Science.gov

Sample records for high-resolution electron spectroscopy

  1. High-resolution threshold photoelectron spectroscopy by electron attachment

    NASA Technical Reports Server (NTRS)

    Ajello, J. M.; Chutjian, A.

    1976-01-01

    A new technique for measuring high-resolution threshold photoelectron spectra of atoms, molecules, and radicals is described. It involves photoionization of a gaseous species, attachment of the threshold, or nearly zero electron to some trapping molecule (here SF6 or CFCl3), and mass detection of the attachment product (SF6/-/ or Cl/-/ respectively). This technique of threshold photoelectron spectroscopy by electron attachment was used to measure the spectra of argon and xenon at 11 meV (FWHM) resolution, and was also applied to CFCl3.

  2. High resolution threshold photoelectron spectroscopy by electron attachment

    NASA Technical Reports Server (NTRS)

    Chutjian, A.; Ajello, J. M. (Inventor)

    1979-01-01

    A system is provided for determining the stable energy levels of a species ion, of an atomic, molecular, or radical type, by application of ionizing energy of a predetermined level, such as through photoionization. The system adds a trapping gas to the gaseous species to provide a technique for detection of the energy levels. The electrons emitted from ionized species are captured by the trapping gas, only if the electrons have substantially zero kinetic energy. If the electrons have nearly zero energy, they are absorbed by the trapping gas to produce negative ions of the trapping gas that can be detected by a mass spectrometer. The applied energies (i.e. light frequencies) at which large quantities of trapping gas ions are detected, are the stable energy levels of the positive ion of the species. SF6 and CFCl3 have the narrowest acceptance bands, so that when they are used as the trapping gas, they bind electrons only when the electrons have very close to zero kinetic energy.

  3. High resolution hypernuclear spectroscopy

    SciTech Connect

    F. Garibaldi

    2005-02-01

    Hypernuclear spectroscopy provides fundamental information for understanding the effective ?-Nucleon interaction. Jefferson Laboratory experiment E94-107 was designed to perform high resolution hypernuclear spectroscopy by electroproduction of strangeness in four 1p-shell nuclei: 12C, 9Be, 16O, and 7Li. The first part of the experiment on 12C and 9Be has been performed in January and April-May 2004 in Hall A at Jefferson Lab. Significant modifications were made to the standard Hall A apparatus for this challenging experiment: two septum magnets and a RICH detector have been added to get reasonable counting rates and excellent particle identification, as required for the experiment. A description of the apparatus and the preliminary analysis results are presented here.

  4. High-resolution electron microscopy and electron energy-loss spectroscopy of giant palladium clusters

    NASA Astrophysics Data System (ADS)

    Oleshko, V.; Volkov, V.; Gijbels, R.; Jacob, W.; Vargaftik, M.; Moiseev, I.; van Tendeloo, G.

    1995-12-01

    Combined structural and chemical characterization of cationic polynuclear palladium coordination compounds Pd561L60(OAc)180, where L=1,10-phenantroline or 2,2'-bipyridine has been carried out by high-resolution electron microscopy (HREM) and analytical electron microscopy methods including electron energy-loss spectroscopy (EELS), zero-loss electron spectroscopic imaging, and energy-dispersive X-ray spectroscopy (EDX). The cell structure of the cluster matter with almost completely uniform metal core size distributions centered around 2.3 ±0.5 nm was observed. Zero-loss energy filtering allowed to improve the image contrast and resolution. HREM images showed that most of the palladium clusters had a cubo-octahedral shape. Some of them had a distorted icosahedron structure exhibiting multiple twinning. The selected-area electron diffraction patterns confirmed the face centered cubic structure with lattice parameter close to that of metallic palladium. The energy-loss spectra of the populations of clusters contained several bands, which could be assigned to the delayed Pd M4, 5-edge at 362 eV, the Pd M3-edge at 533 eV and the Pd M2-edge at 561 eV, the NK-edge at about 400 eV, the O K-edge at 532 eV overlapping with the Pd M3-edge and the carbon C K-edge at 284 eV. Background subtraction was applied to reveal the exact positions and fine structure of low intensity elemental peaks. EELS evaluations have been confirmed by EDX. The recorded series of the Pd M-edges and the N K-edge in the spectra of the giant palladium clusters obviously were related to Pd-Pd- and Pd-ligand bonding.

  5. High Resolution Laboratory Spectroscopy

    NASA Astrophysics Data System (ADS)

    Brünken, S.; Schlemmer, S.

    2016-05-01

    In this short review we will highlight some of the recent advancements in the field of high-resolution laboratory spectroscopy that meet the needs dictated by the advent of highly sensitive and broadband telescopes like ALMA and SOFIA. Among these is the development of broadband techniques for the study of complex organic molecules, like fast scanning conventional absorption spectroscopy based on multiplier chains, chirped pulse instrumentation, or the use of synchrotron facilities. Of similar importance is the extension of the accessible frequency range to THz frequencies, where many light hydrides have their ground state rotational transitions. Another key experimental challenge is the production of sufficiently high number densities of refractory and transient species in the laboratory, where discharges have proven to be efficient sources that can also be coupled to molecular jets. For ionic molecular species sensitive action spectroscopic schemes have recently been developed to overcome some of the limitations of conventional absorption spectroscopy. Throughout this review examples demonstrating the strong interplay between laboratory and observational studies will be given.

  6. High-Resolution Electron Energy-Loss Spectroscopy (HREELS) Using a Monochromated TEM/STEM

    NASA Technical Reports Server (NTRS)

    Sai, Z. R.; Bradley, J. P.; Erni, R.; Browning, N.

    2005-01-01

    A 200 keV FEI TF20 XT monochromated (scanning) transmission electron microscope funded by NASA's SRLIDAP program is undergoing installation at Lawrence Livermore National Laboratory. Instrument specifications in STEM mode are Cs =1.0 mm, Cc =1.2 mm, image resolution =0.18 nm, and in TEM mode Cs =1.3 mm, Cc =1.3 mm, information limit =0.14 nm. Key features of the instrument are a voltage-stabilized high tension (HT) supply, a monochromator, a high-resolution electron energy-loss spectrometer/energy filter, a high-resolution annular darkfield detector, and a solid-state x-ray energy-dispersive spectrometer. The high-tension tank contains additional sections for 60Hz and high frequency filtering, resulting in an operating voltage of 200 kV plus or minus 0.005V, a greater than 10-fold improvement over earlier systems. The monochromator is a single Wien filter design. The energy filter is a Gatan model 866 Tridiem-ERS high resolution GIF spec d for less than or equal to 0.15 eV energy resolution with 29 pA of current in a 2 nm diameter probe. 0.13 eV has already been achieved during early installation. The x-ray detector (EDAX/Genesis 4000) has a take-off angle of 20 degrees, an active area of 30 square millimeters, and a solid angle of 0.3 steradians. The higher solid angle is possible because the objective pole-piece allows the detector to be positioned as close as 9.47 mm from the specimen. The voltage-stabilized HT supply, monochromator and GIF enable high-resolution electron energy-loss spectroscopy (HREELS) with energy resolution comparable to synchrotron XANES, but with approximately 100X better spatial resolution. The region between 0 and 100 eV is called the low-loss or valence electron energy-loss spectroscopy (VEELS) region where features due to collective plasma oscillations and single electron transitions of valence electrons are observed. Most of the low-loss VEELS features we are detecting are being observed for the first time in IDPs. A major focus of

  7. High-resolution electron spectroscopy of different adsorption states of ethylene on Pd(1 1 1)

    NASA Astrophysics Data System (ADS)

    Sock, M.; Eichler, A.; Surnev, S.; Andersen, J. N.; Klötzer, B.; Hayek, K.; Ramsey, M. G.; Netzer, F. P.

    2003-11-01

    The adsorption of ethylene at 100 K on clean and oxygen precovered Pd(1 1 1) surfaces and the thermal evolution of the ethylene adsorbate layers have been investigated experimentally by high-resolution electron energy loss spectroscopy (HREELS), high-resolution X-ray photoelectron spectroscopy with synchrotron radiation, thermal desorption spectroscopy and theoretically by ab initio density functional theory (DFT) calculations. On the clean Pd(1 1 1) surface at 100 K ethylene is adsorbed in a di-σ bonding state, whereas on the oxygen precovered Pd(1 1 1)2 × 2-O surface the π-bonded configuration is more stable; this has been established both experimentally and theoretically. Upon adsorption at room temperature ethylidyne adspecies are formed on both surfaces, but neither di-σ nor π-bonded ethylene transform into ethylidyne on heating from low temperature up to 450 K. Complete molecular desorption of ethylene is observed in both cases, with no signs of dehydrogenation. The spectroscopic data recorded during the thermal evolution of the low temperature adsorbate phase have been analysed with the help of DFT and indicate that π-bonded ethylene adsorption states may become populated upon heating the low temperature adlayer to 350 K.

  8. High resolution electron microscopy and spectroscopy of ferritin in thin window liquid cells

    NASA Astrophysics Data System (ADS)

    Wang, Canhui; Qiao, Qiao; Shokuhfar, Tolou; Klie, Robert

    2014-03-01

    In-situ transmission electron microscopy (TEM) has seen a dramatic increase in interest in recent years with the commercial development of liquid and gas stages. High-resolution TEM characterization of samples in a liquid environment remains limited by radiation damage and loss of resolution due to the thick window-layers required by the in-situ stages. We introduce thin-window static-liquid cells that enable sample imaging with atomic resolution and electron energy-loss (EEL) spectroscopy with 1.3 nm resolution. Using this approach, atomic and electronic structures of biological samples such as ferritin is studied via in-situ transmission electron microscopy experiments. Ferritin in solution is encapsulated using the static liquid cells with reduced window thickness. The integrity of the thin window liquid cell is maintained by controlling the electron dose rate. Radiation damage of samples, such as liquid water and protein, is quantitatively studied to allow precision control of radiation damage level within the liquid cells. Biochemical reactions, such as valence change of the iron in a functioning ferritin, is observed and will be quantified. Relevant biochemical activity: the release and uptake of Fe atoms through the channels of ferritin protein shell is also imaged at atomic resolution. This work is funded by Michigan Technological University. The UIC JEOL JEM-ARM200CF is supported by an MRI-R2 grant from the National Science Foundation (Grant No. DMR-0959470).

  9. High resolution electron energy loss spectroscopy with two-dimensional energy and momentum mapping.

    PubMed

    Zhu, Xuetao; Cao, Yanwei; Zhang, Shuyuan; Jia, Xun; Guo, Qinlin; Yang, Fang; Zhu, Linfan; Zhang, Jiandi; Plummer, E W; Guo, Jiandong

    2015-08-01

    High resolution electron energy loss spectroscopy (HREELS) is a powerful technique to probe vibrational and electronic excitations at surfaces. The dispersion relation of surface excitations, i.e., energy as a function of momentum, has in the past, been obtained by measuring the energy loss at a fixed angle (momentum) and then rotating sample, monochromator, or analyzer. Here, we introduce a new strategy for HREELS, utilizing a specially designed lens system with a double-cylindrical Ibach-type monochromator combined with a commercial VG Scienta hemispherical electron energy analyzer, which can simultaneously measure the energy and momentum of the scattered electrons. The new system possesses high angular resolution (<0.1°), detecting efficiency and sampling density. The capabilities of this system are demonstrated using Bi2Sr2CaCu2O(8+δ). The time required to obtain a complete dispersion spectrum is at least one order of magnitude shorter than conventional spectrometers, with improved momentum resolution and no loss in energy resolution.

  10. High resolution electron energy loss spectroscopy with two-dimensional energy and momentum mapping

    SciTech Connect

    Zhu, Xuetao; Cao, Yanwei; Zhang, Shuyuan; Jia, Xun; Guo, Qinlin; Yang, Fang; Zhu, Linfan; Zhang, Jiandi; Plummer, E. W.; Guo, Jiandong

    2015-08-15

    High resolution electron energy loss spectroscopy (HREELS) is a powerful technique to probe vibrational and electronic excitations at surfaces. The dispersion relation of surface excitations, i.e., energy as a function of momentum, has in the past, been obtained by measuring the energy loss at a fixed angle (momentum) and then rotating sample, monochromator, or analyzer. Here, we introduce a new strategy for HREELS, utilizing a specially designed lens system with a double-cylindrical Ibach-type monochromator combined with a commercial VG Scienta hemispherical electron energy analyzer, which can simultaneously measure the energy and momentum of the scattered electrons. The new system possesses high angular resolution (<0.1°), detecting efficiency and sampling density. The capabilities of this system are demonstrated using Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+δ}. The time required to obtain a complete dispersion spectrum is at least one order of magnitude shorter than conventional spectrometers, with improved momentum resolution and no loss in energy resolution.

  11. High-resolution monochromated electron energy-loss spectroscopy of organic photovoltaic materials.

    PubMed

    Alexander, Jessica A; Scheltens, Frank J; Drummy, Lawrence F; Durstock, Michael F; Hage, Fredrik S; Ramasse, Quentin M; McComb, David W

    2017-03-02

    Advances in electron monochromator technology are providing opportunities for high energy resolution (10 - 200meV) electron energy-loss spectroscopy (EELS) to be performed in the scanning transmission electron microscope (STEM). The energy-loss near-edge structure in core-loss spectroscopy is often limited by core-hole lifetimes rather than the energy spread of the incident illumination. However, in the valence-loss region, the reduced width of the zero loss peak makes it possible to resolve clearly and unambiguously spectral features at very low energy-losses (<3eV). In this contribution, high-resolution EELS was used to investigate four materials commonly used in organic photovoltaics (OPVs): poly(3-hexlythiophene) (P3HT), [6,6] phenyl-C61 butyric acid methyl ester (PCBM), copper phthalocyanine (CuPc), and fullerene (C60). Data was collected on two different monochromated instruments - a Nion UltraSTEM 100 MC 'HERMES' and a FEI Titan(3) 60-300 Image-Corrected S/TEM - using energy resolutions (as defined by the zero loss peak full-width at half-maximum) of 35meV and 175meV, respectively. The data was acquired to allow deconvolution of plural scattering, and Kramers-Kronig analysis was utilized to extract the complex dielectric functions. The real and imaginary parts of the complex dielectric functions obtained from the two instruments were compared to evaluate if the enhanced resolution in the Nion provides new opto-electronic information for these organic materials. The differences between the spectra are discussed, and the implications for STEM-EELS studies of advanced materials are considered.

  12. Development of an Apparatus for High-Resolution Auger Photoelectron Coincidence Spectroscopy (APECS) and Electron Ion Coincidence (EICO) Spectroscopy

    NASA Astrophysics Data System (ADS)

    Kakiuchi, Takuhiro; Hashimoto, Shogo; Fujita, Narihiko; Mase, Kazuhiko; Tanaka, Masatoshi; Okusawa, Makoto

    We have developed an electron electron ion coincidence (EEICO) apparatus for high-resolution Auger photoelectron coincidence spectroscopy (APECS) and electron ion coincidence (EICO) spectroscopy. It consists of a coaxially symmetric mirror electron energy analyzer (ASMA), a miniature double-pass cylindrical mirror electron energy analyzer (DP-CMA), a miniature time-of-flight ion mass spectrometer (TOF-MS), a magnetic shield, an xyz stage, a tilt-adjustment mechanism, and a conflat flange with an outer diameter of 203 mm. A sample surface was irradiated by synchrotron radiation, and emitted electrons were energy-analyzed and detected by the ASMA and the DP-CMA, while desorbed ions were mass-analyzed and detected by the TOF-MS. The performance of the new EEICO analyzer was evaluated by measuring Si 2p photoelectron spectra of clean Si(001)-2×1 and Si(111)-7×7, and by measuring Si-L23VV-Si-2p Auger photoelectron coincidence spectra (Si-L23VV-Si-2p APECS) of clean Si(001)-2×1.

  13. High Resolution UV Emission Spectroscopy of Molecules Excited by Electron Impact

    NASA Technical Reports Server (NTRS)

    James, G. K.; Ajello, J. M.; Beegle, L.; Ciocca, M.; Dziczek, D.; Kanik, I.; Noren, C.; Jonin, C.; Hansen, D.

    1999-01-01

    Photodissociation via discrete line absorption into predissociating Rydberg and valence states is the dominant destruction mechanism of CO and other molecules in the interstellar medium and molecular clouds. Accurate values for the rovibronic oscillator strengths of these transitions and predissociation yields of the excited states are required for input into the photochemical models that attempt to reproduce observed abundances. We report here on our latest experimental results of the electron collisional properties of CO and N2 obtained using the 3-meter high resolution single-scattering spectroscopic facility at JPL.

  14. Experimentally characterizing the electronic structures of f-electron systems using advanced high resolution Fourier transform microwave spectroscopies

    SciTech Connect

    Cooke, Stephen, A

    2013-02-03

    We aim to (i) provide data that directly addresses the fundamental roles of actinide valence electrons in chemical bonding, and (ii) serve to provide prototypical data for the heavy element computational chemistry community. These goals will be achieved through the first pure rotational spectroscopic measurements on prototypical systems at ultra-high resolution. These systems encompass low oxidation state uranium and thorium compounds including, but not limited to, UX and ThX, X = F, Cl, Br, I, and UY and ThY, Y = O, S, and other simple U and Th-containing compounds. Our primary experimental tools involve time-domain rotational spectroscopy achieving line widths and resolutions of a few kHz.

  15. Magnetic dynamics studied by high-resolution electron spectroscopy and time-resolved electron microscopy

    NASA Astrophysics Data System (ADS)

    Jayaraman, Rajeswari

    Future information technology requires an increased magnetically encoded data density and novel electromagnetic modes of data transfer. While to date magnetic properties are observed and characterized mostly statically, the need emerges to monitor and capture their fast dynamics. In this talk, I will focus on the spin dynamics i.e. spin wave excitations and the dynamics of a new topological distribution of spins termed ``skyrmions''. Wave packets of spin waves offer the unique capability to transport a quantum bit, the spin, without the transport of charge or mass. Here, large wave-vector spin waves are of particular interest as they admit spin localization within a few nanometers. By using our recently developed electron energy loss spectrometer, we could study such spin waves in ultrathin films with an unprecedented energy resolution of 4 meV. By virtue of the finite penetration depth of low energy electrons, spin waves localized at interfaces between a substrate and a thin capping layer can be been studied yielding information about the exchange coupling between atoms at the interface. The quantization of spin waves with wave vectors perpendicular to the film gives rise to standing modes to which EELS has likewise access. Such studies when carried out as function of the film thickness again yield information on the layer dependence of the exchange coupling. Magnetic skyrmions are promising candidates as information carriers in logic or storage devices. Currently, little is known about the influence of disorder, defects, or external stimuli on the spatial distribution and temporal evolution of the skyrmion lattice. In this talk, I will describe the dynamical role of disorder in a large and flat thin film of Cu2OSeO3, exhibiting a skyrmion phase in an insulating material. We image up to 70,000 skyrmions by means of cryo-Lorentz Transmission Electron Microscopy as a function of the applied magnetic field. In the skyrmion phase, dislocations are shown to cause the

  16. Electronic excitation of furfural as probed by high-resolution vacuum ultraviolet spectroscopy, electron energy loss spectroscopy, and ab initio calculations

    SciTech Connect

    Ferreira da Silva, F.; Lange, E.; Limão-Vieira, P. E-mail: michael.brunger@flinders.edu.au; Jones, N. C.; Hoffmann, S. V.; Hubin-Franskin, M.-J.; Delwiche, J.; Brunger, M. J. E-mail: michael.brunger@flinders.edu.au; and others

    2015-10-14

    The electronic spectroscopy of isolated furfural (2-furaldehyde) in the gas phase has been investigated using high-resolution photoabsorption spectroscopy in the 3.5–10.8 eV energy-range, with absolute cross section measurements derived. Electron energy loss spectra are also measured over a range of kinematical conditions. Those energy loss spectra are used to derive differential cross sections and in turn generalised oscillator strengths. These experiments are supported by ab initio calculations in order to assign the excited states of the neutral molecule. The good agreement between the theoretical results and the measurements allows us to provide the first quantitative assignment of the electronic state spectroscopy of furfural over an extended energy range.

  17. Electronic excitation of furfural as probed by high-resolution vacuum ultraviolet spectroscopy, electron energy loss spectroscopy, and ab initio calculations.

    PubMed

    Ferreira da Silva, F; Lange, E; Limão-Vieira, P; Jones, N C; Hoffmann, S V; Hubin-Franskin, M-J; Delwiche, J; Brunger, M J; Neves, R F C; Lopes, M C A; de Oliveira, E M; da Costa, R F; Varella, M T do N; Bettega, M H F; Blanco, F; García, G; Lima, M A P; Jones, D B

    2015-10-14

    The electronic spectroscopy of isolated furfural (2-furaldehyde) in the gas phase has been investigated using high-resolution photoabsorption spectroscopy in the 3.5-10.8 eV energy-range, with absolute cross section measurements derived. Electron energy loss spectra are also measured over a range of kinematical conditions. Those energy loss spectra are used to derive differential cross sections and in turn generalised oscillator strengths. These experiments are supported by ab initio calculations in order to assign the excited states of the neutral molecule. The good agreement between the theoretical results and the measurements allows us to provide the first quantitative assignment of the electronic state spectroscopy of furfural over an extended energy range.

  18. High-resolution electron momentum spectroscopy of valence satellites of carbon disulfide

    NASA Astrophysics Data System (ADS)

    Huang, Chengwu; Shan, Xu; Zhang, Zhe; Wang, Enliang; Li, Zhongjun; Chen, XiangJun

    2010-09-01

    The binding energy spectrum of carbon disulphide (CS2) in the energy range of 9-23 eV has been measured by a high-resolution (e,2e) spectrometer employing asymmetric noncoplanar kinematics at an impact energy of 2500 eV plus the binding energy. Taking the advantage of the high energy resolution of 0.54 eV, four main peaks and five satellites in the outer-valence region are resolved. The assignments and pole strengths for these satellite states are achieved by comparing the experimental electron momentum profiles with the corresponding theoretical ones calculated using Hartree-Fock and density functional theory methods. The results are also compared in detail with the recent SAC-CI general-R calculations. General agreement is satisfactory, while the present experiment suggests cooperative contributions from Π2u, Σg+2 states to satellite 2 and Σg+2, Π2g states to satellite 3. Besides, relatively low pole strength for X Π2g state is obtained which contradicts all the theoretical calculations [2ph-TDA, ADC(3), SAC-CI general-R, ADC(4)] so far.

  19. Recent Developments of an Opto-Electronic THz Spectrometer for High-Resolution Spectroscopy

    PubMed Central

    Hindle, Francis; Yang, Chun; Mouret, Gael; Cuisset, Arnaud; Bocquet, Robin; Lampin, Jean-François; Blary, Karine; Peytavit, Emilien; Akalin, Tahsin; Ducournau, Guillaume

    2009-01-01

    A review is provided of sources and detectors that can be employed in the THz range before the description of an opto-electronic source of monochromatic THz radiation. The realized spectrometer has been applied to gas phase spectroscopy. Air-broadening coefficients of HCN are determined and the insensitivity of this technique to aerosols is demonstrated by the analysis of cigarette smoke. A multiple pass sample cell has been used to obtain a sensitivity improvement allowing transitions of the volatile organic compounds to be observed. A solution to the frequency metrology is presented and promises to yield accurate molecular line center measurements. PMID:22291552

  20. Excited electronic states of thiophene: high resolution photoabsorption Fourier transform spectroscopy and ab initio calculations.

    PubMed

    Holland, D M P; Trofimov, A B; Seddon, E A; Gromov, E V; Korona, T; de Oliveira, N; Archer, L E; Joyeux, D; Nahon, L

    2014-10-21

    The recently introduced synchrotron radiation-based Fourier transform spectroscopy has been employed to study the excited electronic states of thiophene. A highly resolved photoabsorption spectrum has been measured between ∼5 and 12.5 eV, providing a wealth of new data. High-level ab initio computations have been performed using the second-order algebraic-diagrammatic construction (ADC(2)) polarization propagator approach, and the equation-of-motion coupled-cluster (EOM-CC) method at the CCSD and CC3 levels, to guide the assignment of the spectrum. The adiabatic energy corrections have been evaluated, thereby extending the theoretical study beyond the vertical excitation picture and leading to a significantly improved understanding of the spectrum. The low-lying π→π* and π→σ* transitions result in prominent broad absorption bands. Two strong Rydberg series converging onto the X(~)(2)A2 state limit have been assigned to the 1a2→npb1(1)B2 and the 1a2→nda2(1)A1 transitions. A second, and much weaker, d-type series has been assigned to the 1a2→ndb1(1)B2 transitions. Excitation into some of the Rydberg states belonging to the two strong series gives rise to vibrational structure, most of which has been interpreted in terms of excitations of the totally symmetric ν4 and ν8 modes. One Rydberg series, assigned to the 3b1→nsa1(1)B1 transitions, has been identified converging onto the Ã(2)B1 state limit, and at higher energies Rydberg states converging onto the B(~)(2)A1 state limit could be identified. The present spectra reveal highly irregular vibrational structure in certain low energy absorption bands, and thus provide a new source of information for the rapidly developing studies of excited state non-adiabatic dynamics and photochemistry.

  1. High Resolution Electron Energy Loss Spectroscopy Studies of Chemisorbed Species on Metal Surfaces

    DTIC Science & Technology

    1990-03-31

    vibrational modes at crystal surfaces, the first detection of projected bulk phonon modes by surface electron scattering and elucidation of novel properties associated with hydrogen interaction at Niobium surfaces. (jg)

  2. High-Resolution {alpha} and Electron Spectroscopy of {sup 249}{sub 98}Cf

    SciTech Connect

    Ahmad, I.; Greene, J. P.; Kondev, F. G.; Zhu, S.

    2015-04-13

    alpha-particle spectra of Cf-249 have been measured with a double-focusing magnetic spectrometer and with passivated implanted planar silicon (PIPS) detectors. The conversion-electron spectra of Cf-249 have been measured with a cooled Si(Li) detector and with a room-temperature PIPS detector. Precise energies of a groups in the decay of Cf-249 have been measured with respect to the known energy of Cf-250. In addition, alpha-electron, alpha-gamma, and gamma-gamma coincidence measurements were also performed to determine the spin-parity of the previously known 643.64-keV level. From electron intensities, conversion coefficients of transitions in the daughter Cm-245 have been determined. The measured L-3 conversion coefficients of the 333.4- and 388.2-keV transitions are found to be in agreement with the theoretical conversion coefficients for pure E1 multipolarity. On the other hand, the K, L-1 + L-2, M, and N conversion coefficients are approximately twice the theoretical values for pure E1 transitions. These measurements indicate anomalous E1 conversion coefficients for the 333.4- and 388.2-keV transitions, as has been pointed out in earlier measurements. The measured conversion coefficient of the 255.5-keV transition gives an M1 multipolarity for this transition which establishes a spin-parity of 7/2(-) and the 7/2(-)[743] single-particle assignment to the 643.64-keV level.

  3. High resolution electronic spectroscopy of three n-alkylbenzenes: ethyl-, propyl-, and butylbenzene

    NASA Astrophysics Data System (ADS)

    Borst, David R.; Joireman, Paul W.; Pratt, David W.; Robertson, Evan G.; Simons, John P.

    2002-04-01

    Rotationally resolved S1-S0 fluorescence excitation spectra of ethylbenzene, two conformers of n-propylbenzene, and two conformers of n-butylbenzene have been observed and assigned. The data obtained provide information about the equilibrium properties of each molecule, including their geometries in the S1-S0 states, their electronic distributions, and their dynamical behavior following the absorption of light. Trans structures are found to have S1 states that are 1Lb in character with relatively long fluorescence lifetimes. Gauche structures are found to have S1 states that are mixed (1Lb/1La) in character with relatively short fluorescence lifetimes. Possible reasons for these differences in properties are discussed.

  4. High-Resolution Spectroscopy with a Free-Electron Laser: Vibrational Lifetimes of Hydrogen-related Defects in Silicon

    NASA Astrophysics Data System (ADS)

    Luepke, Gunter

    2009-03-01

    Gunter Luepke, Department of Applied Science, The College of William and Mary, Williamsburg, VA 23187 Vibrational lifetimes of hydrogen- and deuterium-related bending and stretching modes in crystalline silicon are measured by high-resolution infrared absorption spectroscopy and pump-probe transient bleaching technique using the Jefferson Lab. Free-Electron Laser. We find that the vibrational lifetimes of the bending modes follow a universal frequency-gap law, i.e., the decay time increases exponentially with increasing decay order, with values ranging from 1 ps for a one-phonon process to 265 ps for a four-phonon process. The temperature dependence of the lifetime shows that the bending mode decays by lowest-order multi-phonon process. In contrast, the lifetimes of the stretching modes are found to be extremely dependent on the defect structure, ranging from 2 to 295 ps. Against conventional wisdom, we find that lifetimes of Si-D stretch modes typically are longer than for the corresponding Si-H modes. Our results provide new insights into vibrational decay and the giant isotope effect of hydrogen in semiconductor systems. The potential implications of the results on the physics of electronic device degradation are discussed.

  5. Neutron irradiation damage of nuclear graphite studied by high-resolution transmission electron microscopy and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Krishna, R.; Jones, A. N.; McDermott, L.; Marsden, B. J.

    2015-12-01

    Nuclear graphite components are produced from polycrystalline artificial graphite manufacture from a binder and filler coke with approximately 20% porosity. During the operational lifetime, nuclear graphite moderator components are subjected to fast neutron irradiation which contributes to the change of material and physical properties such as thermal expansion co-efficient, young's modulus and dimensional change. These changes are directly driven by irradiation-induced changes to the crystal structure as reflected through the bulk microstructure. It is therefore of critical importance that these irradiation changes and there implication on component property changes are fully understood. This work examines a range of irradiated graphite samples removed from the British Experimental Pile Zero (BEPO) reactor; a low temperature, low fluence, air-cooled Materials Test Reactor which operated in the UK. Raman spectroscopy and high-resolution transmission electron microscopy (HRTEM) have been employed to characterise the effect of increased irradiation fluence on graphite microstructure and understand low temperature irradiation damage processes. HRTEM confirms the structural damage of the crystal lattice caused by irradiation attributed to a high number of defects generation with the accumulation of dislocation interactions at nano-scale range. Irradiation-induced crystal defects, lattice parameters and crystallite size compared to virgin nuclear graphite are characterised using selected area diffraction (SAD) patterns in TEM and Raman Spectroscopy. The consolidated 'D'peak in the Raman spectra confirms the formation of in-plane point defects and reflected as disordered regions in the lattice. The reduced intensity and broadened peaks of 'G' and 'D' in the Raman and HRTEM results confirm the appearance of turbulence and disordering of the basal planes whilst maintaining their coherent layered graphite structure.

  6. High resolution electron energy loss spectroscopy of manganese oxides: Application to Mn{sub 3}O{sub 4} nanoparticles

    SciTech Connect

    Laffont, L.; Gibot, P.

    2010-11-15

    Manganese oxides particularly Mn{sub 3}O{sub 4} Hausmannite are currently used in many industrial applications such as catalysis, magnetism, electrochemistry or air contamination. The downsizing of the particle size of such material permits an improvement of its intrinsic properties and a consequent increase in its performances compared to a classical micron-sized material. Here, we report a novel synthesis of hydrophilic nano-sized Mn{sub 3}O{sub 4}, a bivalent oxide, for which a precise characterization is necessary and for which the determination of the valency proves to be essential. X-ray diffraction (XRD), Transmission Electron Microscopy (TEM) and particularly High Resolution Electron Energy Loss Spectroscopy (HREELS) allow us to perform these measurements on the nanometer scale. Well crystallized 10-20 nm sized Mn{sub 3}O{sub 4} particles with sphere-shaped morphology were thus successfully synthesized. Meticulous EELS investigations allowed the determination of a Mn{sup 3+}/Mn{sup 2+} ratio of 1.5, i.e. slightly lower than the theoretical value of 2 for the bulk Hausmannite manganese oxide. This result emphasizes the presence of vacancies on the tetrahedral sites in the structure of the as-synthesized nanomaterial. - Research Highlights: {yields}Mn{sub 3}O{sub 4} bulk and nano were studied by XRD, TEM and EELS. {yields}XRD and TEM determine the degree of crystallinity and the narrow grain size. {yields}HREELS gave access to the Mn{sup 3+}/Mn{sup 2+} ratio. {yields}Mn{sub 3}O{sub 4} nano have vacancies on the tetrahedral sites.

  7. High-resolution electron spectroscopy of lanthanide (Ce, Pr, and Nd) complexes of cyclooctatetraene: The role of 4f electrons

    SciTech Connect

    Kumari, Sudesh; Roudjane, Mourad; Hewage, Dilrukshi; Yang Dongsheng; Liu Yang

    2013-04-28

    Cerium, praseodymium, and neodymium complexes of 1,3,5,7-cyclooctatetraene (COT) complexes were produced in a laser-vaporization metal cluster source and studied by pulsed-field ionization zero electron kinetic energy spectroscopy and quantum chemical calculations. The computations included the second-order Moller-Plesset perturbation theory, the coupled cluster method with single, double, and perturbative triple excitations, and the state-average complete active space self-consistent field method. The spectrum of each complex exhibits multiple band systems and is assigned to ionization of several low-energy electronic states of the neutral complex. This observation is different from previous studies of M(COT) (M = Sc, Y, La, and Gd), for which a single band system was observed. The presence of the multiple low-energy electronic states is caused by the splitting of the partially filled lanthanide 4f orbitals in the ligand field, and the number of the low-energy states increases rapidly with increasing number of the metal 4f electrons. On the other hand, the 4f electrons have a small effect on the geometries and vibrational frequencies of these lanthanide complexes.

  8. High-resolution electron spectroscopy of lanthanide (Ce, Pr, and Nd) complexes of cyclooctatetraene: the role of 4f electrons.

    PubMed

    Kumari, Sudesh; Roudjane, Mourad; Hewage, Dilrukshi; Liu, Yang; Yang, Dong-Sheng

    2013-04-28

    Cerium, praseodymium, and neodymium complexes of 1,3,5,7-cyclooctatetraene (COT) complexes were produced in a laser-vaporization metal cluster source and studied by pulsed-field ionization zero electron kinetic energy spectroscopy and quantum chemical calculations. The computations included the second-order Møller-Plesset perturbation theory, the coupled cluster method with single, double, and perturbative triple excitations, and the state-average complete active space self-consistent field method. The spectrum of each complex exhibits multiple band systems and is assigned to ionization of several low-energy electronic states of the neutral complex. This observation is different from previous studies of M(COT) (M = Sc, Y, La, and Gd), for which a single band system was observed. The presence of the multiple low-energy electronic states is caused by the splitting of the partially filled lanthanide 4f orbitals in the ligand field, and the number of the low-energy states increases rapidly with increasing number of the metal 4f electrons. On the other hand, the 4f electrons have a small effect on the geometries and vibrational frequencies of these lanthanide complexes.

  9. High resolution electron energy loss spectroscopy of clean and hydrogen covered Si(001) surfaces: first principles calculations.

    PubMed

    Patterson, C H

    2012-09-07

    Surface phonons, conductivities, and loss functions are calculated for reconstructed (2×1), p(2×2) and c(4×2) clean Si(001) surfaces, and (2×1) H and D covered Si(001) surfaces. Surface conductivities perpendicular to the surface are significantly smaller than conductivities parallel to the surface. The surface loss function is compared to high resolution electron energy loss measurements. There is good agreement between calculated loss functions and experiment for H and D covered surfaces. However, agreement between experimental data from different groups and between theory and experiment is poor for clean Si(001) surfaces. Formalisms for calculating electron energy loss spectra are reviewed and the mechanism of electron energy losses to surface vibrations is discussed.

  10. The use of high resolution electron-energy-loss spectroscopy for refining the infrared optical constants of GaS, GaSe, and InSe

    NASA Astrophysics Data System (ADS)

    Yu, Li-Ming; Thiry, P. A.; Degiovanni, A.; Conard, Th.; Leclerc, G.; Caudano, R.; Lambin, Ph.; Debever, J.-M.

    1994-06-01

    Cleaved surfaces of III-VI lamellar semiconducting compounds GaS, GaSe, and InSe have been studied by high resolution electron-energy-loss spectroscopy (HREELS). The infrared optical constants of the materials were retrieved by using the dielectric theory taking account of the resonance frequencies published from infrared reflectivity (IRS) data. The limitations of the HREELS and IRS measurements in the case of these materials are discussed in detail. However, it is shown that, by combining the informations from both spectroscopies, it is possible to refine some of the oscillator strengths of these materials.

  11. High-resolution spectroscopy using synchrotron radiation for surface structure determination and the study of correlated electron systems

    SciTech Connect

    Moler, Jr., Edward John

    1996-05-01

    The surface structure of three molecular adsorbate systems on transition metal surfaces, (√3 x √3)R30° and (1.5 x 1.5)R18° CO adsorbed on Cu(111), and c(2x2) N2/Ni(100), have been determined using Angle-Resolved Photoemission Extended Fine Structure (ARPEFS). The adsorption site and bond lengths are reported for the adsorbate-metal bond and the first two substrate layers. The ARPEFS diffraction pattern of the shake-up peak for c(2x2) N2/Ni(100) is also discussed. A unique method of experimentally determining the angular momentum and intrinsic/extrinsic origin of core-level satellites is presented. We show for the first time that satellite peaks not associated with chemically differentiated atomic species display an ARPEFS intensity oscillation. Specifically, we present data for the C 1s from (√3x√3)R30 CO/Cu(111) and p2mg(2x1)CO/Ni(110), N is from c(2x2) N2/Ni(100), and Ni 3p from clean nickel(111). The satellite peaks in all cases exhibit ARPEFS curves which indicate an angular momentum identical to the main peak and are of an intrinsic nature. A Fourier Transform Soft X-ray spectrometer (FF-SX) has been designed and is under construction for the Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory. The spectrometer is designed for ultra-high resolution theoretical resolving power E/ΔE≈-106 in the photon energy region of 60-120 eV. This instrument is expected to provide experimental results which sensitively test models of correlated electron processes in atomic and molecular physics. The design criteria and consequent technical challenges posed by the short wavelengths of x-rays and desired resolving power are discussed. The fundamental and practical aspects of soft x-ray interferometry are also explored.

  12. High Resolution Laser Spectroscopy of Rhenium Carbide

    NASA Astrophysics Data System (ADS)

    Adam, Allan G.; Hall, Ryan M.; Linton, Colan; Tokaryk, Dennis

    2014-06-01

    The first spectroscopic study of rhenium carbide, ReC, has been performed using both low and high resolution techniques to collect rotationally resolved electronic spectra from 420 to 500nm. Laser-induced fluorescence (LIF), and dispersed fluorescence (DF) techniques were employed. ReC was formed in our laser ablation molecular jet apparatus by ablating a rhenium target rod in the presence of 1% methane in helium. The low resolution spectrum identified four bands of an electronic system belonging to ReC, three of which have been studied so far. Extensive hyperfine structure composed of six hyperfine components was observed in the high resolution spectrum, as well as a clear distinction between the 187ReC and 185ReC isotopologues. The data seems consistent with a ^4Π - ^4Σ- transition, as was predicted before experimentation. Dispersed fluorescence spectra allowed us to determine the ground state vibrational frequency (ωe"=994.4 ± 0.3 wn), and to identify a low-lying electronically excited state at Te"=1118.4 ± 0.4 wn with a vibrational frequency of ωe"=984 ± 2 wn. Personal communication, F. Grein, University of New Brunswick

  13. Identification of local phase of nanoscale BaTiO₃ powders by high-resolution electron energy loss spectroscopy.

    PubMed

    Moon, Sun-Min; Wang, Xiaohui; Cho, Nam-Hee

    2013-08-01

    The electron energy loss spectroscopy (EELS) technique was applied to investigate the local variation in the phase of barium titanate (BaTiO₃) ceramics. It was found that the fine structure of the titanium L₂,₃ edge and their satellite peaks were sensitively varied with the tetragonal-cubic phase transition. The peak splitting of Ti-L₃ edge of tetragonal-phased BaTiO₃ ceramics was widened because of the increased crystal field effect compared with that of cubic-phased BaTiO₃. In case of nanoscale BaTiO₃ powders, the L₃ edge splitting of the core region was found to be smaller than that of the shell region. The energy gap between peaks t₂g and eg varied from 2.36 to 1.94 eV with changing the probe position from 1 to 20 nm from the surface. These results suggest that the EELS technique can be used to identify the local phase of sintered BaTiO₃ ceramics.

  14. High-resolution electron-energy-loss spectroscopy and photoelectron-diffraction studies of the geometric structure of adsorbates on single-crystal metal surfaces

    SciTech Connect

    Rosenblatt, D.H.

    1982-11-01

    Two techniques which have made important contributions to the understanding of surface phenomena are high resolution electron energy loss spectroscopy (EELS) and photoelectron diffraction (PD). EELS is capable of directly measuring the vibrational modes of clean and adsorbate covered metal surfaces. In this work, the design, construction, and performance of a new EELS spectrometer are described. These results are discussed in terms of possible structures of the O-Cu(001) system. Recommendations for improvements in this EELS spectrometer and guidelines for future spectrometers are given. PD experiments provide accurate quantitative information about the geometry of atoms and molecules adsorbed on metal surfaces. The technique has advantages when used to study disordered overlayers, molecular overlayers, multiple site systems, and adsorbates which are weak electron scatterers. Four experiments were carried out which exploit these advantages.

  15. Intraligand Charge Transfer in Pt(qol)(2). Characterization of Electronic States by High-Resolution Shpol'skii Spectroscopy.

    PubMed

    Donges, Dirk; Nagle, Jeffrey K.; Yersin, Hartmut

    1997-07-02

    Pt(qol)(2) (qol(-) = 8-quinolinolato-O,N) is investigated in the Shpol'skii matrices n-heptane, n-octane-h(18), n-octane-d(18), n-nonane, and n-decane, respectively. For the first time, highly resolved triplet phosphorescence as well as triplet and singlet excitation spectra are obtained at T = 1.2 K by site-selective spectroscopy. This permits the detailed characterization of the low-lying singlet and triplet states which are assigned to result mainly from intraligand charge transfer (ILCT) transitions. The electronic origin corresponding to the (3)ILCT lies at 15 426 cm(-)(1) (FWHM approximately 3 cm(-)(1)) exhibiting a zero-field splitting smaller than 1 cm(-)(1), which shows that the metal d-orbital contribution to the (3)ILCT is small. At T = 1.2 K, the three triplet sublevels emit independently due to slow spin-lattice relaxation (slr) processes. Therefore, the phosphorescence decays triexponentially with components of 4.5, 13, and 60 &mgr;s. Interestingly, two of the sublevels can be excited selectively, which leads to a distinct spin polarization manifested by a biexponential decay. At T = 20 K, the decay becomes monoexponential with tau = 10 &mgr;s due to a fast slr between the triplet sublevels. From the Zeeman splitting of the (3)ILCT the g-factor is determined to be 2.0 as expected for a relatively pure spin triplet. The (1)ILCT has its electronic origin at 18 767 cm(-)(1) and exhibits a homogeneous line width of about 12 cm(-)(1). This feature allows us to estimate a singlet-triplet intersystem crossing rate of about 2 x 10(12) s(-)(1). This relatively large rate compared to values found for closed shell metal M(qol)(n)() compounds displays the importance of spin-orbit coupling induced by the heavy metal ion. Moreover, this small admixture leads to the relatively short emission decay times. All spectra show highly resolved vibrational satellite structures. These patterns provide information about vibrational energies (which are in good accordance with

  16. Opto-mechano-electrical tripling in ZnO nanowires probed by photocurrent spectroscopy in a high-resolution transmission electron microscope

    SciTech Connect

    Zhang, C.; Golberg, D. E-mail: golberg.dmitri@nims.go.jp; Xu, Z. E-mail: golberg.dmitri@nims.go.jp; Kvashnin, D. G.; Tang, D.-M.; Xue, Y. M.; Bando, Y.; Sorokin, P. B.

    2015-08-31

    Photocurrent spectroscopy of individual free-standing ZnO nanowires inside a high-resolution transmission electron microscope (TEM) is reported. By using specially designed optical in situ TEM system capable of scanning tunneling microscopy probing paired with light illumination, opto-mechano-electrical tripling phenomenon in ZnO nanowires is demonstrated. Splitting of photocurrent spectra at around 3.3 eV under in situ TEM bending of ZnO nanowires directly corresponds to nanowire deformation and appearance of expanded and compressed nanowire sides. Theoretical simulation of a bent ZnO nanowire has an excellent agreement with the experimental data. The splitting effect could be explained by a change in the valence band structure of ZnO nanowires due to a lattice strain. The strain-induced splitting provides important clues for future flexible piezo-phototronics.

  17. Opto-mechano-electrical tripling in ZnO nanowires probed by photocurrent spectroscopy in a high-resolution transmission electron microscope

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Xu, Z.; Kvashnin, D. G.; Tang, D.-M.; Xue, Y. M.; Bando, Y.; Sorokin, P. B.; Golberg, D.

    2015-08-01

    Photocurrent spectroscopy of individual free-standing ZnO nanowires inside a high-resolution transmission electron microscope (TEM) is reported. By using specially designed optical in situ TEM system capable of scanning tunneling microscopy probing paired with light illumination, opto-mechano-electrical tripling phenomenon in ZnO nanowires is demonstrated. Splitting of photocurrent spectra at around 3.3 eV under in situ TEM bending of ZnO nanowires directly corresponds to nanowire deformation and appearance of expanded and compressed nanowire sides. Theoretical simulation of a bent ZnO nanowire has an excellent agreement with the experimental data. The splitting effect could be explained by a change in the valence band structure of ZnO nanowires due to a lattice strain. The strain-induced splitting provides important clues for future flexible piezo-phototronics.

  18. High Resolution Coherent 3d Spectroscopy of Bromine

    NASA Astrophysics Data System (ADS)

    Strangfeld, Benjamin R.; Wells, Thresa A.; House, Zuri R.; Chen, Peter C.

    2013-06-01

    The high resolution gas phase electronic spectrum of bromine is rather congested due to many overlapping vibrational and rotational transitions with similar transition frequencies, and also due to isotopomeric effects. Expansion into the second dimension will remove some of this congestion; however through the implementation of High Resolution Coherent 3D Spectroscopy, the density of peaks is further reduced by at least two orders of magnitude. This allows for the selective examination of a small number of spatially resolved multidimensional bands, separated by vibrational quantum number and by isotopomer, which facilitates the fitting of many rovibrational peaks in bromine. The ability to derive information about the molecular constants for the electronic states involved will be discussed.

  19. Computer synthesis of high resolution electron micrographs

    NASA Technical Reports Server (NTRS)

    Nathan, R.

    1976-01-01

    Specimen damage, spherical aberration, low contrast and noisy sensors combine to prevent direct atomic viewing in a conventional electron microscope. The paper describes two methods for obtaining ultra-high resolution in biological specimens under the electron microscope. The first method assumes the physical limits of the electron objective lens and uses a series of dark field images of biological crystals to obtain direct information on the phases of the Fourier diffraction maxima; this information is used in an appropriate computer to synthesize a large aperture lens for a 1-A resolution. The second method assumes there is sufficient amplitude scatter from images recorded in focus which can be utilized with a sensitive densitometer and computer contrast stretching to yield fine structure image details. Cancer virus characterization is discussed as an illustrative example. Numerous photographs supplement the text.

  20. Quantum electrodynamics, high-resolution spectroscopy and fundamental constants

    NASA Astrophysics Data System (ADS)

    Karshenboim, Savely G.; Ivanov, Vladimir G.

    2017-01-01

    Recent progress in high-resolution spectroscopy has delivered us a variety of accurate optical results, which can be used for the determination of the atomic fundamental constants and for constraining their possible time variation. We present a brief overview of the results discussing in particular, the determination of the Rydberg constant, the relative atomic weight of the electron and proton, their mass ratio and the fine structure constant. Many individual results on those constants are obtained with use of quantum electrodynamics, and we discuss which sectors of QED are involved. We derive constraints on a possible time variation of the fine structure constants and me/mp.

  1. Hydrogen bonding configuration and thermal stability of ambient exposed and in situ hydrogenated polycrystalline diamond surfaces studied by high resolution electron energy loss spectroscopy.

    PubMed

    Michaelson, Sh; Akhvlediani, R; Hoffman, A

    2011-06-28

    In this work we report on an investigation of hydrogen bonding and thermal stability on the surface of poly-crystalline diamond by high resolution electron energy loss spectroscopy (HR-EELS). Diamond films were grown on silicon substrates from CH(4)/H(2) as well as from CD(4)/D(2) gas mixtures by hot filament chemical vapor deposition (HF-CVD). The impact of ex situ ambient exposure on hydrogen bonding and its thermal stability was examined for: (i) as deposited films from a CH(4)/H(2) gas mixture; (ii) the same sample treated ex situ in micro-wave activated hydrogen plasma; and (iii) as deposited films from a CD(4)/D(2) gas mixture. In order to clarify the changes in the hydrogen bonding configuration detected on the different surfaces as a function of thermal annealing in situ hydrogenation by thermally activated atomic hydrogen was performed and examined. This study provides direct evidence that the exposure to ambient conditions and low temperature vacuum annealing have a pronounced effect on the hydrogen-carbon bonding configuration onto the poly-crystalline diamond surfaces.

  2. Two bonding configurations of acetylene on Si(001)-(2 x 1): a combined high-resolution electron energy loss spectroscopy and density functional theory study.

    PubMed

    Mineva, T; Nathaniel, R; Kostov, K L; Widdra, W

    2006-11-21

    Two coexisting adsorption states of molecularly adsorbed acetylene on the Si(001)-(2 x 1) surface have been identified by a combined study based on the high-resolution electron energy loss spectroscopy and density functional computations. Seven possible adsorbate-substrate structures are considered theoretically including their full vibrational analysis. Based on a significantly enhanced experimental resolution, the assignment of 15 C2H2- and C2D2-derived vibrational modes identifies a dominant di-sigma bonded molecule adsorbed on top of a single Si-Si dimer. Additionally there is clear evidence for a second minority species which is di-sigma bonded between two Si-Si dimers within the same dimer row (end-bridge geometry). The possible symmetries of the adsorbate complexes are discussed based on the specular and off-specular vibrational measurements. They suggest lower than ideal C(2v) and C(s) symmetries for on-top and end-bridge species, respectively. At low coverages the symmetry reductions might be lifted.

  3. Probing optical band gaps at the nanoscale in NiFe₂O₄ and CoFe₂O₄ epitaxial films by high resolution electron energy loss spectroscopy

    SciTech Connect

    Dileep, K.; Loukya, B.; Datta, R.; Pachauri, N.; Gupta, A.

    2014-09-14

    Nanoscale optical band gap variations in epitaxial thin films of two different spinel ferrites, i.e., NiFe₂O₄ (NFO) and CoFe₂O₄ (CFO), have been investigated by spatially resolved high resolution electron energy loss spectroscopy. Experimentally, both NFO and CFO show indirect/direct band gaps around 1.52 eV/2.74 and 2.3 eV, and 1.3 eV/2.31 eV, respectively, for the ideal inverse spinel configuration with considerable standard deviation in the band gap values for CFO due to various levels of deviation from the ideal inverse spinel structure. Direct probing of the regions in both the systems with tetrahedral A site cation vacancy, which is distinct from the ideal inverse spinel configuration, shows significantly smaller band gap values. The experimental results are supported by the density functional theory based modified Becke-Johnson exchange correlation potential calculated band gap values for the different cation configurations.

  4. High Resolution Spectroscopy to Support Atmospheric Measurements

    NASA Technical Reports Server (NTRS)

    Benner, D. Chris; Venkataraman, Malathy Devi

    2000-01-01

    The major research activities performed during the cooperative agreement enhanced our spectroscopic knowledge of molecules of atmospheric interest such as carbon dioxide, water vapor, ozone, methane, and carbon monoxide, to name a few. Measurements were made using the NASA Langley Tunable Diode Laser Spectrometer System (TDL) and several Fourier Transform Spectrometer Systems (FTS) around the globe. The results from these studies made remarkable improvements in the line positions and intensities for several molecules, particularly ozone and carbon dioxide in the 2 to 17-micrometer spectral region. Measurements of pressure broadening and pressure induced line shift coefficients and the temperature dependence of pressure broadening and pressure induced line shift coefficients for infrared transitions of ozone, methane, and water vapor were also performed. Results from these studies have been used for retrievals of stratospheric gas concentration profiles from data collected by several Upper Atmospheric Research satellite (UARS) infrared instruments as well as in the analysis of high resolution atmospheric spectra such as those acquired by space-based, ground-based, and various balloon-and aircraft-borne experiments. Our results made significant contributions in several updates of the HITRAN (HIgh resolution TRANsmission) spectral line parameters database. This database enjoys worldwide recognition in research involving diversified scientific fields.

  5. High Resolution Spectroscopy to Support Atmospheric Measurements

    NASA Technical Reports Server (NTRS)

    Benner, D. Chris; Venkataraman, Malathy Devi

    2000-01-01

    The major research activities performed during the cooperative agreement enhanced our spectroscopic knowledge of molecules of atmospheric interest such as carbon dioxide, water vapor, ozone, methane, and carbon monoxide, to name a few. Measurements were made using the NASA Langley Tunable Diode Laser Spectrometer System (TDL) and several Fourier Transform Spectrometer Systems (FTS) around the globe. The results from these studies made remarkable improvements in the line positions and intensities for several molecules, particularly ozone and carbon dioxide in the 2 to 17-micrometer spectral region. Measurements of pressure broadening and pressure induced line shift coefficients and the temperature dependence of pressure broadening and pressure induced line shift coefficients for infrared transitions of ozone, methane, and water vapor were also performed. Results from these studies have been used for retrievals of stratospheric gas concentration profiles from data collected by several Upper Atmospheric Research satellite (UARS) infrared instruments as well as in the analysis of high resolution atmospheric spectra such as those acquired by space-based, ground-based, and various balloon- and aircraft-borne experiments. Our results made significant contributions in several updates of the HITRAN (HIgh resolution TRANsmission) spectral line parameters database. This database enjoys worldwide recognition in research involving diversified scientific fields.

  6. High Resolution Spectroscopy to Support Atmospheric Measurements

    NASA Technical Reports Server (NTRS)

    Venkataraman, Malathy Devi

    2003-01-01

    Spectroscopic parameters (such as line position, intensity, broadening and shifting coefficients and their temperature dependences, line mixing coefficients etc.) for various molecular species of atmospheric interest are determined. In order to achieve these results, infrared spectra of several molecular bands are obtained using high-resolution recording instruments such as tunable diode laser spectrometer and Fourier transform spectrometers. Using sophisticated analysis routines (Multispectrum nonlinear least squares technique) these high-resolution infrared spectra are processed to determine the various spectral line parameters that are cited above. Spectra were taken using the McMath-Pierce Fourier transform spectrometer (FTS) at the National Solar Observatory on Kitt Peak, Arizona as well as the Bruker FTS at the Pacific Northwest National Laboratory (PNNL) at Richland, Washington. Most of the spectra are acquired not only at room temperature, but also at several different cold temperatures. This procedure is necessary to study the variation of the spectral line parameters as a function of temperature in order to simulate the Earth's and other planetary atmospheric environments. Depending upon the strength or weakness of the various bands recorded and analyzed, the length(s) of the absorption cells in which the gas samples under study are kept varied from a few centimeters up to several meters and the sample temperatures varied from approximately +30 C to -63 C. Research on several infrared bands of various molecular species and their isotopomers are undertaken. Those studies are briefly described.

  7. Improved methods for high resolution electron microscopy

    SciTech Connect

    Taylor, J.R.

    1987-04-01

    Existing methods of making support films for high resolution transmission electron microscopy are investigated and novel methods are developed. Existing methods of fabricating fenestrated, metal reinforced specimen supports (microgrids) are evaluated for their potential to reduce beam induced movement of monolamellar crystals of C/sub 44/H/sub 90/ paraffin supported on thin carbon films. Improved methods of producing hydrophobic carbon films by vacuum evaporation, and improved methods of depositing well ordered monolamellar paraffin crystals on carbon films are developed. A novel technique for vacuum evaporation of metals is described which is used to reinforce microgrids. A technique is also developed to bond thin carbon films to microgrids with a polymer bonding agent. Unique biochemical methods are described to accomplish site specific covalent modification of membrane proteins. Protocols are given which covalently convert the carboxy terminus of papain cleaved bacteriorhodopsin to a free thiol. 53 refs., 19 figs., 1 tab.

  8. Improved methods for high resolution electron microscopy

    NASA Astrophysics Data System (ADS)

    Taylor, J. R.

    1987-04-01

    Existing methods of making support films for high resolution transmission electron microscopy are investigated and novel methods are developed. Existing methods of fabricating fenestrated, metal reinforced specimen supports (microgrids) are evaluated for their potential to reduce beam induced movement of monolamellar crystals of C44H90 paraffin supported on thin carbon films. Improved methods of producing hydrophobic carbon films by vacuum evaporation, and improved methods of depositing well ordered monolamellar paraffin crystals on carbon films are developed. A novel technique for vacuum evaporation of metals is described which is used to reinforce microgrids. A technique is also developed to bond thin carbon films to microgrids with a polymer bonding agent. Unique biochemical methods are described to accomplish site specific covalent modification of membrane proteins. Protocols are given which covalently convert the carboxy terminus of papain cleaved bacteriorhodopsin to a free thiol.

  9. High Resolution Spectroscopy to Support Atmospheric Measurements

    NASA Technical Reports Server (NTRS)

    Venkataraman, Malathy Devi

    2006-01-01

    The major research activities performed during the cooperative agreement enhanced our spectroscopic knowledge of molecules of atmospheric interest such as H2O (water vapor), O3 (ozone), HCN (hydrogen cyanide), CH4 (methane), NO2 (nitrogen dioxide) and CO (carbon monoxide). The data required for the analyses were obtained from two different Fourier Transform Spectrometers (FTS); one of which is located at the National Solar Observatory (NSO) on Kitt Peak, Arizona and the other instrument is located at the Pacific Northwest National Laboratories (PNNL) at Richland, Washington. The data were analyzed using a modified multispectrum nonlinear least squares fitting algorithm developed by Dr. D. Chris Benner of the College of William and Mary. The results from these studies made significant improvements in the line positons and intensities for these molecules. The measurements of pressure broadening and pressure induced line shift coefficients and the temperature dependence of pressure broadening and pressure induced shift coefficients for hundreds of infrared transitions of HCN, CO3 CH4 and H2O were also performed during this period. Results from these studies have been used for retrievals of stratospheric gas concentration profiles from data collected by several Upper Atmospheric Research Satellite (UARS) infrared instruments as well as in the analysis of high resolution atmospheric spectra such as those acquired by space-based, ground-based, and various balloon- and aircraft-borne experiments. Our results made significant contributions in several updates of the HITRAN (HIgh resolution TRANsmission) spectral line parameters database. This database enjoys worldwide recognition in research involving diversified scientific fields. The research conducted during the period 2003-2006 has resulted in publications given in this paper. In addition to Journal publications, several oral and poster presentations were given at various Scientific conferences within the United States

  10. Temperature-Induced Electronic Structure Evolution of ZrTe5 Revealed by High resolution & Laser Angle-Resolved Photoemission Spectroscopy (ARPES)

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Wang, Chenlu; Liu, Guodong; Chen, Genfu; Yu, Li; He, Shaolong; Zhao, Lin; Chen, Chuangtian; Xu, Zuyan; Zhou, Xingjiang

    The transition metal pentatellurides ZrTe5 have attracted consideration attention since the 70s, due to the unusual transport properties like resistivity peak at ~140K and the sign change of the Hall coefficient and thermopower. The origin of the most peculiar resistivity peak remains controversial. In this talk we will present high resolution angle-resolved photoemission (ARPES) study on the Fermi surface and band structure of ZrTe5, by using our high resolution ARPES system equipped with the VUV laser and the time-of-flight (TOF) electron energy analyzer. Upon cooling down, we found a gradual transition from hole-like band into electron-like band around the Brillouin zone center. Such an electron state transition forms the underlying physics for the abnormal transport properties. We will also comment on the possibility of a Dirac semimetal in ZrTe5.

  11. High-resolution flurescence spectroscopy in immunoanalysis

    SciTech Connect

    Grubor, Nenad M.

    2005-01-01

    The work presented in this dissertation combines highly sensitive and selective fluorescence line-narrowing spectroscopy (FLNS) detection with various modes of immunoanalytical techniques. It has been shown that FLNS is capable of directly probing molecules immunocomplexed with antibodies, eliminating analytical ambiguities that may arise from interferences that accompany traditional immunochemical techniques. Moreover, the utilization of highly cross-reactive antibodies for highly specific analyte determination has been demonstrated. Finally, they demonstrate the first example of the spectral resolution of diastereomeric analytes based on their interaction with a cross-reactive antibody.

  12. High resolution gamma spectroscopy well logging system

    SciTech Connect

    Giles, J.R.; Dooley, K.J.

    1997-05-01

    A Gamma Spectroscopy Logging System (GSLS) has been developed to study sub-surface radionuclide contamination. The absolute counting efficiencies of the GSLS detectors were determined using cylindrical reference sources. More complex borehole geometries were modeled using commercially available shielding software and correction factors were developed based on relative gamma-ray fluence rates. Examination of varying porosity and moisture content showed that as porosity increases, and as the formation saturation ratio decreases, relative gamma-ray fluence rates increase linearly for all energies. Correction factors for iron and water cylindrical shields were found to agree well with correction factors determined during previous studies allowing for the development of correction factors for type-304 stainless steel and low-carbon steel casings. Regression analyses of correction factor data produced equations for determining correction factors applicable to spectral gamma-ray well logs acquired under non-standard borehole conditions.

  13. Evolution of titania nanotubes-supported WO{sub x} species by in situ thermo-Raman spectroscopy, X-ray diffraction and high resolution transmission electron microscopy

    SciTech Connect

    Cortes-Jacome, M.A.; Angeles-Chavez, C.; Morales, M.; Lopez-Salinas, E.; Toledo-Antonio, J.A.

    2007-10-15

    Structural evolution of WO{sub x} species on the surface of titania nanotubes was followed by in situ thermo-Raman spectroscopy. A total of 15 wt% of W atoms were loaded on the surface of a hydroxylated titania nanotubes by impregnation with ammonium metatungstate solution and then, the sample was thermally treated in a Linkam cell at different temperatures in nitrogen flow. The band characteristic of the W=O bond was observed at 962 cm{sup -1} in the dried sample, which vanished between 300 and 700 deg. C, and reappear again after annealing at 800 deg. C, along with a broad band centered at 935 cm{sup -1}, attributed to the v{sub 1} vibration of W=O in tetrahedral coordination. At 900 and 1000 deg. C, the broad band decomposed into four bands at 923, 934, 940 and 950 cm{sup -1}, corresponding to the symmetric and asymmetric vibration of W=O bonds in Na{sub 2}WO{sub 4} and Na{sub 2}W{sub 2}O{sub 7} phases as determined by X-ray diffraction and High resolution transmission electron microscopy (HRTEM). The structure of the nanotubular support was kept at temperatures below 450 deg. C, thereafter, it transformed into anatase being stabilized at temperatures as high as 900 deg. C. At 1000 deg. C, anatase phase partially converted into rutile. After annealing at 1000 deg. C, a core-shell model material was obtained, with a shell of ca. 5 nm thickness, composed of sodium tungstate nanoclusters, and a core composed mainly of rutile TiO{sub 2} phase. - Graphical abstract: Titania nanotubes loaded with 15 wt% W atoms were characterized from room temperature (rt) to 1000 deg. C by thermo-Raman spectroscopy in N{sub 2}. At 1000 deg. C, a core-shell model material was obtained, with a shell thickness of ca. 5 nm composed by nanoclusters of sodium tungstate, and a core composed mainly of rutile TiO{sub 2} phase.

  14. High Resolution Emission Spectroscopy of the Alpha Pi-1 - Chi Sigma-1(+) Fourth Positive Band System of CO from Electron Impact

    NASA Technical Reports Server (NTRS)

    Beegle, Luther W.; Ajello, Joseph M.; James, Geoffrey K.; Alvarez, Marcos; Dziczek, Dariusz

    2000-01-01

    We report electron-impact induced fluorescence spectra [300 mA full width at half maximum (FWHM)] of CO for 20 and 100 eV impact energies of the spectral region of 1300 to 2050 A and high resolution spectra (FWHM) of the v'=5 to v"=l and the v'=3 to v"=O bands showing that the rotational structure of the band system are modeled accurately. The excitation function of the (0,1) band (1597 A) was measured from electron impact in the energy range from threshold to 750 eV and placed on an absolute scale from modem calibration standards.

  15. Component analyses of urinary nanocrystallites of uric acid stone formers by combination of high-resolution transmission electron microscopy, fast Fourier transformation, energy dispersive X-ray spectroscopy, X-ray diffraction and Fourier transform infrared spectroscopy.

    PubMed

    Sun, Xin-Yuan; Xue, Jun-Fa; Xia, Zhi-Yue; Ouyang, Jian-Ming

    2015-06-01

    This study aimed to analyse the components of nanocrystallites in urines of patients with uric acid (UA) stones. X-ray diffraction (XRD), Fourier transform infrared spectroscopy, high-resolution transmission electron microscopy (HRTEM), fast Fourier transformation (FFT) of HRTEM, and energy dispersive X-ray spectroscopy (EDS) were performed to analyse the components of these nanocrystallites. XRD and FFT showed that the main component of urinary nanocrystallites was UA, which contains a small amount of calcium oxalate monohydrate and phosphates. EDS showed the characteristic absorption peaks of C, O, Ca and P. The formation of UA stones was closely related to a large number of UA nanocrystallites in urine. A combination of HRTEM, FFT, EDS and XRD analyses could be performed accurately to analyse the components of urinary nanocrystallites.

  16. Electronic excitation of carbonyl sulphide (COS) by high-resolution vacuum ultraviolet photoabsorption and electron-impact spectroscopy in the energy region from 4 to 11 eV

    SciTech Connect

    Limão-Vieira, P.; Ferreira da Silva, F.; Almeida, D.; Hoshino, M.; Tanaka, H.; Mogi, D.; Tanioka, T.; Mason, N. J.; Hoffmann, S. V.; Hubin-Franskin, M.-J.; Delwiche, J.

    2015-02-14

    The electronic state spectroscopy of carbonyl sulphide, COS, has been investigated using high resolution vacuum ultraviolet photoabsorption spectroscopy and electron energy loss spectroscopy in the energy range of 4.0–10.8 eV. The spectrum reveals several new features not previously reported in the literature. Vibronic structure has been observed, notably in the low energy absorption dipole forbidden band assigned to the (4π←3π) ({sup 1}Δ←{sup 1}Σ{sup +}) transition, with a new weak transition assigned to ({sup 1}Σ{sup −}←{sup 1}Σ{sup +}) reported here for the first time. The absolute optical oscillator strengths are determined for ground state to {sup 1}Σ{sup +} and {sup 1}Π transitions. Based on our recent measurements of differential cross sections for the optically allowed ({sup 1}Σ{sup +} and {sup 1}Π) transitions of COS by electron impact, the optical oscillator strength f{sub 0} value and integral cross sections (ICSs) are derived by applying a generalized oscillator strength analysis. Subsequently, ICSs predicted by the scaling are confirmed down to 60 eV in the intermediate energy region. The measured absolute photoabsorption cross sections have been used to calculate the photolysis lifetime of carbonyl sulphide in the upper stratosphere (20–50 km)

  17. Electronic excitation of carbonyl sulphide (COS) by high-resolution vacuum ultraviolet photoabsorption and electron-impact spectroscopy in the energy region from 4 to 11 eV.

    PubMed

    Limão-Vieira, P; Ferreira da Silva, F; Almeida, D; Hoshino, M; Tanaka, H; Mogi, D; Tanioka, T; Mason, N J; Hoffmann, S V; Hubin-Franskin, M-J; Delwiche, J

    2015-02-14

    The electronic state spectroscopy of carbonyl sulphide, COS, has been investigated using high resolution vacuum ultraviolet photoabsorption spectroscopy and electron energy loss spectroscopy in the energy range of 4.0-10.8 eV. The spectrum reveals several new features not previously reported in the literature. Vibronic structure has been observed, notably in the low energy absorption dipole forbidden band assigned to the (4π←3π) ((1)Δ←(1)Σ(+)) transition, with a new weak transition assigned to ((1)Σ(-)←(1)Σ(+)) reported here for the first time. The absolute optical oscillator strengths are determined for ground state to (1)Σ(+) and (1)Π transitions. Based on our recent measurements of differential cross sections for the optically allowed ((1)Σ(+) and (1)Π) transitions of COS by electron impact, the optical oscillator strength f0 value and integral cross sections (ICSs) are derived by applying a generalized oscillator strength analysis. Subsequently, ICSs predicted by the scaling are confirmed down to 60 eV in the intermediate energy region. The measured absolute photoabsorption cross sections have been used to calculate the photolysis lifetime of carbonyl sulphide in the upper stratosphere (20-50 km).

  18. The Torsion-Inversion Energy Levels in the S1( n, π*) Electronic State of Acetaldehyde from High-Resolution Jet-Cooled Fluorescence Excitation Spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, H.; Lim, E. C.; Muñoz-Caro, C.; Niño, A.; Judge, R. H.; Moule, D. C.

    1996-01-01

    The laser-induced fluorescence excitation spectrum (LIF) of acetaldehyde that results from the emission from theS1(n, π*) electronic state has been observed under very high resolution with a CW pulse-amplified laser under jet-cooled conditions. The origins of seven bands were determined by rotational analyses with a rigid-rotor Hamiltonian. The origins were fitted to a set of levels that were obtained from a Hamiltonian that employed flexible torsion-wagging large amplitude coordinates. The potential surface derived from the fitting procedure yielded barriers to torsion and inversion of 721.43 and 585.13 cm-1, respectively. Minima in the potential hypersurface at θ = 58.6° and α = 35.7° defined the corresponding equilibrium positions for the torsion and wagging coordinates.

  19. Application of spectral phase shaping to high resolution CARS spectroscopy.

    PubMed

    Postma, S; van Rhijn, A C W; Korterik, J P; Gross, P; Herek, J L; Offerhaus, H L

    2008-05-26

    By spectral phase shaping of both the pump and probe pulses in coherent anti-Stokes Raman scattering (CARS) spectroscopy we demonstrate the extraction of the frequencies, bandwidths and relative cross sections of vibrational lines. We employ a tunable broadband Ti:Sapphire laser synchronized to a ps-Nd:YVO mode locked laser. A high resolution spectral phase shaper allows for spectroscopy with a precision better than 1 cm(-1) in the high frequency region around 3000 cm(-1). We also demonstrate how new spectral phase shaping strategies can amplify the resonant features of isolated vibrations to such an extent that spectroscopy and microscopy can be done at high resolution, on the integrated spectral response without the need for a spectrograph.

  20. Direct band gap measurement of Cu(In,Ga)(Se,S){sub 2} thin films using high-resolution reflection electron energy loss spectroscopy

    SciTech Connect

    Heo, Sung; Lee, Hyung-Ik; Park, Jong-Bong; Ko, Dong-Su; Chung, JaeGwan; Kim, KiHong; Kim, Seong Heon; Yun, Dong-Jin; Ham, YongNam; Park, Gyeong Su; Song, Taewon; Lee, Dongho Nam, Junggyu; Kang, Hee Jae; Choi, Pyung-Ho; Choi, Byoung-Deog

    2015-06-29

    To investigate the band gap profile of Cu(In{sub 1−x},Ga{sub x})(Se{sub 1−y}S{sub y}){sub 2} of various compositions, we measured the band gap profile directly as a function of in-depth using high-resolution reflection energy loss spectroscopy (HR-REELS), which was compared with the band gap profile calculated based on the auger depth profile. The band gap profile is a double-graded band gap as a function of in-depth. The calculated band gap obtained from the auger depth profile seems to be larger than that by HR-REELS. Calculated band gaps are to measure the average band gap of the spatially different varying compositions with respect to considering its void fraction. But, the results obtained using HR-REELS are to be affected by the low band gap (i.e., out of void) rather than large one (i.e., near void). Our findings suggest an analytical method to directly determine the band gap profile as function of in-depth.

  1. Improvement of sensitivity in high-resolution Rutherford backscattering spectroscopy

    SciTech Connect

    Hashimoto, H.; Nakajima, K.; Suzuki, M.; Kimura, K.; Sasakawa, K.

    2011-06-15

    The sensitivity (limit of detection) of high-resolution Rutherford backscattering spectroscopy (HRBS) is mainly determined by the background noise of the spectrometer. There are two major origins of the background noise in HRBS, one is the stray ions scattered from the inner wall of the vacuum chamber of the spectrometer and the other is the dark noise of the microchannel plate (MCP) detector which is commonly used as a focal plane detector of the spectrometer in HRBS. In order to reject the stray ions, several barriers are installed inside the spectrometer and a thin Mylar foil is mounted in front of the detector. The dark noise of the MCP detector is rejected by the coincidence measurement with the secondary electrons emitted from the Mylar foil upon the ion passage. After these improvements, the background noise is reduced by a factor of 200 at a maximum. The detection limit can be improved down to 10 ppm for As in Si at a measurement time of 1 h under ideal conditions.

  2. Evidence for anisotropic dielectric properties of monoclinic hafnia using valence electron energy-loss spectroscopy in high-resolution transmission electron microscopy and ab initio time-dependent density-functional theory

    NASA Astrophysics Data System (ADS)

    Guedj, C.; Hung, L.; Zobelli, A.; Blaise, P.; Sottile, F.; Olevano, V.

    2014-12-01

    The effect of nanocrystal orientation on the energy loss spectra of monoclinic hafnia (m-HfO2) is measured by high resolution transmission electron microscopy (HRTEM) and valence energy loss spectroscopy (VEELS) on high quality samples. For the same momentum-transfer directions, the dielectric properties are also calculated ab initio by time-dependent density-functional theory (TDDFT). Experiments and simulations evidence anisotropy in the dielectric properties of m-HfO2, most notably with the direction-dependent oscillator strength of the main bulk plasmon. The anisotropic nature of m-HfO2 may contribute to the differences among VEELS spectra reported in literature. The good agreement between the complex dielectric permittivity extracted from VEELS with nanometer spatial resolution, TDDFT modeling, and past literature demonstrates that the present HRTEM-VEELS device-oriented methodology is a possible solution to the difficult nanocharacterization challenges given in the International Technology Roadmap for Semiconductors.

  3. An Introduction to High Resolution Coherent Multidimensional Spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Peter C.; Wells, Thresa A.; House, Zuri R.; Strangfeld, Benjamin R.

    2013-06-01

    High resolution coherent multidimensional spectroscopy is a technique that can be used to analyze and assign peaks for molecules that have resisted spectral analysis. Molecules that yield heavily congested and seemingly patternless spectra using conventional methods can yield 2D spectra that have recognizable patterns. The off-diagonal region of the coherent 2D plot shows only cross-peaks that are related by rotational selection rules. The resulting patterns facilitate peak assignment if they are sufficiently resolved. For systems that are not well-resolved, coherent 3D spectra may be generated to further improve resolution and provide selectivity. This presentation will provide an introduction to high resolution coherent 2D and 3D spectroscopies.

  4. Phase contrast in high resolution electron microscopy

    DOEpatents

    Rose, H.H.

    1975-09-23

    This patent relates to a device for developing a phase contrast signal for a scanning transmission electron microscope. The lens system of the microscope is operated in a condition of defocus so that predictable alternate concentric regions of high and low electron density exist in the cone of illumination. Two phase detectors are placed beneath the object inside the cone of illumination, with the first detector having the form of a zone plate, each of its rings covering alternate regions of either higher or lower electron density. The second detector is so configured that it covers the regions of electron density not covered by the first detector. Each detector measures the number of electrons incident thereon and the signal developed by the first detector is subtracted from the signal developed by the record detector to provide a phase contrast signal. (auth)

  5. Adaptive optics high resolution spectroscopy: present status and future direction

    SciTech Connect

    Alcock, C; Angel, R; Ciarlo, D; Fugate, R O; Ge, J; Kuzmenko, P; Lloyd-Hart, M; Macintosh, B; Najita, J; Woolf, N

    1999-07-27

    High resolution spectroscopy experiments with visible adaptive optics (AO) telescopes at Starfire Optical Range and Mt. Wilson have demonstrated that spectral resolution can be routinely improved by a factor of - 10 over the seeing-limited case with no extra light losses at visible wavelengths. With large CCDs now available, a very wide wavelength range can be covered in a single exposure. In the near future, most large ground-based telescopes will be equipped with powerful A0 systems. Most of these systems are aimed primarily at diffraction-limited operation in the near IR. An exciting new opportunity will thus open up for high resolution IR spectroscopy. Immersion echelle gratings with much coarser grooves being developed by us at LLNL will play a critical role in achieving high spectral resolution with a compact and low cost IR cryogenically cooled spectrograph and simultaneous large wavelength coverage on relatively small IR detectors. We have constructed a new A0 optimized spectrograph at Steward Observatory to provide R = 200,000 in the optical, which is being commissioned at the Starfire Optical Range 3.5m telescope. We have completed the optical design of the LLNL IR Immersion Spectrograph (LISPEC) to take advantage of improved silicon etching technology. Key words: adaptive optics, spectroscopy, high resolution, immersion gratings

  6. High resolution electronic spectroscopy of the A {sup 2}Σ{sup −} − X {sup 2}Π{sub 1/2} transition of PtN

    SciTech Connect

    Womack, Kaitlin; O’Brien, Leah C.; Whittemore, Sean; O’Brien, James J.; Le, Anh; Steimle, Timothy C.

    2014-08-28

    The (2,0) vibrational band of the A {sup 2}Σ{sup −} − X {sup 2}Π{sub 1/2} transition of platinum nitride, PtN, was recorded at Doppler-limited resolution using intracavity laser absorption spectroscopy (ILS) and at sub-Doppler resolution using molecular beam laser induced fluorescence (LIF) spectroscopy. Isotopologue structure for {sup 194}PtN, {sup 195}PtN, and {sup 196}PtN, magnetic hyperfine splitting due to {sup 195}Pt (I = ½), and nuclear quadrupole splitting due to {sup 14}N (I = 1) were observed in the spectrum. Molecular constants for the ground and excited states are derived. The hyperfine interactions are used to illuminate the nature of the A {sup 2}Σ{sup −} excited electronic state.

  7. Ultra-high resolution electron microscopy

    NASA Astrophysics Data System (ADS)

    Oxley, Mark P.; Lupini, Andrew R.; Pennycook, Stephen J.

    2017-02-01

    The last two decades have seen dramatic advances in the resolution of the electron microscope brought about by the successful correction of lens aberrations that previously limited resolution for most of its history. We briefly review these advances, the achievement of sub-Ångstrom resolution and the ability to identify individual atoms, their bonding configurations and even their dynamics and diffusion pathways. We then present a review of the basic physics of electron scattering, lens aberrations and their correction, and an approximate imaging theory for thin crystals which provides physical insight into the various different imaging modes. Then we proceed to describe a more exact imaging theory starting from Yoshioka’s formulation and covering full image simulation methods using Bloch waves, the multislice formulation and the frozen phonon/quantum excitation of phonons models. Delocalization of inelastic scattering has become an important limiting factor at atomic resolution. We therefore discuss this issue extensively, showing how the full-width-half-maximum is the appropriate measure for predicting image contrast, but the diameter containing 50% of the excitation is an important measure of the range of the interaction. These two measures can differ by a factor of 5, are not a simple function of binding energy, and full image simulations are required to match to experiment. The Z-dependence of annular dark field images is also discussed extensively, both for single atoms and for crystals, and we show that temporal incoherence must be included accurately if atomic species are to be identified through matching experimental intensities to simulations. Finally we mention a few promising directions for future investigation.

  8. Ultra-high resolution electron microscopy

    DOE PAGES

    Oxley, Mark P.; Lupini, Andrew R.; Pennycook, Stephen J.

    2016-12-23

    The last two decades have seen dramatic advances in the resolution of the electron microscope brought about by the successful correction of lens aberrations that previously limited resolution for most of its history. Here we briefly review these advances, the achievement of sub-Ångstrom resolution and the ability to identify individual atoms, their bonding configurations and even their dynamics and diffusion pathways. We then present a review of the basic physics of electron scattering, lens aberrations and their correction, and an approximate imaging theory for thin crystals which provides physical insight into the various different imaging modes. Then we proceed tomore » describe a more exact imaging theory starting from Yoshioka’s formulation and covering full image simulation methods using Bloch waves, the multislice formulation and the frozen phonon/quantum excitation of phonons models. Delocalization of inelastic scattering has become an important limiting factor at atomic resolution. We therefore discuss this issue extensively, showing how the full-width-half-maximum is the appropriate measure for predicting image contrast, but the diameter containing 50% of the excitation is an important measure of the range of the interaction. These two measures can differ by a factor of 5, are not a simple function of binding energy, and full image simulations are required to match to experiment. The Z-dependence of annular dark field images is also discussed extensively, both for single atoms and for crystals, and we show that temporal incoherence must be included accurately if atomic species are to be identified through matching experimental intensities to simulations. Finally we mention a few promising directions for future investigation.« less

  9. Ultra-high resolution electron microscopy

    SciTech Connect

    Oxley, Mark P.; Lupini, Andrew R.; Pennycook, Stephen J.

    2016-12-23

    The last two decades have seen dramatic advances in the resolution of the electron microscope brought about by the successful correction of lens aberrations that previously limited resolution for most of its history. Here we briefly review these advances, the achievement of sub-Ångstrom resolution and the ability to identify individual atoms, their bonding configurations and even their dynamics and diffusion pathways. We then present a review of the basic physics of electron scattering, lens aberrations and their correction, and an approximate imaging theory for thin crystals which provides physical insight into the various different imaging modes. Then we proceed to describe a more exact imaging theory starting from Yoshioka’s formulation and covering full image simulation methods using Bloch waves, the multislice formulation and the frozen phonon/quantum excitation of phonons models. Delocalization of inelastic scattering has become an important limiting factor at atomic resolution. We therefore discuss this issue extensively, showing how the full-width-half-maximum is the appropriate measure for predicting image contrast, but the diameter containing 50% of the excitation is an important measure of the range of the interaction. These two measures can differ by a factor of 5, are not a simple function of binding energy, and full image simulations are required to match to experiment. The Z-dependence of annular dark field images is also discussed extensively, both for single atoms and for crystals, and we show that temporal incoherence must be included accurately if atomic species are to be identified through matching experimental intensities to simulations. Finally we mention a few promising directions for future investigation.

  10. Reconfigurable Pointing Control for High Resolution Space Spectroscopy

    NASA Technical Reports Server (NTRS)

    Bayard, David S.; Kia, Tooraj; Van Cleve, Jeffrey

    1997-01-01

    In this paper, a pointing control performance criteria is established to suppport high resolution space spectroscopy. Results indicate that these pointing control requirements are very stringent, and would typically be difficult to meet using standard 3-axis spacecraft control. To resolve this difficulty, it is shown that performance can be significantly improved using a reconfigurable control architecture that switches among a small bankof detuned Kalman filters. The effectiveness of the control reconfiguration approach is demonstrated by example on the Space Infra-Red Telescope Facility (SIRTF) pointing system, in support of the InfraRed Spectrograph (IRS) payload.

  11. Reconfigurable Pointing Control for High Resolution Space Spectroscopy

    NASA Technical Reports Server (NTRS)

    Bayard, David S.; Kia, Tooraj; vanCleve, Jeffrey

    1997-01-01

    In this paper, a pointing control performance criteria is established to support high resolution space spectroscopy. Results indicate that these pointing requirements are very stringent, and would typically be difficult to meet using standard 3-axis spacecraft control. To resolve this difficulty, it is shown that performance can be significantly improved using a reconfigurable control architecture that switches among a small bank of detuned Kalman filters. The effectiveness of the control reconfiguration approach is demonstrated by example on the Space Infra, Red Telescope Facility (SIRTF) pointing system, in support of the Infrared Spectrograph (IRS) payload.

  12. High resolution ultrasonic spectroscopy system for nondestructive evaluation

    NASA Technical Reports Server (NTRS)

    Chen, C. H.

    1991-01-01

    With increased demand for high resolution ultrasonic evaluation, computer based systems or work stations become essential. The ultrasonic spectroscopy method of nondestructive evaluation (NDE) was used to develop a high resolution ultrasonic inspection system supported by modern signal processing, pattern recognition, and neural network technologies. The basic system which was completed consists of a 386/20 MHz PC (IBM AT compatible), a pulser/receiver, a digital oscilloscope with serial and parallel communications to the computer, an immersion tank with motor control of X-Y axis movement, and the supporting software package, IUNDE, for interactive ultrasonic evaluation. Although the hardware components are commercially available, the software development is entirely original. By integrating signal processing, pattern recognition, maximum entropy spectral analysis, and artificial neural network functions into the system, many NDE tasks can be performed. The high resolution graphics capability provides visualization of complex NDE problems. The phase 3 efforts involve intensive marketing of the software package and collaborative work with industrial sectors.

  13. High Resolution Coherent Three-Dimensional Spectroscopy of Iodine

    NASA Astrophysics Data System (ADS)

    House, Zuri R.; Wells, Thresa A.; Chen, Peter C.; Strangfeld, Benjamin R.

    2013-06-01

    The heavy congestion found in many one-dimensional spectra can make it difficult to study many transitions. A new coherent three-dimensional spectroscopic technique has been developed to eliminate the kind of congestion commonly seen in high resolution electronic spectra. The molecule used for this test was Iodine. A well-characterized transition (X to B) was used to determine which four wave mixing process or processes were responsible for the peaks in the resulting multidimensional spectrum. The resolution of several peaks that overlap in a coherent 2D spectrum can be accomplished by using a higher dimensional (3D) spectroscopic method. This talk will discuss strategies for finding spectroscopic constants using this high resolution coherent 3D spectroscopic method.

  14. High-resolution low-dose scanning transmission electron microscopy.

    PubMed

    Buban, James P; Ramasse, Quentin; Gipson, Bryant; Browning, Nigel D; Stahlberg, Henning

    2010-01-01

    During the past two decades instrumentation in scanning transmission electron microscopy (STEM) has pushed toward higher intensity electron probes to increase the signal-to-noise ratio of recorded images. While this is suitable for robust specimens, biological specimens require a much reduced electron dose for high-resolution imaging. We describe here protocols for low-dose STEM image recording with a conventional field-emission gun STEM, while maintaining the high-resolution capability of the instrument. Our findings show that a combination of reduced pixel dwell time and reduced gun current can achieve radiation doses comparable to low-dose TEM.

  15. Metallicity determination of M dwarfs. High-resolution infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Lindgren, Sara; Heiter, Ulrike; Seifahrt, Andreas

    2016-02-01

    Context. Several new techniques to determine the metallicity of M dwarfs with better precision have been developed over the last decades. However, most of these studies were based on empirical methods. In order to enable detailed abundance analysis, standard methods established for warmer solar-like stars, i.e. model-dependent methods using fitting of synthetic spectra, still need to be used. Aims: In this work we continue the reliability confirmation and development of metallicity determinations of M dwarfs using high-resolution infrared spectra. The reliability was confirmed through analysis of M dwarfs in four binary systems with FGK dwarf companions and by comparison with previous optical studies of the FGK dwarfs. Methods: The metallicity determination was based on spectra taken in the J band (1.1-1.4 μm) with the CRIRES spectrograph. In this part of the infrared, the density of stellar molecular lines is limited, reducing the amount of blends with atomic lines enabling an accurate continuum placement. Lines of several atomic species were used to determine the stellar metallicity. Results: All binaries show excellent agreement between the derived metallicity of the M dwarf and its binary companion. Our results are also in good agreement with values found in the literature. Furthermore, we propose an alternative way to determine the effective temperature of M dwarfs of spectral types later than M2 through synthetic spectral fitting of the FeH lines in our observed spectra. Conclusions: We have confirmed that a reliable metallicity determination of M dwarfs can be achieved using high-resolution infrared spectroscopy. We also note that metallicites obtained with photometric metallicity calibrations available for M dwarfs only partly agree with the results we obtain from high-resolution spectroscopy. Based on data obtained at ESO-VLT, Paranal Observatory, Chile, Program ID 082.D-0838(A) and 084.D-1042(A).

  16. High Resolution Transmission Electron Microscopy (HRTEM) of nanophase ferric oxides

    NASA Technical Reports Server (NTRS)

    Golden, D. C.; Morris, R. V.; Ming, D. W.; Lauer, H. V., Jr.

    1994-01-01

    Iron oxide minerals are the prime candidates for Fe(III) signatures in remotely sensed Martian surface spectra. Magnetic, Mossbauer, and reflectance spectroscopy have been carried out in the laboratory in order to understand the mineralogical nature of Martian analog ferric oxide minerals of submicron or nanometer size range. Out of the iron oxide minerals studied, nanometer sized ferric oxides are promising candidates for possible Martian spectral analogs. 'Nanophase ferric oxide (np-Ox)' is a generic term for ferric oxide/oxihydroxide particles having nanoscale (less than 10 nm) particle dimensions. Ferrihydrite, superparamagnetic particles of hematite, maghemite and goethite, and nanometer sized particles of inherently paramagnetic lepidocrocite are all examples of nanophase ferric oxides. np-Ox particles in general do not give X-ray diffraction (XRD) patterns with well defined peaks and would often be classified as X-ray amorphous. Therefore, different np-Oxs preparations should be characterized using a more sensitive technique e.g., high resolution transmission electron microscopy (HRTEM). The purpose of this study is to report the particle size, morphology and crystalline order, of five np-Ox samples by HRTEM imaging and electron diffraction (ED).

  17. Probing the electronic and vibrational structure of Au{sub 2}Al{sub 2}{sup −} and Au{sub 2}Al{sub 2} using photoelectron spectroscopy and high resolution photoelectron imaging

    SciTech Connect

    Lopez, Gary V.; Czekner, Joseph; Jian, Tian; Li, Wei-Li; Yang, Zheng; Wang, Lai-Sheng

    2014-12-14

    The electronic and vibrational structures of Au{sub 2}Al{sub 2}{sup −} and Au{sub 2}Al{sub 2} have been investigated using photoelectron spectroscopy (PES), high-resolution photoelectron imaging, and theoretical calculations. Photoelectron spectra taken at high photon energies with a magnetic-bottle apparatus reveal numerous detachment transitions and a large energy gap for the neutral Au{sub 2}Al{sub 2}. Vibrationally resolved PE spectra are obtained using high-resolution photoelectron imaging for the ground state detachment transition of Au{sub 2}Al{sub 2}{sup −} at various photon energies (670.55−843.03 nm). An accurate electron affinity of 1.4438(8) eV is obtained for the Au{sub 2}Al{sub 2} neutral cluster, as well as two vibrational frequencies at 57 ± 8 and 305 ± 13 cm{sup −1}. Hot bands transitions yield two vibrational frequencies for Au{sub 2}Al{sub 2}{sup −} at 57 ± 10 and 144 ± 12 cm{sup −1}. The obtained vibrational and electronic structure information is compared with density functional calculations, unequivocally confirming that both Au{sub 2}Al{sub 2}{sup −} and Au{sub 2}Al{sub 2} possess C{sub 2v} tetrahedral structures.

  18. Two simple image slicers for high resolution spectroscopy

    NASA Astrophysics Data System (ADS)

    Tala, M.; Vanzi, L.; Avila, G.; Guirao, C.; Pecchioli, E.; Zapata, A.; Pieralli, F.

    2017-01-01

    We present the design, manufacturing, test and performance of two image slicers for high resolution spectroscopy. Based on the classical Bowen-Walraven concept, our slicers allow to make two slices of the image of the input fibre. We introduce the idea of a second fibre that can be cropped in half to reach the same width of the science target fibre and that can be used for simultaneous wavelength reference. The slicers presented are mirror and prism based, respectively. Both devices work within expectation, showing differences mainly in their efficiency. The prism based slicer is the solution that was adopted for the FIDEOS spectrograph, an instrument built by the AIUC for the ESO 1m telescope of La Silla. Test spectra obtained with this instrument are included as examples of a real application of the device.

  19. Two simple image slicers for high resolution spectroscopy

    NASA Astrophysics Data System (ADS)

    Tala, M.; Vanzi, L.; Avila, G.; Guirao, C.; Pecchioli, E.; Zapata, A.; Pieralli, F.

    2017-04-01

    We present the design, manufacturing, test and performance of two image slicers for high resolution spectroscopy. Based on the classical Bowen-Walraven concept, our slicers allow to make two slices of the image of the input fibre. We introduce the idea of a second fibre that can be cropped in half to reach the same width of the science target fibre and that can be used for simultaneous wavelength reference. The slicers presented are mirror and prism based, respectively. Both devices work within expectation, showing differences mainly in their efficiency. The prism based slicer is the solution that was adopted for the FIDEOS spectrograph, an instrument built by the AIUC for the ESO 1m telescope of La Silla. Test spectra obtained with this instrument are included as examples of a real application of the device.

  20. Recent Results in Quantum Chemical Kinetics from High Resolution Spectroscopy

    SciTech Connect

    Quack, Martin

    2007-12-26

    We outline the approach of our group to derive intramolecular kinetic primary processes from high resolution spectroscopy. We then review recent results on intramolecular vibrational redistribution (IVR) and on tunneling processes. Examples are the quantum dynamics of the C-H-chromophore in organic molecules, hydrogen bond dynamics in (HF){sub 2} and stereomutation dynamics in H{sub 2}O{sub 2} and related chiral molecules. We finally discuss the time scales for these and further processes which range from 10 fs to more than seconds in terms of successive symmetry breakings, leading to the question of nuclear spin symmetry and parity violation as well as the question of CPT symmetry.

  1. Using High Resolution Force Spectroscopy to Study Haemocompatibility

    NASA Astrophysics Data System (ADS)

    Rixman, Monica; Macias, Celia; Dean, Delphine; Ortiz, Christine

    2003-03-01

    A critical determinant of the biocompatibility of implanted blood-contacting devices is the initial noncovalent adsorption of blood plasma proteins onto the biomaterial surface. Using high resolution force spectroscopy, we have measured the intermolecular interaction forces between a probe tip covalently bound with human serum albumin (HSA), the most abundant blood plasma protein in the human body, and various chemically modified surfaces that either already are, or may potentially be, used as biomaterial surface coatings. Statistical analysis and theoretical modeling enable us to interpret our experimental results in terms of electrostatic interactions, hydrogen bonding, and steric forces. We have expanded our initial studies on surfaces of poly(ethylene oxide) to explore a variety of experimental conditions, and then utilized our results in identifying and studying various oligosaccharides, which we hope may be useful in the discovery of novel materials for future biomaterial applications.

  2. High Resolution Absorption Spectroscopy using Externally Dispersed Interferometry

    SciTech Connect

    Edelstein, J; Erskine, D J

    2005-07-06

    We describe the use of Externally Dispersed Interferometry (EDI) for high-resolution absorption spectroscopy. By adding a small fixed-delay interferometer to a dispersive spectrograph, a precise fiducial grid in wavelength is created over the entire spectrograph bandwidth. The fiducial grid interacts with narrow spectral features in the input spectrum to create a moire pattern. EDI uses the moire pattern to obtain new information about the spectra that is otherwise unavailable, thereby improving spectrograph performance. We describe the theory and practice of EDI instruments and demonstrate improvements in the spectral resolution of conventional spectrographs by a factor of 2 to 6. The improvement of spectral resolution offered by EDI can benefit space instruments by reducing spectrograph size or increasing instantaneous bandwidth.

  3. Human enamel structure studied by high resolution electron microscopy

    SciTech Connect

    Wen, S.L. )

    1989-01-01

    Human enamel structural features are characterized by high resolution electron microscopy. The human enamel consists of polycrystals with a structure similar to Ca10(PO4)6(OH)2. This article describes the structural features of human enamel crystal at atomic and nanometer level. Besides the structural description, a great number of high resolution images are included. Research into the carious process in human enamel is very important for human beings. This article firstly describes the initiation of caries in enamel crystal at atomic and unit-cell level and secondly describes the further steps of caries with structural and chemical demineralization. The demineralization in fact, is the origin of caries in human enamel. The remineralization of carious areas in human enamel has drawn more and more attention as its potential application is realized. This process has been revealed by high resolution electron microscopy in detail in this article. On the other hand, the radiation effects on the structure of human enamel are also characterized by high resolution electron microscopy. In order to reveal this phenomenon clearly, a great number of electron micrographs have been shown, and a physical mechanism is proposed. 26 references.

  4. High-resolution two-field nuclear magnetic resonance spectroscopy.

    PubMed

    Cousin, Samuel F; Charlier, Cyril; Kadeřávek, Pavel; Marquardsen, Thorsten; Tyburn, Jean-Max; Bovier, Pierre-Alain; Ulzega, Simone; Speck, Thomas; Wilhelm, Dirk; Engelke, Frank; Maas, Werner; Sakellariou, Dimitrios; Bodenhausen, Geoffrey; Pelupessy, Philippe; Ferrage, Fabien

    2016-12-07

    Nuclear magnetic resonance (NMR) is a ubiquitous branch of spectroscopy that can explore matter at the scale of an atom. Significant improvements in sensitivity and resolution have been driven by a steady increase of static magnetic field strengths. However, some properties of nuclei may be more favourable at low magnetic fields. For example, transverse relaxation due to chemical shift anisotropy increases sharply at higher magnetic fields leading to line-broadening and inefficient coherence transfers. Here, we present a two-field NMR spectrometer that permits the application of rf-pulses and acquisition of NMR signals in two magnetic centres. Our prototype operates at 14.1 T and 0.33 T. The main features of this system are demonstrated by novel NMR experiments, in particular a proof-of-concept correlation between zero-quantum coherences at low magnetic field and single quantum coherences at high magnetic field, so that high resolution can be achieved in both dimensions, despite a ca. 10 ppm inhomogeneity of the low-field centre. Two-field NMR spectroscopy offers the possibility to circumvent the limits of high magnetic fields, while benefiting from their exceptional sensitivity and resolution. This approach opens new avenues for NMR above 1 GHz.

  5. High Resolution Rotational Spectroscopy of a Flexible Cyclic Ether

    NASA Astrophysics Data System (ADS)

    Gámez, F.; Martínez-Haya, B.; Blanco, S.; López, J. C.; Alonso, J. L.

    2011-06-01

    Crown ethers stand as one cornerstone molecular class inhost-guest Supramolecular Chemistry and constitute building blocks for a broad range of modern materials. We report here the first high resolution rotational study of a crown ether: 1,4,7,10,13-pentaoxacyclopentadecane (15-crown-5 ether,15c5). Molecular beam Fourier transform microwave spectroscopy has been employed. The liquid sample of 15c5 has been vaporized using heating methods. The considerable size of 15c5 and the broad range of conformations allowed by the flexibility of its backbone pose important challenges to spectroscopy approaches. In fact, the ab-initio computational study for isolated 15c5, yields at least six stable conformers with relative free energies within 2 kJ Mol-1 (167 Cm-1). Nevertheless, in this investigation it has been possible to identify and characterize in detail one stable rotamer of the 15c5 molecule and to challenge different quantum methods for the accurate description of this system. The results pave the ground for an extensive description of the conformational landscape of 15c5 and related cyclic ethers in the near term. J. L. Alonso, F. J. Lorenzo, J. C. López, A. Lesarri, S. Mata and H. Dreizler, Chem. Phys., 218, 267 (1997) S. Blanco, J.C López, J.L. Alonso, P. Ottaviani, W. Caminati, J. Chem. Phys. 119, 880 (2003) S.E. Hill, D. Feller, Int. J. Mass Spectrom. 201, 41 (2000)

  6. Elimination of the Vacuum Pump Requirement for High-Resolution Rotational Spectroscopy.

    NASA Astrophysics Data System (ADS)

    Holt, Jennifer; Daly, Ryan W.; Neese, Christopher F.; De Lucia, Frank C.

    2015-06-01

    It has been observed that with the advances being driven by the wireless communications industry, the microwave components for submillimeter wave spectrometers and sensors will become almost "free". Moreover, these electronic components will require little power. However, neither of these attributes applies to the vacuum requirements for high-resolution rotational spectroscopy. We will report on the design, construction, and operation of a simple spectroscopic cell that overcomes these problems.

  7. Beamline 9.0.1 - a high-resolution undulator beamline for gas-phase spectroscopy

    SciTech Connect

    Bozek, J.D.; Heimann, P.A.; Mossessian, D.

    1997-04-01

    Beamline 9.0.1 at the Advanced Light Source is an undulator beamline with a Spherical Grating Monochromator (SGM) which provides very high resolution and flux over the photon energy range 20-320eV. The beamline has been used primarily by the atomic and molecular science community to conduct spectroscopy experiments using electron, ion and fluorescence photon detection. A description of the beamline and its performance will be provided in this abstract.

  8. High Resolution Velocity Map Imaging Photoelectron Spectroscopy of the Beryllium Oxide Anion, BeO-

    NASA Astrophysics Data System (ADS)

    Dermer, Amanda Reed; Mascaritolo, Kyle; Heaven, Michael

    2016-06-01

    The photodetachment spectrum of BeO- has been studied using high resolution velocity map imaging photoelectron spectroscopy. The vibrational contours were imaged and compared with Franck-Condon simulations for the ground and excited states of the neutral. The electron affinity of BeO was measured for the first time, and anisotropies of several transitions were determined. Experimental findings are compared to high level ab initio calculations.

  9. High-resolution observation by double-biprism electron holography

    SciTech Connect

    Harada, Ken; Tonomura, Akira; Matsuda, Tsuyoshi; Akashi, Tetsuya; Togawa, Yoshihiko

    2004-12-01

    High-resolution electron holography has been achieved by using a double-biprism interferometer implemented on a 1 MV field emission electron microscope. The interferometer was installed behind the first magnifying lens to narrow carrier fringes and thus enabled complete separation of sideband Fourier spectrum from center band in reconstruction process. Holograms of Au fine particles and single-crystalline thin films with the finest fringe spacing of 4.2 pm were recorded and reconstructed. The overall holography system including the reconstruction process performed well for holograms in which carrier fringes had a spacing of around 10 pm. High-resolution lattice images of the amplitude and phase were clearly reconstructed without mixing of the center band and sideband information. Additionally, entire holograms were recorded without Fresnel fringes normally generated by the filament electrode of the biprism, and the holograms were thus reconstructed without the artifacts caused by Fresnel fringes.

  10. High resolution spectroscopy from ground and space: Introduction

    NASA Astrophysics Data System (ADS)

    Ward, William E.

    In contrast to the broad brush approach often used for the sounding of atmospheric constituents, high resolution spectroscopy is a refined, efficient and often elegant tool which uses small spectral regions to probe specific phenomena. Application areas range from wind and temperature measurements in terrestrial and planetary atmospheres, to magnetic field measurements on the sun. In most cases, subtle changes in line shape or line position are used with a priori information to generate the geophysical information of interest. Use of this technique for space applications started in the 1960's and was a natural extension of the spectroscopic heritage which was started by Fabry and Perot and Michelson over 100 year ago. This field has evolved over the past 50 years in response to refinements in detector technologies, manufacturing techniques and the development of active techniques using lasers. This session will trace the evolution of these techniques over the past half-century and showcase the state-of-the-art today. Within Canada, Gordon Shepherd has played a hand in many of the developments in this technique. This introduction will briefly summarize this field and provide a short historical sketch of Shepherd's contributions as a lead into his keynote review of this topic.

  11. Optical multichannel analyzer techniques for high resolution optical spectroscopy

    SciTech Connect

    Chao, J.L.

    1980-06-01

    The development of optical multichannel analyzer techniques for UV/VIS spectroscopy is presented. The research focuses on the development of spectroscopic techniques for measuring high resolution spectral lineshape functions from the exciton phosphorescence in H/sub 2/-1,2,4,5-tetrachlorobenzene. It is found that the temperature dependent frequency shifts and widths confirm a theoretical model based on an exchange theory. The exchange of low energy phonon modes which couple with excited state exciton transitions is shown to display the proper temperature dependent behavior. In addition to the techniques for using the optical multichannel analyzer (OMA) to perform low light level target integration, the use of the OMA for capturing spectral information in transient pulsed laser applications is discussed. An OMP data acquisition system developed for real-time signal processng is described. Both hardware and software interfacing considerations for control and data acquisition by a microcomputer are described. The OMA detector is described in terms of the principles behind its photoelectron detection capabilities and its design is compared with other optoelectronic devices.

  12. High-Resolution Spectroscopy of the Lunar Sodium Exosphere

    NASA Technical Reports Server (NTRS)

    Mierkiewicz, E. J.; Oliversen, R. J.; Roesler, F. L.; Lupie, O. L.

    2014-01-01

    We have applied high-resolution Fabry-Perot spectroscopy to the study of the lunar sodium exosphere for the study of exospheric effective temperature and velocity variations. Observing from the National Solar Observatory McMath-Pierce Telescope, we used a dual-etalon Fabry-Perot spectrometer with a resolving power of 180,000 to measure line widths and Doppler shifts of the sodium D2 (5889.95 Å) emission line. Our field of view was 360 km, and measurements were made in equatorial and polar regions from 500 km to 3500 km off the limb. Data were obtained from full moon to 3 days following full moon (waning phase) in March 2009. Measured Doppler line widths within 1100 km of the sunlit east and south lunar limbs for observations between 5 and 40 deg lunar phase imply effective temperatures ranging between 3260 +/- 190 and 1000 +/- 135 K. Preliminary line center analysis indicates velocity displacements between different locations off the lunar limb ranging between 100 and 600 m/s from the lunar rest velocity with a precision of +/-20 to +/-50 m/s depending on brightness. Based on the success of these exploratory observations, an extensive program has been initiated that is expected to constrain lunar atmospheric and surface-process modeling and help quantify source and escape mechanisms.

  13. High-resolution ground-based spectroscopy: where and how ?

    NASA Astrophysics Data System (ADS)

    Pallavicini, R.

    2002-07-01

    An overview is presented of high-resolution optical spectrographs in operation or under development at large telescopes, with emphasis on those facilities best suited for the study of late-type stars and stellar surface inhomogeneities. Plans for the development of new high-resolution spectroscopic instruments are discussed with emphasis on the ICE spectrograph for the PEPSI spectropolarimeter at the LBT.

  14. Immersion Gratings for Infrared High-resolution Spectroscopy

    NASA Astrophysics Data System (ADS)

    Sarugaku, Yuki; Ikeda, Yuji; Kobayashi, Naoto; Kaji, Sayumi; Sukegawa, Takashi; Sugiyama, Shigeru; Nakagawa, Takao; Arasaki, Takayuki; Kondo, Sohei; Nakanishi, Kenshi; Yasui, Chikako; Kawakita, Hideyo

    2016-10-01

    High-resolution spectroscopy in the infrared wavelength range is essential for observations of minor isotopologues, such as HDO for water, and prebiotic organic molecules like hydrocarbons/P-bearing molecules because numerous vibrational molecular bands (including non-polar molecules) are located in this wavelength range. High spectral resolution enables us to detect weak lines without spectral line confusion. This technique has been widely used in planetary sciences, e.g., cometary coma (H2O, CO, and organic molecules), the martian atmosphere (CH4, CO2, H2O and HDO), and the upper atmosphere of gas giants (H3+ and organic molecules such as C2H6). Spectrographs with higher resolution (and higher sensitivity) still have a potential to provide a plenty of findings. However, because the size of spectrographs scales with the spectral resolution, it is difficult to realize it.Immersion grating (IG), which is a diffraction grating wherein the diffraction surface is immersed in a material with a high refractive index (n > 2), provides n times higher spectral resolution compared to a reflective grating of the same size. Because IG reduces the size of spectrograph to 1/n compared to the spectrograph with the same spectral resolution using a conventional reflective grating, it is widely acknowledged as a key optical device to realize compact spectrographs with high spectral resolution.Recently, we succeeded in fabricating a CdZnTe immersion grating with the theoretically predicted diffraction efficiency by machining process using an ultrahigh-precision five-axis processing machine developed by Canon Inc. Using the same technique, we completed a practical germanium (Ge) immersion grating with both a reflection coating on the grating surface and the an AR coating on the entrance surface. It is noteworthy that the wide wavelength range from 2 to 20 um can be covered by the two immersion gratings.In this paper, we present the performances and the applications of the immersion

  15. Spectral restoration in high resolution electron energy loss spectroscopy based on iterative semi-blind Lucy-Richardson algorithm applied to rutile surfaces

    SciTech Connect

    Lazzari, Rémi Li, Jingfeng Jupille, Jacques

    2015-01-15

    A new spectral restoration algorithm of reflection electron energy loss spectra is proposed. It is based on the maximum likelihood principle as implemented in the iterative Lucy-Richardson approach. Resolution is enhanced and point spread function recovered in a semi-blind way by forcing cyclically the zero loss to converge towards a Dirac peak. Synthetic phonon spectra of TiO{sub 2} are used as a test bed to discuss resolution enhancement, convergence benefit, stability towards noise, and apparatus function recovery. Attention is focused on the interplay between spectral restoration and quasi-elastic broadening due to free carriers. A resolution enhancement by a factor up to 6 on the elastic peak width can be obtained on experimental spectra of TiO{sub 2}(110) and helps revealing mixed phonon/plasmon excitations.

  16. An experimental setup for high resolution 10.5 eV laser-based angle-resolved photoelectron spectroscopy using a time-of-flight electron analyzer.

    PubMed

    Berntsen, M H; Götberg, O; Tjernberg, O

    2011-09-01

    We present an experimental setup for laser-based angle-resolved time-of-flight photoemission. Using a picosecond pulsed laser, photons of energy 10.5 eV are generated through higher harmonic generation in xenon. The high repetition rate of the light source, variable between 0.2 and 8 MHz, enables high photoelectron count rates and short acquisition times. By using a time-of-flight analyzer with angle-resolving capabilities, electrons emitted from the sample within a circular cone of up to ±15° can be collected. Hence, simultaneous acquisition of photoemission data for a complete area of the Brillouin zone is possible. The current photon energy enables bulk sensitive measurements, high angular resolution, and the resulting covered momentum space is large enough to enclose the entire Brillouin zone in cuprate high-T(c) superconductors. Fermi edge measurements on polycrystalline Au shows an energy resolution better than 5 meV. Data from a test measurement of the Au(111) surface state are presented along with measurements of the Fermi surface of the high-T(c) superconductor Bi(2)Sr(2)CaCu(2)O(8 + δ) (Bi2212).

  17. High-resolution electron microscopy of advanced materials

    SciTech Connect

    Mitchell, T.E.; Kung, H.H.; Sickafus, K.E.; Gray, G.T. III; Field, R.D.; Smith, J.F.

    1997-11-01

    This final report chronicles a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The High-Resolution Electron Microscopy Facility has doubled in size and tripled in quality since the beginning of the three-year period. The facility now includes a field-emission scanning electron microscope, a 100 kV field-emission scanning transmission electron microscope (FE-STEM), a 300 kV field-emission high-resolution transmission electron microscope (FE-HRTEM), and a 300 kV analytical transmission electron microscope. A new orientation imaging microscope is being installed. X-ray energy dispersive spectrometers for chemical analysis are available on all four microscopes; parallel electron energy loss spectrometers are operational on the FE-STEM and FE-HRTEM. These systems enable evaluation of local atomic bonding, as well as chemical composition in nanometer-scale regions. The FE-HRTEM has a point-to-point resolution of 1.6 {angstrom}, but the resolution can be pushed to its information limit of 1 {angstrom} by computer reconstruction of a focal series of images. HRTEM has been used to image the atomic structure of defects such as dislocations, grain boundaries, and interfaces in a variety of materials from superconductors and ferroelectrics to structural ceramics and intermetallics.

  18. High resolution infrared spectroscopy of [1.1.1]propellane

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, Robynne; Masiello, Tony; Jariyasopit, Narumol; Weber, Alfons; Nibler, Joseph W.; Maki, Arthur; Blake, Thomas A.; Hubler, Timothy

    2008-04-01

    The infrared spectrum of [1.1.1]propellane has been recorded at high resolution (0.002 cm -1) with individual rovibrational lines resolved for the first time. This initial report presents the ground state constants for this molecule determined from the analysis of five of the eight infrared-allowed fundamentals ν9(e'), ν10(e'), ν12(e'), ν14(a2″),ν15(a2″), as well as of several combination bands. In nearly all cases it was found that the upper states of the transitions exhibit some degree of perturbation but, by use of the combination difference method, the assigned frequencies provided over 4000 consistent ground state difference values. Analysis of these gave for the parameters of the ground state the following values, in cm -1: B0 = 0.28755833(14), DJ = 1.1313(5) × 10 -7, DJK = -1.2633(7) × 10 -7, HJ = 0.72(4) × 10 -13, HJK = -2.24(13) × 10 -13, and HKJ = 2.25(15) × 10 -13, where the numbers in parentheses indicate twice the uncertainties in the last quoted digit(s) of the parameters. Gaussian ab initio calculations, especially with the computed anharmonic corrections to some of the spectroscopic parameters, assisted in the assignments of the bands and also provided information on the electron distribution in the bridge-head carbon-carbon bond.

  19. Direct frequency comb spectroscopy and high-resolution coherent control

    NASA Astrophysics Data System (ADS)

    Stowe, Matthew C.

    We present the first experiments demonstrating absolute frequency measurements of one- and two-photon transitions using direct frequency comb spectroscopy (DFCS). In particular we phase stabilized the inter-pulse period and optical phases of the pulses emitted from a mode-locked Ti:Sapphire laser, creating a broad-bandwidth optical frequency comb. By referencing the optical comb directly to the cesium microwave frequency standard, we were able to measure absolute transition frequencies over greater than a 50 nm bandwidth, utilizing the phase coherence between wavelengths spanning from 741 nm to 795 nm. As an initial demonstration of DFCS we studied transitions from the 5S to 5P, 5D, and 7S states in Rb. To reduce Doppler broadening the atoms were laser cooled in a magneto-optical trap. We present an overview of several systematic error sources that perturb the natural transition frequencies, magnitudes, and linewidths. These include radiation pressure from the probe beam, AC-Stark shifts, Zeeman shifts, power-broadening, and incoherent optical pumping. After careful study and suppression of these systematic error sources, we measured transition linewidths as narrow as 1.1 MHz FWHM and 10 kHz linecenter uncertainties. Our measurements of the 5S to 7S two-photon transition frequency demonstrated the ability to determine the comb mode order numbers when the initial transition frequency is not known to better than the comb mode frequency spacing. By modifying the spectral phase of the pulses we demonstrated high-resolution coherent control. Our first coherent control experiment utilized a grating based pulse stretcher/compressor to apply a large chirp to the pulses. We measured the two-photon transition rate as a function of linear frequency chirp. The results illustrate the differences between similar classic coherent experiments done with a single femtosecond pulse and ours conducted with multiple pulses. Furthermore, we show that it is possible to reduce the two

  20. High-resolution AMLCD for the electronic library system

    NASA Astrophysics Data System (ADS)

    Martin, Russel A.; Middo, Kathy; Turner, William D.; Lewis, Alan; Thompson, Malcolm J.; Silverstein, Louis D.

    1994-06-01

    The Electronic Library System (ELS), is a proposed data resource for the cockpit which can provide the aircrew with a vast array of technical information on their aircraft and flight plan. This information includes, but is not limited to, approach plates, Jeppeson Charts, and aircraft technical manuals. Most of these data are appropriate for digitization at high resolution (300 spi). Xerox Corporation has developed a flat panel active matrix liquid crystal display, AMLCD, that is an excellent match to the ELS, due to its innovative and aggressive design.

  1. High resolution electron microscopy study of amorphous calcium phosphate

    NASA Astrophysics Data System (ADS)

    Brès, E. F.; Moebus, G.; Kleebe, H.-J.; Pourroy, G.; Werkmann, J.; Ehret, G.

    1993-03-01

    "Amorphous" calcium phosphate (ACP) from human tooth enamel and different synthetic materials has been analysed by high resolution electron microscopy (HREM). All the materials studied showed, in addition to a "truly" amorphous phase, other calcium phosphate phases such as poorly crystalline hydroxyapatite (OHAP), well crystallized OHAP and poorly crystalline CaO type phase. Such structural heterogeneities have not been observed before in ACP, and are only possible to be detected by HREM as this is the only technique able to analyse nanometre size materials in the real space.

  2. High resolution photoelectron spectroscopy and femtosecond intramolecular dynamics using supersonic molecular beams

    SciTech Connect

    Niu, B.

    1992-09-01

    High resolution He I[alpha] photoelectron spectroscopy of formaldehyde and ketene and their deuterated compounds, are reported. The combination of a (H2CO) double-pass high-resolution electron-energy analyzer and effective rotational cooling of the sample by supersonic expansion enable the spectroscopy of these molecular cations. The vibrational autocorrelation functions are calculated from the high-resolution photoelectron spectra, shedding light on the ultrafast intramolecular dynamics of the molecular cations. This study reveals much more vibrational structural detail in the first electronic excited state of H2CO cations. The first electronic excited state of H2CO cations may have nonplanar equilibrium geometry. Strong isotope effects on vibronic (vibrational) coupling are observed in the second electronic excited state of H2CO. Vibrational autocorrelation functions are calculated for all four observed electronic states of H2CO. The correlation function of the first electronic excited state of H2CO shows a slow decay rate on the femtosecond time scale. The ultrafast decay of the H2CO cations in the third electronic excited state implies that dissociation and intramolecular processes are the main decay pathways. The present spectra of the ground states of ketene cations have more fine structure than before. The AIEs of the first and fifth excited states are determined unambiguously more accurately. The doublet-like fine structures present in the lint excited state of ketene implies the excitation of a soft'' mode not observed before. The vibrational autocorrelation functions are calculated for 4 of the 6 observed electronic states. The dynamics of the ground states of the cations are characterized by a wave packet oscillating with small amplitude around the minimum on the upper PES. The decay dynamics of the first and the fifth excited states of ketene are characterized by ultra-fast intramolecular processes like predissociation.

  3. High resolution photoelectron spectroscopy and femtosecond intramolecular dynamics using supersonic molecular beams

    SciTech Connect

    Niu, B.

    1992-09-01

    High resolution He I{alpha} photoelectron spectroscopy of formaldehyde and ketene and their deuterated compounds, are reported. The combination of a (H2CO) double-pass high-resolution electron-energy analyzer and effective rotational cooling of the sample by supersonic expansion enable the spectroscopy of these molecular cations. The vibrational autocorrelation functions are calculated from the high-resolution photoelectron spectra, shedding light on the ultrafast intramolecular dynamics of the molecular cations. This study reveals much more vibrational structural detail in the first electronic excited state of H2CO cations. The first electronic excited state of H2CO cations may have nonplanar equilibrium geometry. Strong isotope effects on vibronic (vibrational) coupling are observed in the second electronic excited state of H2CO. Vibrational autocorrelation functions are calculated for all four observed electronic states of H2CO. The correlation function of the first electronic excited state of H2CO shows a slow decay rate on the femtosecond time scale. The ultrafast decay of the H2CO cations in the third electronic excited state implies that dissociation and intramolecular processes are the main decay pathways. The present spectra of the ground states of ketene cations have more fine structure than before. The AIEs of the first and fifth excited states are determined unambiguously more accurately. The doublet-like fine structures present in the lint excited state of ketene implies the excitation of a ``soft`` mode not observed before. The vibrational autocorrelation functions are calculated for 4 of the 6 observed electronic states. The dynamics of the ground states of the cations are characterized by a wave packet oscillating with small amplitude around the minimum on the upper PES. The decay dynamics of the first and the fifth excited states of ketene are characterized by ultra-fast intramolecular processes like predissociation.

  4. High resolution X-ray CT for advanced electronics packaging

    NASA Astrophysics Data System (ADS)

    Oppermann, M.; Zerna, T.

    2017-02-01

    Advanced electronics packaging is a challenge for non-destructive Testing (NDT). More, smaller and mostly hidden interconnects dominate modern electronics components and systems. To solve the demands of customers to get products with a high functionality by low volume, weight and price (e.g. mobile phones, personal medical monitoring systems) often the designers use System-in-Package solutions (SiP). The non-destructive testing of such devices is a big challenge. So our paper will impart fundamentals and applications for non-destructive evaluation of inner structures of electronics packaging for quality assurance and reliability investigations with a focus on X-ray methods, especially on high resolution X-ray computed tomography (CT).

  5. Quantitative high-resolution transmission electron microscopy of single atoms.

    PubMed

    Gamm, Björn; Blank, Holger; Popescu, Radian; Schneider, Reinhard; Beyer, André; Gölzhäuser, Armin; Gerthsen, Dagmar

    2012-02-01

    Single atoms can be considered as the most basic objects for electron microscopy to test the microscope performance and basic concepts for modeling image contrast. In this work high-resolution transmission electron microscopy was applied to image single platinum, molybdenum, and titanium atoms in an aberration-corrected transmission electron microscope. The atoms are deposited on a self-assembled monolayer substrate that induces only negligible contrast. Single-atom contrast simulations were performed on the basis of Weickenmeier-Kohl and Doyle-Turner form factors. Experimental and simulated image intensities are in quantitative agreement on an absolute intensity scale, which is provided by the vacuum image intensity. This demonstrates that direct testing of basic properties such as form factors becomes feasible.

  6. High-resolution transmission electron microscopy: the ultimate nanoanalytical technique.

    PubMed

    Thomas, John Meurig; Midgley, Paul A

    2004-06-07

    To be able to determine the elemental composition and morphology of individual nanoparticles consisting of no more than a dozen or so atoms that weigh a few zeptograms (10(-21) g) is but one of the attainments of modern electron microscopy. With slightly larger specimens (embracing a few unit cells of the structure) their symmetry, crystallographic phase, unit-cell dimension, chemical composition and often the valence state (from parallel electron spectroscopic measurements) of the constituent atoms may also be determined using a scanning beam of electrons of ca. 0.5 nm diameter. Nowadays electron crystallography, which treats the digital data of electron diffraction (ED) and high-resolution transmission electron microscope (HRTEM) images of minute (ca. 10(-18)g) specimens in a quantitatively rigorous manner, solves hitherto unknown structures just as X-ray diffraction does with bulk single crystals. In addition, electron tomography (see cover photograph and its animation) enables a three-dimensional picture of the internal structure of minute objects, such as nanocatalysts in a single pore, as well as structural faults such as micro-fissures, to be constructed with a resolution of 1 nm from an angular series of two-dimensional (projected) images. Very recently (since this article was first written) a new meaning has been given to electron crystallography as a result of the spatio-temporal resolution of surface phenomena achieved on a femtosecond timescale.

  7. Probing the electronic structure and Au–C chemical bonding in AuC{sub 2}{sup −} and AuC{sub 2} using high-resolution photoelectron spectroscopy

    SciTech Connect

    León, Iker; Yang, Zheng; Wang, Lai-Sheng

    2014-02-28

    We report photoelectron spectroscopy (PES) and high-resolution PE imaging of AuC{sub 2}{sup −} at a wide range of photon energies. The ground state of AuC{sub 2}{sup −} is found to be linear (C{sub ∞v}, {sup 1}Σ{sup +}) with a …8π{sup 4}4δ{sup 4}17σ{sup 2}9π{sup 4}18σ{sup 2} valence configuration. Detachments from all the five valence orbitals of the ground state of AuC{sub 2}{sup −} are observed at 193 nm. High-resolution PE images are obtained in the energy range from 830 to 330 nm, revealing complicated vibronic structures from electron detachment of the 18σ, 9π, and 17σ orbitals. Detachment from the 18σ orbital results in the {sup 2}Σ{sup +} ground state of neutral AuC{sub 2}, which, however, is bent due to strong vibronic coupling with the nearby {sup 2}Π state from detachment of a 9π electron. The {sup 2}Σ{sup +}–{sup 2}Π vibronic and spin-orbit coupling results in complicated vibronic structures for the {sup 2}Σ{sup +} and {sup 2}Π{sub 3/2} states with extensive bending excitations. The electron affinity of AuC{sub 2} is measured accurately to be 3.2192(7) eV with a ground state bending frequency of 195(6) cm{sup −1}. The first excited state ({sup 2}A′) of AuC{sub 2}, corresponding to the {sup 2}Π{sub 3/2} state at the linear geometry, is only 0.0021 eV above the ground state ({sup 2}A′) and has a bending frequency of 207(6) cm{sup −1}. The {sup 2}Π{sub 1/2} state, 0.2291 eV above the ground state, is linear with little geometry change relative to the anion ground state. The detachment of the 17σ orbital also results in complicated vibronic structures, suggesting again a bent state due to possible vibronic coupling with the lower {sup 2}Π state. The spectrum at 193 nm shows the presence of a minor species with less than 2% intensity relative to the ground state of AuC{sub 2}{sup −}. High-resolution data of the minor species reveal several vibrational progressions in the Au–C stretching mode, which are assigned to

  8. High-Resolution Electronics: Spontaneous Patterning of High-Resolution Electronics via Parallel Vacuum Ultraviolet (Adv. Mater. 31/2016).

    PubMed

    Liu, Xuying; Kanehara, Masayuki; Liu, Chuan; Sakamoto, Kenji; Yasuda, Takeshi; Takeya, Jun; Minari, Takeo

    2016-08-01

    On page 6568, T. Minari and co-workers describe spontaneous patterning based on the parallel vacuum ultraviolet (PVUV) technique, enabling the homogeneous integration of complex, high-resolution electronic circuits, even on large-scale, flexible, transparent substrates. Irradiation of PVUV to the hydrophobic polymer surface precisely renders the selected surface into highly wettable regions with sharply defined boundaries, which spontaneously guides a metal nanoparticle ink into a series of circuit lines and gaps with the widths down to a resolution of 1 μm.

  9. High-resolution pulsed-field ionization photoelectron spectroscopy using multi-bunch synchrotron radiation

    SciTech Connect

    Hsu, C.W.; Evans, M.; Ng, C.Y.; Heimann, P.

    1997-04-01

    BL9.0.2.2 is the newly constructed experimental End Station 2 at the Chemical Dynamics Beamline 9.0.2 of the Advanced Light Source (ALS). It is dedicated to the high resolution photoionization study of molecules of interest to atmospheric and combustion chemistry. This End Station is equipped with a high resolution scanning monochromator, which has been demonstrated to have a world record resolution of E/{delta}E=70,000. Taking the advantage of the high resolution ALS light, the authors have improved the energy resolution in threshold photoelectron spectroscopy (TPES) to 0.8 meV. The TPES is a popular technique for photoionization experiments at all synchrotron radiation facilities due to its high energy resolution as compared to that of traditional photoelectron spectroscopy (PES). TPES achieves higher energy resolution by preferentially detecting near zero kinetic energy photoelectrons resulting from threshold photoionization. However, the spectra obtained from the TPES technique generally are complicated by the simultaneous detection of electrons with nonzero kinetic energy, which are not fully discriminated against. On the other hand, the spectra obtained from pulsed field ionization photoelectron spectroscopy (PFI-PES) are completely free of the contamination from kinetic electrons. The PFI-PE technique basically involves the detection of the photoelectrons from field ionization of the very high-n Rydberg states, a few cm{sup {minus}1} below the ionization energy (IE), by applying a delayed pulsed electric field. Within a delay of a few microseconds, all the prompt electrons formed from direct ionization will escape from the photoionization region and will not be collected. The authors have recently overcome problems with energy resolution of an electron time-of-flight technique, and incorporated the PFI-PE technique with multi-bunch VUV synchrotron radiation.

  10. Insights into complexation of dissolved organic matter and Al(III) and nanominerals formation in soils under contrasting fertilizations using two-dimensional correlation spectroscopy and high resolution-transmission electron microscopy techniques.

    PubMed

    Wen, Yongli; Li, Huan; Xiao, Jian; Wang, Chang; Shen, Qirong; Ran, Wei; He, Xinhua; Zhou, Quansuo; Yu, Guanghui

    2014-09-01

    Understanding the organomineral associations in soils is of great importance. Using two-dimensional correlation spectroscopy (2DCOS) and high resolution-transmission electron microscopy (HRTEM) techniques, this study compared the binding characteristics of organic ligands to Al(III) in dissolved organic matter (DOM) from soils under short-term (3-years) and long-term (22-years) fertilizations. Three fertilization treatments were examined: (i) no fertilization (Control), (ii) chemical nitrogen, phosphorus and potassium (NPK), and (iii) NPK plus swine manure (NPKM). Soil spectra detected by the 2DCOS Fourier transform infrared (FTIR) spectroscopy showed that fertilization modified the binding characteristics of organic ligands to Al(III) in soil DOM at both short- and long- term location sites. The CH deformations in aliphatic groups played an important role in binding to Al(III) but with minor differences among the Control, NPK and NPKM at the short-term site. While at the long-term site both C-O stretching of polysaccharides or polysaccharide-like substances and aliphatic O-H were bound to Al(III) under the Control, whereas only aliphatic O-H, and only polysaccharides and silicates, were bound to Al(III) under NPK and NPKM, respectively. Images from HRTEM demonstrated that crystalline nanominerals, composed of Fe and O, were predominant in soil DOM under NPK, while amorphous nanominerals, predominant in Al, Si, and O, were dominant in soil DOM under Control and NPKM. In conclusion, fertilization strategies, especially under long-term, could affect the binding of organic ligands to Al(III) in soil DOM, which resulted in alterations in the turnover, reactivity, and bioavailability of soil organic matter. Our results demonstrated that the FTIR-2DCOS combined with HRTEM techniques could enhance our understanding in the binding characteristics of DOM to Al(III) and the resulted nanominerals in soils.

  11. Multilayer Patterning of High Resolution Intrinsically Stretchable Electronics

    PubMed Central

    Tybrandt, Klas; Stauffer, Flurin; Vörös, Janos

    2016-01-01

    Stretchable electronics can bridge the gap between hard planar electronic circuits and the curved, soft and elastic objects of nature. This has led to applications like conformal displays, electronic skin and soft neuroprosthetics. A remaining challenge, however, is to match the dimensions of the interfaced systems, as all require feature sizes well below 100 μm. Intrinsically stretchable nanocomposites are attractive in this context as the mechanical deformations occur on the nanoscale, although methods for patterning high performance materials have been lacking. Here we address these issues by reporting on a multilayer additive patterning approach for high resolution fabrication of stretchable electronic devices. The method yields highly conductive 30 μm tracks with similar performance to their macroscopic counterparts. Further, we demonstrate a three layer micropatterned stretchable electroluminescent display with pixel sizes down to 70 μm. These presented findings pave the way towards future developments of high definition displays, electronic skins and dense multielectrode arrays. PMID:27157804

  12. Polystyrene negative resist for high-resolution electron beam lithography

    PubMed Central

    2011-01-01

    We studied the exposure behavior of low molecular weight polystyrene as a negative tone electron beam lithography (EBL) resist, with the goal of finding the ultimate achievable resolution. It demonstrated fairly well-defined patterning of a 20-nm period line array and a 15-nm period dot array, which are the densest patterns ever achieved using organic EBL resists. Such dense patterns can be achieved both at 20 and 5 keV beam energies using different developers. In addition to its ultra-high resolution capability, polystyrene is a simple and low-cost resist with easy process control and practically unlimited shelf life. It is also considerably more resistant to dry etching than PMMA. With a low sensitivity, it would find applications where negative resist is desired and throughput is not a major concern. PMID:21749679

  13. Microcoil high-resolution magic angle spinning NMR spectroscopy.

    PubMed

    Janssen, Hans; Brinkmann, Andreas; van Eck, Ernst R H; van Bentum, P Jan M; Kentgens, Arno P M

    2006-07-12

    We report the construction of a dual-channel microcoil nuclear magnetic resonance probehead allowing magic-angle spinning for mass-limited samples. With coils down to 235 mum inner diameter, this allows high-resolution solid-state NMR spectra to be obtained for amounts of materials of a few nanoliters. This is demonstrated by the carbon-13 spectrum of a tripeptide and a single silk rod, prepared from the silk gland of the Bombyx mori silkworm. Furthermore, the microcoil allows for radio frequency field strengths well beyond current probe technology, aiding in getting the highest possible resolution by efficiently decoupling the observed nuclei from the abundantly present proton nuclei.

  14. High Resolution Studies of Electron Attachment to Molecules

    SciTech Connect

    Braun, M.; Ruf, M.-W.; Hotop, H.; Fabrikant, I. I.

    2009-05-02

    In this paper, we survey recent progress in studies of anion formation via (dissociative) electron attachment (DEA) to simple molecules, as measured with the laser photoelectron attachment (LPA) method at high resolution. The limiting (E{yields}0) threshold behavior of the cross sections is elucidated for s-wave and p-wave attachment. Cusps at onsets for vibrational excitation (VE), due to interaction of the DEA channnel with the VE channel, are clearly detected, and vibrational Feshbach resonances just below vibrational onsets are observed for molecules with sufficiently strong long-range attraction between the electron and the molecule. From the LPA anion yields, absolute DEA cross sections (energy range typically E = 0.001-2 eV) are determined with reference to rate coefficients for thermal electron attachment at the appropriate gas temperature (normally T{sub G} = 300 K). The experimental data are compared with theoretical cross sections, calculated within the framework of an R-matrix or an Effective Range theory approach.

  15. High-Resolution Infrared Spectroscopy of Ge_2C_3

    NASA Astrophysics Data System (ADS)

    Thorwirth, S.; Lutter, V.; Schlemmer, S.; Giesen, T. F.; Gauss, J.

    2013-06-01

    Carbon-rich systems are of great importance in diverse areas of research like material science as well as astro- and structural chemistry. Despite this relevance, our knowledge of smaller cluster units is still fragmentary, particularly with respect to investigations at high-spectral resolution in the gas phase. Unequivocal assignment of spectral features to their molecular carriers is critically dependent on predictions from high-level quantum-chemical calculations. In turn, high-resolution studies provide useful information to assess the predictive power of quantum-chemical methods. This is particularly interesting for cluster systems harboring heavy elements for which so far relatively little is known from experiment. With this contribution, we would like to present a recent gas-phase study of a polyatomic germanium-carbon cluster, linear Ge_2C_3 (Ge=C=C=C=Ge), which was previously studied in an Ar matrix. The cluster was produced through laser ablation of germanium-graphite sample rods and observed in a free jet at wavelengths around 5μm. Additionally, quantum-chemical calculations of Ge_2C_3 were performed at the CCSD(T) level of theory. The production and observation of Ge_2C_3 suggests that many more binary clusters should be amenable to high-resolution spectroscopic techniques not only in the infrared but also in the microwave region. D. L. Robbins, C. M. L. Rittby, and W. R. M. Graham, J. Chem. Phys. 114, 3570 (2001).

  16. High resolution spectroscopy from low altitude satellites. [gamma ray astronomy

    NASA Technical Reports Server (NTRS)

    Nakano, G. H.; Imhof, W. L.

    1978-01-01

    The P 78 1 satellite to be placed in a synchronous polar orbit at an altitude of 550-660 km will carry two identical high resolution spectrometers each consisting of a single (approximately 85 cc) intrinsic germanium IGE detector. The payload also includes a pair of phoswitch scintillators, an array of CdTe detectors and several particle detectors, all of which are mounted on the wheel of the satellite. The intrinsic high purity IGE detectors receive cooling from two Stirling cycle refrigerators and facilitate the assembly of large and complex detector arrays planned for the next generation of high sensitivity instruments such as those planned for the gamma ray observatory. The major subsystems of the spectrometer are discussed as well as its capabilities.

  17. CARMENES science preparation. High-resolution spectroscopy of M dwarfs

    NASA Astrophysics Data System (ADS)

    Montes, D.; Caballero, J. A.; Jeffers, S.; Alonso-Floriano, F. J.; Mundt, R.; CARMENES Consortium

    2015-05-01

    To ensure an efficient use of CARMENES observing time, and the highest chances of success, it is necessary first to select the most promising targets. To achieve this, we are observing 500 M dwarfs at high-resolution (R = 30,000-48,000), from which we determine the projected rotational velocity vsin{i} with an accuracy better than 0.5-0.2 km/s and radial-velocity stability better than 0.2-0.1 km/s. Our aim is to have at least two spectra at different epochs of the final 300 CARMENES targets. Our observations with FEROS at ESO/MPG 2.2 m La Silla, CAFE at 2.2 m Calar Alto and HRS at Hobby Eberly Telescope allow us to identify single- and double-line spectroscopic binaries and, especially, fast rotators, which should be discarded from the target list for exoplanet searches. Here we present preliminary results.

  18. High-resolution spectroscopy of a giant solar filament

    NASA Astrophysics Data System (ADS)

    Kuckein, Christoph; Denker, Carsten; Verma, Meetu

    2014-01-01

    High-resolution spectra of a giant solar quiescent filament were taken with the Echelle spectrograph at the Vacuum Tower Telescope (VTT; Tenerife, Spain). A mosaic of various spectroheliograms (Hα, Hα+/-0.5 Å and Na D2) were chosen to examine the filament at different heights in the solar atmosphere. In addition, full-disk images (He i 10830 Å and Ca ii K) of the Chromspheric Telescope and full-disk magnetograms of the Helioseismic and Magnetic Imager were used to complement the spectra. Preliminary results are shown of this filament, which had extremely large linear dimensions (~740'') and was observed in November 2011 while it traversed the northern solar hemisphere.

  19. Quadrature phase interferometer for high resolution force spectroscopy

    SciTech Connect

    Paolino, Pierdomenico; Aguilar Sandoval, Felipe A.; Bellon, Ludovic

    2013-09-15

    In this article, we present a deflection measurement setup for Atomic Force Microscopy (AFM). It is based on a quadrature phase differential interferometer: we measure the optical path difference between a laser beam reflecting above the cantilever tip and a reference beam reflecting on the static base of the sensor. A design with very low environmental susceptibility and another allowing calibrated measurements on a wide spectral range are described. Both enable a very high resolution (down to 2.5×10{sup −15} m/√(Hz)), illustrated by thermal noise measurements on AFM cantilevers. They present an excellent long-term stability and a constant sensitivity independent of the optical phase of the interferometer. A quick review shows that our precision is equaling or out-performing the best results reported in the literature, but for a much larger deflection range, up to a few μm.

  20. HIGH-RESOLUTION ELECTRON MICROSCOPIC ANALYSIS OF THE AMYLOID FIBRIL

    PubMed Central

    Shirahama, Tsuranobu; Cohen, Alan S.

    1967-01-01

    The ultrastructural organization of the fibrous component of amyloid has been analyzed by means of high resolution electron microscopy of negatively stained isolated amyloid fibrils and of positively stained amyloid fibrils in thin tissue sections. It was found that a number of subunits could be resolved according to their dimensions. The following structural organization is proposed. The amyloid fibril, the fibrous component of amyloid as seen in electron microscopy of thin tissue sections, consists of a number of filaments aggregated side-by-side. These amyloid filaments are approximately 75–80 A in diameter and consist of five (or less likely six) subunits (amyloid protofibrils) which are arranged parallel to each other, longitudinal or slightly oblique to the long axis of the filament. The filament has often seemed to disperse into several longitudinal rows. The amyloid protofibril is about 25–35 A wide and appears to consist of two or three subunit strands helically arranged with a 35–50-A repeat (or, less likely, is composed of globular subunits aggregated end-to-end). These amyloid subprotofibrillar strands measure approximately 10–15 A in diameter. PMID:6036530

  1. High-Resolution Absorption Spectroscopy of NO2

    DTIC Science & Technology

    1987-08-31

    identify by block number) FIELD GROUP SUB-GROUP Atmospheric propagation, Laser spectroscopy, Nitrogen dioxide , Spectroscopy 19. RACT (Continue on reverse if...pulsed dye laser having a 0.05-A"-bandwidth (FWHM). This represents an improvement of at least a factor of three over the resolution employed in...concise interpretation of the observed features has yet to be made. Actual state-to-state assignments in the visible and near UV have been possible only

  2. Understanding reconstructed Dante spectra using high resolution spectroscopy

    NASA Astrophysics Data System (ADS)

    May, M. J.; Weaver, J.; Widmann, K.; Kemp, G. E.; Thorn, D.; Colvin, J. D.; Schneider, M. B.; Moore, A.; Blue, B. E.

    2016-11-01

    The Dante is an 18 channel filtered diode array used at the National Ignition Facility (NIF) to measure the spectrally and temporally resolved radiation flux between 50 eV and 20 keV from various targets. The absolute flux is determined from the radiometric calibration of the x-ray diodes, filters, and mirrors and a reconstruction algorithm applied to the recorded voltages from each channel. The reconstructed spectra are very low resolution with features consistent with the instrument response and are not necessarily consistent with the spectral emission features from the plasma. Errors may exist between the reconstructed spectra and the actual emission features due to assumptions in the algorithm. Recently, a high resolution convex crystal spectrometer, VIRGIL, has been installed at NIF with the same line of sight as the Dante. Spectra from L-shell Ag and Xe have been recorded by both VIRGIL and Dante. Comparisons of these two spectroscopic measurements yield insights into the accuracy of the Dante reconstructions.

  3. High Resolution γ-Ray Spectroscopy: the First 85 Years

    PubMed Central

    Deslattes, Richard D.

    2000-01-01

    This opening review attempts to follow the main trends in crystal diffraction spectrometry of nuclear γ rays from its 1914 beginning in Rutherford’s laboratory to the ultra-high resolution instrumentation realized in the current generation of spectrometers at the Institute Laue Langeven (ILL). My perspective is that of an instrumentalist hoping to convey a sense of our intellectual debt to a number of predecessors, each of whom realized a certain elegance in making the tools that have enabled much good science, including that to which the remainder of this workshop is dedicated. This overview follows some of the main ideas along a trajectory toward higher resolution at higher energies, thereby enabling not only the disentangling of dense spectra, but also allowing detailed study of aspects of spectral profiles sensitive to excited state lifetimes and inter-atomic potentials. The parallel evolution toward increasing efficiency while preserving needed resolution is also an interesting story of artful compromise that should not be neglected. Finally, it is the robustness of the measurement chain connecting γ-ray wavelengths with optical wavelengths associated with the Rydberg constant that only recently has allowed γ-ray data to contribute to determination of particle masses and fundamental constants, as will be described in more detail in other papers from this workshop. PMID:27551582

  4. High Resolution FIR and IR Spectroscopy of Methanol Isotopologues

    SciTech Connect

    Lees, R. M.; Xu, Li-Hong; Appadoo, D. R. T.; Billinghurst, B.

    2010-02-03

    New astronomical facilities such as HIFI on the Herschel Space Observatory, the SOFIA airborne IR telescope and the ALMA sub-mm telescope array will yield spectra from interstellar and protostellar sources with vastly increased sensitivity and frequency coverage. This creates the need for major enhancements to laboratory databases for the more prominent interstellar 'weed' species in order to model and account for their lines in observed spectra in the search for new and more exotic interstellar molecular 'flowers'. With its large-amplitude internal torsional motion, methanol has particularly rich spectra throughout the FIR and IR regions and, being very widely distributed throughout the galaxy, is perhaps the most notorious interstellar weed. Thus, we have recorded new spectra for a variety of methanol isotopic species on the high-resolution FTIR spectrometer on the CLS FIR beamline. The aim is to extend quantum number coverage of the data, improve our understanding of the energy level structure, and provide the astronomical community with better databases and models of the spectral patterns with greater predictive power for a range of astrophysical conditions.

  5. Understanding reconstructed Dante spectra using high resolution spectroscopy.

    PubMed

    May, M J; Weaver, J; Widmann, K; Kemp, G E; Thorn, D; Colvin, J D; Schneider, M B; Moore, A; Blue, B E

    2016-11-01

    The Dante is an 18 channel filtered diode array used at the National Ignition Facility (NIF) to measure the spectrally and temporally resolved radiation flux between 50 eV and 20 keV from various targets. The absolute flux is determined from the radiometric calibration of the x-ray diodes, filters, and mirrors and a reconstruction algorithm applied to the recorded voltages from each channel. The reconstructed spectra are very low resolution with features consistent with the instrument response and are not necessarily consistent with the spectral emission features from the plasma. Errors may exist between the reconstructed spectra and the actual emission features due to assumptions in the algorithm. Recently, a high resolution convex crystal spectrometer, VIRGIL, has been installed at NIF with the same line of sight as the Dante. Spectra from L-shell Ag and Xe have been recorded by both VIRGIL and Dante. Comparisons of these two spectroscopic measurements yield insights into the accuracy of the Dante reconstructions.

  6. Introduction to high-resolution cryo-electron microscopy.

    PubMed

    Czarnocki-Cieciura, Mariusz; Nowotny, Marcin

    2016-01-01

    For many years two techniques have dominated structural biology - X-ray crystallography and NMR spectroscopy. Traditional cryo-electron microscopy of biological macromolecules produced macromolecular reconstructions at resolution limited to 6-10 Å. Recent development of transmission electron microscopes, in particular the development of direct electron detectors, and continuous improvements in the available software, have led to the "resolution revolution" in cryo-EM. It is now possible to routinely obtain near-atomic-resolution 3D maps of intact biological macromolecules as small as ~100 kDa. Thus, cryo-EM is now becoming the method of choice for structural analysis of many complex assemblies that are unsuitable for structure determination by other methods.

  7. High-resolution structure of the photosynthetic Mn4Ca catalyst from X-ray spectroscopy.

    PubMed

    Yano, Junko; Kern, Jan; Pushkar, Yulia; Sauer, Kenneth; Glatzel, Pieter; Bergmann, Uwe; Messinger, Johannes; Zouni, Athina; Yachandra, Vittal K

    2008-03-27

    The application of high-resolution X-ray spectroscopy methods to study the photosynthetic water oxidizing complex, which contains a unique hetero-nuclear catalytic Mn4Ca cluster, is described. Issues of X-ray damage, especially at the metal sites in the Mn4Ca cluster, are discussed. The structure of the Mn4Ca catalyst at high resolution, which has so far eluded attempts of determination by X-ray diffraction, X-ray absorption fine structure (EXAFS) and other spectroscopic techniques, has been addressed using polarized EXAFS techniques applied to oriented photosystem II (PSII) membrane preparations and PSII single crystals. A review of how the resolution of traditional EXAFS techniques can be improved, using methods such as range-extended EXAFS, is presented, and the changes that occur in the structure of the cluster as it advances through the catalytic cycle are described. X-ray absorption and emission techniques (XANES and Kbeta emission) have been used earlier to determine the oxidation states of the Mn4Ca cluster, and in this report we review the use of X-ray resonant Raman spectroscopy to understand the electronic structure of the Mn4Ca cluster as it cycles through the intermediate S-states.

  8. High-Resolution Structure of the Photosynthetic Mn4Ca Catalyst from X-ray Spectroscopy

    SciTech Connect

    Yachandra, Vittal; Yano, Junko; Kern, Jan; Pushkar, Yulia; Sauer, Kenneth; Glatzel, Pieter; Bergmann, Uwe; Messinger, Johannes; Zouni, Athina; Yachandra, Vittal K.

    2007-08-01

    The application of high-resolution X-ray spectroscopy methods to study the photosynthetic water oxidizing complex, which contains a unique hetero-nuclear catalytic Mn4Ca cluster, are described. Issues of X-ray damage especially at the metal sites in the Mn4Ca cluster are discussed. The structure of the Mn4Ca catalyst at high-resolution which has so far eluded attempts of determination by X-ray diffraction, EXAFS and other spectroscopic techniques has been addressed using polarized EXAFS techniques applied to oriented PS II membrane preparations and PS II single crystals. A review of how the resolution of traditional EXAFS techniques can be improved, using methods such as range-extended EXAFS is presented, and the changes that occur in the structure of the cluster as it advances through the catalytic cycle are described. X-ray absorption and emission techniques (XANES and K? emission) have been used earlier to determine the oxidation states of the Mn4Ca cluster, and in this report we review the use of X-ray resonant Raman spectroscopy to understand the electronic structure of the Mn4Ca cluster as it cycles through the intermediate S-states.

  9. High-Resolution Laser Spectroscopy on the Negative Osmium Ion

    SciTech Connect

    Warring, U.; Amoretti, M.; Canali, C.; Fischer, A.; Heyne, R.; Meier, J. O.; Morhard, Ch.; Kellerbauer, A.

    2009-01-30

    We have applied a combination of laser excitation and electric-field detachment to negative atomic ions for the first time, resulting in an enhancement of the excited-state detection efficiency for spectroscopy by at least 2 orders of magnitude. Applying the new method, a measurement of the bound-bound electric-dipole transition frequency in {sup 192}Os{sup -} was performed using collinear spectroscopy with a narrow-bandwidth cw laser. The transition frequency was found to be 257.831 190(35) THz [wavelength 1162.747 06(16) nm, wave number 8600.3227(12) cm{sup -1}], in agreement with the only prior measurement, but with more than 100-fold higher precision.

  10. Giant quiescent solar filament observed with high-resolution spectroscopy

    NASA Astrophysics Data System (ADS)

    Kuckein, C.; Verma, M.; Denker, C.

    2016-05-01

    Aims: An extremely large filament was studied in various layers of the solar atmosphere. The inferred physical parameters and the morphological aspects are compared with smaller quiescent filaments. Methods: A giant quiet-Sun filament was observed with the high-resolution Echelle spectrograph at the Vacuum Tower Telescope at Observatorio del Teide, Tenerife, Spain, on 2011 November 15. A mosaic of spectra (ten maps of 100″ × 182″) was recorded simultaneously in the chromospheric absorption lines Hα and Na i D2. Physical parameters of the filament plasma were derived using cloud model (CM) inversions and line core fits. The spectra were complemented with full-disk filtergrams (He i λ10830 Å, Hα, and Ca ii K) of the Chromospheric Telescope (ChroTel) and full-disk magnetograms of the Helioseismic and Magnetic Imager (HMI). Results: The filament had extremely large linear dimensions (~817 arcsec), which corresponds to about 658 Mm along a great circle on the solar surface. A total amount of 175119 Hα contrast profiles were inverted using the CM approach. The inferred mean line-of-sight (LOS) velocity, Doppler width, and source function were similar to previous works of smaller quiescent filaments. However, the derived optical thickness was higher. LOS velocity trends inferred from the Hα line core fits were in accord but weaker than those obtained with CM inversions. Signatures of counter-streaming flows were detected in the filament. The largest brightening conglomerates in the line core of Na i D2 coincided well with small-scale magnetic fields as seen by HMI. Mixed magnetic polarities were detected close to the ends of barbs. The computation of photospheric horizontal flows based on HMI magnetograms revealed flow kernels with a size of 5-8 Mm and velocities of 0.30-0.45 km s-1 at the ends of the filament. Conclusions: The physical properties of extremely large filaments are similar to their smaller counterparts, except for the optical thickness, which in

  11. High-resolution spectroscopy with a femtosecond laser frequency comb.

    PubMed

    Gerginov, V; Tanner, C E; Diddams, S A; Bartels, A; Hollberg, L

    2005-07-01

    The output of a mode-locked femtosecond laser is used for precision single-photon spectroscopy of 133Cs in an atomic beam. By changing the laser's repetition rate, the cesium D1 (6s 2S(1/2)-->6p 2P(1/2)) and D2 (6s 2S(1/2)-->6p 2P(3/2)) transitions are detected and the optical frequencies are measured with accuracy similar to that obtained with a cw laser. Control of the femtosecond laser repetition rate by use of the atomic fluorescence is also implemented, thus realizing a simple cesium optical clock.

  12. Molecular Chirality: Enantiomer Differentiation by High-Resolution Spectroscopy

    NASA Astrophysics Data System (ADS)

    Hirota, Eizi

    2014-06-01

    I have demonstrated that triple resonance performed on a three-rotational-level system of a chiral molecule of C1 symmetry exhibits signals opposite in phase for different enantiomers, thereby making enantiomer differentiation possible by microwave spectroscopy This prediction was realized by Patterson et al. on 1,2-propanediol and 1,3-butanediol. We thus now add a powerful method: microwave spectroscopy to the study of chiral molecules, for which hitherto only the measurement of optical rotation has been employed. Although microwave spectroscopy is applied to molecules in the gaseous phase, it is unprecedentedly superior to the traditional method: polarimeter in resolution, accuracy, sensitivity, and so on, and I anticipate a new fascinating research area to be opened in the field of molecular chirality. More versatile and efficient systems should be invented and developed for microwave spectroscopy, in order to cope well with new applications expected for this method For C2 and Cn (n ≥ 3)chiral molecules, the three-rotational-level systems treated above for C1 molecules are no more available within one vibronic state. It should, however, be pointed out that, if we take into account an excited vibronic state in addition to the ground state, for example, we may encounter many three-level systems. Namely, either one rotational transition in the ground state is combined with two vibronic transitions, or such a rotational transition in an excited state may be connected through two vibronic transitions to a rotational level in the ground state manifold. The racemization obviously plays a crucial role in the study of molecular chirality. However, like many other terms employed in chemistry, this important process has been "defined" only in a vague way, in other words, it includes many kinds of processes, which are not well classified on a molecular basis. I shall mention an attempt to obviate these shortcomings in the definition of racemization and also to clarify the

  13. High-resolution waveguide THz spectroscopy of biological molecules.

    PubMed

    Laman, N; Harsha, S Sree; Grischkowsky, D; Melinger, Joseph S

    2008-02-01

    Low-frequency vibrational modes of biological molecules consist of intramolecular modes, which are dependent on the molecule as a whole, as well as intermolecular modes, which arise from hydrogen-bonding interactions and van der Waals forces. Vibrational modes thus contain important information about conformation dynamics of biological molecules, and can also be used for identification purposes. However, conventional Fourier transform infrared spectroscopy and terahertz time-domain spectroscopy (THz-TDS) often result in broad, overlapping features that are difficult to distinguish. The technique of waveguide THz-TDS has been recently developed, resulting in sharper features. For this technique, an ordered polycrystalline film of the molecule is formed on a metal sample plate. This plate is incorporated into a metal parallel-plate waveguide and probed via waveguide THz-TDS. The planar order of the film reduces the inhomogeneous broadening, and cooling of the samples to 77K reduces the homogenous broadening. This combination results in the line-narrowing of THz vibrational modes, in some cases to an unprecedented degree. Here, this technique has been demonstrated with seven small biological molecules, thymine, deoxycytidine, adenosine, D-glucose, tryptophan, glycine, and L-alanine. The successful demonstration of this technique shows the possibilities and promise for future studies of internal vibrational modes of large biological molecules.

  14. Structural and Physicochemical Characterization of Spirulina (Arthrospira maxima) Nanoparticles by High-Resolution Electron Microscopic Techniques.

    PubMed

    Neri-Torres, Elier Ekberg; Chanona-Pérez, Jorge J; Calderón, Hector A; Torres-Figueredo, Neil; Chamorro-Cevallos, German; Calderón-Domínguez, Georgina; Velasco-Bedrán, Hugo

    2016-08-01

    The objective of this work was to obtain Spirulina (Arthrospira maxima) nanoparticles (SNPs) by using high-impact mechanical milling and to characterize them by electron microscopy and spectroscopy techniques. The milling products were analyzed after various processing times (1-4 h), and particle size distribution and number mean size (NMS) were determined by analysis of high-resolution scanning electron microscopic images. The smallest particles are synthesized after 3 h of milling, had an NMS of 55.6±3.6 nm, with 95% of the particles being smaller than 100 nm. High-resolution transmission electron microscopy showed lattice spacing of ~0.27±0.015 nm for SNPs. The corresponding chemical composition was obtained by energy-dispersive X-ray spectroscopy, and showed the presence of Ca, Fe, K, Mg, Na, and Zn. The powder flow properties showed that the powder density was higher when the average nanoparticle size is smaller. They showed free flowability and an increase in their specific surface area (6.89±0.23 m2/g) up to 12-14 times larger than the original material (0.45±0.02 m2/g). Fourier transform infrared spectroscopy suggested that chemical damage related to the milling is not significant.

  15. High resolution ion Doppler spectroscopy at Prairie View Rotamak

    SciTech Connect

    Houshmandyar, Saeid; Yang Xiaokang; Magee, Richard

    2012-10-15

    A fast ion Doppler spectroscopy (IDS) diagnostic system is installed on the Prairie View Rotamak to measure ion temperature and plasma flow. The diagnostic employs a single channel photomultiplier tube and a Jarrell-Ash 50 monochromator with a diffraction grating line density of 1180 lines/mm, which allows for first order spectra of 200-600 nm. The motorized gear of the monochromator allows spectral resolution of 0.01 nm. Equal IDS measurements are observed for various impurity emission lines of which carbon lines exhibit stronger intensities. Furthermore, the diagnostics is examined in an experiment where plasma experiences sudden disruption and quick recovery. In this case, the IDS measurements show {approx}130% increase in ion temperature. Flow measurements are shown to be consistent with plasma rotation.

  16. High resolution charge spectroscopy of heavy ions with FNTD technology

    NASA Astrophysics Data System (ADS)

    Bartz, J. A.; Kodaira, S.; Kurano, M.; Yasuda, N.; Akselrod, M. S.

    2014-09-01

    This paper is focused on the improvement of the heavy charge particle charge resolution of Fluorescent Nuclear Track Detector (FNTD) technology. Fluorescent intensity of individual heavy charge particle tracks is used to construct the spectrum. Sources of spectroscopic line broadening were investigated and several fluorescent intensity correction procedures were introduced to improve the charge resolution down to δZ = 0.25 c.u. and enable FNTD technology to distinguish between all projectile fragments of 290 MeV carbon ions. The benefits of using FNTD technology for fragmentation study include large dynamic range and wide angular acceptance. While we describe these developments in the context of fragmentation studies, the same techniques are readily extended to FNTD LET spectroscopy in general.

  17. High resolution spectroscopy reveals fibrillation inhibition pathways of insulin

    NASA Astrophysics Data System (ADS)

    Deckert-Gaudig, Tanja; Deckert, Volker

    2016-12-01

    Fibril formation implies the conversion of a protein’s native secondary structure and is associated with several neurodegenerative diseases. A better understanding of fibrillation inhibition and fibril dissection requires nanoscale molecular characterization of amyloid structures involved. Tip-enhanced Raman scattering (TERS) has already been used to chemically analyze amyloid fibrils on a sub-protein unit basis. Here, TERS in combination with atomic force microscopy (AFM), and conventional Raman spectroscopy characterizes insulin assemblies generated during inhibition and dissection experiments in the presence of benzonitrile, dimethylsulfoxide, quercetin, and β-carotene. The AFM topography indicates formation of filamentous or bead-like insulin self-assemblies. Information on the secondary structure of bulk samples and of single aggregates is obtained from standard Raman and TERS measurements. In particular the high spatial resolution of TERS reveals the surface conformations associated with the specific agents. The insulin aggregates formed under different inhibition and dissection conditions can show a similar morphology but differ in their β-sheet structure content. This suggests different aggregation pathways where the prevention of the β-sheet stacking of the peptide chains plays a major role. The presented approach is not limited to amyloid-related reasearch but can be readily applied to systems requiring extremely surface-sensitive characterization without the need of labels.

  18. High resolution spectroscopy reveals fibrillation inhibition pathways of insulin

    PubMed Central

    Deckert-Gaudig, Tanja; Deckert, Volker

    2016-01-01

    Fibril formation implies the conversion of a protein’s native secondary structure and is associated with several neurodegenerative diseases. A better understanding of fibrillation inhibition and fibril dissection requires nanoscale molecular characterization of amyloid structures involved. Tip-enhanced Raman scattering (TERS) has already been used to chemically analyze amyloid fibrils on a sub-protein unit basis. Here, TERS in combination with atomic force microscopy (AFM), and conventional Raman spectroscopy characterizes insulin assemblies generated during inhibition and dissection experiments in the presence of benzonitrile, dimethylsulfoxide, quercetin, and β-carotene. The AFM topography indicates formation of filamentous or bead-like insulin self-assemblies. Information on the secondary structure of bulk samples and of single aggregates is obtained from standard Raman and TERS measurements. In particular the high spatial resolution of TERS reveals the surface conformations associated with the specific agents. The insulin aggregates formed under different inhibition and dissection conditions can show a similar morphology but differ in their β-sheet structure content. This suggests different aggregation pathways where the prevention of the β-sheet stacking of the peptide chains plays a major role. The presented approach is not limited to amyloid-related reasearch but can be readily applied to systems requiring extremely surface-sensitive characterization without the need of labels. PMID:28008970

  19. High resolution FTIR spectroscopy of the ClO radical

    NASA Technical Reports Server (NTRS)

    Lang, Valerie; Sander, Stanley P.; Friedl, Randy

    1988-01-01

    The chlorine monoxide radical, ClO, plays a significant role in the catalytic destruction of ozone in the Earth's stratosphere. Because of its atmospheric importance, ClO has been the subject of numerous observational attempts. In order to deduce ClO concentrations from stratospheric infrared measurements, the infrared spectroscopy of ClO must be well characterized. Approximately 830 individual lines were measured form ClO imfrared spectra with the ClO concentration between 1 x 10 to the 13th power and 6 x 10 to the 13th power molecules per cu cu. The lines were then averaged and fit to a function of m (where m = O, -J or J+1 for the Q,P and R branches respectively) to obtain the band strength, S sub v and the first Herman-Wallis coefficient, alpha. The total S sub v for the two main isotopmers was 13.11 plus or minus 1 cm(-2) atm(-1) while alpha was 0.00412 plus or minus .00062.

  20. High resolution laser induced fluorescence Doppler velocimetry utilizing saturated absorption spectroscopy

    SciTech Connect

    Aramaki, Mitsutoshi; Ogiwara, Kohei; Etoh, Shuzo; Yoshimura, Shinji; Tanaka, Masayoshi Y.

    2009-05-15

    A high resolution laser induced fluorescence (LIF) system has been developed to measure the flow velocity field of neutral particles in an electron-cyclotron-resonance argon plasma. The flow velocity has been determined by the Doppler shift of the LIF spectrum, which is proportional to the velocity distribution function. Very high accuracy in velocity determination has been achieved by installing a saturated absorption spectroscopy unit into the LIF system, where the absolute value and scale of laser wavelength are determined by using the Lamb dip and the fringes of a Fabry-Perot interferometer. The minimum detectable flow velocity of a newly developed LIF system is {+-}2 m/s, and this performance remains unchanged in a long-time experiment. From the radial measurements of LIF spectra of argon metastable atoms, it is found that there exists an inward flow of neutral particles associated with neutral depletion.

  1. High resolution spin- and angle-resolved photoelectron spectroscopy for 3D spin vectorial analysis

    NASA Astrophysics Data System (ADS)

    Okuda, Taichi; Miyamoto, Koji; Kimura, Akio; Namatame, Hirofumi; Taniguchi, Masaki

    2013-03-01

    Spin- and angle-resolved photoelectron spectroscopy (SARPES) is the excellent tool which can directly observe the band structure of crystals with separating spin-up and -down states. Recent findings of new class of materials possessing strong spin orbit interaction such as Rashba spin splitting systems or topological insulators stimulate to develop new SARPES apparatuses and many sophisticated techniques have been reported recently. Here we report our newly developed a SARPES apparatus for spin vectorial analysis with high precision at Hiroshima Synchrotron Radiation Center. Highly efficient spin polarimeter utilizing very low energy electron diffraction (VLEED) makes high resolution (ΔE < 10 meV, Δθ ~ +/- 0.2 °) compatible with the SARPES measurement. By placing two VLEED spin detectors orthogonally we have realized the polarization measurement of all spin components (x, y and z) with the high resolution. Some examples of the three-dimensional spin observation will be presented. This work is supported by KAKENHI (23244066), Grant-in-Aid for Scientific Research (A) of Japan Society for the Promotion of Science.

  2. Transfer-printing of single DNA molecule arrays on graphene for high resolution electron imaging and analysis

    PubMed Central

    Cerf, Aline; Alava, Thomas; Barton, Robert A.; Craighead, Harold G.

    2011-01-01

    Graphene represents the ultimate substrate for high-resolution transmission electron microscopy, but the deposition of biological samples on this highly hydrophobic material has until now been a challenge. We present a reliable method for depositing ordered arrays of individual elongated DNA molecules on single-layer graphene substrates for high resolution electron beam imaging and electron energy loss spectroscopy analysis. This method is a necessary step towards the observation of single elongated DNA molecules with single base spatial resolution to directly read genetic and epigenetic information. PMID:21919532

  3. Ultra high resolution molecular beam cars spectroscopy with application to planetary atmospheric molecules

    NASA Technical Reports Server (NTRS)

    Byer, R. L.

    1982-01-01

    The measurement of high resolution pulsed and continuous wave (CW) coherent anti-Stokes Raman spectroscopy (CARS) measurements in pulsed and steady state supersonic expansions were demonstrated. Pulsed molecular beam sources were characterized, and saturation of a Raman transition and, for the first time, the Raman spectrum of a complex molecular cluster were observed. The observation of CW CARS spectra in a molecular expansion and the effects of transit time broadening is described. Supersonic expansion is established as a viable technique for high resolution Raman spectroscopy of cold molecules with resolutions of 100 MH2.

  4. The determination of potential energy curve and dipole moment of the (5)0{sup +} electronic state of {sup 85}Rb{sup 133}Cs molecule by high resolution photoassociation spectroscopy

    SciTech Connect

    Yuan, Jinpeng; Zhao, Yanting Ji, Zhonghua; Li, Zhonghao; Xiao, Liantuan; Jia, Suotang; Kim, Jin-Tae

    2015-12-14

    We present the formation of ultracold {sup 85}Rb{sup 133}Cs molecules in the (5)0{sup +} electronic state by photoassociation and their detection via resonance-enhanced two-photon ionization. Up to v = 47 vibrational levels including the lowest v = 0 vibrational and lowest J = 0 levels are identified with rotationally resolved high resolution photoassociation spectra. Precise Dunham coefficients are determined for the (5)0{sup +} state with high accuracy, then the Rydberg-Klein-Rees potential energy curve is derived. The electric dipole moments with respect to the vibrational numbers of the (5)0{sup +} electronic state of {sup 85}Rb{sup 133}Cs molecule are also measured in the range between 1.9 and 4.8 D. These comprehensive studies on previously unobserved rovibrational levels of the (5)0{sup +} state are helpful to understand the molecular structure and discover suitable transition pathways for transferring ultracold atoms to deeply bound rovibrational levels of the electronic ground state.

  5. Dose-dependent high-resolution electron ptychography

    SciTech Connect

    D'Alfonso, A. J.; Allen, L. J.; Sawada, H.; Kirkland, A. I.

    2016-02-07

    Recent reports of electron ptychography at atomic resolution have ushered in a new era of coherent diffractive imaging in the context of electron microscopy. We report and discuss electron ptychography under variable electron dose conditions, exploring the prospects of an approach which has considerable potential for imaging where low dose is needed.

  6. High-Resolution Solid-State NMR Spectroscopy: Characterization of Polymorphism in Cimetidine, a Pharmaceutical Compound

    ERIC Educational Resources Information Center

    Pacilio, Julia E.; Tokarski, John T.; Quiñones, Rosalynn; Iuliucci, Robbie J.

    2014-01-01

    High-resolution solid-state NMR (SSNMR) spectroscopy has many advantages as a tool to characterize solid-phase material that finds applications in polymer chemistry, nanotechnology, materials science, biomolecular structure determination, and others, including the pharmaceutical industry. The technology associated with achieving high resolution…

  7. High resolution x-ray fluorescence spectroscopy - a new technique for site- and spin-selectivity

    SciTech Connect

    Wang, Xin

    1996-12-01

    X-ray spectroscopy has long been used to elucidate electronic and structural information of molecules. One of the weaknesses of x-ray absorption is its sensitivity to all of the atoms of a particular element in a sample. Through out this thesis, a new technique for enhancing the site- and spin-selectivity of the x-ray absorption has been developed. By high resolution fluorescence detection, the chemical sensitivity of K emission spectra can be used to identify oxidation and spin states; it can also be used to facilitate site-selective X-ray Absorption Near Edge Structure (XANES) and site-selective Extended X-ray Absorption Fine Structure (EXAFS). The spin polarization in K fluorescence could be used to generate spin selective XANES or spin-polarized EXAFS, which provides a new measure of the spin density, or the nature of magnetic neighboring atoms. Finally, dramatic line-sharpening effects by the combination of absorption and emission processes allow observation of structure that is normally unobservable. All these unique characters can enormously simplify a complex x-ray spectrum. Applications of this novel technique have generated information from various transition-metal model compounds to metalloproteins. The absorption and emission spectra by high resolution fluorescence detection are interdependent. The ligand field multiplet model has been used for the analysis of K{alpha} and K{beta} emission spectra. First demonstration on different chemical states of Fe compounds has shown the applicability of site selectivity and spin polarization. Different interatomic distances of the same element in different chemical forms have been detected using site-selective EXAFS.

  8. High Resolution Photoelectron Spectroscopy of Au_2^- and Au_4^- by Photoelectron Imaging

    NASA Astrophysics Data System (ADS)

    Leon, Iker; Yang, Zheng; Wang, Lai-Sheng

    2013-06-01

    We report high resolution photoelectron spectra of Au_2^- and Au_4^- obtained with a newly-built photoelectron imaging apparatus. Gold anions are produced by laser vaporization and the desired specie is mass selected and focused into the collinear velocity-map imaging (VMI) lens assembly. The design of the imaging lens has allowed us to obtain less than 0.9% energy resolution for high kinetic energy electrons ( > 1eV) while maintaining wavenumber resolution for low kinetic energy electrons. Although gold dimer and tetramer have been studied in the past, we present spectroscopic results under high resolution. For Au_2^-, we report high resolution spectra with an accurate determination of the electron affinity together with a complete vibrational assignment, for both the anion and neutral ground states, while for Au_4^-, we are able to resolve a low frequency mode and obtain accurately the adiabatic detachment energy.

  9. High-resolution mirror temperature mapping in GaN-based diode lasers by thermoreflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Pierścińska, Dorota; Marona, Łucja; Pierściński, Kamil; Wiśniewski, Przemysław; Perlin, Piotr; Bugajski, Maciej

    2017-02-01

    In this paper accurate measurements of temperature distribution on the facet of GaN-based diode lasers are presented as well as development of the instrumentation for high-resolution thermal imaging based on thermoreflectance. It is shown that thermoreflectance can be successfully applied to provide information on heat dissipation in these devices. We demonstrate the quantitative measurements of the temperature profiles and high-resolution temperature maps on the front facet of nitride lasers and prove that thermoreflectance spectroscopy can be considered as the accurate and fast nondestructive tool for investigation of thermally induced degradation modes of GaN lasers.

  10. Very high resolution UV and X-ray spectroscopy and imagery of solar active regions

    NASA Technical Reports Server (NTRS)

    Bruner, M.; Brown, W. A.; Haisch, B. M.

    1987-01-01

    A scientific investigation of the physics of the solar atmosphere, which uses the techniques of high resolution soft X-ray spectroscopy and high resolution UV imagery, is described. The experiments were conducted during a series of three sounding rocket flights. All three flights yielded excellent images in the UV range, showing unprecedented spatial resolution. The second flight recorded the X-ray spectrum of a solar flare, and the third that of an active region. A normal incidence multi-layer mirror was used during the third flight to make the first astronomical X-ray observations using this new technique.

  11. Electronic Spectroscopy & Dynamics

    SciTech Connect

    Mark Maroncelli, Nancy Ryan Gray

    2010-06-08

    The Gordon Research Conference (GRC) on Electronic Spectroscopy and Dynamics was held at Colby College, Waterville, NH from 07/19/2009 thru 07/24/2009. The Conference was well-attended with participants (attendees list attached). The attendees represented the spectrum of endeavor in this field coming from academia, industry, and government laboratories, both U.S. and foreign scientists, senior researchers, young investigators, and students. The GRC on Electronic Spectroscopy & Dynamics showcases some of the most recent experimental and theoretical developments in electronic spectroscopy that probes the structure and dynamics of isolated molecules, molecules embedded in clusters and condensed phases, and bulk materials. Electronic spectroscopy is an important tool in many fields of research, and this GRC brings together experts having diverse backgrounds in physics, chemistry, biophysics, and materials science, making the meeting an excellent opportunity for the interdisciplinary exchange of ideas and techniques. Topics covered in this GRC include high-resolution spectroscopy, biological molecules in the gas phase, electronic structure theory for excited states, multi-chromophore and single-molecule spectroscopies, and excited state dynamics in chemical and biological systems.

  12. Experimental setup for high resolution x-ray spectroscopy of solids and liquid samples

    NASA Astrophysics Data System (ADS)

    Yin, Zhong; Rajković, Ivan; Raiser, Dirk; Scholz, Mirko; Techert, Simone

    2013-09-01

    Here we present a next-generation experimental setup for high-resolution X-ray spectroscopy of solid and liquid samples in the soft X-ray region to elucidate the complex molecular structures of (bio)chemical systems. The setup consists of a main target chamber, a target holder for either solid samples or a liquid jet delivery system, and a high-resolution soft X-ray grating spectrometer. This setup is in commissioning at PETRA III, presently one of the most brilliant storage ring based X-ray radiation sources in the world. The newly designed grazing incidence grating spectrometer is utilized for high-resolution measurement in the XUV range from 1 nm up to 6 nm.

  13. High-Resolution of Electron Microscopy of Montmorillonite and Montmorillonite/Epoxy Nanocomposites

    DTIC Science & Technology

    2005-01-01

    AFRL-ML-WP-TP-2006-464 HIGH-RESOLUTION OF ELECTRON MICROSCOPY OF MONTMORILLONITE AND MONTMORILLONITE /EPOXY NANOCOMPOSITES Lawrence F...HIGH-RESOLUTION OF ELECTRON MICROSCOPY OF MONTMORILLONITE AND MONTMORILLONITE /EPOXY NANOCOMPOSITES 5c. PROGRAM ELEMENT NUMBER 62102F 5d...transmission electron microscopy the structure and morphology of montmorillonite (MMT), a material of current interest for use in polymer nanocomposites, was

  14. High resolution dissociative electron attachment to gas phase adenine

    SciTech Connect

    Huber, D.; Beikircher, M.; Denifl, S.; Zappa, F.; Matejcik, S.; Bacher, A.; Grill, V.; Maerk, T. D.; Scheier, P.

    2006-08-28

    The dissociative electron attachment to the gas phase nucleobase adenine is studied using two different experiments. A double focusing sector field mass spectrometer is utilized for measurements requiring high mass resolution, high sensitivity, and relative ion yields for all the fragment anions and a hemispherical electron monochromator instrument for high electron energy resolution. The negative ion mass spectra are discussed at two different electron energies of 2 and 6 eV. In contrast to previous gas phase studies a number of new negative ions are discovered in the mass spectra. The ion efficiency curves for the negative ions of adenine are measured for the electron energy range from about 0 to 15 eV with an electron energy resolution of about 100 meV. The total anion yield derived via the summation of all measured fragment anions is compared with the total cross section for negative ion formation measured recently without mass spectrometry. For adenine the shape of the two cross section curves agrees well, taking into account the different electron energy resolutions; however, for thymine some peculiar differences are observed.

  15. High-resolution inverse Raman and resonant-wave-mixing spectroscopy

    SciTech Connect

    Rahn, L.A.

    1993-12-01

    These research activities consist of high-resolution inverse Raman spectroscopy (IRS) and resonant wave-mixing spectroscopy to support the development of nonlinear-optical techniques for temperature and concentration measurements in combustion research. Objectives of this work include development of spectral models of important molecular species needed to perform coherent anti-Stokes Raman spectroscopy (CARS) measurements and the investigation of new nonlinear-optical processes as potential diagnostic techniques. Some of the techniques being investigated include frequency-degenerate and nearly frequency-degenerate resonant four-wave-mixing (DFWM and NDFWM), and resonant multi-wave mixing (RMWM).

  16. High-resolution photoluminescence spectroscopy of Sn-doped ZnO single crystals

    SciTech Connect

    Kumar, E. Senthil; Mohammadbeigi, F.; Boatner, Lynn A.; Watkins, S. P.

    2016-01-01

    Here, Group IV donors in ZnO are poorly understood, despite evidence that they are effective n-dopants. We present high-resolution photoluminescence spectroscopy studies of unintentionally doped and Sn doped ZnO single crystals grown by the chemical vapor transport method. Doped samples showed greatly increased emission from the I10 bound exciton transition which was recently proven to be related to the incorporation of Sn impurities based on radio-isotope studies. PL linewidths are exceptionally sharp for these samples, enabling clear identification of several donor species. Temperature dependent PL measurements of the I10 line emission energy and intensity dependence reveal a behavior similar to other shallow donors in ZnO. Ionized donor bound exciton and two electron satellite transitions of the I10 transition are unambiguously identified and yield a donor binding energy of 71 meV. In contrast to recent reports of Ge-related donors in ZnO, the spectroscopic binding energy for the Sn-related donor bound exciton follows a linear relationship with donor binding energy (Haynes rule), confirming the shallow nature of this defect center, which we attribute to a SnZn double donor compensated by an unknown single acceptor.

  17. High-resolution photoluminescence spectroscopy of Sn-doped ZnO single crystals

    DOE PAGES

    Kumar, E. Senthil; Mohammadbeigi, F.; Boatner, Lynn A.; ...

    2016-01-01

    Here, Group IV donors in ZnO are poorly understood, despite evidence that they are effective n-dopants. We present high-resolution photoluminescence spectroscopy studies of unintentionally doped and Sn doped ZnO single crystals grown by the chemical vapor transport method. Doped samples showed greatly increased emission from the I10 bound exciton transition which was recently proven to be related to the incorporation of Sn impurities based on radio-isotope studies. PL linewidths are exceptionally sharp for these samples, enabling clear identification of several donor species. Temperature dependent PL measurements of the I10 line emission energy and intensity dependence reveal a behavior similar tomore » other shallow donors in ZnO. Ionized donor bound exciton and two electron satellite transitions of the I10 transition are unambiguously identified and yield a donor binding energy of 71 meV. In contrast to recent reports of Ge-related donors in ZnO, the spectroscopic binding energy for the Sn-related donor bound exciton follows a linear relationship with donor binding energy (Haynes rule), confirming the shallow nature of this defect center, which we attribute to a SnZn double donor compensated by an unknown single acceptor.« less

  18. Metals on BN Studied by High Resolution Transmission Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Bangert, U.; Zan, R.; Ramasse, Q.; Jalil, Rashid; Riaz, Ibstam; Novoselov, K. S.

    2012-07-01

    Metal impurities, gold and nickel, have been deliberately introduced into boron-nitride (BN) sheets. The structural and topographic properties of doped BN have been studied by aberration corrected scanning transmission electron microscopy (STEM). Analysis revealed that metal atoms cluster preferentially in/on contaminated areas. The metal coverage on BN is almost the same for the same evaporated amount of 1 Å.

  19. Copper Decoration of Carbon Nanotubes and High Resolution Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Probst, Camille

    A new process of decorating carbon nanotubes with copper was developed for the fabrication of nanocomposite aluminum-nanotubes. The process consists of three stages: oxidation, activation and electroless copper plating on the nanotubes. The oxidation step was required to create chemical function on the nanotubes, essential for the activation step. Then, catalytic nanoparticles of tin-palladium were deposited on the tubes. Finally, during the electroless copper plating, copper particles with a size between 20 and 60 nm were uniformly deposited on the nanotubes surface. The reproducibility of the process was shown by using another type of carbon nanotube. The fabrication of nanocomposites aluminum-nanotubes was tested by aluminum vacuum infiltration. Although the infiltration of carbon nanotubes did not produce the expected results, an interesting electron microscopy sample was discovered during the process development: the activated carbon nanotubes. Secondly, scanning transmitted electron microscopy (STEM) imaging in SEM was analysed. The images were obtained with a new detector on the field emission scanning electron microscope (Hitachi S-4700). Various parameters were analysed with the use of two different samples: the activated carbon nanotubes (previously obtained) and gold-palladium nanodeposits. Influences of working distance, accelerating voltage or sample used on the spatial resolution of images obtained with SMART (Scanning Microscope Assessment and Resolution Testing) were analysed. An optimum working distance for the best spatial resolution related to the sample analysed was found for the imaging in STEM mode. Finally, relation between probe size and spatial resolution of backscattered electrons (BSE) images was studied. An image synthesis method was developed to generate the BSE images from backscattered electrons coefficients obtained with CASINO software. Spatial resolution of images was determined using SMART. The analysis shown that using a probe

  20. High resolution rare-earth elements analyses of natural apatite and its application in geo-sciences: Combined micro-PIXE, quantitative CL spectroscopy and electron spin resonance analyses

    NASA Astrophysics Data System (ADS)

    Habermann, D.; Götte, T.; Meijer, J.; Stephan, A.; Richter, D. K.; Niklas, J. R.

    2000-03-01

    The rare-earth element (REE) distribution in natural apatite is analysed by micro-PIXE, cathodoluminescence (CL) microscopy and spectroscopy and electron spin resonance (ESR) spectroscopy. The micro-PIXE analyses of an apatite crystal from Cerro de Mercado (Mexico) and the summary of 20 analyses of six francolite (conodonts of Triassic age) samples indicate that most of the REEs are enriched in apatite and francolite comparative to average shale standard (NASC). The analyses of fossil francolite revealing the REE-distribution not to be in balance with the REE-distribution of seawater and fish bone debris. Strong inhomogenous lateral REE-distribution in fossil conodont material is shown by CL-mapping and most probably not being a vital effect. Therefore, the resulting REE-signal from fossil francolite is the sum of vital and post-mortem incorporation. The necessary charge compensation for the substitution of divalent Ca by trivalent REE being done by different kind of electron defects and defect ions.

  1. Gas-Phase Molecular Dynamics: High Resolution Spectroscopy and Collision Dynamics of Transient Species

    SciTech Connect

    Hall,G.E.; Sears, T.J.

    2009-04-03

    This research is carried out as part of the Gas-Phase Molecular Dynamics program in the Chemistry Department at Brookhaven National Laboratory. High-resolution spectroscopy, augmented by theoretical and computational methods, is used to investigate the structure and collision dynamics of chemical intermediates in the elementary gas-phase reactions involved in combustion chemistry. Applications and methods development are equally important experimental components of this work.

  2. High-resolution extreme-ultraviolet spectroscopy of potassium using anti-Stokes radiation

    NASA Technical Reports Server (NTRS)

    Rothenberg, J. E.; Young, J. F.; Harris, S. E.

    1981-01-01

    The use of a new extreme-ultraviolet radiation source based on spontaneous anti-Stokes scattering for high-resolution absorption spectroscopy of transition originating from the 3p6 shell of potassium is reported. The region from 546.6 to 536.8 A is scanned at a resolution of about 1.2 Kayser. Within this region, four previously unreported lines are observed.

  3. Update of High Resolution (e,e'K^+) Hypernuclear Spectroscopy at Jefferson Lab's Hall A

    SciTech Connect

    Cusanno, F; Bydzovsky, P; Chang, C C; Cisbani, E; De Jager, C W; De Leo, R; Frullani, S; Garibaldi, F; Higinbotham, D W; Iodice, M; LeRose, J J; Markowitz, P; Marrone, S; Sotona, M; Urciuoli, G M

    2010-03-01

    Updated results of the experiment E94-107 hypernuclear spectroscopy in Hall A of the Thomas Jefferson National Accelerator Facility (Jefferson Lab), are presented. The experiment provides high resolution spectra of excitation energy for 12B_\\Lambda, 16N_\\Lambda, and 9Li_\\Lambda hypernuclei obtained by electroproduction of strangeness. A new theoretical calculation for 12B_\\Lambda, final results for 16N_\\Lambda, and discussion of the preliminary results of 9Li_\\Lambda are reported.

  4. High resolution optical spectroscopy of air-induced electrical instabilities in n-type polymer semiconductors.

    PubMed

    Di Pietro, Riccardo; Sirringhaus, Henning

    2012-07-03

    We use high-resolution charge-accumulation optical spectroscopy to measure charge accumulation in the channel of an n-type organic field-effect transistor. We monitor the degradation of device performance in air, correlate the onset voltage shift with the reduction of charge accumulated in the polymer semiconductor, and explain the results in view of the redox reaction between the polymer, water and oxygen in the accumulation layer.

  5. Gas-Phase Molecular Dynamics: High Resolution Spectroscopy and Collision Dynamics of Transient Species

    SciTech Connect

    Hall, G.E.

    2011-05-31

    This research is carried out as part of the Gas-Phase Molecular Dynamics program in the Chemistry Department at Brookhaven National Laboratory. Chemical intermediates in the elementary gas-phase reactions involved in combustion chemistry are investigated by high resolution spectroscopic tools. Production, reaction, and energy transfer processes are investigated by transient, double resonance, polarization and saturation spectroscopies, with an emphasis on technique development and connection with theory, as well as specific molecular properties.

  6. Gas-Phase Molecular Dynamics: High Resolution Spectroscopy and Collision Dynamics of Transient Species

    SciTech Connect

    Hall G. E.; Goncharov, V.

    2012-05-29

    This research is carried out as part of the Gas-Phase Molecular Dynamics program in the Chemistry Department at Brookhaven National Laboratory. Chemical intermediates in the elementary gas-phase reactions involved in combustion chemistry are investigated by high resolution spectroscopic tools. Production, reaction, and energy transfer processes are investigated by transient, double resonance, polarization and saturation spectroscopies, with an emphasis on technique development and connection with theory, as well as specific molecular properties.

  7. High Resolution Inelastic Electron Scattering from LEAD-208.

    NASA Astrophysics Data System (ADS)

    Connelly, James Patrick

    Inclusive electron scattering differential cross sections from ^{208}Pb have been measured with energy resolutions better than 20 keV for over 120 discrete states with excitation energies less than 7.3 MeV. The momentum-transfer dependence of these cross sections has been mapped over a range of 0.5 to 2.8 fm^{-1} in the forward direction and 1.0 to 2.9 fm^{ -1} in the backward scattering direction. Over fifty excitations have been analyzed in the Distorted Wave Born Approximation to yield transition charge, current and magnetization densities. The nuclear structure of discrete excitations are interpreted in the framework of 1p-1h transition. The nuclear structure of levels in the excitation region below 4.8 MeV is studied in detail. Above 4.8 MeV, multiplets from single particle-hole configurations coupling to high spin states (J >=q 7) are investigated. Experimental transition densities are compared to Tamm-Dancoff calculations from a correlated ground state.

  8. High-resolution monochromator for iron nuclear resonance vibrational spectroscopy of biological samples

    NASA Astrophysics Data System (ADS)

    Yoda, Yoshitaka; Okada, Kyoko; Wang, Hongxin; Cramer, Stephen P.; Seto, Makoto

    2016-12-01

    A new high-resolution monochromator for 14.4-keV X-rays has been designed and developed for the Fe nuclear resonance vibrational spectroscopy of biological samples. In addition to high resolution, higher flux and stability are especially important for measuring biological samples, because of the very weak signals produced due to the low concentrations of Fe-57. A 24% increase in flux while maintaining a high resolution better than 0.9 meV is achieved in the calculation by adopting an asymmetric reflection of Ge, which is used as the first crystal of the three-bounce high-resolution monochromator. A 20% increase of the exit beam size is acceptable to our biological applications. The higher throughput of the new design has been experimentally verified. A fine rotation mechanics that combines a weak-link hinge with a piezoelectric actuator was used for controlling the photon energy of the monochromatic beam. The resulting stability is sufficient to preserve the intrinsic resolution.

  9. High-resolution heteronuclear multi-dimensional NMR spectroscopy in magnetic fields with unknown spatial variations.

    PubMed

    Zhang, Zhiyong; Huang, Yuqing; Smith, Pieter E S; Wang, Kaiyu; Cai, Shuhui; Chen, Zhong

    2014-05-01

    Heteronuclear NMR spectroscopy is an extremely powerful tool for determining the structures of organic molecules and is of particular significance in the structural analysis of proteins. In order to leverage the method's potential for structural investigations, obtaining high-resolution NMR spectra is essential and this is generally accomplished by using very homogeneous magnetic fields. However, there are several situations where magnetic field distortions and thus line broadening is unavoidable, for example, the samples under investigation may be inherently heterogeneous, and the magnet's homogeneity may be poor. This line broadening can hinder resonance assignment or even render it impossible. We put forth a new class of pulse sequences for obtaining high-resolution heteronuclear spectra in magnetic fields with unknown spatial variations based on distant dipolar field modulations. This strategy's capabilities are demonstrated with the acquisition of high-resolution 2D gHSQC and gHMBC spectra. These sequences' performances are evaluated on the basis of their sensitivities and acquisition efficiencies. Moreover, we show that by encoding and decoding NMR observables spatially, as is done in ultrafast NMR, an extra dimension containing J-coupling information can be obtained without increasing the time necessary to acquire a heteronuclear correlation spectrum. Since the new sequences relax magnetic field homogeneity constraints imposed upon high-resolution NMR, they may be applied in portable NMR sensors and studies of heterogeneous chemical and biological materials.

  10. High-Resolution Pfi-Zeke Photoelectron Spectroscopy of Cl_2: the Ground (X^+ ^2π{g}) and First Excited (A^+ ^2π{u}) Electronic States of Cl_2^+

    NASA Astrophysics Data System (ADS)

    Mollet, Sandro; Merkt, Frederic

    2012-06-01

    Recently, two studies have been devoted to the low-lying electronic states of Cl_2^+, one by PFI-ZEKE photoelectron (PE) spectroscopy of the {X}^+←{X} transition and one by laser-induced-fluorescence spectroscopy of the {A}^+→{X}^+ band system. To complement the information available on the X^+ and A^+ electronic states of Cl_2^+, we have recorded partially rotationally resolved single-photon PFI-ZEKE PE spectra of the {X}^+ ^2π{g,i}←{X} ^1Σg^+ and {A}^+ ^2π{u,i}←{X} ^1Σg^+ (i=3/2, 1/2) photoionizing transitions of Cl_2 in the wavenumber ranges 92 500-96 500 {cm}-1 and 106 750-115 500 {cm}-1. These regions correspond to transitions to low-lying vibrational levels of the X^+ state with v^+=0-5 and to transitions to vibrational levels of the X^+ state with v^+=25-45 and vibrational levels of the A^+ state with v^+≤ 7. The analysis of the rotational structure and the isotopic shifts of these spectra has enabled the derivation of an improved value of the first adiabatic ionization energy (92 647.7±0.3 {cm}-1 for 35Cl_2). In combination with measurements of ion-pair states with n≈ 1800 new values for the dissociation energies D_0 of Cl_2 and Cl_2^+ could also be derived. The potential energy function of the X^+ state of Cl_2^+ was determined in a least-squares fitting procedure. Spin-orbit splittings were derived for many vibrational levels of the X^+ and A^+ states. Combining our results with other resultsb, several low-lying vibrational levels of the upper spin-orbit component of the A^+ state could be assigned for the first time. The PFI-ZEKE PE spectra also contain a series of as yet unassigned lines and reveal numerous perturbations. J. Li, Y. Hao, J. Yang, C. Zhou, and Y. Mo}, J. Chem. Phys. 127, 104307 (2007). M. A. Gharaibeh, and D. J. Clouthier, 66th Int. Symposium on Molecular Spectroscopy, Book of Abstracts, p. 169 (2011). S. Mollet, and F. Merkt, Phys. Rev. A 82, 032510 (2010). R. P. Tuckett, and S. D. Peyerimhoff, Chem. Phys. 83, 203 (1984

  11. High resolution transmission spectroscopy as a diagnostic for Jovian exoplanet atmospheres: constraints from theoretical models

    SciTech Connect

    Kempton, Eliza M.-R.; Perna, Rosalba; Heng, Kevin

    2014-11-01

    We present high resolution transmission spectra of giant planet atmospheres from a coupled three-dimensional (3D) atmospheric dynamics and transmission spectrum model that includes Doppler shifts which arise from winds and planetary motion. We model Jovian planets covering more than two orders of magnitude in incident flux, corresponding to planets with 0.9-55 day orbital periods around solar-type stars. The results of our 3D dynamical models reveal certain aspects of high resolution transmission spectra that are not present in simple one-dimensional (1D) models. We find that the hottest planets experience strong substellar to anti-stellar (SSAS) winds, resulting in transmission spectra with net blueshifts of up to 3 km s{sup –1}, whereas less irradiated planets show almost no net Doppler shifts. We find only minor differences between transmission spectra for atmospheres with temperature inversions and those without. Compared to 1D models, peak line strengths are significantly reduced for the hottest atmospheres owing to Doppler broadening from a combination of rotation (which is faster for close-in planets under the assumption of tidal locking) and atmospheric winds. Finally, high resolution transmission spectra may be useful in studying the atmospheres of exoplanets with optically thick clouds since line cores for very strong transitions should remain optically thick to very high altitude. High resolution transmission spectra are an excellent observational test for the validity of 3D atmospheric dynamics models, because they provide a direct probe of wind structures and heat circulation. Ground-based exoplanet spectroscopy is currently on the verge of being able to verify some of our modeling predictions, most notably the dependence of SSAS winds on insolation. We caution that interpretation of high resolution transmission spectra based on 1D atmospheric models may be inadequate, as 3D atmospheric motions can produce a noticeable effect on the absorption

  12. High Resolution Infrared Spectroscopy of Molecules of Terrestrial and Planetary Interest

    NASA Technical Reports Server (NTRS)

    Freedman, Richard S.

    2001-01-01

    In collaboration with the laboratory spectroscopy group of the Ames Atmospheric Physics Research Branch (SGP), high resolution infrared spectra of molecules that are of importance for the dynamics of the earth's and other planets' atmospheres were acquired using the SGP high resolution Fourier transform spectrometer and gas handling apparatus. That data, along with data acquired using similar instrumentation at the Kitt Peak National Observatory was analyzed to determine the spectral parameters for each of the rotationally resolved transitions for each molecule. Those parameters were incorporated into existing international databases (e.g. HITRANS and GEISA) so that field measurements could be converted into quantitative information regarding the physical and chemical structures of earth and planetary atmospheres.

  13. Performance of the AILES THz-Infrared beamline at SOLEIL for High resolution spectroscopy

    SciTech Connect

    Brubach, Jean-Blaise; Rouzieres, Mathieu; Roy, Pascale; Manceron, Laurent; Pirali, Olivier; Balcon, Didier; Tchana, Fridolin Kwabia; Boudon, Vincent; Tudorie, M.; Huet, Therese; Cuisset, Arnaud

    2010-02-03

    The new THz beamline (AILES) located at the third generation Synchrotron Radiation source SOLEIL is now operating for applications in a wide variety of research themes. In particular, this source with its adapted optics allows high resolution spectroscopic measurements of molecules in the entire infrared and THz range. This presentation focuses on the performances concerning flux, spectral range and stability for molecular spectroscopy. Thanks to these performances, the coupling of synchrotron radiation from a highly stable third generation source with high resolution FTIR spectrometer and with a long path cell (150 m or more) can be particularly advantageous. This fact is related to the optics of the beamline permitting the entire source to be used without aperture stop (entrance iris), even for measurements at highest-resolution of approx0.1 mueV (10{sup -3} cm{sup -1}).

  14. Fast acquisition of high-resolution 2D NMR spectroscopy in inhomogeneous magnetic fields

    NASA Astrophysics Data System (ADS)

    Lin, Liangjie; Wei, Zhiliang; Zeng, Qing; Yang, Jian; Lin, Yanqin; Chen, Zhong

    2016-05-01

    High-resolution nuclear magnetic resonance (NMR) spectroscopy plays an important role in chemical and biological analyses. In this study, we combine the J-coupling coherence transfer module with the echo-train acquisition technique for fast acquisition of high-resolution 2D NMR spectra in magnetic fields with unknown spatial variations. The proposed method shows satisfactory performance on a 5 mM ethyl 3-bromopropionate sample, under a 5-kHz (10 ppm at 11.7 T) B0 inhomogeneous field, as well as under varying degrees of pulse-flip-angle deviations. Moreover, a simulative ex situ NMR measurement is also conducted to show the effectiveness of the proposed pulse sequence.

  15. High resolution coherent three dimensional spectroscopy of NO{sub 2}

    SciTech Connect

    Wells, Thresa A.; Muthike, Angelar K.; Robinson, Jessica E.; Chen, Peter C.

    2015-06-07

    Expansion from coherent 2D spectroscopy to coherent 3D spectroscopy can provide significant advantages when studying molecules that have heavily perturbed energy levels. This paper illustrates such advantages by demonstrating how high resolution coherent 3D (HRC3D) spectroscopy can be used to study a portion of the visible spectrum of nitrogen dioxide. High resolution coherent 2D spectra usually contain rotational and vibrational patterns that are easy to analyze, but severe congestion and complexity preclude its effective use for many parts of the NO{sub 2} spectrum. HRC3D spectroscopy appears to be much more effective; multidimensional rotational and vibrational patterns produced by this new technique are easy to identify even in the presence of strong perturbations. A method for assigning peaks, which is based upon analyzing the resulting multidimensional patterns, has been developed. The higher level of multidimensionality is useful for reducing uncertainty in peak assignments, improving spectral resolution, providing simultaneous information on multiple levels and states, and predicting, verifying, and categorizing peaks.

  16. High-Resolution Spectroscopy with the Chandra X-ray Observatory

    ScienceCinema

    Canizares, Claude R. [MIT, Cambridge, Massachusetts, United States

    2016-07-12

    The capabilities of the Chandra X-ray Observatory and XMM-Newton for high-resolution spectroscopy have brought tradition plasma diagnostic techniques to the study of cosmic plasma. Observations have probed nearly every class of astronomical object, from young proto-starts through massive O starts and black hole binaries, supernova remnants, active galactic nuclei, and the intergalactic medium. Many of these sources show remarkable rich spectra that reveal new physical information, such as emission measure distributions, elemental abundances, accretion disk and wind signatures, and time variability. This talk will present an overview of the Chandra instrumentaton and selected examples of spectral observations of astrophysical and cosmological importance.

  17. A Framework to Combine Low- and High-resolution Spectroscopy for the Atmospheres of Transiting Exoplanets

    NASA Astrophysics Data System (ADS)

    Brogi, M.; Line, M.; Bean, J.; Désert, J.-M.; Schwarz, H.

    2017-04-01

    Current observations of the atmospheres of close-in exoplanets are predominantly obtained with two techniques: low-resolution spectroscopy with space telescopes and high-resolution spectroscopy from the ground. Although the observables delivered by the two methods are in principle highly complementary, no attempt has ever been made to combine them, perhaps due to the different modeling approaches that are typically used in their interpretation. Here, we present the first combined analysis of previously published dayside spectra of the exoplanet HD 209458 b obtained at low resolution with HST/Wide Field Camera 3 (WFC3) and Spitzer/IRAC and at high resolution with VLT/CRIRES. By utilizing a novel retrieval algorithm capable of computing the joint probability distribution of low- and high-resolution spectra, we obtain tight constraints on the chemical composition of the planet’s atmosphere. In contrast to the WFC3 data, we do not confidently detect H2O at high spectral resolution. The retrieved water abundance from the combined analysis deviates by 1.9σ from the expectations for a solar-composition atmosphere in chemical equilibrium. Measured relative molecular abundances of CO and H2O strongly favor an oxygen-rich atmosphere (C/O < 1 at 3.5σ ) for the planet when compared to equilibrium calculations including O rainout. From the abundances of the seven molecular species included in this study we constrain the planet metallicity to 0.1–1.0× the stellar value (1σ). This study opens the way to coordinated exoplanet surveys between the flagship ground- and space-based facilities, which ultimately will be crucial for characterizing potentially habitable planets.

  18. Photodissociation of ozone at 276nm by photofragment imaging and high resolution photofragment translational spectroscopy

    SciTech Connect

    Blunt, D.A.; Suits, A.G.

    1996-11-01

    The photodissociation of ozone at 276 nm is investigated using both state resolved ion imaging and high-resolution photofragment translational spectroscopy. Ion images from both [3+1] and [2+1] resonance enhanced multiphoton ionization of the O({sup 1}D) photofragment are reported. All images show strong evidence of O({sup 1}D) orbital alignment. Photofragment translation spectroscopy time-of-flight spectra are reported for the O{sub 2} ({sup 1}{Delta}{sub g}) photofragment. Total kinetic energy release distributions determined form these spectra are generally consistent with those distributions determined from imaging data. Observed angular distributions are reported for both detection methods, pointing to some unresolved questions for ozone dissociation in this wavelength region.

  19. High-resolution multi-heterodyne spectroscopy based on Fabry-Perot quantum cascade lasers

    SciTech Connect

    Wang, Yin; Wang, Wen; Wysocki, Gerard; Soskind, Michael G.

    2014-01-20

    In this Letter, we present a method of performing broadband mid-infrared spectroscopy with conventional, free-running, continuous wave Fabry-Perot quantum cascade lasers (FP-QCLs). The measurement method is based on multi-heterodyne down-conversion of optical signals. The sample transmission spectrum probed by one multi-mode FP-QCL is down-converted to the radio-frequency domain through an optical multi-heterodyne process using a second FP-QCL as the local oscillator. Both a broadband multi-mode spectral measurement as well as high-resolution (∼15 MHz) spectroscopy of molecular absorption are demonstrated and show great potential for development of high performance FP-laser-based spectrometers for chemical sensing.

  20. Automatic pole-zero/zero-pole digital compensator for high-resolution spectroscopy: Design and experiments

    SciTech Connect

    Geraci, A.; Pullia, A.; Ripamonti, G.

    1999-08-01

    In a high-resolution spectroscopy system the relatively long exponential decay due to the charge preamplifier is customarily canceled in an analogue fashion by means of a PZ (Pole-Zero) stage. The accurateness of such a compensation has a big impact on the energy resolution because it strongly affects the baseline-stability problems. The authors have automatically and on-line performed such a compensation in a digital way, while maintaining a spectroscopy performance and keeping at minimum both the ADC sampling frequency (thus power consumption) and its resolution (thus cost). This is done through an IIR filter, implemented within a FPGA by a DSP. The so-compensated waveform has, in excellent approximation, an all-pole shape. Starting from such a signal, the minimum-noise filters for energy and/or time measurements are then promptly synthesized and implemented for real time operation through the same DSP.

  1. High resolution Halpha spectroscopy and R-band photometry of Swift J1357.2-0933

    NASA Astrophysics Data System (ADS)

    Casares, Jorge; Torres, Manuel A. P.; Negueruela, Ignacio; Gonzalez-Fernandez, Carlos; Corral-Santana, Jesus M.; Zurita, Cristina; Llano, Sergio Rodriguez

    2011-03-01

    We report on high resolution Halpha spectroscopy and time-resolved photometry of the optical counterpart to the X-ray transient Swift J1357.2-0933 in outburst (Krimm et al. ATEL #3138). SPECTROSCOPY: Six 30-33 min spectra were obtained on the nights of 2011 Feb 25-27 using the IDS Spectrograph on the 2.5m Isaac Newton Telescope (INT) at the Observatorio del Roque de Los Muchachos. The observations were performed with the H1800V grating and a slit width 1.6 arcsec to yield a spectral coverage of 6270-7000 Angs with a 30 km/s FWHM spectral resolution at Halpha..

  2. High-resolution laser spectroscopy with the Collinear Resonance Ionisation Spectroscopy (CRIS) experiment at CERN-ISOLDE

    NASA Astrophysics Data System (ADS)

    Cocolios, T. E.; de Groote, R. P.; Billowes, J.; Bissell, M. L.; Budinčević, I.; Day Goodacre, T.; Farooq-Smith, G. J.; Fedosseev, V. N.; Flanagan, K. T.; Franchoo, S.; Garcia Ruiz, R. F.; Gins, W.; Heylen, H.; Kron, T.; Li, R.; Lynch, K. M.; Marsh, B. A.; Neyens, G.; Rossel, R. E.; Rothe, S.; Smith, A. J.; Stroke, H. H.; Wendt, K. D. A.; Wilkins, S. G.; Yang, X.

    2016-06-01

    The Collinear Resonance Ionisation Spectroscopy (CRIS) experiment at CERN has achieved high-resolution resonance ionisation laser spectroscopy with a full width at half maximum linewidth of 20(1) MHz for 219,221 Fr, and has measured isotopes as short lived as 5 ms with 214 Fr. This development allows for greater precision in the study of hyperfine structures and isotope shifts, as well as a higher selectivity of single-isotope, even single-isomer, beams. These achievements are linked with the development of a new laser laboratory and new data-acquisition systems.

  3. Electron Diffraction and High-Resolution Electron Microscopy of Mineral Structures

    NASA Astrophysics Data System (ADS)

    Nord, Gordon L., Jr.

    This book is a well-written English translation of the original 1981 Russian edition, Strukturnoye issledovaniye mineralov metodami mikrodifraktsii i elechtronnoi mikroskopii vysokogo razresheniya. The 1987 English version has been extensively updated and includes references up to 1986. The book is essentially a text on the theoretical and experimental aspects of transmission electron microscopy and has chapters on the reciprocal lattice, electron diffraction (both kinematic and dynamic), and high-resolution electron microscopy.Electron diffraction is emphasized, especially its use for structure analysis of poorly crystalline and fine-grained phases not readily determined by the more exact X ray diffraction method. Two methods of electron diffraction are discussed: selected area electron diffraction (SAED) and oblique-texture electron diffraction (OTED); the latter technique is rarely used in the west and is never discussed in western electron microscopy texts. A SAED pattern is formed by isolating a small micrometer-size area with an aperture and obtaining single-crystal patterns from the diffracted beams. By tilting the sample and obtaining many patterns, a complete picture of the reciprocal lattice can be taken. An OTED pattern is formed when the incident electron beam passes through an inclined preparation consisting of a great number of thin platy crystals lying normal to the texture axis (axis normal to the support grid). To form an OTED pattern, the plates must all lie on a common face, such as a basal plane in phyllosilicates. Upon tilting the plates, an elliptical powder diffraction pattern is formed. Intensities measured from these patterns are used for a structural analysis of the platy minerals.

  4. Resonant x-ray emission spectroscopy of liquid water: novel instrumentation, high resolution, and the"map" approach

    SciTech Connect

    Weinhardt, L.; Fuchs, O.; Blum, M.; Bär, M.; Weigand, M.; Denlinger, J.D.; Zubavichus, Y.; Zharnikov, M.; Grunze, M.; Heske, C.; Umbach, E.

    2008-06-17

    Techniques to study the electronic structure of liquids are rare. Most recently, resonant x-ray emission spectroscopy (XES) has been shown to be an extremely versatile spectroscopy to study both occupied and unoccupied electronic states for liquids in thermodynamic equilibrium. However, XES requires high-brilliance soft x-ray synchrotron radiation and poses significant technical challenges to maintain a liquid sample in an ultra-high vacuum environment. Our group has therefore developed and constructed a novel experimental setup for the study of liquids, with the long-term goal of investigating the electronic structure of biological systems in aqueous environments. We have developed a flow-through liquid cell in which the liquid is separated from vacuum by a thin Si3N4 or SiC window and which allows a precise control of temperature. This approach has significant advantages compared to static liquids cells used in the past. Furthermore, we have designed a dedicated high-transmission, high-resolution soft x-ray spectrometer. The high transmission makes it possible to measure complete resonant XES"maps" in less than an hour, giving unprecedented detailed insight into the electronic structure of the investigated sample. Using this new equipment we have investigated the electronic structure of liquid water. Furthermore, our XES spectra and maps give information about ultra-fast dissociation on the timescale of the O 1s core hole lifetime, which is strongly affected by the initial state hydrogen bonding configuration.

  5. High resolution simulation of beam dynamics in electron linacs for x-ray free electron lasers

    NASA Astrophysics Data System (ADS)

    Qiang, J.; Ryne, R. D.; Venturini, M.; Zholents, A. A.; Pogorelov, I. V.

    2009-10-01

    In this paper we report on large-scale high resolution simulations of beam dynamics in electron linacs for the next-generation x-ray free electron lasers (FELs). We describe key features of a parallel macroparticle simulation code including three-dimensional (3D) space-charge effects, short-range structure wakefields, coherent synchrotron radiation (CSR) wakefields, and treatment of radio-frequency (rf) accelerating cavities using maps obtained from axial field profiles. We present a study of the microbunching instability causing severe electron beam fragmentation in the longitudinal phase space which is a critical issue for future FELs. Using parameters for a proposed FEL linac at Lawrence Berkeley National Laboratory (LBNL), we show that a large number of macroparticles (beyond 100 million) is generally needed to control the numerical macroparticle shot noise and avoid overestimating the microbunching instability. We explore the effect of the longitudinal grid on simulation results. We also study the effect of initial uncorrelated energy spread on the final uncorrelated energy spread of the beam for the FEL linac.

  6. Diamond-machined ZnSe immersion grating for NIR high-resolution spectroscopy

    SciTech Connect

    Ikeda, Y; Kobayashi, N; Kuzmenko, P J; Little, S L; Yasui, C; Kondo, S; Minami, A; Motohara, K

    2008-07-25

    ZnSe immersion gratings (n {approx} 2.45) provide the possibility of high-resolution spectroscopy for the near-infrared (NIR) region. Since ZnSe has a lower internal attenuation than other NIR materials, it is most suitable for immersion grating, particularly in short NIR region (0.8-1.4 {micro}m). We are developing an extremely high-resolution spectrograph with {lambda}/{Delta}{lambda} = 100,000, WINERED, customized for the short NIR region, using ZnSe (or ZnS) immersion grating. However, it had been very difficult to make fine grooves on ZnSe substrate with a small pitch of less than 50 {micro}m because ZnSe is a soft/brittle material. We have overcome this problem and successfully machined sharp grooves with fine pitch on ZnSe substrates by nano precision fly-cutting technique at LLNL. The optical testing of the sample grating with HeNe laser shows an excellent performance: the relative efficiency more than 87.4 % at 0.633 {micro}m for a classical grating configuration. The diffraction efficiency when used as an immersion grating is estimated to be more than 65 % at 1 {micro}m. Following this progress, we are about to start machining a grating on a large ZnSe prism with an entrance aperture of 23mm x 50mm and the blaze angle of 70{sup o}.

  7. High-resolution absorptive intermolecular multiple-quantum coherence NMR spectroscopy under inhomogeneous fields

    NASA Astrophysics Data System (ADS)

    Lin, Meijin; Lin, Yanqin; Chen, Xi; Cai, Shuhui; Chen, Zhong

    2012-01-01

    Intermolecular multiple-quantum coherence (iMQC) is capable of improving NMR spectral resolution using a 2D shearing manipulation method. A pulse sequence termed CT-iDH, which combines intermolecular double-quantum filter (iDQF) with a modified constant-time (CT) scheme, is designed to achieve fast acquisition of high-resolution intermolecular zero-quantum coherences (iZQCs) and intermolecular double-quantum coherences (iDQCs) spectra without strong coupling artifacts. Furthermore, double-absorption lineshapes are first realized in 2D intermolecular multi-quantum coherences (iMQCs) spectra under inhomogeneous fields through a combination of iZQC and iDQC signals to double the resolution without loss of sensitivity. Theoretically the spectral linewidth can be further reduced by half compared to original iMQC high-resolution spectra. Several experiments were performed to test the feasibility of the new method and the improvements are evaluated quantitatively. The study suggests potential applications for in vivo spectroscopy.

  8. Fragmentation and conformation study of ephedrine by low- and high-resolution mass selective UV spectroscopy

    NASA Astrophysics Data System (ADS)

    Chervenkov, S.; Wang, P. Q.; Braun, J. E.; Neusser, H. J.

    2004-10-01

    The neurotransmitter molecule, ephedrine, has been studied by mass-selective low- and high-resolution UV resonance enhanced two-photon ionization spectroscopy. Under all experimental conditions we observed an efficient fragmentation upon ionization. The detected vibronic peaks in the spectrum are classified according to the efficiency of the fragmentation, which leads to the conclusion that there exist three different species in the molecular beam: ephedrine-water cluster and two distinct conformers. The two-color two-photon ionization experiment with a decreased energy of the second photon leads to an upper limit of 8.3 eV for the ionization energy of ephedrine. The high-resolution (70 MHz) spectrum of the strongest vibronic peak in the spectrum measured at the fragment (m/z=58) mass channel displays a pronounced and rich rotational structure. Its analysis by the use of a specially designed computer-aided rotational fit process yields accurate rotational constants for the S0 and S1 states and the transition moment ratio, providing information on the respective conformational structure.

  9. High-resolution optical spectroscopy in a hollow-core photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Perrella, C.; Light, P. S.; Stace, T. M.; Benabid, F.; Luiten, A. N.

    2012-01-01

    In this paper, we present detailed high-resolution spectroscopy of rubidium (Rb) vapor confined within a hollow-core photonic crystal fiber (HC-PCF). We find a very low level of additional frequency broadening associated with this confinement, with spectral features being only 1 MHz broader than the natural linewidth of the excited state. We show that this additional broadening is consistent solely with the atoms' transit across the fiber's optical mode. This low level of decoherence opens the door to a wide variety of applications including compact frequency standards and new types of quantum optical devices based on alkali-metal-loaded HC-PCFs. We highlight the low level of decoherence through observation of electromagnetically induced transparency in the confined vapor.

  10. Low energy nuclear spin excitations in Ho metal investigated by high resolution neutron spectroscopy.

    PubMed

    Chatterji, Tapan; Jalarvo, Niina

    2013-04-17

    We have investigated the low energy excitations in metallic Ho by high resolution neutron spectroscopy. We found at T = 3 K clear inelastic peaks in the energy loss and energy gain sides, along with the central elastic peak. The energy of this low energy excitation, which is 26.59 ± 0.02 μeV at T = 3 K, decreased continuously and became zero at TN ≈ 130 K. By fitting the data in the temperature range 100-127.5 K with a power law we obtained the power-law exponent β = 0.37 ± 0.02, which agrees with the expected value β = 0.367 for a three-dimensional Heisenberg model. Thus the energy of the low energy excitations can be associated with the order parameter.

  11. Application of a continuously tunable, cw optical parametric oscillator for high-resolution spectroscopy.

    PubMed

    Gibson, G M; Dunn, M H; Padgett, M J

    1998-01-01

    We report the use of a smoothly tunable, single-frequency continuous-wave optical parametric oscillator (OPO) for high-resolution spectroscopy. The OPO is based on potassium titanyl phosphate and is resonant for both signal and idler fields, resulting in a device with a very low pump power threshold of 30 mW. The frequency-selective nature of the doubly resonant oscillator ensures that the signal and idler modes can be tuned across the entire phase-match bandwidth without the need for additional intracavity frequency-selective components. Smooth frequency tuning of the output of the OPO is obtained by tuning of the pump laser. To demonstrate the practicality of our OPO we recorded the absorption spectrum of cesium vapor in the 1-microm spectral region.

  12. Continuous-wave whispering-gallery optical parametric oscillator for high-resolution spectroscopy.

    PubMed

    Werner, Christoph S; Buse, Karsten; Breunig, Ingo

    2015-03-01

    We achieve a continuous operation of a whispering gallery optical parametric oscillator by stabilizing the resonator temperature T on the mK level and simultaneously locking the pump frequency to a cavity resonance using the Pound-Drever-Hall technique. The millimeter-sized device converts several mW of a pump wave at 1040 nm wavelength to signal and idler waves around 2000 nm wavelength with more than 50% efficiency. Over 1 h, power and frequency of the signal wave vary by <±1% and by <±25  MHz, respectively. The latter can be tuned over 480 MHz without a mode hop by changing T over 120 mK. In order to prove the suitability for high-resolution spectroscopy, we scan the signal frequency across the resonance of a Fabry-Perot interferometer resolving nicely its 10 MHz linewidth.

  13. Multiple Populations in M31 Globular Clusters: Clues from Infrared High Resolution Integrated Light Spectroscopy

    NASA Astrophysics Data System (ADS)

    Sakari, Charli; APOGEE Team

    2017-01-01

    Abundance variations are a common feature of Milky Way globular clusters. The globular clusters in M31 are too distant for detailed abundance studies of their individual stars; however, cluster abundances can be determined through high resolution, integrated light (IL) spectroscopy. In this talk, I discuss how IL abundances can be interpreted in the context of multiple populations. In particular, I will present new infrared abudances of 25 M31 globular clusters, derived from IL spectra from the Apache Point Observatory Galactic Evolution Experiment (APOGEE). These H band spectra allow determinations of C, N, and O from molecular features, and Fe, Na, Mg, Al, Si, Ca, Ti, and K from atomic features. The integrated abundance ratios are then investigated with cluster [Fe/H] and mass.

  14. A Study of the Conformational Isomerism of 1-Iodobutane by High Resolution Rotational Spectroscopy

    DOE PAGES

    Arsenault, Eric A.; Obenchain, Daniel A.; Blake, Thomas A.; ...

    2017-03-24

    The first microwave study of 1-iodobutane, performed by Steinmetz et al. in 1977, led to the determination of the B+C parameter for the anti-anti- and gauche-anti-conformers. Nearly 40 years later, in this paper this reinvestigation of 1-iodobutane, by high-resolution microwave spectroscopy, led to the determination of rotational constants, centrifugal distortion constants, nuclear quadrupole coupling constants (NQCCs), and nuclear-spin rotation constants belonging to both of the two previously mentioned conformers, in addition to the gauche-gauche-conformer, which was observed in this frequency regime for the first time. Finally, comparisons between the three conformers of 1-iodobutane and other iodo- and bromoalkanes are made,more » specifically through an analysis of the nuclear quadrupole coupling constants belonging to the iodine and bromine atoms in the respective chemical environments.« less

  15. High resolution spectroscopy of comet C/2002 C1 Ikeya-Zhang with SARG at TNG

    NASA Astrophysics Data System (ADS)

    Capria, M. T.; Cremonese, G.; Boattini, A.; de Sanctis, M. C.; D'Abramo, G.; Buzzoni, A.

    2002-11-01

    A program of high resolution spectroscopy of comets is being conducted at TNG in Canary Islands using the echelle spectrograph SARG. The aim of the program is to catalogue known and unknown emission lines, compare them with the lines already listed in existing catalogues and possibly identify unknown lines. In the visible range of the spectrum emission lines of daughter molecules and ions can be found, and many of them are still unidentified. The comet C/2002 C1 Ikeya-Zhang was observed with SARG during the night 19-20 of April and spectra with two different setups were taken. In the first case a narrow band filter was used to isolate the sodium emissions with a long slit and R = 43000. The data show very interesting cometary sodium emissions in the coma. The second setup used a short slit covering the spectral range of 4620-7920 Å with R = 57000.

  16. High-Resolution Spectroscopy and Optical Photometry of MWC 349A and MWC 349B

    NASA Astrophysics Data System (ADS)

    Manset, N.; Miroshnichenko, A. S.; Zharikov, S. V.; Kusakin, A. V.

    2017-02-01

    MWC 349A is a V ˜ 13 mag object with the B[e] phenomenon, a very strong optical emission-line spectrum, maser and laser line emission, and a radio-bright bipolar nebula, attenuated by ˜10 mag of interstellar extinction. MWC 349B is a visual companion of MWC 349A with no previously reported signs of emission. The physical connection of the pair has been the subject of debates toward revealing the evolutionary state of MWC 349A. Only low-resolution spectra reported for MWC 349B resulted in estimating its parameters with a large uncertainty. We report the results of high-resolution optical spectroscopy of both objects as well as their optical photometry.

  17. High-resolution vibrational and rotational spectroscopy of CD2H+ in a cryogenic ion trap

    NASA Astrophysics Data System (ADS)

    Jusko, Pavol; Stoffels, Alexander; Thorwirth, Sven; Brünken, Sandra; Schlemmer, Stephan; Asvany, Oskar

    2017-02-01

    The low-lying rotational states (J = 0, … , 5) of CD2H+ have been probed by high-resolution ro-vibrational and pure rotational spectroscopy, applying several action spectroscopic methods in a cryogenic 22-pole ion trap. For this, the ν1 ro-vibrational band has been revisited, detecting 108 transitions, among which 36 are new. The use of a frequency comb system allowed us to measure the ro-vibrational transitions with high precision and accuracy, typically better than 1 MHz. The high precision has been confirmed by comparing equal combination differences in the ground and excited state. Moreover, precise predictions of pure rotational transitions were possible for the ground state. Twenty-five rotational transitions have been detected directly by a novel IR-mm-wave double resonance method, giving rise to highly accurate ground state spectroscopic parameters.

  18. High-resolution photoelectron spectroscopy analysis of sulfidation of brass at the rubber/brass interface

    NASA Astrophysics Data System (ADS)

    Ozawa, Kenichi; Kakubo, Takashi; Shimizu, Katsunori; Amino, Naoya; Mase, Kazuhiko; Komatsu, Takayuki

    2013-01-01

    High resolution photoelectron spectroscopy is utilized to investigate the chemical composition at the rubber/brass interface to elucidate the origin of strong adhesion as well as the degradation between rubber and brass. Special attention has been given to copper sulfides formed at the interface during the vulcanization reaction at 170 °C. At least five sulfur-containing species are identified in the adhesive interlayer including crystalline CuS and amorphous CuxS (x ≃ 2). These copper sulfide species are not uniformly distributed within the layer, but there exits the concentration gradation; the concentration of CuxS is high in the region on the rubber side and is diminished in the deeper region, while vice versa for that of CuS. Degradation of the interface adhesive strength by prolonged vulcanization arises from the decrease in the CuxS/CuS ratio accompanying desulfurization of the adhesive layer.

  19. High Resolution Spectroscopy of Naphthalene Calibrated by AN Optical Frequency Comb

    NASA Astrophysics Data System (ADS)

    Nishiyama, Akiko; Nakashima, Kazuki; Matsuba, Ayumi; Misono, Masatoshi

    2015-06-01

    In high-resolution molecular spectroscopy, the precise measure of the optical frequency is crucial to evaluate minute shifts and splittings of the energy levels. On the other hand, in such spectroscopy, thousands of spectral lines distributed over several wavenumbers have to be measured by a continuously scanning cw laser. Therefore, the continuously changing optical frequency of the scanning laser has to be determined with enough precision. To satisfy these contradictory requirements, we have been developed two types of high-resolution spectroscopic systems employing an optical frequency comb. One of the systems employs RF band-pass filters to generate equally spaced frequency markers for optical frequency calibration, and is appropriate for wide wavelength-range measurement with relatively high scanning rate.^a In the other system, the beat frequency between the optical frequency comb and the scanning laser is controlled by an acousto-optic frequency shifter. This system is suitable for more precise measurement, and enables detailed analyses of frequency characteristics of scanning laser.^b In the present study, we observe Doppler-free two-photon absorption spectra of A^1B1u (v_4 = 1) ← X^1A_g (v = 0) transition of naphthalene around 298 nm. The spectral lines are rotationally resolved and the resolution is about 100 kHz. For ^qQ transition, the rotational lines are assigned, and molecular constants in the excited state are determined. In addition, we analyze the origin of the measured linewidth and Coriolis interactions between energy levels. To determine molecular constants more precisely, we proceed to measure and analyze spectra of other transitions, such as ^sS transitions. ^a A. Nishiyama, D. Ishikawa, and M. Misono, J. Opt. Soc. Am. B 30, 2107 (2013). ^b A. Nishiyama, A. Matsuba, and M. Misono, Opt. Lett. 39, 4923 (2014).

  20. High-resolution laser spectroscopy of long-lived plutonium isotopes

    NASA Astrophysics Data System (ADS)

    Voss, A.; Sonnenschein, V.; Campbell, P.; Cheal, B.; Kron, T.; Moore, I. D.; Pohjalainen, I.; Raeder, S.; Trautmann, N.; Wendt, K.

    2017-03-01

    Long-lived isotopes of plutonium were studied using two complementary techniques, high-resolution resonance ionization spectroscopy (HR-RIS) and collinear laser spectroscopy (CLS). Isotope shifts have been measured on the 5 f67 s27F0→5 f56 d27 s (J =1 ) and 5 f67 s27F1→5 f67 s 7 p (J =2 ) atomic transitions using the HR-RIS method and the hyperfine factors have been extracted for the odd mass nuclei Pu,241239. CLS was performed on the 5 f67 s 8F1 /2→J =1 /2 (27 523.61 cm-1) ionic transition with the hyperfine A factors measured for 239Pu. Changes in mean-squared charge radii have been extracted and show a good agreement with previous nonoptical methods, with an uncertainty improvement by approximately one order of magnitude. Plutonium represents the heaviest element studied to date using collinear laser spectroscopy.

  1. High Resolution Rovibrational Spectroscopy of Large Molecules Using Infrared Frequency Combs and Buffer Gas Cooling

    NASA Astrophysics Data System (ADS)

    Changala, Bryan; Spaun, Ben; Patterson, David; Bjork, Bryce J.; Heckl, Oliver H.; Doyle, John M.; Ye, Jun

    2016-06-01

    We have recently demonstrated the integration of cavity-enhanced direct frequency comb spectroscopy with buffer gas cooling to acquire high resolution infrared spectra of translationally and rotationally cold (˜10 K) gas-phase molecules. Here, we extend this method to significantly larger systems, including naphthalene (C10H_8), a prototypical polyaromatic hydrocarbon, and adamantane (C10H_{16}), the fundamental building block of diamonoids. To the authors' knowledge, the latter molecule represents the largest system for which rotationally resolved spectra in the CH stretch region (3 μm) have been obtained. In addition to the measured spectra, we present several details of our experimental methods. These include introducing non-volatile species into the cold buffer gas cell and obtaining broadband spectra with single comb mode resolution. We also discuss recent modifications to the apparatus to improve its absorption sensitivity and time resolution, which facilitate the study of both larger molecular systems and cold chemical dynamics. B. Spaun, et al. Probing buffer-gas cooled molecules with direct frequency comb spectroscopy in the mid-infrared, WF02, 70th International Symposium on Molecular Spectroscopy, Champaign-Urbana, IL, 2015.

  2. High Resolution Infrared Spectroscopy of Slit-Jet Cooled Radicals and Ions

    NASA Astrophysics Data System (ADS)

    Roberts, Melanie A.

    This thesis presents high-resolution spectra of supersonically-cooled organic radicals in the mid-infrared, the details and design of the instruments necessary to obtain the spectra, and the theory to understand the spectra and the larger context of the results. Specifically, four organic radicals are studied: singly-deuterated methyl radical (CH2D), phenyl radical (C6H5), hydroxymethyl radical (CH2OH), and ethynyl radical (C2H). All of the spectroscopic studies presented use an existing mid-infrared high-resolution spectrometer with a frequency precision of better than 10 MHz. The radicals are generated using a discharge to dissociate a neutral precursor and form the radicals. The discharge is localized at the orifice of a slit supersonic expansion, which cools the radicals to around 20 K and allows for sub-Doppler spectral resolution. In addition to the description of the existing spectrometer, the design, construction, and successful testing of a new, automated mid-infrared spectrometer is presented. The new spectrometer is based upon difference frequency generation of a scanning Ti:Sapphire laser and a single-frequency Nd:YAG laser to create high-resolution mid-infrared radiation. The new system speeds up data-taking by fully automating the scanning process. The four radicals studied in this thesis are all intermediates in combustion processes of hydrocarbon fuels. First, the out-of-phase symmetric stretch of phenyl radical is presented. As the first high-resolution infrared study of phenyl, it paves the way for future studies of this and other aromatic radicals. Second, the two fundamental CH stretches in CH2D are studied with full rotational resolution. The narrow linewidth of the transitions reveals resolved fine structure and partially resolved hyperfine structure. This resolution yields additional information regarding the distribution of electrons in the radical. With this study of CH2D, a nearly complete set of vibrational frequencies is present in the

  3. Electron spectrometer for gas-phase spectroscopy

    SciTech Connect

    Bozek, J.D.; Schlachter, A.S.

    1997-04-01

    An electron spectrometer for high-resolution spectroscopy of gaseous samples using synchrotron radiation has been designed and constructed. The spectrometer consists of a gas cell, cylindrical electrostatic lens, spherical-sector electron energy analyzer, position-sensitive detector and associated power supplies, electronics and vacuum pumps. Details of the spectrometer design are presented together with some representative spectra.

  4. Tunable Microcavity-Stabilized Quantum Cascade Laser for Mid-IR High-Resolution Spectroscopy and Sensing

    PubMed Central

    Borri, Simone; Siciliani de Cumis, Mario; Insero, Giacomo; Bartalini, Saverio; Cancio Pastor, Pablo; Mazzotti, Davide; Galli, Iacopo; Giusfredi, Giovanni; Santambrogio, Gabriele; Savchenkov, Anatoliy; Eliyahu, Danny; Ilchenko, Vladimir; Akikusa, Naota; Matsko, Andrey; Maleki, Lute; De Natale, Paolo

    2016-01-01

    The need for highly performing and stable methods for mid-IR molecular sensing and metrology pushes towards the development of more and more compact and robust systems. Among the innovative solutions aimed at answering the need for stable mid-IR references are crystalline microresonators, which have recently shown excellent capabilities for frequency stabilization and linewidth narrowing of quantum cascade lasers with compact setups. In this work, we report on the first system for mid-IR high-resolution spectroscopy based on a quantum cascade laser locked to a CaF2 microresonator. Electronic locking narrows the laser linewidth by one order of magnitude and guarantees good stability over long timescales, allowing, at the same time, an easy way for finely tuning the laser frequency over the molecular absorption line. Improvements in terms of resolution and frequency stability of the source are demonstrated by direct sub-Doppler recording of a molecular line. PMID:26901199

  5. Design and performance of a soft-x-ray interferometer for ultra-high-resolution fourier transform spectroscopy

    SciTech Connect

    Moler, E.J.; Hussain, Z.; Duarte, R.M.; Howells, M.R.

    1997-04-01

    A Fourier Transform Soft X-ray spectrometer (FT-SX) has been designed and is under construction for the Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory as a branch of beamline 9.3.2. The spectrometer is a novel soft x-ray interferometer designed for ultra-high resolution (theoretical resolving power E/{delta}E{approximately}10{sup 6}) spectroscopy in the photon energy region of 60-120 eV. This instrument is expected to provide experimental results which sensitively test models of correlated electron processes in atomic and molecular physics. The design criteria and consequent technical challenges posed by the short wavelengths of x-rays and desired resolving power are discussed. The fundamental and practical aspects of soft x-ray interferometry are also explored.

  6. Time of flight secondary ion mass spectrometry and high-resolution transmission electron microscopy/energy dispersive spectroscopy: a preliminary study of the distribution of Cu2+ and Cu2+/Pb2+ on a Bt horizon surfaces.

    PubMed

    Cerqueira, B; Vega, F A; Serra, C; Silva, L F O; Andrade, M L

    2011-11-15

    Relatively new techniques can help in determining the occurrence of mineral species and the distribution of contaminants on soil surfaces such as natural minerals and organic matter. The Bt horizon from an Endoleptic Luvisol was chosen because of its well-known sorption capability. The samples were contaminated with Cu(2+) and/or Pb(2+) and both sorption and desorption experiments were performed. The preferential distribution of the contaminant species ((63)Cu and (208)Pb) to the main soil components and their associations were studied together with the effectiveness of the surface sorption and desorption processes. The results obtained were compared with non-contaminated samples as well as with previous results obtained by different analytical techniques and advanced statistical analysis. Pb(2+) competes favorably for the sorption sites in this soil, mainly in oxides and the clay fraction. Cu(2+) and Pb(2+) were mainly associated with hematite, gibbsite, vermiculite and chlorite. This study will serve as a basis for further scientific research on the soil retention of heavy metals. New techniques such as spectroscopic imaging and transmission electron microscopy make it possible to check which soil components retain heavy metals, thereby contributing to propose effective measures for the remediation of contaminated soil.

  7. On the optical stability of high-resolution transmission electron microscopes.

    PubMed

    Barthel, J; Thust, A

    2013-11-01

    In the recent two decades the technique of high-resolution transmission electron microscopy experienced an unprecedented progress through the introduction of hardware aberration correctors and by the improvement of the achievable resolution to the sub-Ångström level. The important aspect that aberration correction at a given resolution requires also a well defined amount of optical stability has received little attention so far. Therefore we investigate the qualification of a variety of high-resolution electron microscopes to maintain an aberration corrected optical state in terms of an optical lifetime. We develop a comprehensive statistical framework for the estimation of the optical lifetime and find remarkably low values between tens of seconds and a couple of minutes. Probability curves are introduced, which inform the operator about the chance to work still in the fully aberration corrected state.

  8. Far Infrared High Resolution Synchrotron FTIR Spectroscopy of the Low Frequency Bending Modes of Dmso

    NASA Astrophysics Data System (ADS)

    Cuisset, Arnaud; Smirnova, Irina; Bocquet, Robin; Hindle, Francis; Mouret, Gael; Sadovskii, Dmitrii A.; Pirali, Olivier; Roy, Pascale

    2010-06-01

    In addition to its importance for industrial and environmental studies, the monitoring of DiMethylSulfOxyde (DMSO, (CH_3)_2SO) concentrations is of considerable interest for civil protection. The existing high resolution gas phase spectroscopic data of DMSO only concerned the pure rotational transitions in the ground state. In the Far-IR domain, the low-frequency rovibrational transitions have never previously resolved. The high brightness of the AILES beamline of the synchrotron SOLEIL and the instrumental sensitivity provided by the multipass cell allowed to measure for the first time these transitions. 1581 A-type and C-type transitions in the ν11 band have been assigned and 25 molecular constants of Watson's s-form hamiltonian developed to degree 8 have been fitted within the experimental accuracy. The use of then synchrotron radiation has opened many possibilities for new spectroscopic studies. Together with several other recent studies, our successful measurement and analysis of DMSO convincingly demonstrates the potential of the AILES beamline for high resolution FIR spectroscopy. Thus our present work is just at the beginning of unraveling the rovibrational structure of low frequency bending and torsional vibrational states of DMSO and yielding important comprehensive structural and spectroscopic information on this molecule. L. Margules, R. A. Motienko, E. A. Alekseev, J. Demaison, J. Molec. Spectrosc., 260(23),2009 V. Typke, M. Dakkouri, J. Molec. Struct., 599(177),2001 A. Cuisset, L. Nanobashvili, I. Smirnova, R. Bocquet, F. Hindle, G. Mouret, O. Pirali, P. Roy, D. Sadovskii, Chem. Phys. Lett., accepted for publication

  9. High-Resolution Analytical Electron Microscopy Characterization of Corrosion and Cracking at Buried Interfaces

    SciTech Connect

    Bruemmer, Stephen M.; Thomas, Larry E.

    2001-07-01

    Recent results are presented demonstrating the application of cross-sectional analytical transmission electron microscopy (ATEM) to corrosion and cracking in high-temperature water environments. Microstructural, chemical and crystallographic characterization of buried interfaces at near-atomic resolutions is shown to reveal evidence for unexpected local environments, corrosion reactions and material transformations. Information obtained by a wide variety of high-resolution imaging and analysis methods indicates the processes occurring during crack advance and provides insights into the mechanisms controlling environmental degradation.

  10. The X+ 2Πg, A+ 2Πu, B+ 2Δu, and a^+ ^4Σ u^- electronic states of Cl_2^+ studied by high-resolution photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Mollet, Sandro; Merkt, Frédéric

    2013-07-01

    Ω = 1/2 and Ω = 3/2, separated by 37.5 cm-1. The vibrational energy level structure of both components is regular, which indicates that the splitting results from the interaction with one or more distant ungerade Ω = 1/2 or Ω = 3/2 electronic states.

  11. The Potential for Bayesian Compressive Sensing to Significantly Reduce Electron Dose in High Resolution STEM Images

    SciTech Connect

    Stevens, Andrew J.; Yang, Hao; Carin, Lawrence; Arslan, Ilke; Browning, Nigel D.

    2014-02-11

    The use of high resolution imaging methods in the scanning transmission electron microscope (STEM) is limited in many cases by the sensitivity of the sample to the beam and the onset of electron beam damage (for example in the study of organic systems, in tomography and during in-situ experiments). To demonstrate that alternative strategies for image acquisition can help alleviate this beam damage issue, here we apply compressive sensing via Bayesian dictionary learning to high resolution STEM images. These experiments successively reduce the number of pixels in the image (thereby reducing the overall dose while maintaining the high resolution information) and show promising results for reconstructing images from this reduced set of randomly collected measurements. We show that this approach is valid for both atomic resolution images and nanometer resolution studies, such as those that might be used in tomography datasets, by applying the method to images of strontium titanate and zeolites. As STEM images are acquired pixel by pixel while the beam is scanned over the surface of the sample, these post acquisition manipulations of the images can, in principle, be directly implemented as a low-dose acquisition method with no change in the electron optics or alignment of the microscope itself.

  12. High-resolution X-ray emission spectroscopy with transition-edge sensors: present performance and future potential.

    PubMed

    Uhlig, J; Doriese, W B; Fowler, J W; Swetz, D S; Jaye, C; Fischer, D A; Reintsema, C D; Bennett, D A; Vale, L R; Mandal, U; O'Neil, G C; Miaja-Avila, L; Joe, Y I; El Nahhas, A; Fullagar, W; Gustafsson, F Parnefjord; Sundström, V; Kurunthu, D; Hilton, G C; Schmidt, D R; Ullom, J N

    2015-05-01

    X-ray emission spectroscopy (XES) is a powerful element-selective tool to analyze the oxidation states of atoms in complex compounds, determine their electronic configuration, and identify unknown compounds in challenging environments. Until now the low efficiency of wavelength-dispersive X-ray spectrometer technology has limited the use of XES, especially in combination with weaker laboratory X-ray sources. More efficient energy-dispersive detectors have either insufficient energy resolution because of the statistical limits described by Fano or too low counting rates to be of practical use. This paper updates an approach to high-resolution X-ray emission spectroscopy that uses a microcalorimeter detector array of superconducting transition-edge sensors (TESs). TES arrays are discussed and compared with conventional methods, and shown under which circumstances they are superior. It is also shown that a TES array can be integrated into a table-top time-resolved X-ray source and a soft X-ray synchrotron beamline to perform emission spectroscopy with good chemical sensitivity over a very wide range of energies.

  13. What can we Expect of High-Resolution Spectroscopies on Carbohydrates?

    NASA Astrophysics Data System (ADS)

    Cocinero, Emilio J.; Ecija, Patricia; Uriarte, Iciar; Usabiaga, Imanol; Fernández, José A.; Basterretxea, Francisco J.; Lesarri, Alberto; Davis, Benjamin G.

    2015-06-01

    Carbohydrates are one of the most multifaceted building blocks, performing numerous roles in living organisms. We present several structural investigations on carbohydrates exploiting an experimental strategy which combines microwave (MW) and laser spectroscopies in high-resolution. Laser spectroscopy offers high sensitivity coupled to mass and conformer selectivity, making it ideal for polysaccharides studies. On the other hand, microwave spectroscopy provides much higher resolution and direct access to molecular structure of monosaccharides. This combined approach provides not only accurate chemical insight on conformation, structure and molecular properties, but also benchmarking standards guiding the development of theoretical calculations. In order to illustrate the possibilities of a combined MW-laser approach we present results on the conformational landscape and structural properties of several monosaccharides and oligosaccharides including microsolvation and molecular recognition processes of carbohydrates. E.J. Cocinero, A. Lesarri, P. écija, F.J. Basterretxea, J.-U. Grabow, J.A. Fernández and F. Casta {n}o Angew. Chem. Int. Ed. 51, 3119-3124, 2012. E.J. Cocinero, A. Lesarri, P. écija, Á. Cimas, B.G. Davis, F.J. Basterretxea, J.A. Fernández and F. Casta {n}o J. Am. Chem. Soc. 135, 2845-2852, 2013. E.J. Cocinero, P. Çarçabal, T.D. Vaden, J.P. Simons and B.G. Davis Nature 469, 76-80, 2011. C.S. Barry, E.J. Cocinero, P. Çarçabal, D.P. Gamblin, E.C. Stanca-Kaposta, S. M. Fernández-Alonso, S. Rudić, J.P. Simons and B.G. Davis J. Am. Chem. Soc. 135, 16895-16903, 2013.

  14. High-Resolution Spectroscopy of Mars: Recent Results and Implications for Atmospheric Evolution

    NASA Technical Reports Server (NTRS)

    Krasnopolsky, V. A.; Owen, T. C.; Maillard, J. P.

    1999-01-01

    It is believed that Earth, Venus, and Mars were formed by the same rocky and icy planetesimals, which resembled meteorites and comets in their composition, respectively. These planets are thus expected to have initially had the same chemical and isotope composition. Scaling the mass of the terrestrial ocean by the planetary mass ratio, the expected initial H2O abundance on Mars is a layer of about 1 km thick. Scaling the abundance of CO2 on Venus, the expected initial CO2 abundance on Mars is 15 bars. Evidently, significant parts of the initial H2O and CO2 abundances have been lost. Intense meteorite impact erosion and hydrodynamic escape of hydrogen (which could drag to escape more heavy species) were dominant loss processes in the first 0.8 Byr. Later, atmospheric sputtering by O+ ions resulted in the dissociation of CO2 and massive losses of O, C, and H. Formation of carbonates also reduced CO2 to its present abundance which currently exists in the atmosphere, on the polar caps, and is absorbed by regolith. Water loss is currently due to thermal escape of H and nonthermal escape of O, both formed by photodissociation of H2O. All loss processes resulted in fractionation of the H, O, and C isotopes. Therefore, the current isotope ratios in H2O and CO2 are clues to the history of volatiles on Mars. There are three tools to study H2O and CO2 isotopes in the martian atmosphere: (i) mass spectrometry from landing probes, (ii) analyses of Mars' gases trapped in the SNC meteorites which were ejected from Mars, and (iii) high-resolution spectroscopy of the H2O andCO2 bands. Method (i) is the best but is the most expensive. Mass spectrometers to be used should be designed for high-precision isotope measurements. Method (ii) makes it possible to reach an uncertainty +/- 0.1%. However, the obtained results are affected by some uncontrolled interactions: isotope fractionations of (1) trapped gases and (2) those released in pyrolysis, (3) contribution of the impactor, isotope

  15. High Resolution Spectroscopy of 1,2-Difluoroethane in a Molecular Beam: A Case Study of Vibrational Mode-Coupling

    DTIC Science & Technology

    1992-05-29

    Spectroscopy of 1,2- Difluoroethane in a Molecular Beam: A Case Study of Vibrational Mode-Coupling by Steven W. Mork, C. Cameron Miller, and Laura A...and sale; its distribution is unlimited. 92-14657 l9lll l l l , II a HIGH RESOLUTION SPECTROSCOPY OF 1,2- DIFLUOROETHANE IN A MOLECULAR BEAM: A CASE...14853-1301 Abstract The high resolution infrared spectrum of 1,2- difluoroethane (DFE) in a molecular beam has been obtained over the 2978-2996 cm-1

  16. Extremely High Resolution Spectroscopy of Oxide Electronic Systems

    DTIC Science & Technology

    2013-01-29

    the samples exhibited a strong super-paramagnetic signal, originating from the interface, that coexisted with superconductivity . The magnetism was...2.00 Lu Li, C. Richter, J. Mannhart, R.C. Ashoori. Coexistence of magnetic order and two-dimensional superconductivity at LaAlO3/SrTiO3 interfaces...of the material between the plates. This effect is shown in Figure 2. In semiconductor samples, the observed capacitance enhancement is one or two

  17. 130 kV High-Resolution Electron Beam Lithography System for Sub-10-nm Nanofabrication

    NASA Astrophysics Data System (ADS)

    Okino, Teruaki; Kuba, Yukio; Shibata, Masahiro; Ohyi, Hideyuki

    2013-06-01

    An electron beam lithography (EBL) system, CABL-UH, with a 130 kV high acceleration voltage has been developed that succeeded in minimizing beam size by minimizing Coulomb blur. This system has a short single-stage electron beam (EB) gun with an alignment function of two extractor centers to minimize Coulomb blur. This gun has also succeeded in thoroughly avoiding microdischarges. By adopting this EB gun and many other techniques, high resolution and long-term high stability have been achieved and an extremely fine pattern (4 nm line) has been delineated.

  18. Hitomi X-ray Astronomy Satellite: Power of High-Resolution Spectroscopy

    NASA Astrophysics Data System (ADS)

    Odaka, Hirokazu; Aff001

    2017-01-01

    Hitomi (ASTRO-H) is an X-ray observatory developed by an international collaboration led by JAXA. An X-ray microcalorimeter onboard this satellite has opened a new window of high-resolution spectroscopy with an unprecedented energy resolution of 5 eV (FWHM) at 6 keV. The spacecraft was launched on February 17, 2016 from Tanegashima Island, Japan, and we completed initial operations including deployment of the hard X-ray imagers on the extensible optical bench. All scientific instruments had successfully worked until the sudden loss of the mission on March 26. We have obtained a spectrum showing fully resolved emission lines through the first-light observation of the Perseus Cluster. The line-of-sight velocity dispersion of 164 +/- 10 km s-1 reveals the quiescent environment of intracluster medium at the cluster core, implying that measured cluster mass requires little correction for the turbulent pressure. We also discuss observations to the Galactic Center which could be performed with Hitomi.

  19. Triplet states in isotopically mixed anthracene crystals: High resolution optical spectroscopy

    NASA Astrophysics Data System (ADS)

    Port, H.; Rund, D.; Wolf, H. C.

    1981-08-01

    The triplet O,O transitions of guest and host in isotopically mixed anthracene crystals of various compositions (A- h10, 13C-monosubstituted A- h10, A- d1h9, A- d2hg in A- d10 and A- d10 in A- h10) have been investigated using high resolution laser excitation spectroscopy. The guest aggregate spectra have been studied in polarized light as a function of guest concentration up to 15%. The analyses allow us to identify the monomer, dimer and trimer lines. From the dimer splittings the dominant resonance pair interactions are dedu The comparison of different mixed crystal systems with guest levels below and above the host exciton band reveals that quasiresonance and superexchange corrections are of minor importance. The experimental resonance pair interactions are used to calculate the triplet exciton band structure of anthracen and the observed guest polarization behaviour is interpreted quantitatively by the Rashba effect. Finally, the lower Davydov component of the host is s and broadened with increasing guest concentration. The shift is discussed using a theoretical model of Lifshitz.

  20. HIGH-RESOLUTION SPECTROSCOPY OF [Ne II] EMISSION FROM AA Tau AND GM Aur

    SciTech Connect

    Najita, Joan R.; Doppmann, Greg W.; Bitner, Martin A.; Richter, Matthew J.; Lacy, John H.; Jaffe, Daniel T.; Carr, John S.; Meijerink, Rowin; Blake, Geoffrey A.; Herczeg, Gregory J.; Glassgold, Alfred E.

    2009-05-20

    We present high-resolution (R = 80,000) spectroscopy of [Ne II] emission from two young stars, GM Aur and AA Tau, which have moderate to high inclinations. The emission from both sources appears centered near the stellar velocity and is broader than the [Ne II] emission measured previously for the face-on disk system TW Hya. These properties are consistent with a disk origin for the [Ne II] emission we detect, with disk rotation (rather than photoevaporation or turbulence in a hot disk atmosphere) playing the dominant role in the origin of the line width. In the non-face-on systems, the [Ne II] emission is narrower than the CO fundamental emission from the same sources. If the widths of both diagnostics are dominated by Keplerian rotation, this suggests that the [Ne II] emission arises from larger disk radii on average than does the CO emission. The equivalent width of the [Ne II] emission we detect is less than that of the spectrally unresolved [Ne II] feature in the Spitzer spectra of the same sources. Variability in the [Ne II] emission or the mid-infrared continuum, a spatially extended [Ne II] component, or a very (spectrally) broad [Ne II] component might account for the difference in the equivalent widths.

  1. Tracing Supernova Enrichment of the Nearest Young Star Forming Complex with High Resolution Stellar Spectroscopy

    NASA Astrophysics Data System (ADS)

    Bubar, Eric Joseph; Mamajek, Eric E.; Pecaut, Mark

    2010-02-01

    The chemical evolution of the galaxy can be examined on a small scale locally by searching for evidence of enrichment by core collapse (type II) supernova explosions among stars belonging to the same star- forming complex. We propose to obtain high resolution spectroscopy of a sample of slowly rotating members of nearby, young stellar groups associated with the nearest star-forming complex: Scorpius-Centaurus. These spectra will be used to perform a precise spectroscopic abundance analysis to test for enrichment of the ~5 Myr-old Upper Scorpius region and neighboring regions by supernova explosions in the neighboring ~ 15 Myr-old Upper Centaurus Lupus and Lower Centaurus Crux subgroups. Enrichment by core-collapse supernovae can be traced by enhancements in oxygen and other alpha- element abundances compared to Fe-peak elements. These abundances can also be used for constraining the chemical homogeneity of members of Upper-Sco. This study will allow us to explore the processes of Galactic chemical evolution and SN enrichment on a small scale (< 0.1 kpc, <10-20 SN) in a complex with a relatively well constrained star formation history and high mass stellar membership.

  2. High resolution 4-D spectroscopy with sparse concentric shell sampling and FFT-CLEAN.

    PubMed

    Coggins, Brian E; Zhou, Pei

    2008-12-01

    Recent efforts to reduce the measurement time for multidimensional NMR experiments have fostered the development of a variety of new procedures for sampling and data processing. We recently described concentric ring sampling for 3-D NMR experiments, which is superior to radial sampling as input for processing by a multidimensional discrete Fourier transform. Here, we report the extension of this approach to 4-D spectroscopy as Randomized Concentric Shell Sampling (RCSS), where sampling points for the indirect dimensions are positioned on concentric shells, and where random rotations in the angular space are used to avoid coherent artifacts. With simulations, we show that RCSS produces a very low level of artifacts, even with a very limited number of sampling points. The RCSS sampling patterns can be adapted to fine rectangular grids to permit use of the Fast Fourier Transform in data processing, without an apparent increase in the artifact level. These artifacts can be further reduced to the noise level using the iterative CLEAN algorithm developed in radioastronomy. We demonstrate these methods on the high resolution 4-D HCCH-TOCSY spectrum of protein G's B1 domain, using only 1.2% of the sampling that would be needed conventionally for this resolution. The use of a multidimensional FFT instead of the slow DFT for initial data processing and for subsequent CLEAN significantly reduces the calculation time, yielding an artifact level that is on par with the level of the true spectral noise.

  3. High-resolution x-ray absorption spectroscopy studies of metal compounds in neurodegenerative brain tissue

    NASA Astrophysics Data System (ADS)

    Collingwood, J. F.; Mikhaylova, A.; Davidson, M. R.; Batich, C.; Streit, W. J.; Eskin, T.; Terry, J.; Barrea, R.; Underhill, R. S.; Dobson, J.

    2005-01-01

    Fluorescence mapping and microfocus X-ray absorption spectroscopy are used to detect, locate and identify iron biominerals and other inorganic metal accumulations in neurodegenerative brain tissue at sub-cellular resolution (<5 microns). Recent progress in developing the technique is reviewed. Synchrotron X-rays are used to map tissue sections for metals of interest, and XANES and XAFS are used to characterise anomalous concentrations of the metals in-situ so that they can be correlated with tissue structures and disease pathology. Iron anomalies associated with biogenic magnetite, ferritin and haemoglobin are located and identified in an avian tissue model with a pixel resolution ~5 microns. Subsequent studies include brain tissue sections from transgenic Huntington's mice, and the first high-resolution mapping and identification of iron biominerals in human Alzheimer's and control autopsy brain tissue. Technical developments include use of microfocus diffraction to obtain structural information about biominerals in-situ, and depositing sample location grids by lithography for the location of anomalies by conventional microscopy. The combined techniques provide a breakthrough in the study of both intra- and extra-cellular iron compounds and related metals in tissue. The information to be gained from this approach has implications for future diagnosis and treatment of neurodegeneration, and for our understanding of the mechanisms involved.

  4. High-resolution x-ray absorption spectroscopy studies of metal compounds in neurodegenerative brain tissue

    SciTech Connect

    Collingwood, J.F.; Mikhaylova, A.; Davidson, M.R.; Batich, C.; Streit, W.J.; Eskin, T.; Terry, J.; Barrea, R.; Underhill, R.S.; Dobson, J.

    2008-06-16

    Fluorescence mapping and microfocus X-ray absorption spectroscopy are used to detect, locate and identify iron biominerals and other inorganic metal accumulations in neurodegenerative brain tissue at sub-cellular resolution (< 5 microns). Recent progress in developing the technique is reviewed. Synchrotron X-rays are used to map tissue sections for metals of interest, and XANES and XAFS are used to characterize anomalous concentrations of the metals in-situ so that they can be correlated with tissue structures and disease pathology. Iron anomalies associated with biogenic magnetite, ferritin and haemoglobin are located and identified in an avian tissue model with a pixel resolution {approx} 5 microns. Subsequent studies include brain tissue sections from transgenic Huntington's mice, and the first high-resolution mapping and identification of iron biominerals in human Alzheimer's and control autopsy brain tissue. Technical developments include use of microfocus diffraction to obtain structural information about biominerals in-situ, and depositing sample location grids by lithography for the location of anomalies by conventional microscopy. The combined techniques provide a breakthrough in the study of both intra- and extra-cellular iron compounds and related metals in tissue. The information to be gained from this approach has implications for future diagnosis and treatment of neurodegeneration, and for our understanding of the mechanisms involved.

  5. Surface structure of an ionic liquid with high-resolution Rutherford backscattering spectroscopy

    NASA Astrophysics Data System (ADS)

    Nakajima, K.; Ohno, A.; Suzuki, M.; Kimura, K.

    2009-02-01

    The surface of an ionic liquid, trimethylpropylammonium bis(trifluoromethanesulfonyl)imide ([TMPA] [TFSI]), is observed by high-resolution Rutherford backscattering spectroscopy (HRBS). The composition depth profiles are derived from the observed HRBS spectra through spectrum simulation. The observed composition is in good agreement with the stoichiometric composition at depths larger than ∼1 nm. The observed composition profiles, however, show pronounced structures at the surface. Fluorine profile has a sharp peak at ∼0.1 nm and a broad peak at ∼1.0 nm. The sulfur profile also has a peak at ∼0.35 nm. These results indicate that the molecules show preferred orientations at the surface. From the observed profiles, it was concluded that the C1 conformer of the [TFSI] anion is dominant over the C2 conformer at the surface in contrast to bulk, where the C2 conformer is known to be dominant. It was also found that C1 conformers are oriented with their CF3 groups pointing toward the vacuum in the outermost molecular layer.

  6. High resolution gamma-ray spectroscopy and the fascinating angular momentum realm of the atomic nucleus

    NASA Astrophysics Data System (ADS)

    Riley, M. A.; Simpson, J.; Paul, E. S.

    2016-12-01

    In 1974 Aage Bohr and Ben Mottelson predicted the different ‘phases’ that may be expected in deformed nuclei as a function of increasing angular momentum and excitation energy all the way up to the fission limit. While admitting their picture was highly conjectural they confidently stated ‘...with the ingenious experimental approaches that are being developed, we may look forward with excitement to the detailed spectroscopic studies that will illuminate the behaviour of the spinning quantised nucleus’. High resolution gamma-ray spectroscopy has indeed been a major tool in studying the structure of atomic nuclei and has witnessed numerous significant advances over the last four decades. This article will select highlights from investigations at the Niels Bohr Institute, Denmark, and Daresbury Laboratory, UK, in the late 1970s and early 1980s, some of which have continued at other national laboratories in Europe and the USA to the present day. These studies illustrate the remarkable diversity of phenomena and symmetries exhibited by nuclei in the angular momentum-excitation energy plane that continue to surprise and fascinate scientists.

  7. High-contrast imaging and high-resolution spectroscopy observation of exoplanets

    NASA Astrophysics Data System (ADS)

    Wang, Ji; Mawet, Dimitri; Hu, Renyu; Benneke, Björn

    2016-08-01

    Detection and characterization of exoplanets faces challenges of smaller angular separation and high contrast between exoplanets and their host stars. High contrast imaging (HCI) instruments equipped with coronagraphs are built to meet these challenges, providing a way of spatially suppressing and separating stellar flux from that of a planet. Another way of separating stellar flux can be achieved by high-resolution spectroscopy (HRS), exploiting the fact that spectral features are different between a star and a planet. Observing exoplanets with HCI+HRS will achieve a higher contrast than the spatial or the spectroscopic method alone, improving the sensitivity to planet detection and enabling the study of the physical and chemical processes. Here, we simulate the performance of a HCI+HRS instrument (i.e., the upgrade Keck NIRSPEC and the fiber injection unit) to study its potential in detecting and characterizing currently known directly imaged planets. The simulation considers the spectral information content of an exoplanet, telescope and instrument specifications and realistic noise sources. The result of the simulation helps to set system requirement and informs designs at system-level. We also perform a trade study for a HCI+HRS instrument for a space mission to study an Earth-like planet orbiting a Sun-like star at 10 pc.

  8. High-Resolution K-Band Spectroscopy of MWC 480 and V1331 Cyg

    NASA Astrophysics Data System (ADS)

    Najita, Joan R.; Doppmann, Greg W.; Carr, John S.; Graham, James R.; Eisner, J. A.

    2009-01-01

    We present high-resolution (R = 25,000-35,000) K-band spectroscopy of two young stars, MWC 480 and V1331 Cyg. Earlier spectrally dispersed (R = 230) interferometric observations of MWC 480 indicated the presence of an excess continuum emission interior to the dust sublimation radius, with a spectral shape that was interpreted as evidence for hot water emission from the inner disk of MWC 480. Our spectrum of V1331 Cyg reveals strong emission from CO and hot water vapor, likely arising in a circumstellar disk. In comparison, our spectrum of MWC 480 appears mostly featureless. We discuss possible ways in which strong water emission from MWC 480 might go undetected in our data. If strong water emission is in fact absent from the inner disk, as our data suggest, the continuum excess interior to the dust sublimation radius that is detected in the interferometric data must have another origin. We discuss possible physical origins for the continuum excess. The data presented herein were obtained at the W. M. Keck Observatory, in part from telescope time allocated to NASA through the agency's scientific partnership with the California Institute of Technology and the University of California. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  9. High-resolution Spectroscopy and Spectropolarimetry of Selected δ-Sct Pulsating Variables

    NASA Astrophysics Data System (ADS)

    Joshi, Santosh; Semenko, Eugene; Moiseeva, A.; Sharma, Kaushal; Joshi, Y. C.; Sachkov, M.; Singh, Harinder P.; Kumar, Yerra Bharat

    2017-01-01

    The combination of photometry, spectroscopy and spectropolarimetry of the chemically peculiar stars often aims to study the complex physical phenomena such as stellar pulsation, chemical inhomogeneity, magnetic field and their interplay with stellar atmosphere and circumstellar environment. The prime objective of the present study is to determine the atmospheric parameters of a set of Am stars to understand their evolutionary status. Atmospheric abundances and basic parameters are determined using full spectrum fitting technique by comparing the high-resolution spectra to the synthetic spectra. To know the evolutionary status we derive the effective temperature and luminosity from different methods and compare them with the literature. The location of these stars in the H-R diagram demonstrate that all the sample stars are evolved from the Zero-Age-Main-Sequence towards Terminal-Age-Main-Sequence and occupy the region of δ Sct instability strip. The abundance analysis shows that the light elements e.g. Ca and Sc are underabundant while iron peak elements such as Ba, Ce etc. are overabundant and these chemical properties are typical for Am stars. The results obtained from the spectropolarimetric analysis shows that the longitudinal magnetic fields in all the studied stars are negligible that gives further support their Am class of peculiarity.

  10. Differentiating brown and white adipose tissues by high-resolution diffusion NMR spectroscopy.

    PubMed

    Verma, Sanjay Kumar; Nagashima, Kaz; Yaligar, Jadegoud; Michael, Navin; Lee, Swee Shean; Xianfeng, Tian; Gopalan, Venkatesh; Sadananthan, Suresh Anand; Anantharaj, Rengaraj; Velan, S Sendhil

    2017-01-01

    There are two types of fat tissues, white adipose tissue (WAT) and brown adipose tissue (BAT), which essentially perform opposite functions in whole body energy metabolism. There is a large interest in identifying novel biophysical properties of WAT and BAT by a quantitative and easy-to-run technique. In this work, we used high-resolution pulsed field gradient diffusion NMR spectroscopy to study the apparent diffusion coefficient (ADC) of fat molecules in rat BAT and WAT samples. The ADC of fat in BAT and WAT from rats fed with a chow diet was compared with that of rats fed with a high-fat diet to monitor how the diffusion properties change due to obesity-associated parameters such as lipid droplet size, fatty acid chain length, and saturation. Feeding a high-fat diet resulted in increased saturation, increased chain lengths, and reduced ADC of fat in WAT. The ADC of fat was lower in BAT relative to WAT in rats fed both chow and high-fat diets. Diffusion of fat was restricted in BAT due to the presence of small multilocular lipid droplets. Our findings indicate that in vivo diffusion might be a potential way for better delineation of BAT and WAT in both lean and obese states.

  11. Spectral characteristics of chlorites and Mg-serpentines using high- resolution reflectance spectroscopy

    USGS Publications Warehouse

    King, T.V.V.; Clark, R.N.

    1989-01-01

    The present laboratory study using high-resolution reflectance spectroscopy (0.25-2.7 ??m) focuses on two primary phyllosilicate groups, serpentines and chlorites. The results show that it is possible to spectrally distinguish between isochemical end-members of the Mg-rich serpentine group (chrysotile, antigorite, and lizardite) and to recognize spectral variations in chlorites as a function of Fe/Mg ratio (~8-38 wt% Fe). The position and relative strength of the 1.4-??m absorption feature in the trioctahedral chlorites appear to be correlated to the total iron content and/or the Mg/Si ratio and the loss on ignition values of the sample. Spectral differences in the 2.3-??m wavelength region can be attributed to differences in lattice environments and are characteristic for specific trioctahedral chlorites. The 1.4-??m feature in the isochemical Mg-rich serpentines (total iron content ~1.5-7.0 wt%) show marked spectral differences, apparently due to structural differences. -Authors

  12. Quantitative neuropathology by high resolution magic angle spinning proton magnetic resonance spectroscopy

    PubMed Central

    Cheng, L. L.; Ma, M. J.; Becerra, L.; Ptak, T.; Tracey, I.; Lackner, A.; González, R. G.

    1997-01-01

    We describe a method that directly relates tissue neuropathological analysis to medical imaging. Presently, only indirect and often tenuous relationships are made between imaging (such as MRI or x-ray computed tomography) and neuropathology. We present a biochemistry-based, quantitative neuropathological method that can help to precisely quantify information provided by in vivo proton magnetic resonance spectroscopy (1HMRS), an emerging medical imaging technique. This method, high resolution magic angle spinning (HRMAS) 1HMRS, is rapid and requires only small amounts of unprocessed samples. Unlike chemical extraction or other forms of tissue processing, this method analyzes tissue directly, thus minimizing artifacts. We demonstrate the utility of this method by assessing neuronal damage using multiple tissue samples from differently affected brain regions in a case of Pick disease, a human neurodegenerative disorder. Among different regions, we found an excellent correlation between neuronal loss shown by traditional neurohistopathology and decrease of the neuronal marker N-acetylaspartate measured by HRMAS 1HMRS. This result demonstrates for the first time, to our knowledge, a direct, quantitative link between a decrease in N-acetylaspartate and neuronal loss in a human neurodegenerative disease. As a quantitative method, HRMAS 1HMRS has potential applications in experimental and clinical neuropathologic investigations. It should also provide a rational basis for the interpretation of in vivo 1HMRS studies of human neurological disorders. PMID:9177231

  13. High-efficiency blazed transmission gratings for high-resolution soft x-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Heilmann, Ralf K.; Bruccoleri, Alexander R.; Schattenburg, Mark L.

    2015-09-01

    High-resolution spectroscopy of astrophysical sources is the key to gaining a quantitative understanding of the history, dynamics, and current conditions of the cosmos. A large-area (> 1,000 cm2), high resolving power (R = λ/Δλ> 3000) soft x-ray grating spectrometer (XGS) that covers the lines of C, N, O, Ne and Fe ions is the ideal tool to address a number of high-priority science questions from the 2010 Decadal Survey, such as the connection between super-massive black holes and large-scale structure via cosmic feedback, the evolution of large- scale structure, the behavior of matter at high densities, and the conditions close to black holes. While no grating missions or instruments are currently approved, an XGS aboard a potential future X-ray Surveyor could easily surpass the above performance metrics. To improve the chances for future soft x-ray grating spectroscopy missions or instruments, grating technology has to progress and advance to higher Technology Readiness Levels (TRLs). To that end we have developed Critical-Angle Transmission (CAT) gratings that combine the advantages of blazed reflection gratings (high efficiency, use of higher diffraction orders) with those of conventional transmission gratings (low mass, relaxed alignment tolerances and temperature requirements, high transparency at higher energies). A CAT grating-based spectrometer can provide performance 1-2 orders of magnitude better than current grating instruments on Chandra and Newton-XMM with minimal resource requirements. At present we have fabricated large-area freestanding CAT gratings with narrow integrated support structures from silicon-on- insulator wafers using advanced lithography and a combination of deep reactive-ion and wet etching. Our latest x-ray test results show record high absolute diffraction efficiencies in blazed orders in excess of 30% with room for improvement.

  14. Metabolomic Analysis of Rat Brain by High Resolution Nuclear Magnetic Resonance Spectroscopy of Tissue Extracts

    PubMed Central

    Lutz, Norbert W.; Béraud, Evelyne; Cozzone, Patrick J.

    2014-01-01

    Studies of gene expression on the RNA and protein levels have long been used to explore biological processes underlying disease. More recently, genomics and proteomics have been complemented by comprehensive quantitative analysis of the metabolite pool present in biological systems. This strategy, termed metabolomics, strives to provide a global characterization of the small-molecule complement involved in metabolism. While the genome and the proteome define the tasks cells can perform, the metabolome is part of the actual phenotype. Among the methods currently used in metabolomics, spectroscopic techniques are of special interest because they allow one to simultaneously analyze a large number of metabolites without prior selection for specific biochemical pathways, thus enabling a broad unbiased approach. Here, an optimized experimental protocol for metabolomic analysis by high-resolution NMR spectroscopy is presented, which is the method of choice for efficient quantification of tissue metabolites. Important strengths of this method are (i) the use of crude extracts, without the need to purify the sample and/or separate metabolites; (ii) the intrinsically quantitative nature of NMR, permitting quantitation of all metabolites represented by an NMR spectrum with one reference compound only; and (iii) the nondestructive nature of NMR enabling repeated use of the same sample for multiple measurements. The dynamic range of metabolite concentrations that can be covered is considerable due to the linear response of NMR signals, although metabolites occurring at extremely low concentrations may be difficult to detect. For the least abundant compounds, the highly sensitive mass spectrometry method may be advantageous although this technique requires more intricate sample preparation and quantification procedures than NMR spectroscopy. We present here an NMR protocol adjusted to rat brain analysis; however, the same protocol can be applied to other tissues with minor

  15. High-Resolution Infrared and Electron-Diffraction Studies of Trimethylenecyclopropane ([3]-Radialene)

    SciTech Connect

    Wright, Corey; Holmes, Joshua; Nibler, Joseph W.; Hedberg, Kenneth; White, James D.; Hedberg, Lise; Weber, Alfons; Blake, Thomas A.

    2013-05-16

    Combined high-resolution spectroscopic, electron-diffraction, and quantum theoretical methods are particularly advantageous for small molecules of high symmetry and can yield accurate structures that reveal subtle effects of electron delocalization on molecular bonds. The smallest of the radialene compounds, trimethylenecyclopropane, [3]-radialene, has been synthesized and examined in the gas phase by these methods. The first high-resolution infrared spectra have been obtained for this molecule of D3h symmetry, leading to an accurate B0 rotational constant value of 0.1378629(8) cm-1, within 0.5% of the value obtained from electronic structure calculations (density functional theory (DFT) B3LYP/cc-pVTZ). This result is employed in an analysis of electron-diffraction data to obtain the rz bond lengths (in Å): C-H = 1.072 (17), C-C = 1.437 (4), and C=C = 1.330 (4). The analysis does not lead to an accurate value of the HCH angle; however, from comparisons of theoretical and experimental angles for similar compounds, the theoretical prediction of 117.5° is believed to be reliable to within 2°. The effect of electron delocalization in radialene is to reduce the single C-C bond length by 0.07 Å compared to that in cyclopropane.

  16. High-resolution photoelectron imaging spectroscopy of cryogenically cooled Fe4O- and Fe5O-

    NASA Astrophysics Data System (ADS)

    Weichman, Marissa L.; DeVine, Jessalyn A.; Neumark, Daniel M.

    2016-08-01

    We report high-resolution photodetachment spectra of the cryogenically cooled iron monoxide clusters Fe4O- and Fe5O- obtained with slow photoelectron velocity-map imaging (cryo-SEVI). Well-resolved vibrational progressions are observed in both sets of spectra, and transitions to low-lying excited states of both species are seen. In order to identify the structural isomers, electronic states, and vibrational modes that contribute to the cryo-SEVI spectra of these clusters, experimental results are compared with density functional theory calculations and Franck-Condon simulations. The main bands observed in the SEVI spectra are assigned to the 15A2←16B2 photodetachment transition of Fe4O- and the 17A'←18A″ photodetachment transition of Fe5O-. We report electron affinities of 1.6980(3) eV for Fe4O and 1.8616(3) eV for Fe5O, although there is some uncertainty as to whether the 15A2 state is the true ground state of Fe4O. The iron atoms have a distorted tetrahedral geometry in Fe4O0/- and a distorted trigonal-bipyramidal arrangement in Fe5O0/-. For both neutral and anionic species, the oxygen atom preferably binds in a μ2-oxo configuration along the cluster edge. This finding is in contrast to prior predictions that Fe5O0/- exhibits a μ3 face-bound structure.

  17. High-resolution X-ray absorption spectroscopy of iron carbonyl complexes.

    PubMed

    Atkins, Andrew J; Bauer, Matthias; Jacob, Christoph R

    2015-06-07

    We apply high-energy-resolution fluorescence-detected (HERFD) X-ray absorption near-edge spectroscopy (XANES) to study iron carbonyl complexes. Mono-, bi-, and tri-nuclear carbonyl complexes and pure carbonyl complexes as well as carbonyl complexes containing hydrocarbon ligands are considered. The HERFD-XANES spectra reveal multiple pre-edge peaks with individual signatures for each complex, which could not be detected previously with conventional XANES spectroscopy. These peaks are assigned and analysed with the help of TD-DFT calculations. We demonstrate that the pre-edge peaks can be used to distinguish the different types of iron-iron interactions in carbonyl complexes. This opens up new possibilities for applying HERFD-XANES spectroscopy to probe the electronic structure of iron catalysts.

  18. Characterization of carbonaceous meteoritic fragments found in Antarctica by high-resolution Raman spectroscopy and SEM/EDS

    NASA Astrophysics Data System (ADS)

    Dall Asen, Analia; Baer, Brandon; Mittelstaedt, Jake; Gerton, Jordan; Bromley, Benjamin; Kenyon, Scott

    2016-03-01

    Carbonaceous chondritic meteorites are composed mainly of chondrules (micro/millimeter-sized inclusions) surrounding by a matrix of microparticles, and are considered the most primitive surviving materials from the early Solar System. Understanding their properties and history may provide clues to the formation of planets from micron-size dust grains in the Solar nebula. Our approach is to study the structure and composition of carbonaceous chondrites with high-resolution micro-Raman spectroscopy, scanning electron microscopy and energy dispersive X-ray spectroscopy. These techniques enable us to capture details on a wide range of spatial scales, from micrometers to millimeters. Here we provide the first analysis of a set of meteorite fragments from Antarctica (MIL 07002 and ALH 84028), mapping elemental and molecular abundances, as well as large-scale morphological features. We present characterizations of individual chondrules and the surrounding matrix, and we consider on how our findings reflect physical processes believed to be operating during the early stages of planet formation.

  19. Experiments with the High Resolution Kaon Spectrometer at Jlab Hall C and the New Spectroscopy of ^12_Lambda B Hypernuclei

    SciTech Connect

    Tang, Liguang; Chen, Chunhua; Gogami, Toshiyuki; Kawama, Daisuke; Han, Yuncheng; Yuan, Lulin; Matsumura, Akihiko; Okayasu, Yuichi; Seva, Tomislav; Rodriguez, Victor; Baturin, Pavlo; Acha Quimper, Armando; Achenbach, Carsten; Ahmidouch, Abdellah; Albayrak, Ibrahim; Androic, Darko; Asaturyan, Arshak; Asaturyan, Razmik; Ates, Ozgur; Badui, Rafael; Baker, Oliver; Benmokhtar, Fatiha; Boeglin, Werner; Bono, Jason; Bosted, Peter; Brash, Edward; Carter, Philip; Carlini, Roger; Chiba, Atsushi; Christy, Michael; Cole, Leon; Dalton, Mark; Danagoulian, Samuel; Daniel, Aji; De Leo, Raffaele; Dharmawardane, Kahanawita; Doi, Daisuke; Egiyan, Kim; Elaasar, Mostafa; Ent, Rolf; Fenker, Howard; Fujii, Yu; Furic, Miroslav; Gabrielyan, Marianna; Gan, Liping; Garibaldi, Franco; Gaskell, David; Gasparian, Ashot; Gibson, Edward; Gueye, Paul; Hashimoto, Osamu; Honda, D; Horn, Tanja; Hu, Bitao; Hungerford, Ed; Jayalath, Chandana; Jones, Mark; Johnston, Kathleen; Kalantarians, Narbe; Kanda, Hiroki; Kaneta, M; Kato, F; Kato, Seigo; Kawai, Masaharu; Keppel, Cynthia; Khanal, Hari; Kohl, M; Kramer, Laird; Lan, Kejian; Li, Ya; Habarakada Liyanage, Anusha; Luo, Wei; Mack, David; Maeda, Kazushige; Malace, Simona; Margaryan, Amur; Marikyan, Gagik; Markowitz, Pete; Maruta, Tomofumi; Maruyama, Nayuta; Maxwell, Victor; Millener, David; Miyoshi, Toshinobu; Mkrtchyan, Arthur; Mkrtchyan, Hamlet; Motoba, Toshio; Nagao, Sho; Nakamura, Satoshi; Narayan, Amrendra; Neville, Casey; Niculescu, Gabriel; Niculescu, Maria; Nunez, Angel; Nuruzzaman, nfn; Nomura, Hiroshi; Nonaka, Kenichi; Ohtani, Atsushi; Oyamada, Masamichi; Perez, Naipy; Petkovic, Tomislav; Pochodzalla, J; Qiu, Xiyu; Randeniya, Kapugodage; Raue, Brian; Reinhold, Joerg; Rivera, R; Roche, Julie; Samanta, Chhanda; Sato, Yoshinori; Sawatzky, Bradley; Segbefia, Edwin; Schott, Diane; Shichijo, Ayako; Simicevic, Neven; Smith, Gregory; Song, Yushou; Sumihama, Mizuki; Tadevosyan, Vardan; Takahashi, Toshiyuki; Taniya, Naotaka; Tsukada, Kyo; Tvaskis, Vladas; Veilleux, Micah; Vulcan, William; Wells, Steven; Wesselmann, Frank; Wood, Stephen; Yamamoto, Taku; Yan, Chen; Ye, Z; Yokota, Kosuke; Zhamkochyan, Simon; Zhu, Lingyan

    2014-09-01

    Since the pioneering experiment, E89-009 studying hypernuclear spectroscopy using the $(e,e^{\\prime}K^+)$ reaction was completed, two additional experiments, E01-011 and E05-115, were performed at Jefferson Lab. These later experiments used a modified experimental design, the "Tilt Method", to dramatically suppress the large electromagnetic background, and allowed for a substantial increase in luminosity. Additionally, a new kaon spectrometer, HKS (E01-011), a new electron spectrometer, HES, and a new splitting magnet were added to produce precision, high-resolution hypernuclear spectroscopy. These two experiments, E01-011 and E05-115, resulted in two new data sets, producing sub-MeV energy resolution in the spectra of ${}^{7}_{\\Lambda}\\text{He}$, ${}^{12}_{\\Lambda}\\text{B}$ and ${}^{28}_{\\Lambda} \\text{Al}$ and ${}^{7}_{\\Lambda}\\text{He}$, ${}^{10}_{\\Lambda}\\text{Be}$, ${}^{12}_{\\Lambda}\\text{B}$ and ${}^{52}_{\\Lambda}\\text{V}$. All three experiments obtained a ${}^{12}_{\\Lambda}\\text{B}$, spectrum, which is the most characteristic $p$-shell hypernucleus and is commonly used for calibration. Independent analyses of these different experiments demonstrate excellent consistency and provide the clearest level structure to date of this hypernucleus as produced by the $(e,e^{\\prime}K^+)$ reaction. This paper presents details of these experiments, and the extraction and analysis of the observed ${}^{12}_{\\Lambda}\\text{B}$ spectrum.

  20. Accurate protein crystallography at ultra-high resolution: Valence electron distribution in crambin

    PubMed Central

    Jelsch, Christian; Teeter, Martha M.; Lamzin, Victor; Pichon-Pesme, Virginie; Blessing, Robert H.; Lecomte, Claude

    2000-01-01

    The charge density distribution of a protein has been refined experimentally. Diffraction data for a crambin crystal were measured to ultra-high resolution (0.54 Å) at low temperature by using short-wavelength synchrotron radiation. The crystal structure was refined with a model for charged, nonspherical, multipolar atoms to accurately describe the molecular electron density distribution. The refined parameters agree within 25% with our transferable electron density library derived from accurate single crystal diffraction analyses of several amino acids and small peptides. The resulting electron density maps of redistributed valence electrons (deformation maps) compare quantitatively well with a high-level quantum mechanical calculation performed on a monopeptide. This study provides validation for experimentally derived parameters and a window into charge density analysis of biological macromolecules. PMID:10737790

  1. Accurate protein crystallography at ultra-high resolution: valence electron distribution in crambin.

    PubMed

    Jelsch, C; Teeter, M M; Lamzin, V; Pichon-Pesme, V; Blessing, R H; Lecomte, C

    2000-03-28

    The charge density distribution of a protein has been refined experimentally. Diffraction data for a crambin crystal were measured to ultra-high resolution (0.54 A) at low temperature by using short-wavelength synchrotron radiation. The crystal structure was refined with a model for charged, nonspherical, multipolar atoms to accurately describe the molecular electron density distribution. The refined parameters agree within 25% with our transferable electron density library derived from accurate single crystal diffraction analyses of several amino acids and small peptides. The resulting electron density maps of redistributed valence electrons (deformation maps) compare quantitatively well with a high-level quantum mechanical calculation performed on a monopeptide. This study provides validation for experimentally derived parameters and a window into charge density analysis of biological macromolecules.

  2. High-Resolution Imaging and Spectroscopy at High Pressure: A Novel Liquid Cell for the TEM

    PubMed Central

    Tanase, Mihaela; Winterstein, Jonathan; Sharma, Renu; Aksyuk, Vladimir; Holland, Glenn; Liddle, J. Alexander

    2016-01-01

    We demonstrate quantitative core-loss electron energy-loss spectroscopy of iron oxide nanoparticles and imaging resolution of Ag nanoparticles in liquid down to 0.24 nm, in both transmission and scanning-transmission modes, in a novel, monolithic liquid cell developed for the transmission electron microscope (TEM). At typical SiN membrane thicknesses of 50 nm the liquid layer thickness has a maximum change of only 30 nm for the entire TEM viewing area of 200 μm × 200 μm. PMID:26650072

  3. High-resolution X-ray spectroscopy of late-type stars with CHANDRA

    NASA Astrophysics Data System (ADS)

    Mewe, R.; Raassen, A. J. J.; Kaastra, J. S.; van der Meer, R. L. J.; Brinkman, A. C.

    We have analyzed high-resolution (Δλ ≅ 0.06 Å) X-ray spectra in the region 6-180 Å of the coronae of the cool stars Capella, Procyon, and α Centauri. These stars were observed with the the CHANDRA Low Energy Transmission Grating Spectrometer (LETGS) between Sep. and Dec. 1999. Temperatures are derived from line ratios of helium-like lines and long-wavelength iron lines. Electron densities are obtained for the relatively cooler (few MK) and more tenuous (⪅ 10 11 cm -3) plasma components from the forbidden to intercombination line ratios in the helium-like triplets of O, N, and C and for the hotter (⪆ 5 MK) and denser (⪆ 10 12 cm -3) components (such as occur in Capella) from the helium-like triplets of Mg and Si and the ratios of Fe XIX-Fe XXII 2ℓ-2ℓ' lines above 90 Å. The implications of these results for the coronal structure are discussed.

  4. Magnetic lens apparatus for a low-voltage high-resolution electron microscope

    DOEpatents

    Crewe, Albert V.

    1996-01-01

    A lens apparatus in which a beam of charged particles of low accelerating voltage is brought to a focus by a magnetic field, the lens being situated behind the target position. The lens comprises an electrically-conducting coil arranged around the axis of the beam and a magnetic pole piece extending along the axis of the beam at least within the space surrounded by the coil. The lens apparatus comprises the sole focusing lens for high-resolution imaging in a low-voltage scanning electron microscope.

  5. Soot Nanostructure: Using Fringe Analysis Software on High Resolution Transmission Electron Microscopy of Carbon Soot

    NASA Technical Reports Server (NTRS)

    King, James D.

    2004-01-01

    Using high resolution transmission electron images of carbon nanotubes and carbon particles, we are able to use image analysis program to determine several carbon fringe properties, including length, separation, curvature and orientation. Results are shown in the form of histograms for each of those quantities. The combination of those measurements can give a better indication of the graphic structure within nanotubes and particles of carbon and can distinguish carbons based upon fringe properties. Carbon with longer, straighter and closer spaced fringes are considered graphite, while amorphous carbon contain shorter, less structured fringes.

  6. Crack tip shielding observed with high-resolution transmission electron microscopy.

    PubMed

    Adhika, Damar Rastri; Tanaka, Masaki; Daio, Takeshi; Higashida, Kenji

    2015-10-01

    The dislocation shielding field at a crack tip was experimentally proven at the atomic scale by measuring the local strain in front of the crack tip using high-resolution transmission electron microscopy (HRTEM) and geometric phase analysis (GPA). Single crystalline (110) silicon wafers were employed. Cracks were introduced using a Vickers indenter at room temperature. The crack tip region was observed using HRTEM followed by strain measurements using GPA. The measured strain field at the crack tip was compressive owing to dislocation shielding, which is in good agreement with the strain field calculated from elastic theory.

  7. Crack tip shielding observed with high-resolution transmission electron microscopy

    PubMed Central

    Adhika, Damar Rastri; Tanaka, Masaki; Daio, Takeshi; Higashida, Kenji

    2015-01-01

    The dislocation shielding field at a crack tip was experimentally proven at the atomic scale by measuring the local strain in front of the crack tip using high-resolution transmission electron microscopy (HRTEM) and geometric phase analysis (GPA). Single crystalline (110) silicon wafers were employed. Cracks were introduced using a Vickers indenter at room temperature. The crack tip region was observed using HRTEM followed by strain measurements using GPA. The measured strain field at the crack tip was compressive owing to dislocation shielding, which is in good agreement with the strain field calculated from elastic theory. PMID:26115957

  8. High-resolution infrared detector and its electronic unit for space application

    NASA Astrophysics Data System (ADS)

    Meftah, M.; Montmessin, F.; Korablev, O.; Trokhimovsky, A.; Poiet, G.; Bel, J.-B.

    2015-05-01

    High-resolution infrared detector is used extensively for military and civilian purposes. Military applications include target acquisition, surveillance, night vision, and tracking. Civilian applications include, among others, scientific observations. For our space systems, we want to use the products developed by SOFRADIR Company. Thus, we have developed a space electronic unit that is used to control the high-resolution SCORPIO-MW infrared detector, which has a format of 640×512 pixels with 15μm×15μm pixel pitch. The detector within microelectronics based on infrared mid-wave (MW) complementary metal oxide semiconductors (CMOS) uses a micro-cooler in order to keep its temperature around 100 K. The standard wavelength range (3 to 5μm) is adapted to the 2.2 to 4.3μm wavelength range thanks to adaptation of the optical interface of the detector and with an antireflection coating. With our electronic system, we can acquire 3 images per second. To increase the signal to noise ratio, we have the opportunity to make a summation of 15 frames per image. Through this article, we will describe the space electronic system that we have developed in order to achieve space observations (e.g. Atmospheric Chemistry Suite package for ExoMars Trace Gas Orbiter).

  9. IGRINS Near-IR High-resolution Spectroscopy of Multiple Jets around LkHα 234

    NASA Astrophysics Data System (ADS)

    Oh, Heeyoung; Pyo, Tae-Soo; Yuk, In-Soo; Park, Byeong-Gon; Park, Chan; Chun, Moo-Young; Pak, Soojong; Kim, Kang-Min; Sok Oh, Jae; Jeong, Ueejeong; Yu, Young Sam; Lee, Jae-Joon; Kim, Hwihyun; Hwang, Narae; Kaplan, Kyle; Pavel, Michael; Mace, Gregory; Lee, Hye-In; Nguyen Le, Huynh Anh; Lee, Sungho; Jaffe, Daniel T.

    2016-02-01

    We present the results of high-resolution near-IR spectroscopy toward the multiple outflows around the Herbig Be star LkHα 234 using the Immersion Grating Infrared Spectrograph. Previous studies indicate that the region around LkHα 234 is complex, with several embedded young stellar objects and the outflows associated with them. In simultaneous H- and K-band spectra from HH 167, we detected 5 [Fe ii] and 14 H2 emission lines. We revealed a new [Fe ii] jet driven by radio continuum source VLA 3B. Position-velocity diagrams of the H2 1-0 S(1) λ2.122 μm line show multiple velocity peaks. The kinematics may be explained by a geometrical bow shock model. We detected a component of H2 emission at the systemic velocity (VLSR = -10.2 km s-1) along the whole slit in all slit positions, which may arise from the ambient photodissociation region. Low-velocity gas dominates the molecular hydrogen emission from knots A and B in HH 167, which is close to the systemic velocity; [Fe ii] emission lines are detected farther from the systemic velocity, at VLSR = -100--130 km s-1. We infer that the H2 emission arises from shocked gas entrained by a high-velocity outflow. Population diagrams of H2 lines imply that the gas is thermalized at a temperature of 2500-3000 K and the emission results from shock excitation. This paper includes data taken at The McDonald Observatory of The University of Texas at Austin.

  10. IGRINS NEAR-IR HIGH-RESOLUTION SPECTROSCOPY OF MULTIPLE JETS AROUND LkHα 234

    SciTech Connect

    Oh, Heeyoung; Yuk, In-Soo; Park, Byeong-Gon; Park, Chan; Chun, Moo-Young; Kim, Kang-Min; Oh, Jae Sok; Jeong, Ueejeong; Yu, Young Sam; Lee, Jae-Joon; Kim, Hwihyun; Hwang, Narae; Lee, Sungho; Pyo, Tae-Soo; Pak, Soojong; Lee, Hye-In; Le, Huynh Anh Nguyen; Kaplan, Kyle; Pavel, Michael; Mace, Gregory; and others

    2016-02-01

    We present the results of high-resolution near-IR spectroscopy toward the multiple outflows around the Herbig Be star LkHα 234 using the Immersion Grating Infrared Spectrograph. Previous studies indicate that the region around LkHα 234 is complex, with several embedded young stellar objects and the outflows associated with them. In simultaneous H- and K-band spectra from HH 167, we detected 5 [Fe ii] and 14 H{sub 2} emission lines. We revealed a new [Fe ii] jet driven by radio continuum source VLA 3B. Position–velocity diagrams of the H{sub 2} 1−0 S(1) λ2.122 μm line show multiple velocity peaks. The kinematics may be explained by a geometrical bow shock model. We detected a component of H{sub 2} emission at the systemic velocity (V{sub LSR} = −10.2 km s{sup −1}) along the whole slit in all slit positions, which may arise from the ambient photodissociation region. Low-velocity gas dominates the molecular hydrogen emission from knots A and B in HH 167, which is close to the systemic velocity; [Fe ii] emission lines are detected farther from the systemic velocity, at V{sub LSR} = −100–−130 km s{sup −1}. We infer that the H{sub 2} emission arises from shocked gas entrained by a high-velocity outflow. Population diagrams of H{sub 2} lines imply that the gas is thermalized at a temperature of 2500–3000 K and the emission results from shock excitation.

  11. Imaging and high-resolution spectroscopy of the Planetary Nebula NGC 3242

    NASA Astrophysics Data System (ADS)

    Gómez-Muñoz, Marco Antonio; Wendolyn Blanco Cárdenas, Mónica; Vázquez, Roberto; Zavala, Saúl A.; Guillén, Pedro F.; Ayala, Sandra A.

    2015-08-01

    We present a high-resolution imaging and high-dispersion spectroscopy study of the complex morphological and kinematical structure of the planetary nebula NGC 3242. We analyze narrowband Hα, [O III] and [N II] images, addressing important morphological features: in the [O III] image we found one knot oriented to PA=-4°, in the [N II] image, three knots oriented at PA1=155°, PA2=+157°, and PA3=-45.5°, and in the Hα image, two bubbles in the internal region, one of them oriented toward SE and the other toward NW. Additionally we used the unsharp-masking technique and found faint structures in the halo that have not been studied before. These structures are presented in two pairs of arcs, one pair oriented toward PA=-35° and the other toward PA=140°. NGC 3242 is a morphologically rich PN with bubbles, asymmetrical outflows, and some knots in a double-shell nebular structure. Ground-based long-slit echelle spectra were obtained crossing NGC 3242 at twelve different positions to precisely determine kinematical features in the structure of the nebula. We obtain a systemic velocity of VLSR=-6.6 km/s. We have used the software SHAPE (Steffen et al. 2011, IEEE Trans. Vis. Comput. Graphics, 17, 454), to reconstruct a 3D model of NGC 3242 which fits all our observational data. Preliminary results (deprojected velocities and kinematical ages) of all these structures will be presented.This project has been supported by grant PAPIIT-DGAPA-UNAM IN107914. MWB is in grateful receipt of a DGAPA-UNAM postdoctoral scholarship. MAG acknowledges CONACYT for his graduate scholarship.

  12. High-Resolution Spectroscopy of Stratospheric Ethane Following the Jupiter Impact of 2009

    NASA Technical Reports Server (NTRS)

    Fast, Kelly; Kostiuk, Theodor; Livengood, Timothy A.; Hewagama, Tilak; Amen, John

    2010-01-01

    We report on high-resolution infrared spectroscopy of ethane (C2H6) performed at the latitude of an impact site on Jupiter discovered on 19 July 2009 by A. Wesley from a location in Murrumbateman, Australia. The observations used the NASA Goddard Space Flight Center's Heterodyne Instrument for Planetary Wind and Composition (HIPWAC) at the NASA Infrared Telescope Facility (IRTF) on Mauna Kea, Hawaii. HIPWAC is a mid-infrared (9-12 microns) heterodyne spectrometer operating at the highest limit of spectral resolving power (lambda\\Delta\\lambda > l06), providing information on atmospheric constituent abundance and temperature through fully resolved tine shapes. Ethane is a stable trace product of methane photochemistry that is nearly uniformly mixed in Jupiter's stratosphere, providing an effective probe of that altitude region. Ethane emission line profiles near 11,74 microns in the Ug band were measured in Jupiter's stratosphere at 25 MHz (11.00083/cm) resolution. A sequence of spectra of ethane acquired over a range of longitude at the impact latitude (56S planetocentric) probes constituent abundance and temperature profile, both on and off the impact region. Near the site of the impact, ethane emission increased above levels measured well outside the impact region. Radiative transfer analysis indicates increased ethane mole fraction (30% greater). Variation in the measured continuum level and line intensities within 75deg of the impact longitude indicate the presence of an opacity source (haze) at altitudes near and above the tropopause and as high as the 10-mbar level near the impact site. The indication of possible haze opacity up to the 10-mbar level in the atmosphere is consistent with measurements made by HIPWAC's predecessor as part of the IRTF Shoemaker Levy-9 campaign in 1994.

  13. Novel method of simultaneous multiple immunogold localization on resin sections in high resolution scanning electron microscopy.

    PubMed

    Nebesarova, Jana; Wandrol, Petr; Vancova, Marie

    2016-01-01

    We present a new method of multiple immunolabeling that is suitable for a broad spectrum of biomedical applications. The general concept is to label both sides of the ultrathin section with the thickness of 70-80 nm with different antibodies conjugated to gold nanoparticles and to distinguish the labeled side by advanced imaging methods with high resolution scanning electron microscopy, such as by correlating images acquired at different energies of primary electrons using different signals. From the Clinical Editor: The use of transmission electron microscopy has become an indispensible tool in the detection of cellular proteins. In this short but interesting article, the authors described their new method of labeling and the identification of four different proteins simultaneously, which represents another advance in imaging technique.

  14. Probing Chemical Dynamics with High Resolution Spectroscopy: Chirped-Pulse Fourier-Transform Microwave Spectroscopy Coupled with a Hyperthermal Source

    NASA Astrophysics Data System (ADS)

    Kidwell, Nathanael M.; Vara, Vanesa Vaquero; Mehta-Hurt, Deepali N.; Korn, Joseph A.; Dian, Brian C.; Zwier, Timothy S.

    2013-06-01

    Chirped-pulse Fourier-transform microwave (CP-FTMW) spectroscopy has proven to be a well-suited technique for the rapid study and spectral identification of molecular species due to its ultra-broadband capability and excellent specificity to molecular structure from high-resolution rotational transitions. This talk will describe initial results from combining CP-FTMW detection with a hyperthermal nozzle source. This source has the advantage of producing traditionally high thermal product densities in a pulsed supersonic expansion with a short contact time compared to conventional pyrolysis. Used in tandem, CP-FTMW spectroscopy and the hyperthermal nozzle in a supersonic expansion is a powerful method that can produce and detect changes in conformation and isomer populations, and characterize important intermediates on the reaction surface of a precursor. In particular, we show its utility to provide insight into the unimolecular decomposition pathways of model lignin compounds and alternative biofuels. Preliminary results will be discussed including spectroscopic evidence for formation of cyclopentadienone in the pyrolysis of a lignin derivative guaiacol (o-methoxyphenol).

  15. High-resolution photodetachment spectroscopy from the lowest threshold of O{sup -}

    SciTech Connect

    Joiner, Anne; Mohr, Robert H.; Yukich, J. N.

    2011-03-15

    We conducted photodetachment spectroscopy near the lowest detachment threshold from O{sup -} in a 1-T field with sufficient resolution to observe a magnetic field structure similar to that observed in experiments conducted at the threshold of the electron affinity. These observations included not only cyclotron structure but also, to a smaller degree, individual Zeeman thresholds. The experiment was conducted in a Penning ion trap and with a single-mode, tunable, amplified diode laser. Finally, analysis of our results yielded a measurement of the lowest threshold energy.

  16. Exploiting high resolution Fourier transform spectroscopy to inform the development of a quantum cascade laser based explosives detection systems

    NASA Astrophysics Data System (ADS)

    Carlysle, Felicity; Nic Daeid, Niamh; Normand, Erwan; McCulloch, Michael

    2012-10-01

    Fourier Transform infrared spectroscopy (FTIR) is regularly used in forensic analysis, however the application of high resolution Fourier Transform infrared spectroscopy for the detection of explosive materials and explosive precursors has not been fully explored. This project aimed to develop systematically a protocol for the analysis of explosives and precursors using Fourier Transform infrared spectroscopy and basic data analysis to enable the further development of a quantum cascade laser (QCL) based airport detection system. This paper details the development of the protocol and results of the initial analysis of compounds of interest.

  17. Nanoscale deformation analysis with high-resolution transmission electron microscopy and digital image correlation

    DOE PAGES

    Wang, Xueju; Pan, Zhipeng; Fan, Feifei; ...

    2015-09-10

    We present an application of the digital image correlation (DIC) method to high-resolution transmission electron microscopy (HRTEM) images for nanoscale deformation analysis. The combination of DIC and HRTEM offers both the ultrahigh spatial resolution and high displacement detection sensitivity that are not possible with other microscope-based DIC techniques. We demonstrate the accuracy and utility of the HRTEM-DIC technique through displacement and strain analysis on amorphous silicon. Two types of error sources resulting from the transmission electron microscopy (TEM) image noise and electromagnetic-lens distortions are quantitatively investigated via rigid-body translation experiments. The local and global DIC approaches are applied for themore » analysis of diffusion- and reaction-induced deformation fields in electrochemically lithiated amorphous silicon. As a result, the DIC technique coupled with HRTEM provides a new avenue for the deformation analysis of materials at the nanometer length scales.« less

  18. Nanoscale deformation analysis with high-resolution transmission electron microscopy and digital image correlation

    SciTech Connect

    Wang, Xueju; Pan, Zhipeng; Fan, Feifei; Wang, Jiangwei; Liu, Yang; Mao, Scott X.; Zhu, Ting; Xia, Shuman

    2015-09-10

    We present an application of the digital image correlation (DIC) method to high-resolution transmission electron microscopy (HRTEM) images for nanoscale deformation analysis. The combination of DIC and HRTEM offers both the ultrahigh spatial resolution and high displacement detection sensitivity that are not possible with other microscope-based DIC techniques. We demonstrate the accuracy and utility of the HRTEM-DIC technique through displacement and strain analysis on amorphous silicon. Two types of error sources resulting from the transmission electron microscopy (TEM) image noise and electromagnetic-lens distortions are quantitatively investigated via rigid-body translation experiments. The local and global DIC approaches are applied for the analysis of diffusion- and reaction-induced deformation fields in electrochemically lithiated amorphous silicon. As a result, the DIC technique coupled with HRTEM provides a new avenue for the deformation analysis of materials at the nanometer length scales.

  19. Emerging Trends on the Volatile Chemistry in Comets as Measured with High-Resolution Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Dello Russo, Neil; Kawakita, Hideyo; Vervack, Ronald J., Jr.; Weaver, Harold A.

    2016-10-01

    A systematic analysis of the mixing ratios with respect to H2O for eight species (CH3OH, HCN, NH3, H2CO, C2H2, C2H6, CH4, and CO) measured with high-resolution infrared spectroscopy is presented. Some trends are beginning to emerge when mixing ratios in individual comets are compared to average mixing ratios obtained for all species within the population. The variation in mixing ratios for all measured species is at least an order of magnitude. Overall, Jupiter-family comets are depleted in volatile species with respect to H2O compared to long-period Oort cloud comets, with the most volatile species showing the greatest relative depletion. There is a high positive correlation between the mixing ratios of HCN, C2H6, and CH4, whereas NH3, H2CO, and C2H2 are moderately correlated with each other but generally uncorrelated or show only weak correlation with other species. CO is generally uncorrelated with the other measured species possibly because it has the highest volatility and is therefore more susceptible to thermal evolutionary effects. Molecular mixing ratios for CH3OH, HCN, C2H6, and CH4 show an expected behavior with heliocentric distance suggesting a dominant ice source, whereas there is emerging evidence that the mixing ratios of NH3, H2CO, and C2H2 may increase at small heliocentric distances, suggesting the possibility of additional sources related to the thermal decomposition of organic dust. Although this provides information on the composition of the most volatile grains in comets, it presents an additional difficulty in classifying comet chemistry because most comets within this dataset were only observed over a limited range of heliocentric distance. Optical and infrared comparisons indicate that mixing ratios of daughter species and potential parents from cometary ices are sometimes but not always consistent with one another. This suggests that in many comets there are significant sources of C2 and/or CN from grains, and that the importance of these

  20. A search for inversion layers in hot Jupiters with high-resolution spectroscopy

    NASA Astrophysics Data System (ADS)

    Hood, Callie; Birkby, Jayne; Lopez-Morales, Mercedes

    2017-01-01

    At present, the existence of thermal inversion layers in hot Jupiter atmospheres is uncertain due to conflicting results on their detection. However, understanding the thermal structure of exoplanet atmospheres is crucial to measuring their chemical compositions because the two quantities are highly interdependent. Here, we present high-resolution infrared spectroscopy of a hot Jupiter taken at 3.5 μm with CRIRES (R~100,000) on the Very Large Telescope. We directly detect the spectrum of the planet by tracing the radial-velocity shift of water features in its atmosphere during approximately one tenth of its orbit. We removed telluric contamination effects and the lines of the host star from our observed combined light spectra using singular value decomposition, then cross-correlated these processed spectra with a grid of high spectral resolution molecular templates containing features from water, methane, and carbon dioxide. The templates included atmospheric profiles with and without thermal inversion i.e. emission and absorption lines, respectively. We find evidence of water emission features in the planet’s dayside spectrum at a signal-to-noise of 4.7, indicative of a thermal inversion in the planet's atmosphere within the pressures ranges probed by our observations. The direct detection of emission lines at high spectral resolution in the planet spectrum make it one of the most unambiguous detections of a thermal inversion layer in an exoplanet atmosphere to date. However, we are carrying out further data analysis to ensure the robustness of the signal. Future observations of other molecules that could cause inversion layers, e.g. titanium oxide, would provide strong additional evidence of the inversion and help further our understanding of the behavior of highly irradiated giant planet atmospheres.The SAO REU program is funded in part by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant no. 1262851, and by the

  1. Acquisition of a High Voltage/High resolution Transmission Electron Microscope.

    DTIC Science & Technology

    1988-08-21

    Electron Energy Loss Spectroscopy (EELS) The EELS is the study of energy distribution of electrons ...or aggregates of small particles can be studied directly by transmission electron mi- croscopy techniques (Fig. 7).12 17 - .,’ L -. 𔃾 " ", , M. 1.5 "m...characterization of the ceramic producrs in terms of imaging at all levels of resolution (from optical to atomic 21 resolution) by direct

  2. High resolution cathodoluminescence spectroscopy of carbonate cementation in Khurmala Formation (Paleocene-L. Eocene) from Iraqi Kurdistan Region, Northern Iraq

    NASA Astrophysics Data System (ADS)

    Omer, Muhamed F.; Omer, Dilshad; Zebari, Bahroz Gh.

    2014-12-01

    A combination of high resolution cathodoluminsecnce-spectroscopy (HRS-CL) with spatial electron microprobe analysis and optical microscopy is used to determine paragenesis and history of cementation in the limestones and dolostones of Khurmala Formation which is exposed in many parts of Northern Iraq. Khurmala Formation was subjected to different diagenetic processes such as micritization, compaction, dissolution, neomorphism, pyritization and cementation that occurred during marine to shallow burial stages and culminated during intermediate to deep burial later stages. Five dolomite textures are recognized and classified according to crystal size distribution and crystal-boundary shape. Dolomitization is closely associated with the development of secondary porosity that pre-and postdates dissolution and corrosion; meanwhile such porosity was not noticed in the associated limestones. Microprobe analysis revealed three types of cement, calcite, dolomite and ankerite which range in their luminescence from dull to bright. Cathodoluminescence study indicated four main texture generations. These are (1) unzoned microdolomite of planar and subhedral shape, with syntaxial rim cement of echinoderm that show dull to red luminescence, (2) equant calcite cements filling interparticle pores which shows dull luminescence and weak zonal growth, (3.1) homogenous intrinsic blue stoichiometric calcite with dull luminescence and without activators, (3.2) coarse blocky calcite cement with strong oscillatory zoning and bright orange luminescence which postdates other calcite cements, (4) ankerite cement with red to orange, non-luminescence growth zonation which is the last formed cement.

  3. High Resolution Stark Spectroscopy of Model Donor-Acceptor Aminobenzonitriles in the Gas Phase.

    NASA Astrophysics Data System (ADS)

    Fleisher, Adam J.; Clements, Casey L.; Bird, Ryan G.; Pratt, David W.; Alvarez-Valtierra, Leonardo

    2011-06-01

    Electronic communication between donor-acceptor systems is prevalent in many chemical processes. Unfortunately, an accurate description of the changes in molecular geometry responsible for intramolecular charge transfer (ICT) is difficult to ascertain. Reported here are the S0, LA, and LB electronic state structures and dipole moments of two model ICT systems, 4-(1H-pyrrol-l-yl)benzonitrile (PBN) and 4-(1-pyrrolidinyl)benzonitrile (PDBN), as measured by rotationally resolved electronic spectroscopy. As was observed for phenylpyrrole, the unsaturted rings of PBN become collectively more planar following excitation with UV light, in support of the planar ICT model. However, in PDBN the twist/inversion angle between rings is nearly zero in both the ground and excited electronic states. The unperturbed dipole moments measured here, taken in conjunction with available solvatochromism data, provide an estimate for the polarization, dispersion, and charge transfer contributions to solvent-mediated excited state stabilization. J.A. Thomas, J.W. Young, A.J. Fleisher, L. Álvarez-Valtierra, and D.W. Pratt, J. Phys. Chem. Lett. 1, 2017 (2010).

  4. Detecting non-Maxwellian electron velocity distributions at JET by high resolution Thomson scattering

    SciTech Connect

    Beausang, K. V.; Prunty, S. L.; Scannell, R.; Beurskens, M. N.; Walsh, M. J.; Collaboration: JET EFDA Contributors

    2011-03-15

    The present work is motivated by a long standing discrepancy between the electron temperature measurements of Thomson scattering (TS) and electron cyclotron emission (ECE) diagnostics for plasmas with strong auxiliary heating observed at both JET and TFTR above 6-7 keV, where in some cases the ECE electron temperature measurements can be 15%-20% higher than the TS measurements. Recent analysis based on ECE results at JET has shown evidence of distortions to the Maxwellian electron velocity distribution and a correlation with the TS and ECE discrepancies has been suggested. In this paper, a technique to determine the presence of non-Maxwellian behavior using TS diagnostics is outlined. The difficulties and limitations of modern TS system designs to determine the electron velocity distribution are also discussed. It is demonstrated that small deviations such as those suggested by previous ECE analysis could be potentially detected, depending on the spectral layout of the TS polychromators. The spectral layout of the JET high resolution Thomson scattering system is such that it could be used to determine these deviations between 1 and 6 keV, and the results presented here indicate that no evidence of non-Maxwellian behavior is observed in this range. In this paper, a modification to the current polychromator design is proposed, allowing non-Maxwellian distortions to be detected up to at least 10 keV.

  5. Detecting non-maxwellian electron velocity distributions at JET by high resolution Thomson scattering.

    PubMed

    Beausang, K V; Prunty, S L; Scannell, R; Beurskens, M N; Walsh, M J; de la Luna, E

    2011-03-01

    The present work is motivated by a long standing discrepancy between the electron temperature measurements of Thomson scattering (TS) and electron cyclotron emission (ECE) diagnostics for plasmas with strong auxiliary heating observed at both JET and TFTR above 6–7 keV, where in some cases the ECE electron temperature measurements can be 15%–20% higher than the TS measurements. Recent analysis based on ECE results at JET has shown evidence of distortions to the Maxwellian electron velocity distribution and a correlation with the TS and ECE discrepancies has been suggested. In this paper, a technique to determine the presence of non-Maxwellian behavior using TS diagnostics is outlined. The difficulties and limitations of modern TS system designs to determine the electron velocity distribution are also discussed. It is demonstrated that small deviations such as those suggested by previous ECE analysis could be potentially detected, depending on the spectral layout of the TS polychromators. The spectral layout of the JET high resolution Thomson scattering system is such that it could be used to determine these deviations between 1 and 6 keV, and the results presented here indicate that no evidence of non-Maxwellian behavior is observed in this range. In this paper, a modification to the current polychromator design is proposed, allowing non-Maxwellian distortions to be detected up to at least 10 keV.

  6. High-Resolution Vibration-Rotation Spectroscopy of CO[subscript 2]: Understanding the Boltzmann Distribution

    ERIC Educational Resources Information Center

    Castle, Karen J.

    2007-01-01

    In this undergraduate physical chemistry laboratory experiment, students acquire a high-resolution infrared absorption spectrum of carbon dioxide and use their data to show that the rotational-vibrational state populations follow a Boltzmann distribution. Data are acquired with a mid-infrared laser source and infrared detector. Appropriate…

  7. Tunneling and tunneling switching dynamics in phenol and its isotopomers from high-resolution FTIR spectroscopy with synchrotron radiation.

    PubMed

    Albert, Sieghard; Lerch, Philippe; Prentner, Robert; Quack, Martin

    2013-01-02

    Tunneling and chemical reactions by tunneling switching are reported for phenol and ortho-deuterophenol on the basis of high-resolution FTIR spectroscopy. Tunneling splittings are measured for the torsional motion in the ground and several vibrationally excited states of phenol. Tunneling times range from 10 ns to 1 ps, depending on excitation. For more-highly excited torsional levels in ortho-deuterophenol, delocalization and chemical reaction by tunneling switching is found.

  8. Coordination defects in bismuth-modified arsenic selenide glasses: High-resolution x-ray photoelectron spectroscopy measurements

    SciTech Connect

    Golovchak, Roman; Shpotyuk, Oleh

    2008-05-01

    The possibility of coordination defects formation in Bi-modified chalcogenide glasses is examined by high-resolution x-ray photoelectron spectroscopy. The results provide evidence for the formation of positively charged fourfold coordinated defects on As and Bi sites in glasses with low Bi concentration. At high Bi concentration, mixed As{sub 2}Se{sub 3}-Bi{sub 2}Se{sub 3} nanocrystallites are formed in the investigated Se-rich As-Se glasses.

  9. Synchrotron-based rotationally resolved high-resolution FTIR spectroscopy of azulene and the unidentified infrared bands of astronomy.

    PubMed

    Albert, Sieghard; Lerch, Philippe; Quack, Martin

    2013-10-07

    Chasing the unidentified IR bands: The first rotationally resolved high-resolution infrared spectrum of azulene is reported using synchrotron Fourier transform infrared spectroscopy including a rovibrational analysis of the out-of-plane fundamental ν44. Comparison of azulene, naphthalene, indole, and biphenyl infrared bands leads to coincidences with UIR bands at 12.8 μm with naphthalene and at 13.55 and 14.6 μm with biphenyl bands, but excluding azulene as a strong absorber.

  10. High Resolution Microwave Spectroscopy of CH as a Search for Variation of Fundamental Constants

    NASA Astrophysics Data System (ADS)

    Truppe, S.; Hendricks, R. J.; Tokunaga, S. K.; Hinds, E. A.; Tarbutt, M. R.

    2013-06-01

    The Standard Model of particle physics assumes that fundamental, dimensionless constants like the fine-structure constant, α, or the ratio of the proton to electron mass, μ, remain constant through time and space. Laboratory experiments have set tight bounds on variations of such constants on a short time scale. Astronomical observations, however, provide vital information about possible changes on long time scales. Recent measurements using quasar absorption spectra provide some evidence for a space-time variation of the fine-structure constant α. It is thus important to verify this discovery by using an entirely different method. Recently the prospect of using rotational microwave spectra of molecules as a probe of fundamental constants variation has attracted much attention. Generally these spectra depend on μ, but if fine and hyperfine structure is involved they also become sensitive to variations of α and the nuclear g-factor. Recent calculations show that the Λ-doublet and rotational spectra of CH are particularly sensitive to possible variations of μ and α. We present recent laboratory based high-resolution spectra of the Λ-doublet transition frequencies of the {F}_2, J=1/2 and {F}_1, J=3/2 states of CH, X^{2}{Π} (v=0) at 3.3GHz and 0.7GHz respectively, with {F} labelling the different spin-orbit manifolds of CH. We also present a measurement of the transition frequency between the two spin-orbit manifolds {F}_2, J=1/2 and {F}_1, J=3/2 at 530GHz. By using a molecular beam of CH in combination with a laser-microwave double-resonance technique and Ramsey's method of separated oscillatory fields, we have measured these transition frequencies to unprecedented accuracy. Hence CH can now be used as a sensitive probe to detect changes in fundamental constants by comparing lab based frequencies to radio-astronomical observations from distant gas clouds. T. Rosenband et al., Science {319}(5871), 1808, 2008 J. K. Webb et al., Physical Review Letters {107

  11. Well-orientated cubic boron nitride nanocrystals as studied by high-resolution transmission electron microscopy.

    PubMed

    Tsiaoussis, I; Frangis, N

    2006-09-01

    In a boron nitride thin film, grown on a Si (100) substrate by radio frequency magnetron sputtering, a striking nanostructure is observed by high-resolution transmission electron microscopy. It consists of cubic boron nitride nanocrystals with a rather good triangular shape, pointing always to the substrate. The nanocrystals are usually highly defected and present their own interesting internal structure. Texture formation is observed within a nanocrystal, with all the subgrains observed to have a common <011> axis, which is also approximately parallel to a <011> axis of the Si substrate, i.e. the nanocrystals are very well structurally orientated in relation to the Si substrate (self-organized). Dislocations and stacking faults are also found in the nanocrystals.

  12. Investigation of non-linear imaging in high-resolution transmission electron microscopy.

    PubMed

    Chang, Yunjie; Wang, Yumei; Cui, Yanxiang; Ge, Binghui

    2016-12-01

    Transmission cross-coefficient theory and pseudo-weak-phase object approximation theory were combined to investigate the non-linear imaging in high-resolution transmission electron microscopy (HRTEM). The analytical expressions of linear and non-linear imaging components in diffractogram were obtained and changes of linear and non-linear components over sample thickness were analyzed. Moreover, the linear and non-linear components are found to be an odd and even-function of the defocus and Cs, respectively. Based on this, a method for separating the linear and non-linear contrasts in Cs-corrected (non-zero Cs conditions included) HRTEM images was proposed, and its effectiveness was confirmed by image simulations with AlN as an example.

  13. High-resolution electron microscopy in spin pumping NiFe/Pt interfaces

    SciTech Connect

    Ley Domínguez, D. Sáenz-Hernández, R. J.; Faudoa Arzate, A.; Arteaga Duran, A. I.; Ornelas Gutiérrez, C. E.; Solís Canto, O.; Botello-Zubiate, M. E.; Rivera-Gómez, F. J.; Matutes-Aquino, J. A.; Azevedo, A.; Silva, G. L. da; Rezende, S. M.

    2015-05-07

    In order to understand the effect of the interface on the spin pumping and magnetic proximity effects, high resolution transmission electron microscopy and ferromagnetic resonance (FMR) were used to analyze Py/Pt bilayer and Pt/Py/Pt trilayer systems. The samples were deposited by dc magnetron sputtering at room temperature on Si (001) substrates. The Py layer thickness was fixed at 12 nm in all the samples and the Pt thickness was varied in a range of 0–23 nm. A diffusion zone of approximately 8 nm was found in the Py/Pt interfaces and confirmed by energy dispersive X-ray microanalysis. The FMR measurements show an increase in the linewidth and a shift in the ferromagnetic resonance field, which reach saturation.

  14. High resolution transmission electron microscopic in-situ observations of plastic deformation of compressed nanocrystalline gold

    SciTech Connect

    Wang, Guoyong; Lian, Jianshe; Jiang, Qing; Sun, Sheng; Zhang, Tong-Yi

    2014-09-14

    Nanocrystalline (nc) metals possess extremely high strength, while their capability to deform plastically has been debated for decades. Low ductility has hitherto been considered an intrinsic behavior for most nc metals, due to the lack of five independent slip systems actively operating during deformation in each nanograin. Here we report in situ high resolution transmission electron microscopic (HRTEM) observations of deformation process of nc gold under compression, showing the excellent ductility of individual and aggregate nanograins. Compression causes permanent change in the profile of individual nanograins, which is mediated by dislocation slip and grain rotation. The high rate of grain boundary sliding and large extent of widely exited grain rotation may meet the boundary compatibility requirements during plastic deformation. The in situ HRTEM observations suggest that nc gold is not intrinsically brittle under compressive loading.

  15. Nano features of Al/Au ultrasonic bond interface observed by high resolution transmission electron microscopy

    SciTech Connect

    Ji Hongjun; Li Mingyu Kim, Jong-Myung; Kim, Dae-Won; Wang Chunqing

    2008-10-15

    Nano-scale interfacial details of ultrasonic AlSi1 wire wedge bonding to a Au/Ni/Cu pad were investigated using high resolution transmission electron microscopy (HRTEM). The intermetallic phase Au{sub 8}Al{sub 3} formed locally due to diffusion and reaction activated by ultrasound at the Al/Au bond interface. Multilayer sub-interfaces roughly parallel to the wire/pad interface were observed among this phase, and interdiffusional features near the Au pad resembled interference patterns, alternately dark and bright bars. Solid-state diffusion theory cannot be used to explain why such a thick compound formed within milliseconds at room temperature. The major formation of metallurgical bonds was attributed to ultrasonic cyclic vibration.

  16. High resolution transmission electron microscope observation of zero-strain deformation twinning mechanisms in Ag.

    PubMed

    Liu, L; Wang, J; Gong, S K; Mao, S X

    2011-04-29

    We have observed a new deformation-twinning mechanism using the high resolution transmission electron microscope in polycrystalline Ag films, zero-strain twinning via nucleation, and the migration of a Σ3{112} incoherent twin boundary (ITB). This twinning mechanism produces a near zero macroscopic strain because the net Burgers vectors either equal zero or are equivalent to a Shockley partial dislocation. This observation provides new insight into the understanding of deformation twinning and confirms a previous hypothesis: detwinning could be accomplished via the nucleation and migration of Σ3{112} ITBs. The zero-strain twinning mechanism may be unique to low staking fault energy metals with implications for their deformation behavior.

  17. THE HIGH-RESOLUTION EXTREME-ULTRAVIOLET SPECTRUM OF N{sub 2} BY ELECTRON IMPACT

    SciTech Connect

    Heays, A. N.; Ajello, J. M.; Aguilar, A.; Lewis, B. R.; Gibson, S. T.

    2014-04-01

    We have analyzed high-resolution (FWHM = 0.2 Å) extreme-ultraviolet (EUV, 800-1350 Å) laboratory emission spectra of molecular nitrogen excited by an electron impact at 20 and 100 eV under (mostly) optically thin, single-scattering experimental conditions. A total of 491 emission features were observed from N{sub 2} electronic-vibrational transitions and atomic N I and N II multiplets and their emission cross sections were measured. Molecular emission was observed at vibrationally excited ground-state levels as high as v'' = 17, from the a {sup 1}Π {sub g} , b {sup 1}Π {sub u} , and b'{sup 1}Σ {sub u} {sup +} excited valence states and the Rydberg series c'{sub n} {sub +1} {sup 1}Σ {sub u} {sup +}, c{sub n} {sup 1}Π {sub u} , and o{sub n} {sup 1}Π {sub u} for n between 3 and 9. The frequently blended molecular emission bands were disentangled with the aid of a sophisticated and predictive quantum-mechanical model of excited states that includes the strong coupling between valence and Rydberg electronic states and the effects of predissociation. Improved model parameters describing electronic transition moments were obtained from the experiment and allowed for a reliable prediction of the vibrationally summed electronic emission cross section, including an extrapolation to unobserved emission bands and those that are optically thick in the experimental spectra. Vibrationally dependent electronic excitation functions were inferred from a comparison of emission features following 20 and 100 eV electron-impact collisional excitation. The electron-impact-induced fluorescence measurements are compared with Cassini Ultraviolet Imaging Spectrograph observations of emissions from Titan's upper atmosphere.

  18. High-resolution optical spectroscopy of RS Ophiuchi during 2008-2009

    NASA Astrophysics Data System (ADS)

    Somero, A.; Hakala, P.; Wynn, G. A.

    2017-01-01

    RS Ophiuchi (RS Oph) is a symbiotic variable and a recurrent nova (RN). We have monitored it with the Nordic Optical Telescope and obtained 30 high-resolution (R = 46 000) optical spectra over one orbital cycle during quiescence. To our knowledge, this is the best-sampled high-resolution spectroscopic data set of RS Oph over one orbital period. We do not detect any direct signatures of an accretion disc such as double peaked emission lines, but many line profiles are complex consisting of superimposed emission and absorption components. We measure the spin of the red giant and conclude that it is tidally locked to the binary orbit. We observe Na I absorption features, probably arising from the circumbinary medium, that has been shaped by previous RN outbursts. We do not detect any intrinsic polarization in the optical wavelengths.

  19. Focused electron beam induced deposition of copper with high resolution and purity from aqueous solutions

    NASA Astrophysics Data System (ADS)

    Esfandiarpour, Samaneh; Boehme, Lindsay; Hastings, J. Todd

    2017-03-01

    Electron-beam induced deposition of high-purity copper nanostructures is desirable for nanoscale rapid prototyping, interconnection of chemically synthesized structures, and integrated circuit editing. However, metalorganic, gas-phase precursors for copper introduce high levels of carbon contamination. Here we demonstrate electron beam induced deposition of high-purity copper nanostructures from aqueous solutions of copper sulfate. The addition of sulfuric acid eliminates oxygen contamination from the deposit and produces a deposit with ∼95 at% copper. The addition of sodium dodecyl sulfate (SDS), Triton X-100, or polyethylene glycole (PEG) improves pattern resolution and controls deposit morphology but leads to slightly reduced purity. High resolution nested lines with a 100 nm pitch are obtained from CuSO4–H2SO4–SDS–H2O. Higher aspect ratios (∼1:1) with reduced line edge roughness and unintended deposition are obtained from CuSO4–H2SO4–PEG–H2O. Evidence for radiation-chemical deposition mechanisms was observed, including deposition efficiency as high as 1.4 primary electrons/Cu atom.

  20. Focused electron beam induced deposition of copper with high resolution and purity from aqueous solutions.

    PubMed

    Esfandiarpour, Samaneh; Boehme, Lindsay; Hastings, J Todd

    2017-03-24

    Electron-beam induced deposition of high-purity copper nanostructures is desirable for nanoscale rapid prototyping, interconnection of chemically synthesized structures, and integrated circuit editing. However, metalorganic, gas-phase precursors for copper introduce high levels of carbon contamination. Here we demonstrate electron beam induced deposition of high-purity copper nanostructures from aqueous solutions of copper sulfate. The addition of sulfuric acid eliminates oxygen contamination from the deposit and produces a deposit with ∼95 at% copper. The addition of sodium dodecyl sulfate (SDS), Triton X-100, or polyethylene glycole (PEG) improves pattern resolution and controls deposit morphology but leads to slightly reduced purity. High resolution nested lines with a 100 nm pitch are obtained from CuSO4-H2SO4-SDS-H2O. Higher aspect ratios (∼1:1) with reduced line edge roughness and unintended deposition are obtained from CuSO4-H2SO4-PEG-H2O. Evidence for radiation-chemical deposition mechanisms was observed, including deposition efficiency as high as 1.4 primary electrons/Cu atom.

  1. Magnetic lens apparatus for use in high-resolution scanning electron microscopes and lithographic processes

    SciTech Connect

    Crewe, A.V.

    2000-04-18

    Disclosed are lens apparatus in which a beam of charged particles is brought to a focus by means of a magnetic field, the lens being situated behind the target position. In illustrative embodiments, a lens apparatus is employed in a scanning electron microscope as the sole lens for high-resolution focusing of an electron beam, and in particular, an electron beam having an accelerating voltage of from about 10 to about 30,000 V. In one embodiment, the lens apparatus comprises an electrically-conducting coil arranged around the axis of the beam and a magnetic pole piece extending along the axis of the beam at least within the space surrounded by the coil. In other embodiments, the lens apparatus comprises a magnetic dipole or virtual magnetic monopole fabricated from a variety of materials, including permanent magnets, superconducting coils, and magnetizable spheres and needles contained within an energy-conducting coil. Multiple-array lens apparatus are also disclosed for simultaneous and/or consecutive imaging of multiple images on single or multiple specimens. The invention further provides apparatus, methods, and devices useful in focusing charged particle beams for lithographic processes.

  2. Magnetic lens apparatus for use in high-resolution scanning electron microscopes and lithographic processes

    DOEpatents

    Crewe, Albert V.

    2000-01-01

    Disclosed are lens apparatus in which a beam of charged particlesis brought to a focus by means of a magnetic field, the lens being situated behind the target position. In illustrative embodiments, a lens apparatus is employed in a scanning electron microscopeas the sole lens for high-resolution focusing of an electron beam, and in particular, an electron beam having an accelerating voltage of from about 10 to about 30,000 V. In one embodiment, the lens apparatus comprises an electrically-conducting coil arranged around the axis of the beam and a magnetic pole piece extending along the axis of the beam at least within the space surrounded by the coil. In other embodiments, the lens apparatus comprises a magnetic dipole or virtual magnetic monopole fabricated from a variety of materials, including permanent magnets, superconducting coils, and magnetizable spheres and needles contained within an energy-conducting coil. Multiple-array lens apparatus are also disclosed for simultaneous and/or consecutive imaging of multiple images on single or multiple specimens. The invention further provides apparatus, methods, and devices useful in focusing charged particle beams for lithographic processes.

  3. Detector arrays for high resolution spectroscopy from 5-28 microns (Contributed)

    NASA Astrophysics Data System (ADS)

    Wiedemann, G.; Jennings, D. E.; Moseley, S. H.; Lamb, G.

    A linear Si:As BIB detector array (Rockwell International) is being implemented in a postdispersion detection system for ground based Fourier transform spectrometers. The array version can be used as a multichannel narrow band filter for extended spectral coverage or for imaging with a narrow bandpass. A Si:As solid state photomultiplier array (Rockwell) is evaluated for use in high resolution infrared spectrometers. Test results and applications are discussed.

  4. Structure and chemistry of epitaxial ceria thin films on yttria-stabilized zirconia substrates, studied by high resolution electron microscopy.

    PubMed

    Sinclair, Robert; Lee, Sang Chul; Shi, Yezhou; Chueh, William C

    2017-01-06

    We have applied aberration-corrected transmission electron microscopy (TEM) imaging and electron energy loss spectroscopy (EELS) to study the structure and chemistry of epitaxial ceria thin films, grown by pulsed laser deposition onto (001) yttria-stabilized zirconia (YSZ) substrates. There are few observable defects apart from the expected mismatch interfacial dislocations and so the films would be expected to have good potential for applications. Under high electron beam dose rate (above about 6000 e(-)/Å(2)s) domains of an ordered structure appear and these are interpreted as being created by oxygen vacancy ordering. The ordered structure does not appear at lower lose rates (ca. 2600 e(-)/Å(2)s) and can be removed by imaging under 1 mbar oxygen gas in an environmental TEM. EELS confirms that there is both oxygen deficiency and the associated increase in Ce(3+) versus Ce(4+) cations in the ordered domains. In situ high resolution TEM recordings show the formation of the ordered domains as well as atomic migration along the ceria thin film (001) surface.

  5. The design and construction of a high-resolution velocity-map imaging apparatus for photoelectron spectroscopy studies of size-selected clusters

    SciTech Connect

    León, Iker; Yang, Zheng; Liu, Hong-Tao; Wang, Lai-Sheng

    2014-08-15

    A new velocity-map imaging apparatus equipped with a laser-vaporization supersonic cluster source and a time-of-flight mass spectrometer is described for high-resolution photoelectron spectroscopy studies of size-selected cluster anions. Vibrationally cold anion clusters are produced using a laser-vaporization supersonic cluster source, size-selected by a time-of-flight mass spectrometer, and then focused co-linearly into the interaction zone of the high-resolution velocity-map imaging (VMI) system. The multilens VMI system is optimized via systematic simulations and can reach a resolution of 1.2 cm{sup −1} (FWHM) for near threshold electrons while maintaining photoelectron kinetic energy resolutions (ΔKE/KE) of ∼0.53% for higher energy electrons. The new VMI lens has superior focusing power over a large energy range, yielding highly circular images with distortions no larger than 1.0025 between the long and short radii. The detailed design, simulation, construction, testing, and performance of the high-resolution VMI apparatus are presented.

  6. High resolution Transmission Electron Microscopy characterization of a milled oxide dispersion strengthened steel powder

    NASA Astrophysics Data System (ADS)

    Loyer-Prost, M.; Merot, J.-S.; Ribis, J.; Le Bouar, Y.; Chaffron, L.; Legendre, F.

    2016-10-01

    Oxide Dispersion Strengthened (ODS) steels are promising materials for generation IV fuel claddings as their dense nano-oxide dispersion provides good creep and irradiation resistance. Even if they have been studied for years, the formation mechanism of these nano-oxides is still unclear. Here we report for the first time a High Resolution Transmission Electron Microscopy and Energy Filtered Transmission Electron Microscopy characterization of an ODS milled powder. It provides clear evidence of the presence of small crystalline nanoclusters (NCs) enriched in titanium directly after milling. Small NCs (<5 nm) have a crystalline structure and seem partly coherent with the matrix. They have an interplanar spacing close to the (011) bcc iron structure. They coexist with larger crystalline spherical precipitates of 15-20 nm in size. Their crystalline structure may be metastable as they are not consistent with any Y-Ti-O or Ti-O structure. Such detailed observations in the as-milled grain powder confirm a mechanism of Y, Ti, O dissolution in the ferritic matrix followed by a NC precipitation during the mechanical alloying process of ODS materials.

  7. Fluid mechanical proximity effects in high-resolution gravure printing for printed electronics

    NASA Astrophysics Data System (ADS)

    Grau, Gerd; Scheideler, William J.; Subramanian, Vivek

    2016-11-01

    Gravure printing is a very promising method for printed electronics because it combines high throughput with high resolution. Recently, printed lines with 2 micrometer resolution have been demonstrated at printing speeds on the order of 1m/s. In order to build realistic circuits, the fluid dynamics of complex pattern formation needs to be studied. Recently, we showed that highly-scaled lines printed in close succession exhibit proximity effects that can either improve or deteriorate print quality depending on a number of parameters. It was found that this effect occurs if cells are connected by a thin fluid film. Here, we present further experimental and modeling results explaining the mechanism by which this thin fluid film affects pattern formation. During the transfer of ink from the roll to the substrate, ink can flow in between connected cells. Asymmetry in the fluid distribution created by the preceding doctor blade wiping process results in net fluid flow from cells that transfer first to cells that transfer subsequently. The proximity of these cells thus affects the final ink distribution on the substrate, which is critically important to understand and design optimally when printing highly-scaled patterns of electronic materials. This work is based upon work supported in part by the National Science Foundation under Cooperative Agreement No. EEC-1160494.

  8. Atom-counting in High Resolution Electron Microscopy:TEM or STEM - That's the question.

    PubMed

    Gonnissen, J; De Backer, A; den Dekker, A J; Sijbers, J; Van Aert, S

    2016-10-27

    In this work, a recently developed quantitative approach based on the principles of detection theory is used in order to determine the possibilities and limitations of High Resolution Scanning Transmission Electron Microscopy (HR STEM) and HR TEM for atom-counting. So far, HR STEM has been shown to be an appropriate imaging mode to count the number of atoms in a projected atomic column. Recently, it has been demonstrated that HR TEM, when using negative spherical aberration imaging, is suitable for atom-counting as well. The capabilities of both imaging techniques are investigated and compared using the probability of error as a criterion. It is shown that for the same incoming electron dose, HR STEM outperforms HR TEM under common practice standards, i.e. when the decision is based on the probability function of the peak intensities in HR TEM and of the scattering cross-sections in HR STEM. If the atom-counting decision is based on the joint probability function of the image pixel values, the dependence of all image pixel intensities as a function of thickness should be known accurately. Under this assumption, the probability of error may decrease significantly for atom-counting in HR TEM and may, in theory, become lower as compared to HR STEM under the predicted optimal experimental settings. However, the commonly used standard for atom-counting in HR STEM leads to a high performance and has been shown to work in practice.

  9. Use of a Continuous Wave Laser and Pockels Cell for Sensitive High-Resolution Collinear Resonance Ionization Spectroscopy.

    PubMed

    de Groote, R P; Budinčević, I; Billowes, J; Bissell, M L; Cocolios, T E; Farooq-Smith, G J; Fedosseev, V N; Flanagan, K T; Franchoo, S; Garcia Ruiz, R F; Heylen, H; Li, R; Lynch, K M; Marsh, B A; Neyens, G; Rossel, R E; Rothe, S; Stroke, H H; Wendt, K D A; Wilkins, S G; Yang, X

    2015-09-25

    New technical developments have led to a 2 orders of magnitude improvement of the resolution of the collinear resonance ionization spectroscopy (CRIS) experiment at ISOLDE, CERN, without sacrificing the high efficiency of the CRIS technique. Experimental linewidths of 20(1) MHz were obtained on radioactive beams of francium, allowing us for the first time to determine the electric quadrupole moment of the short lived [t_{1/2}=22.0(5) ms] ^{219}Fr Q_{s}=-1.21(2) eb, which would not have been possible without the advantages offered by the new method. This method relies on a continuous-wave laser and an external Pockels cell to produce narrow-band light pulses, required to reach the high resolution in two-step resonance ionization. Exotic nuclei produced at rates of a few hundred ions/s can now be studied with high resolution, allowing detailed studies of the anchor points for nuclear theories.

  10. Use of a Continuous Wave Laser and Pockels Cell for Sensitive High-Resolution Collinear Resonance Ionization Spectroscopy

    NASA Astrophysics Data System (ADS)

    de Groote, R. P.; Budinčević, I.; Billowes, J.; Bissell, M. L.; Cocolios, T. E.; Farooq-Smith, G. J.; Fedosseev, V. N.; Flanagan, K. T.; Franchoo, S.; Garcia Ruiz, R. F.; Heylen, H.; Li, R.; Lynch, K. M.; Marsh, B. A.; Neyens, G.; Rossel, R. E.; Rothe, S.; Stroke, H. H.; Wendt, K. D. A.; Wilkins, S. G.; Yang, X.

    2015-09-01

    New technical developments have led to a 2 orders of magnitude improvement of the resolution of the collinear resonance ionization spectroscopy (CRIS) experiment at ISOLDE, CERN, without sacrificing the high efficiency of the CRIS technique. Experimental linewidths of 20(1) MHz were obtained on radioactive beams of francium, allowing us for the first time to determine the electric quadrupole moment of the short lived [t1 /2=22.0 (5 ) ms ] 219Fr Qs=-1.21 (2 ) eb , which would not have been possible without the advantages offered by the new method. This method relies on a continuous-wave laser and an external Pockels cell to produce narrow-band light pulses, required to reach the high resolution in two-step resonance ionization. Exotic nuclei produced at rates of a few hundred ions/s can now be studied with high resolution, allowing detailed studies of the anchor points for nuclear theories.

  11. Coherent Vibrational Dynamics and High-Resolution Nonlinear Spectroscopy: A Comparison with the Air/DMSO Liquid Interface

    SciTech Connect

    Velarde Ruiz Esparza, Luis A.; Lu, Zhou; Wang, Hongfei

    2013-12-27

    In this report we present a comparative study on the C-H stretching vibrations at air/DMSO (dimethyl sulfoxide) interface with both the free-induction decay (FID) coherent vibrational dynamics and sub-wavenumber high resolution sum-frequency generation vibrational spectroscopy measurements. In principle the frequency-domain and time-domain spectroscopic measurements should generate identical information for a given molecular system. However, when the molecular systems are with several coupled or overlapping vibrational modes, to obtain detailed spectroscopic and coherent dynamics information is not as straightforward and rather difficult from either the time-domain or the frequency domain measurements. For the case of air/DMSO interface that is with moderately complex vibrational spectra, we show that the frequency-domain measurement with sub-wavenumber high-resolution SFGVS is probably more advantageous than the time-domain measurement in obtaining quantitative understanding of the structure and coherent dynamics of the molecular interface.

  12. High resolution, low h{nu} photoelectron spectroscopy with the use of a microwave excited rare gas lamp and ionic crystal filters

    SciTech Connect

    Suga, S.; Sekiyama, A.; Funabashi, G.; Yamaguchi, J.; Kimura, M.; Tsujibayashi, M.; Uyama, T.; Sugiyama, H.; Tomida, Y.; Kuwahara, G.; Kitayama, S.; Fukushima, K.; Kimura, K.; Yokoi, T.; Murakami, K.; Fujiwara, H.; Saitoh, Y.; Plucinski, L.; Schneider, C. M.

    2010-10-15

    The need for not only bulk sensitive but also extremely high resolution photoelectron spectroscopy for studying detailed electronic structures of strongly correlated electron systems is growing rapidly. Moreover, easy access to such a capability in one's own laboratory is desirable. Demonstrated here is the performance of a microwave excited rare gas (Xe, Kr, and Ar) lamp combined with ionic crystal filters (sapphire, CaF{sub 2}, and LiF), which can supply three strong lines near the photon energy of hnyu h{nu}=8.4, 10.0, and 11.6 eV, with the h{nu} resolution of better than 600 {mu}eV for photoelectron spectroscopy. Its performance is demonstrated on some materials by means of both angle-integrated and angle-resolved measurements.

  13. Helium temperature measurements in a hot filament magnetic mirror plasma using high resolution Doppler spectroscopy

    NASA Astrophysics Data System (ADS)

    Knott, S.; McCarthy, P. J.; Ruth, A. A.

    2016-09-01

    Langmuir probe and spectroscopic diagnostics are used to routinely measure electron temperature and density over a wide operating range in a reconfigured Double Plasma device at University College Cork, Ireland. The helium plasma, generated through thermionic emission from a negatively biased tungsten filament, is confined by an axisymmetric magnetic mirror configuration using two stacks of NdFeB permanent magnets, each of length 20 cm and diameter 3 cm placed just outside the 15 mm water cooling jacket enclosing a cylindrical vacuum vessel of internal diameter 25 cm. Plasma light is analysed using a Fourier Transform-type Bruker spectrometer with a highest achievable resolution of 0.08 cm-1 . In the present work, the conventional assumption of room temperature ions in the analysis of Langmuir probe data from low temperature plasmas is examined critically using Doppler spectroscopy of the 468.6 nm He II line. Results for ion temperatures obtained from spectroscopic data for a variety of engineering parameters (discharge voltage, gas pressure and plasma current) will be presented.

  14. HIGH-RESOLUTION XMM-NEWTON SPECTROSCOPY OF THE COOLING FLOW CLUSTER A3112

    SciTech Connect

    Bulbul, G. Esra; Smith, Randall K.; Foster, Adam; Cottam, Jean; Loewenstein, Michael; Mushotzky, Richard; Shafer, Richard

    2012-03-01

    We examine high signal-to-noise XMM-Newton European Photon Imaging Camera (EPIC) and Reflection Grating Spectrometer (RGS) observations to determine the physical characteristics of the gas in the cool core and outskirts of the nearby rich cluster A3112. The XMM-Newton Extended Source Analysis Software data reduction and background modeling methods were used to analyze the XMM-Newton EPIC data. From the EPIC data, we find that the iron and silicon abundance gradients show significant increase toward the center of the cluster while the oxygen abundance profile is centrally peaked but has a shallower distribution than that of iron. The X-ray mass modeling is based on the temperature and deprojected density distributions of the intracluster medium determined from EPIC observations. The total mass of A3112 obeys the M-T scaling relations found using XMM-Newton and Chandra observations of massive clusters at r{sub 500}. The gas mass fraction f{sub gas} = 0.149{sup +0.036}{sub -0.032} at r{sub 500} is consistent with the seven-year Wilkinson Microwave Anisotropy Probe results. The comparisons of line fluxes and flux limits on the Fe XVII and Fe XVIII lines obtained from high-resolution RGS spectra indicate that there is no spectral evidence for cooler gas associated with the cluster with temperature below 1.0 keV in the central <38'' ({approx}52 kpc) region of A3112. High-resolution RGS spectra also yield an upper limit to the turbulent motions in the compact core of A3112 (206 km s{sup -1}). We find that the contribution of turbulence to total energy is less than 6%. This upper limit is consistent with the energy contribution measured in recent high-resolution simulations of relaxed galaxy clusters.

  15. Development of spatially resolved high resolution x-ray spectroscopy for fusion and light-source research

    NASA Astrophysics Data System (ADS)

    Lu, J.; Hill, K. W.; Bitter, M.; Delgado-Aparicio, L.; Pablant, N. A.; Efthimion, P.; Beiersdorfer, P.; Chen, H.; Widmann, K.; Sanchez del Rio, M.

    2014-09-01

    One dimensional spatially resolved high resolution x-ray spectroscopy with spherically bent crystals and 2D pixelated detectors is an established technique on magnetic confinement fusion (MCF) experiments world wide for Doppler measurements of spatial profiles of plasma ion temperature and flow velocity. This technique is being further developed for diagnosis of High Energy Density Physics (HEDP) plasmas at laser-plasma facilities and synchrotron/x-ray free electron laser (XFEL) facilities. Useful spatial resolution (micron scale) of such small-scale plasma sources requires magnification, because of the finite pixel size of x-ray CCD detectors (13.5 μm). A von-Hamos like spectrometer using spherical crystals is capable of magnification, as well as uniform sagittal focusing across the full x-ray spectrum, and is being tested in laboratory experiments using a tungsten-target microfocus (5-10 μm) x-ray tube and 13-μm pixel x-ray CCD. A spatial resolution better than 10 μm has been demonstrated. Good spectral resolution is indicated by small differences (0.02 - 0.1 eV) of measured line widths with best available published natural line widths. Progress and status of HEDP measurements and the physics basis for these diagnostics are presented. A new type of x-ray crystal spectrometer with a convex spherically bent crystal is also reported. The status of testing of a 2D imaging microscope using matched pairs of spherical crystals with x rays will also be presented. The use of computational x-ray optics codes in development of these instrumental concepts is addressed.

  16. High-resolution FTIR spectroscopy of the ν3 band of methyl acetylene-d

    NASA Astrophysics Data System (ADS)

    Pal, Ayan Kumar; Kshirsagar, R. J.

    2014-04-01

    The high-resolution Fourier transform spectrum of methyl acetylene-d1 (CH3CCD) at room temperature has been recorded in the region of the ν3 band (1980-2035 cm-1) at an apodized resolution of 0.004 cm-1. About 600 vibration-rotation transitions have been assigned, with J upto 36 and K upto 6. The spectrum shows the presence of several perturbations. The observed minus calculated deviation of the fit for K = 4 subband is much more than the expected, shows the presence of Fermi resonance with the nearby vibrational state.

  17. From BASIS to MIRACLES: Benchmarking and perspectives for high-resolution neutron spectroscopy at the ESS

    NASA Astrophysics Data System (ADS)

    Tsapatsaris, Nikolaos; Willendrup, Peter K.; Lechner, Ruep E.; Bordallo, Heloisa N.

    2015-01-01

    Results based on virtual instrument models for the first high-flux, high-resolution, spallation based, backscattering spectrometer, BASIS are presented in this paper. These were verified using the Monte Carlo instrument simulation packages McStas and VITESS. Excellent agreement of the neutron count rate at the sample position between the virtual instrument simulation and experiments was found, in both time and energy distributions. This achievement was only possible after a new component for a bent single crystal analyser in McStas, using a Gaussian approximation, was developed. These findings are pivotal to the conceptual design of the next generation backscattering spectrometer, MIRACLES at the European Spallation Source.

  18. Holmium iron borate: high-resolution spectroscopy and crystal-field parameters

    NASA Astrophysics Data System (ADS)

    Erofeev, D. A.; Chukalina, E. P.; Popova, M. N.; Malkin, B. Z.; Bezmaternykh, L. N.; Gudim, I. A.

    2016-12-01

    High-resolution transmission spectra of HoFe3(BO3)4 single crystals were measured in broad spectral (5000-23000 cm-1) and temperature (1.7-300 K) ranges. Crystal-field energies of the Ho3+ ions were determined for a paramagnetic and easy-axis antiferromagnetic phases of the compound. On the basis of these data and of preliminary crystal-field calculations in the frame of the exchange-charge model, crystal-field parameters were found. A parameter of the isotropic Ho-Fe exchange interaction was estimated.

  19. High Resolution Spectroscopy of C_2 and CN in the Cygnus OB2 Association

    NASA Astrophysics Data System (ADS)

    McCall, Benjamin J.; Oka, Takeshi

    2000-08-01

    The unexpected detection of a large column density of hhh along the lines of sight to Cygnus OB2 #12 and Cygnus OB2 #5 cannot be explained by the standard models of diffuse cloud chemistry, which imply unreasonably long absorption path lengths (hundreds of parsecs). In order to gather more information about the physical condition of the diffuse gas in these lines of sight, we propose to obtain high resolution (R 120 000) visible spectra of several stars in the Cygnus OB2 association, including #12 and #5. The observed rotational distribution of the diatomics çand CN will enable us to estimate the kinetic temperature and number density of the molecular gas. In addition, the high resolution of the HRS at HET will allow us to study the velocity distribution of both the atomic (K I) and molecular (çand CN) gas along these lines of sight. Together with our previous observations of hhh, the temperatures, number densities, and velocity distributions from the proposed observations will seriously constrain theoretical models of these sightlines, such as that recently proposed by Cecchi-Pestellini and Dalgarno.

  20. Sample-Induced RF Perturbations in High-Field, High-Resolution NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Crozier, Stuart; Brereton, Ian M.; Zelaya, Fernando O.; Roffmann, Wolfgang U.; Doddrell, David M.

    1997-05-01

    Conducting dielectric samples are often used in high-resolution experiments at high field. It is shown that significant amplitude and phase distortions of the RF magnetic field may result from perturbations caused by such samples. Theoretical analyses demonstrate the spatial variation of the RF field amplitude and phase across the sample, and comparisons of the effect are made for a variety of sample properties and operating field strengths. Although the effect is highly nonlinear, it tends to increase with increasing field strength, permittivity, conductivity, and sample size. There are cases, however, in which increasing the conductivity of the sample improves the homogeneity of the amplitude of the RF field across the sample at the expense of distorted RF phase. It is important that the perturbation effects be calculated for the experimental conditions used, as they have the potential to reduce the signal-to-noise ratio of NMR experiments and may increase the generation of spurious coherences. The effect of RF-coil geometry on the coherences is also modeled, with the use of homogeneous resonators such as the birdcage design being preferred. Recommendations are made concerning methods of reducing sample-induced perturbations. Experimental high-field imaging and high-resolution studies demonstrate the effect.

  1. Synthesis, High-Resolution Infrared Spectroscopy, and Vibrational Structure of Cubane, C8H8.

    PubMed

    Boudon, V; Lamy, M; Dugue-Boyé, F; Pirali, O; Gruet, S; D'Accolti, L; Fusco, C; Annese, C; Alikhani, M E

    2016-06-30

    Carbon-cage molecules have generated a considerable interest from both experimental and theoretical points of view. We recently performed a high-resolution study of adamantane (C10H16), the smallest hydrocarbon cage belonging to the diamandoid family ( Pirali , O. ; et al. J. Chem. Phys. 2012 , 136 , 024310 ). There exist another family of hydrocarbon cages with additional interesting chemical properties: the so-called platonic hydrocarbons that comprise dodecahedrane (C20H20) and cubane (C8H8). Both possess C-C bond angles that deviate from the tetrahedral angle (109.8°) of the sp(3) hybridized form of carbon. This generates a considerable strain in the molecule. We report a new wide-range high-resolution study of the infrared spectrum of cubane. The sample was synthesized in Bari upon decarboxylation of 1,4-cubanedicarboxylic acid thanks to the improved synthesis of literature. Several spectra have been recorded at the AILES beamline of the SOLEIL synchrotron facility. They cover the 600-3200 cm(-1) region. Besides the three infrared-active fundamentals (ν10, ν11, and ν12), we could record many combination bands, all of them displaying a well-resolved octahedral rotational structure. We present here a preliminary analysis of some of the recorded bands, performed thanks the SPVIEW and XTDS software, based on the tensorial formalism developed in the Dijon group. A comparison with ab initio calculations, allowing to identify some combination bands, is also presented.

  2. Soot Structure and Reactivity Analysis by Raman Microspectroscopy, Temperature-Programmed Oxidation, and High-Resolution Transmission Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Knauer, Markus; Schuster, Manfred E.; Su, Dangsheng; Schlögl, Robert; Niessner, Reinhard; Ivleva, Natalia P.

    2009-11-01

    Raman microspectroscopy (RM), temperature-programmed oxidation (TPO), high-resolution transmission electron microscopy (HRTEM), and electron energy loss spectroscopy (EELS) were combined to get comprehensive information on the relationship between structure and reactivity of soot in samples of spark discharge (GfG), heavy duty engine diesel (EURO VI and IV) soot, and graphite powder upon oxidation by oxygen at increasing temperatures. GfG soot and graphite powder represent the higher and lower reactivity limits. Raman microspectroscopic analysis was conducted by determination of spectral parameters using a five band fitting procedure (G, D1-D4) as well as by evaluation of the dispersive character of the D mode. The analysis of spectral parameters shows a higher degree of disorder and a higher amount of molecular carbon for untreated GfG soot samples than for samples of untreated EURO VI and EURO IV soot. The structural analysis based on the dispersive character of the D mode revealed substantial differences in ordering descending from graphite powder, EURO IV, VI to GfG soot. HRTEM images and EELS analysis of EURO IV and VI samples indicated a different morphology and a higher structural order as compared to GfG soot in full agreement with the Raman analysis. These findings are also confirmed by the reactivity of soot during oxidation (TPO), where GfG soot was found to be the most reactive and EURO IV and VI soot samples exhibited a moderate reactivity.

  3. High resolution parallel reaction monitoring with electron transfer dissociation for middle-down proteomics.

    PubMed

    Sweredoski, Michael J; Moradian, Annie; Raedle, Matthias; Franco, Catarina; Hess, Sonja

    2015-08-18

    In recent years, middle-down proteomics has emerged as a popular technique for the characterization and quantification of proteins not readily amenable to typical bottom-up approaches. So far, all high resolution middle-down approaches are done in data-dependent acquisition mode, using both collision-induced dissociation or electron capture/transfer dissociation techniques. Here, we explore middle-down proteomics with electron transfer dissociation using a targeted acquisition mode, parallel reaction monitoring (PRM), on an Orbitrap Fusion. As an example of a highly modified protein, we used histone H3 fractions from untreated and DMSO-treated Murine ErythroLeukemia (MEL) cells. We first determined optimized instrument parameters to obtain high sequence coverage using a synthetic standard peptide. We then setup a combined method of both MS1 scans and PRM scans of the 20 most abundant combinations of methylation and acetylation of the +10 charge state of the N-terminal tail of H3. Weak cation exchange hydrophilic interaction chromatography was used to separate the N-terminal H3 tail, primarily, by its acetylation and, to a secondary degree, by its methylation status, which aided in the interpretation of the results. After deconvolution of the highly charged ions, peaks were annotated to a minimum set of 254 H3 proteoforms in the untreated and treated samples. Upon DMSO treatment, global quantitation changes from the MS1 level show a relative decrease of 2, 3, 4, and 5 acetylations and an increase of 0 and 1 acetylations. A fragment ion map was developed to visualize specific differences between treated and untreated samples. Taken together, the data presented here show that middle-down proteomics with electron transfer dissociation using PRM is a novel, attractive method for the effective analysis and quantification of large and highly modified peptides.

  4. Changes in plant defense chemistry (pyrrolizidine alkaloids) revealed through high-resolution spectroscopy

    NASA Astrophysics Data System (ADS)

    Carvalho, Sabrina; Macel, Mirka; Schlerf, Martin; Moghaddam, Fatemeh Eghbali; Mulder, Patrick P. J.; Skidmore, Andrew K.; van der Putten, Wim H.

    2013-06-01

    Plant toxic biochemicals play an important role in defense against natural enemies and often are toxic to humans and livestock. Hyperspectral reflectance is an established method for primary chemical detection and could be further used to determine plant toxicity in the field. In order to make a first step for pyrrolizidine alkaloids detection (toxic defense compound against mammals and many insects) we studied how such spectral data can estimate plant defense chemistry under controlled conditions. In a greenhouse, we grew three related plant species that defend against generalist herbivores through pyrrolizidine alkaloids: Jacobaea vulgaris, Jacobaea erucifolia and Senecio inaequidens, and analyzed the relation between spectral measurements and chemical concentrations using multivariate statistics. Nutrient addition enhanced tertiary-amine pyrrolizidine alkaloids contents of J. vulgaris and J. erucifolia and decreased N-oxide contents in S. inaequidens and J. vulgaris. Pyrrolizidine alkaloids could be predicted with a moderate accuracy. Pyrrolizidine alkaloid forms tertiary-amines and epoxides were predicted with 63% and 56% of the variation explained, respectively. The most relevant spectral regions selected for prediction were associated with electron transitions and Csbnd H, Osbnd H, and Nsbnd H bonds in the 1530 and 2100 nm regions. Given the relatively low concentration in pyrrolizidine alkaloids concentration (in the order of mg g-1) and resultant predictions, it is promising that pyrrolizidine alkaloids interact with incident light. Further studies should be considered to determine if such a non-destructive method may predict changes in PA concentration in relation to plant natural enemies. Spectroscopy may be used to study plant defenses in intact plant tissues, and may provide managers of toxic plants, food industry and multitrophic-interaction researchers with faster and larger monitoring possibilities.

  5. High-resolution subtyping of Staphylococcus aureus strains by means of Fourier-transform infrared spectroscopy.

    PubMed

    Johler, Sophia; Stephan, Roger; Althaus, Denise; Ehling-Schulz, Monika; Grunert, Tom

    2016-05-01

    Staphylococcus aureus causes a variety of serious illnesses in humans and animals. Subtyping of S. aureus isolates plays a crucial role in epidemiological investigations. Metabolic fingerprinting by Fourier-transform infrared (FTIR) spectroscopy is commonly used to identify microbes at species as well as subspecies level. In this study, we aimed to assess the suitability of FTIR spectroscopy as a tool for S. aureus subtyping. To this end, we compared the subtyping performance of FTIR spectroscopy to other subtyping methods such as pulsed field gel electrophoresis (PFGE) and spa typing in a blinded experimental setup and investigated the ability of FTIR spectroscopy for identifying S. aureus clonal complexes (CC). A total of 70 S. aureus strains from human, animal, and food sources were selected, for which clonal complexes and a unique virulence and resistance gene pattern had been determined by DNA microarray analysis. FTIR spectral analysis resulted in high discriminatory power similar as obtained by spa typing and PFGE. High directional concordance was found between FTIR spectroscopy based subtypes and capsular polysaccharide expression detected by FTIR spectroscopy and the cap specific locus, reflecting strain specific expression of capsular polysaccharides and/or other surface glycopolymers, such as wall teichoic acid, peptidoglycane, and lipoteichoic acid. Supervised chemometrics showed only limited possibilities for differentiation of S. aureus CC by FTIR spectroscopy with the exception of CC45 and CC705. In conclusion, FTIR spectroscopy represents a valuable tool for S. aureus subtyping, which complements current molecular and proteomic strain typing.

  6. High-resolution electron microscopy study of synthetic carbonate and aluminum containing apatites.

    PubMed

    Layani, J D; Cuisinier, F J; Steuer, P; Cohen, H; Voegel, J C; Mayer, I

    2000-05-01

    Aluminum (Al)-containing calcium-deficient carbonated hydroxyapatites were produced by a precipitation method from aqueous solution with carbonate (0-6.1%) and aluminum (0.1-0.5%) concentrations close to those found in biological materials. Two series of apatites were prepared: one at pH 7.0 and another at pH 9. 0. High-resolution electron microscopy has shown that many of them possess structural defects such as screw dislocations, grain boundaries, and central defects. Samples with high carbonate content and high water and high Al(3+) content had a high amount of structural defects. Accordingly, a sample (7Al1) with a relatively high carbonate content (6.1%) and a sample (7Al6) without carbonate but with a relatively high water (2.0 mol) and Al(3+) content (0. 39%) presented the highest amount of structural defects, 54% and 47%, respectively. A sample (7Al13) with a low level of crystalline water (1 mol) and low carbonate (2.5%) showed a small amount of defects. The presence of water associated with Al(3+) induced a high number of crystals having a central defect with a great similarity to the so-called water layer of octacalcium phosphate (OCP). Observed images of all these crystals have shown good correspondence with the computer-simulated image based on the crystal structure of hydroxyapatite, indicating that the addition of Al(3+) and carbonate does not perturb the apatitic structure.

  7. Reversible structure transition in gap junction under Ca++ control seen by high-resolution electron microscopy.

    PubMed

    Wrigley, N G; Brown, E; Chillingworth, R K

    1984-01-01

    Deoxycholate-extracted rat liver gap junction was studied by high-resolution low-dose electron microscopy. Communicating channels between two adjoining cells supposedly form along the common axis of two apposed hexameric trans-membrane protein assemblies. These double hexamers are often arranged in large plaques on an ordered hexagonal net (8-9 nm lattice constant) and seem able to undergo structural alteration as a possible permeability control mechanism. Calcium is widely reported to uncouple gap junction, and we observed this alteration on exposure to Ca++ down to 10(-4) M concentration. When EGTA was added at matching concentrations, the alteration was reversible several times over one hour, but with considerable variability. It was imaged in the absence of any negative stain to avoid ionic and other complications. The resulting lack of contrast plus low-dose "shot" noise required digital Fourier filtering and reconstruction, but no detail was recovered below 1.8 nm. In other experiments with negative stain at neutral pH, gap junction connexons were apparently locked in the "closed" configuration and no transition could be induced. However, recovery of repeating detail to nearly 1.0 nm was possible, reproducibly showing a fine connective matrix between connexons . Whether this was formed by unfolded portions of the 28,000-dalton gap junction protein is not known, but its existence could explain the observed lattice invariance during the connexon structural transition.

  8. Visualizing taste papillae in vivo with scanning electron microscopy of a high resolution cast.

    PubMed

    Myers, W E; Hettinger, T P; D'Ambrosio, J A; Wendt, S L; Pearson, C B; Barry, M A; Frank, M E

    1995-02-01

    A method using polyvinylsiloxane (PVS), a high-resolution dental impression material, to obtain negative images of lingual surfaces is described. Epoxy-resin tongue replicas made from these impressions were examined with scanning electron microscopy (SEM). This method has been developed to visualize structural details of the tongue surface of living human beings and laboratory animals. The utility of the method is demonstrated with hamster tongues, which have well-defined fungiform papillae with single taste pores, and human tongues, which have more variable surface structures. Replicas made from PVS impressions of tongues of living hamsters were compared with the same tongues after fixation. The replicas contained much of the detail present in fixed tongues. With SEM, it was possible to identify individual fungiform papillae, which contained depressions with the size and the location of hamster taste pores. Individual papillae could also be recognized in human-tongue replicas, but taste pores could not be identified with certainty. These replicas provide permanent, three-dimensional records of tongue topography that could be used to document changes due to trauma, disease and aging.

  9. High resolution transmission electron microscopy study of diamond films grown from fullerene precursors

    SciTech Connect

    Luo, J.S.; Gruen, D.M.; Krauss, A.R.

    1995-07-01

    High-resolution transmission electron microscopy (HRTEM) has been used to investigate the microstructure of diamond films grown by plasma-assisted chemical vapor deposition using fullerene precursors. HRTEM observations of as-grown films revealed an array of larger crystals (>200 nm) within a polycrystalline matrix of much smaller crystallites (<20 nm). The randomly oriented small crystallites were nearly free of structural imperfections such as stacking faults or twins, while the larger ones had preferred <110> orientations with respect to the Si (100) substrate and showed evidence of structural defects on the periphery of the crystals. The most common defects were V-shaped {Sigma}9 twin boundaries, which are generally believed to serve as re-entrant sites for diamond nucleation and growth. The observation of growth steps on both (111) and (110) surfaces seems to support a reaction model in which fragments of C{sub 60}, including C{sub 2}, are considered the growth species. In particular, the nanocrystallinity of the films is most likely due to a high carbon cluster density from C{sub 60} fragmentation at or near the diamond surface, which can serve as nucleation sites for the growth of new crystallites.

  10. In-Situ High-Resolution Transmission Electron Microscopy Investigation of Overheating of Cu Nanoparticles

    NASA Astrophysics Data System (ADS)

    Chen, Chunlin; Hu, Ziyu; Li, Yanfen; Liu, Limin; Mori, Hirotaro; Wang, Zhangchang

    2016-01-01

    Synthesizing and functionalizing metal nanoparticles supported on substrates is currently the subject of intensive study owing to their outstanding catalytic performances for heterogeneous catalysis. Revealing the fundamental effect of the substrates on metal nanoparticles represents a key step in clarifying mechanisms of stability and catalytic properties of these heterogeneous systems. However, direct identification of these effects still poses a significant challenge due to the complicacy of interactions between substrates and nanoparticles and also for the technical difficulty, restraining our understanding of these heterogeneous systems. Here, we combine in situ high-resolution transmission electron microscopy with molecular dynamics simulations to investigate Cu nanoparticles supported on graphite and Cu2O substrates, and demonstrate that melting behavior and thermal stability of Cu nanoparticles can be markedly influenced by substrates. The graphite-supported Cu nanoparticles do not melt during annealing at 1073 K until they vanish completely, i.e. only the sublimation occurs, while the Cu2O-supported Cu nanoparticles suffer melting during annealing at 973 K. Such selective superheating of the Cu nanoparticles can be attributed to the adsorption of a thin carbon layer on the surface of the Cu nanoparticles, which helps guide further stability enhancement of functional nanoparticles for realistic applications.

  11. High resolution infrared spectroscopy: Some new approaches and applications to planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Mumma, M. J.

    1978-01-01

    The principles of spectral line formation and of techniques for retrieval of atmospheric temperature and constituent profiles are discussed. Applications to the atmospheres of Earth, Mars, Venus, and Jupiter are illustrated by results obtained with Fourier transform and infrared heterodyne spectrometers at resolving powers (lambda/delta hyperon lambda of approximately 10,000 and approximately 10 to the seventh power), respectively, showing the high complementarity of spectroscopy at these two widely different resolving powers. The principles of heterodyne spectroscopy are presented and its applications to atmospheric probing and to laboratory spectroscopy are discussed. Direct absorption spectroscopy with tuneable semiconductor lasers is discussed in terms of precision frequency-and line strength-measurements, showing substantial advances in laboratory infrared spectroscopy.

  12. High-Resolution Infrared Spectroscopy of Cubane, C_8H_8

    NASA Astrophysics Data System (ADS)

    Boudon, Vincent; Pirali, Olivier; Gruet, Sébastien; D'accolti, Lucia; Fusco, Caterina; Annese, Cosimo

    2014-06-01

    Carbon-cage molecules have generated a considerable interest from both experimental and theoretical point of views. We recently performed a high-resolution study of adamantane (C10H16), the smallest hydrocarbon cage belonging to the diamandoid family. There exist another family of hydrocarbon cages with additional interesting chemical properties: the so-called Platonic hydrocarbons that comprise dodecahedrane (C20H20) and cubane (C_8H_8). Both possess C-C bond angles that deviate from the tetrahedral angle (109.8°) of the sp^3 hybridized form of carbon. This generates a considerable strain in the molecule. Cubane itself has the highest density of all hydrocarbons (1.29 g/cm^3). This makes it able to store larges amounts of energy, although the molecule is fully stable. Up to now, only one high-resolution study of cubane has been performed on a few bands [2]. We report here a new wide-range high-resolution study of the infrared spectrum of cubane. The sample was synthesized in Bari upon decarboxylation of 1,4-cubanedicarboxylic acid thanks to the improved synthesis of literature [3]; its {}1H and 13C NMR, FTIR, and mass spectrometry agreed with reported data [4]. Several spectra have been recorded at the AILES beamline of the SOLEIL French synchrotron facility. They cover the 800 to 3100 cm-1 region. Besides the three infrared-active fundamentals (ν10, ν11 and ν12), we could record many combination bands, all of them displaying a well-resolved octahedral rotational structure. We present here a preliminary analysis of some of the recorded bands, performed thanks the SPVIEW and XTDS software, based on the tensrorial formalism developed in the Dijon group [5]. [1] O. Pirali, V. Boudon, J. Oomens, M. Vervloet, J. Chem. Phys., 136, 024310 (2012). [2] A. S. Pine, A. G. Maki, A. G. Robiette, B. J. Krohn, J. K. G. Watson, Th. Urbanek, J. Am. Chem. Soc., 106, 891-897 (1984). [3] P. E. Eaton, N. Nordari, J. Tsanaktsidis, P. S. Upadhyaya, Synthesis, 1, 501, (1995). [4] E

  13. High resolution far-infrared Fourier transform spectroscopy of radicals at the AILES beamline of SOLEIL synchrotron facility.

    PubMed

    Martin-Drumel, M A; Pirali, O; Balcon, D; Bréchignac, Ph; Roy, P; Vervloet, M

    2011-11-01

    Experimental far-infrared (FIR) spectroscopy of transient species (unstable molecules, free radicals, and ions) has been limited so far in both emission and absorption (mainly by the low probability of spontaneous emission in that spectral range and the low brightness of continuum sources used for absorption measurements, respectively). Nevertheless, the FIR spectral range recently became of high astrophysical relevance thanks to several new observational platforms (HERSCHEL, ALMA...) dedicated to the study of this region suitable for the detection of the emission from cold objects of the interstellar medium. In order to complete the experimental dataset concerning transient species, three discharge experiments dedicated to the recording of high resolution FIR spectra of radicals have been developed at the Advanced Infrared Line Exploited for Spectroscopy (AILES) which extracts the bright FIR synchrotron continuum of the synchrotron facility SOLEIL. These experiments make use of a high resolution (R = 0.001 cm(-1)) Bruker IFS125 Fourier transform (FT) spectrometer. An emission setup (allowing to record spectra of radicals excited at high rotational and vibrational temperatures) and two absorption setups (exploiting the bright synchrotron source at the highest resolution available on the FT) are alternatively connected to the FT. The advantages and limitations of these techniques are discussed on the basis of the recent results obtained on OH and CH radicals. These results constitute the first FIR spectra of radicals using synchrotron radiation, and the first FIR spectrum of a C-bearing radical using FT-spectroscopy.

  14. Observation of molecular ordering at the surface of trimethylpropylammonium bis(trifluoromethanesulfonyl)imide using high-resolution rutherford backscattering spectroscopy.

    PubMed

    Nakajima, Kaoru; Ohno, Atsushi; Suzuki, Motofumi; Kimura, Kenji

    2008-05-06

    The surface structure of trimethylpropylammonium bis(trifluoromethanesulfonyl)imide ([TMPA] [TFSI]) is studied by high-resolution Rutherford backscattering spectroscopy at room temperature. The results provide direct evidence of the molecular ordering at the surface. The C1 conformer of the [TFSI] anion is dominant among two stable conformers, and the anions are oriented with their CF3 groups pointing toward the vacuum in the outermost molecular layer. The anions in the second molecular layer also show preferred orientation although it is rather weak.

  15. High Resolution Far Infrared Spectroscopy of HFC-134a at Cold Temperatures

    NASA Astrophysics Data System (ADS)

    Wong, Andy; Medcraft, Chris; Thompson, Christopher; Robertson, Evan Gary; Appadoo, Dominique; McNaughton, Don

    2016-06-01

    Since the signing of the Montreal protocol, long-lived chlorofluorocarbons have been banned due to their high ozone depleting potential. In order to minimise the effect of such molecules, hydrofluorocarbons (HFCs) were synthesized as replacement molecules to be used as refrigerants and foam blowing agents. HFC-134a, or 1,1,1,2-tetrafluoroethane, is one of these molecules. Although HFCs do not cause ozone depletion, they are typically strong absorbers within the 10 micron atmospheric window, which lead to high global warming potentials. A high resolution FT-IR analysis of the νb{8} band (near 665 wn) of HFC-134a has been performed to help understand the intermode coupling between the νb{8} vibrational state and unobserved dark states.

  16. CARMENES at PPVI. High-Resolution Spectroscopy of M Dwarfs with FEROS, CAFE and HRS

    NASA Astrophysics Data System (ADS)

    Alonso-Floriano, F. J.; Montes, D.; Jeffers, S.; Caballero, J. A.; Zechmeister, M.; Mundt, R.; Reiners, A.; Amado, P. J.; Casal, E.; Cortés-Contreras, M.; Modroño, Z.; Ribas, I.; Rodríguez-López, C.; Quirrenbach, A.

    2013-07-01

    To ensure an efficient use of CARMENES observing time, and the highest chances of success, it is necessary first to select the most promising targets. To achieve this, we are observing ~500 M dwarfs at high-resolution (R = 30,000-48,000), from which we determine the projected rotational velocity vsini with an accuracy better than 0.5-0.2 km/s and radial-velocity stability better than 0.2-0.1 km/s. Our aim is to have at least two spectra at different epochs of the final 300 CARMENES targets. Our observations with FEROS at ESO/MPG 2.2m La Silla , CAFE at 2.2m Calar Alto and HRS at Hobby Eberly Telescope allow us to identify single- and double-line spectroscopic binaries and, especially, fast rotators, which should be discarded from the target list for exoplanet searches. Here we present preliminary results.

  17. High resolution spectroscopy and spectral simulation of C2 using degenerate four-wave mixing

    NASA Astrophysics Data System (ADS)

    Lloyd, G. M.; Ewart, P.

    1999-01-01

    Degenerate four-wave mixing in the sub-Doppler phase conjugate geometry was used to record high resolution spectra of the d 3Πg-a3Πu (0-0) Swan band of C2 produced in an oxy-acetylene flame. The line positions of isolated transitions were measured to an accuracy of ˜3×10-3 cm-1 and calibrated using a Fizeau interferometer system. The data obtained from these spectra was used to calculate rotational constants and lambda doubling parameters for the 3Π states from which the line positions for the whole band were calculated. Noticeable improvements between experimental and calculated line positions are seen when compared to previously published values. The effect of inaccuracies in line positions on the simulation of degenerate four-wave mixing spectra is discussed and some examples of the improvement in simulation using the newly calculated line positions are presented.

  18. High-resolution spectroscopy and mode identification in non-radially pulsating stars

    NASA Astrophysics Data System (ADS)

    Pollard, K. R.; Wright, D. J.; Zima, W.; Cottrell, P. L.; De Cat, P.

    2008-12-01

    We have obtained high-resolution spectroscopic data of a sample of non-radially pulsating stars with the HERCULES spectrograph on the 1.0-m telescope at the Mt John University Observatory in New Zealand. We have developed and used a new technique which cross- correlates stellar spectra with scaled delta function templates to obtain high signal-to-noise representative spectral line profiles for further analysis. Using these profiles, and employing the Fourier Parameter Fit method, we have been able to place constraints on the degree, ℓ, and azimuthal order, m, of the non-radial pulsation modes in one β Cephei star, V2052 Oph and two γ Doradus stars, QW Pup and HD 139095.

  19. High-resolution spectroscopy of jet-cooled CH{sub 5}{sup +}: Progress

    SciTech Connect

    Savage, C.; Dong, F.; Nesbitt, D. J.

    2015-01-22

    Protonated methane (CH{sub 5}{sup +}) is thought to be a highly abundant molecular ion in interstellar medium, as well as a potentially bright μwave- mm wave emitter that could serve as a tracer for methane. This paper describes progress and first successful efforts to obtain a high resolution, supersonically cooled spectrum of CH{sub 5}{sup +} in the 2900-3100 cm{sup −1} region, formed in a slit supersonic discharge at low jet temperatures and with sub-Doppler resolution. Short term precision in frequency measurement (< 5 MHz on an hour time scale) is obtained from a thermally controlled optical transfer cavity servoloop locked onto a frequency stabilized HeNe laser. Long term precision (< 20 MHz day-to-day) due to pressure, temperature and humidity dependent index of refraction effects in the optical transfer cavity is also present and discussed.

  20. High Resolution Near-IR Spectroscopy of Protostars With Large Telescopes

    NASA Technical Reports Server (NTRS)

    Greene, Tom; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    It is now possible to measure absorption spectra of Class I protostars using D greater than or = 8m telescopes equipped with sensitive cryogenic IR spectrographs. Our latest high-resolution (R approx. 20,000) Keck data reveal that Class I protostars are indeed low-mass stars with dwarf-like features. However, they differ from T Tauri stars in that Class I protostars have much higher IR veilings (tau(sub k) greater than or = 1 - 3+) and they are rotating quickly, v sin i greater than 20 km/s. Interestingly, the vast majority of protostellar absorption spectra show stellar - not disk - absorption features. A preliminary H-R diagram suggests that protostellar photospheres may have different physical structures than T Tauri stars, perhaps due to their higher accretion rates.

  1. High-resolution spectroscopy used to measure inertial confinement fusion neutron spectra on Omega (invited)

    SciTech Connect

    Forrest, C. J.; Radha, P. B.; Glebov, V. Yu.; Goncharov, V. N.; Knauer, J. P.; Pruyne, A.; Romanofsky, M.; Sangster, T. C.; Shoup, M. J. III; Stoeckl, C.; Casey, D. T.; Gatu-Johnson, M.; Gardner, S.

    2012-10-15

    The areal density ({rho}R) of cryogenic DT implosions on Omega is inferred by measuring the spectrum of neutrons that elastically scatter off the dense deuterium (D) and tritium (T) fuel. Neutron time-of-flight (nTOF) techniques are used to measure the energy spectrum with high resolution. High signal-to-background data has been recorded on cryogenic DT implosions using a well-collimated 13.4-m line of sight and an nTOF detector with an advanced liquid scintillator compound. An innovative method to analyze the elastically scattered neutron spectra was developed using well-known cross sections of the DT nuclear reactions. The estimated areal densities are consistent with alternative {rho}R measurements and 1-D simulations.

  2. Tissue differentiation by means of high resolution optical emission spectroscopy during electrosurgical intervention

    NASA Astrophysics Data System (ADS)

    Bürger, Ines; Scharpf, Marcus; Hennenlotter, Jörg; Nüßle, Daniela; Spether, Dominik; Neugebauer, Alexander; Bibinov, Nikita; Stenzl, Arnulf; Fend, Falko; Enderle, Markus; Awakowicz, Peter

    2017-01-01

    Electrosurgery is the use of radio-frequency electric current for the cutting of biological tissue e.g. for resection of tumour tissue. In this work, the optical emission of plasma being generated during the electrosurgical procedure is investigated with a high resolution echelle spectrometer to find differences between tumour tissue and normal renal tissue in a pre-clinical ex vivo study. Trace elements like zinc, iron, copper and cadmium are present in the tissue spectra as well as the electrolytes magnesium, calcium, sodium and potassium and some diatomic molecules such as hydroxyl radical, cyano radical, dicarbon, nitrogen monohydride and molecular nitrogen which are mainly dissociated from polyatomic molecules. With the atomic emission line of cadmium at 228.8 nm the treated tissue can be differentiated in tumorous and healthy tissue with correct assignment of 95% for tumour tissue and 92% for normal renal tissue.

  3. High resolution diode laser spectroscopy of H2O spectra broadened by nitrogen and noble gases

    NASA Astrophysics Data System (ADS)

    Kapitanov, Venedikt A.; Osipov, Konstantin Yu.; Protasevich, Alexander E.; Ponurovskiy, Yakov Ya.

    2014-11-01

    The absorption spectra of pure H2O with mixtures of broadening gases N2, Ar, Xe, He, Ar and air have been measured in 1.39 mμ spectral region by high resolution spectrometer based on diode laser (DFB NEL, Japan). For the processing of pure water spectra and it's mixtures with a different broadening gases in a wide pressure range we used a multispectrum fitting procedure developed at IAO. The program is based on a relatively simple Rautian-Sobel'man line profile and linear pressure dependence of the line profile parameters. H2O measured spectra bulk processing results in the retrieving of such line parameters: zero-pressure line center positions, intensities, self-broadening and self-shift coefficients of pure water, broadening and shift coefficients for other gases which are describes the experiment with the minimum residuals in a wide pressure range.

  4. High Resolution X-Ray Absorption Spectroscopy: Distribution of Matter in and around Galaxies

    NASA Astrophysics Data System (ADS)

    Schulz, Norbert; MIT/CAT Team

    2015-10-01

    The chemical evolution of the Universe embraces aspects that reachdeep into modern astrophysics and cosmology. We want to know how present and past matter is affected by various levels and types of nucleo-synthesis and stellar evolution. Three major categories were be identified: 1. The study of pre-mordial star formation including periods of super-massive black hole formation, 2. The embedded evolution of the intergalactic medium IGM, 3. The status and evolution of stars and the interstellar medium ISM in galaxies. Today a fourth category relates to our understanding of dark matter in relationwith these three categories. The X-ray band is particularly sensitive to K- and L-shell absorption and scattering from high abundant elements like C, N, O, Ne, Mg, Si, S,Ar, Ca, Fe, and Ni. Like the Lyman alpha forest in the optical band, absorbers in the IGM produce an X-ray line forest along the line of sight in the X-rayspectrum of a background quasar. Similary bright X-ray sources within galaxies and the Milky Way produce a continuum, which is being absorbed by elements invarious phases of the ISM. High resolution X-ray absorption surveys are possible with technologies ready for flight within decade. == high efficiency X-ray optics with optical performance 3== high resolution X-ray gratings with R 3000 for E 1.5 keV== X-ray micro-calorimeters with R 2000 for E 1.5 keV. The vision for the next decade needs to lead to means and strategies which allows us to perform such absorption surveys as effectively as surveys are now or in very near future quite common in astronomy pursued in other wave length bands such as optical, IR, and sub-mm.

  5. KiwiSpec - an advanced spectrograph for high resolution spectroscopy: prototype design and performance

    NASA Astrophysics Data System (ADS)

    Gibson, Steve; Barnes, Stuart I.; Hearnshaw, John; Nield, Kathryn; Cochrane, Dave; Grobler, Deon

    2012-09-01

    A new advanced high resolution spectrograph has been developed by Kiwistar Optics of Industrial Research Ltd., New Zealand. The instrument, KiwiSpec R4-100, is bench-mounted, bre-fed, compact (0.75m by 1.5m footprint), and is well-suited for small to medium-sized telescopes. The instrument makes use of several advanced concepts in high resolution spectrograph design. The basic design follows the classical white pupil concept in an asymmetric implementation and employs an R4 echelle grating illuminated by a 100mm diameter collimated beam for primary dispersion. A volume phase holographic grating (VPH) based grism is used for cross-dispersion. The design also allows for up to four camera and detector channels to allow for extended wavelength coverage at high eciency. A single channel prototype of the instrument has been built and successfully tested with a 1m telescope. Targets included various spectrophotometric standard stars and several radial velocity standard stars to measure the instrument's light throughput and radial velocity capabilities. The prototype uses a 725 lines/mm VPH grism, an off-the-shelf camera objective, and a 2k×2k CCD. As such, it covers the wavelength range from 420nm to 660nm and has a resolving power of R ≍ 40,000. Spectrophotometric and precision radial velocity results from the on-sky testing period will be reported, as well as results of laboratory-based measurements. The optical design of KiwiSpec, and the various multi-channel design options, will be presented elsewhere in these proceedings.

  6. KiwiSpec - an advanced spectrograph for high resolution spectroscopy: optical design and variations

    NASA Astrophysics Data System (ADS)

    Barnes, Stuart I.; Gibson, Steve; Nield, Kathryn; Cochrane, Dave

    2012-09-01

    The KiwiSpec R4-100 is an advanced high resolution spectrograph developed by KiwiStar Optics, Industrial Research Ltd, New Zealand. The instrument is based around an R4 echelle grating and a 100mm collimated beam diameter. The optical design employs a highly asymmetric white pupil design, whereby the transfer collimator has a focal length only 1/3 that of the primary collimator. This allows the cross-dispersers (VPH gratings) and camera optics to be small and low cost while also ensuring a very compact instrument. The KiwiSpec instrument will be bre-fed and is designed to be contained in both thermal and/or vacuum enclosures. The instrument concept is highly exible in order to ensure that the same basic design can be used for a wide variety of science cases. Options include the possibility of splitting the wavelength coverage into 2 to 4 separate channels allowing each channel to be highly optimized for maximum eciency. CCDs ranging from smaller than 2K2K to larger than 4K4K can be accommodated. This allows good (3-4 pixel) sampling of resolving powers ranging from below 50,000 to greater than 100,000. Among the specic design options presented here will be a two-channel concept optimized for precision radial velocities, and a four-channel concept developed for the Gemini High- Resolution Optical Spectrograph (GHOST). The design and performance of a single-channel prototype will be presented elsewhere in these proceedings.

  7. High resolution Raman spectroscopy of complexes and clusters in molecular beams. Performance report

    SciTech Connect

    Felker, P.M.

    1991-12-31

    The DOE-sponsored project in this laboratory has two facets. The first is the development of methods of nonlinear Raman spectroscopy for application in studies of sparse samples. The second is the application of such methods to structural and dynamical studies of species in supersonic molecular beams. The progress we have made in both of these areas is described in this paper. The report is divided into five remaining sections. The first pertains to theoretical and experimental developments in Fourier transform stimulated emission spectroscopy and Fourier transform hole-burning spectroscopy. The second deals with progress in the development of ionization-detected stimulated Raman spectroscopies (IDSRS). The third describes results from the application of IDSRS methods to studies of jet-cooled benzene clusters. The fourth describes IDSRS results from studies of hydrogen-bonded complexes containing phenols. The fifth relates to studies of carbazole-(Ar){sub n} clusters.

  8. High resolution Raman spectroscopy of complexes and clusters in molecular beams

    SciTech Connect

    Felker, P.M.

    1991-01-01

    The DOE-sponsored project in this laboratory has two facets. The first is the development of methods of nonlinear Raman spectroscopy for application in studies of sparse samples. The second is the application of such methods to structural and dynamical studies of species in supersonic molecular beams. The progress we have made in both of these areas is described in this paper. The report is divided into five remaining sections. The first pertains to theoretical and experimental developments in Fourier transform stimulated emission spectroscopy and Fourier transform hole-burning spectroscopy. The second deals with progress in the development of ionization-detected stimulated Raman spectroscopies (IDSRS). The third describes results from the application of IDSRS methods to studies of jet-cooled benzene clusters. The fourth describes IDSRS results from studies of hydrogen-bonded complexes containing phenols. The fifth relates to studies of carbazole-(Ar){sub n} clusters.

  9. A compact, high resolution Michelson interferometer for atmospheric spectroscopy in the near ultraviolet

    NASA Technical Reports Server (NTRS)

    Sander, Stanley P.; Cageao, Richard P.; Friedl, Randall R.

    1993-01-01

    A new, compact Fourier Transform Michelson interferometer (FTUV) with an apodized resolving power greater than 300,000 at 300 nm, high throughput and wide spectral coverage has been developed. The objectives include atmospheric spectroscopy (direct solar absorption and solar scattering) and laboratory spectroscopy of transient species. In this paper, we will briefly describe the prototype FTUV instrument and the results of preliminary laboratory investigations of OH and ClO spectra in emission and absorption.

  10. High Resolution Simulation of Beam Dynamics in Electron Linacs for Free Electron Lasers

    SciTech Connect

    Ryne, R.D.; Venturini, M.; Zholents, A.A.; Qiang, J.

    2009-01-05

    In this paper we report on large scale multi-physics simulation of beam dynamics in electron linacs for next generation free electron lasers (FELs). We describe key features of a parallel macroparticle simulation code including three-dimensional (3D) space-charge effects, short-range structure wake fields, longitudinal coherent synchrotron radiation (CSR) wake fields, and treatment of radiofrequency (RF) accelerating cavities using maps obtained from axial field profiles. A macroparticle up-sampling scheme is described that reduces the shot noise from an initial distribution with a smaller number of macroparticles while maintaining the global properties of the original distribution. We present a study of the microbunching instability which is a critical issue for future FELs due to its impact on beam quality at the end of the linac. Using parameters of a planned FEL linac at Lawrence Berkeley National Laboratory (LBNL), we show that a large number of macroparticles (beyond 100 million) is needed to control numerical shot noise that drives the microbunching instability. We also explore the effect of the longitudinal grid on simulation results. We show that acceptable results are obtained with around 2048 longitudinal grid points, and we discuss this in view of the spectral growth rate predicted from linear theory. As an application, we present results from simulations using one billion macroparticles of the FEL linac under design at LBNL. We show that the final uncorrelated energy spread of the beam depends not only on the initial uncorrelated energy spread but also depends strongly on the shape of the initial current profile. By using a parabolic initial current profile, 5 keV initial uncorrelated energy spread at 40 MeV injection energy, and improved linac design, those simulations demonstrate that a reasonable beam quality can be achieved at the end of the linac, with the final distribution having about 100 keV energy spread, 2.4 GeV energy, and 1.2 kA peak

  11. High resolution infrared ``vision'' of dynamic electron processes in semiconductor devices (abstract)

    NASA Astrophysics Data System (ADS)

    Malyutenko, V. K.

    2003-01-01

    Infrared cameras have been traditionally used in semiconductor industry for noncontact measurements of printed circuit boards (PCBs) local overheating. While an effective way to prevent defective PCB application in a "find-problems-before-your-customer-do" manner, this conventional static (25-50 frames/s) and small spatial resolution (>100 μm) approach is incapable, in principle, of explaining the physical reason for the PCB failure. What follows in this report is the demonstration of an IR camera based new approach in high-resolution dynamic study of electron processes responsible for single device performance. More specifically, time resolved two-dimensional visualization of current carrier drift and diffusion processes across the device base that happen in microsecond scale is of prime concern in the work. Thus, contrary to the conventional visualization-through-heating measurements, objective is mapping of electron processes in a device base through negative and positive luminescence (provoked by band-to-band electron transitions) and nonequilibrium thermal emission (provoked by intraband electron transitions) studies inside the region in which current flows. Therefore, the parameters of interest are not only a device thermal mass and thermal conductance, but also free carrier lifetime, surface recombination velocity, diffusion length, and contact properties. The micro-mapping system developed consists of reflective type IR microscope coaxially attached to calibrated scanning IR thermal imaging cameras (3-5 and 8-12 μm spectral ranges, HgCdTe cooled photodetectors, scene spatial resolution of some 20 μm, minimum time resolved interval of 10 μs, and temperature resolution of about 0.5 °C at 30 °C). Data acquisition and image processing (emissivity equalization, noise reduction by image averaging, and external triggering) are computer controlled. Parallel video channel equipped with a CCD camera permits easy positioning and focusing of <1×1 mm2 object

  12. Electronic and geometric structure of Pu metal: A high-resolution photoelectron spectromicroscopy study

    NASA Astrophysics Data System (ADS)

    Terry, J.; Schulze, R. K.; Zocco, T.; Lashley, Jason; Farr, J. D.; Heinzelman, K.; Rotenberg, E.; Shuh, D. K.; Blau, M.; Tobin, J.

    2000-07-01

    Soft x-ray techniques (photon energy in the range of 10-1000 eV) such as photoelectron; x-ray emission; and near-edge, x-ray absorption spectroscopies have been used to determine the electronic structure of many (in fact most) materials. However, these techniques have not been fully utilized on the actinides. The safety issues involved in handling the actinides make it necessary to minimize the amount of radioactive materials used in the measurements. To our knowledge, the only synchrotron radiation source in the world where soft x-ray measurements have been performed on plutonium is the Spectromicroscopy Facility at Beam Line 7.0.1 at the Advanced Light Source (ALS). We performed core-level photoemission, valence band photoemission, and near-edge x-ray absorption spectroscopy on both polycrystalline α-plutonium and δ-plutonium microcrystals.

  13. On-chip near-infrared spectroscopy of CO2 using high resolution plasmonic filter array

    NASA Astrophysics Data System (ADS)

    Chong, Xinyuan; Li, Erwen; Squire, Kenneth; Wang, Alan X.

    2016-05-01

    We report an ultra-compact, cost-effective on-chip near-infrared spectroscopy system for CO2 sensing using narrow-band optical filter array based on plasmonic gratings with a waveguide layer. By varying the periodicity of the gratings, the transmission spectra of the filters can be continuously tuned to cover the 2.0 μm sensing window with high spectral resolution around 10 nm. Our experimental results show that the on-chip spectroscopy system can resolve the two symmetric vibrational bands of CO2 at 2.0 μm wavelength, which proves its potential to replace the expensive commercial IR spectroscopy system for on-site gas sensing.

  14. High-resolution spectroscopy of the zero-phonon line of the deep donor EL2 in GaAs

    SciTech Connect

    Hecht, C.; Kummer, R.; Thoms, M.; Winnacker, A.

    1997-05-01

    We investigated the zero-phonon line (ZPL) of the deep donor EL2 in GaAs by means of high-resolution absorption spectroscopy with a narrow-band laser. Frequency-selective bleaching ({open_quotes}spectral-hole burning{close_quotes}) experiments and the measurement of the temperature broadening of the ZPL prove an essentially homogeneous broadening of the transition. The observed asymmetry of the line shape is interpreted to be caused by a Fano resonance of the {sup 1}T{sub 2} excited state with the conduction band. A splitting of the {sup 1}T{sub 2} state as the reason for the asymmetry seems unrealistic. The homogeneous broadening of the ZPL prevents the use of spectral-hole burning spectroscopy to study the effect of external perturbations on the ZPL of the EL2. {copyright} {ital 1997} {ital The American Physical Society}

  15. HIGH-RESOLUTION INFRARED IMAGING AND SPECTROSCOPY OF THE Z CANIS MAJORIS SYSTEM DURING QUIESCENCE AND OUTBURST

    SciTech Connect

    Hinkley, Sasha; Hillenbrand, Lynne; Crepp, Justin R.; Oppenheimer, Ben R.; Zimmerman, Neil; Brenner, Douglas; Rice, Emily L.; Pueyo, Laurent; Vasisht, Gautam; Roberts, Jennifer E.; Roberts, Lewis C. Jr.; Burruss, Rick; Wallace, J. Kent; Cady, Eric; Zhai, Chengxing; Kraus, Adam L.; Ireland, Michael J.; Beichman, Charles; Dekany, Richard; Parry, Ian R.; and others

    2013-01-20

    We present adaptive optics photometry and spectra in the JHKL bands along with high spectral resolution K-band spectroscopy for each component of the Z Canis Majoris system. Our high angular resolution photometry of this very young ({approx}<1 Myr) binary, comprised of an FU Ori object and a Herbig Ae/Be star, was gathered shortly after the 2008 outburst while our high-resolution spectroscopy was gathered during a quiescent phase. Our photometry conclusively determines that the outburst was due solely to the embedded Herbig Ae/Be member, supporting results from earlier works, and that the optically visible FU Ori component decreased slightly ({approx}30%) in luminosity during the same period, consistent with previous works on the variability of FU Ori type systems. Further, our high-resolution K-band spectra definitively demonstrate that the 2.294 {mu}m CO absorption feature seen in composite spectra of the system is due solely to the FU Ori component, while a prominent CO emission feature at the same wavelength, long suspected to be associated with the innermost regions of a circumstellar accretion disk, can be assigned to the Herbig Ae/Be member. These findings clarify previous analyses of the origin of the CO emission in this complex system.

  16. Slit-Jet Discharge Studies of Polyacetylenic Molecules: Synthesis and High Resolution Infrared Spectroscopy of Diacetylene

    NASA Astrophysics Data System (ADS)

    Chang, Chih-Hsuan; Roberts, Melanie A.; Nesbitt, David J.

    2013-06-01

    Polyacetylenic molecules play an important role in both combustion chemistry as well as chemistry of the interstellar medium. This talk presents first high resolution infrared spectroscopic efforts on the simplest jet-cooled polyacetylene, namely diacetylene (C_4H_2). Specifically, the fundamental anti-symmetric C-H stretching mode (near 3333 cm^{-1}) and several hot combination bands of diacetylene have been investigated under sub-Doppler, jet cooled conditions in a pulsed supersonic slit discharge. Local Coriolis perturbations in the fundamental anti-symmetric C-H stretch manifold are observed and analyzed. Six hot bands are observed, including the H-C-C bending mode (v_8) not observed in previous room temperature studies. The observation of these hot bands under rotationally jet cooled conditions (T_{rot}=15.7(4) K) indicate the presence of highly non-equilibrium relaxation processes between vibration and rotation. G. Guelachvili, A. M. Craig, and D. A. Ramsay, J. Mol. Spectrosc. 105, 156 (1984)

  17. HIGH-RESOLUTION FOURIER-TRANSFORM MICROWAVE SPECTROSCOPY OF METHYL- AND DIMETHYLNAPTHALENES

    SciTech Connect

    Schnitzler, Elijah G.; Zenchyzen, Brandi L. M.; Jäger, Wolfgang

    2015-06-01

    High-resolution pure rotational spectra of four alkylnaphthalenes were measured in the range of 6–15 GHz using a molecular-beam Fourier-transform microwave spectrometer. Both a- and b-type transitions were observed for 1-methylnaphthalene (1-MN), 1,2-dimethylnaphthalene (1,2-DMN), and 1,3-dimethylnaphthalene (1,3-DMN); only a-type transitions were observed for 2-methylnaphthalene (2-MN). Geometry optimization and vibrational analysis calculations at the B3LYP/6-311++G(d,p) level of theory aided in the assignments of the spectra and the characterization of the structures. Differences between the experimental and predicted rotational constants are small, and they can be attributed in part to low-lying out-of-plane vibrations, which distort the alkylnaphthalenes out of their equilibrium geometries. Splittings of rotational lines due to methyl internal rotation were observed in the spectra of 2-MN, 1,2-DMN, and 1,3-DMN, and allowed for the determination of the barriers to methyl internal rotation, which are compared to values from density functional theory calculations. All four species are moderately polar, so they are candidate species for detection by radio astronomy, by targeting the transition frequencies reported here.

  18. ISIS: An Interactive Spectral Interpretation System for High Resolution X-Ray Spectroscopy

    NASA Astrophysics Data System (ADS)

    Houck, J. C.; Denicola, L. A.

    The Interactive Spectral Interpretation System (ISIS) is designed to facilitate the interpretation and analysis of high resolution X-ray spectra like those obtained using the grating spectrographs on Chandra and XMM and the microcalorimeter on Astro-E. It is being developed as an interactive tool for studying the physics of X-ray spectrum formation, supporting measurement and identification of spectral features, and interaction with a database of atomic structure parameters and plasma emission models. The current version uses the atomic data and collisional ionization equilibrium models in the Astrophysical Plasma Emission Database (APED) of Brickhouse et.al., and also provides access to earlier plasma emission models including Raymond-Smith and MEKAL. Although the current version focuses on collisional ionization equilibrium plasmas, the system is designed to allow use of other databases to provide better support for studies of non-equilibrium and photoionized plasmas. To maximize portability between Unix operating systems, ISIS is being written entirely in ANSI C using free-software components (CFITSIO, PGPLOT and S-Lang).

  19. High-resolution UV-visible spectroscopy of lunar red spots

    NASA Technical Reports Server (NTRS)

    Bruno, B. C.; Lucey, P. G.; Hawke, B. R.

    1991-01-01

    A spectral reflectance study of selected lunar 'red spots', highland areas characterized by an absorption in the ultraviolet relative to the visible was conducted. Some red spots were suggested to be the sites of ancient highland volcanism. High-resolution spectral data of eight red spots on the western portion of the moon over the wavelength region 0.39-0.82 micron were obtained. Much spectral variation among these red spots in the magnitude as well as the wavelength position of the ultraviolet absorption were found. Spectral structure at visible and near-infrared wavelength were also identified. These spectral differences indicate that red spots do not have a single mineralogical composition, which in turn suggests that red spots may have multiple origins. Additional imaging spectroscopic observations were taken of the Herigonius red spot, a morphologically complex region northeast of Mare Humorum. These data reveal significant spectral differences among the various morphological units within the Herigonius red spot. Although some of these are likely due to the effects of the maturation process, others appear to reflect differences in mineral abundances and composition.

  20. Applications of High Resolution Laser: Induced Breakdown Spectroscopy for Environmental and Biological Samples

    NASA Astrophysics Data System (ADS)

    Martin, Madhavi Z.; Labbe, Nicole; Wagner, Rebekah J.

    This chapter details the application of LIBS in a number of environmental areas of research such as carbon sequestration and climate change. LIBS has also been shown to be useful in other high resolution environmental applications for example, elemental mapping and detection of metals in plant materials. LIBS has also been used in phytoremediation applications. Other biological research involves a detailed understanding of wood chemistry response to precipitation variations and also to forest fires. A cross-section of Mountain pine (pinceae Pinus pungen Lamb.) was scanned using a translational stage to determine the differences in the chemical features both before and after a fire event. Consequently, by monitoring the elemental composition pattern of a tree and by looking for abrupt changes, one can reconstruct the disturbance history of a tree and a forest. Lastly we have shown that multivariate analysis of the LIBS data is necessary to standardize the analysis and correlate to other standard laboratory techniques. LIBS along with multivariate statistical analysis makes it a very powerful technology that can be transferred from laboratory to field applications with ease.

  1. HIGH-RESOLUTION IR ABSORPTION SPECTROSCOPY OF POLYCYCLIC AROMATIC HYDROCARBONS: THE REALM OF ANHARMONICITY

    SciTech Connect

    Maltseva, Elena; Buma, Wybren Jan; Petrignani, Annemieke; Candian, Alessandra; Mackie, Cameron J.; Tielens, Alexander G. G. M.; Huang, Xinchuan; Lee, Timothy J.; Oomens, Jos E-mail: petrignani@strw.leidenuniv.nl

    2015-11-20

    We report on an experimental and theoretical investigation of the importance of anharmonicity in the 3-μm CH stretching region of polycyclic aromatic hydrocarbon (PAH) molecules. We present mass-resolved, high-resolution spectra of the gas-phase cold (∼4 K) linear PAH molecules naphthalene, anthracene, and tetracene. The measured IR spectra show a surprisingly high number of strong vibrational bands. For naphthalene, the observed bands are well separated and limited by the rotational contour, revealing the band symmetries. Comparisons are made to the harmonic and anharmonic approaches of the widely used Gaussian software. We also present calculated spectra of these acenes using the computational program SPECTRO, providing anharmonic predictions with a Fermi-resonance treatment that utilizes intensity redistribution. We demonstrate that the anharmonicity of the investigated acenes is strong, dominated by Fermi resonances between the fundamental and double combination modes, with triple combination bands as possible candidates to resolve remaining discrepancies. The anharmonic spectra as calculated with SPECTRO lead to predictions of the main bands that fall within 0.5% of the experimental frequencies. The implications for the aromatic infrared bands, specifically the 3-μm band, are discussed.

  2. High-Resolution IR Absorption Spectroscopy of Polycyclic Aromatic Hydrocarbons: The Realm of Anharmonicity

    NASA Technical Reports Server (NTRS)

    Maltseva, Elena; Petrignani, Annemieke; Candian, Alessandra; Mackie, Cameron J.; Huang, Xinchuan; Lee, Timothy J.; Tielens, Alexander G. G. M.; Oomens, Jos; Buma, Wybren Jan

    2016-01-01

    We report on an experimental and theoretical investigation of the importance of anharmonicity in the 3 micrometers CH stretching region of Polycyclic Aromatic Hydrocarbon (PAH) molecules. We present mass-resolved, high-resolution spectra of the gas-phase cold ((is) approximately 4K) linear PAH molecules naphthalene, anthracene, and tetracene. The measured IR spectra show a surprisingly high number of strong vibrational bands. For naphthalene, the observed bands are well separated and limited by the rotational contour, revealing the band symmetries. Comparisons are made to the harmonic and anharmonic approaches of the widely used Gaussian software. We also present calculated spectra of these acenes using the computational program SPECTRO, providing anharmonic predictions enhanced with a Fermi-resonance treatment that utilizes intensity redistribution. We demonstrate that the anharmonicity of the investigated acenes is strong, dominated by Fermi resonances between the fundamental and double combination modes, with triple combination bands as possible candidates to resolve remaining discrepancies. The anharmonic spectra as calculated with SPECTRO lead to predictions of the main modes that fall within 0.5% of the experimental frequencies. The implications for the Aromatic Infrared Bands, specifically the 3-m band are discussed.

  3. Applications of High Resolution Laser Induced Breakdown Spectroscopy for Environmental and Biological Samples

    SciTech Connect

    Martin, Madhavi Z; Labbe, Nicole; Wagner, Rebekah J.

    2013-01-01

    This chapter details the application of LIBS in a number of environmental areas of research such as carbon sequestration and climate change. LIBS has also been shown to be useful in other high resolution environmental applications for example, elemental mapping and detection of metals in plant materials. LIBS has also been used in phytoremediation applications. Other biological research involves a detailed understanding of wood chemistry response to precipitation variations and also to forest fires. A cross-section of Mountain pine (pinceae Pinus pungen Lamb.) was scanned using a translational stage to determine the differences in the chemical features both before and after a fire event. Consequently, by monitoring the elemental composition pattern of a tree and by looking for abrupt changes, one can reconstruct the disturbance history of a tree and a forest. Lastly we have shown that multivariate analysis of the LIBS data is necessary to standardize the analysis and correlate to other standard laboratory techniques. LIBS along with multivariate statistical analysis makes it a very powerful technology that can be transferred from laboratory to field applications with ease.

  4. High-resolution VUV spectroscopy: New results from the Advanced Light Source

    SciTech Connect

    Schlachter, F.; Bozek, J.

    1996-06-01

    Third-generation synchrotron light sources are providing photon beams of unprecedented brightness for researchers in atomic and molecular physics. Beamline 9.0.1, an undulator beamline at the Advanced Light Source (ALS), produces a beam in the vacuum-ultraviolet (VUV) region of the spectrum with exceptional flux and spectral resolution. Exciting new results from experiments in atomic and molecular VUV spectroscopy of doubly excited autoionizing states of helium, hollow lithium, and photoelectron spectroscopy of small molecules using Beamline 9.0.1 at the ALS are reported.

  5. Microstructure development in latex coatings: High-resolution cryo-scanning electron microscopy

    NASA Astrophysics Data System (ADS)

    Ge, Haiyan

    2005-07-01

    High-resolution cryogenic scanning electron microscopy (Cryo-SEM) was used to investigate microstructure development in drying latex coatings: from a colloidal stable suspension into a coherent strong film by drying. Useful sample preparation artifacts during the freeze-fracture, i.e., pullouts were documented and analyzed. Pullouts indicate both physical properties of latex particles and the drying stages in latex coatings. The mechanism of pullout formation was studied both theoretically and experimentally. Latex coatings must possess satisfactory freeze-thaw stability to avoid problems during transportation and storage in cold winter. The behavior of latex particles during freeze-thaw cycles was visualized by Cryo-SEM. The images indicated that high concentration of polymerizable surfactant in a latex suspension improved its freeze-thaw stability. In film formation, skinning was captured from edge in and top down in coatings of 80nm diameter styrene-butadiene latex particles with exceptional low Tg (-65°C). Effects on skinning of drying conditions and the way the latex was initially stabilized against flocculation were investigated. A skinned pocket was unexpectedly found in the coating. The cause of such a skin around the air bubble was explained by both simple models calculating the dissolution time and force analysis on the particles. The film formation processes in conventional and low volatile organic compound (VOC) latex coatings were compared by time-sectioning Cryo-SEM. Some low-VOC latex coatings were found to dry as fast as conventional ones without deteriorating final good film properties.

  6. High-resolution patterning of graphene by screen printing with a silicon stencil for highly flexible printed electronics.

    PubMed

    Hyun, Woo Jin; Secor, Ethan B; Hersam, Mark C; Frisbie, C Daniel; Francis, Lorraine F

    2015-01-07

    High-resolution screen printing of pristine graphene is introduced for the rapid fabrication of conductive lines on flexible substrates. Well-defined silicon stencils and viscosity-controlled inks facilitate the preparation of high-quality graphene patterns as narrow as 40 μm. This strategy provides an efficient method to produce highly flexible graphene electrodes for printed electronics.

  7. USING HIGH-RESOLUTION SOLUTION-STATE NMR SPECTROSCOPY TO INVESTIGATE PMDI REACTIONS WITH WOOD

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Solution-state NMR spectroscopy provides a powerful tool for understanding the formation of chemical bonds between wood components and adhesives. Finely ground cell wall (CW) material fully dissolves in a solvent system containing dimethylsulfoxide (DMSO-d6) and N-methyl¬imidazole (NMI-d6), keeping ...

  8. A high-resolution large-acceptance analyzer for X-ray fluorescence and Raman spectroscopy

    SciTech Connect

    Bergmann, Uwe; Cramer, Stephen P.

    2001-08-02

    A newly designed multi-crystal X-ray spectrometer and its applications in the fields of X-ray fluorescence and X-ray Raman spectroscopy are described. The instrument is based on 8 spherically curved Si crystals, each with a 3.5 inch diameter form bent to a radius of 86 cm. The crystals are individually aligned in the Rowland geometry capturing a total solid angle of 0.07 sr. The array is arranged in a way that energy scans can be performed by moving the whole instrument, rather than scanning each crystal by itself. At angles close to back scattering the energy resolution is between 0.3 and 1 eV depending on the beam dimensions at the sample. The instrument is mainly designed for X-ray absorption and fluorescence spectroscopy of transition metals in dilute systems such as metalloproteins. First results of the Mn K{beta} (3p -> 1s) emission in photosystem II are shown. An independent application of the instrument is the technique of X-ray Raman spectroscopy which can address problems similar to those in traditional soft X-ray absorption spectroscopies, and initial results are presented.

  9. Diagnosing the Stagnation Conditions of MagLIF Implosions Using High-Resolution Spectroscopy

    NASA Astrophysics Data System (ADS)

    Harding, Eric

    2016-10-01

    An inertial fusion concept known as Magnetized Liner Inertial Fusion (MagLIF) is currently being pursued on the Z-machine at Sandia National Laboratory. Electrical current from the Z-machine is directly coupled onto the outside surface of a beryllium tube known as a ``liner'' causing it to implode. The liner contains gaseous deuterium (D2) fuel, which is pre-magnetized, pre-heated, and then compressed by the imploding walls of the liner. Target implosions of this type have produced thermonuclear plasmas that generated 2e12 DD neutrons [M.R. Gomez et al., PRL 113, 155003 (2014)]. For the first time we have accurately measured the space-dependent, fuel conditions at the time of stagnation. In addition, the state of the compressed Be liner was determined. This was accomplished by the simultaneous use of high-resolution, x-ray spectroscopic and imaging diagnostics. These new measurements relied on the observation of K-shell spectra emitted by microscopic iron and nickel impurities that naturally occur in the Be. The measurements currently indicate that the non-uniformity of the x-ray emission from the fuel is due to variations in the fuel conditions. Ultimately, the data provides critical insight into the performance of the MagLIF target and will further enable us to enhance the target design. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's NNSA under Contract No. DE-AC04-94AL85000.

  10. Detection and characterization of Io's atmosphere from high-resolution 4-μm spectroscopy

    NASA Astrophysics Data System (ADS)

    Lellouch, E.; Ali-Dib, M.; Jessup, K.-L.; Smette, A.; Käufl, H.-U.; Marchis, F.

    2015-06-01

    We report on high-resolution and spatially-resolved spectra of Io in the 4.0 μm region, recorded with the VLT/CRIRES instrument in 2008 and 2010, which provide the first detection of the ν1 + ν3 band of SO2 in Io's atmosphere. Data are analyzed to constrain the latitudinal, longitudinal, and diurnal distribution of Io's SO2 atmosphere as well as its characteristic temperature. Equatorial SO2 column densities clearly show longitudinal asymmetry, but with a maximum of ∼1.5 × 1017 cm-2 at central meridian longitude L = 200-220 and a minimum of ∼3 × 1016 cm-2 at L = 285-300, the longitudinal pattern somewhat differs from earlier inferences from Ly α and thermal IR measurements. Within the accuracy of the measurements, no evolution of the atmospheric density from mid-2008 to mid-2010 can be distinguished. The decrease of the SO2 column density towards high latitudes is apparent, and the typical latitudinal extent of the atmosphere found to be ±40° at half-maximum. The data show moderate diurnal variations of the equatorial atmosphere, which is evidence for a partially sublimation-supported atmospheric component. Compared to local noon, factor of 2 lower densities are observed ∼40° before and ∼80° after noon. Best-fit gas temperatures range from 150 to 220 K, with a weighted mean value of 170 ± 20 K, which should represent the column-weighted mean kinetic temperature of Io's atmosphere. Finally, although the data include clear thermal emission due to Pillan (in outburst in July 2008) and Loki, no detectable enhancements in the SO2 atmosphere above these volcanic regions are found, with an upper limit of 4 × 1016 cm-2 at Pillan and 1 × 1017 cm-2 at Loki.

  11. High Resolution Spectroscopy and Global Analysis of the Tetradecad Region of Methane 12CH_4

    NASA Astrophysics Data System (ADS)

    Nikitin, A.; Boudon, V.; Wenger, C.; Brown, L. R.; Bauerecker, S.; Albert, S.; Quack, M.

    2011-06-01

    We present the first detailed analysis of the Tetradecad region of methane 12CH_4 from 2.1 to 1.6 μm (4800 to 6250 Cm-1). New high resolution FTIR spectra measured in a collisional cooling cell at 80 K and at room temperature have allowed us to perform many new assignments. All assigned lines of 12CH_4 in the 0-6200 Cm-1 region have been included in a global fit, extending our previous analysis covering all levels up to and including the Octad (i.e. up to 4800 Cm-1 In the end, 3012 line positions and 1387 intensities of 45 individual subbands were modeled up to J = 14. The root mean square deviations were 0.023 Cm-1 for line positions and 13.86 % for line intensities in the Tetradecad region itself. Although this study is still preliminary, it is already sufficient to characterize the stronger bands throughout the whole of the Tetradecad polyad. The analysis and present success substantially improves our understanding of the methane spectra needed to interpret planetary atmospheres. This work is part of the ANR contract ``CH_4@Titan'' (ref: BLAN08-2_321467). Part of the research described here was also carried out at the Jet Propulsion Laboratory, under a contract with the National Aeronautics and Space Administration. Our work is also supported by the Swiss National Science Foundation. S. Albert, S. Bauerecker, V. Boudon, L. R. Brown, J.-P. Champion, M. Loëte, A. Nikitin, M. Quack, Chem. Phys., 356, 131--146 (2009).

  12. CALCIUM AND LIGHT-ELEMENTS ABUNDANCE VARIATIONS FROM HIGH-RESOLUTION SPECTROSCOPY IN GLOBULAR CLUSTERS

    SciTech Connect

    Carretta, Eugenio; Bragaglia, Angela; Bellazzini, Michele; Gratton, Raffaele; Lucatello, Sara; D'Orazi, Valentina E-mail: angela.bragaglia@oabo.inaf.it E-mail: raffaele.gratton@oapd.inaf.it E-mail: valentina.dorazi@oapd.inaf.it

    2010-03-20

    We use abundances of Ca, O, Na, and Al from high-resolution UVES spectra of 200 red giants in 17 globular clusters (GCs) to investigate the correlation found by Lee et al. between chemical enrichment from SN II and star-to-star variations in light elements in GC stars. We find that (1) the [Ca/H] variations between first and second generation stars are tiny in most GCs ({approx}0.02-0.03 dex, comparable with typical observational errors). In addition, (2) using a large sample of red giants in M 4 with abundances from UVES spectra from Marino et al., we find that Ca and Fe abundances in the two populations of Na-poor and Na-rich stars are identical. These facts suggest that the separation seen in color-magnitude diagrams using the U band or hk index (as observed in NGC 1851 by Han et al.) are not due to Ca variations. Small differences in [Ca/H] as associated with hk variations might be due to a small systematic effect in abundance analysis, because most O-poor/Na-rich (He-rich) stars have slightly larger [Fe/H] (by 0.027 dex on average, due to decreased H in the ratio) than first generation stars and are then located at redder positions in the V, hk plane. While a few GCs (M 54, {omega} Cen, M 22, maybe even NGC 1851) do actually show various degree of metallicity spread, our findings eliminate the need of a close link between the enrichment by core-collapse supernovae with the mechanism responsible for the Na-O anticorrelation.

  13. HIGH-RESOLUTION, DIFFERENTIAL, NEAR-INFRARED TRANSMISSION SPECTROSCOPY OF GJ 1214b

    SciTech Connect

    Crossfield, I. J. M.; Hansen, Brad M. S.; Barman, Travis

    2011-08-01

    The nearby star GJ 1214 hosts a planet intermediate in radius and mass between Earth and Neptune, resulting in some uncertainty as to its nature. We have observed this planet, GJ 1214b, during transit with the high-resolution, near-infrared NIRSPEC spectrograph on the Keck II telescope, in order to characterize the planet's atmosphere. By cross-correlating the spectral changes through transit with a suite of theoretical atmosphere models, we search for variations associated with absorption in the planet atmosphere. Our observations are sufficient to rule out tested model atmospheres with wavelength-dependent transit depth variations {approx}> 5 x 10{sup -4} over the wavelength range 2.1-2.4 {mu}m. Our sensitivity is limited by variable slit loss and telluric transmission effects. We find no positive signatures but successfully rule out a number of plausible atmospheric models, including the default assumption of a gaseous, H-dominated atmosphere in chemical equilibrium. Such an atmosphere can be made consistent if the absorption due to methane is reduced. Clouds can also render such an atmosphere consistent with our observations, but only if they lie higher in the atmosphere than indicated by recent optical and infrared measurements. When taken in concert with other observational constraints, our results support a model in which the atmosphere of GJ 1214b contains significant H and He, but where CH{sub 4} is depleted. If this depletion is the result of photochemical processes, it may also produce a haze that suppresses spectral features in the optical.

  14. SUBARU HIGH-RESOLUTION SPECTROSCOPY OF STAR G IN THE TYCHO SUPERNOVA REMNANT

    SciTech Connect

    Kerzendorf, Wolfgang E.; Schmidt, Brian P.; Yong, David; Asplund, M.; Nomoto, Ken'ichi; Podsiadlowski, Ph.; Frebel, Anna; Fesen, Robert A. E-mail: brian@mso.anu.edu.au E-mail: nomoto@astron.s.u-tokyo.ac.jp E-mail: anna@astro.as.utexas.edu

    2009-08-20

    It is widely believed that Type Ia supernovae (SNe Ia) originate in binary systems where a white dwarf accretes material from a companion star until its mass approaches the Chandrasekhar mass and carbon is ignited in the white dwarf's core. This scenario predicts that the donor star should survive the supernova (SNe) explosion, providing an opportunity to understand the progenitors of SNe Ia. In this paper, we argue that rotation is a generic signature expected of most nongiant donor stars that is easily measurable. Ruiz-Lapuente et al. examined stars in the center of the remnant of SN 1572 (Tycho SN) and showed evidence that a subgiant star (Star G by their naming convention) near the remnant's center was the system's donor star. We present high-resolution (R {approx_equal} 40, 000) spectra taken with the High Dispersion Spectrograph on Subaru of this candidate donor star and measure the star's radial velocity as 79 {+-} 2 km s{sup -1} with respect to the local standard of rest and put an upper limit on the star's rotation of 7.5 km s{sup -1}. In addition, by comparing images that were taken in 1970 and 2004, we measure the proper motion of Star G to be {mu} {sub l} = -1.6 {+-} 2.1 mas yr{sup -1} and {mu} {sub b} = -2.7 {+-} 1.6 mas yr{sup -1}. We demonstrate that all of the measured properties of Star G presented in this paper are consistent with those of a star in the direction of Tycho SN that is not associated with the SN event. However, we discuss an unlikely, but still viable scenario for Star G to be the donor star, and suggest further observations that might be able to confirm or refute it.

  15. Calcium and Light-elements Abundance Variations from High-resolution Spectroscopy in Globular Clusters

    NASA Astrophysics Data System (ADS)

    Carretta, Eugenio; Bragaglia, Angela; Gratton, Raffaele; Lucatello, Sara; Bellazzini, Michele; D'Orazi, Valentina

    2010-03-01

    We use abundances of Ca, O, Na, and Al from high-resolution UVES spectra of 200 red giants in 17 globular clusters (GCs) to investigate the correlation found by Lee et al. between chemical enrichment from SN II and star-to-star variations in light elements in GC stars. We find that (1) the [Ca/H] variations between first and second generation stars are tiny in most GCs (~0.02-0.03 dex, comparable with typical observational errors). In addition, (2) using a large sample of red giants in M 4 with abundances from UVES spectra from Marino et al., we find that Ca and Fe abundances in the two populations of Na-poor and Na-rich stars are identical. These facts suggest that the separation seen in color-magnitude diagrams using the U band or hk index (as observed in NGC 1851 by Han et al.) are not due to Ca variations. Small differences in [Ca/H] as associated with hk variations might be due to a small systematic effect in abundance analysis, because most O-poor/Na-rich (He-rich) stars have slightly larger [Fe/H] (by 0.027 dex on average, due to decreased H in the ratio) than first generation stars and are then located at redder positions in the V, hk plane. While a few GCs (M 54, ω Cen, M 22, maybe even NGC 1851) do actually show various degree of metallicity spread, our findings eliminate the need of a close link between the enrichment by core-collapse supernovae with the mechanism responsible for the Na-O anticorrelation. Based on data collected at the European Southern Observatory, Chile, programmes 072.D-507, 073.D-0211, 072.D-0742, and 077.D-0182.

  16. Understanding AGB evolution in Galactic bulge stars from high-resolution infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Uttenthaler, S.; Blommaert, J. A. D. L.; Wood, P. R.; Lebzelter, T.; Aringer, B.; Schultheis, M.; Ryde, N.

    2015-08-01

    An analysis of high-resolution near-infrared spectra of a sample of 45 asymptotic giant branch (AGB) stars towards the Galactic bulge is presented. The sample consists of two subsamples, a larger one in the inner and intermediate bulge, and a smaller one in the outer bulge. The data are analysed with the help of hydrostatic model atmospheres and spectral synthesis. We derive the radial velocity of all stars, and the atmospheric chemical mix ([Fe/H], C/O, 12C/13C, Al, Si, Ti, and Y) where possible. Our ability to model the spectra is mainly limited by the (in)completeness of atomic and molecular line lists, at least for temperatures down to Teff ≈ 3100 K. We find that the subsample in the inner and intermediate bulge is quite homogeneous, with a slightly subsolar mean metallicity and only few stars with supersolar metallicity, in agreement with previous studies of non-variable M-type giants in the bulge. All sample stars are oxygen-rich, C/O < 1.0. The C/O and carbon isotopic ratios suggest that third dredge-up (3DUP) is absent among the sample stars, except for two stars in the outer bulge that are known to contain technetium. These stars are also more metal-poor than the stars in the intermediate or inner bulge. Current stellar masses are determined from linear pulsation models. The masses, metallicities and 3DUP behaviour are compared to AGB evolutionary models. We conclude that these models are partly in conflict with our observations. Furthermore, we conclude that the stars in the inner and intermediate bulge belong to a more metal-rich population that follows bar-like kinematics, whereas the stars in the outer bulge belong to the metal-poor, spheroidal bulge population.

  17. High-Resolution Near-Infrared Spectroscopy of Fuors and Fuor-Like Stars

    NASA Astrophysics Data System (ADS)

    Greene, Thomas P.; Aspin, Colin; Reipurth, Bo

    2008-04-01

    We present new high-resolution (R sime 18, 000) near-infrared spectroscopic observations of a sample of classical FU Orionis stars (FUors) and other young stars with FUor characteristics that are sources of Herbig-Haro (HH) flows. Spectra are presented for the region λ = 2.203-2.236 μm which is rich in absorption lines sensitive to both effective temperatures and surface gravities of stars. Both FUors and FUor-like stars show numerous broad and weak-unidentified spectral features in this region. Spectra of the 2.280-2.300 μm region are also presented, with the 2.2935 μm v = 2-0 CO absorption bandhead being clearly the strongest feature seen in the spectra of all FUors and FUor-like stars. A cross-correlation analysis shows that FUor and FUor-like spectra in the 2.203-2.236 μm region are not consistent with late-type dwarfs, giants, nor embedded protostars. The cross-correlations also show that the observed FUor-like HH energy sources have spectra that are substantively similar to those of FUors. Both object groups also have similar near-infrared colors. The large line widths and double-peaked nature of the spectra of the FUor-like stars are consistent with the established accretion disk model for FUors, also consistent with their near-infrared colors. It appears that young stars with FUor-like characteristics may be more common than projected from the relatively few known classical FUors. Much of the data presented herein were obtained at the W.M. Keck Observatory from telescope time allocated to the National Aeronautics and Space Administration through the agency's scientific partnership with the California Institute of Technology and the University of California. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation.

  18. High-resolution ultraviolet spectroscopy of gas in galaxy halos and large-scale structures

    NASA Astrophysics Data System (ADS)

    Song, Limin

    This dissertation presents spectroscopic studies of gas in galaxy halos and large-scale structures through high-resolution quasar absorption lines. The broad goal of this effort is to learn how galaxies acquire their gas and how they return it to the intergalactic medium, or more generally, how galaxies interact with their environment. The study of the absorption lines due to the extraplanar 21cm "Outer Arm" (OA) of the Milky Way toward two quasars, H1821+643 and HS0624+6907, provides valuable insight into the gas accretion processes. It yields the following results. (1) The OA is a multiphase cloud and high ions show small but significant offsets in velocity and are unlikely to be cospatial with the low ions. (2) The overall metallicity of the OA is Z=0.3-0.5 Z⊙, but nitrogen is underabundant. (3) The abundance of N, O, and S derived are roughly consistent with outer-galaxy emission-line abundances and the metallicity gradient derived from H II regions. The similarity of the OA kinematics to several nearby high velocity clouds (HVCs, e.g. Complexes C, G, and H) suggests that these clouds could be detritus from a merging satellite galaxy. To test this hypothesis, we build up a simple model including tidal tripping, ram-pressure stripping, and dynamical friction to consider whether the OA could be debris affiliated with the Monoceros Ring. Our model can roughly reproduce the spatial and velocity characteristics of the OA. Moreover, the metallicity of the OA is similar to the higher metallicities measured in the younger stellar components of the Monoceros Ring and the progenitor candidate, the CMa overdensity. However, both our model and the Galactic warp scenario can not explain other HVCs that are likely to be related to the OA. Instead of acquiring gas, some galaxies have their gas removed through various physical processes. Ram-pressure stripping and tidal interaction are important mechanisms for galaxies to loose their gas. The high-resolution spectrum of Mrk

  19. The subgiant branch of ω Centauri seen through high-resolution spectroscopy. I. The first stellar generation in ω Cen?

    NASA Astrophysics Data System (ADS)

    Pancino, E.; Mucciarelli, A.; Sbordone, L.; Bellazzini, M.; Pasquini, L.; Monaco, L.; Ferraro, F. R.

    2011-03-01

    We analysed high-resolution UVES spectra of six stars belonging to the subgiant branch of ω Centauri, and derived abundance ratios of 19 chemical elements (namely Al, Ba, C, Ca, Co, Cr, Cu, Fe, La, Mg, Mn, N, Na, Ni, Sc, Si, Sr, Ti, and Y). A comparison with previous abundance determinations for red giants provided remarkable agreement and allowed us to identify the sub-populations to which our targets belong. We found that three targets belong to a low-metallicity population at [Fe/H] ≃ -2.0 dex, [α/Fe] ≃ +0.4 dex and [s/Fe] ≃ 0 dex. Stars with similar characteristics were found in small amounts by past surveys of red giants. We discuss the possibility that they belong to a separate sub-population that we name VMP (very metal-poor, at most 5% of the total cluster population), which - in the self-enrichment hypothesis - is the best-candidate first stellar generation in ω Cen. Two of the remaining targets belong to the dominant metal-poor population (MP) at [Fe/H] ≃ -1.7 dex, and the last one to the metal-intermediate (MInt) one at [Fe/H] ≃ -1.2 dex. The existence of the newly defined VMP population could help to understand some puzzling results based on low-resolution spectroscopy for age differences determinations, because the metallicity resolution of these studies was probably not enough to detect the VMP population. The VMP could also correspond to some of the additional substructures of the subgiant-branch region found in the latest HST photometry. After trying to correlate chemical abundances with substructures in the subgiant branch of ω Cen, we found that the age difference between the VMP and MP populations should be small (0 ± 2 Gyr), while the difference between the MP and MInt populations could be slightly larger (2 ± 2 Gyr). Based on data collected at the ESO VLT in Chile, with UVES and FLAMES under programs 68.D-0332(A) and 079.D-0021. Also based on literature data from the ESO WFI, under programs 62.L-0354 and 63.L-0439, and on data

  20. Towards high-resolution laser ionization spectroscopy of the heaviest elements in supersonic gas jet expansion

    PubMed Central

    Ferrer, R.; Barzakh, A.; Bastin, B.; Beerwerth, R.; Block, M.; Creemers, P.; Grawe, H.; de Groote, R.; Delahaye, P.; Fléchard, X.; Franchoo, S.; Fritzsche, S.; Gaffney, L. P.; Ghys, L.; Gins, W.; Granados, C.; Heinke, R.; Hijazi, L.; Huyse, M.; Kron, T.; Kudryavtsev, Yu.; Laatiaoui, M.; Lecesne, N.; Loiselet, M.; Lutton, F.; Moore, I. D.; Martínez, Y.; Mogilevskiy, E.; Naubereit, P.; Piot, J.; Raeder, S.; Rothe, S.; Savajols, H.; Sels, S.; Sonnenschein, V.; Thomas, J-C; Traykov, E.; Van Beveren, C.; Van den Bergh, P.; Van Duppen, P.; Wendt, K.; Zadvornaya, A.

    2017-01-01

    Resonant laser ionization and spectroscopy are widely used techniques at radioactive ion beam facilities to produce pure beams of exotic nuclei and measure the shape, size, spin and electromagnetic multipole moments of these nuclei. However, in such measurements it is difficult to combine a high efficiency with a high spectral resolution. Here we demonstrate the on-line application of atomic laser ionization spectroscopy in a supersonic gas jet, a technique suited for high-precision studies of the ground- and isomeric-state properties of nuclei located at the extremes of stability. The technique is characterized in a measurement on actinium isotopes around the N=126 neutron shell closure. A significant improvement in the spectral resolution by more than one order of magnitude is achieved in these experiments without loss in efficiency. PMID:28224987

  1. High-resolution optical spectroscopy using multimode interference in a compact tapered fibre.

    PubMed

    Wan, Noel H; Meng, Fan; Schröder, Tim; Shiue, Ren-Jye; Chen, Edward H; Englund, Dirk

    2015-07-23

    Optical spectroscopy is a fundamental tool in numerous areas of science and technology. Much effort has focused on miniaturizing spectrometers, but thus far at the cost of spectral resolution and broad operating range. Here we describe a compact spectrometer that achieves both high spectral resolution and broad bandwidth. The device relies on imaging multimode interference from leaky modes along a multimode tapered optical fibre, resulting in spectrally distinguishable spatial patterns over a wide range of wavelengths from 500 to 1,600 nm. This tapered fibre multimode interference spectrometer achieves a spectral resolution down to 40 pm in the visible spectrum and 10 pm in the near-infrared spectrum (corresponding to resolving powers of 10(4)-10(5)). Multimode interference spectroscopy is suitable in a variety of device geometries, including planar waveguides in a broad range of transparent materials.

  2. Towards high-resolution laser ionization spectroscopy of the heaviest elements in supersonic gas jet expansion

    NASA Astrophysics Data System (ADS)

    Ferrer, R.; Barzakh, A.; Bastin, B.; Beerwerth, R.; Block, M.; Creemers, P.; Grawe, H.; de Groote, R.; Delahaye, P.; Fléchard, X.; Franchoo, S.; Fritzsche, S.; Gaffney, L. P.; Ghys, L.; Gins, W.; Granados, C.; Heinke, R.; Hijazi, L.; Huyse, M.; Kron, T.; Kudryavtsev, Yu.; Laatiaoui, M.; Lecesne, N.; Loiselet, M.; Lutton, F.; Moore, I. D.; Martínez, Y.; Mogilevskiy, E.; Naubereit, P.; Piot, J.; Raeder, S.; Rothe, S.; Savajols, H.; Sels, S.; Sonnenschein, V.; Thomas, J.-C.; Traykov, E.; van Beveren, C.; van den Bergh, P.; van Duppen, P.; Wendt, K.; Zadvornaya, A.

    2017-02-01

    Resonant laser ionization and spectroscopy are widely used techniques at radioactive ion beam facilities to produce pure beams of exotic nuclei and measure the shape, size, spin and electromagnetic multipole moments of these nuclei. However, in such measurements it is difficult to combine a high efficiency with a high spectral resolution. Here we demonstrate the on-line application of atomic laser ionization spectroscopy in a supersonic gas jet, a technique suited for high-precision studies of the ground- and isomeric-state properties of nuclei located at the extremes of stability. The technique is characterized in a measurement on actinium isotopes around the N=126 neutron shell closure. A significant improvement in the spectral resolution by more than one order of magnitude is achieved in these experiments without loss in efficiency.

  3. High-resolution proton nuclear magnetic resonance spectroscopy of ovarian cyst fluid.

    PubMed

    Boss, E A; Moolenaar, S H; Massuger, L F; Boonstra, H; Engelke, U F; de Jong, J G; Wevers, R A

    2000-08-01

    Most ovarian tumors are cystic structures containing variable amounts of fluid. Several studies of ovarian cyst fluid focus on one specific metabolite using conventional assay systems. We examined the potential of (1)H-nuclear magnetic resonance spectroscopy in evaluation of the overall metabolic composition of cyst fluid from different ovarian tumors. Ovarian cyst fluid samples obtained from 40 patients with a primary ovarian tumor (12 malignant and 28 benign) were examined. After deproteinization and pD standardization, we performed (1)H-NMR spectroscopy on a 600 MHz instrument. With (1)H-NMR spectroscopy we found detectable concentrations of 36 metabolites with high intersample variation. A number of unassigned resonances as well as unexpected metabolites were found. We introduce an overall inventory of the low-molecular-weight metabolites in ovarian cyst fluid with corresponding resonances. Significant differences in concentration (p < 0.01) were found for several metabolites (including an unknown metabolite) between malignant and benign ovarian cysts. Furthermore, higher concentrations in malignant- and lower in benign fluids were found compared to normal serum values, indicating local cyst wall metabolic processes in case of malignant transformation. We conclude that (1)H-nuclear magnetic resonance spectroscopy can give an overview of low-molecular-weight proton-containing metabolities present in ovarian cyst fluid samples. The metabolic composition of cyst fluid differs significantly between benign and malignant ovarian tumors. Furthermore, differences between benign subgroups possibly related to histopathological behaviour can be detected. The presence of N-acetyl aspartic acid and 5-oxoproline exclusively in serous cystadenoma samples is remarkable. Future studies will concentrate on these findings and explore the possibilities of extrapolating information from the in vitro studies to in vivo practice, in which metabolic differences between malignant and

  4. Triple Fabry-Pérot Imaging Interferometer for High Resolution Solar Spectroscopy using the ATST

    NASA Astrophysics Data System (ADS)

    Robinson, B. M.; Gary, G. A.; Balasubramaniam, K. S.

    2005-05-01

    We present a telecenrically mounted triple Fabry-Pérot imaging interferometer for the NSOs Advanced Technology Solar Telescope (ATST). It consists of three Fabry-Pérot etalons and the feed and imaging optics. This system provides high throughput, flexibility and breadth of operation when compared to other spectroscopic imaging systems. It can operate in four distinct modes: as a spectro-polarimeter, a filter-vector magnetograph, an intermediate-band imager, and broadband high-resolution imager. In the proposed telecentric mount configuration, the transmittance of the etalon system is not a function of position in the field, so that instantaneous spectroscopic measurements can be performed across the entire field of view; however, the transmission peak of the interferometer is broadened. Mitigation of this broadening requires a low F# image at the etalons. Together with the requirement that the field of view be large enough to observe large-scale processes in the solar atmosphere, this limitation dictates that the diameter of the etalons have a large aperture. Specifically, for a spectrographic passband full-width at half-maximum (FWHM) of around 2 pm, and entrance pupil diameter of 4 m, and a field of view of 35", the required etalon diameter is around 200 mm. This is beyond the size of current Fabry-Pérot etalons and near the current projected limit of manufacturability. The development of this instrument will bring these large etalons to realization and take Fabry-Pérot imaging interferometry to the next level of operational capability within telescopes of large aperture. This instrument will provide spectral, spatial, and temporal resolution which is not currently available to large aperture solar astronomy, but which is necessary, in conjunction with the new class telescopes, to the continuing discovery of laws that govern the dynamics of the sun and the earth-sun connection. The resolution afforded by higher aperture telescopes and instrumentation will

  5. Estimating photosynthesis with high resolution field spectroscopy in a Mediterranean grassland under different nutrient availability

    NASA Astrophysics Data System (ADS)

    Perez-Priego, O.; Guan, J.; Fava, F.; Rossini, M.; Wutzler, T.; Moreno, G.; Carrara, A.; Kolle, O.; Schrumpf, M.; Reichstein, M.; Migliavacca, M.

    2014-12-01

    Recent studies have shown how human induced N:P imbalances are affecting essential processes (e.g. photosynthesis, plant growth rate) that lead to important changes in ecosystem structure and function. In this regard, the accuracy of the approaches based on remotely-sensed data for monitoring and modeling gross primary production (GPP) relies on the ability of vegetation indices (VIs) to track the dynamics of vegetation physiological and biophysical properties/variables. Promising results have been recently obtained when Chlorophyll-sensitive VIs and Chlorophyll fluorescence are combined with structural indices in the framework of the Monteith's light use efficiency (LUE) model. However, further ground-based experiments are required to validate LUE model performances, and their capability to be generalized under different nutrient availability conditions. In this study, the overall objective was to investigate the sensitivity of VIs to track short- and long-term GPP variations in a Mediterranean grassland under different N and P fertilization treatments. Spectral VIs were acquired manually using high resolution spectrometers (HR4000, OceanOptics, USA) along a phenological cycle. The VIs examined included photochemical reflectance index (PRI), MERIS terrestrial-chlorophyll index (MTCI) and normalized difference vegetation index (NDVI). Solar-induced chlorophyll fluorescence calculated at the oxygen absorption band O2-A (F760) using spectral fitting methods was also used. Simultaneously, measurements of GPP and environmental variables were conducted using a transient-state canopy chamber. Overall, GPP, F760 and VIs showed a clear seasonal time-trend in all treatments, which was driven by the phenological development of the grassland. Results showed significant differences (p<0.05) in midday GPP values between N and without N addition plots, in particular at the peak of the growing season during the flowering stage and at the end of the season during senescence. While

  6. High Resolution Spectroscopy Using a Tunable Thz Synthesizer Based on Photomixing

    NASA Astrophysics Data System (ADS)

    Cuisset, Arnaud; Hindle, Francis; Mouret, Gael; Eliet, Sophie; Guinet, Mickael; Bocquet, Robin

    2011-06-01

    Optical heterodyning, also know as photomixing is an attractive solution as a single device able to cover the entire frequency range from 300 GHz to 3 THz. As the THz frequency is extracted from the difference frequency of two lasers, the accuracy with which the generated frequency is known is directly determined by the frequency accuracy of the lasers. In order to fully characterize the spectral fingerprint of a given molecule an accuracy approximately one order of magnitude finer than the Doppler linewidth is required, around 100 kHz for smaller polar compounds. To generate accurate cw-THz the frequency spacing of the modes of a Frequency Comb (FC) has been employed to constrain the emission frequency of a photomixing source.footnote{G. Mouret, F. Hindle, A. Cuisset, C. Yang, R. Bocquet, M. Lours, D. Rovera, Opt. Express, 2009, 17: 22031.} Two phase locked loops are implemented coherently locking the two cw-lasers (CW1 and CW2) to different modes of the FC. Although this solution allows accurate generation of narrowband THz the continuous tuning of the frequency presents some obstacles. To overcome these difficulties a system architecture with a third cw-laser (CW3) phase locked to CW2 has been implemented. The beatnote between CW2 and CW3 is free from the FC modes therefore the PLL frequency can be freely scanned over its entire operating range, in our case around 200 MHz. The most of polar compounds may be studied at high resolution in the THz domain with this synthesizer. Three different examples of THz analysis with atmospherical and astrophysical interests will be presented: The ground and vibrationnally excited states of H_2CO revisited in the 0.5-2 THz frequency region The rotational dependences of the broadening coefficients of CH_3Cl studied at high J and K values The molecular discrimination of a complex mixture containing methanol and ethanol. F. Hindle, A. Cuisset, G. Mouret, R. Bocquet Comptes Rendus Physique, 2008, 9: 262-275.

  7. Activators of photoluminescence in calcite: evidence from high-resolution, laser-excited luminescence spectroscopy

    USGS Publications Warehouse

    Pedone, V.A.; Cercone, K.R.; Burruss, R.C.

    1990-01-01

    Laser-excited luminescence spectroscopy of a red-algal, biogenic calcite and a synthetic Mn-calcite can make the distinction between organic and trace-element activators of photoluminescence. Organic-activated photoluminescence in biogenic calcite is characterized by significant peak shifts and increasing intensity with shorter-wavelength excitation and by significant decreases in intensity after heating to ??? 400??C. In contrast, Mn-activated photoluminescence shows no peak shift, greatest intensity under green excitation and limited changes after heating. Examination of samples with a high-sensitivity spectrometer using several wavelengths of exciting light is necessary for identification of photoluminescence activators. ?? 1990.

  8. An ultrastable Michelson interferometer for high-resolution spectroscopy in the XUV.

    PubMed

    Corsi, C; Liontos, I; Cavalieri, S; Bellini, M; Venturi, G; Eramo, R

    2015-02-23

    We developed an ultra-stable and accurately-controllable Michelson interferometer to be used in a deeply unbalanced arm configuration for split-pulse XUV Ramsey-type spectroscopy with high-order laser harmonics. The implemented active and passive stabilization systems allow one to reach instabilities in the nanometer range over meters of relative optical path differences. Producing precisely delayed pairs of pump pulses will generate XUV harmonic pulses that may significantly improve the achievable spectral resolution and the precision of absolute frequency measurements in the XUV.

  9. Development of micro-optics for high-resolution IL spectroscopy with a proton microbeam probe

    NASA Astrophysics Data System (ADS)

    Kada, Wataru; Satoh, Takahiro; Yokoyama, Akihito; Koka, Masashi; Kamiya, Tomihiro

    2014-01-01

    Confocal optics for ion luminescence (IL) was developed for the precise analysis of the chemical composition of microscopic targets with an external proton microbeam probe. Anti-reflection-coated confocal micro-lens optics with an effective focus area of approximately 800 × 800 μm was installed on the microbeam line of a single-ended accelerator. Chromatic aberrations of the confocal optics were examined at wavelengths of 300-900 nm. An electrically-cooled back-thinned charge coupled device spectrometer with a wavelength resolution of 0.5 nm was used for the microscopic spectroscopy and IL imaging of microscopic mineral targets. Simultaneous microscopic IL and micro-PIXE analysis were performed using an external 3 MeV H+ microbeam with a current of less than 100 pA. A spectral resolution of 3 nm was achieved for a single IL peak which corresponded to Cr3+ impurities in a single-crystal of aluminum oxide. The use of IL spectroscopy and imaging for aerosol targets revealed microscopic distributions of the chemical and elemental composition in the atmosphere.

  10. Titan's 3-micron spectral region from ISO high-resolution spectroscopy

    NASA Astrophysics Data System (ADS)

    Coustenis, Athena; Negrão, Alberto; Salama, Alberto; Schulz, Bernhard; Lellouch, Emmanuel; Rannou, Pascal; Drossart, Pierre; Encrenaz, Thérèse; Schmitt, Bernard; Boudon, Vincent; Nikitin, Andrei

    2006-01-01

    The near-infrared spectrum of Titan, Saturn's largest moon and one of the Cassini/Huygens' space mission primary targets, covers the 0.8 to 5 micron region in which it shows several weak CH 4 absorption regions, and in particular one centered near 2.75 micron. Due to the interference of telluric absorption, only part of this window region (2.9-3.1 μm) has previously been observed from the ground [Noll, K.S., Geballe, T.R., Knacke, R., Pendleton, F., Yvonne, J., 1996. Icarus 124, 625-631; Griffith, C.A., Owen, T., Miller, G.A., Geballe, T., 1998. Nature 395, 575-578; Griffith, C.A., Owen, T., Geballe, T.R., Rayner, J., Rannou, P., 2003. Science 300, 628-630; Geballe, T.R., Kim, S.J., Noll, K.S., Griffith, C.A., 2003. Astrophys. J. 583, L39-L42]. We report here on the first spectroscopic observations of Titan covering the whole 2.4-4.9 μm region by two instruments on board the Infrared Space Observatory (ISO) in 1997. These observations show the 2.75-μm window in its complete extent for the first time. In this study we have also used a high-resolution Titan spectrum in the 2.9-3.6 μm region taken with the Keck [Geballe, T.R., Kim, S.J., Noll, K.S., Griffith, C.A., 2003. Astrophys. J. 583, L39-L42; Kim, S.J., Geballe, T.R., Noll, K.S., Courtin, R., 2005. Icarus 173, 522-532] to infer information on the atmospheric parameters (haze extinction, single scattering albedo, methane abundance, etc.) by fitting the methane bands with a detailed microphysical model of Titan's atmosphere (updated from Rannou, P., McKay, C.P., Lorenz, R.D., 2003. Planet. Space Sci. 51, 963-976). We have included in this study an updated version of a database for the CH 4 absorption coefficients [STDS, Wenger, Ch., Champion, J.-P., 1998. J. Quant. Spectrosc. Radiat. Transfer 59, 471-480. See also http://www.u-bourgogne.fr/LPUB/TSM/sTDS.html for latest updates; Boudon, V., Champion, J.-P., Gabard, T., Loëte, M., Michelot, F., Pierre, G., Rotger, M., Wenger, Ch., Rey, M., 2004. J. Mol

  11. Structural shimming for high-resolution nuclear magnetic resonance spectroscopy in lab-on-a-chip devices.

    PubMed

    Ryan, Herbert; Smith, Alison; Utz, Marcel

    2014-05-21

    High-resolution proton NMR spectroscopy is well-established as a tool for metabolomic analysis of biological fluids at the macro scale. Its full potential has, however, not been realised yet in the context of microfluidic devices. While microfabricated NMR detectors offer substantial gains in sensitivity, limited spectral resolution resulting from mismatches in the magnetic susceptibility of the sample fluid and the chip material remains a major hurdle. In this contribution, we show that susceptibility broadening can be avoided even in the presence of substantial mismatch by including suitably shaped compensation structures into the chip design. An efficient algorithm for the calculation of field maps from arbitrary chip layouts based on Gaussian quadrature is used to optimise the shape of the compensation structure to ensure a flat field distribution inside the sample area. Previously, the complexity of microfluidic NMR systems has been restricted to simple capillaries to avoid susceptibility broadening. The structural shimming approach introduced here can be adapted to virtually any shape of sample chamber and surrounding fluidic network, thereby greatly expanding the design space and enabling true lab-on-a-chip systems suitable for high-resolution NMR detection.

  12. Structural analysis of IPC zeolites and related materials using positron annihilation spectroscopy and high-resolution argon adsorption.

    PubMed

    Jagiello, J; Sterling, M; Eliášová, P; Opanasenko, M; Zukal, A; Morris, R E; Navaro, M; Mayoral, A; Crivelli, P; Warringham, R; Mitchell, S; Pérez-Ramírez, J; Čejka, J

    2016-06-01

    The advanced investigation of pore networks in isoreticular zeolites and mesoporous materials related to the IPC family was performed using high-resolution argon adsorption experiments coupled with the development of a state-of-the-art non-local density functional theory approach. The optimization of a kernel for model sorption isotherms for materials possessing the same layer structure, differing only in the interlayer connectivity (e.g. oxygen bridges, single- or double-four-ring building units, mesoscale pillars etc.) revealed remarkable differences in their porous systems. Using high-resolution adsorption data, the bimodal pore size distribution consistent with crystallographic data for IPC-6, IPC-7 and UTL samples is shown for the first time. A dynamic assessment by positron annihilation lifetime spectroscopy (PALS) provided complementary insights, simply distinguishing the enhanced accessibility of the pore network in samples incorporating mesoscale pillars and revealing the presence of a certain fraction of micropores undetected by gas sorption. Nonetheless, subtle differences in the pore size could not be discriminated based on the widely-applied Tao-Eldrup model. The combination of both methods can be useful for the advanced characterization of microporous, mesoporous and hierarchical materials.

  13. Solid-gas reactions of complex oxides inside an environmental high-resolution transmission electron microscope.

    PubMed

    Sayagués, M J; Krumeich, F; Hutchison, J L

    2001-07-01

    In a gas reaction cell (GRC), installed in a high-resolution transmission electron microscope (HRTEM) (JEOL 4000EX), samples can be manipulated in an ambient atmosphere (p<50mbar). This experimental setup permits not only the observation of solid-gas reactions in situ at close to the atomic level but also the induction of structural modifications under the influence of a plasma, generated by the ionization of gas particles by an intense electron beam. Solid state reactions of non-stoichiometric niobium oxides and niobium tungsten oxides with different gases (O2, H2 and He) have been carried out inside this controlled environment transmission electron microscope (CETEM), and this has led to reaction products with novel structures which are not accessible by conventional solid state synthesis methods. Monoclinic and orthorhombic Nb(12)O(29) crystallize in block structures comprising [3x4] blocks. The oxidation of the monoclinic phase occurs via a three step mechanism: firstly, a lamellar defect of composition Nb(11)O(27) is formed. Empty rectangular channels in this defect provide the diffusion paths in the subsequent oxidation. In the second step, microdomains of the Nb(22)O(54) phase are generated as an intermediate state of the oxidation process. The structure of the final product Nb(10)O(25), which consists of [3x3] blocks and tetrahedral coordinated sites, is isostructural to PNb(9)O(25). Microdomains of this apparently metastable phase appear as a product of the Nb(22)O(54) oxidation. The oxidation reaction of Nb(12)O(29) was found to be a reversible process: the reduction of the oxidation product with H(2) results in the formation of the starting Nb(12)O(29) structure. On the other hand, the block structure of Nb(12)O(29) has been destroyed by a direct treatment of the sample with H(2) while NbO in a cubic rock salt structure is produced. This in situ technique has also been applied to niobium tungsten oxides which constitute the solid solution series Nb(8-n

  14. High Resolution Infrared Spectroscopy of Propargyl Alcohol-Water Complex Embedded in Helium Nanodroplets

    NASA Astrophysics Data System (ADS)

    Mani, Devendra; Pal, Nitish; Kaufmann, Matin; Schwaab, Gerhard; Havenith, Martina

    2016-06-01

    Propargyl alcohol (hereafter abbreviated as PA) is a molecule of astrophysical interest and has been probed extensively using microwave spectroscopy.1,2 It is a multifunctional molecule and offers multiple sites for hydrogen bonding interactions. Therefore, it has also attracted the attention of groups interested in weak intermolecular interactions. Recently, the Ar…PA complex3 and PA-dimer4 have been studied using microwave spectroscopy. More recently, there have been matrix-isolation infrared spectroscopic studies on PA-water5 and PA-acetylene6 complexes. In the present work, clusters of PA and water were formed in the helium nanodroplets and probed using a combination of infrared spectroscopy and mass spectrometry. Using ab-initio quantum mechanical calculations, PA-water clusters were optimised and five minimum structures were found on the potential energy hypersurface, which were used as a guidance to the experiments. We used D2O for the experiments since our laser sources at Bochum do not cover the IR spectral region of H2O. IR spectra of PA-D2O complex were recorded in the region of symmetric and antisymmetric stretches of the bound D2O. Multiple signals were found in these regions which were dependent on the concentration of PA as well as D2O. Using pickup curves most of these signals could be assigned to 1:1 PA:D2O clusters. The ab-initio calculations helped in a definitive assignment of the spectra to the different conformers of PA-D2O complex. The details will be presented in the talk. References: 1. E. Hirota, J. Mol. Spec. 26, 335 (1968). 2. J.C. Pearson and B.J. Drouin, J. Mol. Spectrosc. 234, 149 (2005). 3. D. Mani and E. Arunan, ChemPhysChem 14, 754 (2013). 4. D. Mani and E. Arunan, J. Chem. Phys. 141, 164311 (2014). 5. J. Saini, K.S. Vishwanathan, J. Mol. Struct. 1118, 147 (2016). 6. K. Sundararajan et al., J. Mol. Struct. 1121, 26 (2016).

  15. Application of the low-finesse γ -ray frequency comb for high-resolution spectroscopy

    NASA Astrophysics Data System (ADS)

    Shakhmuratov, R. N.; Vagizov, F. G.; Scully, Marlan O.; Kocharovskaya, Olga

    2016-10-01

    High-finesse frequency combs (HFC) with large ratio of the frequency spacing to the width of the spectral components have demonstrated remarkable results in many applications such as precision spectroscopy and metrology. We found that low-finesse frequency combs having very small ratio of the frequency spacing to the width of the spectral components are more sensitive to the exact resonance with absorber than HFC. Our method is based on time domain measurements reviling oscillations of the radiation intensity after passing through an optically thick absorber. Fourier analysis of the oscillations allows to reconstruct the spectral content of the comb. If the central component of the incident comb is in exact resonance with the single line absorber, the contribution of the first sideband frequency to oscillations is exactly zero. We demonstrated this technique with γ -photon absorption by Mössbauer nuclei providing the spectral resolution beyond the natural broadening.

  16. Method And Apparatus For High Resolution Ex-Situ Nmr Spectroscopy

    DOEpatents

    Pines, Alexander; Meriles, Carlos A.; Heise, Henrike; Sakellariou, Dimitrios; Moule, Adam

    2004-01-06

    A method and apparatus for ex-situ nuclear magnetic resonance spectroscopy for use on samples outside the physical limits of the magnets in inhomogeneous static and radio-frequency fields. Chemical shift spectra can be resolved with the method using sequences of correlated, composite z-rotation pulses in the presence of spatially matched static and radio frequency field gradients producing nutation echoes. The amplitude of the echoes is modulated by the chemical shift interaction and an inhomogeneity free FID may be recovered by stroboscopically sampling the maxima of the echoes. In an alternative embodiment, full-passage adiabatic pulses are consecutively applied. One embodiment of the apparatus generates a static magnetic field that has a variable saddle point.

  17. Multiresonant Spectroscopy and the High-Resolution Threshold Photoionization of Combustion Free Radicals

    SciTech Connect

    Edward R. Grant

    2005-09-07

    This report describes the results of a program of research on the thermochemistry, spectroscopy and intramolecular relaxation dynamics of the combustion intermediate, HCO. We prepare this radical from acetaldehyde as a photo-precursor in a differentially pumped laser-ionization source quadrupole mass spectrometer. Using a multiresonant spectroscopic technique established in our laboratory, we select individual rotational states and overcome Franck-Condon barriers associated with neutral-to-cation geometry changes to promote transitions to individual autoionizing series and state-resolved ionization thresholds. Systematic analysis of rotational structure and associated lineshapes provide experimental insight on autoionization dynamics as input for theoretical modeling. Extrapolation of series, combined with direct threshold-photoelectron detection, yield precise ionization potentials that constitute an important contribution to the thermochemical base of information on HCO.

  18. a Study of Vibrational Mode Coupling in 2-FLUOROETHANOL and 1,2-DIFLUOROETHANE Using High-Resolution Infrared Spectroscopy.

    NASA Astrophysics Data System (ADS)

    Mork, Steven Wayne

    High resolution infrared spectroscopy was used to examine intramolecular vibrational interactions in 2 -fluoroethanol (2FE) and 1,2-difluoroethane (DFE). A high resolution infrared spectrophotometer capable of better than 10 MHz spectral resolution was designed and constructed. The excitation source consists of three lasers: an argon-ion pumped dye laser which pumps a color -center laser. The infrared beam from the color-center laser is used to excite sample molecules which are rotationally and vibrationally cooled in a supersonic molecular beam. Rovibrational excitation of the sample molecules is detected by monitoring the kinetic energy of the molecular beam with a bolometer. The high resolution infrared spectrum of 2FE was collected and analyzed over the 2977-2990 cm^ {-1}^ectral region. This region contains the asymmetric CH stretch on the fluorinated carbon. The spectrum revealed extensive perturbations in the rotational fine structure. Analysis of these perturbations has provided a quantitative measure of selective vibrational mode coupling between the C-H stretch and its many neighboring dark vibrational modes. Interestingly, excitation of the C-H stretch is known to induce a photoisomerization reaction between 2FE's Gg^' and Tt conformers. Implications of the role of mode coupling in the reaction mechanism are also addressed. Similarly, the high resolution infrared spectrum of DFE was collected and analyzed over the 2978-2996 cm ^{-1}^ectral region. This region contains the symmetric combination of asymmetric C-H stretches in DFE. Perturbations in the rotational fine structure indicate vibrational mode coupling to a single dark vibrational state. The dark state is split by approximately 19 cm^{-1} due to tunneling between two identical gauche conformers. The coupling mechanism is largely anharmonic with a minor component of B/C-plane Coriolis coupling. Effects of centrifugal distortion along the molecular A-axis are also observed. The coupled vibrational

  19. High-resolution Surface Analysis by Microarea Auger Spectroscopy: Computerization and Characterization

    NASA Technical Reports Server (NTRS)

    Browning, R.

    1986-01-01

    A custom scanning Auger electron microscope (SAM) capable of introducing a 3-5 keV electron beam of several nA into a 30 nm diameter sample area was fitted with a sample introduction system and was fully computerized to be used for materials science research. The method of multispectral Auger imaging was devised and implemented. The instrument was applied to various problems in materials science, including the study of the fiber/matrix interface in a SiC reinforced titanium alloy, the study of SiC whiskers in Al alloy 2124 (in cooperation with NASA-Langley), the study of NiCrAl superalloys (in collaboration with NASA-Lewis), the study of zircalloy specimens (in collaboration with Stanford University), and the microstructure of sintered SiC specimens (in collaboration with NASA-Lewis). The report contains a number of manuscripts submitted for publication on these subjects.

  20. Microcalorimeters for High Resolution X-Ray Spectroscopy of Laboratory and Astrophysical Plasmas

    NASA Technical Reports Server (NTRS)

    Silver, E.; Flowers, Bobby J. (Technical Monitor)

    2003-01-01

    The proposal has three major objectives. The first focuses on advanced neutron-transmutation-doped (NTD)-based microcalorimeter development. Our goal is to develop an array of microcalorimeters with sub- 5 eV energy resolution that can operate with pile-up-free throughput of at least 100 Hz per pixel. The second objective is to establish our microcalorimeter as an essential x-ray diagnostic for laboratory astrophysics studies. We propose to develop a dedicated microcalorimeter spectrometer for the EBIT (electron beam ion trap). This instrument will incorporate the latest detector and cryogenic technology that we have available. The third objective is to investigate innovative ideas related to possible flight opportunities. These include compact, long lived cryo-systems, ultra-low temperature cold stages, low mass and low power electronics, and novel assemblies of thin windows with high x-ray transmission.

  1. High-Resolution Spectroscopy of K-shell Praseodymium with a High-Energy Calorimeter

    SciTech Connect

    Thorn, D B; Brown, G V; Clementson, J T; Chen, H; Chen, M H; Beiersdorfer, P; Boyce, K R; Kilbourne, C A; Porter, F S; Kelley, R L

    2007-06-05

    We present a measurement of the K-shell spectrum of He-like through Be-like praseodymium ions trapped in the Livermore SuperEBIT electron beam ion trap using a bismuth absorber pixel on the XRS/EBIT microcalorimeter. This measurement is the first of its kind where the n=2 to n=1 transitions of the various charge states are spectroscopically resolved. The measured transition energies are compared with theoretical calculations from several atomic codes.

  2. High-resolution synchrotron far infrared spectroscopy of thionyl chloride: Analysis of the ν3 and ν6 fundamental bands

    NASA Astrophysics Data System (ADS)

    Martin-Drumel, Marie-Aline; Mouret, Gaël; Pirali, Olivier; Cuisset, Arnaud

    2015-09-01

    Thionyl chloride (SOCl2) is a volatile inorganic compounds used extensively in industry. Its monitoring in gas phase is critical both for environmental and defense concerns. Previous high-resolution gas phase spectroscopic studies were focused on the microwave region (below 40 GHz) and no rotationally-resolved study of the IR spectrum has been reported to date. We present in this article a rovibrational analysis of the two lowest frequency infrared active bending modes ν3 and ν6 of SOCl2. By means of synchrotron based Fourier-Transform far-infrared spectroscopy on the AILES beamline of the SOLEIL facility, the spectra of the symmetric ν3 (346 cm-1) and asymmetric ν6 (283 cm-1) fundamental bands have been rotationally resolved and analyzed.

  3. High-resolution three-dimensional compositional imaging by double-pulse laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Schiavo, C.; Menichetti, L.; Grifoni, E.; Legnaioli, S.; Lorenzetti, G.; Poggialini, F.; Pagnotta, S.; Palleschi, V.

    2016-08-01

    In this paper we present a new instrument specifically realized for high-resolution three-dimensional compositional analysis and mapping of materials. The instrument is based on the coupling of a Double-Pulse Laser-Induced Breakdown Spectroscopy (LIBS) instrument with an optical microscope. The compositional mapping of the samples is obtained by scanning the laser beam across the surface of the sample, while the in depth analysis is performed by sending multiple laser pulses on the same point. Depths of analysis of several tens of microns can be obtained. The instrument presented has definite advantages with respect to Laser Ablation-ICP Mass Spectrometry in many applications related to material analysis, biomedicine and environmental diagnostics. An application to the diagnostics of industrial ceramics is presented, demonstrating the feasibility of Double-Pulse LIBS Imaging and its advantages with respect to conventional single-pulse LIBS imaging.

  4. Analysis of the phase diagram and microstructural transitions in phospholipid microemulsion systems using high-resolution ultrasonic spectroscopy.

    PubMed

    Hickey, Sinead; Lawrence, M Jayne; Hagan, Sue A; Buckin, Vitaly

    2006-06-20

    In the present work, high-resolution ultrasonic spectroscopy was applied to analyze a pseudoternary phase diagram for mixtures consisting of water/isopropyl myristate/Epikuron 200 and a cosurfactant (n-propanol). Changes in the ultrasonic velocity and attenuation in the megahertz frequency range were measured in the course of titration of the oil/surfactant/cosurfactant mixture with water at 25 degrees C. The ultrasonic titration profiles showed several phase transitions in the samples, which allowed the construction of an "ultrasonic" phase diagram. Quantitative analysis of the ultrasonic parameters enabled the characterization of various phases (swollen micelles, microemulsion, coarse emulsion, and pseudo-bicontinuous) as well as the evaluation of the state of the water and the particle size. The particle size obtained for the microemulsion region ranged from 5 to 14 nm over the measured concentrations of water/isopropyl myristate/Epikuron 200 and n-propanol, which agreed well with the previous literature data.

  5. High-resolution infrared spectroscopy of HCN-Znn (n = 1-4) clusters: structure determination and comparisons with theory.

    PubMed

    Stiles, Paul L; Miller, Roger E

    2006-05-04

    High-resolution infrared laser spectroscopy has been used to obtain rotationally resolved spectra of HCN-Zn(n) (n = 1-4) complexes formed in helium nanodroplets. In the present study the droplets passed through a metal oven, where the zinc vapor pressure was adjusted until one or more atoms were captured by the droplets. A second pickup cell was then used to dope the droplets with a single HCN molecule. Rotationally resolved infrared spectra are obtained for all of these complexes, providing valuable information concerning their structures. Stark spectra are reported and used to determine the corresponding permanent electric dipole moments. Ab initio calculations are also reported for these complexes for comparison with the experimental results.

  6. High-resolution gamma-ray spectroscopy with a microwave-multiplexed transition-edge sensor array

    SciTech Connect

    Noroozian, Omid; Mates, John A. B.; Bennett, Douglas A.; Brevik, Justus A.; Fowler, Joseph W.; Gao, Jiansong; Hilton, Gene C.; Horansky, Robert D.; Irwin, Kent D.; Schmidt, Daniel R.; Vale, Leila R.; Ullom, Joel N.; Kang, Zhao

    2013-11-11

    We demonstrate very high resolution photon spectroscopy with a microwave-multiplexed two-pixel transition-edge sensor (TES) array. We measured a {sup 153}Gd photon source and achieved an energy resolution of 63 eV full-width-at-half-maximum at 97 keV and an equivalent readout system noise of 86 pA/√(Hz) at the TES. The readout circuit consists of superconducting microwave resonators coupled to radio-frequency superconducting-quantum-interference-devices and transduces changes in input current to changes in phase of a microwave signal. We use flux-ramp modulation to linearize the response and evade low-frequency noise. This demonstration establishes one path for the readout of cryogenic X-ray and gamma-ray sensor arrays with more than 10{sup 3} elements and spectral resolving powers R=λ/Δλ>10{sup 3}.

  7. Beyond the Born-Oppenheimer approximation: High-resolution overtone spectroscopy of H2D+ and D2H+

    NASA Astrophysics Data System (ADS)

    Fárník, Michal; Davis, Scott; Kostin, Maxim A.; Polyansky, Oleg L.; Tennyson, Jonathan; Nesbitt, David J.

    2002-04-01

    Transitions to overtone 2ν2 and 2ν3, and combination ν2+ν3 vibrations in jet-cooled H2D+ and D2H+ molecular ions have been measured for the first time by high-resolution IR spectroscopy. The source of these ions is a pulsed slit jet supersonic discharge, which allows for efficient generation, rotational cooling, and high frequency (100 KHz) concentration modulation for detection via sensitive lock-in detection methods. Isotopic substitution and high-resolution overtone spectroscopy in this fundamental molecular ion permit a systematic, first principles investigation of Born-Oppenheimer "breakdown" effects due to large amplitude vibrational motion as well as provide rigorous tests of approximate theoretical methods beyond the Born-Oppenheimer level. The observed overtone transitions are in remarkably good agreement (<0.1 cm-1) with non-Born-Oppenheimer ab initio theoretical predictions, with small but systematic deviations for 2ν2, ν2+ν3, and 2ν3 excited states indicating directions for further improvement in such treatments. Spectroscopic assignment and analysis of the isotopomeric transitions reveals strong Coriolis mixing between near resonant 2ν3 and ν2+ν3 vibrations in D2H+. Population-independent line intensity ratios for transitions from common lower states indicate excellent overall agreement with theoretical predictions for D2H+, but with statistically significant discrepancies noted for H2D+. Finally, H2D+ versus D2H+ isotopomer populations are analyzed as a function of D2/H2 mixing ratio and can be well described by steady state kinetics in the slit discharge expansion.

  8. High Resolution UV Spectroscopy of H2 and N2 Applied to Observations of the Planets by Spacecraft

    NASA Technical Reports Server (NTRS)

    Ajello, J.; Shemansky, D.; Kanik, I.; James, G.; Liu, X.; Ahmed, S.; Ciocca, M.

    1996-01-01

    The next generation of high resolution UV imaging spacecraft are being prepared for studying the airglow and aurora of the Earth, the other terrestrial planets and the Jovian planets. To keep pace with these technological improvements we have developed a laboratory program to provide electron impact collision cross sections of the major molecular planetary gases (H2, N2, CO2, O2, and CO). Spectra under optically thin conditions have been measured with a high resolution (lambda/delta(lambda) = 50000) UV spectrometer in tandem with electron impact collision chamber. High resolution spectra of the Lyman and Wemer band systems of H2 have been obtained and modeled. Synthetic spectral intensities based on the J-dependent transition probabilities that include ro-vibronic perturbations are in very good agreement with experimental intensities. The kinetic energy distribution of H(2p,3p) atoms resulting from electron impact dissociation of H2 has been measured. The distribution is based on the first measurement of the H Lyman-alpha (H L(alpha)) and H Lyman-beta (H L(beta)) emission line Doppler profiles. Electron impact dissociation of H2 is believed to be one of the major mechanisms leading to the observed wide profile of H L-alpha from Jupiter aurora by the Hubble Space Telescope (HST). Analysis of the deconvolved line profile of H L-alpha reveals the existence of a narrow line peak (40 mA FWHM) and a broad pedestal base (240 mA FWHM). The band strengths of the electron excited N2 (C(sup 3) Pi(sub(upsilon) - B(sup 3)Pi(sub g)) second positive system have been measured in the middle ultraviolet. We report a quantitative measurement of the predissociation fraction 0.15 +/- 01(sup .045, sub .01) at 300 K in the N2 c'(sub )4 (1)sigma(sup +, sub g) - x(1)sigma(sup +, sub g)(00) band, with an experimental determination of rotational line strengths to be used to understand N2 EUV emission from Titan, Triton and the Earth.

  9. Determination of divertor stray light in high-resolution main chamber H α spectroscopy in JET-ILW

    NASA Astrophysics Data System (ADS)

    Neverov, V. S.; Kukushkin, A. B.; Stamp, M. F.; Alekseev, A. G.; Brezinsek, S.; von Hellermann, M.; Contributors, JET

    2017-01-01

    The theoretical model suggested for ITER main chamber H α spectroscopy is applied to the high-resolution spectroscopy (HRS) data of recent JET ITER-like wall (ILW) experiments. The model is aimed at reconstructing the neutral hydrogen isotope density in the SOL, as well as the isotope ratio, by solving a multi-parametric inverse problem with allowance for (i) the strong divertor stray light (DSL) on the main-chamber lines of sight (LoS), (ii) substantial deviation of the neutral atom velocity distribution function (VDF) from a Maxwellian in the SOL, and (iii) data for the direct observation of the divertor. The JET-ILW HRS data on resolving the power at the deuterium and hydrogen spectral lines of the Balmer-alpha series is analysed, with direct observation of the divertor from the top and with observation of the inner wall along the tangential and radial LoS from the equatorial ports. This data allows the spectrum of the DSL and the signal-to-background ratio for the Balmer-alpha light emitted from the far SOL and divertor in the JET-ILW to be evaluated. The results support the expectation of the strong impact of the DSL upon the ITER main chamber H α (and visible light) spectroscopy diagnostics.

  10. High Resolution Optical Spectroscopy of Rosetta Target 67P/Churyumov-Gerasimenko Using Keck HIRES

    NASA Astrophysics Data System (ADS)

    McKay, Adam; Cochran, Anita L.; Bodewits, Dennis; A'Hearn, Michael F.; Altwegg, Kathrin; Gulkis, Samuel; Snodgrass, Colin; de Val-Borro, Miguel; Kelley, Michael S.; Feaga, Lori M.; Wooden, Diane H.; Bauer, James M.; Kramer, Emily A.

    2016-10-01

    We present high spectral resolution optical spectroscopy of Rosetta target 67P/Churyumov-Gerasimenko obtained on UT Dec 26 and 27, 2015 using the HIRES instrument on Keck I when the comet was at a heliocentric distance of approximately 2 AU post-perihelion. The spectra cover a spectral range of 3500-10000 Angstroms at a spectral resolution of 67,000. These observations aim to provide high spectral resolution, large projected field of view context for the high spatial resolution and small projected field of view observations obtained from the Rosetta instrument suite. We report detections of CN, NH2, and [OI] emission. From the [OI]6300 emission we derive a water production rate of approximately 2 x 1027 mol/s. Production rates (or upper limits) for other species will be presented and placed in context with recent results from Rosetta. We will also present results pertaining to the [OI]5577 line, which combined with the [OI]6300 emission can be used as a proxy for CO2. We will compare our results to observations obtained by Rosetta as well as NEOWISE and Spitzer.

  11. High Resolution Photoacoustic Spectroscopy of the Oxygen A-Band to Support the OCO Missions

    NASA Astrophysics Data System (ADS)

    Cich, M. J.; Lunny, E. M.; Bui, T. Q.; Drouin, B. J.; Okumura, M.; Stroscio, G. D.

    2015-12-01

    NASA's Orbiting Carbon Observatory missions require spectroscopic parameterization of the Oxygen A-Band absorption (757-775 nm) with unprecedented detail to meet the objective of delivering space-based column CO2 measurements with an accuracy of better than 1 ppm. This requires spectroscopic parameters with accuracies at the 0.1% level. To achieve this it is necessary for line shape models to include deviations from the Voigt line shape, including the collisional effects of Dicke narrowing, speed-dependence, line mixing (LM), and collision-induced absorption (CIA). To measure these effects to high accuracy, new innovative lab measurements are required. LM and CIA in particular are difficult to measure using standard spectroscopic techniques because, while present at atmospheric temperatures, these effects are difficult to quantify. At pressures of several atmospheres these effects contribute several percent to the A-Band absorption. While the O2 A-band is too weak for direct absorption measurements via a diode laser, a very sensitive photoacoustic spectroscopy technique is being used to study the pressure- dependence of the spectral line shape up to pressures of 5 atm. This spectrometer has a high S/N of about 10,000 and an advantageous zero baseline. In addition, temperature effects on the line shape are studied using a newly developed temperature control scheme. The latest results are reported.

  12. High Resolution Applications of Laser-Induced Breakdown Spectroscopy for Environmental and Forensic Applications

    SciTech Connect

    Martin, Madhavi Z; Labbe, Nicole; Andre, Nicolas O; Harris, Ronny D; Ebinger, Michael H; Wullschleger, Stan D; Vass, Arpad Alexander

    2007-01-01

    Laser-induced breakdown spectroscopy (LIBS) has been used in the elemental analysis for a variety of environmental samples and as a proof of concept for a host of forensic applications. In the first application, LIBS was used for the rapid detection of carbon from a number of different soil types. In this application, a major breakthrough was achieved by using a multivariate analytical approach that has brought us closer towards a "universal calibration curve". In a second application, it has been demonstrated that LIBS in combination with multivariate analysis can be employed to analyze the chemical composition of annual tree growth rings and correlate them to external parameters such as changes in climate, forest fires, and disturbances involving human activity. The objectives of using this technology in fire scar determinations are: 1) To determine the characteristic spectra of wood exposed to forest fires and 2) To examine the viability of this technique for detecting fire occurrences in stems that did not develop fire scars. These examples demonstrate that LIBS-based techniques are inherently well suited for diverse environmental applications. LIBS was also applied to a variety of proof of concept forensic applications such as the analysis of cremains (human cremation remains) and elemental composition analysis of prosthetic implants.

  13. High resolution applications of laser-induced breakdown spectroscopy for environmental and forensic applications

    NASA Astrophysics Data System (ADS)

    Martin, Madhavi Z.; Labbé, Nicole; André, Nicolas; Harris, Ronny; Ebinger, Michael; Wullschleger, Stan D.; Vass, Arpad A.

    2007-12-01

    Laser-induced breakdown spectroscopy (LIBS) has been used in the elemental analysis for a variety of environmental samples and as a proof of concept for a host of forensic applications. In the first application, LIBS was used for the rapid detection of carbon from a number of different soil types. In this application, a major breakthrough was achieved by using a multivariate analytical approach that has brought us closer towards a "universal calibration curve". In a second application, it has been demonstrated that LIBS in combination with multivariate analysis can be employed to analyze the chemical composition of annual tree growth rings and correlate them to external parameters such as changes in climate, forest fires, and disturbances involving human activity. The objectives of using this technology in fire scar determinations are: 1) To determine the characteristic spectra of wood exposed to forest fires and 2) To examine the viability of this technique for detecting fire occurrences in stems that did not develop fire scars. These examples demonstrate that LIBS-based techniques are inherently well suited for diverse environmental applications. LIBS was also applied to a variety of proof of concept forensic applications such as the analysis of cremains (human cremation remains) and elemental composition analysis of prosthetic implants.

  14. New Atomic Data for Doubly Ionized Iron Group Atoms by High Resolution UV Fourier Transform Spectroscopy

    NASA Technical Reports Server (NTRS)

    Smith, Peter L.; Pickering, Juliet C.; Thorne, A. P.

    2002-01-01

    Currently available laboratory spectroscopic data of doubly ionized iron-group element were obtained about 50 years ago using spectrographs of modest dispersion, photographic plates, and eye estimates of intensities. The accuracy of the older wavelength data is about 10 mAngstroms at best, whereas wavelengths are now needed to an accuracy of 1 part in 10(exp 6) to 10(exp 7) (0.2 to 2 mAngstroms at 2000 Angstroms). The Fourier transform (FT) spectroscopy group at Imperial College, London, and collaborators at the Harvard College Observatory have used a unique VUV FT spectrometer in a program focussed on improving knowledge of spectra of many neutral and singly and doubly ionized, astrophysically important, iron group elements. Spectra of Fe II and Fe III have been recorded at UV and VUV wavelengths with signal-to-noise ratios of several hundred for the stronger lines. Wavelengths and energy levels for Fe III are an order of magnitude more accurate than previous work; analysis is close to completion. f-values for Fe II have been published.

  15. High-Resolution Laser-Induced Breakdown Spectroscopy used in Homeland Security and Forensic Applications

    SciTech Connect

    Martin, Madhavi Z; Wullschleger, Stan D; Vass, Arpad Alexander; Martin, Rodger Carl; Grissino-Mayer, Henri

    2006-01-01

    The technique of laser-induced breakdown spectroscopy (LIBS) to detect elements for a variety of homeland security applications such as nuclear materials identification and inventory,and forensic applications has been demonstrated. For nuclear materials applications, we detected and profiled metals in coatings that were used to encapsulate nuclear fuel. Multivariate analysis has been successfully employed in the quantification of elements present in treated wood and engineered wood composites. These examples demonstrate that LIBS-based techniques are inherently well suited for diverse environmental applications related to homeland security. Three key advantages are evident: (1) small samples (mg) are sufficient; (2) samples can be analyzed by LIBS very rapidly, and (3) biological materials such as human and animal bones and wood can be analyzed with minimal sample preparation. For forensic applications they have used LIBS to determine differences in animal and human bones. They have also applied this technique in the determination of counterfeit and non-counterfeit currency. They recently applied LIBS in helping to solve a murder case.

  16. Synchrotron Based High Resolution Far-Ir Spectroscopy of 1,1-DICHLOROETHYLENE

    NASA Astrophysics Data System (ADS)

    Peebles, Rebecca A.; Elmuti, Lena F.; Peebles, Sean A.; Obenchain, Daniel A.

    2013-06-01

    Six vibrational bands of the ^{35}Cl_2C=CH_2 isotopologue of 1,1-dichloroethylene have been recorded in the 350 - 1150 cm^{-1} range using the 0.00096 cm^{-1} resolution far-infrared beamline of the Canadian Light Source synchrotron facility. Results from the analysis of one a-type (ν_9 = 796.01904(8) cm^{-1}, CCl asymmetric stretch) and one c-type (ν_{11} = 868.488626(26) cm^{-1}, CH_2 flap) band will be presented. Over 6000 transitions have now been fitted for these two bands, with ground state rotational and centrifugal distortion constants fixed to values determined by rotational spectroscopy, while the upper state constants have been varied. Anharmonic frequency calculations at the MP2/6-311++G(2d,2p) level were instrumental in assigning the dense spectra. Assignment of additional bands around 603 cm^{-1} (b-type, CCl symmetric stretch, ν_4) and 456 cm^{-1} (c-type, CCl_2 flap, ν_{12}), as well as attempts at assigning the mixed ^{35}Cl^{37}Cl isotopologue spectra for ν_9 and ν_{11}, are in progress. Z. Kisiel, L. Pszczółkowski, Z. Naturforsch, {{50a}, (1995), 347-351.

  17. Light transmission spectroscopy in real time: a high-resolution nanoparticle analysis instrument.

    PubMed

    Tanner, Carol E; Sun, Nan; Deatsch, Alison; Li, Frank; Ruggiero, Steven T

    2017-03-01

    This paper describes light transmission spectroscopy (LTS), a technique for eliminating spectral noise and systematic effects in real-time spectroscopic measurements. In our work, we combine LTS with spectral inversion for the purpose of nanoparticle analysis. This work employs a wideband multi-wavelength light source and grating spectrometers coupled to CCD detectors. The light source ranges from 210 to 2000 nm, the wavelength-dependent light detection system ranges from 200 to 1100 nm with ≤1  nm resolution, and the nanoparticle diameters range from 1 to 3000 nm. The nanoparticles are suspended in pure water or water-based buffer solutions. For testing and calibration purposes, results are presented for nanoparticles composed of polystyrene and gold. Mie theory is used to model the total extinction cross section, and spectral inversion is employed to obtain quantitative particle size distributions, from which information on the size, shape, and number of nanoparticles can be derived. Discussed are the precision, accuracy, resolution, and sensitivity of our results. The LTS technique is quite versatile and can be applied to spectroscopic investigations where wideband, accurate, low-noise, real-time spectra are desired.

  18. The high-resolution absorption spectroscopy branch on the VUV beamline DESIRS at SOLEIL.

    PubMed

    de Oliveira, Nelson; Joyeux, Denis; Roudjane, Mourad; Gil, Jean François; Pilette, Bertrand; Archer, Lucy; Ito, Kenji; Nahon, Laurent

    2016-07-01

    A VUV absorption spectroscopy facility designed for ultra-high spectral resolution is in operation as a dedicated branch on the DESIRS beamline at Synchrotron SOLEIL. This branch includes a unique VUV Fourier transform spectrometer (FTS) and a dedicated versatile gas sample chamber. The FTS instrument can cover a large UV-VUV spectral range from 4 to 30 eV, with an ultimate line width of 0.08 cm(-1) on a large spectral window, ΔE/E = 7%, over which all spectral features can be acquired in a multiplex way. The performance can be considered to be a middle ground between broadband moderate-resolution spectrometers based on gratings and ultra-high-spectral-resolution VUV tunable-laser-based techniques over very narrow spectral windows. The various available gaseous-sample-handling setups, which function over a wide range of pressures and temperatures, and the acquisition methodology are described. A selection of experimental results illustrates the performance and limitations of the FTS-based facility.

  19. High-resolution imaging and spectroscopy of interfacial water at single bond limit

    NASA Astrophysics Data System (ADS)

    Jiang, Ying

    Hydrogen bond is one of the most important weak interactions in nature and plays an essential role in a broad spectrum of physics, chemistry, biology, energy and material sciences. The conventional methods for studying hydrogen-bonding interaction are all based on spectroscopic or diffraction techniques. However, those techniques have poor spatial resolution and only measure the average properties of many hydrogen bonds, which are susceptible to the structural inhomogeneity and local environments, especially when interfacial systems are concerned. The spatial variation and inter-bond coupling of the hydrogen bonds leads to significant spectral broadening, which prohibits the accurate understanding of the experimental data. In this talk, I will present our recent progress on the development of new-generation scanning probe microscopy/spectroscopy (SPM/S) with unprecedentedly high sensitivity and resolution, for addressing weak inter- and intra-molecular interactions, such as hydrogen bonds and van der Waals force. Based on a qPlus sensor, we have succeeded to push the real-space study of a prototypical hydrogen-bonded system, i.e. water, down to single bond limit. Combined with state-of-the-arts quantum simulations, we have discovered exotic nuclear quantum effects (NQEs) in interfacial water and revealed the quantum nature of the hydrogen bond from a completely new perspective

  20. High-resolution absorption spectroscopy of the OH 2Π3/2 ground state line

    NASA Astrophysics Data System (ADS)

    Wiesemeyer, H.; Güsten, R.; Heyminck, S.; Jacobs, K.; Menten, K. M.; Neufeld, D. A.; Requena-Torres, M. A.; Stutzki, J.

    2012-06-01

    The chemical composition of the interstellar medium is determined by gas phase chemistry, assisted by grain surface reactions, and by shock chemistry. The aim of this study is to measure the abundance of the hydroxyl radical (OH) in diffuse spiral arm clouds as a contribution to our understanding of the underlying network of chemical reactions. Owing to their high critical density, the ground states of light hydrides provide a tool to directly estimate column densities by means of absorption spectroscopy against bright background sources. We observed onboard the SOFIA observatory the 2Π3/2, J = 5/2 ← 3/2 2.5 THz line of ground-state OH in the diffuse clouds of the Carina-Sagittarius spiral arm. OH column densities in the spiral arm clouds along the sightlines to W49N, W51 and G34.26+0.15 were found to be of the order of 1014 cm-2, which corresponds to a fractional abundance of 10-7 to 10-8, which is comparable to that of H2O. The absorption spectra of both species have similar velocity components, and the ratio of the derived H2O to OH column densities ranges from 0.3 to 1.0. In W49N we also detected the corresponding line of 18OH.

  1. X-ray High-resolution Spectroscopy for Laser-produced Plasma

    NASA Astrophysics Data System (ADS)

    Barbato, F.; Scarpellini, D.; Malizia, A.; Gaudio, P.; Richetta, M.; Antonelli, L.

    The study of the emission spectrum gives information about the material generating the spectrum itself and the condition in which this is generated. The wavelength spectra lines are linked to the specific element and plasma conditions (electron temperature, density), while their shape is influenced by several physical effects like Stark and Doppler ones. In this work we study the X-ray emission spectra of a copper laser-produced plasma by using a spherical bent crystal spectrometer to measure the electron temperature. The facility used is the laser TVLPS, at the Tor Vergata University in Rome. It consists of a Nd:Glass source (in first harmonic - 1064 nm) whose pulse parameters are: 8 J in energy, time duration of 15 ns and a focal spot diameter of 200 μm. The adopted spectrometer is based on a spherical bent crystal of muscovite. The device combines the focusing property of a spherical mirror with the Bragg's law. This allows to obtain a great power resolution but a limited range of analysis. In our case the resolution is on average 80 eV. As it is well-known, the position of the detector on the Rowland's circle is linked to the specific spectral range which has been studied. To select the area to be investigated, we acquired spectra by means of a flat spectrometer. The selected area is centered on 8.88 Å. To calibrate the spectrum we wrote a ray-tracing MATLAB code, which calculates the detector alignment parameters and calibration curve. We used the method of line ratio to measure the electron temperature. This is possible because we assumed the plasma to be in LTE condition. The temperature value was obtained comparing the experimental one, given by the line ratio, with the theoretical one, preceded by FLYCHK simulations.

  2. High-Resolution Spectroscopy and Dynamics of Multiphoton Processes in Atoms and Molecules.

    DTIC Science & Technology

    1984-07-02

    in the X 21 State of the Acetylene Ion Using Hel Photoelectron Spectrometry," J. Electron Spectrosc. 2.8, 145 (1982). 2. E. D. Poliakoff , P. N. Dehmer...press. 6. S. T. Pratt, E. D. Poliakoff , P. N. Dehmer, and J. L. Dehmer, "Potoelectron Studies of Resonant Nultiphoton Ionization of CO via the A...State," J. Chem. Phys. 78, 65 (1983). 7. E. D, Poliakoff , J. L. Dehmer, P. No Dehmer, and A. C. Parr, "Vibrationally-Resolved Photoelectron Angular

  3. Extracting the redox orbitals in Li battery materials with high-resolution x-ray compton scattering spectroscopy.

    PubMed

    Suzuki, K; Barbiellini, B; Orikasa, Y; Go, N; Sakurai, H; Kaprzyk, S; Itou, M; Yamamoto, K; Uchimoto, Y; Wang, Yung Jui; Hafiz, H; Bansil, A; Sakurai, Y

    2015-02-27

    We present an incisive spectroscopic technique for directly probing redox orbitals based on bulk electron momentum density measurements via high-resolution x-ray Compton scattering. Application of our method to spinel Li_{x}Mn_{2}O_{4}, a lithium ion battery cathode material, is discussed. The orbital involved in the lithium insertion and extraction process is shown to mainly be the oxygen 2p orbital. Moreover, the manganese 3d states are shown to experience spatial delocalization involving 0.16±0.05 electrons per Mn site during the battery operation. Our analysis provides a clear understanding of the fundamental redox process involved in the working of a lithium ion battery.

  4. Spectroscopy and high-resolution imaging of the gravitational lens SDSS J1206+4332

    NASA Astrophysics Data System (ADS)

    Agnello, Adriano; Sonnenfeld, Alessandro; Suyu, Sherry H.; Treu, Tommaso; Fassnacht, Christopher D.; Mason, Charlotte; Bradač, Maruša; Auger, Matthew W.

    2016-06-01

    We present spectroscopy and laser guide star adaptive optics (LGSAO) images of the doubly imaged lensed quasar SDSS J1206+4332. We revise the deflector redshift proposed previously to zd = 0.745, and measure for the first time its velocity dispersion σ = (290 ± 30) km s-1. The LGSAO data show the lensed quasar host galaxy stretching over the astroid caustic thus forming an extra pair of merging images, which was previously thought to be an unrelated galaxy in seeing limited data. Owing to the peculiar geometry, the lens acts as a natural coronagraph on the broad-line region of the quasar so that only narrow C III]emission is found in the fold arc. We use the data to reconstruct the source structure and deflector potential, including nearby perturbers. We reconstruct the point-spread function (PSF) from the quasar images themselves, since no additional point source is present in the field of view. From gravitational lensing and stellar dynamics, we find the slope of the total mass density profile to be γ' = -log ρ/log r = 1.93 ± 0.09. We discuss the potential of SDSS J1206+4332 for measuring a time-delay distance (and thus H0 and other cosmological parameters), or as a standard ruler, in combination with the time-delay published by the COSMOGRAIL collaboration. We conclude that this system is very promising for cosmography. However, in order to achieve competitive precision and accuracy, an independent characterization of the PSF is needed. Spatially resolved kinematics of the deflector would reduce the uncertainties further. Both are within the reach of current observational facilities.

  5. Extended-range grazing-incidence spectrometer for high-resolution extreme ultraviolet measurements on an electron beam ion trap

    SciTech Connect

    Beiersdorfer, P.; Magee, E. W.; Brown, G. V.; Träbert, E.; Widmann, K.; Hell, N.

    2014-11-15

    A high-resolution grazing-incidence grating spectrometer has been implemented on the Livermore electron beam ion traps for performing very high-resolution measurements in the soft x-ray and extreme ultraviolet region spanning from below 10 Å to above 300 Å. The instrument operates without an entrance slit and focuses the light emitted by highly charged ions located in the roughly 50 μm wide electron beam onto a cryogenically cooled back-illuminated charge-coupled device detector. The measured line widths are below 0.025 Å above 100 Å, and the resolving power appears to be limited by the source size and Doppler broadening of the trapped ions. Comparisons with spectra obtained with existing grating spectrometers show an order of magnitude improvement in spectral resolution.

  6. Extended-range grazing-incidence spectrometer for high-resolution extreme ultraviolet measurements on an electron beam ion trap.

    PubMed

    Beiersdorfer, P; Magee, E W; Brown, G V; Hell, N; Träbert, E; Widmann, K

    2014-11-01

    A high-resolution grazing-incidence grating spectrometer has been implemented on the Livermore electron beam ion traps for performing very high-resolution measurements in the soft x-ray and extreme ultraviolet region spanning from below 10 Å to above 300 Å. The instrument operates without an entrance slit and focuses the light emitted by highly charged ions located in the roughly 50 μm wide electron beam onto a cryogenically cooled back-illuminated charge-coupled device detector. The measured line widths are below 0.025 Å above 100 Å, and the resolving power appears to be limited by the source size and Doppler broadening of the trapped ions. Comparisons with spectra obtained with existing grating spectrometers show an order of magnitude improvement in spectral resolution.

  7. Extended-range grazing-incidence spectrometer for high-resolution extreme ultraviolet measurements on an electron beam ion trapa)

    NASA Astrophysics Data System (ADS)

    Beiersdorfer, P.; Magee, E. W.; Brown, G. V.; Hell, N.; Träbert, E.; Widmann, K.

    2014-11-01

    A high-resolution grazing-incidence grating spectrometer has been implemented on the Livermore electron beam ion traps for performing very high-resolution measurements in the soft x-ray and extreme ultraviolet region spanning from below 10 Å to above 300 Å. The instrument operates without an entrance slit and focuses the light emitted by highly charged ions located in the roughly 50 μm wide electron beam onto a cryogenically cooled back-illuminated charge-coupled device detector. The measured line widths are below 0.025 Å above 100 Å, and the resolving power appears to be limited by the source size and Doppler broadening of the trapped ions. Comparisons with spectra obtained with existing grating spectrometers show an order of magnitude improvement in spectral resolution.

  8. High Resolution Low Energy Electron Diffraction Studies of Thermal Instabilities in Lead Surfaces

    NASA Astrophysics Data System (ADS)

    Yang, Hongning

    1991-02-01

    Thermal instability in a crystal surface is one of the most fascinating phenomena that occur in surfaces. Recent advances in many surface analytical tools allow researchers to examine surface instabilities on the atomic scale. One outstanding example is the observation of surface melting in a Pb(110) surface 100 K below the bulk melting temperature, T_{m} (bulk) = 600.7 K, using medium-energy ion channeling techniques. Using the high-resolution low-energy electron diffraction (HRLEED) technique, we have observed several novel surface instabilities that occur below the Pb(110) surface melting temperature. First of all we found that Pb(110) surface melting is preceded by a surface roughening transition which begins at ~415 K, about 185 K below T_{m}. The value of the roughening temperature agrees very well with the prediction of the molecular dynamic calculation that a (110) surface should start to rough at 0.7 T _{m} (~420 K for Pb). This roughening transition is of the Korsterlitz -Thouless type and is an infinite order transition in which the height-height correlation diverges. We observed a critical line which extends from the roughening temperature to the surface melting temperature. Below the surface roughening temperature (at around 380 K), we have observed an extremely interesting disordered flat (DOF) phase in which positionally disordered steps are confined to two levels and the surface remains flat on the average. This DOF phase (sometimes called the preroughened phase), as predicted by K. Rommelse and M. den Nijs recently, is stabilized by entropy as a result of step interactions beyond the nearest neighbors. The energetics of the DOF phase are intimately related to that of the surface reconstruction. In fact, a reconstruction phase has been considered as a "condensate" of the DOF phase. In contrast, the more tightly packed Pb(100) surface behaves very differently. There is a non-conventional liquid-like disordering which occurs at 570 K. This disordering

  9. Inelastic electron tunneling spectroscopy

    NASA Technical Reports Server (NTRS)

    Khanna, S. K.; Lambe, J.

    1983-01-01

    Inelastic electron tunneling spectroscopy is a useful technique for the study of vibrational modes of molecules adsorbed on the surface of oxide layers in a metal-insulator-metal tunnel junction. The technique involves studying the effects of adsorbed molecules on the tunneling spectrum of such junctions. The data give useful information about the structure, bonding, and orientation of adsorbed molecules. One of the major advantages of inelastic electron tunneling spectroscopy is its sensitivity. It is capable of detecting on the order of 10 to the 10th molecules (a fraction of a monolayer) on a 1 sq mm junction. It has been successfully used in studies of catalysis, biology, trace impurity detection, and electronic excitations. Because of its high sensitivity, this technique shows great promise in the area of solid-state electronic chemical sensing.

  10. High resolution X- and gamma-ray spectroscopy of solar flares

    NASA Astrophysics Data System (ADS)

    Lin, R. P.

    1984-01-01

    A balloon-borne X- and gamma-ray instrument was developed, fabricated, and flown. This instrument has the highest energy resolution of any instrument flown to date for measurements of solar and cosmic X-ray and gamma-ray emission in the 13 to 600 keV energy range. The purpose of the solar measurements was to study electron acceleration and solar flare energy release processes. The cosmic observations were to search for cyclotron line features from neutron stars and for low energy gamma-ray lines from nucleosynthesis. The instrument consists of four 4 cm diameter, 1.3 cm thick, planar intrinsic germanium detectors cooled by liquid nitrogen and surrounded by CsI and NaI anti-coincidence scintillation crystals. A graded z collimator limited the field of view to 3 deg x 6 deg and a gondola pointing system provided 0.3 deg pointing accuracy. A total of four flights were made with this instrument. Additional funding was obtained from NSF for the last three flights, which had primarily solar objectives. A detailed instrument description is given. The main scientific results and the data analysis are discussed. Current work and indications for future work are summarized. A bibliography of publications resulting from this work is given.

  11. High-Resolution Laser Spectroscopy of the S1 ← S0 Transition of Cl-NAPHTHALENES

    NASA Astrophysics Data System (ADS)

    Kasahara, Shunji; Yamamoto, Ryo

    2015-06-01

    High-resolution fluorescence excitation spectra of the S1 ← S0 electronic transition have been observed for 1-Cl naphthalene (1-ClN) and 2-Cl naphthalene (2-ClN). Sub-Doppler excitation spectra were measured by crossing a single-mode UV laser beam perpendicular to a collimated molecular beam. The absolute wavenumber was calibrated with accuracy 0.0002 cm-1 by measurement of the Doppler-free saturation spectrum of iodine molecule and fringe pattern of the stabilized etalon. For 2-ClN, the rotationally resolved high-resolution spectra were obtained for the 0^0_0 and 0^0_0+1042 cm-1 bands, and these molecular constants were determined in high accuracy. The obtained molecular constants of the 0^0_0 band are good agreement with the ones reported by Plusquellic et. al. For the 0^0_0+1042 cm-1 band, the local energy shifts were found. On the other hand, for 1-ClN, the rotational lines were not fully resolved because the fluorescence lifetime is shorter than the one of 2-ClN. Then we determined the molecular constants of 1-ClN from the comparison the observed spectrum with calculated one. D. F. Plusquellic, S. R. Davis, and F. Jahanmir, J. Chem. Phys., 115, 225 (2001).

  12. Ultrasensitive high resolution laser spectroscopy and its application to optical frequency standards

    NASA Astrophysics Data System (ADS)

    Ye, Jun

    1997-09-01

    Advanced laser stabilization techniques now enable one to lock laser frequencies onto line centers of natural atomic/molecular resonances with unprecedented precision and accuracy. In this dissertation we discuss our effort in utilizing these techniques to establish visible optical frequency standards. By summarizing our earlier results on frequency measurements of the 87Rb D2 line at 780 nm 127I2 hyperfine transitions at 532 nm, we show the advantage of using a higher quality reference line, usually characterized by its narrower linewidth, higher attainable signal-to-noise ratio and lower sensitivity toward external perturbations. We then present a novel approach of cavity-enhanced frequency modulation spectroscopy for ultra-sensitive detections. The powerful utility of this new technique in the field of frequency standards is demonstrated by probing saturated molecular overtone transitions in the visible and near infrared. Weakly-absorbing gases such as C2H2 and C2HD are placed inside an external high-finesse resonator to enhance their detection sensitivities. A frequency modulation technique is employed to achieve a shot noise limited signal-to- noise ratio. The rf modulation frequency is chosen to match the cavity's free spectral range in order to avoid the cavity-induced conversion of laser frequency noise into amplitude noise. The molecular saturated dispersion signal is directly recovered after demodulation of the cavity transmitted light. A record high integrated absorption sensitivity of 5× 10-13/ (1× 10-14/cm) (at 1 second averaging time) has been obtained. Systematic studies on this new technique are presented on topics of detection sensitivity, signal line shape, signal size and slope, and pressure dependent linewidth broadening and linecenter shift. A Nd:YAG laser is stabilized on the P(5) transition in the (ν2+3/ ν3) overtone band of C2HD at 1.064 μm. Its absolute frequency is established. The excellent signal- to-noise ratio produces a frequency

  13. Virtually distortion-free imaging system for large field, high resolution lithography using electrons, ions or other particle beams

    DOEpatents

    Hawryluk, Andrew M.; Ceglio, Natale M.

    1993-01-01

    Virtually distortion free large field high resolution imaging is performed using an imaging system which contains large field distortion or field curvature. A reticle is imaged in one direction through the optical system to form an encoded mask. The encoded mask is then imaged back through the imaging system onto a wafer positioned at the reticle position. Particle beams, including electrons, ions and neutral particles, may be used as well as electromagnetic radiation.

  14. Virtually distortion-free imaging system for large field, high resolution lithography using electrons, ions or other particle beams

    DOEpatents

    Hawryluk, A.M.; Ceglio, N.M.

    1993-01-12

    Virtually distortion free large field high resolution imaging is performed using an imaging system which contains large field distortion or field curvature. A reticle is imaged in one direction through the optical system to form an encoded mask. The encoded mask is then imaged back through the imaging system onto a wafer positioned at the reticle position. Particle beams, including electrons, ions and neutral particles, may be used as well as electromagnetic radiation.

  15. Application of high-resolution photoelectron spectroscopy: Vibrational resolved C 1s and O 1s spectra of CO adsorbed on Ni(100)

    SciTech Connect

    Foehlisch, A.; Nilsson, A.; Martensson, N.

    1997-04-01

    There are various effects which determine the line shape of a core-level electron spectrum. These are due to the finite life-time of the core hole, inelastic scattering of the outgoing photoelectron, electronic shake-up and shake-off processes and vibrational excitations. For free atoms and molecules the different contributions to the observed line shapes can often be well separated. For solids, surfaces and adsorbates the line shapes are in general much broader and it has in the past been assumed that no separation of the various contributions can be made. In the present report the authors will show that this is indeed not the case. Surprisingly, the vibrational fine structure of CO adsorbed on Ni(100) can be resolved in the C 1s and O 1s electron spectra. This was achieved by the combination of highly monochromatized soft X-rays from B18.0 with a high resolution Scienta 200 mm photoelectron spectrometer. X-ray photoelectron spectroscopy (XPS) with tunable excitation energy yields as a core level spectroscopy atomic and site-specific information. The presented measurements allow for a determination of internuclear distances and potential energy curves in corehole ionized adsorbed molecules. The authors analysis of the c(2x2) phase CO/Ni(100) on {open_quotes}top{close_quotes} yielded a vibrational splitting of 217 +/- 2 meV for C 1s ionization. For O 1s ionization a splitting of 173 +/- 8 meV was found.

  16. Detecting ring systems around exoplanets using high resolution spectroscopy: the case of 51 Pegasi b

    NASA Astrophysics Data System (ADS)

    Santos, N. C.; Martins, J. H. C.; Boué, G.; Correia, A. C. M.; Oshagh, M.; Figueira, P.; Santerne, A.; Sousa, S. G.; Melo, C.; Montalto, M.; Boisse, I.; Ehrenreich, D.; Lovis, C.; Pepe, F.; Udry, S.; Garcia Munoz, A.

    2015-11-01

    Aims: In this paper we explore the possibility that the recently detected reflected light signal of 51 Peg b could be caused by a ring system around the planet. Methods: We use a simple model to compare the observed signal with the expected signal from a short-period giant planet with rings. We also use simple dynamical arguments to understand the possible geometry of such a system. Results: We provide evidence that, to a good approximation, the observations are compatible with the signal expected from a ringed planet, assuming that the rings are non-coplanar with the orbital plane. However, based on dynamical arguments, we also show that this configuration is unlikely. In the case of coplanar rings we then demonstrate that the incident flux on the ring surface is about 2% the value received by the planet, a value that renders the ring explanation unlikely. Conclusions: The results suggest that the signal observed cannot in principle be explained by a planet+ring system. We discuss, however, the possibility of using reflected light spectra to detect and characterize the presence of rings around short-period planets. Finally, we show that ring systems could have already been detected by photometric transit campaigns, but their signal could have been easily misinterpreted by the expected light curve of an eclipsing binary. Based on observations collected at ESO facilities under program 091.C-0271 (with the HARPS spectrograph at the ESO 3.6-m telescope, La Silla-Paranal Observatory).Appendices are available in electronic form at http://www.aanda.org

  17. New generation NMR bioreactor coupled with high-resolution NMR spectroscopy leads to novel discoveries in Moorella thermoaceticum metabolic profiles

    SciTech Connect

    Xue, Junfeng; Isern, Nancy G.; Ewing, R James; Liyu, Andrey V.; Sears, Jesse A.; Knapp, Harlan; Iversen, Jens; Sisk, Daniel R.; Ahring, Birgitte K.; Majors, Paul D.

    2014-06-20

    An in-situ nuclear magnetic resonance (NMR) bioreactor was developed and employed to monitor microbial metabolism under batch-growth conditions in real time. We selected Moorella thermoacetica ATCC 49707 as a test case. M. thermoacetica (formerly Clostridium thermoaceticum) is a strictly anaerobic, thermophilic, acetogenic, gram-positive bacterium with potential for industrial production of chemicals. The metabolic profiles of M. thermoacetica were characterized during growth in batch mode on xylose (a component of lignocellulosic biomass) using the new generation NMR bioreactor in combination with high-resolution, high sensitivity NMR (HR-NMR) spectroscopy. In-situ NMR measurements were performed using water-suppressed H-1 NMR spectroscopy at an NMR frequency of 500 MHz, and aliquots of the bioreactor contents were taken for 600 MHz HR-NMR spectroscopy at specific intervals to confirm metabolite identifications and expand metabolite coverage. M. thermoacetica demonstrated the metabolic potential to produce formate, ethanol and methanol from xylose, in addition to its known capability of producing acetic acid. Real-time monitoring of bioreactor conditions showed a temporary pH decrease, with a concomitant increase in formic acid during exponential growth. Fermentation experiments performed outside of the magnet showed that the strong magnetic field employed for NMR detection did not significantly affect cell metabolism. Use of the in-situ NMR bioreactor facilitated monitoring of the fermentation process in real time, enabling identification of intermediate and end-point metabolites and their correlation with pH and biomass produced during culture growth. Real-time monitoring of culture metabolism using the NMR bioreactor in combination with the HR-NMR spectroscopy will allow optimization of the metabolism of microorganisms producing valuable bioproducts.

  18. In vivo high-resolution localized 1H MR spectroscopy in the awake rat brain at 7 Tesla

    PubMed Central

    Xu, Su; Ji, Yadong; Chen, Xi; Yang, Yihong; Gullapalli, Rao; Masri, Radi

    2012-01-01

    In vivo localized high-resolution 1H MR spectroscopy was performed in multiple brain regions without the use of anesthetic or paralytic agents in awake head-restrained rats that were previously trained in a simulated MRI environment using a 7 Tesla MR system. Spectra were obtained using a short echo time single-voxel point-resolved spectroscopy technique with voxel size ranging from 27–32.4 mm3 in the regions of anterior cingulate cortex, somatosensory cortex, hippocampus, and thalamus. Quantifiable spectra, without the need for any additional post-processing to correct for possible motion were reliably detected including the metabolites of interest such as γ-aminobutyric acid, glutamine, glutamate, myo-inositol, N-acetylaspartate, taurine, glycerophosphorylcholine/phosphorylcholine, creatine/phosphocreatine, and N-acetylaspartate/N-acetylaspartylglutamate. The spectral quality was comparable to spectra from anesthetized animals with sufficient spectral dispersion to separate metabolites such as glutamine and glutamate. Results from this study suggest that reliable information on major metabolites can be obtained without the confounding effects of anesthesia or paralytic agents in rodents. PMID:22570299

  19. The SEGUE Stellar Parameter Pipeline. III. Comparison with High-Resolution Spectroscopy of SDSS/SEGUE Field Stars

    SciTech Connect

    Allende Prieto, C.; Sivarani, T.; Beers, T.C.; Lee, Y.S.; Koesterke, L.; Shetrone, M.; Sneden, C.; Lambert, D.L.; Wilhelm, R.; Rockosi, C.M.; Lai, D.

    2007-10-01

    The authors report high-resolution spectroscopy of 125 field stars previously observed as part of the Sloan Digital Sky Survey and its program for Galactic studies, the Sloan Extension for Galactic Understanding and Exploration (SEGUE). These spectra are used to measure radial velocities and to derive atmospheric parameters, which they compare with those reported by the SEGUE Stellar Parameter Pipeline (SSPP). The SSPP obtains estimates of these quantities based on SDSS ugriz photometry and low-resolution (R {approx} 2000) spectroscopy. For F- and G-type stars observed with high signal-to-noise ratios (S/N), they empirically determine the typical random uncertainties in the radial velocities, effective temperatures, surface gravities, and metallicities delivered by the SSPP to be 2.4 km s{sup -1}, 130 K (2.2%), 0.21 dex, and 0.11 dex, respectively, with systematic uncertainties of a similar magnitude in the effective temperatures and metallicities. They estimate random errors for lower S/N spectra based on numerical simulations.

  20. Structural model of homogeneous As–S glasses derived from Raman spectroscopy and high-resolution XPS

    SciTech Connect

    Golovchak, R.; Shpotyuk, O.; Mccloy, J. S.; Riley, B. J.; Windisch, C. F.; Sundaram, S. K.; Kovalskiy, A.; Jain, H.

    2010-11-28

    The structure of homogeneous bulk As x S100- x (25 ≤ x ≤ 42) glasses, prepared by the conventional rocking–melting–quenching method, was investigated using high-resolution X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. It is shown that the main building blocks of their glass networks are regular AsS3/2 pyramids and sulfur chains. In the S-rich domain, the existence of quasi-tetrahedral (QT) S = As(S1/2)3 units is deduced from XPS data, but with a concentration not exceeding ~3–5% of total atomic sites. Therefore, QT units do not appear as primary building blocks of the glass backbone in these materials, and an optimally-constrained network may not be an appropriate description for glasses when x < 40. Finally, it is shown that, in contrast to Se-based glasses, the ‘chain-crossing’ model is only partially applicable to sulfide glasses.

  1. 15N/14N Ratio Determination in the ISM with Herschel with High Resolution Spectroscopy of Nitrogen Radicals

    NASA Astrophysics Data System (ADS)

    Margulès, L.; Bailleux, S.; Wlodarczak, G.; Pirali, O.; Martin-Drumel, M.-A.; Roy, P.; Roueff, E.; Gerin, M.

    2011-06-01

    The very high resolution of the HIFI instrument (134 kHz-1MHz) on board of Herschel needs very accurate laboratory measurements to detect unambiguously the signature of stable and unstable molecular species. Concerning the pure rotation spectra of new species, and particularly of open shell molecules, the first prediction could be far away and up to few hundred MHz. The 15N/14N ratio is not well measured in the ISM. However, the 15N/14N in the isotopomers is a potential tracer of the formation processes and the possible link with cometary molecules. Recent measurements include the detection of 15NH_2D N15NH+ and 15NH_3. The NH and NH_2 species are the simplest nitrogen radicals and are intermediate products in the NH_3 synthesis. They have been easily detected by Herschel and it therefore is interesting to now search for 15NH and 15NH_2. No spectrocopic data have been reported for these two radicals up to now. We present here the studies with high resolution spectroscopy in the THz range. The high sensitivity and the wide range of Synchrotron (0.6-6 THz) was essential to improve the prediction of the spectra of these two species in order to measure them in Lille (0.6-1 THz) with both a higher accuracy and resolution. The combined studies now give the most accurate predictions. ISM searches on these radicals are in progress in the HERSCHEL spectra. This work is supported by the Programme National de Physico-Chimie du Milieu Interstellaire (PCMI-CNRS) M. Gerin, N. Marcellino, N. Biver, et al., Astron. & Astrophys. 498 (2009) 9. L. Bizzochi, P. Caselli, and L. Dore, Astron. & Astrophys. 510 (2010) L5. D. C. Lis, A. Wooten, M. Gerin and E. Roueff, Astrophys. J. 710 (2010) L49.

  2. New frontiers of high-resolution spectroscopy: Probing the atmospheres of brown dwarfs and reflected light from exoplanets

    NASA Astrophysics Data System (ADS)

    Birkby, Jayne; Alonso, Roi; Brogi, Matteo; Charbonneau, David; Fortney, Jonathan; Hoyer, Sergio; Johnson, John Asher; de Kok, Remco; Lopez-Morales, Mercedes; Montet, Ben; Snellen, Ignas

    2015-12-01

    High-resolution spectroscopy (R>25,000) is a robust and powerful tool in the near-infrared characterization of exoplanet atmospheres. It has unambiguously revealed the presence of carbon monoxide and water in several hot Jupiters, measured the rotation rate of beta Pic b, and suggested the presence of fast day-to-night winds in one atmosphere. The method is applicable to transiting, non-transiting, and directly-imaged planets. It works by resolving broad molecular bands in the planetary spectrum into a dense, unique forest of individual lines and tracing them directly by their Doppler shift, while the star and tellurics remain essentially stationary. I will focus on two ongoing efforts to expand this technique. First, I will present new results on 51 Peg b revealing its infrared atmospheric compositional properties, then I will discuss an ongoing optical HARPS-N/TNG campaign (due mid October 2015) to obtain a detailed albedo spectrum of 51 Peg b at 387-691 nm in bins of 50nm. This spectrum would provide strong constraints on the previously claimed high albedo and potentially cloudy nature of this planet. Second, I will discuss preliminary results from Keck/NIRSPAO observations (due late September 2015) of LHS 6343 C, a 1000 K transiting brown dwarf with an M-dwarf host star. The high-resolution method converts this system into an eclipsing, double-lined spectroscopic binary, thus allowing dynamical mass and radius estimates of the components, free from astrophysical assumptions. Alongside probing the atmospheric composition of the brown dwarf, these data would provide the first model-independent study of the bulk properties of an old brown dwarf, with masses accurate to <5%, placing a crucial constraint on brown dwarf evolution models.

  3. High resolution spectroscopy over lambda lambda 8500-8750 Å for GAIA. IV. Extending the cool MK stars sample

    NASA Astrophysics Data System (ADS)

    Marrese, P. M.; Boschi, F.; Munari, U.

    2003-08-01

    A library of high resolution spectra of MK standard and reference stars, observed in support to the GAIA mission, is presented. The aim of this paper is to integrate the MK mapping of Paper I of this series as well as to consider stars over a wider range of metallicities. Radial velocities are measured for all the target stars. The spectra are available in electronic form (ASCII format) at CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/406/995 and from the web page http://ulisse.pd.astro.it/MoreMK/, where further bibliographical information for the target stars is given.

  4. High-resolution, high-throughput imaging with a multibeam scanning electron microscope.

    PubMed

    Eberle, A L; Mikula, S; Schalek, R; Lichtman, J; Knothe Tate, M L; Zeidler, D

    2015-08-01

    Electron-electron interactions and detector bandwidth limit the maximal imaging speed of single-beam scanning electron microscopes. We use multiple electron beams in a single column and detect secondary electrons in parallel to increase the imaging speed by close to two orders of magnitude and demonstrate imaging for a variety of samples ranging from biological brain tissue to semiconductor wafers.

  5. High-resolution, label-free imaging of living cells with direct electron-beam-excitation-assisted optical microscopy.

    PubMed

    Nawa, Yasunori; Inami, Wataru; Lin, Sheng; Kawata, Yoshimasa; Terakawa, Susumu

    2015-06-01

    High spatial resolution microscope is desired for deep understanding of cellular functions, in order to develop medical technologies. We demonstrate high-resolution imaging of un-labelled organelles in living cells, in which live cells on a 50 nm thick silicon nitride membrane are imaged by autofluorescence excited with a focused electron beam through the membrane. Electron beam excitation enables ultrahigh spatial resolution imaging of organelles, such as mitochondria, nuclei, and various granules. Since the autofluorescence spectra represent molecular species, this microscopy allows fast and detailed investigations of cellular status in living cells.

  6. In situ high-resolution transmission electron microscopy study of interfacial reactions of Cu thin films on amorphous silicon

    NASA Astrophysics Data System (ADS)

    Lee, Sung Bo; Choi, Duck-Kyun; Phillipp, Fritz; Jeon, Kyung-Sook; Kim, Chang Kyung

    2006-02-01

    Interfacial reactions of Cu with amorphous silicon (a-Si) in the Cu /a-Si/glass system are studied by in situ high-resolution transmission electron microscopy at 550°C. Various Cu silicides, such as η-Cu3Si, Cu15Si4, and Cu5Si, and Cu particles are observed. The formation of the Cu particles can be attributed to a heating effect from electron beam irradiation. Around the Cu silicides, crystallization of a-Si occurs. Around the Cu particles, however, crystallization does not occur. Crystallization appears to be enhanced by Cu dissolved in a-Si.

  7. Properties of the Open Cluster Tombaugh 1 from High-resolution Spectroscopy and uvbyCaHβ Photometry

    NASA Astrophysics Data System (ADS)

    Sales Silva, João V.; Carraro, Giovanni; Anthony-Twarog, Barbara J.; Moni Bidin, Christian; Costa, Edgardo; Twarog, Bruce A.

    2016-01-01

    Open clusters can be the key to deepening our knowledge on various issues involving the structure and evolution of the Galactic disk and details of stellar evolution because a cluster’s properties are applicable to all its members. However, the number of open clusters with detailed analysis from high-resolution spectroscopy or precision photometry imposes severe limitations on studies of these objects. To expand the number of open clusters with well-defined chemical abundances and fundamental parameters, we investigate the poorly studied, anticenter open cluster Tombaugh 1. Using precision uvbyCaHβ photometry and high-resolution spectroscopy, we derive the cluster’s reddening, obtain photometric metallicity estimates, and, for the first time, present a detailed abundance analysis of 10 potential cluster stars (nine clump stars and one Cepheid). Using the radial position from the cluster center and multiple color indices, we have isolated a sample of unevolved, probable single-star members of Tombaugh 1. From 51 stars, the cluster reddening is found to be E(b-y) = 0.221 ± 0.006 or E(B-V) = 0.303 ± 0.008, where the errors refer to the internal standard errors of the mean. The weighted photometric metallicity from m1 and hk is [Fe/H] = -0.10 ± 0.02, while a match to the Victoria-Regina Strömgren isochrones leads to an age of 0.95 ± 0.10 Gyr and an apparent modulus of (m-M) = 13.10 ± 0.10. Radial velocities identify six giants as probable cluster members, and the elemental abundances of Fe, Na, Mg, Al, Si, Ca, Ti, Cr, Ni, Y, Ba, Ce, and Nd have been derived for both the cluster and the field stars. Tombaugh 1 appears to be a typical inner thin disk, intermediate-age open cluster of slightly subsolar metallicity, located just beyond the solar circle, with solar elemental abundance ratios except for the heavy s-process elements, which are a factor of two above solar. Its metallicity is consistent with a steep metallicity gradient in the galactocentric region

  8. Electron spectroscopy analysis

    NASA Technical Reports Server (NTRS)

    Gregory, John C.

    1992-01-01

    The Surface Science Laboratories at the University of Alabama in Huntsville (UAH) are equipped with x-ray photoelectron spectroscopy (XPS or ESCA) and Auger electron spectroscopy (AES) facilities. These techniques provide information from the uppermost atomic layers of a sample, and are thus truly surface sensitive. XPS provides both elemental and chemical state information without restriction on the type of material that can be analyzed. The sample is placed into an ultra high vacuum (UHV) chamber and irradiated with x-rays which cause the ejection of photoelectrons from the sample surface. Since x-rays do not normally cause charging problems or beam damage, XPS is applicable to a wide range of samples including metals, polymers, catalysts, and fibers. AES uses a beam of high energy electrons as a surface probe. Following electronic rearrangements within excited atoms by this probe, Auger electrons characteristic of each element present are emitted from the sample. The main advantage of electron induced AES is that the electron beam can be focused down to a small diameter and localized analysis can be carried out. On the rastering of this beam synchronously with a video display using established scanning electron microscopy techniques, physical images and chemical distribution maps of the surface can be produced. Thus very small features, such as electronic circuit elements or corrosion pits in metals, can be investigated. Facilities are available on both XPS and AES instruments for depth-profiling of materials, using a beam of argon ions to sputter away consecutive layers of material to reveal sub-surface (and even semi-bulk) analyses.

  9. High resolution infrared spectroscopy from space: A preliminary report on the results of the Atmospheric Trace Molecule Spectroscopy (ATMOS) experiment on Spacelab 3

    NASA Technical Reports Server (NTRS)

    Farmer, Crofton B.; Raper, Odell F.

    1987-01-01

    The ATMOS (Atmospheric Trace Molecule Spectroscopy) experiment has the broad purpose of investigating the physical structure, chemistry, and dynamics of the upper atmosphere through the study of the distributions of the neutral minor and trace constituents and their seasonal and long-term variations. The technique used is high-resolution infrared absorption spectroscopy using the Sun as the radiation source, observing the changes in the transmission of the atmosphere as the line-of-sight from the Sun to the spacecraft penetrates the atmosphere close to the Earth's limb at sunrise and sunset. During these periods, interferograms are generated at the rate of one each second which yield, when transformed, high resolution spectra covering the 2.2 to 16 micron region of the infrared. Twenty such occultations were recorded during the Spacelab 3 flight, which have produced concentration profiles for a large number of minor and trace upper atmospheric species in both the Northern and Southern Hemispheres. Several of these species have not previously been observed in spectroscopic data. The data reduction and analysis procedures used following the flight are discussed; a number of examples of the spectra obtained are shown, and a bar graph of the species detected thus far in the analysis is given which shows the altitude ranges for which concentration profiles were retrieved.

  10. High resolution soft x-ray spectroscopy of low Z K-shell emission from laser-produced plasmas

    SciTech Connect

    Dunn, J; Magee, E W; Shepherd, R; Chen, H; Hansen, S B; Moon, S J; Brown, G V; Gu, M; Beiersdorfer, P; Purvis, M A

    2008-05-21

    A large radius, R = 44.3 m, High Resolution Grating Spectrometer (HRGS) with 2400 line/mm variable line spacing has been designed for laser-produced plasma experiments conducted at the Lawrence Livermore National Laboratory Jupiter Laser Facility. The instrument has been run with a low-noise, charge-coupled device detector to record high signal-to-noise spectra in the 10-50 {angstrom} wavelength range. The instrument can be run with a 10-20 {micro}m wide slit to achieve the best spectral resolving power, approaching 1000 and similar to crystal spectrometers at 12-20 {angstrom}, or in slitless operation with a small symmetrical emission source. We describe preliminary spectra emitted from various H-like and He-like low Z ion plasmas heated by 100-500 ps (FWHM), 527 nm wavelength laser pulses. This instrument can be developed as a useful spectroscopy platform relevant to laboratory-based astrophysics as well as high energy density plasma studies.

  11. Vibrational spectral signatures of crystalline cellulose using high resolution broadband sum frequency generation vibrational spectroscopy (HR-BB-SFG-VS)

    DOE PAGES

    Zhang, Libing; Lu, Zhou; Velarde, Luis; ...

    2015-03-03

    Both the C–H and O–H region spectra of crystalline cellulose were studied using the sub-wavenumber high-resolution broadband sum frequency generation vibrational spectroscopy (HR-BB-SFG-VS) for the first time. The resolution of HR-BB-SFG-VS is about 10-times better than conventional scanning SFG-VS and has the capability of measuring the intrinsic spectral lineshape and revealing many more spectral details. With HR-BB-SFG-VS, we found that in cellulose samples from different sources, including Avicel and cellulose crystals isolated from algae Valonia (Iα) and tunicates (Iβ), the spectral signatures in the O–H region were unique for the two allomorphs, i.e. Iα and Iβ, while the spectral signaturesmore » in the C–H regions varied in all samples examined. Even though the origin of the different spectral signatures of the crystalline cellulose in the O–H and C–H vibrational frequency regions are yet to be correlated to the structure of cellulose, these results lead to new spectroscopic methods and opportunities to classify and to understand the basic crystalline structures, as well as variations in polymorphism of the crystalline cellulose.« less

  12. Evaluating Human Breast Ductal Carcinomas with High-Resolution Magic-Angle Spinning Proton Magnetic Resonance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Cheng, Leo Ling; Chang, I.-Wen; Smith, Barbara L.; Gonzalez, R. Gilberto

    1998-11-01

    We report the results of a study of human breast ductal carcinomas, conducted by using high resolution magic angle spinning proton magnetic resonance spectroscopy (HRMAS 1HMRS). This recently developed spectroscopic technique can measure tissue metabolism from intact pathological specimens and identify tissue biochemical changes, which closely correspond to tumorin vivostate. This procedure objectively indicates diagnostic parameters, independent of the skill and experience of the investigator, and has the potential to reduce the sampling errors inherently associated with procedures of conventional histopathology. In this study, we measured 19 cases of female ductal carcinomas. Our results demonstrate that: (1) highly resolved spectra of intact specimens of human breast ductal carcinomas can be obtained; (2) carcinoma-free tissues and carcinomas are distinguishable by alterations in the intensities and the spin-spin relaxation time T2 of cellular metabolites; and (3) tumor metabolic markers, such as phosphocholine, lactate, and lipids, may correlate with the histopathological grade determined from evaluation of the adjacent specimen. Our results suggest that biochemical markers thus measured may function as a valuable adjunct to histopathology to improve the accuracy of and reduce the time frame required for the diagnosis of human breast cancer.

  13. Vibrational Spectral Signatures of Crystalline Cellulose Using High Resolution Broadband Sum Frequency Generation Vibrational Spectroscopy (HR-BB-SFG-VS)

    SciTech Connect

    Zhang, Libing; Lu, Zhou; Velarde Ruiz Esparza, Luis A.; Fu, Li; Pu, Yunqiao; Ding, Shi-You; Ragauskas, Art J.; Wang, Hongfei; Yang, Bin

    2015-03-03

    Here we reported the first sub-wavenumber high-resolution broadband sum frequency generation vibrational spectroscopy (HR-BB-SFG-VS) study on both the C-H and O-H region spectra of crystalline cellulose. HR-BB-SFG-VS has about 10 times better resolution than the conventional scanning SFG-VS and is known to be able to measure the intrinsic spectral lineshape and to resolve much more spectral details. With HR-BB-SFG-VS, we found that in cellulose from different sources, including Avicel and cellulose crystals isolated from algae Valonia (Iα) and tunicates (Iβ), the spectral signatures in the OH regions were unique for different allomorphs, i.e. Iα and Iβ, while the spectral signatures in the C-H regions varied in all samples examined. Even though the origin of the different behaviors of the crystalline cellulose in the O-H and C-H vibrational frequency regions is yet to be correlated to the structure of cellulose, these results provided new spectroscopic methods and opportunities to classify and understand the basic crystalline structure, as well as variations, in polymorphism of the crystalline cellulose structure.

  14. Evaluation of Cancer Metabolomics Using ex vivo High Resolution Magic Angle Spinning (HRMAS) Magnetic Resonance Spectroscopy (MRS)

    PubMed Central

    Fuss, Taylor L.; Cheng, Leo L.

    2016-01-01

    According to World Health Organization (WHO) estimates, cancer is responsible for more deaths than all coronary heart disease or stroke worldwide, serving as a major public health threat around the world. High resolution magic angle spinning (HRMAS) magnetic resonance spectroscopy (MRS) has demonstrated its usefulness in the identification of cancer metabolic markers with the potential to improve diagnosis and prognosis for the oncology clinic, due partially to its ability to preserve tissue architecture for subsequent histological and molecular pathology analysis. Capable of the quantification of individual metabolites, ratios of metabolites, and entire metabolomic profiles, HRMAS MRS is one of the major techniques now used in cancer metabolomic research. This article reviews and discusses literature reports of HRMAS MRS studies of cancer metabolomics published between 2010 and 2015 according to anatomical origins, including brain, breast, prostate, lung, gastrointestinal, and neuroendocrine cancers. These studies focused on improving diagnosis and understanding patient prognostication, monitoring treatment effects, as well as correlating with the use of in vivo MRS in cancer clinics. PMID:27011205

  15. Evaluation of Cancer Metabolomics Using ex vivo High Resolution Magic Angle Spinning (HRMAS) Magnetic Resonance Spectroscopy (MRS).

    PubMed

    Fuss, Taylor L; Cheng, Leo L

    2016-03-22

    According to World Health Organization (WHO) estimates, cancer is responsible for more deaths than all coronary heart disease or stroke worldwide, serving as a major public health threat around the world. High resolution magic angle spinning (HRMAS) magnetic resonance spectroscopy (MRS) has demonstrated its usefulness in the identification of cancer metabolic markers with the potential to improve diagnosis and prognosis for the oncology clinic, due partially to its ability to preserve tissue architecture for subsequent histological and molecular pathology analysis. Capable of the quantification of individual metabolites, ratios of metabolites, and entire metabolomic profiles, HRMAS MRS is one of the major techniques now used in cancer metabolomic research. This article reviews and discusses literature reports of HRMAS MRS studies of cancer metabolomics published between 2010 and 2015 according to anatomical origins, including brain, breast, prostate, lung, gastrointestinal, and neuroendocrine cancers. These studies focused on improving diagnosis and understanding patient prognostication, monitoring treatment effects, as well as correlating with the use of in vivo MRS in cancer clinics.

  16. High-resolution broadband spectroscopy using externally dispersed interferometry at the Hale telescope: Part 1, data analysis and results

    SciTech Connect

    Erskine, David J.; Edelstein, Jerry; Wishnow, Edward H.; Sirk, Martin; Muirhead, Philip S.; Muterspaugh, Matthew W.; Lloyd, James P.; Ishikawa, Yuzo; McDonald, Eliza A.; Shourt, William V.; Vanderburg, Andrew M.

    2016-05-27

    High-resolution broadband spectroscopy at near-infrared wavelengths (950 to 2450 nm) has been performed using externally dispersed interferometry (EDI) at the Hale telescope at Mt. Palomar. Observations of stars were performed with the “TEDI” interferometer mounted within the central hole of the 200-in. primary mirror in series with the comounted TripleSpec near-infrared echelle spectrograph. These are the first multidelay EDI demonstrations on starlight, as earlier measurements used a single delay or laboratory sources. We demonstrate very high (10×) resolution boost, from original 2700 to 27,000 with current set of delays (up to 3 cm), well beyond the classical limits enforced by the slit width and detector pixel Nyquist limit. Significantly, the EDI used with multiple delays rather than a single delay as used previously yields an order of magnitude or more improvement in the stability against native spectrograph point spread function (PSF) drifts along the dispersion direction. We observe a dramatic (20×) reduction in sensitivity to PSF shift using our standard processing. A recently realized method of further reducing the PSF shift sensitivity to zero is described theoretically and demonstrated in a simple simulation which produces a 350× times reduction. We demonstrate superb rejection of fixed pattern noise due to bad detector pixels—EDI only responds to changes in pixel intensity synchronous to applied dithering. This part 1 describes data analysis, results, and instrument noise. Lastly, a section on theoretical photon limited sensitivity is in a companion paper, part 2.

  17. Observation of surface structure of 1-alkyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide using high-resolution Rutherford backscattering spectroscopy

    NASA Astrophysics Data System (ADS)

    Nakajima, Kaoru; Ohno, Atsushi; Hashimoto, Hiroki; Suzuki, Motofumi; Kimura, Kenji

    2010-07-01

    The surface structures of 1-alkyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([CnMIM][TFSI], n=2,4,6) are studied by high-resolution Rutherford backscattering spectroscopy. The average composition of the surface molecular layer is very close to the stoichiometric composition, showing that neither ion is enriched in the surface layer. A detailed analysis indicates that both cations and anions have preferential molecular orientations at the surface. The alkyl chains of the [CnMIM] cations protrude to the vacuum and the CF3 groups of the [TFSI] anions are also pointing toward the vacuum. While the orientation of the [TFSI] anion becomes weaker with increasing alkyl-chain length, the protrusion of the alkyl chain occurs irrespective of the chain length. It was also found that the N(SO2)2 moiety is located nearly at the same depth as the imidazolium ring, suggesting that one of oxygen atoms in [TFSI] is bonded to the hydrogen of the C2 carbon atom of the imidazolium ring.

  18. Surface structures of equimolar mixtures of imidazolium-based ionic liquids using high-resolution Rutherford backscattering spectroscopy

    NASA Astrophysics Data System (ADS)

    Nakajima, Kaoru; Oshima, Shinichi; Suzuki, Motofumi; Kimura, Kenji

    2012-11-01

    Surface structures of equimolar mixtures of imidazolium-based ionic liquids (ILs) having a common cation (1-butyl-3-methylimidazolium ([C4MIM]) or 1-hexyl-3-methylimidazolium ([C6MIM])) and different anions (bis(trifluoromethanesulfonyl)imide ([TFSI]), hexafluorophosphate ([PF6]) or chlorine) are studied using high-resolution Rutherford backscattering spectroscopy (HRBS). Both cations and anions have the same preferential orientations at the surface as in the pure ILs. In the mixture, the larger anion is located shallower than the smaller anion. The [TFSI] anion is slightly enriched at the surface relative to [PF6] with coverage of ~ 60% for the equimolar mixtures of [C4(6)MIM] [TFSI] and [C4(6)MIM] [PF6]. No surface segregation is observed for [C6MIM] [TFSI]0.5[Cl]0.5 and [C6MIM] [PF6]0.5[Cl]0.5. These results are different from the recent TOF-SIMS measurement where very strong surface segregation of [TFSI] was concluded for the mixture of [C4MIM] [TFSI] and [C4MIM] [PF6].

  19. Observation of surface structure of 1-alkyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide using high-resolution Rutherford backscattering spectroscopy.

    PubMed

    Nakajima, Kaoru; Ohno, Atsushi; Hashimoto, Hiroki; Suzuki, Motofumi; Kimura, Kenji

    2010-07-28

    The surface structures of 1-alkyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([C(n)MIM][TFSI], n=2,4,6) are studied by high-resolution Rutherford backscattering spectroscopy. The average composition of the surface molecular layer is very close to the stoichiometric composition, showing that neither ion is enriched in the surface layer. A detailed analysis indicates that both cations and anions have preferential molecular orientations at the surface. The alkyl chains of the [C(n)MIM] cations protrude to the vacuum and the CF(3) groups of the [TFSI] anions are also pointing toward the vacuum. While the orientation of the [TFSI] anion becomes weaker with increasing alkyl-chain length, the protrusion of the alkyl chain occurs irrespective of the chain length. It was also found that the N(SO(2))(2) moiety is located nearly at the same depth as the imidazolium ring, suggesting that one of oxygen atoms in [TFSI] is bonded to the hydrogen of the C(2) carbon atom of the imidazolium ring.

  20. High resolution soft x-ray spectroscopy of low Z K-shell emission from laser-produced plasmas.

    PubMed

    Dunn, J; Magee, E W; Shepherd, R; Chen, H; Hansen, S B; Moon, S J; Brown, G V; Gu, M-F; Beiersdorfer, P; Purvis, M A

    2008-10-01

    A large radius, R=44.3 m, high resolution grating spectrometer (HRGS) with 2400 lines/mm variable line spacing has been designed for laser-produced plasma experiments conducted at the Lawrence Livermore National Laboratory Jupiter Laser Facility. The instrument has been run with a low-noise, charge-coupled device detector to record high signal-to-noise spectra in the 10-50 A wavelength range. The instrument can be run with a 10-20 microm wide slit to achieve the best spectral resolving power, approaching 1000 and similar to crystal spectrometers at 12-20 A, or in slitless operation with a small symmetrical emission source. We describe preliminary spectra emitted from various H-like and He-like low Z ion plasmas heated by 100-500 ps (full width at half maximum), 527 nm wavelength laser pulses. This instrument can be developed as a useful spectroscopy platform relevant to laboratory-based astrophysics as well as high energy density plasma studies.

  1. Vibrational spectral signatures of crystalline cellulose using high resolution broadband sum frequency generation vibrational spectroscopy (HR-BB-SFG-VS)

    SciTech Connect

    Zhang, Libing; Lu, Zhou; Velarde, Luis; Fu, Li; Pu, Yunqiao; Ding, Shi-You; Ragauskas, Arthur; Wang, Hong-Fei; Yang, Bin

    2015-03-03

    Both the C–H and O–H region spectra of crystalline cellulose were studied using the sub-wavenumber high-resolution broadband sum frequency generation vibrational spectroscopy (HR-BB-SFG-VS) for the first time. The resolution of HR-BB-SFG-VS is about 10-times better than conventional scanning SFG-VS and has the capability of measuring the intrinsic spectral lineshape and revealing many more spectral details. With HR-BB-SFG-VS, we found that in cellulose samples from different sources, including Avicel and cellulose crystals isolated from algae Valonia (Iα) and tunicates (Iβ), the spectral signatures in the O–H region were unique for the two allomorphs, i.e. Iα and Iβ, while the spectral signatures in the C–H regions varied in all samples examined. Even though the origin of the different spectral signatures of the crystalline cellulose in the O–H and C–H vibrational frequency regions are yet to be correlated to the structure of cellulose, these results lead to new spectroscopic methods and opportunities to classify and to understand the basic crystalline structures, as well as variations in polymorphism of the crystalline cellulose.

  2. High-resolution line-shape spectroscopy during a laser pulse based on Dual-Broad-Band-CARS interferometry

    SciTech Connect

    Vereschagin, Konstantin A; Vereschagin, Alexey K; Smirnov, Valery V; Stelmakh, O M; Fabelinskii, V I; Clauss, W; Klimenko, D N; Oschwald, M E-mail: Al_Vereshchagin@mail.r E-mail: stelmakh@kapella.gpi.r

    2006-07-31

    A high-resolution spectroscopic method is developed for recording Raman spectra of molecular transitions in transient objects during a laser pulse with a resolution of {approx}0.1 cm{sup -1}. The method is based on CARS spectroscopy using a Fabry-Perot interferometer for spectral analysis of the CARS signal and detecting a circular interferometric pattern on a two-dimensional multichannel photodetector. It is shown that the use of the Dual-Broad-Band-CARS configuration to obtain the CARS process provides the efficient averaging of the spectral-amplitude noise of the CARS signal generated by a laser pulse and, in combination with the angular integration of the two-dimensional interference pattern, considerably improves the quality of interferograms. The method was tested upon diagnostics of the transient oxygen-hydrogen flame where information on the shapes of spectral lines of the Q-branch of hydrogen molecules required for measuring temperature was simultaneously obtained and used. (special issue devoted to the 90th anniversary of a.m. prokhorov)

  3. Imaging interactions of metal oxide nanoparticles with macrophage cells by ultra-high resolution scanning electron microscopy techniques.

    PubMed

    Plascencia-Villa, Germán; Starr, Clarise R; Armstrong, Linda S; Ponce, Arturo; José-Yacamán, Miguel

    2012-11-01

    Use of engineered metal oxide nanoparticles in a plethora of biological applications and custom products has warned about some possible dose-dependent cytotoxic effects. Macrophages are key components of the innate immune system used to study possible toxic effects and internalization of different nanoparticulate materials. In this work, ultra-high resolution field emission scanning electron microscopy (FE-SEM) was used to offer new insights into the dynamical processes of interaction of nanomaterials with macrophage cells dosed with different concentrations of metal oxide nanoparticles (CeO(2), TiO(2) and ZnO). The versatility of FE-SEM has allowed obtaining a detailed characterization of processes of adsorption and endocytosis of nanoparticles, by using advanced analytical and imaging techniques on complete unstained uncoated cells, including secondary electron imaging, high-sensitive backscattered electron imaging, X-ray microanalysis and stereoimaging. Low voltage BF/DF-STEM confirmed nanoparticle adsorption and internalization into endosomes of CeO(2) and TiO(2), whereas ZnO develop apoptosis after 24 h of interaction caused by dissolution and invasion of cell nucleus. Ultra-high resolution scanning electron microscopy techniques provided new insights into interactions of inorganic nanoparticles with macrophage cells with high spatial resolution.

  4. HIGH-RESOLUTION OPTICAL SPECTROSCOPY OF DY Cen: DIFFUSE INTERSTELLAR BANDS IN A PROTO-FULLERENE CIRCUMSTELLAR ENVIRONMENT?

    SciTech Connect

    Garcia-Hernandez, D. A.; Lambert, David L. E-mail: nkrao@iiap.res.in

    2012-11-01

    We search high-resolution and high-quality VLT/UVES optical spectra of the hot R Coronae Borealis star DY Cen for electronic transitions of the C{sub 60} molecule and diffuse interstellar bands (DIBs). We report the non-detection of the strongest C{sub 60} electronic transitions (e.g., those at {approx}3760, 3980, and 4024 A). The absence of C{sub 60} absorption bands may support recent laboratory results, which show that the {approx}7.0, 8.5, 17.4, and 18.8 {mu}m emission features seen in DY Cen-and other similar objects with polycyclic-aromatic-hydrocarbon-like dominated IR spectra-are attributable to proto-fullerenes or fullerene precursors rather than to C{sub 60}. DIBs toward DY Cen are normal for its reddening; the only exception is the DIB at 6284 A (possibly also the 7223 A DIB) which is found to be unusually strong. We also report the detection of a new broad (FWHM {approx} 2 A) and unidentified feature centered at {approx}4000 A. We suggest that this new band may be related to the circumstellar proto-fullerenes seen at infrared wavelengths.

  5. R-matrix calculations of triplet gerade states of molecular hydrogen and their use for high-resolution spectroscopy

    NASA Astrophysics Data System (ADS)

    Oueslati, H.; Argoubi, F.; Bezzaouia, S.; Telmini, M.; Jungen, Ch.

    2014-03-01

    A variational R-matrix approach combined with multichannel quantum defect theory is used for a computational study of triplet gerade states of H2. Electron-ion reaction (quantum defect) matrices are calculated as functions of internuclear distance and energy for the bound and continuum ranges including singly and doubly excited configurations built on the 1σg (X+2Σg+) and 1σu (A+2Σu+) core states of the H2+ ion. It is shown how these matrices can be reduced to effective quantum defect functions adapted to the analysis of high-resolution spectra in the bound range. These R-matrix effective quantum defects are finally adjusted to the available experimental data [Sprecher et al., J. Phys. Chem. A 117, 9462 (2013), 10.1021/jp311793t], producing agreement with experiment to within 0.5 cm-1, nearly as good as obtained by Sprecher et al. In addition, the R-matrix calculations predict the evolution of the quantum defects for higher energies, in a range extending far into the electronic continuum.

  6. High resolution x-ray absorption and emission spectroscopy of Li x CoO2 single crystals as a function delithiation

    NASA Astrophysics Data System (ADS)

    Simonelli, L.; Paris, E.; Iwai, C.; Miyoshi, K.; Takeuchi, J.; Mizokawa, T.; Saini, N. L.

    2017-03-01

    The effect of delithiation in Li x CoO2 is studied by high resolution Co K-edge x-ray absorption and x-ray emission spectroscopy. Polarization dependence of the x-ray absorption spectra on single crystal samples is exploited to reveal information on the anisotropic electronic structure. We find that the electronic structure of Li x CoO2 is significantly affected by delithiation in which the Co ions oxidation state tending to change from 3+  to 4+. The Co intersite (intrasite) 4p–3d hybridization suffers a decrease (increase) by delithiation. The unoccupied 3d t 2g orbitals with a 1g symmetry, containing substantial O 2p character, hybridize isotropically with Co 4p orbitals and likely to have itinerant character unlike anisotropically hybridized 3d e g orbitals. Such a peculiar electronic structure could have significant effect on the mobility of Li in Li x CoO2 cathode and hence the battery characteristics.

  7. High resolution transmission electron microscopy characterization of fcc --> 9R transformation in nanocrystalline palladium films due to hydriding

    NASA Astrophysics Data System (ADS)

    Amin-Ahmadi, Behnam; Idrissi, Hosni; Delmelle, Renaud; Pardoen, Thomas; Proost, Joris; Schryvers, Dominique

    2013-02-01

    Sputtered nanocrystalline palladium thin films with nanoscale growth twins have been subjected to hydriding cycles. The evolution of the twin boundaries has been investigated using high resolution transmission electron microscopy. Surprisingly, the ∑3{112} incoherent twin boundaries dissociate after hydriding into two phase boundaries bounding a 9R phase. This phase which corresponds to single stacking faults located every three {111} planes in the fcc Pd structure was not expected because of the high stacking fault energy of Pd. This observation is connected to the influence of the Hydrogen on the stacking fault energy of palladium and the high compressive stresses building up during hydriding.

  8. Method and apparatus for a high-resolution three dimensional confocal scanning transmission electron microscope

    DOEpatents

    de Jonge, Niels [Oak Ridge, TN

    2010-08-17

    A confocal scanning transmission electron microscope which includes an electron illumination device providing an incident electron beam propagating in a direction defining a propagation axis, and a precision specimen scanning stage positioned along the propagation axis and movable in at least one direction transverse to the propagation axis. The precision specimen scanning stage is configured for positioning a specimen relative to the incident electron beam. A projector lens receives a transmitted electron beam transmitted through at least part of the specimen and focuses this transmitted beam onto an image plane, where the transmitted beam results from the specimen being illuminated by the incident electron beam. A detection system is placed approximately in the image plane.

  9. The potential for Bayesian compressive sensing to significantly reduce electron dose in high-resolution STEM images.

    PubMed

    Stevens, Andrew; Yang, Hao; Carin, Lawrence; Arslan, Ilke; Browning, Nigel D

    2014-02-01

    The use of high-resolution imaging methods in scanning transmission electron microscopy (STEM) is limited in many cases by the sensitivity of the sample to the beam and the onset of electron beam damage (for example, in the study of organic systems, in tomography and during in situ experiments). To demonstrate that alternative strategies for image acquisition can help alleviate this beam damage issue, here we apply compressive sensing via Bayesian dictionary learning to high-resolution STEM images. These computational algorithms have been applied to a set of images with a reduced number of sampled pixels in the image. For a reduction in the number of pixels down to 5% of the original image, the algorithms can recover the original image from the reduced data set. We show that this approach is valid for both atomic-resolution images and nanometer-resolution studies, such as those that might be used in tomography datasets, by applying the method to images of strontium titanate and zeolites. As STEM images are acquired pixel by pixel while the beam is scanned over the surface of the sample, these postacquisition manipulations of the images can, in principle, be directly implemented as a low-dose acquisition method with no change in the electron optics or the alignment of the microscope itself.

  10. High-resolution, high-throughput imaging with a multibeam scanning electron microscope

    PubMed Central

    EBERLE, AL; MIKULA, S; SCHALEK, R; LICHTMAN, J; TATE, ML KNOTHE; ZEIDLER, D

    2015-01-01

    Electron–electron interactions and detector bandwidth limit the maximal imaging speed of single-beam scanning electron microscopes. We use multiple electron beams in a single column and detect secondary electrons in parallel to increase the imaging speed by close to two orders of magnitude and demonstrate imaging for a variety of samples ranging from biological brain tissue to semiconductor wafers. Lay Description The composition of our world and our bodies on the very small scale has always fascinated people, making them search for ways to make this visible to the human eye. Where light microscopes reach their resolution limit at a certain magnification, electron microscopes can go beyond. But their capability of visualizing extremely small features comes at the cost of a very small field of view. Some of the questions researchers seek to answer today deal with the ultrafine structure of brains, bones or computer chips. Capturing these objects with electron microscopes takes a lot of time – maybe even exceeding the time span of a human being – or new tools that do the job much faster. A new type of scanning electron microscope scans with 61 electron beams in parallel, acquiring 61 adjacent images of the sample at the same time a conventional scanning electron microscope captures one of these images. In principle, the multibeam scanning electron microscope’s field of view is 61 times larger and therefore coverage of the sample surface can be accomplished in less time. This enables researchers to think about large-scale projects, for example in the rather new field of connectomics. A very good introduction to imaging a brain at nanometre resolution can be found within course material from Harvard University on http://www.mcb80x.org/# as featured media entitled ‘connectomics’. PMID:25627873

  11. Nanowire Electron Scattering Spectroscopy

    NASA Technical Reports Server (NTRS)

    Hunt, Brian; Bronikowsky, Michael; Wong, Eric; VonAllmen, Paul; Oyafuso, Fablano

    2009-01-01

    Nanowire electron scattering spectroscopy (NESS) has been proposed as the basis of a class of ultra-small, ultralow-power sensors that could be used to detect and identify chemical compounds present in extremely small quantities. State-of-the-art nanowire chemical sensors have already been demonstrated to be capable of detecting a variety of compounds in femtomolar quantities. However, to date, chemically specific sensing of molecules using these sensors has required the use of chemically functionalized nanowires with receptors tailored to individual molecules of interest. While potentially effective, this functionalization requires labor-intensive treatment of many nanowires to sense a broad spectrum of molecules. In contrast, NESS would eliminate the need for chemical functionalization of nanowires and would enable the use of the same sensor to detect and identify multiple compounds. NESS is analogous to Raman spectroscopy, the main difference being that in NESS, one would utilize inelastic scattering of electrons instead of photons to determine molecular vibrational energy levels. More specifically, in NESS, one would exploit inelastic scattering of electrons by low-lying vibrational quantum states of molecules attached to a nanowire or nanotube.

  12. High Resolution X-Ray Spectroscopy of zeta Puppis with the XMM-Newton Reflection Grating Spectrometer

    NASA Technical Reports Server (NTRS)

    Kahn, S. M.; Leutenegger, M. A.; Cottam, J.; Rauw, G.; Vreux, J.-M.; denBoggende, A. J. F.; Mewe, R.; Guedel, M.

    2000-01-01

    We present the first high resolution X-ray spectrum of the bright O4Ief supergiant star Puppis, obtained with the Reflection Grating Spectrometer on- board XMM-Newton. The spectrum exhibits bright emission lines of hydrogen-like and helium-like ions of nitrogen, oxygen, neon, magnesium, and silicon, as well as neon-like ions of iron. The lines are all significantly resolved, with characteristic velocity widths of order 1000 - 1500 km/ s. The nitrogen lines are especially strong, and indicate that the shocked gas in the wind is mixed with CNO-burned material, as has been previously inferred for the atmosphere of this star from ultraviolet spectra. We find that the forbidden to intercombination line ratios within the helium-like triplets are anomalously low for N VI, O VII, and Ne IX. While this is sometimes indicative of high electron density, we show that in this case, it is instead caused by the intense ultraviolet radiation field of the star. We use this interpretation to derive constraints on the location of the X-ray emitting shocks within the wind that agree remarkably well with current theoretical models for this system.

  13. Two Decades of Advances in High-Resolution Spectroscopy of Large-Amplitude Motions in N-Fold Potential Wells, as Illustrated by Methanol

    NASA Astrophysics Data System (ADS)

    Xu, Li-Hong

    2016-06-01

    Methanol is a simple and intensively studied organic molecule possessing one large-amplitude torsional motion. It has, for nearly a century, been a favorite of researchers in many fields, e.g., instrument builders, for whom methanol is often the first molecule chosen for testing an improved or a newly built instrument (including HIFI, the Heterodyne Instrument for the Far Infrared on board the Herschel space mission); theorists and/or dynamicists studying the challenging effects of a large-amplitude motion coupling with small-amplitude motions to enhance intramolecular vibrational energy redistribution; astronomers who have elevated methanol to their #1 interstellar weed because of its rich and omnipresent spectrum in the interstellar garden, where it serves as a unique probe for diagnosing conditions in star-forming regions; astrochemists studying isotopic ratios as clues to the chemical evolution of the universe; and fundamentalists seeking possible time variation of the proton/electron mass ratio in the standard model; just to name a few. From high-resolution to high-precision spectroscopy, the large-amplitude internal rotation of the methyl top against its OH framework in methanol has never failed to produce new surprises in spectral regions from the microwave all the way to the near IR. The very recent observation of completely unexpected large methanol hyperfine splittings is a vivid testimonial that the large-amplitude torsional motion can still lead us to unexplored landscapes. This talk will focus on the complicated vibration-torsion-rotation energy networks and interactions deduced from high resolution spectra; our efforts to understand some of them using ab-initio-assisted approaches and the modeling of torsion-rotation and torsionally mediated spin-rotation hyperfine splittings in methanol. These topics represent one part of the much larger fascinating world inhabited by methanolics.

  14. High-resolution broadband spectroscopy using externally dispersed interferometry at the Hale telescope: Part 1, data analysis and results

    DOE PAGES

    Erskine, David J.; Edelstein, Jerry; Wishnow, Edward H.; ...

    2016-05-27

    High-resolution broadband spectroscopy at near-infrared wavelengths (950 to 2450 nm) has been performed using externally dispersed interferometry (EDI) at the Hale telescope at Mt. Palomar. Observations of stars were performed with the “TEDI” interferometer mounted within the central hole of the 200-in. primary mirror in series with the comounted TripleSpec near-infrared echelle spectrograph. These are the first multidelay EDI demonstrations on starlight, as earlier measurements used a single delay or laboratory sources. We demonstrate very high (10×) resolution boost, from original 2700 to 27,000 with current set of delays (up to 3 cm), well beyond the classical limits enforced bymore » the slit width and detector pixel Nyquist limit. Significantly, the EDI used with multiple delays rather than a single delay as used previously yields an order of magnitude or more improvement in the stability against native spectrograph point spread function (PSF) drifts along the dispersion direction. We observe a dramatic (20×) reduction in sensitivity to PSF shift using our standard processing. A recently realized method of further reducing the PSF shift sensitivity to zero is described theoretically and demonstrated in a simple simulation which produces a 350× times reduction. We demonstrate superb rejection of fixed pattern noise due to bad detector pixels—EDI only responds to changes in pixel intensity synchronous to applied dithering. This part 1 describes data analysis, results, and instrument noise. Lastly, a section on theoretical photon limited sensitivity is in a companion paper, part 2.« less

  15. High Resolution Infrared Spectroscopy of CH_3F-({ortho}-H_2){n} Cluster in Solid {para}-H_2

    NASA Astrophysics Data System (ADS)

    Kawasaki, Hiroyuki; Mizoguchi, Asao; Kanamori, Hideto

    2015-06-01

    The absorption spectrum of the ν3 (C-F stretching) mode of CH_3F in solid {para}-H_2 by FTIR showed a series of equal interval peaks. Their interpretation was that the {}-th peak of this series was due to CH_3F-({ortho}-H_2){n} clusters which were formed CH_3F and {n}'s {ortho}-H_2 in first nearest neighbor sites of the {para}-H_2 crystal with {hcp} structure. In order to understand this system in more detail, we have studied these peaks, especially {n} = 0 - 3 corresponding to 1037 - 1041 wn, by using high-resolution and high-sensitive infrared quantum cascade (QC) laser spectroscopy. Before now, we found many peaks around each {n}-th peak of the cluster, which we didn't know their origins. We observed photochromic phenomenon of these peaks by taking an advantage of the high brightness of the laser. In this study, we focus on satellite series consisting of six peaks which locate at the lower energy side of each main peak. All the peaks showed a common red shouldered line profile, which corresponds to partly resolved transitions of {ortho}- and {para}- CH_3F. The spectral pattern and time behavior of the peaks may suggest that these satellite series originate from a family of CH_3F clusters involving {ortho}-H_2 in second nearest neighbor sites. A model function assuming this idea is used to resolve the observed spectrum into each Lorentzian component, and then some common features of the satellite peaks are extracted and the physical meanings of them will be discussed. K. Yoshioka and D. T. Anderson, J. Chem. Phys. 119 (2003) 4731-4742 A. R. W. McKellar, A. Mizoguchi, and H. Kanamori, J. Chem. Phys. 135 (2011) 124511 A. R. W. McKellar, A. Mizoguchi, and H. Kanamori, Phys. Chem. Chem. Phys. 13 (2011) 11587-11589.

  16. High Resolution Echelle Spectroscopy of Low Redshift Intervening O VI Absorbers with the Space Telescope Imaging Spectrograph

    NASA Astrophysics Data System (ADS)

    Tripp, T. M.; Bowen, D. V.; Jenkins, E. B.; Savage, B. D.

    1999-12-01

    We present high resolution FUV echelle spectroscopy of several low z intervening O VI absorbers (z < 0.3) in the spectra of H1821+643 and PG0953+415. The data were obtained with the Space Telescope Imaging Spectrograph at a resolution of 45,000 (7 km/s FWHM). We also present selected new measurements of galaxy redshifts in the 10' field centered on H1821+643. The observations provide several clues about the nature of these absorbers: (1) In the case of the strong O VI system at z = 0.2250 in the spectrum of H1821+643, we detect multicomponent Si II and Si III absorption as well as O VI and several Lyman series lines of H I. Multiple components are evident in the O VI profiles, but the components have different velocities than the Si III and Si II lines. Furthermore, the Si II and Si III lines are quite narrow, and the O VI lines are broader and spread over a larger velocity range. This evidence strongly indicates that this is a multiphase absorber. (2) We also detect `high velocity' O VI in the z = 0.2250 system. High velocity H I is also seen in the Lyα profile, but substantially offset in velocity from the O VI. This high velocity O VI may be analogous to the highly ionized high velocity clouds seen near the Milky Way. (3) We also present systems at other redshifts including very weak O VI absorption lines accompanied by weak and narrow H I absorption. (4) In all cases, several galaxies are close to the sight lines at the redshift of the O VI systems. We examine whether the O VI absorption can be attributed to the ISM of a single galaxy or the intragroup medium.

  17. High Resolution X-Ray Spectroscopy of the Local Hot Gas along the 3C 273 Sightline

    NASA Astrophysics Data System (ADS)

    Fang, Taotao; Jiang, Xiaochuan

    2014-04-01

    X-ray observations of highly ionized metal absorption lines at z = 0 provide critical information on the hot gas distribution in and around the Milky Way. We present a study of more than 10 yr of Chandra and XMM-Newton observations of 3C 273, one of the brightest extragalactic X-ray sources. Compared with previous works, we obtain much tighter constraints on the physical properties of the X-ray absorber. We also find a large, non-thermal velocity at ~100-150 km s-1, the main reason for the higher line equivalent width when compared with other sightlines. Using joint analysis with X-ray emission and ultraviolet observations, we derive a size of 5-15 kpc and a temperature of (1.5-1.8) × 106 K for the X-ray absorber. The 3C 273 sightline passes through a number of Galactic structures, including radio loops I and IV, the North Polar Spur, and the neighborhood of the newly discovered "Fermi bubbles." We argue that the X-ray absorber is unlikely to be associated with the nearby radio loops I and IV; however, the non-thermal velocity can be naturally explained as the result of the expansion of the "Fermi bubbles." Our data imply a shock-expansion velocity of 200-300 km s-1. Our study indicates a likely complex environment for the production of the Galactic X-ray absorbers along different sightlines, and highlights the significance of probing galactic feedback with high resolution X-ray spectroscopy.

  18. HIGH RESOLUTION X-RAY SPECTROSCOPY OF THE LOCAL HOT GAS ALONG THE 3C 273 SIGHTLINE

    SciTech Connect

    Fang, Taotao; Jiang, Xiaochuan

    2014-04-20

    X-ray observations of highly ionized metal absorption lines at z = 0 provide critical information on the hot gas distribution in and around the Milky Way. We present a study of more than 10 yr of Chandra and XMM-Newton observations of 3C 273, one of the brightest extragalactic X-ray sources. Compared with previous works, we obtain much tighter constraints on the physical properties of the X-ray absorber. We also find a large, non-thermal velocity at ∼100-150 km s{sup –1}, the main reason for the higher line equivalent width when compared with other sightlines. Using joint analysis with X-ray emission and ultraviolet observations, we derive a size of 5-15 kpc and a temperature of (1.5-1.8) × 10{sup 6} K for the X-ray absorber. The 3C 273 sightline passes through a number of Galactic structures, including radio loops I and IV, the North Polar Spur, and the neighborhood of the newly discovered ''Fermi bubbles''. We argue that the X-ray absorber is unlikely to be associated with the nearby radio loops I and IV; however, the non-thermal velocity can be naturally explained as the result of the expansion of the ''Fermi bubbles''. Our data imply a shock-expansion velocity of 200-300 km s{sup –1}. Our study indicates a likely complex environment for the production of the Galactic X-ray absorbers along different sightlines, and highlights the significance of probing galactic feedback with high resolution X-ray spectroscopy.

  19. High-resolution (19)F MAS NMR spectroscopy: structural disorder and unusual J couplings in a fluorinated hydroxy-silicate.

    PubMed

    Griffin, John M; Yates, Jonathan R; Berry, Andrew J; Wimperis, Stephen; Ashbrook, Sharon E

    2010-11-10

    High-resolution (19)F magic angle spinning (MAS) NMR spectroscopy is used to study disorder and bonding in a crystalline solid. (19)F MAS NMR reveals four distinct F sites in a 50% fluorine-substituted deuterated hydrous magnesium silicate (clinohumite, 4Mg(2)SiO(4)·Mg(OD(1-x)F(x))(2) with x = 0.5), indicating extensive structural disorder. The four (19)F peaks can be assigned using density functional theory (DFT) calculations of NMR parameters for a number of structural models with a range of possible local F environments generated by F(-)/OH(-) substitution. These assignments are supported by two-dimensional (19)F double-quantum MAS NMR experiments that correlate F sites based on either spatial proximity (via dipolar couplings) or through-bond connectivity (via scalar, or J, couplings). The observation of (19)F-(19)F J couplings is unexpected as the fluorines coordinate Mg atoms and the Mg-F interaction is normally considered to be ionic in character (i.e., there is no formal F-Mg-F covalent bonding arrangement). However, DFT calculations predict significant (19)F-(19)F J couplings, and these are in good agreement with the splittings observed in a (19)F J-resolved MAS NMR experiment. The existence of these J couplings is discussed in relation to both the nature of bonding in the solid state and the occurrence of so-called "through-space" (19)F-(19)F J couplings in solution. Finally, we note that we have found similar structural disorder and spin-spin interactions in both synthetic and naturally occurring clinohumite samples.

  20. High resolution UV resonance enhanced two-photon ionization spectroscopy with mass selection of biologically relevant molecules in the gas phase

    NASA Astrophysics Data System (ADS)

    Chervenkov, S.; Wang, P. Q.; Karaminkov, R.; Chakraborty, T.; Braun, Juergen E.; Neusser, Hans J.

    2005-04-01

    The high resolution Doppler-free resonance-enhanced two-photon ionization (R2PI) spectroscopy with mass selection of jet-cooled (2-12 K) molecular species is a powerful experimental method providing comprehensive information on both isolated molecules and molecular clusters. We have demonstrated for the first time that this technique can be applied to large molecules and provides detailed information on their conformational structure. It allows rotationally resolved (FWHM = 70 MHz) spectra of the vibronic bands of the S1<--S0 electronic transition of the studied molecular systems to be measured. A specially designed computer-assisted fitting routine based on genetic algorithms is used to determine their rotational constants in the ground and excited electronic states, respectively, and the transition moment ratio. To interpret the experimental information and to discriminate and unambiguously assign the observed approach to the study of the neurotransmitter molecule, ephedrine. The results elucidate the role of the intramolecular hydrogen bonds stabilizing the respective conformations and affecting their intrinsic properties.

  1. High-resolution imaging by scanning electron microscopy of semithin sections in correlation with light microscopy.

    PubMed

    Koga, Daisuke; Kusumi, Satoshi; Shodo, Ryusuke; Dan, Yukari; Ushiki, Tatsuo

    2015-12-01

    In this study, we introduce scanning electron microscopy (SEM) of semithin resin sections. In this technique, semithin sections were adhered on glass slides, stained with both uranyl acetate and lead citrate, and observed with a backscattered electron detector at a low accelerating voltage. As the specimens are stained in the same manner as conventional transmission electron microscopy (TEM), the contrast of SEM images of semithin sections was similar to TEM images of ultrathin sections. Using this technique, wide areas of semithin sections were also observed by SEM, without the obstruction of grids, which was inevitable for traditional TEM. This study also applied semithin section SEM to correlative light and electron microscopy. Correlative immunofluorescence microscopy and immune-SEM were performed in semithin sections of LR white resin-embedded specimens using a FluoroNanogold-labeled secondary antibody. Because LR white resin is hydrophilic and electron stable, this resin is suitable for immunostaining and SEM observation. Using correlative microscopy, the precise localization of the primary antibody was demonstrated by fluorescence microscopy and SEM. This method has great potential for studies examining the precise localization of molecules, including Golgi- and ER-associated proteins, in correlation with LM and SEM.

  2. High-resolution Crystal Spectroscopy of Charge-Exchange Produced K-shell X-ray Emission Lines

    NASA Astrophysics Data System (ADS)

    Beiersdorfer, P.; Bitter, M.; Olson, R.; Marion, M.

    2005-05-01

    Charge-exchange spectral models needed to describe and predict the X-ray emission of cometary and planetary atmospheres interacting with solar wind heavy ions are under development and require laboratory data for guidance. The relative intensity of the four K-shell emission lines in heliumlike ions is particularly uncertain, as the individual lines have not yet been fully resolved in charge-exchange-produced spectra. Using a high-resolution crystal spectrometer, we have measured the charge exchange induced K-shell X-ray emission from Ar16+ following the interaction of Ar17+ ions with fast, 40 keV/amu deuterium atoms. The measurement was performed on the National Spherical Torus Experiment (NSTX). The Ar17+ ions were constituents of the plasma, while deuterium was injected via a 80 keV neutral beam. During the brief, 20 ms neutral beam injection emission from electron-impact collisions ceases, and X-ray line emission is solely due to charge exchange. The measurement fully resolves the resonance, intercombination, and forbidden lines. We have constructed a complete radiative cascade model of Ar16+ that includes electron capture into levels as high as n=29 and all E1, M1, E2, and M2 radiative transitions. We find excellent agreement between the model and the NSTX crystyal spectrum. We will present these findings as well as our predictions of the emission in other spectral bands from the optical and extreme ultraviolet to the soft X-ray region. This work was performed under the auspices of the U.S. DOE by UC-LLNL under contract W-7405-Eng-48, by UMR under contract DE-FG02-84ER53175, and by PPPL under contract DE-AC02-76CHO3073.

  3. DESIRS: a state-of-the-art VUV beamline featuring high resolution and variable polarization for spectroscopy and dichroism at SOLEIL.

    PubMed

    Nahon, Laurent; de Oliveira, Nelson; Garcia, Gustavo A; Gil, Jean-François; Pilette, Bertrand; Marcouillé, Olivier; Lagarde, Bruno; Polack, François

    2012-07-01

    DESIRS is a new undulator-based VUV beamline on the 2.75 GeV storage ring SOLEIL (France) optimized for gas-phase studies of molecular and electronic structures, reactivity and polarization-dependent photodynamics on model or actual systems encountered in the universe, atmosphere and biosphere. It is equipped with two dedicated endstations: a VUV Fourier-transform spectrometer (FTS) for ultra-high-resolution absorption spectroscopy (resolving power up to 10(6)) and an electron/ion imaging coincidence spectrometer. The photon characteristics necessary to fulfill its scientific mission are: high flux in the 5-40 eV range, high spectral purity, high resolution, and variable and well calibrated polarizations. The photon source is a 10 m-long pure electromagnetic variable-polarization undulator producing light from the very near UV up to 40 eV on the fundamental emission with tailored elliptical polarization allowing fully calibrated quasi-perfect horizontal, vertical and circular polarizations, as measured with an in situ VUV polarimeter with absolute polarization rates close to unity, to be obtained at the sample location. The optical design includes a beam waist allowing the implementation of a gas filter to suppress the undulator high harmonics. This harmonic-free radiation can be steered toward the FTS for absorption experiments, or go through a highly efficient pre-focusing optical system, based on a toroidal mirror and a reflective corrector plate similar to a Schmidt plate. The synchrotron radiation then enters a 6.65 m Eagle off-plane normal-incidence monochromator equipped with four gratings with different groove densities, from 200 to 4300 lines mm(-1), allowing the flux-to-resolution trade-off to be smoothly adjusted. The measured ultimate instrumental resolving powers are 124000 (174 µeV) around 21 eV and 250000 (54 µeV) around 13 eV, while the typical measured flux is in the 10(10)-10(11) photons s(-1) range in a 1

  4. Investigations into the Structure and Dynamics of Chalcogenide Glasses using High-Resolution Nuclear Magnetic Resonance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Kaseman, Derrick Charles

    Chalcogenide glasses constitute an important class of materials that are sulfides, selenides or tellurides of group IV and/or V elements, namely Ge, As, P and Si with minor concentrations of other elements such as Ga, Sb, In. Because of their infrared transparency that can be tuned by changing chemistry and can be actively altered by exposure to band gap irradiation, chalcogenide glasses find use in passive and active optical devices for applications in the areas of photonics, remote sensing and memory technology. Therefore, it is important to establish predictive models of structure-property relationships for these materials for optimization of their physical properties for various applications. Structural elucidation of chalcogenide glasses is experimentally challenging and in order to make predictive structural models, structural units at both short and intermediate -range length scales must be identified and quantified. Nuclear Magnetic Resonance (NMR) spectroscopy is an element-specific structural probe that is uniquely suited for this task, but resolution and sensitivity issues have severely limited the applications of such techniques in the past. The recent development of multi-dimensional solid-state NMR techniques, such as Phase Adjusted Spinning Sidebands (PASS) and Magic Angle Turning (MAT) can potentially alleviate such issues. In this study novel two-dimensional, high-resolution 77Se and 125Te MATPASS NMR spectroscopic techniques are utilized to elucidate quantitatively the compositional evolution of the short- and intermediate- range atomic structure in three binary chalcogenide glass-forming systems, namely: GexSe100-x, AsxSe100-x , and AsxTe100-x. The spectroscopic results provide unambiguous site speciation and quantification for short- and intermediate-range structural motifs present in these glasses. In turn, for all systems, robust structural models and the corresponding structure-property relationships are successfully established as a function

  5. High resolution extreme ultraviolet spectrometer for an electron beam ion trap

    SciTech Connect

    Ohashi, Hayato; Yatsurugi, Junji; Nakamura, Nobuyuki; Sakaue, Hiroyuki A.

    2011-08-15

    An extreme ultraviolet spectrometer has been developed for spectroscopic studies of highly charged ions with an electron beam ion trap. It has a slit-less configuration with a spherical varied-line-spacing grating that provides a flat focal plane for grazing incidence light. Alternative use of two different gratings enables us to cover the wavelength range 1-25 nm. Test observations with the Tokyo electron beam ion trap demonstrate the high performance of the present spectrometer such as a resolving power of above 1000.

  6. Efficient creation of electron vortex beams for high resolution STEM imaging.

    PubMed

    Béché, A; Juchtmans, R; Verbeeck, J

    2016-05-10

    The recent discovery of electron vortex beams carrying quantised angular momentum in the TEM has led to an active field of research, exploring a variety of potential applications including the possibility of mapping magnetic states at the atomic scale. A prerequisite for this is the availability of atomic sized electron vortex beams at high beam current and mode purity. In this paper we present recent progress showing that by making use of the Aharonov-Bohm effect near the tip of a long single domain ferromagnetic Nickel needle, a very efficient aperture for the production of electron vortex beams can be realised. The aperture transmits more than 99% of all electrons and provides a vortex mode purity of up to 92%. Placing this aperture in the condenser plane of a state of the art Cs corrected microscope allows us to demonstrate atomic resolution HAADF STEM images with spatial resolution better than 1 Angström, in agreement with theoretical expectations and only slightly inferior to the performance of a non-vortex probe on the same instrument.

  7. Understanding the structure of nanocatalysts with high resolution scanning/transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Francis, L. D.; Rivas, J.; José-Yacamán, M.

    2014-03-01

    Nanomaterials including nanoparticles, nanowires and nanotubes play an important role in heterogeneous catalysis. Thanks to the rapid improvement of the electron microscopic techniques and with the advent of aberration corrected electron microscopy as well as theoretical methodologies, the potential effects induced by nanocatalysts are better understood than before by unravelling their atomic structure. A brief introduction to advanced electron microscopic techniques namely aberration corrected scanning transmission electron microscopy (Cs-STEM) is presented and subsequently two examples of nanocatalysts are considered in the present review. The first example will focus on the study of bimetallic/core-shell nanoalloys. In heterogeneous catalysis, catalysts containing two or more metals might show significantly different catalytic properties compared to the parent metals and thus are widely utilized in several catalytic reactions. Atom-by-atom insights of the nanoalloy based catalysts ex: Au-Pd will be described in the present review using a combination of advanced electron microscopic and spectroscopic techniques. A related example on the understanding of bimetallic clusters by HAADF-STEM will also be presented in addition to nanoparticles. In the second case understanding the structure of transition metal chalcogenide based nanocatalysts by HRTEM and aberration corrected STEM, for the case of MoS2 will be discussed. MoS2-based catalysts serve as model catalysts and are employed in the hydrodesulphurisations (HDS) reactions in the removal of sulphur from gasoline and related petrochemical products. They have been studied in various forms including nanowires, nanotubes and nanoplates. Their structure, atomic insights and as a consequence elucidation of their corresponding catalytic activity are thus important.

  8. Combined use of high-resolution α-glucosidase inhibition profiling and high-performance liquid chromatography-high-resolution mass spectrometry-solid-phase extraction-nuclear magnetic resonance spectroscopy for investigation of antidiabetic principles in crude plant extracts.

    PubMed

    Kongstad, Kenneth T; Özdemir, Ceylan; Barzak, Asmah; Wubshet, Sileshi G; Staerk, Dan

    2015-03-04

    Type 2 diabetes is a metabolic disorder affecting millions of people worldwide, and new drug leads or functional foods containing selective α-glucosidase inhibitors are needed. Crude extract of 24 plants were assessed for α-glucosidase inhibitory activity. Methanol extracts of Cinnamomum zeylanicum bark, Rheum rhabarbarum peel, and Rheum palmatum root and ethyl acetate extracts of C. zeylanicum bark, Allium ascalonicum peel, and R. palmatum root showed IC50 values below 20 μg/mL. Subsequently, high-resolution α-glucosidase profiling was used in combination with high-performance liquid chromatography-high-resolution mass spectrometry-solid-phase extraction-nuclear magnetic resonance spectroscopy for identification of metabolites responsible for the α-glucosidase inhibitory activity. Quercetin (1) and its dimer (2), trimer (3), and tetramer (4) were identified as main α-glucosidase inhibitors in A. ascalonicum peel, whereas (E)-piceatannol 3'-O-β-D-glucopyranoside (5), (E)-rhapontigenin 3'-O-β-D-glucopyranoside (6), (E)-piceatannol (8), and emodin (12) were identified as main α-glucosidase inhibitors in R. palmatum root.

  9. Spontaneous Patterning of High-Resolution Electronics via Parallel Vacuum Ultraviolet.

    PubMed

    Liu, Xuying; Kanehara, Masayuki; Liu, Chuan; Sakamoto, Kenji; Yasuda, Takeshi; Takeya, Jun; Minari, Takeo

    2016-08-01

    A spontaneous patterning technique via parallel vacuum ultraviolet is developed for fabricating large-scale, complex electronic circuits with 1 μm resolution. The prepared organic thin-film transistors exhibit a low contact resistance of 1.5 kΩ cm, and high mobilities of 0.3 and 1.5 cm(2) V(-1) s(-1) in the devices with channel lengths of 1 and 5 μm, respectively.

  10. Using electrons as a high-resolution probe of optical modes in individual nanowires.

    PubMed

    Arslan, Ilke; Hyun, Jerome K; Erni, Rolf; Fairchild, Michael N; Hersee, Stephen D; Muller, David A

    2009-12-01

    While nanowires show increasing promise for optoelectronic applications, probing the subwavelength details of their optical modes has been a challenge with light-based techniques. Here we report the excitation of dielectric optical waveguide modes in a single GaN nanowire using transition radiation generated by a 1 nm diameter electron beam. This spatially resolved study opens important gateways to probing the optical modes of more complex nanostructures, fundamental for optimization of optoelectronic device performance.

  11. Acquisition of a High Resolution Field Emission Scanning Electron Microscope for the Analysis of Returned Samples

    NASA Technical Reports Server (NTRS)

    Nittler, Larry R.

    2003-01-01

    This grant furnished funds to purchase a state-of-the-art scanning electron microscope (SEM) to support our analytical facilities for extraterrestrial samples. After evaluating several instruments, we purchased a JEOL 6500F thermal field emission SEM with the following analytical accessories: EDAX energy-dispersive x-ray analysis system with fully automated control of instrument and sample stage; EDAX LEXS wavelength-dispersive x-ray spectrometer for high sensitivity light-element analysis; EDAX/TSL electron backscatter diffraction (EBSD) system with software for phase identification and crystal orientation mapping; Robinson backscatter electron detector; and an in situ micro-manipulator (Kleindiek). The total price was $550,000 (with $150,000 of the purchase supported by Carnegie institution matching funds). The microscope was delivered in October 2002, and most of the analytical accessories were installed by January 2003. With the exception of the wavelength spectrometer (which has been undergoing design changes) everything is working well and the SEM is in routine use in our laboratory.

  12. High-resolution in situ observations of electron precipitation-causing EMIC waves

    DOE PAGES

    Rodger, Craig J.; Hendry, Aaron T.; Clilverd, Mark A.; ...

    2015-11-21

    Electromagnetic ion cyclotron (EMIC) waves are thought to be important drivers of energetic electron losses from the outer radiation belt through precipitation into the atmosphere. While the theoretical possibility of pitch angle scattering-driven losses from these waves has been recognized for more than four decades, there have been limited experimental precipitation observations to support this concept. We have combined satellite-based observations of the characteristics of EMIC waves, with satellite and ground-based observations of the EMIC-induced electron precipitation. In a detailed case study, supplemented by an additional four examples, we are able to constrain for the first time the location, size,more » and energy range of EMIC-induced electron precipitation inferred from coincident precipitation data and relate them to the EMIC wave frequency, wave power, and ion band of the wave as measured in situ by the Van Allen Probes. As a result, these observations will better constrain modeling into the importance of EMIC wave-particle interactions.« less

  13. High-resolution in situ observations of electron precipitation-causing EMIC waves

    SciTech Connect

    Rodger, Craig J.; Hendry, Aaron T.; Clilverd, Mark A.; Kletzing, Craig A.; Brundell, James B.; Reeves, Geoffrey D.

    2015-11-21

    Electromagnetic ion cyclotron (EMIC) waves are thought to be important drivers of energetic electron losses from the outer radiation belt through precipitation into the atmosphere. While the theoretical possibility of pitch angle scattering-driven losses from these waves has been recognized for more than four decades, there have been limited experimental precipitation observations to support this concept. We have combined satellite-based observations of the characteristics of EMIC waves, with satellite and ground-based observations of the EMIC-induced electron precipitation. In a detailed case study, supplemented by an additional four examples, we are able to constrain for the first time the location, size, and energy range of EMIC-induced electron precipitation inferred from coincident precipitation data and relate them to the EMIC wave frequency, wave power, and ion band of the wave as measured in situ by the Van Allen Probes. As a result, these observations will better constrain modeling into the importance of EMIC wave-particle interactions.

  14. High-resolution infrared spectroscopy: Jet-cooled halogenated methyl radicals and reactive scattering dynamics in an atom + polyatom system

    NASA Astrophysics Data System (ADS)

    Whitney, Erin Sue

    This thesis describes a series of projects whose common theme comprises the structure and internal energy distribution of gas-phase radicals. In the first two projects, shot noise-limited direct absorption spectroscopy is combined with long path-length slit supersonic discharges to obtain first high-resolution infrared spectra for jet-cooled CH2F and CH2Cl in the symmetric and antisymmetric CH2 stretching modes. Drawing motivation from the question of the equilibrium structures of halogen-substituted methyl radicals, spectral assignment yields refined lower and upper state rotational constants, as well as fine-structure parameters from least-square fits to the sub-Doppler lineshapes for individual transitions. High-level CCSD(T) calculations extrapolated to the complete basis set (CBS) limit confirm the existence of a non-planar (theta=29°) CH2F equilibrium structure with a 132 cm-1 barrier to planarity and a vibrational bend frequency of 276 cm-1. Similar calculations for CH 2Cl predict a slightly nonplanar equilibrium structure (theta=11°) with a vibrationally adiabatic one-dimensional treatment of the bend coordinate yielding a fundamental anharmonic frequency (393 cm-1). Both sets of calculations are in excellent agreement with previous studies. More interesting, however, are the unexpected intensity ratios of the symmetric vs. antisymmetric bands for CH2F and the absence of an antisymmetric band for CH2Cl. While a simple bond-dipole picture predicts a ratio of 1:3 for the symmetric vs. antisymmetric intensities, the experimentally observed value for CH2F is ˜2:1. This ratio is confirmed by DFT [B3LYP/aug-cc-pVTZ] calculations in a novel albeit indirect probe of the effective non-planarity for CH2F. For CH2Cl, similar DFT calculations predict a 30-fold decrease between the intensity of the symmetric and antisymmetric CH2 stretches, leading to the postulation of a nearly perfect cancellation of antisymmetric stretch intensity transition moment with

  15. High-Resolution Electron-Impact Study of the Far-Ultraviolet Emission Spectrum of Molecular Hydrogen

    NASA Technical Reports Server (NTRS)

    Liu, Xian-Ming; Ahmed, Syed M.; Multari, Rosalie A.; James, Geoffrey K.; Ajello, Joseph M.

    1995-01-01

    The emission spectrum of molecular hydrogen produced by electron-impact excitation at 100 eV has been measured in the wavelength range 1140-1690 A. High-resolution, optically thin spectra (delta(lambda) = 0.136 A) of the far-ultraviolet (FUV) Lyman and Werner band systems have been obtained with a newly constructed 3 m spectrometer. Synthetic spectral intensities based on the transition probabilities calculated by Abgrall et al. are in very good agreement with experimentally observed intensities. Previous modeling that utilized Allison & Daigarno band transition probabilities with Hoenl-London factors breaks down when the transition moment has significant J dependence or when ro-vibrational coupling is significant. Ro-vibrational perturbation between upsilon = 14 of the B(sup 1)Sigma(sup +, sub u) state and upsilon = 3 of the C(sup 1)Pi(sub u) state and the rotational dependence of the transition moment in the bands of the Lyman system are examined. Complete high-resolution experimental reference FUV spectra, together with the model synthetic spectra based on the Abgrall transition probabilities, are presented. An improved calibration standard is obtained, and an accurate calibration of the 3 m spectrometer has been achieved.

  16. Microstructure development in particulate coatings examined with high-resolution cryogenic scanning electron microscopy

    SciTech Connect

    Sheehan, J.G.; Davis, H.T.; Scriven, L.E.; Takamura, Koichi

    1993-12-01

    The authors used cryogenic scanning electron microscopy to examine the early stages of latex film formation. They visualized the influence of ionic strength and extent of carboxylation in latex-calcium carbonate formulations and in latex-only formulations. Results demonstrated that latex particles deposited on calcium carbonate surfaces creating a suspension of carboxylic acid-stabilized calcium carbonate particles. Images of consolidation fronts showed that variation of ionic strength and extent of carboxylation dramatically changes the way latex particles consolidate and form films.

  17. High-resolution width-modulated pulse rebalance electronics for strapdown gyroscopes and accelerometers

    NASA Technical Reports Server (NTRS)

    Kennedy, E. J.; Blalock, T. V.; Bryan, W. L.; Rush, K.

    1974-01-01

    Three different rebalance electronic loops were designed, implemented, and evaluated. The loops were width-modulated binary types using a 614.4 kHz keying signal; they were developed to accommodate the following three inertial sensors with the indicated resolution values: (1) Kearfott 2412 accelerometer - resolution = 260 micro-g/data pulse, (2) Honeywell GG334 gyroscope - resolution = 3.9 milli-arc-sec/data pulse, (3) Kearfott 2401-009 accelerometer - resolution = 144 milli-g/data pulse. Design theory, details of the design implementation, and experimental results for each loop are presented.

  18. Carbon Nanostructure Examined by Lattice Fringe Analysis of High Resolution Transmission Electron Microscopy Images

    NASA Technical Reports Server (NTRS)

    VanderWal, Randy L.; Tomasek, Aaron J.; Street, Kenneth; Thompson, William K.

    2002-01-01

    The dimensions of graphitic layer planes directly affect the reactivity of soot towards oxidation and growth. Quantification of graphitic structure could be used to develop and test correlations between the soot nanostructure and its reactivity. Based upon transmission electron microscopy images, this paper provides a demonstration of the robustness of a fringe image analysis code for determining the level of graphitic structure within nanoscale carbon, i.e. soot. Results, in the form of histograms of graphitic layer plane lengths, are compared to their determination through Raman analysis.

  19. Carbon Nanostructure Examined by Lattice Fringe Analysis of High Resolution Transmission Electron Microscopy Images

    NASA Technical Reports Server (NTRS)

    VanderWal, Randy L.; Tomasek, Aaron J.; Street, Kenneth; Thompson, William K.; Hull, David R.

    2003-01-01

    The dimensions of graphitic layer planes directly affect the reactivity of soot towards oxidation and growth. Quantification of graphitic structure could be used to develop and test correlations between the soot nanostructure and its reactivity. Based upon transmission electron microscopy images, this paper provides a demonstration of the robustness of a fringe image analysis code for determining the level of graphitic structure within nanoscale carbon, i.e., soot. Results, in the form of histograms of graphitic layer plane lengths, are compared to their determination through Raman analysis.

  20. High-cadence and high-resolution Hα imaging spectroscopy of a circular flare's remote ribbon with IBIS

    SciTech Connect

    Deng, Na; Jing, Ju; Chen, Xin; Liu, Chang; Xu, Yan; Wang, Haimin; Tritschler, Alexandra; Reardon, Kevin; Denker, Carsten

    2013-06-01

    We present an unprecedented high-resolution Hα imaging spectroscopic observation of a C4.1 flare taken with the Interferometric Bidimensional Spectrometer (IBIS) in conjunction with the adaptive optics system at the 76 cm Dunn Solar Telescope on 2011 October 22 in the active region NOAA 11324. Such a two-dimensional spectroscopic observation covering the entire evolution of a flare ribbon with high spatial (0.''1 pixel{sup –1} image scale), cadence (4.8 s), and spectral (0.1 Å step size) resolution is rarely reported. The flare consists of a main circular ribbon that occurred in a parasitic magnetic configuration and a remote ribbon that was observed by the IBIS. Such a circular-ribbon flare with a remote brightening is predicted in three-dimensional fan-spine reconnection but so far has been rarely studied. During the flare impulsive phase, we define 'core' and 'halo' structures in the observed ribbon based on IBIS narrowband images in the Hα line wing and line center. Examining the Hα emission spectra averaged in the flare core and halo areas, we find that only those from the flare cores show typical nonthermal electron beam heating characteristics that have been revealed by previous theoretical simulations and observations of flaring Hα line profiles. These characteristics include broad and centrally reversed emission spectra, excess emission in the red wing with regard to the blue wing (i.e., red asymmetry), and redshifted bisectors of the emission spectra. We also observe rather quick timescales for the heating (∼30 s) and cooling (∼14-33 s) in the flare core locations. Therefore, we suggest that the flare cores revealed by IBIS track the sites of electron beam precipitation with exceptional spatial and temporal resolution. The flare cores show two-stage motion (a parallel motion along the ribbon followed by an expansion motion perpendicular to the ribbon) during the two impulsive phases of the flare. Some cores jump quickly (30 km s{sup –1

  1. Characterization of REE-Bearing Minerals and Synthetic Materials Using High Resolution Ultraviolet to Near-Infrared Reflectance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Hoefen, T. M.; Livo, K. E.; Giles, S. A.; Lowers, H. A.; Swayze, G. A.; Taylor, C. D.; Verplanck, P. L.; Emsbo, P.; Koenig, A.; Mccafferty, A. E.

    2014-12-01

    Diagnostic crystal field 4fn-4fn transition features in the ultraviolet (UV) to near-infrared (NIR) region of the electromagnetic spectrum have been observed in many common rare earth element (REE)-bearing minerals. The partial filling of the 4f electron shell combined with a shielding effect caused by the fully filled 5s25p6-electron shells, which weaken any effects from external magnetic or electric fields on the electrons, makes rare earth ions unique. The narrow absorption features occur as a result of parity forbidden transitions and crystal field splitting of the trivalent REEs, and since they are well shielded, only subtle wavelengths shifts are seen in their spectral features. Synthetic single REE phosphates, carbonates, oxides, hydroxides and glasses have been measured in the lab to help identify absorption band positions that are characteristic of each REE as they occur in different minerals. Because spectral resolution is critical to identifying shifts in the absorption band positions, these materials have been measured on several different high resolution spectrometers. Using a combination of Ocean Optics USB 2000+ UV-VIS, USB2000+ VIS-NIR and ASD FS 4 spectrometers we have characterized REE-bearing materials from 0.2 to 2.5 microns with a spectral resolution of ~2 nm between 0.2 and 1.0 microns and 11 to 12 nm between 1.0 and 2.5 microns. Results to date suggest that wavelength shifts and variations in the degree of crystal field splitting allow spectral differentiation between REE-bearing minerals. To support these results, a comprehensive suite of marine phosphates, paleo-beach placers, IOCG deposits, alkaline to peralkaline igneous complexes, pegmatites associated with alkaline magmas and carbonatite intrusives, have been measured and included in our database. Core, rock chips, billets, sediment samples and grab samples were manually scanned to identify the most intense or spectrally different REE features. While REE-bearing minerals have been

  2. High-resolution X-ray spectroscopy of rare events: a different look at local structure and chemistry

    PubMed Central

    Glatzel, Pieter; Robblee, John H.; Messinger, Johannes; Fernandez, Carmen; Cinco, Roehl; Visser, Henk; McFarlane, Karen; Bellacchio, Emanuele; Pizarro, Shelly; Sauer, Kenneth; Yachandra, Vittal K.; Klein, Melvin P.; Cox, Billie L.; Nealson, Kenneth H.; Cramer, Stephen P.

    2014-01-01

    The combination of large-acceptance high-resolution X-ray optics with bright synchrotron sources permits quantitative analysis of rare events such as X-ray fluorescence from very dilute systems, weak fluorescence transitions or X-ray Raman scattering. Transition-metal Kβ fluorescence contains information about spin and oxidation state; examples of the characterization of the Mn oxidation states in the oxygen-evolving complex of photosystem II and Mn-consuming spores from the marine bacillus SG-1 are presented. Weaker features of the Kβ spectrum resulting from valence-level and ‘interatomic’ ligand to metal transitions contain detailed information on the ligand-atom type, distance and orientation. Applications of this spectral region to characterize the local structure of model compounds are presented. X-ray Raman scattering (XRS) is an extremely rare event, but also represents a unique technique to obtain bulk-sensitive low-energy (<600 eV) X-ray absorption fine structure (XAFS) spectra using hard (~10 keV) X-rays. A photon is inelastically scattered, losing part of its energy to promote an electron into an unoccupied level. In many cases, the cross section is proportional to that of the corresponding absorption process yielding the same X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) features. XRS finds application for systems that defy XAFS analysis at low energies, e.g. liquids or highly concentrated complex systems, reactive compounds and samples under extreme conditions (pressure, temperature). Recent results are discussed. PMID:11512725

  3. High-resolution spectroscopy of RGB stars in the Sagittarius streams. I. Radial velocities and chemical abundances

    NASA Astrophysics Data System (ADS)

    Monaco, L.; Bellazzini, M.; Bonifacio, P.; Buzzoni, A.; Ferraro, F. R.; Marconi, G.; Sbordone, L.; Zaggia, S.

    2007-03-01

    Context: The Sagittarius (Sgr) dwarf spheroidal galaxy is currently being disrupted under the strain of the Milky Way. A reliable reconstruction of Sgr star formation history can only be obtained by combining core and stream information. Aims: We present radial velocities for 67 stars belonging to the Sgr Stream. For 12 stars in the sample we also present iron (Fe) and α-element (Mg, Ca) abundances. Methods: Spectra were secured using different high resolution facilities: UVES@VLT, HARPS@3.6 m, and SARG@TNG. Radial velocities are obtained through cross correlation with a template spectra. Concerning chemical analysis, for the various elements, selected line equivalent widths were measured and abundances computed using the WIDTH code and ATLAS model atmospheres. Results: The velocity dispersion of the trailing tail is found to be σ = 8.3 ± 0.9 km s-1, i.e., significantly lower than in the core of the Sgr galaxy and marginally lower than previous estimates in the same portion of the stream. Stream stars follow the same trend as Sgr main body stars in the [ α/Fe] vs. [Fe/H] plane. However, stars are, on average, more metal poor in the stream than in the main body. This effect is slightly stronger in stars belonging to more ancient wraps of the stream, according to currently accepted models of Sgr disruption. Based on observations taken at ESO VLT Kueyen telescope (Cerro Paranal, Chile, program: 075.B-0127(A)) and 3.6 m telescope (La Silla, Chile). Also based on spectroscopic observations taken at the Telescopio Nazionale Galileo, operated by the Fundación G. Galilei of INAF at the Spanish Observatorio del Roque de los Muchachos of the IAC (La Palma, Spain). Appendix A and Table [see full text] are only available in electronic form at http://www.aanda.org

  4. Resonant photoelectron spectroscopy of Au{sub 2}{sup −} via a Feshbach state using high-resolution photoelectron imaging

    SciTech Connect

    León, Iker; Yang, Zheng; Wang, Lai-Sheng

    2013-11-21

    Photodetachment cross sections are measured across the detachment threshold of Au{sub 2}{sup −} between 1.90 and 2.02 eV using a tunable laser. In addition to obtaining a more accurate electron affinity for Au{sub 2} (1.9393 ± 0.0003 eV), we observe eight resonances above the detachment threshold, corresponding to excitations from the vibrational levels of the Au{sub 2}{sup −} ground state (X {sup 2}Σ{sub u}{sup +}) to those of a metastable excited state of Au{sub 2}{sup −} (or Feshbach resonances) at an excitation energy of 1.9717 ± 0.0003 eV and a vibrational frequency of 129.1 ± 1.5 cm{sup −1}. High-resolution photoelectron spectra of Au{sub 2}{sup −} are obtained using photoelectron imaging to follow the autodetachment processes by tuning the detachment laser to all the eight Feshbach resonances. We observe significant non-Franck-Condon behaviors in the resonant photoelectron spectra due to autodetachment from a given vibrational level of the Feshbach state to selective vibrational levels of the neutral final state. Using the spectroscopic data for the ground states of Au{sub 2}{sup −} (X {sup 2}Σ{sub u}{sup +}) and Au{sub 2} (X {sup 1}Σ{sub g}{sup +}), we estimate an equilibrium bond distance of 2.53 ± 0.02 Å for the Feshbach state of Au{sub 2}{sup −} by simulating the Franck-Condon factors for the resonant excitation and autodetachment processes.

  5. High-resolution patterning electronic polymers using dopant induced solubility control (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Moule, Adam J.; Jacobs, Ian E.; Li, Jun; Burg, Stephanie L.; Bilsky, David J.; Rotondo, Brandon T.; Stroeve, Pieter

    2015-08-01

    Organic electronics promise to provide flexible, large-area circuitry such as photovoltaics, displays, and light emitting diodes that can be fabricated inexpensively from solutions. A major obstacle to this vision is that most conjugated organic materials are miscible, making solution-based fabrication of multilayer or micro- to nanoscale patterned films problematic. Here we demonstrate that the solubility of prototypical conductive polymer poly(3-hexylthiophene) (P3HT) can be reversibly "switched off" using high electron affinity molecular dopants, then later recovered with light or a suitable dedoping solution. Using this technique, we are able to stack mutually soluble materials and laterally pattern polymer films using evaporation of dopants through a shadow mask or with light, achieving sub-micrometer, optically limited feature sizes. After forming these structures, the films can be dedoped without disrupting the patterned features; dedoped films have identical optical characteristics, charge carrier mobilities, and NMR spectra as as-cast P3HT films. This method greatly simplifies solution-based device fabrication, is easily adaptable to current manufacturing workflows, and is potentially generalizable to other classes of materials.

  6. High resolution patterning for flexible electronics via roll-to-roll nanoimprint lithography

    NASA Astrophysics Data System (ADS)

    Sabik, Sami; de Riet, Joris; Yakimets, Iryna; Smits, Edsger

    2014-03-01

    Flexible electronics is a growing field and is currently maturing in applications such as displays, smart packaging, organic light-emitting diodes and organic photovoltaic cells. In order to process on flexible substrates at high throughput and large areas, novel patterning techniques will be essential. Conventional optical lithography is limited in throughput as well as resolution, and requires several alignment steps to generate multi-layered patterns, required for applications such as thin-film transistors. It therefore remains a complex and expensive process. Nanoimprint lithography is an emerging alternative to optical lithography, demonstrating patterning capabilities over a wide range of resolutions, from several microns down to a few nanometres. For display applications, nanoimprint lithography can be used to pattern various layers. Micron sized thin-film transistors for backplane can be fabricated where a self-aligned geometry is used to decrease the number of alignment steps, and increase the overlay accuracy. In addition, nano-structures can be used for optical applications such as anti-reflective surfaces and nano patterned transparent electrodes. Imprint lithography is a fully roll-to-roll compatible process and enables large area and high throughput fabrication for flexible electronics. In this paper we discuss the possibilities and the challenges of large area patterning by roll-to-roll nanoimprint lithography, reviewing micron and nano sized structures realized on our roll-to-roll equipment. Nano patterned transparent electrodes, moth-eye antireflective coatings, and multilevel structures will be covered.

  7. Incorporation of Mn in AlxGa1 -xN probed by x-ray absorption and emission spectroscopy, high-resolution microscopy, x-ray diffraction, and first-principles calculations

    NASA Astrophysics Data System (ADS)

    Rovezzi, Mauro; Schlögelhofer, Wolfgang; Devillers, Thibaut; Szwacki, Nevill Gonzalez; Li, Tian; Adhikari, Rajdeep; Glatzel, Pieter; Bonanni, Alberta

    2015-09-01

    Synchrotron radiation x-ray absorption and emission spectroscopy techniques, complemented by high-resolution transmission electron microscopy methods and density functional theory calculations, are employed to investigate the effect of Mn in AlxGa1 -xN :Mn samples with an Al content up to 100%. The atomic and electronic structure of Mn is established together with its local environment and valence state. A dilute alloy without precipitation is obtained for AlxGa1 -xN :Mn with Al concentrations up to 82%, and the surfactant role of Mn in the epitaxial process is confirmed.

  8. Preservation of high resolution protein structure by cryo-electron microscopy of vitreous sections.

    PubMed

    Sader, Kasim; Studer, Daniel; Zuber, Benoît; Gnaegi, Helmut; Trinick, John

    2009-12-01

    We have quantitated the degree of structural preservation in cryo-sections of a vitrified biological specimen. Previous studies have used sections of periodic specimens to assess the resolution present, but preservation before sectioning was not assessed and so the damage due particularly to cutting was not clear. In this study large single crystals of lysozyme were vitrified and from these X-ray diffraction patterns extending to better than 2.1A were obtained. The crystals were high pressure frozen in 30% dextran, and cryo-sectioned using a diamond knife. In the best case, preservation to a resolution of 7.9A was shown by electron diffraction, the first observation of sub-nanometre structural preservation in a vitreous section.

  9. Preparation of the planarian Schmidtea mediterranea for high-resolution histology and transmission electron microscopy

    PubMed Central

    Brubacher, John L.; Vieira, Ana P.; Newmark, Phillip A.

    2014-01-01

    The flatworm Schmidtea mediterranea is an emerging model species in such fields as stem-cell biology, regeneration, and evolutionary biology. Excellent molecular tools have been developed for S. mediterranea, but ultrastructural techniques have received far less attention. Processing specimens for histology and transmission electron microscopy is notoriously idiosyncratic for particular species or specimen types. Unfortunately however, most methods for S. mediterranea described in the literature lack numerous essential details, and those few that do provide them rely on specialized equipment that may not be readily available. Here we present an optimized protocol for ultrastructural preparation of S. mediterranea. The protocol can be completed in six days, much of which is “hands-off” time. To aid with troubleshooting, we also illustrate the significant effects of seemingly minor variations in fixative, buffer concentration, and dehydration steps. This procedure will be useful for all planarian researchers, particularly those with relatively little experience in tissue processing. PMID:24556788

  10. High-resolution broadband spectroscopy using externally dispersed interferometry at the Hale telescope: Part 2, photon noise theory

    SciTech Connect

    Erskine, David J.; Edelstein, Jerry; Wishnow, Edward; Sirk, Martin; Muirhead, Philip S.; Muterspaugh, Matthew W.; Lloyd, James P.

    2016-10-01

    High-resolution broadband spectroscopy at near-infrared (NIR) wavelengths (950 to 2450 nm) has been performed using externally dispersed interferometry (EDI) at the Hale telescope at Mt. Palomar, with the TEDI interferometer mounted within the central hole of the 200-in. primary mirror in series with the comounted TripleSpec NIR echelle spectrograph. These are the first multidelay EDI demonstrations on starlight. We demonstrated very high (10×) resolution boost and dramatic (20× or more) robustness to point spread function wavelength drifts in the native spectrograph. Data analysis, results, and instrument noise are described in a companion paper (part 1). This part 2 describes theoretical photon limited and readout noise limited behaviors, using simulated spectra and instrument model with noise added at the detector. We show that a single interferometer delay can be used to reduce the high frequency noise at the original resolution (1× boost case), and that except for delays much smaller than the native response peak half width, the fringing and nonfringing noises act uncorrelated and add in quadrature. This is due to the frequency shifting of the noise due to the heterodyning effect. We find a sum rule for the noise variance for multiple delays. The multiple delay EDI using a Gaussian distribution of exposure times has noise-to-signal ratio for photon-limited noise similar to a classical spectrograph with reduced slitwidth and reduced flux, proportional to the square root of resolution boost achieved, but without the focal spot limitation and pixel spacing Nyquist limitations. At low boost (~1×) EDI has ~1.4× smaller noise than conventional, and at >10× boost, EDI has ~1.4× larger noise than conventional. Readout noise is minimized by the use of three or four steps instead of 10 of TEDI. Net noise grows as step phases change from symmetrical arrangement with wavenumber across the band. As a result, for three (or four) steps, we calculate a multiplicative

  11. High-resolution broadband spectroscopy using externally dispersed interferometry at the Hale telescope: part 2, photon noise theory

    NASA Astrophysics Data System (ADS)

    Erskine, David J.; Edelstein, Jerry; Wishnow, Edward; Sirk, Martin; Muirhead, Philip S.; Muterspaugh, Matthew W.; Lloyd, James P.

    2016-10-01

    High-resolution broadband spectroscopy at near-infrared (NIR) wavelengths (950 to 2450 nm) has been performed using externally dispersed interferometry (EDI) at the Hale telescope at Mt. Palomar, with the TEDI interferometer mounted within the central hole of the 200-in. primary mirror in series with the comounted TripleSpec NIR echelle spectrograph. These are the first multidelay EDI demonstrations on starlight. We demonstrated very high (10×) resolution boost and dramatic (20× or more) robustness to point spread function wavelength drifts in the native spectrograph. Data analysis, results, and instrument noise are described in a companion paper (part 1). This part 2 describes theoretical photon limited and readout noise limited behaviors, using simulated spectra and instrument model with noise added at the detector. We show that a single interferometer delay can be used to reduce the high frequency noise at the original resolution (1× boost case), and that except for delays much smaller than the native response peak half width, the fringing and nonfringing noises act uncorrelated and add in quadrature. This is due to the frequency shifting of the noise due to the heterodyning effect. We find a sum rule for the noise variance for multiple delays. The multiple delay EDI using a Gaussian distribution of exposure times has noise-to-signal ratio for photon-limited noise similar to a classical spectrograph with reduced slitwidth and reduced flux, proportional to the square root of resolution boost achieved, but without the focal spot limitation and pixel spacing Nyquist limitations. At low boost (˜1×) EDI has ˜1.4× smaller noise than conventional, and at >10× boost, EDI has ˜1.4× larger noise than conventional. Readout noise is minimized by the use of three or four steps instead of 10 of TEDI. Net noise grows as step phases change from symmetrical arrangement with wavenumber across the band. For three (or four) steps, we calculate a multiplicative bandwidth

  12. High-resolution broadband spectroscopy using externally dispersed interferometry at the Hale telescope: Part 2, photon noise theory

    DOE PAGES

    Erskine, David J.; Edelstein, Jerry; Wishnow, Edward; ...

    2016-10-01

    High-resolution broadband spectroscopy at near-infrared (NIR) wavelengths (950 to 2450 nm) has been performed using externally dispersed interferometry (EDI) at the Hale telescope at Mt. Palomar, with the TEDI interferometer mounted within the central hole of the 200-in. primary mirror in series with the comounted TripleSpec NIR echelle spectrograph. These are the first multidelay EDI demonstrations on starlight. We demonstrated very high (10×) resolution boost and dramatic (20× or more) robustness to point spread function wavelength drifts in the native spectrograph. Data analysis, results, and instrument noise are described in a companion paper (part 1). This part 2 describes theoreticalmore » photon limited and readout noise limited behaviors, using simulated spectra and instrument model with noise added at the detector. We show that a single interferometer delay can be used to reduce the high frequency noise at the original resolution (1× boost case), and that except for delays much smaller than the native response peak half width, the fringing and nonfringing noises act uncorrelated and add in quadrature. This is due to the frequency shifting of the noise due to the heterodyning effect. We find a sum rule for the noise variance for multiple delays. The multiple delay EDI using a Gaussian distribution of exposure times has noise-to-signal ratio for photon-limited noise similar to a classical spectrograph with reduced slitwidth and reduced flux, proportional to the square root of resolution boost achieved, but without the focal spot limitation and pixel spacing Nyquist limitations. At low boost (~1×) EDI has ~1.4× smaller noise than conventional, and at >10× boost, EDI has ~1.4× larger noise than conventional. Readout noise is minimized by the use of three or four steps instead of 10 of TEDI. Net noise grows as step phases change from symmetrical arrangement with wavenumber across the band. As a result, for three (or four) steps, we calculate a

  13. Multi-epoch high-resolution spectroscopy of SN 2011fe. Linking the progenitor to its environment

    NASA Astrophysics Data System (ADS)

    Patat, F.; Cordiner, M. A.; Cox, N. L. J.; Anderson, R. I.; Harutyunyan, A.; Kotak, R.; Palaversa, L.; Stanishev, V.; Tomasella, L.; Benetti, S.; Goobar, A.; Pastorello, A.; Sollerman, J.

    2013-01-01

    Aims: The nearby Type Ia supernova (SN) 2011fe has provided an unprecedented opportunity for deriving some of the properties of its progenitor. This work provides additional and independent information on the circumstellar environment in which the explosion took place. Methods: We obtained high-resolution spectroscopy of SN 2011fe for 12 epochs, from 8 to 86 days after the estimated date of explosion, testing in particular the time evolution of Ca II and Na I. Results: Three main absorption systems are identified from Ca II and Na I, one associated to the Milky Way, one probably arising within a high-velocity cloud, and one most likely associated to the halo of M101. The total (Galactic and host galaxy) reddening, deduced from the integrated equivalent widths (EW) of the Na i lines, is EB - V ≲ 0.05 mag. The host galaxy absorption is dominated by a component detected at the same velocity measured from the 21-cm H i line at the projected SN position (~180 km s-1). During the ~3 months covered by our observations its EW peak-to-peak variation is 15.6 ± 6.5 mÅ. This small and marginally significant change is shown to be compatible with the geometric effects produced by the rapid SN photosphere expansion coupled to the patchy fractal structure of the interstellar medium (ISM). The observed behavior is fully consistent with ISM properties similar to those derived for our own Galaxy, with evidences for structures on scales ≲ 100 AU. Conclusions: SN 2011fe appears to be surrounded by a "clean" environment. The lack of blueshifted, time-variable absorption features is fully consistent with the progenitor being a binary system with a main-sequence, or even another degenerate star. Based on observations collected at the Mercator telescope, Telescopio Nazionale Galileo, Nordic Optical Telescope at Roque de los Muchachos, La Palma (Spain), and at the 1.82 m Copernico telescope on Mt. Ekar (Asiago, Italy).

  14. High-resolution absorption spectroscopy of photoionized silicon plasma, a step toward measuring the efficiency of Resonant Auger Destruction

    NASA Astrophysics Data System (ADS)

    Loisel, Guillaume; Bailey, James; Hansen, Stephanie; Nagayama, Taisuke; Rochau, Gregory; Liedhal, Duane; Mancini, Roberto

    2013-10-01

    A remarkable opportunity to observe matter in a regime where the effects of General Relativity are significant has arisen through measurements of strongly red-shifted iron x-ray lines emitted from black hole accretion disks. A major uncertainty in the spectral formation models is the efficiency of Resonant Auger Destruction (RAD), in which fluorescent K α photons are resonantly absorbed by neighbor ions. The absorbing ion preferentially decays by Auger ionization, thus reducing the emerging K α intensity. If K α lines from L-shell ions are not observed in iron spectral emission, why are such lines observed from silicon plasma surrounding other accretion powered objects? To help answer this question, we are investigating photoionized silicon plasmas produced using intense x-rays from the Z facility. The incident spectral irradiance is determined with time-resolved absolute power measurements, multiple monochromatic gated images, and a 3-D view factor model. The charge state distribution, electron temperature, and electron density are determined using space-resolved backlit absorption spectroscopy. The measurements constrain photoionized plasma models and set the stage for future emission spectroscopy directly investigating the RAD process. Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000.

  15. High-Resolution Electron Energy Loss Studies of Oxygen, Hydrogen, Nitrogen, Nitric Oxide, and Nitrous Oxide Adsorption on Germanium Surfaces.

    NASA Astrophysics Data System (ADS)

    Entringer, Anthony G.

    The first high resolution electron energy loss spectroscopy (HREELS) studies of the oxidation and nitridation of germanium surfaces are reported. Both single crystal Ge(111) and disordered surfaces were studied. Surfaces were exposed to H, O_2, NO, N _2O, and N, after cleaning in ultra-high vacuum. The Ge surfaces were found to be non-reactive to molecular hydrogen (H_2) at room temperature. Exposure to atomic hydrogen (H) resulted hydrogen adsorption as demonstrated by the presence of Ge-H vibrational modes. The HREEL spectrum of the native oxide of Ge characteristic of nu -GeO_2 was obtained by heating the oxide to 200^circC. Three peaks were observed at 33, 62, and 106 meV for molecular oxygen (O_2) adsorbed on clean Ge(111) at room temperature. These peaks are indicative of dissociative bonding and a dominant Ge-O-Ge bridge structure. Subsequent hydrogen exposure resulted in a shift of the Ge-H stretch from its isolated value of 247 meV to 267 meV, indicative of a dominant +3 oxidation state. A high density of dangling bonds and defects and deeper oxygen penetration at the amorphous Ge surface result in a dilute bridge structure with a predominant +1 oxidation state for similar exposures. Molecules of N_2O decompose at the surfaces to desorbed N_2 molecules and chemisorbed oxygen atoms. In contrast, both oxygen and nitrogen are detected at the surfaces following exposure to NO molecules. Both NO and N_2O appear to dissociate and bond at the top surface layer. Molecular nitrogen (N_2) does not react with the Ge surfaces, however, a precursor Ge nitride is observed at room temperature following exposure to nitrogen atoms and ions. Removal of oxygen by heating of the NO-exposed surface to 550^circC enabled the identification of the Ge-N vibrational modes. These modes show a structure similar to that of germanium nitride. This spectrum is also identical to that of the N-exposed surface heated to 550^circC. Surface phonon modes of the narrow-gap semiconducting

  16. Multiple pre-edge structures in Cu K -edge x-ray absorption spectra of high- Tc cuprates revealed by high-resolution x-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Gougoussis, C.; Rueff, J.-P.; Calandra, M.; D'Astuto, M.; Jarrige, I.; Ishii, H.; Shukla, A.; Yamada, I.; Azuma, M.; Takano, M.

    2010-06-01

    Using high-resolution x-ray absorption spectroscopy and state-of-the-art electronic structure calculations we demonstrate that the pre-edge region at the Cu K edge of high- Tc cuprates is composed of several excitations invisible in standard x-ray absorption spectra. We consider in detail the case of Ca2-xCuO2Cl2 and show that the many pre-edge excitations (two for c -axis polarization, four for in-plane polarization and out-of-plane incident x-ray momentum) are dominated by off-site transitions and intersite hybridization. This demonstrates the relevance of approaches beyond the single-site model for the description of the pre edges of correlated materials. Finally, we show the occurrence of a doubling of the main edge peak that is most visible when the polarization is along the c axis. This doubling, that has not been seen in any previous absorption data in cuprates, is not reproduced by first-principles calculations. We suggest that this peak is due to many-body charge-transfer excitations while all the other visible far-edge structures are single particle in origin. Our work indicates that previous interpretations of the Cu K -edge x-ray absorption spectra in high- Tc cuprates can be profitably reconsidered.

  17. Valence band study of Sm0.1Ca0.9 - xSrxMnO3 using high resolution photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Dalai, Manas Kumar; Sekhar, Biju Raja; Biswas, Deepnarayan; Thakur, Sangeeta; Maiti, Kalobaran; Chiang, Tai-Chang; Martin, Christine

    2014-03-01

    We have studied the valence band electronic structure of Sm0.1Ca0.9- xSrxMnO3 (x = 0, 0.1, 0.3 and 0.6) at various temperatures using high resolution photoemission spectroscopy (HRPES). The data were taken using a Scienta R4000 energy analyser and the resolution was set at 5 meV. The doping dependent studies of Sm0.1Ca0.9-x SrxMnO3 at 50 K, 100 K and 295 K are quite interesting. The density of eg states near the Fermi level decreases with Sr substitution at the Ca site at 50 K. Also the similar trend has been observed at 100 K. At 295 K the changes in the eg states is quite different than the earlier temperatures where the intensity remains the same for x = 0, 0.1 and 0.3 and then decreases for x = 0.6. These changes in the density of states near the Fermi level will be explained by taking into account the structural, electrical and magnetic properties associated with this system. Permanent affiliation of Manas Kumar Dalai ; CSIR-National Physical Laboratory, New Delhi-110012, India. MKD acknowledges the Indo-US Science and Technology Forum (IUSSTF) for the fellowship.

  18. Extended Depth of Field for High-Resolution Scanning Transmission Electron Microscopy

    SciTech Connect

    Hovden, Robert; Xin, Huolin L.; Muller, David A.

    2010-12-02

    Aberration-corrected scanning transmission electron microscopes (STEMs) provide sub-Angstrom lateral resolution; however, the large convergence angle greatly reduces the depth of field. For microscopes with a small depth of field, information outside of the focal plane quickly becomes blurred and less defined. It may not be possible to image some samples entirely in focus. Extended depth-of-field techniques, however, allow a single image, with all areas in focus, to be extracted from a series of images focused at a range of depths. In recent years, a variety of algorithmic approaches have been employed for bright-field optical microscopy. Here, we demonstrate that some established optical microscopy methods can also be applied to extend the ~6 nm depth of focus of a 100 kV 5th-order aberration-corrected STEM (α{sub max} = 33 mrad) to image Pt-Co nanoparticles on a thick vulcanized carbon support. These techniques allow us to automatically obtain a single image with all the particles in focus as well as a complimentary topography map.

  19. Extended depth of field for high-resolution scanning transmission electron microscopy.

    PubMed

    Hovden, Robert; Xin, Huolin L; Muller, David A

    2011-02-01

    Aberration-corrected scanning transmission electron microscopes (STEMs) provide sub-Angstrom lateral resolution; however, the large convergence angle greatly reduces the depth of field. For microscopes with a small depth of field, information outside of the focal plane quickly becomes blurred and less defined. It may not be possible to image some samples entirely in focus. Extended depth-of-field techniques, however, allow a single image, with all areas in focus, to be extracted from a series of images focused at a range of depths. In recent years, a variety of algorithmic approaches have been employed for bright-field optical microscopy. Here, we demonstrate that some established optical microscopy methods can also be applied to extend the ∼ 6 nm depth of focus of a 100 kV 5th-order aberration-corrected STEM (α max = 33 mrad) to image Pt-Co nanoparticles on a thick vulcanized carbon support. These techniques allow us to automatically obtain a single image with all the particles in focus as well as a complimentary topography map.

  20. 2012 ELECTRONIC SPECTROSCOPY & DYNAMICS GORDON RESEARCH CONFERENCE, JULY 22-27, 2012

    SciTech Connect

    Kohler, Bern

    2012-07-27

    Topics covered in this GRC include high-resolution spectroscopy, coherent electronic energy transport in biology, excited state theory and dynamics, excitonics, electronic spectroscopy of cold and ultracold molecules, and the spectroscopy of nanostructures. Several sessions will highlight innovative techniques such as time-resolved x-ray spectroscopy, frequency combs, and liquid microjet photoelectron spectroscopy that have forged stimulating new connections between gas-phase and condensed-phase work.