Sample records for high-resolution functional profiling

  1. Direct band gap measurement of Cu(In,Ga)(Se,S){sub 2} thin films using high-resolution reflection electron energy loss spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heo, Sung; College of Information and Communication Engineering, Sungkyunkwan University, Cheoncheon-dong 300, Jangan-gu, Suwon 440-746; Lee, Hyung-Ik

    2015-06-29

    To investigate the band gap profile of Cu(In{sub 1−x},Ga{sub x})(Se{sub 1−y}S{sub y}){sub 2} of various compositions, we measured the band gap profile directly as a function of in-depth using high-resolution reflection energy loss spectroscopy (HR-REELS), which was compared with the band gap profile calculated based on the auger depth profile. The band gap profile is a double-graded band gap as a function of in-depth. The calculated band gap obtained from the auger depth profile seems to be larger than that by HR-REELS. Calculated band gaps are to measure the average band gap of the spatially different varying compositions with respectmore » to considering its void fraction. But, the results obtained using HR-REELS are to be affected by the low band gap (i.e., out of void) rather than large one (i.e., near void). Our findings suggest an analytical method to directly determine the band gap profile as function of in-depth.« less

  2. Tuning donut profile for spatial resolution in stimulated emission depletion microscopy.

    PubMed

    Neupane, Bhanu; Chen, Fang; Sun, Wei; Chiu, Daniel T; Wang, Gufeng

    2013-04-01

    In stimulated emission depletion (STED)-based or up-conversion depletion-based super-resolution optical microscopy, the donut-shaped depletion beam profile is of critical importance to its resolution. In this study, we investigate the transformation of the donut-shaped depletion beam focused by a high numerical aperture (NA) microscope objective, and model STED point spread function (PSF) as a function of donut beam profile. We show experimentally that the intensity profile of the dark kernel of the donut can be approximated as a parabolic function, whose slope is determined by the donut beam size before the objective back aperture, or the effective NA. Based on this, we derive the mathematical expression for continuous wave (CW) STED PSF as a function of focal plane donut and excitation beam profiles, as well as dye properties. We find that the effective NA and the residual intensity at the center are critical factors for STED imaging quality and the resolution. The effective NA is critical for STED resolution in that it not only determines the donut shape but also the area the depletion laser power is dispersed. An improperly expanded depletion beam will have negligible improvement in resolution. The polarization of the depletion beam also plays an important role as it affects the residual intensity in the center of the donut. Finally, we construct a CW STED microscope operating at 488 nm excitation and 592 nm depletion with a resolution of 70 nm. Our study provides detailed insight to the property of donut beam, and parameters that are important for the optimal performance of STED microscopes. This paper will provide a useful guide for the construction and future development of STED microscopes.

  3. Constraints on the Profiles of Total Water PDF in AGCMs from AIRS and a High-Resolution Model

    NASA Technical Reports Server (NTRS)

    Molod, Andrea

    2012-01-01

    Atmospheric general circulation model (AGCM) cloud parameterizations generally include an assumption about the subgrid-scale probability distribution function (PDF) of total water and its vertical profile. In the present study, the Atmospheric Infrared Sounder (AIRS) monthly-mean cloud amount and relative humidity fields are used to compute a proxy for the second moment of an AGCM total water PDF called the RH01 diagnostic, which is the AIRS mean relative humidity for cloud fractions of 0.1 or less. The dependence of the second moment on horizontal grid resolution is analyzed using results from a high-resolution global model simulation.The AIRS-derived RH01 diagnostic is generally larger near the surface than aloft, indicating a narrower PDF near the surface, and varies with the type of underlying surface. High-resolution model results show that the vertical structure of profiles of the AGCM PDF second moment is unchanged as the grid resolution changes from 200 to 100 to 50 km, and that the second-moment profiles shift toward higher values with decreasing grid spacing.Several Goddard Earth Observing System, version 5 (GEOS-5), AGCM simulations were performed with several choices for the profile of the PDF second moment. The resulting cloud and relative humidity fields were shown to be quite sensitive to the prescribed profile, and the use of a profile based on the AIRS-derived proxy results in improvements relative to observational estimates. The AIRS-guided total water PDF profiles, including their dependence on underlying surface type and on horizontal resolution, have been implemented in the version of the GEOS-5 AGCM used for publicly released simulations.

  4. Lidar Data Products and Applications Enabled by Conical Scanning

    NASA Technical Reports Server (NTRS)

    Schwemmer, Geary K.; Miller, David O.; Wilkerson, Thomas D.; Lee, Sang-Woo

    2004-01-01

    Several new data products and applications for elastic backscatter lidar are achieved using simple conical scanning. Atmospheric boundary layer spatial and temporal structure is revealed with resolution not possible with static pointing lidars. Cloud fractional coverage as a function of altitude is possible with high temporal resolution. Wind profiles are retrieved from the cloud and aerosol structure motions revealed by scanning. New holographic technology will soon allow quasi-conical scanning and push-broom lidar imaging without mechanical scanning, high resolution, on the order of seconds.

  5. High-resolution α-amylase assay combined with high-performance liquid chromatography-solid-phase extraction-nuclear magnetic resonance spectroscopy for expedited identification of α-amylase inhibitors: proof of concept and α-amylase inhibitor in cinnamon.

    PubMed

    Okutan, Leyla; Kongstad, Kenneth T; Jäger, Anna K; Staerk, Dan

    2014-11-26

    Type 2 diabetes affects millions of people worldwide, and new improved drugs or functional foods containing selective α-amylase inhibitors are needed for improved management of blood glucose. In this article the development of a microplate-based high-resolution α-amylase inhibition assay with direct photometric measurement of α-amylase activity is described. The inhibition assay is based on porcine pancreatic α-amylase with 2-chloro-4-nitrophenyl-α-D-maltotriose as substrate, which this gives a stable, sensitive, and cheap inhibition assay as requested for high-resolution purposes. In combination with HPLC-HRMS-SPE-NMR, this provides an analytical platform that allows simultaneous chemical and biological profiling of α-amylase inhibitors in plant extracts. Proof-of-concept with an artificial mixture of six compounds-of which three are known α-amylase inhibitors-showed that the high-resolution α-amylase inhibition profiles allowed detection of sub-microgram amounts of the α-amylase inhibitors. Furthermore, the high-resolution α-amylase inhibition assay/HPLC-HRMS-SPE-NMR platform allowed identification of cinnamaldehyde as the α-amylase inhibitor in cinnamon (Cinnamomum verum Presl.).

  6. EpiProfile Quantifies Histone Peptides With Modifications by Extracting Retention Time and Intensity in High-resolution Mass Spectra*

    PubMed Central

    Yuan, Zuo-Fei; Lin, Shu; Molden, Rosalynn C.; Cao, Xing-Jun; Bhanu, Natarajan V.; Wang, Xiaoshi; Sidoli, Simone; Liu, Shichong; Garcia, Benjamin A.

    2015-01-01

    Histone post-translational modifications contribute to chromatin function through their chemical properties which influence chromatin structure and their ability to recruit chromatin interacting proteins. Nanoflow liquid chromatography coupled with high resolution tandem mass spectrometry (nanoLC-MS/MS) has emerged as the most suitable technology for global histone modification analysis because of the high sensitivity and the high mass accuracy of this approach that provides confident identification. However, analysis of histones with this method is even more challenging because of the large number and variety of isobaric histone peptides and the high dynamic range of histone peptide abundances. Here, we introduce EpiProfile, a software tool that discriminates isobaric histone peptides using the distinguishing fragment ions in their tandem mass spectra and extracts the chromatographic area under the curve using previous knowledge about peptide retention time. The accuracy of EpiProfile was evaluated by analysis of mixtures containing different ratios of synthetic histone peptides. In addition to label-free quantification of histone peptides, EpiProfile is flexible and can quantify different types of isotopically labeled histone peptides. EpiProfile is unique in generating layouts (i.e. relative retention time) of histone peptides when compared with manual quantification of the data and other programs (such as Skyline), filling the need of an automatic and freely available tool to quantify labeled and non-labeled modified histone peptides. In summary, EpiProfile is a valuable nanoflow liquid chromatography coupled with high resolution tandem mass spectrometry-based quantification tool for histone peptides, which can also be adapted to analyze nonhistone protein samples. PMID:25805797

  7. Clinical progression and outcome of dysphagia following paediatric traumatic brain injury: a prospective study.

    PubMed

    Morgan, Angela; Ward, Elizabeth; Murdoch, Bruce

    2004-04-01

    To provide a preliminary clinical profile of the resolution and outcomes of oral-motor impairment and swallowing function in a group of paediatric dysphagia patients post-traumatic brain injury (TBI). To document the level of cognitive impairment parallel to the return to oral intake, and to investigate the correlation between the resolution of impaired swallow function versus the resolution of oral-motor impairment and cognitive impairment. Thirteen children admitted to an acute care setting for TBI. A series of oral-motor (Verbal Motor Production Assessment for Children, Frenchay Dysarthria Assessment, Schedule for Oral Motor Assessment) and swallowing (Paramatta Hospital's Assessment for Dysphagia) assessments, an outcome measure for swallowing (Royal Brisbane Hospital's Outcome Measure for Swallowing), and a cognitive rating scale (Rancho Level of Cognitive Functioning Scale). Across the patient group, oral-motor deficits resolved to normal status between 3 and 11 weeks post-referral (and at an average of 12 weeks post-injury) and swallowing function and resolution to normal diet status were achieved by 3-11 weeks post-referral (and at an average of 12 weeks post-injury). The resolution of dysphagia and the resolution of oral-motor impairment and cognitive impairment were all highly correlated. The provision of a preliminary profile of oral-motor functioning and dysphagia resolution, and data on the linear relationship between swallowing impairment and cognition, will provide baseline information on the course of rehabilitation of dysphagia in the paediatric population post-TBI. Such data will contribute to more informed service provision and rehabilitation planning for paediatric patients post-TBI.

  8. The Probe Profile and Lateral Resolution of Scanning Transmission Electron Microscopy of Thick Specimens

    PubMed Central

    Demers, Hendrix; Ramachandra, Ranjan; Drouin, Dominique; de Jonge, Niels

    2012-01-01

    Lateral profiles of the electron probe of scanning transmission electron microscopy (STEM) were simulated at different vertical positions in a micrometers-thick carbon sample. The simulations were carried out using the Monte Carlo method in the CASINO software. A model was developed to fit the probe profiles. The model consisted of the sum of a Gaussian function describing the central peak of the profile, and two exponential decay functions describing the tail of the profile. Calculations were performed to investigate the fraction of unscattered electrons as function of the vertical position of the probe in the sample. Line scans were also simulated over gold nanoparticles at the bottom of a carbon film to calculate the achievable resolution as function of the sample thickness and the number of electrons. The resolution was shown to be noise limited for film thicknesses less than 1 μm. Probe broadening limited the resolution for thicker films. The validity of the simulation method was verified by comparing simulated data with experimental data. The simulation method can be used as quantitative method to predict STEM performance or to interpret STEM images of thick specimens. PMID:22564444

  9. Analysis of Near Simultaneous Jimsphere and AMPS High Resolution Wind Profiles

    NASA Technical Reports Server (NTRS)

    Adelfang, S. I.

    2003-01-01

    The high-resolution wind profile of the Automated Meteorological Profiling System (HRAMPS) is the proposed replacement for the Jimsphere measurement system used to support NASA Shuttle launches from the Eastern Test Range (ETR). Samples of twenty-six ETR near simultaneous Jimsphere and HRAMPS wind profiles were obtained for Shuttle program HRAMPS certification studies. Shuttle systems engineering certification is to ensure that spacecraft and launch vehicle systems performance and safety evaluations for each launch (derived from flight simulations with Jimsphere wind profile data bases) retain their validity when HRAMPS profiles are used on day-of-launch (DOL) in trajectory and loads simulations to support the commit-to-launch decision. This paper describes a statistical analysis of the near simultaneous profiles. In principle the differences between a Jimsphere profile and an HRAMPS profile should be attributed to tracking technology (radar versus GPS tracking of a Jimsphere flight element) and the method for derivation of wind vectors from the raw tracking data. In reality, it is not technically feasible to track the same Jimsphere balloon with the two systems. The aluminized Mylar surface of the standard Jimsphere flight element facilitates radar tracking, but it interferes with HRAMPS during simultaneous tracking. Suspending a radar reflector from an HRAMPS flight element (Jimsphere without aluminized coating) does not produce satisfactory Jimsphere profiles because of intermittent radar returns. Thus, differences between the Jimsphere and HRAMPS profiles are also attributed to differences in the trajectories of separate flight elements. Because of small sample size and a test period limited to one winter season, test measurements during extreme high winds aloft could not have been expected and did not occur. It is during the highest winds that the largest differences between Jimsphere and HRAMPS would occur because the distance between flight elements would be larger. Jimsphere radar tracking noise increases as a function of balloon displacement downrange. The Jimsphere data processing compensates for tracking signal/noise degradation by increasing the smoothing interval. The Jimsphere wind profile effective resolution is a function of downrange distance and altitude, whereas the effective resolution of the HRAMPS should be independent of those variables. The procedure used for editing Jimsphere spikes in Shuttle DOL profiles was not implemented for the Jimsphere profile measurements during the AMPS field tests. For this analysis a code was developed that essentially mimics DOL Jimsphere spike editing. Jimsphere profiles have somewhat more noise in the wavelength range less than 200m defined as the noise floor. No differences between Jimsphere and HRAMPS wind profile pairs have been found that would support denial of HRAMPS certification for application in Shuttle DOL applications. The reliability of the HRAMPS system, which is an important certification issue, is not addressed in this study.

  10. High-resolution velocimetry in energetic tidal currents using a convergent-beam acoustic Doppler profiler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sellar, Brian; Harding, Samuel F.; Richmond, Marshall C.

    An array of convergent acoustic Doppler velocimeters has been developed and tested for the high resolution measurement of three-dimensional tidal flow velocities in an energetic tidal site. This configuration has been developed to increase spatial resolution of velocity measurements in comparison to conventional acoustic Doppler profilers (ADPs) which characteristically use diverging acoustic beams emanating from a single instrument. This is achieved using converging acoustic beams with a sample volume at the focal point of 0.03 m 3. The array is also able to simultaneously measure three-dimensional velocity components in a profile throughout the water column, and as such is referredmore » to herein as a converging-beam acoustic Doppler profiler (CADP). Mid-depth profiling is achieved through integration of the sensor platform with the operational Alstom 1MW DeepGen-IV Tidal Turbine. This proof-of-concept paper outlines system configuration and comparison to measurements provided by co-installed reference instrumentation. Comparison of CADP to standard ADP velocity measurements reveals a mean difference of 8 mm/s, standard deviation of 18 mm/s, and order-of-magnitude reduction in realizable length-scale. CADP focal point measurements compared to a proximal single-beam reference show peak cross-correlation coefficient of 0.96 over 4.0 s averaging period and a 47% reduction in Doppler noise. The dual functionality of the CADP as a profiling instrument with a high resolution focal point make this configuration a unique and valuable advancement in underwater velocimetry enabling improved turbulence, resource and structural loading quantification and validation of numerical simulations. Alternative modes of operation have been implemented including noise-reducing bi-static sampling. Since waves are simultaneously measured it is expected that derivatives of this system will be a powerful tool in wave-current interaction studies.« less

  11. Simultaneous measurement of stratospheric O3, H2O, CH4, and N2O profiles from infrared limb thermal emissions

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Glenn, M. J.; Kunde, V. G.; Brasunas, J.; Conrath, B. J.; Maguire, W. C.; Herman, J. R.

    1987-01-01

    Thermal emission measurements of the earth's stratospheric limb were made with a cryogenically cooled high-resolution Michelson interferometer on a balloon flight launched from Palestine, TX, on Nov. 6, 1984. Infrared spectra for complete limb sequences were obtained over portions of the 700-1940/cm range with an unapodized spectral resolution of 0.03/cm for tangent heights varying from 13 to 39 km. The observed data from 1125 to 1425/cm have been analyzed for simultaneous measurement of O3, H2O, CH4, and N2O profiles. The analysis employs line-by-line and layer-by-layer radiative-transfer calculations, including curvature and refraction effects. The optimum use of geometric and spectral effects is made to obtain sharply peaked weighting functions. Contributions from stratospheric aerosol are included by measuring the light extinction within the window regions of the observed spectra. The retrieved constituent profiles are compared with measurements made with a variety of techniques by other groups. The comparison shows good agreement with the published data for all gases, indicating the capability of retrieving trace gas profiles from high-resolution thermal emission limb measurements.

  12. Beyond the resolution limit: subpixel resolution in animals and now in silicon

    NASA Astrophysics Data System (ADS)

    Wilcox, M. J.

    2007-09-01

    Automatic acquisition of aerial threats at thousands of kilometers distance requires high sensitivity to small differences in contrast and high optical quality for subpixel resolution, since targets occupy much less surface area than a single pixel. Targets travel at high speed and break up in the re-entry phase. Target/decoy discrimination at the earliest possible time is imperative. Real time performance requires a multifaceted approach with hyperspectral imaging and analog processing allowing feature extraction in real time. Hyperacuity Systems has developed a prototype chip capable of nonlinear increase in resolution or subpixel resolution far beyond either pixel size or spacing. Performance increase is due to a biomimetic implementation of animal retinas. Photosensitivity is not homogeneous across the sensor surface, allowing pixel parsing. It is remarkably simple to provide this profile to detectors and we showed at least three ways to do so. Individual photoreceptors have a Gaussian sensitivity profile and this nonlinear profile can be exploited to extract high-resolution. Adaptive, analog circuitry provides contrast enhancement, dynamic range setting with offset and gain control. Pixels are processed in parallel within modular elements called cartridges like photo-receptor inputs in fly eyes. These modular elements are connected by a novel function for a cell matrix known as L4. The system is exquisitely sensitive to small target motion and operates with a robust signal under degraded viewing conditions, allowing detection of targets smaller than a single pixel or at greater distance. Therefore, not only is instantaneous feature extraction possible but also subpixel resolution. Analog circuitry increases processing speed with more accurate motion specification for target tracking and identification.

  13. High-resolution velocimetry in energetic tidal currents using a convergent-beam acoustic Doppler profiler

    NASA Astrophysics Data System (ADS)

    Sellar, Brian; Harding, Samuel; Richmond, Marshall

    2015-08-01

    An array of single-beam acoustic Doppler profilers has been developed for the high resolution measurement of three-dimensional tidal flow velocities and subsequently tested in an energetic tidal site. This configuration has been developed to increase spatial resolution of velocity measurements in comparison to conventional acoustic Doppler profilers (ADPs) which characteristically use divergent acoustic beams emanating from a single instrument. This is achieved using geometrically convergent acoustic beams creating a sample volume at the focal point of 0.03 m3. Away from the focal point, the array is also able to simultaneously reconstruct three-dimensional velocity components in a profile throughout the water column, and is referred to herein as a convergent-beam acoustic Doppler profiler (C-ADP). Mid-depth profiling is achieved through integration of the sensor platform with the operational commercial-scale Alstom 1 MW DeepGen-IV Tidal Turbine deployed at the European Marine Energy Center, Orkney Isles, UK. This proof-of-concept paper outlines the C-ADP system configuration and comparison to measurements provided by co-installed reference instrumentation. Comparison of C-ADP to standard divergent ADP (D-ADP) velocity measurements reveals a mean difference of 8 mm s-1, standard deviation of 18 mm s-1, and an order of magnitude reduction in realisable length scale. C-ADP focal point measurements compared to a proximal single-beam reference show peak cross-correlation coefficient of 0.96 over 4.0 s averaging period and a 47% reduction in Doppler noise. The dual functionality of the C-ADP as a profiling instrument with a high resolution focal point make this configuration a unique and valuable advancement in underwater velocimetry enabling improved quantification of flow turbulence. Since waves are simultaneously measured via profiled velocities, pressure measurements and surface detection, it is expected that derivatives of this system will be a powerful tool in wave-current interaction studies.

  14. Simultaneous observations of structure function parameter of refractive index using a high-resolution radar and the DataHawk small airborne measurement system

    NASA Astrophysics Data System (ADS)

    Scipión, Danny E.; Lawrence, Dale A.; Milla, Marco A.; Woodman, Ronald F.; Lume, Diego A.; Balsley, Ben B.

    2016-09-01

    The SOUSY (SOUnding SYstem) radar was relocated to the Jicamarca Radio Observatory (JRO) near Lima, Peru, in 2000, where the radar controller and acquisition system were upgraded with state-of-the-art parts to take full advantage of its potential for high-resolution atmospheric sounding. Due to its broad bandwidth (4 MHz), it is able to characterize clear-air backscattering with high range resolution (37.5 m). A campaign conducted at JRO in July 2014 aimed to characterize the lower troposphere with a high temporal resolution (8.1 Hz) using the DataHawk (DH) small unmanned aircraft system, which provides in situ atmospheric measurements at scales as small as 1 m in the lower troposphere and can be GPS-guided to obtain measurements within the beam of the radar. This was a unique opportunity to make coincident observations by both systems and to directly compare their in situ and remotely sensed parameters. Because SOUSY only points vertically, it is only possible to retrieve vertical radar profiles caused by changes in the refractive index within the resolution volume. Turbulent variations due to scattering are described by the structure function parameter of refractive index Cn2. Profiles of Cn2 from the DH are obtained by combining pressure, temperature, and relative humidity measurements along the helical trajectory and integrated at the same scale as the radar range resolution. Excellent agreement is observed between the Cn2 estimates obtained from the DH and SOUSY in the overlapping measurement regime from 1200 m up to 4200 m above sea level, and this correspondence provides the first accurate calibration of the SOUSY radar for measuring Cn2.

  15. User Friendly Processing of Sediment CT Data: Software and Application in High Resolution Non-Destructive Sediment Core Data Sets

    NASA Astrophysics Data System (ADS)

    Reilly, B. T.; Stoner, J. S.; Wiest, J.; Abbott, M. B.; Francus, P.; Lapointe, F.

    2015-12-01

    Computed Tomography (CT) of sediment cores allow for high resolution images, three dimensional volumes, and down core profiles, generated through the attenuation of X-rays as a function of density and atomic number. When using a medical CT-Scanner, these quantitative data are stored in pixels using the Hounsfield scale, which are relative to the attenuation of X-rays in water and air at standard temperature and pressure. Here we present MATLAB based software specifically designed for sedimentary applications with a user friendly graphical interface to process DICOM files and stitch overlapping CT scans. For visualization, the software allows easy generation of core slice images with grayscale and false color relative to a user defined Hounsfield number range. For comparison to other high resolution non-destructive methods, down core Hounsfield number profiles are extracted using a method robust to coring imperfections, like deformation, bowing, gaps, and gas expansion. We demonstrate the usefulness of this technique with lacustrine sediment cores from the Western United States and Canadian High Arctic, including Fish Lake, Oregon, and Sawtooth Lake, Ellesmere Island. These sites represent two different depositional environments and provide examples for a variety of common coring defects and lithologies. The Hounsfield profiles and images can be used in combination with other high resolution data sets, including sediment magnetic parameters, XRF core scans and many other types of data, to provide unique insights into how lithology influences paleoenvironmental and paleomagnetic records and their interpretations.

  16. Atmospheric effects on METSAT data

    NASA Technical Reports Server (NTRS)

    Johnson, W. R.

    1983-01-01

    When using the J. V. Dave dataset, two channels of simulated METSAT advanced very high resolution radiometer (AVHRR) data compare favorably with actual data. Simulated NOAA6 and NOAA7 AVHRR data are presented as radiance profiles of reflected solar energy through atmosphere with three different aerosol levels. Effects of the atmosphere on the data are presented as functions of satellite view angle or pixel position on scanline. Vegetative index simultations are also profiled.

  17. Multi-Scale Three-Dimensional Variational Data Assimilation System for Coastal Ocean Prediction

    NASA Technical Reports Server (NTRS)

    Li, Zhijin; Chao, Yi; Li, P. Peggy

    2012-01-01

    A multi-scale three-dimensional variational data assimilation system (MS-3DVAR) has been formulated and the associated software system has been developed for improving high-resolution coastal ocean prediction. This system helps improve coastal ocean prediction skill, and has been used in support of operational coastal ocean forecasting systems and field experiments. The system has been developed to improve the capability of data assimilation for assimilating, simultaneously and effectively, sparse vertical profiles and high-resolution remote sensing surface measurements into coastal ocean models, as well as constraining model biases. In this system, the cost function is decomposed into two separate units for the large- and small-scale components, respectively. As such, data assimilation is implemented sequentially from large to small scales, the background error covariance is constructed to be scale-dependent, and a scale-dependent dynamic balance is incorporated. This scheme then allows effective constraining large scales and model bias through assimilating sparse vertical profiles, and small scales through assimilating high-resolution surface measurements. This MS-3DVAR enhances the capability of the traditional 3DVAR for assimilating highly heterogeneously distributed observations, such as along-track satellite altimetry data, and particularly maximizing the extraction of information from limited numbers of vertical profile observations.

  18. Shedding light on cell compartmentation in the candidate phylum Poribacteria by high resolution visualisation and transcriptional profiling

    NASA Astrophysics Data System (ADS)

    Jahn, Martin T.; Markert, Sebastian M.; Ryu, Taewoo; Ravasi, Timothy; Stigloher, Christian; Hentschel, Ute; Moitinho-Silva, Lucas

    2016-10-01

    Assigning functions to uncultivated environmental microorganisms continues to be a challenging endeavour. Here, we present a new microscopy protocol for fluorescence in situ hybridisation-correlative light and electron microscopy (FISH-CLEM) that enabled, to our knowledge for the first time, the identification of single cells within their complex microenvironment at electron microscopy resolution. Members of the candidate phylum Poribacteria, common and uncultivated symbionts of marine sponges, were used towards this goal. Cellular 3D reconstructions revealed bipolar, spherical granules of low electron density, which likely represent carbon reserves. Poribacterial activity profiles were retrieved from prokaryotic enriched sponge metatranscriptomes using simulation-based optimised mapping. We observed high transcriptional activity for proteins related to bacterial microcompartments (BMC) and we resolved their subcellular localisation by combining FISH-CLEM with immunohistochemistry (IHC) on ultra-thin sponge tissue sections. In terms of functional relevance, we propose that the BMC-A region may be involved in 1,2-propanediol degradation. The FISH-IHC-CLEM approach was proven an effective toolkit to combine -omics approaches with functional studies and it should be widely applicable in environmental microbiology.

  19. High-resolution definition of humoral immune response correlates of effective immunity against HIV.

    PubMed

    Alter, Galit; Dowell, Karen G; Brown, Eric P; Suscovich, Todd J; Mikhailova, Anastassia; Mahan, Alison E; Walker, Bruce D; Nimmerjahn, Falk; Bailey-Kellogg, Chris; Ackerman, Margaret E

    2018-03-26

    Defining correlates of immunity by comprehensively interrogating the extensive biological diversity in naturally or experimentally protected subjects may provide insights critical for guiding the development of effective vaccines and antibody-based therapies. We report advances in a humoral immunoprofiling approach and its application to elucidate hallmarks of effective HIV-1 viral control. Systematic serological analysis for a cohort of HIV-infected subjects with varying viral control was conducted using both a high-resolution, high-throughput biophysical antibody profiling approach, providing unbiased dissection of the humoral response, along with functional antibody assays, characterizing antibody-directed effector functions such as complement fixation and phagocytosis that are central to protective immunity. Profiles of subjects with varying viral control were computationally analyzed and modeled in order to deconvolute relationships among IgG Fab properties, Fc characteristics, and effector functions and to identify humoral correlates of potent antiviral antibody-directed effector activity and effective viral suppression. The resulting models reveal multifaceted and coordinated contributions of polyclonal antibodies to diverse antiviral responses, and suggest key biophysical features predictive of viral control. © 2018 The Authors. Published under the terms of the CC BY 4.0 license.

  20. Effects of daily, high spatial resolution a priori profiles of satellite-derived NOx emissions

    NASA Astrophysics Data System (ADS)

    Laughner, J.; Zare, A.; Cohen, R. C.

    2016-12-01

    The current generation of space-borne NO2 column observations provides a powerful method of constraining NOx emissions due to the spatial resolution and global coverage afforded by the Ozone Monitoring Instrument (OMI). The greater resolution available in next generation instruments such as TROPOMI and the capabilities of geosynchronous platforms TEMPO, Sentinel-4, and GEMS will provide even greater capabilities in this regard, but we must apply lessons learned from the current generation of retrieval algorithms to make the best use of these instruments. Here, we focus on the effect of the resolution of the a priori NO2 profiles used in the retrieval algorithms. We show that for an OMI retrieval, using daily high-resolution a priori profiles results in changes in the retrieved VCDs up to 40% when compared to a retrieval using monthly average profiles at the same resolution. Further, comparing a retrieval with daily high spatial resolution a priori profiles to a more standard one, we show that emissions derived increase by 100% when using the optimized retrieval.

  1. Anharmonic Thermal Oscillations of the Electron Momentum Distribution in Lithium Fluoride

    NASA Astrophysics Data System (ADS)

    Erba, A.; Maul, J.; Itou, M.; Dovesi, R.; Sakurai, Y.

    2015-09-01

    Anharmonic thermal effects on the electron momentum distribution of a lithium fluoride single crystal are experimentally measured through high-resolution Compton scattering and theoretically modeled with ab initio simulations, beyond the harmonic approximation to the lattice potential, explicitly accounting for thermal expansion. Directional Compton profiles are measured at two different temperatures, 10 and 300 K, with a high momentum space resolution (0.10 a.u. in full width at half maximum), using synchrotron radiation. The effect of temperature on measured directional Compton profiles is clearly revealed by oscillations extending almost up to |p |=4 a .u . , which perfectly match those predicted from quantum-mechanical simulations. The wave-function-based Hartree-Fock method and three classes of the Kohn-Sham density functional theory (local-density, generalized-gradient, and hybrid approximations) are adopted. The lattice thermal expansion, as described with the quasiharmonic approach, is found to entirely account for the effect of temperature on the electron momentum density within the experimental accuracy.

  2. Classification of high-resolution multispectral satellite remote sensing images using extended morphological attribute profiles and independent component analysis

    NASA Astrophysics Data System (ADS)

    Wu, Yu; Zheng, Lijuan; Xie, Donghai; Zhong, Ruofei

    2017-07-01

    In this study, the extended morphological attribute profiles (EAPs) and independent component analysis (ICA) were combined for feature extraction of high-resolution multispectral satellite remote sensing images and the regularized least squares (RLS) approach with the radial basis function (RBF) kernel was further applied for the classification. Based on the major two independent components, the geometrical features were extracted using the EAPs method. In this study, three morphological attributes were calculated and extracted for each independent component, including area, standard deviation, and moment of inertia. The extracted geometrical features classified results using RLS approach and the commonly used LIB-SVM library of support vector machines method. The Worldview-3 and Chinese GF-2 multispectral images were tested, and the results showed that the features extracted by EAPs and ICA can effectively improve the accuracy of the high-resolution multispectral image classification, 2% larger than EAPs and principal component analysis (PCA) method, and 6% larger than APs and original high-resolution multispectral data. Moreover, it is also suggested that both the GURLS and LIB-SVM libraries are well suited for the multispectral remote sensing image classification. The GURLS library is easy to be used with automatic parameter selection but its computation time may be larger than the LIB-SVM library. This study would be helpful for the classification application of high-resolution multispectral satellite remote sensing images.

  3. Towards nanometric resolution in multilayer depth profiling: a comparative study of RBS, SIMS, XPS and GDOES.

    PubMed

    Escobar Galindo, Ramón; Gago, Raul; Duday, David; Palacio, Carlos

    2010-04-01

    An increasing amount of effort is currently being directed towards the development of new functionalized nanostructured materials (i.e., multilayers and nanocomposites). Using an appropriate combination of composition and microstructure, it is possible to optimize and tailor the final properties of the material to its final application. The analytical characterization of these new complex nanostructures requires high-resolution analytical techniques that are able to provide information about surface and depth composition at the nanometric level. In this work, we comparatively review the state of the art in four different depth-profiling characterization techniques: Rutherford backscattering spectroscopy (RBS), secondary ion mass spectrometry (SIMS), X-ray photoelectron spectroscopy (XPS) and glow discharge optical emission spectroscopy (GDOES). In addition, we predict future trends in these techniques regarding improvements in their depth resolutions. Subnanometric resolution can now be achieved in RBS using magnetic spectrometry systems. In SIMS, the use of rotating sample holders and oxygen flooding during analysis as well as the optimization of floating low-energy ion guns to lower the impact energy of the primary ions improves the depth resolution of the technique. Angle-resolved XPS provides a very powerful and nondestructive technique for obtaining depth profiling and chemical information within the range of a few monolayers. Finally, the application of mathematical tools (deconvolution algorithms and a depth-profiling model), pulsed sources and surface plasma cleaning procedures is expected to greatly improve GDOES depth resolution.

  4. Estimation of Venus wind velocities from high-resolution infrared spectra. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Smith, M. A. H.

    1978-01-01

    Zonal velocity profiles in the Venus atmosphere above the clouds were estimated from measured asymmetries of HCl and HF infrared absorption lines in high-resolution Fourier interferometer spectra of the planet. These asymmetries are caused by both pressure-induced shifts in the positions of the hydrogen-halide lines perturbed by CO2 and Doppler shifts due to atmospheric motions. Particularly in the case of the HCl 2-0 band, the effects of the two types of line shifts can be easily isolated, making it possible to estimate a profile of average Venus equatorial zonal velocity as a function of pressure in the region roughly 60 to 70 km above the surface of the planet. The mean profiles obtained show strong vertical shear in the Venus zonal winds near the cloud-top level, and both the magnitude and direction of winds at all levels in this region appear to vary greatly with longitude relative to the sub-solar point.

  5. Simulation of Wind Profile Perturbations for Launch Vehicle Design

    NASA Technical Reports Server (NTRS)

    Adelfang, S. I.

    2004-01-01

    Ideally, a statistically representative sample of measured high-resolution wind profiles with wavelengths as small as tens of meters is required in design studies to establish aerodynamic load indicator dispersions and vehicle control system capability. At most potential launch sites, high- resolution wind profiles may not exist. Representative samples of Rawinsonde wind profiles to altitudes of 30 km are more likely to be available from the extensive network of measurement sites established for routine sampling in support of weather observing and forecasting activity. Such a sample, large enough to be statistically representative of relatively large wavelength perturbations, would be inadequate for launch vehicle design assessments because the Rawinsonde system accurately measures wind perturbations with wavelengths no smaller than 2000 m (1000 m altitude increment). The Kennedy Space Center (KSC) Jimsphere wind profiles (150/month and seasonal 2 and 3.5-hr pairs) are the only adequate samples of high resolution profiles approx. 150 to 300 m effective resolution, but over-sampled at 25 m intervals) that have been used extensively for launch vehicle design assessments. Therefore, a simulation process has been developed for enhancement of measured low-resolution Rawinsonde profiles that would be applicable in preliminary launch vehicle design studies at launch sites other than KSC.

  6. Fast-ion D(alpha) measurements and simulations in DIII-D

    NASA Astrophysics Data System (ADS)

    Luo, Yadong

    The fast-ion Dalpha diagnostic measures the Doppler-shifted Dalpha light emitted by neutralized fast ions. For a favorable viewing geometry, the bright interferences from beam neutrals, halo neutrals, and edge neutrals span over a small wavelength range around the Dalpha rest wavelength and are blocked by a vertical bar at the exit focal plane of the spectrometer. Background subtraction and fitting techniques eliminate various contaminants in the spectrum. Fast-ion data are acquired with a time evolution of ˜1 ms, spatial resolution of ˜5 cm, and energy resolution of ˜10 keV. A weighted Monte Carlo simulation code models the fast-ion Dalpha spectra based on the fast-ion distribution function from other sources. In quiet plasmas, the spectral shape is in excellent agreement and absolute magnitude also has reasonable agreement. The fast-ion D alpha signal has the expected dependencies on plasma and neutral beam parameters. The neutral particle diagnostic and neutron diagnostic corroborate the fast-ion Dalpha measurements. The relative spatial profile is in agreement with the simulated profile based on the fast-ion distribution function from the TRANSP analysis code. During ion cyclotron heating, fast ions with high perpendicular energy are accelerated, while those with low perpendicular energy are barely affected. The spatial profile is compared with the simulated profiles based on the fast-ion distribution functions from the CQL Fokker-Planck code. In discharges with Alfven instabilities, both the spatial profile and spectral shape suggests that fast ions are redistributed. The flattened fast-ion Dalpha profile is in agreement with the fast-ion pressure profile.

  7. COMPREHENSIVE CHEMICAL PROFILING OF GRAMINEOUS PLANT ROOT EXUDATES USING HIGH-RESOLUTION NMR AND MS. (R825433C007)

    EPA Science Inventory

    Root exudates released into soil have important functions in mobilizing metal micronutrients and for causing selective enrichment of plant beneficial soil micro-organisms that colonize the rhizosphere. Analysis of plant root exudates typically has involved chromatographic meth...

  8. Comparative Geostatistical Analysis of Flowmeter and Direct-Push Hydraulic Conductivity Profiles at the MADE Site

    NASA Astrophysics Data System (ADS)

    Bohling, G.; Liu, G.; Knobbe, S. J.; Reboulet, E. C.; Hyndman, D. W.; Dietrich, P.; Butler, J. J.

    2010-12-01

    Spatial variations in hydraulic conductivity (K) are a critical control on subsurface solute transport. Characterization of such variations at the resolution (cm to dm) required for transport investigations, however, has proven to be a formidable challenge. A new generation of direct-push (DP) tools has now been developed for the characterization of vertical K variations at this resolution. These tools, which can be run in high- (0.015-m) and low- (0.4 m) resolution modes, were recently applied to the extensively studied and highly heterogeneous MADE site. Results from a geostatistical analysis of 64 DP K profiles compare favorably with the flowmeter K data that have served as the primary basis for previous MADE studies. The global statistics of the low-resolution DP and flowmeter K data are in excellent agreement. The correlation structures for the high-resolution DP data show excellent agreement with those computed from the flowmeter data. However, the geometric mean DP K value for high-resolution profiling is roughly one order of magnitude lower than the geometric mean flowmeter K value, possibly as a result of the biases inherent in each approach compounded with differences in the areal distribution of flowmeter and DP profile locations. A DP profile through the MADE aquifer to a depth of 12 m can be completed as rapidly as 1.5-2 hours, a small fraction of the time required to obtain a single flowmeter profile when well drilling, installation, and development are considered. The results of this study demonstrate that DP profiling is a practically feasible approach for characterization of spatial variations in K at the resolution required for transport investigations in highly heterogeneous systems.

  9. High-resolution seismic reflection profiling for mapping shallow aquifers in Lee County, Florida

    USGS Publications Warehouse

    Missimer, T.M.; Gardner, Richard Alfred

    1976-01-01

    High-resolution continuous seismic reflection profiling equipment was utilized to define the configuration of sedimentary layers underlying part of Lee County, Florida. About 45 miles (72 kilometers) of profile were made on the Caloosahatchee River Estuary and San Carlos Bay. Two different acoustic energy sources, a high resolution boomer and a 45-electrode high resolution sparker, both having a power input of 300 joules, were used to obtain both adequate penetration and good resolution. The seismic profiles show that much of the strata of middle Miocene to Holocene age apparently are extensively folded but not faulted. Initial interpretations indicate that: (1) the top of the Hawthorn Formation (which contains the upper Hawthorn aquifer) has much relief due chiefly to apparent folding; (2) the limestone, sandstone, and unconsolidated sand and phosphorite, which together compose the sandstone aquifer, appear to be discontinuous; (3) the green clay unit of the Tamiami Formation contains large scale angular beds dipping eastward; and (4) numerous deeply cut alluvium-filled paleochannels underlie the Caloosahatchee River. (Woodard-USGS)

  10. Recommended Isolated-Line Profile for Representing High-Resolution Spectroscoscopic Transitions

    NASA Astrophysics Data System (ADS)

    Tennyson, J.; Bernath, P. F.; Campargue, A.; Császár, A. G.; Daumont, L.; Gamache, R. R.; Hodges, J. T.; Lisak, D.; Naumenko, O. V.; Rothman, L. S.; Tran, H.; Hartmann, J.-M.; Zobov, N. F.; Buldyreva, J.; Boone, C. D.; De Vizia, M. Domenica; Gianfrani, L.; McPheat, R.; Weidmann, D.; Murray, J.; Ngo, N. H.; Polyansky, O. L.

    2014-06-01

    Recommendations of an IUPAC Task Group, formed in 2011 on "Intensities and line shapes in high-resolution spectra of water isotopologues from experiment and theory" (Project No. 2011-022-2-100), on line profiles of isolated high-resolution rotational-vibrational transitions perturbed by neutral gas-phase molecules are presented. The well-documented inadequacies of the Voigt profile, used almost universally by databases and radiative-transfer codes to represent pressure effects and Doppler broadening in isolated vibrational-rotational and pure rotational transitions of the water molecule, have resulted in the development of a variety of alternative line profile models. These models capture more of the physics of the influence of pressure on line shapes but, in general, at the price of greater complexity. The Task Group recommends that the partially-Correlated quadratic-Speed-Dependent Hard-Collision profile should be adopted as the appropriate model for high-resolution spectroscopy. For simplicity this should be called the Hartmann-Tran profile (HTP). This profile is sophisticated enough to capture the various collisional contributions to the isolated line shape, can be computed in a straightforward and rapid manner, and reduces to simpler profiles, including the Voigt profile, under certain simplifying assumptions. For further details see: J. Tennyson et al, Pure Appl. Chem., 2014, in press.

  11. Resolving anatomical and functional structure in human brain organization: identifying mesoscale organization in weighted network representations.

    PubMed

    Lohse, Christian; Bassett, Danielle S; Lim, Kelvin O; Carlson, Jean M

    2014-10-01

    Human brain anatomy and function display a combination of modular and hierarchical organization, suggesting the importance of both cohesive structures and variable resolutions in the facilitation of healthy cognitive processes. However, tools to simultaneously probe these features of brain architecture require further development. We propose and apply a set of methods to extract cohesive structures in network representations of brain connectivity using multi-resolution techniques. We employ a combination of soft thresholding, windowed thresholding, and resolution in community detection, that enable us to identify and isolate structures associated with different weights. One such mesoscale structure is bipartivity, which quantifies the extent to which the brain is divided into two partitions with high connectivity between partitions and low connectivity within partitions. A second, complementary mesoscale structure is modularity, which quantifies the extent to which the brain is divided into multiple communities with strong connectivity within each community and weak connectivity between communities. Our methods lead to multi-resolution curves of these network diagnostics over a range of spatial, geometric, and structural scales. For statistical comparison, we contrast our results with those obtained for several benchmark null models. Our work demonstrates that multi-resolution diagnostic curves capture complex organizational profiles in weighted graphs. We apply these methods to the identification of resolution-specific characteristics of healthy weighted graph architecture and altered connectivity profiles in psychiatric disease.

  12. High-resolution mapping of transcription factor binding sites on native chromatin

    PubMed Central

    Kasinathan, Sivakanthan; Orsi, Guillermo A.; Zentner, Gabriel E.; Ahmad, Kami; Henikoff, Steven

    2014-01-01

    Sequence-specific DNA-binding proteins including transcription factors (TFs) are key determinants of gene regulation and chromatin architecture. Formaldehyde cross-linking and sonication followed by Chromatin ImmunoPrecipitation (X-ChIP) is widely used for profiling of TF binding, but is limited by low resolution and poor specificity and sensitivity. We present a simple protocol that starts with micrococcal nuclease-digested uncross-linked chromatin and is followed by affinity purification of TFs and paired-end sequencing. The resulting ORGANIC (Occupied Regions of Genomes from Affinity-purified Naturally Isolated Chromatin) profiles of Saccharomyces cerevisiae Abf1 and Reb1 provide highly accurate base-pair resolution maps that are not biased toward accessible chromatin, and do not require input normalization. We also demonstrate the high specificity of our method when applied to larger genomes by profiling Drosophila melanogaster GAGA Factor and Pipsqueak. Our results suggest that ORGANIC profiling is a widely applicable high-resolution method for sensitive and specific profiling of direct protein-DNA interactions. PMID:24336359

  13. Feasibility of high-resolution one-dimensional relaxation imaging at low magnetic field using a single-sided NMR scanner applied to articular cartilage

    NASA Astrophysics Data System (ADS)

    Rössler, Erik; Mattea, Carlos; Stapf, Siegfried

    2015-02-01

    Low field Nuclear Magnetic Resonance increases the contrast of the longitudinal relaxation rate in many biological tissues; one prominent example is hyaline articular cartilage. In order to take advantage of this increased contrast and to profile the depth-dependent variations, high resolution parameter measurements are carried out which can be of critical importance in an early diagnosis of cartilage diseases such as osteoarthritis. However, the maximum achievable spatial resolution of parameter profiles is limited by factors such as sensor geometry, sample curvature, and diffusion limitation. In this work, we report on high-resolution single-sided NMR scanner measurements with a commercial device, and quantify these limitations. The highest achievable spatial resolution on the used profiler, and the lateral dimension of the sensitive volume were determined. Since articular cartilage samples are usually bent, we also focus on averaging effects inside the horizontally aligned sensitive volume and their impact on the relaxation profiles. Taking these critical parameters into consideration, depth-dependent relaxation time profiles with the maximum achievable vertical resolution of 20 μm are discussed, and are correlated with diffusion coefficient profiles in hyaline articular cartilage in order to reconstruct T2 maps from the diffusion-weighted CPMG decays of apparent relaxation rates.

  14. Fast deep-tissue multispectral optoacoustic tomography (MSOT) for preclinical imaging of cancer and cardiovascular disease

    NASA Astrophysics Data System (ADS)

    Taruttis, Adrian; Razansky, Daniel; Ntziachristos, Vasilis

    2012-02-01

    Optoacoustic imaging has enabled the visualization of optical contrast at high resolutions in deep tissue. Our Multispectral optoacoustic tomography (MSOT) imaging results reveal internal tissue heterogeneity, where the underlying distribution of specific endogenous and exogenous sources of absorption can be resolved in detail. Technical advances in cardiac imaging allow motion-resolved multispectral measurements of the heart, opening the way for studies of cardiovascular disease. We further demonstrate the fast characterization of the pharmacokinetic profiles of lightabsorbing agents. Overall, our MSOT findings indicate new possibilities in high resolution imaging of functional and molecular parameters.

  15. Edible seaweed as future functional food: Identification of α-glucosidase inhibitors by combined use of high-resolution α-glucosidase inhibition profiling and HPLC-HRMS-SPE-NMR.

    PubMed

    Liu, Bingrui; Kongstad, Kenneth T; Wiese, Stefanie; Jäger, Anna K; Staerk, Dan

    2016-07-15

    Crude chloroform, ethanol and acetone extracts of nineteen seaweed species were screened for their antioxidant and α-glucosidase inhibitory activity. Samples showing more than 60% α-glucosidase inhibitory activity, at a concentration of 1 mg/ml, were furthermore investigated using high-resolution α-glucosidase inhibition profiling combined with high-performance liquid chromatography-high-resolution mass spectrometry-solid-phase extraction-nuclear magnetic resonance spectroscopy (HR-bioassay/HPLC-HRMS-SPE-NMR). The results showed Ascophyllum nodosum and Fucus vesicolosus to be rich in antioxidants, equaling a Trolox equivalent antioxidant capacity of 135 and 108 mM Troloxmg(-1) extract, respectively. HR-bioassay/HPLC-HRMS-SPE-NMR showed the α-glucosidase inhibitory activity of A. nodosum, F. vesoculosus, Laminaria digitata, Laminaria japonica and Undaria pinnatifida to be caused by phlorotannins as well as fatty acids - with oleic acid, linoleic acid and eicosapentaenoic acid being the most potent with IC50 values of 0.069, 0.075 and 0.10 mM, respectively, and showing a mixed-type inhibition mode. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Development of a procedure to model high-resolution wind profiles from smoothed or low-frequency data

    NASA Technical Reports Server (NTRS)

    Camp, D. W.

    1977-01-01

    The derivation of simulated Jimsphere wind profiles from low-frequency rawinsonde data and a generated set of white noise data are presented. A computer program is developed to model high-resolution wind profiles based on the statistical properties of data from the Kennedy Space Center, Florida. Comparison of the measured Jimsphere data, rawinsonde data, and the simulated profiles shows excellent agreement.

  17. A BGO detector for Positron Emission Profiling in catalysts

    NASA Astrophysics Data System (ADS)

    Mangnus, A. V. G.; van Ijzendoorn, L. J.; de Goeij, J. J. M.; Cunningham, R. H.; van Santen, R. A.; de Voigt, M. J. A.

    1995-05-01

    As part of a project to study the reaction kinetics in catalysts, a detector system has been designed and built. The detector will measure in one dimension the activity distribution of positron emitters in catalyst reactors under operational conditions as a function of time. The detector consists of two arrays of ten BGO crystals each and has the flexibility to measure with high sensitivity the activity profile in various reactor sizes; the position resolution that can be reached is 3 mm.

  18. High-Frequency Focused Water-Coupled Ultrasound Used for Three-Dimensional Surface Depression Profiling

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Whalen, Mike F.; Hendricks, J. Lynne; Bodis, James R.

    2001-01-01

    To interface with other solids, many surfaces are engineered via methods such as plating, coating, and machining to produce a functional surface ensuring successful end products. In addition, subsurface properties such as hardness, residual stress, deformation, chemical composition, and microstructure are often linked to surface characteristics. Surface topography, therefore, contains the signatures of the surface and possibly links to volumetric properties, and as a result serves as a vital link between surface design, manufacturing, and performance. Hence, surface topography can be used to diagnose, monitor, and control fabrication methods. At the NASA Glenn Research Center, the measurement of surface topography is important in developing high-temperature structural materials and for profiling the surface changes of materials during microgravity combustion experiments. A prior study demonstrated that focused air-coupled ultrasound at 1 MHz could profile surfaces with a 25-m depth resolution and a 400-m lateral resolution over a 1.4-mm depth range. In this work, we address the question of whether higher frequency focused water-coupled ultrasound can improve on these specifications. To this end, we employed 10- and 25-MHz focused ultrasonic transducers in the water-coupled mode. The surface profile results seen in this investigation for 25-MHz water-coupled ultrasound, in comparison to those for 1-MHz air-coupled ultrasound, represent an 8 times improvement in depth resolution (3 vs. 25 m seen in practice), an improvement of at least 2 times in lateral resolution (180 vs. 400 m calculated and observed in practice), and an improvement in vertical depth range of 4 times (calculated).

  19. High Spectral Resolution Lidar Measurements of Multiple Scattering

    NASA Technical Reports Server (NTRS)

    Eloranta, E. W.; Piironen, P.

    1996-01-01

    The University of Wisconsin High Spectral Resolution Lidar (HSRL) provides unambiguous measurements of backscatter cross section, backscatter phase function, depolarization, and optical depth. This is accomplished by dividing the lidar return into separate particulate and molecular contributions. The molecular return is then used as a calibration target. We have modified the HSRL to use an I2 molecular absorption filter to separate aerosol and molecular signals. This allows measurement in dense clouds. Useful profiles extend above the cloud base until the two way optical depth reaches values between 5 and 6; beyond this, photon counting errors become large. In order to observe multiple scattering, the HSRL includes a channel which records the combined aerosol and molecular lidar return simultaneously with the spectrometer channel measurements of optical properties. This paper describes HSRL multiple scattering measurements from both water and ice clouds. These include signal strengths and depolarizations as a function of receiver field of view. All observations include profiles of extinction and backscatter cross sections. Measurements are also compared to predictions of a multiple scattering model based on small angle approximations.

  20. Fast scanning photoretinoscope for measuring peripheral refraction as a function of accommodation.

    PubMed

    Tabernero, Juan; Schaeffel, Frank

    2009-10-01

    A new device was designed to provide fast measurements (4 s) of the peripheral refraction (90 degrees central horizontal field). Almost-continuous traces are obtained with high angular resolution (0.4 degrees) while the subject is fixating a central stimulus. Three-dimensional profiles can also be measured. The peripheral refractions in 10 emmetropic subjects were studied as a function of accommodation (200 cm, 50 cm, and 25 cm viewing distances). Peripheral refraction profiles were largely preserved during accommodation but were different in each individual. Apparently, the accommodating lens changes its focal length evenly over the central 90 degrees of the visual field.

  1. High resolution humidity, temperature and aerosol profiling with MeteoSwiss Raman lidar

    NASA Astrophysics Data System (ADS)

    Dinoev, Todor; Arshinov, Yuri; Bobrovnikov, Sergei; Serikov, Ilya; Calpini, Bertrand; van den Bergh, Hubert; Parlange, Marc B.; Simeonov, Valentin

    2010-05-01

    Meteorological services rely, in part, on numerical weather prediction (NWP). Twice a day radiosonde observations of water vapor provide the required data for assimilation but this time resolution is insufficient to resolve certain meteorological phenomena. High time resolution temperature profiles from microwave radiometers are available as well but have rather low vertical resolution. The Raman LIDARs are able to provide temperature and humidity profiles with high time and range resolution, suitable for NWP model assimilation and validation. They are as well indispensible tools for continuous aerosol profiling for high resolution atmospheric boundary layer studies. To improve the database available for direct meteorological applications the Swiss meteo-service (MeteoSwiss), the Swiss Federal Institute of Technology in Lausanne (EPFL) and the Swiss National Science Foundation (SNSF) initiated a project to design and build an automated Raman lidar for day and night vertical profiling of tropospheric water vapor with the possibility to further upgrade it with an aerosol and temperature channels. The project was initiated in 2004 and RALMO (Raman Lidar for meteorological observations) was inaugurated in August 2008 at MeteoSwiss aerological station at Payerne. RALMO is currently operational and continuously profiles water vapor mixing ratio, aerosol backscatter ratio and aerosol extinction. The instrument is a fully automated, self-contained, eye-safe Raman lidar operated at 355 nm. Narrow field-of-view multi-telescope receiver and narrow band detection allow day and night-time vertical profiling of the atmospheric humidity. The rotational-vibrational Raman lidar responses from water vapor and nitrogen are spectrally separated by a high-throughput fiber coupled diffraction grating polychromator. The elastic backscatter and pure-rotational Raman lidar responses (PRR) from oxygen and nitrogen are spectrally isolated by a double grating polychromator and are used to derive vertical profiles of aerosol backscatter ratio and aerosol extinction at 355 nm. Set of Stokes and anti-Stokes PRR lines are separated by the polychromator to derive temperature profiles. The humidity profiles have vertical resolution from 15 m (within the boundary layer) to 100-450 m (within the free troposphere), time resolution of 30 min and 5 km vertical range at daytime and 10 km at night-time. The aerosol backscatter ratio and extinction profiles have similar resolution with vertical range of approximately 10 km. The temperature profiles are derived from PRR lidar signals, simultaneously recorded in analog and photon counting mode, allowing vertical range of approximately 10 km. Vaisala RS-92 and Snow-White chilled mirror hygrometer radiosondes were used for calibration of the water vapor and temperature channels. Continuous temperature profiles were obtained and were coupled with the available water vapor mixing ratio profiles to obtain relative humidity time series. Lidar derived aerosol backscatter ratio profiles will be used for estimation of the boundary layer height and validation of NWP model results. Optical thickness time series are currently compared to independent measurements from a collocated sun photometer to assess the performance of the aerosol channel.

  2. High-resolution phylogenetic microbial community profiling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singer, Esther; Coleman-Derr, Devin; Bowman, Brett

    2014-03-17

    The representation of bacterial and archaeal genome sequences is strongly biased towards cultivated organisms, which belong to merely four phylogenetic groups. Functional information and inter-phylum level relationships are still largely underexplored for candidate phyla, which are often referred to as microbial dark matter. Furthermore, a large portion of the 16S rRNA gene records in the GenBank database are labeled as environmental samples and unclassified, which is in part due to low read accuracy, potential chimeric sequences produced during PCR amplifications and the low resolution of short amplicons. In order to improve the phylogenetic classification of novel species and advance ourmore » knowledge of the ecosystem function of uncultivated microorganisms, high-throughput full length 16S rRNA gene sequencing methodologies with reduced biases are needed. We evaluated the performance of PacBio single-molecule real-time (SMRT) sequencing in high-resolution phylogenetic microbial community profiling. For this purpose, we compared PacBio and Illumina metagenomic shotgun and 16S rRNA gene sequencing of a mock community as well as of an environmental sample from Sakinaw Lake, British Columbia. Sakinaw Lake is known to contain a large age of microbial species from candidate phyla. Sequencing results show that community structure based on PacBio shotgun and 16S rRNA gene sequences is highly similar in both the mock and the environmental communities. Resolution power and community representation accuracy from SMRT sequencing data appeared to be independent of GC content of microbial genomes and was higher when compared to Illumina-based metagenome shotgun and 16S rRNA gene (iTag) sequences, e.g. full-length sequencing resolved all 23 OTUs in the mock community, while iTags did not resolve closely related species. SMRT sequencing hence offers various potential benefits when characterizing uncharted microbial communities.« less

  3. Feasibility of high-resolution one-dimensional relaxation imaging at low magnetic field using a single-sided NMR scanner applied to articular cartilage.

    PubMed

    Rössler, Erik; Mattea, Carlos; Stapf, Siegfried

    2015-02-01

    Low field Nuclear Magnetic Resonance increases the contrast of the longitudinal relaxation rate in many biological tissues; one prominent example is hyaline articular cartilage. In order to take advantage of this increased contrast and to profile the depth-dependent variations, high resolution parameter measurements are carried out which can be of critical importance in an early diagnosis of cartilage diseases such as osteoarthritis. However, the maximum achievable spatial resolution of parameter profiles is limited by factors such as sensor geometry, sample curvature, and diffusion limitation. In this work, we report on high-resolution single-sided NMR scanner measurements with a commercial device, and quantify these limitations. The highest achievable spatial resolution on the used profiler, and the lateral dimension of the sensitive volume were determined. Since articular cartilage samples are usually bent, we also focus on averaging effects inside the horizontally aligned sensitive volume and their impact on the relaxation profiles. Taking these critical parameters into consideration, depth-dependent relaxation time profiles with the maximum achievable vertical resolution of 20 μm are discussed, and are correlated with diffusion coefficient profiles in hyaline articular cartilage in order to reconstruct T(2) maps from the diffusion-weighted CPMG decays of apparent relaxation rates. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. An asymptotic expansion approach to the inverse radiative transfer problem. [to infer concentration profiles of the atmosphere from measurements made onboard a satellite

    NASA Technical Reports Server (NTRS)

    Gomberg, R. I.; Buglia, J. J.

    1979-01-01

    An iterative technique which recovers density profiles in a nonhomogeneous absorbing atmosphere is derived. The technique is based on the concept of factoring a function of the density profile into the product of a known term and a term which is not known, but whose power series expansion can be found. This series converges rapidly under a wide range of conditions. A demonstration example of simulated data from a high resolution infrared heterodyne instrument is inverted. For the examples studied, the technique is shown to be capable of extracting features of ozone profiles in the troposphere and to be particularly stable.

  5. Depth Profilometry via Multiplexed Optical High-Coherence Interferometry

    PubMed Central

    Kazemzadeh, Farnoud; Wong, Alexander; Behr, Bradford B.; Hajian, Arsen R.

    2015-01-01

    Depth Profilometry involves the measurement of the depth profile of objects, and has significant potential for various industrial applications that benefit from non-destructive sub-surface profiling such as defect detection, corrosion assessment, and dental assessment to name a few. In this study, we investigate the feasibility of depth profilometry using an Multiplexed Optical High-coherence Interferometry MOHI instrument. The MOHI instrument utilizes the spatial coherence of a laser and the interferometric properties of light to probe the reflectivity as a function of depth of a sample. The axial and lateral resolutions, as well as imaging depth, are decoupled in the MOHI instrument. The MOHI instrument is capable of multiplexing interferometric measurements into 480 one-dimensional interferograms at a location on the sample and is built with axial and lateral resolutions of 40 μm at a maximum imaging depth of 700 μm. Preliminary results, where a piece of sand-blasted aluminum, an NBK7 glass piece, and an optical phantom were successfully probed using the MOHI instrument to produce depth profiles, demonstrate the feasibility of such an instrument for performing depth profilometry. PMID:25803289

  6. Depth profilometry via multiplexed optical high-coherence interferometry.

    PubMed

    Kazemzadeh, Farnoud; Wong, Alexander; Behr, Bradford B; Hajian, Arsen R

    2015-01-01

    Depth Profilometry involves the measurement of the depth profile of objects, and has significant potential for various industrial applications that benefit from non-destructive sub-surface profiling such as defect detection, corrosion assessment, and dental assessment to name a few. In this study, we investigate the feasibility of depth profilometry using an Multiplexed Optical High-coherence Interferometry MOHI instrument. The MOHI instrument utilizes the spatial coherence of a laser and the interferometric properties of light to probe the reflectivity as a function of depth of a sample. The axial and lateral resolutions, as well as imaging depth, are decoupled in the MOHI instrument. The MOHI instrument is capable of multiplexing interferometric measurements into 480 one-dimensional interferograms at a location on the sample and is built with axial and lateral resolutions of 40 μm at a maximum imaging depth of 700 μm. Preliminary results, where a piece of sand-blasted aluminum, an NBK7 glass piece, and an optical phantom were successfully probed using the MOHI instrument to produce depth profiles, demonstrate the feasibility of such an instrument for performing depth profilometry.

  7. Superresolution parallel magnetic resonance imaging: Application to functional and spectroscopic imaging

    PubMed Central

    Otazo, Ricardo; Lin, Fa-Hsuan; Wiggins, Graham; Jordan, Ramiro; Sodickson, Daniel; Posse, Stefan

    2009-01-01

    Standard parallel magnetic resonance imaging (MRI) techniques suffer from residual aliasing artifacts when the coil sensitivities vary within the image voxel. In this work, a parallel MRI approach known as Superresolution SENSE (SURE-SENSE) is presented in which acceleration is performed by acquiring only the central region of k-space instead of increasing the sampling distance over the complete k-space matrix and reconstruction is explicitly based on intra-voxel coil sensitivity variation. In SURE-SENSE, parallel MRI reconstruction is formulated as a superresolution imaging problem where a collection of low resolution images acquired with multiple receiver coils are combined into a single image with higher spatial resolution using coil sensitivities acquired with high spatial resolution. The effective acceleration of conventional gradient encoding is given by the gain in spatial resolution, which is dictated by the degree of variation of the different coil sensitivity profiles within the low resolution image voxel. Since SURE-SENSE is an ill-posed inverse problem, Tikhonov regularization is employed to control noise amplification. Unlike standard SENSE, for which acceleration is constrained to the phase-encoding dimension/s, SURE-SENSE allows acceleration along all encoding directions — for example, two-dimensional acceleration of a 2D echo-planar acquisition. SURE-SENSE is particularly suitable for low spatial resolution imaging modalities such as spectroscopic imaging and functional imaging with high temporal resolution. Application to echo-planar functional and spectroscopic imaging in human brain is presented using two-dimensional acceleration with a 32-channel receiver coil. PMID:19341804

  8. Interstellar lines in high resolution IUE spectra. Part 1: Groningen data reduction package and technical results

    NASA Astrophysics Data System (ADS)

    Gilra, D. P.; Pwa, T. H.; Arnal, E. M.; de Vries, J.

    1982-06-01

    In order to process and analyze high resolution IUE data on a large number of interstellar lines in a large number of images for a large number of stars, computer programs were developed for 115 lines in the short wavelength range and 40 in the long wavelength range. Programs include extraction, processing, plotting, averaging, and profile fitting. Wavelength calibration in high resolution spectra, fixed pattern noise, instrument profile and resolution, and the background problem in the region where orders are crowding are discussed. All the expected lines are detected in at least one spectrum.

  9. An objective algorithm for reconstructing the three-dimensional ocean temperature field based on Argo profiles and SST data

    NASA Astrophysics Data System (ADS)

    Zhou, Chaojie; Ding, Xiaohua; Zhang, Jie; Yang, Jungang; Ma, Qiang

    2017-12-01

    While global oceanic surface information with large-scale, real-time, high-resolution data is collected by satellite remote sensing instrumentation, three-dimensional (3D) observations are usually obtained from in situ measurements, but with minimal coverage and spatial resolution. To meet the needs of 3D ocean investigations, we have developed a new algorithm to reconstruct the 3D ocean temperature field based on the Array for Real-time Geostrophic Oceanography (Argo) profiles and sea surface temperature (SST) data. The Argo temperature profiles are first optimally fitted to generate a series of temperature functions of depth, with the vertical temperature structure represented continuously. By calculating the derivatives of the fitted functions, the calculation of the vertical temperature gradient of the Argo profiles at an arbitrary depth is accomplished. A gridded 3D temperature gradient field is then found by applying inverse distance weighting interpolation in the horizontal direction. Combined with the processed SST, the 3D temperature field reconstruction is realized below the surface using the gridded temperature gradient. Finally, to confirm the effectiveness of the algorithm, an experiment in the Pacific Ocean south of Japan is conducted, for which a 3D temperature field is generated. Compared with other similar gridded products, the reconstructed 3D temperature field derived by the proposed algorithm achieves satisfactory accuracy, with correlation coefficients of 0.99 obtained, including a higher spatial resolution (0.25° × 0.25°), resulting in the capture of smaller-scale characteristics. Finally, both the accuracy and the superiority of the algorithm are validated.

  10. Microwave Radiometer and Lidar Synergy for High Vertical Resolution Thermodynamic Profiling in a Cloudy Scenario

    NASA Astrophysics Data System (ADS)

    Barrera Verdejo, M.; Crewell, S.; Loehnert, U.; Di Girolamo, P.

    2016-12-01

    Continuous monitoring of thermodynamic atmospheric profiles is important for many applications, e.g. assessment of atmospheric stability and cloud formation. Nowadays there is a wide variety of ground-based sensors for atmospheric profiling. However, no single instrument is able to simultaneously provide measurements with complete vertical coverage, high vertical and temporal resolution, and good performance under all weather conditions. For this reason, instrument synergies of a wide range of complementary measurements are more and more considered for improving the quality of atmospheric observations. The current work presents synergetic use of a microwave radiometer (MWR) and Raman lidar (RL) within a physically consistent optimal estimation approach. On the one hand, lidar measurements provide humidity and temperature measurements with a high vertical resolution albeit with limited vertical coverage, due to overlapping function problems, sunlight contamination and the presence of clouds. On the other hand, MWRs obtain humidity, temperature and cloud information throughout the troposphere, with however only a very limited vertical resolution. The benefits of MWR+RL synergy have been previously demonstrated for clear sky cases. This work expands this approach to cloudy scenarios. Consistent retrievals of temperature, absolute and relative humidity as well as liquid water path are analyzed. In addition, different measures are presented to demonstrate the improvements achieved via the synergy compared to individual retrievals, e.g. degrees of freedom or theoretical error. We also demonstrate that, compared to the lidar, the higher temporal resolution of the MWR presents a strong advantage for capturing the high temporal variability of the liquid water cloud.. Finally, the results are compared with independent information sources, e.g. GPS or radiosondes, showing good consistency. The study demonstrates the benefits of the sensor combination, being especially strong in regions where lidar data is not available, whereas if both instruments are available, the lidar measurements dominate the retrieval.

  11. The rationale and suggested approaches for research geosynchronous satellite measurements for severe storm and mesoscale investigations

    NASA Technical Reports Server (NTRS)

    Shenk, W. E.; Adler, R. F.; Chesters, D.; Susskind, J.; Uccellini, L.

    1984-01-01

    The measurements from current and planned geosynchronous satellites provide quantitative estimates of temperature and moisture profiles, surface temperature, wind, cloud properties, and precipitation. A number of significant observation characteristics remain, they include: (1) temperature and moisture profiles in cloudy areas; (2) high vertical profile resolution; (3) definitive precipitation area mapping and precipitation rate estimates on the convective cloud scale; (4) winds from low level cloud motions at night; (5) the determination of convective cloud structure; and (6) high resolution surface temperature determination. Four major new observing capabilities are proposed to overcome these deficiencies: a microwave sounder/imager, a high resolution visible and infrared imager, a high spectral resolution infrared sounder, and a total ozone mapper. It is suggested that the four sensors are flown together and used to support major mesoscale and short range forecasting field experiments.

  12. Normalized velocity profiles of field-measured turbidity currents

    USGS Publications Warehouse

    Xu, Jingping

    2010-01-01

    Multiple turbidity currents were recorded in two submarine canyons with maximum speed as high as 280 cm/s. For each individual turbidity current measured at a fixed station, its depth-averaged velocity typically decreased over time while its thickness increased. Some turbidity currents gained in speed as they traveled downcanyon, suggesting a possible self-accelerating process. The measured velocity profiles, first in this high resolution, allowed normalizations with various schemes. Empirical functions, obtained from laboratory experiments whose spatial and time scales are two to three orders of magnitude smaller, were found to represent the field data fairly well. The best similarity collapse of the velocity profiles was achieved when the streamwise velocity and the elevation were normalized respectively by the depth-averaged velocity and the turbidity current thickness. This normalization scheme can be generalized to an empirical function Y = exp(–αXβ) for the jet region above the velocity maximum. Confirming theoretical arguments and laboratory results of other studies, the field turbidity currents are Froude-supercritical.

  13. A Measurement of the Average Longitudinal Development Profile of Cosmic Ray Air Showers from 1017.5eV to 1020eV by HiRes-II

    NASA Astrophysics Data System (ADS)

    Hughes, G.

    Ultra High Energy Cosmic Rays (UHECRs) have an energy many times greater than that of particles accelerated in colliders. The Extended Air Showers (EAS) resulting from their interaction in the atmosphere give us the opportunity to study not only Cosmic Rays but also these extremely energetic cascades. A method to calculate the Average Longitudinal Shower profile has been applied to the High Resolution Fly's Eye Detector (HiRes) data. A complete detector simulation was used to throw CORSIKA (QGSJET) showers which are then analyzed using the same technique. The main features of the average showers are compared to the Monte Carlo as a function of energy. Systematic errors in the reconstruction of the profile are considered.

  14. Method to determine thermal profiles of nanoscale circuitry

    DOEpatents

    Zettl, Alexander K; Begtrup, Gavi E

    2013-04-30

    A platform that can measure the thermal profiles of devices with nanoscale resolution has been developed. The system measures the local temperature by using an array of nanoscale thermometers. This process can be observed in real time using a high resolution imagining technique such as electron microscopy. The platform can operate at extremely high temperatures.

  15. Shear-banding and superdiffusivity in entangled polymer solutions

    NASA Astrophysics Data System (ADS)

    Shin, Seunghwan; Dorfman, Kevin D.; Cheng, Xiang

    2017-12-01

    Using high-resolution confocal rheometry, we study the shear profiles of well-entangled DNA solutions under large-amplitude oscillatory shear in a rectilinear planar shear cell. With increasing Weissenberg number (Wi), we observe successive transitions from normal Newtonian linear shear profiles to wall-slip dominant shear profiles and, finally, to shear-banding profiles at high Wi. To investigate the microscopic origin of the observed shear banding, we study the dynamics of micron-sized tracers embedded in DNA solutions. Surprisingly, tracer particles in the shear frame exhibit transient superdiffusivity and strong dynamic heterogeneity. The probability distribution functions of particle displacements follow a power-law scaling at large displacements, indicating a Lévy-walk-type motion, reminiscent of tracer dynamics in entangled wormlike micelle solutions and sheared colloidal glasses. We further characterize the length and time scales associated with the abnormal dynamics of tracer particles. We hypothesize that the unusual particle dynamics arise from localized shear-induced chain disentanglement.

  16. Highly ionized gas absorption in the disk and halo toward HD 167756 at 3.5 kilometers per second resolution

    NASA Technical Reports Server (NTRS)

    Savage, Blair D.; Sembach, Kenneth R.; Cardelli, Jason A.

    1994-01-01

    High-resolution spectra of interstellar Si IV, C IV, and N V absorption lines along the 4 kpc path to the inner Galaxy star HD 167756 at z = -0.85 kpc are presented. The spectra were obtained with the echelle mode of Goddard High Resolution Spectrograph (GHRS) aboard the Hubble Space Telescope (HST) and have signal-to-noise ratios ranging from 23 to 38. The high resolution of the measurements full width at half maximum (FWHM = 3.5 km/s) results in fully resolved line profiles for the highly ionized gas absorption. The measurements provide information on the column density per unit velocity, N(v), as a function of velocity for Si IV, C IV, and N V. The C IV and N V profiles extend from -70 to +70 km/s, while the Si IV profiles extend from -40 to +70 km/s. The integrated logarithmic column densities are long N(Si IV) = 13.09 +/- 0.02, log N(C IV) = 13.83 +/- 0.02, and log N(N V) = 13.56 +/- 0.03. The N V profile is broad, asymmetric, and featureless, while the Si IV profile contains narrow absorption components near V(sub LSR) = -19, 0, +20, and +52 km/s with Doppler spread parameters, b about = 10-12 km/s. The C IV profile contains both broad and narrow structure. The high ion feature near +52 km/s is also detected in the low-ionization lines of Ca II, O I, Si II, and Fe II. The other narrow Si IV and C IV components occur within several km/s of components seen in low-ionization species. The sight line contains at least two types of highly ionized gas. One type gives rise to a broad N V profile, and the other results in the more structured Si IV profile. The C IV profile contains contributions from both types of highly ionized gas. The broad but asymmetric N V profile is well represented by a large Galactic scale height gas which is participating in Galactic rotation and has a combination of thermal and turbulent broadening with b(sub tot) about = 42 km/s. The C IV to N V abundance ratio of 1.0 +/- 0.3 for the gas implies T about 1.6 x 10(exp 5) K or about 8 x 10(exp 5) K if the gas is in collisional ionization equilibrium and has a solar carbon to nitrogen abundance ratio. This absorption may be associated with cooling hot gas situated in Galactic shells and supershells along the sight line. The gas producing the narrow Si IV and C IV absorption components has line widths that are compatible with origins in conductive interfaces between the warm and hot interstellar medium. Kinematic flows associated with the photoionized edges of clouds might also produce Si IV and C IV lines with Doppler spread parameters similar to those observed, but the C IV to Si IV ratio in this gas is 3.5, which leads us to favor the conductive interface interpretation.

  17. Concept for Geostationary Experimental Temperature and Moisture Sounder (GETMS)

    NASA Technical Reports Server (NTRS)

    Kumer, J. B.; Sterrit, L. W.; Steakley, B. C.; Springer, L. A.; Roche, A. E.; Rosenberg, W. J.; James, T. C.; Shenk, W. E.; Susskind, J.; Chesters, D.

    1988-01-01

    The concept of the Geostationary Experimental Temperature and Moisture Sounder (GETMS) is described, with special attention given to the system constraints and its performance characteristics. The GETMS concept supports operation in a high-resolution 'nominal experimental mode' that could achieve spectral resolution of the order 0.2/cm in the 4.2-micron region with signal/noise sufficient to achieve temperature profile retrievals with vertical resolution of the order 1 to 2 km and accuracy to 1 K or less. The concept includes a cryogenic module to provide cryogenic cooling of the focal plane. The GETMS functional diagram and diagrams of the GETMS spectrometer and of the cryogenics module are included.

  18. Resolution study of imaging in nanoparticle optical phantoms

    NASA Astrophysics Data System (ADS)

    Ortiz-Rascón, E.; Bruce, N. C.; Flores-Flores, J. O.; Sato-Berru, R.

    2011-08-01

    We present results of resolution and optical characterization studies of silicon dioxide nanoparticle solutions. These phantoms consist of spherical particles with a mean controlled diameter of 168 and 429 nm. The importance of this work lies in using these solutions to develop phantoms with optical properties that closely match those of human breast tissue at near-IR wavelengths, and also to compare different resolution criteria for imaging studies at these wavelengths. Characterization involves illuminating the solution with a laser beam transmitted through a recipient of known width containing the solution. Resulting intensity profiles from the light spot are measured as function of the detector position. Measured intensity profiles were fitted to the calculated profiles obtained from diffusion theory, using the method of images. Fitting results give us the absorption and transport scattering coefficients. These coefficients can be modified by changing the particle concentration of the solution. We found that these coefficients are the same order of magnitude as those of human tissue reported in published studies. The resolution study involves measuring the edge response function (ERF) for a mask embedded on the nanoparticle solutions and fitting it to the calculated ERF, obtaining the resolution for the Hebden, Sparrow and Bentzen criteria.

  19. Relative humidity vertical profiling using lidar-based synergistic methods in the framework of the Hygra-CD campaign

    NASA Astrophysics Data System (ADS)

    Labzovskii, Lev D.; Papayannis, Alexandros; Binietoglou, Ioannis; Banks, Robert F.; Baldasano, Jose M.; Toanca, Florica; Tzanis, Chris G.; Christodoulakis, John

    2018-02-01

    Accurate continuous measurements of relative humidity (RH) vertical profiles in the lower troposphere have become a significant scientific challenge. In recent years a synergy of various ground-based remote sensing instruments have been successfully used for RH vertical profiling, which has resulted in the improvement of spatial resolution and, in some cases, of the accuracy of the measurement. Some studies have also suggested the use of high-resolution model simulations as input datasets into RH vertical profiling techniques. In this paper we apply two synergetic methods for RH profiling, including the synergy of lidar with a microwave radiometer and high-resolution atmospheric modeling. The two methods are employed for RH retrieval between 100 and 6000 m with increased spatial resolution, based on datasets from the HygrA-CD (Hygroscopic Aerosols to Cloud Droplets) campaign conducted in Athens, Greece from May to June 2014. RH profiles from synergetic methods are then compared with those retrieved using single instruments or as simulated by high-resolution models. Our proposed technique for RH profiling provides improved statistical agreement with reference to radiosoundings by 27 % when the lidar-radiometer (in comparison with radiometer measurements) approach is used and by 15 % when a lidar model is used (in comparison with WRF-model simulations). Mean uncertainty of RH due to temperature bias in RH profiling was ˜ 4.34 % for the lidar-radiometer and ˜ 1.22 % for the lidar-model methods. However, maximum uncertainty in RH retrievals due to temperature bias showed that lidar-model method is more reliable at heights greater than 2000 m. Overall, our results have demonstrated the capability of both combined methods for daytime measurements in heights between 100 and 6000 m when lidar-radiometer or lidar-WRF combined datasets are available.

  20. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets

    PubMed Central

    Macosko, Evan Z.; Basu, Anindita; Satija, Rahul; Nemesh, James; Shekhar, Karthik; Goldman, Melissa; Tirosh, Itay; Bialas, Allison R.; Kamitaki, Nolan; Martersteck, Emily M.; Trombetta, John J.; Weitz, David A.; Sanes, Joshua R.; Shalek, Alex K.; Regev, Aviv; McCarroll, Steven A.

    2015-01-01

    Summary Cells, the basic units of biological structure and function, vary broadly in type and state. Single-cell genomics can characterize cell identity and function, but limitations of ease and scale have prevented its broad application. Here we describe Drop-Seq, a strategy for quickly profiling thousands of individual cells by separating them into nanoliter-sized aqueous droplets, associating a different barcode with each cell’s RNAs, and sequencing them all together. Drop-Seq analyzes mRNA transcripts from thousands of individual cells simultaneously while remembering transcripts’ cell of origin. We analyzed transcriptomes from 44,808 mouse retinal cells and identified 39 transcriptionally distinct cell populations, creating a molecular atlas of gene expression for known retinal cell classes and novel candidate cell subtypes. Drop-Seq will accelerate biological discovery by enabling routine transcriptional profiling at single-cell resolution. PMID:26000488

  1. Accurate representation of B-DNA double helical structure with implicit solvent and counterions.

    PubMed Central

    Wang, Lihua; Hingerty, Brian E; Srinivasan, A R; Olson, Wilma K; Broyde, Suse

    2002-01-01

    High-resolution nuclear magnetic resonance (NMR) and crystallographic data have been taken to refine the force field used in the torsion angle space nucleic acids molecular mechanics program DUPLEX. The population balance deduced from NMR studies of two carcinogen-modified DNA conformers in equilibrium was used to fine tune a sigmoidal, distance-dependent dielectric function so that reasonable relative energies could be obtained. In addition, the base-pair and backbone geometry from high-resolution crystal structures of the Dickerson-Drew dodecamer was used to re-evaluate the deoxyribose pseudorotation profile and the Lennard-Jones nonbonded energy terms. With a modified dielectric function that assumes a very steep distance-dependent form, a deoxyribose pseudorotation profile with reduced energy barriers between C2'- and C3'-endo minima, and a shift of the Lennard-Jones potential energy minimum to a distance approximately 0.4 A greater than the sum of the van der Waals' radii, the sequence-dependent conformational features of the Dickerson-Drew dodecamer in both the solid state and the aqueous liquid crystalline phase are well reproduced. The robust performance of the revised force field, in conjunction with its efficiency through implicit treatment of solvent and counterions, provides a valuable tool for elucidating conformations and structure-function relationships of DNA, including those of molecules modified by carcinogens and other ligands. PMID:12080128

  2. Miniaturized Near Infrared Heterodyne Spectroradiometer for Monitoring CO2, CH4 and CO in the Earth Atmosphere

    NASA Astrophysics Data System (ADS)

    Klimchuk, A., Sr.; Rodin, A.; Nadezhdinskiy, A.; Churbanov, D.; Spiridonov, M.

    2014-12-01

    The paper describes the concept of a compact, lightweight heterodyne NIR spectro-radiometer suitable for atmospheric sounding with solar occultations, and the first measurement of CO2 and CH4 absorption near 1.60mm and 1.65 mm with spectral resolution l/dl ~ 5*107. Highly stabilized DFB laser was used as local oscillator, while single model quartz fiber Y-coupler served as a diplexer. Radiation mixed in the single mode fiber was detected by quadratic detector using p-i-n diode within the bandpass of ~10 MHz. Wavelength coverage of spectral measurement was provided by sweeping local oscillator frequency in the range 1,1 см-1. With the exposure time of 10 min, the absorption spectrum of the atmosphere over Moscow has been recorded with S/N ~ 300. We retrieved methane vertical profile using Tikhonov method of smooth functional, which takes into account a priori information about first guess profile. The reference to model methane profile means that the regularization procedure always selects a priorivalues unless the measurements contradict this assumption.The retrieved methane profile demonstrates higher abundances in the lower scale height compared to the assumed model profile, well expected in the megalopolis center. The retrievals sensitivity is limited by 10 ppb, with the exception of the lower part of the profile where the tendency to lower values is revealed. Thus the methane abundance variations may be evaluated with relative accuracy better than 1%, which fits the requirements of greenhouse gas monitoring. The retrievals sensitivity of CO2 is about 1-2 ppm. CO2 observations was also used to estimate stratoshere wind by doppler shift of absorption line. Due to higher spectral resolution, lower sensitivity to atmospheric temperatures and other external factors, compared to heterodyne measurements in the thermal IR spectral range, the described technique provides accuracy comparable with much more complicated high resolution measurements now used in TCCON stations. Relative simplicity of the proposed scheme opens a perspective to employ it for high resolution spectroscopy in various applications. In particular, it may allow solar occultation observations of CO2, CО, CH4, H2S, C2H4 and other gases from spacecraft, airborne or ground-based platforms.

  3. Differential absorption lidars for remote sensing of atmospheric pressure and temperature profiles

    NASA Technical Reports Server (NTRS)

    Korb, C. Laurence; Schwemmer, Geary K.; Famiglietti, Joseph; Walden, Harvey; Prasad, Coorg

    1995-01-01

    A near infrared differential absorption lidar technique is developed using atmospheric oxygen as a tracer for high resolution vertical profiles of pressure and temperature with high accuracy. Solid-state tunable lasers and high-resolution spectrum analyzers are developed to carry out ground-based and airborne measurement demonstrations and results of the measurements presented. Numerical error analysis of high-altitude airborne and spaceborne experiments is carried out, and system concepts developed for their implementation.

  4. The measurement of radiation dose profiles for electron-beam computed tomography using film dosimetry.

    PubMed

    Zink, F E; McCollough, C H

    1994-08-01

    The unique geometry of electron-beam CT (EBCT) scanners produces radiation dose profiles with widths which can be considerably different from the corresponding nominal scan width. Additionally, EBCT scanners produce both complex (multiple-slice) and narrow (3 mm) radiation profiles. This work describes the measurement of the axial dose distribution from EBCT within a scattering phantom using film dosimetry methods, which offer increased convenience and spatial resolution compared to thermoluminescent dosimetry (TLD) techniques. Therapy localization film was cut into 8 x 220 mm strips and placed within specially constructed light-tight holders for placement within the cavities of a CT Dose Index (CTDI) phantom. The film was calibrated using a conventional overhead x-ray tube with spectral characteristics matched to the EBCT scanner (130 kVp, 10 mm A1 HVL). The films were digitized at five samples per mm and calibrated dose profiles plotted as a function of z-axis position. Errors due to angle-of-incidence and beam hardening were estimated to be less than 5% and 10%, respectively. The integral exposure under film dose profiles agreed with ion-chamber measurements to within 15%. Exposures measured along the radiation profile differed from TLD measurements by an average of 5%. The film technique provided acceptable accuracy and convenience in comparison to conventional TLD methods, and allowed high spatial-resolution measurement of EBCT radiation dose profiles.

  5. Resolution of Transverse Electron Beam Measurements using Optical Transition Radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ischebeck, Rasmus; Decker, Franz-Josef; Hogan, Mark

    2005-06-22

    In the plasma wakefield acceleration experiment E-167, optical transition radiation is used to measure the transverse profile of the electron bunches before and after the plasma acceleration. The distribution of the electric field from a single electron does not give a point-like distribution on the detector, but has a certain extension. Additionally, the resolution of the imaging system is affected by aberrations. The transverse profile of the bunch is thus convolved with a point spread function (PSF). Algorithms that deconvolve the image can help to improve the resolution. Imaged test patterns are used to determine the modulation transfer function ofmore » the lens. From this, the PSF can be reconstructed. The Lucy-Richardson algorithm is used to deconvolute this PSF from test images.« less

  6. Effective resolution concepts for lidar observations

    NASA Astrophysics Data System (ADS)

    Iarlori, M.; Madonna, F.; Rizi, V.; Trickl, T.; Amodeo, A.

    2015-12-01

    Since its establishment in 2000, EARLINET (European Aerosol Research Lidar NETwork) has provided, through its database, quantitative aerosol properties, such as aerosol backscatter and aerosol extinction coefficients, the latter only for stations able to retrieve it independently (from Raman or high-spectral-resolution lidars). These coefficients are stored in terms of vertical profiles, and the EARLINET database also includes the details of the range resolution of the vertical profiles. In fact, the algorithms used in the lidar data analysis often alter the spectral content of the data, mainly acting as low-pass filters to reduce the high-frequency noise. Data filtering is described by the digital signal processing (DSP) theory as a convolution sum: each filtered signal output at a given range is the result of a linear combination of several signal input data samples (relative to different ranges from the lidar receiver), and this could be seen as a loss of range resolution of the output signal. Low-pass filtering always introduces distortions in the lidar profile shape. Thus, both the removal of high frequency, i.e., the removal of details up to a certain spatial extension, and the spatial distortion produce a reduction of the range resolution. This paper discusses the determination of the effective resolution (ERes) of the vertical profiles of aerosol properties retrieved from lidar data. Large attention has been dedicated to providing an assessment of the impact of low-pass filtering on the effective range resolution in the retrieval procedure.

  7. Profiling of integral membrane proteins and their post translational modifications using high-resolution mass spectrometry

    PubMed Central

    Souda, Puneet; Ryan, Christopher M.; Cramer, William A.; Whitelegge, Julian

    2011-01-01

    Integral membrane proteins pose challenges to traditional proteomics approaches due to unique physicochemical properties including hydrophobic transmembrane domains that limit solubility in aqueous solvents. A well resolved intact protein molecular mass profile defines a protein’s native covalent state including post-translational modifications, and is thus a vital measurement toward full structure determination. Both soluble loop regions and transmembrane regions potentially contain post-translational modifications that must be characterized if the covalent primary structure of a membrane protein is to be defined. This goal has been achieved using electrospray-ionization mass spectrometry (ESI-MS) with low-resolution mass analyzers for intact protein profiling, and high-resolution instruments for top-down experiments, toward complete covalent primary structure information. In top-down, the intact protein profile is supplemented by gas-phase fragmentation of the intact protein, including its transmembrane regions, using collisionally activated and/or electroncapture dissociation (CAD/ECD) to yield sequence-dependent high-resolution MS information. Dedicated liquid chromatography systems with aqueous/organic solvent mixtures were developed allowing us to demonstrate that polytopic integral membrane proteins are amenable to ESI-MS analysis, including top-down measurements. Covalent post-translational modifications are localized regardless of their position in transmembrane domains. Top-down measurements provide a more detail oriented high-resolution description of post-transcriptional and post-translational diversity for enhanced understanding beyond genomic translation. PMID:21982782

  8. Profiling of integral membrane proteins and their post translational modifications using high-resolution mass spectrometry.

    PubMed

    Souda, Puneet; Ryan, Christopher M; Cramer, William A; Whitelegge, Julian

    2011-12-01

    Integral membrane proteins pose challenges to traditional proteomics approaches due to unique physicochemical properties including hydrophobic transmembrane domains that limit solubility in aqueous solvents. A well resolved intact protein molecular mass profile defines a protein's native covalent state including post-translational modifications, and is thus a vital measurement toward full structure determination. Both soluble loop regions and transmembrane regions potentially contain post-translational modifications that must be characterized if the covalent primary structure of a membrane protein is to be defined. This goal has been achieved using electrospray-ionization mass spectrometry (ESI-MS) with low-resolution mass analyzers for intact protein profiling, and high-resolution instruments for top-down experiments, toward complete covalent primary structure information. In top-down, the intact protein profile is supplemented by gas-phase fragmentation of the intact protein, including its transmembrane regions, using collisionally activated and/or electron-capture dissociation (CAD/ECD) to yield sequence-dependent high-resolution MS information. Dedicated liquid chromatography systems with aqueous/organic solvent mixtures were developed allowing us to demonstrate that polytopic integral membrane proteins are amenable to ESI-MS analysis, including top-down measurements. Covalent post-translational modifications are localized regardless of their position in transmembrane domains. Top-down measurements provide a more detail oriented high-resolution description of post-transcriptional and post-translational diversity for enhanced understanding beyond genomic translation. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Effects of DTM resolution on slope steepness and soil loss prediction on hillslope profiles

    Treesearch

    Eder Paulo Moreira; William J. Elliot; Andrew T. Hudak

    2011-01-01

    Topographic attributes play a critical role in predicting erosion in models such as the Water Erosion Prediction Project (WEPP). The effects of four different high resolution hillslope profiles were studied using four different DTM resolutions: 1-m, 3-m, 5-m and 10-m. The WEPP model used a common scenario encountered in the forest environment and the selected hillslope...

  10. Advantages of soft versus hard constraints in self-modeling curve resolution problems. Alternating least squares with penalty functions.

    PubMed

    Gemperline, Paul J; Cash, Eric

    2003-08-15

    A new algorithm for self-modeling curve resolution (SMCR) that yields improved results by incorporating soft constraints is described. The method uses least squares penalty functions to implement constraints in an alternating least squares algorithm, including nonnegativity, unimodality, equality, and closure constraints. By using least squares penalty functions, soft constraints are formulated rather than hard constraints. Significant benefits are (obtained using soft constraints, especially in the form of fewer distortions due to noise in resolved profiles. Soft equality constraints can also be used to introduce incomplete or partial reference information into SMCR solutions. Four different examples demonstrating application of the new method are presented, including resolution of overlapped HPLC-DAD peaks, flow injection analysis data, and batch reaction data measured by UV/visible and near-infrared spectroscopy (NIR). Each example was selected to show one aspect of the significant advantages of soft constraints over traditionally used hard constraints. Incomplete or partial reference information into self-modeling curve resolution models is described. The method offers a substantial improvement in the ability to resolve time-dependent concentration profiles from mixture spectra recorded as a function of time.

  11. Performance improvements of wavelength-shifting-fiber neutron detectors using high-resolution positioning algorithms

    DOE PAGES

    Wang, C. L.

    2016-05-17

    On the basis of FluoroBancroft linear-algebraic method [S.B. Andersson, Opt. Exp. 16, 18714 (2008)] three highly-resolved positioning methods were proposed for wavelength-shifting fiber (WLSF) neutron detectors. Using a Gaussian or exponential-decay light-response function (LRF), the non-linear relation of photon-number profiles vs. x-pixels was linearized and neutron positions were determined. The proposed algorithms give an average 0.03-0.08 pixel position error, much smaller than that (0.29 pixel) from a traditional maximum photon algorithm (MPA). The new algorithms result in better detector uniformity, less position misassignment (ghosting), better spatial resolution, and an equivalent or better instrument resolution in powder diffraction than the MPA.more » Moreover, these characters will facilitate broader applications of WLSF detectors at time-of-flight neutron powder diffraction beamlines, including single-crystal diffraction and texture analysis.« less

  12. Variability in Tropospheric Ozone over China Derived from Assimilated GOME-2 Ozone Profiles

    NASA Astrophysics Data System (ADS)

    van Peet, J. C. A.; van der A, R. J.; Kelder, H. M.

    2016-08-01

    A tropospheric ozone dataset is derived from assimilated GOME-2 ozone profiles for 2008. Ozone profiles are retrieved with the OPERA algorithm, using the optimal estimation method. The retrievals are done on a spatial resolution of 160×160 km on 16 layers ranging from the surface up to 0.01 hPa. By using the averaging kernels in the data assimilation, the algorithm maintains the high resolution vertical structures of the model, while being constrained by observations with a lower vertical resolution.

  13. Perfect Composition Depth Profiling of Ionic Liquid Surfaces Using High-resolution RBS/ERDA.

    PubMed

    Nakajima, Kaoru; Zolboo, Enkhbayar; Ohashi, Tomohiro; Lísal, Martin; Kimura, Kenji

    2016-01-01

    In order to reveal the surface structures of large molecular ionic liquids (ILs), the near-surface elemental depth distributions of 1-alkyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([C n C 1 Im][Tf 2 N], n = 2, 6, 10) were studied using high-resolution Rutherford backscattering spectroscopy (HRBS) in combination with high-resolution elastic recoil detection analysis (HR-ERDA). The elemental depth profiles of all constituent elements, including hydrogen, were derived from HR-ERDA/HRBS measurements, so that the profiles would reproduce both HR-ERDA and HRBS spectra simultaneously. The derived elemental depth profiles agree with state-of-the-art molecular dynamics simulations, indicating the feasibility of this method. A controversy concerning the preferential orientation of [C 2 C 1 Im] at the surface has been resolved by this new combination analysis; namely, the [C 2 C 1 Im] cation has a preferential orientation with the ethyl chain pointing towards the vacuum in the topmost molecular layer.

  14. The Next-generation Berkeley High Resolution NO2 (BEHR NO2) Retrieval: Design and Preliminary Emissions Constraints

    NASA Astrophysics Data System (ADS)

    Laughner, J.; Cohen, R. C.

    2017-12-01

    Recent work has identified a number of assumptions made in NO2 retrievals that lead to biases in the retrieved NO2 column density. These include the treatment of the surface as an isotropic reflector, the absence of lightning NO2 in high resolution a priori profiles, and the use of monthly averaged a priori profiles. We present a new release of the Berkeley High Resolution (BEHR) OMI NO2 retrieval based on the new NASA Standard Product (version 3) that addresses these assumptions by: accounting for surface anisotropy by using a BRDF albedo product, using an updated method of regridding NO2 data, and revised NO2 a priori profiles that better account for lightning NO2 and daily variation in the profile shape. We quantify the effect these changes have on the retrieved NO2 column densities and the resultant impact these updates have on constraints of urban NOx emissions for select cities throughout the United States.

  15. High Spectral Resolution Lidar for atmospheric temperature profiling.

    NASA Astrophysics Data System (ADS)

    Razenkov, I.; Eloranta, E. W.

    2017-12-01

    The High Spectral Resolution Lidar (HSRL) designed at the University of Wisconsin-Madison is equipped with two iodine absorption filters with different line widths (1.8 GHz and 2.85 GHz). The filters are implemented to discriminate between Mie and Rayleigh backscattering and to resolve temperature sensitive changes in Rayleigh spectrum for atmospheric temperature profile measurements. This measurement capability makes the instrument intrinsically and absolutely calibrated. HSRL has a shared transmitter-receiver telescope and operates in the eye-safe mode with the product of laser average power and telescope aperture less than 0.025 𝑊𝑚2 at 532 nm. With this low-power prototype instrument we have achieved temperature profile measurements extending above tropopause with a time resolution of several hours. Further instrument optimizations will reduce systematic measurement errors and will improve a signal-to-noise ratio providing temperature data comparable to a standard radiosonde with higher time resolution.

  16. A high resolution spectroscopic study of the oxygen molecule. Ph.D. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Ritter, K. J.

    1984-01-01

    A high resolution spectrometer which incorporates a narrow line width tunable dye laser was used to make absorption profiles of 57 spectral lines in the Oxygen A-Band at pressures up to one atmosphere in pure O2. The observed line profiles are compared to the Voigt, and a collisionally narrowed, profile using a least squares fitting procedure. The collisionally narrowed profile compares more favorable to the observed profiles. Values of the line strengths and self broadening coeffiencients, determined from the least square fitting process, are presented in tabular form. It is found that the experssion by Watson are in closest agreement with the experimentally determined strengths. The self broadening coefficients are compared with the measurements of several other investigators.

  17. Predicting the Effect of Mutations on Protein-Protein Binding Interactions through Structure-Based Interface Profiles

    PubMed Central

    Brender, Jeffrey R.; Zhang, Yang

    2015-01-01

    The formation of protein-protein complexes is essential for proteins to perform their physiological functions in the cell. Mutations that prevent the proper formation of the correct complexes can have serious consequences for the associated cellular processes. Since experimental determination of protein-protein binding affinity remains difficult when performed on a large scale, computational methods for predicting the consequences of mutations on binding affinity are highly desirable. We show that a scoring function based on interface structure profiles collected from analogous protein-protein interactions in the PDB is a powerful predictor of protein binding affinity changes upon mutation. As a standalone feature, the differences between the interface profile score of the mutant and wild-type proteins has an accuracy equivalent to the best all-atom potentials, despite being two orders of magnitude faster once the profile has been constructed. Due to its unique sensitivity in collecting the evolutionary profiles of analogous binding interactions and the high speed of calculation, the interface profile score has additional advantages as a complementary feature to combine with physics-based potentials for improving the accuracy of composite scoring approaches. By incorporating the sequence-derived and residue-level coarse-grained potentials with the interface structure profile score, a composite model was constructed through the random forest training, which generates a Pearson correlation coefficient >0.8 between the predicted and observed binding free-energy changes upon mutation. This accuracy is comparable to, or outperforms in most cases, the current best methods, but does not require high-resolution full-atomic models of the mutant structures. The binding interface profiling approach should find useful application in human-disease mutation recognition and protein interface design studies. PMID:26506533

  18. The influence of different signal-to-background ratios on spatial resolution and F18-FDG-PET quantification using point spread function and time-of-flight reconstruction.

    PubMed

    Rogasch, Julian Mm; Hofheinz, Frank; Lougovski, Alexandr; Furth, Christian; Ruf, Juri; Großer, Oliver S; Mohnike, Konrad; Hass, Peter; Walke, Mathias; Amthauer, Holger; Steffen, Ingo G

    2014-12-01

    F18-fluorodeoxyglucose positron-emission tomography (FDG-PET) reconstruction algorithms can have substantial influence on quantitative image data used, e.g., for therapy planning or monitoring in oncology. We analyzed radial activity concentration profiles of differently reconstructed FDG-PET images to determine the influence of varying signal-to-background ratios (SBRs) on the respective spatial resolution, activity concentration distribution, and quantification (standardized uptake value [SUV], metabolic tumor volume [MTV]). Measurements were performed on a Siemens Biograph mCT 64 using a cylindrical phantom containing four spheres (diameter, 30 to 70 mm) filled with F18-FDG applying three SBRs (SBR1, 16:1; SBR2, 6:1; SBR3, 2:1). Images were reconstructed employing six algorithms (filtered backprojection [FBP], FBP + time-of-flight analysis [FBP + TOF], 3D-ordered subset expectation maximization [3D-OSEM], 3D-OSEM + TOF, point spread function [PSF], PSF + TOF). Spatial resolution was determined by fitting the convolution of the object geometry with a Gaussian point spread function to radial activity concentration profiles. MTV delineation was performed using fixed thresholds and semiautomatic background-adapted thresholding (ROVER, ABX, Radeberg, Germany). The pairwise Wilcoxon test revealed significantly higher spatial resolutions for PSF + TOF (up to 4.0 mm) compared to PSF, FBP, FBP + TOF, 3D-OSEM, and 3D-OSEM + TOF at all SBRs (each P < 0.05) with the highest differences for SBR1 decreasing to the lowest for SBR3. Edge elevations in radial activity profiles (Gibbs artifacts) were highest for PSF and PSF + TOF declining with decreasing SBR (PSF + TOF largest sphere; SBR1, 6.3%; SBR3, 2.7%). These artifacts induce substantial SUVmax overestimation compared to the reference SUV for PSF algorithms at SBR1 and SBR2 leading to substantial MTV underestimation in threshold-based segmentation. In contrast, both PSF algorithms provided the lowest deviation of SUVmean from reference SUV at SBR1 and SBR2. At high contrast, the PSF algorithms provided the highest spatial resolution and lowest SUVmean deviation from the reference SUV. In contrast, both algorithms showed the highest deviations in SUVmax and threshold-based MTV definition. At low contrast, all investigated reconstruction algorithms performed approximately equally. The use of PSF algorithms for quantitative PET data, e.g., for target volume definition or in serial PET studies, should be performed with caution - especially if comparing SUV of lesions with high and low contrasts.

  19. Field testing of a convergent array of acoustic Doppler profilers for high-resolution velocimetry in energetic tidal currents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harding, Samuel F.; Sellar, Brian; Richmond, Marshall C.

    An array of single-beam acoustic Doppler profilers has been developed for the high resolution measurement of three-dimensional tidal flow velocities and subsequently tested in an energetic tidal site. This configuration has been developed to increase spatial resolution of velocity measurements in comparison to conventional acoustic Doppler profilers (ADPs) which characteristically use divergent acoustic beams emanating from a single instrument. This is achieved using geometrically convergent acoustic beams creating a sample volume at the focal point of 0.03 m3. Away from the focal point, the array is also able to simultaneously reconstruct three-dimensional velocity components in a profile throughout the watermore » column, and is referred to herein as a convergent-beam acoustic Doppler profiler (C-ADP). Mid-depth profiling is achieved through integration of the sensor platform with the operational commercial-scale Alstom 1MW DeepGen-IV Tidal Turbine deployed at the European Marine Energy Center, Orkney Isles, UK. This proof-of-concept paper outlines the C-ADP system configuration and comparison to measurements provided by co-installed reference instrumentation.« less

  20. Study of high field side/low field side asymmetry in the electron temperature profile with electron cyclotron emission

    NASA Astrophysics Data System (ADS)

    Gugliada, V. R.; Austin, M. E.; Brookman, M. W.

    2017-10-01

    Electron cyclotron emission (ECE) provides high resolution measurements of electron temperature profiles (Te(R , t)) in tokamaks. Calibration accuracy of this data can be improved using a sawtooth averaging technique. This improved calibration will then be utilized to determine the symmetry of Te profiles by comparing low field side (LFS) and high field side (HFS) measurements. Although Te is considered constant on flux surfaces, cases have been observed in which there are pronounced asymmetries about the magnetic axis, particularly with increased pressure. Trends in LFS/HFS overlap are examined as functions of plasma pressure, MHD mode presence, heating techniques, and other discharge conditions. This research will provide information on the accuracy of the current two-dimensional mapping of flux surfaces in the tokamak. Findings can be used to generate higher quality EFITs and inform ECE calibration. Work supported in part by US DoE under the Science Undergraduate Laboratory Internship (SULI) program and under DE-FC02-04ER549698.

  1. High-resolution seismic-reflection profiles collected by the R/V Columbus Iselin, cruise CI 7807-1, in the Baltimore Canyon outer continental shelf area, offshore New Jersey

    USGS Publications Warehouse

    Robb, James M.

    1980-01-01

    High-resolution seismic-reflection profiles were collected by the U.S. Geological Survey (USGS) aboard R/V COLUMBUS ISELIN, cruise 7807-1, from 18 August to 4 September 1978 over the Continental Slope of the Eastern United States between Wilmington and Hudson Canyons. These data were acquired as part of a study to determine potential geologic hazards to petroleum development of the Baltimore Canyon trough area. On this cruise, the Continental Slope between Lindenkohl and Carteret Canyons was surveyed along lines spaced one-half nautical mile apart to study the size and distribution of mass-wasting features as a guide to assess the importance of mass wasting processes on the Continental Slope. The seismic-reflection profiles were placed to complement other data gathered previously by the USGS.Track-line distances totaled 2,050 km of 40-in3 air-gun (with wave shaper) profiles, 2,100 km of 800-J sparker data, and 2,100 km of 3 .5-kHz data. The air-gun and sparker profiles are of high quality, but the 3.5-kHz system did not function well and achieved no subbottom penetration. The side-scan sonar system was operated along the uppermost Continental Slope to investigate its potential for use in this environment. Data were acquired over 22 km of ship's track.Navigation was by Loran-C (5-minute fix interval).The original records can be examined at the U.S. Geological Survey offices in Woods Hole, Massachusetts 02543. Microfilm copies of the data are available for purchase from the National Geophysical and Solar-Terrestrial Data Center (NGSDC), Boulder, Colorado 80303.

  2. Quadruple high-resolution α-glucosidase/α-amylase/PTP1B/radical scavenging profiling combined with high-performance liquid chromatography-high-resolution mass spectrometry-solid-phase extraction-nuclear magnetic resonance spectroscopy for identification of antidiabetic constituents in crude root bark of Morus alba L.

    PubMed

    Zhao, Yong; Kongstad, Kenneth Thermann; Jäger, Anna Katharina; Nielsen, John; Staerk, Dan

    2018-06-29

    In this paper, quadruple high-resolution α-glucosidase/α-amylase/PTP1B/radical scavenging profiling combined with HPLC-HRMS-SPE-NMR were used for studying the polypharmacological properties of crude root bark extract of Morus alba L. This species is used as an anti-diabetic principle in many traditional treatment systems around the world, and the crude ethyl acetate extract of M. alba root bark was found to inhibit α-glucosidase, α-amylase and protein-tyrosine phosphatase 1B (PTP1B) with IC 50 values of 1.70 ± 0.72, 5.16 ± 0.69, and 5.07 ± 0.68 μg/mL as well as showing radical scavenging activity equaling a TEAC value of (3.82 ± 0.14) × 10 4  mM per gram extract. Subsequent investigation of the crude extract using quadruple high-resolution α-glucosidase/α-amylase/PTP1B/radical scavenging profiling provided a quadruple biochromatogram that allowed direct correlation of the HPLC peaks with one or more of the tested bioactivities. This was used to target subsequent HPLC-HRMS-SPE-NMR analysis towards peaks representing bioactive analytes, and led to identification of a new Diels-Alder adduct named Moracenin E as well as a series of Diels-Alder adducts and isoprenylated flavonoids as potent α-glucosidase and α-amylase inhibitors with IC 50 values in the range of 0.60-27.15 μM and 1.22-69.38 μM, respectively. In addition, these compounds and two 2-arylbenzofurans were found to be potent PTP1B inhibitors with IC 50 values ranging from 4.04 to 21.67 μM. The high-resolution radical scavenging profile also revealed that almost all of the compounds possess radical scavenging activity. In conclusion the quadruple high-resolution profiling method presented here allowed a detailed profiling of individual constituents in crude root bark extract of M. alba, and the method provides a general tool for detailed mapping of bioactive constituents in polypharmacological herbal remedies. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Two dimensional thermal and charge mapping of power thyristors

    NASA Technical Reports Server (NTRS)

    Hu, S. P.; Rabinovici, B. M.

    1975-01-01

    The two dimensional static and dynamic current density distributions within the junction of semiconductor power switching devices and in particular the thyristors were obtained. A method for mapping the thermal profile of the device junctions with fine resolution using an infrared beam and measuring the attenuation through the device as a function of temperature were developed. The results obtained are useful in the design and quality control of high power semiconductor switching devices.

  4. Surface structure of imidazolium-based ionic liquids: Quantitative comparison between simulations and high-resolution RBS measurements.

    PubMed

    Nakajima, Kaoru; Nakanishi, Shunto; Lísal, Martin; Kimura, Kenji

    2016-03-21

    Elemental depth profiles of 1-alkyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([CnMIM][TFSI], n = 4, 6, 8) are measured using high-resolution Rutherford backscattering spectroscopy (HRBS). The profiles are compared with the results of molecular dynamics (MD) simulations. Both MD simulations and HRBS measurements show that the depth profiles deviate from the uniform stoichiometric composition in the surface region, showing preferential orientations of ions at the surface. The MD simulations qualitatively reproduce the observed HRBS profiles but the agreement is not satisfactory. The observed discrepancy is ascribed to the capillary waves. By taking account of the surface roughness induced by the capillary waves, the agreement becomes almost perfect.

  5. Surface structure of imidazolium-based ionic liquids: Quantitative comparison between simulations and high-resolution RBS measurements

    NASA Astrophysics Data System (ADS)

    Nakajima, Kaoru; Nakanishi, Shunto; Lísal, Martin; Kimura, Kenji

    2016-03-01

    Elemental depth profiles of 1-alkyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([CnMIM][TFSI], n = 4, 6, 8) are measured using high-resolution Rutherford backscattering spectroscopy (HRBS). The profiles are compared with the results of molecular dynamics (MD) simulations. Both MD simulations and HRBS measurements show that the depth profiles deviate from the uniform stoichiometric composition in the surface region, showing preferential orientations of ions at the surface. The MD simulations qualitatively reproduce the observed HRBS profiles but the agreement is not satisfactory. The observed discrepancy is ascribed to the capillary waves. By taking account of the surface roughness induced by the capillary waves, the agreement becomes almost perfect.

  6. The advantages of complementing MT profiles in 3-D environments with geomagnetic transfer function and interstation horizontal magnetic transfer function data: results from a synthetic case study

    NASA Astrophysics Data System (ADS)

    Campanyà, Joan; Ogaya, Xènia; Jones, Alan G.; Rath, Volker; Vozar, Jan; Meqbel, Naser

    2016-12-01

    As a consequence of measuring time variations of the electric and the magnetic field, which are related to current flow and charge distribution, magnetotelluric (MT) data in 2-D and 3-D environments are not only sensitive to the geoelectrical structures below the measuring points but also to any lateral anomalies surrounding the acquisition site. This behaviour complicates the characterization of the electrical resistivity distribution of the subsurface, particularly in complex areas. In this manuscript we assess the main advantages of complementing the standard MT impedance tensor (Z) data with interstation horizontal magnetic tensor (H) and geomagnetic transfer function (T) data in constraining the subsurface in a 3-D environment beneath a MT profile. Our analysis was performed using synthetic responses with added normally distributed and scattered random noise. The sensitivity of each type of data to different resistivity anomalies was evaluated, showing that the degree to which each site and each period is affected by the same anomaly depends on the type of data. A dimensionality analysis, using Z, H and T data, identified the presence of the 3-D anomalies close to the profile, suggesting a 3-D approach for recovering the electrical resistivity values of the subsurface. Finally, the capacity for recovering the geoelectrical structures of the subsurface was evaluated by performing joint inversion using different data combinations, quantifying the differences between the true synthetic model and the models from inversion process. Four main improvements were observed when performing joint inversion of Z, H and T data: (1) superior precision and accuracy at characterizing the electrical resistivity values of the anomalies below and outside the profile; (2) the potential to recover high electrical resistivity anomalies that are poorly recovered using Z data alone; (3) improvement in the characterization of the bottom and lateral boundaries of the anomalies with low electrical resistivity; and (4) superior imaging of the horizontal continuity of structures with low electrical resistivity. These advantages offer new opportunities for the MT method by making the results from a MT profile in a 3-D environment more convincing, supporting the possibility of high-resolution studies in 3-D areas without expending a large amount of economical and computational resources, and also offering better resolution of targets with high electrical resistivity.

  7. Scintillator-based transverse proton beam profiler for laser-plasma ion sources.

    PubMed

    Dover, N P; Nishiuchi, M; Sakaki, H; Alkhimova, M A; Faenov, A Ya; Fukuda, Y; Kiriyama, H; Kon, A; Kondo, K; Nishitani, K; Ogura, K; Pikuz, T A; Pirozhkov, A S; Sagisaka, A; Kando, M; Kondo, K

    2017-07-01

    A high repetition rate scintillator-based transverse beam profile diagnostic for laser-plasma accelerated proton beams has been designed and commissioned. The proton beam profiler uses differential filtering to provide coarse energy resolution and a flexible design to allow optimisation for expected beam energy range and trade-off between spatial and energy resolution depending on the application. A plastic scintillator detector, imaged with a standard 12-bit scientific camera, allows data to be taken at a high repetition rate. An algorithm encompassing the scintillator non-linearity is described to estimate the proton spectrum at different spatial locations.

  8. Advances in atmospheric temperature profile measurements using high spectral resolution lidar

    NASA Astrophysics Data System (ADS)

    Razenkov, Ilya I.; Eloranta, Edwin W.

    2018-04-01

    This paper reports the atmospheric temperature profile measurements using a University of Wisconsin-Madison High Spectral Resolution Lidar (HSRL) and describes improvements in the instrument performance. HSRL discriminates between Mie and Rayleigh backscattering [1]. Thermal motion of molecules broadens the spectrum of the transmitted laser light due to Doppler effect. The HSRL exploits this property to allow the absolute calibration of the lidar and measurements of the aerosol volume backscatter coefficient. Two iodine absorption filters with different line widths are used to resolve temperature sensitive changes in Rayleigh backscattering for atmospheric temperature profile measurements.

  9. Using Distributed Temperature Sensing for measuring vertical temperature profiles and air temperature variance in the roughness sublayer above a forest canopy

    NASA Astrophysics Data System (ADS)

    Schilperoort, B.; Coenders, M.; Savenije, H. H. G.

    2017-12-01

    In recent years, the accuracy and resolution of Distributed Temperature Sensing (DTS) machines has increased enough to expand its use in atmospheric sciences. With DTS the temperature of a fiber optic (FO) cable can be measured with a high frequency (1 Hz) and high resolution (0.30 m), for cable lengths up to kilometers. At our measurement site, a patch of 26 to 30 m tall Douglas Fir in mixed forest, we placed FO cables vertically along a 48 m tall flux tower. This gives a high resolution vertical temperature profile above, through, and below the canopy. By using a `bare' FO cable, with a diameter of 0.25 mm, we are able to measure variations in air temperature at a very small timescale, and are able to measure a vertical profile of the air temperature variance. The vertical temperature profiles can be used to study the formation of the stable boundary layer above and in the canopy at a high resolution. It also shows that a stable layer can develop below the canopy, which is not limited to night time conditions but also occurs during daytime. The high frequency measurements can be used to study the gradient of the variance of air temperature over the height. To study how the flux tower itself affects temperature variance measurements, the `bare' FO cable can be placed horizontally under a support structure away from the flux tower. Lastly, by using the hot-wire anemometer principle with DTS, the measurements can be expanded to also include vertical wind profile.

  10. Developing High-resolution Soil Database for Regional Crop Modeling in East Africa

    NASA Astrophysics Data System (ADS)

    Han, E.; Ines, A. V. M.

    2014-12-01

    The most readily available soil data for regional crop modeling in Africa is the World Inventory of Soil Emission potentials (WISE) dataset, which has 1125 soil profiles for the world, but does not extensively cover countries Ethiopia, Kenya, Uganda and Tanzania in East Africa. Another dataset available is the HC27 (Harvest Choice by IFPRI) in a gridded format (10km) but composed of generic soil profiles based on only three criteria (texture, rooting depth, and organic carbon content). In this paper, we present a development and application of a high-resolution (1km), gridded soil database for regional crop modeling in East Africa. Basic soil information is extracted from Africa Soil Information Service (AfSIS), which provides essential soil properties (bulk density, soil organic carbon, soil PH and percentages of sand, silt and clay) for 6 different standardized soil layers (5, 15, 30, 60, 100 and 200 cm) in 1km resolution. Soil hydraulic properties (e.g., field capacity and wilting point) are derived from the AfSIS soil dataset using well-proven pedo-transfer functions and are customized for DSSAT-CSM soil data requirements. The crop model is used to evaluate crop yield forecasts using the new high resolution soil database and compared with WISE and HC27. In this paper we will present also the results of DSSAT loosely coupled with a hydrologic model (VIC) to assimilate root-zone soil moisture. Creating a grid-based soil database, which provides a consistent soil input for two different models (DSSAT and VIC) is a critical part of this work. The created soil database is expected to contribute to future applications of DSSAT crop simulation in East Africa where food security is highly vulnerable.

  11. A Bayesian deconvolution strategy for immunoprecipitation-based DNA methylome analysis

    PubMed Central

    Down, Thomas A.; Rakyan, Vardhman K.; Turner, Daniel J.; Flicek, Paul; Li, Heng; Kulesha, Eugene; Gräf, Stefan; Johnson, Nathan; Herrero, Javier; Tomazou, Eleni M.; Thorne, Natalie P.; Bäckdahl, Liselotte; Herberth, Marlis; Howe, Kevin L.; Jackson, David K.; Miretti, Marcos M.; Marioni, John C.; Birney, Ewan; Hubbard, Tim J. P.; Durbin, Richard; Tavaré, Simon; Beck, Stephan

    2009-01-01

    DNA methylation is an indispensible epigenetic modification of mammalian genomes. Consequently there is great interest in strategies for genome-wide/whole-genome DNA methylation analysis, and immunoprecipitation-based methods have proven to be a powerful option. Such methods are rapidly shifting the bottleneck from data generation to data analysis, necessitating the development of better analytical tools. Until now, a major analytical difficulty associated with immunoprecipitation-based DNA methylation profiling has been the inability to estimate absolute methylation levels. Here we report the development of a novel cross-platform algorithm – Bayesian Tool for Methylation Analysis (Batman) – for analyzing Methylated DNA Immunoprecipitation (MeDIP) profiles generated using arrays (MeDIP-chip) or next-generation sequencing (MeDIP-seq). The latter is an approach we have developed to elucidate the first high-resolution whole-genome DNA methylation profile (DNA methylome) of any mammalian genome. MeDIP-seq/MeDIP-chip combined with Batman represent robust, quantitative, and cost-effective functional genomic strategies for elucidating the function of DNA methylation. PMID:18612301

  12. Real-time turbulence profiling with a pair of laser guide star Shack-Hartmann wavefront sensors for wide-field adaptive optics systems on large to extremely large telescopes.

    PubMed

    Gilles, L; Ellerbroek, B L

    2010-11-01

    Real-time turbulence profiling is necessary to tune tomographic wavefront reconstruction algorithms for wide-field adaptive optics (AO) systems on large to extremely large telescopes, and to perform a variety of image post-processing tasks involving point-spread function reconstruction. This paper describes a computationally efficient and accurate numerical technique inspired by the slope detection and ranging (SLODAR) method to perform this task in real time from properly selected Shack-Hartmann wavefront sensor measurements accumulated over a few hundred frames from a pair of laser guide stars, thus eliminating the need for an additional instrument. The algorithm is introduced, followed by a theoretical influence function analysis illustrating its impulse response to high-resolution turbulence profiles. Finally, its performance is assessed in the context of the Thirty Meter Telescope multi-conjugate adaptive optics system via end-to-end wave optics Monte Carlo simulations.

  13. Intact Cell MALDI-TOF MS on Sperm: A Molecular Test For Male Fertility Diagnosis.

    PubMed

    Soler, Laura; Labas, Valérie; Thélie, Aurore; Grasseau, Isabelle; Teixeira-Gomes, Ana-Paula; Blesbois, Elisabeth

    2016-06-01

    Currently, evaluation of sperm quality is primarily based on in vitro measures of sperm function such as motility, viability and/or acrosome reaction. However, results are often poorly correlated with fertility, and alternative diagnostic tools are therefore needed both in veterinary and human medicine. In a recent pilot study, we demonstrated that MS profiles from intact chicken sperm using MALDI-TOF profiles could detect significant differences between fertile/subfertile spermatozoa showing that such profiles could be useful for in vitro male fertility testing. In the present study, we performed larger standardized experimental procedures designed for the development of fertility- predictive mathematical models based on sperm cell MALDI-TOF MS profiles acquired through a fast, automated method. This intact cell MALDI-TOF MS-based method showed high diagnostic accuracy in identifying fertile/subfertile males in a large male population of known fertility from two distinct genetic lineages (meat and egg laying lines). We additionally identified 40% of the m/z peaks observed in sperm MS profiles through a top-down high-resolution protein identification analysis. This revealed that the MALDI-TOF MS spectra obtained from intact sperm cells contained a large proportion of protein degradation products, many implicated in important functional pathways in sperm such as energy metabolism, structure and movement. Proteins identified by our predictive model included diverse and important functional classes providing new insights into sperm function as it relates to fertility differences in this experimental system. Thus, in addition to the chicken model system developed here, with the use of appropriate models these methods should effectively translate to other animal taxa where similar tests for fertility are warranted. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Time of flight dependent linearity in diffuse imaging: how effective is it to evaluate the spatial resolution by measuring the edge response function?

    PubMed

    Ortiz-Rascón, E; Bruce, N C; Rodríguez-Rosales, A A; Garduño-Mejía, J

    2016-03-01

    We describe the behavior of linearity in diffuse imaging by evaluating the differences between time-resolved images produced by photons arriving at the detector at different times. Two approaches are considered: Monte Carlo simulations and experimental results. The images of two complete opaque bars embedded in a transparent or in a turbid medium with a slab geometry are analyzed; the optical properties of the turbid medium sample are close to those of breast tissue. A simple linearity test was designed involving a direct comparison between the intensity profile produced by two bars scanned at the same time and the intensity profile obtained by adding two profiles of each bar scanned one at a time. It is shown that the linearity improves substantially when short time of flight photons are used in the imaging process, but even then the nonlinear behavior prevails. As the edge response function (ERF) has been used widely for testing the spatial resolution in imaging systems, the main implication of a time dependent linearity is the weakness of the linearity assumption when evaluating the spatial resolution through the ERF in diffuse imaging systems, and the need to evaluate the spatial resolution by other methods.

  15. Enhanced High Resolution RBS System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pollock, Thomas J.; Hass, James A.; Klody, George M.

    2011-06-01

    Improvements in full spectrum resolution with the second NEC high resolution RBS system are summarized. Results for 50 A ring TiN/HfO films on Si yielding energy resolution on the order of 1 keV are also presented. Detector enhancements include improved pulse processing electronics, upgraded shielding for the MCP/RAE detector, and reduced noise generated from pumping. Energy resolution measurements on spectra front edge coupled with calculations using 0.4mStr solid angle show that beam energy spread at 400 KeV from the Pelletron registered accelerator is less than 100 eV. To improve user throughput, magnet control has been added to the automatic datamore » collection. Depth profiles derived from experimental data are discussed. For the thin films profiled, depth resolutions were on the Angstrom level with the non-linear energy/channel conversions ranging from 100 to 200 eV.« less

  16. High-resolution age modelling of peat bog profiles using pre and post-bomb 14C, 210Pb and cryptotephra data from six Albertan peat bogs

    NASA Astrophysics Data System (ADS)

    Davies, L. J.; Froese, D. G.; Appleby, P.; van Bellen, S.; Magnan, G.; Mullan-Boudreau, G.; Noernberg, T.; Shotyk, W.; Zaccone, C.

    2016-12-01

    Age modelling of recent peat profiles is frequently undertaken for high-resolution modern studies, but the most common techniques applied (e.g. 14C, 210Pb, cryptotephra) are rarely combined and used for testing and inter-comparison. Here, we integrate three age-dating approaches to produce a single age model to comprehensively investigate variations in the chronometers and individual site histories since 1900. OxCal's P_Sequence function is used to model dates produced using 14C (pre- and post-bomb), 210Pb (corroborated with 137Cs and 241Am) from six peat bogs in central and northern Alberta. Physical and chemical characteristics of the cores (e.g. macrofossils, humification, ash content, dry density) provide important constraints for the model by highlighting periods with significant changes in accumulation rate (e.g. fire events, permafrost development, prolonged surficial drying). Sub-cm resolution output shows there are consistent differences in how the 14C and 210Pb signals are preserved in peat profiles, with 14C commonly showing a slight bias toward older ages at the same depth relative to 210Pb data. These methods can successfully be combined in a Bayesian model and used to produce a single age model that more accurately accounts for the uncertainties inherent in each method. Understanding these differences and combining the results of these methods results in a stronger chronology at each site investigated here despite observed differences in ecological setting, accumulation rates, fire events/frequency and permafrost development.

  17. Surface characterization and testing II; Proceedings of the Meeting, San Diego, CA, Aug. 10, 11, 1989

    NASA Technical Reports Server (NTRS)

    Greivenkamp, John E. (Editor); Young, Matt (Editor)

    1989-01-01

    Various papers on surface characterization and testing are presented. Individual topics addressed include: simple Hartmann test data interpretation, optimum configuration of the Offner null corrector, system for phase-shifting interferometry in the presence of vibration, fringe variation and visibility in speckle-shearing interferometry, functional integral representation of rough surfaces, calibration of surface heights in an interferometric optical profiler, image formation in common path differential profilometers, SEM of optical surfaces, measuring surface profiles with scanning tunneling microscopes, surface profile measurements of curved parts, high-resolution optical profiler, scanning heterodyne interferometer with immunity from microphonics, real-time crystal axis measurements of semiconductor materials, radial metrology with a panoramic annular lens, surface analysis for the characterization of defects in thin-film processes, Spacelab Optical Viewport glass assembly optical test program for the Starlab mission, scanning differential intensity and phase system for optical metrology.

  18. A human protein atlas for normal and cancer tissues based on antibody proteomics.

    PubMed

    Uhlén, Mathias; Björling, Erik; Agaton, Charlotta; Szigyarto, Cristina Al-Khalili; Amini, Bahram; Andersen, Elisabet; Andersson, Ann-Catrin; Angelidou, Pia; Asplund, Anna; Asplund, Caroline; Berglund, Lisa; Bergström, Kristina; Brumer, Harry; Cerjan, Dijana; Ekström, Marica; Elobeid, Adila; Eriksson, Cecilia; Fagerberg, Linn; Falk, Ronny; Fall, Jenny; Forsberg, Mattias; Björklund, Marcus Gry; Gumbel, Kristoffer; Halimi, Asif; Hallin, Inga; Hamsten, Carl; Hansson, Marianne; Hedhammar, My; Hercules, Görel; Kampf, Caroline; Larsson, Karin; Lindskog, Mats; Lodewyckx, Wald; Lund, Jan; Lundeberg, Joakim; Magnusson, Kristina; Malm, Erik; Nilsson, Peter; Odling, Jenny; Oksvold, Per; Olsson, Ingmarie; Oster, Emma; Ottosson, Jenny; Paavilainen, Linda; Persson, Anja; Rimini, Rebecca; Rockberg, Johan; Runeson, Marcus; Sivertsson, Asa; Sköllermo, Anna; Steen, Johanna; Stenvall, Maria; Sterky, Fredrik; Strömberg, Sara; Sundberg, Mårten; Tegel, Hanna; Tourle, Samuel; Wahlund, Eva; Waldén, Annelie; Wan, Jinghong; Wernérus, Henrik; Westberg, Joakim; Wester, Kenneth; Wrethagen, Ulla; Xu, Lan Lan; Hober, Sophia; Pontén, Fredrik

    2005-12-01

    Antibody-based proteomics provides a powerful approach for the functional study of the human proteome involving the systematic generation of protein-specific affinity reagents. We used this strategy to construct a comprehensive, antibody-based protein atlas for expression and localization profiles in 48 normal human tissues and 20 different cancers. Here we report a new publicly available database containing, in the first version, approximately 400,000 high resolution images corresponding to more than 700 antibodies toward human proteins. Each image has been annotated by a certified pathologist to provide a knowledge base for functional studies and to allow queries about protein profiles in normal and disease tissues. Our results suggest it should be possible to extend this analysis to the majority of all human proteins thus providing a valuable tool for medical and biological research.

  19. Development of Residual Gas Profile Monitors at GSI

    NASA Astrophysics Data System (ADS)

    Giacomini, T.; Barabin, S.; Forck, P.; Liakin, D.; Skachkov, V.

    2004-11-01

    Beam profile measurements at modern ion synchrotrons and storage rings require high timing performances on a turn-by-turn basis. High spatial resolutions are essential for cold beams and beamwidth measurings. The currently used RGM supported very interesting measurements and applications. Due to the readout technology the spatial and time resolution is limited. To meet the expanded demands a more comprehensive device is under development. It will be an all-purpose residual gas monitor to cover the wide range of beam currents and transversal particle distributions. Due to the fast profile detection it will operate on primary electrons after residual gas ionization. A magnetic field of 100 mT binds them to the ionization point inside 0.1-mm orbits. The high-resolution mode will be read out by a digital CCD camera with an upstream MCP-phosphor screen assembly. It is planned to read out the fast turn-by-turn mode by an array of 100 photodiodes with a resolution of 1 mm. Every photodiode is equipped with an amplifier-digitizer device providing a frame rate of ˜ 10 MSamples/s.

  20. Laser range profiling for small target recognition

    NASA Astrophysics Data System (ADS)

    Steinvall, Ove; Tulldahl, Michael

    2017-03-01

    Long range identification (ID) or ID at closer range of small targets has its limitations in imaging due to the demand for very high-transverse sensor resolution. This is, therefore, a motivation to look for one-dimensional laser techniques for target ID. These include laser vibrometry and laser range profiling. Laser vibrometry can give good results, but is not always robust as it is sensitive to certain vibrating parts on the target being in the field of view. Laser range profiling is attractive because the maximum range can be substantial, especially for a small laser beam width. A range profiler can also be used in a scanning mode to detect targets within a certain sector. The same laser can also be used for active imaging when the target comes closer and is angularly resolved. Our laser range profiler is based on a laser with a pulse width of 6 ns (full width half maximum). This paper will show both experimental and simulated results for laser range profiling of small boats out to a 6 to 7-km range and a unmanned arrial vehicle (UAV) mockup at close range (1.3 km). The naval experiments took place in the Baltic Sea using many other active and passive electro-optical sensors in addition to the profiling system. The UAV experiments showed the need for a high-range resolution, thus we used a photon counting system in addition to the more conventional profiler used in the naval experiments. This paper shows the influence of target pose and range resolution on the capability of classification. The typical resolution (in our case 0.7 m) obtainable with a conventional range finder type of sensor can be used for large target classification with a depth structure over 5 to 10 m or more, but for smaller targets such as a UAV a high resolution (in our case 7.5 mm) is needed to reveal depth structures and surface shapes. This paper also shows the need for 3-D target information to build libraries for comparison of measured and simulated range profiles. At closer ranges, full 3-D images should be preferable.

  1. Evaluation of Heterogeneous Metabolic Profile in an Orthotopic Human Glioblastoma Xenograft Model Using Compressed Sensing Hyperpolarized 3D 13C Magnetic Resonance Spectroscopic Imaging

    PubMed Central

    Park, Ilwoo; Hu, Simon; Bok, Robert; Ozawa, Tomoko; Ito, Motokazu; Mukherjee, Joydeep; Phillips, Joanna J.; James, C. David; Pieper, Russell O.; Ronen, Sabrina M.; Vigneron, Daniel B.; Nelson, Sarah J.

    2013-01-01

    High resolution compressed sensing hyperpolarized 13C magnetic resonance spectroscopic imaging was applied in orthotopic human glioblastoma xenografts for quantitative assessment of spatial variations in 13C metabolic profiles and comparison with histopathology. A new compressed sensing sampling design with a factor of 3.72 acceleration was implemented to enable a factor of 4 increase in spatial resolution. Compressed sensing 3D 13C magnetic resonance spectroscopic imaging data were acquired from a phantom and 10 tumor-bearing rats following injection of hyperpolarized [1-13C]-pyruvate using a 3T scanner. The 13C metabolic profiles were compared with hematoxylin and eosin staining and carbonic anhydrase 9 staining. The high-resolution compressed sensing 13C magnetic resonance spectroscopic imaging data enabled the differentiation of distinct 13C metabolite patterns within abnormal tissues with high specificity in similar scan times compared to the fully sampled method. The results from pathology confirmed the different characteristics of 13C metabolic profiles between viable, non-necrotic, nonhypoxic tumor, and necrotic, hypoxic tissue. PMID:22851374

  2. Evaluation of heterogeneous metabolic profile in an orthotopic human glioblastoma xenograft model using compressed sensing hyperpolarized 3D 13C magnetic resonance spectroscopic imaging.

    PubMed

    Park, Ilwoo; Hu, Simon; Bok, Robert; Ozawa, Tomoko; Ito, Motokazu; Mukherjee, Joydeep; Phillips, Joanna J; James, C David; Pieper, Russell O; Ronen, Sabrina M; Vigneron, Daniel B; Nelson, Sarah J

    2013-07-01

    High resolution compressed sensing hyperpolarized (13)C magnetic resonance spectroscopic imaging was applied in orthotopic human glioblastoma xenografts for quantitative assessment of spatial variations in (13)C metabolic profiles and comparison with histopathology. A new compressed sensing sampling design with a factor of 3.72 acceleration was implemented to enable a factor of 4 increase in spatial resolution. Compressed sensing 3D (13)C magnetic resonance spectroscopic imaging data were acquired from a phantom and 10 tumor-bearing rats following injection of hyperpolarized [1-(13)C]-pyruvate using a 3T scanner. The (13)C metabolic profiles were compared with hematoxylin and eosin staining and carbonic anhydrase 9 staining. The high-resolution compressed sensing (13)C magnetic resonance spectroscopic imaging data enabled the differentiation of distinct (13)C metabolite patterns within abnormal tissues with high specificity in similar scan times compared to the fully sampled method. The results from pathology confirmed the different characteristics of (13)C metabolic profiles between viable, non-necrotic, nonhypoxic tumor, and necrotic, hypoxic tissue. Copyright © 2012 Wiley Periodicals, Inc.

  3. High-resolution altitude profiles of the atmospheric turbulence with PML at the Sutherland Observatory

    NASA Astrophysics Data System (ADS)

    Catala, L.; Ziad, A.; Fanteï-Caujolle, Y.; Crawford, S. M.; Buckley, D. A. H.; Borgnino, J.; Blary, F.; Nickola, M.; Pickering, T.

    2017-05-01

    With the prospect of the next generation of ground-based telescopes, the extremely large telescopes, increasingly complex and demanding adaptive optics systems are needed. This is to compensate for image distortion caused by atmospheric turbulence and fully take advantage of mirrors with diameters of 30-40 m. This requires a more precise characterization of the turbulence. The Profiler of Moon Limb (PML) was developed within this context. The PML aims to provide high-resolution altitude profiles of the turbulence using differential measurements of the Moon limb position to calculate the transverse spatio-angular covariance of the angle of arrival fluctuations. The covariance of differential image motion for different separation angles is sensitive to the altitude distribution of the seeing. The use of the continuous Moon limb provides a large number of separation angles allowing for the high-resolution altitude of the profiles. The method is presented and tested with simulated data. Moreover, a PML instrument was deployed at the Sutherland Observatory in South Africa in 2011 August. We present here the results of this measurement campaign.

  4. Dryline on 22 May 2002 During IHOP: Convective Scale Measurements at the Profiling Site

    NASA Technical Reports Server (NTRS)

    Demoz, Belay; Flamant, Cyrille; Miller, David; Evans, Keith; Fabry, Federic; DiGirolamo, Paolo; Whiteman, David; Geerts, Bart; Weckwerth, Tammy; Brown, William

    2004-01-01

    A unique set of measurements of wind, water vapor mixing ratio and boundary layer height variability was observed during the first MOP dryline mission of 22 May 2002. Water vapor mixing ratio from the Scanning Raman Lidar (SRL), high-resolution profiles of aerosol backscatter from the HARLIE and wind profiles from the GLOW are combined with the vertical velocity derived from the NCAR/ISS/MAPR and the high-resolution FMCW radar to reveal the convective variability of the cumulus cloud-topped boundary layer. A combined analysis of the in-situ and remote sensing data from aircraft, radiosonde, lidars, and radars reveals moisture variability within boundary layer updraft and downdraft regions as well as characterizes the boundary layer height variability in the dry and moist sides of the dryline. The profiler site measurements will be tied to aircraft data to reveal the relative intensity and location of these updrafts to the dry line. This study provides unprecedented high temporal and spatial resolution measurements of wind, moisture and backscatter within a dryline and the associated convective boundary layer.

  5. Scanning photoelectron microscope for nanoscale three-dimensional spatial-resolved electron spectroscopy for chemical analysis.

    PubMed

    Horiba, K; Nakamura, Y; Nagamura, N; Toyoda, S; Kumigashira, H; Oshima, M; Amemiya, K; Senba, Y; Ohashi, H

    2011-11-01

    In order to achieve nondestructive observation of the three-dimensional spatially resolved electronic structure of solids, we have developed a scanning photoelectron microscope system with the capability of depth profiling in electron spectroscopy for chemical analysis (ESCA). We call this system 3D nano-ESCA. For focusing the x-ray, a Fresnel zone plate with a diameter of 200 μm and an outermost zone width of 35 nm is used. In order to obtain the angular dependence of the photoelectron spectra for the depth-profile analysis without rotating the sample, we adopted a modified VG Scienta R3000 analyzer with an acceptance angle of 60° as a high-resolution angle-resolved electron spectrometer. The system has been installed at the University-of-Tokyo Materials Science Outstation beamline, BL07LSU, at SPring-8. From the results of the line-scan profiles of the poly-Si/high-k gate patterns, we achieved a total spatial resolution better than 70 nm. The capability of our system for pinpoint depth-profile analysis and high-resolution chemical state analysis is demonstrated. © 2011 American Institute of Physics

  6. Role of turbulence fluctuations on uncertainties of acoutic Doppler current profiler discharge measurements

    USGS Publications Warehouse

    Tarrab, Leticia; Garcia, Carlos M.; Cantero, Mariano I.; Oberg, Kevin

    2012-01-01

    This work presents a systematic analysis quantifying the role of the presence of turbulence fluctuations on uncertainties (random errors) of acoustic Doppler current profiler (ADCP) discharge measurements from moving platforms. Data sets of three-dimensional flow velocities with high temporal and spatial resolution were generated from direct numerical simulation (DNS) of turbulent open channel flow. Dimensionless functions relating parameters quantifying the uncertainty in discharge measurements due to flow turbulence (relative variance and relative maximum random error) to sampling configuration were developed from the DNS simulations and then validated with field-scale discharge measurements. The validated functions were used to evaluate the role of the presence of flow turbulence fluctuations on uncertainties in ADCP discharge measurements. The results of this work indicate that random errors due to the flow turbulence are significant when: (a) a low number of transects is used for a discharge measurement, and (b) measurements are made in shallow rivers using high boat velocity (short time for the boat to cross a flow turbulence structure).

  7. Experimental determination of the lateral dose response functions of detectors to be applied in the measurement of narrow photon-beam dose profiles.

    PubMed

    Poppinga, D; Meyners, J; Delfs, B; Muru, A; Harder, D; Poppe, B; Looe, H K

    2015-12-21

    This study aims at the experimental determination of the detector-specific 1D lateral dose response function K(x) and of its associated rotational symmetric counterpart K(r) for a set of high-resolution detectors presently used in narrow-beam photon dosimetry. A combination of slit-beam, radiochromic film, and deconvolution techniques served to accomplish this task for four detectors with diameters of their sensitive volumes ranging from 1 to 2.2 mm. The particular aim of the experiment was to examine the existence of significant negative portions of some of these response functions predicted by a recent Monte-Carlo-simulation (Looe et al 2015 Phys. Med. Biol. 60 6585-607). In a 6 MV photon slit beam formed by the Siemens Artiste collimation system and a 0.5 mm wide slit between 10 cm thick lead blocks serving as the tertiary collimator, the true cross-beam dose profile D(x) at 3 cm depth in a large water phantom was measured with radiochromic film EBT3, and the detector-affected cross-beam signal profiles M(x) were recorded with a silicon diode, a synthetic diamond detector, a miniaturized scintillation detector, and a small ionization chamber. For each detector, the deconvolution of the convolution integral M(x)  =  K(x)  ∗  D(x) served to obtain its specific 1D lateral dose response function K(x), and K(r) was calculated from it. Fourier transformations and back transformations were performed using function approximations by weighted sums of Gaussian functions and their analytical transformation. The 1D lateral dose response functions K(x) of the four types of detectors and their associated rotational symmetric counterparts K(r) were obtained. Significant negative curve portions of K(x) and K(r) were observed in the case of the silicon diode and the diamond detector, confirming the Monte-Carlo-based prediction (Looe et al 2015 Phys. Med. Biol. 60 6585-607). They are typical for the perturbation of the secondary electron field by a detector with enhanced electron density compared with the surrounding water. In the cases of the scintillation detector and the small ionization chamber, the negative curve portions of K(x) practically vanish. It is planned to use the measured functions K(x) and K(r) to deconvolve clinical narrow-beam signal profiles and to correct the output factor values obtained with various high-resolution detectors.

  8. Observations of Seasonal Morphological Evolution at a Moderately Energetic Beach in Rincón, Puerto Rico

    NASA Astrophysics Data System (ADS)

    Rivera Nieves, A.; Loubriel, M.; Rodriguez-Abudo, S.; Canals, M.; Salgado-Domínguez, G.

    2016-02-01

    Seasonal variations in the wave climate near Rincón, Puerto Rico include high winter swells associated with meteorological disturbances in the north and mid Atlantic, short period waves resulting from local storms, and the occasional south swell. The resulting beach morphology is therefore a complex function of the wave climate, wave-induced currents, and local and remote meteorology, among others. Over the past 75 years, this particular stretch of beach has suffered severe erosion problems, losing as much as 100 meters of beach width at particular locations. The purpose of this study is to develop a high-resolution time series of beach morphology to examine in more detail the seasonal variations at the site. Beach profiles will be collected on a weekly basis using an RTK GPS system at three permanent stations spanning 2 km of coast. Sediment samples will be collected along the profiles to identify sediment properties associated with distinct morphological features, while digital photographs will provide a qualitative sense of beach width. The resulting morphological changes will be assessed in light of the Rincon's directional Waverider buoy data and CariCOOS' SWAN high-resolution wave model. This study will provide quantifiable insights into seasonal erosion/accretion trends at a highly touristic stretch of coast in the US Caribbean.

  9. Ozone height profiles using laser heterodyne radiometer

    NASA Technical Reports Server (NTRS)

    Jain, S. L.

    1994-01-01

    The monitoring of vertical profiles of ozone and related minor constituents in the atmosphere are of great significance to understanding the complex interaction between atmospheric dynamics, chemistry and radiation budget. An ultra high spectral resolution tunable CO2 laser heterodyne radiometer has been designed, developed and set up at the National Physical Laboratory, New Delhi to obtain vertical profiles of various minor constituents the characteristic absorption lines in 9 to 11 micron spectral range. Due to its high spectral resolution the lines can be resolved completely and data obtained are inverted to get vertical profiles using an inversion technique developed by the author. In the present communication the salient features of the laser heterodyne system and the results obtained are discussed in detail.

  10. Effects of Temperature and Air Density Profiles on Ozone Lidar Retrievals

    NASA Astrophysics Data System (ADS)

    Kirgis, G.; Langford, A. O.; Senff, C. J.; Alvarez, R. J. _II, II

    2017-12-01

    The recent reduction in the primary U.S. National Ambient Air Quality Standard (NAAQS) for ozone (O3) from 75 to 70 parts-per-billion by volume (ppbv) adds urgency to the need for better understanding of the processes that control ground-level concentrations in the United States. While ground-based in situ sensors are capable of measuring ozone levels, they don't give any insight into upper air transport and mixing. Differential absorption lidars such as the NOAA/ESRL Tunable Optical Profiler for Aerosol and oZone (TOPAZ) measure continuous vertical ozone profiles with high spatial and temporal resolution. However, the retrieved ozone mixing ratios depend on the temperature and air density profiles used in the analysis. This study analyzes the ozone concentrations for seven field campaigns from 2013 to 2016 to evaluate the impact of the assumed pressure and temperature profiles on the ozone mixing ratio retrieval. Pressure and temperature profiles from various spatial and temporal resolution models (Modern Era Retrospective-Analysis for Research and Applications, NCEP/NCAR Reanalysis, NCEP North American Regional Reanalysis, Rapid Refresh, and High-Resolution Rapid Refresh) are compared to reference ozone profiles created with pressure and temperature profiles from ozonesondes launched close to the TOPAZ measurement site. The results show significant biases with respect to time of day and season, altitude, and location of the model-extracted profiles. Limitations and advantages of all datasets used will also be discussed.

  11. AirCore-HR: a high-resolution column sampling to enhance the vertical description of CH4 and CO2

    NASA Astrophysics Data System (ADS)

    Membrive, Olivier; Crevoisier, Cyril; Sweeney, Colm; Danis, François; Hertzog, Albert; Engel, Andreas; Bönisch, Harald; Picon, Laurence

    2017-06-01

    An original and innovative sampling system called AirCore was presented by NOAA in 2010 Karion et al.(2010). It consists of a long ( > 100 m) and narrow ( < 1 cm) stainless steel tube that can retain a profile of atmospheric air. The captured air sample has then to be analyzed with a gas analyzer for trace mole fraction. In this study, we introduce a new AirCore aiming to improve resolution along the vertical with the objectives to (i) better capture the vertical distribution of CO2 and CH4, (ii) provide a tool to compare AirCores and validate the estimated vertical resolution achieved by AirCores. This (high-resolution) AirCore-HR consists of a 300 m tube, combining 200 m of 0.125 in. (3.175 mm) tube and a 100 m of 0.25 in. (6.35 mm) tube. This new configuration allows us to achieve a vertical resolution of 300 m up to 15 km and better than 500 m up to 22 km (if analysis of the retained sample is performed within 3 h). The AirCore-HR was flown for the first time during the annual StratoScience campaign from CNES in August 2014 from Timmins (Ontario, Canada). High-resolution vertical profiles of CO2 and CH4 up to 25 km were successfully retrieved. These profiles revealed well-defined transport structures in the troposphere (also seen in CAMS-ECMWF high-resolution forecasts of CO2 and CH4 profiles) and captured the decrease of CO2 and CH4 in the stratosphere. The multi-instrument gondola also carried two other low-resolution AirCore-GUF that allowed us to perform direct comparisons and study the underlying processing method used to convert the sample of air to greenhouse gases vertical profiles. In particular, degrading the AirCore-HR derived profiles to the low resolution of AirCore-GUF yields an excellent match between both sets of CH4 profiles and shows a good consistency in terms of vertical structures. This fully validates the theoretical vertical resolution achievable by AirCores. Concerning CO2 although a good agreement is found in terms of vertical structure, the comparison between the various AirCores yields a large and variable bias (up to almost 3 ppm in some parts of the profiles). The reasons of this bias, possibly related to the drying agent used to dry the air, are still being investigated. Finally, the uncertainties associated with the measurements are assessed, yielding an average uncertainty below 3 ppb for CH4 and 0.25 ppm for CO2 with the major source of uncertainty coming from the potential loss of air sample on the ground and the choice of the starting and ending point of the collected air sample inside the tube. In an ideal case where the sample would be fully retained, it would be possible to know precisely the pressure at which air was sampled last and thus to improve the overall uncertainty to about 0.1 ppm for CO2 and 2 ppb for CH4.

  12. Identification of novel non-coding small RNAs from Streptococcus pneumoniae TIGR4 using high-resolution genome tiling arrays

    PubMed Central

    2010-01-01

    Background The identification of non-coding transcripts in human, mouse, and Escherichia coli has revealed their widespread occurrence and functional importance in both eukaryotic and prokaryotic life. In prokaryotes, studies have shown that non-coding transcripts participate in a broad range of cellular functions like gene regulation, stress and virulence. However, very little is known about non-coding transcripts in Streptococcus pneumoniae (pneumococcus), an obligate human respiratory pathogen responsible for significant worldwide morbidity and mortality. Tiling microarrays enable genome wide mRNA profiling as well as identification of novel transcripts at a high-resolution. Results Here, we describe a high-resolution transcription map of the S. pneumoniae clinical isolate TIGR4 using genomic tiling arrays. Our results indicate that approximately 66% of the genome is expressed under our experimental conditions. We identified a total of 50 non-coding small RNAs (sRNAs) from the intergenic regions, of which 36 had no predicted function. Half of the identified sRNA sequences were found to be unique to S. pneumoniae genome. We identified eight overrepresented sequence motifs among sRNA sequences that correspond to sRNAs in different functional categories. Tiling arrays also identified approximately 202 operon structures in the genome. Conclusions In summary, the pneumococcal operon structures and novel sRNAs identified in this study enhance our understanding of the complexity and extent of the pneumococcal 'expressed' genome. Furthermore, the results of this study open up new avenues of research for understanding the complex RNA regulatory network governing S. pneumoniae physiology and virulence. PMID:20525227

  13. Unravel the submesoscale dynamics of the phytoplanktonic community in the NW Mediterranean Sea by in situ observations: the 2015 OSCAHR cruise

    NASA Astrophysics Data System (ADS)

    Marrec, Pierre; Doglioli, Andrea M.; Grégori, Gérald; Della Penna, Alice; Wagener, Thibaut; Rougier, Gille; Bhairy, Nagib; Dugenne, Mathilde; Lahbib, Soumaya; Thyssen, Melilotus

    2017-04-01

    Submesoscale phenomena have been recently recognized as a key factor in physical-biological-biogeochemical interactions, even if it remains unclear how these processes affect the global state of the ocean. Significant large-scale impacts of submesoscale structures on primary production and influence on the phytoplankton community structure and diversity have also been reported. In the past decade submesoscale dynamics have been predominately studied through the analysis of numerical simulations. Observing the coupled physical and biogeochemical variability at this scale remains challenging due to the ephemeral nature of submesoscale structures. The in-situ study of such structures necessitates multidisciplinary approaches involving in situ observations, remote sensing and modeling. Last progresses in biogeochemical sensor development and advanced methodology including Lagrangian real-time adaptative strategies represent outstanding opportunities. The OSCAHR (Observing Submesoscale Coupling At High Resolution) campaign has been conducted thanks to a multidisciplinary approach in order to improve the understanding of submesoscale processes. An ephemeral submesoscale structure was first identified in the Ligurian Sea in fall 2015 using both satellite and numerical modeling data before the campaign. Afterwards, advanced observing systems for the physical, biological and biogeochemical characterization of the sea surface layer at a high spatial and temporal frequency were deployed during a 10-days cruise. A MVP (Moving Vessel Profiler) was used to obtain high resolution CTD profiles associated to a new pumping system with 1-m vertical resolution. Moreover, along the ship track, in addition to the standard measurements of seawater surface samples (Chl-a, nutrients, O2, SST, SSS …), we deployed an automated flow cytometer for near real-time characterization of phytoplankton functional groups (from micro-phytoplankton down to cyanobacteria). The observed submesoscale feature presented a cyclonic structure with a relatively cold core surrounded by warmer waters. Six phytoplankton groups were identified across the structure with an unprecedented spatial and temporal resolution. According to our observations, we could quantify the influence of the fast established physical structure on the spatial distribution of the phytoplankton functional groups, giving coherence to the observed community structuration. Moreover, the high resolution of our observations allows us to estimate the growth rate of the main phytoplankton groups. Our innovative adaptative strategy with a multidisciplinary and transversal approach provides a deeper understanding of the marine biogeochemical dynamics through the first trophic levels.

  14. An integrated microfluidic chip system for single-cell secretion profiling of rare circulating tumor cells.

    PubMed

    Deng, Yuliang; Zhang, Yu; Sun, Shuai; Wang, Zhihua; Wang, Minjiao; Yu, Beiqin; Czajkowsky, Daniel M; Liu, Bingya; Li, Yan; Wei, Wei; Shi, Qihui

    2014-12-16

    Genetic and transcriptional profiling, as well as surface marker identification of single circulating tumor cells (CTCs) have been demonstrated. However, quantitatively profiling of functional proteins at single CTC resolution has not yet been achieved, owing to the limited purity of the isolated CTC populations and a lack of single-cell proteomic approaches to handle and analyze rare CTCs. Here, we develop an integrated microfluidic system specifically designed for streamlining isolation, purification and single-cell secretomic profiling of CTCs from whole blood. Key to this platform is the use of photocleavable ssDNA-encoded antibody conjugates to enable a highly purified CTC population with <75 'contaminated' blood cells. An enhanced poly-L-lysine barcode pattern is created on the single-cell barcode chip for efficient capture rare CTC cells in microchambers for subsequent secreted protein profiling. This system was extensively evaluated and optimized with EpCAM-positive HCT116 cells seeded into whole blood. Patient blood samples were employed to assess the utility of the system for isolation, purification and single-cell secretion profiling of CTCs. The CTCs present in patient blood samples exhibit highly heterogeneous secretion profile of IL-8 and VEGF. The numbers of secreting CTCs are found not in accordance with CTC enumeration based on immunostaining in the parallel experiments.

  15. An Integrated Microfluidic Chip System for Single-Cell Secretion Profiling of Rare Circulating Tumor Cells

    PubMed Central

    Deng, Yuliang; Zhang, Yu; Sun, Shuai; Wang, Zhihua; Wang, Minjiao; Yu, Beiqin; Czajkowsky, Daniel M.; Liu, Bingya; Li, Yan; Wei, Wei; Shi, Qihui

    2014-01-01

    Genetic and transcriptional profiling, as well as surface marker identification of single circulating tumor cells (CTCs) have been demonstrated. However, quantitatively profiling of functional proteins at single CTC resolution has not yet been achieved, owing to the limited purity of the isolated CTC populations and a lack of single-cell proteomic approaches to handle and analyze rare CTCs. Here, we develop an integrated microfluidic system specifically designed for streamlining isolation, purification and single-cell secretomic profiling of CTCs from whole blood. Key to this platform is the use of photocleavable ssDNA-encoded antibody conjugates to enable a highly purified CTC population with <75 ‘contaminated' blood cells. An enhanced poly-L-lysine barcode pattern is created on the single-cell barcode chip for efficient capture rare CTC cells in microchambers for subsequent secreted protein profiling. This system was extensively evaluated and optimized with EpCAM-positive HCT116 cells seeded into whole blood. Patient blood samples were employed to assess the utility of the system for isolation, purification and single-cell secretion profiling of CTCs. The CTCs present in patient blood samples exhibit highly heterogeneous secretion profile of IL-8 and VEGF. The numbers of secreting CTCs are found not in accordance with CTC enumeration based on immunostaining in the parallel experiments. PMID:25511131

  16. Reconstruction of high temporal resolution Thomson scattering data during a modulated electron cyclotron resonance heating using conditional averaging

    NASA Astrophysics Data System (ADS)

    Kobayashi, T.; Ida, K.; Itoh, K.; Yoshinuma, M.; Moon, C.; Inagaki, S.; Yamada, I.; Funaba, H.; Yasuhara, R.; Tsuchiya, H.; Ohdachi, S.; Yoshimura, Y.; Igami, H.; Shimozuma, T.; Kubo, S.; Tsujimura, T. I.

    2016-04-01

    This paper provides a software application of the sampling scope concept for fusion research. The time evolution of Thomson scattering data is reconstructed with a high temporal resolution during a modulated electron cyclotron resonance heating (MECH) phase. The amplitude profile and the delay time profile of the heat pulse propagation are obtained from the reconstructed signal for discharges having on-axis and off-axis MECH depositions. The results are found to be consistent with the MECH deposition.

  17. Reconstruction of high temporal resolution Thomson scattering data during a modulated electron cyclotron resonance heating using conditional averaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobayashi, T., E-mail: kobayashi.tatsuya@LHD.nifs.ac.jp; Yoshinuma, M.; Ohdachi, S.

    2016-04-15

    This paper provides a software application of the sampling scope concept for fusion research. The time evolution of Thomson scattering data is reconstructed with a high temporal resolution during a modulated electron cyclotron resonance heating (MECH) phase. The amplitude profile and the delay time profile of the heat pulse propagation are obtained from the reconstructed signal for discharges having on-axis and off-axis MECH depositions. The results are found to be consistent with the MECH deposition.

  18. Reconstruction of high temporal resolution Thomson scattering data during a modulated electron cyclotron resonance heating using conditional averaging.

    PubMed

    Kobayashi, T; Ida, K; Itoh, K; Yoshinuma, M; Moon, C; Inagaki, S; Yamada, I; Funaba, H; Yasuhara, R; Tsuchiya, H; Ohdachi, S; Yoshimura, Y; Igami, H; Shimozuma, T; Kubo, S; Tsujimura, T I

    2016-04-01

    This paper provides a software application of the sampling scope concept for fusion research. The time evolution of Thomson scattering data is reconstructed with a high temporal resolution during a modulated electron cyclotron resonance heating (MECH) phase. The amplitude profile and the delay time profile of the heat pulse propagation are obtained from the reconstructed signal for discharges having on-axis and off-axis MECH depositions. The results are found to be consistent with the MECH deposition.

  19. Cortical lamina-dependent blood volume changes in human brain at 7 T.

    PubMed

    Huber, Laurentius; Goense, Jozien; Kennerley, Aneurin J; Trampel, Robert; Guidi, Maria; Reimer, Enrico; Ivanov, Dimo; Neef, Nicole; Gauthier, Claudine J; Turner, Robert; Möller, Harald E

    2015-02-15

    Cortical layer-dependent high (sub-millimeter) resolution functional magnetic resonance imaging (fMRI) in human or animal brain can be used to address questions regarding the functioning of cortical circuits, such as the effect of different afferent and efferent connectivities on activity in specific cortical layers. The sensitivity of gradient echo (GE) blood oxygenation level-dependent (BOLD) responses to large draining veins reduces its local specificity and can render the interpretation of the underlying laminar neural activity impossible. The application of the more spatially specific cerebral blood volume (CBV)-based fMRI in humans has been hindered by the low sensitivity of the noninvasive modalities available. Here, a vascular space occupancy (VASO) variant, adapted for use at high field, is further optimized to capture layer-dependent activity changes in human motor cortex at sub-millimeter resolution. Acquired activation maps and cortical profiles show that the VASO signal peaks in gray matter at 0.8-1.6mm depth, and deeper compared to the superficial and vein-dominated GE-BOLD responses. Validation of the VASO signal change versus well-established iron-oxide contrast agent based fMRI methods in animals showed the same cortical profiles of CBV change, after normalization for lamina-dependent baseline CBV. In order to evaluate its potential of revealing small lamina-dependent signal differences due to modulations of the input-output characteristics, layer-dependent VASO responses were investigated in the ipsilateral hemisphere during unilateral finger tapping. Positive activation in ipsilateral primary motor cortex and negative activation in ipsilateral primary sensory cortex were observed. This feature is only visible in high-resolution fMRI where opposing sides of a sulcus can be investigated independently because of a lack of partial volume effects. Based on the results presented here, we conclude that VASO offers good reproducibility, high sensitivity and lower sensitivity than GE-BOLD to changes in larger vessels, making it a valuable tool for layer-dependent fMRI studies in humans. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. High Spectral Resolution Lidar Data

    DOE Data Explorer

    Eloranta, Ed

    2004-12-01

    The HSRL provided calibrated vertical profiles of optical depth, backscatter cross section and depoloarization at a wavelength of 532 nm. Profiles were acquired at 2.5 second intervals with 7.5 meter resolution. Profiles extended from an altitude of 100 m to 30 km in clear air. The lidar penetrated to a maximum optical depth of ~ 4 under cloudy conditions. Our data contributed directly to the aims of the M-PACE experiment, providing calibrated optical depth and optical backscatter measurements which were not available from any other instrument.

  1. 4-dimensional functional profiling in the convulsant-treated larval zebrafish brain.

    PubMed

    Winter, Matthew J; Windell, Dylan; Metz, Jeremy; Matthews, Peter; Pinion, Joe; Brown, Jonathan T; Hetheridge, Malcolm J; Ball, Jonathan S; Owen, Stewart F; Redfern, Will S; Moger, Julian; Randall, Andrew D; Tyler, Charles R

    2017-07-26

    Functional neuroimaging, using genetically-encoded Ca 2+ sensors in larval zebrafish, offers a powerful combination of high spatiotemporal resolution and higher vertebrate relevance for quantitative neuropharmacological profiling. Here we use zebrafish larvae with pan-neuronal expression of GCaMP6s, combined with light sheet microscopy and a novel image processing pipeline, for the 4D profiling of chemoconvulsant action in multiple brain regions. In untreated larvae, regions associated with autonomic functionality, sensory processing and stress-responsiveness, consistently exhibited elevated spontaneous activity. The application of drugs targeting different convulsant mechanisms (4-Aminopyridine, Pentylenetetrazole, Pilocarpine and Strychnine) resulted in distinct spatiotemporal patterns of activity. These activity patterns showed some interesting parallels with what is known of the distribution of their respective molecular targets, but crucially also revealed system-wide neural circuit responses to stimulation or suppression. Drug concentration-response curves of neural activity were identified in a number of anatomically-defined zebrafish brain regions, and in vivo larval electrophysiology, also conducted in 4dpf larvae, provided additional measures of neural activity. Our quantification of network-wide chemoconvulsant drug activity in the whole zebrafish brain illustrates the power of this approach for neuropharmacological profiling in applications ranging from accelerating studies of drug safety and efficacy, to identifying pharmacologically-altered networks in zebrafish models of human neurological disorders.

  2. Mapping an atlas of tissue-specific Drosophila melanogaster metabolomes by high resolution mass spectrometry.

    PubMed

    Chintapalli, Venkateswara R; Al Bratty, Mohammed; Korzekwa, Dominika; Watson, David G; Dow, Julian A T

    2013-01-01

    Metabolomics can provide exciting insights into organismal function, but most work on simple models has focussed on the whole organism metabolome, so missing the contributions of individual tissues. Comprehensive metabolite profiles for ten tissues from adult Drosophila melanogaster were obtained here by two chromatographic methods, a hydrophilic interaction (HILIC) method for polar metabolites and a lipid profiling method also based on HILIC, in combination with an Orbitrap Exactive instrument. Two hundred and forty two polar metabolites were putatively identified in the various tissues, and 251 lipids were observed in positive ion mode and 61 in negative ion mode. Although many metabolites were detected in all tissues, every tissue showed characteristically abundant metabolites which could be rationalised against specific tissue functions. For example, the cuticle contained high levels of glutathione, reflecting a role in oxidative defence; the alimentary canal (like vertebrate gut) had high levels of acylcarnitines for fatty acid metabolism, and the head contained high levels of ether lipids. The male accessory gland uniquely contained decarboxylated S-adenosylmethionine. These data thus both provide valuable insights into tissue function, and a reference baseline, compatible with the FlyAtlas.org transcriptomic resource, for further metabolomic analysis of this important model organism, for example in the modelling of human inborn errors of metabolism, aging or metabolic imbalances such as diabetes.

  3. Using High and Low Resolution Profiles of CO2 and CH4 Measured with AirCores to Evaluate Transport Models and Atmospheric Columns Retrieved from Space

    NASA Astrophysics Data System (ADS)

    Membrive, O.; Crevoisier, C. D.; Sweeney, C.; Hertzog, A.; Danis, F.; Picon, L.; Engel, A.; Boenisch, H.; Durry, G.; Amarouche, N.

    2015-12-01

    Over the past decades many methods have been developed to monitor the evolution of greenhouse gases (GHG): ground networks (NOAA, ICOS, TCCON), aircraft campaigns (HIPPO, CARIBIC, Contrail…), satellite observations (GOSAT, IASI, AIRS…). Nevertheless, precise and regular vertical profile measurements are currently still missing from the observing system. To address this need, an original and innovative atmospheric sampling system called AirCore has been developed at NOAA (Karion et al. 2010). This new system allows balloon measurements of GHG vertical profiles from the surface up to 30 km. New versions of this instrument have been developed at LMD: a high-resolution version "AirCore-HR" that differs from other AirCores by its high vertical resolution and two "light" versions (lower resolution) aiming to be flown under meteorological balloon. LMD AirCores were flown on multi-instrument gondolas along with other independent instruments measuring CO2 and CH4 in-situ during the Strato Science balloon campaigns operated by the French space agency CNES in collaboration with the Canadian Space Agency in Timmins (Ontario, Canada) in August 2014 and 2015. First, we will present comparisons of the vertical profiles retrieved with various AirCores (LMD and Frankfurt University) to illustrate repeatability and impact of the vertical resolution as well as comparisons with independent in-situ measurements from other instruments (laser diode based Pico-SDLA). Second, we will illustrate the usefulness of AirCore measurements in the upper troposphere and stratosphere for validating and interpreting vertical profiles from atmospheric transport models as well as observations of total and partial column of methane and carbon dioxide from several current and future spaceborne missions such as: ACE-FTS, IASI and GOSAT.

  4. Hydrostratigraphic analysis of the MADE site with full-resolution GPR and direct-push hydraulic profiling

    USGS Publications Warehouse

    Dogan, M.; Van Dam, R. L.; Bohling, Geoffrey C.; Butler, J.J.; Hyndman, D.W.

    2011-01-01

    Full-resolution 3D Ground-Penetrating Radar (GPR) data were combined with high-resolution hydraulic conductivity (K) data from vertical Direct-Push (DP) profiles to characterize a portion of the highly heterogeneous MAcro Dispersion Experiment (MADE) site. This is an important first step to better understand the influence of aquifer heterogeneities on observed anomalous transport. Statistical evaluation of DP data indicates non-normal distributions that have much higher similarity within each GPR facies than between facies. The analysis of GPR and DP data provides high-resolution estimates of the 3D geometry of hydrostratigraphic zones, which can then be populated with stochastic K fields. The lack of such estimates has been a significant limitation for testing and parameterizing a range of novel transport theories at sites where the traditional advection-dispersion model has proven inadequate. ?? 2011 by the American Geophysical Union.

  5. Retrieval of Precipitation Profiles from Multiresolution, Multifrequency, Active and Passive Microwave Observations

    NASA Technical Reports Server (NTRS)

    Grecu, Mircea; Anagnostou, Emmanouil N.; Olson, William S.; Starr, David OC. (Technical Monitor)

    2002-01-01

    In this study, a technique for estimating vertical profiles of precipitation from multifrequency, multiresolution active and passive microwave observations is investigated using both simulated and airborne data. The technique is applicable to the Tropical Rainfall Measuring Mission (TRMM) satellite multi-frequency active and passive observations. These observations are characterized by various spatial and sampling resolutions. This makes the retrieval problem mathematically more difficult and ill-determined because the quality of information decreases with decreasing resolution. A model that, given reflectivity profiles and a small set of parameters (including the cloud water content, the intercept drop size distribution, and a variable describing the frozen hydrometeor properties), simulates high-resolution brightness temperatures is used. The high-resolution simulated brightness temperatures are convolved at the real sensor resolution. An optimal estimation procedure is used to minimize the differences between simulated and observed brightness temperatures. The retrieval technique is investigated using cloud model synthetic and airborne data from the Fourth Convection And Moisture Experiment. Simulated high-resolution brightness temperatures and reflectivities and airborne observation strong are convolved at the resolution of the TRMM instruments and retrievals are performed and analyzed relative to the reference data used in observations synthesis. An illustration of the possible use of the technique in satellite rainfall estimation is presented through an application to TRMM data. The study suggests improvements in combined active and passive retrievals even when the instruments resolutions are significantly different. Future work needs to better quantify the retrievals performance, especially in connection with satellite applications, and the uncertainty of the models used in retrieval.

  6. High-resolution neutron powder diffractometer SPODI at research reactor FRM II

    NASA Astrophysics Data System (ADS)

    Hoelzel, M.; Senyshyn, A.; Juenke, N.; Boysen, H.; Schmahl, W.; Fuess, H.

    2012-03-01

    SPODI is a high-resolution thermal neutron diffractometer at the research reactor Heinz Maier-Leibnitz (FRM II) especially dedicated to structural studies of complex systems. Unique features like a very large monochromator take-off angle of 155° and a 5 m monochromator-sample distance in its standard configuration achieve both high-resolution and a good profile shape for a broad scattering angle range. Two dimensional data are collected by an array of 80 vertical position sensitive 3He detectors. SPODI is well suited for studies of complex structural and magnetic order and disorder phenomena at non-ambient conditions. In addition to standard sample environment facilities (cryostats, furnaces, magnet) specific devices (rotatable load frame, cell for electric fields, multichannel potentiostat) were developed. Thus the characterisation of functional materials at in-operando conditions can be achieved. In this contribution the details of the design and present performance of the instrument are reported along with its specifications. A new concept for data reduction using a 2 θ dependent variable height for the intensity integration along the Debye-Scherrer lines is introduced.

  7. Capacitive sensing of droplets for microfluidic devices based on thermocapillary actuation.

    PubMed

    Chen, Jian Z; Darhuber, Anton A; Troian, Sandra M; Wagner, Sigurd

    2004-10-01

    The design and performance of a miniaturized coplanar capacitive sensor is presented whose electrode arrays can also function as resistive microheaters for thermocapillary actuation of liquid films and droplets. Optimal compromise between large capacitive signal and high spatial resolution is obtained for electrode widths comparable to the liquid film thickness measured, in agreement with supporting numerical simulations which include mutual capacitance effects. An interdigitated, variable width design, allowing for wider central electrodes, increases the capacitive signal for liquid structures with non-uniform height profiles. The capacitive resolution and time response of the current design is approximately 0.03 pF and 10 ms, respectively, which makes possible a number of sensing functions for nanoliter droplets. These include detection of droplet position, size, composition or percentage water uptake for hygroscopic liquids. Its rapid response time allows measurements of the rate of mass loss in evaporating droplets.

  8. Electron momentum density and Compton profile by a semi-empirical approach

    NASA Astrophysics Data System (ADS)

    Aguiar, Julio C.; Mitnik, Darío; Di Rocco, Héctor O.

    2015-08-01

    Here we propose a semi-empirical approach to describe with good accuracy the electron momentum densities and Compton profiles for a wide range of pure crystalline metals. In the present approach, we use an experimental Compton profile to fit an analytical expression for the momentum densities of the valence electrons. This expression is similar to a Fermi-Dirac distribution function with two parameters, one of which coincides with the ground state kinetic energy of the free-electron gas and the other resembles the electron-electron interaction energy. In the proposed scheme conduction electrons are neither completely free nor completely bound to the atomic nucleus. This procedure allows us to include correlation effects. We tested the approach for all metals with Z=3-50 and showed the results for three representative elements: Li, Be and Al from high-resolution experiments.

  9. A cost-effective strategy for nonoscillatory convection without clipping

    NASA Technical Reports Server (NTRS)

    Leonard, B. P.; Niknafs, H. S.

    1990-01-01

    Clipping of narrow extrema and distortion of smooth profiles is a well known problem associated with so-called high resolution nonoscillatory convection schemes. A strategy is presented for accurately simulating highly convective flows containing discontinuities such as density fronts or shock waves, without distorting smooth profiles or clipping narrow local extrema. The convection algorithm is based on non-artificially diffusive third-order upwinding in smooth regions, with automatic adaptive stencil expansion to (in principle, arbitrarily) higher order upwinding locally, in regions of rapidly changing gradients. This is highly cost effective because the wider stencil is used only where needed-in isolated narrow regions. A recently developed universal limiter assures sharp monotonic resolution of discontinuities without introducing artificial diffusion or numerical compression. An adaptive discriminator is constructed to distinguish between spurious overshoots and physical peaks; this automatically relaxes the limiter near local turning points, thereby avoiding loss of resolution in narrow extrema. Examples are given for one-dimensional pure convection of scalar profiles at constant velocity.

  10. A motional Stark effect diagnostic analysis routine for improved resolution of iota in the core of the large helical device.

    PubMed

    Dobbins, T J; Ida, K; Suzuki, C; Yoshinuma, M; Kobayashi, T; Suzuki, Y; Yoshida, M

    2017-09-01

    A new Motional Stark Effect (MSE) analysis routine has been developed for improved spatial resolution in the core of the Large Helical Device (LHD). The routine was developed to reduce the dependency of the analysis on the Pfirsch-Schlüter (PS) current in the core. The technique used the change in the polarization angle as a function of flux in order to find the value of diota/dflux at each measurement location. By integrating inwards from the edge, the iota profile can be recovered from this method. This reduces the results' dependency on the PS current because the effect of the PS current on the MSE measurement is almost constant as a function of flux in the core; therefore, the uncertainty in the PS current has a minimal effect on the calculation of the iota profile. In addition, the VMEC database was remapped from flux into r/a space by interpolating in mode space in order to improve the database core resolution. These changes resulted in a much smoother iota profile, conforming more to the physics expectations of standard discharge scenarios in the core of the LHD.

  11. Solar Confocal interferometers for Sub-Picometer-Resolution Spectral Filters

    NASA Technical Reports Server (NTRS)

    Gary, G. Allen; Pietraszewski, Chris; West, Edward A.; Dines. Terence C.

    2007-01-01

    The confocal Fabry-Perot interferometer allows sub-picometer spectral resolution of Fraunhofer line profiles. Such high spectral resolution is needed to keep pace with the higher spatial resolution of the new set of large-aperture solar telescopes. The line-of-sight spatial resolution derived for line profile inversions would then track the improvements of the transverse spatial scale provided by the larger apertures. In particular, profile inversion allows improved velocity and magnetic field gradients to be determined independent of multiple line analysis using different energy levels and ions. The confocal interferometer's unique properties allow a simultaneous increase in both etendue and spectral power. The higher throughput for the interferometer provides significant decrease in the aperture, which is important in spaceflight considerations. We have constructed and tested two confocal interferometers. A slow-response thermal-controlled interferometer provides a stable system for laboratory investigation, while a piezoelectric interferometer provides a rapid response for solar observations. In this paper we provide design parameters, show construction details, and report on the laboratory test for these interferometers. The field of view versus aperture for confocal interferometers is compared with other types of spectral imaging filters. We propose a multiple etalon system for observing with these units using existing planar interferometers as pre-filters. The radiometry for these tests established that high spectral resolution profiles can be obtained with imaging confocal interferometers. These sub-picometer spectral data of the photosphere in both the visible and near-infrared can provide important height variation information. However, at the diffraction-limited spatial resolution of the telescope, the spectral data is photon starved due to the decreased spectral passband.

  12. Genetic variation in the urea cycle: a model resource for investigating key candidate genes for common diseases.

    PubMed

    Mitchell, Sabrina; Ellingson, Clint; Coyne, Thomas; Hall, Lynn; Neill, Meaghan; Christian, Natalie; Higham, Catherine; Dobrowolski, Steven F; Tuchman, Mendel; Summar, Marshall

    2009-01-01

    The urea cycle is the primary means of nitrogen metabolism in humans and other ureotelic organisms. There are five key enzymes in the urea cycle: carbamoyl-phosphate synthetase 1 (CPS1), ornithine transcarbamylase (OTC), argininosuccinate synthetase (ASS1), argininosuccinate lyase (ASL), and arginase 1 (ARG1). Additionally, a sixth enzyme, N-acetylglutamate synthase (NAGS), is critical for urea cycle function, providing CPS1 with its necessary cofactor. Deficiencies in any of these enzymes result in elevated blood ammonia concentrations, which can have detrimental effects, including central nervous system dysfunction, brain damage, coma, and death. Functional variants, which confer susceptibility for disease or dysfunction, have been described for enzymes within the cycle; however, a comprehensive screen of all the urea cycle enzymes has not been performed. We examined the exons and intron/exon boundaries of the five key urea cycle enzymes, NAGS, and two solute carrier transporter genes (SLC25A13 and SLC25A15) for sequence alterations using single-stranded conformational polymorphism (SSCP) analysis and high-resolution melt profiling. SSCP was performed on a set of DNA from 47 unrelated North American individuals with a mixture of ethnic backgrounds. High-resolution melt profiling was performed on a nonoverlapping DNA set of either 47 or 100 unrelated individuals with a mixture of backgrounds. We identified 33 unarchived polymorphisms in this screen that potentially play a role in the variation observed in urea cycle function. Screening all the genes in the pathway provides a catalog of variants that can be used in investigating candidate diseases. Copyright 2008 Wiley-Liss, Inc.

  13. High Resolution Infrared Radiation Sounder (HIRS) for the Nimbus F Spacecraft

    NASA Technical Reports Server (NTRS)

    Koenig, E. W.

    1975-01-01

    Flown on Nimbus F in June 1975, the high resolution infrared radiation sounder (HIRS) scans with a geographical resolution of 23KM and samples radiance in seventeen selected spectral channels from visible (.7 micron) to far IR (15 micron). Vertical temperature profiles and atmospheric moisture content can be inferred from the output. System operation and test results are described.

  14. Confocal detection of Rayleigh scattering for residual stress measurement in chemically tempered glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hödemann, S., E-mail: siim.hodemann@ut.ee; Möls, P.; Kiisk, V.

    2015-12-28

    A new optical method is presented for evaluation of the stress profile in chemically tempered (chemically strengthened) glass based on confocal detection of scattered laser beam. Theoretically, a lateral resolution of 0.2 μm and a depth resolution of 0.6 μm could be achieved by using a confocal microscope with high-NA immersion objective. The stress profile in the 250 μm thick surface layer of chemically tempered lithium aluminosilicate glass was measured with a high spatial resolution to illustrate the capability of the method. The confocal method is validated using transmission photoelastic and Na{sup +} ion concentration profile measurement. Compositional influence on the stress-optic coefficientmore » is calculated and discussed. Our method opens up new possibilities for three-dimensional scattered light tomography of mechanical imaging in birefringent materials.« less

  15. Imaging of the outer valence orbitals of CO by electron momentum spectroscopy — Comparison with high level MRSD-CI and DFT calculations

    NASA Astrophysics Data System (ADS)

    Fan, X. W.; Chen, X. J.; Zhou, S. J.; Zheng, Y.; Brion, C. E.; Frey, R.; Davidson, E. R.

    1997-09-01

    A newly constructed energy dispersive multichannel electron momentum spectrometer has been used to image the electron density of the outer valence orbitals of CO with high precision. Binding energy spectra are obtained at a coincidence energy resolution of 1.2 eV fwhm. The measured electron density profiles in momentum space for the outer valence orbitals of CO are compared with cross sections calculated using SCF wavefunctions with basis sets of varying complexity up to near-Hartree-Fock limit in quality. The effects of correlation and electronic relaxation on the calculated momentum profiles are investigated using large MRSD-CI calculations of the full ion-neutral overlap distributions, as well as large basis set DFT calculations with local and non-local (gradient corrected) functionals.

  16. LOGISTIC FUNCTION PROFILE FIT: A least-squares program for fitting interface profiles to an extended logistic function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirchhoff, William H.

    2012-09-15

    The extended logistic function provides a physically reasonable description of interfaces such as depth profiles or line scans of surface topological or compositional features. It describes these interfaces with the minimum number of parameters, namely, position, width, and asymmetry. Logistic Function Profile Fit (LFPF) is a robust, least-squares fitting program in which the nonlinear extended logistic function is linearized by a Taylor series expansion (equivalent to a Newton-Raphson approach) with no apparent introduction of bias in the analysis. The program provides reliable confidence limits for the parameters when systematic errors are minimal and provides a display of the residuals frommore » the fit for the detection of systematic errors. The program will aid researchers in applying ASTM E1636-10, 'Standard practice for analytically describing sputter-depth-profile and linescan-profile data by an extended logistic function,' and may also prove useful in applying ISO 18516: 2006, 'Surface chemical analysis-Auger electron spectroscopy and x-ray photoelectron spectroscopy-determination of lateral resolution.' Examples are given of LFPF fits to a secondary ion mass spectrometry depth profile, an Auger surface line scan, and synthetic data generated to exhibit known systematic errors for examining the significance of such errors to the extrapolation of partial profiles.« less

  17. High-resolution imaging of the low velocity layer in Alaskan subduction zone with scattered waves and interferometry

    NASA Astrophysics Data System (ADS)

    Kim, D.; Keranen, K. M.; Abers, G. A.; Kim, Y.; Li, J.; Shillington, D. J.; Brown, L. D.

    2017-12-01

    The physical factors that control the rupture process of great earthquakes at convergent plate boundaries remain incompletely understood. While recent developments in imaging using the teleseismic wavefield have led to marked advances at wavelengths of a couple kilometers to tens of kilometers, higher resolution imaging of the rupture zone would improve the resolution of imaging and thus provide improved parameter estimation, as the teleseismic wavefield is fundamentally limited by its low frequency content. This study compares and evaluates two seismic imaging techniques using the high-frequency signals from teleseismic coda versus earthquake scattered waves to image the subducting Yakutat oceanic plateau in the Alaska subduction zone. We use earthquakes recorded by the MOOS PASSCAL broadband deployment in southern Alaska. In our first method, we select local earthquakes that lie directly beneath and laterally near the recording array for imaging, and extract body wave information via a simple autocorrelation and stacking. Profiles analogous to seismic reflection profile are constructed using the near-vertically travelling waves. In our second method, we compute teleseismic receiver functions within the 0.02-1.0 Hz frequency band. Both results image interfaces that we associate with the subducting oceanic plate in Alaska-Aleutian system, with greater resolution than commonly used methods with teleseismic sources. Structural details from our results can further our understanding of the conditions and materials that characterize the subduction megathrusts, and the techniques can be employed in other regions along the Alaska-Aleutian system and at other convergent margins with suitable seismic arrays.

  18. Line spread functions of blazed off-plane gratings operated in the Littrow mounting

    NASA Astrophysics Data System (ADS)

    DeRoo, Casey T.; McEntaffer, Randall L.; Miles, Drew M.; Peterson, Thomas J.; Marlowe, Hannah; Tutt, James H.; Donovan, Benjamin D.; Menz, Benedikt; Burwitz, Vadim; Hartner, Gisela; Allured, Ryan; Smith, Randall K.; Günther, Ramses; Yanson, Alex; Vacanti, Giuseppe; Ackermann, Marcelo

    2016-04-01

    Future soft x-ray (10 to 50 Å) spectroscopy missions require higher effective areas and resolutions to perform critical science that cannot be done by instruments on current missions. An x-ray grating spectrometer employing off-plane reflection gratings would be capable of meeting these performance criteria. Off-plane gratings with blazed groove facets operating in the Littrow mounting can be used to achieve excellent throughput into orders achieving high resolutions. We have fabricated two off-plane gratings with blazed groove profiles via a technique that uses commonly available microfabrication processes, is easily scaled for mass production, and yields gratings customized for a given mission architecture. Both fabricated gratings were tested in the Littrow mounting at the Max Planck Institute for Extraterrestrial Physics (MPE) PANTER x-ray test facility to assess their performance. The line spread functions of diffracted orders were measured, and a maximum resolution of 800±20 is reported. In addition, we also observe evidence of a blaze effect from measurements of relative efficiencies of the diffracted orders.

  19. The GCM-Oriented CALIPSO Cloud Product (CALIPSO-GOCCP)

    NASA Astrophysics Data System (ADS)

    Chepfer, H.; Bony, S.; Winker, D.; Cesana, G.; Dufresne, J. L.; Minnis, P.; Stubenrauch, C. J.; Zeng, S.

    2010-01-01

    This article presents the GCM-Oriented Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) Cloud Product (GOCCP) designed to evaluate the cloudiness simulated by general circulation models (GCMs). For this purpose, Cloud-Aerosol Lidar with Orthogonal Polarization L1 data are processed following the same steps as in a lidar simulator used to diagnose the model cloud cover that CALIPSO would observe from space if the satellite was flying above an atmosphere similar to that predicted by the GCM. Instantaneous profiles of the lidar scattering ratio (SR) are first computed at the highest horizontal resolution of the data but at the vertical resolution typical of current GCMs, and then cloud diagnostics are inferred from these profiles: vertical distribution of cloud fraction, horizontal distribution of low, middle, high, and total cloud fractions, instantaneous SR profiles, and SR histograms as a function of height. Results are presented for different seasons (January-March 2007-2008 and June-August 2006-2008), and their sensitivity to parameters of the lidar simulator is investigated. It is shown that the choice of the vertical resolution and of the SR threshold value used for cloud detection can modify the cloud fraction by up to 0.20, particularly in the shallow cumulus regions. The tropical marine low-level cloud fraction is larger during nighttime (by up to 0.15) than during daytime. The histograms of SR characterize the cloud types encountered in different regions. The GOCCP high-level cloud amount is similar to that from the TIROS Operational Vertical Sounder (TOVS) and the Atmospheric Infrared Sounder (AIRS). The low-level and middle-level cloud fractions are larger than those derived from passive remote sensing (International Satellite Cloud Climatology Project, Moderate-Resolution Imaging Spectroradiometer-Cloud and Earth Radiant Energy System Polarization and Directionality of Earth Reflectances, TOVS Path B, AIRS-Laboratoire de Météorologie Dynamique) because the latter only provide information on the uppermost cloud layer.

  20. Modeling Structure and Dynamics of Protein Complexes with SAXS Profiles

    PubMed Central

    Schneidman-Duhovny, Dina; Hammel, Michal

    2018-01-01

    Small-angle X-ray scattering (SAXS) is an increasingly common and useful technique for structural characterization of molecules in solution. A SAXS experiment determines the scattering intensity of a molecule as a function of spatial frequency, termed SAXS profile. SAXS profiles can be utilized in a variety of molecular modeling applications, such as comparing solution and crystal structures, structural characterization of flexible proteins, assembly of multi-protein complexes, and modeling of missing regions in the high-resolution structure. Here, we describe protocols for modeling atomic structures based on SAXS profiles. The first protocol is for comparing solution and crystal structures including modeling of missing regions and determination of the oligomeric state. The second protocol performs multi-state modeling by finding a set of conformations and their weights that fit the SAXS profile starting from a single-input structure. The third protocol is for protein-protein docking based on the SAXS profile of the complex. We describe the underlying software, followed by demonstrating their application on interleukin 33 (IL33) with its primary receptor ST2 and DNA ligase IV-XRCC4 complex. PMID:29605933

  1. Producing superfluid circulation states using phase imprinting

    NASA Astrophysics Data System (ADS)

    Kumar, Avinash; Dubessy, Romain; Badr, Thomas; De Rossi, Camilla; de Goër de Herve, Mathieu; Longchambon, Laurent; Perrin, Hélène

    2018-04-01

    We propose a method to prepare states of given quantized circulation in annular Bose-Einstein condensates (BEC) confined in a ring trap using the method of phase imprinting without relying on a two-photon angular momentum transfer. The desired phase profile is imprinted on the atomic wave function using a short light pulse with a tailored intensity pattern generated with a spatial light modulator. We demonstrate the realization of "helicoidal" intensity profiles suitable for this purpose. Due to the diffraction limit, the theoretical steplike intensity profile is not achievable in practice. We investigate the effect of imprinting an intensity profile smoothed by a finite optical resolution onto the annular BEC with a numerical simulation of the time-dependent Gross-Pitaevskii equation. This allows us to optimize the intensity pattern for a given target circulation to compensate for the limited resolution.

  2. Atmospheric parameterization schemes for satellite cloud property retrieval during FIRE IFO 2

    NASA Technical Reports Server (NTRS)

    Titlow, James; Baum, Bryan A.

    1993-01-01

    Satellite cloud retrieval algorithms generally require atmospheric temperature and humidity profiles to determine such cloud properties as pressure and height. For instance, the CO2 slicing technique called the ratio method requires the calculation of theoretical upwelling radiances both at the surface and a prescribed number (40) of atmospheric levels. This technique has been applied to data from, for example, the High Resolution Infrared Radiometer Sounder (HIRS/2, henceforth HIRS) flown aboard the NOAA series of polar orbiting satellites and the High Resolution Interferometer Sounder (HIS). In this particular study, four NOAA-11 HIRS channels in the 15-micron region are used. The ratio method may be applied to various channel combinations to estimate cloud top heights using channels in the 15-mu m region. Presently, the multispectral, multiresolution (MSMR) scheme uses 4 HIRS channel combination estimates for mid- to high-level cloud pressure retrieval and Advanced Very High Resolution Radiometer (AVHRR) data for low-level (is greater than 700 mb) cloud level retrieval. In order to determine theoretical upwelling radiances, atmospheric temperature and water vapor profiles must be provided as well as profiles of other radiatively important gas absorber constituents such as CO2, O3, and CH4. The assumed temperature and humidity profiles have a large effect on transmittance and radiance profiles, which in turn are used with HIRS data to calculate cloud pressure, and thus cloud height and temperature. For large spatial scale satellite data analysis, atmospheric parameterization schemes for cloud retrieval algorithms are usually based on a gridded product such as that provided by the European Center for Medium Range Weather Forecasting (ECMWF) or the National Meteorological Center (NMC). These global, gridded products prescribe temperature and humidity profiles for a limited number of pressure levels (up to 14) in a vertical atmospheric column. The FIRE IFO 2 experiment provides an opportunity to investigate current atmospheric profile parameterization schemes, compare satellite cloud height results using both gridded products (ECMWF) and high vertical resolution sonde data from the National Weather Service (NWS) and Cross Chain Loran Atmospheric Sounding System (CLASS), and suggest modifications in atmospheric parameterization schemes based on these results.

  3. Absorption, autoionization, and predissociation in molecular hydrogen: High-resolution spectroscopy and multichannel quantum defect theory.

    PubMed

    Sommavilla, M; Merkt, F; Mezei, J Zs; Jungen, Ch

    2016-02-28

    Absorption and photoionization spectra of H2 have been recorded at a resolution of 0.09 and 0.04 cm(-1), respectively, between 125,600 cm(-1) and 126,000 cm(-1). The observed Rydberg states belong to series (n = 10 - 14) converging on the first vibrationally excited level of the X (2)Σ(g)(+) state of H2(+), and of lower members of series converging on higher vibrational levels. The observed resonances are characterized by the competition between autoionization, predissociation, and fluorescence. The unprecedented resolution of the present experimental data leads to a full characterization of the predissociation/autoionization profiles of many resonances that had not been resolved previously. Multichannel quantum defect theory is used to predict the line positions, widths, shapes, and intensities of the observed spectra and is found to yield quantitative agreement using previously determined quantum defect functions as the unique set of input parameters.

  4. A Vertical Census of Precipitation Characteristics using Ground-based Dual-polarimetric Radar Data

    NASA Astrophysics Data System (ADS)

    Wolff, D. B.; Petersen, W. A.; Marks, D. A.; Pippitt, J. L.; Tokay, A.; Gatlin, P. N.

    2017-12-01

    Characterization of the vertical structure/variability of precipitation and resultant microphysics is critical in providing physical validation of space-based precipitation retrievals. In support of NASAs Global Precipitation Measurement (GPM) mission Ground Validation (GV) program, NASA has invested in a state-of-art dual-polarimetric radar known as NPOL. NPOL is routinely deployed on the Delmarva Peninsula in support of NASAs GPM Precipitation Research Facility (PRF). NPOL has also served as the backbone of several GPM field campaigns in Oklahoma, Iowa, South Carolina and most recently in the Olympic Mountains in Washington state. When precipitation is present, NPOL obtains very high-resolution vertical profiles of radar observations (e.g. reflectivity (ZH) and differential reflectivity (ZDR)), from which important particle size distribution parameters are retrieved such as the mass-weight mean diameter (Dm) and the intercept parameter (Nw). These data are then averaged horizontally to match the nadir resolution of the dual-frequency radar (DPR; 5 km) on board the GPM satellite. The GPM DPR, Combined, and radiometer algorithms (such as GPROF) rely on functional relationships built from assumed parametric relationships and/or retrieved parameter profiles and spatial distributions of particle size (PSD), water content, and hydrometeor phase within a given sample volume. Thus, the NPOL-retrieved profiles provide an excellent tool for characterization of the vertical profile structure and variability during GPM overpasses. In this study, we will use many such overpass comparisons to quantify an estimate of the true sub-IFOV variability as a function of hydrometeor and rain type (convective or stratiform). This presentation will discuss the development of a relational database to help provide a census of the vertical structure of precipitation via analysis and correlation of reflectivity, differential reflectivity, mean-weight drop diameter and the normalized intercept parameter of the gamma drop size distribution.

  5. New lidar challenges for gas hazard management in industrial environments

    NASA Astrophysics Data System (ADS)

    Cézard, Nicolas; Liméry, Anasthase; Bertrand, Johan; Le Méhauté, Simon; Benoit, Philippe; Fleury, Didier; Goular, Didier; Planchat, Christophe; Valla, Matthieu; Augère, Béatrice; Dolfi-Bouteyre, Agnès.

    2017-10-01

    The capability of Lidars to perform range-resolved gas profiles makes them an appealing choice for many applications. In order to address new remote sensing challenges, arising from industrial contexts, Onera currently develops two lidar systems, one Raman and one DIAL. On the Raman side, a high spatial-resolution multi-channel Raman Lidar is developed in partnership with the French National Radioactive Waste Management Agency (Andra). This development aims at enabling future monitoring of hydrogen gas and water vapor profiles inside disposal cells containing radioactive wastes. We report on the development and first tests of a three-channel Raman Lidar (H2, H2O, N2) designed to address this issue. Simultaneous hydrogen and water vapor profiles have been successfully performed along a 5m-long gas cell with 1m resolution at a distance of 85 m. On the DIAL side, a new instrumental concept is being explored and developed in partnership with Total E and P. The objective is to perform methane plume monitoring and flux assessment in the vicinity of industrials plants or platforms. For flux assessment, both gas concentration and air speed must be profiled by lidar. Therefore, we started developing a bi-function, all-fiber, coherent DIAL/Doppler Lidar. The first challenge was to design and build an appropriate fiber laser source. The achieved demonstrator delivers 200 W peak power, polarized, spectrally narrow (<15 MHz), 110 ns pulses of light out of a monomode fiber at 1645 nm. It fulfills the requirements for a future implementation in a bi-function Dial/Doppler lidar with km-range expectation. We report on the laser and lidar architecture, and on first lidar tests at 1645 nm.

  6. Turbulence profiling for adaptive optics tomographic reconstructors

    NASA Astrophysics Data System (ADS)

    Laidlaw, Douglas J.; Osborn, James; Wilson, Richard W.; Morris, Timothy J.; Butterley, Timothy; Reeves, Andrew P.; Townson, Matthew J.; Gendron, Éric; Vidal, Fabrice; Morel, Carine

    2016-07-01

    To approach optimal performance advanced Adaptive Optics (AO) systems deployed on ground-based telescopes must have accurate knowledge of atmospheric turbulence as a function of altitude. Stereo-SCIDAR is a high-resolution stereoscopic instrument dedicated to this measure. Here, its profiles are directly compared to internal AO telemetry atmospheric profiling techniques for CANARY (Vidal et al. 20141), a Multi-Object AO (MOAO) pathfinder on the William Herschel Telescope (WHT), La Palma. In total twenty datasets are analysed across July and October of 2014. Levenberg-Marquardt fitting algorithms dubbed Direct Fitting and Learn 2 Step (L2S; Martin 20142) are used in the recovery of profile information via covariance matrices - respectively attaining average Pearson product-moment correlation coefficients with stereo-SCIDAR of 0.2 and 0.74. By excluding the measure of covariance between orthogonal Wavefront Sensor (WFS) slopes these results have revised values of 0.65 and 0.2. A data analysis technique that combines L2S and SLODAR is subsequently introduced that achieves a correlation coefficient of 0.76.

  7. Vertical temperature profile and mesospheric winds retrieval on Mars from CO ;millimeter observations. Comparison with general circulation model predictions

    NASA Astrophysics Data System (ADS)

    Cavalié, T.; Billebaud, F.; Encrenaz, T.; Dobrijevic, M.; Brillet, J.; Forget, F.; Lellouch, E.

    2008-10-01

    Aims: We have recorded high spectral resolution spectra and derived precise atmospheric temperature profiles and wind velocities in the atmosphere of Mars. We have compared observations of the planetary mean thermal profile and mesospheric wind velocities on the disk, obtained with our millimetric observations of CO rotational lines, to predictions from the Laboratoire de Météorologie Dynamique (LMD) Mars General Circulation Model, as provided through the Mars Climate Database (MCD) numerical tool. Methods: We observed the atmosphere of Mars at CO(1-0) and CO(2-1) wavelengths with the IRAM 30-m antenna in June 2001 and November 2005. We retrieved the mean thermal profile of the planet from high and low spectral resolution data with an inversion method detailed here. High spectral resolution spectra were used to derive mesospheric wind velocities on the planetary disk. We also report here the use of 13CO(2-1) line core shifts to measure wind velocities at 40 km. Results: Neither the Mars Year 24 (MY24) nor the Dust Storm scenario from the Mars Climate Database (MCD) provides satisfactory fits to the 2001 and 2005 data when retrieving the thermal profiles. The Warm scenario only provides good fits for altitudes lower than 30 km. The atmosphere is warmer than predicted up to 60 km and then becomes colder. Dust loading could be the reason for this mismatch. The MCD MY24 scenario predicts a thermal inversion layer between 40 and 60 km, which is not retrieved from the high spectral resolution data. Our results are generally in agreement with other observations from 10 to 40 km in altitude, but our results obtained from the high spectral resolution spectra differ in the 40-70 km layer, where the instruments are the most sensitive. The wind velocities we retrieve from our 12CO observations confirm MCD predictions for 2001 and 2005. Velocities obtained from 13CO observations are consistent with MCD predictions in 2001, but are lower than predicted in 2005.

  8. LASER BIOLOGY AND MEDICINE: Optoacoustic laser monitoring of cooling and freezing of tissues

    NASA Astrophysics Data System (ADS)

    Larin, Kirill V.; Larina, I. V.; Motamedi, M.; Esenaliev, R. O.

    2002-11-01

    Real-time monitoring of cooling and freezing of tissues, cells, and other biological objects with a high spatial and time resolution, which is necessary for selective destruction of cancer and benign tumours during cryotherapy, as well as for preventing any damage to the structure and functioning of biological objects in cryobiology, is considered. The optoacoustic method, based on the measurement and analysis of acoustic waves induced by short laser pulses, is proposed for monitoring the cooling and freezing of the tissue. The effect of cooling and freezing on the amplitude and time profile of acoustic signals generated in real tissues and in a model object is studied. The experimental results indicate that the optoacoustic laser technique can be used for real-time monitoring of cooling and freezing of biological objects with a submillimeter spatial resolution and a high contrast.

  9. Experimental study on the crack detection with optimized spatial wavelet analysis and windowing

    NASA Astrophysics Data System (ADS)

    Ghanbari Mardasi, Amir; Wu, Nan; Wu, Christine

    2018-05-01

    In this paper, a high sensitive crack detection is experimentally realized and presented on a beam under certain deflection by optimizing spatial wavelet analysis. Due to the crack existence in the beam structure, a perturbation/slop singularity is induced in the deflection profile. Spatial wavelet transformation works as a magnifier to amplify the small perturbation signal at the crack location to detect and localize the damage. The profile of a deflected aluminum cantilever beam is obtained for both intact and cracked beams by a high resolution laser profile sensor. Gabor wavelet transformation is applied on the subtraction of intact and cracked data sets. To improve detection sensitivity, scale factor in spatial wavelet transformation and the transformation repeat times are optimized. Furthermore, to detect the possible crack close to the measurement boundaries, wavelet transformation edge effect, which induces large values of wavelet coefficient around the measurement boundaries, is efficiently reduced by introducing different windowing functions. The result shows that a small crack with depth of less than 10% of the beam height can be localized with a clear perturbation. Moreover, the perturbation caused by a crack at 0.85 mm away from one end of the measurement range, which is covered by wavelet transform edge effect, emerges by applying proper window functions.

  10. High-resolution observations of the globular cluster NGC 7099

    NASA Astrophysics Data System (ADS)

    Sams, Bruce Jones, III

    The globular cluster NGC 7099 is a prototypical collapsed core cluster. Through a series of instrumental, observational, and theoretical observations, I have resolved its core structure using a ground based telescope. The core has a radius of 2.15 arcsec when imaged with a V band spatial resolution of 0.35 arcsec. Initial attempts at speckle imaging produced images of inadequate signal to noise and resolution. To explain these results, a new, fully general signal-to-noise model has been developed. It properly accounts for all sources of noise in a speckle observation, including aliasing of high spatial frequencies by inadequate sampling of the image plane. The model, called Full Speckle Noise (FSN), can be used to predict the outcome of any speckle imaging experiment. A new high resolution imaging technique called ACT (Atmospheric Correlation with a Template) was developed to create sharper astronomical images. ACT compensates for image motion due to atmospheric turbulence. ACT is similar to the Shift and Add algorithm, but uses apriori spatial knowledge about the image to further constrain the shifts. In this instance, the final images of NGC 7099 have resolutions of 0.35 arcsec from data taken in 1 arcsec seeing. The PAPA (Precision Analog Photon Address) camera was used to record data. It is subject to errors when imaging cluster cores in a large field of view. The origin of these errors is explained, and several ways to avoid them proposed. New software was created for the PAPA camera to properly take flat field images taken in a large field of view. Absolute photometry measurements of NGC 7099 made with the PAPA camera are accurate to 0.1 magnitude. Luminosity sampling errors dominate surface brightness profiles of the central few arcsec in a collapsed core cluster. These errors set limits on the ultimate spatial accuracy of surface brightness profiles.

  11. Reducing Surface Clutter in Cloud Profiling Radar Data

    NASA Technical Reports Server (NTRS)

    Tanelli, Simone; Pak, Kyung; Durden, Stephen; Im, Eastwood

    2008-01-01

    An algorithm has been devised to reduce ground clutter in the data products of the CloudSat Cloud Profiling Radar (CPR), which is a nadir-looking radar instrument, in orbit around the Earth, that measures power backscattered by clouds as a function of distance from the instrument. Ground clutter contaminates the CPR data in the lowest 1 km of the atmospheric profile, heretofore making it impossible to use CPR data to satisfy the scientific interest in studying clouds and light rainfall at low altitude. The algorithm is based partly on the fact that the CloudSat orbit is such that the geodetic altitude of the CPR varies continuously over a range of approximately 25 km. As the geodetic altitude changes, the radar timing parameters are changed at intervals defined by flight software in order to keep the troposphere inside a data-collection time window. However, within each interval, the surface of the Earth continuously "scans through" (that is, it moves across) a few range bins of the data time window. For each radar profile, only few samples [one for every range-bin increment ((Delta)r = 240 m)] of the surface-clutter signature are available around the range bin in which the peak of surface return is observed, but samples in consecutive radar profiles are offset slightly (by amounts much less than (Delta)r) with respect to each other according to the relative change in geodetic altitude. As a consequence, in a case in which the surface area under examination is homogenous (e.g., an ocean surface), a sequence of consecutive radar profiles of the surface in that area contains samples of the surface response with range resolution (Delta)p much finer than the range-bin increment ((Delta)p << r). Once the high-resolution surface response has thus become available, the profile of surface clutter can be accurately estimated by use of a conventional maximum-correlation scheme: A translated and scaled version of the high-resolution surface response is fitted to the observed low-resolution profile. The translation and scaling factors that optimize the fit in a maximum-correlation sense represent (1) the true position of the surface relative to the sampled surface peak and (2) the magnitude of the surface backscatter. The performance of this algorithm has been tested on CloudSat data acquired over an ocean surface. A preliminary analysis of the test data showed a surface-clutter-rejection ratio over flat surfaces of >10 dB and a reduction of the contaminated altitude over ocean from about 1 km to about 0.5 km (over the ocean). The algorithm has been embedded in CloudSat L1B processing as of Release 04 (July 2007), and the estimated flat surface clutter is removed in L2B-GEOPROF product from the observed profile of reflectivity (see CloudSat product documentation for details and performance at http://www.cloudsat.cira.colostate.edu/ dataSpecs.php?prodid=1).

  12. Coherent optical adaptive technique improves the spatial resolution of STED microscopy in thick samples

    PubMed Central

    Yan, Wei; Yang, Yanlong; Tan, Yu; Chen, Xun; Li, Yang; Qu, Junle; Ye, Tong

    2018-01-01

    Stimulated emission depletion microscopy (STED) is one of far-field optical microscopy techniques that can provide sub-diffraction spatial resolution. The spatial resolution of the STED microscopy is determined by the specially engineered beam profile of the depletion beam and its power. However, the beam profile of the depletion beam may be distorted due to aberrations of optical systems and inhomogeneity of specimens’ optical properties, resulting in a compromised spatial resolution. The situation gets deteriorated when thick samples are imaged. In the worst case, the sever distortion of the depletion beam profile may cause complete loss of the super resolution effect no matter how much depletion power is applied to specimens. Previously several adaptive optics approaches have been explored to compensate aberrations of systems and specimens. However, it is hard to correct the complicated high-order optical aberrations of specimens. In this report, we demonstrate that the complicated distorted wavefront from a thick phantom sample can be measured by using the coherent optical adaptive technique (COAT). The full correction can effectively maintain and improve the spatial resolution in imaging thick samples. PMID:29400356

  13. Decoding power-spectral profiles from FMRI brain activities during naturalistic auditory experience.

    PubMed

    Hu, Xintao; Guo, Lei; Han, Junwei; Liu, Tianming

    2017-02-01

    Recent studies have demonstrated a close relationship between computational acoustic features and neural brain activities, and have largely advanced our understanding of auditory information processing in the human brain. Along this line, we proposed a multidisciplinary study to examine whether power spectral density (PSD) profiles can be decoded from brain activities during naturalistic auditory experience. The study was performed on a high resolution functional magnetic resonance imaging (fMRI) dataset acquired when participants freely listened to the audio-description of the movie "Forrest Gump". Representative PSD profiles existing in the audio-movie were identified by clustering the audio samples according to their PSD descriptors. Support vector machine (SVM) classifiers were trained to differentiate the representative PSD profiles using corresponding fMRI brain activities. Based on PSD profile decoding, we explored how the neural decodability correlated to power intensity and frequency deviants. Our experimental results demonstrated that PSD profiles can be reliably decoded from brain activities. We also suggested a sigmoidal relationship between the neural decodability and power intensity deviants of PSD profiles. Our study in addition substantiates the feasibility and advantage of naturalistic paradigm for studying neural encoding of complex auditory information.

  14. A new method of measuring centre-of-mass velocities of radially pulsating stars from high-resolution spectroscopy

    NASA Astrophysics Data System (ADS)

    Britavskiy, N.; Pancino, E.; Tsymbal, V.; Romano, D.; Fossati, L.

    2018-03-01

    We present a radial velocity analysis of 20 solar neighbourhood RR Lyrae and three Population II Cepheid variables. We obtained high-resolution, moderate-to-high signal-to-noise ratio spectra for most stars; these spectra covered different pulsation phases for each star. To estimate the gamma (centre-of-mass) velocities of the programme stars, we use two independent methods. The first, `classic' method is based on RR Lyrae radial velocity curve templates. The second method is based on the analysis of absorption-line profile asymmetry to determine both pulsational and gamma velocities. This second method is based on the least-squares deconvolution (LSD) technique applied to analyse the line asymmetry that occurs in the spectra. We obtain measurements of the pulsation component of the radial velocity with an accuracy of ±3.5 km s-1. The gamma velocity was determined with an accuracy of ±10 km s-1, even for those stars having a small number of spectra. The main advantage of this method is the possibility of obtaining an estimation of gamma velocity even from one spectroscopic observation with uncertain pulsation phase. A detailed investigation of LSD profile asymmetry shows that the projection factor p varies as a function of the pulsation phase - this is a key parameter, which converts observed spectral line radial velocity variations into photospheric pulsation velocities. As a by-product of our study, we present 41 densely spaced synthetic grids of LSD profile bisectors based on atmospheric models of RR Lyr covering all pulsation phases.

  15. Test of high-resolution 3D P-wave velocity model of Poland by back-azimuthal sections of teleseismic receiver function

    NASA Astrophysics Data System (ADS)

    Wilde-Piorko, Monika; Polkowski, Marcin; Grad, Marek

    2015-04-01

    Geological and seismic structure under area of Poland is well studied by over one hundred thousand boreholes, over thirty deep seismic refraction and wide angle reflection profiles and by vertical seismic profiling, magnetic, gravity, magnetotelluric and thermal methods. Compilation of these studies allowed to create a high-resolution 3D P-wave velocity model down to 60 km depth in the area of Poland (Polkowski et al. 2014). Model also provides details about the geometry of main layers of sediments (Tertiary and Quaternary, Cretaceous, Jurassic, Triassic, Permian, old Paleozoic), consolidated/crystalline crust (upper, middle and lower) and uppermost mantle. This model gives an unique opportunity for calculation synthetic receiver function and compering it with observed receiver function calculated for permanent and temporary seismic stations. Modified ray-tracing method (Langston, 1977) can be used directly to calculate the response of the structure with dipping interfaces to the incoming plane wave with fixed slowness and back-azimuth. So, 3D P-wave velocity model has been interpolated to 2.5D P-wave velocity model beneath each seismic station and back-azimuthal sections of components of receiver function have been calculated. Vp/Vs ratio is assumed to be 1.8, 1.67, 1.73, 1.77 and 1.8 in the sediments, upper/middle/lower consolidated/crystalline crust and uppermost mantle, respectively. Densities were calculated with combined formulas of Berteussen (1977) and Gardner et al. (1974). Additionally, to test a visibility of the lithosphere-asthenosphere boundary phases at receiver function sections models have been extended to 250 km depth based on P4-mantle model (Wilde-Piórko et al., 2010). National Science Centre Poland provided financial support for this work by NCN grant DEC-2011/02/A/ST10/00284 and by NCN grant UMO-2011/01/B/ST10/06653.

  16. The investigation of improved SHARAD profiles over Martian lobate debris aprons

    NASA Astrophysics Data System (ADS)

    Kim, J.; Baik, H. S.

    2016-12-01

    The Shallow Subsurface Radar (SHARAD), a radar sounding radar on the Mars Reconnaissance Orbiter has produced high valuable information concerning subsurface of Mars. It has been successfully used to observe complicate substructures of Mars such as polar deposit, pedestal crater and the other geomorphic features involving possible subsurface ice body. In this study, we summarized all SHARAD profiles over Martian Lobate debris aprons (LDAs) where significant arguments about their origins are undergoing. To make clear result, we used radon transformation for noise filtering. Also, we tried the clutter simulation on our target's Digital elevation model(DEM) produced by High Resolution Stereo Camera(HRSC) of Mars Express; As the comparison results between noise-removed SHARAD profile and clutter simulation, layers were able to be more clearly identified at many LDAs. We integrated our SHARAD profiles over all mid latitude LDAs into GIS. These will be demonstrated together with several radargram structures. However, it appeared the discontinuities over SHARAD profile result is not sufficient to be a clue of its origin. Thus the intensive interpretations employing thermal inertia, high resolution topographic profile with CTX and HiRISE stereo DTM altogether will be further conducted.

  17. Method of LSD profile asymmetry for estimating the center of mass velocities of pulsating stars

    NASA Astrophysics Data System (ADS)

    Britavskiy, Nikolay; Pancino, Elena; Romano, Donatella; Tsymbal, Vadim

    2015-08-01

    We present radial velocity analysis for 20 solar neighborhood RR Lyrae and 3 Population II Cepheids. High-resolution spectra were observed with either TNG/SARG or VLT/UVES over varying phases. To estimate the center of mass (barycentric) velocities of the program stars, we utilized two independent methods. First, the 'classic' method was employed, which is based on RR Lyrae radial velocity curve templates. Second, we provide the new method that used absorption line profile asymmetry to determine both the pulsation and the barycentric velocities even with a low number of high-resolution spectra and in cases where the phase of the observations is uncertain. This new method is based on a Least Squares Deconvolution (LSD) of the line profiles in order to analyze line asymmetry that occurs in the spectra of pulsating stars. By applying this method to our sample stars we attain accurate measurements (± 1 km/s) of the pulsation component of the radial velocity. This results in determination of the barycentric velocity to within 5 km/s even with a low number of high-resolution spectra. A detailed investigation of LSD profile asymmetry shows the variable nature of the project factor at different pulsation phases, which should be taken into account in the detailed spectroscopic analysis of pulsating stars.

  18. Method of LSD profile asymmetry for estimating the center of mass velocities of pulsating stars

    NASA Astrophysics Data System (ADS)

    Britavskiy, N.; Pancino, E.; Tsymbal, V.; Romano, D.; Cacciari, C.; Clementini, C.

    2016-05-01

    We present radial velocity analysis for 20 solar neighborhood RR Lyrae and 3 Population II Cepheids. High-resolution spectra were observed with either TNG/SARG or VLT/UVES over varying phases. To estimate the center of mass (barycentric) velocities of the program stars, we utilized two independent methods. First, the 'classic' method was employed, which is based on RR Lyrae radial velocity curve templates. Second, we provide the new method that used absorption line profile asymmetry to determine both the pulsation and the barycentric velocities even with a low number of high-resolution spectra and in cases where the phase of the observations is uncertain. This new method is based on a least squares deconvolution (LSD) of the line profiles in order to an- alyze line asymmetry that occurs in the spectra of pulsating stars. By applying this method to our sample stars we attain accurate measurements (+- 2 kms^-1) of the pulsation component of the radial velocity. This results in determination of the barycentric velocity to within 5 kms^-1 even with a low number of high- resolution spectra. A detailed investigation of LSD profile asymmetry shows the variable nature of the project factor at different pulsation phases, which should be taken into account in the detailed spectroscopic analysis of pulsating stars.

  19. High-resolution Identification and Separation of Living Cell Types by Multiple microRNA-responsive Synthetic mRNAs.

    PubMed

    Endo, Kei; Hayashi, Karin; Saito, Hirohide

    2016-02-23

    The precise identification and separation of living cell types is critical to both study cell function and prepare cells for medical applications. However, intracellular information to distinguish live cells remains largely inaccessible. Here, we develop a method for high-resolution identification and separation of cell types by quantifying multiple microRNA (miRNA) activities in live cell populations. We found that a set of miRNA-responsive, in vitro synthesized mRNAs identify a specific cell population as a sharp peak and clearly separate different cell types based on less than two-fold differences in miRNA activities. Increasing the number of miRNA-responsive mRNAs enhanced the capability for cell identification and separation, as we precisely and simultaneously distinguished different cell types with similar miRNA profiles. In addition, the set of synthetic mRNAs separated HeLa cells into subgroups, uncovering heterogeneity of the cells and the level of resolution achievable. Our method could identify target live cells and improve the efficiency of cell purification from heterogeneous populations.

  20. Time-domain least-squares migration using the Gaussian beam summation method

    NASA Astrophysics Data System (ADS)

    Yang, Jidong; Zhu, Hejun; McMechan, George; Yue, Yubo

    2018-04-01

    With a finite recording aperture, a limited source spectrum and unbalanced illumination, traditional imaging methods are insufficient to generate satisfactory depth profiles with high resolution and high amplitude fidelity. This is because traditional migration uses the adjoint operator of the forward modeling rather than the inverse operator. We propose a least-squares migration approach based on the time-domain Gaussian beam summation, which helps to balance subsurface illumination and improve image resolution. Based on the Born approximation for the isotropic acoustic wave equation, we derive a linear time-domain Gaussian beam modeling operator, which significantly reduces computational costs in comparison with the spectral method. Then, we formulate the corresponding adjoint Gaussian beam migration, as the gradient of an L2-norm waveform misfit function. An L1-norm regularization is introduced to the inversion to enhance the robustness of least-squares migration, and an approximated diagonal Hessian is used as a preconditioner to speed convergence. Synthetic and field data examples demonstrate that the proposed approach improves imaging resolution and amplitude fidelity in comparison with traditional Gaussian beam migration.

  1. Time-domain least-squares migration using the Gaussian beam summation method

    NASA Astrophysics Data System (ADS)

    Yang, Jidong; Zhu, Hejun; McMechan, George; Yue, Yubo

    2018-07-01

    With a finite recording aperture, a limited source spectrum and unbalanced illumination, traditional imaging methods are insufficient to generate satisfactory depth profiles with high resolution and high amplitude fidelity. This is because traditional migration uses the adjoint operator of the forward modelling rather than the inverse operator. We propose a least-squares migration approach based on the time-domain Gaussian beam summation, which helps to balance subsurface illumination and improve image resolution. Based on the Born approximation for the isotropic acoustic wave equation, we derive a linear time-domain Gaussian beam modelling operator, which significantly reduces computational costs in comparison with the spectral method. Then, we formulate the corresponding adjoint Gaussian beam migration, as the gradient of an L2-norm waveform misfit function. An L1-norm regularization is introduced to the inversion to enhance the robustness of least-squares migration, and an approximated diagonal Hessian is used as a pre-conditioner to speed convergence. Synthetic and field data examples demonstrate that the proposed approach improves imaging resolution and amplitude fidelity in comparison with traditional Gaussian beam migration.

  2. Using Airborne High Spectral Resolution Lidar Data to Evaluate Combined Active Plus Passive Retrievals of Aerosol Extinction Profiles

    NASA Technical Reports Server (NTRS)

    Burton, S. P.; Ferrare, R. A.; Hostetler, C. A.; Hair, J. W.; Kittaka, C.; Vaughn, M. A.; Remer, L. A.

    2010-01-01

    We derive aerosol extinction profiles from airborne and space-based lidar backscatter signals by constraining the retrieval with column aerosol optical thickness (AOT), with no need to rely on assumptions about aerosol type or lidar ratio. The backscatter data were acquired by the NASA Langley Research Center airborne High Spectral Resolution Lidar (HSRL) and by the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite. The HSRL also simultaneously measures aerosol extinction coefficients independently using the high spectral resolution lidar technique, thereby providing an ideal data set for evaluating the retrieval. We retrieve aerosol extinction profiles from both HSRL and CALIOP attenuated backscatter data constrained with HSRL, Moderate-Resolution Imaging Spectroradiometer (MODIS), and Multiangle Imaging Spectroradiometer column AOT. The resulting profiles are compared with the aerosol extinction measured by HSRL. Retrievals are limited to cases where the column aerosol thickness is greater than 0.2 over land and 0.15 over water. In the case of large AOT, the results using the Aqua MODIS constraint over water are poorer than Aqua MODIS over land or Terra MODIS. The poorer results relate to an apparent bias in Aqua MODIS AOT over water observed in August 2007. This apparent bias is still under investigation. Finally, aerosol extinction coefficients are derived from CALIPSO backscatter data using AOT from Aqua MODIS for 28 profiles over land and 9 over water. They agree with coincident measurements by the airborne HSRL to within +/-0.016/km +/- 20% for at least two-thirds of land points and within +/-0.028/km +/- 20% for at least two-thirds of ocean points.

  3. Profiling and characterizing skin ceramides using reversed-phase liquid chromatography-quadrupole time-of-flight mass spectrometry.

    PubMed

    t'Kindt, Ruben; Jorge, Lucie; Dumont, Emmie; Couturon, Pauline; David, Frank; Sandra, Pat; Sandra, Koen

    2012-01-03

    An LC-MS based method for the profiling and characterization of ceramide species in the upper layer of human skin is described. Ceramide samples, collected by tape stripping of human skin, were analyzed by reversed-phase liquid chromatography coupled to high-resolution quadrupole time-of-flight mass spectrometry operated in both positive and negative electrospray ionization mode. All known classes of ceramides could be measured in a repeatable manner. Furthermore, the data set showed several undiscovered ceramides, including a class with four hydroxyl functionalities in its sphingoid base. High-resolution MS/MS fragmentation spectra revealed that each identified ceramide species is composed of several skeletal isomers due to variation in carbon length of the respective sphingoid bases and fatty acyl building blocks. The resulting variety in skeletal isomers has not been previously demonstrated. It is estimated that over 1000 unique ceramide structures could be elucidated in human stratum corneum. Ceramide species with an even and odd number of carbon atoms in both chains were detected in all ceramide classes. Acid hydrolysis of the ceramides, followed by LC-MS analysis of the end-products, confirmed the observed distribution of both sphingoid bases and fatty acyl groups in skin ceramides. The study resulted in an accurate mass retention time library for targeted profiling of skin ceramides. It is furthermore demonstrated that targeted data processing results in an improved repeatability versus untargeted data processing (72.92% versus 62.12% of species display an RSD < 15%). © 2011 American Chemical Society

  4. Novel Insights into DNA Methylation Features in Spermatozoa: Stability and Peculiarities

    PubMed Central

    Sayols, Sergi; Chianese, Chiara; Giachini, Claudia; Heyn, Holger; Esteller, Manel

    2012-01-01

    Data about the entire sperm DNA methylome are limited to two sperm donors whereas studies dealing with a greater number of subjects focused only on a few genes or were based on low resolution arrays. This implies that information about what we can consider as a normal sperm DNA methylome and whether it is stable among different normozoospermic individuals is still missing. The definition of the DNA methylation profile of normozoospermic men, the entity of inter-individual variability and the epigenetic characterization of quality-fractioned sperm subpopulations in the same subject (intra-individual variability) are relevant for a better understanding of pathological conditions. We addressed these questions by using the high resolution Infinium 450K methylation array and compared normal sperm DNA methylomes against somatic and cancer cells. Our study, based on the largest number of subjects (n = 8) ever considered for such a large number of CpGs (n = 487,517), provided clear evidence for i) a highly conserved DNA methylation profile among normozoospermic subjects; ii) a stable sperm DNA methylation pattern in different quality-fractioned sperm populations of the same individual. The latter finding is particularly relevant if we consider that different quality fractioned sperm subpopulations show differences in their structural features, metabolic and genomic profiles. We demonstrate, for the first time, that DNA methylation in normozoospermic men remains highly uniform regardless the quality of sperm subpopulations. In addition, our analysis provided both confirmatory and novel data concerning the sperm DNA methylome, including its peculiar features in respect to somatic and cancer cells. Our description about a highly polarized sperm DNA methylation profile, the clearly distinct genomic and functional organization of hypo- versus hypermethylated loci as well as the association of histone-enriched hypomethylated loci with embryonic development, which we now extended also to hypomethylated piRNAs-linked genes, provides solid basis for future basic and clinical research. PMID:23071498

  5. Measurements of OH(X2pi) in the stratosphere by high resolution UV spectroscopy

    NASA Technical Reports Server (NTRS)

    Torr, D. G.; Swift, W.; Fennelly, J.; Liu, G.; Torr, M. R.

    1987-01-01

    This paper reports the first results obtained using high spectral resolution imaging ultraviolet spectroscopy to observe multiple rotational lines of OH A2 Sigma-X2pi (0-0) band. A 9.2 A spectral segment from 3075.8 A to 3085.0 A is imaged at 0.08 A FWHM spectral resolution, allowing the simultaneous acquisition of six of the brightest OH resonance fluorescence emission lines. The high spectral resolution and low scattered light design of the instrument allows these lines to be detected above the Rayleigh scattered sunlight background. The technique permits remote sensing of stratospheric OH from a high altitude instrument. The instrument was flown to an altitude of 40 km on Aug. 25, 1983, and again on June 12, 1986, on scientific balloons from Palestine, TX. The OH profiles inverted from the limb scans made during these flights are reported here. These profiles represent the first measurements of the temporal variation of OH over an extended height range. The results demonstrate that the technique can be used to monitor OH from orbit.

  6. Multimodality molecular imaging and extracellular vesicle release based genetic profiling with porphyrin nanodroplets (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Zemp, Roger J.; Paproski, Robert J.

    2017-03-01

    For emerging tissue-engineering applications, transplants, and cell-based therapies it is important to assess cell viability and function in vivo in deep tissues. Bioluminescence and fluorescence methods are poorly suited to deep monitoring applications with high resolution and require genetically-engineered reporters which are not always feasible. We report on a method for imaging cell viability using deep, high-resolution photoacoustic imaging. We use an exogenous dye, Resazurin, itself weakly fluorescent until it is reduced from blue to a pink color with bright red fluorescence. Upon cell death fluorescence is lost and an absorption shift is observed. The irreversible reaction of resazurin to resorufin is proportional to aerobic respiration. We detect colorimetric absorption shifts using multispectral photoacoustic imaging and quantify the fraction of viable cells. SKOV-3 cells with and without ±80oC heat treatment were imaged after Resazurin treatment. High 575nm:620nm ratiometric absorption and photoacoustic signals in viable cells were observed with a much lower ratio in low-viability populations.

  7. A high-frequency sonar for profiling small-scale subaqueous bedforms

    USGS Publications Warehouse

    Dingler, J.R.; Boylls, J.C.; Lowe, R.L.

    1977-01-01

    A high-resolution ultrasonic profiler has been developed which permits both laboratory and field studies of small-scale subaqueous bedforms. The device uses a 2.5-cm diameter piezoelectric ceramic crystal pulsed at a frequency of 4.5 MHz to obtain vertical accuracy and resolution of at least 1 mm. Compared to other small-scale profiling methods, this ultrasonic technique profiles the bottom more accurately and more rapidly without disturbing the bedforms. These characteristics are vital in wave-dominated nearshore zones where oscillatory flow and low visibility for the most part have stymied detailed bedform studies. In the laboratory the transducer is mounted directly to an instrument carriage. For field work the transducer housing is mounted in a 2 m long aluminum frame which is situated and operated by scuba divers. Observations using the device include ripple geometry and migration, the suspension height of sand during sheet flow, and long-term erosion/deposition at a point. ?? 1977.

  8. Towards real-time metabolic profiling of a biopsy specimen during a surgical operation by 1H high resolution magic angle spinning nuclear magnetic resonance: a case report.

    PubMed

    Piotto, Martial; Moussallieh, François-Marie; Neuville, Agnès; Bellocq, Jean-Pierre; Elbayed, Karim; Namer, Izzie Jacques

    2012-01-18

    Providing information on cancerous tissue samples during a surgical operation can help surgeons delineate the limits of a tumoral invasion more reliably. Here, we describe the use of metabolic profiling of a colon biopsy specimen by high resolution magic angle spinning nuclear magnetic resonance spectroscopy to evaluate tumoral invasion during a simulated surgical operation. Biopsy specimens (n = 9) originating from the excised right colon of a 66-year-old Caucasian women with an adenocarcinoma were automatically analyzed using a previously built statistical model. Metabolic profiling results were in full agreement with those of a histopathological analysis. The time-response of the technique is sufficiently fast for it to be used effectively during a real operation (17 min/sample). Metabolic profiling has the potential to become a method to rapidly characterize cancerous biopsies in the operation theater.

  9. An Electronic Pressure Profile Display system for aeronautic test facilities

    NASA Technical Reports Server (NTRS)

    Woike, Mark R.

    1990-01-01

    The NASA Lewis Research Center has installed an Electronic Pressure Profile Display system. This system provides for the real-time display of pressure readings on high resolution graphics monitors. The Electronic Pressure Profile Display system will replace manometer banks currently used in aeronautic test facilities. The Electronic Pressure Profile Display system consists of an industrial type Digital Pressure Transmitter (DPI) unit which interfaces with a host computer. The host computer collects the pressure data from the DPI unit, converts it into engineering units, and displays the readings on a high resolution graphics monitor in bar graph format. Software was developed to accomplish the above tasks and also draw facility diagrams as background information on the displays. Data transfer between host computer and DPT unit is done with serial communications. Up to 64 channels are displayed with one second update time. This paper describes the system configuration, its features, and its advantages over existing systems.

  10. An electronic pressure profile display system for aeronautic test facilities

    NASA Technical Reports Server (NTRS)

    Woike, Mark R.

    1990-01-01

    The NASA Lewis Research Center has installed an Electronic Pressure Profile Display system. This system provides for the real-time display of pressure readings on high resolution graphics monitors. The Electronic Pressure Profile Display system will replace manometer banks currently used in aeronautic test facilities. The Electronic Pressure Profile Display system consists of an industrial type Digital Pressure Transmitter (DPT) unit which interfaces with a host computer. The host computer collects the pressure data from the DPT unit, converts it into engineering units, and displays the readings on a high resolution graphics monitor in bar graph format. Software was developed to accomplish the above tasks and also draw facility diagrams as background information on the displays. Data transfer between host computer and DPT unit is done with serial communications. Up to 64 channels are displayed with one second update time. This paper describes the system configuration, its features, and its advantages over existing systems.

  11. Development and characterization of silicone embedded distributed piezoelectric sensors for contact detection

    NASA Astrophysics Data System (ADS)

    Acer, Merve; Salerno, Marco; Agbeviade, Kossi; Paik, Jamie

    2015-07-01

    Tactile sensing transfers complex interactive information in a most intuitive sense. Such a populated set of data from the environment and human interactions necessitates various degrees of information from both modular and distributed areas. A sensor design that could provide such types of feedback becomes challenging when the target component has a nonuniform, agile, high resolution, and soft surface. This paper presents an innovative methodology for the manufacture of novel soft sensors that have a high resolution sensing array due to the sensitivity of ceramic piezoelectric (PZT) elements, while uncommonly matched with the high stretchability of the soft substrate and electrode design. Further, they have a low profile and their transfer function is easy to tune by changing the material and thickness of the soft substrate in which the PZTs are embedded. In this manuscript, we present experimental results of the soft sensor prototypes: PZTs arranged in a four by two array form, measuring 1.5-2.3 mm in thickness, with the sensitivity in the range of 0.07-0.12 of the normalized signal change per unit force. We have conducted extensive tests under dynamic loading conditions that include impact, step and cyclic. The presented prototype's mechanical and functional capacities are promising for applications in biomedical systems where soft, wearable and high precision sensors are needed.

  12. Three Dimensional High-Resolution Reconstruction of the Ionosphere Over the Very Large Array

    DTIC Science & Technology

    2010-12-15

    Watts Progress Report, Dec 10; 1 Final Report: Three Dimensional High-Resolution Reconstruction of the Ionosphere over the Very Large Array...proposed research is reconstruct the three-dimensional regional electron density profile of Earth’s ionosphere with spatial resolution of better than 10 km...10x better sensitivity to total electron content (TEC, or chord integrated density) in the ionosphere that does GPS. The proposal funds the

  13. HATS (High Altitude Thermal Sounder): a passive sensor solution to 3D high-resolution mapping of upper atmosphere dynamics (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Gordley, Larry; Marshall, Benjamin T.; Lachance, Richard L.

    2016-10-01

    This presentation introduces a High Altitude Thermal Sensor (HATS) that has the potential to resolve the thermal structure of the upper atmosphere (cloud top to 100km) with both horizontal and vertical resolution of 5-7 km or better. This would allow the complete characterization of the wave structures that carry weather signature from the underlying atmosphere. Using a novel gas correlation technique, an extremely high-resolution spectral scan is accomplished by measuring a Doppler modulated signal as the atmospheric thermal scene passes through the HATS 2D FOV. This high spectral resolution, difficult to impossible to achieve with any other passive technique, enables the separation of radiation emanating at high altitudes from that emanating at low altitudes. A principal component analysis of these modulation signals then exposes the complete thermal structure of the upper atmosphere. We show that nadir sounding from low earth orbit, using various branches of CO2 emission in the 17 to 15 micron region, with sufficient spectral resolution and spectral measurement range, can distinguish thermal energy that peaks at various altitudes. By observing the up-welling atmospheric emission through a low pressure (Doppler broadened) gas cell, as the scene passes through our FOV, a modulation signal is created as the atmospheric emission lines are shifted through the spectral position of the gas cell absorption lines. The modulation signal is shown to be highly correlated to the emission coming from the spectral location of the gas cell lines relative to the atmospheric emission lines. This effectively produces a scan of the atmospheric emission with a Doppler line resolution. Similar to thermal sounding of the troposphere, a principal component analysis of the modulation signal can be used to produce an altitude resolved profile, given a reasonable a priori temperature profile. It is then shown that with the addition of a limb observation with one CO2 broadband channel (similar to methods employed with sensors like LIMS on Nimbus 7, HIRDLS on Aura, and SABER on TIMED), a limb temperature profile can be retrieved and used as the a priori profile, nearly eliminating uncertainty due to a priori inaccuracy. Feasibility studies and proposed instrument designs are presented. A tutorial for a similar technique proposed for measuring winds and temperature with limb observations can be found at http://www.gats-inc.com/future_missions.html

  14. Temperature determination of shock layer using spectroscopic techniques

    NASA Technical Reports Server (NTRS)

    Akundi, Murty A.

    1989-01-01

    Shock layer temperature profiles are obtained through analysis of radiation from shock layers produced by a blunt body inserted in an arc jet flow. Spectral measurements of N2(+) have been made at 0.5 inch, 1.0 inch, and 1.4 inches from the blunt body. A technique is developed to measure the vibrational and rotational temperatures of N2(+). Temperature profiles from the radiation layers show a high temperature near the shock front and decreasing temperature near the boundary layer. Precise temperature measurements could not be made using this technique due to the limited resolution. Use of a high resolution grating will help to make a more accurate temperature determination. Laser induced fluorescence technique is much better since it gives the scope for selective excitation and a better spacial resolution.

  15. High resolution main-ion charge exchange spectroscopy in the DIII-D H-mode pedestal.

    PubMed

    Grierson, B A; Burrell, K H; Chrystal, C; Groebner, R J; Haskey, S R; Kaplan, D H

    2016-11-01

    A new high spatial resolution main-ion (deuterium) charge-exchange spectroscopy system covering the tokamak boundary region has been installed on the DIII-D tokamak. Sixteen new edge main-ion charge-exchange recombination sightlines have been combined with nineteen impurity sightlines in a tangentially viewing geometry on the DIII-D midplane with an interleaving design that achieves 8 mm inter-channel radial resolution for detailed profiles of main-ion temperature, velocity, charge-exchange emission, and neutral beam emission. At the plasma boundary, we find a strong enhancement of the main-ion toroidal velocity that exceeds the impurity velocity by a factor of two. The unique combination of experimentally measured main-ion and impurity profiles provides a powerful quasi-neutrality constraint for reconstruction of tokamak H-mode pedestals.

  16. Distinct Retinal Capillary Plexuses in Normal Eyes as Observed in Optical Coherence Tomography Angiography Axial Profile Analysis.

    PubMed

    Hirano, Takao; Chanwimol, Karntida; Weichsel, Julian; Tepelus, Tudor; Sadda, Srinivas

    2018-06-20

    Optical coherence tomography angiography (OCTA) allows the retinal microvasculature to be visualized at various retinal depths. Previous studies introduced OCTA axial profile analysis and showed regional variations in the number and location of axially distinct vascular retinal plexuses. OCTA acquisition and processing approaches, however, vary in terms of their resulting transverse and axial resolutions, and especially the latter could potentially influence the profile analysis results. Our study imaged normal eyes using the Spectralis OCT2 with a full-spectrum, probabilistic OCTA algorithm, that, in marked contrast to split-spectrum approaches, preserves the original high OCT axial resolution also within the resulting OCTA signal. En face OCTA images are generally created by averaging flow signals over a finite axial depth window. However, we assessed regional OCTA signal profiles at each depth position at full axial resolution. All regions had two sharp vessel density peaks near the inner and outer boundaries of the inner nuclear layer, indicating separate intermediate and deep capillary plexuses. The superficial vascular plexus (SVP) separated into two distinct peaks within the ganglion cell layer in the parafoveal zone. The nasal, superior, and inferior perifovea had a deeper SVP peak that was shifted anteriorly compared to the parafoveal zone. Axial vascular density analysis with high-resolution, full spectrum OCTA thus allows healthy retinal vasculature to be precisely reconstructed and may be useful for clinically assessing retinal pathology.

  17. Constructing Synoptic Maps of Stratospheric Column Ozone from HALOE, SAGE and Balloonsonde Data Using Potential Vorticity Isentropic Coordinate Transformations

    NASA Technical Reports Server (NTRS)

    Hollandsworth, Stacey M.; Schoeberl, Mark R.; Morris, Gary A.; Long, Craig; Zhou, Shuntai; Miller, Alvin J.

    1999-01-01

    In this study we utilize potential vorticity - isentropic (PVI) coordinate transformations as a means of combining ozone data from different sources to construct daily, synthetic three-dimensional ozone fields. This methodology has been used successfully to reconstruct ozone maps in particular regions from aircraft data over the period of the aircraft campaign. We expand this method to create high-resolution daily global maps of profile ozone data, particularly in the lower stratosphere, where high-resolution ozone data are sparse. Ozone climatologies in PVI-space are constructed from satellite-based SAGE II and UARS/HALOE data, both of which-use solar occultation techniques to make high vertical resolution ozone profile measurements, but with low spatial resolution. A climatology from ground-based balloonsonde data is also created. The climatologies are used to establish the relationship between ozone and dynamical variability, which is defined by the potential vorticity (in the form of equivalent latitude) and potential temperature fields. Once a PVI climatology has been created from data taken by one or more instruments, high-resolution daily profile ozone field estimates are constructed based solely on the PVI fields, which are available on a daily basis from NCEP analysis. These profile ozone maps could be used for a variety of applications, including use in conjunction with total ozone maps to create a daily tropospheric ozone product, as input to forecast models, or as a tool for validating independent ozone measurements when correlative data are not available. This technique is limited to regions where the ozone is a long-term tracer and the flow is adiabatic. We evaluate the internal consistency of the technique by transforming the ozone back to physical space and comparing to the original profiles. Biases in the long-term average of the differences are used to identify regions where the technique is consistently introducing errors. Initial results show the technique is useful in the lower stratosphere at most latitudes throughout the year,and in the winter hemisphere in the middle stratosphere. The results are problematic in the summer hemisphere middle stratosphere due to increased ozone photochemistry and weak PV gradients. Alternate techniques in these regions will be discussed. An additional limitation is the quality and resolution of the meteorological data.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgan, B. E.; Olson, B. J.; White, J. E.

    High-fidelity large eddy simulation (LES) of a low-Atwood number (A = 0.05) Rayleigh-Taylor mixing layer is performed using the tenth-order compact difference code Miranda. An initial multimode perturbation spectrum is specified in Fourier space as a function of mesh resolution such that a database of results is obtained in which each successive level of increased grid resolution corresponds approximately to one additional doubling of the mixing layer width, or generation. The database is then analyzed to determine approximate requirements for self-similarity, and a new metric is proposed to quantify how far a given simulation is from the limit of self-similarity.more » It is determined that mixing layer growth reaches a high degree of self-similarity after approximately 4.5 generations. Statistical convergence errors and boundary effects at late time, however, make it impossible to draw similar conclusions regarding the self-similar growth of more sensitive turbulence parameters. Finally, self-similar turbulence profiles from the LES database are compared with one-dimensional simulations using the k-L-a and BHR-2 Reynolds-averaged Navier-Stokes (RANS) models. The k-L-a model, which is calibrated to reproduce a quadratic turbulence kinetic energy profile for a self-similar mixing layer, is found to be in better agreement with the LES than BHR-2 results.« less

  19. Determination of atmospheric moisture structure and infrared cooling rates from high resolution MAMS radiance data

    NASA Technical Reports Server (NTRS)

    Menzel, W. Paul; Moeller, Christopher C.; Smith, William L.

    1991-01-01

    This program has applied Multispectral Atmospheric Mapping Sensor (MAMS) high resolution data to the problem of monitoring atmospheric quantities of moisture and radiative flux at small spatial scales. MAMS, with 100-m horizontal resolution in its four infrared channels, was developed to study small scale atmospheric moisture and surface thermal variability, especially as related to the development of clouds, precipitation, and severe storms. High-resolution Interferometer Sounder (HIS) data has been used to develop a high spectral resolution retrieval algorithm for producing vertical profiles of atmospheric temperature and moisture. The results of this program are summarized and a list of publications resulting from this contract is presented. Selected publications are attached as an appendix.

  20. Iodine-filter-based high spectral resolution lidar for atmospheric temperature measurements.

    PubMed

    Liu, Zhi-Shen; Bi, De-Cang; Song, Xiao-Quan; Xia, Jin-Bao; Li, Rong-Zhong; Wang, Zhang-Jun; She, Chiao-Yao

    2009-09-15

    This paper presents a method for measuring atmosphere temperature profile using a single iodine filter as frequency discriminator. This high spectral resolution lidar (HSRL) is a system reconfigured with the transmitter of a mobile Doppler wind lidar and with a receiving subsystem redesigned to pass the backscattering optical signal through the iodine cell twice to filter out the aerosol scattering signal and to allow analysis of the molecular scattering spectrum, thus measuring temperatures. We report what are believed to be the first results of vertical temperature profiling from the ground to 16 km altitude by this lidar system (power-aperture product=0.35 Wm(2)). Concurrent observations of an L band radiosonde were carried out on June 14 and August 3, 2008, in good agreement with HSRL temperature profiles.

  1. Profiling Polyphenols in Five Brassica species Microgreens by UHPLC-PDA-ESI/HRMSn

    PubMed Central

    Sun, Jianghao; Xiao, Zhenlei; Lin, Long-ze; Lester, Gene E.; Wang, Qin; Harnly, James M.; Chen, Pei

    2014-01-01

    Brassica vegetables are known to contain relatively high concentrations of bioactive compounds associated with human health. A comprehensive profiling of polyphenols from five Brassica species microgreens was conducted using ultra high-performance liquid chromatography photo diode array high-resolution multi-stage mass spectrometry (UHPLC-PDA-ESI/HRMSn). A total of 164 polyphenols including 30 anthocyanins, 105 flavonol glycosides, and 29 hydroxycinnamic acid and hydroxybenzoic acid derivatives were putatively identified.The putative identifications were based on UHPLC-HRMSn analysis using retention times, elution orders, UV/Vis spectra and high resolution mass spectra, in-house polyphenol database, and as well as literature comparisons. This study showed that these five Brassica species microgreens could be considered as good sources of food polyphenols. PMID:24144328

  2. Microscopic image processing systems for measuring nonuniform film thickness profiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, A.H.; Plawsky, J.L.; DasGupta, S.

    1994-01-01

    In very thin liquid films. transport processes are controlled by the temperature and the interfacial intermolecular force field which is a function of the film thickness profile and interfacial properties. The film thickness profile and interfacial properties can be measured most efficiently using a microscopic image processing system. IPS, to record the intensity pattern of the reflected light from the film. There are two types of IPS: an image analyzing interferometer (IAI) and/or an image scanning ellipsometer (ISE). The ISE is a novel technique to measure the two dimensional thickness profile of a nonuniform, thin film, from 1 nm upmore » to several {mu}m, in a steady state as well as in a transient state. It is a full field imaging technique which can study every point on the surface simultaneously with high spatial resolution and thickness sensitivity, i.e., it can measure and map the 2-D film thickness profile. Using the ISE, the transient thickness profile of a draining thin liquid film was measured and modeled. The interfacial conditions were determined in situ by measuring the Hamaker constant. The ISE and IAI systems are compared.« less

  3. Scaling laws and vortex profiles in two-dimensional decaying turbulence.

    PubMed

    Laval, J P; Chavanis, P H; Dubrulle, B; Sire, C

    2001-06-01

    We use high resolution numerical simulations over several hundred of turnover times to study the influence of small scale dissipation onto vortex statistics in 2D decaying turbulence. A scaling regime is detected when the scaling laws are expressed in units of mean vorticity and integral scale, like predicted in Carnevale et al., Phys. Rev. Lett. 66, 2735 (1991), and it is observed that viscous effects spoil this scaling regime. The exponent controlling the decay of the number of vortices shows some trends toward xi=1, in agreement with a recent theory based on the Kirchhoff model [C. Sire and P. H. Chavanis, Phys. Rev. E 61, 6644 (2000)]. In terms of scaled variables, the vortices have a similar profile with a functional form related to the Fermi-Dirac distribution.

  4. Seismic Tomography and the Development of a State Velocity Profile

    NASA Astrophysics Data System (ADS)

    Marsh, S. J.; Nakata, N.

    2017-12-01

    Earthquakes have been a growing concern in the State of Oklahoma in the last few years and as a result, accurate earthquake location is of utmost importance. This means using a high resolution velocity model with both lateral and vertical variations. Velocity data is determined using ambient noise seismic interferometry and tomography. Passive seismic data was acquired from multiple IRIS networks over the span of eight years (2009-2016) and filtered for earthquake removal to obtain the background ambient noise profile for the state. Seismic Interferometry is applied to simulate ray paths between stations, this is done with each possible station pair for highest resolution. Finally the method of seismic tomography is used to extract the velocity data and develop the state velocity map. The final velocity profile will be a compilation of different network analyses due to changing station availability from year to year. North-Central Oklahoma has a dense seismic network and has been operating for the past few years. The seismic stations are located here because this is the most seismically active region. Other parts of the state have not had consistent coverage from year to year, and as such a reliable and high resolution velocity profile cannot be determined from this network. However, the Transportable Array (TA) passed through Oklahoma in 2014 and provided a much wider and evenly spaced coverage. The goal of this study is to ultimately combine these two arrays over time, and provide a high quality velocity profile for the State of Oklahoma.

  5. Geostatistical analysis of centimeter-scale hydraulic conductivity variations at the MADE site

    NASA Astrophysics Data System (ADS)

    Bohling, Geoffrey C.; Liu, Gaisheng; Knobbe, Steven J.; Reboulet, Edward C.; Hyndman, David W.; Dietrich, Peter; Butler, James J., Jr.

    2012-02-01

    Spatial variations in hydraulic conductivity (K) provide critical controls on solute transport in the subsurface. Recently, new direct-push tools were developed for high-resolution characterization of K variations in unconsolidated settings. These tools were applied to obtain 58 profiles (vertical resolution of 1.5 cm) from the heavily studied macrodispersion experiment (MADE) site. We compare the data from these 58 profiles with those from the 67 flowmeter profiles that have served as the primary basis for characterizing the heterogeneous aquifer at the site. Overall, the patterns of variation displayed by the two data sets are quite similar, in terms of both large-scale structure and autocorrelation characteristics. The direct-push K values are, on average, roughly a factor of 5 lower than the flowmeter values. This discrepancy appears to be attributable, at least in part, to opposite biases between the two methods, with the current versions of the direct-push tools underestimating K in the highly permeable upper portions of the aquifer and the flowmeter overestimating K in the less permeable lower portions. The vertically averaged K values from a series of direct-push profiles in the vicinity of two pumping tests at the site are consistent with the K estimates from those tests, providing evidence that the direct-push estimates are of a reasonable magnitude. The results of this field demonstration show that direct-push profiling has the potential to characterize highly heterogeneous aquifers with a speed and resolution that has not previously been possible.

  6. Solar Confocal Interferometers for Sub-Picometer-Resolution Spectral Filters

    NASA Technical Reports Server (NTRS)

    Gary, G. Allen; Pietraszewski, Chris; West, Edward A.; Dines, Terence C.

    2006-01-01

    The confocal Fabry-Perot interferometer allows sub-picometer spectral resolution of Fraunhofer line profiles. Such high spectral resolution is needed to keep pace with the higher spatial resolution of the new set of large-aperture solar telescopes. The line-of-sight spatial resolution derived for line profile inversions would then track the improvements of the transverse spatial scale provided by the larger apertures. The confocal interferometer's unique properties allow a simultaneous increase in both etendue and spectral power. Methods: We have constructed and tested two confocal interferometers. Conclusions: In this paper we compare the confocal interferometer with other spectral imaging filters, provide initial design parameters, show construction details for two designs, and report on the laboratory test results for these interferometers, and propose a multiple etalon system for future testing of these units and to obtain sub-picometer spectral resolution information on the photosphere in both the visible and near-infrared.

  7. Improving depth resolutions in positron beam spectroscopy by concurrent ion-beam sputtering

    NASA Astrophysics Data System (ADS)

    John, Marco; Dalla, Ayham; Ibrahim, Alaa M.; Anwand, Wolfgang; Wagner, Andreas; Böttger, Roman; Krause-Rehberg, Reinhard

    2018-05-01

    The depth resolution of mono-energetic positron annihilation spectroscopy using a positron beam is shown to improve by concurrently removing the sample surface layer during positron beam spectroscopy. During ion-beam sputtering with argon ions, Doppler-broadening spectroscopy is performed with energies ranging from 3 keV to 5 keV allowing for high-resolution defect studies just below the sputtered surface. With this technique, significantly improved depth resolutions could be obtained even at larger depths when compared to standard positron beam experiments which suffer from extended positron implantation profiles at higher positron energies. Our results show that it is possible to investigate layered structures with a thickness of about 4 microns with significantly improved depth resolution. We demonstrated that a purposely generated ion-beam induced defect profile in a silicon sample could be resolved employing the new technique. A depth resolution of less than 100 nm could be reached.

  8. Recent developments in software tools for high-throughput in vitro ADME support with high-resolution MS.

    PubMed

    Paiva, Anthony; Shou, Wilson Z

    2016-08-01

    The last several years have seen the rapid adoption of the high-resolution MS (HRMS) for bioanalytical support of high throughput in vitro ADME profiling. Many capable software tools have been developed and refined to process quantitative HRMS bioanalysis data for ADME samples with excellent performance. Additionally, new software applications specifically designed for quan/qual soft spot identification workflows using HRMS have greatly enhanced the quality and efficiency of the structure elucidation process for high throughput metabolite ID in early in vitro ADME profiling. Finally, novel approaches in data acquisition and compression, as well as tools for transferring, archiving and retrieving HRMS data, are being continuously refined to tackle the issue of large data file size typical for HRMS analyses.

  9. Vertical Geochemical Profiling Across a 3.33 Ga Microbial Mat from Barberton

    NASA Astrophysics Data System (ADS)

    Westall, F.; Lemelle, L.; Simionovici, A.; Southam, G.; Maclean, L.; Salomé, M.; Wirick, S.; Toporski, J.; Jauss, A.

    2008-03-01

    The Josefdal Chert (3.33 Ga), Barberton, contains a superbly preserved microbial mat. High resolution geochemical profiling across the mat documents textures and compositions indicative of a mixed microbial community of anoxygenic photosynthesisers and probably SRBs.

  10. Stratospheric sounding by infrared heterodyne spectroscopy

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Kunde, V. G.; Mumma, M. J.; Kostiuk, T.; Buhl, D.; Frerking, M. A.

    1978-01-01

    Intensity profiles of infrared spectral lines of stratospheric constituents can be fully resolved with a heterodyne spectrometer of sufficiently high resolution. The constituents' vertical distributions can then be evaluated accurately by analytic inversion of the measured line profiles. Estimates of the detection sensitivity of a heterodyne receiver are given in terms of minimum detectable volume mixing ratios of stratospheric constituents, indicating a large number of minor constituents which can be studied. Stratospheric spectral line shapes, and the resolution required to measure them are discussed in light of calculated synthetic line profiles for some stratospheric molecules in a model atmosphere. The inversion technique for evaluation of gas concentration profiles is briefly described and applications to synthetic lines of O3, CO2, CH4 and N2O are given.

  11. Metabolomic signature of brain cancer.

    PubMed

    Pandey, Renu; Caflisch, Laura; Lodi, Alessia; Brenner, Andrew J; Tiziani, Stefano

    2017-11-01

    Despite advances in surgery and adjuvant therapy, brain tumors represent one of the leading causes of cancer-related mortality and morbidity in both adults and children. Gliomas constitute about 60% of all cerebral tumors, showing varying degrees of malignancy. They are difficult to treat due to dismal prognosis and limited therapeutics. Metabolomics is the untargeted and targeted analyses of endogenous and exogenous small molecules, which charact erizes the phenotype of an individual. This emerging "omics" science provides functional readouts of cellular activity that contribute greatly to the understanding of cancer biology including brain tumor biology. Metabolites are highly informative as a direct signature of biochemical activity; therefore, metabolite profiling has become a promising approach for clinical diagnostics and prognostics. The metabolic alterations are well-recognized as one of the key hallmarks in monitoring disease progression, therapy, and revealing new molecular targets for effective therapeutic intervention. Taking advantage of the latest high-throughput analytical technologies, that is, nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS), metabolomics is now a promising field for precision medicine and drug discovery. In the present report, we review the application of metabolomics and in vivo metabolic profiling in the context of adult gliomas and paediatric brain tumors. Analytical platforms such as high-resolution (HR) NMR, in vivo magnetic resonance spectroscopic imaging and high- and low-resolution MS are discussed. Moreover, the relevance of metabolic studies in the development of new therapeutic strategies for treatment of gliomas are reviewed. © 2017 Wiley Periodicals, Inc.

  12. Potential of Polygonum cuspidatum Root as an Antidiabetic Food: Dual High-Resolution α-Glucosidase and PTP1B Inhibition Profiling Combined with HPLC-HRMS and NMR for Identification of Antidiabetic Constituents.

    PubMed

    Zhao, Yong; Chen, Martin Xiaoyong; Kongstad, Kenneth Thermann; Jäger, Anna Katharina; Staerk, Dan

    2017-06-07

    The worldwide increasing incidence of type 2 diabetes has fueled an intensified search for food and herbal remedies with preventive and/or therapeutic properties. Polygonum cuspidatum Siebold & Zucc. (Polygonaceae) is used as a functional food in Japan and South Korea, and it is also a well-known traditional antidiabetic herb used in China. In this study, dual high-resolution α-glucosidase and protein-tyrosine phosphatase 1B (PTP1B) inhibition profiling was used for the identification of individual antidiabetic constituents directly from the crude ethyl acetate extract and fractions of P. cuspidatum. Subsequent preparative-scale HPLC was used to isolate a series of α-glucosidase inhibitors, which after HPLC-HRMS and NMR analysis were identified as procyanidin B2 3,3″-O-digallate (3) and (-)-epicatechin gallate (5) with IC 50 values of 0.42 ± 0.02 and 0.48 ± 0.0004 μM, respectively, as well as a series of stilbene analogues with IC 50 value in the range from 6.05 ± 0.05 to 116.10 ± 2.04 μM. In addition, (trans)-emodin-physcion bianthrone (15b) and (cis)-emodin-physcion bianthrone (15c) were identified as potent PTP1B inhibitors with IC 50 values of 2.77 ± 1.23 and 7.29 ± 2.32 μM, respectively. These findings show that P. cuspidatum is a potential functional food for management of type 2 diabetes.

  13. imVisIR - a new tool for high resolution soil characterisation

    NASA Astrophysics Data System (ADS)

    Steffens, Markus; Buddenbaum, Henning

    2014-05-01

    The physical and chemical heterogeneities of soils are the source of a vast functional diversity of soil properties in a multitude of spatial domains. But many studies do not consider the spatial variability of soil types, diagnostic horizons and properties. These lateral and vertical heterogeneities of soils or soil horizons are mostly neglected due to the limitations in the available soil data and missing techniques to gather the information. We present an imaging technique that enables the spatially accurate, high resolution assessment (63×63 µm2 per pixel) of complete soil profiles consisting of mineral and organic horizons. We used a stainless steel box (100×100×300 mm3) to sample various soil types and a hyperspectral camera to record the bidirectional reflectance of the large undisturbed soil samples in the visible and near infrared (Vis-NIR) part of the electromagnetic spectrum (400-1000 nm in 160 spectral bands). Various statistical, geostatistical and image processing tools were used to 1) assess the spatial variability of the soil profile as a whole; 2) classify diagnostic horizons; 3) extrapolate elemental concentrations of small sampling areas to the complete image and calculate high resolution chemometric maps of up to five elements (C, N, Al, Fe, Mn); and 4) derive maps of the chemical composition of soil organic matter. Imaging Vis-NIR (imVisIR) has the potential to significantly improve soil classification, assessment of elemental budgets and balances and the understanding of soil forming processes and mechanisms. It will help to identify areas of interest for techniques working on smaller scales and enable the upscaling and referencing of this information to the complete pedon.

  14. Thermal structure of the Martian atmosphere retrieved from the IR- spectrometry in the 15 mkm CO2 band

    NASA Astrophysics Data System (ADS)

    Zasova, L.; Formisano, V.; Grassi, D.; Igantiev, N.; Moroz, V.

    Thermal IR spectrometry is one of the methods of the Martian atmosphere investigation below 55 km. The temperature profiles retrieved from the 15 μm CO2 band may be used for MIRA database. This approach gives the vertical resolution of several kilometers and accuracy of several Kelvins. An aerosol abundance, which influences the temperature profiles, is obtained from the continuum of the same spectrum. It is taken into account in the temperature retrieval procedure in a self- consistent way. Although this method has limited vertical resolution it possesses some advantages. For example, the radio occultation method gives the temperature profiles with higher spectral resolution, but the radio observations are sparse in space and local time. Direct measurements, which give the most accurate results, enable to obtain the temperature profiles only for some chosen points (landing places). Actually, the thermal IR-spectrometry is the only method, which allows to monitor the temperature profiles with good coverage both in space and local time. The first measurements of this kind were fulfilled by IRIS, installed on board of Mariner 9. This spectrometer was characterized by rather high spectral resolution (2.4 cm-1). The temperature profiles vs. local time dependencies for different latitudes and seasons were retrieved, including dust storm conditions, North polar night, Tharsis volcanoes. The obtained temperature profiles have been compared with the temperature profiles for the same conditions, taken from Climate Data Base (European GCM). The Planetary Fourier Spectrometer onboard Mars Express (which is planned to be launched in 2003) has the spectral range 1.2-45 μm and spectral resolution of 1.5 cm- 1. Temperature retrieval is one of the main scientific goals of the experiment. It opens a possibility to get a series of temperature profiles taken for different conditions, which can later be used in MIRA producing.

  15. Heat Transport upon River-Water Infiltration investigated by Fiber-Optic High-Resolution Temperature Profiling

    NASA Astrophysics Data System (ADS)

    Vogt, T.; Schirmer, M.; Cirpka, O. A.

    2010-12-01

    Infiltrating river water is of high relevance for drinking water supply by river bank filtration as well as for riparian groundwater ecology. Quantifying flow patterns and velocities, however, is hampered by temporal and spatial variations of exchange fluxes. In recent years, heat has become a popular natural tracer to estimate exchange rates between rivers and groundwater. Nevertheless, field investigations are often limited by insufficient sensors spacing or simplifying assumptions such as one-dimensional flow. Our interest lies in a detailed local survey of river water infiltration at a restored river section at the losing river Thur in northeast Switzerland. Here, we measured three high-resolution temperature profiles along an assumed flow path by means of distributed temperature sensing (DTS) using fiber optic cables wrapped around poles. Moreover, piezometers were equipped with standard temperature sensors for a comparison to the DTS data. Diurnal temperature oscillations were tracked in the river bed and the riparian groundwater and analyzed by means of dynamic harmonic regression and subsequent modeling of heat transport with sinusoidal boundary conditions to quantify seepage velocities and thermal diffusivities. Compared to the standard temperature sensors, the DTS data give a higher vertical resolution, facilitating the detection of process- and structure-dependent patterns of the spatiotemporal temperature field. This advantage overcompensates the scatter in the data due to instrument noise. In particular, we could demonstrate the impact of heat conduction through the unsaturated zone on the riparian groundwater by the high resolution temperature profiles.

  16. Intermediate-scale plasma irregularities in the polar ionosphere inferred from GPS radio occultation

    NASA Astrophysics Data System (ADS)

    Shume, E. B.; Komjathy, A.; Langley, R. B.; Verkhoglyadova, O.; Butala, M. D.; Mannucci, A. J.

    2015-02-01

    We report intermediate-scale plasma irregularities in the polar ionosphere inferred from high-resolution radio occultation (RO) measurements using GPS (Global Positioning System) to CASSIOPE (CAScade Smallsat and IOnospheric Polar Explorer) satellite radio links. The high inclination of CASSIOPE and the high rate of signal reception by the GPS Attitude, Positioning, and Profiling RO receiver on CASSIOPE enable a high-resolution investigation of the dynamics of the polar ionosphere with unprecedented detail. Intermediate-scale, scintillation-producing irregularities, which correspond to 1 to 40 km scales, were inferred by applying multiscale spectral analysis on the RO phase measurements. Using our multiscale spectral analysis approach and satellite data (Polar Operational Environmental Satellites and Defense Meteorological Satellite Program), we discovered that the irregularity scales and phase scintillations have distinct features in the auroral oval and polar cap. We found that large length scales and more intense phase scintillations are prevalent in the auroral oval compared to the polar cap implying that the irregularity scales and phase scintillation characteristics are a function of the solar wind and magnetospheric forcings.

  17. High-resolution phylogenetic microbial community profiling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singer, Esther; Bushnell, Brian; Coleman-Derr, Devin

    Over the past decade, high-throughput short-read 16S rRNA gene amplicon sequencing has eclipsed clone-dependent long-read Sanger sequencing for microbial community profiling. The transition to new technologies has provided more quantitative information at the expense of taxonomic resolution with implications for inferring metabolic traits in various ecosystems. We applied single-molecule real-time sequencing for microbial community profiling, generating full-length 16S rRNA gene sequences at high throughput, which we propose to name PhyloTags. We benchmarked and validated this approach using a defined microbial community. When further applied to samples from the water column of meromictic Sakinaw Lake, we show that while community structuresmore » at the phylum level are comparable between PhyloTags and Illumina V4 16S rRNA gene sequences (iTags), variance increases with community complexity at greater water depths. PhyloTags moreover allowed less ambiguous classification. Last, a platform-independent comparison of PhyloTags and in silico generated partial 16S rRNA gene sequences demonstrated significant differences in community structure and phylogenetic resolution across multiple taxonomic levels, including a severe underestimation in the abundance of specific microbial genera involved in nitrogen and methane cycling across the Lake's water column. Thus, PhyloTags provide a reliable adjunct or alternative to cost-effective iTags, enabling more accurate phylogenetic resolution of microbial communities and predictions on their metabolic potential.« less

  18. High-resolution phylogenetic microbial community profiling

    DOE PAGES

    Singer, Esther; Bushnell, Brian; Coleman-Derr, Devin; ...

    2016-02-09

    Over the past decade, high-throughput short-read 16S rRNA gene amplicon sequencing has eclipsed clone-dependent long-read Sanger sequencing for microbial community profiling. The transition to new technologies has provided more quantitative information at the expense of taxonomic resolution with implications for inferring metabolic traits in various ecosystems. We applied single-molecule real-time sequencing for microbial community profiling, generating full-length 16S rRNA gene sequences at high throughput, which we propose to name PhyloTags. We benchmarked and validated this approach using a defined microbial community. When further applied to samples from the water column of meromictic Sakinaw Lake, we show that while community structuresmore » at the phylum level are comparable between PhyloTags and Illumina V4 16S rRNA gene sequences (iTags), variance increases with community complexity at greater water depths. PhyloTags moreover allowed less ambiguous classification. Last, a platform-independent comparison of PhyloTags and in silico generated partial 16S rRNA gene sequences demonstrated significant differences in community structure and phylogenetic resolution across multiple taxonomic levels, including a severe underestimation in the abundance of specific microbial genera involved in nitrogen and methane cycling across the Lake's water column. Thus, PhyloTags provide a reliable adjunct or alternative to cost-effective iTags, enabling more accurate phylogenetic resolution of microbial communities and predictions on their metabolic potential.« less

  19. Spatially resolved high resolution x-ray spectroscopy for magnetically confined fusion plasmas (invited)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ince-Cushman, A.; Rice, J. E.; Reinke, M. L.

    2008-10-15

    The use of high resolution x-ray crystal spectrometers to diagnose fusion plasmas has been limited by the poor spatial localization associated with chord integrated measurements. Taking advantage of a new x-ray imaging spectrometer concept [M. Bitter et al., Rev. Sci. Instrum. 75, 3660 (2004)], and improvements in x-ray detector technology [Ch. Broennimann et al., J. Synchrotron Radiat. 13, 120 (2006)], a spatially resolving high resolution x-ray spectrometer has been built and installed on the Alcator C-Mod tokamak. This instrument utilizes a spherically bent quartz crystal and a set of two dimensional x-ray detectors arranged in the Johann configuration [H. H.more » Johann, Z. Phys. 69, 185 (1931)] to image the entire plasma cross section with a spatial resolution of about 1 cm. The spectrometer was designed to measure line emission from H-like and He-like argon in the wavelength range 3.7 and 4.0 A with a resolving power of approximately 10 000 at frame rates up to 200 Hz. Using spectral tomographic techniques [I. Condrea, Phys. Plasmas 11, 2427 (2004)] the line integrated spectra can be inverted to infer profiles of impurity emissivity, velocity, and temperature. From these quantities it is then possible to calculate impurity density and electron temperature profiles. An overview of the instrument, analysis techniques, and example profiles are presented.« less

  20. Development of a tissue-specific ribosome profiling approach in Drosophila enables genome-wide evaluation of translational adaptations

    PubMed Central

    2017-01-01

    Recent advances in next-generation sequencing approaches have revolutionized our understanding of transcriptional expression in diverse systems. However, measurements of transcription do not necessarily reflect gene translation, the process of ultimate importance in understanding cellular function. To circumvent this limitation, biochemical tagging of ribosome subunits to isolate ribosome-associated mRNA has been developed. However, this approach, called TRAP, lacks quantitative resolution compared to a superior technology, ribosome profiling. Here, we report the development of an optimized ribosome profiling approach in Drosophila. We first demonstrate successful ribosome profiling from a specific tissue, larval muscle, with enhanced resolution compared to conventional TRAP approaches. We next validate the ability of this technology to define genome-wide translational regulation. This technology is leveraged to test the relative contributions of transcriptional and translational mechanisms in the postsynaptic muscle that orchestrate the retrograde control of presynaptic function at the neuromuscular junction. Surprisingly, we find no evidence that significant changes in the transcription or translation of specific genes are necessary to enable retrograde homeostatic signaling, implying that post-translational mechanisms ultimately gate instructive retrograde communication. Finally, we show that a global increase in translation induces adaptive responses in both transcription and translation of protein chaperones and degradation factors to promote cellular proteostasis. Together, this development and validation of tissue-specific ribosome profiling enables sensitive and specific analysis of translation in Drosophila. PMID:29194454

  1. A large area high resolution imaging detector for fast atom diffraction

    NASA Astrophysics Data System (ADS)

    Lupone, Sylvain; Soulisse, Pierre; Roncin, Philippe

    2018-07-01

    We describe a high resolution imaging detector based on a single 80 mm micro-channel-plate (MCP) and a phosphor screen mounted on a UHV flange of only 100 mm inner diameter. It relies on standard components and we describe its performance with one or two MCPs. A resolution of 80 μm rms is observed on the beam profile. At low count rate, individual impact can be pinpointed with few μm accuracy but the resolution is probably limited by the MCP channel diameter. The detector has been used to record the diffraction of fast atoms at grazing incidence on crystal surfaces (GIFAD), a technique probing the electronic density of the topmost layer only. The detector was also used to record the scattering profile during azimuthal scan of the crystal to produce triangulation curves revealing the surface crystallographic directions of molecular layers. It should also be compatible with reflection high energy electron (RHEED) experiment when fragile surfaces require a low exposure to the electron beam. The discussions on the mode of operation specific to diffraction experiments apply also to commercial detectors.

  2. Enabling Characteristics Of Optical Autocovariance Lidar For Global Wind And Aerosol Profiling

    NASA Astrophysics Data System (ADS)

    Grund, C. J.; Stephens, M.; Lieber, M.; Weimer, C.

    2008-12-01

    Systematic global wind measurements with 70 km horizontal resolution and, depending on altitude from the PBL to stratosphere, 250m-2km vertical resolution and 0.5m/s - 2 m/s velocity precision are recognized as key to the understanding and monitoring of complex climate modulations, validation of models, and improved precision and range for weather forecasts. Optical Autocovariance Wind Lidar (OAWL) is a relatively new interferometric direct detection Doppler lidar approach that promises to meet the required wind profile resolution at substantial mass, cost, and power savings, and at reduced technical risk for a space-based system meeting the most demanding velocity precision and spatial and temporal resolution requirements. A proof of concept Optical Autocovariance Wind Lidar (OAWL) has been demonstrated, and a robust multi- wavelength, field-widened (more than 100 microR) lidar system suitable for high altitude (over 16km) aircraft demonstration is under construction. Other advantages of the OAWL technique include insensitivity to aerosol/molecular backscatter mixing ratio, freedom from complex receiver/transmitter optical frequency lock loops, prospects for practical continuous large-area coverage wind profiling from GEO, and the availability of simultaneous multiple wavelength High Spectral Resolution Lidar (OA-HSRL) for aerosol identification and optical property measurements. We will discuss theory, development and demonstration status, advantages, limitations, and space-based performance of OAWL and OA-HSRL, as well as the potential for combined mission synergies.

  3. Significance of Thermal Fluvial Incision and Bedrock Transfer due to Ice Advection on Greenland Ice Sheet Topography

    NASA Astrophysics Data System (ADS)

    Crozier, J. A.; Karlstrom, L.; Yang, K.

    2017-12-01

    Ice sheet surface topography reflects a complicated combination of processes that act directly upon the surface and that are products of ice advection. Using recently-available high resolution ice velocity, imagery, ice surface elevation, and bedrock elevation data sets, we seek to determine the domain of significance of two important processes - thermal fluvial incision and transfer of bedrock topography through the ice sheet - on controlling surface topography in the ablation zone. Evaluating such controls is important for understanding how melting of the GIS surface during the melt season may be directly imprinted in topography through supraglacial drainage networks, and indirectly imprinted through its contribution to basal sliding that affects bedrock transfer. We use methods developed by (Karlstrom and Yang, 2016) to identify supraglacial stream networks on the GIS, and use high resolution surface digital elevation models as well as gridded ice velocity and melt rate models to quantify surface processes. We implement a numerically efficient Fourier domain bedrock transfer function (Gudmundsson, 2003) to predict surface topography due to ice advection over bedrock topography obtained from radar. Despite a number of simplifying assumptions, the bedrock transfer function predicts the observed ice sheet surface in most regions of the GIS with ˜90% accuracy, regardless of the presence or absence of supraglacial drainage networks. This supports the hypothesis that bedrock is the most significant driver of ice surface topography on wavelengths similar to ice thickness. Ice surface topographic asymmetry on the GIS is common, with slopes in the direction of ice flow steeper than those faced opposite to ice flow, consistent with bedrock transfer theory. At smaller wavelengths, topography consistent with fluvial erosion by surface hydrologic features is evident. We quantify the effect of ice advection versus fluvial thermal erosion on supraglacial longitudinal stream profiles, as a function of location on the GIS (hence ice thickness and background melt rate) using spectral techniques to quantify longitudinal stream profiles. This work should provide a predictive guide for which processes are responsible for ice sheet topography scales from several m (DEM resolution) up to several ice thicknesses.

  4. Depth-time interpolation of feature trends extracted from mobile microelectrode data with kernel functions.

    PubMed

    Wong, Stephen; Hargreaves, Eric L; Baltuch, Gordon H; Jaggi, Jurg L; Danish, Shabbar F

    2012-01-01

    Microelectrode recording (MER) is necessary for precision localization of target structures such as the subthalamic nucleus during deep brain stimulation (DBS) surgery. Attempts to automate this process have produced quantitative temporal trends (feature activity vs. time) extracted from mobile MER data. Our goal was to evaluate computational methods of generating spatial profiles (feature activity vs. depth) from temporal trends that would decouple automated MER localization from the clinical procedure and enhance functional localization in DBS surgery. We evaluated two methods of interpolation (standard vs. kernel) that generated spatial profiles from temporal trends. We compared interpolated spatial profiles to true spatial profiles that were calculated with depth windows, using correlation coefficient analysis. Excellent approximation of true spatial profiles is achieved by interpolation. Kernel-interpolated spatial profiles produced superior correlation coefficient values at optimal kernel widths (r = 0.932-0.940) compared to standard interpolation (r = 0.891). The choice of kernel function and kernel width resulted in trade-offs in smoothing and resolution. Interpolation of feature activity to create spatial profiles from temporal trends is accurate and can standardize and facilitate MER functional localization of subcortical structures. The methods are computationally efficient, enhancing localization without imposing additional constraints on the MER clinical procedure during DBS surgery. Copyright © 2012 S. Karger AG, Basel.

  5. Photonic instantaneous frequency measurement of wideband microwave signals.

    PubMed

    Li, Yueqin; Pei, Li; Li, Jing; Wang, Yiqun; Yuan, Jin; Ning, Tigang

    2017-01-01

    We propose a photonic system for instantaneous frequency measurement (IFM) of wideband microwave signals with a tunable measurement range and resolution based on a polarization-maintaining fiber Bragg grating (PM-FBG). Firstly, in order to be insensitive to laser power fluctuation, we aim at generating two different frequency to amplitude characteristics so that we can normalize them to obtain an amplitude comparison function (ACF). Then we encode these two different wavelengths in two perpendicular polarizations by using the PM-FBG which shows different transmission profiles at two polarizations. The ACF is capable of being adjusted by tuning polarization angle, therefore the measurement range and resolution are tunable. By theoretical analyses and simulated verification, a frequency measurement range of 0~17.2 GHz with average resolution of ±0.12 GHz can be achieved, which signifies a wide measurement range with relatively high resolution. Our system does not require large optical bandwidth for the components because the wavelength spacing can be small, making the system affordable, stable, and reliable with more consistent characteristics due to the narrowband nature of the optical parts. PM-FBG with high integration can be potentially used for more polarization manipulating systems and the use of a single-polarization dual-wavelength laser can simplify the architecture and enhance the stability.

  6. Systematic identification of anti-interferon function on hepatitis C virus genome reveals p7 as an immune evasion protein.

    PubMed

    Qi, Hangfei; Chu, Virginia; Wu, Nicholas C; Chen, Zugen; Truong, Shawna; Brar, Gurpreet; Su, Sheng-Yao; Du, Yushen; Arumugaswami, Vaithilingaraja; Olson, C Anders; Chen, Shu-Hua; Lin, Chung-Yen; Wu, Ting-Ting; Sun, Ren

    2017-02-21

    Hepatitis C virus (HCV) encodes mechanisms to evade the multilayered antiviral actions of the host immune system. Great progress has been made in elucidating the strategies HCV employs to down-regulate interferon (IFN) production, impede IFN signaling transduction, and impair IFN-stimulated gene (ISG) expression. However, there is a limited understanding of the mechanisms governing how viral proteins counteract the antiviral functions of downstream IFN effectors due to the lack of an efficient approach to identify such interactions systematically. To study the mechanisms by which HCV antagonizes the IFN responses, we have developed a high-throughput profiling platform that enables mapping of HCV sequences critical for anti-IFN function at high resolution. Genome-wide profiling performed with a 15-nt insertion mutant library of HCV showed that mutations in the p7 region conferred high levels of IFN sensitivity, which could be alleviated by the expression of WT p7 protein. This finding suggests that p7 protein of HCV has an immune evasion function. By screening a liver-specific ISG library, we identified that IFI6-16 significantly inhibits the replication of p7 mutant viruses without affecting WT virus replication. In contrast, knockout of IFI6-16 reversed the IFN hypersensitivity of p7 mutant virus. In addition, p7 was found to be coimmunoprecipitated with IFI6-16 and to counteract the function of IFI6-16 by depolarizing the mitochondria potential. Our data suggest that p7 is a critical immune evasion protein that suppresses the antiviral IFN function by counteracting the function of IFI6-16.

  7. Ga + TOF-SIMS lineshape analysis for resolution enhancement of MALDI MS spectra of a peptide mixture

    NASA Astrophysics Data System (ADS)

    Malyarenko, D. I.; Chen, H.; Wilkerson, A. L.; Tracy, E. R.; Cooke, W. E.; Manos, D. M.; Sasinowski, M.; Semmes, O. J.

    2004-06-01

    The use of mass spectrometry to obtain molecular profiles indicative of alteration of concentrations of peptides in body fluids is currently the subject of intense investigation. For surface-based time-of-flight mass spectrometry the reliability and specificity of such profiling methods depend both on the resolution of the measuring instrument and on the preparation of samples. The present work is a part of a program to use Ga + beam TOF-SIMS alone, and as an adjunct to MALDI, in the development of reliable protein and peptide markers for diseases. Here, we describe techniques to prepare samples of relatively high-mass peptides, which serve as calibration standards and proxies for biomarkers. These are: Arg8-vasopressin, human angiotensin II, and somatostatin. Their TOF-SIMS spectra show repeatable characteristic features, with mass resolution exceeding 2000, including parent peaks and chemical adducts. The lineshape analysis for high-resolution parent peaks is shown to be useful for filter construction and deconvolution of inferior resolution SELDI-TOF spectra of calibration peptide mixture.

  8. High resolution main-ion charge exchange spectroscopy in the DIII-D H-mode pedestal

    DOE PAGES

    Grierson, B. A.; Burrell, K. H.; Chrystal, C.; ...

    2016-09-12

    A new high spatial resolution main-ion (deuterium) charge-exchange spectroscopy system covering the tokamak boundary region has been installed on the DIII-D tokamak. Sixteen new edge main-ion charge-exchange recombination sightlines have been combined with nineteen impurity sightlines in a tangentially viewing geometry on the DIII-D midplane with an interleaving design that achieves 8 mm inter-channel radial resolution for detailed profiles of main-ion temperature, velocity, charge-exchange emission, and neutral beam emission. At the plasma boundary, we find a strong enhancement of the main-ion toroidal velocity that exceeds the impurity velocity by a factor of two. Furthermore, the unique combination of experimentally measuredmore » main-ion and impurity profiles provides a powerful quasi-neutrality constraint for reconstruction of tokamak H-mode pedestals.« less

  9. iCLIP reveals the function of hnRNP particles in splicing at individual nucleotide resolution

    PubMed Central

    König, Julian; Zarnack, Kathi; Rot, Gregor; Curk, Tomaž; Kayikci, Melis; Zupan, Blaž; Turner, Daniel J.; Luscombe, Nicholas M.; Ule, Jernej

    2010-01-01

    In the nucleus of eukaryotic cells, nascent transcripts are associated with heterogeneous nuclear ribonucleoprotein (hnRNP) particles that are nucleated by hnRNP C. Despite their abundance however, it remained unclear whether these particles control pre-mRNA processing. Here, we developed individual-nucleotide resolution UV-cross-linking and immunoprecipitation (iCLIP) to study the role of hnRNP C in splicing regulation. iCLIP data demonstrate that hnRNP C recognizes uridine tracts with a defined long-range spacing consistent with hnRNP particle organization. hnRNP particles assemble on both introns and exons, but remain generally excluded from splice sites. Integration of transcriptome-wide iCLIP data and alternative splicing profiles into an ‘RNA map’ indicates how the positioning of hnRNP particles determines their effect on inclusion of alternative exons. The ability of high-resolution iCLIP data to provide insights into the mechanism of this regulation holds promise for studies of other higher-order ribonucleoprotein complexes. PMID:20601959

  10. Proteomic technology for biomarker profiling in cancer: an update*

    PubMed Central

    Alaoui-Jamali, Moulay A.; Xu, Ying-jie

    2006-01-01

    The progress in the understanding of cancer progression and early detection has been slow and frustrating due to the complex multifactorial nature and heterogeneity of the cancer syndrome. To date, no effective treatment is available for advanced cancers, which remain a major cause of morbidity and mortality. Clearly, there is urgent need to unravel novel biomarkers for early detection. Most of the functional information of the cancer-associated genes resides in the proteome. The later is an exceptionally complex biological system involving several proteins that function through posttranslational modifications and dynamic intermolecular collisions with partners. These protein complexes can be regulated by signals emanating from cancer cells, their surrounding tissue microenvironment, and/or from the host. Some proteins are secreted and/or cleaved into the extracellular milieu and may represent valuable serum biomarkers for diagnosis purpose. It is estimated that the cancer proteome may include over 1.5 million proteins as a result of posttranslational processing and modifications. Such complexity clearly highlights the need for ultra-high resolution proteomic technology for robust quantitative protein measurements and data acquisition. This review is to update the current research efforts in high-resolution proteomic technology for discovery and monitoring cancer biomarkers. PMID:16625706

  11. Inorganic material profiling using Arn+ cluster: Can we achieve high quality profiles?

    NASA Astrophysics Data System (ADS)

    Conard, T.; Fleischmann, C.; Havelund, R.; Franquet, A.; Poleunis, C.; Delcorte, A.; Vandervorst, W.

    2018-06-01

    Retrieving molecular information by sputtering of organic systems has been concretized in the last years due to the introduction of sputtering by large gas clusters which drastically eliminated the compound degradation during the analysis and has led to strong improvements in depth resolution. Rapidly however, a limitation was observed for heterogeneous systems where inorganic layers or structures needed to be profiled concurrently. As opposed to organic material, erosion of the inorganic layer appears very difficult and prone to many artefacts. To shed some light on these problems we investigated a simple system consisting of aluminum delta layer(s) buried in a silicon matrix in order to define the most favorable beam conditions for practical analysis. We show that counterintuitive to the small energy/atom used and unlike monoatomic ion sputtering, the information depth obtained with large cluster ions is typically very large (∼10 nm) and that this can be caused both by a large roughness development at early stages of the sputtering process and by a large mixing zone. As a consequence, a large deformation of the Al intensity profile is observed. Using sample rotation during profiling significantly improves the depth resolution while sample temperature has no significant effect. The determining parameter for high depth resolution still remains the total energy of the cluster instead of the energy per atom in the cluster.

  12. Vertical Profiles of Aerosol Volume from High Spectral Resolution Infrared Transmission Measurements: Results

    NASA Technical Reports Server (NTRS)

    Eldering, Annmarie; Kahn, Brian H.; Mills, Franklin P.; Irion, Fredrick W.; Steele, Helen M.; Gunson, Michael R.

    2004-01-01

    The high-resolution infrared absorption spectra of the Atmospheric Trace Molecule Spectroscopy (ATMOS) experiment are utilized to derive vertical profiles of sulfate aerosol volume density and extinction coefficient. Following the eruption of Mt. Pinatubo in June 1991, the ATMOS spectra obtained on three Space Shuttle missions (1992, 1993, and 1994) provide a unique opportunity to study the global stratospheric sulfate aerosol layer shortly after a major volcanic eruption and periodically during the decay phase. Synthetic sulfate aerosol spectra are fit to the observed spectra, and a global fitting inversion routine is used to derive vertical profiles of sulfate aerosol volume density. Vertical profiles of sulfate aerosol volume density for the three missions over portions of the globe are presented, with the peak in aerosol volume density occurring from as low as 10 km (polar latitudes) to as high as 20 km (subtropical latitudes). Derived aerosol volume density is as high as 2-3.5 (mu)m(exp 3) per cubic centimeter +/-10% in 1992, decreasing to 0.2-0.5 (mu)m(exp 3) per cubic centimeter +/-20% in 1994, in agreement with other experiments. Vertical extinction profiles derived from ATMOS are compared with profiles from Improved Stratospheric And Mesospheric Sounder (ISAMS) and Cryogenic Limb Array Etalon Spectrometer (CLAES) that coincide in space and time and show good general agreement. The uncertainty of the ATMOS vertical profiles is similar to CLAES and consistently smaller than ISAMS at similar altitudes.

  13. Satellite-derived vertical profiles of temperature and dew point for mesoscale weather forecast

    NASA Astrophysics Data System (ADS)

    Masselink, Thomas; Schluessel, P.

    1995-12-01

    Weather forecast-models need spatially high resolutioned vertical profiles of temperature and dewpoint for their initialisation. These profiles can be supplied by a combination of data from the Tiros-N Operational Vertical Sounder (TOVS) and the imaging Advanced Very High Resolution Radiometer (AVHRR) on board the NOAA polar orbiting sate!- lites. In cloudy cases the profiles derived from TOVS data only are of insufficient accuracy. The stanthrd deviations from radiosonde ascents or numerical weather analyses likely exceed 2 K in temperature and 5Kin dewpoint profiles. It will be shown that additional cloud information as retrieved from AVHIRR allows a significant improvement in theaccuracy of vertical profiles. The International TOVS Processing Package (ITPP) is coupled to an algorithm package called AVHRR Processing scheme Over cLouds, Land and Ocean (APOLLO) where parameters like cloud fraction and cloud-top temperature are determined with higher accuracy than obtained from TOVS retrieval alone. Furthermore, a split-window technique is applied to the cloud-free AVHRR imagery in order to derive more accurate surface temperatures than can be obtained from the pure TOVS retrieval. First results of the impact of AVHRR cloud detection on the quality of the profiles are presented. The temperature and humidity profiles of different retrieval approaches are validated against analyses of the European Centre for Medium-Range Weatherforecasts.

  14. Spatial-Resolution Cell Type Proteome Profiling of Cancer Tissue by Fully Integrated Proteomics Technology.

    PubMed

    Xu, Ruilian; Tang, Jun; Deng, Quantong; He, Wan; Sun, Xiujie; Xia, Ligang; Cheng, Zhiqiang; He, Lisheng; You, Shuyuan; Hu, Jintao; Fu, Yuxiang; Zhu, Jian; Chen, Yixin; Gao, Weina; He, An; Guo, Zhengyu; Lin, Lin; Li, Hua; Hu, Chaofeng; Tian, Ruijun

    2018-05-01

    Increasing attention has been focused on cell type proteome profiling for understanding the heterogeneous multicellular microenvironment in tissue samples. However, current cell type proteome profiling methods need large amounts of starting materials which preclude their application to clinical tumor specimens with limited access. Here, by seamlessly combining laser capture microdissection and integrated proteomics sample preparation technology SISPROT, specific cell types in tumor samples could be precisely dissected with single cell resolution and processed for high-sensitivity proteome profiling. Sample loss and contamination due to the multiple transfer steps are significantly reduced by the full integration and noncontact design. H&E staining dyes which are necessary for cell type investigation could be selectively removed by the unique two-stage design of the spintip device. This easy-to-use proteome profiling technology achieved high sensitivity with the identification of more than 500 proteins from only 0.1 mm 2 and 10 μm thickness colon cancer tissue section. The first cell type proteome profiling of four cell types from one colon tumor and surrounding normal tissue, including cancer cells, enterocytes, lymphocytes, and smooth muscle cells, was obtained. 5271, 4691, 4876, and 2140 protein groups were identified, respectively, from tissue section of only 5 mm 2 and 10 μm thickness. Furthermore, spatially resolved proteome distribution profiles of enterocytes, lymphocytes, and smooth muscle cells on the same tissue slices and across four consecutive sections with micrometer distance were successfully achieved. This fully integrated proteomics technology, termed LCM-SISPROT, is therefore promising for spatial-resolution cell type proteome profiling of tumor microenvironment with a minute amount of clinical starting materials.

  15. Combined Atmospheric and Ocean Profiling from an Airborne High Spectral Resolution Lidar

    NASA Astrophysics Data System (ADS)

    Hair, Johnathan; Hostetler, Chris; Hu, Yongxiang; Behrenfeld, Michael; Butler, Carolyn; Harper, David; Hare, Rich; Berkoff, Timothy; Cook, Antony; Collins, James; Stockley, Nicole; Twardowski, Michael; Cetinić, Ivona; Ferrare, Richard; Mack, Terry

    2016-06-01

    First of its kind combined atmospheric and ocean profile data were collected by the recently upgraded NASA Langley Research Center's (LaRC) High Spectral Resolution Lidar (HSRL-1) during the 17 July - 7 August 2014 Ship-Aircraft Bio-Optical Research Experiment (SABOR). This mission sampled over a region that covered the Gulf of Maine, open-ocean near Bermuda, and coastal waters from Virginia to Rhode Island. The HSRL-1 and the Research Scanning Polarimeter from NASA Goddard Institute for Space Studies collected data onboard the NASA LaRC King Air aircraft and flight operations were closely coordinated with the Research Vessel Endeavor that made in situ ocean optical measurements. The lidar measurements provided profiles of atmospheric backscatter and particulate depolarization at 532nm, 1064nm, and extinction (532nm) from approximately 9km altitude. In addition, for the first time HSRL seawater backscatter, depolarization, and diffuse attenuation data at 532nm were collected and compared to both the ship measurements and the Moderate Resolution Imaging Spectrometer (NASA MODIS-Aqua) satellite ocean retrievals.

  16. Gene-Specific Substitution Profiles Describe the Types and Frequencies of Amino Acid Changes during Antibody Somatic Hypermutation.

    PubMed

    Sheng, Zizhang; Schramm, Chaim A; Kong, Rui; Mullikin, James C; Mascola, John R; Kwong, Peter D; Shapiro, Lawrence

    2017-01-01

    Somatic hypermutation (SHM) plays a critical role in the maturation of antibodies, optimizing recognition initiated by recombination of V(D)J genes. Previous studies have shown that the propensity to mutate is modulated by the context of surrounding nucleotides and that SHM machinery generates biased substitutions. To investigate the intrinsic mutation frequency and substitution bias of SHMs at the amino acid level, we analyzed functional human antibody repertoires and developed mGSSP (method for gene-specific substitution profile), a method to construct amino acid substitution profiles from next-generation sequencing-determined B cell transcripts. We demonstrated that these gene-specific substitution profiles (GSSPs) are unique to each V gene and highly consistent between donors. We also showed that the GSSPs constructed from functional antibody repertoires are highly similar to those constructed from antibody sequences amplified from non-productively rearranged passenger alleles, which do not undergo functional selection. This suggests the types and frequencies, or mutational space, of a majority of amino acid changes sampled by the SHM machinery to be well captured by GSSPs. We further observed the rates of mutational exchange between some amino acids to be both asymmetric and context dependent and to correlate weakly with their biochemical properties. GSSPs provide an improved, position-dependent alternative to standard substitution matrices, and can be utilized to developing software for accurately modeling the SHM process. GSSPs can also be used for predicting the amino acid mutational space available for antigen-driven selection and for understanding factors modulating the maturation pathways of antibody lineages in a gene-specific context. The mGSSP method can be used to build, compare, and plot GSSPs; we report the GSSPs constructed for 69 common human V genes (DOI: 10.6084/m9.figshare.3511083) and provide high-resolution logo plots for each (DOI: 10.6084/m9.figshare.3511085).

  17. Non-Cooperative Target Recognition by Means of Singular Value Decomposition Applied to Radar High Resolution Range Profiles †

    PubMed Central

    López-Rodríguez, Patricia; Escot-Bocanegra, David; Fernández-Recio, Raúl; Bravo, Ignacio

    2015-01-01

    Radar high resolution range profiles are widely used among the target recognition community for the detection and identification of flying targets. In this paper, singular value decomposition is applied to extract the relevant information and to model each aircraft as a subspace. The identification algorithm is based on angle between subspaces and takes place in a transformed domain. In order to have a wide database of radar signatures and evaluate the performance, simulated range profiles are used as the recognition database while the test samples comprise data of actual range profiles collected in a measurement campaign. Thanks to the modeling of aircraft as subspaces only the valuable information of each target is used in the recognition process. Thus, one of the main advantages of using singular value decomposition, is that it helps to overcome the notable dissimilarities found in the shape and signal-to-noise ratio between actual and simulated profiles due to their difference in nature. Despite these differences, the recognition rates obtained with the algorithm are quite promising. PMID:25551484

  18. N-body simulations for f(R) gravity using a self-adaptive particle-mesh code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao Gongbo; Koyama, Kazuya; Li Baojiu

    2011-02-15

    We perform high-resolution N-body simulations for f(R) gravity based on a self-adaptive particle-mesh code MLAPM. The chameleon mechanism that recovers general relativity on small scales is fully taken into account by self-consistently solving the nonlinear equation for the scalar field. We independently confirm the previous simulation results, including the matter power spectrum, halo mass function, and density profiles, obtained by Oyaizu et al.[Phys. Rev. D 78, 123524 (2008)] and Schmidt et al.[Phys. Rev. D 79, 083518 (2009)], and extend the resolution up to k{approx}20 h/Mpc for the measurement of the matter power spectrum. Based on our simulation results, we discussmore » how the chameleon mechanism affects the clustering of dark matter and halos on full nonlinear scales.« less

  19. Electrical resistivity imaging in transmission between surface and underground tunnel for fault characterization

    NASA Astrophysics Data System (ADS)

    Lesparre, N.; Boyle, A.; Grychtol, B.; Cabrera, J.; Marteau, J.; Adler, A.

    2016-05-01

    Electrical resistivity images supply information on sub-surface structures and are classically performed to characterize faults geometry. Here we use the presence of a tunnel intersecting a regional fault to inject electrical currents between surface and the tunnel to improve the image resolution at depth. We apply an original methodology for defining the inversion parametrization based on pilot points to better deal with the heterogeneous sounding of the medium. An increased region of high spatial resolution is shown by analysis of point spread functions as well as inversion of synthetics. Such evaluations highlight the advantages of using transmission measurements by transferring a few electrodes from the main profile to increase the sounding depth. Based on the resulting image we propose a revised structure for the medium surrounding the Cernon fault supported by geological observations and muon flux measurements.

  20. Small scale clustering of late forming dark matter

    NASA Astrophysics Data System (ADS)

    Agarwal, S.; Corasaniti, P.-S.; Das, S.; Rasera, Y.

    2015-09-01

    We perform a study of the nonlinear clustering of matter in the late-forming dark matter (LFDM) scenario in which dark matter results from the transition of a nonminimally coupled scalar field from radiation to collisionless matter. A distinct feature of this model is the presence of a damped oscillatory cutoff in the linear matter power spectrum at small scales. We use a suite of high-resolution N-body simulations to study the imprints of LFDM on the nonlinear matter power spectrum, the halo mass and velocity functions and the halo density profiles. The model largely satisfies high-redshift matter power spectrum constraints from Lyman-α forest measurements, while it predicts suppressed abundance of low-mass halos (˜109- 1010 h-1 M⊙ ) at all redshifts compared to a vanilla Λ CDM model. The analysis of the LFDM halo velocity function shows a better agreement than the Λ CDM prediction with the observed abundance of low-velocity galaxies in the local volume. Halos with mass M ≳1011 h-1 M⊙ show minor departures of the density profiles from Λ CDM expectations, while smaller-mass halos are less dense, consistent with the fact that they form later than their Λ CDM counterparts.

  1. OMPS Limb Profiler: Extending SAGE and CALIPSO Stratospheric Aerosol Records

    NASA Astrophysics Data System (ADS)

    Taha, G.; Bhartia, P. K.; Chen, Z.; Xu, P.; Loughman, R. P.; Jaross, G.

    2017-12-01

    The OMPS LP instrument is designed to provide high vertical resolution ozone and aerosol profiles from measurements of the scattered solar radiation in the 290-1000 nm spectral range. It collected its first Earth limb measurement in January 10, 2012, and continues to provide daily global measurements of ozone and aerosol profiles from the cloud top up to 60 km and 40 km respectively. The relatively high vertical and spatial sampling allow detection and tracking periodic events when aerosol particles are injected into the stratosphere, such as volcanic eruptions or meteor explosions. OMPS LP can extend the long-term records of stratospheric aerosol at high vertical resolution produced by variety of sensors, such as SAGEII, GOMOS, OSIRIS and CALIPSO. Most of these instruments ceased to operate or well beyond their designed lifetime. After an absence of over a decade, SAGE III/ISS was launched earlier this year and expected to resume the high quality aerosol data record. OMPS LP is also schedule to fly on JPSS-2 and 3. In this study we will examine the suitability of using LP profiles to continue the stratospheric aerosol records beyond SAGE, OSIRIS, and CALIPSO. We will compare OMPS LP released V1.0 aerosol extinction measurements to OSIRIS and CALIPSO. Initial results shows good agreement with OSIRIS measurements to within 20%, with larger bias in the southern hemisphere. To test the effect of the assumed aerosol size model (ASD) and phase function, we compare measurements taken at similar location and time with different viewing geometry. Comparison of ascending and descending aerosol extinction daily zonal means at high latitudes shows systematic bias that is well correlated with the solar scattering angle, indicating ASD uncertainties up to 30%. In addition, results showing latitudinal, and temporal variability of stratospheric aerosol extinction and optical depth for the three instruments will also be presented and compared. We will also present OMPS LP aerosol observations of the dispersal of volcanic aerosols in the stratosphere following the eruptions of Kelut and Calbuco in 2014 and 2015 respectively.

  2. Technical Directions In High Resolution Non-Impact Printers

    NASA Astrophysics Data System (ADS)

    Dunn, S. Thomas; Dunn, Patrice M.

    1987-04-01

    There are several factors to consider when addressing the issue of non-impact printer resolution. One will find differences between the imaging resolution and the final output resolution, and most assuradly differences exist between the advertised and actual resolution of many of these systems. Beyond that some of the technical factors that effect the resolution of a system in-clude: . Scan Line Density . Overlap . Spot Size . Energy Profile . Symmetry of Imaging Generally speaking, the user of graphic arts equipment, is best advised to view output to determine the degree of acceptable quality.

  3. Analysis of tracheid development in suppressed-growth Ponderosa Pine using the FPL ring profiler

    Treesearch

    C. Tim Scott; David W. Vahey

    2012-01-01

    The Ring Profiler was developed to examine the cross-sectional morphology of wood tracheids in a 12.5-mm core sample. The instrument integrates a specially designed staging apparatus with an optical imaging system to obtain high-contrast, high-resolution images containing about 200-500 tracheids. These images are further enhanced and analyzed to extract tracheid cross-...

  4. Airborne Lidar Measurements of Aerosol Optical Properties During SAFARI-2000

    NASA Technical Reports Server (NTRS)

    McGill, M. J.; Hlavka, D. L.; Hart, W. D.; Welton, E. J.; Campbell, J. R.; Starr, David OC. (Technical Monitor)

    2002-01-01

    The Cloud Physics Lidar (CPL) operated onboard the NASA ER-2 high altitude aircraft during the SAFARI-2000 field campaign. The CPL provided high spatial resolution measurements of aerosol optical properties at both 1064 nm and 532 nm. We present here results of planetary boundary layer (PBL) aerosol optical depth analysis and profiles of aerosol extinction. Variation of optical depth and extinction are examined as a function of regional location. The wide-scale aerosol mapping obtained by the CPL is a unique data set that will aid in future studies of aerosol transport. Comparisons between the airborne CPL and ground-based MicroPulse Lidar Network (MPL-Net) sites are shown to have good agreement.

  5. The technology and biology of single-cell RNA sequencing.

    PubMed

    Kolodziejczyk, Aleksandra A; Kim, Jong Kyoung; Svensson, Valentine; Marioni, John C; Teichmann, Sarah A

    2015-05-21

    The differences between individual cells can have profound functional consequences, in both unicellular and multicellular organisms. Recently developed single-cell mRNA-sequencing methods enable unbiased, high-throughput, and high-resolution transcriptomic analysis of individual cells. This provides an additional dimension to transcriptomic information relative to traditional methods that profile bulk populations of cells. Already, single-cell RNA-sequencing methods have revealed new biology in terms of the composition of tissues, the dynamics of transcription, and the regulatory relationships between genes. Rapid technological developments at the level of cell capture, phenotyping, molecular biology, and bioinformatics promise an exciting future with numerous biological and medical applications. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. A High-Resolution LC-MS-Based Secondary Metabolite Fingerprint Database of Marine Bacteria

    PubMed Central

    Lu, Liang; Wang, Jijie; Xu, Ying; Wang, Kailing; Hu, Yingwei; Tian, Renmao; Yang, Bo; Lai, Qiliang; Li, Yongxin; Zhang, Weipeng; Shao, Zongze; Lam, Henry; Qian, Pei-Yuan

    2014-01-01

    Marine bacteria are the most widely distributed organisms in the ocean environment and produce a wide variety of secondary metabolites. However, traditional screening for bioactive natural compounds is greatly hindered by the lack of a systematic way of cataloguing the chemical profiles of bacterial strains found in nature. Here we present a chemical fingerprint database of marine bacteria based on their secondary metabolite profiles, acquired by high-resolution LC-MS. Till now, 1,430 bacterial strains spanning 168 known species collected from different marine environments were cultured and profiled. Using this database, we demonstrated that secondary metabolite profile similarity is approximately, but not always, correlated with taxonomical similarity. We also validated the ability of this database to find species-specific metabolites, as well as to discover known bioactive compounds from previously unknown sources. An online interface to this database, as well as the accompanying software, is provided freely for the community to use. PMID:25298017

  7. Towards real-time metabolic profiling of a biopsy specimen during a surgical operation by 1H high resolution magic angle spinning nuclear magnetic resonance: a case report

    PubMed Central

    2012-01-01

    Introduction Providing information on cancerous tissue samples during a surgical operation can help surgeons delineate the limits of a tumoral invasion more reliably. Here, we describe the use of metabolic profiling of a colon biopsy specimen by high resolution magic angle spinning nuclear magnetic resonance spectroscopy to evaluate tumoral invasion during a simulated surgical operation. Case presentation Biopsy specimens (n = 9) originating from the excised right colon of a 66-year-old Caucasian women with an adenocarcinoma were automatically analyzed using a previously built statistical model. Conclusions Metabolic profiling results were in full agreement with those of a histopathological analysis. The time-response of the technique is sufficiently fast for it to be used effectively during a real operation (17 min/sample). Metabolic profiling has the potential to become a method to rapidly characterize cancerous biopsies in the operation theater. PMID:22257563

  8. Observations of winds with an incoherent lidar detector

    NASA Technical Reports Server (NTRS)

    Abreu, Vincent J.; Barnes, John E.; Hays, Paul B.

    1992-01-01

    A Fabry-Perot interferometer and image-plane detector system to be used as a receiver for a Doppler lidar have been developed. This system incorporates the latest technology in multichannel detectors, and it is an important step toward the development of operational wind profiler systems for the atmosphere. The instrumentation includes a stable high-resolution optically contacted plane etalon and a multiring anode detector to scan the image plane of the Fabry-Perot interferometer spatially. The high wavelength resolution provided by the interferometer permits the aerosol and molecular components of the backscattered signal to be distinguished, and the Doppler shift of either component can then be used to determine the wind altitude profile. The receiver performance has been tested by measuring the wind profile in the boundary layer. The Fabry-Perot interferometer and image-plane detector characteristics are described and sample measurements are presented. The potential of the system as a wind profiler in the troposphere, the stratosphere, and the mesosphere is also considered.

  9. High Temporal Resolution Tropospheric Wind Profile Observations at NASA Kennedy Space Center During Hurricane Irma

    NASA Technical Reports Server (NTRS)

    Decker, Ryan K.; Barbre, Robert E., Jr.; Huddleston, Lisa; Brauer, Thomas; Wilfong, Timothy

    2018-01-01

    The NASA Kennedy Space Center (KSC) operates a 48-MHz Tropospheric/Stratospheric Doppler Radar Wind Profiler (TDRWP) on a continual basis generating wind profiles between 2-19 km in the support of space launch vehicle operations. A benefit of the continual operability of the system is the ability to provide unique observations of severe weather events such as hurricanes. Over the past two Atlantic Hurricane seasons the TDRWP has made high temporal resolution wind profile observations of Hurricane Irma in 2017 and Hurricane Matthew in 2016. Hurricane Irma was responsible for power outages to approximately 2/3 of Florida's population during its movement over the state(Stein,2017). An overview of the TDRWP system configuration, brief summary of Hurricanes Irma and Matthew storm track in proximity to KSC, characteristics of the tropospheric wind observations from the TDRWP during both events, and discussion of the dissemination of TDRWP data during the event will be presented.

  10. Spread-Spectrum Beamforming and Clutter Filtering for Plane-Wave Color Doppler Imaging.

    PubMed

    Mansour, Omar; Poepping, Tamie L; Lacefield, James C

    2016-07-21

    Plane-wave imaging is desirable for its ability to achieve high frame rates, allowing the capture of fast dynamic events and continuous Doppler data. In most implementations of plane-wave imaging, multiple low-resolution images from different plane wave tilt angles are compounded to form a single high-resolution image, thereby reducing the frame rate. Compounding improves the lateral beam profile in the high-resolution image, but it also acts as a low-pass filter in slow time that causes attenuation and aliasing of signals with high Doppler shifts. This paper introduces a spread-spectrum color Doppler imaging method that produces high-resolution images without the use of compounding, thereby eliminating the tradeoff between beam quality, maximum unaliased Doppler frequency, and frame rate. The method uses a long, random sequence of transmit angles rather than a linear sweep of plane wave directions. The random angle sequence randomizes the phase of off-focus (clutter) signals, thereby spreading the clutter power in the Doppler spectrum, while keeping the spectrum of the in-focus signal intact. The ensemble of randomly tilted low-resolution frames also acts as the Doppler ensemble, so it can be much longer than a conventional linear sweep, thereby improving beam formation while also making the slow-time Doppler sampling frequency equal to the pulse repetition frequency. Experiments performed using a carotid artery phantom with constant flow demonstrate that the spread-spectrum method more accurately measures the parabolic flow profile of the vessel and outperforms conventional plane-wave Doppler in both contrast resolution and estimation of high flow velocities. The spread-spectrum method is expected to be valuable for Doppler applications that require measurement of high velocities at high frame rates.

  11. Effective resolution concepts for lidar observations

    NASA Astrophysics Data System (ADS)

    Iarlori, M.; Madonna, F.; Rizi, V.; Trickl, T.; Amodeo, A.

    2015-05-01

    Since its first establishment in 2000, EARLINET (European Aerosol Research Lidar NETwork) has been devoted to providing, through its database, exclusively quantitative aerosol properties, such as aerosol backscatter and aerosol extinction coefficients, the latter only for stations able to retrieve it independently (from Raman or High Spectral Resolution Lidars). As these coefficients are provided in terms of vertical profiles, EARLINET database must also include the details on the range resolution of the submitted data. In fact, the algorithms used in the lidar data analysis often alter the spectral content of the data, mainly working as low pass filters with the purpose of noise damping. Low pass filters are mathematically described by the Digital Signal Processing (DSP) theory as a convolution sum. As a consequence, this implies that each filter's output, at a given range (or time) in our case, will be the result of a linear combination of several lidar input data relative to different ranges (times) before and after the given range (time): a first hint of loss of resolution of the output signal. The application of filtering processes will also always distort the underlying true profile whose relevant features, like aerosol layers, will then be affected both in magnitude and in spatial extension. Thus, both the removal of noise and the spatial distortion of the true profile produce a reduction of the range resolution. This paper provides the determination of the effective resolution (ERes) of the vertical profiles of aerosol properties retrieved starting from lidar data. Large attention has been addressed to provide an assessment of the impact of low-pass filtering on the effective range resolution in the retrieval procedure.

  12. Across-Platform Imputation of DNA Methylation Levels Incorporating Nonlocal Information Using Penalized Functional Regression.

    PubMed

    Zhang, Guosheng; Huang, Kuan-Chieh; Xu, Zheng; Tzeng, Jung-Ying; Conneely, Karen N; Guan, Weihua; Kang, Jian; Li, Yun

    2016-05-01

    DNA methylation is a key epigenetic mark involved in both normal development and disease progression. Recent advances in high-throughput technologies have enabled genome-wide profiling of DNA methylation. However, DNA methylation profiling often employs different designs and platforms with varying resolution, which hinders joint analysis of methylation data from multiple platforms. In this study, we propose a penalized functional regression model to impute missing methylation data. By incorporating functional predictors, our model utilizes information from nonlocal probes to improve imputation quality. Here, we compared the performance of our functional model to linear regression and the best single probe surrogate in real data and via simulations. Specifically, we applied different imputation approaches to an acute myeloid leukemia dataset consisting of 194 samples and our method showed higher imputation accuracy, manifested, for example, by a 94% relative increase in information content and up to 86% more CpG sites passing post-imputation filtering. Our simulated association study further demonstrated that our method substantially improves the statistical power to identify trait-associated methylation loci. These findings indicate that the penalized functional regression model is a convenient and valuable imputation tool for methylation data, and it can boost statistical power in downstream epigenome-wide association study (EWAS). © 2016 WILEY PERIODICALS, INC.

  13. Universal Critical Dynamics in High Resolution Neuronal Avalanche Data

    NASA Astrophysics Data System (ADS)

    Friedman, Nir; Ito, Shinya; Brinkman, Braden A. W.; Shimono, Masanori; DeVille, R. E. Lee; Dahmen, Karin A.; Beggs, John M.; Butler, Thomas C.

    2012-05-01

    The tasks of neural computation are remarkably diverse. To function optimally, neuronal networks have been hypothesized to operate near a nonequilibrium critical point. However, experimental evidence for critical dynamics has been inconclusive. Here, we show that the dynamics of cultured cortical networks are critical. We analyze neuronal network data collected at the individual neuron level using the framework of nonequilibrium phase transitions. Among the most striking predictions confirmed is that the mean temporal profiles of avalanches of widely varying durations are quantitatively described by a single universal scaling function. We also show that the data have three additional features predicted by critical phenomena: approximate power law distributions of avalanche sizes and durations, samples in subcritical and supercritical phases, and scaling laws between anomalous exponents.

  14. Distributed acoustic sensing: how to make the best out of the Rayleigh-backscattered energy?

    NASA Astrophysics Data System (ADS)

    Eyal, A.; Gabai, H.; Shpatz, I.

    2017-04-01

    Coherent fading noise (also known as speckle noise) affects the SNR and sensitivity of Distributed Acoustic Sensing (DAS) systems and makes them random processes of position and time. As in speckle noise, the statistical distribution of DAS SNR is particularly wide and its standard deviation (STD) roughly equals its mean (σSNR/ ≍ 0.89). Trading resolution for SNR may improve the mean SNR but not necessarily narrow its distribution. Here a new approach to achieve both SNR improvement (by sacrificing resolution) and narrowing of the distribution is introduced. The method is based on acquiring high resolution complex backscatter profiles of the sensing fiber, using them to compute complex power profiles of the fiber which retain phase variation information and filtering of the power profiles. The approach is tested via a computer simulation and demonstrates distribution narrowing up to σSNR/ < 0.2.

  15. High-Resolution Functional Mapping of the Venezuelan Equine Encephalitis Virus Genome by Insertional Mutagenesis and Massively Parallel Sequencing

    DTIC Science & Technology

    2010-10-14

    High-Resolution Functional Mapping of the Venezuelan Equine Encephalitis Virus Genome by Insertional Mutagenesis and Massively Parallel Sequencing...Venezuelan equine encephalitis virus (VEEV) genome. We initially used a capillary electrophoresis method to gain insight into the role of the VEEV...Smith JM, Schmaljohn CS (2010) High-Resolution Functional Mapping of the Venezuelan Equine Encephalitis Virus Genome by Insertional Mutagenesis and

  16. Near-Continuous Profiling of Temperature, Moisture, and Atmospheric Stability Using the Atmospheric Emitted Radiance Interferometer (AERI).

    NASA Astrophysics Data System (ADS)

    Feltz, W. F.; Smith, W. L.; Howell, H. B.; Knuteson, R. O.; Woolf, H.; Revercomb, H. E.

    2003-05-01

    The Department of Energy Atmospheric Radiation Measurement Program (ARM) has funded the development and installation of five ground-based atmospheric emitted radiance interferometer (AERI) systems at the Southern Great Plains (SGP) site. The purpose of this paper is to provide an overview of the AERI instrument, improvement of the AERI temperature and moisture retrieval technique, new profiling utility, and validation of high-temporal-resolution AERI-derived stability indices important for convective nowcasting. AERI systems have been built at the University of Wisconsin-Madison, Madison, Wisconsin, and deployed in the Oklahoma-Kansas area collocated with National Oceanic and Atmospheric Administration 404-MHz wind profilers at Lamont, Vici, Purcell, and Morris, Oklahoma, and Hillsboro, Kansas. The AERI systems produce absolutely calibrated atmospheric infrared emitted radiances at one-wavenumber resolution from 3 to 20 m at less than 10-min temporal resolution. The instruments are robust, are automated in the field, and are monitored via the Internet in near-real time. The infrared radiances measured by the AERI systems contain meteorological information about the vertical structure of temperature and water vapor in the planetary boundary layer (PBL; 0-3 km). A mature temperature and water vapor retrieval algorithm has been developed over a 10-yr period that provides vertical profiles at less than 10-min temporal resolution to 3 km in the PBL. A statistical retrieval is combined with the hourly Geostationary Operational Environmental Satellite (GOES) sounder water vapor or Rapid Update Cycle, version 2, numerical weather prediction (NWP) model profiles to provide a nominal hybrid first guess of temperature and moisture to the AERI physical retrieval algorithm. The hourly satellite or NWP data provide a best estimate of the atmospheric state in the upper PBL; the AERI radiances provide the mesoscale temperature and moisture profile correction in the PBL to the large-scale GOES and NWP model profiles at high temporal resolution. The retrieval product has been named AERIplus because the first guess used for the mathematical physical inversion uses an optimal combination of statistical climatological, satellite, and numerical model data to provide a best estimate of the atmospheric state. The AERI physical retrieval algorithm adjusts the boundary layer temperature and moisture structure provided by the hybrid first guess to fit the observed AERI downwelling radiance measurement. This provides a calculated AERI temperature and moisture profile using AERI-observed radiances `plus' the best-known atmospheric state above the boundary layer using NWP or satellite data. AERIplus retrieval accuracy for temperature has been determined to be better than 1 K, and water vapor retrieval accuracy is approximately 5% in absolute water vapor when compared with well-calibrated radiosondes from the surface to an altitude of 3 km. Because AERI can monitor the thermodynamics where the atmosphere usually changes most rapidly, atmospheric stability tendency information is readily available from the system. High-temporal-resolution retrieval of convective available potential energy, convective inhibition, and PBL equivalent potential temperature e are provided in near-real time from all five AERI systems at the ARM SGP site, offering a unique look at the atmospheric state. This new source of meteorological data has shown excellent skill in detecting rapid synoptic and mesoscale meteorological changes within clear atmospheric conditions. This method has utility in nowcasting temperature inversion strength and destabilization caused by e advection. This high-temporal-resolution monitoring of rapid atmospheric destabilization is especially important for nowcasting severe convection.

  17. Ambiguities and completeness of SAS data analysis: investigations of apoferritin by SAXS/SANS EID and SEC-SAXS methods

    NASA Astrophysics Data System (ADS)

    Zabelskii, D. V.; Vlasov, A. V.; Ryzhykau, Yu L.; Murugova, T. N.; Brennich, M.; Soloviov, D. V.; Ivankov, O. I.; Borshchevskiy, V. I.; Mishin, A. V.; Rogachev, A. V.; Round, A.; Dencher, N. A.; Büldt, G.; Gordeliy, V. I.; Kuklin, A. I.

    2018-03-01

    The method of small angle scattering (SAS) is widely used in the field of biophysical research of proteins in aqueous solutions. Obtaining low-resolution structure of proteins is still a highly valuable method despite the advances in high-resolution methods such as X-ray diffraction, cryo-EM etc. SAS offers the unique possibility to obtain structural information under conditions close to those of functional assays, i.e. in solution, without different additives, in the mg/mL concentration range. SAS method has a long history, but there are still many uncertainties related to data treatment. We compared 1D SAS profiles of apoferritin obtained by X-ray diffraction (XRD) and SAS methods. It is shown that SAS curves for X-ray diffraction crystallographic structure of apoferritin differ more significantly than it might be expected due to the resolution of the SAS instrument. Extrapolation to infinite dilution (EID) method does not sufficiently exclude dimerization and oligomerization effects and therefore could not guarantee total absence of dimers account in the final SAS curve. In this study, we show that EID SAXS, EID SANS and SEC-SAXS methods give complementary results and when they are used all together, it allows obtaining the most accurate results and high confidence from SAS data analysis of proteins.

  18. Image resolution enhancement via image restoration using neural network

    NASA Astrophysics Data System (ADS)

    Zhang, Shuangteng; Lu, Yihong

    2011-04-01

    Image super-resolution aims to obtain a high-quality image at a resolution that is higher than that of the original coarse one. This paper presents a new neural network-based method for image super-resolution. In this technique, the super-resolution is considered as an inverse problem. An observation model that closely follows the physical image acquisition process is established to solve the problem. Based on this model, a cost function is created and minimized by a Hopfield neural network to produce high-resolution images from the corresponding low-resolution ones. Not like some other single frame super-resolution techniques, this technique takes into consideration point spread function blurring as well as additive noise and therefore generates high-resolution images with more preserved or restored image details. Experimental results demonstrate that the high-resolution images obtained by this technique have a very high quality in terms of PSNR and visually look more pleasant.

  19. Profiling of Arabidopsis secondary metabolites by capillary liquid chromatography coupled to electrospray ionization quadrupole time-of-flight mass spectrometry.

    PubMed

    von Roepenack-Lahaye, Edda; Degenkolb, Thomas; Zerjeski, Michael; Franz, Mathias; Roth, Udo; Wessjohann, Ludger; Schmidt, Jürgen; Scheel, Dierk; Clemens, Stephan

    2004-02-01

    Large-scale metabolic profiling is expected to develop into an integral part of functional genomics and systems biology. The metabolome of a cell or an organism is chemically highly complex. Therefore, comprehensive biochemical phenotyping requires a multitude of analytical techniques. Here, we describe a profiling approach that combines separation by capillary liquid chromatography with the high resolution, high sensitivity, and high mass accuracy of quadrupole time-of-flight mass spectrometry. About 2000 different mass signals can be detected in extracts of Arabidopsis roots and leaves. Many of these originate from Arabidopsis secondary metabolites. Detection based on retention times and exact masses is robust and reproducible. The dynamic range is sufficient for the quantification of metabolites. Assessment of the reproducibility of the analysis showed that biological variability exceeds technical variability. Tools were optimized or established for the automatic data deconvolution and data processing. Subtle differences between samples can be detected as tested with the chalcone synthase deficient tt4 mutant. The accuracy of time-of-flight mass analysis allows to calculate elemental compositions and to tentatively identify metabolites. In-source fragmentation and tandem mass spectrometry can be used to gain structural information. This approach has the potential to significantly contribute to establishing the metabolome of Arabidopsis and other model systems. The principles of separation and mass analysis of this technique, together with its sensitivity and resolving power, greatly expand the range of metabolic profiling.

  20. Levee crest elevation profiles derived from airborne lidar-based high resolution digital elevation models in south Louisiana

    USGS Publications Warehouse

    Palaseanu-Lovejoy, Monica; Thatcher, Cindy A.; Barras, John A.

    2014-01-01

    This study explores the feasibility of using airborne lidar surveys to construct high-resolution digital elevation models (DEMs) and develop an automated procedure to extract levee longitudinal elevation profiles for both federal levees in Atchafalaya Basin and local levees in Lafourche Parish, south Lousiana. This approach can successfully accommodate a high degree of levee sinuosity and abrupt changes in levee orientation (direction) in planar coordinates, variations in levee geometries, and differing DEM resolutions. The federal levees investigated in Atchafalaya Basin have crest elevations between 5.3 and 12 m while the local counterparts in Lafourche Parish are between 0.76 and 2.3 m. The vertical uncertainty in the elevation data is considered when assessing federal crest elevation against the U.S. Army Corps of Engineers minimum height requirements to withstand the 100-year flood. Only approximately 5% of the crest points of the two federal levees investigated in the Atchafalaya Basin region met this requirement.

  1. Optical frequency comb Fourier transform spectroscopy with sub-nominal resolution and precision beyond the Voigt profile

    NASA Astrophysics Data System (ADS)

    Rutkowski, Lucile; Masłowski, Piotr; Johansson, Alexandra C.; Khodabakhsh, Amir; Foltynowicz, Aleksandra

    2018-01-01

    Broadband precision spectroscopy is indispensable for providing high fidelity molecular parameters for spectroscopic databases. We have recently shown that mechanical Fourier transform spectrometers based on optical frequency combs can measure broadband high-resolution molecular spectra undistorted by the instrumental line shape (ILS) and with a highly precise frequency scale provided by the comb. The accurate measurement of the power of the comb modes interacting with the molecular sample was achieved by acquiring single-burst interferograms with nominal resolution matched to the comb mode spacing. Here we describe in detail the experimental and numerical steps needed to achieve sub-nominal resolution and retrieve ILS-free molecular spectra, i.e. with ILS-induced distortion below the noise level. We investigate the accuracy of the transition line centers retrieved by fitting to the absorption lines measured using this method. We verify the performance by measuring an ILS-free cavity-enhanced low-pressure spectrum of the 3ν1 + ν3 band of CO2 around 1575 nm with line widths narrower than the nominal resolution. We observe and quantify collisional narrowing of absorption line shape, for the first time with a comb-based spectroscopic technique. Thus retrieval of line shape parameters with accuracy not limited by the Voigt profile is now possible for entire absorption bands acquired simultaneously.

  2. High-resolution seismic-reflection profiles collected by the R/V James M. Gilliss, cruise GS 7903-4, in the Baltimore Canyon outer continental shelf area, offshore New Jersey

    USGS Publications Warehouse

    Robb, James M.

    1980-01-01

    High-resolution seismic-reflection profiles were collected by the U.S. Geological Survey (USGS) aboard R/V JAMES M. GILLIS (cruise GS 7903-4) from 27 June to 11 July 1979 over the Continental Slope of the Eastern United States between Lindenkohl and Hudson Canyons. These data were acquired as part of a study to determine potential geologic hazards to petroleum development of the Baltimore Canyon trough area. On this cruise, the Continental Slope between Carteret and South Toms Canyons was surveyed along lines spaced one-half nautical mile apart to study the size and distribution of mass-wasting features as a guide to assess the importance of mass-wasting processes on the Continental Slope. The seimsic-reflection profiles were placed to complement other data gathered previously by the USGS and to continue a survey grid begun in 1978 aboard the R/V COLUMBUS !SELIN, cruise CI 7807-1.Track-line distances totaled 1,555 km of 40-in3 air-gun (with wave shaper) profiles, 1, 750 km of 800-J sparker data, and 1,780 km of 3 .5-kHz data. All data are of high quality. A side-scan sonar system was operated briefly along the uppermost Continental Slope to acquire data over 70 km of ship's track. In addition, experimental profiling data were collected from a hydrophone towed at depth over the midslope on the end of the side-scan cable; the surface-towed sparker was used as a sound source. High-resolution profiles were collected by this method over 105 km of track.Navigation was by Loran-C (5-minute fix interval) and satellite.The original data may be inspected at the offices of the U.S. Geological Survey in Woods Hole, Massachusetts 02543. Microfilm copies of the data from this cruise are available for purchase from the National Geophysical and Solar-Terrestrial Data Center (NGSDC), Boulder, Colorado 80303.

  3. Profiling of modified nucleosides from ribonucleic acid digestion by supercritical fluid chromatography coupled to high resolution mass spectrometry.

    PubMed

    Laboureur, Laurent; Guérineau, Vincent; Auxilien, Sylvie; Yoshizawa, Satoko; Touboul, David

    2018-02-16

    A method based on supercritical fluid chromatography coupled to high resolution mass spectrometry for the profiling of canonical and modified nucleosides was optimized, and compared to classical reverse-phase liquid chromatography in terms of separation, number of detected modified nucleosides and sensitivity. Limits of detection and quantification were measured using statistical method and quantifications of twelve nucleosides of a tRNA digest from E. coli are in good agreement with previously reported data. Results highlight the complementarity of both separation techniques to cover the largest view of nucleoside modifications for forthcoming epigenetic studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Using Airborne High Spectral Resolution Lidar Data to Evaluate Combined Active Plus Passive Retrievals of Aerosol Extinction Profiles

    NASA Technical Reports Server (NTRS)

    Burton, S. P.; Ferrare, R. A.; Kittaka, C.; Hostetler, C. A.; Hair, J. W.; Obland, M. D.; Rogers, R. R.; Cook, A. L.; Haper, D. B.

    2008-01-01

    Aerosol extinction profiles are derived from backscatter data by constraining the retrieval with column aerosol optical thickness (AOT), for example from coincident MODIS observations and without reliance on a priori assumptions about aerosol type or optical properties. The backscatter data were acquired with the NASA Langley High Spectral Resolution Lidar (HSRL). The HSRL also simultaneously measures extinction independently, thereby providing an ideal data set for evaluating the constrained retrieval of extinction from backscatter. We will show constrained extinction retrievals using various sources of column AOT, and examine comparisons with the HSRL extinction measurements and with a similar retrieval using data from the CALIOP lidar on the CALIPSO satellite.

  5. Use of high-resolution ground-penetrating radar in kimberlite delineation

    USGS Publications Warehouse

    Kruger, J.M.; Martinez, A.; Berendsen, P.

    1997-01-01

    High-resolution ground-penetrating radar (GPR) was used to image the near-surface extent of two exposed Late Cretaceous kimberlites intruded into lower Permian limestone and dolomite host rocks in northeast Kansas. Six parallel GPR profiles identify the margin of the Randolph 1 kimberlite by the up-bending and termination of limestone reflectors. Five radially-intersecting GPR profiles identify the elliptical margin of the Randolph 2 kimberlite by the termination of dolomite reflectors near or below the kimberlite's mushroom-shaped cap. These results suggest GPR may augment magnetic methods for the delineation of kimberlites or other forceful intrusions in a layered host rock where thick, conductive soil or shale is not present at the surface.

  6. Scanning capacitance microscope as a tool for the characterization of integrated circuits

    NASA Astrophysics Data System (ADS)

    Born, A.; Wiesendanger, R.

    With the decreasing size of integrated circuits (ICs), there is an increasing demand for the measurement of doping profiles with high spatial resolution. The scanning capacitance microscope (SCM) offers the possibility of measuring 2D dopant profiles with spatial resolution of less than 20 nm. A great problem of the SCM technique is the influence of previous measurements on subsequent ones. We have observed hysteresis in the SCM images and measured low-frequency C-V curves with high-frequency equipment. A theoretical model was developed to understand this phenomenon. We are now undertaking the first steps using the SCM as a standard device for the characterization of ICs.

  7. Performance Calculations for the ITER Core Imaging X-Ray Spectrometer (CIXS)

    NASA Astrophysics Data System (ADS)

    Hill, K. W.; Delgado-Aparicio, L.; Pablant, N.; Johnson, D.; Feder, R.; Klabacha, J.; Stratton, B.; Bitter, M.; Beiersdorfer, P.; Barnsley, R.; Bertschinger, G.; O'Mullane, M.; Lee, S. G.

    2013-10-01

    The US is providing a 1D imaging x-ray crystal spectrometer system as a primary diagnostic for measuring profiles of ion temperature (Ti) and toroidal flow velocity (v) in the ITER plasma core (r/a = 0-0.85). The diagnostic must provide high spectral resolution (E/ ΔE > 5,000), spatial resolution of 10 cm, and time resolution of 10-100 ms, and must operate and survive in an environment having high neutron and gamma-ray fluxes. This work presents spectral simulations and tomographic inversions for obtaining local Ti and v, comparisons of the expected count rate profiles to the requirements, the degradation of performance due to the nuclear radiation background, and measurements of the rejection of nuclear background by detector pulse-height discrimination. This work was performed under the auspices of the DOE by PPPL under contract DE-AC02-09CH11466 and by LLNL under contract DE-AC52-07NA27344.

  8. Advantages of soft versus hard constraints in self-modeling curve resolution problems. Penalty alternating least squares (P-ALS) extension to multi-way problems.

    PubMed

    Richards, Selena; Miller, Robert; Gemperline, Paul

    2008-02-01

    An extension to the penalty alternating least squares (P-ALS) method, called multi-way penalty alternating least squares (NWAY P-ALS), is presented. Optionally, hard constraints (no deviation from predefined constraints) or soft constraints (small deviations from predefined constraints) were applied through the application of a row-wise penalty least squares function. NWAY P-ALS was applied to the multi-batch near-infrared (NIR) data acquired from the base catalyzed esterification reaction of acetic anhydride in order to resolve the concentration and spectral profiles of l-butanol with the reaction constituents. Application of the NWAY P-ALS approach resulted in the reduction of the number of active constraints at the solution point, while the batch column-wise augmentation allowed hard constraints in the spectral profiles and resolved rank deficiency problems of the measurement matrix. The results were compared with the multi-way multivariate curve resolution (MCR)-ALS results using hard and soft constraints to determine whether any advantages had been gained through using the weighted least squares function of NWAY P-ALS over the MCR-ALS resolution.

  9. Compact and portable X-ray imager system using Medipix3RX

    NASA Astrophysics Data System (ADS)

    Garcia-Nathan, T. B.; Kachatkou, A.; Jiang, C.; Omar, D.; Marchal, J.; Changani, H.; Tartoni, N.; van Silfhout, R. G.

    2017-10-01

    In this paper the design and implementation of a novel portable X-ray imager system is presented. The design features a direct X-ray detection scheme by making use of a hybrid detector (Medipix3RX). Taking advantages of the capabilities of the Medipix3RX, like a high resolution, zero dead-time, single photon detection and charge-sharing mode, the imager has a better resolution and higher sensitivity compared to using traditional indirect detection schemes. A detailed description of the system is presented, which consists of a vacuum chamber containing the sensor, an electronic board for temperature management, conditioning and readout of the sensor and a data processing unit which also handles network connection and allow communication with clients by acting as a server. A field programmable gate array (FPGA) device is used to implement the readout protocol for the Medipix3RX, apart from the readout the FPGA can perform complex image processing functions such as feature extraction, histogram, profiling and image compression at high speeds. The temperature of the sensor is monitored and controlled through a PID algorithm making use of a Peltier cooler, improving the energy resolution and response stability of the sensor. Without implementing data compression techniques, the system is capable of transferring 680 profiles/s or 240 images/s in a continuous mode. Implementation of equalization procedures and tests on colour mode are presented in this paper. For the experimental measurements the Medipix3RX sensor was used with a Silicon layer. One of the tested applications of the system is as an X-ray beam position monitor (XBPM) device for synchrotron applications. The XBPM allows a non-destructive real time measurement of the beam position, size and intensity. A Kapton foil is placed in the beam path scattering radiation towards a pinhole camera setup that allows the sensor to obtain an image of the beam. By using profiles of the synchrotron X-ray beam, high frequency movement of the beam position can be studied, up to 340 Hz. The system is capable of realizing an independent energy measure of the beam by using the Medipix3RX variable energy threshold feature.

  10. Two-dimensional dopant profiling of gallium nitride p-n junctions by scanning capacitance microscopy

    NASA Astrophysics Data System (ADS)

    Lamhamdi, M.; Cayrel, F.; Frayssinet, E.; Bazin, A. E.; Yvon, A.; Collard, E.; Cordier, Y.; Alquier, D.

    2016-04-01

    Two-dimensional imaging of dopant profiles for n and p-type regions are relevant for the development of new power semiconductors, especially for gallium nitride (GaN) for which classical profiling techniques are not adapted. This is a challenging task since it needs a technique with simultaneously good sensitivity, high spatial resolution and high dopant gradient resolution. To face these challenges, scanning capacitance microscopy combined with Atomic Force Microscopy is a good candidate, presenting reproducible results, as demonstrated in literature. In this work, we attempt to distinguish reliably and qualitatively the various doping concentrations and type at p-n and unipolar junctions. For both p-n and unipolar junctions three kinds of samples were prepared and measured separately. The space-charge region of the p-n metallurgical junction, giving rise to different contrasts under SCM imaging, is clearly observed, enlightening the interest of the SCM technique.

  11. Hyperspectral imaging to investigate the distribution of organic matter and iron down the soil profile

    NASA Astrophysics Data System (ADS)

    Hobley, Eleanor; Kriegs, Stefanie; Steffens, Markus

    2017-04-01

    Obtaining reliable and accurate data regarding the spatial distribution of different soil components is difficult due to issues related with sampling scale and resolution on the one hand and laboratory analysis on the other. When investigating the chemical composition of soil, studies frequently limit themselves to two dimensional characterisations, e.g. spatial variability near the surface or depth distribution down the profile, but rarely combine both approaches due to limitations to sampling and analytical capacities. Furthermore, when assessing depth distributions, samples are taken according to horizon or depth increments, resulting in a mixed sample across the sampling depth. Whilst this facilitates mean content estimation per depth increment and therefore reduces analytical costs, the sample information content with regards to heterogeneity within the profile is lost. Hyperspectral imaging can overcome these sampling limitations, yielding high resolution spectral data of down the soil profile, greatly enhancing the information content of the samples. This can then be used to augment horizontal spatial characterisation of a site, yielding three dimensional information into the distribution of spectral characteristics across a site and down the profile. Soil spectral characteristics are associated with specific chemical components of soil, such as soil organic matter or iron contents. By correlating the content of these soil components with their spectral behaviour, high resolution multi-dimensional analysis of soil chemical composition can be obtained. Here we present a hyperspectral approach to the characterisation of soil organic matter and iron down different soil profiles, outlining advantages and issues associated with the methodology.

  12. Edge profile analysis of Joint European Torus (JET) Thomson scattering data: Quantifying the systematic error due to edge localised mode synchronisation.

    PubMed

    Leyland, M J; Beurskens, M N A; Flanagan, J C; Frassinetti, L; Gibson, K J; Kempenaars, M; Maslov, M; Scannell, R

    2016-01-01

    The Joint European Torus (JET) high resolution Thomson scattering (HRTS) system measures radial electron temperature and density profiles. One of the key capabilities of this diagnostic is measuring the steep pressure gradient, termed the pedestal, at the edge of JET plasmas. The pedestal is susceptible to limiting instabilities, such as Edge Localised Modes (ELMs), characterised by a periodic collapse of the steep gradient region. A common method to extract the pedestal width, gradient, and height, used on numerous machines, is by performing a modified hyperbolic tangent (mtanh) fit to overlaid profiles selected from the same region of the ELM cycle. This process of overlaying profiles, termed ELM synchronisation, maximises the number of data points defining the pedestal region for a given phase of the ELM cycle. When fitting to HRTS profiles, it is necessary to incorporate the diagnostic radial instrument function, particularly important when considering the pedestal width. A deconvolved fit is determined by a forward convolution method requiring knowledge of only the instrument function and profiles. The systematic error due to the deconvolution technique incorporated into the JET pedestal fitting tool has been documented by Frassinetti et al. [Rev. Sci. Instrum. 83, 013506 (2012)]. This paper seeks to understand and quantify the systematic error introduced to the pedestal width due to ELM synchronisation. Synthetic profiles, generated with error bars and point-to-point variation characteristic of real HRTS profiles, are used to evaluate the deviation from the underlying pedestal width. We find on JET that the ELM synchronisation systematic error is negligible in comparison to the statistical error when assuming ten overlaid profiles (typical for a pre-ELM fit to HRTS profiles). This confirms that fitting a mtanh to ELM synchronised profiles is a robust and practical technique for extracting the pedestal structure.

  13. Direct detection of scattered light gaps in the transitional disk around HD 97048 with VLT/SPHERE

    NASA Astrophysics Data System (ADS)

    Ginski, C.; Stolker, T.; Pinilla, P.; Dominik, C.; Boccaletti, A.; de Boer, J.; Benisty, M.; Biller, B.; Feldt, M.; Garufi, A.; Keller, C. U.; Kenworthy, M.; Maire, A. L.; Ménard, F.; Mesa, D.; Milli, J.; Min, M.; Pinte, C.; Quanz, S. P.; van Boekel, R.; Bonnefoy, M.; Chauvin, G.; Desidera, S.; Gratton, R.; Girard, J. H. V.; Keppler, M.; Kopytova, T.; Lagrange, A.-M.; Langlois, M.; Rouan, D.; Vigan, A.

    2016-11-01

    Aims: We studied the well-known circumstellar disk around the Herbig Ae/Be star HD 97048 with high angular resolution to reveal undetected structures in the disk which may be indicative of disk evolutionary processes such as planet formation. Methods: We used the IRDIS near-IR subsystem of the extreme adaptive optics imager SPHERE at the ESO/VLT to study the scattered light from the circumstellar disk via high resolution polarimetry and angular differential imaging. Results: We imaged the disk in unprecedented detail and revealed four ring-like brightness enhancements and corresponding gaps in the scattered light from the disk surface with radii between 39 au and 341 au. We derived the inclination and position angle as well as the height of the scattering surface of the disk from our observational data. We found that the surface height profile can be described by a single power law up to a separation 270 au. Using the surface height profile we measured the scattering phase function of the disk and found that it is consistent with theoretical models of compact dust aggregates. We discuss the origin of the detected features and find that low mass (≤1 MJup) nascent planets are a possible explanation. Based on data collected at the European Southern Observatory, Chile (ESO Programs 096.C-0248, 096.C-0241, 077.C-0106).

  14. Comparisons of Gas-phase Temperature Measurements in a Flame Using Thin-Filament Pyrometry and Thermocouples

    NASA Technical Reports Server (NTRS)

    Struk, Peter; Dietrich, Daniel; Valentine, Russell; Feier, Ioan

    2003-01-01

    Less-intrusive, fast-responding, and full-field temperature measurements have long been a desired tool for the research community. Recently, the emission of a silicon-carbide (SiC) fiber placed in a flowing hot (or reacting) gas has been used to measure the temperature profile along the length of the fiber. The relationship between the gas and fiber temperature comes from an energy balance on the fiber. In the present work, we compared single point flame temperature measurements using thin-filament pyrometry (TFP) and thermocouples. The data was from vertically traversing a thermocouple and a SiC fiber through a methanol/air diffusion flame of a porous-metal wick burner. The results showed that the gas temperature using the TFP technique agreed with the thermocouple measurements (25.4 m diameter wire) within 3.5% for temperatures above 1200 K. Additionally, we imaged the entire SiC fiber (with a spatial resolution of 0.14 mm) while it was in the flame using a high resolution CCD camera. The intensity level along the fiber length is a function of the temperature. This results in a one-dimensional temperature profiles at various heights above the burner wick. This temperature measurement technique, while having a precision of less than 1 K, showed data scatter as high as 38 K. Finally, we discuss the major sources of uncertainty in gas temperature measurement using TFP.

  15. Self-similarity of a Rayleigh–Taylor mixing layer at low Atwood number with a multimode initial perturbation

    DOE PAGES

    Morgan, B. E.; Olson, B. J.; White, J. E.; ...

    2017-06-29

    High-fidelity large eddy simulation (LES) of a low-Atwood number (A = 0.05) Rayleigh-Taylor mixing layer is performed using the tenth-order compact difference code Miranda. An initial multimode perturbation spectrum is specified in Fourier space as a function of mesh resolution such that a database of results is obtained in which each successive level of increased grid resolution corresponds approximately to one additional doubling of the mixing layer width, or generation. The database is then analyzed to determine approximate requirements for self-similarity, and a new metric is proposed to quantify how far a given simulation is from the limit of self-similarity.more » It is determined that mixing layer growth reaches a high degree of self-similarity after approximately 4.5 generations. Statistical convergence errors and boundary effects at late time, however, make it impossible to draw similar conclusions regarding the self-similar growth of more sensitive turbulence parameters. Finally, self-similar turbulence profiles from the LES database are compared with one-dimensional simulations using the k-L-a and BHR-2 Reynolds-averaged Navier-Stokes (RANS) models. The k-L-a model, which is calibrated to reproduce a quadratic turbulence kinetic energy profile for a self-similar mixing layer, is found to be in better agreement with the LES than BHR-2 results.« less

  16. Imaging Gravity Waves in Lower Stratospheric AMSU-A Radiances. Part 1: Simple Forward Model

    DTIC Science & Technology

    2006-08-14

    brightening” of microwave radiances acquired from purely vertical background temperature profiles by cross- track scanners. Waves propagating along track...three-dimensional wave fields. For example, some limb sensors return high- resolution vertical temperature profiles with wave oscilla- tions...provide only ver- tical profiles of wave oscillations, similar to radiosonde and rocketsonde data. Similarly, limb-tracking measurements from the

  17. Application of high-resolution linear Radon transform for Rayleigh-wave dispersive energy imaging and mode separating

    USGS Publications Warehouse

    Luo, Y.; Xia, J.; Miller, R.D.; Liu, J.; Xu, Y.; Liu, Q.

    2008-01-01

    Multichannel Analysis of Surface Waves (MASW) analysis is an efficient tool to obtain the vertical shear-wave profile. One of the key steps in the MASW method is to generate an image of dispersive energy in the frequency-velocity domain, so dispersion curves can be determined by picking peaks of dispersion energy. In this paper, we image Rayleigh-wave dispersive energy and separate multimodes from a multichannel record by high-resolution linear Radon transform (LRT). We first introduce Rayleigh-wave dispersive energy imaging by high-resolution LRT. We then show the process of Rayleigh-wave mode separation. Results of synthetic and real-world examples demonstrate that (1) compared with slant stacking algorithm, high-resolution LRT can improve the resolution of images of dispersion energy by more than 50% (2) high-resolution LRT can successfully separate multimode dispersive energy of Rayleigh waves with high resolution; and (3) multimode separation and reconstruction expand frequency ranges of higher mode dispersive energy, which not only increases the investigation depth but also provides a means to accurately determine cut-off frequencies.

  18. A Ground-Based Profiling Differential Absorption LIDAR System for Measuring CO2 in the Planetary Boundary Layer

    NASA Technical Reports Server (NTRS)

    Andrews, Arlyn E.; Burris, John F.; Abshire, James B.; Krainak, Michael A.; Riris, Haris; Sun, Xiao-Li; Collatz, G. James

    2002-01-01

    Ground-based LIDAR observations can potentially provide continuous profiles of CO2 through the planetary boundary layer and into the free troposphere. We will present initial atmospheric measurements from a prototype system that is based on components developed by the telecommunications industry. Preliminary measurements and instrument performance calculations indicate that an optimized differential absorption LIDAR (DIAL) system will be capable of providing continuous hourly averaged profiles with 250m vertical resolution and better than 1 ppm precision at 1 km. Precision increases (decreases) at lower (higher) altitudes and is directly proportional to altitude resolution and acquisition time. Thus, precision can be improved if temporal or vertical resolution is sacrificed. Our approach measures absorption by CO2 of pulsed laser light at 1.6 microns backscattered from atmospheric aerosols. Aerosol concentrations in the planetary boundary layer are relatively high and are expected to provide adequate signal returns for the desired resolution. The long-term goal of the project is to develop a rugged, autonomous system using only commercially available components that can be replicated inexpensively for deployment in a monitoring network.

  19. Autonomous Sensing of Layered Structures in Hawaiian Waters

    DTIC Science & Technology

    2007-09-30

    APPROACH In March of 2007 we were awarded $112,842 for the fabrication of an autonomous profiler (the SeaHorse ) for the detection of thin layers of...phytoplankton in the coastal ocean. The SeaHorse (Figures 1, 2) makes use of wave energy to power extended, high-resolution profiling of water...the sample rate of the SeaHorse profiler itself. For example, if we observe a layer at 10 m depth, we can instruct the profiler to maintain this

  20. Experimental study of the maximum resolution and packing density achievable in sintered and non-sintered binder-jet 3D printed steel microchannels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elliott, Amy M; Mehdizadeh Momen, Ayyoub; Benedict, Michael

    2015-01-01

    Developing high resolution 3D printed metallic microchannels is a challenge especially when there is an essential need for high packing density of the primary material. While high packing density could be achieved by heating the structure to the sintering temperature, some heat sensitive applications require other strategies to improve the packing density of primary materials. In this study the goal is to develop high green or pack densities microchannels on the scale of 2-300 microns which have a robust mechanical structure. Binder-jet 3D printing is an additive manufacturing process in which droplets of binder are deposited via inkjet into amore » bed of powder. By repeatedly spreading thin layers of powder and depositing binder into the appropriate 2D profiles, complex 3D objects can be created one layer at time. Microchannels with features on the order of 500 microns were fabricated via binder jetting of steel powder and then sintered and/or infiltrated with a secondary material. The average particle size of the steel powder was varied along with the droplet volume of the inkjet-deposited binder. The resolution of the process, packing density of the primary material, the subsequent features sizes of the microchannels, and the overall microchannel quality were characterized as a function of particle size distribution, droplet sizes and heat treatment temperatures.« less

  1. High spatial correspondence at a columnar level between activation and resting state fMRI signals and local field potentials.

    PubMed

    Shi, Zhaoyue; Wu, Ruiqi; Yang, Pai-Feng; Wang, Feng; Wu, Tung-Lin; Mishra, Arabinda; Chen, Li Min; Gore, John C

    2017-05-16

    Although blood oxygenation level-dependent (BOLD) fMRI has been widely used to map brain responses to external stimuli and to delineate functional circuits at rest, the extent to which BOLD signals correlate spatially with underlying neuronal activity, the spatial relationships between stimulus-evoked BOLD activations and local correlations of BOLD signals in a resting state, and whether these spatial relationships vary across functionally distinct cortical areas are not known. To address these critical questions, we directly compared the spatial extents of stimulated activations and the local profiles of intervoxel resting state correlations for both high-resolution BOLD at 9.4 T and local field potentials (LFPs), using 98-channel microelectrode arrays, in functionally distinct primary somatosensory areas 3b and 1 in nonhuman primates. Anatomic images of LFP and BOLD were coregistered within 0.10 mm accuracy. We found that the point spread functions (PSFs) of BOLD and LFP responses were comparable in the stimulus condition, and both estimates of activations were slightly more spatially constrained than local correlations at rest. The magnitudes of stimulus responses in area 3b were stronger than those in area 1 and extended in a medial to lateral direction. In addition, the reproducibility and stability of stimulus-evoked activation locations within and across both modalities were robust. Our work suggests that the intrinsic resolution of BOLD is not a limiting feature in practice and approaches the intrinsic precision achievable by multielectrode electrophysiology.

  2. High spatial correspondence at a columnar level between activation and resting state fMRI signals and local field potentials

    PubMed Central

    Shi, Zhaoyue; Wu, Ruiqi; Yang, Pai-Feng; Wang, Feng; Wu, Tung-Lin; Mishra, Arabinda; Chen, Li Min; Gore, John C.

    2017-01-01

    Although blood oxygenation level-dependent (BOLD) fMRI has been widely used to map brain responses to external stimuli and to delineate functional circuits at rest, the extent to which BOLD signals correlate spatially with underlying neuronal activity, the spatial relationships between stimulus-evoked BOLD activations and local correlations of BOLD signals in a resting state, and whether these spatial relationships vary across functionally distinct cortical areas are not known. To address these critical questions, we directly compared the spatial extents of stimulated activations and the local profiles of intervoxel resting state correlations for both high-resolution BOLD at 9.4 T and local field potentials (LFPs), using 98-channel microelectrode arrays, in functionally distinct primary somatosensory areas 3b and 1 in nonhuman primates. Anatomic images of LFP and BOLD were coregistered within 0.10 mm accuracy. We found that the point spread functions (PSFs) of BOLD and LFP responses were comparable in the stimulus condition, and both estimates of activations were slightly more spatially constrained than local correlations at rest. The magnitudes of stimulus responses in area 3b were stronger than those in area 1 and extended in a medial to lateral direction. In addition, the reproducibility and stability of stimulus-evoked activation locations within and across both modalities were robust. Our work suggests that the intrinsic resolution of BOLD is not a limiting feature in practice and approaches the intrinsic precision achievable by multielectrode electrophysiology. PMID:28461461

  3. How the Electronic Structure in URu2Si2 Changes with Temperature: A High-Resolution Compton Scattering Study

    NASA Astrophysics Data System (ADS)

    Koizumi, Akihisa; Kubo, Yasunori; Motoyama, Gaku; Yamamura, Tomoo; Sakurai, Yoshiharu

    2018-06-01

    We have measured directional Compton profiles on the (001) plane in URu2Si2 single crystal at several temperatures. Two-dimensional electron occupation number densities (2D-EONDs) were obtained from the profiles through electron momentum reconstruction and Lock-Crisp-West folding analyses. We have also performed band calculations based on 5f-electron itinerant and localized models and derived theoretical 2D-EONDs for comparison. The experimental 2D-EOND at 300 K is well described by the localized model, and the 2D-EOND at 10 K is consistent with the theoretical one based on the itinerant model. The difference between 2D-EONDs at 30 and 100 K reflects a gradual change in the electronic structure, which reveals some of the crossover phenomena from localized to itinerant states. The change from localized to itinerant states is also reflected in a B(r) function, which is obtained in the reconstruction analysis and is an autocorrelation function of the wave function in the position space. The process by which the electronic structure in URu2Si2 changes is demonstrated through a series of experimental results.

  4. Towards Improving Satellite Tropospheric NO2 Retrieval Products: Impacts of the spatial resolution and lighting NOx production from the a priori chemical transport model

    NASA Astrophysics Data System (ADS)

    Smeltzer, C. D.; Wang, Y.; Zhao, C.; Boersma, F.

    2009-12-01

    Polar orbiting satellite retrievals of tropospheric nitrogen dioxide (NO2) columns are important to a variety of scientific applications. These NO2 retrievals rely on a priori profiles from chemical transport models and radiative transfer models to derive the vertical columns (VCs) from slant columns measurements. In this work, we compare the retrieval results using a priori profiles from a global model (TM4) and a higher resolution regional model (REAM) at the OMI overpass hour of 1330 local time, implementing the Dutch OMI NO2 (DOMINO) retrieval. We also compare the retrieval results using a priori profiles from REAM model simulations with and without lightning NOx (NO + NO2) production. A priori model resolution and lightning NOx production are both found to have large impact on satellite retrievals by altering the satellite sensitivity to a particular observation by shifting the NO2 vertical distribution interpreted by the radiation model. The retrieved tropospheric NO2 VCs may increase by 25-100% in urban regions and be reduced by 50% in rural regions if the a priori profiles from REAM simulations are used during the retrievals instead of the profiles from TM4 simulations. The a priori profiles with lightning NOx may result in a 25-50% reduction of the retrieved tropospheric NO2 VCs compared to the a priori profiles without lightning. As first priority, a priori vertical NO2 profiles from a chemical transport model with a high resolution, which can better simulate urban-rural NO2 gradients in the boundary layer and make use of observation-based parameterizations of lightning NOx production, should be first implemented to obtain more accurate NO2 retrievals over the United States, where NOx source regions are spatially separated and lightning NOx production is significant. Then as consequence of a priori NO2 profile variabilities resulting from lightning and model resolution dynamics, geostationary satellite, daylight observations would further promote the next step towards producing a more complete NO2 data product provided sufficient resolution of the observations. Both the corrected retrieval algorithm and the proposed next generation geostationary satellite observations would thus improve emission inventories, better validate model simulations, and advantageously optimize regional specific ozone control strategies.

  5. Digital Fresnel reflection holography for high-resolution 3D near-wall flow measurement.

    PubMed

    Kumar, S Santosh; Hong, Jiarong

    2018-05-14

    We propose a novel backscatter holographic imaging system, as a compact and effective tool for 3D near-wall flow diagnostics at high resolutions, utilizing light reflected at the solid-liquid interface as a reference beam. The technique is fully calibrated, and is demonstrated in a densely seeded channel to achieve a spatial resolution of near-wall flows equivalent to or exceeding prior digital inline holographic measurements using local tracer seeding technique. Additionally, we examined the effects of seeding concentration and laser coherence on the measurement resolution and sample volume resolved, demonstrating the potential to manipulate sample domain by tuning the laser coherence profile.

  6. Detailed T1-Weighted Profiles from the Human Cortex Measured in Vivo at 3 Tesla MRI.

    PubMed

    Ferguson, Bart; Petridou, Natalia; Fracasso, Alessio; van den Heuvel, Martijn P; Brouwer, Rachel M; Hulshoff Pol, Hilleke E; Kahn, René S; Mandl, René C W

    2018-04-01

    Studies into cortical thickness in psychiatric diseases based on T1-weighted MRI frequently report on aberrations in the cerebral cortex. Due to limitations in image resolution for studies conducted at conventional MRI field strengths (e.g. 3 Tesla (T)) this information cannot be used to establish which of the cortical layers may be implicated. Here we propose a new analysis method that computes one high-resolution average cortical profile per brain region extracting myeloarchitectural information from T1-weighted MRI scans that are routinely acquired at a conventional field strength. To assess this new method, we acquired standard T1-weighted scans at 3 T and compared them with state-of-the-art ultra-high resolution T1-weighted scans optimised for intracortical myelin contrast acquired at 7 T. Average cortical profiles were computed for seven different brain regions. Besides a qualitative comparison between the 3 T scans, 7 T scans, and results from literature, we tested if the results from dynamic time warping-based clustering are similar for the cortical profiles computed from 7 T and 3 T data. In addition, we quantitatively compared cortical profiles computed for V1, V2 and V7 for both 7 T and 3 T data using a priori information on their relative myelin concentration. Although qualitative comparisons show that at an individual level average profiles computed for 7 T have more pronounced features than 3 T profiles the results from the quantitative analyses suggest that average cortical profiles computed from T1-weighted scans acquired at 3 T indeed contain myeloarchitectural information similar to profiles computed from the scans acquired at 7 T. The proposed method therefore provides a step forward to study cortical myeloarchitecture in vivo at conventional magnetic field strength both in health and disease.

  7. Recursive feature elimination for biomarker discovery in resting-state functional connectivity.

    PubMed

    Ravishankar, Hariharan; Madhavan, Radhika; Mullick, Rakesh; Shetty, Teena; Marinelli, Luca; Joel, Suresh E

    2016-08-01

    Biomarker discovery involves finding correlations between features and clinical symptoms to aid clinical decision. This task is especially difficult in resting state functional magnetic resonance imaging (rs-fMRI) data due to low SNR, high-dimensionality of images, inter-subject and intra-subject variability and small numbers of subjects compared to the number of derived features. Traditional univariate analysis suffers from the problem of multiple comparisons. Here, we adopt an alternative data-driven method for identifying population differences in functional connectivity. We propose a machine-learning approach to down-select functional connectivity features associated with symptom severity in mild traumatic brain injury (mTBI). Using this approach, we identified functional regions with altered connectivity in mTBI. including the executive control, visual and precuneus networks. We compared functional connections at multiple resolutions to determine which scale would be more sensitive to changes related to patient recovery. These modular network-level features can be used as diagnostic tools for predicting disease severity and recovery profiles.

  8. An automated image processing routine for segmentation of cell cytoplasms in high-resolution autofluorescence images

    NASA Astrophysics Data System (ADS)

    Walsh, Alex J.; Skala, Melissa C.

    2014-02-01

    The heterogeneity of genotypes and phenotypes within cancers is correlated with disease progression and drug-resistant cellular sub-populations. Therefore, robust techniques capable of probing majority and minority cell populations are important both for cancer diagnostics and therapy monitoring. Herein, we present a modified CellProfiler routine to isolate cytoplasmic fluorescence signal on a single cell level from high resolution auto-fluorescence microscopic images.

  9. Super resolution terahertz imaging by subpixel estimation: application to hyperspectral beam profiling

    NASA Astrophysics Data System (ADS)

    Logofătu, Petre C.; Damian, Victor

    2018-05-01

    A super-resolution terahertz imaging technique based on subpixel estimation was applied to hyperspectral beam profiling. The topic of hyperspectral beam profiling was chosen because the beam profile and its dependence on wavelength are not well known and are important for imaging applications. Super-resolution is required here to avoid diffraction effects and to provide a stronger signal. Super-resolution usually adds supplementary information to the measurement, but in this case, it is a prerequisite for it. We report that the beam profile is almost Gaussian for many frequencies; the waist of the Gaussian profile increases with frequency while the center wobbles slightly. Knowledge of the beam profile may subsequently be used as reference for imaging.

  10. Verification of intensity modulated profiles using a pixel segmented liquid-filled linear array.

    PubMed

    Pardo, J; Roselló, J V; Sánchez-Doblado, F; Gómez, F

    2006-06-07

    A liquid isooctane (C8H18) filled ionization chamber linear array developed for radiotherapy quality assurance, consisting of 128 pixels (each of them with a 1.7 mm pitch), has been used to acquire profiles of several intensity modulated fields. The results were compared with film measurements using the gamma test. The comparisons show a very good matching, even in high gradient dose regions. The volume-averaging effect of the pixels is negligible and the spatial resolution is enough to verify these regions. However, some mismatches between the detectors have been found in regions where low-energy scattered photons significantly contribute to the total dose. These differences are not very important (in fact, the measurements of both detectors are in agreement using the gamma test with tolerances of 3% and 3 mm in most of those regions), and may be associated with the film energy dependence. In addition, the linear array repeatability (0.27% one standard deviation) is much better than the film one ( approximately 3%). The good repeatability, small pixel size and high spatial resolution make the detector ideal for the real time profile verification of high gradient beam profiles like those present in intensity modulated radiation therapy and radiosurgery.

  11. Grizzly Valley fault system, Sierra Valley, CA

    USGS Publications Warehouse

    Gold, Ryan; Stephenson, William; Odum, Jack; Briggs, Rich; Crone, Anthony; Angster, Steve

    2012-01-01

    The Grizzly Valley fault system (GVFS) strikes northwestward across Sierra Valley, California and is part of a network of active, dextral strike-slip faults in the northern Walker Lane (Figure 1). To investigate Quaternary motion across the GVFS, we analyzed high-resolution (0.25 m) airborne LiDAR data (Figure 2) in combination with six, high-resolution, P-wave, seismic-reflection profiles [Gold and others, 2012]. The 0.5- to 2.0-km-long seismic-reflection profiles were sited orthogonal to suspected tectonic lineaments identified from previous mapping and our analysis of airborne LiDAR data. To image the upper 400–700 m of subsurface stratigraphy of Sierra Valley (Figure 3), we used a 230-kg accelerated weight drop source. Geophone spacing ranged from 2 to 5 m and shots were co-located with the geophones. The profiles reveal a highly reflective, deformed basal marker that we interpret to be the top of Tertiary volcanic rocks, overlain by a 120- to 300-m-thick suite of subhorizontal reflectors we interpret as Plio-Pleistocene lacustrine deposits. Three profiles image the principle active trace of the GVFS, which is a steeply dipping fault zone that offsets the volcanic rocks and the basin fill (Figures 4 & 5).

  12. High-Throughput Quantitative Lipidomics Analysis of Nonesterified Fatty Acids in Plasma by LC-MS.

    PubMed

    Christinat, Nicolas; Morin-Rivron, Delphine; Masoodi, Mojgan

    2017-01-01

    Nonesterified fatty acids are important biological molecules which have multiple functions such as energy storage, gene regulation, or cell signaling. Comprehensive profiling of nonesterified fatty acids in biofluids can facilitate studying and understanding their roles in biological systems. For these reasons, we have developed and validated a high-throughput, nontargeted lipidomics method coupling liquid chromatography to high-resolution mass spectrometry for quantitative analysis of nonesterified fatty acids. Sufficient chromatographic separation is achieved to separate positional isomers such as polyunsaturated and branched-chain species and quantify a wide range of nonesterified fatty acids in human plasma samples. However, this method is not limited only to these fatty acid species and offers the possibility to perform untargeted screening of additional nonesterified fatty acid species.

  13. N-body simulations for f(R) gravity using a self-adaptive particle-mesh code

    NASA Astrophysics Data System (ADS)

    Zhao, Gong-Bo; Li, Baojiu; Koyama, Kazuya

    2011-02-01

    We perform high-resolution N-body simulations for f(R) gravity based on a self-adaptive particle-mesh code MLAPM. The chameleon mechanism that recovers general relativity on small scales is fully taken into account by self-consistently solving the nonlinear equation for the scalar field. We independently confirm the previous simulation results, including the matter power spectrum, halo mass function, and density profiles, obtained by Oyaizu [Phys. Rev. DPRVDAQ1550-7998 78, 123524 (2008)10.1103/PhysRevD.78.123524] and Schmidt [Phys. Rev. DPRVDAQ1550-7998 79, 083518 (2009)10.1103/PhysRevD.79.083518], and extend the resolution up to k˜20h/Mpc for the measurement of the matter power spectrum. Based on our simulation results, we discuss how the chameleon mechanism affects the clustering of dark matter and halos on full nonlinear scales.

  14. High-resolution terahertz inline digital holography based on quantum cascade laser

    NASA Astrophysics Data System (ADS)

    Deng, Qinghua; Li, Weihua; Wang, Xuemin; Li, Zeyu; Huang, Haochong; Shen, Changle; Zhan, Zhiqiang; Zou, Ruijiao; Jiang, Tao; Wu, Weidong

    2017-11-01

    A key requirement to put terahertz (THz) imaging systems into applications is high resolution. Based on a self-developed THz quantum cascade laser (QCL), we demonstrate a THz inline digital holography imaging system with high lateral resolution. In our case, the lateral resolution of this holography imaging system is pushed to about 70 μm, which is close to the intrinsic resolution limit of this system. To the best of our knowledge, this is much smaller than what has been reported up to now. This is attributed to a series of improvements, such as shortening the QCL wavelength, increasing Nx and Ny by the synthetic aperture method, smoothing the source beam profile, and diminishing vibration due to the cryorefrigeration device. This kind of holography system with a resolution smaller than 100 μm opens the door for many imaging experiments. It will turn the THz imaging systems into applications.

  15. Soil process-oriented modelling of within-field variability based on high-resolution 3D soil type distribution maps.

    NASA Astrophysics Data System (ADS)

    Bönecke, Eric; Lück, Erika; Gründling, Ralf; Rühlmann, Jörg; Franko, Uwe

    2016-04-01

    Today, the knowledge of within-field variability is essential for numerous purposes, including practical issues, such as precision and sustainable soil management. Therefore, process-oriented soil models have been applied for a considerable time to answer question of spatial soil nutrient and water dynamics, although, they can only be as consistent as their variation and resolution of soil input data. Traditional approaches, describe distribution of soil types, soil texture or other soil properties for greater soil units through generalised point information, e.g. from classical soil survey maps. Those simplifications are known to be afflicted with large uncertainties. Varying soil, crop or yield conditions are detected even within such homogenised soil units. However, recent advances of non-invasive soil survey and on-the-go monitoring techniques, made it possible to obtain vertical and horizontal dense information (3D) about various soil properties, particularly soil texture distribution which serves as an essential soil key variable affecting various other soil properties. Thus, in this study we based our simulations on detailed 3D soil type distribution (STD) maps (4x4 m) to adjacently built-up sufficient informative soil profiles including various soil physical and chemical properties. Our estimates of spatial STD are based on high-resolution lateral and vertical changes of electrical resistivity (ER), detected by a relatively new multi-sensor on-the-go ER monitoring device. We performed an algorithm including fuzzy-c-mean (FCM) logic and traditional soil classification to estimate STD from those inverted and layer-wise available ER data. STD is then used as key input parameter for our carbon, nitrogen and water transport model. We identified Pedological horizon depths and inferred hydrological soil variables (field capacity, permanent wilting point) from pedotransferfunctions (PTF) for each horizon. Furthermore, the spatial distribution of soil organic carbon (SOC), as essential input variable, was predicted by measured soil samples and associated to STD of the upper 30 cm. The comprehensive and high-resolution (4x4 m) soil profile information (up to 2 m soil depth) were then used to initialise a soil process model (Carbon and Nitrogen Dynamics - CANDY) for soil functional modelling (daily steps of matter fluxes, soil temperature and water balances). Our study was conducted on a practical field (~32,000 m²) of an agricultural farm in Central Germany with Chernozem soils under arid conditions (average rainfall < 550 mm). This soil region is known to have differences in soil structure mainly occurring within the subsoil, since topsoil conditions are described as homogenous. The modelled soil functions considered local climate information and practical farming activities. Results show, as expected, distinguished functional variability, both on spatial and temporal resolution for subsoil evident structures, e.g. visible differences for available water capacity within 0-100 cm but homogenous conditions for the topsoil.

  16. High-frequency Rayleigh-wave method

    USGS Publications Warehouse

    Xia, J.; Miller, R.D.; Xu, Y.; Luo, Y.; Chen, C.; Liu, J.; Ivanov, J.; Zeng, C.

    2009-01-01

    High-frequency (???2 Hz) Rayleigh-wave data acquired with a multichannel recording system have been utilized to determine shear (S)-wave velocities in near-surface geophysics since the early 1980s. This overview article discusses the main research results of high-frequency surface-wave techniques achieved by research groups at the Kansas Geological Survey and China University of Geosciences in the last 15 years. The multichannel analysis of surface wave (MASW) method is a non-invasive acoustic approach to estimate near-surface S-wave velocity. The differences between MASW results and direct borehole measurements are approximately 15% or less and random. Studies show that simultaneous inversion with higher modes and the fundamental mode can increase model resolution and an investigation depth. The other important seismic property, quality factor (Q), can also be estimated with the MASW method by inverting attenuation coefficients of Rayleigh waves. An inverted model (S-wave velocity or Q) obtained using a damped least-squares method can be assessed by an optimal damping vector in a vicinity of the inverted model determined by an objective function, which is the trace of a weighted sum of model-resolution and model-covariance matrices. Current developments include modeling high-frequency Rayleigh-waves in near-surface media, which builds a foundation for shallow seismic or Rayleigh-wave inversion in the time-offset domain; imaging dispersive energy with high resolution in the frequency-velocity domain and possibly with data in an arbitrary acquisition geometry, which opens a door for 3D surface-wave techniques; and successfully separating surface-wave modes, which provides a valuable tool to perform S-wave velocity profiling with high-horizontal resolution. ?? China University of Geosciences (Wuhan) and Springer-Verlag GmbH 2009.

  17. Cognitive Profiles of Adults with Asperger's Disorder, High-Functioning Autism, and Pervasive Developmental Disorder Not Otherwise Specified Based on the WAIS-III

    ERIC Educational Resources Information Center

    Kanai, Chieko; Tani, Masayuki; Hashimoto, Ryuichiro; Yamada, Takashi; Ota, Haruhisa; Watanabe, Hiromi; Iwanami, Akira; Kato, Nobumasa

    2012-01-01

    Little is known about the cognitive profiles of high-functioning Pervasive Developmental Disorders (PDD) in adults based on the Wechsler Intelligence Scale III (WAIS-III). We examined cognitive profiles of adults with no intellectual disability (IQ greater than 70), and in adults with Asperger's disorder (AS; n = 47), high-functioning autism (HFA;…

  18. XPS Study of Oxide/GaAs and SiO2/Si Interfaces

    NASA Technical Reports Server (NTRS)

    Grunthaner, F. J.; Grunthaner, P. J.; Vasquez, R. P.; Lewis, B. F.; Maserjian, J.; Madhukar, A.

    1982-01-01

    Concepts developed in study of SiO2/Si interface applied to analysis of native oxide/GaAs interface. High-resolution X-ray photoelectron spectroscopy (XPS) has been combined with precise chemical-profiling technique and resolution-enhancement methods to study stoichiometry of transitional layer. Results are presented in report now available.

  19. Tropospheric Wind Monitoring During Day-of-Launch Operations for NASA's Space Shuttle Program

    NASA Technical Reports Server (NTRS)

    Decker, Ryan; Leach, Richard

    2004-01-01

    The Environments Group at the National Aeronautics and Space Administration's Marshall Space Flight Center monitors the winds aloft above Kennedy Space Center (KSC) in support of the Space Shuttle Program day-of-launch operations. Assessment of tropospheric winds is used to support the ascent phase of launch. Three systems at KSC are used to generate independent tropospheric wind profiles prior to launch; 1) high resolution jimsphere balloon system, 2) 50-MHz Doppler Radar Wind Profiler (DRWP) and 3) low resolution radiosonde system. All independent sources are compared against each other for accuracy. To assess spatial and temporal wind variability during launch countdown each jimsphere profile is compared against a design wind database to ensure wind change does not violate wind change criteria.

  20. Measurements of the vertical profile of water vapor abundance in the Martian atmosphere from Mars Observer

    NASA Technical Reports Server (NTRS)

    Schofield, J. T.; Mccleese, Daniel J.

    1988-01-01

    An analysis is presented of the Pressure Modulator Infrared Radiometer (PMIRR) capabilities along with how the vertical profiles of water vapor will be obtained. The PMIRR will employ filter and pressure modulation radiometry using nine spectral channels, in both limb scanning and nadir sounding modes, to obtain daily, global maps of temperature, dust extinction, condensate extinction, and water vapor mixing ratio profiles as a function of pressure to half scale height or 5 km vertical resolution. Surface thermal properties will also be mapped, and the polar radiactive balance will be monitored.

  1. FlavonQ: An Automated Data Processing Tool for Profiling Flavone/flavonol Glycosides Using Ultra High-performance Liquid Chromatography Diode Array Detection and High-Resolution Accurate-Mass Mass Spectrometry (UHPLC HRAM-MS)

    USDA-ARS?s Scientific Manuscript database

    Flavonoids are well-known for their health benefits and can be found in nearly every plant. There are more than 5,000 known flavonoids existing in foods. Profiling flavonoids in natural products poses great challenges due to the diversity of flavonoids, the lack of commercially available standards, ...

  2. A Novel Method for Profiling and Quantifying Short- and Medium-Chain Chlorinated Paraffins in Environmental Samples Using Comprehensive Two-Dimensional Gas Chromatography-Electron Capture Negative Ionization High-Resolution Time-of-Flight Mass Spectrometry.

    PubMed

    Xia, Dan; Gao, Lirong; Zheng, Minghui; Tian, Qichang; Huang, Huiting; Qiao, Lin

    2016-07-19

    Chlorinated paraffins (CPs) are complex technical mixtures containing thousands of isomers. Analyzing CPs in environmental matrices is extremely challenging. CPs have broad, unresolved profiles when analyzed by one-dimensional gas chromatography (GC). Comprehensive two-dimensional GC (GC×GC) can separate CPs with a high degree of orthogonality. A novel method for simultaneously profiling and quantifying short- and medium-chain CPs, using GC×GC coupled with electron capture negative ionization high-resolution time-of-flight mass spectrometry, was developed. The method allowed 48 CP formula congener groups to be analyzed highly selectively in one injection through accurate mass measurements of the [M - Cl](-) ions in full scan mode. The correlation coefficients (R(2)) for the linear calibration curves for different chlorine contents were 0.982 for short-chain CPs and 0.945 for medium-chain CPs. The method was successfully used to determine CPs in sediment and fish samples. By using this method, with enhanced chromatographic separation and high mass resolution, interferences between CP congeners and other organohalogen compounds, such as toxaphene, are minimized. New compounds, with the formulas C9H14Cl6 and C9H13Cl7, were found in sediment and biological samples for the first time. The method was shown to be a powerful tool for the analysis of CPs in environmental samples.

  3. Toward acquiring comprehensive radiosurgery field commissioning data using the PRESAGE®/ optical-CT 3D dosimetry system

    NASA Astrophysics Data System (ADS)

    Clift, Corey; Thomas, Andrew; Adamovics, John; Chang, Zheng; Das, Indra; Oldham, Mark

    2010-03-01

    Achieving accurate small field dosimetry is challenging. This study investigates the utility of a radiochromic plastic PRESAGE® read with optical-CT for the acquisition of radiosurgery field commissioning data from a Novalis Tx system with a high-definition multileaf collimator (HDMLC). Total scatter factors (Sc, p), beam profiles, and penumbrae were measured for five different radiosurgery fields (5, 10, 20, 30 and 40 mm) using a commercially available optical-CT scanner (OCTOPUS, MGS Research). The percent depth dose (PDD), beam profile and penumbra of the 10 mm field were also measured using a higher resolution in-house prototype CCD-based scanner. Gafchromic EBT® film was used for independent verification. Measurements of Sc, p made with PRESAGE® and film agreed with mini-ion chamber commissioning data to within 4% for every field (range 0.2-3.6% for PRESAGE®, and 1.6-3.6% for EBT). PDD, beam profile and penumbra measurements made with the two PRESAGE®/optical-CT systems and film showed good agreement with the high-resolution diode commissioning measurements with a competitive resolution (0.5 mm pixels). The in-house prototype optical-CT scanner allowed much finer resolution compared with previous applications of PRESAGE®. The advantages of the PRESAGE® system for small field dosimetry include 3D measurements, negligible volume averaging, directional insensitivity, an absence of beam perturbations, energy and dose rate independence.

  4. Toward acquiring comprehensive radiosurgery field commissioning data using the PRESAGE®/optical-CT 3D dosimetry system

    PubMed Central

    Clift, Corey; Thomas, Andrew; Adamovics, John; Chang, Zheng; Das, Indra; Oldham, Mark

    2010-01-01

    Achieving accurate small field dosimetry is challenging. This study investigates the utility of a radiochromic plastic PRESAGE® read with optical-CT for the acquisition of radiosurgery field commissioning data from a Novalis Tx system with a high-definition multileaf collimator (HDMLC). Total scatter factors (Sc, p), beam profiles, and penumbrae were measured for five different radiosurgery fields (5, 10, 20, 30 and 40 mm) using a commercially available optical-CT scanner (OCTOPUS, MGS Research). The percent depth dose (PDD), beam profile and penumbra of the 10 mm field were also measured using a higher resolution in-house prototype CCD-based scanner. Gafchromic EBT® film was used for independent verification. Measurements of Sc, p made with PRESAGE® and film agreed with mini-ion chamber commissioning data to within 4% for every field (range 0.2–3.6% for PRESAGE®, and 1.6–3.6% for EBT). PDD, beam profile and penumbra measurements made with the two PRESAGE®/optical-CT systems and film showed good agreement with the high-resolution diode commissioning measurements with a competitive resolution (0.5 mm pixels). The in-house prototype optical-CT scanner allowed much finer resolution compared with previous applications of PRESAGE®. The advantages of the PRESAGE® system for small field dosimetry include 3D measurements, negligible volume averaging, directional insensitivity, an absence of beam perturbations, energy and dose rate independence. PMID:20134082

  5. The 27-28 October 1986 FIRE IFO Cirrus Case Study: Cloud Optical Properties Determined by High Spectral Resolution Lidar

    NASA Technical Reports Server (NTRS)

    Grund, C. J.; Eloranta, E. W.

    1996-01-01

    During the First ISCCP Region Experiment (FIRE) cirrus intensive field observation (IFO) the High Spectral Resolution Lidar was operated from a roof top site on the University of Wisconsin-Madison campus. Because the HSRL technique separately measures the molecular and cloud particle backscatter components of the lidar return, the optical thickness is determined independent of particle backscatter. This is accomplished by comparing the known molecular density distribution to the observed decrease in molecular backscatter signal with altitude. The particle to molecular backscatter ratio yields calibrated measurements of backscatter cross sections that can be plotted ro reveal cloud morphology without distortion due to attenuation. Changes in cloud particle size, shape, and phase affect the backscatter to extinction ratio (backscatter-phase function). The HSRL independently measures cloud particle backscatter phase function. This paper presents a quantitative analysis of the HSRL cirrus cloud data acquired over an approximate 33 hour period of continuous near zenith observations. Correlations between small scale wind structure and cirrus cloud morphology have been observed. These correlations can bias the range averaging inherent in wind profiling lidars of modest vertical resolution, leading to increased measurement errors at cirrus altitudes. Extended periods of low intensity backscatter were noted between more strongly organized cirrus cloud activity. Optical thicknesses ranging from 0.01-1.4, backscatter phase functions between 0.02-0.065 sr (exp -1) and backscatter cross sections spanning 4 orders of magnitude were observed. the altitude relationship between cloud top and bottom boundaries and the cloud optical center altitude was dependent on the type of formation observed Cirrus features were observed with characteristic wind drift estimated horizontal sizes of 5-400 km. The clouds frequently exhibited cellular structure with vertical to horizontal dimension ratios of 1:5-1:1.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scaduto, DA; Hu, Y-H; Zhao, W

    Purpose: Spatial resolution in digital breast tomosynthesis (DBT) is affected by inherent/binned detector resolution, oblique entry of x-rays, and focal spot size/motion; the limited angular range further limits spatial resolution in the depth-direction. While DBT is being widely adopted clinically, imaging performance metrics and quality control protocols have not been standardized. AAPM Task Group 245 on Tomosynthesis Quality Control has been formed to address this deficiency. Methods: Methods of measuring spatial resolution are evaluated using two prototype quality control phantoms for DBT. Spatial resolution in the detector plane is measured in projection and reconstruction domains using edge-spread function (ESF), point-spreadmore » function (PSF) and modulation transfer function (MTF). Spatial resolution in the depth-direction and effective slice thickness are measured in the reconstruction domain using slice sensitivity profile (SSP) and artifact spread function (ASF). An oversampled PSF in the depth-direction is measured using a 50 µm angulated tungsten wire, from which the MTF is computed. Object-dependent PSF is derived and compared with ASF. Sensitivity of these measurements to phantom positioning, imaging conditions and reconstruction algorithms is evaluated. Results are compared from systems of varying acquisition geometry (9–25 projections over 15–60°). Dependence of measurements on feature size is investigated. Results: Measurements of spatial resolution using PSF and LSF are shown to depend on feature size; depth-direction spatial resolution measurements are shown to similarly depend on feature size for ASF, though deconvolution with an object function removes feature size-dependence. A slanted wire may be used to measure oversampled PSFs, from which MTFs may be computed for both in-plane and depth-direction resolution. Conclusion: Spatial resolution measured using PSF is object-independent with sufficiently small object; MTF is object-independent. Depth-direction spatial resolution may be measured directly using MTF or indirectly using ASF or SSP as surrogate measurements. While MTF is object-independent, it is invalid for nonlinear reconstructions.« less

  7. Determination of the particulate extinction-coefficient profile and the column-integrated lidar ratios using the backscatter-coefficient and optical-depth profiles

    Treesearch

    Vladimir A Kovalev; Wei Min Hao; Cyle Wold

    2007-01-01

    A new method is considered that can be used for inverting data obtained from a combined elastic-inelastic lidar or a high spectral resolution lidar operating in a one-directional mode, or an elastic lidar operating in a multiangle mode. The particulate extinction coefficient is retrieved from the simultaneously measured profiles of the particulate backscatter...

  8. Transition dipole-moment of the ν1 +ν3 band of acetylene measured with dual-comb Fourier-transform spectroscopy

    NASA Astrophysics Data System (ADS)

    Okubo, Sho; Iwakuni, Kana; Yamada, Koichi M. T.; Inaba, Hajime; Onae, Atsushi; Hong, Feng-Lei; Sasada, Hiroyuki

    2017-11-01

    The ν1 +ν3 vibration band of acetylene (C2H2) in the near infrared region was recorded with a dual-comb Fourier-transform spectrometer. We observed 56 transitions from P (26) to R (29) at six different column densities. The integral line intensity was determined for each recorded absorption line by fitting the line profile to Lambert-Beer's law with a Voigt function. Thanks to the outstanding capability of dual-comb spectroscopy to cover a broad spectrum in a relatively short time with high resolution and high frequency precision, we determined the reliable line strength for each ro-vibrational transition as well as the transition dipole moment for this band.

  9. Whole-exome sequencing identifies common and rare variant metabolic QTLs in a Middle Eastern population.

    PubMed

    Yousri, Noha A; Fakhro, Khalid A; Robay, Amal; Rodriguez-Flores, Juan L; Mohney, Robert P; Zeriri, Hassina; Odeh, Tala; Kader, Sara Abdul; Aldous, Eman K; Thareja, Gaurav; Kumar, Manish; Al-Shakaki, Alya; Chidiac, Omar M; Mohamoud, Yasmin A; Mezey, Jason G; Malek, Joel A; Crystal, Ronald G; Suhre, Karsten

    2018-01-23

    Metabolomics-genome-wide association studies (mGWAS) have uncovered many metabolic quantitative trait loci (mQTLs) influencing human metabolic individuality, though predominantly in European cohorts. By combining whole-exome sequencing with a high-resolution metabolomics profiling for a highly consanguineous Middle Eastern population, we discover 21 common variant and 12 functional rare variant mQTLs, of which 45% are novel altogether. We fine-map 10 common variant mQTLs to new metabolite ratio associations, and 11 common variant mQTLs to putative protein-altering variants. This is the first work to report common and rare variant mQTLs linked to diseases and/or pharmacological targets in a consanguineous Arab cohort, with wide implications for precision medicine in the Middle East.

  10. Microfluidic technologies for synthetic biology.

    PubMed

    Vinuselvi, Parisutham; Park, Seongyong; Kim, Minseok; Park, Jung Min; Kim, Taesung; Lee, Sung Kuk

    2011-01-01

    Microfluidic technologies have shown powerful abilities for reducing cost, time, and labor, and at the same time, for increasing accuracy, throughput, and performance in the analysis of biological and biochemical samples compared with the conventional, macroscale instruments. Synthetic biology is an emerging field of biology and has drawn much attraction due to its potential to create novel, functional biological parts and systems for special purposes. Since it is believed that the development of synthetic biology can be accelerated through the use of microfluidic technology, in this review work we focus our discussion on the latest microfluidic technologies that can provide unprecedented means in synthetic biology for dynamic profiling of gene expression/regulation with high resolution, highly sensitive on-chip and off-chip detection of metabolites, and whole-cell analysis.

  11. Advances in epigenetics and epigenomics for neurodegenerative diseases.

    PubMed

    Qureshi, Irfan A; Mehler, Mark F

    2011-10-01

    In the post-genomic era, epigenetic factors-literally those that are "over" or "above" genetic ones and responsible for controlling the expression and function of genes-have emerged as important mediators of development and aging; gene-gene and gene-environmental interactions; and the pathophysiology of complex disease states. Here, we provide a brief overview of the major epigenetic mechanisms (ie, DNA methylation, histone modifications and chromatin remodeling, and non-coding RNA regulation). We highlight the nearly ubiquitous profiles of epigenetic dysregulation that have been found in Alzheimer's and other neurodegenerative diseases. We also review innovative methods and technologies that enable the characterization of individual epigenetic modifications and more widespread epigenomic states at high resolution. We conclude that, together with complementary genetic, genomic, and related approaches, interrogating epigenetic and epigenomic profiles in neurodegenerative diseases represent important and increasingly practical strategies for advancing our understanding of and the diagnosis and treatment of these disorders.

  12. Advances in Epigenetics and Epigenomics for Neurodegenerative Diseases

    PubMed Central

    Qureshi, Irfan A.

    2015-01-01

    In the post-genomic era, epigenetic factors—literally those that are “over” or “above” genetic ones and responsible for controlling the expression and function of genes—have emerged as important mediators of development and aging; gene-gene and gene-environmental interactions; and the pathophysiology of complex disease states. Here, we provide a brief overview of the major epigenetic mechanisms (ie, DNA methylation, histone modifications and chromatin remodeling, and non-coding RNA regulation). We highlight the nearly ubiquitous profiles of epigenetic dysregulation that have been found in Alzheimer’s and other neurodegenerative diseases. We also review innovative methods and technologies that enable the characterization of individual epigenetic modifications and more widespread epigenomic states at high resolution. We conclude that, together with complementary genetic, genomic, and related approaches, interrogating epigenetic and epigenomic profiles in neurodegenerative diseases represent important and increasingly practical strategies for advancing our understanding of and the diagnosis and treatment of these disorders. PMID:21671162

  13. Local atomic and electronic structure of oxide/GaAs and SiO2/Si interfaces using high-resolution XPS

    NASA Technical Reports Server (NTRS)

    Grunthaner, F. J.; Grunthaner, P. J.; Vasquez, R. P.; Lewis, B. F.; Maserjian, J.; Madhukar, A.

    1979-01-01

    The chemical structures of thin SiO2 films, thin native oxides of GaAs (20-30 A), and the respective oxide-semiconductor interfaces, have been investigated using high-resolution X-ray photoelectron spectroscopy. Depth profiles of these structures have been obtained using argon ion bombardment and wet chemical etching techniques. The chemical destruction induced by the ion profiling method is shown by direct comparison of these methods for identical samples. Fourier transform data-reduction methods based on linear prediction with maximum entropy constraints are used to analyze the discrete structure in oxides and substrates. This discrete structure is interpreted by means of a structure-induced charge-transfer model.

  14. Sea level changes in Sharm Abhur Red Sea Coast of Saudi Arabia, as Revealed from Seismic Stratigraphy

    NASA Astrophysics Data System (ADS)

    El-Abd, Yakout; Awad, Morad

    High resolution seismic profiling has been carried out along Sharm Abhur (a tidal creek), north of Jeddah, Saudi Arabia, using a high resolution seismic refraction profiling system. A chronogram illustrating corresponding Holocene relative sea level changes was constructed. Since 16,750 yr. B.P. Sharm Abhur had been subjected to four stages of relative transgressions. The first one started at about 92.5 m below present sea level. A relative stillstand occurred between 12,500-11,000 yr. B.P. about 50 m below present sea level. An anomalous body is observed near the mouth of the Sharm which is believed to be uplifted between 13,250 and 12,500 yr. B.P.

  15. Genome-wide high-resolution aCGH analysis of gestational choriocarcinomas.

    PubMed

    Poaty, Henriette; Coullin, Philippe; Peko, Jean Félix; Dessen, Philippe; Diatta, Ange Lucien; Valent, Alexander; Leguern, Eric; Prévot, Sophie; Gombé-Mbalawa, Charles; Candelier, Jean-Jacques; Picard, Jean-Yves; Bernheim, Alain

    2012-01-01

    Eleven samples of DNA from choriocarcinomas were studied by high resolution CGH-array 244 K. They were studied after histopathological confirmation of the diagnosis, of the androgenic etiology and after a microsatellite marker analysis confirming the absence of contamination of tumor DNA from maternal DNA. Three cell lines, BeWo, JAR, JEG were also studied by this high resolution pangenomic technique. According to aCGH analysis, the de novo choriocarcinomas exhibited simple chromosomal rearrangements or normal profiles. The cell lines showed various and complex chromosomal aberrations. 23 Minimal Critical Regions were defined that allowed us to list the genes that were potentially implicated. Among them, unusually high numbers of microRNA clusters and imprinted genes were observed.

  16. Performance assessment and calibration of a profiling lab-scale acoustic Doppler velocimeter for application over mixed sand-gravel beds

    USDA-ARS?s Scientific Manuscript database

    Acoustic Doppler velocimetry has made high-resolution turbulence measurements in sediment-laden flows possible. Recent developments have resulted in a commercially available lab-scale acoustic Doppler profiling device, a Nortek Vectrino II, that allows for three-dimensional velocity data to be colle...

  17. High-Resolution Magic Angle Spinning Nuclear Magnetic Resonance of Intact Zebrafish Embryos Detects Metabolic Changes Following Exposure to Teratogenic Polymethoxyalkenes from Algae

    PubMed Central

    Roy, Upasana; Jaja-Chimedza, Asha; Sanchez, Kristel; Matysik, Joerg

    2016-01-01

    Abstract Techniques based on nuclear magnetic resonance (NMR) for imaging and chemical analyses of in vivo, or otherwise intact, biological systems are rapidly emerging and finding diverse applications within a wide range of fields. Very recently, several NMR-based techniques have been developed for the zebrafish as a model animal system. In the current study, the novel application of high-resolution magic angle spinning (HR-MAS) NMR is presented as a means of metabolic profiling of intact zebrafish embryos. Toward investigating the utility of HR-MAS NMR as a toxicological tool, these studies specifically examined metabolic changes of embryos exposed to polymethoxy-1-alkenes (PMAs)—a recently identified family of teratogenic compounds from freshwater algae—as emerging environmental contaminants. One-dimensional and two-dimensional HR-MAS NMR analyses were able to effectively identify and quantify diverse metabolites in early-stage (≤36 h postfertilization) embryos. Subsequent comparison of the metabolic profiles between PMA-exposed and control embryos identified several statistically significant metabolic changes associated with subacute exposure to the teratogen, including (1) elevated inositol as a recognized component of signaling pathways involved in embryo development; (2) increases in several metabolites, including inositol, phosphoryl choline, fatty acids, and cholesterol, which are associated with lipid composition of cell membranes; (3) concomitant increase in glucose and decrease in lactate; and (4) decreases in several biochemically related metabolites associated with central nervous system development and function, including γ-aminobutyric acid, glycine, glutamate, and glutamine. A potentially unifying model/hypothesis of PMA teratogenicity based on the data is presented. These findings, taken together, demonstrate that HR-MAS NMR is a promising tool for metabolic profiling in the zebrafish embryo, including toxicological applications. PMID:27348393

  18. Self-sensing cantilevers with integrated conductive coaxial tips for high-resolution electrical scanning probe metrology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haemmerli, Alexandre J.; Pruitt, Beth L., E-mail: pruitt@stanford.edu; Harjee, Nahid

    The lateral resolution of many electrical scanning probe techniques is limited by the spatial extent of the electrostatic potential profiles produced by their probes. Conventional unshielded conductive atomic force microscopy probes produce broad potential profiles. Shielded probes could offer higher resolution and easier data interpretation in the study of nanostructures. Electrical scanning probe techniques require a method of locating structures of interest, often by mapping surface topography. As the samples studied with these techniques are often photosensitive, the typical laser measurement of cantilever deflection can excite the sample, causing undesirable changes electrical properties. In this work, we present the design,more » fabrication, and characterization of probes that integrate coaxial tips for spatially sharp potential profiles with piezoresistors for self-contained, electrical displacement sensing. With the apex 100 nm above the sample surface, the electrostatic potential profile produced by our coaxial tips is more than 2 times narrower than that of unshielded tips with no long tails. In a scan bandwidth of 1 Hz–10 kHz, our probes have a displacement resolution of 2.9 Å at 293 K and 79 Å at 2 K, where the low-temperature performance is limited by amplifier noise. We show scanning gate microscopy images of a quantum point contact obtained with our probes, highlighting the improvement to lateral resolution resulting from the coaxial tip.« less

  19. SpcAudace: Spectroscopic processing and analysis package of Audela software

    NASA Astrophysics Data System (ADS)

    Mauclaire, Benjamin

    2017-11-01

    SpcAudace processes long slit spectra with automated pipelines and performs astrophysical analysis of the latter data. These powerful pipelines do all the required steps in one pass: standard preprocessing, masking of bad pixels, geometric corrections, registration, optimized spectrum extraction, wavelength calibration and instrumental response computation and correction. Both high and low resolution long slit spectra are managed for stellar and non-stellar targets. Many types of publication-quality figures can be easily produced: pdf and png plots or annotated time series plots. Astrophysical quantities can be derived from individual or large amount of spectra with advanced functions: from line profile characteristics to equivalent width and periodogram. More than 300 documented functions are available and can be used into TCL scripts for automation. SpcAudace is based on Audela open source software.

  20. Increasing vertical resolution of three-dimensional atmospheric water vapor retrievals using a network of scanning compact microwave radiometers

    NASA Astrophysics Data System (ADS)

    Sahoo, Swaroop

    2011-12-01

    The thermodynamic properties of the troposphere, in particular water vapor content and temperature, change in response to physical mechanisms, including frictional drag, evaporation, transpiration, heat transfer and flow modification due to terrain. The planetary boundary layer (PBL) is characterized by a high rate of change in its thermodynamic state on time scales of typically less than one hour. Large horizontal gradients in vertical wind speed and steep vertical gradients in water vapor and temperature in the PBL are associated with high-impact weather. Observation of these gradients in the PBL with high vertical resolution and accuracy is important for improvement of weather prediction. Satellite remote sensing in the visible, infrared and microwave provide qualitative and quantitative measurements of many atmospheric properties, including cloud cover, precipitation, liquid water content and precipitable water vapor in the upper troposphere. However, the ability to characterize the thermodynamic properties of the PBL is limited by the confounding factors of ground emission in microwave channels and of cloud cover in visible and IR channels. Ground-based microwave radiometers are routinely used to measure thermodynamic profiles. The vertical resolution of such profiles retrieved from radiometric brightness temperatures depends on the number and choice of frequency channels, the scanning strategy and the accuracy of brightness temperature measurements. In the standard technique, which uses brightness temperatures from vertically pointing radiometers, the vertical resolution of the retrieved water vapor profile is similar to or larger than the altitude at which retrievals are performed. This study focuses on the improvement of the vertical resolution of water vapor retrievals by including scanning measurements at a variety of elevation angles. Elevation angle scanning increases the path length of the atmospheric emission, thus improving the signal-to-noise ratio. This thesis also discusses Colorado State University's (CSU) participation in the European Space Agency (ESA)'s "Mitigation of Electromagnetic Transmission errors induced by Atmospheric WAter Vapor Effects" (METAWAVE) experiment conducted in the fall of 2008. CSU deployed a ground-based network of three Compact Microwave Radiometers for Humidity profiling (CMR-Hs) in Rome to measure atmospheric brightness temperatures. These measurements were used to retrieve high-resolution 3-D atmospheric water vapor and its variation with time. High-resolution information about water vapor can be crucial for the mitigation of wet tropospheric path delay variations that limit the quality of Interferometric Synthetic Aperture Radar satellite interferograms. Three-dimensional water vapor retrieval makes use of radiative transfer theory, algebraic tomographic reconstruction and Bayesian optimal estimation coupled with Kalman filtering. In addition, spatial interpolation (kriging) is used to retrieve water vapor density at unsampled locations. 3-D humidity retrievals from Rome data with vertical and horizontal resolution of 0.5 km are presented. The water vapor retrieved from CMR-H measurements is compared with MM5 Mesoscale Model output, as well as with measurements from the Medium Resolution Imaging Spectrometer (MERIS) aboard ESA's ENVISAT and the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA's Aqua and Terra satellites.

  1. A refraction-corrected tomographic algorithm for immersion laser-ultrasonic imaging of solids with piecewise linear surface profile

    NASA Astrophysics Data System (ADS)

    Zarubin, V.; Bychkov, A.; Simonova, V.; Zhigarkov, V.; Karabutov, A.; Cherepetskaya, E.

    2018-05-01

    In this paper, a technique for reflection mode immersion 2D laser-ultrasound tomography of solid objects with piecewise linear 2D surface profiles is presented. Pulsed laser radiation was used for generation of short ultrasonic probe pulses, providing high spatial resolution. A piezofilm sensor array was used for detection of the waves reflected by the surface and internal inhomogeneities of the object. The original ultrasonic image reconstruction algorithm accounting for refraction of acoustic waves at the liquid-solid interface provided longitudinal resolution better than 100 μm in the polymethyl methacrylate sample object.

  2. Space- and time-resolved raman and breakdown spectroscopy: advanced lidar techniques

    NASA Astrophysics Data System (ADS)

    Silviu, Gurlui; Marius Mihai, Cazacu; Adrian, Timofte; Oana, Rusu; Georgiana, Bulai; Dimitriu, Dan

    2018-04-01

    DARLIOES - the advanced LIDAR is based on space- and time-resolved RAMAN and breakdown spectroscopy, to investigate chemical and toxic compounds, their kinetics and physical properties at high temporal (2 ns) and spatial (1 cm) resolution. The high spatial and temporal resolution are needed to resolve a large variety of chemical troposphere compounds, emissions from aircraft, the self-organization space charges induced light phenomena, temperature and humidity profiles, ice nucleation, etc.

  3. A high resolution hand-held focused beam profiler

    NASA Astrophysics Data System (ADS)

    Zapata-Farfan, J.; Garduño-Mejía, J.; Rosete-Aguilar, M.; Ascanio, G.; Román-Moreno, C. J.

    2017-05-01

    The shape of a beam is important in any laser application and depending on the final implementation, there exists a preferred one which is defined by the irradiance distribution.1 The energy distribution (or laser beam profile) is an important parameter in a focused beam, for instance, in laser cut industry, where the beam shape determines the quality of the cut. In terms of alignment and focusing, the energy distribution also plays an important role since the system must be configured in order to reduce the aberration effects and achieve the highest intensity. Nowadays a beam profiler is used in both industry and research laboratories with the aim to characterize laser beams used in free-space communications, focusing and welding, among other systems. The purpose of the profile analyzers is to know the main parameters of the beam, to control its characteristics as uniformity, shape and beam size as a guide to align the focusing system. In this work is presented a high resolution hand-held and compact design of a beam profiler capable to measure at the focal plane, with covered range from 400 nm to 1000 nm. The detection is reached with a CMOS sensor sized in 3673.6 μm x 2738.4 μm which acquire a snap shot of the previously attenuated focused beam to avoid the sensor damage, the result is an image of beam intensity distribution, which is digitally processed with a RaspberryTMmodule gathering significant parameters such as beam waist, centroid, uniformity and also some aberrations. The profiler resolution is 1.4 μm and was probed and validated in three different focusing systems. The spot sizes measurements were compared with the Foucault knife-edge test.

  4. Mathematical investigations of branch length similarity entropy profiles of shapes for various resolutions

    NASA Astrophysics Data System (ADS)

    Jeon, Wonju; Lee, Sang-Hee

    2012-12-01

    In our previous study, we defined the branch length similarity (BLS) entropy for a simple network consisting of a single node and numerous branches. As the first application of this entropy to characterize shapes, the BLS entropy profiles of 20 battle tank shapes were calculated from simple networks created by connecting pixels in the boundary of the shape. The profiles successfully characterized the tank shapes through a comparison of their BLS entropy profiles. Following the application, this entropy was used to characterize human's emotional faces, such as happiness and sad, and to measure the degree of complexity for termite tunnel networks. These applications indirectly indicate that the BLS entropy profile can be a useful tool to characterize networks and shapes. However, the ability of the BLS entropy in the characterization depends on the image resolution because the entropy is determined by the number of nodes for the boundary of a shape. Higher resolution means more nodes. If the entropy is to be widely used in the scientific community, the effect of the resolution on the entropy profile should be understood. In the present study, we mathematically investigated the BLS entropy profile of a shape with infinite resolution and numerically investigated the variation in the pattern of the entropy profile caused by changes in the resolution change in the case of finite resolution.

  5. SIMS of Organic Materials—Interface Location in Argon Gas Cluster Depth Profiles Using Negative Secondary Ions

    NASA Astrophysics Data System (ADS)

    Havelund, R.; Seah, M. P.; Tiddia, M.; Gilmore, I. S.

    2018-02-01

    A procedure has been established to define the interface position in depth profiles accurately when using secondary ion mass spectrometry and the negative secondary ions. The interface position varies strongly with the extent of the matrix effect and so depends on the secondary ion measured. Intensity profiles have been measured at both fluorenylmethyloxycarbonyl-uc(l)-pentafluorophenylalanine (FMOC) to Irganox 1010 and Irganox 1010 to FMOC interfaces for many secondary ions. These profiles show separations of the two interfaces that vary over some 10 nm depending on the secondary ion selected. The shapes of these profiles are strongly governed by matrix effects, slightly weakened by a long wavelength roughening. The matrix effects are separately measured using homogeneous, known mixtures of these two materials. Removal of the matrix and roughening effects give consistent compositional profiles for all ions that are described by an integrated exponentially modified Gaussian (EMG) profile. Use of a simple integrated Gaussian may lead to significant errors. The average interface positions in the compositional profiles are determined to standard uncertainties of 0.19 and 0.14 nm, respectively, using the integrated EMG function. Alternatively, and more simply, it is shown that interface positions and profiles may be deduced from data for several secondary ions with measured matrix factors by simply extrapolating the result to Ξ = 0. Care must be taken in quoting interface resolutions since those measured for predominantly Gaussian interfaces with Ξ above or below zero, without correction, appear significantly better than the true resolution.

  6. Edge profile measurements using Thomson scattering on the KSTAR tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, J. H., E-mail: jhleel@nfri.re.kr; Ko, W. H.; Department of Nuclear Fusion and Plasma Science, University of Science and Technology

    2014-11-15

    In the KSTAR Tokamak, a “Tangential Thomson Scattering” (TTS) diagnostic system has been designed and installed to measure electron density and temperature profiles. In the edge system, TTS has 12 optical fiber bundles to measure the edge profiles with 10–15 mm spatial resolution. These 12 optical fibers and their spatial resolution are not enough to measure the pedestal width with a high accuracy but allow observations of L-H transition or H-L transitions at the edge. For these measurements, the prototype ITER edge Thomson Nd:YAG laser system manufactured by JAEA in Japan is installed. In this paper, the KSTAR TTS systemmore » is briefly described and some TTS edge profiles are presented and compared against the KSTAR Charge Exchange Spectroscopy and other diagnostics. The future upgrade plan of the system is also discussed in this paper.« less

  7. Creating realistic models and resolution assessment in tomographic inversion of wide-angle active seismic profiling data

    NASA Astrophysics Data System (ADS)

    Stupina, T.; Koulakov, I.; Kopp, H.

    2009-04-01

    We consider questions of creating structural models and resolution assessment in tomographic inversion of wide-angle active seismic profiling data. For our investigations, we use the PROFIT (Profile Forward and Inverse Tomographic modeling) algorithm which was tested earlier with different datasets. Here we consider offshore seismic profiling data from three areas (Chile, Java and Central Pacific). Two of the study areas are characterized by subduction zones whereas the third data set covers a seamount province. We have explored different algorithmic issues concerning the quality of the solution, such as (1) resolution assessment using different sizes and complexity of synthetic anomalies; (2) grid spacing effects; (3) amplitude damping and smoothing; (4) criteria for rejection of outliers; (5) quantitative criteria for comparing models. Having determined optimal algorithmic parameters for the observed seismic profiling data we have created structural synthetic models which reproduce the results of the observed data inversion. For the Chilean and Java subduction zones our results show similar patterns: a relatively thin sediment layer on the oceanic plate, thicker inhomogeneous sediments in the overlying plate and a large area of very strong low velocity anomalies in the accretionary wedge. For two seamounts in the Pacific we observe high velocity anomalies in the crust which can be interpreted as frozen channels inside the dormant volcano cones. Along both profiles we obtain considerable crustal thickening beneath the seamounts.

  8. Automated AFM for small-scale and large-scale surface profiling in CMP applications

    NASA Astrophysics Data System (ADS)

    Zandiatashbar, Ardavan; Kim, Byong; Yoo, Young-kook; Lee, Keibock; Jo, Ahjin; Lee, Ju Suk; Cho, Sang-Joon; Park, Sang-il

    2018-03-01

    As the feature size is shrinking in the foundries, the need for inline high resolution surface profiling with versatile capabilities is increasing. One of the important areas of this need is chemical mechanical planarization (CMP) process. We introduce a new generation of atomic force profiler (AFP) using decoupled scanners design. The system is capable of providing small-scale profiling using XY scanner and large-scale profiling using sliding stage. Decoupled scanners design enables enhanced vision which helps minimizing the positioning error for locations of interest in case of highly polished dies. Non-Contact mode imaging is another feature of interest in this system which is used for surface roughness measurement, automatic defect review, and deep trench measurement. Examples of the measurements performed using the atomic force profiler are demonstrated.

  9. Objectives and Layout of a High-Resolution X-ray Imaging Crystal Spectrometer for the Large Helical Device (LHD)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bitter, M; Gates, D; Monticello, D

    A high-resolution X-ray imaging crystal spectrometer, whose concept was tested on NSTX and Alcator C-Mod, is being designed for LHD. This instrument will record spatially resolved spectra of helium-like Ar16+ and provide ion temperature profiles with spatial and temporal resolutions of < 2 cm and ≥ 10 ms. The stellarator equilibrium reconstruction codes, STELLOPT and PIES, will be used for the tomographic inversion of the spectral data. The spectrometer layout and instrumental features are largely determined by the magnetic field structure of LHD.

  10. Single image super-resolution via an iterative reproducing kernel Hilbert space method.

    PubMed

    Deng, Liang-Jian; Guo, Weihong; Huang, Ting-Zhu

    2016-11-01

    Image super-resolution, a process to enhance image resolution, has important applications in satellite imaging, high definition television, medical imaging, etc. Many existing approaches use multiple low-resolution images to recover one high-resolution image. In this paper, we present an iterative scheme to solve single image super-resolution problems. It recovers a high quality high-resolution image from solely one low-resolution image without using a training data set. We solve the problem from image intensity function estimation perspective and assume the image contains smooth and edge components. We model the smooth components of an image using a thin-plate reproducing kernel Hilbert space (RKHS) and the edges using approximated Heaviside functions. The proposed method is applied to image patches, aiming to reduce computation and storage. Visual and quantitative comparisons with some competitive approaches show the effectiveness of the proposed method.

  11. Measurements of fast ion spatial dynamics during magnetic activity in the RFP

    NASA Astrophysics Data System (ADS)

    Goetz, J. A.; Anderson, J. K.; Bonofiglo, P.; Kim, J.; McConnell, R.; Magee, R. M.

    2017-10-01

    Fast ions in the RFP are only weakly affected by a stochastic magnetic field and behave nearly classically in concentration too low to excite Alfvenic activity. At high fast ion concentration sourced by H-NBI in 300kA RFP discharges, a substantial drop in core-localized high pitch fast ions is observed during bursts of coupled EPM and IAE (magnetic island-induced Alfven eigenmode) activity (100-200kHz) through neutral particle analysis. Sourcing instead fast deuterium with NBI, the DD fusion products can measure the dynamics of the fast ion density profile. Both a collimated neutron detector and a new 3MeV fusion proton detector loaned by TriAlpha Energy measure the fast ion density profile with 5cm spatial resolution and 100 μs temporal resolution. In D-NBI, the bursting EPM is excited at slightly lower frequency and the IAE activity is nearly absent, likely due to an isotope effect and loss of wave-particle interaction. In these cases, neutral particle analysis shows little change in the core-localized high pitch fast ion content, and the fusion product profile indicates little change in the fast ion density profile, leaving unexplained the mechanism removing EPM drive. We measure a substantial redistribution of the fast ion profile due to strong lower-frequency ( 30kHz) MHD activity that accompanies the current profile relaxation in the RFP. Profile flattening is strongest in low bulk density discharges, which often occur with a total increase in global neutron flux from acceleration of the beam ions. Work supported by US DoE.

  12. Utilization of high resolution computed tomography to visualize the three dimensional structure and function of plant vasculature

    USDA-ARS?s Scientific Manuscript database

    High resolution x-ray computed tomography (HRCT) is a non-destructive diagnostic imaging technique with sub-micron resolution capability that is now being used to evaluate the structure and function of plant xylem network in three dimensions (3D). HRCT imaging is based on the same principles as medi...

  13. A Novel, Aqueous Surface Treatment To Thermally Stabilize High Resolution Positive Photoresist Images*

    NASA Astrophysics Data System (ADS)

    Grunwald, John J.; Spencer, Allen C.

    1986-07-01

    The paper describes a new approach to thermally stabilize the already imaged profile of high resolution positive photoresists such as ULTRAMAC" PR-914. ***XD-4000, an aqueous emulsion of a blend of fluorine-bearing compounds is spun on top of the developed, positive photoresist-imaged wafer, and baked. This allows the photoresist to withstand temperatures up to at least 175 deg. C. while essentially maintaining vertical edge profiles. Also, adverse effects of "outgassing" in harsh environments, ie., plasma and ion implant are greatly minimized by allowing the high resolution imaged photoresist to be post-baked at "elevated" temperatures. Another type of product that accomplishes the same effect is ***XD-4005, an aqueous emulsion of a high temperature-resistant polymer. While the exact mechanism is yet to be identified, it is postulated that absorption of the "polymeric" species into the "skin" of the imaged resist forms a temperature resistant "envelope", thereby allowing high resolution photoresists to also serve in a "high temperature" mode, without reticulation, or other adverse effects due to thermal degradation. SEM's are presented showing imaged ULTRAMAC" PR-914 and ULTRAMAC" **EPA-914 geometries coated with XD-4000 or XD-4005 and followed by plasma etched oxide,polysilicon and aluminum. Selectivity ratios are compared with and without the novel treatment and are shown to be significantly better with the treatment. The surface-treated photoresist for thermal resistance remains easily strippable in solvent-based or plasma media, unlike photoresists that have undergone "PRIST" or other gaseous thermal stabilization methods.

  14. Integrating depth functions and hyper-scale terrain analysis for 3D soil organic carbon modeling in agricultural fields at regional scale

    NASA Astrophysics Data System (ADS)

    Ramirez-Lopez, L.; van Wesemael, B.; Stevens, A.; Doetterl, S.; Van Oost, K.; Behrens, T.; Schmidt, K.

    2012-04-01

    Soil Organic Carbon (SOC) represents a key component in the global C cycle and has an important influence on the global CO2 fluxes between terrestrial biosphere and atmosphere. In the context of agricultural landscapes, SOC inventories are important since soil management practices have a strong influence on CO2 fluxes and SOC stocks. However, there is lack of accurate and cost-effective methods for producing high spatial resolution of SOC information. In this respect, our work is focused on the development of a three dimensional modeling approach for SOC monitoring in agricultural fields. The study area comprises ~420 km2 and includes 4 of the 5 agro-geological regions of the Grand-Duchy of Luxembourg. The soil dataset consist of 172 profiles (1033 samples) which were not sampled specifically for this study. This dataset is a combination of profile samples collected in previous soil surveys and soil profiles sampled for other research purposes. The proposed strategy comprises two main steps. In the first step the SOC distribution within each profile (vertical distribution) is modeled. Depth functions for are fitted in order to summarize the information content in the profile. By using these functions the SOC can be interpolated at any depth within the profiles. The second step involves the use of contextual terrain (ConMap) features (Behrens et al., 2010). These features are based on the differences in elevation between a given point location in the landscape and its circular neighbourhoods at a given set of different radius. One of the main advantages of this approach is that it allows the integration of several spatial scales (eg. local and regional) for soil spatial analysis. In this work the ConMap features are derived from a digital elevation model of the area and are used as predictors for spatial modeling of the parameters of the depth functions fitted in the previous step. In this poster we present some preliminary results in which we analyze: i. The use of different depth functions, ii. The use of different machine learning approaches for modeling the parameters of the fitted depth functions using the ConMap features and iii. The influence of different spatial scales on the SOC profile distribution variability. Keywords: 3D modeling, Digital soil mapping, Depth functions, Terrain analysis. Reference Behrens, T., K. Schmidt, K., Zhu, A.X. Scholten, T. 2010. The ConMap approach for terrain-based digital soil mapping. European Journal of Soil Science, v. 61, p.133-143.

  15. MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data

    PubMed Central

    2010-01-01

    Background Mass spectrometry (MS) coupled with online separation methods is commonly applied for differential and quantitative profiling of biological samples in metabolomic as well as proteomic research. Such approaches are used for systems biology, functional genomics, and biomarker discovery, among others. An ongoing challenge of these molecular profiling approaches, however, is the development of better data processing methods. Here we introduce a new generation of a popular open-source data processing toolbox, MZmine 2. Results A key concept of the MZmine 2 software design is the strict separation of core functionality and data processing modules, with emphasis on easy usability and support for high-resolution spectra processing. Data processing modules take advantage of embedded visualization tools, allowing for immediate previews of parameter settings. Newly introduced functionality includes the identification of peaks using online databases, MSn data support, improved isotope pattern support, scatter plot visualization, and a new method for peak list alignment based on the random sample consensus (RANSAC) algorithm. The performance of the RANSAC alignment was evaluated using synthetic datasets as well as actual experimental data, and the results were compared to those obtained using other alignment algorithms. Conclusions MZmine 2 is freely available under a GNU GPL license and can be obtained from the project website at: http://mzmine.sourceforge.net/. The current version of MZmine 2 is suitable for processing large batches of data and has been applied to both targeted and non-targeted metabolomic analyses. PMID:20650010

  16. THE SPECTRALLY RESOLVED Lyα EMISSION OF THREE Lyα-SELECTED FIELD GALAXIES AT z ∼ 2.4 FROM THE HETDEX PILOT SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chonis, Taylor S.; Finkelstein, Steven L.; Gebhardt, Karl

    2013-10-01

    We present new results on the spectrally resolved Lyα emission of three Lyα-emitting field galaxies at z ∼ 2.4 with high Lyα equivalent width (>100 Å) and Lyα luminosity (∼10{sup 43} erg s{sup –1}). At 120 km s{sup –1} (FWHM) spectral resolution, the prominent double-peaked Lyα profile straddles the systemic velocity, where the velocity zero point is determined from spectroscopy of the galaxies' rest-frame optical nebular emission lines. The average velocity offset from systemic of the stronger redshifted emission component for our sample is 176 km s{sup –1} while the average total separation between the redshifted and main blueshifted emissionmore » components is 380 km s{sup –1}. These measurements are a factor of ∼2 smaller than for UV-continuum-selected galaxies that show Lyα in emission with lower Lyα equivalent widths. We compare our Lyα spectra to the predicted line profiles of a spherical 'expanding shell' Lyα radiative transfer grid that models large-scale galaxy outflows. Specifically, blueward of the systemic velocity where two galaxies show a weak, highly blueshifted (by ∼1000 km s{sup –1}) tertiary emission peak, the model line profiles are a relatively poor representation of the observed spectra. Since the neutral gas column density has a dominant influence over the shape of the Lyα line profile, we caution against equating the observed Lyα velocity offset with a physical outflow velocity, especially at lower spectral resolution where the unresolved Lyα velocity offset is a convoluted function of several degenerate parameters. Referring to rest-frame ultraviolet and optical Hubble Space Telescope imaging, we find that galaxy-galaxy interactions may play an important role in inducing a starburst that results in copious Lyα emission as well as perturbing the gas distribution and velocity field, both of which have strong influence over the Lyα emission line profile.« less

  17. Changing the scale of hydrogeophysical aquifer heterogeneity characterization

    NASA Astrophysics Data System (ADS)

    Paradis, Daniel; Tremblay, Laurie; Ruggeri, Paolo; Brunet, Patrick; Fabien-Ouellet, Gabriel; Gloaguen, Erwan; Holliger, Klaus; Irving, James; Molson, John; Lefebvre, Rene

    2015-04-01

    Contaminant remediation and management require the quantitative predictive capabilities of groundwater flow and mass transport numerical models. Such models have to encompass source zones and receptors, and thus typically cover several square kilometers. To predict the path and fate of contaminant plumes, these models have to represent the heterogeneous distribution of hydraulic conductivity (K). However, hydrogeophysics has generally been used to image relatively restricted areas of the subsurface (small fractions of km2), so there is a need for approaches defining heterogeneity at larger scales and providing data to constrain conceptual and numerical models of aquifer systems. This communication describes a workflow defining aquifer heterogeneity that was applied over a 12 km2 sub-watershed surrounding a decommissioned landfill emitting landfill leachate. The aquifer is a shallow, 10 to 20 m thick, highly heterogeneous and anisotropic assemblage of littoral sand and silt. Field work involved the acquisition of a broad range of data: geological, hydraulic, geophysical, and geochemical. The emphasis was put on high resolution and continuous hydrogeophysical data, the use of direct-push fully-screened wells and the acquisition of targeted high-resolution hydraulic data covering the range of observed aquifer materials. The main methods were: 1) surface geophysics (ground-penetrating radar and electrical resistivity); 2) direct-push operations with a geotechnical drilling rig (cone penetration tests with soil moisture resistivity CPT/SMR; full-screen well installation); and 3) borehole operations, including high-resolution hydraulic tests and geochemical sampling. New methods were developed to acquire high vertical resolution hydraulic data in direct-push wells, including both vertical and horizontal K (Kv and Kh). Various data integration approaches were used to represent aquifer properties in 1D, 2D and 3D. Using relevant vector machines (RVM), the mechanical and geophysical CPT/SMR measurements were used to recognize hydrofacies (HF) and obtain high-resolution 1D vertical profiles of hydraulic properties. Bayesian sequential simulation of the low-resolution surface-based geoelectrical measurements as well as high-resolution direct-push measurements of the electrical and hydraulic conductivities provided realistic estimates of the spatial distribution of K on a 250-m-long 2D survey line. Following a similar approach, all 1D vertical profiles of K derived from CPT/SMR soundings were integrated with available 2D geoelectrical profiles to obtain the 3D distribution of K over the study area. Numerical models were developed to understand flow and mass transport and assess how indicators could constrain model results and their K distributions. A 2D vertical section model was first developed based on a conceptual representation of heterogeneity which showed a significant effect of layering on flow and transport. The model demonstrated that solute and age tracers provide key model constraints. Additional 2D vertical section models with synthetic representations of low and high K hydrofacies were also developed on the basis of CPT/SMR soundings. These models showed that high-resolution profiles of hydraulic head could help constrain the spatial distribution and continuity of hydrofacies. History matching approaches are still required to simulate geostatistical models of K using hydrogeophysical data, while considering their impact on flow and transport with constraints provided by tracers of solutes and groundwater age.

  18. A spatially resolving x-ray crystal spectrometer for measurement of ion-temperature and rotation-velocity profiles on the Alcator C-Mod tokamak.

    PubMed

    Hill, K W; Bitter, M L; Scott, S D; Ince-Cushman, A; Reinke, M; Rice, J E; Beiersdorfer, P; Gu, M-F; Lee, S G; Broennimann, Ch; Eikenberry, E F

    2008-10-01

    A new spatially resolving x-ray crystal spectrometer capable of measuring continuous spatial profiles of high resolution spectra (lambda/d lambda>6000) of He-like and H-like Ar K alpha lines with good spatial (approximately 1 cm) and temporal (approximately 10 ms) resolutions has been installed on the Alcator C-Mod tokamak. Two spherically bent crystals image the spectra onto four two-dimensional Pilatus II pixel detectors. Tomographic inversion enables inference of local line emissivity, ion temperature (T(i)), and toroidal plasma rotation velocity (upsilon(phi)) from the line Doppler widths and shifts. The data analysis techniques, T(i) and upsilon(phi) profiles, analysis of fusion-neutron background, and predictions of performance on other tokamaks, including ITER, will be presented.

  19. Increased biomagnetic activity in the ventral pathway in mild cognitive impairment.

    PubMed

    Maestú, F; Campo, P; Del Río, D; Moratti, S; Gil-Gregorio, P; Fernández, A; Capilla, A; Ortiz, T

    2008-06-01

    Mild cognitive impairment (MCI) patients represent an intermediary state between healthy aging and dementia. MCI activation profiles, recorded during a memory task, have been studied either through high spatial resolution or high temporal resolution techniques. However, little is known about the benefit of combining both dimensions. Here, we investigate, by means of magnetoencephalography (MEG), whether spatio-temporal profiles of neuromagnetic activity could differentiate between MCI and age-matched elderly participants. Taking the advantage of the high temporal resolution and good spatial resolution of MEG, neuromagnetic activity from 15 elderly MCI patients and 20 age-matched controls was recorded during the performance of a modified version of the Sternberg paradigm. Behavioral performance was similar in both groups. A between group analysis revealed that MCI patients showed bilateral higher activity in the ventral pathway, in both the target and the non-target stimuli. A within-group analysis of the target stimuli, indicates a lack of asymmetry through all late latency windows in both groups. MCI patients showed a compensatory mechanism represented by an increased bilateral activity of the ventral pathway in order to achieve a behavioral performance similar to the control group. This spatio-temporal pattern of activity could be another tool to differentiate between healthy aging and MCI patients.

  20. The Impact of Non-Thermal Processes in the Intracluster Medium on Cosmological Cluster Observables

    NASA Astrophysics Data System (ADS)

    Battaglia, Nicholas Ambrose

    In this thesis we describe the generation and analysis of hydrodynamical simulations of galaxy clusters and their intracluster medium (ICM), using large cosmological boxes to generate large samples, in conjunction with individual cluster computations. The main focus is the exploration of the non-thermal processes in the ICM and the effect they have on the interpretation of observations used for cosmological constraints. We provide an introduction to the cosmological structure formation framework for our computations and an overview of the numerical simulations and observations of galaxy clusters. We explore the cluster magnetic field observables through radio relics, extended entities in the ICM characterized by their of diffuse radio emission. We show that statistical quantities such as radio relic luminosity functions and rotation measure power spectra are sensitive to magnetic field models. The spectral index of the radio relic emission provides information on structure formation shocks, e.g., on their Mach number. We develop a coarse grained stochastic model of active galaxy nucleus (AGN) feed-back in clusters and show the impact of such inhomogeneous feedback on the thermal pressure profile. We explore variations in the pressure profile as a function of cluster mass, redshift, and radius and provide a constrained fitting function for this profile. We measure the degree of the non-thermal pressure in the gas from internal cluster bulk motions and show it has an impact on the slope and scatter of the Sunyaev-Zel'dovich (SZ) scaling relation. We also find that the gross shape of the ICM, as characterized by scaled moment of inertia tensors, affects the SZ scaling relation. We demonstrate that the shape and the amplitude of the SZ angular power spectrum is sensitive to AGN feedback, and this affects the cosmological parameters determined from high resolution ACT and SPT cosmic microwave background data. We compare analytic, semi-analytic, and simulation-based methods for calculating the SZ power spectrum, and characterize their differences. All the methods must rely, one way or another, on high resolution large-scale hydrodynamical simulations with varying assumptions for modelling the gas of the sort presented here. We show how our results can be used to interpret the latest ACT and SPT power spectrum results. We provide an outlook for the future, describing follow-up work we are undertaking to further advance the theory of cluster science.

  1. Application of ground-penetrating radar to investigation of near-surface fault properties in the San Francisco Bay region

    USGS Publications Warehouse

    Cai, J.; McMechan, G.A.; Fisher, M.A.

    1996-01-01

    In many geologic environments, ground-penetrating radar (GPR) provides high-resolution images of near-surface Earth structure. GPR data collection is nondestructive and very economical. The scale of features detected by GPR lies between those imaged by high-resolution seismic reflection surveys and those exposed in trenches and is therefore potentially complementary to traditional techniques for fault location and mapping. Sixty-two GPR profiles were collected at 12 sites in the San Francisco Bay region. Results show that GPR data correlate with large-scale features in existing trench observations, can be used to locate faults where they are buried or where their positions are not well known, and can identify previously unknown fault segments. The best data acquired were on a profile across the San Andreas fault, traversing Pleistocene terrace deposits south of Olema in Marin County; this profile shows a complicated multi-branched fault system from the ground surface down to about 40 m, the maximum depth for which data were recorded.

  2. Open Path and Solar Sourced Atmospheric Spectra are Analyzed Yielding Concentration Profiles and Temporal Variation Results

    NASA Astrophysics Data System (ADS)

    Hager, John; Steill, Jeff; Compton, Robert

    2004-11-01

    A high-resolution FTIR Bomem DA8 spectrometer has been installed at the University of Tennessee and has been successfully coupled with a suntracker and open path optics. Solar absorption spectra were recorded on 75 days in the last 18 months over a large spectral range. The high-resolution spectra provide information on the vertical concentration profiles of trace gases in the atmosphere. The HITRAN data base was used along with SFIT2 in order to retrieve concentration profiles of different trace gases. Many atmospheric constituents are open to this analysis. Tropospheric Ozone in the Knoxville area is rated as the worst in the nation by the American Lung Association. Sunlight, pollutants and hot weather cause ground-level ozone to form in harmful concentrations in the air. Seasonal and daily trends of ozone show correlation with other sources such as the EPA, and recent efforts to correlate solar spectra with open-path spectra will be discussed.

  3. High-resolution shear-wave reflection profiling to image offset in unconsolidated near-surface sediments

    NASA Astrophysics Data System (ADS)

    Bailey, Bevin L.

    S-wave reflection profiling has many theoretical advantages, when compared to P-wave profiling, such as high-resolution potential, greater sensitivities to lithologic changes and insensitivity to the water table and pore fluids, and could be particularly useful in near-surface settings. However, S-wave surveys can be plagued by processing pitfalls unique to near-surface studies such as interference of Love waves with reflections, and the stacking of Love waves as coherent noise, leading to possible misinterpretations of the subsurface. Two lines of S-wave data are processed and used to locate previously unknown faults in Quaternary sediments in a region where earthquake activity poses a threat to surface structures. This study provides clear examples of processing pitfalls such as Love waves with hyperbolic appearances on shot gathers, and a CMP section with coherent noise that is easily misinterpreted as reflections. This study demonstrates pros and cons of using SH reflection data in the near surface.

  4. Characterization of Water Vapor Fluxes by the Raman Lidar System Basil and the Univeristy of Cologne Wind Lidar in the Frame of the HD(CP)2 Observational Prototype Experiment - Hope

    NASA Astrophysics Data System (ADS)

    Di Girolamo, Paolo; Summa, Donato; Stelitano, Dario; Cacciani, Marco; Scoccione, Andrea; Schween, Jan H.

    2016-06-01

    Measurements carried out by the Raman lidar system BASIL and the University of Cologne wind lidar are reported to demonstrate the capability of these instruments to characterize water vapour fluxes within the Convective Boundary Layer (CBL). In order to determine the water vapour flux vertical profiles, high resolution water vapour and vertical wind speed measurements, with a temporal resolution of 1 sec and a vertical resolution of 15-90, are considered. Measurements of water vapour flux profiles are based on the application of covariance approach to the water vapour mixing ratio and vertical wind speed time series. The algorithms are applied to a case study (IOP 11, 04 May 2013) from the HD(CP)2 Observational Prototype Experiment (HOPE), held in Central Germany in the spring 2013. For this case study, the water vapour flux profile is characterized by increasing values throughout the CBL with lager values (around 0.1 g/kg m/s) in the entrainment region. The noise errors are demonstrated to be small enough to allow the derivation of water vapour flux profiles with sufficient accuracy.

  5. Mapping Forest Fuels through Vegetation Phenology: The Role of Coarse-Resolution Satellite Time-Series

    PubMed Central

    Bajocco, Sofia; Dragoz, Eleni; Gitas, Ioannis; Smiraglia, Daniela; Salvati, Luca; Ricotta, Carlo

    2015-01-01

    Traditionally fuel maps are built in terms of ‘fuel types’, thus considering the structural characteristics of vegetation only. The aim of this work is to derive a phenological fuel map based on the functional attributes of coarse-scale vegetation phenology, such as seasonality and productivity. MODIS NDVI 250m images of Sardinia (Italy), a large Mediterranean island with high frequency of fire incidence, were acquired for the period 2000–2012 to construct a mean annual NDVI profile of the vegetation at the pixel-level. Next, the following procedure was used to develop the phenological fuel map: (i) image segmentation on the Fourier components of the NDVI profiles to identify phenologically homogeneous landscape units, (ii) cluster analysis of the phenological units and post-hoc analysis of the fire-proneness of the phenological fuel classes (PFCs) obtained, (iii) environmental characterization (in terms of land cover and climate) of the PFCs. Our results showed the ability of coarse-resolution satellite time-series to characterize the fire-proneness of Sardinia with an adequate level of accuracy. The remotely sensed phenological framework presented may represent a suitable basis for the development of fire distribution prediction models, coarse-scale fuel maps and for various biogeographic studies. PMID:25822505

  6. High-resolution characterization of chemical heterogeneity in an alluvial aquifer

    USGS Publications Warehouse

    Schulmeister, M.K.; Healey, J.M.; McCall, G.W.; Birk, S.; Butler, J.J.

    2002-01-01

    The high-resolution capabilities of direct-push technology were exploited to develop new insights into the hydrochemistry at the margin of an alluvial aquifer. Hydrostratigraphic controls on groundwater flow and contaminant loading were revealed through the combined use of direct-push electrical conductivity (EC) logging and geochemical profiling. Vertical and lateral variations in groundwater chemistry were consistent with sedimentary features indicated by EC logs, and supported a conceptual model of recharge along the floodplain margin.

  7. Intercomparison of three microwave/infrared high resolution line-by-line radiative transfer codes

    NASA Astrophysics Data System (ADS)

    Schreier, F.; Garcia, S. Gimeno; Milz, M.; Kottayil, A.; Höpfner, M.; von Clarmann, T.; Stiller, G.

    2013-05-01

    An intercomparison of three line-by-line (lbl) codes developed independently for atmospheric sounding - ARTS, GARLIC, and KOPRA - has been performed for a thermal infrared nadir sounding application assuming a HIRS-like (High resolution Infrared Radiation Sounder) setup. Radiances for the HIRS infrared channels and a set of 42 atmospheric profiles from the "Garand dataset" have been computed. Results of this intercomparison and a discussion of reasons of the observed differences are presented.

  8. High-Resolution Holocene Records of Paleoceanographic and Paleoclimatic Variability from the Southern Alaskan Continental Margin

    NASA Astrophysics Data System (ADS)

    Finney, B. P.; Jaeger, J. M.; Mix, A. C.; Cowan, E. A.; Gulick, S. S.; Mayer, L. A.; Pisias, N. G.; Powell, R. D.; Prahl, F.; Stoner, J. S.

    2004-12-01

    We are investigating sediments from the fjords and continental margin of southern Alaska to develop high-resolution climatic and oceanographic records for the Late Quaternary. Our goal is to better understand linkages between climatic, terrestrial and oceanic systems in this tectonically active and biologically productive region. A field program was conducted aboard the R/V Maurice Ewing in August/September 2004 utilizing geophysical surveys (high-resolution swath bathymetric and backscatter imaging, shallow sub-bottom profiling, and where permitted, high-resolution seismic reflection profiling), piston and multi-coring, and CTD/water sampling at about 30 sites in this region. Cores are being analyzed for sedimentological, microfossil, geochemical and stable isotopic proxies, with chronologies constrained by Pb-210, AMS radiocarbon, tephrochronolgic and paleomagnetic dating. Our preliminary results demonstrate that these rapidly accumulating sedimentary archives can resolve environmental changes on annual to decadal timescales. Records of recent changes in lithogenic sediment accumulation and biological productivity on the Gulf of Alaska shelf track historical climatic data that extends to the early 20th century in this region. The records also correlate with multi-decadal climate regimes during the Little Ice Age as suggested by tree-ring, glacial advance and salmon abundance records from nearby coastal sites. Jack Dymond's enthusiasm for collaborative, interdisciplinary research will help guide us in unraveling the fingerprints of key processes in this relatively unexplored region.

  9. Stellar Populations in the Central 0.5 pc of the Galaxy. I. A New Method for Constructing Luminosity Functions and Surface-density Profiles

    NASA Astrophysics Data System (ADS)

    Do, T.; Lu, J. R.; Ghez, A. M.; Morris, M. R.; Yelda, S.; Martinez, G. D.; Wright, S. A.; Matthews, K.

    2013-02-01

    We present new high angular resolution near-infrared spectroscopic observations of the nuclear star cluster surrounding the Milky Way's central supermassive black hole. Using the integral-field spectrograph OSIRIS on Keck II behind the laser-guide-star adaptive optics system, this spectroscopic survey enables us to separate early-type (young, 4-6 Myr) and late-type (old, >1 Gyr) stars with a completeness of 50% down to K' = 15.5 mag, which corresponds to ~10 M ⊙ for the early-type stars. This work increases the radial extent of reported OSIRIS/Keck measurements by more than a factor of three from 4'' to 14'' (0.16 to 0.56 pc), along the projected disk of young stars. For our analysis, we implement a new method of completeness correction using a combination of star-planting simulations and Bayesian inference. We assign probabilities for the spectral type of every source detected in deep imaging down to K' = 15.5 mag using information from spectra, simulations, number counts, and the distribution of stars. The inferred radial surface-density profiles, Σ(R)vpropR -Γ, for the young stars and late-type giants are consistent with earlier results (Γearly = 0.93 ± 0.09, Γlate = 0.16 ± 0.07). The late-type surface-density profile is approximately flat out to the edge of the survey. While the late-type stellar luminosity function is consistent with the Galactic bulge, the completeness-corrected luminosity function of the early-type stars has significantly more young stars at faint magnitudes compared with previous surveys with similar depth. This luminosity function indicates that the corresponding mass function of the young stars is likely less top-heavy than that inferred from previous surveys.

  10. Assessment of a vertical high-resolution distributed-temperature-sensing system in a shallow thermohaline environment

    NASA Astrophysics Data System (ADS)

    Suárez, F.; Aravena, J. E.; Hausner, M. B.; Childress, A. E.; Tyler, S. W.

    2011-03-01

    In shallow thermohaline-driven lakes it is important to measure temperature on fine spatial and temporal scales to detect stratification or different hydrodynamic regimes. Raman spectra distributed temperature sensing (DTS) is an approach available to provide high spatial and temporal temperature resolution. A vertical high-resolution DTS system was constructed to overcome the problems of typical methods used in the past, i.e., without disturbing the water column, and with resistance to corrosive environments. This paper describes a method to quantitatively assess accuracy, precision and other limitations of DTS systems to fully utilize the capacity of this technology, with a focus on vertical high-resolution to measure temperatures in shallow thermohaline environments. It also presents a new method to manually calibrate temperatures along the optical fiber achieving significant improved resolution. The vertical high-resolution DTS system is used to monitor the thermal behavior of a salt-gradient solar pond, which is an engineered shallow thermohaline system that allows collection and storage of solar energy for a long period of time. The vertical high-resolution DTS system monitors the temperature profile each 1.1 cm vertically and in time averages as small as 10 s. Temperature resolution as low as 0.035 °C is obtained when the data are collected at 5-min intervals.

  11. MISTiC Winds, a Micro-Satellite Constellation Approach to High Resolution Observations of the Atmosphere Using Infrared Sounding and 3D Winds Measurements

    NASA Technical Reports Server (NTRS)

    Maschhoff, K. R.; Polizotti, J. J.; Aumann, H. H.; Susskind, J.

    2016-01-01

    MISTiC(TM) Winds is an approach to improve short-term weather forecasting based on a miniature high resolution, wide field, thermal emission spectrometry instrument that will provide global tropospheric vertical profiles of atmospheric temperature and humidity at high (3-4 km) horizontal and vertical ( 1 km) spatial resolution. MISTiCs extraordinarily small size, payload mass of less than 15 kg, and minimal cooling requirements can be accommodated aboard a 27U-class CubeSat or an ESPA-Class micro-satellite. Low fabrication and launch costs enable a LEO sunsynchronous sounding constellation that would collectively provide frequent IR vertical profiles and vertically resolved atmospheric motion vector wind observations in the troposphere. These observations are highly complementary to present and emerging environmental observing systems, and would provide a combination of high vertical and horizontal resolution not provided by any other environmental observing system currently in operation. The spectral measurements that would be provided by MISTiC Winds are similar to those of NASA's AIRS that was built by BAE Systems and operates aboard the AQUA satellite. These new observations, when assimilated into high resolution numerical weather models, would revolutionize short-term and severe weather forecasting, save lives, and support key economic decisions in the energy, air transport, and agriculture arenasat much lower cost than providing these observations from geostationary orbit. In addition, this observation capability would be a critical tool for the study of transport processes for water vapor, clouds, pollution, and aerosols. Key remaining technical risks are being reduced through laboratory and airborne testing under NASA's Instrument Incubator Program.

  12. MISTiC Winds, a Micro-Satellite Constellation Approach to High Resolution Observations of the Atmosphere using Infrared Sounding and 3D Winds Measurements

    NASA Astrophysics Data System (ADS)

    Maschhoff, K. R.; Polizotti, J. J.; Susskind, J.; Aumann, H. H.

    2015-12-01

    MISTiCTM Winds is an approach to improve short-term weather forecasting based on a miniature high resolution, wide field, thermal emission spectrometry instrument that will provide global tropospheric vertical profiles of atmospheric temperature and humidity at high (3-4 km) horizontal and vertical ( 1 km) spatial resolution. MISTiC's extraordinarily small size, payload mass of less than 15 kg, and minimal cooling requirements can be accommodated aboard a 27U-class CubeSat or an ESPA-Class micro-satellite. Low fabrication and launch costs enable a LEO sun-synchronous sounding constellation that would collectively provide frequent IR vertical profiles and vertically resolved atmospheric motion vector wind observations in the troposphere. These observations are highly complementary to present and emerging environmental observing systems, and would provide a combination of high vertical and horizontal resolution not provided by any other environmental observing system currently in operation. The spectral measurements that would be provided by MISTiC Winds are similar to those of NASA's Atmospheric Infrared Sounder that was built by BAE Systems and operates aboard the AQUA satellite. These new observations, when assimilated into high resolution numerical weather models, would revolutionize short-term and severe weather forecasting, save lives, and support key economic decisions in the energy, air transport, and agriculture arenas-at much lower cost than providing these observations from geostationary orbit. In addition, this observation capability would be a critical tool for the study of transport processes for water vapor, clouds, pollution, and aerosols. Key technical risks are being reduced through laboratory and airborne testing under NASA's Instrument Incubator Program.

  13. MISTiC Winds: A micro-satellite constellation approach to high resolution observations of the atmosphere using infrared sounding and 3D winds measurements

    NASA Astrophysics Data System (ADS)

    Maschhoff, K. R.; Polizotti, J. J.; Aumann, H. H.; Susskind, J.

    2016-09-01

    MISTiCTM Winds is an approach to improve short-term weather forecasting based on a miniature high resolution, wide field, thermal emission spectrometry instrument that will provide global tropospheric vertical profiles of atmospheric temperature and humidity at high (3-4 km) horizontal and vertical ( 1 km) spatial resolution. MISTiC's extraordinarily small size, payload mass of less than 15 kg, and minimal cooling requirements can be accommodated aboard a 27U-class CubeSat or an ESPA-Class micro-satellite. Low fabrication and launch costs enable a LEO sunsynchronous sounding constellation that would collectively provide frequent IR vertical profiles and vertically resolved atmospheric motion vector wind observations in the troposphere. These observations are highly complementary to present and emerging environmental observing systems, and would provide a combination of high vertical and horizontal resolution not provided by any other environmental observing system currently in operation. The spectral measurements that would be provided by MISTiC Winds are similar to those of NASA's AIRS that was built by BAE Systems and operates aboard the AQUA satellite. These new observations, when assimilated into high resolution numerical weather models, would revolutionize short-term and severe weather forecasting, save lives, and support key economic decisions in the energy, air transport, and agriculture arenas-at much lower cost than providing these observations from geostationary orbit. In addition, this observation capability would be a critical tool for the study of transport processes for water vapor, clouds, pollution, and aerosols. Key remaining technical risks are being reduced through laboratory and airborne testing under NASA's Instrument Incubator Program.

  14. Mistic winds, a microsatellite constellation approach to high-resolution observations of the atmosphere using infrared sounding and 3d winds measurements

    NASA Astrophysics Data System (ADS)

    Maschhoff, K. R.; Polizotti, J. J.; Aumann, H. H.; Susskind, J.

    2016-10-01

    MISTiC Winds is an approach to improve short-term weather forecasting based on a miniature high resolution, wide field, thermal emission spectrometry instrument that will provide global tropospheric vertical profiles of atmospheric temperature and humidity at high (3-4 km) horizontal and vertical ( 1 km) spatial resolution. MISTiC's extraordinarily small size, payload mass of less than 15 kg, and minimal cooling requirements can be accommodated aboard a 27U-class CubeSat or an ESPA-Class micro-satellite. Low fabrication and launch costs enable a LEO sunsynchronous sounding constellation that would collectively provide frequent IR vertical profiles and vertically resolved atmospheric motion vector wind observations in the troposphere. These observations are highly complementary to present and emerging environmental observing systems, and would provide a combination of high vertical and horizontal resolution not provided by any other environmental observing system currently in operation. The spectral measurements that would be provided by MISTiC Winds are similar to those of NASA's AIRS that was built by BAE Systems and operates aboard the AQUA satellite. These new observations, when assimilated into high resolution numerical weather models, would revolutionize short-term and severe weather forecasting, save lives, and support key economic decisions in the energy, air transport, and agriculture arenas-at much lower cost than providing these observations from geostationary orbit. In addition, this observation capability would be a critical tool for the study of transport processes for water vapor, clouds, pollution, and aerosols. Key remaining technical risks are being reduced through laboratory and airborne testing under NASA's Instrument Incubator Program.

  15. Ground-based lidar and microwave radiometry synergy for high vertical resolution absolute humidity profiling

    NASA Astrophysics Data System (ADS)

    Barrera-Verdejo, María; Crewell, Susanne; Löhnert, Ulrich; Orlandi, Emiliano; Di Girolamo, Paolo

    2016-08-01

    Continuous monitoring of atmospheric humidity profiles is important for many applications, e.g., assessment of atmospheric stability and cloud formation. Nowadays there are a wide variety of ground-based sensors for atmospheric humidity profiling. Unfortunately there is no single instrument able to provide a measurement with complete vertical coverage, high vertical and temporal resolution and good performance under all weather conditions, simultaneously. For example, Raman lidar (RL) measurements can provide water vapor with a high vertical resolution, albeit with limited vertical coverage, due to sunlight contamination and the presence of clouds. Microwave radiometers (MWRs) receive water vapor information throughout the troposphere, though their vertical resolution is poor. In this work, we present an MWR and RL system synergy, which aims to overcome the specific sensor limitations. The retrieval algorithm combining these two instruments is an optimal estimation method (OEM), which allows for an uncertainty analysis of the retrieved profiles. The OEM combines measurements and a priori information, taking the uncertainty of both into account. The measurement vector consists of a set of MWR brightness temperatures and RL water vapor profiles. The method is applied to a 2-month field campaign around Jülich (Germany), focusing on clear sky periods. Different experiments are performed to analyze the improvements achieved via the synergy compared to the individual retrievals. When applying the combined retrieval, on average the theoretically determined absolute humidity uncertainty is reduced above the last usable lidar range by a factor of ˜ 2 with respect to the case where only RL measurements are used. The analysis in terms of degrees of freedom per signal reveal that most information is gained above the usable lidar range, especially important during daytime when the lidar vertical coverage is limited. The retrieved profiles are further evaluated using radiosounding and Global Position Satellite (GPS) water vapor measurements. In general, the benefit of the sensor combination is especially strong in regions where Raman lidar data are not available (i.e., blind regions, regions characterized by low signal-to-noise ratio), whereas if both instruments are available, RL dominates the retrieval. In the future, the method will be extended to cloudy conditions, when the impact of the MWR becomes stronger.

  16. Genome-Wide High-Resolution aCGH Analysis of Gestational Choriocarcinomas

    PubMed Central

    Poaty, Henriette; Coullin, Philippe; Peko, Jean Félix; Dessen, Philippe; Diatta, Ange Lucien; Valent, Alexander; Leguern, Eric; Prévot, Sophie; Gombé-Mbalawa, Charles; Candelier, Jean-Jacques; Picard, Jean-Yves; Bernheim, Alain

    2012-01-01

    Eleven samples of DNA from choriocarcinomas were studied by high resolution CGH-array 244 K. They were studied after histopathological confirmation of the diagnosis, of the androgenic etiology and after a microsatellite marker analysis confirming the absence of contamination of tumor DNA from maternal DNA. Three cell lines, BeWo, JAR, JEG were also studied by this high resolution pangenomic technique. According to aCGH analysis, the de novo choriocarcinomas exhibited simple chromosomal rearrangements or normal profiles. The cell lines showed various and complex chromosomal aberrations. 23 Minimal Critical Regions were defined that allowed us to list the genes that were potentially implicated. Among them, unusually high numbers of microRNA clusters and imprinted genes were observed. PMID:22253721

  17. High Resolution Temperature Measurement of Liquid Stainless Steel Using Hyperspectral Imaging

    PubMed Central

    Devesse, Wim; De Baere, Dieter; Guillaume, Patrick

    2017-01-01

    A contactless temperature measurement system is presented based on a hyperspectral line camera that captures the spectra in the visible and near infrared (VNIR) region of a large set of closely spaced points. The measured spectra are used in a nonlinear least squares optimization routine to calculate a one-dimensional temperature profile with high spatial resolution. Measurements of a liquid melt pool of AISI 316L stainless steel show that the system is able to determine the absolute temperatures with an accuracy of 10%. The measurements are made with a spatial resolution of 12 µm/pixel, justifying its use in applications where high temperature measurements with high spatial detail are desired, such as in the laser material processing and additive manufacturing fields. PMID:28067764

  18. Raman lidar for hydrogen gas concentration monitoring and future radioactive waste management.

    PubMed

    Liméry, Anasthase; Cézard, Nicolas; Fleury, Didier; Goular, Didier; Planchat, Christophe; Bertrand, Johan; Hauchecorne, Alain

    2017-11-27

    A multi-channel Raman lidar has been developed, allowing for the first time simultaneous and high-resolution profiling of hydrogen gas and water vapor. The lidar measures vibrational Raman scattering in the UV (355 nm) domain. It works in a high-bandwidth photon counting regime using fast SiPM detectors and takes into account the spectral overlap between hydrogen and water vapor Raman spectra. Measurement of concentration profiles of H 2 and H 2 O are demonstrated along a 5-meter-long open gas cell with 1-meter resolution at 85 meters. The instrument precision is investigated by numerical simulation to anticipate the potential performance at longer range. This lidar could find applications in the French project Cigéo for monitoring radioactive waste disposal cells.

  19. Atmospheric Temperature Profile Measurements Using Mobile High Spectral Resolution Lidar

    NASA Astrophysics Data System (ADS)

    Razenkov, Ilya I.; Eloranta, Edwin W.

    2016-06-01

    The High Spectral Resolution Lidar (HSRL) designed at the University of Wisconsin-Madison discriminates between Mie and Rayleigh backscattering [1]. It exploits the Doppler effect caused by thermal motion of molecules, which broadens the spectrum of the transmitted laser light. That allows for absolute calibration of the lidar and measurements of the aerosol volume backscatter coefficient. Two iodine absorption filters with different absorption line widths (a regular iodine vapor filter and Argon buffered iodine filter) allow for atmospheric temperature profile measurements. The sensitivity of the measured signal-to-air temperature ratio is around 0.14%/K. The instrument uses a shared telescope transmitter-receiver design and operates in eyesafe mode (the product of laser average power and telescope aperture equals 0.1 Wm2 at 532 nm).

  20. Line Profile of H Lyman (alpha) from Dissociative Excitation of H2 with Application to Jupiter

    NASA Technical Reports Server (NTRS)

    Ajello, Joseph M.; Kasnik, Isik; Ahmed, Syed M.; Clarke, John T.

    1995-01-01

    Observations of the H Lyman(alpha) (Ly-alpha) emission from Jupiter have shown pronounced emissions, exceeding solar fluorescence, in the polar aurora and equatorial "bulge" regions. The H Ly-alpha line profiles from these regions are broader than expected, indicating high-energy processes producing fast atoms as determined from the observed Doppler broadening. Toward understanding that process a high-resolution ultraviolet (UV) spectrometer was employed for the first measurement of the H Ly-alpha emission Doppler profile from dissociative excitation of H2 by electron impact. Analysis of the deconvolved line profile reveals the existence of a narrow central peak of 40 +/- 4 mA full width at half maximum and a broad pedestal base about 240 mA wide. Two distinct dissociation mechanisms account for this Doppler structure. Slow H(2p) atoms characterized by a distribution function with peak energy near 80 meV produce the peak profile, which is nearly independent of the electron impact energy. Slow H(2p) atoms arise from direct dissociation and predissociation of singly excited states which have a dissociation limit of 14.68 eV. The wings of H Ly-alpha arise from dissociative excitation of a series of doubly excited states which cross the Franck-Condon region between 23 and 40 eV. The profile of the wings is dependent on the electron impact energy, and the distribution function of fast H(2p) atoms is therefore dependent on the electron impact energy. The fast atom kinetic energy distribution at 100 eV electron impact energy spans the energy range from 1 to 10 eV with a peak near 4 eV. For impact energies above 23 eV the fast atoms contribute to a slightly asymmetric structure of the line profile. The absolute cross sections of the H Ly-alpha line peak and wings were measured over the range from 0 to 200 eV. Analytic model coefficients are given for the measured cross sections which can be applied to planetary atmosphere auroral and dayglow calculations. The dissociative excitation process, while one contributing process, appears insufficient by itself to explain the line broadening observed at Jupiter.

  1. Hybrid photonic signal processing

    NASA Astrophysics Data System (ADS)

    Ghauri, Farzan Naseer

    This thesis proposes research of novel hybrid photonic signal processing systems in the areas of optical communications, test and measurement, RF signal processing and extreme environment optical sensors. It will be shown that use of innovative hybrid techniques allows design of photonic signal processing systems with superior performance parameters and enhanced capabilities. These applications can be divided into domains of analog-digital hybrid signal processing applications and free-space---fiber-coupled hybrid optical sensors. The analog-digital hybrid signal processing applications include a high-performance analog-digital hybrid MEMS variable optical attenuator that can simultaneously provide high dynamic range as well as high resolution attenuation controls; an analog-digital hybrid MEMS beam profiler that allows high-power watt-level laser beam profiling and also provides both submicron-level high resolution and wide area profiling coverage; and all optical transversal RF filters that operate on the principle of broadband optical spectral control using MEMS and/or Acousto-Optic tunable Filters (AOTF) devices which can provide continuous, digital or hybrid signal time delay and weight selection. The hybrid optical sensors presented in the thesis are extreme environment pressure sensors and dual temperature-pressure sensors. The sensors employ hybrid free-space and fiber-coupled techniques for remotely monitoring a system under simultaneous extremely high temperatures and pressures.

  2. Equivalent peak resolution: characterization of the extent of separation for two components based on their relative peak overlap.

    PubMed

    Dvořák, Martin; Svobodová, Jana; Dubský, Pavel; Riesová, Martina; Vigh, Gyula; Gaš, Bohuslav

    2015-03-01

    Although the classical formula of peak resolution was derived to characterize the extent of separation only for Gaussian peaks of equal areas, it is often used even when the peaks follow non-Gaussian distributions and/or have unequal areas. This practice can result in misleading information about the extent of separation in terms of the severity of peak overlap. We propose here the use of the equivalent peak resolution value, a term based on relative peak overlap, to characterize the extent of separation that had been achieved. The definition of equivalent peak resolution is not constrained either by the form(s) of the concentration distribution function(s) of the peaks (Gaussian or non-Gaussian) or the relative area of the peaks. The equivalent peak resolution value and the classically defined peak resolution value are numerically identical when the separated peaks are Gaussian and have identical areas and SDs. Using our new freeware program, Resolution Analyzer, one can calculate both the classically defined and the equivalent peak resolution values. With the help of this tool, we demonstrate here that the classical peak resolution values mischaracterize the extent of peak overlap even when the peaks are Gaussian but have different areas. We show that under ideal conditions of the separation process, the relative peak overlap value is easily accessible by fitting the overall peak profile as the sum of two Gaussian functions. The applicability of the new approach is demonstrated on real separations. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. When somatization is not the only thing you suffer from: Examining comorbid syndromes using latent profile analysis, parenting practices and adolescent functioning.

    PubMed

    Scharf, Miri; Mayseless, Ofra; Rousseau, Sofie

    2016-10-30

    Understanding somatization presents a challenge to clinicians because it is often associated with other syndromes. We addressed somatization's comorbidity with other internalizing syndromes (anxiety, depression, withdrawal) using latent profile analysis. A representative sample of 3496 Israeli middle and high-school youths reported their internalizing symptoms, perceived parenting practices, psychosocial functioning, and health behaviors. Four profiles, similar across age and gender, were identified: overall-low (65.4%), moderately-high anxiety/depression/withdrawal (24.4%), high somatization (4.8%), and overall-high (5.4%). MANOVAs and follow-up ANOVAs revealed that for the most part the overall-high profile evinced the worst parenting, psychosocial functioning, and health behaviors (smoking and drinking), while the overall-low group evinced the best. For most variables the high somatization and moderately high profiles displayed midway results. However, the moderately-high profile reported higher levels of harsh parenting than the high somatization profile. The high somatization profile reported similar or higher levels of smoking, risk taking, vandalism, and rule violation than the overall-high group. High somatization, either alone or alongside anxiety, depression, and withdrawal, was associated with disruptive and risk-taking behaviors. This link might reflect problems in emotion and anger regulation and become stronger in adolescence because of dysregulation processes characterizing this period. Implications for practice are discussed. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Transport systems of Ventricaria ventricosa: I/V analysis of both membranes in series as a function of [K(+)](o).

    PubMed

    Beilby, M J; Bisson, M A

    1999-09-01

    The current-voltage (I/V) profiles of Ventricaria (formerly Valonia) membranes were measured at a range of external potassium concentrations, [K(+)](o), from 0.1 to 100 mm. The conductance-voltage (G/V) characteristics were computed to facilitate better resolution of the profile change with time after exposure to different [K(+)](o). The resistance-voltage (R/V) characteristics were computed to attempt resolution of plasmalemma and tonoplast. Four basic electrophysiological stages emerged: (1) Uniform low resistance between -60 and +60 mV after the cell impalement. (2) High resistance between +50 and +150 for [K(+)](o) from 0.1 to 1.0 mm and hypotonic media. (3) High resistance between -150 and -20 mV for [K(+)](o) of 10 mm (close to natural seawater) and hypertonic media. (4) High resistance between -150 and +170 mV at [K(+)](o) of 100 mm. The changes between these states were slow, requiring minutes to hours and sometimes exhibiting spontaneous oscillations of the membrane p.d. (potential difference). Our analysis of the I/V data supports a previous hypothesis, that Ventricaria tonoplast is the more resistive membrane containing a pump, which transports K(+) into the vacuole to regulate turgor. We associate state (1) with the plasmalemma conductance being dominant and the K(+) pump at the tonoplast short-circuited probably by a K(+) channel, state (2) with the K(+) pump "off" or short-circuited at p.d.s more negative than +50 mV, state (3) with the K(+) pump "on, " and state (4) with the pump dominant, but affected by high K(+). A model for the Ventricaria membrane system is proposed.

  5. SU-F-T-559: High-Resolution Scintillating Fiber Array for In-Vivo Real-Time SRS and SBRT Patient QA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knewtson, T; Pokhrel, S; University of Tennessee Health Science Center, Memphis, TN

    2016-06-15

    Purpose: A high-resolution scintillating fiber detector was built for in-vivo real-time patient specific quality assurance (QA). The detector is designed for stereotactic body radiotherapy (SBRT) and stereotactic radiosurgery (SRS) to monitor treatment delivery and detect real-time deviations from planned dose to increase patient safety and treatment accuracy. Methods: The detector consists of two high-density scintillating fiber arrays layered to form an X-Y grid which can be attached to the accessory tray of a medical linac for SBRT and cone SRS treatment QA. Fiber arrays consist of 128 scintillating fibers embedded within a precision-machined, high-transmission polymer substrate with 0.8mm pitch. Themore » fibers are coupled on both ends to high-sensitivity photodetectors and the output is recorded through a high-speed analog-to-digital converter to capture the linac pulse sequence as treatment delivery progresses. The detector has a software controlled 360 degree rotational system to capture angular beam projections for high-resolution beam profile reconstruction. Results: The detector was validated using SRS cone sizes from 6mm to 34mm and MLC defined field sizes from 5×5mm2 to 100×100mm2. The detector output response is linear with dose and is dose rate independent. Each field can be reconstructed accurately with a spatial resolution of 0.8mm and the current beam output is displayed every 50msec. Dosimetric errors of 1% with respect to the treatment plan can be identified and clinically significant deviations from the expected treatment can be displayed in real-time to alert the therapists. Conclusion: The high resolution detector is capable of reconstructing beam profiles in real-time with submillimeter resolution and 1% dose resolution. This system has the ability to project in-vivo both spatial and dosimetric errors during SBRT and SRS treatments when only a non-clinically significant fraction of the intended dose was delivered. The device has the potential to establish new standards for in-vivo patient specific QA.« less

  6. Chemical analysis of solids with sub-nm depth resolution by using a miniature LIMS system designed for in situ space research

    NASA Astrophysics Data System (ADS)

    Riedo, Andreas; Grimaudo, Valentine; Moreno-García, Pavel; Brigitte Neuland, Maike; Tulej, Marek; Broekmann, Peter; Wurz, Peter

    2015-04-01

    Sensitive elemental and isotope analysis of solid samples are of considerable interest in nowadays in situ space research. For context in situ analysis, high spatial resolution is also of substantial importance. While the measurements conducted with high lateral resolution can provide compositional details of the surface of highly heterogeneous materials, depth profiling measurements yield information on compositional details of surface and subsurface. The mass spectrometric analysis with the vertical resolution at sub-µm levels is of special consideration and can deliver important information on processes, which may have modified the surface. Information on space weathering effects can be readily determined when the sample composition of the surface and sub-surface is studied with high vertical resolution. In this contribution we will present vertical depth resolution measurements conducted by our sensitive miniature laser ablation ionization time-of-flight mass spectrometer (160mm x Ø 60mm) designed for in situ space research [1-3]. The mass spectrometer is equipped with a fs-laser system (~190fs pulse width, λ = 775nm), which is used for ablation and ionization of the sample material [2]. Laser radiation is focussed on the target material to a spot size of about 10-20 µm in diameter. Mass spectrometric measurements are conducted with a mass resolution (m/Δm) of about 400-500 (at 56Fe mass peak) and with a superior dynamic range of more than eight orders of magnitude. The depth profiling performance studies were conducted on 10µm thick Cu films that were deposited by an additive-assisted electrochemical procedure on Si-wafers. The presented measurement study will show that the current instrument prototype is able to conduct quantitative chemical (elemental and isotope) analysis of solids with a vertical resolution at sub-nm level. Contaminants, incorporated by using additives (polymers containing e.g. C, N, O, S) and with layer thickness of a few nanometres, can be fully resolved [1]. The current measurement performance, including the sensitivity and the high vertical depth resolution, opens new perspectives for future applications in the laboratory, e.g. measurements of Genesis samples, and new measurement capabilities for in situ space research. References 1)V. Grimaudo, P. Moreno-García, M.B. Neuland, M. Tulej, P. Broekmann, P. Wurz and A. Riedo, "High-resolution chemical depth profiling of solid material using a miniature laser ablation/ionization mass spectrometer", Anal. Chem., 2015, submitted. 2)A. Riedo, M. Neuland, S. Meyer, M. Tulej, and P. Wurz, "Coupling of LMS with a fs-laser ablation ion source: elemental and isotope composition measurements", J. Anal. At. Spectrom., 2013, 28, 1256. 3)Tulej et al. CAMAM: A Miniature Laser Ablation Ionisation Mass Spectrometer and Microscope-Camera System for In Situ Investigation of the Composition and Morphology of Extraterrestrial Materials, Geostand. Geoanal. Res., 2014, doi: 10.1111/j.1751-908X.2014.00302.x

  7. Carotenoid metabolic profiling and transcriptome-genome mining reveal functional equivalence among blue-pigmented copepods and appendicularia.

    PubMed

    Mojib, Nazia; Amad, Maan; Thimma, Manjula; Aldanondo, Naroa; Kumaran, Mande; Irigoien, Xabier

    2014-06-01

    The tropical oligotrophic oceanic areas are characterized by high water transparency and annual solar radiation. Under these conditions, a large number of phylogenetically diverse mesozooplankton species living in the surface waters (neuston) are found to be blue pigmented. In the present study, we focused on understanding the metabolic and genetic basis of the observed blue phenotype functional equivalence between the blue-pigmented organisms from the phylum Arthropoda, subclass Copepoda (Acartia fossae) and the phylum Chordata, class Appendicularia (Oikopleura dioica) in the Red Sea. Previous studies have shown that carotenoid-protein complexes are responsible for blue coloration in crustaceans. Therefore, we performed carotenoid metabolic profiling using both targeted and nontargeted (high-resolution mass spectrometry) approaches in four different blue-pigmented genera of copepods and one blue-pigmented species of appendicularia. Astaxanthin was found to be the principal carotenoid in all the species. The pathway analysis showed that all the species can synthesize astaxanthin from β-carotene, ingested from dietary sources, via 3-hydroxyechinenone, canthaxanthin, zeaxanthin, adonirubin or adonixanthin. Further, using de novo assembled transcriptome of blue A. fossae (subclass Copepoda), we identified highly expressed homologous β-carotene hydroxylase enzymes and putative carotenoid-binding proteins responsible for astaxanthin formation and the blue phenotype. In blue O. dioica (class Appendicularia), corresponding putative genes were identified from the reference genome. Collectively, our data provide molecular evidences for the bioconversion and accumulation of blue astaxanthin-protein complexes underpinning the observed ecological functional equivalence and adaptive convergence among neustonic mesozooplankton. © 2014 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.

  8. Application of Cell-Specific Isolation to the Study of Dopamine Signaling in Drosophila

    PubMed Central

    Iyer, Eswar Prasad R.; Iyer, Srividya Chandramouli; Cox, Daniel N.

    2014-01-01

    Dopamine neurotransmission accounts for a number of important brain functions across species including memory formation, the anticipation of reward, cognitive facilities, and drug addiction. Despite this functional significance, relatively little is known of the cellular pathways associated with drug-induced molecular adaptations within individual neurons. Due to its genetic tractability, simplicity, and economy of scale, Drosophila melanogaster has become an important tool in the study of neurological disease states, including drug addiction. To facilitate high-resolution functional analyses of dopamine signaling, it is highly advantageous to obtain genetic material, such as RNA or protein, from a homogeneous cell source. This process can be particularly challenging in most organisms including small model system organisms such as Drosophila melanogaster. Magnetic bead-based cell sorting has emerged as a powerful tool that can be used to isolate select populations of cells, from a whole organism or tissue such as the brain, for genomic as well as proteomic expression profiling. Coupled with the temporal and spatial specificity of the GAL4/UAS system, we demonstrate the application of magnetic bead-based cell sorting towards the isolation of dopaminergic neurons from the Drosophila adult nervous system. RNA derived from these neurons is of high quality and suitable for downstream applications such as microarray expression profiling or quantitative rtPCR. The versatility of this methodology stems from the fact that the cell-specific isolation method employed can be used under a variety of experimental conditions designed to survey molecular adaptations in dopamine signaling neurons including in response to drugs of abuse. PMID:23296786

  9. High-resolution humidity profiles retrieved from wind profiler radar measurements

    NASA Astrophysics Data System (ADS)

    Saïd, Frédérique; Campistron, Bernard; Di Girolamo, Paolo

    2018-03-01

    The retrieval of humidity profiles from wind profiler radars has already been documented in the past 30 years and is known to be neither as straightforward and nor as robust as the retrieval of the wind velocity. The main constraint to retrieve the humidity profile is the necessity to combine measurements from the wind profiler and additional measurements (such as observations from radiosoundings at a coarser time resolution). Furthermore, the method relies on some assumptions and simplifications that restrict the scope of its application. The first objective of this paper is to identify the obstacles and limitations and solve them, or at least define the field of applicability. To improve the method, we propose using the radar capacity to detect transition levels, such as the top level of the boundary layer, marked by a maximum in the radar reflectivity. This forces the humidity profile from the free troposphere and from the boundary layer to coincide at this level, after an optimization of the calibration coefficients, and reduces the error. The resulting mean bias affecting the specific humidity profile never exceeds 0.25 g kg-1. The second objective is to explore the capability of the algorithm to retrieve the humidity vertical profiles for an operational purpose by comparing the results with observations from a Raman lidar.

  10. Intermediate scale plasma density irregularities in the polar ionosphere inferred from radio occultation

    NASA Astrophysics Data System (ADS)

    Shume, E. B.; Komjathy, A.; Langley, R. B.; Verkhoglyadova, O. P.; Butala, M.; Mannucci, A. J.

    2014-12-01

    In this research, we report intermediate scale plasma density irregularities in the high-latitude ionosphere inferred from high-resolution radio occultation (RO) measurements in the CASSIOPE (CAScade Smallsat and IOnospheric Polar Explorer) - GPS (Global Positioning System) satellites radio link. The high inclination of the CASSIOPE satellite and high rate of signal receptionby the occultation antenna of the GPS Attitude, Positioning and Profiling (GAP) instrument on the Enhanced Polar Outflow Probe platform on CASSIOPE enable a high temporal and spatial resolution investigation of the dynamics of the polar ionosphere, magnetosphere-ionospherecoupling, solar wind effects, etc. with unprecedented details compared to that possible in the past. We have carried out high spatial resolution analysis in altitude and geomagnetic latitude of scintillation-producing plasma density irregularities in the polar ionosphere. Intermediate scale, scintillation-producing plasma density irregularities, which corresponds to 2 to 40 km spatial scales were inferred by applying multi-scale spectral analysis on the RO phase delay measurements. Using our multi-scale spectral analysis approach and Polar Operational Environmental Satellites (POES) and Defense Meteorological Satellite Program (DMSP) observations, we infer that the irregularity scales and phase scintillations have distinct features in the auroral oval and polar cap regions. In specific terms, we found that large length scales and and more intense phase scintillations are prevalent in the auroral oval compared to the polar cap region. Hence, the irregularity scales and phase scintillation characteristics are a function of the solar wind and the magnetospheric forcing. Multi-scale analysis may become a powerful diagnostic tool for characterizing how the ionosphere is dynamically driven by these factors.

  11. Measurement uncertainty budget of an interferometric flow velocity sensor

    NASA Astrophysics Data System (ADS)

    Bermuske, Mike; Büttner, Lars; Czarske, Jürgen

    2017-06-01

    Flow rate measurements are a common topic for process monitoring in chemical engineering and food industry. To achieve the requested low uncertainties of 0:1% for flow rate measurements, a precise measurement of the shear layers of such flows is necessary. The Laser Doppler Velocimeter (LDV) is an established method for measuring local flow velocities. For exact estimation of the flow rate, the flow profile in the shear layer is of importance. For standard LDV the axial resolution and therefore the number of measurement points in the shear layer is defined by the length of the measurement volume. A decrease of this length is accompanied by a larger fringe distance variation along the measurement axis which results in a rise of the measurement uncertainty for the flow velocity (uncertainty relation between spatial resolution and velocity uncertainty). As a unique advantage, the laser Doppler profile sensor (LDV-PS) overcomes this problem by using two fan-like fringe systems to obtain the position of the measured particles along the measurement axis and therefore achieve a high spatial resolution while it still offers a low velocity uncertainty. With this technique, the flow rate can be estimated with one order of magnitude lower uncertainty, down to 0:05% statistical uncertainty.1 And flow profiles especially in film flows can be measured more accurately. The problem for this technique is, in contrast to laboratory setups where the system is quite stable, that for industrial applications the sensor needs a reliable and robust traceability to the SI units, meter and second. Small deviations in the calibration can, because of the highly position depending calibration function, cause large systematic errors in the measurement result. Therefore, a simple, stable and accurate tool is needed, that can easily be used in industrial surroundings to check or recalibrate the sensor. In this work, different calibration methods are presented and their influences to the measurement uncertainty budget of the sensor is discussed. Finally, generated measurement results for the film flow of an impinging jet cleaning experiment are presented.

  12. High-resolution gravity and seismic-refraction surveys of the Smoke Tree Wash area, Joshua Tree National Park, California

    USGS Publications Warehouse

    Langenheim, Victoria E.; Rymer, Michael J.; Catchings, Rufus D.; Goldman, Mark R.; Watt, Janet T.; Powell, Robert E.; Matti, Jonathan C.

    2016-03-02

    We describe high-resolution gravity and seismic refraction surveys acquired to determine the thickness of valley-fill deposits and to delineate geologic structures that might influence groundwater flow beneath the Smoke Tree Wash area in Joshua Tree National Park. These surveys identified a sedimentary basin that is fault-controlled. A profile across the Smoke Tree Wash fault zone reveals low gravity values and seismic velocities that coincide with a mapped strand of the Smoke Tree Wash fault. Modeling of the gravity data reveals a basin about 2–2.5 km long and 1 km wide that is roughly centered on this mapped strand, and bounded by inferred faults. According to the gravity model the deepest part of the basin is about 270 m, but this area coincides with low velocities that are not characteristic of typical basement complex rocks. Most likely, the density contrast assumed in the inversion is too high or the uncharacteristically low velocities represent highly fractured or weathered basement rocks, or both. A longer seismic profile extending onto basement outcrops would help differentiate which scenario is more accurate. The seismic velocities also determine the depth to water table along the profile to be about 40–60 m, consistent with water levels measured in water wells near the northern end of the profile.

  13. Exploring the nearshore marine wind profile from field measurements and numerical hindcast

    NASA Astrophysics Data System (ADS)

    del Jesus, F.; Menendez, M.; Guanche, R.; Losada, I.

    2012-12-01

    Wind power is the predominant offshore renewable energy resource. In the last years, offshore wind farms have become a technically feasible source of electrical power. The economic feasibility of offshore wind farms depends on the quality of the offshore wind conditions compared to that of onshore sites. Installation and maintenance costs must be balanced with more hours and a higher quality of the available resources. European offshore wind development has revealed that the optimum offshore sites are those in which the distance from the coast is limited with high available resource. Due to the growth in the height of the turbines and the complexity of the coast, with interactions between inland wind/coastal orography and ocean winds, there is a need for field measurements and validation of numerical models to understand the marine wind profile near the coast. Moreover, recent studies have pointed out that the logarithmic law describing the vertical wind profile presents limitations. The aim of this work is to characterize the nearshore vertical wind profile in the medium atmosphere boundary layer. Instrumental observations analyzed in this work come from the Idermar project (www.Idermar.es). Three floating masts deployed at different locations on the Cantabrian coast provide wind measurements from a height of 20 to 90 meters. Wind speed and direction are measured as well as several meteorological variables at different heights of the profile. The shortest wind time series has over one year of data. A 20 year high-resolution atmospheric hindcast, using the WRF-ARW model and focusing on hourly offshore wind fields, is also analyzed. Two datasets have been evaluated: a European reanalysis with a ~15 Km spatial resolution, and a hybrid downscaling of wind fields with a spatial resolution of one nautical mile over the northern coast of Spain.. These numerical hindcasts have been validated based on field measurement data. Several parameterizations of the vertical wind profile are evaluated and, based on this work, a particular parameterization of the wind profile is proposed.

  14. Goddard High Resolution Spectrograph Observations of Variability in the RS Canum Venaticorum System V711 Tauri (HR 1099)

    NASA Technical Reports Server (NTRS)

    Dempsey, Robert C.; Neff, James E.; Thorpe, Marjorie J.; Linsky, Jeffrey L.; Brown, Alexander; Cutispoto, Giuseppe; Rodono, Marcello

    1996-01-01

    Goddard High Resolution Spectrograph (GHRS) observations of the RS CVn-type binary V711 Tau (Kl IV+G5 IV) were obtained at several phases over two consecutive stellar orbital cycles in order to study ultraviolet emission-line profile and flux variability. Spectra cover the Mg II h and k lines, C IV doublet, and Si IV region, as well as the density-sensitive lines of C III] (1909 A) and Si III] (1892 A). IUE spectra, Extreme Ultra Violet (EUV) data, and Ultraviolet, Blue, Visual (UBV) photometry were obtained contemporaneously with the GHRS data. Variable extended wings were detected in the Mg II lines. We discuss the Mg II line profile variability using various Gaussian emission profile models. No rotational modulation of the line profiles was observed, but there were several large flares. These flares produced enhanced emission in the extended line wings, radial velocity shifts, and asymmetries in some line profiles. Nearly continuous flaring for more than 24 hr, as indicated in the IUE data, represents the most energetic and long-lived chromospheric and transition region flare ever observed with a total energy much greater than 5 x 10(exp 35) ergs. The C III] to Si III] line ratio is used to estimate the plasma density during the flares.

  15. Layout and results from the initial operation of the high-resolution x-ray imaging crystal spectrometer on the Large Helical Device.

    PubMed

    Pablant, N A; Bitter, M; Delgado-Aparicio, L; Goto, M; Hill, K W; Lazerson, S; Morita, S; Roquemore, A L; Gates, D; Monticello, D; Nielson, H; Reiman, A; Reinke, M; Rice, J E; Yamada, H

    2012-08-01

    First results of ion and electron temperature profile measurements from the x-ray imaging crystal spectrometer (XICS) diagnostic on the Large Helical Device (LHD) are presented. This diagnostic system has been operational since the beginning of the 2011 LHD experimental campaign and is the first application of the XICS diagnostic technique to helical plasma geometry. The XICS diagnostic provides measurements of ion and electron temperature profiles in LHD with a spatial resolution of 2 cm and a maximum time resolution of 5 ms (typically 20 ms). Ion temperature profiles from the XICS diagnostic are possible under conditions where charge exchange recombination spectroscopy (CXRS) is not possible (high density) or is perturbative to the plasma (low density or radio frequency heated plasmas). Measurements are made by using a spherically bent crystal to provide a spectrally resolved 1D image of the plasma from line integrated emission of helium-like Ar(16 +). The final hardware design and configuration are detailed along with the calibration procedures. Line-integrated ion and electron temperature measurements are presented, and the measurement accuracy is discussed. Finally central temperature measurements from the XICS system are compared to measurements from the Thomson scattering and CXRS systems, showing excellent agreement.

  16. A Spatially Resolving X-ray Crystal Spectrometer for Measurement of Ion-temperature and Rotation-velocity Profiles on the AlcatorC-Mod Tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, K. W.; Bitter, M. L.; Scott, S. D.

    2009-03-24

    A new spatially resolving x-ray crystal spectrometer capable of measuring continuous spatial profiles of high resolution spectra (λ/dλ > 6000) of He-like and H-like Ar Kα lines with good spatial (~1 cm) and temporal (~10 ms) resolutions has been installed on the Alcator C-Mod tokamak. Two spherically bent crystals image the spectra onto four two-dimensional Pilatus II pixel detectors. Tomographic inversion enables inference of local line emissivity, ion temperature (Ti), and toroidal plasma rotation velocity (vφ) from the line Doppler widths and shifts. The data analysis techniqu

  17. Resolution of low-velocity control in golf putting differentiates professionals from amateurs.

    PubMed

    Hasegawa, Yumiko; Fujii, Keisuke; Miura, Akito; Yamamoto, Yuji

    2017-07-01

    It is difficult for humans to apply small amounts of force precisely during motor control. However, experts who have undergone extended training are thought to be able to control low-velocity movement with precision. We investigated the resolution of motor control in golf putting. A total of 10 professional and 10 high-level amateur golfers participated. Putting distances were 0.6-3.3 m, in increments of 0.3 m. We measured the impact velocity and the club-face angle at impact, and the acceleration profile of the downswing. The professionals showed significantly smaller coefficients of variation with respect to impact velocity and smaller root mean square errors in relation to acceleration profiles than did the amateurs. To examine the resolution of motor control for impact velocity, we investigated intra-participant differences in the impact velocity of the club head at two adjacent distances. We found that professionals had higher velocity precision when putting small distance intervals than did amateurs. That is, professionals had higher resolution of low-velocity control than did high-level amateurs. Our results suggest that outstanding performance at a task involves the ability to recognise small distinctions and to produce appropriate movements.

  18. Optical and UV spectroscopy of the peculiar RS CVn system, RT Lacertae

    NASA Technical Reports Server (NTRS)

    Huenemoerder, D. P.; Barden, S. C.

    1985-01-01

    Spectra in the H-alpha and H-beta regions of the peculiar double-lined RS CVn binary, RT Lacertae, were obtained in the fall of 1984. Limited International Ultraviolet Explorer (IUE) long wavelength low and high resolution spectra were obtained concurrently. The ground based spectra have shown an asymmetry with orbital phase in the H-alpha profile. The H-beta profiles were consistent with the same effect. One hemisphere showed excess emission and the other excess absorption, with a broad Gaussian emission component superposed upon the excess H-alpha line. An improved radial velocity curve, giving a better determined mass ratio and geometry was derived. This combined with the radii implied by the rotational broadening of the spectra, showed one component to be 80 to 90% filling the equilibrium Roche surface. The two-faced nature is, therfore, very likely due to mass transfer from the contact component impacting upon its companion. Low resolution ultraviolet data showed that the supposed cooler component is bluer than its companion. High resolution ultraviolet data taken during secondary eclipse showed Mg II emission strength which decreased more slowly than the area visible. The phase behavior of the low resolution data support the former situation, indicating traditional chromospheric activity.

  19. Optical and UV spectroscopy of the peculiar RS CVn system, RT Lacertae

    NASA Astrophysics Data System (ADS)

    Huenemoerder, D. P.; Barden, S. C.

    1985-11-01

    Spectra in the H-alpha and H-beta regions of the peculiar double-lined RS CVn binary, RT Lacertae, were obtained in the fall of 1984. Limited International Ultraviolet Explorer (IUE) long wavelength low and high resolution spectra were obtained concurrently. The ground based spectra have shown an asymmetry with orbital phase in the H-alpha profile. The H-beta profiles were consistent with the same effect. One hemisphere showed excess emission and the other excess absorption, with a broad Gaussian emission component superposed upon the excess H-alpha line. An improved radial velocity curve, giving a better determined mass ratio and geometry was derived. This combined with the radii implied by the rotational broadening of the spectra, showed one component to be 80 to 90% filling the equilibrium Roche surface. The two-faced nature is, therfore, very likely due to mass transfer from the contact component impacting upon its companion. Low resolution ultraviolet data showed that the supposed cooler component is bluer than its companion. High resolution ultraviolet data taken during secondary eclipse showed Mg II emission strength which decreased more slowly than the area visible. The phase behavior of the low resolution data support the former situation, indicating traditional chromospheric activity.

  20. Evaluation of the dosimetric properties of a diode detector for small field proton radiosurgery.

    PubMed

    McAuley, Grant A; Teran, Anthony V; Slater, Jerry D; Slater, James M; Wroe, Andrew J

    2015-11-08

    The small fields and sharp gradients typically encountered in proton radiosurgery require high spatial resolution dosimetric measurements, especially below 1-2 cm diameters. Radiochromic film provides high resolution, but requires postprocessing and special handling. Promising alternatives are diode detectors with small sensitive volumes (SV) that are capable of high resolution and real-time dose acquisition. In this study we evaluated the PTW PR60020 proton dosimetry diode using radiation fields and beam energies relevant to radiosurgery applications. Energies of 127 and 157 MeV (9.7 to 15 cm range) and initial diameters of 8, 10, 12, and 20mm were delivered using single-stage scattering and four modulations (0, 15, 30, and 60mm) to a water tank in our treatment room. Depth dose and beam profile data were compared with PTW Markus N23343 ionization chamber, EBT2 Gafchromic film, and Monte Carlo simulations. Transverse dose profiles were measured using the diode in "edge-on" orientation or EBT2 film. Diode response was linear with respect to dose, uniform with dose rate, and showed an orientation-dependent (i.e., beam parallel to, or perpendicular to, detector axis) response of less than 1%. Diodevs. Markus depth-dose profiles, as well as Markus relative dose ratio vs. simulated dose-weighted average lineal energy plots, suggest that any LET-dependent diode response is negligible from particle entrance up to the very distal portion of the SOBP for the energies tested. Finally, while not possible with the ionization chamber due to partial volume effects, accurate diode depth-dose measurements of 8, 10, and 12 mm diameter beams were obtained compared to Monte Carlo simulations. Because of the small SV that allows measurements without partial volume effects and the capability of submillimeter resolution (in edge-on orientation) that is crucial for small fields and high-dose gradients (e.g., penumbra, distal edge), as well as negligible LET dependence over nearly the full the SOBP, the PTW proton diode proved to be a useful high-resolution, real-time metrology device for small proton field radiation measurements such as would be encountered in radiosurgery applications.

  1. Rayleigh-wave dispersive energy imaging using a high-resolution linear radon transform

    USGS Publications Warehouse

    Luo, Y.; Xia, J.; Miller, R.D.; Xu, Y.; Liu, J.; Liu, Q.

    2008-01-01

    Multichannel Analysis of Surface Waves (MASW) analysis is an efficient tool to obtain the vertical shear-wave profile. One of the key steps in the MASW method is to generate an image of dispersive energy in the frequency-velocity domain, so dispersion curves can be determined by picking peaks of dispersion energy. In this paper, we propose to image Rayleigh-wave dispersive energy by high-resolution linear Radon transform (LRT). The shot gather is first transformed along the time direction to the frequency domain and then the Rayleigh-wave dispersive energy can be imaged by high-resolution LRT using a weighted preconditioned conjugate gradient algorithm. Synthetic data with a set of linear events are presented to show the process of generating dispersive energy. Results of synthetic and real-world examples demonstrate that, compared with the slant stacking algorithm, high-resolution LRT can improve the resolution of images of dispersion energy by more than 50%. ?? Birkhaueser 2008.

  2. Strategy for Comprehensive Profiling and Identification of Acidic Glycosphingolipids Using Ultra-High-Performance Liquid Chromatography Coupled with Quadrupole Time-of-Flight Mass Spectrometry.

    PubMed

    Hu, Ting; Jia, Zhixin; Zhang, Jin-Lan

    2017-07-18

    Acidic glycosphingolipids (AGSLs), which mainly consist of ganglioside and sulfatide moieties, are highly concentrated in the central nervous system. Comprehensive profiling of AGSLs has historically been challenging because of their high complexity and the lack of standards. In this study, a novel strategy was developed to comprehensively profile AGSLs using ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry. Ganglioside isomers with different glycan chains such as GD1a/GD1b were completely separated on a C18 column for the first time to our knowledge, facilitated by the addition of formic acid in the mobile phase. A mathematical model was established to predict the retention times (RTs) of all theoretically possible AGSLs on the basis of the good logarithmic relationship between the ceramide carbon numbers of the AGSLs in the reference material and their RTs. A data set was created of 571 theoretically possible AGSLs, including the ceramide carbon numbers, RTs, and high-resolution quasi-molecular ions. A novel fast identification strategy was established for global AGSL profiling by comparing the high-resolution quasi-molecular ions and RTs of the tested peaks to those in the data set of 571 AGSLs. Using this strategy, 199 AGSL candidates were identified in rat brain tissue. MS/MS fragments were further collected for these 199 candidates to confirm their identity as AGSLs. This novel strategy was employed to profile AGSLs in brain tissue samples from control rats and model rats with bilateral common carotid artery (2-VO) cerebral ischemia. Forty AGSLs were significantly different between the control and model groups, and these differences were further interpreted.

  3. A three-dimensional single-cell-resolution whole-brain atlas using CUBIC-X expansion microscopy and tissue clearing.

    PubMed

    Murakami, Tatsuya C; Mano, Tomoyuki; Saikawa, Shu; Horiguchi, Shuhei A; Shigeta, Daichi; Baba, Kousuke; Sekiya, Hiroshi; Shimizu, Yoshihiro; Tanaka, Kenji F; Kiyonari, Hiroshi; Iino, Masamitsu; Mochizuki, Hideki; Tainaka, Kazuki; Ueda, Hiroki R

    2018-04-01

    A three-dimensional single-cell-resolution mammalian brain atlas will accelerate systems-level identification and analysis of cellular circuits underlying various brain functions. However, its construction requires efficient subcellular-resolution imaging throughout the entire brain. To address this challenge, we developed a fluorescent-protein-compatible, whole-organ clearing and homogeneous expansion protocol based on an aqueous chemical solution (CUBIC-X). The expanded, well-cleared brain enabled us to construct a point-based mouse brain atlas with single-cell annotation (CUBIC-Atlas). CUBIC-Atlas reflects inhomogeneous whole-brain development, revealing a significant decrease in the cerebral visual and somatosensory cortical areas during postnatal development. Probabilistic activity mapping of pharmacologically stimulated Arc-dVenus reporter mouse brains onto CUBIC-Atlas revealed the existence of distinct functional structures in the hippocampal dentate gyrus. CUBIC-Atlas is shareable by an open-source web-based viewer, providing a new platform for whole-brain cell profiling.

  4. The Two-Dimensional Gabor Function Adapted to Natural Image Statistics: A Model of Simple-Cell Receptive Fields and Sparse Structure in Images.

    PubMed

    Loxley, P N

    2017-10-01

    The two-dimensional Gabor function is adapted to natural image statistics, leading to a tractable probabilistic generative model that can be used to model simple cell receptive field profiles, or generate basis functions for sparse coding applications. Learning is found to be most pronounced in three Gabor function parameters representing the size and spatial frequency of the two-dimensional Gabor function and characterized by a nonuniform probability distribution with heavy tails. All three parameters are found to be strongly correlated, resulting in a basis of multiscale Gabor functions with similar aspect ratios and size-dependent spatial frequencies. A key finding is that the distribution of receptive-field sizes is scale invariant over a wide range of values, so there is no characteristic receptive field size selected by natural image statistics. The Gabor function aspect ratio is found to be approximately conserved by the learning rules and is therefore not well determined by natural image statistics. This allows for three distinct solutions: a basis of Gabor functions with sharp orientation resolution at the expense of spatial-frequency resolution, a basis of Gabor functions with sharp spatial-frequency resolution at the expense of orientation resolution, or a basis with unit aspect ratio. Arbitrary mixtures of all three cases are also possible. Two parameters controlling the shape of the marginal distributions in a probabilistic generative model fully account for all three solutions. The best-performing probabilistic generative model for sparse coding applications is found to be a gaussian copula with Pareto marginal probability density functions.

  5. Computer Simulation of Global Profiles of Carbon Dioxide Using a Pulsed, 2-Micron, Coherent-Detection, Column-Content DIAL System

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J.; Singh, Upendra N.; Koch, Grady J.; Yu, Jirong; Frehlich, Rod G.

    2009-01-01

    We present preliminary results of computer simulations of the error in measuring carbon dioxide mixing ratio profiles from earth orbit. The simulated sensor is a pulsed, 2-micron, coherent-detection lidar alternately operating on at least two wavelengths. The simulated geometry is a nadir viewing lidar measuring the column content signal. Atmospheric absorption is modeled using FASCODE3P software with the HITRAN 2004 absorption line data base. Lidar shot accumulation is employed up to the horizontal resolution limit. Horizontal resolutions of 50, 100, and 200 km are shown. Assuming a 400 km spacecraft orbit, the horizontal resolutions correspond to measurement times of about 7, 14, and 28 s. We simulate laser pulse-pair repetition frequencies from 1 Hz to 100 kHz. The range of shot accumulation is 7 to 2.8 million pulse-pairs. The resultant error is shown as a function of horizontal resolution, laser pulse-pair repetition frequency, and laser pulse energy. The effect of different on and off pulse energies is explored. The results are compared to simulation results of others and to demonstrated 2-micron operating points at NASA Langley.

  6. Experimental characterization of a F/1.5 geometric-phase lens with high-achromatic efficiency and low aberration

    NASA Astrophysics Data System (ADS)

    Hornburg, Kathryn J.; Kim, Jihwan; Escuti, Michael J.

    2017-02-01

    We report on the properties of a fast F/1.5 geometric-phase lens with a focal length of 37 mm at 633 nm and a 24.5 mm diameter. This lens employs photo-aligned liquid crystal layers to implement the spatially varying Pancharatnam-Berry phase, leading to the expected polarization- and wavelength-dependent focusing. An achromatic spectrum is achieved using (chiral nematic) multi-twist retarder coatings, with high first-order (>=98%) and low zero-order (<=1%) transmittance across 450-700 nm. We measure traditional optical metrics of the GP lens including focused spot profile and modulation transfer function through knife edge testing and NBS 1963a resolution charts. This work includes a comparison to similar F/# conventional thick and thin lenses.

  7. Microfluidic Technologies for Synthetic Biology

    PubMed Central

    Vinuselvi, Parisutham; Park, Seongyong; Kim, Minseok; Park, Jung Min; Kim, Taesung; Lee, Sung Kuk

    2011-01-01

    Microfluidic technologies have shown powerful abilities for reducing cost, time, and labor, and at the same time, for increasing accuracy, throughput, and performance in the analysis of biological and biochemical samples compared with the conventional, macroscale instruments. Synthetic biology is an emerging field of biology and has drawn much attraction due to its potential to create novel, functional biological parts and systems for special purposes. Since it is believed that the development of synthetic biology can be accelerated through the use of microfluidic technology, in this review work we focus our discussion on the latest microfluidic technologies that can provide unprecedented means in synthetic biology for dynamic profiling of gene expression/regulation with high resolution, highly sensitive on-chip and off-chip detection of metabolites, and whole-cell analysis. PMID:21747695

  8. High-Resolution Anorectal Manometry - New Insights in the Diagnostic Assessment of Functional Anorectal Disorders.

    PubMed

    Heinrich, Henriette; Misselwitz, Benjamin

    2018-04-01

    Functional anorectal disorders such as faecal incontinence (FI), functional anorectal pain, and functional defecation disorders (FDD) are highly prevalent and represent a high socioeconomic burden. Several tests of anorectal function exist in this setting; however, high-resolution anorectal manometry (HR-ARM) is a new tool that depicts pressure all along the anal canal and can assess rectoanal coordination. HR-ARM is used in the diagnosis of FI and especially FDD although data in health is still sparse, and pressure phenomena seen during simulated defecation, such as dyssynergia, are highly prevalent in health.

  9. Sub-pixel accuracy thickness calculation of poultry fillets from scattered laser profiles

    NASA Astrophysics Data System (ADS)

    Jing, Hansong; Chen, Xin; Tao, Yang; Zhu, Bin; Jin, Fenghua

    2005-11-01

    A laser range imaging system based on the triangulation method was designed and implemented for online high-resolution thickness calculation of poultry fillets. A laser pattern was projected onto the surface of the chicken fillet for calculation of the thickness of the meat. Because chicken fillets are relatively loosely-structured material, a laser light easily penetrates the meat, and scattering occurs both at and under the surface. When laser light is scattered under the surface it is reflected back and further blurs the laser line sharpness. To accurately calculate the thickness of the object, the light transportation has to be considered. In the system, the Bidirectional Reflectance Distribution Function (BSSRDF) was used to model the light transportation and the light pattern reflected into the cameras. BSSRDF gives the reflectance of a target as a function of illumination geometry and viewing geometry. Based on this function, an empirical method has been developed and it has been proven that this method can be used to accurately calculate the thickness of the object from a scattered laser profile. The laser range system is designed as a sub-system that complements the X-ray bone inspection system for non-invasive detection of hazardous materials in boneless poultry meat with irregular thickness.

  10. Targeting Metabolic Plasticity in Breast Cancer Cells via Mitochondrial Complex I Modulation

    PubMed Central

    Xu, Qijin; Biener-Ramanujan, Eva; Yang, Wei; Ramanujan, V Krishnan

    2016-01-01

    Purpose Heterogeneity commonly observed in clinical tumors stems both from the genetic diversity as well as from the differential metabolic adaptation of multiple cancer types during their struggle to maintain uncontrolled proliferation and invasion in vivo. This study aims to identify a potential metabolic window of such adaptation in aggressive human breast cancer cell lines. Methods With a multidisciplinary approach using high resolution imaging, cell metabolism assays, proteomic profiling and animal models of human tumor xenografts and via clinically-relevant, pharmacological approach for modulating mitochondrial complex I function in human breast cancer cell lines, we report a novel route to target metabolic plasticity in human breast cancer cells. Results By a systematic modulation of mitochondrial function and by mitigating metabolic switch phenotype in aggressive human breast cancer cells, we demonstrate that the resulting metabolic adaptation signatures can predictably decrease tumorigenic potential in vivo. Proteomic profiling of the metabolic adaptation in these cells further revealed novel protein-pathway interactograms highlighting the importance of antioxidant machinery in the observed metabolic adaptation. Conclusions Improved metabolic adaptation potential in aggressive human breast cancer cells contribute to improving mitochondrial function and reducing metabolic switch phenotype –which may be vital for targeting primary tumor growth in vivo. PMID:25677747

  11. Development of a low-cost, 11 µm spectral domain optical coherence tomography surface profilometry prototype

    NASA Astrophysics Data System (ADS)

    Suliali, Nyasha J.; Baricholo, Peter; Neethling, Pieter H.; Rohwer, Erich G.

    2017-06-01

    A spectral-domain Optical Coherence Tomography (OCT) surface profilometry prototype has been developed for the purpose of surface metrology of optical elements. The prototype consists of a light source, spectral interferometer, sample fixture and software currently running on Microsoft® Windows platforms. In this system, a broadband light emitting diode beam is focused into a Michelson interferometer with a plane mirror as its sample fixture. At the interferometer output, spectral interferograms of broadband sources were measured using a Czerny-Turner mount monochromator with a 2048-element complementary metal oxide semiconductor linear array as the detector. The software performs importation and interpolation of interferometer spectra to pre-condition the data for image computation. One dimensional axial OCT images were computed by Fourier transformation of the measured spectra. A first reflection surface profilometry (FRSP) algorithm was then formulated to perform imaging of step-function-surfaced samples. The algorithm re-constructs two dimensional colour-scaled slice images by concatenation of 21 and 13 axial scans to form a 10 mm and 3.0 mm slice respectively. Measured spectral interferograms, computed interference fringe signals and depth reflectivity profiles were comparable to simulations and correlated to displacements of a single reflector linearly translated about the arm null-mismatch point. Surface profile images of a double-step-function-surfaced sample, embedded with inclination and crack detail were plotted with an axial resolution of 11 μm. The surface shape, defects and misalignment relative to the incident beam were detected to the order of a micron, confirming high resolution of the developed system as compared to electro-mechanical surface profilometry techniques.

  12. [A rare form of obstructive pulmonary disease].

    PubMed

    van Loenhout, C J; den Bakker, M A; van Wijsenbeek, M S; Hoek, R A S; van Hal, P Th W

    2016-01-01

    Lymphangioleiomyomatosis (LAM) is characterised by progressive dyspnoea, spontaneous pneumothorax and cystic pulmonary destruction. The disease may show similarities with emphysema clinically, radiologically and on lung function tests. A 44-year-old woman was referred for lung transplantation because of a 6-year history of dyspnoea and severe obstructive pulmonary function disorder with decreased diffusion capacity. Both her relatively young age and the fact that she had never smoked made us doubt the diagnosis 'COPD'. The pulmonary cysts seen on high-resolution CT (HRCT) suggested LAM. This was confirmed when we revised a pulmonary biopsy that had previously been performed. CT investigation should be carried out in patients with severe obstructive pulmonary disease without a risk profile appropriate for COPD. Diffuse, homogenous cysts on CT scan can indicate LAM, particularly in women. Conflict of interest and financial support: none declared.

  13. Derivative component analysis for mass spectral serum proteomic profiles.

    PubMed

    Han, Henry

    2014-01-01

    As a promising way to transform medicine, mass spectrometry based proteomics technologies have seen a great progress in identifying disease biomarkers for clinical diagnosis and prognosis. However, there is a lack of effective feature selection methods that are able to capture essential data behaviors to achieve clinical level disease diagnosis. Moreover, it faces a challenge from data reproducibility, which means that no two independent studies have been found to produce same proteomic patterns. Such reproducibility issue causes the identified biomarker patterns to lose repeatability and prevents it from real clinical usage. In this work, we propose a novel machine-learning algorithm: derivative component analysis (DCA) for high-dimensional mass spectral proteomic profiles. As an implicit feature selection algorithm, derivative component analysis examines input proteomics data in a multi-resolution approach by seeking its derivatives to capture latent data characteristics and conduct de-noising. We further demonstrate DCA's advantages in disease diagnosis by viewing input proteomics data as a profile biomarker via integrating it with support vector machines to tackle the reproducibility issue, besides comparing it with state-of-the-art peers. Our results show that high-dimensional proteomics data are actually linearly separable under proposed derivative component analysis (DCA). As a novel multi-resolution feature selection algorithm, DCA not only overcomes the weakness of the traditional methods in subtle data behavior discovery, but also suggests an effective resolution to overcoming proteomics data's reproducibility problem and provides new techniques and insights in translational bioinformatics and machine learning. The DCA-based profile biomarker diagnosis makes clinical level diagnostic performances reproducible across different proteomic data, which is more robust and systematic than the existing biomarker discovery based diagnosis. Our findings demonstrate the feasibility and power of the proposed DCA-based profile biomarker diagnosis in achieving high sensitivity and conquering the data reproducibility issue in serum proteomics. Furthermore, our proposed derivative component analysis suggests the subtle data characteristics gleaning and de-noising are essential in separating true signals from red herrings for high-dimensional proteomic profiles, which can be more important than the conventional feature selection or dimension reduction. In particular, our profile biomarker diagnosis can be generalized to other omics data for derivative component analysis (DCA)'s nature of generic data analysis.

  14. Advances of a Brillouin Scattering Lidar System for the Detection of Temperature Profiles in the Ocean: Laboratory Measurements and Field Test

    NASA Astrophysics Data System (ADS)

    Walther, T.; Rupp, D.; Friman, S.; Trees, C.; Fournier, G.

    2016-02-01

    Recently we have demonstrated the feasibility of remotely measuring temperature profiles in water under a laboratory environment employing our real-time Brillouin Scattering LIDAR (BSL) system. The working principle is based on the frequency and time resolved detection of the backscattered spontaneous Brillouin signal of a short light pulse fired into the ocean. The light source consists of a frequency-doubled fiber-amplified External Cavity Diode Laser (ECDL) providing high-energy, Fourier transform-limited laser pulses in the green spectral range. The Brillouin shift is detected with high accuracy (low uncertainty) by employing an edge filter based on an Excited State Faraday Anomalous Dispersion Optical Filter (ESFADOF). Time-resolution allows for the depth resolution and the frequency resolved shift is proportional to the speed of sound. Thus, the temperature profile can be extracted from the measurements. In our laboratory setup we were able to resolve water temperatures with a mean accuracy of up to 0.07 oC and a spatial resolution of 1 m depending on the amount of averaging. In order to prepare the system for a first field test under realistic conditions on the coast of the Mediterranean at CMRE in La Spezia, almost all of the components have been upgraded. This first test is planned for November 2015. We will present the above mentioned measurements, details about the upgrades and report on our experiences during this maritime field test.Ultimately, the plan is to operate the system from a mobile platform, e.g., a helicopter or vessel, in order to precisely determine the temperature of the surface mixed layer of the ocean with high spatial resolution.

  15. PHOENIX IR Spectra of CO in the Sun and the Stars

    NASA Astrophysics Data System (ADS)

    Ayres, T. R.; Valenti, J. A.; Hinkle, K. H.; Johns-Krull, C. M.; Wiedemann, G. R.

    1998-05-01

    We report high-resolution (R ~ 5*E(4) ) spectra of the 2143 cm(-1) (4.7 mu m) interval---containing lines from the fundamental (Delta v =1) bands of carbon monoxide---in the Sun and other late-type stars, obtained with the PHOENIX cryogenic infrared spectrometer. The solar work was conducted at the McMath-Pierce telescope during the period 21--26 April 1997, while the stellar observations were obtained on the night of 6 December 1997 at the Kitt Peak 2.1-m. Comparisons of spatially-averaged spectra from the long-slit observations of the Sun with very high-resolution Fourier transform spectrometer scans permitted an evalution of the PHOENIX instrumental profile (affected by flexing of the grating owing to unequal thermal coefficients of the epoxy replica and the silicon substrate). The profile information subsequently was applied in comparisons of the stellar data sets with CO spectra synthesized using a variety of prototype thermal structure models. On the stellar side, we concentrated on bright K-type giants whose broad CO profiles are fully resolved at PHOENIX resolution. Our intent was to test the degree of thermal heterogeneity in the outer layers of the red giant atmospheres; analogous to the ``thermal bifurcation'' effects deduced in the solar context (namely, the dichotomy between classical hot chromosphere and the controversial cool ``COmosphere''). Our spectral analyses provide a preview of the power of PHOENIX for high-resolution infrared spectroscopy of stars; to be realized in the coming months when the original grating is replaced with an improved version. [-2mm] The observations were obtained at the National Optical Astronomy Observatories, which is operated by AURA, Inc., under a cooperative agreement with the National Science Foundation. This work was supported by NSF grant AST-9618505.

  16. Comparison of GPS/SAC-C and MIPAS/ENVISAT temperature profiles and its implementation for EOS AURA-MLS observations

    NASA Technical Reports Server (NTRS)

    Jiang, Jonathan H.; Wang, Ding-Yi; Romans, Larry J.; Ao, Chi O.; Schwartz, Michael J.; Stiller, Gabriele P.; von Clarmann, Thomas; Lopez-Puertas, Manuel; Funke, Bernd; Gil-Lopez, Sergio; hide

    2003-01-01

    A new generation GPS flight receiver was launched on the Argentinian satellite SAC-C in 2001. It has demonstrated the potential applicability for the continuous monitoring of the earth's atmosphere with radio occultation technology, and providing high vertical resolution profiles of temperature and water vapour data complementary to other sounding techniques.

  17. High-resolution characterization of chemical heterogeneity in an alluvial aquifer

    USGS Publications Warehouse

    Schulmeister, M.K.; Healey, J.M.; Butler, J.J.; McCall, G.W.; Birk, S.

    2002-01-01

    The high-resolution capabilities of direct push technology were exploited to develop new insights into the hydrochemistry at the margin of an alluvial aquifer. Hydrostratigraphic controls on groundwater flow and contaminant loading were revealed through the combined use of direct push electrical conductivity (EC) logging and geochemical profiling. Vertical and lateral variations in groundwater chemistry were consistent with sedimentary features indicated by EC logs, and were supported by a conceptual model of recharge along the flood plain margin.

  18. High spectral resolution lidar at the university of wisconsin-madison

    NASA Astrophysics Data System (ADS)

    Razenkov, Ilya I.; Eloranta, Edwin W.

    2018-04-01

    This paper describes the modifications done on the University of Wisconsin-Madison High Spectral Resolution Lidar (HSRL) that improved the instrument's performance. The University of Wisconsin HSRL lidars designed by our group at the Space Science and Engineering Center were deployed in numerous field campaigns in various locations around the world. Over the years the instruments have undergone multiple modifications that improved the performance and added new measurement capabilities such as atmospheric temperature profile and extinction cross-section measurements.

  19. Ripening and storage conditions of Chétoui and Arbequina olives: Part II. Effect on olive endogenous enzymes and virgin olive oil secoiridoid profile determined by high resolution mass spectrometry.

    PubMed

    Hachicha Hbaieb, Rim; Kotti, Faten; Cortes-Francisco, Nuria; Caixach, Josep; Gargouri, Mohamed; Vichi, Stefania

    2016-11-01

    Several factors affect virgin olive oil (VOO) phenolic profile. The aim of this study was to monitor olive hydrolytic (β-glucosidase) and oxidative (peroxydase, POX, and polyphenoloxydase, PPO) enzymes during olive ripening and storage and to determine their capacity to shape VOO phenolic profile. To this end, olives from the cultivars Chétoui and Arbequina were stored at 4°C or 25°C for 4weeks and their enzymatic activities and oil phenolic profiles were compared to those of ripening olives. We observed different trends in enzymes activities according to cultivar and storage temperature. Secoiridoid compounds, determined by high resolution mass spectrometry (HRMS), and their deacetoxylated, oxygenated, and deacetoxy-oxygenated derivatives were identified and their contents differed between the cultivars according to olive ripening degree and storage conditions. These differences could be due to β-glucosidase, POX and PPO activities changes during olive ripening and storage. Results also show that oxidised phenolic compounds could be a marker of VOO ''freshness". Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Gene Scanning of an Internalin B Gene Fragment Using High-Resolution Melting Curve Analysis as a Tool for Rapid Typing of Listeria monocytogenes

    PubMed Central

    Pietzka, Ariane T.; Stöger, Anna; Huhulescu, Steliana; Allerberger, Franz; Ruppitsch, Werner

    2011-01-01

    The ability to accurately track Listeria monocytogenes strains involved in outbreaks is essential for control and prevention of listeriosis. Because current typing techniques are time-consuming, cost-intensive, technically demanding, and difficult to standardize, we developed a rapid and cost-effective method for typing of L. monocytogenes. In all, 172 clinical L. monocytogenes isolates and 20 isolates from culture collections were typed by high-resolution melting (HRM) curve analysis of a specific locus of the internalin B gene (inlB). All obtained HRM curve profiles were verified by sequence analysis. The 192 tested L. monocytogenes isolates yielded 15 specific HRM curve profiles. Sequence analysis revealed that these 15 HRM curve profiles correspond to 18 distinct inlB sequence types. The HRM curve profiles obtained correlated with the five phylogenetic groups I.1, I.2, II.1, II.2, and III. Thus, HRM curve analysis constitutes an inexpensive assay and represents an improvement in typing relative to classical serotyping or multiplex PCR typing protocols. This method provides a rapid and powerful screening tool for simultaneous preliminary typing of up to 384 samples in approximately 2 hours. PMID:21227395

  1. Development of high-resolution x-ray CT system using parallel beam geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoneyama, Akio, E-mail: akio.yoneyama.bu@hitachi.com; Baba, Rika; Hyodo, Kazuyuki

    2016-01-28

    For fine three-dimensional observations of large biomedical and organic material samples, we developed a high-resolution X-ray CT system. The system consists of a sample positioner, a 5-μm scintillator, microscopy lenses, and a water-cooled sCMOS detector. Parallel beam geometry was adopted to attain a field of view of a few mm square. A fine three-dimensional image of birch branch was obtained using a 9-keV X-ray at BL16XU of SPring-8 in Japan. The spatial resolution estimated from the line profile of a sectional image was about 3 μm.

  2. Objectives and layout of a high-resolution x-ray imaging crystal spectrometer for the large helical device.

    PubMed

    Bitter, M; Hill, K; Gates, D; Monticello, D; Neilson, H; Reiman, A; Roquemore, A L; Morita, S; Goto, M; Yamada, H; Rice, J E

    2010-10-01

    A high-resolution x-ray imaging crystal spectrometer, whose concept was tested on NSTX and Alcator C-Mod, is being designed for the large helical device (LHD). This instrument will record spatially resolved spectra of helium-like Ar(16+) and will provide ion temperature profiles with spatial and temporal resolutions of <2 cm and ≥10 ms, respectively. The spectrometer layout and instrumental features are largely determined by the magnetic field structure of LHD. The stellarator equilibrium reconstruction codes, STELLOPT and PIES, will be used for the tomographic inversion of the spectral data.

  3. Development and Evaluation of a High Sensitivity DIAL System for Profiling Atmospheric CO2

    NASA Technical Reports Server (NTRS)

    Ismail, Syed; Koch, Grady J.; Refaat, Tamer F.; Abedin, M. N.; Yu, Jirong; Singh, Upendra N.

    2008-01-01

    A ground-based 2-micron Differential Absorption Lidar (DIAL) CO2 profiling system for atmospheric boundary layer studies and validation of space-based CO2 sensors is being developed and tested at NASA Langley Research Center as part of the NASA Instrument Incubator Program. To capture the variability of CO2 in the lower troposphere a precision of 1-2 ppm of CO2 (less than 0.5%) with 0.5 to 1 km vertical resolution from near surface to free troposphere (4-5 km) is one of the goals of this program. In addition, a 1% (3 ppm) absolute accuracy with a 1 km resolution over 0.5 km to free troposphere (4-5 km) is also a goal of the program. This DIAL system leverages 2-micron laser technology developed under NASA's Laser Risk Reduction Program (LRRP) and other NASA programs to develop new solid-state laser technology that provides high pulse energy, tunable, wavelength-stabilized, and double-pulsed lasers that are operable over pre-selected temperature insensitive strong CO2 absorption lines suitable for profiling of lower tropospheric CO2. It also incorporates new high quantum efficiency, high gain, and relatively low noise phototransistors, and a new receiver/signal processor system to achieve high precision DIAL measurements. This presentation describes the capabilities of this system for atmospheric CO2 and aerosol profiling. Examples of atmospheric measurements in the lidar and DIAL mode will be presented.

  4. TerraceM: A Matlab® tool to analyze marine terraces from high-resolution topography

    NASA Astrophysics Data System (ADS)

    Jara-Muñoz, Julius; Melnick, Daniel; Strecker, Manfred

    2015-04-01

    To date, Light detection and ranging (LiDAR), high- resolution topographic data sets enable remote identification of submeter-scale geomorphic features bringing valuable information of the landscape and geomorphic markers of tectonic deformation such as fault-scarp offsets, fluvial and marine terraces. Recent studies of marine terraces using LiDAR data have demonstrated that these landforms can be readily isolated from other landforms in the landscape, using slope and roughness parameters that allow for unambiguously mapping regional extents of terrace sequences. Marine terrace elevation has been used since decades as geodetic benchmarks of Quaternary deformation. Uplift rates may be estimated by locating the shoreline angle, a geomorphic feature correlated with the high-stand position of past sea levels. Indeed, precise identification of the shoreline-angle position is an important requirement to obtain reliable tectonic rates and coherent spatial correlation. To improve our ability to rapidly assess and map different shoreline angles at a regional scale we have developed the TerraceM application. TerraceM is a Matlab® tool that allows estimating the shoreline angle and its associated error using high-resolution topography. For convenience, TerraceM includes a graphical user interface (GUI) linked with Google Maps® API. The analysis starts by defining swath profiles from a shapefile created on a GIS platform orientated orthogonally to the terrace riser. TerraceM functions are included to extract and analyze the swath profiles. Two types of coastal landscapes may be analyzed using different methodologies: staircase sequences of multiple terraces and rough, rocky coasts. The former are measured by outlining the paleo-cliffs and paleo-platforms, whereas the latter are assessed by picking the elevation of sea-stack tops. By calculating the intersection between first-order interpolations of the maximum topography of swath profiles we define the shoreline angle in staircase terraces. For rocky coasts, the maximum stack peaks for a defined search ratio as well as a defined inflection point on the adjacent main cliff are interpolated to calculate the shoreline angle at the intersection with the cliff. Error estimates are based on the standard deviation of the linear regressions. The geomorphic age of terraces (Kt) can be also calculated by the linear diffusion equation (Hanks et al., 1989), with a best-fitting model found by minimizing the RMS. TerraceM has the ability to efficiently process several profiles in batch-mode run. Results may be exported in various formats, including Google Earth and ArcGis, basic statistics are automatically computed. Test runs have been made at Santa Cruz, California, using various topographic data sets and comparing results with published field measurements (Anderson and Menking, 1994). Repeatability was evaluated using multiple test runs made by students in a classroom setting.

  5. Global PROTOMAP profiling to search for biomarkers of early-recurrent hepatocellular carcinoma.

    PubMed

    Taoka, Masato; Morofuji, Noriaki; Yamauchi, Yoshio; Ojima, Hidenori; Kubota, Daisuke; Terukina, Goro; Nobe, Yuko; Nakayama, Hiroshi; Takahashi, Nobuhiro; Kosuge, Tomoo; Isobe, Toshiaki; Kondo, Tadashi

    2014-11-07

    This study used global protein expression profiling to search for biomarkers to predict early recurrent hepatocellular carcinoma (HCC). HCC tissues surgically resected from patients with or without recurrence within 2 years (early recurrent) after surgery were compared with adjacent nontumor tissue and with normal liver tissue. We used the PROTOMAP strategy for comparative profiling, which integrates denaturing polyacrylamide gel electrophoresis migratory rates and high-resolution, semiquantitative mass-spectrometry-based identification of in-gel-digested tryptic peptides. PROTOMAP allows examination of global changes in the size, topography, and abundance of proteins in complex tissue samples. This approach identified 8438 unique proteins from 45 708 nonredundant peptides and generated a proteome-wide map of changes in expression and proteolytic events potentially induced by intrinsic apoptotic/necrotic pathways. In the early recurrent HCC tissue, 87 proteins were differentially expressed (≥20-fold) relative to the other tissues, 46 of which were up-regulated or specifically proteolyzed and 41 of which were down-regulated. This data set consisted of proteins that fell into various functional categories, including signal transduction and cell organization and, notably, the major catalytic pathways responsible for liver function, such as the urea cycle and detoxification metabolism. We found that aberrant proteolysis appeared to occur frequently during recurrence of HCC in several key signal transducers, including STAT1 and δ-catenin. Further investigation of these proteins will facilitate the development of novel clinical applications.

  6. Modeling of 2D diffusion processes based on microscopy data: parameter estimation and practical identifiability analysis.

    PubMed

    Hock, Sabrina; Hasenauer, Jan; Theis, Fabian J

    2013-01-01

    Diffusion is a key component of many biological processes such as chemotaxis, developmental differentiation and tissue morphogenesis. Since recently, the spatial gradients caused by diffusion can be assessed in-vitro and in-vivo using microscopy based imaging techniques. The resulting time-series of two dimensional, high-resolutions images in combination with mechanistic models enable the quantitative analysis of the underlying mechanisms. However, such a model-based analysis is still challenging due to measurement noise and sparse observations, which result in uncertainties of the model parameters. We introduce a likelihood function for image-based measurements with log-normal distributed noise. Based upon this likelihood function we formulate the maximum likelihood estimation problem, which is solved using PDE-constrained optimization methods. To assess the uncertainty and practical identifiability of the parameters we introduce profile likelihoods for diffusion processes. As proof of concept, we model certain aspects of the guidance of dendritic cells towards lymphatic vessels, an example for haptotaxis. Using a realistic set of artificial measurement data, we estimate the five kinetic parameters of this model and compute profile likelihoods. Our novel approach for the estimation of model parameters from image data as well as the proposed identifiability analysis approach is widely applicable to diffusion processes. The profile likelihood based method provides more rigorous uncertainty bounds in contrast to local approximation methods.

  7. Measurement of stratospheric trace constituent distributions from balloon-borne far infrared observations

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Guo, J.; Carli, B.; Mencaraglia, F.; Bonetti, A.

    1987-01-01

    FIR limb thermal emission spectra obtained from balloon-borne measurements made as a part of the Balloon Intercomparison Campaign (BIC) have been analyzed for retrieval of stratospheric trace-constituent distributions. The measurements were made with a high-resolution Michelson interferometer and covered the 15-180/cm spectral range with an unapodized spectral resolution of 0.0033/cm. The retrieved vertical profiles of O3, H2O, HDO, HCN, CO, and isotopes of O3 are presented. The results are compared with the BIC measurements for O3 and H2O made from the same balloon gondola and with other published data. A comparison of the simultaneously retrieved profiles for several gases with the published data shows good agreement and indicates the validity of the FIR data and retrieval techniques and the accuracy of the inferred profiles.

  8. Effect of subaperture beamforming on phase coherence imaging.

    PubMed

    Hasegawa, Hideyuki; Kanai, Hiroshi

    2014-11-01

    High-frame-rate echocardiography using unfocused transmit beams and parallel receive beamforming is a promising method for evaluation of cardiac function, such as imaging of rapid propagation of vibration of the heart wall resulting from electrical stimulation of the myocardium. In this technique, high temporal resolution is realized at the expense of spatial resolution and contrast. The phase coherence factor has been developed to improve spatial resolution and contrast in ultrasonography. It evaluates the variance in phases of echo signals received by individual transducer elements after delay compensation, as in the conventional delay-andsum beamforming process. However, the phase coherence factor suppresses speckle echoes because phases of speckle echoes fluctuate as a result of interference of echoes. In the present study, the receiving aperture was divided into several subapertures, and conventional delay-and-sum beamforming was performed with respect to each subaperture to suppress echoes from scatterers except for that at a focal point. After subaperture beamforming, the phase coherence factor was obtained from beamformed RF signals from respective subapertures. By means of this procedure, undesirable echoes, which can interfere with the echo from a focal point, can be suppressed by subaperture beamforming, and the suppression of the phase coherence factor resulting from phase fluctuation caused by such interference can be avoided. In the present study, the effect of subaperture beamforming in high-frame-rate echocardiography with the phase coherence factor was evaluated using a phantom. By applying subaperture beamforming, the average intensity of speckle echoes from a diffuse scattering medium was significantly higher (-39.9 dB) than that obtained without subaperture beamforming (-48.7 dB). As for spatial resolution, the width at half-maximum of the lateral echo amplitude profile obtained without the phase coherence factor was 1.06 mm. By using the phase coherence factor, spatial resolution was improved significantly, and subaperture beamforming achieved a better spatial resolution of 0.75 mm than that of 0.78 mm obtained without subaperture beamforming.

  9. Volatile-Compound Fingerprinting by Headspace-Gas-Chromatography Ion-Mobility Spectrometry (HS-GC-IMS) as a Benchtop Alternative to 1H NMR Profiling for Assessment of the Authenticity of Honey.

    PubMed

    Gerhardt, Natalie; Birkenmeier, Markus; Schwolow, Sebastian; Rohn, Sascha; Weller, Philipp

    2018-02-06

    This work describes a simple approach for the untargeted profiling of volatile compounds for the authentication of the botanical origins of honey based on resolution-optimized HS-GC-IMS combined with optimized chemometric techniques, namely PCA, LDA, and kNN. A direct comparison of the PCA-LDA models between the HS-GC-IMS and 1 H NMR data demonstrated that HS-GC-IMS profiling could be used as a complementary tool to NMR-based profiling of honey samples. Whereas NMR profiling still requires comparatively precise sample preparation, pH adjustment in particular, HS-GC-IMS fingerprinting may be considered an alternative approach for a truly fully automatable, cost-efficient, and in particular highly sensitive method. It was demonstrated that all tested honey samples could be distinguished on the basis of their botanical origins. Loading plots revealed the volatile compounds responsible for the differences among the monofloral honeys. The HS-GC-IMS-based PCA-LDA model was composed of two linear functions of discrimination and 10 selected PCs that discriminated canola, acacia, and honeydew honeys with a predictive accuracy of 98.6%. Application of the LDA model to an external test set of 10 authentic honeys clearly proved the high predictive ability of the model by correctly classifying them into three variety groups with 100% correct classifications. The constructed model presents a simple and efficient method of analysis and may serve as a basis for the authentication of other food types.

  10. Using a 1200 kHz workhorse ADCP with mode 12 to measure near bottom mean currents

    USGS Publications Warehouse

    Martini, M.; ,

    2003-01-01

    Using high frequency Acoustic Doppler Current (ADCP) profiling technology, it is possible to make high-resolution measurements of mean current profiles within a few meters of the seabed. In coastal applications, mean current speeds may be 10 cm/s or less, and oscillatory wave currents may exceed 100 cm/s during storm events. To resolve mean flows of 10 cm/s or less under these conditions, accuracies of 1 cm/s or better are desirable.

  11. Molecular Profiles for Lung Cancer Pathogenesis and Detection in U.S. Veterans

    DTIC Science & Technology

    2012-10-01

    Milchgrub S, Girard L, Fondon JW III, Garner HR, McKay B, Latif F, et al . High resolution chromosome 3p allelotyping of human lung cancer and...airways in lung cancer patients and high-risk smokers. We, therefore, analyzed the field cancerization profiles from Spira et al 9 comprised of 129...from the original report by Spira et al . This list was then used to perform a pre-ranked GSEA analysis to identify which of the field cancerization

  12. High-resolution proteomic profiling of spider venom: expanding the toxin diversity of Phoneutria nigriventer venom.

    PubMed

    Liberato, Tarcísio; Troncone, Lanfranco Ranieri Paolo; Yamashiro, Edson T; Serrano, Solange M T; Zelanis, André

    2016-03-01

    Here we present a proteomic characterization of Phoneutria nigriventer venom. A shotgun proteomic approach allowed the identification, for the first time, of O-glycosyl hydrolases (chitinases) in P. nigriventer venom. The electrophoretic profiles under nonreducing and reducing conditions, and protein identification by mass spectrometry, indicated the presence of oligomeric toxin structures in the venom. Complementary proteomic approaches allowed for a qualitative and semi-quantitative profiling of P. nigriventer venom complexity, expanding its known venom proteome diversity.

  13. Autonomous Sensing of Layered Structures in Hawaiian Waters

    DTIC Science & Technology

    2008-01-01

    layers in the sea. APPROACH In March of 2007 we were awarded $112,842 for the fabrication of an autonomous profiler (the SeaHorse ) for the...detection of thin layers of phytoplankton in the coastal ocean. The SeaHorse (Figures 1, 2) makes use of wave energy to power extended, high-resolution...to adaptively change the sample rate of the SeaHorse profiler itself. For example, if we observe a layer at 10 m depth, we can instruct the profiler

  14. Doppler Radar Profiler for Launch Winds at the Kennedy Space Center (Phase 1a)

    NASA Technical Reports Server (NTRS)

    Murri, Daniel G.

    2011-01-01

    The NASA Engineering and Safety Center (NESC) received a request from the, NASA Technical Fellow for Flight Mechanics at Langley Research Center (LaRC), to develop a database from multiple Doppler radar wind profiler (DRWP) sources and develop data processing algorithms to construct high temporal resolution DRWP wind profiles for day-of-launch (DOL) vehicle assessment. This document contains the outcome of Phase 1a of the assessment including Findings, Observations, NESC Recommendations, and Lessons Learned.

  15. Children with High-Functioning Autism and Asperger's Syndrome: Can We Differentiate Their Cognitive Profiles?

    ERIC Educational Resources Information Center

    Planche, Pascale; Lemonnier, Eric

    2012-01-01

    The aim of this study was to investigate whether children with high-functioning autism (HFA) and Asperger's syndrome (AS) can be differentiated from each other and from typically developing children on their cognitive profiles. The present study included a total of 45 participants: children with autism (high-functioning autism or Asperger's…

  16. Electrical methods of determining soil moisture content

    NASA Technical Reports Server (NTRS)

    Silva, L. F.; Schultz, F. V.; Zalusky, J. T.

    1975-01-01

    The electrical permittivity of soils is a useful indicator of soil moisture content. Two methods of determining the permittivity profile in soils are examined. A method due to Becher is found to be inapplicable to this situation. A method of Slichter, however, appears to be feasible. The results of Slichter's method are extended to the proposal of an instrument design that could measure available soil moisture profile (percent available soil moisture as a function of depth) from a surface measurement to an expected resolution of 10 to 20 cm.

  17. DNA replication-timing analysis of human chromosome 22 at high resolution and different developmental states.

    PubMed

    White, Eric J; Emanuelsson, Olof; Scalzo, David; Royce, Thomas; Kosak, Steven; Oakeley, Edward J; Weissman, Sherman; Gerstein, Mark; Groudine, Mark; Snyder, Michael; Schübeler, Dirk

    2004-12-21

    Duplication of the genome during the S phase of the cell cycle does not occur simultaneously; rather, different sequences are replicated at different times. The replication timing of specific sequences can change during development; however, the determinants of this dynamic process are poorly understood. To gain insights into the contribution of developmental state, genomic sequence, and transcriptional activity to replication timing, we investigated the timing of DNA replication at high resolution along an entire human chromosome (chromosome 22) in two different cell types. The pattern of replication timing was correlated with respect to annotated genes, gene expression, novel transcribed regions of unknown function, sequence composition, and cytological features. We observed that chromosome 22 contains regions of early- and late-replicating domains of 100 kb to 2 Mb, many (but not all) of which are associated with previously described chromosomal bands. In both cell types, expressed sequences are replicated earlier than nontranscribed regions. However, several highly transcribed regions replicate late. Overall, the DNA replication-timing profiles of the two different cell types are remarkably similar, with only nine regions of difference observed. In one case, this difference reflects the differential expression of an annotated gene that resides in this region. Novel transcribed regions with low coding potential exhibit a strong propensity for early DNA replication. Although the cellular function of such transcripts is poorly understood, our results suggest that their activity is linked to the replication-timing program.

  18. High-resolution nanopatterning of biodegradable polylactide by thermal nanoimprint lithography using gas permeable mold

    NASA Astrophysics Data System (ADS)

    Takei, Satoshi; Hanabata, Makoto

    2017-03-01

    We report high-resolution (150 nm) nanopatterning of biodegradable polylactide by thermal nanoimprint lithography using dichloromethane as a volatile solvent for improving the liquidity and a porous cyclodextrin-based gas-permeable mold. This study demonstrates the high-resolution patterning of polylactic acid and other non-liquid functional materials with poor fluidity by thermal nanoimprinting. Such a patterning is expected to expand the utility of thermal nanoimprint lithography and fabricate non-liquid functional materials suitable for eco-friendly and biomedical applications.

  19. Monitoring a local extreme weather event with the scope of hyperspectral sounding

    NASA Astrophysics Data System (ADS)

    Satapathy, Jyotirmayee; Jangid, Buddhi Prakash

    2018-06-01

    Operational space-based hyperspectral Infrared sounders retrieve atmospheric temperature and humidity profiles from the measured radiances. These sounders like Atmospheric InfraRed Sounder, Infrared Atmospheric Sounding Interferometer as well as INSAT-3D sounders on geostationary orbit have proved to be very successful in providing these retrievals on global and regional scales, respectively, with good enough spatio-temporal resolutions and are well competent with that of traditional profiles from radiosondes and models fields. The aim of this work is to show how these new generation hyperspectral Infrared sounders can benefit in real-time weather monitoring. We have considered a regional extreme weather event to demonstrate how the profiles retrieved from these operational sounders are consistent with the environmental conditions which have led to this severe weather event. This work has also made use of data products of Moderate Resolution Imaging Spectroradiometer as well as by radiative transfer simulation of clear and cloudy atmospheric conditions using Numerical Weather Prediction profiles in conjunction with INSAT-3D sounder. Our results indicate the potential use of high-quality hyperspectral atmospheric profiles to aid in delineation of real-time weather prediction.

  20. A Total Ozone Dependent Ozone Profile Climatology Based on Ozone-Sondes and Aura MLS Data

    NASA Astrophysics Data System (ADS)

    Labow, G. J.; McPeters, R. D.; Ziemke, J. R.

    2014-12-01

    A new total ozone-based ozone profile climatology has been created for use in satellite and/or ground based ozone retrievals. This climatology was formed by combining data from the Microwave Limb Sounder (MLS) with data from balloon sondes and binned by zone and total ozone. Because profile shape varies with total column ozone, this climatology better captures the ozone variations than the previously used seasonal climatologies, especially near the tropopause. This is significantly different than ozone climatologies used in the past as there is no time component. The MLS instrument on Aura has excellent latitude coverage and measures ozone profiles daily from the upper troposphere to the lower mesosphere at ~3.5 km resolution. Almost a million individual MLS ozone measurements are merged with data from over 55,000 ozonesondes which are then binned as a function of total ozone. The climatology consists of average ozone profiles as a function of total ozone for six 30 degree latitude bands covering altitudes from 0-75 km (in Z* pressure altitude coordinates). This new climatology better represents the profile shape as a function of total ozone than previous climatologies and shows some remarkable and somewhat unexpected correlations between total ozone and ozone in the lower altitudes, particularly in the lower and middle troposphere. These data can also be used to infer biases and errors in either the MLS retrievals or ozone sondes.

  1. Computation of high-resolution SAR distributions in a head due to a radiating dipole antenna representing a hand-held mobile phone.

    PubMed

    Van de Kamer, J B; Lagendijk, J J W

    2002-05-21

    SAR distributions in a healthy female adult head as a result of a radiating vertical dipole antenna (frequency 915 MHz) representing a hand-held mobile phone have been computed for three different resolutions: 2 mm, 1 mm and 0.4 mm. The extremely high resolution of 0.4 mm was obtained with our quasistatic zooming technique, which is briefly described in this paper. For an effectively transmitted power of 0.25 W, the maximum averaged SAR values in both cubic- and arbitrary-shaped volumes are, respectively, about 1.72 and 2.55 W kg(-1) for 1 g and 0.98 and 1.73 W kg(-1) for 10 g of tissue. These numbers do not vary much (<8%) for the different resolutions, indicating that SAR computations at a resolution of 2 mm are sufficiently accurate to describe the large-scale distribution. However, considering the detailed SAR pattern in the head, large differences may occur if high-resolution computations are performed rather than low-resolution ones. These deviations are caused by both increased modelling accuracy and improved anatomical description in higher resolution simulations. For example, the SAR profile across a boundary between tissues with high dielectric contrast is much more accurately described at higher resolutions. Furthermore, low-resolution dielectric geometries may suffer from loss of anatomical detail, which greatly affects small-scale SAR distributions. Thus. for strongly inhomogeneous regions high-resolution SAR modelling is an absolute necessity.

  2. VizieR Online Data Catalog: Magnetic early B-type stars. I. (Shultz+, 2018)

    NASA Astrophysics Data System (ADS)

    Shultz, M.; Wade, G. A.; Rivinius, Th.; Neiner, C.; Alecian, E.; Bohlender, D.; Monin, D.; Sikora, J.; Mimes Collaboration; Binamics Collaboration

    2018-03-01

    Longitudinal magnetic field measurements of early B-type stars derived from 1) least-squares deconvolution profiles extracted from high-resolution spectropolarimetric data (ESPaDOnS, Narval, HARPSpol), using masks consisting of metallic lines, metallic + He lines, individual chemical elements, as well as single-line H measurements; and 2) from single-line low-resolution spectropolarimetric observations with dimaPol. (3 data files).

  3. A crustal seismic velocity model for the UK, Ireland and surrounding seas

    USGS Publications Warehouse

    Kelly, A.; England, R.W.; Maguire, Peter K.H.

    2007-01-01

    A regional model of the 3-D variation in seismic P-wave velocity structure in the crust of NW Europe has been compiled from wide-angle reflection/refraction profiles. Along each 2-D profile a velocity-depth function has been digitised at 5 km intervals. These 1-D velocity functions were mapped into three dimensions using ordinary kriging with weights determined to minimise the difference between digitised and interpolated values. An analysis of variograms of the digitised data suggested a radial isotropic weighting scheme was most appropriate. Horizontal dimensions of the model cells are optimised at 40 ?? 40 km and the vertical dimension at 1 km. The resulting model provides a higher resolution image of the 3-D variation in seismic velocity structure of the UK, Ireland and surrounding areas than existing models. The construction of the model through kriging allows the uncertainty in the velocity structure to be assessed. This uncertainty indicates the high density of data required to confidently interpolate the crustal velocity structure, and shows that for this region the velocity is poorly constrained for large areas away from the input data. ?? 2007 The Authors Journal compilation ?? 2007 RAS.

  4. Use of Smoothed Measured Winds to Predict and Assess Launch Environments

    NASA Technical Reports Server (NTRS)

    Cordova, Henry S.; Leahy, Frank; Adelfang, Stanley; Roberts, Barry; Starr, Brett; Duffin, Paul; Pueri, Daniel

    2011-01-01

    Since many of the larger launch vehicles are operated near their design limits during the ascent phase of flight to optimize payload to orbit, it often becomes necessary to verify that the vehicle will remain within certification limits during the ascent phase as part of the go/no-go review made prior to launch. This paper describes the approach used to predict Ares I-X launch vehicle structural air loads and controllability prior to launch which represents a distinct departure from the methodology of the Space Shuttle and Evolved Expendable Launch Vehicle (EELV) programs. Protection for uncertainty of key environment and trajectory parameters is added to the nominal assessment of launch capability to ensure that critical launch trajectory variables would be within the integrated vehicle certification envelopes. This process was applied by the launch team as a key element of the launch day go/no-go recommendation. Pre-launch assessments of vehicle launch capability for NASA's Space Shuttle and the EELV heavy lift versions require the use of a high-resolution wind profile measurements, which have relatively small sample size compared with low-resolution profile databases (which include low-resolution balloons and radar wind profilers). The approach described in this paper has the potential to allow the pre-launch assessment team to use larger samples of wind measurements from low-resolution wind profile databases that will improve the accuracy of pre-launch assessments of launch availability with no degradation of mission assurance or launch safety.

  5. Chemical release from single-PMMA microparticles monitored by CARS microscopy

    NASA Astrophysics Data System (ADS)

    Enejder, Annika; Svedberg, Fredrik; Nordstierna, Lars; Nydén, Magnus

    2011-03-01

    Microparticles loaded with antigens, proteins, DNA, fungicides, and other functional agents emerge as ideal vehicles for vaccine, drug delivery, genetic therapy, surface- and crop protection. The microscopic size of the particles and their collective large specific surface area enables highly active and localized release of the functional substance. In order to develop designs with release profiles optimized for the specific application, it is desirable to map the distribution of the active substance within the particle and how parameters such as size, material and morphology affect release rates at single particle level. Current imaging techniques are limited in resolution, sensitivity, image acquisition time, or sample treatment, excluding dynamic studies of active agents in microparticles. Here, we demonstrate that the combination of CARS and THG microscopy can successfully be used, by mapping the spatial distribution and release rates of the fungicide and food preservative IPBC from different designs of PMMA microparticles at single-particle level. By fitting a radial diffusion model to the experimental data, single particle diffusion coefficients can be determined. We show that release rates are highly dependent on the size and morphology of the particles. Hence, CARS and THG microscopy provides adequate sensitivity and spatial resolution for quantitative studies on how singleparticle properties affect the diffusion of active agents at microscopic level. This will aid the design of innovative microencapsulating systems for controlled release.

  6. High-resolution dynamic 31 P-MRSI using a low-rank tensor model.

    PubMed

    Ma, Chao; Clifford, Bryan; Liu, Yuchi; Gu, Yuning; Lam, Fan; Yu, Xin; Liang, Zhi-Pei

    2017-08-01

    To develop a rapid 31 P-MRSI method with high spatiospectral resolution using low-rank tensor-based data acquisition and image reconstruction. The multidimensional image function of 31 P-MRSI is represented by a low-rank tensor to capture the spatial-spectral-temporal correlations of data. A hybrid data acquisition scheme is used for sparse sampling, which consists of a set of "training" data with limited k-space coverage to capture the subspace structure of the image function, and a set of sparsely sampled "imaging" data for high-resolution image reconstruction. An explicit subspace pursuit approach is used for image reconstruction, which estimates the bases of the subspace from the "training" data and then reconstructs a high-resolution image function from the "imaging" data. We have validated the feasibility of the proposed method using phantom and in vivo studies on a 3T whole-body scanner and a 9.4T preclinical scanner. The proposed method produced high-resolution static 31 P-MRSI images (i.e., 6.9 × 6.9 × 10 mm 3 nominal resolution in a 15-min acquisition at 3T) and high-resolution, high-frame-rate dynamic 31 P-MRSI images (i.e., 1.5 × 1.5 × 1.6 mm 3 nominal resolution, 30 s/frame at 9.4T). Dynamic spatiospectral variations of 31 P-MRSI signals can be efficiently represented by a low-rank tensor. Exploiting this mathematical structure for data acquisition and image reconstruction can lead to fast 31 P-MRSI with high resolution, frame-rate, and SNR. Magn Reson Med 78:419-428, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  7. Kinetic-Energy Distribution of D(2p) Atoms from Analysis of the D Lyman-Alpha Line Profile

    NASA Technical Reports Server (NTRS)

    Ciocca, M.; Ajello, Joseph M.; Liu, Xianming; Maki, Justin

    1997-01-01

    The kinetic-energy distribution of D(2p) atoms resulting from electron-impact dissociation of D2 has been measured. A high-resolution vacuum ultraviolet spectrometer was employed for the first measurement of the D Lyman-alpha (D L(alpha)) emission line profiles at 20- and 100-eV excitation energies. Analysis of the deconvoluted line profile of D L(alpha) at 100 eV reveals the existence of a narrow line central peak of 29+/-2 mA full width at half maximum and a broad pedestal wing structure about 190 mA wide. The wings of the line can be used to determine the fast atom distribution. The wings of D L(alpha) arise from dissociative excitation of a series of doubly excited states that cross the Franck-Condon region between 23 and 40 eV. The fast atom distribution at 100-eV electron impact energy spans the energy range from 1 to 10 eV with a peak value near 6 eV. Slow D(2p) atoms characterized by a distribution function with peak energy near 100 meV produce the central peak profile, which is nearly independent of the impact energy. The deconvoluted line profiles of the central peak at 20 eV for dissociative excitation of D2 and H2 are fitted with an analytical function for use in calibration of space flight instrumentation equipped with a D/H absorption cell. The kinetic-energy and line profile results are compared to similar measurements for H2. The absolute cross sections for the line center (slow atoms) and wings (fast atoms) and total emission line profile were measured from threshold to 400 eV. Analytical model coefficients are given for the energy dependence of the measured slow atom cross section.

  8. Simple area determination of strongly overlapping ion mobility peaks.

    PubMed

    Borovcová, Lucie; Hermannová, Martina; Pauk, Volodymyr; Šimek, Matěj; Havlíček, Vladimír; Lemr, Karel

    2017-08-15

    Coupling of ion mobility with mass spectrometry has brought new frontiers in separation and quantitation of a wide range of isobaric/isomeric compounds. Ion mobility spectrometry may separate ions possessing the identical molecular formula but having different molecular shapes. The separation space in most commercially available instruments is limited and rarely the mobility resolving power exceeds one hundred. From this perspective, new approaches allowing for extracting individual compound signals out of a more complex mixture are needed. In this work we present a new simple analytical approach based on fitting of arrival time distribution (ATD) profiles by Gaussian functions and generating of ATD functions. These ATD functions well describe even distorted ion mobility peaks of individual compounds and allow for extracting their peaks from mobilograms of mixtures. Contrary to classical integration, our approach works well with irregular overlapping peaks. Using mobilograms of standards to generate ATD functions, poorly separated compounds, e.g. isomers, with identical mass spectra representing a hard to solve task for various chemometric methods can be easily distinguished by our procedure. Alternatively ATD functions can be obtained from ATD profiles of ions unique to individual mixture components (if such ions exist) and mobilograms of standards are not required. On a set of hyaluronan-derived oligosaccharides we demonstrated excellent ATD repeatability enabling the resolution of binary mixtures, including mixtures with minor component level about 5%. Ion mobility quantitative data of isomers were confirmed by high performance liquid chromatography. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Functional morphology of the lower esophageal sphincter and crural diaphragm determined by three-dimensional high-resolution esophago-gastric junction pressure profile and CT imaging.

    PubMed

    Mittal, Ravinder K; Zifan, Ali; Kumar, Dushyant; Ledgerwood-Lee, Melissa; Ruppert, Erika; Ghahremani, Gary

    2017-09-01

    The smooth muscles of the lower esophageal sphincter (LES) and skeletal muscles of the crural diaphragm (CD) provide a closure/antireflux barrier mechanism at the esophago-gastric junction (EGJ). A number of questions in regard to the pressure profile of the LES and CD remain unclear, e.g., 1 ) Why is the LES pressure profile circumferentially asymmetric, 2 ) Is the crural diaphragm (CD) contraction also circumferentially asymmetric, and 3 ) Where is the LES and CD pressure profile located in the anatomy of the esophagus and stomach? The three-dimensional (3-D) high-resolution esophageal manometry (HRM) catheter can record a detailed profile of the EGJ pressure; however, it does not allow the determination of the circumferential orientation of individual pressure transducers in vivo. We used computed tomography (CT) scan imaging in combination with 3-D EGJ pressure recordings to determine the functional morphology of the LES and CD and its relationship to the EGJ anatomy. A 3-D-HRM catheter with 96 transducers (12 rings, 7.5 mm apart, located over 9-cm length of the catheter, with eight transducers in each ring, 45° apart (Medtronics), was used to record the EGJ pressure in 10 healthy subjects. A 0.5-mm diameter metal ball (BB) was taped to the catheter, adjacent to transducer 1 of the catheter. The EGJ was recorded under the following conditions: 1 ) end-expiration (LES pressure) before swallow, after swallow, and after edrophonium hydrochloride; and 2 ) peak inspiration (crural diaphragm contraction) for tidal inspiration and forced maximal inspiration. A CT scan was performed to localize the circumferential orientation of the BB. The CT scan imaging allowed the determination of the circumferential orientation of the LES and CD pressure profiles. The LES pressure under the three end-expiration conditions were different; however, the shape of the pressure profile was unique with the LES length longer toward the lesser curvature of the stomach as compared with the greater curvature. The pressure profile revealed circular and axial pressure asymmetry, with greatest pressure and shortest cranio-caudal length on the left (close to the angle of His). The CD contraction with tidal and forced inspiration increases pressure in the cranial half of the LES pressure profile, and it was placed horizontally across the recording. The CD, esophagus, and stomach were outlined in the CT scan images to construct a 3-D anatomy of the region; it revealed that the hiatus (CD) is placed obliquely across the esophagus; however, because of the bend of the esophagus to the left at the upper edge of the hiatus, the two were placed at right angle to each other, which resulted in a horizontal pressure profile of the CD on the LES. Our observations suggest a unique shape of the LES, CD, and the anatomical relationship between the two, which provides a possible explanation as to why the LES pressure shows circumferential and axial asymmetry. Our findings have implication for the length and circumferential orientation of myotomy incision required for the ablation of LES pressure in achalasia esophagus. NEW & NOTEWORTHY We used computed tomography scan imaging with three-dimensional esophago-gastric junction (EGJ) pressure recordings to determine functional morphology of the lower esophageal sphincter (LES) and crural diaphragm and its relationship to EGJ anatomy. The LES pressure profile was unique with the LES length longer and pressures lower toward the lesser curvature of the stomach, as compared with the greater curvature. Our findings have implications for the length and circumferential orientation of myotomy incision required for the ablation of LES pressure in the achalasia esophagus. Copyright © 2017 the American Physiological Society.

  10. Observations and modelling of the boundary layer using remotely piloted aircraft

    NASA Astrophysics Data System (ADS)

    Cayez, Gregoire; Dralet, Jean-Philippe; Seity, Yann; Momboisse, Geraud; Hattenberger, Gautier; Bronz, Murat; Roberts, Greg

    2014-05-01

    Over the past decade, the scientific community considers the RPAS (remotely piloted aircraft system) as a tool which can help to improve their knowledge of climate and atmospheric phenomena. RPAS equipped with instruments can now conduct measurements in areas that are too hazardous or remote for a manned plane. RPAS are especially adapted system for observing the atmospheric boundary layer processes at high vertical and temporal resolution. The main objectives of VOLTIGE (Vecteur d'Observation de La Troposphère pour l'Investigation et la Gestion de l'Environnement) are to study the life cycle of fog with micro-RPAS, encourage direct participation of the students on the advancement and development of novel observing systems, and assess the feasibility of deploying RPAS in Météo-France's operational network. The instrumented RPAS flights successfully observed the evolution of small-scale meteorological events. Before the arrival of the warm pseudo-front, profiles show a temperature inversion of a hundred meters, which overlaps a cold and wet atmospheric layer. Subsequent profiles show the combination of the arrival of a marine air mass as well as the arrival of a higher level warm pseudo-front. A third case study characterizes the warm sector of the disturbance. Two distinct air masses are visible on the vertical profiles, and show a dry air above an air almost saturated and slightly colder. The temperature and the relative humidity profiles show < 1 meter vertical resolution with a difference between ascent and descent profiles within ± 0.5°C and ± 6 % RH. These results comply with the Météo-France standard limits of quality control. The RPAS profiles were compared with those of the Arome forecast model (an operational model at Météo France). The temperature and wind in the Arome model profiles generally agree with those of the RPAS (less for relative humidity profiles). The Arome model also suggests transitions between air masses occurred at a higher level than those measured by RPAS. These results suggest that forecast models may be improved using high resolution and frequent in-situ measurements.

  11. Optimal control of a coupled partial and ordinary differential equations system for the assimilation of polarimetry Stokes vector measurements in tokamak free-boundary equilibrium reconstruction with application to ITER

    NASA Astrophysics Data System (ADS)

    Faugeras, Blaise; Blum, Jacques; Heumann, Holger; Boulbe, Cédric

    2017-08-01

    The modelization of polarimetry Faraday rotation measurements commonly used in tokamak plasma equilibrium reconstruction codes is an approximation to the Stokes model. This approximation is not valid for the foreseen ITER scenarios where high current and electron density plasma regimes are expected. In this work a method enabling the consistent resolution of the inverse equilibrium reconstruction problem in the framework of non-linear free-boundary equilibrium coupled to the Stokes model equation for polarimetry is provided. Using optimal control theory we derive the optimality system for this inverse problem. A sequential quadratic programming (SQP) method is proposed for its numerical resolution. Numerical experiments with noisy synthetic measurements in the ITER tokamak configuration for two test cases, the second of which is an H-mode plasma, show that the method is efficient and that the accuracy of the identification of the unknown profile functions is improved compared to the use of classical Faraday measurements.

  12. Approaching the resolution limit of W-C nano-gaps using focused ion beam chemical vapour deposition

    NASA Astrophysics Data System (ADS)

    Dai, Jun; Chang, Hui; Maeda, Etsuo; Warisawa, Shin'ichi; Kometani, Reo

    2018-01-01

    Nano-gaps are fundamental building blocks for nanochannels, plasmonic nanostructures and superconducting Josephson junctions. We present a systematic study on the formation mechanism and resolution limit of W-C nano-gaps fabricated using focused-ion-beam chemical vapour deposition (FIB-CVD). First, the deposition size of the nanostructures is evaluated. The size averaged over 100 dots is 32 nm at FWHM. Line and space are also fabricated with the smallest size, having a spacing of only 5 nm at FWHM. Then, a model is developed to study the formation mechanism and provides the design basis for W-C nano-gaps. Both experimental and simulation results reveal that the shrinkage of W-C nano-gaps is accelerated as the Gaussian parts of the nano-wire profiles overlap. A Nano-gap with a length of 5 nm and height difference as high as 42 nm is synthesized. We believe that FIB-CVD opens avenues for novel functional nanodevices that can be potentially used for biosensing, photodetecting, or quantum computing.

  13. Measurements of Martian dust devil winds with HiRISE

    USGS Publications Warehouse

    Choi, D.S.; Dundas, C.M.

    2011-01-01

    We report wind measurements within Martian dust devils observed in plan view from the High Resolution Imaging Science Experiment (HiRISE) orbiting Mars. The central color swath of the HiRISE instrument has three separate charge-coupled devices (CCDs) and color filters that observe the surface in rapid cadence. Active features, such as dust devils, appear in motion when observed by this region of the instrument. Our image animations reveal clear circulatory motion within dust devils that is separate from their translational motion across the Martian surface. Both manual and automated tracking of dust devil clouds reveal tangential winds that approach 20-30 m s -1 in some cases. These winds are sufficient to induce a ???1% decrease in atmospheric pressure within the dust devil core relative to ambient, facilitating dust lifting by reducing the threshold wind speed for particle elevation. Finally, radial velocity profiles constructed from our automated measurements test the Rankine vortex model for dust devil structure. Our profiles successfully reveal the solid body rotation component in the interior, but fail to conclusively illuminate the profile in the outer regions of the vortex. One profile provides evidence for a velocity decrease as a function of r -1/2, instead of r -1, suggestive of surface friction effects. However, other profiles do not support this observation, or do not contain enough measurements to produce meaningful insights. Copyright 2011 by the American Geophysical Union.

  14. High-Resolution Metabolic Phenotyping of Genetically and Environmentally Diverse Potato Tuber Systems. Identification of Phenocopies

    PubMed Central

    Roessner, Ute; Willmitzer, Lothar; Fernie, Alisdair R.

    2001-01-01

    We conducted a comprehensive metabolic phenotyping of potato (Solanum tuberosum L. cv Desiree) tuber tissue that had been modified either by transgenesis or exposure to different environmental conditions using a recently developed gas chromatography-mass spectrometry profiling protocol. Applying this technique, we were able to identify and quantify the major constituent metabolites of the potato tuber within a single chromatographic run. The plant systems that we selected to profile were tuber discs incubated in varying concentrations of fructose, sucrose, and mannitol and transgenic plants impaired in their starch biosynthesis. The resultant profiles were then compared, first at the level of individual metabolites and then using the statistical tools hierarchical cluster analysis and principal component analysis. These tools allowed us to assign clusters to the individual plant systems and to determine relative distances between these clusters; furthermore, analyzing the loadings of these analyses enabled identification of the most important metabolites in the definition of these clusters. The metabolic profiles of the sugar-fed discs were dramatically different from the wild-type steady-state values. When these profiles were compared with one another and also with those we assessed in previous studies, however, we were able to evaluate potential phenocopies. These comparisons highlight the importance of such an approach in the functional and qualitative assessment of diverse systems to gain insights into important mediators of metabolism. PMID:11706160

  15. Mechanistic links between gut microbial community dynamics, microbial functions and metabolic health.

    PubMed

    Ha, Connie W Y; Lam, Yan Y; Holmes, Andrew J

    2014-11-28

    Gut microbes comprise a high density, biologically active community that lies at the interface of an animal with its nutritional environment. Consequently their activity profoundly influences many aspects of the physiology and metabolism of the host animal. A range of microbial structural components and metabolites directly interact with host intestinal cells and tissues to influence nutrient uptake and epithelial health. Endocrine, neuronal and lymphoid cells in the gut also integrate signals from these microbial factors to influence systemic responses. Dysregulation of these host-microbe interactions is now recognised as a major risk factor in the development of metabolic dysfunction. This is a two-way process and understanding the factors that tip host-microbiome homeostasis over to dysbiosis requires greater appreciation of the host feedbacks that contribute to regulation of microbial community composition. To date, numerous studies have employed taxonomic profiling approaches to explore the links between microbial composition and host outcomes (especially obesity and its comorbidities), but inconsistent host-microbe associations have been reported. Available data indicates multiple factors have contributed to discrepancies between studies. These include the high level of functional redundancy in host-microbiome interactions combined with individual variation in microbiome composition; differences in study design, diet composition and host system between studies; and inherent limitations to the resolution of rRNA-based community profiling. Accounting for these factors allows for recognition of the common microbial and host factors driving community composition and development of dysbiosis on high fat diets. New therapeutic intervention options are now emerging.

  16. Mechanistic links between gut microbial community dynamics, microbial functions and metabolic health

    PubMed Central

    Ha, Connie WY; Lam, Yan Y; Holmes, Andrew J

    2014-01-01

    Gut microbes comprise a high density, biologically active community that lies at the interface of an animal with its nutritional environment. Consequently their activity profoundly influences many aspects of the physiology and metabolism of the host animal. A range of microbial structural components and metabolites directly interact with host intestinal cells and tissues to influence nutrient uptake and epithelial health. Endocrine, neuronal and lymphoid cells in the gut also integrate signals from these microbial factors to influence systemic responses. Dysregulation of these host-microbe interactions is now recognised as a major risk factor in the development of metabolic dysfunction. This is a two-way process and understanding the factors that tip host-microbiome homeostasis over to dysbiosis requires greater appreciation of the host feedbacks that contribute to regulation of microbial community composition. To date, numerous studies have employed taxonomic profiling approaches to explore the links between microbial composition and host outcomes (especially obesity and its comorbidities), but inconsistent host-microbe associations have been reported. Available data indicates multiple factors have contributed to discrepancies between studies. These include the high level of functional redundancy in host-microbiome interactions combined with individual variation in microbiome composition; differences in study design, diet composition and host system between studies; and inherent limitations to the resolution of rRNA-based community profiling. Accounting for these factors allows for recognition of the common microbial and host factors driving community composition and development of dysbiosis on high fat diets. New therapeutic intervention options are now emerging. PMID:25469018

  17. Study on the coloration response of a radiochromic film to MeV cluster ion beams

    NASA Astrophysics Data System (ADS)

    Yuri, Yosuke; Narumi, Kazumasa; Chiba, Atsuya; Hirano, Yoshimi; Saitoh, Yuichi

    2017-11-01

    A radiochromic film, Gafchromic HD-V2, is applied to a possible method of measuring a two-dimensional (2D) spatial profile of MeV cluster ion beams. The coloration responses of the HD-V2 film to MeV carbon and gold cluster ion beams are experimentally investigated since some cluster effect may appear. The degree of the film coloration is quantified as a change in optical density (OD) by reading the films with an image scanner for high-resolution measurement of the 2D beam profile. The OD response of HD-V2 is characterized as a function of the ion and atom fluence for comparison. The dependences of the OD response on the cluster size, kinetic energy, and ion species are discussed. It is found that the sensitivity of the OD change is reduced when the cluster size is large. The beam profile of MeV cluster ion beams delivered from the tandem accelerator in TIARA is characterized from the measurement result using HD-V2 films. The present results show that the use of the Gafchromic HD-V2 film is suitable for the detail beam profile measurement of MeV cluster ions, especially C60 ions, whose available intensity is rather low in comparison with that of monatomic ion beams.

  18. A New SBUV Ozone Profile Time Series

    NASA Technical Reports Server (NTRS)

    McPeters, Richard

    2011-01-01

    Under NASA's MEaSUREs program for creating long term multi-instrument data sets, our group at Goddard has re-processed ozone profile data from a series of SBUV instruments. We have processed data from the Nimbus 7 SBUV instrument (1979-1990) and data from SBUV/2 instruments on NOAA-9 (1985-1998), NOAA-11 (1989-1995), NOAA-16 (2001-2010), NOAA-17 (2002-2010), and NOAA-18 (2005-2010). This reprocessing uses the version 8 ozone profile algorithm but now uses the Brion, Daumont, and Malicet (BMD) ozone cross sections instead of the Bass and Paur cross sections. The new cross sections have much better resolution, and extended wavelength range, and a more consistent temperature dependence. The re-processing also uses an improved cloud height climatology based on the Raman cloud retrievals of OMI. Finally, the instrument-to-instrument calibration is set using matched scenes so that ozone diurnal variation in the upper stratosphere does not alias into the ozone trands. Where there is no instrument overlap, SAGE and MLS are used to estimate calibration offsets. Preliminary analysis shows a more coherent time series as a function of altitude. The net effect on profile total column ozone is on average an absolute reduction of about one percent. Comparisons with ground-based systems are significantly better at high latitudes.

  19. Whole-animal imaging with high spatio-temporal resolution

    NASA Astrophysics Data System (ADS)

    Chhetri, Raghav; Amat, Fernando; Wan, Yinan; Höckendorf, Burkhard; Lemon, William C.; Keller, Philipp J.

    2016-03-01

    We developed isotropic multiview (IsoView) light-sheet microscopy in order to image fast cellular dynamics, such as cell movements in an entire developing embryo or neuronal activity throughput an entire brain or nervous system, with high resolution in all dimensions, high imaging speeds, good physical coverage and low photo-damage. To achieve high temporal resolution and high spatial resolution at the same time, IsoView microscopy rapidly images large specimens via simultaneous light-sheet illumination and fluorescence detection along four orthogonal directions. In a post-processing step, these four views are then combined by means of high-throughput multiview deconvolution to yield images with a system resolution of ≤ 450 nm in all three dimensions. Using IsoView microscopy, we performed whole-animal functional imaging of Drosophila embryos and larvae at a spatial resolution of 1.1-2.5 μm and at a temporal resolution of 2 Hz for up to 9 hours. We also performed whole-brain functional imaging in larval zebrafish and multicolor imaging of fast cellular dynamics across entire, gastrulating Drosophila embryos with isotropic, sub-cellular resolution. Compared with conventional (spatially anisotropic) light-sheet microscopy, IsoView microscopy improves spatial resolution at least sevenfold and decreases resolution anisotropy at least threefold. Compared with existing high-resolution light-sheet techniques, such as lattice lightsheet microscopy or diSPIM, IsoView microscopy effectively doubles the penetration depth and provides subsecond temporal resolution for specimens 400-fold larger than could previously be imaged.

  20. High-resolution Interferometer Sounder (HIS), phase 2

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The High-resolution Interferometer Sounder (HIS) was successfully built, tested, and flight proven on the NASA U-2/ER-2 high altitude aircraft. The HIS demonstration has shown that, by using the technology of Fourier Transform Spectroscopy (FTS), it is possible to measure the spectrum of upwelling infrared radiance needed for temperature and humidity sounding with high spectral resolution and high radiometric precision. By resolving individual carbon dioxide lines, the retrieved temperature profiles have vertical resolutions of 1 to 2 km and RMS errors less than 1 C, about 2 to 4 times better than possible with current sounders. Implementing this capability on satellite sounders will greatly enhance the dynamical information content of temperature measurements from space. The aircraft model HIS is now a resource which should be used to support field experiments in mesoscale meteorology, to monitor trace gas concentrations and to better understand their effects on climate, to monitor the surface radiation budget and the radiative effects of clouds, and to collect data for research into retrieval techniques, especially under partially cloudy conditions.

  1. High efficiency multishot interleaved spiral-in/out: acquisition for high-resolution BOLD fMRI.

    PubMed

    Jung, Youngkyoo; Samsonov, Alexey A; Liu, Thomas T; Buracas, Giedrius T

    2013-08-01

    Growing demand for high spatial resolution blood oxygenation level dependent (BOLD) functional magnetic resonance imaging faces a challenge of the spatial resolution versus coverage or temporal resolution tradeoff, which can be addressed by methods that afford increased acquisition efficiency. Spiral acquisition trajectories have been shown to be superior to currently prevalent echo-planar imaging in terms of acquisition efficiency, and high spatial resolution can be achieved by employing multiple-shot spiral acquisition. The interleaved spiral in/out trajectory is preferred over spiral-in due to increased BOLD signal contrast-to-noise ratio (CNR) and higher acquisition efficiency than that of spiral-out or noninterleaved spiral in/out trajectories (Law & Glover. Magn Reson Med 2009; 62:829-834.), but to date applicability of the multishot interleaved spiral in/out for high spatial resolution imaging has not been studied. Herein we propose multishot interleaved spiral in/out acquisition and investigate its applicability for high spatial resolution BOLD functional magnetic resonance imaging. Images reconstructed from interleaved spiral-in and -out trajectories possess artifacts caused by differences in T2 decay, off-resonance, and k-space errors associated with the two trajectories. We analyze the associated errors and demonstrate that application of conjugate phase reconstruction and spectral filtering can substantially mitigate these image artifacts. After applying these processing steps, the multishot interleaved spiral in/out pulse sequence yields high BOLD CNR images at in-plane resolution below 1 × 1 mm while preserving acceptable temporal resolution (4 s) and brain coverage (15 slices of 2 mm thickness). Moreover, this method yields sufficient BOLD CNR at 1.5 mm isotropic resolution for detection of activation in hippocampus associated with cognitive tasks (Stern memory task). The multishot interleaved spiral in/out acquisition is a promising technique for high spatial resolution BOLD functional magnetic resonance imaging applications. © 2012 Wiley Periodicals, Inc.

  2. High resolution vertical profiles of wind, temperature and humidity obtained by computer processing and digital filtering of radiosonde and radar tracking data from the ITCZ experiment of 1977

    NASA Technical Reports Server (NTRS)

    Danielson, E. F.; Hipskind, R. S.; Gaines, S. E.

    1980-01-01

    Results are presented from computer processing and digital filtering of radiosonde and radar tracking data obtained during the ITCZ experiment when coordinated measurements were taken daily over a 16 day period across the Panama Canal Zone. The temperature relative humidity and wind velocity profiles are discussed.

  3. Serum metabolomics of slow vs. rapid motor progression Parkinson's disease: a pilot study.

    PubMed

    Roede, James R; Uppal, Karan; Park, Youngja; Lee, Kichun; Tran, Vilinh; Walker, Douglas; Strobel, Frederick H; Rhodes, Shannon L; Ritz, Beate; Jones, Dean P

    2013-01-01

    Progression of Parkinson's disease (PD) is highly variable, indicating that differences between slow and rapid progression forms could provide valuable information for improved early detection and management. Unfortunately, this represents a complex problem due to the heterogeneous nature of humans in regards to demographic characteristics, genetics, diet, environmental exposures and health behaviors. In this pilot study, we employed high resolution mass spectrometry-based metabolic profiling to investigate the metabolic signatures of slow versus rapidly progressing PD present in human serum. Archival serum samples from PD patients obtained within 3 years of disease onset were analyzed via dual chromatography-high resolution mass spectrometry, with data extraction by xMSanalyzer and used to predict rapid or slow motor progression of these patients during follow-up. Statistical analyses, such as false discovery rate analysis and partial least squares discriminant analysis, yielded a list of statistically significant metabolic features and further investigation revealed potential biomarkers. In particular, N8-acetyl spermidine was found to be significantly elevated in the rapid progressors compared to both control subjects and slow progressors. Our exploratory data indicate that a fast motor progression disease phenotype can be distinguished early in disease using high resolution mass spectrometry-based metabolic profiling and that altered polyamine metabolism may be a predictive marker of rapidly progressing PD.

  4. Ultraviolet observations of cool stars. VI - L alpha and Mg II emission line profiles /and a search for flux variability/ in Arcturus

    NASA Technical Reports Server (NTRS)

    Mcclintock, W.; Moos, H. W.; Henry, R. C.; Linsky, J. L.; Barker, E. S.

    1978-01-01

    High-precision, high-resolution profiles of the L alpha and Mg II k chromospheric emission lines from Arcturus (alpha Boo) obtained with the Princeton Experimental Package aboard the Copernicus satellite are presented. Asymmetries seen in the profiles of these lines are probably intrinsic to the star, rather than the result of interstellar absorption. In contrast to previous observations of the Ca II K emission line, no evidence is found during a three-year period for variability in the profiles or in the total fluxes from these lines on time scales ranging from hours to months. Also presented is a flux profile of the O I 1302 line and flux upper limits for L beta, O VI 1032, Si III 1206, and O V 1218.

  5. Assessment of Data Assimilation with the Prototype High Resolution Rapid Refresh for Alaska (HRRRAK)

    NASA Technical Reports Server (NTRS)

    Harrison, Kayla; Morton, Don; Zavodsky, Brad; Chou, Shih

    2012-01-01

    The Arctic Region Supercomputing Center has been running a quasi-operational prototype of a High Resolution Rapid Refresh for Alaska (HRRRAK) at 3km resolution, initialized by the 13km Rapid Refresh (RR). Although the RR assimilates a broad range of observations into its analyses, experiments with the HRRRAK suggest that there may be added value in assimilating observations into the 3km initial conditions, downscaled from the 13km RR analyses. The NASA Short-term Prediction Research and Transition (SPoRT) group has been using assimilated data from the Atmospheric Infrared Sounder (AIRS) in WRF and WRF-Var simulations since 2004 with promising results. The sounder is aboard NASA s Aqua satellite, and provides vertical profiles of temperature and humidity. The Gridpoint Statistical Interpolation (GSI) system is then used to assimilate these vertical profiles into WRF forecasts. In this work, we assess the use of AIRS data in combination with other global data assimilation products on non-assimilated HRRRAK case studies. Two separate weather events will be assessed to qualitatively and quantitatively assess the impacts of AIRS data on HRRRAK forecasts.

  6. Rapid Detection Method for the Four Most Common CHEK2 Mutations Based on Melting Profile Analysis.

    PubMed

    Borun, Pawel; Salanowski, Kacper; Godlewski, Dariusz; Walkowiak, Jaroslaw; Plawski, Andrzej

    2015-12-01

    CHEK2 is a tumor suppressor gene, and the mutations affecting the functionality of the protein product increase cancer risk in various organs. The elevated risk, in a significant percentage of cases, is determined by the occurrence of one of the four most common mutations in the CHEK2 gene, including c.470T>C (p.I157T), c.444+1G>A (IVS2+1G>A), c.1100delC, and c.1037+1538_1224+328del5395 (del5395). We have developed and validated a rapid and effective method for their detection based on high-resolution melting analysis and comparative-high-resolution melting, a novel approach enabling simultaneous detection of copy number variations. The analysis is performed in two polymerase chain reactions followed by melting analysis, without any additional reagents or handling other than that used in standard high-resolution melting. Validation of the method was conducted in a group of 103 patients with diagnosed breast cancer, a group of 240 unrelated patients with familial history of cancer associated with the CHEK2 gene mutations, and a 100-person control group. The results of the analyses for all three groups were fully consistent with the results from other methods. The method we have developed improves the identification of the CHEK2 mutation carriers, reduces the cost of such analyses, as well as facilitates their implementation. Along with the increased efficiency, the method maintains accuracy and reliability comparable to other more labor-consuming techniques.

  7. 3D AUV Microseismic Implementation for Deepwater Seabed Investigations

    NASA Astrophysics Data System (ADS)

    George, R.; Taylor, M. W.; Gravely, J. G.

    2005-05-01

    Autonomous Underwater Vehicle (AUV) technology, developed commercially over the past 5 years, allows for the geophysical investigation of the seabed on the deepwater continental slope at resolutions, data densities and timelines not previously attainable. High-resolution geophysical systems normally employed on deepwater survey AUVs consist of multibeam bathymetry, side scan sonar and subbottom profiler. Inertial navigation allows positioning accuracies on the order of plus or minus 3 meters in depths up to 2,000 meters. C & C Technologies, Inc. owns and operates the C-Surveyor I AUV, which has collected more than 40,000 km of geohazard survey data on the continental slopes of the Gulf of Mexico, Mediterranean Sea, Brazil and West Africa. The oil and gas industry routinely engineers deepwater platform-mooring systems and other bottom founded subsea systems for exploration and production developments. Resolute subbottom imaging of the foundation zone in order to identify the near-seafloor geologic conditions at these deepwater development sites is critical in order to maintain system integrity. The paper describes the methodology and post-processing techniques used to create a high-resolution (2-8 kHz) 3D seismic cube from subbottom profiler data collected from an AUV system. Data examples of the multibeam bathymetry, side scan sonar and 2D seismic profiles will be provided to complement the results of the 3D seismic cube processing. Examples of inlines, crosslines, arbitrary lines, seafloor amplitude extraction and time slices are presented for the 4-meter binned data set. Advantages, disadvantages and suggested improvements for the survey acquisition technique and post processing are discussed.

  8. Tropospheric Wind Monitoring During Day-of-Launch Operations for National Aeronautics and Space Administration's Space Shuttle Program

    NASA Technical Reports Server (NTRS)

    Decker, Ryan K.; Leach, Richard

    2004-01-01

    The Environments Group at the National Aeronautics and Space Administration's Marshall Space Flight Center (NASA/MSFC) monitors the winds aloft at Kennedy Space Center (KSC) during the countdown for all Space Shuttle launches. Assessment of tropospheric winds is used to support the ascent phase of launch. Three systems at KSC are used to generate independent tropospheric wind profiles prior to launch; 1) high resolution Jimsphere balloon system, 2) 50-MHz Doppler Radar Wind Profiler (DRWP) and 3) low resolution radiosonde system. Data generated by the systems are used to assess spatial and temporal wind variability during launch countdown to ensure wind change observed does not violate wind change criteria constraints.

  9. ChIP-seq and ChIP-exo profiling of Pol II, H2A.Z, and H3K4me3 in human K562 cells.

    PubMed

    Mchaourab, Zenab F; Perreault, Andrea A; Venters, Bryan J

    2018-03-06

    The human K562 chronic myeloid leukemia cell line has long served as an experimental paradigm for functional genomic studies. To systematically and functionally annotate the human genome, the ENCODE consortium generated hundreds of functional genomic data sets, such as chromatin immunoprecipitation coupled to sequencing (ChIP-seq). While ChIP-seq analyses have provided tremendous insights into gene regulation, spatiotemporal insights were limited by a resolution of several hundred base pairs. ChIP-exonuclease (ChIP-exo) is a refined version of ChIP-seq that overcomes this limitation by providing higher precision mapping of protein-DNA interactions. To study the interplay of transcription initiation and chromatin, we profiled the genome-wide locations for RNA polymerase II (Pol II), the histone variant H2A.Z, and the histone modification H3K4me3 using ChIP-seq and ChIP-exo. In this Data Descriptor, we present detailed information on parallel experimental design, data generation, quality control analysis, and data validation. We discuss how these data lay the foundation for future analysis to understand the relationship between the occupancy of Pol II and nucleosome positions at near base pair resolution.

  10. A high-resolution oxygen A-band spectrometer (HABS) and its radiation closure

    NASA Astrophysics Data System (ADS)

    Min, Q.; Yin, B.; Li, S.; Berndt, J.; Harrison, L.; Joseph, E.; Duan, M.; Kiedron, P.

    2014-06-01

    Various studies indicate that high-resolution oxygen A-band spectrum has the capability to retrieve the vertical profiles of aerosol and cloud properties. To improve the understanding of oxygen A-band inversions and utility, we developed a high-resolution oxygen A-band spectrometer (HABS), and deployed it at Howard University Beltsville site during the NASA Discover Air-Quality Field Campaign in July, 2011. By using a single telescope, the HABS instrument measures the direct solar and the zenith diffuse radiation subsequently. HABS exhibits excellent performance: stable spectral response ratio, high signal-to-noise ratio (SNR), high-spectrum resolution (0.016 nm), and high out-of-band rejection (10-5). For the spectral retrievals of HABS measurements, a simulator is developed by combining a discrete ordinates radiative transfer code (DISORT) with the High Resolution Transmission (HITRAN) database HITRAN2008. The simulator uses a double-k approach to reduce the computational cost. The HABS-measured spectra are consistent with the related simulated spectra. For direct-beam spectra, the discrepancies between measurements and simulations, indicated by confidence intervals (95%) of relative difference, are (-0.06, 0.05) and (-0.08, 0.09) for solar zenith angles of 27 and 72°, respectively. For zenith diffuse spectra, the related discrepancies between measurements and simulations are (-0.06, 0.05) and (-0.08, 0.07) for solar zenith angles of 27 and 72°, respectively. The main discrepancies between measurements and simulations occur at or near the strong oxygen absorption line centers. They are mainly due to two kinds of causes: (1) measurement errors associated with the noise/spikes of HABS-measured spectra, as a result of combined effects of weak signal, low SNR, and errors in wavelength registration; (2) modeling errors in the simulation, including the error of model parameters setting (e.g., oxygen absorption line parameters, vertical profiles of temperature and pressure) and the lack of treatment of the rotational Raman scattering. The high-resolution oxygen A-band measurements from HABS can constrain the active radar retrievals for more accurate cloud optical properties (e.g., cloud optical depth, effective radius), particularly for multi-layer clouds and for mixed-phase clouds.

  11. DETECTING LOW-LEVEL SYNTHESIS IMPURITIES IN MODIFIED PHOSPHOROTHIOATE OLIGONUCLEOTIDES USING LIQUID CHROMATOGRAPHY – HIGH RESOLUTION MASS SPECTROMETRY

    PubMed Central

    Nikcevic, Irena; Wyrzykiewicz, Tadeusz K.; Limbach, Patrick A.

    2010-01-01

    Summary An LC-MS method based on the use of high resolution Fourier transform ion cyclotron resonance mass spectrometry (FTIRCMS) for profiling oligonucleotides synthesis impurities is described. Oligonucleotide phosphorothioatediesters (phosphorothioate oligonucleotides), in which one of the non-bridging oxygen atoms at each phosphorus center is replaced by a sulfur atom, are now one of the most popular oligonucleotide modifications due to their ease of chemical synthesis and advantageous pharmacokinetic properties. Despite significant progress in the solid-phase oligomerization chemistry used in the manufacturing of these oligonucleotides, multiple classes of low-level impurities always accompany synthetic oligonucleotides. Liquid chromatography-mass spectrometry has emerged as a powerful technique for the identification of these synthesis impurities. However, impurity profiling, where the entire complement of low-level synthetic impurities is identified in a single analysis, is more challenging. Here we present an LC-MS method based the use of high resolution-mass spectrometry, specifically Fourier transform ion cyclotron resonance mass spectrometry (FTIRCMS or FTMS). The optimal LC-FTMS conditions, including the stationary phase and mobile phases for the separation and identification of phosphorothioate oligonucleotides, were found. The characteristics of FTMS enable charge state determination from single m/z values of low-level impurities. Charge state information then enables more accurate modeling of the detected isotopic distribution for identification of the chemical composition of the detected impurity. Using this approach, a number of phosphorothioate impurities can be detected by LC-FTMS including failure sequences carrying 3′-terminal phosphate monoester and 3′-terminal phosphorothioate monoester, incomplete backbone sulfurization and desulfurization products, high molecular weight impurities, and chloral, isobutyryl, and N3 (2-cyanoethyl) adducts of the full length product. When compared with low resolution LC-MS, ~60% more impurities can be identified when charge state and isotopic distribution information is available and used for impurity profiling. PMID:21811394

  12. Demonstration of a diode-laser-based high spectral resolution lidar (HSRL) for quantitative profiling of clouds and aerosols.

    PubMed

    Hayman, Matthew; Spuler, Scott

    2017-11-27

    We present a demonstration of a diode-laser-based high spectral resolution lidar. It is capable of performing calibrated retrievals of aerosol and cloud optical properties at a 150 m range resolution with less than 1 minute integration time over an approximate range of 12 km during day and night. This instrument operates at 780 nm, a wavelength that is well established for reliable semiconductor lasers and detectors, and was chosen because it corresponds to the D2 rubidium absorption line. A heated vapor reference cell of isotopic rubidium 87 is used as an effective and reliable aerosol signal blocking filter in the instrument. In principle, the diode-laser-based high spectral resolution lidar can be made cost competitive with elastic backscatter lidar systems, yet delivers a significant improvement in data quality through direct retrieval of quantitative optical properties of clouds and aerosols.

  13. Spliceosome Profiling Visualizes Operations of a Dynamic RNP at Nucleotide Resolution.

    PubMed

    Burke, Jordan E; Longhurst, Adam D; Merkurjev, Daria; Sales-Lee, Jade; Rao, Beiduo; Moresco, James J; Yates, John R; Li, Jingyi Jessica; Madhani, Hiten D

    2018-05-03

    Tools to understand how the spliceosome functions in vivo have lagged behind advances in the structural biology of the spliceosome. Here, methods are described to globally profile spliceosome-bound pre-mRNA, intermediates, and spliced mRNA at nucleotide resolution. These tools are applied to three yeast species that span 600 million years of evolution. The sensitivity of the approach enables the detection of canonical and non-canonical events, including interrupted, recursive, and nested splicing. This application of statistical modeling uncovers independent roles for the size and position of the intron and the number of introns per transcript in substrate progression through the two catalytic stages. These include species-specific inputs suggestive of spliceosome-transcriptome coevolution. Further investigations reveal the ATP-dependent discard of numerous endogenous substrates after spliceosome assembly in vivo and connect this discard to intron retention, a form of splicing regulation. Spliceosome profiling is a quantitative, generalizable global technology used to investigate an RNP central to eukaryotic gene expression. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldsmith, John

    High Spectral Resolution Lidar (HSRL) systems provide vertical profiles of optical depth, backscatter cross-section, depolarization, and backscatter phase function. All HSRL measurements are absolutely calibrated by reference to molecular scattering, which is measured at each point in the lidar profile. Like the Raman lidar but unlike simple backscatter lidars such as the micropulse lidar, the HSRL can measure backscatter cross-sections and optical depths without prior assumptions about the scattering properties of the atmosphere. The depolarization observations also allow robust discrimination between ice and water clouds. In addition, rigorous error estimates can be computed for all measurements. A very narrow, angularmore » field of view reduces multiple scattering contributions. The small field of view, coupled with a narrow optical bandwidth, nearly eliminates noise due to scattered sunlight. There are two operational U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility HSRL systems, one at the Barrow North Slope of Alaska (NSA) site and the other in the second ARM Mobile Facility (AMF2) collection of instrumentation.« less

  15. High-resolution metabolic mapping of cell types in plant roots

    PubMed Central

    Moussaieff, Arieh; Rogachev, Ilana; Brodsky, Leonid; Malitsky, Sergey; Toal, Ted W.; Belcher, Heather; Yativ, Merav; Brady, Siobhan M.; Benfey, Philip N.; Aharoni, Asaph

    2013-01-01

    Metabolite composition offers a powerful tool for understanding gene function and regulatory processes. However, metabolomics studies on multicellular organisms have thus far been performed primarily on whole organisms, organs, or cell lines, losing information about individual cell types within a tissue. With the goal of profiling metabolite content in different cell populations within an organ, we used FACS to dissect GFP-marked cells from Arabidopsis roots for metabolomics analysis. Here, we present the metabolic profiles obtained from five GFP-tagged lines representing core cell types in the root. Fifty metabolites were putatively identified, with the most prominent groups being glucosinolates, phenylpropanoids, and dipeptides, the latter of which is not yet explored in roots. The mRNA expression of enzymes or regulators in the corresponding biosynthetic pathways was compared with the relative metabolite abundance. Positive correlations suggest that the rate-limiting steps in biosynthesis of glucosinolates in the root are oxidative modifications of side chains. The current study presents a work flow for metabolomics analyses of cell-type populations. PMID:23476065

  16. Measurement of H2O and other trace gases in the stratosphere using a high resolution far-infrared spectrometer at 28 km

    NASA Technical Reports Server (NTRS)

    Traub, W. A.; Chance, K. V.

    1984-01-01

    Data analysis results from the 1983 BIC 1 and 2 balloon flights are presented, with emphasis on H2O2, OH, HCL, O3, O2, and H2O. A 2 sigma limit on H2O2 abundance was set, as a function of altitude. This is comparable to or less than the theoretically predicted winter abundances from the 2-D models of Dupont, with a large enough summer maximum to facilitate concentration profile measurements. There is a definite drop in OH concentration from day to night following two model profiles. There was general agreement between HF measurements. The dominant role of the far wings of H2O lines in low altitude spectra was recognized. The strength of these wings exceeds that of many molecular line cores, including O3 and O2, especially near the long wavelength end of the spectra (100 cm (-1)). Newly measured positions for O3 and H2O were obtained.

  17. Structure of single-supported DMPC lipid bilayer membranes as a function of hydration level studied by neutron reflectivity and Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Miskowiec, A.; Schnase, P.; Bai, M.; Taub, H.; Hansen, F. Y.; Dubey, M.; Singh, S.; Majewski, J.

    2012-02-01

    We have recently been investigating the diffusion of water on single-supported DMPC lipid bilayer membranes at different levels of hydration, using high-resolution quasielastic neutron scattering (QNS). To aid in the interpretation of these QNS studies, we have conducted neutron reflectivity (NR) measurements on SPEAR at LANSCE to characterize the structure of similarly prepared samples. Protonated DMPC membranes were deposited onto SiO2-coated Si(100) substrates and characterized by Atomic Force Microscopy (AFM) at different levels of hydration. We find reasonable agreement between the membrane thickness determined by NR and AFM at room temperature. We also find consistency between the scattering length density (SLD) profile in the vicinity of the upper leaflet of the supported DMPC membrane and that found in a molecular dynamics simulation of a freestanding membrane at 303 K. However, the fit to the reflectivity curve can be improved by modifying the SLD profile near the leaflet closest to the SiO2 surface.

  18. Ultra high spatial and temporal resolution breast imaging at 7T.

    PubMed

    van de Bank, B L; Voogt, I J; Italiaander, M; Stehouwer, B L; Boer, V O; Luijten, P R; Klomp, D W J

    2013-04-01

    There is a need to obtain higher specificity in the detection of breast lesions using MRI. To address this need, Dynamic Contrast-Enhanced (DCE) MRI has been combined with other structural and functional MRI techniques. Unfortunately, owing to time constraints structural images at ultra-high spatial resolution can generally not be obtained during contrast uptake, whereas the relatively low spatial resolution of functional imaging (e.g. diffusion and perfusion) limits the detection of small lesions. To be able to increase spatial as well as temporal resolution simultaneously, the sensitivity of MR detection needs to increase as well as the ability to effectively accelerate the acquisition. The required gain in signal-to-noise ratio (SNR) can be obtained at 7T, whereas acceleration can be obtained with high-density receiver coil arrays. In this case, morphological imaging can be merged with DCE-MRI, and other functional techniques can be obtained at higher spatial resolution, and with less distortion [e.g. Diffusion Weighted Imaging (DWI)]. To test the feasibility of this concept, we developed a unilateral breast coil for 7T. It comprises a volume optimized dual-channel transmit coil combined with a 30-channel receive array coil. The high density of small coil elements enabled efficient acceleration in any direction to acquire ultra high spatial resolution MRI of close to 0.6 mm isotropic detail within a temporal resolution of 69 s, high spatial resolution MRI of 1.5 mm isotropic within an ultra high temporal resolution of 6.7 s and low distortion DWI at 7T, all validated in phantoms, healthy volunteers and a patient with a lesion in the right breast classified as Breast Imaging Reporting and Data System (BI-RADS) IV. Copyright © 2012 John Wiley & Sons, Ltd.

  19. Airborne and ground based lidar measurements of the atmospheric pressure profile

    NASA Technical Reports Server (NTRS)

    Korb, C. Laurence; Schwemmer, Geary K.; Dombrowski, Mark; Weng, Chi Y.

    1989-01-01

    The first high accuracy remote measurements of the atmospheric pressure profile have been made. The measurements were made with a differential absorption lidar system that utilizes tunable alexandrite lasers. The absorption in the trough between two lines in the oxygen A-band near 760 nm was used for probing the atmosphere. Measurements of the two-dimensional structure of the pressure field were made in the troposphere from an aircraft looking down. Also, measurements of the one-dimensional structure were made from the ground looking up. Typical pressure accuracies for the aircraft measurements were 1.5-2 mbar with a 30-m vertical resolution and a 100-shot average (20 s), which corresponds to a 2-km horizontal resolution. Typical accuracies for the upward viewing ground based measurements were 2.0 mbar for a 30-m resolution and a 100-shot average.

  20. Improved Atmospheric Boundary Layer Observations of Tropical Cyclones with the Imaging Wind and Rain Airborne Profiler

    NASA Technical Reports Server (NTRS)

    Fernandez, D. Esteban; Chang, P.; Carswel, J.; Contreras, R.; Chu, T.; Asuzu, P.; Black, P.; Marks, F.

    2006-01-01

    The Imaging Wind and Rain Arborne Profilers (IWRAP) is a dual-frequency, conically-scanning Doppler radar that measures high-resolution, dual-polarized, multi-beam C- and Ku-band reflectivity and Doppler velocity profiles of the atmospheric boundary layer (ABL) within the inner core of hurricanes.From the datasets acquired during the 2002 through 20O5 hurricane seasons as part of the ONR Coupled Boundary Layer Air-Sea Transfer (CBLAST) program and the NOAA/NESDIS Ocean Winds and Rain experiments, very high resolution radar observations of hurricanes have been acquired and made available to the CBLAST community. Of particular interest am the ABL wind fields and 3-D structures found within the inner core of hurricanes. As a result of these analysis, a limitation in the ability to retrieve the ABL wind field at very low altitudes was identified. This paper shows how this limitation has been removed and presents initial results demonstrating its new capabilities to derive the ABL wind field within the inner are of hurricanes to much lower altitudes than the ones the original system was capable of.

  1. High-Resolution Time-Lapse Monitoring of Unsaturated Flow using Automated GPR Data Collection

    NASA Astrophysics Data System (ADS)

    Mangel, A. R.; Moysey, S. M.; Lytle, B. A.; Bradford, J. H.

    2015-12-01

    High-resolution ground-penetrating radar (GPR) data provide the detailed information required to image subsurface structures. Recent advances in GPR monitoring now also make it possible to study transient hydrologic processes, but high-speed data acquisition is critical for this application. We therefore highlight the capabilities of our automated system to acquire time-lapse, high-resolution multifold GPR data during infiltration of water into soils. The system design allows for fast acquisition of constant-offset (COP) and common-midpoint profiles (CMP) to monitor unsaturated flow at multiple locations. Qualitative interpretation of the unprocessed COPs can provide substantial information regarding the hydrologic response of the system, such as the complexities of patterns associated with the wetting of the soil and geophysical evidence of non-uniform propagation of a wetting front. While we find that unprocessed images are informative, we show that the spatial variability of velocity introduced by infiltration events can complicate the images and that migration of the data is an effective tool to improve interpretability of the time-lapse images. The ability of the system to collect high density CMP data also introduces the potential for improving the velocity model along with the image via reflection tomography in the post-migrated domain. We show that for both simulated and empirical time-lapse GPR profiles we can resolve a propagating wetting front in the soil that is in good agreement with the response of in-situ soil moisture measurements. The data from these experiments illustrate the importance of high-speed, high-resolution GPR data acquisition for obtaining insight about the dynamics of hydrologic events. Continuing research is aimed at improving the quantitative analysis of surface-based GPR monitoring data for identifying preferential flow in soils.

  2. Metabolic profiling of five flavonoids from Dragon's Blood in human liver microsomes using high-performance liquid chromatography coupled with high resolution mass spectrometry.

    PubMed

    Li, Yujuan; Zhang, Yushi; Wang, Rui; Wei, Lizhong; Deng, Yulin; Ren, Wei

    2017-05-01

    Although much is known about the pharmacological activities of Dragon's Blood (DB, a traditional Chinese herb), its metabolism in human liver microsomes (HLMs) and the cytochrome P450 (CYP) enzymes has not been studied. This study aims to identify the metabolic profile of five flavonoids (loureirin A, loureirin B, loureirin C, 7,4'-dihydroxyflavone and 5,7,4'-trihydroxyflavanone) from DB in HLMs as well as the CYP enzymes that are involved in the metabolism of them. High-resolution mass spectrometry was used to characterize the structures of their metabolites and 10 cDNA-expressed CYP enzymes (CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4 and CYP3A5) were used to verify which isozymes mediate in the metabolism of the metabolites. Totally, 29 metabolites including 10 metabolites of loureirin A, 10 metabolites of loureirin B, 4 metabolites of loureirin C, 2 metabolites of 7,4'-dihydroxyflavone and 3 metabolites of 5,7,4'-trihydroxyflavanone were elucidated and identified on the basis of the high-resolution MS n data. The metabolic profile of the five flavonoids in HLMs involved hydroxylation, oxidation and demethylation. Among them, hydroxylation was the predominant biotransformation of the five flavonoids in HLMs, occurring in combination with other metabolic reactions. Assay with recombinant P450s revealed that CYP2C9 and CYP2C19 played an important role in the hydroxylation of flavonoids in HLMs. To the best of our knowledge, this is the first in vitro evaluation of the metabolic profile of loureirin A, loureirin B, loureirin C, 7,4'-dihydroxyflavone and 5,7,4'-trihydroxyflavanone in HLMs. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. The influence of focal spot blooming on high-contrast spatial resolution in CT imaging.

    PubMed

    Grimes, Joshua; Duan, Xinhui; Yu, Lifeng; Halaweish, Ahmed F; Haag, Nicole; Leng, Shuai; McCollough, Cynthia

    2015-10-01

    The objective of this work was to investigate focal spot blooming effects on the spatial resolution of CT images and to evaluate an x-ray tube that uses dynamic focal spot control for minimizing focal spot blooming. The influence of increasing tube current at a fixed tube potential of 80 kV on high-contrast spatial resolution of seven different CT scanner models (scanners A-G), including one scanner that uses dynamic focal spot control to reduce focal spot blooming (scanner A), was evaluated. Spatial resolution was assessed using a wire phantom for the modulation transfer function (MTF) calculation and a copper disc phantom for measuring the slice sensitivity profile (SSP). The impact of varying the tube potential was investigated on two scanner models (scanners A and B) by measuring the MTF and SSP and also by using the resolution bar pattern module of the ACR CT phantom. The phantoms were scanned at 70-150 kV on scanner A and 80-140 kV on scanner B, with tube currents from 100 mA up to the maximum tube current available on each scanner. The images were reconstructed using a slice thickness of 0.6 mm with both smooth and sharp kernels. Additionally, focal spot size at varying tube potentials and currents was directly measured using pinhole and slit camera techniques. Evaluation of the MTF and SSP data from the 7 CT scanner models evaluated demonstrated decreased focal spot blooming for newer scanners, as evidenced by decreasing deviations in MTF and SSP as tube current varied. For scanners A and B, where focal spot blooming effects as a function of tube potential were assessed, the spatial resolution variation in the axial plane was much smaller on scanner A compared to scanner B as tube potential and current changed. On scanner A, the 50% MTF never decreased by more than 2% from the 50% MTF measured at 100 mA. On scanner B, the 50% MTF decreased by as much as 19% from the 50% MTF measured at 100 mA. Assessments of the SSP, the bar patterns in the ACR phantom and the pinhole and slit camera measurements were consistent with the MTF calculations. Focal spot blooming has a noticeable effect on spatial resolution in CT imaging. The focal spot shaping technology of scanner A greatly reduced blooming effects.

  4. MISTiC Winds, a Micro-Satellite Constellation Approach to High Resolution Observations of the Atmosphere using Infrared Sounding and 3D Winds Measurements

    NASA Astrophysics Data System (ADS)

    Maschhoff, K. R.; Polizotti, J. J.; Aumann, H. H.; Susskind, J.

    2017-12-01

    MISTiCTM Winds is an approach to improve short-term weather forecasting based on a miniature high resolution, wide field, thermal emission spectrometry instrument that will provide global tropospheric vertical profiles of atmospheric temperature and humidity at high (3-4 km) horizontal and vertical ( 1 km) spatial resolution. MISTiC's extraordinarily small size, payload mass of less than 15 kg, and minimal cooling requirements can be accommodated aboard a ESPA-Class (50 kg) micro-satellite. Low fabrication and launch costs enable a LEO sun-synchronous sounding constellation that would provide frequent IR vertical profiles and vertically resolved atmospheric motion vector wind observations in the troposphere. These observations are highly complementary to present and emerging environmental observing systems, and would provide a combination of high vertical and horizontal resolution not provided by any other environmental observing system currently in operation. The spectral measurements that would be provided by MISTiC Winds are similar to those of NASA's Atmospheric Infrared Sounder. These new observations, when assimilated into high resolution numerical weather models, would revolutionize short-term and severe weather forecasting, save lives, and support key economic decisions in the energy, air transport, and agriculture arenas-at much lower cost than providing these observations from geostationary orbit. In addition, this observation capability would be a critical tool for the study of transport processes for water vapor, clouds, pollution, and aerosols. In this third year of a NASA Instrument incubator program, the compact infrared spectrometer has been integrated into an airborne version of the instrument for high-altitude flights on a NASA ER2. The purpose of these airborne tests is to examine the potential for improved capabilities for tracking atmospheric motion-vector wind tracer features, and determining their height using hyper-spectral sounding and imaging methods.

  5. High resolution seismic reflection profiling at Aberdeen Proving Grounds, Maryland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, R.D.; Xia, Jianghai; Swartzel, S.

    1996-11-01

    The effectiveness of shallow high resolution seismic reflection (i.e., resolution potential) to image geologic interfaces between about 70 and 750 ft at the Aberdeen Proving Grounds, Maryland (APG), appears to vary locally with the geometric complexity of the unconsolidated sediments that overlay crystalline bedrock. The bedrock surface (which represents the primary geologic target of this study) was imaged at each of three test areas on walkaway noise tests and CDP (common depth point) stacked data. Proven high resolution techniques were used to design and acquire data on this survey. Feasibility of the technique and minimum acquisition requirements were determined throughmore » evaluation and correlation of walkaway noise tests, CDP survey lines, and a downhole velocity check shot survey. Data processing and analysis revealed several critical attributes of shallow seismic data from APG that need careful consideration and compensation on reflection data sets. This survey determined: (1) the feasibility of the technique, (2) the resolution potential (both horizontal and vertical) of the technique, (3) the optimum source for this site, (4) the optimum acquisition geometries, (5) general processing flow, and (6) a basic idea of the acoustic variability across this site. Source testing involved an accelerated weight drop, land air gun, downhole black powder charge, sledge hammer/plate, and high frequency vibrator. Shallow seismic reflection profiles provided for a more detailed picture of the geometric complexity and variability of the distinct clay sequences (aquatards), previously inferred from drilling to be present, based on sparse drill holes and basewide conceptual models. The seismic data also reveal a clear explanation for the difficulties previously noted in correlating individual, borehole-identified sand or clay units over even short distances.« less

  6. The Influence of Beam Broadening on the Spatial Resolution of Annular Dark Field Scanning Transmission Electron Microscopy.

    PubMed

    de Jonge, Niels; Verch, Andreas; Demers, Hendrix

    2018-02-01

    The spatial resolution of aberration-corrected annular dark field scanning transmission electron microscopy was studied as function of the vertical position z within a sample. The samples consisted of gold nanoparticles (AuNPs) positioned in different horizontal layers within aluminum matrices of 0.6 and 1.0 µm thickness. The highest resolution was achieved in the top layer, whereas the resolution was reduced by beam broadening for AuNPs deeper in the sample. To examine the influence of the beam broadening, the intensity profiles of line scans over nanoparticles at a certain vertical location were analyzed. The experimental data were compared with Monte Carlo simulations that accurately matched the data. The spatial resolution was also calculated using three different theoretical models of the beam blurring as function of the vertical position within the sample. One model considered beam blurring to occur as a single scattering event but was found to be inaccurate for larger depths of the AuNPs in the sample. Two models were adapted and evaluated that include estimates for multiple scattering, and these described the data with sufficient accuracy to be able to predict the resolution. The beam broadening depended on z 1.5 in all three models.

  7. Broadband transmission-type coding metamaterial for wavefront manipulation for airborne sound

    NASA Astrophysics Data System (ADS)

    Li, Kun; Liang, Bin; Yang, Jing; Yang, Jun; Cheng, Jian-chun

    2018-07-01

    The recent advent of coding metamaterials, as a new class of acoustic metamaterials, substantially reduces the complexity in the design and fabrication of acoustic functional devices capable of manipulating sound waves in exotic manners by arranging coding elements with discrete phase states in specific sequences. It is therefore intriguing, both physically and practically, to pursue a mechanism for realizing broadband acoustic coding metamaterials that control transmitted waves with a fine resolution of the phase profile. Here, we propose the design of a transmission-type acoustic coding device and demonstrate its metamaterial-based implementation. The mechanism is that, instead of relying on resonant coding elements that are necessarily narrow-band, we build weak-resonant coding elements with a helical-like metamaterial with a continuously varying pitch that effectively expands the working bandwidth while maintaining the sub-wavelength resolution of the phase profile that is vital for the production of complicated wave fields. The effectiveness of our proposed scheme is numerically verified via the demonstration of three distinctive examples of acoustic focusing, anomalous refraction, and vortex beam generation in the prescribed frequency band on the basis of 1- and 2-bit coding sequences. Simulation results agree well with theoretical predictions, showing that the designed coding devices with discrete phase profiles are efficient in engineering the wavefront of outcoming waves to form the desired spatial pattern. We anticipate the realization of coding metamaterials with broadband functionality and design flexibility to open up possibilities for novel acoustic functional devices for the special manipulation of transmitted waves and underpin diverse applications ranging from medical ultrasound imaging to acoustic detections.

  8. Comparative studies of the interaction between the Sun and planetary near space environments with the Solar Connections Observatory for Planetary Environments (SCOPE)

    NASA Astrophysics Data System (ADS)

    Harris, W. M.; Scope Team

    2003-04-01

    The Solar Connections Observatory for Planetary Environments (SCOPE) is a remote sensing facility designed to probe the nature of the relationship of planetary bodies and the local interstellar medium to the solar wind and UV-EUV radiation field. In particular, the SCOPE program seeks to comparatively monitor the near space environments and thermosphere/ionospheres of planets, planetesimals, and satellites under different magnetospheric configurations and as a function of heliocentric distance and solar activity. In addition, SCOPE will include the Earth as a science target, providing new remote observations of auroral and upper atmospheric phenomena and utilizing it as baseline for direct comparison with other planetary bodies. The observatory will be scheduled into discrete campaigns interleaving Target-Terrestrial observations to provide a comparative annual activity map over the course of a solar half cycle. The SCOPE science instrument consists of binocular UV (115-310 nm) and EUV (500-120 nm) telescopes and a side channel sky-mapping interferometer on a spacecraft stationed in a remote orbit. The telescope instruments provide a mix of capabilities including high spatial resolution narrow band imaging, moderate resolution broadband spectro-imaging, and high-resolution line spectroscopy. The side channel instrument will be optimized for line profile measurements of diagnostic terrestrial upper atmospheric, comet, interplanetary, and interstellar extended emissions.

  9. Definition of the Spatial Resolution of X-Ray Microanalysis in Thin Foils

    NASA Technical Reports Server (NTRS)

    Williams, D. B.; Michael, J. R.; Goldstein, J. I.; Romig, A. D., Jr.

    1992-01-01

    The spatial resolution of X-ray microanalysis in thin foils is defined in terms of the incident electron beam diameter and the average beam broadening. The beam diameter is defined as the full width tenth maximum of a Gaussian intensity distribution. The spatial resolution is calculated by a convolution of the beam diameter and the average beam broadening. This definition of the spatial resolution can be related simply to experimental measurements of composition profiles across interphase interfaces. Monte Carlo calculations using a high-speed parallel supercomputer show good agreement with this definition of the spatial resolution and calculations based on this definition. The agreement is good over a range of specimen thicknesses and atomic number, but is poor when excessive beam tailing distorts the assumed Gaussian electron intensity distributions. Beam tailing occurs in low-Z materials because of fast secondary electrons and in high-Z materials because of plural scattering.

  10. Functional cardiac magnetic resonance microscopy

    NASA Astrophysics Data System (ADS)

    Brau, Anja Christina Sophie

    2003-07-01

    The study of small animal models of human cardiovascular disease is critical to our understanding of the origin, progression, and treatment of this pervasive disease. Complete analysis of disease pathophysiology in these animal models requires measuring structural and functional changes at the level of the whole heart---a task for which an appropriate non-invasive imaging method is needed. The purpose of this work was thus to develop an imaging technique to support in vivo characterization of cardiac structure and function in rat and mouse models of cardiovascular disease. Whereas clinical cardiac magnetic resonance imaging (MRI) provides accurate assessment of the human heart, the extension of cardiac MRI from humans to rodents presents several formidable scaling challenges. Acquiring images of the mouse heart with organ definition and fluidity of contraction comparable to that achieved in humans requires an increase in spatial resolution by a factor of 3000 and an increase in temporal resolution by a factor of ten. No single technical innovation can meet the demanding imaging requirements imposed by the small animal. A functional cardiac magnetic resonance microscopy technique was developed by integrating improvements in physiological control, imaging hardware, biological synchronization of imaging, and pulse sequence design to achieve high-quality images of the murine heart with high spatial and temporal resolution. The specific methods and results from three different sets of imaging experiments are presented: (1) 2D functional imaging in the rat with spatial resolution of 175 mum2 x 1 mm and temporal resolution of 10 ms; (2) 3D functional imaging in the rat with spatial resolution of 100 mum 2 x 500 mum and temporal resolution of 30 ms; and (3) 2D functional imaging in the mouse with spatial resolution down to 100 mum2 x 1 mm and temporal resolution of 10 ms. The cardiac microscopy technique presented here represents a novel collection of technologies capable of acquiring routine high-quality images of murine cardiac structure and function with minimal artifacts and markedly higher spatial resolution compared to conventional techniques. This work is poised to serve a valuable role in the evaluation of cardiovascular disease and should find broad application in studies ranging from basic pathophysiology to drug discovery.

  11. 150-μm Spatial Resolution Using Photon-Counting Detector Computed Tomography Technology: Technical Performance and First Patient Images.

    PubMed

    Leng, Shuai; Rajendran, Kishore; Gong, Hao; Zhou, Wei; Halaweish, Ahmed F; Henning, Andre; Kappler, Steffen; Baer, Matthias; Fletcher, Joel G; McCollough, Cynthia H

    2018-05-28

    The aims of this study were to quantitatively assess two new scan modes on a photon-counting detector computed tomography system, each designed to maximize spatial resolution, and to qualitatively demonstrate potential clinical impact using patient data. This Health Insurance Portability Act-compliant study was approved by our institutional review board. Two high-spatial-resolution scan modes (Sharp and UHR) were evaluated using phantoms to quantify spatial resolution and image noise, and results were compared with the standard mode (Macro). Patients were scanned using a conventional energy-integrating detector scanner and the photon-counting detector scanner using the same radiation dose. In first patient images, anatomic details were qualitatively evaluated to demonstrate potential clinical impact. Sharp and UHR modes had a 69% and 87% improvement in in-plane spatial resolution, respectively, compared with Macro mode (10% modulation-translation-function values of 16.05, 17.69, and 9.48 lp/cm, respectively). The cutoff spatial frequency of the UHR mode (32.4 lp/cm) corresponded to a limiting spatial resolution of 150 μm. The full-width-at-half-maximum values of the section sensitivity profiles were 0.41, 0.44, and 0.67 mm for the thinnest image thickness for each mode (0.25, 0.25, and 0.5 mm, respectively). At the same in-plane spatial resolution, Sharp and UHR images had up to 15% lower noise than Macro images. Patient images acquired in Sharp mode demonstrated better delineation of fine anatomic structures compared with Macro mode images. Phantom studies demonstrated superior resolution and noise properties for the Sharp and UHR modes relative to the standard Macro mode and patient images demonstrated the potential benefit of these scan modes for clinical practice.

  12. Road profile estimation of city roads using DTPS

    NASA Astrophysics Data System (ADS)

    Wang, Qi; McDaniel, J. Gregory; Sun, Nian X.; Wang, Ming L.

    2013-04-01

    This work presents a non-destructive and non-contact acoustic sensing approach for measuring road profile of road and bridge deck with vehicles running at normal speed without stopping traffic. This approach uses an instantaneous and real-time dynamic tire pressure sensor (DTPS) that can measure dynamic response of the tire-road interaction and increases the efficiency of currently used road profile measuring systems with vehicle body-mounted profilers and axle-mounted accelerometers. In this work, a prototype of real-time DTPS system has been developed and demonstrated on a testing van at speeds from 5 to 80 miles per hour (mph). A data analysis algorithm has been developed to remove axle dynamic motions from the measured DTPS data and to find the transfer function between dynamic tire pressure change and the road profile. Field test has been performed to estimate road profiles. The road profile resolution is approximately 5 to 10 cm in width and sensitivity is 0. 3 cm for the height road surface features at driving speeds of 5 to 80 mph.

  13. Rayleigh-wave mode separation by high-resolution linear radon transform

    USGS Publications Warehouse

    Luo, Y.; Xia, J.; Miller, R.D.; Xu, Y.; Liu, J.; Liu, Q.

    2009-01-01

    Multichannel analysis of surface waves (MASW) method is an effective tool for obtaining vertical shear wave profiles from a single non-invasive measurement. One key step of the MASW method is generation of a dispersion image and extraction of a reliable dispersion curve from raw multichannel shot records. Because different Rayleigh-wave modes normally interfere with each other in the time and space domain, it is necessary to perform mode separation and reconstruction to increase the accuracy of phase velocities determined from a dispersion image. In this paper, we demonstrate the effectiveness of high-resolution linear Radon transform (LRT) as a means of separating and reconstructing multimode, dispersive Rayleigh-wave energy. We first introduce high-resolution LRT methods and Rayleigh-wave mode separation using high-resolution LRT. Next, we use synthetic data and a real-world example to demonstrate the effectiveness of Rayleigh-wave mode separation using high-resolution LRT. Our synthetic and real-world results demonstrate that (1) high-resolution LRT successfully separates and reconstructs multimode dispersive Rayleigh-wave energy with high resolution allowing the multimode energy to be more accurately determined. The horizontal resolution of the Rayleigh-wave method can be increased by extraction of dispersion curves from a pair of traces in the mode-separated shot gather and (2) multimode separation and reconstruction expand the usable frequency range of higher mode dispersive energy, which increases the depth of investigation and provides a means for accurately determining cut-off frequencies. ?? 2009 The Authors Journal compilation ?? 2009 RAS.

  14. Determination of the altitude of the nitric acid layer from very high resolution ground-based IR solar spectra

    NASA Technical Reports Server (NTRS)

    Blatherwick, R. D.; Murcray, F. J.; Murcray, D. G.; Locker, M. H.

    1991-01-01

    A ground-based solar spectrum at a spectral resolution of about 0.002/cm is used to determine the altitude of the HNO3 layer. The 870/cm spectral region, which is essentially free from absorptions from other species, is employed. The data were obtained with the University of Denver 2.5-m maximum path difference Fourier Transform interferometer spectrometer system. A set of 13 HNO3 vertical profiles were used in the analysis. The best fit obtained for the 'starting' profile (which is centered at 24 km), and the best fit for the profile centered at 26 km are shown. For displacements of greater than 2 km, the discrepancy between the synthetic and observed spectra becomes readily discernible by inspection of the spectra. It is shown that the 'best fit' rms residuals are quite sensitive to the assumed altitude of the HNO3 layer.

  15. Siderophile Element Profile Measurements in Iron Meteorites Using Laser Ablation ICP-MS

    NASA Technical Reports Server (NTRS)

    Watson, H. C.; Watson, E. B.; McDonough, W. F.

    2005-01-01

    Understanding the behaviour of siderophile elements during cooling of iron meteorites can lead to insight into the general thermal histories of the meteorites as well as their respective parent bodies. Traditionally trace element analyses in meteorites have been done using techniques that only measure the average concentration in each phase. With these methods, all of the spatial information with respect to the distribution of an element within one phase is lost. Measuring concentration profiles of trace elements in meteorites is now possible, with the advent of high-resolution analytical techniques such as laser ablation, inductively coupled plasma mass spectrometry (LA-ICP-MS) with spatial resolution <20 microns. [e.g. 1,2] and secondary ion mass spectrometry [3]. These profiles can give more insight into both the partitioning and diffusive behavior of siderophile elements in metal systems relevant to iron meteorites, as well as parent body cooling rates.

  16. The development of retrosynthetic glycan libraries to profile and classify the human serum N-linked glycome.

    PubMed

    Kronewitter, Scott R; An, Hyun Joo; de Leoz, Maria Lorna; Lebrilla, Carlito B; Miyamoto, Suzanne; Leiserowitz, Gary S

    2009-06-01

    Annotation of the human serum N-linked glycome is a formidable challenge but is necessary for disease marker discovery. A new theoretical glycan library was constructed and proposed to provide all possible glycan compositions in serum. It was developed based on established glycobiology and retrosynthetic state-transition networks. We find that at least 331 compositions are possible in the serum N-linked glycome. By pairing the theoretical glycan mass library with a high mass accuracy and high-resolution MS, human serum glycans were effectively profiled. Correct isotopic envelope deconvolution to monoisotopic masses and the high mass accuracy instruments drastically reduced the amount of false composition assignments. The high throughput capacity enabled by this library permitted the rapid glycan profiling of large control populations. With the use of the library, a human serum glycan mass profile was developed from 46 healthy individuals. This paper presents a theoretical N-linked glycan mass library that was used for accurate high-throughput human serum glycan profiling. Rapid methods for evaluating a patient's glycome are instrumental for studying glycan-based markers.

  17. Probabilistic description of ice-supersaturated layers in low resolution profiles of relative humidity

    NASA Astrophysics Data System (ADS)

    Dickson, N. C.; Gierens, K. M.; Rogers, H. L.; Jones, R. L.

    2010-02-01

    The global observation, assimilation and prediction in numerical models of ice super-saturated (ISS) regions (ISSR) are crucial if the climate impact of aircraft condensations trails (contrails) is to be fully understood, and if, for example, contrail formation is to be avoided through aircraft operational measures. A robust assessment of the global distribution of ISSR will further this debate, and ISS event occurrence, frequency and spatial scales have recently attracted significant attention. The mean horizontal path length through ISSR as observed by MOZAIC aircraft is 150 km (±250 km). The average vertical thickness of ISS layers is 600-800 m (±575 m) but layers ranging from 25 m to 3000 m have been observed, with up to one third of ISS layers thought to be less than 100 m deep. Given their small scales compared to typical atmospheric model grid sizes, statistical representations of the spatial scales of ISSR are required, in both horizontal and vertical dimensions, if global occurrence of ISSR is to be adequately represented in climate models. This paper uses radiosonde launches made by the UK Meteorological Office, from the British Isles, Gibraltar, St. Helena and the Falkland Islands between January 2002 and December 2006, to investigate the probabilistic occurrence of ISSR. Specifically each radiosonde profile is divided into 50- and 100-hPa pressure layers, to emulate the coarse vertical resolution of some atmospheric models. Then the high resolution observations contained within each thick pressure layer are used to calculate an average relative humidity and an ISS fraction for each individual thick pressure layer. These relative humidity pressure layer descriptions are then linked through a probability function to produce an s-shaped curve describing the ISS fraction in any average relative humidity pressure layer. An empirical investigation has shown that this one curve is statistically valid for mid-latitude locations, irrespective of season and altitude, however, pressure layer depth is an important variable. Using this empirical understanding of the s-shaped relationship a mathematical model was developed to represent the ISS fraction within any arbitrary thick pressure layer. Here the statistical distributions of actual high resolution RHi observations in any thick pressure layer, along with an error function, are used to mathematically describe the s-shape. Two models were developed to represent both 50- and 100-hPa pressure layers with each reconstructing their respective s-shapes within 8-10% of the empirical curves. These new models can be used, to represent the small scale structures of ISS events, in modelled data where only low vertical resolution is available. This will be useful in understanding, and improving the global distribution, both observed and forecasted, of ice super-saturation.

  18. Perception of Dialect Variation by Young Adults with High-Functioning Autism

    ERIC Educational Resources Information Center

    Clopper, Cynthia G.; Rohrbeck, Kristin L.; Wagner, Laura

    2012-01-01

    The linguistic profile of people with Autism spectrum disorders typically involves intact perceptual processing, accompanied by deficits in the social functions of language. In a series of three experiments, the impact of this profile on the perception of regional dialect was examined. Young adults with High-Functioning Autism exhibited similar…

  19. Functional Abdominal Pain Patient Subtypes in Childhood Predict Functional Gastrointestinal Disorders with Chronic Pain and Psychiatric Comorbidities in Adolescence and Adulthood

    PubMed Central

    Walker, Lynn S.; Sherman, Amanda L.; Bruehl, Stephen; Garber, Judy; Smith, Craig A.

    2012-01-01

    Although pediatric functional abdominal pain (FAP) has been linked to abdominal pain later in life, childhood predictors of long-term outcomes have not been identified. This study evaluated whether distinct FAP profiles based on patterns of pain and adaptation in childhood could be identified and whether these profiles predicted differences in clinical outcomes and central sensitization (wind-up) on average 9 years later. In 843 pediatric FAP patients, cluster analysis was used to identify subgroups at initial FAP evaluation based on profiles of pain severity, gastrointestinal (GI) and non-GI symptoms, pain threat appraisal, pain coping efficacy, catastrophizing, negative affect, and activity impairment. Three profiles were identified: High Pain Dysfunctional, High Pain Adaptive, and Low Pain Adaptive. Logistic regression analyses controlling for age and sex showed that, compared to pediatric patients with the Low Pain Adaptive profile, those with the High Pain Dysfunctional profile were significantly more likely at long-term follow-up to meet criteria for pain-related functional gastrointestinal disorder (FGID) (OR: 3.45; CI: 1.95–6.11), FGID with comorbid non-abdominal chronic pain (OR: 2.6; CI:1.45–4.66), and FGID with comorbid anxiety or depressive psychiatric disorder (OR: 2.84; CI: 1.35–6.00). Pediatric patients with the High Pain Adaptive profile had baseline pain severity comparable to the High Pain Dysfunctional profile, but had outcomes as favorable as the Low Pain Adaptive profile. In laboratory pain testing at follow-up, High Pain Dysfunctional patients exhibited significantly greater thermal wind-up than Low Pain Adaptive patients, suggesting that a subgroup of FAP patients has outcomes consistent with widespread effects of heightened central sensitization. PMID:22721910

  20. Distilling Heterogeneity among Children with Disruptive Behavior: Associations between Symptom Patterns and Social Functioning.

    PubMed

    Aitken, Madison; Henry, Shanelle; Andrade, Brendan F

    2017-10-16

    Children with disruptive behavior (DB) are a heterogeneous group who exhibit several characteristics that may contribute to poor social functioning. The present study identified profiles of reactive aggression, proactive aggression, callous-unemotional (CU) traits, and prosocial behavior in a sample of children with DB. Associations with social functioning (social interaction, social status) were then examined, along with sex differences in profile membership. Parent ratings of 304 clinic-referred children ages 6-12 years with DB were analyzed using latent profile analysis. Five profiles were identified: 1) Moderate prosocial behavior, reactive aggression, and CU, and low proactive aggression (labelled Moderate); 2) Relatively high prosocial behavior and low reactive and proactive aggression and CU traits (Prosocial); 3) High prosocial behavior and reactive aggression, moderate proactive aggression, and low-moderate CU (Reactive-Prosocial); 4) Low prosocial behavior, high CU, high-moderate reactive aggression, and low-moderate proactive aggression (Reactive-CU); and 5) Low prosocial behavior and high reactive and proactive aggression and CU (Aggressive-CU). Profiles characterized by CU traits, reactive aggression, and low prosocial behavior were associated with the most problematic parent-rated social interaction and social status. The results highlight the need to differentiate profiles of psychopathology in children with DB to better address factors most associated with social functioning.

  1. Rotational modulation of hydrogen Lyman alpha flux from 44ii Bootis

    NASA Technical Reports Server (NTRS)

    Vilhu, O.; Neff, J. E.; Rahunen, T.

    1988-01-01

    Observations with IUE that cover the entire 6.4 hr orbital cycle of the late-type contact binary 44i Bootis are presented. Intrinsic stellar hydrogen Lyman alpha emission flux was determined from low-resolution IUE spectra, compensating for geocoronal emission and for interstellar absorption. The variation of the stellar Lyman alpha emission flux correlates well with the variation of the C II and C IV emission fluxes, and shows orbital modulation in phase with the visual light curve. The ratio of Lyman alpha to CII flux (15 to 20) is similar to that observed in solar active regions. Hydrogen Lyman alpha emission is thus one of the most important cooling channels in the outer atmosphere of 44i Boo. A high-resolution spectrum of the Lyman alpha line was obtained between orbital phases 0.0 and 0.6. The integrated flux in the observed high-resolution Lyman alpha profile is consistent with the fluxes determined using low-resolution spectra, and the composite profile indicates that both components of this binary have equally active chromospheres and transition regions. The uncertainty in the interstellar hydrogen column density cannot mimic the observed variation in the integrated Lyman alpha flux, because the stellar line is very much broader than the interstellar absorption.

  2. Rotational modulation of hydrogen Lyman alpha flux from 44i Bootis

    NASA Technical Reports Server (NTRS)

    Vilhu, O.; Neff, J. E.; Rahunen, T.

    1989-01-01

    Observations with IUE that cover the entire 6.4 hr orbital cycle of the late-type contact binary 44i Bootis are presented. Intrinsic stellar hydrogen Lyman alpha emission flux was determined from low-resolution IUE spectra, compensating for geocoronal emission and for interstellar absorption. The variation of the stellar Lyman alpha emission flux correlates well with the variation of the CII and CIV emission fluxes, and shows orbital modulation in phase with the visual light curve. The ratio of Lyman alpha to CII flux (15 to 20) is similar to that observed in solar active regions. Hydrogen Lyman alpha emission is thus one of the most important cooling channels in the outer atmosphere of 44i Boo. A high-resolution spectrum of the Lyman alpha line was obtained between orbital phases 0.0 and 0.6. The integrated flux in the observed high-resolution Lyman alpha profile is consistent with the fluxes determined using low-resolution spectra, and the composite profile indicates that both components of this binary have equally active chromospheres and transition regions. The uncertainty in the interstellar hydrogen column density cannot mimic the observed variation in the integrated Lyman alpha flux, because the stellar line is very much broader than the interstellar absorption.

  3. MethBank: a database integrating next-generation sequencing single-base-resolution DNA methylation programming data.

    PubMed

    Zou, Dong; Sun, Shixiang; Li, Rujiao; Liu, Jiang; Zhang, Jing; Zhang, Zhang

    2015-01-01

    DNA methylation plays crucial roles during embryonic development. Here we present MethBank (http://dnamethylome.org), a DNA methylome programming database that integrates the genome-wide single-base nucleotide methylomes of gametes and early embryos in different model organisms. Unlike extant relevant databases, MethBank incorporates the whole-genome single-base-resolution methylomes of gametes and early embryos at multiple different developmental stages in zebrafish and mouse. MethBank allows users to retrieve methylation levels, differentially methylated regions, CpG islands, gene expression profiles and genetic polymorphisms for a specific gene or genomic region. Moreover, it offers a methylome browser that is capable of visualizing high-resolution DNA methylation profiles as well as other related data in an interactive manner and thus is of great helpfulness for users to investigate methylation patterns and changes of gametes and early embryos at different developmental stages. Ongoing efforts are focused on incorporation of methylomes and related data from other organisms. Together, MethBank features integration and visualization of high-resolution DNA methylation data as well as other related data, enabling identification of potential DNA methylation signatures in different developmental stages and accordingly providing an important resource for the epigenetic and developmental studies. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. Total magnitudes of Virgo galaxies - III. Scale errors in the Reference Catalogue of Bright Galaxies T system and light-profile distortion by resolution-degrading and differential-distance effects

    NASA Astrophysics Data System (ADS)

    Young, Christopher Ke-shih

    2004-11-01

    We investigate the BT magnitude scales of the Second and Third Reference Catalogues of Bright Galaxies, finding both scales to be reasonably reliable for 11.5 <~Bt<~ 14.0. However, large-scale errors of 0.26 and 0.24mag per unit mag interval respectively are uncovered for early-type galaxies at the bright ends, whilst even larger ones of 0.74 and 0.36mag per unit mag interval are found for galaxies of all morphological types at the faint ends. We attribute this situation to several effects already discussed by Young et al. and Young (Paper I), including the application of relatively inflexible growth-curve models that are only in a few specific cases appropriate to the galaxies concerned. Of particular interest to this study though, we find that the apparent profile shapes of giant galaxies in the Virgo direction of cz < 15000 km s-1 tend to be less centrally concentrated the greater their distance. This demonstrates that even for relatively nearby galaxies, the distortion of the overall shapes of light profiles by resolution-degrading effects such as seeing and data smoothing, as originally predicted and modelled by Young & Currie and Young et al., is a significant effect. It is, therefore, not good practice simply to extrapolate the profiles of galaxies of identical intrinsic size and intrinsic profile shape (i.e. identical morphology) by means of the same growth-curve model, unless the galaxies are known a priori to be at the same distance and unless their photometry is of the same angular resolution. We also investigate the total-magnitude scale of the catalogue of photometric types of Prugniel & Héraudeau, finding it to be much more reliable than the BT one. However, we argue that photometric type is really a measure of apparent profile shape (i.e. intrinsic profile shape after scale reduction on account of distance followed by convolution with a seeing disc and often a smoothing function as well). Strictly, it should therefore only be applicable to comparisons between galaxies that are already known to be at similar distances provided that their photometry is also of similar angular resolution. Clearly, this must complicate attempts to construct quantitative morphological classification schemes for galaxies.

  5. Precision cosmology with baryons: non-radiative hydrodynamics of galaxy groups

    NASA Astrophysics Data System (ADS)

    Rabold, Manuel; Teyssier, Romain

    2017-05-01

    The effect of baryons on the matter power spectrum is likely to have an observable effect for future galaxy surveys, like Euclid or Large Synoptic Survey Telescope (LSST). As a first step towards a fully predictive theory, we investigate the effect of non-radiative hydrodynamics on the structure of galaxy groups sized haloes, which contribute the most to the weak-lensing power spectrum. We perform high-resolution (more than one million particles per halo and one kilo-parsec resolution) non-radiative hydrodynamical zoom-in simulations of a sample of 16 haloes, comparing the profiles to popular analytical models. We find that the total mass profile is well fitted by a Navarro, Frenk & White model, with parameters slightly modified from the dark matter only simulation. We also find that the Komatsu & Seljak hydrostatic solution provides a good fit to the gas profiles, with however significant deviations, arising from strong turbulent mixing in the core and from non-thermal, turbulent pressure support in the outskirts. The turbulent energy follows a shallow, rising linear profile with radius, and correlates with the halo formation time. Using only three main structural halo parameters as variables (total mass, concentration parameter and central gas density), we can predict, with an accuracy better than 20 per cent, the individual gas density and temperature profiles. For the average total mass profile, which is relevant for power spectrum calculations, we even reach an accuracy of 1 per cent. The robustness of these predictions has been tested against resolution effects, different types of initial conditions and hydrodynamical schemes.

  6. Highly Potent HIV-1 Protease Inhibitors with Novel Tricyclic P2-ligands: Design, Synthesis, and Protein-ligand X-Ray Studies

    PubMed Central

    Ghosh, Arun K.; Parham, Garth L.; Martyr, Cuthbert D.; Nyalapatla, Prasanth R.; Osswald, Heather L.; Agniswamy, Johnson; Wang, Yuan-Fang; Amano, Masayuki; Weber, Irene T.; Mitsuya, Hiroaki

    2013-01-01

    The design, synthesis, and biological evaluation of a series of HIV-1 protease inhibitors incorporating stereochemically defined fused tricyclic P2-ligands are described. Various substituent effects were investigated in order to maximize the ligand-binding site interactions in the protease active site. Inhibitors 16a and 16f showed excellent enzyme inhibitory and antiviral activity while incorporation of sulfone functionality resulted in a decrease in potency. Both inhibitors 16a and 16f have maintained activity against a panel of multidrug resistant HIV-1 variants. A high-resolution X-ray crystal structure of 16a-bound HIV-1 protease revealed important molecular insights into the ligand-binding site interactions which may account for the inhibitor’s potent antiviral activity and excellent resistance profiles. PMID:23947685

  7. Molecular tools for investigating microbial community structure and function in oxygen-deficient marine waters.

    PubMed

    Hawley, Alyse K; Kheirandish, Sam; Mueller, Andreas; Leung, Hilary T C; Norbeck, Angela D; Brewer, Heather M; Pasa-Tolic, Ljiljana; Hallam, Steven J

    2013-01-01

    Water column oxygen (O2)-deficiency shapes food-web structure by progressively directing nutrients and energy away from higher trophic levels into microbial community metabolism resulting in fixed nitrogen loss and greenhouse gas production. Although respiratory O2 consumption during organic matter degradation is a natural outcome of a productive surface ocean, global-warming-induced stratification intensifies this process leading to oxygen minimum zone (OMZ) expansion. Here, we describe useful tools for detection and quantification of potential key microbial players and processes in OMZ community metabolism including quantitative polymerase chain reaction primers targeting Marine Group I Thaumarchaeota, SUP05, Arctic96BD-19, and SAR324 small-subunit ribosomal RNA genes and protein extraction methods from OMZ waters compatible with high-resolution mass spectrometry for profiling microbial community structure and functional dynamics. © 2013 Elsevier Inc. All rights reserved.

  8. One year of vertical wind profiles measurements at a Mediterranean coastal site of South Italy

    NASA Astrophysics Data System (ADS)

    Calidonna, Claudia Roberta; Avolio, Elenio; Federico, Stefano; Gullì, Daniel; Lo Feudo, Teresa; Sempreviva, Anna Maria

    2015-04-01

    In order to develop wind farms projects is challenging to site them on coastal areas both onshore and offshore as suitable sites. Developing projects need high quality databases under a wide range of atmospheric conditions or high resolution models that could resolve the effect of the coastal discontinuity in the surface properties. New parametrizations are important and high quality databases are also needed for formulating them. Ground-based remote sensing devices such as lidars have been shown to be functional for studying the evolution of the vertical wind structure coastal atmospheric boundary layer both on- and offshore. Here, we present results from a year of vertical wind profiles, wind speed and direction, monitoring programme at a site located in the Italian Calabria Region, Central Mediterranean, 600m from the Thyrrenian coastline, where a Lidar Doppler, ZephIr (ZephIr ltd) has been operative since July 2013. The lidar monitors wind speed and direction from 10m up to 300m at 10 vertical levels with an average of 10 minutes and it is supported by a metmast providing: Atmospheric Pressure, Solar Radiation, Precipitation, Relative Humidity, Temperature,Wind Speed and Direction at 10m. We present the characterization of wind profiles during one year period according to the time of the day to transition periods night/day/night classified relating the local scale, breeze scale, to the large scale conditions. The dataset is also functional for techniques for short-term prediction of wind for the renewable energy integration in the distribution grids. The site infrastructure is funded within the Project "Infrastructure of High Technology for Environmental and Climate Monitoring" (I-AMICA) (PONa3_00363) by the Italian National Operative Program (PON 2007-2013) and European Regional Development Fund. Real-time data are show on http://www.i-amica.it/i-amica/?page_id=1122.

  9. Rotation curves of high-resolution LSB and SPARC galaxies with fuzzy and multistate (ultralight boson) scalar field dark matter

    NASA Astrophysics Data System (ADS)

    Bernal, T.; Fernández-Hernández, L. M.; Matos, T.; Rodríguez-Meza, M. A.

    2018-04-01

    Cold dark matter (CDM) has shown to be an excellent candidate for the dark matter (DM) of the Universe at large scales; however, it presents some challenges at the galactic level. The scalar field dark matter (SFDM), also called fuzzy, wave, Bose-Einstein condensate, or ultralight axion DM, is identical to CDM at cosmological scales but different at the galactic ones. SFDM forms core haloes, it has a natural cut-off in its matter power spectrum, and it predicts well-formed galaxies at high redshifts. In this work we reproduce the rotation curves of high-resolution low surface brightness (LSB) and SPARC galaxies with two SFDM profiles: (1) the soliton+NFW profile in the fuzzy DM (FDM) model, arising empirically from cosmological simulations of real, non-interacting scalar field (SF) at zero temperature, and (2) the multistate SFDM (mSFDM) profile, an exact solution to the Einstein-Klein-Gordon equations for a real, self-interacting SF, with finite temperature into the SF potential, introducing several quantum states as a realistic model for an SFDM halo. From the fits with the soliton+NFW profile, we obtained for the boson mass 0.212 < mψ/(10-23 eV/c2) < 27.0 and for the core radius 0.326 < rc/kpc < 8.96. From the combined analysis with the LSB galaxies, we obtained mψ = 0.554 × 10-23 eV, a result in tension with the severe cosmological constraints. Also, we show the analytical mSFDM model fits the observations as well as or better than the empirical soliton+NFW profile, and it reproduces naturally the wiggles present in some galaxies, being a theoretically motivated framework additional or alternative to the FDM profile.

  10. Diagnostic and functional structure of a high-resolution thyroid nodule clinic.

    PubMed

    Fernández-García, José Carlos; Mancha-Doblas, Isabel; Ortega-Jiménez, María Victoria; Ruiz-Escalante, José Francisco; Castells-Fusté, Ignasi; Tofé-Povedano, Santiago; Argüelles-Jiménez, Iñaki; Tinahones, Francisco José

    2014-01-01

    Appearance of a thyroid nodule has become a daily occurrence in clinical practice. Adequate thyroid nodule assessment requires several diagnostic tests and multiple medical appointments, which results in a substantial delay in diagnosis. Implementation of a high-resolution thyroid nodule clinic largely avoids these drawbacks by condensing in a single appointment all tests required for adequate evaluation of thyroid nodule. This paper reviews the diagnostic and functional structure of a high-resolution thyroid nodule clinic. Copyright © 2013 SEEN. Published by Elsevier Espana. All rights reserved.

  11. Characterization of fast photoelectron packets in weak and strong laser fields in ultrafast electron microscopy.

    PubMed

    Plemmons, Dayne A; Tae Park, Sang; Zewail, Ahmed H; Flannigan, David J

    2014-11-01

    The development of ultrafast electron microscopy (UEM) and variants thereof (e.g., photon-induced near-field electron microscopy, PINEM) has made it possible to image atomic-scale dynamics on the femtosecond timescale. Accessing the femtosecond regime with UEM currently relies on the generation of photoelectrons with an ultrafast laser pulse and operation in a stroboscopic pump-probe fashion. With this approach, temporal resolution is limited mainly by the durations of the pump laser pulse and probe electron packet. The ability to accurately determine the duration of the electron packets, and thus the instrument response function, is critically important for interpretation of dynamics occurring near the temporal resolution limit, in addition to quantifying the effects of the imaging mode. Here, we describe a technique for in situ characterization of ultrashort electron packets that makes use of coupling with photons in the evanescent near-field of the specimen. We show that within the weakly-interacting (i.e., low laser fluence) regime, the zero-loss peak temporal cross-section is precisely the convolution of electron packet and photon pulse profiles. Beyond this regime, we outline the effects of non-linear processes and show that temporal cross-sections of high-order peaks explicitly reveal the electron packet profile, while use of the zero-loss peak becomes increasingly unreliable. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Quantitative phase imaging by wide field lensless digital holographic microscope

    NASA Astrophysics Data System (ADS)

    Adinda-Ougba, A.; Koukourakis, N.; Essaidi, A.; Ger­hardt, N. C.; Hofmann, M. R.

    2015-05-01

    Wide field, lensless microscopes have been developed for telemedicine and for resource limited setting [1]. They are based on in-line digital holography which is capable to provide amplitude and phase information resulting from numerical reconstruction. The phase information enables achieving axial resolution in the nanometer range. Hence, such microscopes provide a powerful tool to determine three-dimensional topologies of microstructures. In this contribution, a compact, low-cost, wide field, lensless microscope is presented, which is capable of providing topological profiles of microstructures in transparent material. Our setup consist only of two main components: a CMOSsensor chip and a laser diode without any need of a pinhole. We use this very simple setup to record holograms of microobjects. A wide field of view of ~24 mm², and a lateral resolution of ~2 μm are achieved. Moreover, amplitude and phase information are obtained from the numerical reconstruction of the holograms using a phase retrieval algorithm together with the angular spectrum propagation method. Topographic information of highly transparent micro-objects is obtained from the phase data. We evaluate our system by recording holograms of lines with different depths written by a focused laser beam. A reliable characterization of laser written microstructures is crucial for their functionality. Our results show that this system is valuable for determination of topological profiles of microstructures in transparent material.

  13. Scanning Backscatter Lidar Observations for Characterizing 4-D Cloud and Aerosol Fields to Improve Radiative Transfer Parameterizations

    NASA Technical Reports Server (NTRS)

    Schwemmer, Geary K.; Miller, David O.

    2005-01-01

    Clouds have a powerful influence on atmospheric radiative transfer and hence are crucial to understanding and interpreting the exchange of radiation between the Earth's surface, the atmosphere, and space. Because clouds are highly variable in space, time and physical makeup, it is important to be able to observe them in three dimensions (3-D) with sufficient resolution that the data can be used to generate and validate parameterizations of cloud fields at the resolution scale of global climate models (GCMs). Simulation of photon transport in three dimensionally inhomogeneous cloud fields show that spatial inhomogeneities tend to decrease cloud reflection and absorption and increase direct and diffuse transmission, Therefore it is an important task to characterize cloud spatial structures in three dimensions on the scale of GCM grid elements. In order to validate cloud parameterizations that represent the ensemble, or mean and variance of cloud properties within a GCM grid element, measurements of the parameters must be obtained on a much finer scale so that the statistics on those measurements are truly representative. High spatial sampling resolution is required, on the order of 1 km or less. Since the radiation fields respond almost instantaneously to changes in the cloud field, and clouds changes occur on scales of seconds and less when viewed on scales of approximately 100m, the temporal resolution of cloud properties should be measured and characterized on second time scales. GCM time steps are typically on the order of an hour, but in order to obtain sufficient statistical representations of cloud properties in the parameterizations that are used as model inputs, averaged values of cloud properties should be calculated on time scales on the order of 10-100 s. The Holographic Airborne Rotating Lidar Instrument Experiment (HARLIE) provides exceptional temporal (100 ms) and spatial (30 m) resolution measurements of aerosol and cloud backscatter in three dimensions. HARLIE was used in a ground-based configuration in several recent field campaigns. Principal data products include aerosol backscatter profiles, boundary layer heights, entrainment zone thickness, cloud fraction as a function of altitude and horizontal wind vector profiles based on correlating the motions of clouds and aerosol structures across portions of the scan. Comparisons will be made between various cloud detecting instruments to develop a baseline performance metric.

  14. First results from the Goddard High-Resolution spectrograph - High-resolution observations of the 1942 A resonance line of HG II in the chemically peculiar B star, Chi Lupi

    NASA Technical Reports Server (NTRS)

    Leckrone, David S.; Wahlgren, Glenn M.; Johansson, Sveneric G.

    1991-01-01

    The Goddard High-Resolution Spectrograph on the HST has been used to obtain high S/N observations of the sharp-lined, Hg- and Pt-rich B-type star, Chi Lupi, with a resolving power of 87,000. The observations reveal a level of spectroscopic detail never before observed at ultraviolet wavelengths for any star other than the sun. Concentrating on the region around the resonance line of Hg II at 1942 A, the profile and central position of this line confirm beyond doubt that the Hg isotope anomaly in Chi Lupi is real and extreme, with Hg being heavily concentrated in the form of Hg-204. The problems in atomic physics which impair the accurate analysis of spectra of this quality are emphasized.

  15. Mechanical design control and implementation of a new movable intensity profile beamline monitor for the TRIUMF parity experiment 497

    NASA Astrophysics Data System (ADS)

    Ries, Thomas C.

    1995-05-01

    Two new movable beam intensity profile monitors have been installed into the TRIUMF Parity Experiment 497 Beamlines. Each unit serves two functions. Firstly, the beam median position, in a plane normal to the beam, is detected by split plate Secondary Emission Monitors. This information is used to lock the beam into the position of the movable monitor to within a few μm's via high band width ferrite core steering magnets operating in tandem in a closed loop servo feedback control system. Secondly, the beam profile and intensity is detected via a multi-wire secondary emission non-movable monitor, where the data provides high precision values regarding centroidal positions and profiles. The centroid position of the beam is statistically determined to an accuracy of ±10 μm from a data record length of 1 second. The design of each device adheres to strict standards of mechanically rigid construction. The split plate SEM accuracy and repeatability is better than 15 μm with an absolute resolution limit of 0.4 μm. Maximum travel is 2 inches in the vertical plane. Since the device is mechanically modular and both degrees of freedom are combined into a single mechanical unit, fast and easy handling is possible for maintenance in radioactive areas. The actuators are dc servo motors with tachometers driven by linear servo power amplifiers. These amplifiers are used in lieu of pulse width modulated amps to eliminate noise produced by the switching circuits. Position sensing is done by variable reluctance type absolute rotary encoders providing 16 bit resolution over the full range of travel. Positioning is done manually using a self centring potentiometer on the control panel that provides a ± velocity command signal to the power amplifiers. This configuration ensures good controllability over a very large range of positioning speeds hence making 0.4 μm incremental positioning possible, as well as, fast relocations over large relative distances. The precision movement and jitter was measured in the laboratory. Examples will be given of the monitor use with beam.

  16. Catalytic Mechanism of Perosamine N-Acetyltransferase Revealed by High-Resolution X-ray Crystallographic Studies and Kinetic Analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thoden, James B.; Reinhardt, Laurie A.; Cook, Paul D.

    2012-09-17

    N-Acetylperosamine is an unusual dideoxysugar found in the O-antigens of some Gram-negative bacteria, including the pathogenic Escherichia coli strain O157:H7. The last step in its biosynthesis is catalyzed by PerB, an N-acetyltransferase belonging to the left-handed {beta}-helix superfamily of proteins. Here we describe a combined structural and functional investigation of PerB from Caulobacter crescentus. For this study, three structures were determined to 1.0 {angstrom} resolution or better: the enzyme in complex with CoA and GDP-perosamine, the protein with bound CoA and GDP-N-acetylperosamine, and the enzyme containing a tetrahedral transition state mimic bound in the active site. Each subunit of themore » trimeric enzyme folds into two distinct regions. The N-terminal domain is globular and dominated by a six-stranded mainly parallel {beta}-sheet. It provides most of the interactions between the protein and GDP-perosamine. The C-terminal domain consists of a left-handed {beta}-helix, which has nearly seven turns. This region provides the scaffold for CoA binding. On the basis of these high-resolution structures, site-directed mutant proteins were constructed to test the roles of His 141 and Asp 142 in the catalytic mechanism. Kinetic data and pH-rate profiles are indicative of His 141 serving as a general base. In addition, the backbone amide group of Gly 159 provides an oxyanion hole for stabilization of the tetrahedral transition state. The pH-rate profiles are also consistent with the GDP-linked amino sugar substrate entering the active site in its unprotonated form. Finally, for this investigation, we show that PerB can accept GDP-3-deoxyperosamine as an alternative substrate, thus representing the production of a novel trideoxysugar.« less

  17. High density event-related potential data acquisition in cognitive neuroscience.

    PubMed

    Slotnick, Scott D

    2010-04-16

    Functional magnetic resonance imaging (fMRI) is currently the standard method of evaluating brain function in the field of Cognitive Neuroscience, in part because fMRI data acquisition and analysis techniques are readily available. Because fMRI has excellent spatial resolution but poor temporal resolution, this method can only be used to identify the spatial location of brain activity associated with a given cognitive process (and reveals virtually nothing about the time course of brain activity). By contrast, event-related potential (ERP) recording, a method that is used much less frequently than fMRI, has excellent temporal resolution and thus can track rapid temporal modulations in neural activity. Unfortunately, ERPs are under utilized in Cognitive Neuroscience because data acquisition techniques are not readily available and low density ERP recording has poor spatial resolution. In an effort to foster the increased use of ERPs in Cognitive Neuroscience, the present article details key techniques involved in high density ERP data acquisition. Critically, high density ERPs offer the promise of excellent temporal resolution and good spatial resolution (or excellent spatial resolution if coupled with fMRI), which is necessary to capture the spatial-temporal dynamics of human brain function.

  18. Application of RHIZON samplers to obtain high-resolution pore-fluid records during geochemical investigations of gas hydrate systems

    USGS Publications Warehouse

    Pohlman, John W.; Riedel, M; Waite, William F.; Rose, K.; Lapham, L.

    2008-01-01

    Obtaining accurate, high-resolution profiles of pore fluid constituents is critical for characterizing the subsurface geochemistry of hydrate-bearing sediments. Tightly-constrained downcore profiles provide clues about fluid sources, fluid flow, and the milieu of chemical and diagenetic reactions, all of which are used to interpret where and why gas and gas hydrate occur in the natural environment. Because a profile’s quality is only as good as the samples from which the data are obtained, a great deal of effort has been exerted to develop extraction systems suited to various sedimentary regimes. Pore water from deeply buried sediment recovered by scientific drilling is typically squeezed with a hydraulic press (Manheim, 1966); whereas pore water in near-surface, less consolidated sediment is more efficiently pushed from the sediment using compressed gas (Reeburgh, 1967) or centrifugation.

  19. Systems, methods, and software for determining spatially variable distributions of the dielectric properties of a heterogeneous material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farrington, Stephen P.

    Systems, methods, and software for measuring the spatially variable relative dielectric permittivity of materials along a linear or otherwise configured sensor element, and more specifically the spatial variability of soil moisture in one dimension as inferred from the dielectric profile of the soil matrix surrounding a linear sensor element. Various methods provided herein combine advances in the processing of time domain reflectometry data with innovations in physical sensing apparatuses. These advancements enable high temporal (and thus spatial) resolution of electrical reflectance continuously along an insulated waveguide that is permanently emplaced in contact with adjacent soils. The spatially resolved reflectance ismore » directly related to impedance changes along the waveguide that are dominated by electrical permittivity contrast due to variations in soil moisture. Various methods described herein are thus able to monitor soil moisture in profile with high spatial resolution.« less

  20. Approximating high angular resolution apparent diffusion coefficient profiles using spherical harmonics under BiGaussian assumption

    NASA Astrophysics Data System (ADS)

    Cao, Ning; Liang, Xuwei; Zhuang, Qi; Zhang, Jun

    2009-02-01

    Magnetic Resonance Imaging (MRI) techniques have achieved much importance in providing visual and quantitative information of human body. Diffusion MRI is the only non-invasive tool to obtain information of the neural fiber networks of the human brain. The traditional Diffusion Tensor Imaging (DTI) is only capable of characterizing Gaussian diffusion. High Angular Resolution Diffusion Imaging (HARDI) extends its ability to model more complex diffusion processes. Spherical harmonic series truncated to a certain degree is used in recent studies to describe the measured non-Gaussian Apparent Diffusion Coefficient (ADC) profile. In this study, we use the sampling theorem on band-limited spherical harmonics to choose a suitable degree to truncate the spherical harmonic series in the sense of Signal-to-Noise Ratio (SNR), and use Monte Carlo integration to compute the spherical harmonic transform of human brain data obtained from icosahedral schema.

  1. High-resolution spectra of the 3.29 micron interstellar emission feature - A summary

    NASA Technical Reports Server (NTRS)

    Tokunaga, A. T.; Sellgren, K.; Smith, R. G.; Nagata, T.; Sakata, A.; Nakada, Y.

    1991-01-01

    High spectral resolution observations of the 3.29-micron interstellar emission feature show two types of profiles. Type 1 has a central wavelength of 3.289-micron and is observed in extended objects such as planetary nebulae and H II regions. Type 2 has a central wavelength of 3.296 microns and is observed around a small number of stellar sources. Type 2 has a full width at half-maximum of 0.020 micron; Type 1 has a broader FWHM, perhaps as much as 0.042 micron, but this is uncertain because of contamination by Pf(delta) emission. These profiles are tabulated for comparison to laboratory data. It is found that no proposed identification for the 3.29-micron emission feature definitely matches the observational spectra, although amorphous aromatic materials and heated polycyclic aromatic hydrocarbons tend to fit the best.

  2. Ultra high energy resolution focusing monochromator for inelastic X-ray scattering spectrometer

    DOE PAGES

    Suvorov, Alexey; Cunsolo, Alessandro; Chubar, Oleg; ...

    2015-11-25

    Further development of a focusing monochromator concept for X-ray energy resolution of 0.1 meV and below is presented. Theoretical analysis of several optical layouts based on this concept was supported by numerical simulations performed in the “Synchrotron Radiation Workshop” software package using the physical-optics approach and careful modeling of partially-coherent synchrotron (undulator) radiation. Along with the energy resolution, the spectral shape of the energy resolution function was investigated. We show that under certain conditions the decay of the resolution function tails can be faster than that of the Gaussian function.

  3. Highly informative multiclass profiling of lipids by ultra-high performance liquid chromatography - Low resolution (quadrupole) mass spectrometry by using electrospray ionization and atmospheric pressure chemical ionization interfaces.

    PubMed

    Beccaria, Marco; Inferrera, Veronica; Rigano, Francesca; Gorynski, Krzysztof; Purcaro, Giorgia; Pawliszyn, Janusz; Dugo, Paola; Mondello, Luigi

    2017-08-04

    A simple, fast, and versatile method, using an ultra-high performance liquid chromatography system coupled with a low resolution (single quadrupole) mass spectrometer was optimized to perform multiclass lipid profiling of human plasma. Particular attention was made to develop a method suitable for both electrospray ionization and atmospheric pressure chemical ionization interfaces (sequentially in positive- and negative-ion mode), without any modification of the chromatographic conditions (mobile phase, flow-rate, gradient, etc.). Emphasis was given to the extrapolation of the structural information based on the fragmentation pattern obtained using atmospheric pressure chemical ionization interface, under each different ionization condition, highlighting the complementary information obtained using the electrospray ionization interface, of support for related molecule ions identification. Furthermore, mass spectra of phosphatidylserine and phosphatidylinositol obtained using the atmospheric pressure chemical ionization interface are reported and discussed for the first time. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Thermal structure of the Martian atmosphere retrieved from the IR spectrometry in the 15 μm CO2 band: input to MIRA

    NASA Astrophysics Data System (ADS)

    Zasova, L. V.; Formisano, V.; Grassi, D.; Igantiev, N. I.; Moroz, V. I.

    This paper describes one of the sources of the data concerning the thermal structure of the Martian atmosphere, based on the thermal IR spectrometry method. It allows to investigate the Martian atmosphere below 55 km by retrieving the temperature profiles from the 15 μm CO2 band. This approach enables to reach the vertical resolution of several kilometers and the temperature accuracy of several Kelvins. An aerosol abundance, which influences the temperature profile, is obtained from the continuum of the same spectrum parallel with the temperature profile and is taken into account in the temperature retrieval procedure in a self consistent way. Although this method has the limited vertical resolution, it possesses a significant advantage: the thermal IR spectrometry allows to monitor the temperature profiles with a good coverage both in space and local time. The Planetary Fourier spectrometer on board of Mars Express has the spectral range from 250 to 8000 cm-1 and a high spectral resolution of about 2 cm-1. Vertical temperature profiles retrieval is one of the main scientific goals of the experiment. The important data are expected to be obtained on the vertical thermal structure of the atmosphere, and its dependence on latitude, longitude, season, local time, clouds and dust loadings. These results should give a significant input in the future MIRA, being included in the Chapter “Structure of the atmosphere from the surface to 100 km”.

  5. Effects of MeJA on Arabidopsis metabolome under endogenous JA deficiency

    NASA Astrophysics Data System (ADS)

    Cao, Jingjing; Li, Mengya; Chen, Jian; Liu, Pei; Li, Zhen

    2016-11-01

    Jasmonates (JAs) play important roles in plant growth, development and defense. Comprehensive metabolomics profiling of plants under JA treatment provides insights into the interaction and regulation network of plant hormones. Here we applied high resolution mass spectrometry based metabolomics approach on Arabidopsis wild type and JA synthesis deficiency mutant opr3. The effects of exogenous MeJA treatment on the metabolites of opr3 were investigated. More than 10000 ion signals were detected and more than 2000 signals showed significant variation in different genotypes and treatment groups. Multivariate statistic analyses (PCA and PLS-DA) were performed and a differential compound library containing 174 metabolites with high resolution precursor ion-product ions pairs was obtained. Classification and pathway analysis of 109 identified compounds in this library showed that glucosinolates and tryptophan metabolism, amino acids and small peptides metabolism, lipid metabolism, especially fatty acyls metabolism, were impacted by endogenous JA deficiency and exogenous MeJA treatment. These results were further verified by quantitative reverse transcription PCR (RT-qPCR) analysis of 21 related genes involved in the metabolism of glucosinolates, tryptophan and α-linolenic acid pathways. The results would greatly enhance our understanding of the biological functions of JA.

  6. A simple approach for estimating the refractive index structure parameter (Cn²) profile in the atmosphere.

    PubMed

    Basu, Sukanta

    2015-09-01

    Utilizing the so-called Thorpe scale as a measure of the turbulence outer scale, we propose a physically-based approach for the estimation of Cn2 profiles in the lower atmosphere. This approach only requires coarse-resolution temperature profiles (a.k.a., soundings) as input, yet it has the intrinsic ability to capture layers of high optical turbulence. The prowess of this computationally inexpensive approach is demonstrated by validations against observational data from a field campaign over Mauna Kea, Hawaii.

  7. Velocity profiles of high-excitation molecular hydrogen lines

    NASA Technical Reports Server (NTRS)

    Moorhouse, A.; Brand, P. W. J. L.; Geballe, T. R.; Burton, M. G.

    1990-01-01

    Profiles of three lines of molecular hydrogen near 2.2 microns, originating from widely spaced energy levels, have been measured at a resolution of 32 km/s at Peak 1 in the Orion molecular outflow. The three lines, 1 - 0 S(1), 2 - 1 S(1), and 3 - 2 S(3), are found to have identical profiles. This result rules out any significant contribution to the population of the higher energy levels of molecular hydrogen at Peak 1 by fluorescence, and is generally consistent with emission from multiple J-type shocks.

  8. A novel approach: high resolution inspection with wafer plane defect detection

    NASA Astrophysics Data System (ADS)

    Hess, Carl; Wihl, Mark; Shi, Rui-fang; Xiong, Yalin; Pang, Song

    2008-05-01

    High Resolution reticle inspection is well-established as a proven, effective, and efficient means of detecting yield-limiting mask defects as well as defects which are not immediately yield-limiting yet can enable manufacturing process improvements. Historically, RAPID products have enabled detection of both classes of these defects. The newly-developed Wafer Plane Inspection (WPI) detector technology meets the needs of some advanced mask manufacturers to identify the lithographically-significant defects while ignoring the other non-lithographically-significant defects. Wafer Plane Inspection accomplishes this goal by performing defect detection based on a modeled image of how the mask features would actually print in the photoresist. This has the effect of reducing sensitivity to non-printing defects while enabling higher sensitivity focused in high MEEF areas where small reticle defects still yield significant printing defects on wafers. WPI is a new inspection mode that has been developed by KLA-Tencor and is currently under test with multiple customers. It employs the same transmitted and reflected-light high-resolution images as the industry-standard high-resolution inspections, but with much more sophisticated processing involved. A rigorous mask pattern recovery algorithm is used to convert the transmitted and reflected light images into a modeled representation of the reticle. Lithographic modeling of the scanner is then used to generate an aerial image of the mask. This is followed by resist modeling to determine the exposure of the photoresist. The defect detectors are then applied on this photoresist plane so that only printing defects are detected. Note that no hardware modifications to the inspection system are required to enable this detector. The same tool will be able to perform both our standard High Resolution inspections and the Wafer Plane Inspection detector. This approach has several important features. The ability to ignore non-printing defects and to apply additional effective sensitivity in high MEEF areas enables advanced node development. In addition, the modeling allows the inclusion of important polarization effects that occur in the resist for high NA operation. This allows for the results to better match wafer print results compared to alternate approaches. Finally, the simulation easily allows for the application of arbitrary illumination profiles. With this approach, users of WPI can make use of unique or custom scanner illumination profiles. This allows the more precise modeling of profiles without inspection system hardware modification or loss of company intellectual property. This paper examines WPI in Die:Die mode. Future work includes a review of Die:Database WPI capability.

  9. A high-resolution and observationally constrained OMI NO 2 satellite retrieval

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldberg, Daniel L.; Lamsal, Lok N.; Loughner, Christopher P.

    Here, this work presents a new high-resolution NO 2 dataset derived from the NASA Ozone Monitoring Instrument (OMI) NO 2 version 3.0 retrieval that can be used to estimate surface-level concentrations. The standard NASA product uses NO 2 vertical profile shape factors from a 1.25° × 1° (~110 km × 110 km) resolution Global Model Initiative (GMI) model simulation to calculate air mass factors, a critical value used to determine observed tropospheric NO 2 vertical columns. To better estimate vertical profile shape factors, we use a high-resolution (1.33 km × 1.33 km) Community Multi-scale Air Quality (CMAQ) model simulation constrained by in situmore » aircraft observations to recalculate tropospheric air mass factors and tropospheric NO 2 vertical columns during summertime in the eastern US. In this new product, OMI NO 2 tropospheric columns increase by up to 160% in city centers and decrease by 20–50 % in the rural areas outside of urban areas when compared to the operational NASA product. Our new product shows much better agreement with the Pandora NO 2 and Airborne Compact Atmospheric Mapper (ACAM) NO 2 spectrometer measurements acquired during the DISCOVER-AQ Maryland field campaign. Furthermore, the correlation between our satellite product and EPA NO 2 monitors in urban areas has improved dramatically: r 2 = 0.60 in the new product vs. r 2 = 0.39 in the operational product, signifying that this new product is a better indicator of surface concentrations than the operational product. Our work emphasizes the need to use both high-resolution and high-fidelity models in order to recalculate satellite data in areas with large spatial heterogeneities in NO x emissions. Although the current work is focused on the eastern US, the methodology developed in this work can be applied to other world regions to produce high-quality region-specific NO 2 satellite retrievals.« less

  10. A high-resolution and observationally constrained OMI NO 2 satellite retrieval

    DOE PAGES

    Goldberg, Daniel L.; Lamsal, Lok N.; Loughner, Christopher P.; ...

    2017-09-26

    Here, this work presents a new high-resolution NO 2 dataset derived from the NASA Ozone Monitoring Instrument (OMI) NO 2 version 3.0 retrieval that can be used to estimate surface-level concentrations. The standard NASA product uses NO 2 vertical profile shape factors from a 1.25° × 1° (~110 km × 110 km) resolution Global Model Initiative (GMI) model simulation to calculate air mass factors, a critical value used to determine observed tropospheric NO 2 vertical columns. To better estimate vertical profile shape factors, we use a high-resolution (1.33 km × 1.33 km) Community Multi-scale Air Quality (CMAQ) model simulation constrained by in situmore » aircraft observations to recalculate tropospheric air mass factors and tropospheric NO 2 vertical columns during summertime in the eastern US. In this new product, OMI NO 2 tropospheric columns increase by up to 160% in city centers and decrease by 20–50 % in the rural areas outside of urban areas when compared to the operational NASA product. Our new product shows much better agreement with the Pandora NO 2 and Airborne Compact Atmospheric Mapper (ACAM) NO 2 spectrometer measurements acquired during the DISCOVER-AQ Maryland field campaign. Furthermore, the correlation between our satellite product and EPA NO 2 monitors in urban areas has improved dramatically: r 2 = 0.60 in the new product vs. r 2 = 0.39 in the operational product, signifying that this new product is a better indicator of surface concentrations than the operational product. Our work emphasizes the need to use both high-resolution and high-fidelity models in order to recalculate satellite data in areas with large spatial heterogeneities in NO x emissions. Although the current work is focused on the eastern US, the methodology developed in this work can be applied to other world regions to produce high-quality region-specific NO 2 satellite retrievals.« less

  11. A high-resolution and observationally constrained OMI NO2 satellite retrieval

    NASA Astrophysics Data System (ADS)

    Goldberg, Daniel L.; Lamsal, Lok N.; Loughner, Christopher P.; Swartz, William H.; Lu, Zifeng; Streets, David G.

    2017-09-01

    This work presents a new high-resolution NO2 dataset derived from the NASA Ozone Monitoring Instrument (OMI) NO2 version 3.0 retrieval that can be used to estimate surface-level concentrations. The standard NASA product uses NO2 vertical profile shape factors from a 1.25° × 1° (˜ 110 km × 110 km) resolution Global Model Initiative (GMI) model simulation to calculate air mass factors, a critical value used to determine observed tropospheric NO2 vertical columns. To better estimate vertical profile shape factors, we use a high-resolution (1.33 km × 1.33 km) Community Multi-scale Air Quality (CMAQ) model simulation constrained by in situ aircraft observations to recalculate tropospheric air mass factors and tropospheric NO2 vertical columns during summertime in the eastern US. In this new product, OMI NO2 tropospheric columns increase by up to 160 % in city centers and decrease by 20-50 % in the rural areas outside of urban areas when compared to the operational NASA product. Our new product shows much better agreement with the Pandora NO2 and Airborne Compact Atmospheric Mapper (ACAM) NO2 spectrometer measurements acquired during the DISCOVER-AQ Maryland field campaign. Furthermore, the correlation between our satellite product and EPA NO2 monitors in urban areas has improved dramatically: r2 = 0.60 in the new product vs. r2 = 0.39 in the operational product, signifying that this new product is a better indicator of surface concentrations than the operational product. Our work emphasizes the need to use both high-resolution and high-fidelity models in order to recalculate satellite data in areas with large spatial heterogeneities in NOx emissions. Although the current work is focused on the eastern US, the methodology developed in this work can be applied to other world regions to produce high-quality region-specific NO2 satellite retrievals.

  12. Resolving topographic detail on Venus by modeling complex Magellan altimetry echoes

    NASA Technical Reports Server (NTRS)

    Lovell, Amy J.; Schloerb, F. Peter; Mcgill, George E.

    1993-01-01

    Magellan's altimeter is providing some of the finest resolution topography of Venus achieved to date. Nevertheless, efforts continue to improve the topographic resolution whenever possible. One effort to this end is stereoscopic imaging, which provides topography at scales similar to that of the synthetic aperture radar (SAR). However, this technique requires two SAR images of the same site to be obtained and limits the utility of this method. In this paper, we present another method to resolve topographic features at scales smaller than that of an altimeter footprint, which is more globally applicable than the stereoscopic approach. Each pulse which is transmitted by Magellan's altimeter scatters from the planet and echoes to the receiver, delayed based on the distance between the spacecraft and each surface element. As resolved in time, each element of an altimetry echo represents the sum of all points on the surface which are equidistant from the spacecraft. Thus, individual returns, as a function of time, create an echo profile which may be used to derive properties of the surface, such as the scattering law or, in this case, the topography within the footprint. The Magellan project has derived some of this information by fitting model templates to radar echo profiles. The templates are calculated based on Hagfor's Law, which assumes a smooth, gently undulating surface. In most regions these templates provide a reasonable fit to the observed echo profile; however, in some cases the surface departs from these simple assumptions and more complex profiles are observed. Specifically, we note that sub-footprint topographic relief apparently has a strong effect on the shape of the echo profile. To demonstrate the effects of sub-resolution relief on echo profiles, we have calculated the echo shapes from a wide range of simple topographic models. At this point, our topographic models have emphasized surfaces where only two dominant elevations are contained within a footprint, such as graben, ridges, crater rims, and central features in impact craters.

  13. Representativeness analysis of CO_{2} profiles near a tall tower and from commercial airliner programs

    NASA Astrophysics Data System (ADS)

    Chen, Huilin; Katrynski, Krzysztof; Nedelec, Philippe; Machida, Toshinobu; Matsueda, Hidekazu; Sawa, Yousuke; Gerbig, Christoph

    2010-05-01

    Aircraft profiles for atmospheric trace gases have been collected using both rental aircraft and from commercial airliners. High-accuracy regular in situ CO2 measurements aboard rental aircraft over northeast Poland have been upgraded since August 2008. During each flight, two profiles are taken with a spatial separation of 20 kilometers. Until now, 74 profiles with continuous CO2 have been collected. Meanwhile, aircraft profiles for carbon monoxide (CO) have been made aboard commercial airliners within MOZAIC (Measurement of Ozone, water vapor, carbon monoxide and nitrogen oxides by AIrbus in-service airCraft) and for CO2 within CONTRAIL (Comprehensive Observation Network for TRace gases byAIrLiner) respectively. Starting from 2011, IAGOS-ERI (Integration of routine Aircraft measurements into a Global Observing System - European Research Infrastructure) will provide continuous CO2, CH4 and H2O measurements using instruments deployed aboard commercial airliners, with many profiles during take-off and landing over airports distributed all over the globe. These profiles contain not only vertical gradients but also regionally representative information. It is of importance to investigate how these profiles could be used for applications such as satellite validation and inverse modeling to retrieve surface-atmosphere exchange fluxes of greenhouse gases at regional to continental scales. Especially profiles from commercial airliners near major cities, which are potentially influenced by local fossil fuel emissions, need to be assessed with respect to their regional representativeness. We analyzed CO profiles over Frankfurt airport from the MOZAIC and CO2 profiles from CONTRAIL using STILT (the Stochastic Time Inverted Lagrangian Transport model) combined with a high resolution CO emission map in central Europe. Combining STILT footprints (maps of sensitivities to upstream surface fluxes) with high resolution emission inventories allows to attribute the contribution fossil fuel emissions to local vs. regional sources. In contrast, we analyzed CO2 profiles over northeast Poland in a similar way, where fossil fuel emissions are insignificant. The representativeness analysis provides information on under which circumstances such profiles can be used for potential applications, i.e. satellite validation and inverse modeling. The analysis suggests that a combined measurement of CO2 and CO significantly improves the usability of the regular profiles, where CO serves as the emission tracer.

  14. Elastic turbulence in entangled semi-dilute DNA solutions measured with optical coherence tomography velocimetry.

    PubMed

    Malm, A V; Waigh, T A

    2017-04-26

    The flow instabilities of solutions of high molecular weight DNA in the entangled semi-dilute concentration regime were investigated using optical coherence tomography velocimetry, a technique that provides high spatial (probe volumes of 3.4 pL) and temporal resolution (sub μs) information on the flow behaviour of complex fluids in a rheometer. The velocity profiles of the opaque DNA solutions (high and low salt) were measured as a function of the distance across the gap of a parallel plate rheometer, and their evolution over time was measured. At lower DNA concentrations and low shear rates, the velocity fluctuations were well described by Gaussian functions and the velocity gradient was uniform across the rheometer gap, which is expected for Newtonian flows. As the DNA concentration and shear rate were increased there was a stable wall slip regime followed by an evolving wall slip regime, which is finally followed by the onset of elastic turbulence. Strain localization (shear banding) is observed on the boundaries of the flows at intermediate shear rates, but decreases in the high shear elastic turbulence regime, where bulk strain localization occurs. A dynamic phase diagram for non-linear flow was created to describe the different behaviours.

  15. S-World: A high resolution global soil database for simulation modelling (Invited)

    NASA Astrophysics Data System (ADS)

    Stoorvogel, J. J.

    2013-12-01

    There is an increasing call for high resolution soil information at the global level. A good example for such a call is the Global Gridded Crop Model Intercomparison carried out within AgMIP. While local studies can make use of surveying techniques to collect additional techniques this is practically impossible at the global level. It is therefore important to rely on legacy data like the Harmonized World Soil Database. Several efforts do exist that aim at the development of global gridded soil property databases. These estimates of the variation of soil properties can be used to assess e.g., global soil carbon stocks. However, they do not allow for simulation runs with e.g., crop growth simulation models as these models require a description of the entire pedon rather than a few soil properties. This study provides the required quantitative description of pedons at a 1 km resolution for simulation modelling. It uses the Harmonized World Soil Database (HWSD) for the spatial distribution of soil types, the ISRIC-WISE soil profile database to derive information on soil properties per soil type, and a range of co-variables on topography, climate, and land cover to further disaggregate the available data. The methodology aims to take stock of these available data. The soil database is developed in five main steps. Step 1: All 148 soil types are ordered on the basis of their expected topographic position using e.g., drainage, salinization, and pedogenesis. Using the topographic ordering and combining the HWSD with a digital elevation model allows for the spatial disaggregation of the composite soil units. This results in a new soil map with homogeneous soil units. Step 2: The ranges of major soil properties for the topsoil and subsoil of each of the 148 soil types are derived from the ISRIC-WISE soil profile database. Step 3: A model of soil formation is developed that focuses on the basic conceptual question where we are within the range of a particular soil property at a particular location given a specific soil type. The soil properties are predicted for each grid cell based on the soil type, the corresponding ranges of soil properties, and the co-variables. Step 4: Standard depth profiles are developed for each of the soil types using the diagnostic criteria of the soil types and soil profile information from the ISRIC-WISE database. The standard soil profiles are combined with the the predicted values for the topsoil and subsoil yielding unique soil profiles at each location. Step 5: In a final step, additional soil properties are added to the database using averages for the soil types and pedo-transfer functions. The methodology, denominated S-World (Soils of the World), results in readily available global maps with quantitative pedon data for modelling purposes. It forms the basis for the Global Gridded Crop Model Intercomparison carried out within AgMIP.

  16. Image pre-processing method for near-wall PIV measurements over moving curved interfaces

    NASA Astrophysics Data System (ADS)

    Jia, L. C.; Zhu, Y. D.; Jia, Y. X.; Yuan, H. J.; Lee, C. B.

    2017-03-01

    PIV measurements near a moving interface are always difficult. This paper presents a PIV image pre-processing method that returns high spatial resolution velocity profiles near the interface. Instead of re-shaping or re-orientating the interrogation windows, interface tracking and an image transformation are used to stretch the particle image strips near a curved interface into rectangles. Then the adaptive structured interrogation windows can be arranged at specified distances from the interface. Synthetic particles are also added into the solid region to minimize interfacial effects and to restrict particles on both sides of the interface. Since a high spatial resolution is only required in high velocity gradient region, adaptive meshing and stretching of the image strips in the normal direction is used to improve the cross-correlation signal-to-noise ratio (SN) by reducing the velocity difference and the particle image distortion within the interrogation window. A two dimensional Gaussian fit is used to compensate for the effects of stretching particle images. The working hypothesis is that fluid motion near the interface is ‘quasi-tangential flow’, which is reasonable in most fluid-structure interaction scenarios. The method was validated against the window deformation iterative multi-grid scheme (WIDIM) using synthetic image pairs with different velocity profiles. The method was tested for boundary layer measurements of a supersonic turbulent boundary layer on a flat plate, near a rotating blade and near a flexible flapping flag. This image pre-processing method provides higher spatial resolution than conventional WIDIM and good robustness for measuring velocity profiles near moving interfaces.

  17. Profile of a city: characterizing and classifying urban soils in the city of Ghent

    NASA Astrophysics Data System (ADS)

    Delbecque, Nele; Verdoodt, Ann

    2017-04-01

    Worldwide, urban lands are expanding rapidly. Conversion of agricultural and natural landscapes to urban fabric can strongly influence soil properties through soil sealing, excavation, leveling, contamination, waste disposal and land management. Urban lands, often characterized by intensive use, need to deliver many production, ecological and cultural ecosystem services. To safeguard this natural capital for future generations, an improved understanding of biogeochemical characteristics, processes and functions of urban soils in time and space is essential. Additionally, existing (inter)national soil classification systems, based on the identification of soil genetic horizons, do not always allow a functional classification of urban soils. This research aims (1) to gain insight into urban soils and their properties in the city of Ghent (Belgium), and (2) to develop a procedure to functionally incorporate urban soils into existing (inter)national soil classification systems. Undisturbed soil cores (depth up to 1.25 m) are collected at 15 locations in Ghent with different times since development and land uses. Geotek MSCL-scans are taken to determine magnetic susceptibility and gamma density and to obtain high resolution images. Physico-chemical characterization of the soil cores is performed by means of detailed soil profile descriptions, traditional lab analyses, as well as proximal soil sensing techniques (XRF). The first results of this research will be presented and critically discussed to improve future efforts to characterize, classify and evaluate urban soils and their ecosystem services.

  18. A Parameterization for the Triggering of Landscape Generated Moist Convection

    NASA Technical Reports Server (NTRS)

    Lynn, Barry H.; Tao, Wei-Kuo; Abramopoulos, Frank

    1998-01-01

    A set of relatively high resolution three-dimensional (3D) simulations were produced to investigate the triggering of moist convection by landscape generated mesoscale circulations. The local accumulated rainfall varied monotonically (linearly) with the size of individual landscape patches, demonstrating the need to develop a trigger function that is sensitive to the size of individual patches. A new triggering function that includes the effect of landscapes generated mesoscale circulations over patches of different sizes consists of a parcel's perturbation in vertical velocity (nu(sub 0)), temperature (theta(sub 0)), and moisture (q(sub 0)). Each variable in the triggering function was also sensitive to soil moisture gradients, atmospheric initial conditions, and moist processes. The parcel's vertical velocity, temperature, and moisture perturbation were partitioned into mesoscale and turbulent components. Budget equations were derived for theta(sub 0) and q(sub 0). Of the many terms in this set of budget equations, the turbulent, vertical flux of the mesoscale temperature and moisture contributed most to the triggering of moist convection through the impact of these fluxes on the parcel's temperature and moisture profile. These fluxes needed to be parameterized to obtain theta(sub 0) and q(sub 0). The mesoscale vertical velocity also affected the profile of nu(sub 0). We used similarity theory to parameterize these fluxes as well as the parcel's mesoscale vertical velocity.

  19. Automated method for relating regional pulmonary structure and function: integration of dynamic multislice CT and thin-slice high-resolution CT

    NASA Astrophysics Data System (ADS)

    Tajik, Jehangir K.; Kugelmass, Steven D.; Hoffman, Eric A.

    1993-07-01

    We have developed a method utilizing x-ray CT for relating pulmonary perfusion to global and regional anatomy, allowing for detailed study of structure to function relationships. A thick slice, high temporal resolution mode is used to follow a bolus contrast agent for blood flow evaluation and is fused with a high spatial resolution, thin slice mode to obtain structure- function detail. To aid analysis of blood flow, we have developed a software module, for our image analysis package (VIDA), to produce the combined structure-function image. Color coded images representing blood flow, mean transit time, regional tissue content, regional blood volume, regional air content, etc. are generated and imbedded in the high resolution volume image. A text file containing these values along with a voxel's 3-D coordinates is also generated. User input can be minimized to identifying the location of the pulmonary artery from which the input function to a blood flow model is derived. Any flow model utilizing one input and one output function can be easily added to a user selectable list. We present examples from our physiologic based research findings to demonstrate the strengths of combining dynamic CT and HRCT relative to other scanning modalities to uniquely characterize pulmonary normal and pathophysiology.

  20. The functional micro-organization of grid cells revealed by cellular-resolution imaging.

    PubMed

    Heys, James G; Rangarajan, Krsna V; Dombeck, Daniel A

    2014-12-03

    Establishing how grid cells are anatomically arranged, on a microscopic scale, in relation to their firing patterns in the environment would facilitate a greater microcircuit-level understanding of the brain's representation of space. However, all previous grid cell recordings used electrode techniques that provide limited descriptions of fine-scale organization. We therefore developed a technique for cellular-resolution functional imaging of medial entorhinal cortex (MEC) neurons in mice navigating a virtual linear track, enabling a new experimental approach to study MEC. Using these methods, we show that grid cells are physically clustered in MEC compared to nongrid cells. Additionally, we demonstrate that grid cells are functionally micro-organized: the similarity between the environment firing locations of grid cell pairs varies as a function of the distance between them according to a "Mexican hat"-shaped profile. This suggests that, on average, nearby grid cells have more similar spatial firing phases than those further apart. Copyright © 2014 Elsevier Inc. All rights reserved.

Top