accuracy of the build parts. The tubular stainless steel test specimens were 3D modelled, manufactured with a modified research AM equipment and imaged after manufacturing with a high-power, high-resolution CT scanner. 3D properties, such as surface texture and the amount and distribution of internal pores, were also evaluated in this study. Surface roughness was higher on the interior wall of the tube, and deviation from the model was systematically directed towards the central axis. Pore distribution showed clear organization and divided into two populations; one following the polygon model seams along both rims, and the other being associated with the concentric and equidistant movement path of the laser. Assessment of samples can enhance the fabrication by guiding the improvement of both modelling and manufacturing process.
Lesion insertion in the projection domain: Methods and initial results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Baiyu; Leng, Shuai; Yu, Lifeng
2015-12-15
Purpose: To perform task-based image quality assessment in CT, it is desirable to have a large number of realistic patient images with known diagnostic truth. One effective way of achieving this objective is to create hybrid images that combine patient images with inserted lesions. Because conventional hybrid images generated in the image domain fails to reflect the impact of scan and reconstruction parameters on lesion appearance, this study explored a projection-domain approach. Methods: Lesions were segmented from patient images and forward projected to acquire lesion projections. The forward-projection geometry was designed according to a commercial CT scanner and accommodated bothmore » axial and helical modes with various focal spot movement patterns. The energy employed by the commercial CT scanner for beam hardening correction was measured and used for the forward projection. The lesion projections were inserted into patient projections decoded from commercial CT projection data. The combined projections were formatted to match those of commercial CT raw data, loaded onto a commercial CT scanner, and reconstructed to create the hybrid images. Two validations were performed. First, to validate the accuracy of the forward-projection geometry, images were reconstructed from the forward projections of a virtual ACR phantom and compared to physically acquired ACR phantom images in terms of CT number accuracy and high-contrast resolution. Second, to validate the realism of the lesion in hybrid images, liver lesions were segmented from patient images and inserted back into the same patients, each at a new location specified by a radiologist. The inserted lesions were compared to the original lesions and visually assessed for realism by two experienced radiologists in a blinded fashion. Results: For the validation of the forward-projection geometry, the images reconstructed from the forward projections of the virtual ACR phantom were consistent with the images physically acquired for the ACR phantom in terms of Hounsfield unit and high-contrast resolution. For the validation of the lesion realism, lesions of various types were successfully inserted, including well circumscribed and invasive lesions, homogeneous and heterogeneous lesions, high-contrast and low-contrast lesions, isolated and vessel-attached lesions, and small and large lesions. The two experienced radiologists who reviewed the original and inserted lesions could not identify the lesions that were inserted. The same lesion, when inserted into the projection domain and reconstructed with different parameters, demonstrated a parameter-dependent appearance. Conclusions: A framework has been developed for projection-domain insertion of lesions into commercial CT images, which can be potentially expanded to all geometries of CT scanners. Compared to conventional image-domain methods, the authors’ method reflected the impact of scan and reconstruction parameters on lesion appearance. Compared to prior projection-domain methods, the authors’ method has the potential to achieve higher anatomical complexity by employing clinical patient projections and real patient lesions.« less
Lesion insertion in the projection domain: Methods and initial results
Chen, Baiyu; Leng, Shuai; Yu, Lifeng; Yu, Zhicong; Ma, Chi; McCollough, Cynthia
2015-01-01
Purpose: To perform task-based image quality assessment in CT, it is desirable to have a large number of realistic patient images with known diagnostic truth. One effective way of achieving this objective is to create hybrid images that combine patient images with inserted lesions. Because conventional hybrid images generated in the image domain fails to reflect the impact of scan and reconstruction parameters on lesion appearance, this study explored a projection-domain approach. Methods: Lesions were segmented from patient images and forward projected to acquire lesion projections. The forward-projection geometry was designed according to a commercial CT scanner and accommodated both axial and helical modes with various focal spot movement patterns. The energy employed by the commercial CT scanner for beam hardening correction was measured and used for the forward projection. The lesion projections were inserted into patient projections decoded from commercial CT projection data. The combined projections were formatted to match those of commercial CT raw data, loaded onto a commercial CT scanner, and reconstructed to create the hybrid images. Two validations were performed. First, to validate the accuracy of the forward-projection geometry, images were reconstructed from the forward projections of a virtual ACR phantom and compared to physically acquired ACR phantom images in terms of CT number accuracy and high-contrast resolution. Second, to validate the realism of the lesion in hybrid images, liver lesions were segmented from patient images and inserted back into the same patients, each at a new location specified by a radiologist. The inserted lesions were compared to the original lesions and visually assessed for realism by two experienced radiologists in a blinded fashion. Results: For the validation of the forward-projection geometry, the images reconstructed from the forward projections of the virtual ACR phantom were consistent with the images physically acquired for the ACR phantom in terms of Hounsfield unit and high-contrast resolution. For the validation of the lesion realism, lesions of various types were successfully inserted, including well circumscribed and invasive lesions, homogeneous and heterogeneous lesions, high-contrast and low-contrast lesions, isolated and vessel-attached lesions, and small and large lesions. The two experienced radiologists who reviewed the original and inserted lesions could not identify the lesions that were inserted. The same lesion, when inserted into the projection domain and reconstructed with different parameters, demonstrated a parameter-dependent appearance. Conclusions: A framework has been developed for projection-domain insertion of lesions into commercial CT images, which can be potentially expanded to all geometries of CT scanners. Compared to conventional image-domain methods, the authors’ method reflected the impact of scan and reconstruction parameters on lesion appearance. Compared to prior projection-domain methods, the authors’ method has the potential to achieve higher anatomical complexity by employing clinical patient projections and real patient lesions. PMID:26632058
Muhit, A; Zbijewski, W; Stayman, J; Thawait, G; Yorkston, J; Foos, D; Packard, N; Yang, D; Senn, R; Carrino, J; Siewerdsen, J
2012-06-01
To assess the diagnostic performance of a prototype cone-beam CT (CBCT) scanner developed for musculoskeletal extremity imaging. Studies involved controlled observer studies conducted subsequent to rigorous technical assessment as well as patient images from the first clinical trial in imaging the hand and knee. Performance assessment included: 1.) rigorous technical assessment; 2.) controlled observer studies using CBCT images of cadaveric specimens; and 3.) first clinical images. Technical assessment included measurement of spatial resolution (MTF), constrast, and noise (SDNR) versus kVp and dose using standard CT phantoms. Diagnostic performance in comparison to multi- detector CT (MDCT) was assessed in controlled observer studies involving 12 cadaveric hands and knees scanned with and without abnormality (fracture). Observer studies involved five radiologists rating pertinent diagnostics tasks in 9-point preference and 10-point diagnostic satisfaction scales. Finally, the first clinical images from an ongoing pilot study were assessed in terms of diagnostic utility in disease assessment and overall workflow in patient setup. Quantitative assessment demonstrated sub-mm spatial resolution (MTF exceeding 10% out to 15-20 cm-1) and SDNR sufficient for relevant soft-tissue visualization tasks at dose <10 mGy. Observer studies confirmed optimal acquisition techniques and demonstrated superior utility of combined soft-tissue visualization and isotropic spatial resolution in diagnostic tasks. Images from the patient trial demonstrate exquisite contrast and detail and the ability to detect tissue impingement in weight-bearing exams. The prototype CBCT scanner provides isotropic spatial resolution superior to standard-protocol MDCT with soft-tissue visibility sufficient for a broad range of diagnostic tasks in musculoskeletal radiology. Dosimetry and workflow were advantageous in comparison to whole-body MDCT. Multi-mode and weight-bearing capabilities add valuable functionality. An ongoing clinical study further assesses diagnostic utility and defines the role of such technology in the diagnostic arsenal. - Research Grant, Carestream Health - Research Grant, National Institutes of Health 2R01-CA-112163. © 2012 American Association of Physicists in Medicine.
SYMPOSIUM ON MULTIMODALITY CARDIOVASCULAR MOLECULAR IMAGING IMAGING TECHNOLOGY - PART 2
de Kemp, Robert A.; Epstein, Frederick H.; Catana, Ciprian; Tsui, Benjamin M.W.; Ritman, Erik L.
2013-01-01
Rationale The ability to trace or identify specific molecules within a specific anatomic location provides insight into metabolic pathways, tissue components and tracing of solute transport mechanisms. With the increasing use of small animals for research such imaging must have sufficiently high spatial resolution to allow anatomic localization as well as sufficient specificity and sensitivity to provide an accurate description of the molecular distribution and concentration. Methods Imaging methods based on electromagnetic radiation, such as PET, SPECT, MRI and CT, are increasingly applicable due to recent advances in novel scanner hardware, image reconstruction software and availability of novel molecules which have enhanced sensitivity in these methodologies. Results Micro-PET has been advanced by development of detector arrays that provide higher resolution and positron emitting elements that allow new molecular tracers to be labeled. Micro-MRI has been improved in terms of spatial resolution and sensitivity by increased magnet field strength and development of special purpose coils and associated scan protocols. Of particular interest is the associated ability to image local mechanical function and solute transport processes which can be directly related to the molecular information. This is further strengthened by the synergistic integration of the PET with MRI. Micro-SPECT has been improved by use of coded aperture imaging approaches as well as image reconstruction algorithms which can better deal with the photon limited scan data. The limited spatial resolution can be partially overcome by integrating the SPECT with CT. Micro-CT by itself provides exquisite spatial resolution of anatomy, but recent developments of high spatial resolution photon counting and spectrally-sensitive imaging arrays, combined with x-ray optical devices, have promise for actual molecular identification by virtue of the chemical bond lengths of molecules, especially of bio-polymers. Conclusion With the increasing use of small animals for evaluating new clinical imaging techniques as well as providing increased insights into patho-physiological phenomena, the availability of improved detection systems, scanning protocols and associated software, the repertoire of molecular imaging is greatly increased in sensitivity and specificity. PMID:20457793
Ferreira Botelho, Marcos P; Koktzoglou, Ioannis; Collins, Jeremy D; Giri, Shivraman; Carr, James C; Gupta, NavYash; Edelman, Robert R
2017-06-01
The presence of vascular calcifications helps to determine percutaneous access for interventional vascular procedures and has prognostic value for future cardiovascular events. Unlike CT, standard MRI techniques are insensitive to vascular calcifications. In this prospective study, we tested a proton density-weighted, in-phase (PDIP) three-dimensional (3D) stack-of-stars gradient-echo pulse sequence with approximately 1 mm 3 isotropic spatial resolution at 1.5 Tesla (T) and 3T to detect iliofemoral peripheral vascular calcifications and correlated MR-determined lesion volumes with CT angiography (CTA). The study was approved by the Institutional Review Board. The prototype PDIP stack-of-stars pulse sequence was applied in 12 patients with iliofemoral peripheral vascular calcifications who had undergone CTA. Vascular calcifications were well visualized in all subjects, excluding segments near prostheses or stents. The location, size, and shape of the calcifications were similar to CTA. Quantitative analysis showed excellent correlation (r 2 = 0.84; P < 0.0001) between MR- and CT-based measures of calcification volume. In one subject in whom three pulse sequences were compared, PDIP stack-of-stars outperformed cartesian 3D gradient-echo and point-wise encoding time reduction with radial acquisition (PETRA). In this pilot study, a PDIP 3D stack-of-stars gradient-echo pulse sequence with high spatial resolution provided excellent image quality and accurately depicted the location and volume of iliofemoral vascular calcifications. Magn Reson Med 77:2146-2152, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
High-resolution synchrotron X-ray analysis of bioglass-enriched hydrogels.
Gorodzha, Svetlana; Douglas, Timothy E L; Samal, Sangram K; Detsch, Rainer; Cholewa-Kowalska, Katarzyna; Braeckmans, Kevin; Boccaccini, Aldo R; Skirtach, Andre G; Weinhardt, Venera; Baumbach, Tilo; Surmeneva, Maria A; Surmenev, Roman A
2016-05-01
Enrichment of hydrogels with inorganic particles improves their suitability for bone regeneration by enhancing their mechanical properties, mineralizability, and bioactivity as well as adhesion, proliferation, and differentiation of bone-forming cells, while maintaining injectability. Low aggregation and homogeneous distribution maximize particle surface area, promoting mineralization, cell-particle interactions, and homogenous tissue regeneration. Hence, determination of the size and distribution of particles/particle agglomerates in the hydrogel is desirable. Commonly used techniques have drawbacks. High-resolution techniques (e.g., SEM) require drying. Distribution in the dry state is not representative of the wet state. Techniques in the wet state (histology, µCT) are of lower resolution. Here, self-gelling, injectable composites of Gellan Gum (GG) hydrogel and two different types of sol-gel-derived bioactive glass (bioglass) particles were analyzed in the wet state using Synchrotron X-ray radiation, enabling high-resolution determination of particle size and spatial distribution. The lower detection limit volume was 9 × 10(-5) mm(3) . Bioglass particle suspensions were also studied using zeta potential measurements and Coulter analysis. Aggregation of bioglass particles in the GG hydrogels occurred and aggregate distribution was inhomogeneous. Bioglass promoted attachment of rat mesenchymal stem cells (rMSC) and mineralization. © 2016 Wiley Periodicals, Inc.
Photon-counting CT with silicon detectors: feasibility for pediatric imaging
NASA Astrophysics Data System (ADS)
Yveborg, Moa; Xu, Cheng; Fredenberg, Erik; Danielsson, Mats
2009-02-01
X-ray detectors made of crystalline silicon have several advantages including low dark currents, fast charge collection and high energy resolution. For high-energy x-rays, however, silicon suffers from its low atomic number, which might result in low detection efficiency, as well as low energy and spatial resolution due to Compton scattering. We have used a monte-carlo model to investigate the feasibility of a detector for pediatric CT with 30 to 40 mm of silicon using x-ray spectra ranging from 80 to 140 kVp. A detection efficiency of 0.74 was found at 80 kVp, provided the noise threshold could be set low. Scattered photons were efficiently blocked by a thin metal shielding between the detector units, and Compton scattering in the detector could be well separated from photo absorption at 80 kVp. Hence, the detector is feasible at low acceleration voltages, which is also suitable for pediatric imaging. We conclude that silicon detectors may be an alternative to other designs for this special case.
NASA Astrophysics Data System (ADS)
Reilly, B. T.; Stoner, J. S.; Wiest, J.
2017-08-01
Computed tomography (CT) of sediment cores allows for high-resolution images, three-dimensional volumes, and down core profiles. These quantitative data are generated through the attenuation of X-rays, which are sensitive to sediment density and atomic number, and are stored in pixels as relative gray scale values or Hounsfield units (HU). We present a suite of MATLAB™ tools specifically designed for routine sediment core analysis as a means to standardize and better quantify the products of CT data collected on medical CT scanners. SedCT uses a graphical interface to process Digital Imaging and Communications in Medicine (DICOM) files, stitch overlapping scanned intervals, and create down core HU profiles in a manner robust to normal coring imperfections. Utilizing a random sampling technique, SedCT reduces data size and allows for quick processing on typical laptop computers. SedCTimage uses a graphical interface to create quality tiff files of CT slices that are scaled to a user-defined HU range, preserving the quantitative nature of CT images and easily allowing for comparison between sediment cores with different HU means and variance. These tools are presented along with examples from lacustrine and marine sediment cores to highlight the robustness and quantitative nature of this method.
de Jesus, Fillipe M; Magalhães, Luis A G; Kodlulovich, Simone
2016-11-01
A pilot study of dose indicators in paediatric computed tomography (CT) was conducted to prove the need to establish diagnostic reference levels (DRLs) for the county of Rio de Janeiro. The dose descriptors were estimated from the beam dosimetry by applying the protocols used in each examination. The total patient sample included 279 children. Regarding the comparison of the dose-length product values among the hospitals, the high-resolution chest CT scans were distinguished among the three types of examinations, due to the discrepancies of 1148 % (1-5 y age group) and 2248 % (5-10 y age group) presented in Hospital A's dose-length product values relative to Hospital D's dose-length product values. The results showed that without DRL, the dose variation can be significant between hospitals in the same county for the same age group in the same examination. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Krieger, Helga; Seide, Gunnar; Gries, Thomas; Stapleton, Scott E.
2018-04-01
The global mechanical properties of textiles such as elasticity and strength, as well as transport properties such as permeability depend strongly on the microstructure of the textile. Textiles are heterogeneous structures with highly anisotropic material properties, including local fiber orientation and local fiber volume fraction. In this paper, an algorithm is presented to generate a virtual 3D-model of a woven fabric architecture with information about the local fiber orientation and the local fiber volume fraction. The geometric data of the woven fabric impregnated with resin was obtained by micron-resolution computed tomography (μCT). The volumetric μCT-scan was discretized into cells and the microstructure of each cell was analyzed and homogenized. Furthermore, the discretized data was used to calculate the local permeability tensors of each cell. An example application of the analyzed data is the simulation of the resin flow through a woven fabric based on the determined local permeability tensors and on Darcy's law. The presented algorithm is an automated and robust method of going from μCT-scans to structural or flow models.
2012-01-01
Background In pigs, diseases of the respiratory tract like pleuropneumonia due to Actinobacillus pleuropneumoniae (App) infection have led to high economic losses for decades. Further research on disease pathogenesis, pathogen-host-interactions and new prophylactic and therapeutic approaches are needed. In most studies, a large number of experimental animals are required to assess lung alterations at different stages of the disease. In order to reduce the required number of animals but nevertheless gather information on the nature and extent of lung alterations in living pigs, a computed tomographic scoring system for quantifying gross pathological findings was developed. In this study, five healthy pigs served as control animals while 24 pigs were infected with App, the causative agent of pleuropneumonia in pigs, in an established model for respiratory tract disease. Results Computed tomographic (CT) findings during the course of App challenge were verified by radiological imaging, clinical, serological, gross pathology and histological examinations. Findings from clinical examinations and both CT and radiological imaging, were recorded on day 7 and day 21 after challenge. Clinical signs after experimental App challenge were indicative of acute to chronic disease. Lung CT findings of infected pigs comprised ground-glass opacities and consolidation. On day 7 and 21 the clinical scores significantly correlated with the scores of both imaging techniques. At day 21, significant correlations were found between clinical scores, CT scores and lung lesion scores. In 19 out of 22 challenged pigs the determined disease grades (not affected, slightly affected, moderately affected, severely affected) from CT and gross pathological examination were in accordance. Disease classification by radiography and gross pathology agreed in 11 out of 24 pigs. Conclusions High-resolution, high-contrast CT examination with no overlapping of organs is superior to radiography in the assessment of pneumonic lung lesions after App challenge. The new CT scoring system allows for quantification of gross pathological lung alterations in living pigs. However, computed tomographic findings are not informative of the etiology of respiratory disease. PMID:22546414
Neldam, Camilla Albeck; Pinholt, Else Marie
2014-09-01
Today X-ray micro computer tomography (μCT) imaging is used to investigate bone microarchitecture. μCT imaging is obtained by polychromatic X-ray beams, resulting in images with beam hardening artifacts, resolution levels at 10 μm, geometrical blurring, and lack of contrasts. When μCT is coupled to synchrotron sources (SRμCT) a spatial resolution up to one tenth of a μm may be achieved. A review of the literature concerning SRμCT was performed to investigate its usability and its strength in visualizing fine bone structures, vessels, and microarchitecture of bone. Although mainly limited to in vitro examinations, SRμCT is considered as a gold standard to image trabecular bone microarchitecture since it is possible in a 3D manner to visualize fine structural elements within mineralized tissue such as osteon boundaries, rods and plates structures, cement lines, and differences in mineralization. Copyright © 2013 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
Fateh, Abolfazl; Aghasadeghi, Mohammad Reza; Keyvani, Hossein; Mollaie, Hamid Reza; Yari, Shamsi; Hadizade Tasbiti, Ali Reza; Ghazanfari, Morteza; Monavari, Seyed Hamid Reza
2015-01-01
A recent genome-wide association study (GWAS) on patients with chronic hepatitis C (CHC) treated with peginterferon and ribavirin (pegIFN-α/RBV) identified a single nucleotide polymorphism (SNP) on chromosome 19 (rs12979860) which was strongly associated with a sustained virological response (SVR). The aim of this study was twofold: to study the relationship between IL28B rs12979860 and sustained virological response (SVR) to pegIFN-α/RVB therapy among CHC patients and to detect the rs12979860 polymorphism by high resolution melting curve (HRM) assay as a simple, fast, sensitive, and inexpensive method. The study examined outcomes in 100 patients with chronic hepatitis C in 2 provinces of Iran from December 2011 to June 2013. Two methods were applied to detect IL28B polymorphisms: PCR-sequencing as a gold standard method and HRM as a simple, fast, sensitive, and inexpensive method. The frequencies of IL28B rs12979860 CC, CT, and TT alleles in chronic hepatitis C genotype 1a patients were 10% (10/100), 35% (35/100), and 6% (6/100) and in genotype 3a were 13% (13/100), 31% (31/100), and 5% (5/100), respectively. In genotype 3a infected patients, rs12979860 (CC and CT alleles) and in genotype 1a infected patients (CC allele) were significantly associated with a sustained virological response (SVR). The SVR rates for CC, CT and TT (IL28B rs12979860) were 18%, 34% and 4%, respectively. Multiple logistic regression analysis identified two independent factors that were significantly associated with SVR: IL-28B genotype (rs 12979860 CC vs TT and CT; odds ratio [ORs], 7.86 and 4.084, respectively), and HCV subtype 1a (OR, 7.46). In the present study, an association between SVR rates and IL28B polymorphisms was observed. The HRM assay described herein is rapid, inexpensive, sensitive and accurate for detecting rs12979860 alleles in CHC patients. This method can be readily adopted by any molecular diagnostic laboratory with HRM capability and will be clinically beneficial in predicting treatment response in HCV genotype 1 and 3 infected patients. In addition, it was demonstrated that CC and CT alleles in HCV-3a and the CC allele in HCV-1a were significantly associated with response to pegIFN-α/RBV treatment. The present results may help identify subjects for whom the therapy might be successful.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neylon, J; Min, Y; Qi, S
2014-06-15
Purpose: Deformable image registration (DIR) plays a pivotal role in head and neck adaptive radiotherapy but a systematic validation of DIR algorithms has been limited by a lack of quantitative high-resolution groundtruth. We address this limitation by developing a GPU-based framework that provides a systematic DIR validation by generating (a) model-guided synthetic CTs representing posture and physiological changes, and (b) model-guided landmark-based validation. Method: The GPU-based framework was developed to generate massive mass-spring biomechanical models from patient simulation CTs and contoured structures. The biomechanical model represented soft tissue deformations for known rigid skeletal motion. Posture changes were simulated by articulatingmore » skeletal anatomy, which subsequently applied elastic corrective forces upon the soft tissue. Physiological changes such as tumor regression and weight loss were simulated in a biomechanically precise manner. Synthetic CT data was then generated from the deformed anatomy. The initial and final positions for one hundred randomly-chosen mass elements inside each of the internal contoured structures were recorded as ground truth data. The process was automated to create 45 synthetic CT datasets for a given patient CT. For instance, the head rotation was varied between +/− 4 degrees along each axis, and tumor volumes were systematically reduced up to 30%. Finally, the original CT and deformed synthetic CT were registered using an optical flow based DIR. Results: Each synthetic data creation took approximately 28 seconds of computation time. The number of landmarks per data set varied between two and three thousand. The validation method is able to perform sub-voxel analysis of the DIR, and report the results by structure, giving a much more in depth investigation of the error. Conclusions: We presented a GPU based high-resolution biomechanical head and neck model to validate DIR algorithms by generating CT equivalent 3D volumes with simulated posture changes and physiological regression.« less
The diagnosis of idiopathic pulmonary fibrosis: current and future approaches
Martinez, Fernando J; Chisholm, Alison; Collard, Harold R; Flaherty, Kevin R; Myers, Jeffrey; Raghu, Ganesh; Walsh, Simon LF; White, Eric S; Richeldi, Luca
2017-01-01
With the recent development of two effective treatments for patients with idiopathic pulmonary fibrosis, an accurate diagnosis is crucial. The traditional approach to diagnosis emphasises the importance of thorough clinical and laboratory evaluations to exclude secondary causes of disease. High-resolution CT is a critical initial diagnostic test and acts as a tool to identify patients who should undergo surgical lung biopsy to secure a definitive histological diagnosis of usual interstitial pneumonia pattern. This diagnostic approach faces several challenges. Many patients with suspected idiopathic pulmonary fibrosis present with atypical high-resolution CT characteristics but are unfit for surgical lung biopsy, therefore preventing a confident diagnosis. The state of the art suggests an iterative, multidisciplinary process that incorporates available clinical, laboratory, imaging, and histological features. Recent research has explored genomic techniques to molecularly phenotype patients with interstitial lung disease. In the future, clinicians will probably use blood-specific or lung-specific molecular markers in combination with other clinical, physiological, and imaging features to enhance diagnostic efforts, refine prognostic recommendations, and influence the initial or subsequent treatment options. There is an urgent and increasing need for well designed, large, prospective studies measuring the effect of different diagnostic approaches. Ultimately, this will help to inform the development of guidelines and tailor clinical practice for the benefit of patients. PMID:27932290
Bismuth@US-tubes as a Potential Contrast Agent for X-ray Imaging Applications
Rivera, Eladio J.; Tran, Lesa A.; Hernández-Rivera, Mayra; Yoon, Diana; Mikos, Antonios G.; Rusakova, Irene A.; Cheong, Benjamin Y.; Cabreira-Hansen, Maria da Graça; Willerson, James T.; Perin, Emerson C.; Wilson, Lon J.
2013-01-01
The encapsulation of bismuth as BiOCl/Bi2O3 within ultra-short (ca. 50 nm) single-walled carbon nanocapsules (US-tubes) has been achieved. The Bi@US-tubes have been characterized by high-resolution transmission electron microscopy (HR-TEM), energy-dispersive X-ray spectroscopy (EDS), thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. Bi@US-tubes have been used for intracellular labeling of pig bone marrow-derived mesenchymal stem cells (MSCs) to show high X-ray contrast in computed tomography (CT) cellular imaging for the first time. The relatively high contrast is achieved with low bismuth loading (2.66% by weight) within the US-tubes and without compromising cell viability. X-ray CT imaging of Bi@US-tubes-labeled MSCs showed a nearly two-fold increase in contrast enhancement when compared to unlabeled MSCs in a 100 kV CT clinical scanner. The CT signal enhancement from the Bi@US-tubes is 500 times greater than polymer-coated Bi2S3 nanoparticles and several-fold that of any clinical iodinated contrast agent (CA) at the same concentration. Our findings suggest that the Bi@US-tubes can be used as a potential new class of X-ray CT agent for stem cell labeling and possibly in vivo tracking. PMID:24288589
Isidro, Albert; Díez-Santacoloma, Iván; Bagot, Jaume; Milla, Lidón; Gallart, Anna
2016-01-01
Diagnostic imaging techniques, at present especially computed tomography (CT), have become the most important noninvasive method for the study of mummies because they enable high resolution images and three-dimensional reconstructions without damaging the mummified subject. We present a sarcophagus with a mummy hidden inside that was acquired by a gallery in Barcelona. The sarcophagus and mummy were examined by CT at the Hospital Universitari Sagrat Cor in Barcelona. A flexible clamp was used to obtain tissue samples for further study. The results showed the presence of an anatomically intact female human subject albeit with a destructured thorax and upper abdomen. Various metal objects were detected, corresponding to amulets, artificial eyes, and an external wooden brace. CT is an excellent noninvasive imaging technique for the detailed study of mummies, as it enables not only the anatomic identification of the mummified subject but also the obtainment of tissue samples for complementary analyses. The description of these findings enables us to know the major radiologic landmarks for the paleopathologic study of mummies. Copyright © 2015 SERAM. Published by Elsevier España, S.L.U. All rights reserved.
Crausman, R S; Ferguson, G; Irvin, C G; Make, B; Newell, J D
1995-06-01
We assessed the value of quantitative high-resolution computed tomography (CT) as a diagnostic and prognostic tool in smoking-related emphysema. We performed an inception cohort study of 14 patients referred with emphysema. The diagnosis of emphysema was based on a compatible history, physical examination, chest radiograph, CT scan of the lung, and pulmonary physiologic evaluation. As a group, those who underwent exercise testing were hyperinflated (percentage predicted total lung capacity +/- standard error of the mean = 133 +/- 9%), and there was evidence of air trapping (percentage predicted respiratory volume = 318 +/- 31%) and airflow limitation (forced expiratory volume in 1 sec [FEV1] = 40 +/- 7%). The exercise performance of the group was severely limited (maximum achievable workload = 43 +/- 6%) and was characterized by prominent ventilatory, gas exchange, and pulmonary vascular abnormalities. The quantitative CT index was markedly elevated in all patients (76 +/- 9; n = 14; normal < 4). There were correlations between this quantitative CT index and measures of airflow limitation (FEV1 r2 = .34, p = 09; FEV1/forced vital capacity r2 = .46, p = .04) and between maximum workload achieved (r2 = .93, p = .0001) and maximum oxygen utilization (r2 = .83, p = .0007). Quantitative chest CT assessment of disease severity is correlated with the degree of airflow limitation and exercise impairment in pulmonary emphysema.
X-ray physico-chemical imaging during activation of cobalt-based Fischer-Tropsch synthesis catalysts
NASA Astrophysics Data System (ADS)
Beale, Andrew M.; Jacques, Simon D. M.; Di Michiel, Marco; Mosselmans, J. Frederick W.; Price, Stephen W. T.; Senecal, Pierre; Vamvakeros, Antonios; Paterson, James
2017-11-01
The imaging of catalysts and other functional materials under reaction conditions has advanced significantly in recent years. The combination of the computed tomography (CT) approach with methods such as X-ray diffraction (XRD), X-ray fluorescence (XRF) and X-ray absorption near-edge spectroscopy (XANES) now enables local chemical and physical state information to be extracted from within the interiors of intact materials which are, by accident or design, inhomogeneous. In this work, we follow the phase evolution during the initial reduction step(s) to form Co metal, for Co-containing particles employed as Fischer-Tropsch synthesis (FTS) catalysts; firstly, working at small length scales (approx. micrometre spatial resolution), a combination of sample size and density allows for transmission of comparatively low energy signals enabling the recording of `multimodal' tomography, i.e. simultaneous XRF-CT, XANES-CT and XRD-CT. Subsequently, we show high-energy XRD-CT can be employed to reveal extent of reduction and uniformity of crystallite size on millimetre-sized TiO2 trilobes. In both studies, the CoO phase is seen to persist or else evolve under particular operating conditions and we speculate as to why this is observed. This article is part of a discussion meeting issue 'Providing sustainable catalytic solutions for a rapidly changing world'.
CT imaging of the internal human ear: Test of a high resolution scanner
NASA Astrophysics Data System (ADS)
Bettuzzi, M.; Brancaccio, R.; Morigi, M. P.; Gallo, A.; Strolin, S.; Casali, F.; Lamanna, Ernesto; Ariù, Marilù
2011-08-01
During the course of 2009, in the framework of a project supported by the National Institute of Nuclear Physics, a number of tests were carried out at the Department of Physics of the University of Bologna in order to achieve a good quality CT scan of the internal human ear. The work was carried out in collaboration with the local “S. Orsola” Hospital in Bologna and a company (CEFLA) already involved in the production and commercialization of a CT scanner dedicated to dentistry. A laboratory scanner with a simple concept detector (CCD camera-lens-mirror-scintillator) was used to see to what extent it was possible to enhance the quality of a conventional CT scanner when examining the internal human ear. To test the system, some conventional measurements were made, such as the spatial resolution calculation with the MTF and dynamic range evaluation. Different scintillators were compared to select the most suitable for the purpose. With 0.5 mm thick structured cesium iodide and a field of view of 120×120 mm2, a spatial resolution of 6.5l p/mm at 5% MTF was obtained. The CT of a pair of human head phantoms was performed at an energy of 120 kVp. The first phantom was a rough representation of the human head shape, with soft tissue made of coarse slabs of Lucite. Some inserts, like small aluminum cylinders and cubes, with 1 mm diameter drilled holes, were used to simulate the channels that one finds inside the human inner ear. The second phantom is a plastic PVC fused head with a real human cranium inside. The bones in the cranium are well conserved and the inner ear features, such as the cochlea and semicircular channels, are clearly detectable. After a number of CT tests we obtained good results as far as structural representation and channel detection are concerned. Some images of the 3D rendering of the CT volume are shown below. The doctors of the local hospital who followed our experimentation expressed their satisfaction. The CT was compared to a virtual endoscopy and judged particularly useful for clinical pre-surgery diagnostics. The experimentation proceeds with a faster scanner now under development in our laboratories. We believe this work could be of a certain interest for the medical imaging world.
Multiscale and multi-modality visualization of angiogenesis in a human breast cancer model
Cebulla, Jana; Kim, Eugene; Rhie, Kevin; Zhang, Jiangyang
2017-01-01
Angiogenesis in breast cancer helps fulfill the metabolic demands of the progressing tumor and plays a critical role in tumor metastasis. Therefore, various imaging modalities have been used to characterize tumor angiogenesis. While micro-CT (μCT) is a powerful tool for analyzing the tumor microvascular architecture at micron-scale resolution, magnetic resonance imaging (MRI) with its sub-millimeter resolution is useful for obtaining in vivo vascular data (e.g. tumor blood volume and vessel size index). However, integration of these microscopic and macroscopic angiogenesis data across spatial resolutions remains challenging. Here we demonstrate the feasibility of ‘multiscale’ angiogenesis imaging in a human breast cancer model, wherein we bridge the resolution gap between ex vivo μCT and in vivo MRI using intermediate resolution ex vivo MR microscopy (μMRI). To achieve this integration, we developed suitable vessel segmentation techniques for the ex vivo imaging data and co-registered the vascular data from all three imaging modalities. We showcase two applications of this multiscale, multi-modality imaging approach: (1) creation of co-registered maps of vascular volume from three independent imaging modalities, and (2) visualization of differences in tumor vasculature between viable and necrotic tumor regions by integrating μCT vascular data with tumor cellularity data obtained using diffusion-weighted MRI. Collectively, these results demonstrate the utility of ‘mesoscopic’ resolution μMRI for integrating macroscopic in vivo MRI data and microscopic μCT data. Although focused on the breast tumor xenograft vasculature, our imaging platform could be extended to include additional data types for a detailed characterization of the tumor microenvironment and computational systems biology applications. PMID:24719185
Gennatas, Efstathios D; Avants, Brian B; Wolf, Daniel H; Satterthwaite, Theodore D; Ruparel, Kosha; Ciric, Rastko; Hakonarson, Hakon; Gur, Raquel E; Gur, Ruben C
2017-05-17
Developmental structural neuroimaging studies in humans have long described decreases in gray matter volume (GMV) and cortical thickness (CT) during adolescence. Gray matter density (GMD), a measure often assumed to be highly related to volume, has not been systematically investigated in development. We used T1 imaging data collected on the Philadelphia Neurodevelopmental Cohort to study age-related effects and sex differences in four regional gray matter measures in 1189 youths ranging in age from 8 to 23 years. Custom T1 segmentation and a novel high-resolution gray matter parcellation were used to extract GMD, GMV, gray matter mass (GMM; defined as GMD × GMV), and CT from 1625 brain regions. Nonlinear models revealed that each modality exhibits unique age-related effects and sex differences. While GMV and CT generally decrease with age, GMD increases and shows the strongest age-related effects, while GMM shows a slight decline overall. Females have lower GMV but higher GMD than males throughout the brain. Our findings suggest that GMD is a prime phenotype for the assessment of brain development and likely cognition and that periadolescent gray matter loss may be less pronounced than previously thought. This work highlights the need for combined quantitative histological MRI studies. SIGNIFICANCE STATEMENT This study demonstrates that different MRI-derived gray matter measures show distinct age and sex effects and should not be considered equivalent but complementary. It is shown for the first time that gray matter density increases from childhood to young adulthood, in contrast with gray matter volume and cortical thickness, and that females, who are known to have lower gray matter volume than males, have higher density throughout the brain. A custom preprocessing pipeline and a novel high-resolution parcellation were created to analyze brain scans of 1189 youths collected as part of the Philadelphia Neurodevelopmental Cohort. A clear understanding of normal structural brain development is essential for the examination of brain-behavior relationships, the study of brain disease, and, ultimately, clinical applications of neuroimaging. Copyright © 2017 the authors 0270-6474/17/375065-09$15.00/0.
NASA Astrophysics Data System (ADS)
Weiss, Robert M.; Otoadese, Eramosele A.; Oren, Ron M.
1995-05-01
The syndrome of constrictive pericarditis (CP) presents a diagnostic challenge to the clinician. This study was undertaken to determine whether cine computed tomography (CT), a cardiac imaging technique with excellent temporal and spatial resolution, can reliably demonstrate the unique abnormalities of pericardial anatomy and ventricular physiology present in patients with this condition. A second goal of this study was to determine whether the presence of diseased thickened pericardium, by itself, imparts cardiac impairment due to abnormalities of ventricular diastolic function. Methods: Twelve patients with CP suspected clinically, in whom invasive hemodynamic study was consistent with the diagnosis of CP, underwent cine CT. They were subdivided into Group 1 (CP, N equals 5) and Group 2 (No CP, N equals 7) based on histopathologic evaluation of tissue obtained at the time of surgery or autopsy. A third group consisted of asymptomatic patients with incidentally discovered thickened pericardium at the time of cine CT scanning: Group 3 (ThP, N equals 7). Group 4 (Nl, N equals 7) consisted of healthy volunteer subjects. Results: Pericardial thickness measurements with cine CT clearly distinguished Group 1 (mean equals 10 +/- 2 mm) from Group 2 (mean equals 2 +/- 1 mm), with diagnostic accuracy of 100% compared to histopathological findings. In addition, patients in Group 1 had significantly more brisk early diastolic filling of both left and right ventricles than those in Group 2, which clearly distinguished all patients with, from all patients without CP. Patients in Group 3 had pericardial thicknesses similar to those in Group 1 (mean equals 9 +/- 1 mm, p equals NS), but had patterns of diastolic ventricular filling that were nearly identical to Group 4 (Nl). Conclusions: The abnormalities of anatomy and ventricular function present in the syndrome of constrictive pericarditis are clearly and decisively identified by cine CT. This allows a reliable distinction between patients with constrictive pericarditis and those with cardiomyopathy. The presence of diseased thickened pericardium does not by itself impart impairment of ventricular diastolic function. Thus, definitive diagnosis of constrictive pericarditis requires demonstration of both abnormal anatomy and physiology.
Zbijewski, W; De Jean, P; Prakash, P; Ding, Y; Stayman, J W; Packard, N; Senn, R; Yang, D; Yorkston, J; Machado, A; Carrino, J A; Siewerdsen, J H
2011-08-01
This paper reports on the design and initial imaging performance of a dedicated cone-beam CT (CBCT) system for musculoskeletal (MSK) extremities. The system complements conventional CT and MR and offers a variety of potential clinical and logistical advantages that are likely to be of benefit to diagnosis, treatment planning, and assessment of therapy response in MSK radiology, orthopaedic surgery, and rheumatology. The scanner design incorporated a host of clinical requirements (e.g., ability to scan the weight-bearing knee in a natural stance) and was guided by theoretical and experimental analysis of image quality and dose. Such criteria identified the following basic scanner components and system configuration: a flat-panel detector (FPD, Varian 3030+, 0.194 mm pixels); and a low-power, fixed anode x-ray source with 0.5 mm focal spot (SourceRay XRS-125-7K-P, 0.875 kW) mounted on a retractable C-arm allowing for two scanning orientations with the capability for side entry, viz. a standing configuration for imaging of weight-bearing lower extremities and a sitting configuration for imaging of tensioned upper extremity and unloaded lower extremity. Theoretical modeling employed cascaded systems analysis of modulation transfer function (MTF) and detective quantum efficiency (DQE) computed as a function of system geometry, kVp and filtration, dose, source power, etc. Physical experimentation utilized an imaging bench simulating the scanner geometry for verification of theoretical results and investigation of other factors, such as antiscatter grid selection and 3D image quality in phantom and cadaver, including qualitative comparison to conventional CT. Theoretical modeling and benchtop experimentation confirmed the basic suitability of the FPD and x-ray source mentioned above. Clinical requirements combined with analysis of MTF and DQE yielded the following system geometry: a -55 cm source-to-detector distance; 1.3 magnification; a 20 cm diameter bore (20 x 20 x 20 cm3 field of view); total acquisition arc of -240 degrees. The system MTF declines to 50% at -1.3 mm(-1) and to 10% at -2.7 mm(-1), consistent with sub-millimeter spatial resolution. Analysis of DQE suggested a nominal technique of 90 kVp (+0.3 mm Cu added filtration) to provide high imaging performance from -500 projections at less than -0.5 kW power, implying -6.4 mGy (0.064 mSv) for low-dose protocols and -15 mGy (0.15 mSv) for high-quality protocols. The experimental studies show improved image uniformity and contrast-to-noise ratio (without increase in dose) through incorporation of a custom 10:1 GR antiscatter grid. Cadaver images demonstrate exquisite bone detail, visualization of articular morphology, and soft-tissue visibility comparable to diagnostic CT (10-20 HU contrast resolution). The results indicate that the proposed system will deliver volumetric images of the extremities with soft-tissue contrast resolution comparable to diagnostic CT and improved spatial resolution at potentially reduced dose. Cascaded systems analysis provided a useful basis for system design and optimization without costly repeated experimentation. A combined process of design specification, image quality analysis, clinical feedback, and revision yielded a prototype that is now awaiting clinical pilot studies. Potential advantages of the proposed system include reduced space and cost, imaging of load-bearing extremities, and combined volumetric imaging with real-time fluoroscopy and digital radiography.
Zbijewski, W.; De Jean, P.; Prakash, P.; Ding, Y.; Stayman, J. W.; Packard, N.; Senn, R.; Yang, D.; Yorkston, J.; Machado, A.; Carrino, J. A.; Siewerdsen, J. H.
2011-01-01
Purpose: This paper reports on the design and initial imaging performance of a dedicated cone-beam CT (CBCT) system for musculoskeletal (MSK) extremities. The system complements conventional CT and MR and offers a variety of potential clinical and logistical advantages that are likely to be of benefit to diagnosis, treatment planning, and assessment of therapy response in MSK radiology, orthopaedic surgery, and rheumatology. Methods: The scanner design incorporated a host of clinical requirements (e.g., ability to scan the weight-bearing knee in a natural stance) and was guided by theoretical and experimental analysis of image quality and dose. Such criteria identified the following basic scanner components and system configuration: a flat-panel detector (FPD, Varian 3030+, 0.194 mm pixels); and a low-power, fixed anode x-ray source with 0.5 mm focal spot (SourceRay XRS-125-7K-P, 0.875 kW) mounted on a retractable C-arm allowing for two scanning orientations with the capability for side entry, viz. a standing configuration for imaging of weight-bearing lower extremities and a sitting configuration for imaging of tensioned upper extremity and unloaded lower extremity. Theoretical modeling employed cascaded systems analysis of modulation transfer function (MTF) and detective quantum efficiency (DQE) computed as a function of system geometry, kVp and filtration, dose, source power, etc. Physical experimentation utilized an imaging bench simulating the scanner geometry for verification of theoretical results and investigation of other factors, such as antiscatter grid selection and 3D image quality in phantom and cadaver, including qualitative comparison to conventional CT. Results: Theoretical modeling and benchtop experimentation confirmed the basic suitability of the FPD and x-ray source mentioned above. Clinical requirements combined with analysis of MTF and DQE yielded the following system geometry: a ∼55 cm source-to-detector distance; 1.3 magnification; a 20 cm diameter bore (20 × 20 × 20 cm3 field of view); total acquisition arc of ∼240°. The system MTF declines to 50% at ∼1.3 mm−1 and to 10% at ∼2.7 mm−1, consistent with sub-millimeter spatial resolution. Analysis of DQE suggested a nominal technique of 90 kVp (+0.3 mm Cu added filtration) to provide high imaging performance from ∼500 projections at less than ∼0.5 kW power, implying ∼6.4 mGy (0.064 mSv) for low-dose protocols and ∼15 mGy (0.15 mSv) for high-quality protocols. The experimental studies show improved image uniformity and contrast-to-noise ratio (without increase in dose) through incorporation of a custom 10:1 GR antiscatter grid. Cadaver images demonstrate exquisite bone detail, visualization of articular morphology, and soft-tissue visibility comparable to diagnostic CT (10–20 HU contrast resolution). Conclusions: The results indicate that the proposed system will deliver volumetric images of the extremities with soft-tissue contrast resolution comparable to diagnostic CT and improved spatial resolution at potentially reduced dose. Cascaded systems analysis provided a useful basis for system design and optimization without costly repeated experimentation. A combined process of design specification, image quality analysis, clinical feedback, and revision yielded a prototype that is now awaiting clinical pilot studies. Potential advantages of the proposed system include reduced space and cost, imaging of load-bearing extremities, and combined volumetric imaging with real-time fluoroscopy and digital radiography. PMID:21928644
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zbijewski, W.; De Jean, P.; Prakash, P.
2011-08-15
Purpose: This paper reports on the design and initial imaging performance of a dedicated cone-beam CT (CBCT) system for musculoskeletal (MSK) extremities. The system complements conventional CT and MR and offers a variety of potential clinical and logistical advantages that are likely to be of benefit to diagnosis, treatment planning, and assessment of therapy response in MSK radiology, orthopaedic surgery, and rheumatology. Methods: The scanner design incorporated a host of clinical requirements (e.g., ability to scan the weight-bearing knee in a natural stance) and was guided by theoretical and experimental analysis of image quality and dose. Such criteria identified themore » following basic scanner components and system configuration: a flat-panel detector (FPD, Varian 3030+, 0.194 mm pixels); and a low-power, fixed anode x-ray source with 0.5 mm focal spot (SourceRay XRS-125-7K-P, 0.875 kW) mounted on a retractable C-arm allowing for two scanning orientations with the capability for side entry, viz. a standing configuration for imaging of weight-bearing lower extremities and a sitting configuration for imaging of tensioned upper extremity and unloaded lower extremity. Theoretical modeling employed cascaded systems analysis of modulation transfer function (MTF) and detective quantum efficiency (DQE) computed as a function of system geometry, kVp and filtration, dose, source power, etc. Physical experimentation utilized an imaging bench simulating the scanner geometry for verification of theoretical results and investigation of other factors, such as antiscatter grid selection and 3D image quality in phantom and cadaver, including qualitative comparison to conventional CT. Results: Theoretical modeling and benchtop experimentation confirmed the basic suitability of the FPD and x-ray source mentioned above. Clinical requirements combined with analysis of MTF and DQE yielded the following system geometry: a {approx}55 cm source-to-detector distance; 1.3 magnification; a 20 cm diameter bore (20 x 20 x 20 cm{sup 3} field of view); total acquisition arc of {approx}240 deg. The system MTF declines to 50% at {approx}1.3 mm{sup -1} and to 10% at {approx}2.7 mm{sup -1}, consistent with sub-millimeter spatial resolution. Analysis of DQE suggested a nominal technique of 90 kVp (+0.3 mm Cu added filtration) to provide high imaging performance from {approx}500 projections at less than {approx}0.5 kW power, implying {approx}6.4 mGy (0.064 mSv) for low-dose protocols and {approx}15 mGy (0.15 mSv) for high-quality protocols. The experimental studies show improved image uniformity and contrast-to-noise ratio (without increase in dose) through incorporation of a custom 10:1 GR antiscatter grid. Cadaver images demonstrate exquisite bone detail, visualization of articular morphology, and soft-tissue visibility comparable to diagnostic CT (10-20 HU contrast resolution). Conclusions: The results indicate that the proposed system will deliver volumetric images of the extremities with soft-tissue contrast resolution comparable to diagnostic CT and improved spatial resolution at potentially reduced dose. Cascaded systems analysis provided a useful basis for system design and optimization without costly repeated experimentation. A combined process of design specification, image quality analysis, clinical feedback, and revision yielded a prototype that is now awaiting clinical pilot studies. Potential advantages of the proposed system include reduced space and cost, imaging of load-bearing extremities, and combined volumetric imaging with real-time fluoroscopy and digital radiography.« less
NASA Astrophysics Data System (ADS)
Abidin, Anas Z.; Jameson, John; Molthen, Robert; Wismüller, Axel
2017-03-01
Few studies have analyzed the microstructural properties of bone in cases of Osteogenenis Imperfecta (OI), or `brittle bone disease'. Current approaches mainly focus on bone mineral density measurements as an indirect indicator of bone strength and quality. It has been shown that bone strength would depend not only on composition but also structural organization. This study aims to characterize 3D structure of the cortical bone in high-resolution micro CT images. A total of 40 bone fragments from 28 subjects (13 with OI and 15 healthy controls) were imaged using micro tomography using a synchrotron light source (SRµCT). Minkowski functionals - volume, surface, curvature, and Euler characteristics - describing the topological organization of the bone were computed from the images. The features were used in a machine learning task to classify between healthy and OI bone. The best classification performance (mean AUC - 0.96) was achieved with a combined 4-dimensional feature of all Minkowski functionals. Individually, the best feature performance was seen using curvature (mean AUC - 0.85), which characterizes the edges within a binary object. These results show that quantitative analysis of cortical bone microstructure, in a computer-aided diagnostics framework, can be used to distinguish between healthy and OI bone with high accuracy.
NASA Astrophysics Data System (ADS)
McClatchy, David M., III; Rizzo, Elizabeth J.; Meganck, Jeff; Kempner, Josh; Vicory, Jared; Wells, Wendy A.; Paulsen, Keith D.; Pogue, Brian W.
2017-12-01
A multimodal micro-computed tomography (CT) and multi-spectral structured light imaging (SLI) system is introduced and systematically analyzed to test its feasibility to aid in margin delineation during breast conserving surgery (BCS). Phantom analysis of the micro-CT yielded a signal-to-noise ratio of 34, a contrast of 1.64, and a minimum detectable resolution of 240 μm for a 1.2 min scan. The SLI system, spanning wavelengths 490 nm to 800 nm and spatial frequencies up to 1.37 mm-1 , was evaluated with aqueous tissue simulating phantoms having variations in particle size distribution, scatter density, and blood volume fraction. The reduced scattering coefficient, μs\\prime and phase function parameter, γ, were accurately recovered over all wavelengths independent of blood volume fractions from 0% to 4%, assuming a flat sample geometry perpendicular to the imaging plane. The resolution of the optical system was tested with a step phantom, from which the modulation transfer function was calculated yielding a maximum resolution of 3.78 cycles per mm. The three dimensional spatial co-registration between the CT and optical imaging space was tested and shown to be accurate within 0.7 mm. A freshly resected breast specimen, with lobular carcinoma, fibrocystic disease, and adipose, was imaged with the system. The micro-CT provided visualization of the tumor mass and its spiculations, and SLI yielded superficial quantification of light scattering parameters for the malignant and benign tissue types. These results appear to be the first demonstration of SLI combined with standard medical tomography for imaging excised tumor specimens. While further investigations are needed to determine and test the spectral, spatial, and CT features required to classify tissue, this study demonstrates the ability of multimodal CT/SLI to quantify, visualize, and spatially navigate breast tumor specimens, which could potentially aid in the assessment of tumor margin status during BCS.
Dzyubachyk, Oleh; Khmelinskii, Artem; Plenge, Esben; Kok, Peter; Snoeks, Thomas J A; Poot, Dirk H J; Löwik, Clemens W G M; Botha, Charl P; Niessen, Wiro J; van der Weerd, Louise; Meijering, Erik; Lelieveldt, Boudewijn P F
2014-01-01
In small animal imaging studies, when the locations of the micro-structures of interest are unknown a priori, there is a simultaneous need for full-body coverage and high resolution. In MRI, additional requirements to image contrast and acquisition time will often make it impossible to acquire such images directly. Recently, a resolution enhancing post-processing technique called super-resolution reconstruction (SRR) has been demonstrated to improve visualization and localization of micro-structures in small animal MRI by combining multiple low-resolution acquisitions. However, when the field-of-view is large relative to the desired voxel size, solving the SRR problem becomes very expensive, in terms of both memory requirements and computation time. In this paper we introduce a novel local approach to SRR that aims to overcome the computational problems and allow researchers to efficiently explore both global and local characteristics in whole-body small animal MRI. The method integrates state-of-the-art image processing techniques from the areas of articulated atlas-based segmentation, planar reformation, and SRR. A proof-of-concept is provided with two case studies involving CT, BLI, and MRI data of bone and kidney tumors in a mouse model. We show that local SRR-MRI is a computationally efficient complementary imaging modality for the precise characterization of tumor metastases, and that the method provides a feasible high-resolution alternative to conventional MRI.
Coşar, Murat; Eser, Olcay; Aslan, Adem; Ela, Yüksel
2007-07-01
The diagnosis and management of acute subdural hematoma is important in neurosurgery practice. Rapid spontaneous resolution of acute subdural hematoma within a few hours is seen rarely on the CT scan. We present a case that enlarged the existent subdural hygroma showing rapid resolution of acute subdural hematoma with resolution in 9 hours after the trauma. Additionally, the follow-up CT scans in the 1st month showed the decrease of enlargement of subdural hygroma. The resolution of acute subdural hematoma and effect of acute subdural hematoma on subdural hygroma must be considered during management. The relation of acute subdural hematoma and subdural hygroma is important for the resolution and management of acute subdural hematoma.
Okizaki, Atsutaka; Nakayama, Michihiro; Nakajima, Kaori; Takahashi, Koji
2017-12-01
Positron emission tomography (PET) has become a useful and important technique in oncology. However, spatial resolution of PET is not high; therefore, small abnormalities can sometimes be overlooked with PET. To address this problem, we devised a novel algorithm, iterative modified bicubic interpolation method (IMBIM). IMBIM generates high resolution and -contrast image. The purpose of this study was to investigate the utility of IMBIM for clinical FDG positron emission tomography/X-ray computed tomography (PET/CT) imaging.We evaluated PET images from 1435 patients with malignant tumor and compared the contrast (uptake ratio of abnormal lesions to background) in high resolution image with the standard bicubic interpolation method (SBIM) and IMBIM. In addition to the contrast analysis, 340 out of 1435 patients were selected for visual evaluation by nuclear medicine physicians to investigate lesion detectability. Abnormal uptakes on the images were categorized as either absolutely abnormal or equivocal finding.The average of contrast with IMBIM was significantly higher than that with SBIM (P < .001). The improvements were prominent with large matrix sizes and small lesions. SBIM images showed abnormalities in 198 of 340 lesions (58.2%), while IMBIM indicated abnormalities in 312 (91.8%). There was statistically significant improvement in lesion detectability with IMBIM (P < .001).In conclusion, IMBIM generates high-resolution images with improved contrast and, therefore, may facilitate more accurate diagnoses in clinical practice. Copyright © 2017 The Authors. Published by Wolters Kluwer Health, Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Nishimaru, Eiji; Ichikawa, Katsuhiro; Okita, Izumi; Ninomiya, Yuuji; Tomoshige, Yukihiro; Kurokawa, Takehiro; Ono, Yutaka; Nakamura, Yuko; Suzuki, Masayuki
2008-03-01
Recently, several kinds of post-processing image filters which reduce the noise of computed tomography (CT) images have been proposed. However, these image filters are mostly for adults. Because these are not very effective in small (< 20 cm) display fields of view (FOV), we cannot use them for pediatric body images (e.g., premature babies and infant children). We have developed a new noise reduction filter algorithm for pediatric body CT images. This algorithm is based on a 3D post-processing in which the output pixel values are calculated by nonlinear interpolation in z-directions on original volumetric-data-sets. This algorithm does not need the in-plane (axial plane) processing, so the spatial resolution does not change. From the phantom studies, our algorithm could reduce SD up to 40% without affecting the spatial resolution of x-y plane and z-axis, and improved the CNR up to 30%. This newly developed filter algorithm will be useful for the diagnosis and radiation dose reduction of the pediatric body CT images.
Multi-scale imaging and elastic simulation of carbonates
NASA Astrophysics Data System (ADS)
Faisal, Titly Farhana; Awedalkarim, Ahmed; Jouini, Mohamed Soufiane; Jouiad, Mustapha; Chevalier, Sylvie; Sassi, Mohamed
2016-05-01
Digital Rock Physics (DRP) is an emerging technology that can be used to generate high quality, fast and cost effective special core analysis (SCAL) properties compared to conventional experimental techniques and modeling techniques. The primary workflow of DRP conssits of three elements: 1) image the rock sample using high resolution 3D scanning techniques (e.g. micro CT, FIB/SEM), 2) process and digitize the images by segmenting the pore and matrix phases 3) simulate the desired physical properties of the rocks such as elastic moduli and velocities of wave propagation. A Finite Element Method based algorithm, that discretizes the basic Hooke's Law equation of linear elasticity and solves it numerically using a fast conjugate gradient solver, developed by Garboczi and Day [1] is used for mechanical and elastic property simulations. This elastic algorithm works directly on the digital images by treating each pixel as an element. The images are assumed to have periodic constant-strain boundary condition. The bulk and shear moduli of the different phases are required inputs. For standard 1.5" diameter cores however the Micro-CT scanning reoslution (around 40 μm) does not reveal smaller micro- and nano- pores beyond the resolution. This results in an unresolved "microporous" phase, the moduli of which is uncertain. Knackstedt et al. [2] assigned effective elastic moduli to the microporous phase based on self-consistent theory (which gives good estimation of velocities for well cemented granular media). Jouini et al. [3] segmented the core plug CT scan image into three phases and assumed that micro porous phase is represented by a sub-extracted micro plug (which too was scanned using Micro-CT). Currently the elastic numerical simulations based on CT-images alone largely overpredict the bulk, shear and Young's modulus when compared to laboratory acoustic tests of the same rocks. For greater accuracy of numerical simulation prediction, better estimates of moduli inputs for this current unresolved phase is important. In this work we take a multi-scale imaging approach by first extracting a smaller 0.5" core and scanning at approx 13 µm, then further extracting a 5mm diameter core scanned at 5 μm. From this last scale, region of interests (containing unresolved areas) are identified for scanning at higher resolutions using Focalised Ion Beam (FIB/SEM) scanning technique reaching 50 nm resolution. Numerical simulation is run on such a small unresolved section to obtain a better estimate of the effective moduli which is then used as input for simulations performed using CT-images. Results are compared with expeirmental acoustic test moduli obtained also at two scales: 1.5" and 0.5" diameter cores.
Sunaguchi, Naoki; Yuasa, Tetsuya; Hyodo, Kazuyuki; Zeniya, Tsutomu
2013-01-01
We propose a 3-dimensional fluorescent x-ray computed tomography (CT) pinhole collimator, aimed at providing molecular imaging with quantifiable measures and sub-millimeter spatial resolution. In this study, we demonstrate the feasibility of this concept and investigate imaging properties such as spatial resolution, contrast resolution and quantifiable measures, by imaging physical phantoms using a preliminary imaging system developed with monochromatic synchrotron x rays constructed at the BLNE-7A experimental line at KEK, Japan.
Application of Polychromatic µCT for Mineral Density Determination
Zou, W.; Hunter, N.; Swain, M.V.
2011-01-01
Accurate assessment of mineral density (MD) provides information critical to the understanding of mineralization processes of calcified tissues, including bones and teeth. High-resolution three-dimensional assessment of the MD of teeth has been demonstrated by relatively inaccessible synchrotron radiation microcomputed tomography (SRµCT). While conventional desktop µCT (CµCT) technology is widely available, polychromatic source and cone-shaped beam geometry confound MD assessment. Recently, considerable attention has been given to optimizing quantitative data from CµCT systems with polychromatic x-ray sources. In this review, we focus on the approaches that minimize inaccuracies arising from beam hardening, in particular, beam filtration during the scan, beam-hardening correction during reconstruction, and mineral density calibration. Filtration along with lowest possible source voltage results in a narrow and near-single-peak spectrum, favoring high contrast and minimal beam-hardening artifacts. More effective beam monochromatization approaches are described. We also examine the significance of beam-hardening correction in determining the accuracy of mineral density estimation. In addition, standards for the calibration of reconstructed grey-scale attenuation values against MD, including K2PHO4 liquid phantom, and polymer-hydroxyapatite (HA) and solid hydroxyapatite (HA) phantoms, are discussed. PMID:20858779
Development of X-ray CCD camera based X-ray micro-CT system
NASA Astrophysics Data System (ADS)
Sarkar, Partha S.; Ray, N. K.; Pal, Manoj K.; Baribaddala, Ravi; Agrawal, Ashish; Kashyap, Y.; Sinha, A.; Gadkari, S. C.
2017-02-01
Availability of microfocus X-ray sources and high resolution X-ray area detectors has made it possible for high resolution microtomography studies to be performed outside the purview of synchrotron. In this paper, we present the work towards the use of an external shutter on a high resolution microtomography system using X-ray CCD camera as a detector. During micro computed tomography experiments, the X-ray source is continuously ON and owing to the readout mechanism of the CCD detector electronics, the detector registers photons reaching it during the read-out period too. This introduces a shadow like pattern in the image known as smear whose direction is defined by the vertical shift register. To resolve this issue, the developed system has been incorporated with a synchronized shutter just in front of the X-ray source. This is positioned in the X-ray beam path during the image readout period and out of the beam path during the image acquisition period. This technique has resulted in improved data quality and hence the same is reflected in the reconstructed images.
4D XCAT phantom for multimodality imaging research
Segars, W. P.; Sturgeon, G.; Mendonca, S.; Grimes, Jason; Tsui, B. M. W.
2010-01-01
Purpose: The authors develop the 4D extended cardiac-torso (XCAT) phantom for multimodality imaging research. Methods: Highly detailed whole-body anatomies for the adult male and female were defined in the XCAT using nonuniform rational B-spline (NURBS) and subdivision surfaces based on segmentation of the Visible Male and Female anatomical datasets from the National Library of Medicine as well as patient datasets. Using the flexibility of these surfaces, the Visible Human anatomies were transformed to match body measurements and organ volumes for a 50th percentile (height and weight) male and female. The desired body measurements for the models were obtained using the PEOPLESIZE program that contains anthropometric dimensions categorized from 1st to the 99th percentile for US adults. The desired organ volumes were determined from ICRP Publication 89 [ICRP, ‘‘Basic anatomical and physiological data for use in radiological protection: reference values,” ICRP Publication 89 (International Commission on Radiological Protection, New York, NY, 2002)]. The male and female anatomies serve as standard templates upon which anatomical variations may be modeled in the XCAT through user-defined parameters. Parametrized models for the cardiac and respiratory motions were also incorporated into the XCAT based on high-resolution cardiac- and respiratory-gated multislice CT data. To demonstrate the usefulness of the phantom, the authors show example simulation studies in PET, SPECT, and CT using publicly available simulation packages. Results: As demonstrated in the pilot studies, the 4D XCAT (which includes thousands of anatomical structures) can produce realistic imaging data when combined with accurate models of the imaging process. With the flexibility of the NURBS surface primitives, any number of different anatomies, cardiac or respiratory motions or patterns, and spatial resolutions can be simulated to perform imaging research. Conclusions: With the ability to produce realistic, predictive 3D and 4D imaging data from populations of normal and abnormal patients under various imaging parameters, the authors conclude that the XCAT provides an important tool in imaging research to evaluate and improve imaging devices and techniques. In the field of x-ray CT, the phantom may also provide the necessary foundation with which to optimize clinical CT applications in terms of image quality versus radiation dose, an area of research that is becoming more significant with the growing use of CT. PMID:20964209
Robust x-ray based material identification using multi-energy sinogram decomposition
NASA Astrophysics Data System (ADS)
Yuan, Yaoshen; Tracey, Brian; Miller, Eric
2016-05-01
There is growing interest in developing X-ray computed tomography (CT) imaging systems with improved ability to discriminate material types, going beyond the attenuation imaging provided by most current systems. Dual- energy CT (DECT) systems can partially address this problem by estimating Compton and photoelectric (PE) coefficients of the materials being imaged, but DECT is greatly degraded by the presence of metal or other materials with high attenuation. Here we explore the advantages of multi-energy CT (MECT) systems based on photon-counting detectors. The utility of MECT has been demonstrated in medical applications where photon- counting detectors allow for the resolution of absorption K-edges. Our primary concern is aviation security applications where K-edges are rare. We simulate phantoms with differing amounts of metal (high, medium and low attenuation), both for switched-source DECT and for MECT systems, and include a realistic model of detector energy 0 resolution. We extend the DECT sinogram decomposition method of Ying et al. to MECT, allowing estimation of separate Compton and photoelectric sinograms. We furthermore introduce a weighting based on a quadratic approximation to the Poisson likelihood function that deemphasizes energy bins with low signal. Simulation results show that the proposed approach succeeds in estimating material properties even in high-attenuation scenarios where the DECT method fails, improving the signal to noise ratio of reconstructions by over 20 dB for the high-attenuation phantom. Our work demonstrates the potential of using photon counting detectors for stably recovering material properties even when high attenuation is present, thus enabling the development of improved scanning systems.
Evaluation of portable CT scanners for otologic image-guided surgery
Balachandran, Ramya; Schurzig, Daniel; Fitzpatrick, J Michael; Labadie, Robert F
2011-01-01
Purpose Portable CT scanners are beneficial for diagnosis in the intensive care unit, emergency room, and operating room. Portable fixed-base versus translating-base CT systems were evaluated for otologic image-guided surgical (IGS) applications based on geometric accuracy and utility for percutaneous cochlear implantation. Methods Five cadaveric skulls were fitted with fiducial markers and scanned using both a translating-base, 8-slice CT scanner (CereTom®) and a fixed-base, flat-panel, volume-CT (fpVCT) scanner (Xoran xCAT®). Images were analyzed for: (a) subjective quality (i.e. noise), (b) consistency of attenuation measurements (Hounsfield units) across similar tissue, and (c) geometric accuracy of fiducial marker positions. The utility of these scanners in clinical IGS cases was tested. Results Five cadaveric specimens were scanned using each of the scanners. The translating-base, 8-slice CT scanner had spatially consistent Hounsfield units, and the image quality was subjectively good. However, because of movement variations during scanning, the geometric accuracy of fiducial marker positions was low. The fixed-base, fpVCT system had high spatial resolution, but the images were noisy and had spatially inconsistent attenuation measurements; while the geometric representation of the fiducial markers was highly accurate. Conclusion Two types of portable CT scanners were evaluated for otologic IGS. The translating-base, 8-slice CT scanner provided better image quality than a fixed-base, fpVCT scanner. However, the inherent error in three-dimensional spatial relationships by the translating-based system makes it suboptimal for otologic IGS use. PMID:21779768
X-ray imaging with sub-micron resolution using large-area photon counting detectors Timepix
NASA Astrophysics Data System (ADS)
Dudak, J.; Karch, J.; Holcova, K.; Zemlicka, J.
2017-12-01
As X-ray micro-CT became a popular tool for scientific purposes a number of commercially available CT systems have emerged on the market. Micro-CT systems have, therefore, become widely accessible and the number of research laboratories using them constantly increases. However, even when CT scans with spatial resolution of several micrometers can be performed routinely, data acquisition with sub-micron precision remains a complicated task. Issues come mostly from prolongation of the scan time inevitably connected with the use of nano-focus X-ray sources. Long exposure time increases the noise level in the CT projections. Furthermore, considering the sub-micron resolution even effects like source-spot drift, rotation stage wobble or thermal expansion become significant and can negatively affect the data. The use of dark-current free photon counting detectors as X-ray cameras for such applications can limit the issue of increased image noise in the data, however the mechanical stability of the whole system still remains a problem and has to be considered. In this work we evaluate the performance of a micro-CT system equipped with nano-focus X-ray tube and a large area photon counting detector Timepix for scans with effective pixel size bellow one micrometer.
NASA Astrophysics Data System (ADS)
Xu, Yuntao; Xiong, Bo; Chung Chang, Yih; Ng, C. Y.
2016-08-01
Using the vacuum ultraviolet laser pulsed field ionization-photoion source, together with the double-quadrupole-double-octopole mass spectrometer developed in our laboratory, we have investigated the state-selected ion-molecule reaction {{{{N}}}2}+({X}2{{{{Σ }}}{{g}}}+; v + = 0-2, N+ = 0-9) + C2H2, achieving high internal-state selectivity and high kinetic energy resolution for reactant {{{{N}}}2}+ ions. The charge transfer (CT) and hydrogen-atom transfer (HT) channels, which lead to the respective formation of product {{{C}}}2{{{{H}}}2}+ and N2H+ ions, are observed. The vibrationally selected absolute integral cross sections for the CT [σ CT(v +)] and HT [[σ HT(v +)] channels obtained in the center-of-mass collision energy (E cm) range of 0.03-10.00 eV reveal opposite E cm dependences. The σ CT(v +) is found to increase as E cm is decreased, and is consistent with the long-range exothermic CT mechanism, whereas the E cm enhancement observed for the σ HT(v +) suggests effective coupling of kinetic energy to internal energy, enhancing the formation of N2H+. The σ HT(v +) curve exhibits a step at E cm = 0.70-1.00 eV, suggesting the involvement of the excited {{{C}}}2{{{{H}}}2}+({A}2{{{{Σ }}}{{g}}}+) state in the HT reaction. Contrary to the strong E cm dependences for σ CT(v +) and σ HT(v +), the effect of vibrational excitation of {{{{N}}}2}+ on both the CT and HT channels is marginal. The branching ratios and cross sections for the CT and HT channels determined in the present study are useful for modeling the atmospheric compositions of Saturn's largest moon, Titan. These cross sections and branching ratios are also valuable for benchmarking theoretical calculations on chemical dynamics of the titled reaction.
Globally optimal tumor segmentation in PET-CT images: a graph-based co-segmentation method.
Han, Dongfeng; Bayouth, John; Song, Qi; Taurani, Aakant; Sonka, Milan; Buatti, John; Wu, Xiaodong
2011-01-01
Tumor segmentation in PET and CT images is notoriously challenging due to the low spatial resolution in PET and low contrast in CT images. In this paper, we have proposed a general framework to use both PET and CT images simultaneously for tumor segmentation. Our method utilizes the strength of each imaging modality: the superior contrast of PET and the superior spatial resolution of CT. We formulate this problem as a Markov Random Field (MRF) based segmentation of the image pair with a regularized term that penalizes the segmentation difference between PET and CT. Our method simulates the clinical practice of delineating tumor simultaneously using both PET and CT, and is able to concurrently segment tumor from both modalities, achieving globally optimal solutions in low-order polynomial time by a single maximum flow computation. The method was evaluated on clinically relevant tumor segmentation problems. The results showed that our method can effectively make use of both PET and CT image information, yielding segmentation accuracy of 0.85 in Dice similarity coefficient and the average median hausdorff distance (HD) of 6.4 mm, which is 10% (resp., 16%) improvement compared to the graph cuts method solely using the PET (resp., CT) images.
High resolution 3D laboratory x-ray tomography data of femora from young, 1-14 day old C57BL/6 mice.
Bortel, Emely L; Duda, Georg N; Mundlos, Stefan; Willie, Bettina M; Fratzl, Peter; Zaslansky, Paul
2015-09-01
This data article contains high resolution (1.2 µm effective pixel size) lab-based micro-computed tomography (µCT) reconstructed volume data of the femoral mid-shafts from young C57BL/6 mice. This data formed the basis for the analyses of bone structural development in healthy mice, including closed and open porosity as reported in Bortel et al. [1]. The data reveals changes seen in bone material and porosity distribution observed when mouse bones transform from porous scaffolds into solid structures during normal organogenesis.
Nagarajan, Mahesh B; Coan, Paola; Huber, Markus B; Diemoz, Paul C; Glaser, Christian; Wismüller, Axel
2014-02-01
Phase-contrast computed tomography (PCI-CT) has shown tremendous potential as an imaging modality for visualizing human cartilage with high spatial resolution. Previous studies have demonstrated the ability of PCI-CT to visualize (1) structural details of the human patellar cartilage matrix and (2) changes to chondrocyte organization induced by osteoarthritis. This study investigates the use of high-dimensional geometric features in characterizing such chondrocyte patterns in the presence or absence of osteoarthritic damage. Geometrical features derived from the scaling index method (SIM) and statistical features derived from gray-level co-occurrence matrices were extracted from 842 regions of interest (ROI) annotated on PCI-CT images of ex vivo human patellar cartilage specimens. These features were subsequently used in a machine learning task with support vector regression to classify ROIs as healthy or osteoarthritic; classification performance was evaluated using the area under the receiver-operating characteristic curve (AUC). SIM-derived geometrical features exhibited the best classification performance (AUC, 0.95 ± 0.06) and were most robust to changes in ROI size. These results suggest that such geometrical features can provide a detailed characterization of the chondrocyte organization in the cartilage matrix in an automated and non-subjective manner, while also enabling classification of cartilage as healthy or osteoarthritic with high accuracy. Such features could potentially serve as imaging markers for evaluating osteoarthritis progression and its response to different therapeutic intervention strategies.
Technical Note: Characterization of custom 3D printed multimodality imaging phantoms.
Bieniosek, Matthew F; Lee, Brian J; Levin, Craig S
2015-10-01
Imaging phantoms are important tools for researchers and technicians, but they can be costly and difficult to customize. Three dimensional (3D) printing is a widely available rapid prototyping technique that enables the fabrication of objects with 3D computer generated geometries. It is ideal for quickly producing customized, low cost, multimodal, reusable imaging phantoms. This work validates the use of 3D printed phantoms by comparing CT and PET scans of a 3D printed phantom and a commercial "Micro Deluxe" phantom. This report also presents results from a customized 3D printed PET/MRI phantom, and a customized high resolution imaging phantom with sub-mm features. CT and PET scans of a 3D printed phantom and a commercial Micro Deluxe (Data Spectrum Corporation, USA) phantom with 1.2, 1.6, 2.4, 3.2, 4.0, and 4.8 mm diameter hot rods were acquired. The measured PET and CT rod sizes, activities, and attenuation coefficients were compared. A PET/MRI scan of a custom 3D printed phantom with hot and cold rods was performed, with photon attenuation and normalization measurements performed with a separate 3D printed normalization phantom. X-ray transmission scans of a customized two level high resolution 3D printed phantom with sub-mm features were also performed. Results show very good agreement between commercial and 3D printed micro deluxe phantoms with less than 3% difference in CT measured rod diameter, less than 5% difference in PET measured rod diameter, and a maximum of 6.2% difference in average rod activity from a 10 min, 333 kBq/ml (9 μCi/ml) Siemens Inveon (Siemens Healthcare, Germany) PET scan. In all cases, these differences were within the measurement uncertainties of our setups. PET/MRI scans successfully identified 3D printed hot and cold rods on PET and MRI modalities. X-ray projection images of a 3D printed high resolution phantom identified features as small as 350 μm wide. This work shows that 3D printed phantoms can be functionally equivalent to commercially available phantoms. They are a viable option for quickly distributing and fabricating low cost, customized phantoms.
Mohebbi, Saleh; Andrade, José; Nolte, Lena; Meyer, Heiko; Heisterkamp, Alexander; Majdani, Omid
2017-01-01
The present study focuses on the application of scanning laser optical tomography (SLOT) for visualization of anatomical structures inside the human cochlea ex vivo. SLOT is a laser-based highly efficient microscopy technique which allows for tomographic imaging of the internal structure of transparent specimens. Thus, in the field of otology this technique is best convenient for an ex vivo study of the inner ear anatomy. For this purpose, the preparation before imaging comprises decalcification, dehydration as well as optical clearing of the cochlea samples in toto. Here, we demonstrate results of SLOT imaging visualizing hard and soft tissue structures with an optical resolution of down to 15 μm using extinction and autofluorescence as contrast mechanisms. Furthermore, the internal structure can be analyzed nondestructively and quantitatively in detail by sectioning of the three-dimensional datasets. The method of X-ray Micro Computed Tomography (μCT) has been previously applied to explanted cochlea and is solely based on absorption contrast. An advantage of SLOT is that it uses visible light for image formation and thus provides a variety of contrast mechanisms known from other light microscopy techniques, such as fluorescence or scattering. We show that SLOT data is consistent with μCT anatomical data and provides additional information by using fluorescence. We demonstrate that SLOT is applicable for cochlea with metallic cochlear implants (CI) that would lead to significant artifacts in μCT imaging. In conclusion, the present study demonstrates the capability of SLOT for resolution visualization of cleared human cochleae ex vivo using multiple contrast mechanisms and lays the foundation for a broad variety of additional studies. PMID:28873437
Synchrotron radiation CT from the micro to nanoscale for the investigation of bone tissue
NASA Astrophysics Data System (ADS)
Peyrin, Francoise; Dong, Pei; Pacureanu, Alexandra; Zuluaga, Maria; Olivier, Cécile; Langer, Max; Cloetens, Peter
2012-10-01
During the last decade, X-ray micro Computerized Tomography (CT) has become a conventional technique for the three-dimensional (3D) investigation of trabecular bone micro-architecture. Coupling micro-CT to synchrotron sources possesses significant advantages in terms of image quality and gives access to information on bone mineralization which is an important factor of bone quality. We present an overview of the investigation of bone using Synchrotron Radiation (SR) CT from the micro to the nano scale. We introduce two synchrotron CT systems developed at the ESRF based on SR parallel-beam micro-CT and magnified phase CT respectively, achieving down to submicrometric and nanometric spatial resolution. In the latter, by using phase retrieval prior to tomographic reconstruction, the system provides maps of the 3D refractive index distribution. Parallel-beam SR micro-CT has extensively been used for the analysis of trabecular or cortical bone in human or small animals with spatial resolution in the range [3-10] μm. However, the characterization of the bone properties at the cellular scale is also of major interest. At the micrometric scale, the shape, density and morphology of osteocyte lacunae can be studied on statistically representative volumes. At the nanometric scale, unprecedented 3D displays of the canaliculi network have been obtained on fields of views including a large number of interconnected osteocyte lacunae. Finally SR magnified phase CT provides a detailed analysis of the lacuno-canalicular network and in addition information on the organization of the collagen fibers. These findings open new perspectives for three-dimensional quantitative assessment of bone tissue at the cellular scale.
Ultra-High-Resolution Computed Tomography of the Lung: Image Quality of a Prototype Scanner.
Kakinuma, Ryutaro; Moriyama, Noriyuki; Muramatsu, Yukio; Gomi, Shiho; Suzuki, Masahiro; Nagasawa, Hirobumi; Kusumoto, Masahiko; Aso, Tomohiko; Muramatsu, Yoshihisa; Tsuchida, Takaaki; Tsuta, Koji; Maeshima, Akiko Miyagi; Tochigi, Naobumi; Watanabe, Shun-Ichi; Sugihara, Naoki; Tsukagoshi, Shinsuke; Saito, Yasuo; Kazama, Masahiro; Ashizawa, Kazuto; Awai, Kazuo; Honda, Osamu; Ishikawa, Hiroyuki; Koizumi, Naoya; Komoto, Daisuke; Moriya, Hiroshi; Oda, Seitaro; Oshiro, Yasuji; Yanagawa, Masahiro; Tomiyama, Noriyuki; Asamura, Hisao
2015-01-01
The image noise and image quality of a prototype ultra-high-resolution computed tomography (U-HRCT) scanner was evaluated and compared with those of conventional high-resolution CT (C-HRCT) scanners. This study was approved by the institutional review board. A U-HRCT scanner prototype with 0.25 mm x 4 rows and operating at 120 mAs was used. The C-HRCT images were obtained using a 0.5 mm x 16 or 0.5 mm x 64 detector-row CT scanner operating at 150 mAs. Images from both scanners were reconstructed at 0.1-mm intervals; the slice thickness was 0.25 mm for the U-HRCT scanner and 0.5 mm for the C-HRCT scanners. For both scanners, the display field of view was 80 mm. The image noise of each scanner was evaluated using a phantom. U-HRCT and C-HRCT images of 53 images selected from 37 lung nodules were then observed and graded using a 5-point score by 10 board-certified thoracic radiologists. The images were presented to the observers randomly and in a blinded manner. The image noise for U-HRCT (100.87 ± 0.51 Hounsfield units [HU]) was greater than that for C-HRCT (40.41 ± 0.52 HU; P < .0001). The image quality of U-HRCT was graded as superior to that of C-HRCT (P < .0001) for all of the following parameters that were examined: margins of subsolid and solid nodules, edges of solid components and pulmonary vessels in subsolid nodules, air bronchograms, pleural indentations, margins of pulmonary vessels, edges of bronchi, and interlobar fissures. Despite a larger image noise, the prototype U-HRCT scanner had a significantly better image quality than the C-HRCT scanners.
NASA Astrophysics Data System (ADS)
Andrews, A. E.; Hu, L.; Thoning, K. W.; Nehrkorn, T.; Mountain, M. E.; Jacobson, A. R.; Michalak, A.; Dlugokencky, E. J.; Sweeney, C.; Worthy, D. E. J.; Miller, J. B.; Fischer, M. L.; Biraud, S.; van der Velde, I. R.; Basu, S.; Tans, P. P.
2017-12-01
CarbonTracker-Lagrange (CT-L) is a new high-resolution regional inverse modeling system for improved estimation of North American CO2 fluxes. CT-L uses footprints from the Stochastic Time-Inverted Lagrangian Transport (STILT) model driven by high-resolution (10 to 30 km) meteorological fields from the Weather Research and Forecasting (WRF) model. We performed a suite of synthetic-data experiments to evaluate a variety of inversion configurations, including (1) solving for scaling factors to an a priori flux versus additive corrections, (2) solving for fluxes at 3-hrly resolution versus at coarser temporal resolution, (3) solving for fluxes at 1o × 1o resolution versus at large eco-regional scales. Our framework explicitly and objectively solves for the optimal solution with a full error covariance matrix with maximum likelihood estimation, thereby enabling rigorous uncertainty estimates for the derived fluxes. In the synthetic-data inversions, we find that solving for weekly scaling factors of a priori Net Ecosystem Exchange (NEE) at 1o × 1o resolution with optimization of diurnal cycles of CO2 fluxes yields faithful retrieval of the specified "true" fluxes as those solved at 3-hrly resolution. In contrast, a scheme that does not allow for optimization of diurnal cycles of CO2 fluxes suffered from larger aggregation errors. We then applied the optimal inversion setup to estimate North American fluxes for 2007-2015 using real atmospheric CO2 observations, multiple prior estimates of NEE, and multiple boundary values estimated from the NOAA's global Eulerian CarbonTracker (CarbonTracker) and from an empirical approach. Our derived North American land CO2 fluxes show larger seasonal amplitude than those estimated from the CarbonTracker, removing seasonal biases in the CarbonTracker's simulated CO2 mole fractions. Independent evaluations using in-situ CO2 eddy covariance flux measurements and independent aircraft profiles also suggest an improved estimation on North American CO2 fluxes from CT-L. Furthermore, our derived CO2 flux anomalies over North America corresponding to the 2012 North American drought and the 2015 El Niño are larger than derived by the CarbonTracker. They also indicate different responses of ecosystems to those anomalous climatic events.
Dose uniformity analysis among ten 16-slice same-model CT scanners.
Erdi, Yusuf Emre
2012-01-01
With the introduction of multislice scanners, computed tomographic (CT) dose optimization has become important. The patient-absorbed dose may differ among the scanners although they are the same type and model. To investigate the dose output variation of the CT scanners, we designed the study to analyze dose outputs of 10 same-model CT scanners using 3 clinical protocols. Ten GE Lightspeed (GE Healthcare, Waukesha, Wis) 16-slice scanners located at main campus and various satellite locations of our institution have been included in this study. All dose measurements were performed using poly (methyl methacrylate) (PMMA) head (diameter, 16 cm) and body (diameter, 32 cm) phantoms manufactured by Radcal (RadCal Corp, Monrovia, Calif) using a 9095 multipurpose analyzer with 10 × 9-3CT ion chamber both from the same manufacturer. Ion chamber is inserted into the peripheral and central axis locations and volume CT dose index (CTDIvol) is calculated as weighted average of doses at those locations. Three clinical protocol settings for adult head, high-resolution chest, and adult abdomen are used for dose measurements. We have observed up to 9.4% CTDIvol variation for the adult head protocol in which the largest variation occurred among the protocols. However, head protocol uses higher milliampere second values than the other 2 protocols. Most of the measured values were less than the system-stored CTDIvol values. It is important to note that reduction in dose output from tubes as they age is expected in addition to the intrinsic radiation output fluctuations of the same scanner. Although the same model CT scanners were used in this study, it is possible to see CTDIvol variation in standard patient scanning protocols of head, chest, and abdomen. The compound effect of the dose variation may be larger with higher milliampere and multiphase and multilocation CT scans.
Campbell, Graeme M; Sophocleous, Antonia
2014-01-01
Micro-computed tomography (micro-CT) is a high-resolution imaging modality that is capable of analysing bone structure with a voxel size on the order of 10 μm. With the development of in vivo micro-CT, where disease progression and treatment can be monitored in a living animal over a period of time, this modality has become a standard tool for preclinical assessment of bone architecture during disease progression and treatment. For meaningful comparison between micro-CT studies, it is essential that the same parameters for data acquisition and analysis methods be used. This protocol outlines the common procedures that are currently used for sample preparation, scanning, reconstruction and analysis in micro-CT studies. Scan and analysis methods for trabecular and cortical bone are covered for the femur, tibia, vertebra and the full neonate body of small rodents. The analysis procedures using the software provided by ScancoMedical and Bruker are discussed, and the routinely used bone architectural parameters are outlined. This protocol also provides a section dedicated to in vivo scanning and analysis, which covers the topics of anaesthesia, radiation dose and image registration. Because of the expanding research using micro-CT to study other skeletal sites, as well as soft tissues, we also provide a review of current techniques to examine the skull and mandible, adipose tissue, vasculature, tumour severity and cartilage. Lists of recommended further reading and literature references are included to provide the reader with more detail on the methods described. PMID:25184037
1990-05-01
suggest that the body is important for a maker of 1lFRS-virus infection. 69 PROSPECTIVE STUDY ON PANHYPOPITUITARISM AS A SEQUELA OF HEMORRHAGIC FEVER...necrosis is a characteristic and common autopsy finding. Contrary to this, only 14 cases of clinical panhypopituitarism have been reported. Recently we...confirmed six patients with panhypopituitarism by high resolution sella computed tomo-,raphy(CT) and combined anterior pituitary stimulation lest(CAPS I
Bux, SI; Mohd. Ramli, N; Ahmad Sarji, S; Kamarulzaman, A
2010-01-01
This is a retrospective descriptive study of the chest imaging findings of 118 patients with confirmed A(H1N1) in a tertiary referral centre. About 42% of the patients had positive initial chest radiographic (CXR) findings. The common findings were bi-basal air-space opacities and perihilar reticular and alveolar infiltrates. In select cases, high-resolution computed tomography (CT) imaging showed ground-glass change with some widespread reticular changes and atelectasis. PMID:21611071
Optimization of a secondary VOI protocol for lung imaging in a clinical CT scanner.
Larsen, Thomas C; Gopalakrishnan, Vissagan; Yao, Jianhua; Nguyen, Catherine P; Chen, Marcus Y; Moss, Joel; Wen, Han
2018-05-21
We present a solution to meet an unmet clinical need of an in-situ "close look" at a pulmonary nodule or at the margins of a pulmonary cyst revealed by a primary (screening) chest CT while the patient is still in the scanner. We first evaluated options available on current whole-body CT scanners for high resolution screening scans, including ROI reconstruction of the primary scan data and HRCT, but found them to have insufficient SNR in lung tissue or discontinuous slice coverage. Within the capabilities of current clinical CT systems, we opted for the solution of a secondary, volume-of-interest (VOI) protocol where the radiation dose is focused into a short-beam axial scan at the z position of interest, combined with a small-FOV reconstruction at the xy position of interest. The objective of this work was to design a VOI protocol that is optimized for targeted lung imaging in a clinical whole-body CT system. Using a chest phantom containing a lung-mimicking foam insert with a simulated cyst, we identified the appropriate scan mode and optimized both the scan and recon parameters. The VOI protocol yielded 3.2 times the texture amplitude-to-noise ratio in the lung-mimicking foam when compared to the standard chest CT, and 8.4 times the texture difference between the lung mimicking and reference foams. It improved details of the wall of the simulated cyst and better resolution in a line-pair insert. The Effective Dose of the secondary VOI protocol was 42% on average and up to 100% in the worst-case scenario of VOI positioning relative to the standard chest CT. The optimized protocol will be used to obtain detailed CT textures of pulmonary lesions, which are biomarkers for the type and stage of lung diseases. Published 2018. This article is a U.S. Government work and is in the public domain in the USA.
Yang, Wen Jie; Zhang, Huan; Xiao, Hua; Li, Jian Ying; Liu, Yan; Pan, Zi Lai; Chen, Ke Min
2012-01-01
The evaluation of coronary stents by computed tomography (CT) remains difficult. We assessed the imaging performance of a high-definition CT scanner (HDCT) by comparing with a conventional 64-row standard-definition CT (SDCT). One hundred thirty-eight consecutive stented patients underwent coronary CT angiography, among whom 66 patients were examined by HDCT, and 72 patients by SDCT (LightSpeed VCT XT; GE Healthcare, Waukesha, Wis). The image quality score, the inner stent diameter (ISD), and the radiation dose were analyzed. All data were statistically tested by SPSS 13.0 software (SPSS Inc, Chicago, Ill). In 72 patients examined using SDCT, 135 stents were detected; in 66 patients examined using HDCT, 119 stents were detected. The image quality score on HDCT was significantly better than that on SDCT (1.4 [SD, 0.7] vs 1.9 [SD, 0.8]). The ISD on HDCT was significantly higher than that on SDCT (1.8 [SD, 0.5] vs 1.6 [SD, 0.4]). There was no significant difference of either image quality score or ISD between the HDCT and SDCT groups in stents with 2.5-mm diameter. Images on HDCT showed significantly better image quality score and larger ISD than images on SDCT in 2.75-, 3-, and 3.5-mm stents. For patients examined by retrospective electrocardiogram-gated technique, the radiation dose on HDCT was significantly lower than that on SDCT (11.3 [SD, 2.9] vs 15.1 [SD, 3.8] mSv). High-definition CT scanner offered improved image quality and measurement accuracy for imaging coronary stents compared with conventional SDCT, providing higher spatial resolution and lower dose for evaluating coronary stents with 2.75- to 3.5-mm diameter.
Arabi, Hossein; Kamali Asl, Ali Reza; Ay, Mohammad Reza; Zaidi, Habib
2015-07-01
The purpose of this work is to evaluate the impact of optimization of magnification on performance parameters of the variable resolution X-ray (VRX) CT scanner. A realistic model based on an actual VRX CT scanner was implemented in the GATE Monte Carlo simulation platform. To evaluate the influence of system magnification, spatial resolution, field-of-view (FOV) and scatter-to-primary ratio of the scanner were estimated for both fixed and optimum object magnification at each detector rotation angle. Comparison and inference between these performance parameters were performed angle by angle to determine appropriate object position at each opening half angle. Optimization of magnification resulted in a trade-off between spatial resolution and FOV of the scanner at opening half angles of 90°-12°, where the spatial resolution increased up to 50% and the scatter-to-primary ratio decreased from 4.8% to 3.8% at a detector angle of about 90° for the same FOV and X-ray energy spectrum. The disadvantage of magnification optimization at these angles is the significant reduction of the FOV (up to 50%). Moreover, magnification optimization was definitely beneficial for opening half angles below 12° improving the spatial resolution from 7.5 cy/mm to 20 cy/mm. Meanwhile, the FOV increased by more than 50% at these angles. It can be concluded that optimization of magnification is essential for opening half angles below 12°. For opening half angles between 90° and 12°, the VRX CT scanner magnification should be set according to the desired spatial resolution and FOV. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Obert, Martin; Kubelt, Carolin; Schaaf, Thomas; Dassinger, Benjamin; Grams, Astrid; Gizewski, Elke R; Krombach, Gabriele A; Verhoff, Marcel A
2013-05-10
The objective of this article was to explore age-at-death estimates in forensic medicine, which were methodically based on age-dependent, radiologically defined bone-density (HC) decay and which were investigated with a standard clinical computed tomography (CT) system. Such density decay was formerly discovered with a high-resolution flat-panel CT in the skulls of adult females. The development of a standard CT methodology for age estimations--with thousands of installations--would have the advantage of being applicable everywhere, whereas only few flat-panel prototype CT systems are in use worldwide. A Multi-Slice CT scanner (MSCT) was used to obtain 22,773 images from 173 European human skulls (89 male, 84 female), taken from a population of patients from the Department of Neuroradiology at the University Hospital Giessen and Marburg during 2010 and 2011. An automated image analysis was carried out to evaluate HC of all images. The age dependence of HC was studied by correlation analysis. The prediction accuracy of age-at-death estimates was calculated. Computer simulations were carried out to explore the influence of noise on the accuracy of age predictions. Human skull HC values strongly scatter as a function of age for both sexes. Adult male skull bone-density remains constant during lifetime. Adult female HC decays during lifetime, as indicated by a correlation coefficient (CC) of -0.53. Prediction errors for age-at-death estimates for both of the used scanners are in the range of ±18 years at a 75% confidence interval (CI). Computer simulations indicate that this is the best that can be expected for such noisy data. Our results indicate that HC-decay is indeed present in adult females and that it can be demonstrated both by standard and by high-resolution CT methods, applied to different subject groups of an identical population. The weak correlation between HC and age found by both CT methods only enables a method to estimate age-at-death with limited practical relevance since the errors of the estimates are large. Computer simulations clearly indicate that data with less noise and CCs in the order of -0.97 or less would be necessary to enable age-at-death estimates with an accuracy of ±5 years at a 75% CI. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Innovation and fusion of x-ray and optical tomography for mouse studies of breast cancer
NASA Astrophysics Data System (ADS)
Wang, Ge; Cong, Wenxiang; Yang, Qingsong; Pian, Qi; Zhu, Shouping; Liang, Jimin; Barroso, Margarida; Intes, Xavier
2016-10-01
For early detection and targeted therapy, receptor expression profiling is instrumental to classifying breast cancer into sub-groups. In particular, human epidermal growth factor receptor 2 (HER2) expression has been shown to have both prognostic and predictive values. Recently, an increasingly more complex view of HER2 in breast cancer has emerged from genome sequencing that highlights the role of inter- and intra-tumor heterogeneity in therapy resistance. Studies on such heterogeneity demand high-content, high-resolution functional and molecular imaging in vivo, which cannot be achieved using any single imaging tool. Clearly, there is a critical need to develop a multimodality approach for breast cancer imaging. Since 2006, grating-based x-ray imaging has been developed for much-improved x-ray images. In 2014, the demonstration of fluorescence molecular tomography (FMT) guided by x-ray grating-based micro-CT was reported with encouraging results and major drawbacks. In this paper, we propose to integrate grating-based x-ray tomography (GXT) and high-dimensional optical tomography (HOT) into the first-of-its-kind truly-fused GXT-HOT (pronounced as "Get Hot") system for imaging of breast tumor heterogeneity, HER2 expression and dimerization, and therapeutic response. The primary innovation lies in developing a brand-new high-content, high-throughput x-ray optical imager based on several contemporary techniques to have MRI-type soft tissue contrast, PET-like sensitivity and specificity, and micro-CT-equivalent resolution. This system consists of two orthogonal x-ray Talbot-Lau interferometric imaging chains and a hyperspectral time-resolved single-pixel optical imager. Both the system design and pilot results will be reported in this paper, along with relevant issues under further investigation.
Rhoades, Glendon W; Belev, George S; Chapman, L Dean; Wiebe, Sheldon P; Cooper, David M; Wong, Adelaine TF; Rosenberg, Alan M
2015-01-01
The objective of this project was to develop and test a new technology for imaging growing joints by means of diffraction-enhanced imaging (DEI) combined with CT and using a synchrotron radiation source. DEI–CT images of an explanted 4-wk-old piglet stifle joint were acquired by using a 40-keV beam. The series of scanned slices was later ‘stitched’ together, forming a 3D dataset. High-resolution DEI-CT images demonstrated fine detail within all joint structures and tissues. Striking detail of vasculature traversing between bone and cartilage, a characteristic of growing but not mature joints, was demonstrated. This report documents for the first time that DEI combined with CT and a synchrotron radiation source can generate more detailed images of intact, growing joints than can currently available conventional imaging modalities. PMID:26310464
Selecting a CT scanner for cardiac imaging: the heart of the matter.
Lewis, Maria A; Pascoal, Ana; Keevil, Stephen F; Lewis, Cornelius A
2016-09-01
Coronary angiography to assess the presence and degree of arterial stenosis is an examination now routinely performed on CT scanners. Although developments in CT technology over recent years have made great strides in improving the diagnostic accuracy of this technique, patients with certain characteristics can still be "difficult to image". The various groups will benefit from different technological enhancements depending on the type of challenge they present. Good temporal and spatial resolution, wide longitudinal (z-axis) detector coverage and high X-ray output are the key requirements of a successful CT coronary angiography (CTCA) scan. The requirement for optimal patient dose is a given. The different scanner models recommended for CTCA all excel in different aspects. The specification data presented here for these scanners and the explanation of the impact of the different features should help in making a more informed decision when selecting a scanner for CTCA.
Dudley-Javoroski, S.; Petrie, M. A.; McHenry, C. L.; Amelon, R. E.; Saha, P. K.
2015-01-01
Summary This study examined the effect of a controlled dose of vibration upon bone density and architecture in people with spinal cord injury (who eventually develop severe osteoporosis). Very sensitive computed tomography (CT) imaging revealed no effect of vibration after 12 months, but other doses of vibration may still be useful to test. Introduction The purposes of this report were to determine the effect of a controlled dose of vibratory mechanical input upon individual trabecular bone regions in people with chronic spinal cord injury (SCI) and to examine the longitudinal bone architecture changes in both the acute and chronic state of SCI. Methods Participants with SCI received unilateral vibration of the constrained lower limb segment while sitting in a wheelchair (0.6g, 30 Hz, 20 min, three times weekly). The opposite limb served as a control. Bone mineral density (BMD) and trabecular micro-architecture were measured with high-resolution multi-detector CT. For comparison, one participant was studied from the acute (0.14 year) to the chronic state (2.7 years). Results Twelve months of vibration training did not yield adaptations of BMD or trabecular micro-architecture for the distal tibia or the distal femur. BMD and trabecular network length continued to decline at several distal femur sub-regions, contrary to previous reports suggesting a “steady state” of bone in chronic SCI. In the participant followed from acute to chronic SCI, BMD and architecture decline varied systematically across different anatomical segments of the tibia and femur. Conclusions This study supports that vibration training, using this study’s dose parameters, is not an effective antiosteoporosis intervention for people with chronic SCI. Using a high-spatial-resolution CT methodology and segmental analysis, we illustrate novel longitudinal changes in bone that occur after spinal cord injury. PMID:26395887
Hung, V W Y; Zhu, T Y; Cheung, W-H; Fong, T-N; Yu, F W P; Hung, L-K; Leung, K-S; Cheng, J C Y; Lam, T-P; Qin, L
2015-06-01
In a cohort of 393 Chinese women, by using high-resolution peripheral quantitative computed tomography (HR-pQCT), we found that significant cortical bone loss occurred after midlife. Prominent increase in cortical porosity began at the fifth decade but reached a plateau before the sixth decade. Trabecular bone loss was already evident in young adulthood and continued throughout life. This study aimed to investigate age-related differences in volumetric bone mineral density (vBMD), microarchitecture, and estimated bone strength at peripheral skeleton in Chinese female population. In a cross-sectional cohort of 393 Chinese women aged 20-90 years, we obtained vBMD, microarchtecture, and micro-finite element-derived bone strength at distal radius and tibia using HR-pQCT. The largest predictive age-related difference was found for cortical porosity (Ct.Po) which showed over four-fold and two-fold differences at distal radius and tibia, respectively, over the adulthood. At both sites, cortical bone area, vBMD, and thickness showed significant quadratic association with age with significant decrease beginning after midlife. Change of Ct.Po became more prominent between age of 50 and 57 (0.26 %/year at distal radius, 0.54 %/year at distal tibia, both p ≤ 0.001) but thereafter, reached a plateau (0.015 and 0.028 %/year, both p > 0.05). In contrast, trabecular vBMD and microarchitecture showed linear association with age with significant deterioration observed throughout adulthood. Estimated age of peak was around age of 20 for trabecular vBMD and microarchitecture and Ct.Po and age of 40 for cortical vBMD and microarchitecture. Estimated stiffness and failure load peaked at mid-30s at the distal radius and at age 20 at distal tibia. Age-related differences in vBMD and microarchitecture in Chinese women differed by bone compartments. Significant cortical bone loss occurred after midlife. Prominent increase in Ct.Po began at the fifth decade but appeared to be arrested before the sixth decade. Loss of trabecular bone was already evident in young adulthood and continued throughout life.
In vivo 3D PIXE-micron-CT imaging of Drosophila melanogaster using a contrast agent
NASA Astrophysics Data System (ADS)
Matsuyama, Shigeo; Hamada, Naoki; Ishii, Keizo; Nozawa, Yuichiro; Ohkura, Satoru; Terakawa, Atsuki; Hatori, Yoshinobu; Fujiki, Kota; Fujiwara, Mitsuhiro; Toyama, Sho
2015-04-01
In this study, we developed a three-dimensional (3D) computed tomography (CT) in vivo imaging system for imaging small insects with micrometer resolution. The 3D CT imaging system, referred to as 3D PIXE-micron-CT (PIXEμCT), uses characteristic X-rays produced by ion microbeam bombardment of a metal target. PIXEμCT was used to observe the body organs and internal structure of a living Drosophila melanogaster. Although the organs of the thorax were clearly imaged, the digestive organs in the abdominal cavity could not be clearly discerned initially, with the exception of the rectum and the Malpighian tubule. To enhance the abdominal images, a barium sulfate powder radiocontrast agent was added. For the first time, 3D images of the ventriculus of a living D. melanogaster were obtained. Our results showed that PIXEμCT can provide in vivo 3D-CT images that reflect correctly the structure of individual living organs, which is expected to be very useful in biological research.
Alberich-Bayarri, A; Martí-Bonmatí, L; Sanz-Requena, R; Sánchez-González, J; Hervás Briz, V; García-Martí, G; Pérez, M Á
2014-01-01
We used an animal model to analyze the reproducibility and accuracy of certain biomarkers of bone image quality in comparison to a gold standard of computed microtomography (μCT). We used magnetic resonance (MR) imaging and μCT to study the metaphyses of 5 sheep tibiae. The MR images (3 Teslas) were acquired with a T1-weighted gradient echo sequence and an isotropic spatial resolution of 180μm. The μCT images were acquired using a scanner with a spatial resolution of 7.5μm isotropic voxels. In the preparation of the images, we applied equalization, interpolation, and thresholding algorithms. In the quantitative analysis, we calculated the percentage of bone volume (BV/TV), the trabecular thickness (Tb.Th), the trabecular separation (Tb.Sp), the trabecular index (Tb.N), the 2D fractal dimension (D(2D)), the 3D fractal dimension (D(3D)), and the elastic module in the three spatial directions (Ex, Ey and Ez). The morphometric and mechanical quantification of trabecular bone by MR was very reproducible, with percentages of variation below 9% for all the parameters. Its accuracy compared to the gold standard (μCT) was high, with errors less than 15% for BV/TV, D(2D), D(3D), and E(app)x, E(app)y and E(app)z. Our experimental results in animals confirm that the parameters of BV/TV, D(2D), D(3D), and E(app)x, E(app)y and E(app)z obtained by MR have excellent reproducibility and accuracy and can be used as imaging biomarkers for the quality of trabecular bone. Copyright © 2013 SERAM. Published by Elsevier Espana. All rights reserved.