Science.gov

Sample records for high-resolution spectroscopic diagnostics

  1. High-resolution spectroscopic diagnostics of very high-temperature plasmas in the hard x-ray regime

    SciTech Connect

    Widmann, K

    1999-12-06

    Motivated by the need for establishing a reliable database useful for the application of x-ray spectroscopic tools for the diagnostic of very high temperature plasmas, high-resolution crystal spectrometer measurements have been performed investigating the characteristic K-shell radiation of highly charged krypton and xenon. The measurements, which have been performed at the Electron-Beam-Ion-Trap (EBIT) facility of the Lawrence Livermore National Laboratory, include the investigation of the n = 2 {yields} 1 transitions in heliumlike krypton (Kr{sup 34+}) and innershell excited lithiumlike krypton (Kr{sup 33+}) utilizing a conventional reflection-type crystal spectrometer of von Hamos geometry. The electron-excitation-energy selective measurements map the contribution of the dielectronic recombination lines providing the means of accurate interpretation of the line profiles of the characteristic K{alpha} x-ray emission of plasmas. The high-resolution measurements of the n = 2 {yields} 1 transitions in heliumlike xenon (Xe{sup 52+}) and hydrogenlike xenon (Xe{sup 53+}) were based on a new transmission-type crystal spectrometer of DuMond geometry. The resolving power of the developed spectrometer was sufficient for charge state specific observation allowing the determination of the electron-impact excitation cross section for the hydrogen- and heliumlike K{alpha} transitions. The disagreement with theoretically predicted values is a measure of the magnitude of the Breit interaction for the highly charged high-Z ions.

  2. A DVD Spectroscope: A Simple, High-Resolution Classroom Spectroscope

    ERIC Educational Resources Information Center

    Wakabayashi, Fumitaka; Hamada, Kiyohito

    2006-01-01

    Digital versatile disks (DVDs) have successfully made up an inexpensive but high-resolution spectroscope suitable for classroom experiments that can easily be made with common material and gives clear and fine spectra of various light sources and colored material. The observed spectra can be photographed with a digital camera, and such images can…

  3. The Astrophysical Plasmadynamic Explorer (APEX): A High Resolution Spectroscopic Observatory

    NASA Astrophysics Data System (ADS)

    Kowalski, M. P.; Cruddace, R. G.; Wood, K. S.; Yentis, D. J.; Gursky, H.; Barbee, T. W., Jr.; Goldstein, W. H.; Kordas, J. F.; Fritz, G. G.; Barstow, M. A.; Bannister, N. P.; Lapington, J. S.

    2002-05-01

    EUVE and the ROSAT WFC have left a tremendous legacy in astrophysics at EUV wavelengths. More recently, Chandra and XMM-Newton have demonstrated at X-ray wavelengths the power of high-resolution astronomical spectroscopy, which allows the identification of weak emission lines, the measurement of Doppler shifts and line profiles, and the detection of narrow absorption features. This leads to a complete understanding of the density, temperature, abundance, magnetic, and dynamic structure of astrophysical plasmas. However, the termination of the EUVE mission has left a gaping hole in spectral coverage at crucial EUV wavelengths ( 100-300 Angstroms), where hot (105-108 K) plasmas radiate most strongly and produce critical spectral diagnostics. CHIPS will fill this hole only partially as it is optimized for diffuse emission and has only moderate resolution (R 150). For discrete sources, we have successfully flown a follow-on instrument to the EUVE spectrometer (Aeff 1 cm2, R 400), the high-resolution spectrometer J-PEX (Aeff 3 cm2, R 3000). In this paper we build on the J-PEX prototype and present a strawman design for an orbiting spectroscopic observatory, APEX, a SMEX-class instrument containing a suite of spectrometers that together achieve both high effective area (>20 cm2) and high spectral resolution ( 10000) over the range 100-300 Angstroms. We discuss in depth the optical design, the wavelength coverage, and the effective area. This work is supported by the Office of Naval Research and NRL, and by NASA Space Astrophysics and Research Analysis grants

  4. Apex: AN EUV High-Resolution Spectroscopic Observatory

    NASA Astrophysics Data System (ADS)

    Kowalski, Michael P.; Cruddace, Raymond G.; Wood, Kent S.; Yentis, Daryl J.; Barbee, Troy W., Jr.; Kordas, Joseph F.; Fritz, Gilbert G.; Barstow, Martin A.; Bannister, Nigel P.; Lapington, Jon S.

    The termination of the EUVE mission has left a hole in spectral coverage at crucial EUV wavelengths (~70-600 Å) where hot (0.1-10 MK) plasmas radiate most strongly and produce critical spectral diagnostics often not available at other wavelengths. CHIPS will fill this hole only partially as it is optimized for diffuse emission and has only moderate resolution (R~150). For discrete sources we have successfully flown on a sounding rocket a follow-on instrument to the EUVE spectrometer (Aeff ~1 cm2 R ~400) the high-resolution spectrometer J-PEX (Aeff ~3 cm2 R ~3000). An upgraded version with higher resolution and effective area has been approved for another rocket flight. Here we build on the J-PEX prototype and present a proposed design for an orbiting spectroscopic observatory APEX a SMEX-class instrument containing a suite of spectrometers that together achieve both high effective area (>20 cm2) and high spectral resolution (>10000) in the EUV. We discuss instrumental characteristics such as optical design wavelength coverage resolution and effective area. We also summarize science objectives for observations of stellar coronae accretion phenomena in cataclysmic variables and extragalactic objects white dwarfs and the interstellar medium.

  5. High Resolution Diagnostics of a Linear Shaped Charge Jet

    SciTech Connect

    Chase, J.B.; Kuklo, R.M.; Shaw, L.L.; Carter, D.L.; Baum, D.W.

    1999-08-10

    The linear shaped charge is designed to produce a knife blade-like flat jet, which will perforate and sever one side of a modestly hard target from the other. This charge is approximately plane wave initiated and used a water pipe quality circular copper liner. To establish the quality of this jet we report about an experiment using several of the Lawrence Livermore National Laboratory high-resolution diagnostics previously published in this meeting [1]. Image converter tube camera stereo image pairs were obtained early in the jet formation process. Individual IC images were taken just after the perforation of a thin steel plate. These pictures are augmented with 70 mm format rotating mirror framing images, orthogonal 450 KeV flash radiograph pairs, and arrival time switches (velocity traps) positioned along the length of the jet edge. We have confirmed that linear shaped charges are subject to the same need for high quality copper as any other metal jetting device.

  6. High resolution spectroscopic study of Be10Lambda;

    NASA Astrophysics Data System (ADS)

    Gogami, T.; Chen, C.; Kawama, D.; Achenbach, P.; Ahmidouch, A.; Albayrak, I.; Androic, D.; Asaturyan, A.; Asaturyan, R.; Ates, O.; Baturin, P.; Badui, R.; Boeglin, W.; Bono, J.; Brash, E.; Carter, P.; Chiba, A.; Christy, E.; Danagoulian, S.; de Leo, R.; Doi, D.; Elaasar, M.; Ent, R.; Fujii, Y.; Fujita, M.; Furic, M.; Gabrielyan, M.; Gan, L.; Garibaldi, F.; Gaskell, D.; Gasparian, A.; Han, Y.; Hashimoto, O.; Horn, T.; Hu, B.; Hungerford, Ed. V.; Jones, M.; Kanda, H.; Kaneta, M.; Kato, S.; Kawai, M.; Khanal, H.; Kohl, M.; Liyanage, A.; Luo, W.; Maeda, K.; Margaryan, A.; Markowitz, P.; Maruta, T.; Matsumura, A.; Maxwell, V.; Mkrtchyan, A.; Mkrtchyan, H.; Nagao, S.; Nakamura, S. N.; Narayan, A.; Neville, C.; Niculescu, G.; Niculescu, M. I.; Nunez, A.; Nuruzzaman, Okayasu, Y.; Petkovic, T.; Pochodzalla, J.; Qiu, X.; Reinhold, J.; Rodriguez, V. M.; Samanta, C.; Sawatzky, B.; Seva, T.; Shichijo, A.; Tadevosyan, V.; Tang, L.; Taniya, N.; Tsukada, K.; Veilleux, M.; Vulcan, W.; Wesselmann, F. R.; Wood, S. A.; Yamamoto, T.; Ya, L.; Ye, Z.; Yokota, K.; Yuan, L.; Zhamkochyan, S.; Zhu, L.; Hksjlab E05-115 Collaboration

    2016-03-01

    Spectroscopy of a Be10Lambda; hypernucleus was carried out at JLab Hall C using the (e ,e'K+) reaction. A new magnetic spectrometer system (SPL+HES+HKS), specifically designed for high resolution hypernuclear spectroscopy, was used to obtain an energy spectrum with a resolution of ˜0.78 MeV (FWHM). The well-calibrated spectrometer system of the present experiment using p (e ,e'K+)Λ ,Σ0 reactions allowed us to determine the energy levels; and the binding energy of the ground-state peak (mixture of 1- and 2- states) was found to be BΛ=8.55 ±0.07 (stat . ) ±0.11 (sys . ) MeV. The result indicates that the ground-state energy is shallower than that of an emulsion study by about 0.5 MeV which provides valuable experimental information on the charge symmetry breaking effect in the Λ N interaction.

  7. The Astrophysical Plasmadynamic Explorer (APEX): a high-resolution spectroscopic observatory

    NASA Astrophysics Data System (ADS)

    Kowalski, Michael P.; Cruddace, Raymond G.; Wood, Kent S.; Yentis, Daryl J.; Gursky, Herbert; Barbee, Troy W., Jr.; Goldstein, William H.; Kordas, Joseph F.; Fritz, Gilbert G.; Hunter, William R.; Barstow, Martin A.; Bannister, Nigel P.; Culhane, J. Leonard; Lapington, Jonathan S.

    2003-02-01

    EUVE and the ROSAT WFC have left a tremendous legacy in astrophysics at EUV wavelengths. More recently, Chandra and XMM-Newton have demonstrated at X-ray wavelengths the power of high-resolution astronomical spectroscopy, which allows the identification of weak emission lines, the measurement of Doppler shifts and line profiles, and the detection of narrow absorption features. This leads to a thorough understanding of the density, temperature, abundance, magnetic, and dynamic structure of astrophysical plasmas. However, the termination of the EUVE mission has left a gap in spectral coverage at crucial EUV wavelengths (~100-300 Å), where hot (105 - 108 K) plasmas radiate most strongly and produce critical spectral diagnostics. CHIPS will fill this hole only partially as it is optimized for diffuse emission and has only moderate resolution (R~150). For discrete sources, we have successfully flown a follow-on instrument to the EUVE spectrometer (Aeff ~ 1 cm2, R ~ 400), the high-resolution spectrometer J-PEX (Aeff ~ 3 cm2, R ~ 3000). Here we build on the J-PEX prototype and present a strawman design for an orbiting spectroscopic observatory, APEX, a SMEX-class instrument containing a suite of 8 spectrometers that together achieve both high effective area (Aeff > 10 cm2) and high spectral resolution (R ~ 10,000) over the range 100-300 Å. We also discuss alternate configurations for shorter and longer wavelengths.

  8. High resolution spectroscopic study of BeΛ10

    DOE PAGESBeta

    Gogami, T.; Chen, C.; Kawama, D.; Achenbach, P.; Ahmidouch, A.; Albayrak, I.; Androic, D.; Asaturyan, A.; Asaturyan, R.; Ates, O.; et al

    2016-03-10

    Spectroscopy of amore » $$^{10}_{\\Lambda}$$Be hypernucleus was carried out at JLab Hall C using the $$(e,e^{\\prime}K^{+})$$ reaction. A new magnetic spectrometer system (SPL+HES+HKS), specifically designed for high resolution hypernuclear spectroscopy, was used to obtain an energy spectrum with a resolution of 0.78 MeV (FWHM). The well-calibrated spectrometer system of the present experiment using the $$p(e,e^{\\prime}K^{+})\\Lambda,\\Sigma^{0}$$ reactions allowed us to determine the energy levels, and the binding energy of the ground state peak (mixture of 1$$^{-}$$ and 2$$^{-}$$ states) was obtained to be B$$_{\\Lambda}$$=8.55$$\\pm$$0.07(stat.)$$\\pm$$0.11(sys.) MeV. Furthermore, the result indicates that the ground state energy is shallower than that of an emulsion study by about 0.5 MeV which provides valuable experimental information on charge symmetry breaking effect in the $$\\Lambda N$$ interaction.« less

  9. APEX, the Astrophysical Plasmadynamic EXplorer: An EUV High Resolution Spectroscopic Observatory

    NASA Astrophysics Data System (ADS)

    Kowalski, M.

    2005-01-01

    The termination of the EUVE mission has left a hole in spectral coverage at crucial EUV wavelengths (~70-600 Å) where hot (0.1-10 MK) plasmas radiate most strongly and produce critical spectral diagnostics often not available at other wavelengths. CHIPS will fill this hole only partially as it is optimized for diffuse emission and has only moderate resolution (R~150). For discrete sources we have successfully flown on a sounding rocket a follow-on instrument to the EUVE spectrometer (Aeff ~1 cm2 R ~400) the high-resolution spectrometer J-PEX (Aeff ~3 cm2 R ~3000). An upgraded version with higher resolution and effective area has been approved for another rocket flight. Here we build on the J-PEX prototype and present a proposed design for an orbiting spectroscopic observatory APEX a SMEX-class instrument containing a suite of spectrometers that together achieve both high effective area (>20 cm2) and high spectral resolution (>10000) in the EUV. We discuss instrumental characteristics such as optical design wavelength coverage resolution and effective area. We also summarize science objectives for observations of stellar coronae accretion phenomena in cataclysmic variables and extragalactic objects white dwarfs and the interstellar medium.

  10. GAS PHASE MOLECULAR DYNAMICS: HIGH-RESOLUTION SPECTROSCOPIC PROBES OF CHEMICAL DYNAMICS.

    SciTech Connect

    HALL, G.E.

    2006-05-30

    This research is carried out as part of the Gas Phase Molecular Dynamics group program in the Chemistry Department at Brookhaven National Laboratory. High-resolution spectroscopic tools are developed and applied to problems in chemical dynamics. Recent topics have included the state-resolved studies of collision-induced electronic energy transfer, dynamics of barrierless unimolecular reactions, and the kinetics and spectroscopy of transient species.

  11. Diagnostics of Ellerman bombs with high-resolution spectral data

    NASA Astrophysics Data System (ADS)

    Li, Zhen; Fang, Cheng; Guo, Yang; Chen, Peng-Fei; Xu, Zhi; Cao, Wen-Da

    2015-09-01

    Ellerman bombs (EBs) are tiny brightenings often observed near sunspots. The most impressive characteristic of EB spectra is the two emission bumps in both wings of the Hα and Ca II 8542Å lines. High-resolution spectral data of three small EBs were obtained on 2013 June 6 with the largest solar telescope, the 1.6 m New Solar Telescope at the Big Bear Solar Observatory. The characteristics of these EBs are analyzed. The sizes of the EBs are in the range of 0.3‧ - 0.8‧ and their durations are only 3-5 min. Our semi-empirical atmospheric models indicate that the heating occurs around the temperature minimum region with a temperature increase of 2700-3000 K, which is surprisingly higher than previously thought. The radiative and kinetic energies are estimated to be as high as 5 × 1025 - 3.0 × 1026 erg despite the small size of these EBs. Observations of the magnetic field show that the EBs just appeared in a parasitic region with mixed polarities and were accompanied by mass motions. Nonlinear force-free field extrapolation reveals that the three EBs are connected with a series of magnetic field lines associated with bald patches, which strongly implies that these EBs should be produced by magnetic reconnection in the solar lower atmosphere. According to the lightcurves and the estimated magnetic reconnection rate, we propose that there is a three phase process in EBs: pre-heating, flaring and cooling phases.

  12. Diagnostic and functional structure of a high-resolution thyroid nodule clinic.

    PubMed

    Fernández-García, José Carlos; Mancha-Doblas, Isabel; Ortega-Jiménez, María Victoria; Ruiz-Escalante, José Francisco; Castells-Fusté, Ignasi; Tofé-Povedano, Santiago; Argüelles-Jiménez, Iñaki; Tinahones, Francisco José

    2014-01-01

    Appearance of a thyroid nodule has become a daily occurrence in clinical practice. Adequate thyroid nodule assessment requires several diagnostic tests and multiple medical appointments, which results in a substantial delay in diagnosis. Implementation of a high-resolution thyroid nodule clinic largely avoids these drawbacks by condensing in a single appointment all tests required for adequate evaluation of thyroid nodule. This paper reviews the diagnostic and functional structure of a high-resolution thyroid nodule clinic.

  13. Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications

    NASA Astrophysics Data System (ADS)

    Wysocki, G.; Curl, R. F.; Tittel, F. K.; Maulini, R.; Bulliard, J. M.; Faist, J.

    2005-10-01

    An external cavity (EC) quantum cascade laser (QCL) configuration with the thermoelectrically cooled gain medium fabricated using a bound-to-continuum design and operating in continuous wave at ˜5.2 μm is reported. The EC architecture employs a piezo-activated cavity mode tracking system for mode-hop free operation suitable for high resolution spectroscopic applications and multiple species trace-gas detection. The performance of the EC-QCL exhibits coarse single mode tuning over 35 cm-1 and a continuous mode-hop free fine tuning range of ˜1.2 cm-1.

  14. High-Resolution Spectroscopic Database for the NASA Earth Observing System Program

    NASA Technical Reports Server (NTRS)

    Rothman, Laurence S.; Starr, David (Technical Monitor)

    2002-01-01

    The purpose of this project is to develop and enhance the HITRAN molecular spectroscopic database and associated software to support the observational programs of the Earth Observing System (EOS). In particular, the focus is on the EOS projects: the Atmospheric Infrared Sounder (AIRS), the High-Resolution Dynamics Limb Sounder (HIRDLS), Measurements of Pollution in the Troposphere (MOPITT), the Tropospheric Emission Spectrometer (TES), and the Stratospheric Aerosol and Gas Experiment (SAGE III). The data requirements of these programs in terms of spectroscopy are varied, but usually call for additional spectral parameters or improvements to existing molecular bands. In addition, cross-section data for heavier molecular species must be expanded and made amenable to modeling in remote sensing. The effort in the project also includes developing software and distribution to make access, manipulation, and use of HITRAN functional to the EOS program.

  15. High-resolution spectroscopic of red giants stars in NGC 2360

    NASA Astrophysics Data System (ADS)

    Sales Silva, J. V.; Pereira, C. B.

    2014-10-01

    Open clusters are excellent laboratories to test our knowledge of the formation and evolution of the two components of the disk (thick and thin disk), and stellar structure and evolution, since the stars present the same age and distance reducing the uncertainties associated with field stars of the Galaxy. NGC 2360 is an open cluster with 0.85 Gyr, with galactocentric distance equal to 9.28 Kpc and height equal to -30 pc. We determine to 15 stars in the NGC 2360 using high resolution spectroscopy the atmospheric parameters and the chemical composition for Fe, Ni, Cr, Ca, Mg, Si, Ti, Na, Al, Ba, Y, Zr, La, Ce and Nd with measures of equivalent widths of absorption lines, and spectral synthesis for C, O and N. The spectra of 14 stars were obtained with FEROS at the 2.2m ESO telescopes at La Silla (Chile). Only one star was observed with UVES/VLT at Paranal Observatory. Atmospheric parameters and abundances were determined using the LTE atmosphere models of Kurucz and the spectral analysis code MOOG. The abundance of alpha and iron-peak elements of NGC 2360 are typical disk abundances. We also observed a slight overabundance of the elements generated by the s-process in NGC 2360 with respect to field stars of the disk. The overabundance of the elements generated by the s-process occurs in young open clusters and may be linked to high-efficiency of these nucleosynthesis in low-mass stars (<1.5M_{odot}). However, this high-efficiency has not been explained by the stellar evolutionary models. Additional observations and high resolution spectroscopic analysis of intermediate-age open clusters (like NGC 2360) are necessary to confirm the slight overabundances of s-process elements with relation to field stars of the disk and old open clusters.

  16. Proposed Mission Concept for the Astrophysical Plasma-dynamic Explorer (APEX): An EUV High-Resolution Spectroscopic SMEX

    SciTech Connect

    Kowalski, M P

    2004-07-02

    EUVE and the ROSAT WFC have left a tremendous legacy in astrophysics at EUV wavelengths. More recently, Chandra and XMM-Newton have demonstrated at X-ray wavelengths the power of high-resolution astronomical spectroscopy, which allows the identification of weak emission lines, the measurement of Doppler shifts and line profiles, and the detection of narrow absorption features. This leads to a complete understanding of the density, temperature, abundance, magnetic, and dynamic structure of astrophysical plasmas. However, the termination of the EUVE mission has left a gaping hole in spectral coverage at crucial EUV wavelengths ({approx}100-300 Angstroms), where hot (10{sup 5}-10{sup 8} K) plasmas radiate most strongly and produce critical spectral diagnostics. CHIPS will fill this hole only partially as it is optimized for diffuse emission and has only moderate resolution (R{approx}150). For discrete sources, we have successfully flown a follow-on instrument to the EUVE spectrometer (A{sub eff} {approx}1 cm{sup 2}, R {approx}400), the high-resolution spectrometer J-PEX (A{sub eff} {approx}3 cm{sup 2}, R {approx}3000). Here we build on the J-PEX prototype and present a strawman design for an orbiting spectroscopic observatory, APEX, a SMEX-class instrument containing a suite of 8 spectrometers that together achieve both high effective area (A{sub eff}>20 cm{sup 2}) and high spectral resolution (R{approx}10,000) over the range 100-300 Angstroms. We also discuss alternate configurations for shorter and longer wavelengths.

  17. NDSD-1000: High-resolution, high-temperature Nitrogen Dioxide Spectroscopic Databank

    NASA Astrophysics Data System (ADS)

    Lukashevskaya, A. A.; Lavrentieva, N. N.; Dudaryonok, A. C.; Perevalov, V. I.

    2016-11-01

    We present a high-resolution, high-temperature version of the Nitrogen Dioxide Spectroscopic Databank called NDSD-1000. The databank contains the line parameters (positions, intensities, self- and air-broadening coefficients, exponents of the temperature dependence of self- and air-broadening coefficients) of the principal isotopologue of NO2. The reference temperature for line intensity is 296 K and the intensity cutoff is 10-25 cm-1/molecule cm-2 at 1000 K. The broadening parameters are presented for two reference temperatures 296 K and 1000 K. The databank has 1,046,808 entries, covers five spectral regions in the 466-4776 cm-1 spectral range and is designed for temperatures up to 1000 K. The databank is based on the global modeling of the line positions and intensities performed within the framework of the method of effective operators. The parameters of the effective Hamiltonian and the effective dipole moment operator have been fitted to the observed values of the line positions and intensities collected from the literature. The broadening coefficients as well as the temperature exponents are calculated using the semi-empirical approach. The databank is useful for studying high-temperature radiative properties of NO2. NDSD-1000 is freely accessible via the internet site of V.E. Zuev Institute of Atmospheric Optics SB RAS ftp://ftp.iao.ru/pub/NDSD/.

  18. Hunting the parent of the Orphan stream. II. The first high-resolution spectroscopic study

    SciTech Connect

    Casey, Andrew R.; Keller, Stefan C.; Da Costa, Gary; Maunder, Elizabeth; Frebel, Anna

    2014-03-20

    We present the first high-resolution spectroscopic study on the Orphan stream for five stream candidates, observed with the Magellan Inamori Kyocera Echelle spectrograph on the Magellan Clay telescope. The targets were selected from the low-resolution catalog of Casey et al.: three high-probability members, one medium, and one low-probability stream candidate were observed. Our analysis indicates that the low- and medium-probability targets are metal-rich field stars. The remaining three high-probability targets range over ∼1 dex in metallicity, and are chemically distinct compared to the other two targets and all standard stars: low [α/Fe] abundance ratios are observed, and lower limits are ascertained for [Ba/Y], which sit well above the Milky Way trend. These chemical signatures demonstrate that the undiscovered parent system is unequivocally a dwarf spheroidal galaxy, consistent with dynamical constraints inferred from the stream width and arc. As such, we firmly exclude the proposed association between NGC 2419 and the Orphan stream. A wide range in metallicities adds to the similarities between the Orphan stream and Segue 1, although the low [α/Fe] abundance ratios in the Orphan stream are in tension with the high [α/Fe] values observed in Segue 1. Open questions remain before Segue 1 could possibly be claimed as the 'parent' of the Orphan stream. The parent system could well remain undiscovered in the southern sky.

  19. High Resolution Spectroscopic Database for the NASA Earth Observing System Program

    NASA Technical Reports Server (NTRS)

    Rothman, Laurence

    2004-01-01

    The purpose of this project has been to develop and enhance the HITRAN molecular spectroscopic database and associated software to support the observational programs of the Earth Observing System (EOS). Emphasis has been on the EOS projects: the Atmospheric Infrared Sounder (AIRS), the High-Resolution Dynamics Limb Sounder (HIRDLS), Measurements of Pollution in the Troposphere (MOPITT), the Tropospheric Emission Spectrometer (TES), and the Stratospheric Aerosol and Gas Experiment (SAGE III). The HITRAN program is also involved in the Ozone Monitoring Experiment (OMI). The data requirements of these programs in terms of spectroscopy are varied with respect to constituents being observed, required remote-sensing parameters, and spectral coverage. A general requisite is for additional spectral parameters and improvements to existing molecular bands sufficient for the simulation of the observations leading to retrieval of the atmospheric state. In addition, cross-section data for heavier molecular species must be expanded and made amenable to modeling in remote sensing. The effort in the project also includes developing software and distribution to make access, manipulation, and use of HITRAN functional to the EOS program.

  20. High-Resolution Spectroscopic Database for the NASA Earth Observing System Program

    NASA Technical Reports Server (NTRS)

    Rothman, Laurence S.

    2004-01-01

    The purpose of this project is to develop and enhance the HITRAN molecular spectroscopic database and associated - software to support the observational programs of the Earth observing System (EOS). In particular, the focus is on the EOS projects: the Atmospheric Infrared Sounder (AIRS), the High-Resolution Dynamics Limb Sounder (HIRDLS), Measurements of Pollution in the Troposphere (MOPITT), the Tropospheric Emission Spectrometer (TES), and the Stratospheric Aerosol and Gas Experiment (SAGE III). The HITRAN program is also involved in the Ozone Monitoring Experiment (OMI). The data requirements of these programs in terms of spectroscopy are varied with respect to constituents being observed, required remote-sensing parameters, and spectral coverage. A general requisite is for additional spectral parameters and improvements to existing molecular bands sufficient for the simulation of the observations leading to retrieval of the atmospheric state. In addition cross-section data for heavier molecular species must be expanded and made amenable to modeling in remote sensing. The effort in the project also includes developing software and distribution to make access, manipulation, and use HITRAN functional to the EOS program.

  1. High-Resolution Spectroscopic Studies of Complexes Formed by Medium-Size Organic Molecules.

    PubMed

    Becucci, Maurizio; Melandri, Sonia

    2016-05-11

    A wealth of structural and dynamical information has been obtained in the last 30 years from the study of high-resolution spectra of molecular clusters generated in a cold supersonic expansion by means of highly resolved spectroscopic methods. The data obtained, generally lead to determination of the structures of stable conformations. In addition, in the case of weakly bound molecular complexes, it is usual to observe the effects of internal motions due to the shallowness of the potential energy surfaces involved and the flexibility of the systems. In the case of electronic excitation experiments, also the effect of electronic distribution changes on both equilibrium structures and internal motions becomes accessible. The structural and dynamical information that can be obtained by applying suitable theoretical models to the analysis of these unusually complex spectra allows the determination and understanding of the driving forces involved in formation of the molecular complex. In this way, many types of non-covalent interactions have been characterized, from pure van der Waals interactions in complexes of rare gases to moderate-strength and weak hydrogen bonds and to the most recent halogen bonds and n-π interactions. The aim of this review is to underline how the different experimental and theoretical methods converge in giving a detailed picture of weak interactions in small molecular adducts involving medium-size molecules. The conclusions regarding geometries and energies can contribute to understanding of the different driving forces involved in the dynamics of the processes and can be exploited in all fields of chemistry and biochemistry, from design of new materials with novel properties to rational design of drugs. PMID:26986455

  2. Hunting the Parent of the Orphan Stream. II. The First High-resolution Spectroscopic Study

    NASA Astrophysics Data System (ADS)

    Casey, Andrew R.; Keller, Stefan C.; Da Costa, Gary; Frebel, Anna; Maunder, Elizabeth

    2014-03-01

    We present the first high-resolution spectroscopic study on the Orphan stream for five stream candidates, observed with the Magellan Inamori Kyocera Echelle spectrograph on the Magellan Clay telescope. The targets were selected from the low-resolution catalog of Casey et al.: three high-probability members, one medium, and one low-probability stream candidate were observed. Our analysis indicates that the low- and medium-probability targets are metal-rich field stars. The remaining three high-probability targets range over ~1 dex in metallicity, and are chemically distinct compared to the other two targets and all standard stars: low [α/Fe] abundance ratios are observed, and lower limits are ascertained for [Ba/Y], which sit well above the Milky Way trend. These chemical signatures demonstrate that the undiscovered parent system is unequivocally a dwarf spheroidal galaxy, consistent with dynamical constraints inferred from the stream width and arc. As such, we firmly exclude the proposed association between NGC 2419 and the Orphan stream. A wide range in metallicities adds to the similarities between the Orphan stream and Segue 1, although the low [α/Fe] abundance ratios in the Orphan stream are in tension with the high [α/Fe] values observed in Segue 1. Open questions remain before Segue 1 could possibly be claimed as the "parent" of the Orphan stream. The parent system could well remain undiscovered in the southern sky. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  3. Vertical profiling of methane and carbon dioxide using high resolution near-infrared heterodyne spectroscopic observations

    NASA Astrophysics Data System (ADS)

    Rodin, Alexander; Klimchuk, Artem; Churbanov, Dmitry; Pereslavtseva, Anastasia; Spiridonov, Maxim; Nadezhdinskyi, Alexander

    2014-05-01

    We present new method of monitoring greenhouse gases using spectroscopic observations of solar radiation passed through the atmosphere with spectral resolution ΛvδΛ up to 108. Such a high resolution is achieved by heterodyne technique and allows to retrieve full information about spectral line shape which, in turn, is used to distinguish contribution of different atmospheric layers to the resulting absorption. Weak absorption line at 6056.5 cm-1 was selected for CO2 measurements and a quartet of lines centered at 6057 cm-1for CH4. The instrument setup includes Sun tracker with a microtelescope and chopper, diode DFB laser used as a local oscillator, a bundle of single mode optical fibers that provides medium for radiation transfer and beam coupling, reference cell with depressurized methane for LO frequency stabilization, and Fabry-Perot etalon for LO frequency calibration. A commercial p-i-n diode with squared detector replaces a mixer and IF spectrometer, providing measurement of heterodyne beating within a bandpass of few MHz, which determines the effective spectral resolution of the instrument. Spectral coverage within narrow range (about 1 cm-1) is provided by ramping the LO frequency based on feedback from the reference channel. Observations of Sun in the Moscow region have resulted for the first time in measurements of the atmospheric transmission near 1.65 μm with sub-Doppler spectral resolution. In order to retrieve vertical profiles of methane and carbon dioxide we developed the inversion algorithm implementing Tikhonov regularization approach. With measured transmission having S/N ratio of 100 or higher, the uncertainty of CH4 profile is about 10 ppb, with the uncertainty of CO2 profile at 1 ppm. This techniques is promising an affordable opportunity or widespread monitoring of greenhouse gases and may be implemented on existing ground-based stations. This work has been supported by the grant of Russian Ministry of education and science #11.G34.31.0074

  4. Real-time expert system diagnostics and monitoring for the High Resolution Microwave Survey Targeted Search

    NASA Technical Reports Server (NTRS)

    Macalou, A.; Glass, B. J.

    1993-01-01

    An automated monitoring and diagnostics system (MDS) using virtual real-time software was developed for NASA's High Resolution Microwave Survey (HRMS) Targeted Search System (TSS). The four main tasks required of the MDS were monitoring and recording system health, alerting operators of problems, diagnosing poor system performance, and performing an emergency system shutdown. The MDS was implemented using commercial expert system software tools in addition to interface hardware and software developed on site. The expert system used objects, rules, and schematics in its TSS knowledge representation. The MDS was successfully integrated into the HRMS computer environment, and its performance met or exceeded its requirements.

  5. OWN Survey: results after seven years of high-resolution spectroscopic monitoring of Southern O and WN stars

    NASA Astrophysics Data System (ADS)

    Barbá, R.; Gamen, R.; Arias, J. I.; Morrell, N.; Walborn, N. R.; Maíz Apellániz, J.; Sota, A.; Alfaro, E.

    2014-10-01

    We describe briefly the main results of the high-resolution spectroscopic monitoring survey of southern Galactic O- and WN-type stars. The high-resolution spectroscopic monitoring survey of O and WN stars (OWN Survey, Barbá et al. 2010) has completed seven years of sustained campaign, using observational facilities in Chile and Argentina. The selected sample corresponds to those stars for which there is no indication of multiplicity in the Galactic O-star Catalog (Maíz Apellániz et al. 2004) and the VII Catalogue of Galactic WR stars (van der Hucht 2001). We have collected almost 5000 spectra of about 240 O and WN stars. From that sample of 190 O-type stars, we have discovered 146 stars showing radial variations greater than 10 km/s, including 108 new systems, being 56 single-lined spectroscopic binaries, 43 double-lined spectroscopic binaries, and 9 multiple-lined binaries. The new orbital periods spanning from 1.5 to 2200 days. In this work, we present the main result of ``OWN Survey'': the determination of orbits for over fifty O-type spectroscopic binary systems, and the analysis of the spectral-type, luminosty, period, eccentricity, and mass-ratio distributions. This result is unprecedented in the context of massive binary stars, since we are almost doubling the number of Galactic O-type star systems with known orbits.

  6. Ultra-High Resolution Spectroscopic Remote Sensing: A Microscope on Planetary Atmospheres

    NASA Technical Reports Server (NTRS)

    Kostiuk, Theodor

    2010-01-01

    Remote sensing of planetary atmospheres is not complete without studies of all levels of the atmosphere, including the dense cloudy- and haze filled troposphere, relatively clear and important stratosphere and the upper atmosphere, which are the first levels to experience the effects of solar radiation. High-resolution spectroscopy can provide valuable information on these regions of the atmosphere. Ultra-high spectral resolution studies can directly measure atmospheric winds, composition, temperature and non-thermal phenomena, which describe the physics and chemistry of the atmosphere. Spectroscopy in the middle to long infrared wavelengths can also probe levels where dust of haze limit measurements at shorter wavelength or can provide ambiguous results on atmospheric species abundances or winds. A spectroscopic technique in the middle infrared wavelengths analogous to a radio receiver. infrared heterodyne spectroscopy [1], will be describe and used to illustrate the detailed study of atmospheric phenomena not readily possible with other methods. The heterodyne spectral resolution with resolving power greater than 1,000.000 measures the true line shapes of emission and absorption lines in planetary atmospheres. The information on the region of line formation is contained in the line shapes. The absolute frequency of the lines can be measured to I part in 100 ,000,000 and can be used to accurately measure the Doppler frequency shift of the lines, directly measuring the line-of-sight velocity of the gas to --Im/s precision (winds). The technical and analytical methods developed and used to measure and analyze infrared heterodyne measurements will be described. Examples of studies on Titan, Venus, Mars, Earth, and Jupiter will be presented. 'These include atmospheric dynamics on slowly rotating bodies (Titan [2] and Venus [3] and temperature, composition and chemistry on Mars 141, Venus and Earth. The discovery and studies of unique atmospheric phenomena will also be

  7. Plasma Diagnostics in High Resolution X-Ray Spectra of Magnetic Cataclysmic Variables

    SciTech Connect

    Mauche, C W

    2001-10-02

    Using the Chandra HETG spectrum of EX Hya as an example, we discuss some of the plasma diagnostics available in high-resolution X-ray spectra of magnetic cataclysmic variables. Specifically, for conditions appropriate to collisional ionization equilibrium plasmas, we discuss the temperature dependence of the H- to He-like line intensity ratios and the density and photoexcitation dependence of the He-like R line ratios and the Fe XVII I(17.10 {angstrom})/I(17.05 {angstrom}) line ratio. We show that the plasma temperature in EX Hya spans the range from {approx}0.5 to {approx}10 keV and that the plasma density n {ge} 2 x 10{sup 14} cm{sup -3}, orders of magnitude greater than that observed in the Sun or other late-type stars.

  8. HIGH-RESOLUTION SPECTROSCOPIC IMAGING OF CO IN A z = 4.05 PROTO-CLUSTER

    SciTech Connect

    Hodge, J. A.; Walter, F.; Carilli, C. L.; Daddi, E.

    2013-10-10

    We present a study of the formation of clustered, massive galaxies at large look-back times via spectroscopic imaging of CO in the unique GN20 proto-cluster at z = 4.05. Existing observations show that this is a dense concentration of gas-rich, very active star forming galaxies, including multiple bright submillimeter galaxies (SMGs). Using deep, high-resolution Karl G. Jansky Very Large Array CO(2-1) observations, we image the molecular gas with a resolution of ∼1 kpc just 1.6 Gyr after the big bang. The SMGs GN20.2a and GN20.2b have deconvolved sizes of ∼5 kpc × 3 kpc and ∼8 kpc × 5 kpc (Gaussian FWHM) in CO(2-1), respectively, and we measure gas surface densities up to ∼12,700/1700 × (sin i) (α{sub CO}/0.8) M{sub ☉} pc{sup –2} for GN20.2a/GN20.2b in the highest-resolution maps. Dynamical mass estimates allow us to constrain the CO-to-H{sub 2} conversion factor to α{sub CO} = 1.7 ± 0.8 M{sub ☉} (K km s{sup –1} pc{sup 2}){sup –1} for GN20.2a and α{sub CO}= 1.1±{sup 1.5}{sub 1.1} M{sub ☉} (K km s{sup –1} pc{sup 2}){sup –1} for GN20.2b. We measure significant offsets (0.''5-1'') between the CO and optical emission, indicating either dust obscuration on scales of tens of kiloparsecs or that the emission originates from distinct galaxies. CO spectral line energy distributions imply physical conditions comparable to other SMGs and reveal further evidence that GN20.2a and GN20.2b are in different merging stages. We carry out a targeted search for CO emission from the 14 known B-band Lyman break galaxies (LBGs) in the field, tentatively detecting CO in a previously undetected LBG and placing 3σ upper limits on the CO luminosities of those that may lie within our bandpass. A blind search for emission-line sources down to a 5σ limiting CO luminosity of L{sup ′}{sub CO(2-1)} = 8 x 10{sup 9} K km s{sup –1} pc{sup 2} and covering Δz = 0.0273 (∼20 comoving Mpc) produces no other strong contenders associated with the proto-cluster.

  9. FTIR free-jet set-up for the high resolution spectroscopic investigation of condensable species

    NASA Astrophysics Data System (ADS)

    Georges, R.; Bonnamy, A.; Benidar, A.; Decroi, M.; Boissoles, J.

    2002-05-01

    An existing experimental set-up combining Fourier transform infrared (FTIR) spectroscopy and free-jet cooling has been modified significantly to allow high resolution studies of the spectrum of monomer species which are liquid under standard conditions. Evaporation of the liquid samples is controlled by a condenser apparatus which is described. A supersonic planar expansion issuing from a narrow aperture is preferred for its very high cooling rate. Such an expansion, probed with a pitot tube, has a zone of limited temperature gradient close to the nozzle exit. The continuum isentropic model appears well suited to describing the thermodynamic properties of the flow up to a high number of nozzle diameters downstream. High resolution spectra of benzene and methanol have been recorded in the 3 µm wavelength range, and their analysis demonstrates a well defined rotational temperature in the 20-25 K range.

  10. High-resolution spectroscopic probes of collisions and half-collisions

    SciTech Connect

    Hall, G.E.

    1993-12-01

    Research in this program explores the dynamics of gas phase collisions and photodissociation by high-resolution laser spectroscopy. Simultaneous state and velocity detection frequently permits a determination of scalar or vector correlations among products. The correlated product distributions are always more informative, and often easier to interpret than the uncorrelated product state distributions. The authors have recently built an apparatus to record transient absorption spectra with 50 nS time resolution and 20 MHz frequency resolution using a single frequency Ti:sapphire laser. The photodissociation of NCCN and C{sub 2}H{sub 5}SCN at 193 nm is discussed.

  11. High-resolution spectroscopic atlas of M subdwarfs. Effective temperature and metallicity

    NASA Astrophysics Data System (ADS)

    Rajpurohit, A. S.; Reylé, C.; Allard, F.; Scholz, R.-D.; Homeier, D.; Schultheis, M.; Bayo, A.

    2014-04-01

    Context. M subdwarfs are metal-poor and cool stars. They are important probes of the old galactic populations. However, they remain elusive because of their low luminosity. Observational and modelling efforts are required to fully understand their physics and to investigate the effects of metallicity in their cool atmospheres. Aims: We performed a detailed study of a sample of subdwarfs to determine their stellar parameters and constrain the state-of-the art atmospheric models. Methods: We present UVES/VLT high-resolution spectra of three late-K subdwarfs and 18 M subdwarfs. Our atlas covers the optical region from 6400 Å to the near-infrared at 8900 Å. We show spectral details of cool atmospheres at very high-resolution (R ~ 40 000) and compare them with synthetic spectra computed from the recent BT-Settl atmosphere models. Results: Our comparison shows that molecular features (TiO, VO, CaH), and atomic features (Fe I, Ti I, Na I, K I) are well-fitted by current models. We produce a relation of effective temperature versus spectral type over the entire subdwarf spectral sequence. The high-resolution of our spectra unabled us to perform a detailed comparison of the line profiles of individual elements such as Fe I, Ca II, and Ti I, and we determined accurate metallicities of these stars. These determinations in turn enabled us to calibrate the relation between metallicity and molecular-band strength indices from low-resolution spectra. Conclusions: The new generation of models is able to reproduce various spectral features of M subdwarfs. These high-resolution spectra allowed us to separate the atmospheric parameters (effective temperature, gravity, metallicity), which is not possible when using low-resolution spectroscopy or photometry. Based on observations made with the ESO Very Large Telescope at the Paranal Observatory under programme 087.D-0586A and 087.D-0586B.Tables 1 and 2 along with the reduced spectra are only available at the CDS via anonymous ftp to

  12. Nitrosyl iodide, INO: A combined ab initio and high-resolution spectroscopic study

    NASA Astrophysics Data System (ADS)

    Bailleux, S.; Duflot, D.; Aiba, S.; Nakahama, S.; Ozeki, H.

    2016-04-01

    In the nitrosyl halides series (XNO, where X = F, Cl, Br, I), INO is the only chemical species whose rotational spectrum has not been reported. Nitrosyl iodide, together with the nitryl (INO2), nitrite (IONO) and nitrate (IONO2) iodides, is believed to impact tropospheric ozone levels. Guided by our quantum chemical calculations, we report the detection of INO in the gas phase by high-resolution spectroscopy for the first time. INO was generated by mixing continuously I2 and NO. The measurement and least-squares analysis of 173 a-type rotational transitions resulted in the accurate determination of molecular parameters.

  13. Anatomical and functional brain imaging using high-resolution echo-planar spectroscopic imaging at 1.5 Tesla.

    PubMed

    Du, Weiliang; Karczmar, Gregory S; Uftring, Stephen J; Du, Yiping P

    2005-06-01

    High-resolution echo-planar spectroscopic imaging (EPSI) of water resonance (i.e. without water suppression) is proposed for anatomic and functional imaging of the human brain at 1.5 T. Water spectra with a resolution of 2.6 Hz and a bandwidth of 333 Hz were obtained in small voxels (1.7 x 1.7 x 3 mm3) across a single slice. Although water spectra appeared Lorentzian in most of the voxels in the brain, non-Lorentzian broadening of the water resonance was observed in voxels containing blood vessels. In functional experiments with a motor task, robust activation in motor cortices was observed in high-resolution T2* maps generated from the EPSI data. Shift of the water resonance frequency occurred during neuronal activation in motor cortices. The activation areas appeared to be more localized after excluding the voxels in which the lineshape of the water resonance had elevated T2* and became more non-Lorentzian during the motor task. These preliminary results suggest that high-resolution EPSI is a promising tool to study susceptibility-related effects, such as BOLD contrast, for improved anatomical and functional imaging of the brain.

  14. A high-resolution coherent transition radiation diagnostic for laser-produced electron transport studies (invited)

    SciTech Connect

    Storm, M.; Begishev, I. A.; Brown, R. J.; Mileham, C.; Myatt, J. F.; Nilson, P. M.; Sangster, T. C.; Stoeckl, C.; Theobald, W.; Zuegel, J. D.; Guo, C.; Meyerhofer, D. D.

    2008-10-15

    High-resolution images of the rear-surface optical emission from high-intensity (I{approx}10{sup 19} W/cm{sup 2}) laser illuminated metal foils have been recorded using coherent transition radiation (CTR). CTR is generated as relativistic electrons, generated in high-intensity laser-plasma interactions, exit the target's rear surface and move into vacuum. A transition radiation diagnostic (TRD) records time-integrated images in a 24 nm bandwidth window around {lambda}=529 nm. The optical transmission at {lambda}=1053 nm, the laser wavelength, is 15 orders of magnitude lower than the transmission at the wavelength of interest, {lambda}=527 nm. The detector is a scientific grade charge-coupled device (CCD) camera that operates with a signal-to-noise ratio of 10{sup 3} and has a dynamic range of 10{sup 4}. The TRD has demonstrated a spatial resolution of 1.4 {mu}m over a 1 mm field of view, limited only by the CCD pixel size.

  15. Diagnostics of the accretion plasma in magnetic CVs from high-resolution X-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Burwitz, V.; Reinsch, K.; Haberl, F.; Gänsicke, B. T.; Predehl, P.

    2002-01-01

    High-resolution X-ray spectroscopy with the Chandra low energy transmission grating spectrometer (LETGS) provides an unprecedented diagnostic tool for the hot accretion plasma and the settling flow in the accretion column of magnetic cataclysmic variables (mCVs). We show first results from our analysis of spin-phase resolved X-ray spectroscopy of the two prototype magnetic CVs, AM Her and PQ Gem. The LETGS spectra cover the wavelength range 2--170Å with a spectral resolution λ/Δ λ = 200--3000. For the first time, absorption structures in the soft X-ray component of the heated white-dwarf atmosphere are revealed and individual emission lines of H- and He-like O and N ions including the density sensitive components of the He-like triplets are resolved in the hard X-ray component originating from the settling flow. In addition, phase dependent Doppler-shifts of the emission lines are detected providing detailed information on the geometry of the accretion funnel.

  16. Dynamic high-resolution spectroscopic frequency referencing for frequency sweeping interferometry

    NASA Astrophysics Data System (ADS)

    Prellinger, Günther; Meiners-Hagen, Karl; Pollinger, Florian

    2016-06-01

    A spectroscopic reference for the intrinsic frequency calibration of a ranging system based on frequency-sweeping interferometry (FSI) is presented. Saturation spectroscopy of iodine transitions at 636.8 nm is used to generate well-defined frequency markers. The experimental and analytic implementation is shown to enable in principle a frequency determination with an uncertainty of 0.17 MHz for a coverage factor k = 1. This corresponds to a relative standard uncertainty of 1.5× {10}-7 as contribution to the combined measurement uncertainty of the FSI-based length measurement. But the analysis also reveals the high sensitivity of the actually achievable measurement uncertainty to the quality of the spectroscopic reference data.

  17. A High Resolution Spectroscopic Observation of CAL 83 with XMM-Newton/RGS

    NASA Technical Reports Server (NTRS)

    Paerels, Frits; Rasmussen, Andrew P.; Hartmann, H. W.; Heise, J.; Brinkman, A. C.; deVries, C. P.; denHerder, J.-W.

    2000-01-01

    We present the first high resolution photospheric X-ray spectrum of a Supersoft X-ray Source, the famous CAL 83 in the Large Magellanic Cloud. The spectrum was obtained with the Reflection Grating Spectrometer on XMM-Newton during the Calibration/Performance Verification phase of the observatory. The spectrum covers the range 20-40 A at an approximately constant resolution of 0.05 A, and shows very significant, intricate detail, that is very sensitive to the physical properties of the object. We present the results of an initial investigation of the spectrum, from which we draw the conclusion that the spectral structure is probably dominated by numerous absorption features due to transitions in the Gshells of the mid-2 elements and the M-shell of Fe, in addition to a few strong K-shell features due to CNO.

  18. A high resolution spectroscopic study of the oxygen molecule. Ph.D. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Ritter, K. J.

    1984-01-01

    A high resolution spectrometer which incorporates a narrow line width tunable dye laser was used to make absorption profiles of 57 spectral lines in the Oxygen A-Band at pressures up to one atmosphere in pure O2. The observed line profiles are compared to the Voigt, and a collisionally narrowed, profile using a least squares fitting procedure. The collisionally narrowed profile compares more favorable to the observed profiles. Values of the line strengths and self broadening coeffiencients, determined from the least square fitting process, are presented in tabular form. It is found that the experssion by Watson are in closest agreement with the experimentally determined strengths. The self broadening coefficients are compared with the measurements of several other investigators.

  19. Analysis of corrosion layers in ancient Roman silver coins with high resolution surface spectroscopic techniques

    NASA Astrophysics Data System (ADS)

    Keturakis, Christopher J.; Notis, Ben; Blenheim, Alex; Miller, Alfred C.; Pafchek, Rob; Notis, Michael R.; Wachs, Israel E.

    2016-07-01

    Determination of the microchemistry of surface corrosion layers on ancient silver alloy coins is important both in terms of understanding the nature of archaeological environmental conditions to which these ancient coins were exposed and also to help in their conservation. In this present study, five ancient silver alloy coins (225 BCE-244 CE) were used as test vehicles to measure their immediate surface microchemistry and evaluate the appropriateness and limitations of High Sensitivity-Low Energy Ion Scattering Spectroscopy (HS-LEIS, 0.3 nm depth analysis), High Resolution-X-ray Photoelectron Spectroscopy (HR-XPS, 1-3 nm depth analysis) and High Resolution-Raman Spectroscopy (HR-Raman, ∼1000 nm depth analysis). Additional information about the deeper corrosion layers, up to ∼300-1000 nm, was provided by dynamic HS-LEIS and HR-Raman spectroscopy. While not archeologically significant, the use of these coins of small commercial value provides data that is more representative of the weaker signals typically obtained from ancient corroded objects, which can be in stark contrast to pristine data often obtained from carefully prepared alloys of known composition. The oldest coins, from 225 to 214 BCE, possessed an outermost surface layer containing Cu2O, Na, Al, Pb, and adsorbed hydrocarbons, while the more recent coins, from 98 to 244 CE, contained Cu2O, Ag, N, F, Na, Al, S, Cl, and adsorbed hydrocarbons in similar corresponding surface layers. It thus appears that alloying with copper, even in small amounts, leads to the formation of an outer Cu2O layer. Depth profiling revealed the presence of K, Na, Cl, and S as key corrosion components for both sets of coins with S, most likely as Ag2S, concentrated towards the surface while the Cl, most likely as AgCl, penetrated deeper. Schema to understand the overall chemistry of the corrosion layers present on these silver alloy coins were developed from the equipment limitations encountered and are presented.

  20. Diagnostic value of high-resolution micro-endoscopy for the classification of colon polyps

    PubMed Central

    Tan, Tao; Qu, Ya-Wei; Shu, Juan; Liu, Min-Li; Zhang, Ling; Liu, Hai-Feng

    2016-01-01

    AIM: To study a new imaging equipment, high-resolution micro-endoscopy (HRME), in the diagnosis and pathological classification of colon polyps. METHODS: We selected 114 specimens of colon polyps, 30 of which were colon polyps with known pathological types and 84 that were prospective polyp specimens; 10 normal colon mucosa specimens served as controls. We obtained images of 30 colon polyp specimens with known pathological types using HRME and analyzed the characteristics of these images to develop HRME diagnostic criteria for different pathological types of colon polyps. Based on these criteria, we performed a prospective study of 84 colon polyp specimens using HRME and compared the results with those of the pathological examination to evaluate the diagnostic value of HRME in the pathological classification of different types of colon polyps. RESULTS: In the 30 cases of known pathological type of colon polyp samples, there were 21 cases of adenomatous polyps, which comprised nine cases of tubular adenoma, seven cases of villous adenoma and five cases of mixed adenomas. The nine cases of non-adenomatous polyps included four cases of inflammatory polyps and five cases of hyperplastic polyps five. Ten cases of normal colonic mucosa were confirmed pathologically. In a prospective study of 84 cases using HRME, 23 cases were diagnosed as inflammatory polyps, 11 cases as hyperplastic polyps, 18 cases as tubular adenoma, eight cases as villous adenoma and 24 cases as mixed adenomas. After pathological examination, 24 cases were diagnosed as inflammatory polyps, 11 cases as hyperplastic polyps, 19 cases as tubular adenoma, eight cases as villous adenoma and 22 cases as mixed adenomas. Compared with the pathological examinations, the sensitivities, specificities, accuracies, and positive and negative predictive values of HRME in diagnosing inflammatory polyps (87.5%, 96.7%, 94.0%, 91.3% and 95.1%), hyperplastic polyps (72.7%, 95.9%, 92.9%, 72.7% and 95.9%), tubular adenomas

  1. Spectroscopic separation of Čerenkov radiation in high-resolution radiation fiber dosimeters

    NASA Astrophysics Data System (ADS)

    Darafsheh, Arash; Zhang, Rongxiao; Kanick, Stephen Chad; Pogue, Brian W.; Finlay, Jarod C.

    2015-09-01

    We have investigated Čerenkov radiation generated in phosphor-based optical fiber dosimeters irradiated with clinical electron beams. We fabricated two high-spatial resolution fiber-optic probes, with 200 and 400 μm core diameters, composed of terbium-based phosphor tips. A generalizable spectroscopic method was used to separate Čerenkov radiation from the transmitted signal by the fiber based on the assumption that the recorded signal is a linear superposition of two basis spectra: characteristic luminescence of the phosphor medium and Čerenkov radiation. We performed Monte Carlo simulations of the Čerenkov radiation generated in the fiber and found a strong dependence of the recorded Čerenkov radiation on the numerical aperture of the fiber at shallow phantom depths; however, beyond the depth of maximum dose that dependency is minimal. The simulation results agree with the experimental results for Čerenkov radiation generated in fibers. The spectroscopic technique used in this work can be used for development of high-spatial resolution fiber micro dosimeters and for optical characterization of various scintillating materials, such as phosphor nanoparticles, in ionizing radiation fields of high energy.

  2. Chromospheric activity on late-type star DM UMa using high-resolution spectroscopic observations

    NASA Astrophysics Data System (ADS)

    Zhang, LiYun; Pi, QingFeng; Han, Xianming L.; Chang, Liang; Wang, Daimei

    2016-06-01

    We present new 14 high-resolution echelle spectra to discuss the level of chromospheric activity of DM UMa in {He I} D3, {Na I} D1, D2, Hα, and {Ca II} infrared triplet lines (IRT). It is the first time to discover the emissions above the continuum in the {He I} D3 lines on 2015 February 9 and 10. The emission on February 9 is the strongest one ever detected for DM UMa. We analysed these chromospheric active indicators by employing the spectral subtraction technique. The subtracted spectra reveal weak emissions in the {Na I} D1, D2 lines, strong emission in the Hα line, and clear excess emissions in the {Ca II} IRT lines. Our values for the EW8542/EW8498 ratio are on the low side, in the range of 1.0-1.7. There are also clear phase variations of the level of chromospheric activity in equivalent width (EW) light curves in these chromospheric active lines (especially the Hα line). These phenomena might be explained by flare events or rotational modulations of the level of chromospheric activity.

  3. High-Resolution Mass Spectroscopic Analysis of Secondary Organic Aerosol Generated by Ozonolysis of Isoprene

    SciTech Connect

    Nguyen, Tran B; Bateman, Adam P; Bones, David L; Nizkorodov, Serguei; Laskin, Julia; Laskin, Alexander

    2010-02-01

    The chemical composition of secondary organic aerosol (SOA) generated from the ozonolysis of isoprene (C5H8) in the presence of an OH scavenger was examined using high-resolution electrospray ionization mass spectrometry (ESI-MS). The chemical composition of SOA is complex, with more than 1000 assigned peaks observed in the positive and negative ion mode spectra. Only a small fraction of peaks corresponds to known products of isoprene oxidation, such as pyruvic acid, glycolic acid, methylglyoxal, etc. The absolute majority of the detected peaks correspond to highly oxidized oligomeric constituents of SOA, with an average O:C molar ratio of ~0.6. The corresponding organic mass (OM) to organic oxygen (OO) ratio is OM/OO ~2.4. Approximately 8% of oxygen atoms in SOA are in the form of peroxides as quantified with an iodide test. Double bond equivalency (DBE) factors, representing the sum of all double bonds and rings, increase by 1 for every 2-3 additional carbon atoms in the molecule. The prevalent oligomer building blocks are therefore carbonyls or carboxylic acids with a C2-C3 skeleton. Kendrick analysis suggests that simple aldehydes, specifically formaldehyde, acetaldehyde, and methylglyoxal can serve as monomeric building blocks in the observed oligomers. The large number of reactive functional groups, especially organic peroxides and carbonyls, suggests that isoprene/O3 SOA should be prone to chemical and photochemical aging.

  4. High-resolution spectroscopic studies of ultra metal-poor stars found in the LAMOST survey

    NASA Astrophysics Data System (ADS)

    Li, Haining; Aoki, Wako; Zhao, Gang; Honda, Satoshi; Christlieb, Norbert; Suda, Takuma

    2015-10-01

    We report on the observations of two ultra metal-poor (UMP) stars with [Fe/H] ˜ -4.0, including one new discovery. The two stars are studied in the on-going and quite efficient project to search for extremely metal-poor (EMP) stars with LAMOST and Subaru. Detailed abundances or upper limits of abundances have been derived for 15 elements from Li to Eu based on high-resolution spectra obtained with the High Dispersion Spectrograph (HDS) mounted in the Subaru Telescope. The abundance patterns of both UMP stars are consistent with the "normal population" among the low-metallicity stars. Both of the two program stars show carbon-enhancement without any excess of heavy neutron-capture elements, indicating that they belong to the subclass of (carbon-enhanced metal-poor) CEMP-no stars, as is the case of most UMP stars previously studied. The [Sr/Ba] ratios of both CEMP-no UMP stars are above [Sr/Ba] ˜ -0.4, suggesting the origin of the carbon-excess is not compatible with the mass transfer from an asymptotic giant branch companion where the s-process has operated. Lithium abundance is measured in the newly discovered UMP star LAMOST J125346.09+075343.1, making it the second UMP turnoff star with Li detection. The Li abundance of LAMOST J125346.09+075343.1 is slightly lower than the values obtained for less metal-poor stars with similar temperatures, and provides a unique data point at [Fe/H] ˜ -4.2 to support the "meltdown" of the Li Spite plateau at extremely low metallicity. Comparison with the other two UMP and HMP (hyper metal-poor, with [Fe/H] < -5.0) turnoff stars suggests that the difference in lighter elements such as CNO and Na might cause notable difference in lithium abundances among CEMP-no stars.

  5. Determination of Spectroscopic Properties of Atmospheric Molecules from High Resolution Vacuum Ultraviolet Cross Section and Wavelength Measurements

    NASA Technical Reports Server (NTRS)

    Parkinson, W. H.; Yoshino, K.

    1999-01-01

    We have studied the spectroscopy and the cross sections of the simple molecules of atmospheric interest such as oxygen, nitric oxide, carbon dioxide, and water. We have made cross section measurements on an absolute base without the effects from the limited instrumental resolution. We have used the following different instruments- the grating spectrometer (6.65-m at CfA, 3-m at Photon Factory), VUV Fourier transform spectrometer at Imperial College, and then moved the same one to the Photon Factory. Selection of the instruments depend on the appearance of molecular bands, and their wavelength region. For example, the cross section measurements of Doppler limited bands can been done with the Fourier transform spectrometer at the very high resolution (0.025/ cm resolution). All of these spectroscopic measurements are needed for accurate calculations of the production of atomic oxygen penetration of solar radiation into the Earth's atmosphere, and photochemistry of minor molecules.

  6. Determination of Spectroscopic Properties of Atmospheric Molecules from High Resolution Vacuum Ultraviolet Cross Section and Wavelength Measurements

    NASA Technical Reports Server (NTRS)

    Parkinson, W. H.; Yoshino, K.

    1997-01-01

    An account is given of progress during the period 8/l/96-7/31/97 on work on (a) cross section measurements of O2 S-R using a Fourier transform spectrometer (FTS) at the Photon Factory in Japan; (b) the determination of the predissociation linewidths of the Schumann-Runge bands (S-R) of 02; (c) cross section measurements of 02 Herzberg bands using a Fourier transform spectrometer (FTS) at Imperial College; and (d) cross section measurements of H2O in the wavelength region 120-188 nm. The experimental investigations are effected at high resolution with a 6.65 m scanning spectrometer and with the Fourier transform spectrometer. Below 175 nm, synchrotron radiation is most suitable for cross section measurements in combination with spectrometers at the Photon Factory Japan. Cross section measurements of the Doppler limited bands depend on using the very high resolution, available with the Fourier transform spectrometer, (0.025/cm resolution). All of these spectroscopic measurements are needed for accurate calculations of the production of atomic oxygen, the penetration of solar radiation into the Earth's atmosphere, and photochemistry of minor molecules.

  7. High resolution transmission spectroscopy as a diagnostic for Jovian exoplanet atmospheres: constraints from theoretical models

    SciTech Connect

    Kempton, Eliza M.-R.; Perna, Rosalba; Heng, Kevin

    2014-11-01

    We present high resolution transmission spectra of giant planet atmospheres from a coupled three-dimensional (3D) atmospheric dynamics and transmission spectrum model that includes Doppler shifts which arise from winds and planetary motion. We model Jovian planets covering more than two orders of magnitude in incident flux, corresponding to planets with 0.9-55 day orbital periods around solar-type stars. The results of our 3D dynamical models reveal certain aspects of high resolution transmission spectra that are not present in simple one-dimensional (1D) models. We find that the hottest planets experience strong substellar to anti-stellar (SSAS) winds, resulting in transmission spectra with net blueshifts of up to 3 km s{sup –1}, whereas less irradiated planets show almost no net Doppler shifts. We find only minor differences between transmission spectra for atmospheres with temperature inversions and those without. Compared to 1D models, peak line strengths are significantly reduced for the hottest atmospheres owing to Doppler broadening from a combination of rotation (which is faster for close-in planets under the assumption of tidal locking) and atmospheric winds. Finally, high resolution transmission spectra may be useful in studying the atmospheres of exoplanets with optically thick clouds since line cores for very strong transitions should remain optically thick to very high altitude. High resolution transmission spectra are an excellent observational test for the validity of 3D atmospheric dynamics models, because they provide a direct probe of wind structures and heat circulation. Ground-based exoplanet spectroscopy is currently on the verge of being able to verify some of our modeling predictions, most notably the dependence of SSAS winds on insolation. We caution that interpretation of high resolution transmission spectra based on 1D atmospheric models may be inadequate, as 3D atmospheric motions can produce a noticeable effect on the absorption

  8. Determination of spectroscopic properties of atmospheric molecules from high resolution vacuum ultraviolet cross section and wavelength measurements

    NASA Technical Reports Server (NTRS)

    Parkinson, W. H.; Yoshino, K.; Freeman, D. E.

    1993-01-01

    An account is given of progress during the six-month period 1 Nov. 1992 to 30 Apr. 1993 on work on (1) cross section measurements of the Schumann-Runge continuum; (2) the determination of the predissociation linewidths of the Schumann-Runge bands of O2; (3) the determination of the molecular constants of the ground state of O2; (4) cross section measurements of CO2 in wavelength region 120-170 nm; and (4) determination of dissociation energy of O2. The experimental investigations are effected at high resolution with a 6.65 m scanning spectrometer which is, by virtue of its small instrumental width (FWHM = 0.0013 nm), uniquely suitable for cross section measurements of molecular bands with discrete rotational structure. Below 175 nm and in the region of the S-R continuum, synchrotron radiation is suitable for cross section measurements. All of these spectroscopic measurements are needed for accurate calculations of the production of atomic oxygen and penetration of solar radiation into the Earth's atmosphere.

  9. Non-contact high resolution Bessel beam probe for diagnostic imaging of cornea and trabecular meshwork region in eye

    NASA Astrophysics Data System (ADS)

    Murukeshan, V. M.; Jesmond, Hong Xun J.; Shinoj, V. K.; Baskaran, M.; Tin, Aung

    2015-07-01

    Primary angle closure glaucoma is a major form of disease that causes blindness in Asia and worldwide. In glaucoma, irregularities in the ocular aqueous outflow system cause an elevation in intraocular pressure (IOP) with subsequent death of retinal ganglion cells, resulting in loss of vision. High resolution visualization of the iridocorneal angle region has great diagnostic value in understanding the disease condition which enables monitoring of surgical interventions that decrease IOP. None of the current diagnostic techniques such as goniophotography, ultrasound biomicroscopy (UBM), anterior segment optical coherence tomography (AS-OCT) and RetCam™ can image with molecular specificity and required spatial resolution that can delineate the trabecular meshwork structures. This paper in this context proposes new concepts and methodology using Bessel beams based illumination and imaging for such diagnostic ocular imaging applications. The salient features using Bessel beams instead of the conventional Gaussian beam, and the optimization challenges in configuring the probe system will be illustrated with porcine eye samples.

  10. Spectroscopic diagnostics of high temperature plasmas

    SciTech Connect

    Moos, W.

    1990-01-01

    A three-year research program for the development of novel XUV spectroscopic diagnostics for magnetically confined fusion plasmas is proposed. The new diagnostic system will use layered synthetic microstructures (LSM) coated, flat and curved surfaces as dispersive elements in spectrometers and narrow band XUV filter arrays. In the framework of the proposed program we will develop impurity monitors for poloidal and toroidal resolved measurements on PBX-M and Alcator C-Mod, imaging XUV spectrometers for electron density and temperature fluctuation measurements in the hot plasma core in TEXT or other similar tokamaks and plasma imaging devices in soft x-ray light for impurity behavior studies during RF heating on Phaedrus T and carbon pellet ablation in Alcator C-Mod. Recent results related to use of multilayer in XUV plasma spectroscopy are presented. We also discuss the latest results reviewed to q{sub o} and local poloidal field measurements using Zeeman polarimetry.

  11. Nitrogen Isotopic Ratio of Cometary Ammonia from High-resolution Optical Spectroscopic Observations of C/2014 Q2 (Lovejoy)

    NASA Astrophysics Data System (ADS)

    Shinnaka, Yoshiharu; Kawakita, Hideyo

    2016-11-01

    The icy materials present in comets provide clues to the origin and evolution of our solar system and planetary systems. High-resolution optical spectroscopic observations of comet C/2014 Q2 (Lovejoy) were performed on 2015 January 11 (at 1.321 au pre-perihelion) with the High Dispersion Spectrograph mounted on the Subaru Telescope on Maunakea, Hawaii. We derive the 14N/15N ratio of NH2 (126 ± 25), as well as the ortho-to-para abundance ratios (OPRs) of the H2O+ ion (2.77 ± 0.24) and NH2 (3.38 ± 0.07), which correspond to nuclear spin temperatures of >24 K (3σ lower limit) and 27 ± 2 K, respectively. We also derive the intensity ratio of the green-to-red doublet of forbidden oxygen lines (0.107 ± 0.007). The ammonia in the comet must have formed under low-temperature conditions at ∼10 K or less to reproduce the observed 14N/15N ratio in this molecule if it is assumed that the 15N-fractionation of ammonia occurred via ion–molecule chemical reactions. However, this temperature is inconsistent with the nuclear spin temperatures of water and ammonia estimated from the OPRs. The interpretation of the nuclear spin temperature as the temperature at molecular formation may therefore be incorrect. An isotope-selective photodissociation of molecular nitrogen by protosolar ultraviolet radiation might play an important role in the 15N-fractionation observed in cometary volatiles.

  12. Hybrid-modality high-resolution imaging: for diagnostic biomedical imaging and sensing for disease diagnosis

    NASA Astrophysics Data System (ADS)

    Murukeshan, Vadakke M.; Hoong Ta, Lim

    2014-11-01

    Medical diagnostics in the recent past has seen the challenging trend to come up with dual and multi-modality imaging for implementing better diagnostic procedures. The changes in tissues in the early disease stages are often subtle and can occur beneath the tissue surface. In most of these cases, conventional types of medical imaging using optics may not be able to detect these changes easily due to its penetration depth of the orders of 1 mm. Each imaging modality has its own advantages and limitations, and the use of a single modality is not suitable for every diagnostic applications. Therefore the need for multi or hybrid-modality imaging arises. Combining more than one imaging modalities overcomes the limitation of individual imaging method and integrates the respective advantages into a single setting. In this context, this paper will be focusing on the research and development of two multi-modality imaging platforms. The first platform combines ultrasound and photoacoustic imaging for diagnostic applications in the eye. The second platform consists of optical hyperspectral and photoacoustic imaging for diagnostic applications in the colon. Photoacoustic imaging is used as one of the modalities in both platforms as it can offer deeper penetration depth compared to optical imaging. The optical engineering and research challenges in developing the dual/multi-modality platforms will be discussed, followed by initial results validating the proposed scheme. The proposed schemes offer high spatial and spectral resolution imaging and sensing, and is expected to offer potential biomedical imaging solutions in the near future.

  13. Laser system for high resolution Thomson scattering diagnostics on the COMPASS tokamak

    SciTech Connect

    Bohm, P.; Sestak, D.; Bilkova, P.; Aftanas, M.; Weinzettl, V.; Hron, M.; Panek, R.; Dunstan, M. R.; Naylor, G.

    2010-10-15

    A new Thomson scattering diagnostic has been designed and is currently being installed on the COMPASS tokamak in IPP Prague in the Czech Republic. The requirements for this system are very stringent with approximately 3 mm spatial resolution at the plasma edge. A critical part of this diagnostic is the laser source. To achieve the specified parameters, a multilaser solution is utilized. Two 30 Hz 1.5 J Nd:YAG laser systems, used at the fundamental wavelength of 1064 nm, are located outside the tokamak area at a distance of 20 m from the tokamak. The design of the laser beam transport path is presented. The approach leading to a final choice of optimal focusing optics is given. As well as the beam path to the tokamak, a test path of the same optical length was built. Performance tests of the laser system carried out using the test path are described.

  14. [The correction to spectroscopic diagnostics of plasma jet with air engulfment].

    PubMed

    Zhao, Wen-hua; Tang, Huang-zai; Tian, Kuo; Zhang, Guan-zhong

    2004-04-01

    A high-resolution, multi-line spectroscopic diagnostic system was used to detect two spectral line intensities in plasma jet simultaneously. The temperature profiles of an arc plasma jet issued into atmosphere and the concentrations of the air engulfment in the plasma jet were experimentally determined by means of the line absolute intensity method in this paper. The temperature profiles were obtained in two cases: the air engulfment in the plasma jet being considered and not being considered. The comparison of temperatures obtained in these two cases illustrates that the air engulfment in the plasma jet has considerable influence on spectroscopic diagnostic results. The neglect of the air engulfment brings on error in the temperature diagnostics with the absolute line intensity method. Especially in the region far away from the exit of the nozzle, the error is obvious.

  15. High-resolution multiwire proportional soft x-ray diagnostic measurements on TCV

    SciTech Connect

    Sushkov, A.; Andreev, V.; Camenen, Y.; Pochelon, A.; Klimanov, I.; Scarabosio, A.; Weisen, H.

    2008-02-15

    A multiwire proportional x-ray (MPX) detector is used on the TCV tokamak (Tokamak a configuration variable) as a high spatial and temporal resolution soft x-ray emissivity imaging diagnostic. The MPX system consists of 64 vertically viewing channels and has been designed to complement the existing TCV soft x-ray tomography system by enhancing the spatial resolution. The MPX detector is suitable for the measurement of fast and localized phenomena and can be used, for instance, for the observation of magnetohydrodynamic activity, for the characterization of transport barriers or for an improved determination of the electron cyclotron heating power deposition profile. The MPX detector operates in continuous-current mode and measures the plasma soft x-ray emission in the 3-30 keV range with a radial resolution of about 5 mm - 1% of plasma diameter - and a frequency bandwidth of 50 kHz. A detailed description of the MPX detector construction and the principle of its operation are given. The properties of the detector in photon-counting and continuous-current operation modes are studied. The implementation of the system on TCV and experimental results illustrating the potential of the diagnostic are also presented.

  16. High-resolution infrared spectroscopic measurements of Comet 2P/Encke: Unusual organic composition and low rotational temperatures

    NASA Astrophysics Data System (ADS)

    Radeva, Yana L.; Mumma, Michael J.; Villanueva, Geronimo L.; Bonev, Boncho P.; DiSanti, Michael A.; A'Hearn, Michael F.; Dello Russo, Neil

    2013-03-01

    We present high-resolution infrared spectroscopic measurements of the ecliptic Comet 2P/Encke, observed on 4-6 November 2003 during its close approach to the Earth, using the Near Infrared Echelle Spectrograph on the Keck II telescope. We present flux-calibrated spectra, production rates, and mixing ratios for H2O, CH3OH, HCN, H2CO, C2H2, C2H6, CH4 and CO. Comet 2P/Encke is a dynamical end-member among comets because of its short period of 3.3 years. Relative to “organics-normal” comets, we determined that 2P/Encke is depleted in HCN, H2CO, C2H2, C2H6, CH4 and CO, but it is enriched in CH3OH. We compared mixing ratios of these organic species measured on separate dates, and we see no evidence of macroscopic chemical heterogeneity in the nucleus of 2P/Encke, however, this conclusion is limited by sparse temporal sampling. The depleted abundances of most measured species suggest that 2P/Encke may have formed closer to the young Sun, before its insertion to the Kuiper belt, compared with “organics-normal” comets - as was previously suggested for other depleted comets (e.g. C/1999 S4 (LINEAR)). We measured very low rotational temperatures of 20-30 K for H2O, CH3OH and HCN in the near nucleus region of 2P/Encke, which correlate with one of the lowest cometary gas production rates (∼2.6 × 1027 molecules s-1) measured thus far in the infrared. This suggests that we are seeing the effects of more efficient radiative cooling, insufficient collisional excitation, and/or inefficient heating by fast H-atoms (and icy grains) in the observed region of the coma. Its extremely short orbital period, very low gas production rate, and classification as an ecliptic comet, make 2P/Encke an important addition to our growing database, and contribute significantly to the establishment of a chemical taxonomy of comets.

  17. High-Resolution Infrared Spectroscopic Measurements of Comet 2PlEncke: Unusual Organic Composition and Low Rotational Temperatures

    NASA Technical Reports Server (NTRS)

    Radeva, Yana L.; Mumma, Michael J.; Villanueva, Geronimo L.; Bonev, Boncho P.; DiSanti, Michael A.; A'Hearn, Michael F.; Dello Russo, Neil

    2013-01-01

    We present high-resolution infrared spectroscopic measurements of the ecliptic comet 2P/Encke, observed on 4-6 Nov. 2003 during its close approach to the Earth, using the Near Infrared Echelle Spectrograph on the Keck II telescope. We present flux-calibrated spectra, production rates, and mixing ratios for H2O, CH3OH, HCN, H2CO, C2H2, C2H6, CH4 and CO. Comet 2P/Encke is a dynamical end-member among comets because of its short period of 3.3 years. Relative to "organics-normal" comets, we determined that 2PlEncke is depleted in HCN, H2CO, C2H2, C2H6, CH4 and CO, but it is enriched in CH3OH. We compared mixing ratios of these organic species measured on separate dates, and we see no evidence of macroscopic chemical heterogeneity in the nucleus of 2P/Encke, however, this conclusion is limited by sparse temporal sampling. The depleted abundances of most measured species suggest that 2P/Encke may have formed closer to the young Sun, before its insertion to the Kuiper belt, compared with "organics-normal" comets - as was previously suggested for other depleted comets (e.g. C/1999 S4 (LINEAR)). We measured very low rotational temperatures of 20 - 30 K for H2O, CH3OH and HCN in the near nucleus region of 2P/Encke, which correlate with one of the lowest cometary gas production rates (approx. 2.6 x 10(exp 27) molecules/s) measured thus far in the infrared. This suggests that we are seeing the effects of more efficient radiative cooling, insufficient collisional excitation, and/or inefficient heating by fast H-atoms (and icy grains) in the observed region of the coma. Its extremely short orbital period, very low gas production rate, and classification as an ecliptic comet, make 2PlEncke an important addition to our growing database, and contribute significantly to the establishment of a chemical taxonomy of comets.

  18. Development of High-Resolution UV-VIS Diagnostics for Space Plasma Simulation

    NASA Astrophysics Data System (ADS)

    Taylor, Andrew; Batishchev, Oleg

    2012-10-01

    Non-invasive far-UV-VIS plasma emission allows remote diagnostics of plasma, which is particularly important for space application. Accurate vacuum tank space plasma simulations require monochromators with high spectral resolution (better than 0.01A) to capture important details of atomic and ionic lines, such as Ly-alpha, etc. We are building a new system based on the previous work [1], and will discuss the development of a spectrometry system that combines a single-pass vacuum far-UV-NIR spectrometer and a tunable Fabry-Perot etalon. [4pt] [1] O. Batishchev and J.L. Cambier, Experimental Study of the Mini-Helicon Thruster, Air Force Research Laboratory Report, AFRL-RZ-ED-TR-2009-0020, 2009.

  19. Tandem repeat markers as novel diagnostic tools for high resolution fingerprinting of Wolbachia

    PubMed Central

    2012-01-01

    Background Strains of the endosymbiotic bacterium Wolbachia pipientis are extremely diverse both genotypically and in terms of their induced phenotypes in invertebrate hosts. Despite extensive molecular characterisation of Wolbachia diversity, little is known about the actual genomic diversity within or between closely related strains that group tightly on the basis of existing gene marker systems, including Multiple Locus Sequence Typing (MLST). There is an urgent need for higher resolution fingerprinting markers of Wolbachia for studies of population genetics, horizontal transmission and experimental evolution. Results The genome of the wMel Wolbachia strain that infects Drosophila melanogaster contains inter- and intragenic tandem repeats that may evolve through expansion or contraction. We identified hypervariable regions in wMel, including intergenic Variable Number Tandem Repeats (VNTRs), and genes encoding ankyrin (ANK) repeat domains. We amplified these markers from 14 related Wolbachia strains belonging to supergroup A and were successful in differentiating size polymorphic alleles. Because of their tandemly repeated structure and length polymorphism, the markers can be used in a PCR-diagnostic multilocus typing approach, analogous to the Multiple Locus VNTR Analysis (MLVA) established for many other bacteria and organisms. The isolated markers are highly specific for supergroup A and not informative for other supergroups. However, in silico analysis of completed genomes from other supergroups revealed the presence of tandem repeats that are variable and could therefore be useful for typing target strains. Conclusions Wolbachia genomes contain inter- and intragenic tandem repeats that evolve through expansion or contraction. A selection of polymorphic tandem repeats is a novel and useful PCR diagnostic extension to the existing MLST typing system of Wolbachia, as it allows rapid and inexpensive high-throughput fingerprinting of closely related strains for

  20. Diagnostic accuracy of high resolution melting analysis for detection of KRAS mutations: a systematic review and meta-analysis.

    PubMed

    Liu, Yue-Ping; Wu, Hai-Yan; Yang, Xiang; Xu, Han-Qing; Chen, Dong; Huang, Qing; Fu, Wei-Ling

    2014-01-01

    Increasing evidence points to a negative correlation between KRAS mutations and patients' responses to anti-EGFR monoclonal antibody treatment. Therefore, patients must undergo KRAS mutation detection to be eligible for treatment. High resolution melting analysis (HRM) is gaining increasing attention in KRAS mutation detection. However, its accuracy has not been systematically evaluated. We conducted a meta-analysis of published articles, involving 13 articles with 1,520 samples, to assess its diagnostic accuracy compared with DNA sequencing. The quality of included articles was assessed using the revised Quality Assessment for Studies of Diagnostic Accuracy (QUADAS-2) tools. Random effects models were applied to analyze the performance of pooled characteristics. The overall sensitivity and specificity of HRM were 0.99 (95% confidence interval [CI]: 0.98-1.00) and 0.96 (95%CI: 0.94-0.97), respectively. The area under the summary receiver operating characteristic curve was 0.996. High sensitivity and specificity, less labor, rapid turn-around and the closed-tube format of HRM make it an attractive choice for rapid detection of KRAS mutations in clinical practice. The burden of DNA sequencing can be reduced dramatically by the implementation of HRM, but positive results still need to be sequenced for diagnostic confirmation. PMID:25515911

  1. High resolution and high definition anorectal manometry and pressure topography: diagnostic advance or a new kid on the block?

    PubMed

    Lee, Yeong Yeh; Erdogan, Askin; Rao, Satish S C

    2013-12-01

    The recent development of closely spaced circumferential solid state transducers has paved the way for novel technology that includes high resolution anorectal manometry and topography (HRAM) and 3-D high definition anorectal manometry (HDAM). These techniques are increasingly being used for the assessment of anorectal neuromuscular function. However, whether they constitute a diagnostic advantage or a mere refinement of an old technology is unknown. Unlike the traditional manometry that utilized 3 or 6 unidirectional sensors, the closely spaced circumferential arrangement facilitates superior spatiotemporal mapping of pressures at rest and during various dynamic maneuvers. HDAM can provide knowledge of the three muscles that govern the anal continence namely, the puborectalis, and the internal and external anal sphincters, and can show how they mediate the rectoanal inhibitory reflex and sensorimotor responses and the spatiotemporal orientation of these muscles. Also, anal sphincter defects can be mapped and readily detected using 3-D technology. Similarly, HRAM has facilitated confirmation and development of phenotypes of dyssynergic defecation. Recently, normative data have also been reported with HRAM and HDAM, together with the influence of age, gender, and test instructions. The greater yield of anatomical and functional information may supersede the limitations of costs, fragility, and shorter life-span associated with these new techniques. Thus, HDAM and HRAM are not just new gadgets but constitute a significant and novel diagnostic advance. However, more prospective studies are needed to better define anorectal disorders with these techniques and to confirm their superiority.

  2. Ab initio intermolecular potential of Ar-C2H2 refined using high-resolution spectroscopic data.

    PubMed

    Lauzin, Clément; Coudert, Laurent H; Herman, Michel; Liévin, Jacques

    2013-12-19

    The high-resolution infrared spectra of the ν1 + ν3 (2CH) band of the Ar-C2H2 complex has been recorded from 6544 to 6566 cm(-1). The previously reported K(a) = 1 ← 0, 2 ← 1, and 0 ← 1 subbands were observed and the K(a) = 1 ← 2, 2 ← 3, and 3 ← 2 subbands were assigned for the first time. The intermolecular potential energy surface of this complex has been calculated ab initio and optimized by fitting the new high-resolution data. Refined intermolecular potential energy surfaces have been obtained for the ground vibrational state and for the excited v1 = v3 = 1 stretching state. For the former state, the results of the analysis are satisfactory and the microwave transitions of the complex are reproduced with a root-mean-square deviation of 5 MHz. For the latter state, systematic discrepancies arise in the analysis.

  3. Detailed element abundances of SkyMapper EMP stars: first results of the high-resolution spectroscopic follow up

    NASA Astrophysics Data System (ADS)

    Jacobson, Heather R.; Asplund, Martin; Bessell, Michael S.; Casey, Andrew R.; Da Costa, Gary S.; Frebel, Anna; Keller, Stefan C.; Lind, Karin; Norris, John E.; Schmidt, Brian P.; Tisserand, Patrick; Yong, David

    The multi band photometry of SkyMapper's Southern Sky Survey is designed to search for extremely metal-poor (EMP) stars. The best candidates have been observed with low-resolution spectroscopy to confirm their low metallicities, and then with high-resolution spectroscopy to determine their detailed element abundances. So far, high-resolution Magellan/MIKE spectra have been obtained for over 200 EMP candidates. Here we present the results for the first ˜14 months of this new effort, during which time the photometric candidate selection has been continuously improved. Of the 50 most recently observed EMP candidates, roughly half have [Fe/H] < -3, with 3 stars having [Fe/H] < -3.5. Our analysis shows these metal-poor stars to have typical halo star abundance patterns. These results clearly demonstrate SkyMapper's capability to find large numbers of EMP stars which will vastly improve our understanding of the earliest star formation processes and the onset of chemical evolution.

  4. High-resolution rapid diagnostic imaging of whole prostate biopsies using video-rate fluorescence structured illumination microscopy

    PubMed Central

    Wang, Mei; Kimbrell, Hillary Z.; Sholl, Andrew B.; Tulman, David B.; Elfer, Katherine N.; Schlichenmeyer, Tyler C.; Lee, Benjamin R.; Lacey, Michelle; Brown, J. Quincy

    2015-01-01

    Rapid assessment of prostate core biopsy pathology at the point-of-procedure could provide benefit in a variety of clinical situations. Even with advanced trans-rectal ultrasound guidance and saturation biopsy protocols, prostate cancer can be missed in up to half of all initial biopsy procedures. In addition, collection of tumor specimens for downstream histological, molecular, and genetic analysis is hindered by low tumor yield due to inability to identify prostate cancer grossly. However, current point-of-procedure pathology protocols such as frozen section analysis (FSA) are destructive, and too time- and labor-intensive to be practical or economical. Ex vivo microscopy of the excised specimens, stained with fast-acting fluorescent histology dyes, could be an attractive non-destructive alternative to FSA. In this work, we report the first demonstration of video-rate structured illumination microscopy (VR-SIM) for rapid high-resolution diagnostic imaging of prostate biopsies in realistic point-of-procedure timeframes. Large mosaic images of prostate biopsies stained with acridine orange are rendered in seconds, and contain excellent contrast and detail, exhibiting close correlation with corresponding H&E histology. A clinically-relevant review of VR-SIM images of 34 unfixed and uncut prostate core biopsies by two independent pathologists resulted in an area under the ROC curve (AUC) of 0.82–0.88, with a sensitivity ranging from 63–88% and a specificity ranging from 78–89%. When biopsies contained more than 5% tumor content, the sensitivity improved to 75–92%. The image quality, speed, minimal complexity, and ease of use of VR-SIM could prove to be features in favor of adoption as an alternative to destructive pathology at the point-of-procedure. PMID:26282168

  5. Spectroscopic Challenges in the Modelling and Diagnostics of High Temperature Air Plasma Radiation for Aerospace Applications

    SciTech Connect

    Laux, Christophe O.

    2007-04-06

    State-of-the-art spectroscopic models of the radiative transitions of interest for Earth re-entry and ground-based diagnostic facilities for aerospace applications are reviewed. The spectral range considered extends from the vacuum ultraviolet to the mid-infrared range (80 nm to 5.5 {mu}m). The modeling results are compared with absolute intensity measurements of the ultraviolet-visible-infrared emission of a well-characterized high-temperature air plasma produced with a 50 kW inductively coupled radio-frequency plasma torch, and with high-resolution absorption spectra from the Center for Astrophysics in the vacuum ultraviolet. The Spectroscopic data required to better model the spectral features of interest for aerospace applications are discussed.

  6. Passive Spectroscopic Diagnostics for Magnetically-confined Fusion Plasmas

    SciTech Connect

    Stratton, B. C.; Biter, M.; Hill, K. W.; Hillis, D. L.; Hogan, J. T.

    2007-07-18

    Spectroscopy of radiation emitted by impurities and hydrogen isotopes plays an important role in the study of magnetically-confined fusion plasmas, both in determining the effects of impurities on plasma behavior and in measurements of plasma parameters such as electron and ion temperatures and densities, particle transport, and particle influx rates. This paper reviews spectroscopic diagnostics of plasma radiation that are excited by collisional processes in the plasma, which are termed 'passive' spectroscopic diagnostics to distinguish them from 'active' spectroscopic diagnostics involving injected particle and laser beams. A brief overview of the ionization balance in hot plasmas and the relevant line and continuum radiation excitation mechanisms is given. Instrumentation in the soft X-ray, vacuum ultraviolet, ultraviolet, visible, and near-infrared regions of the spectrum is described and examples of measurements are given. Paths for further development of these measurements and issues for their implementation in a burning plasma environment are discussed.

  7. High-Resolution Spectroscopic Study of Extremely Metal-Poor Star Candidates from the SkyMapper Survey

    NASA Astrophysics Data System (ADS)

    Jacobson, Heather R.; Keller, Stefan; Frebel, Anna; Casey, Andrew R.; Asplund, Martin; Bessell, Michael S.; Da Costa, Gary S.; Lind, Karin; Marino, Anna F.; Norris, John E.; Peña, José M.; Schmidt, Brian P.; Tisserand, Patrick; Walsh, Jennifer M.; Yong, David; Yu, Qinsi

    2015-07-01

    The SkyMapper Southern Sky Survey is carrying out a search for the most metal-poor stars in the Galaxy. It identifies candidates by way of its unique filter set which allows for estimation of stellar atmospheric parameters. The set includes a narrow filter centered on the Ca ii K 3933 Å line, enabling a robust estimate of stellar metallicity. Promising candidates are then confirmed with spectroscopy. We present the analysis of Magellan Inamori Kyocera Echelle high-resolution spectroscopy of 122 metal-poor stars found by SkyMapper in the first two years of commissioning observations. Forty-one stars have [{Fe}/{{H}}]≤slant -3.0. Nine have [{Fe}/{{H}}]≤slant -3.5, with three at [{Fe}/{{H}}]∼ -4. A 1D LTE abundance analysis of the elements Li, C, Na, Mg, Al, Si, Ca, Sc, Ti, Cr, Mn, Co, Ni, Zn, Sr, Ba, and Eu shows these stars have [X/Fe] ratios typical of other halo stars. One star with low [X/Fe] values appears to be “Fe-enhanced,” while another star has an extremely large [Sr/Ba] ratio: \\gt 2. Only one other star is known to have a comparable value. Seven stars are “CEMP-no” stars ([{{C}}/{Fe}]\\gt 0.7, [{Ba}/{Fe}]\\lt 0). 21 stars exhibit mild r-process element enhancements (0.3≤slant [{Eu}/{Fe}]\\lt 1.0), while four stars have [{Eu}/{Fe}]≥slant 1.0. These results demonstrate the ability to identify extremely metal-poor stars from SkyMapper photometry, pointing to increased sample sizes and a better characterization of the metal-poor tail of the halo metallicity distribution function in the future. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  8. First High-Resolution Infrared Spectroscopic Measurements of Comet 2P/Encke: Unusual Organic Composition and Low Rotational Temperatures

    NASA Astrophysics Data System (ADS)

    Radeva, Yana L.; Mumma, M. J.; Villanueva, G. L.; Bonev, B. P.; DiSanti, M. A.; A'Hearn, M. F.; Dello Russo, N.

    2012-10-01

    We present the first high-resolution infrared spectra of the ecliptic comet 2P/Encke, acquired on UT 4 - 6 Nov. 2003, with the Near Infrared Echelle Spectrograph (NIRSPEC) on the Keck II telescope. 2P/Encke is a dynamical end-member among comets. Its very short period of 3.3 years (with perihelion at 0.34 AU and aphelion at 4.09 AU) exposes the nucleus to unusually high insolation throughout its orbit, raising the prospect that native ices may have experienced significant fractionation over time. Here, we present flux-calibrated spectra, production rates, and mixing ratios for H2O, CH3OH, HCN, H2CO, C2H2, C2H6, CH4 and CO, and compare the abundance ratios with the “organics-normal” population. We also extracted very low rotational temperatures (20 - 30 K) for H2O, HCN, and CH3OH in the near-nucleus coma, which correlate with one of the lowest cometary gas production rates ( 1027 molecules s-1) measured thus far in the infrared. We determined that 2P/Encke is enriched in CH3OH, but depleted in C2H6, C2H2, HCN, CH4, H2CO and CO. We compared mixing ratios of these organic species measured on separate dates, and found no evidence of macroscopic chemical heterogeneity in this cometary nucleus, however, we are limited by sparse temporal sampling of our observations. The depleted abundances of most measured species but retention of the high temperature volatiles (H2O, CH3OH) are consistent with fractionation of 2P/Encke’s native ices by thermal processing while in its current orbit. 2P/Encke is unique in terms of its short period, unusual organic composition, low rotational temperatures and low production rates. The discovery of its unusual organic composition is an important contribution to the emerging chemical taxonomy of comets.

  9. A high-resolution spectroscopic survey of late-type stars: chromospheric activity, rotation, kinematics, and age

    NASA Astrophysics Data System (ADS)

    López-Santiago, J.; Montes, D.; Gálvez-Ortiz, M. C.; Crespo-Chacón, I.; Martínez-Arnáiz, R. M.; Fernández-Figueroa, M. J.; de Castro, E.; Cornide, M.

    2010-05-01

    Aims: We present a compilation of spectroscopic data from a survey of 144 chromospherically active young stars in the solar neighborhood, which may be used to investigate different aspects of its formation and evolution in terms of kinematics and stellar formation history. The data have already been used by us in several studies. With this paper, we make all these data accessible to the scientific community for future studies on different topics. Methods: We performed spectroscopic observations with echelle spectrographs to cover the entirety of the optical spectral range simultaneously. Standard data reduction was performed with the IRAF echelle package. We applied the spectral subtraction technique to reveal chromospheric emission in the stars of the sample. The equivalent width of chromospheric emission lines was measured in the subtracted spectra and then converted to fluxes using equivalent width-flux relationships. Radial and rotational velocities were determined by the cross-correlation technique. Kinematics, equivalent widths of the lithium line λ6707.8 Å and spectral types were also determined. Results: A catalog of spectroscopic data is compiled: radial and rotational velocities, space motion, equivalent widths of optical chromospheric activity indicators from Ca II H & K to the calcium infrared triplet and the lithium line in λ6708 Å. Fluxes in the chromospheric emission lines and R'_HK are also determined for each observation of a star in the sample. We used these data to investigate the emission levels of our stars. The study of the Hα emission line revealed two different populations of chromospheric emitters in the sample, clearly separated in the logFHα/Fbol - (V-J) diagram. The dichotomy may be associated with the age of the stars. Based on observations made with the 2.2 m telescope of the German-Spanish Astronomical Centre, Calar Alto (Almería, Spain), operated jointly by the Max-Planck-Institute for Astronomy, Heidelberg, and the Spanish

  10. High resolution spectroscopic mapping imaging applied in situ to multilayer structures for stratigraphic identification of painted art objects

    NASA Astrophysics Data System (ADS)

    Karagiannis, Georgios Th.

    2016-04-01

    The development of non-destructive techniques is a reality in the field of conservation science. These techniques are usually not so accurate, as the analytical micro-sampling techniques, however, the proper development of soft-computing techniques can improve their accuracy. In this work, we propose a real-time fast acquisition spectroscopic mapping imaging system that operates from the ultraviolet to mid infrared (UV/Vis/nIR/mIR) area of the electromagnetic spectrum and it is supported by a set of soft-computing methods to identify the materials that exist in a stratigraphic structure of paint layers. Particularly, the system acquires spectra in diffuse-reflectance mode, scanning in a Region-Of-Interest (ROI), and having wavelength range from 200 up to 5000 nm. Also, a fuzzy c-means clustering algorithm, i.e., the particular soft-computing algorithm, produces the mapping images. The evaluation of the method was tested on a byzantine painted icon.

  11. Spectroscopic diagnostics for bacteria in biologic sample

    DOEpatents

    El-Sayed, Mostafa A.; El-Sayed, Ivan H.

    2002-01-01

    A method to analyze and diagnose specific bacteria in a biologic sample using spectroscopy is disclosed. The method includes obtaining the spectra of a biologic sample of a non-infected patient for use as a reference, subtracting the reference from the spectra of an infected sample, and comparing the fingerprint regions of the resulting differential spectrum with reference spectra of bacteria in saline. Using this diagnostic technique, specific bacteria can be identified sooner and without culturing, bacteria-specific antibiotics can be prescribed sooner, resulting in decreased likelihood of antibiotic resistance and an overall reduction of medical costs.

  12. TLUSTY: Stellar Atmospheres, Accretion Disks, and Spectroscopic Diagnostics

    NASA Astrophysics Data System (ADS)

    Hubeny, Ivan; Lanz, Thierry

    2011-09-01

    TLUSTY is a user-oriented package written in FORTRAN77 for modeling stellar atmospheres and accretion disks and wide range of spectroscopic diagnostics. In the program's maximum configuration, the user may start from scratch and calculate a model atmosphere of a chosen degree of complexity, and end with a synthetic spectrum in a wavelength region of interest for an arbitrary stellar rotation and an arbitrary instrumental profile. The user may also model the vertical structure of annuli of an accretion disk.

  13. The evolution of Ga and As core levels in the formation of Fe/GaAs (001): A high resolution soft x-ray photoelectron spectroscopic study

    SciTech Connect

    Thompson, Jamie D. W.; Neal, James R.; Shen, Tiehan H.; Morton, Simon A.; Tobin, James G.; Dan Waddill, G.; Matthew, Jim A. D.; Greig, Denis; Hopkinson, Mark

    2008-07-15

    A high resolution soft x-ray photoelectron spectroscopic study of Ga and As 3d core levels has been conducted for Fe/GaAs (001) as a function of Fe thickness. This work has provided unambiguous evidence of substrate disrupting chemical reactions induced by the Fe overlayer--a quantitative analysis of the acquired spectra indicates significantly differing behavior of Ga and As during Fe growth, and our observations have been compared with existing theoretical models. Our results demonstrate that the outdiffusing Ga and As remain largely confined to the interface region, forming a thin intermixed layer. Whereas at low coverages Fe has little influence on the underlying GaAs substrate, the onset of substrate disruption when the Fe thickness reaches 3.5 A results in major changes in the energy distribution curves (EDCs) of both As and Ga 3d cores. Our quantitative analysis suggests the presence of two additional As environments of metallic character: one bound to the interfacial region and another which, as confirmed by in situ oxidation experiments, surface segregates and persists over a wide range of overlayer thickness. Analysis of the corresponding Ga 3d EDCs found not two, but three additional environments--also metallic in nature. Two of the three are interface resident whereas the third undergoes outdiffusion at low Fe coverages. Based on the variations of the integrated intensities of each component, we present a schematic of the proposed chemical makeup of the Fe/GaAs (001) system.

  14. The evolution of Ga and As core levels in the formation of Fe/GaAs (001):A high resolution soft x-ray photoelectron spectroscopic study

    SciTech Connect

    Thompson, Jamie; Neal, James; Shen, Tiehan; Morton, Simon; Tobin, James; Waddill, George Dan; Matthew, Jim; Greig, Denis; Hopkinson, Mark

    2008-07-14

    A high resolution soft x-ray photoelectron spectroscopic study of Ga and As 3d core levels has been conducted for Fe/GaAs (001) as a function of Fe thickness. This work has provided unambiguous evidence of substrate disrupting chemical reactions induced by the Fe overlayer--a quantitative analysis of the acquired spectra indicates significantly differing behavior of Ga and As during Fe growth, and our observations have been compared with existing theoretical models. Our results demonstrate that the outdiffusing Ga and As remain largely confined to the interface region, forming a thin intermixed layer. Whereas at low coverages Fe has little influence on the underlying GaAs substrate, the onset of substrate disruption when the Fe thickness reaches 3.5 Angstrom results in major changes in the energy distribution curves (EDCs) of both As and Ga 3d cores. Our quantitative analysis suggests the presence of two additional As environments of metallic character: one bound to the interfacial region and another which, as confirmed by in situ oxidation experiments, surface segregates and persists over a wide range of overlayer thickness. Analysis of the corresponding Ga 3d EDCs found not two, but three additional environments--also metallic in nature. Two of the three are interface resident whereas the third undergoes outdiffusion at low Fe coverages. Based on the variations of the integrated intensities of each component, we present a schematic of the proposed chemical makeup of the Fe/GaAs (001) system.

  15. The Evolution of Ga and As Core Levels in the Formation of Fe/GaAs(001): A High Resolution Soft X-ray Photoelectron Spectroscopic Study

    SciTech Connect

    Thompson, J W; Neal, J R; Shen, T H; Morton, S A; Tobin, J G; Waddill, G D; Matthew, J D; Greig, D; Hopkinson, M

    2006-12-08

    A high resolution soft x-ray photoelectron spectroscopic study of Ga and As 3d core levels has been conducted for Fe/GaAs (001) as a function of Fe thickness. This work has provided unambiguous evidence of substrate disrupting chemical reactions induced by the Fe overlayer--a quantitative analysis of the acquired spectra indicates significantly differing behavior of Ga and As during Fe growth, and our observations have been compared with existing theoretical models. Our results demonstrate that the outdiffusing Ga and As remain largely confined to the interface region, forming a thin intermixed layer. Whereas at low coverages Fe has little influence on the underlying GaAs substrate, the onset of substrate disruption when the Fe thickness reaches 3.5 {angstrom} results in major changes in the energy distribution curves (EDCs) of both As and Ga 3d cores. Our quantitative analysis suggests the presence of two new As environments of metallic character; one bound to the interfacial region and another which, as confirmed by in-situ oxidation experiments, surface segregates and persists over a wide range of overlayer thickness. Analysis of the corresponding Ga 3d EDCs found not two, but three new environments--also metallic in nature. Two of the three are interface-resident whereas the third undergoes outdiffusion at low Fe coverages. Based on the variations of the integrated intensities of each component, we present a schematic of the proposed chemical make-up of the Fe/GaAs (001) system.

  16. Spectroscopic investigations of tungsten EUV spectra for fusion plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Clementson, Joel; Lennartsson, Thomas; Beiersdorfer, Peter; Safronova, Ulyana; Brage, Tomas; Grumer, Jon

    2011-10-01

    The Livermore WOLFRAM spectroscopy project consists of experimental and theoretical investigations of tungsten ions of relevance to the diagnostics of magnetically confined fusion plasmas. A recent effort has focused on the complex extreme ultraviolet spectra of few-times ionized tungsten atoms that are expected to be abundant in ITER divertor plasmas. The tungsten ions were produced and excited in the Livermore EBIT-I electron beam ion trap by scanning the electron-beam energy between 30 and 300 eV. The emission was studied using a broad-band grazing-incidence spectrometer covering 150 - 300 Å and a high-resolution spectrometer covering the 180 - 220 Å region. Experimental spectra are presented together with analysis based on calculations using the FAC, GRASP, Cowan, HULLAC, and RMBPT codes. Part of this work was performed under the auspices of the US DOE by LLNL under Contract No. DE-AC52-07NA-27344.

  17. Diagnostic Chemical Analysis of Exhaled Human Breath Using a Novel Sub-Millimeter Spectroscopic Approach

    NASA Astrophysics Data System (ADS)

    Fosnight, Alyssa M.; Moran, Benjamin L.; Branco, Daniela R.; Thomas, Jessica R.; Medvedev, Ivan R.

    2013-06-01

    As many as 3000 chemicals are reported to be found in exhaled human breath. Many of these chemicals are linked to certain health conditions and environmental exposures. Present state of the art techniques used for analysis of exhaled human breath include mass spectrometry based methods, infrared spectroscopic sensors, electro chemical sensors and semiconductor oxide based testers. Some of these techniques are commercially available but are somewhat limited in their specificity and exhibit fairly high probability of false alarm. Here, we present the results of our most recent study which demonstrated a novel application of a terahertz high resolutions spectroscopic technique to the analysis of exhaled human breath, focused on detection of ethanol in the exhaled breath of a person which consumed an alcoholic drink. This technique possesses nearly ``absolute'' specificity and we demonstrated its ability to uniquely identify ethanol, methanol, and acetone in human breath. This project is now complete and we are looking to extend this method of chemical analysis of exhaled human breath to a broader range of chemicals in an attempt to demonstrate its potential for biomedical diagnostic purposes.

  18. Spectroscopic diagnostics of high temperature plasmas. [Annual report

    SciTech Connect

    Moos, W.

    1990-12-31

    A three-year research program for the development of novel XUV spectroscopic diagnostics for magnetically confined fusion plasmas is proposed. The new diagnostic system will use layered synthetic microstructures (LSM) coated, flat and curved surfaces as dispersive elements in spectrometers and narrow band XUV filter arrays. In the framework of the proposed program we will develop impurity monitors for poloidal and toroidal resolved measurements on PBX-M and Alcator C-Mod, imaging XUV spectrometers for electron density and temperature fluctuation measurements in the hot plasma core in TEXT or other similar tokamaks and plasma imaging devices in soft x-ray light for impurity behavior studies during RF heating on Phaedrus T and carbon pellet ablation in Alcator C-Mod. Recent results related to use of multilayer in XUV plasma spectroscopy are presented. We also discuss the latest results reviewed to q{sub o} and local poloidal field measurements using Zeeman polarimetry.

  19. Active spectroscopic measurements using the ITER diagnostic system

    SciTech Connect

    Thomas, D. M.; Counsell, G.; Johnson, D.; Vasu, P.; Zvonkov, A.

    2010-10-15

    Active (beam-based) spectroscopic measurements are intended to provide a number of crucial parameters for the ITER device being built in Cadarache, France. These measurements include the determination of impurity ion temperatures, absolute densities, and velocity profiles, as well as the determination of the plasma current density profile. Because ITER will be the first experiment to study long timescale ({approx}1 h) fusion burn plasmas, of particular interest is the ability to study the profile of the thermalized helium ash resulting from the slowing down and confinement of the fusion alphas. These measurements will utilize both the 1 MeV heating neutral beams and a dedicated 100 keV hydrogen diagnostic neutral beam. A number of separate instruments are being designed and built by several of the ITER partners to meet the different spectroscopic measurement needs and to provide the maximum physics information. In this paper, we describe the planned measurements, the intended diagnostic ensemble, and we will discuss specific physics and engineering challenges for these measurements in ITER.

  20. Active spectroscopic measurements using the ITER diagnostic system.

    PubMed

    Thomas, D M; Counsell, G; Johnson, D; Vasu, P; Zvonkov, A

    2010-10-01

    Active (beam-based) spectroscopic measurements are intended to provide a number of crucial parameters for the ITER device being built in Cadarache, France. These measurements include the determination of impurity ion temperatures, absolute densities, and velocity profiles, as well as the determination of the plasma current density profile. Because ITER will be the first experiment to study long timescale (∼1 h) fusion burn plasmas, of particular interest is the ability to study the profile of the thermalized helium ash resulting from the slowing down and confinement of the fusion alphas. These measurements will utilize both the 1 MeV heating neutral beams and a dedicated 100 keV hydrogen diagnostic neutral beam. A number of separate instruments are being designed and built by several of the ITER partners to meet the different spectroscopic measurement needs and to provide the maximum physics information. In this paper, we describe the planned measurements, the intended diagnostic ensemble, and we will discuss specific physics and engineering challenges for these measurements in ITER.

  1. OBSERVING THE FINE STRUCTURE OF LOOPS THROUGH HIGH-RESOLUTION SPECTROSCOPIC OBSERVATIONS OF CORONAL RAIN WITH THE CRISP INSTRUMENT AT THE SWEDISH SOLAR TELESCOPE

    SciTech Connect

    Antolin, P.; Rouppe van der Voort, L. E-mail: v.d.v.l.rouppe@astro.uio.no

    2012-02-01

    Observed in cool chromospheric lines, such as H{alpha} or Ca II H, coronal rain corresponds to cool and dense plasma falling from coronal heights. Considered as a peculiar sporadic phenomenon of active regions, it has not received much attention since its discovery more than 40 years ago. Yet, it has been shown recently that a close relationship exists between this phenomenon and the coronal heating mechanism. Indeed, numerical simulations have shown that this phenomenon is most likely due to a loss of thermal equilibrium ensuing from a heating mechanism acting mostly toward the footpoints of loops. We present here one of the first high-resolution spectroscopic observations of coronal rain, performed with the CRisp Imaging Spectro Polarimeter (CRISP) instrument at the Swedish Solar Telescope. This work constitutes the first attempt to assess the importance of coronal rain in the understanding of the coronal magnetic field in active regions. With the present resolution, coronal rain is observed to literally invade the entire field of view. A large statistical set is obtained in which dynamics (total velocities and accelerations), shapes (lengths and widths), trajectories (angles of fall of the blobs), and thermodynamic properties (temperatures) of the condensations are derived. Specifically, we find that coronal rain is composed of small and dense chromospheric cores with average widths and lengths of {approx}310 km and {approx}710 km, respectively, average temperatures below 7000 K, displaying a broad distribution of falling speeds with an average of {approx}70 km s{sup -1}, and accelerations largely below the effective gravity along loops. Through estimates of the ion-neutral coupling in the blobs we show that coronal rain acts as a tracer of the coronal magnetic field, thus supporting the multi-strand loop scenario, and acts as a probe of the local thermodynamic conditions in loops. We further elucidate its potential in coronal heating. We find that the cooling

  2. High-resolution spectroscopic observations of binary stars and yellow stragglers in three open clusters: NGC 2360, NGC 3680, and NGC 5822

    SciTech Connect

    Sales Silva, J. V.; Peña Suárez, V. J.; Katime Santrich, O. J.; Pereira, C. B.; Drake, N. A.; Roig, F. E-mail: jearim@on.br E-mail: claudio@on.br E-mail: froig@on.br

    2014-11-01

    Binary stars in open clusters are very useful targets in constraining the nucleosynthesis process. The luminosities of the stars are known because the distances of the clusters are also known, so chemical peculiarities can be linked directly to the evolutionary status of a star. In addition, binary stars offer the opportunity to verify a relationship between them and the straggler population in both globular and open clusters. We carried out a detailed spectroscopic analysis to derive the atmospheric parameters for 16 red giants in binary systems and the chemical composition of 11 of them in the open clusters NGC 2360, NGC 3680, and NGC 5822. We obtained abundances of C, N, O, Na, Mg, Al, Ca, Si, Ti, Ni, Cr, Y, Zr, La, Ce, and Nd. The atmospheric parameters of the studied stars and their chemical abundances were determined using high-resolution optical spectroscopy. We employ the local thermodynamic equilibrium model atmospheres of Kurucz and the spectral analysis code MOOG. The abundances of the light elements were derived using the spectral synthesis technique. We found that the stars NGC 2360-92 and 96, NGC 3680-34, and NGC 5822-4 and 312 are yellow straggler stars. We show that the spectra of NGC 5822-4 and 312 present evidence of contamination by an A-type star as a secondary star. For the other yellow stragglers, evidence of contamination is given by the broad wings of the Hα. Detection of yellow straggler stars is important because the observed number can be compared with the number predicted by simulations of binary stellar evolution in open clusters. We also found that the other binary stars are not s-process enriched, which may suggest that in these binaries the secondary star is probably a faint main-sequence object. The lack of any s-process enrichment is very useful in setting constraints for the number of white dwarfs in the open cluster, a subject that is related to the birthrate of these kinds of stars in open clusters and also to the age of a

  3. Upgrades of imaging x-ray crystal spectrometers for high-resolution and high-temperature plasma diagnostics on EAST.

    PubMed

    Lyu, B; Wang, F D; Pan, X Y; Chen, J; Fu, J; Li, Y Y; Bitter, M; Hill, K W; Delgado-Aparicio, L F; Pablant, N; Lee, S G; Shi, Y J; Ye, M Y; Wan, B N

    2014-11-01

    Upgrade of the imaging X-ray crystal spectrometers continues in order to fulfill the high-performance diagnostics requirements on EAST. For the tangential spectrometer, a new large pixelated two-dimensional detector was deployed on tokamaks for time-resolved X-ray imaging. This vacuum-compatible detector has an area of 83.8 × 325.3 mm(2), a framing rate over 150 Hz, and water-cooling capability for long-pulse discharges. To effectively extend the temperature limit, a double-crystal assembly was designed to replace the previous single crystals for He-like argon line measurement. The tangential spectrometer employed two crystal slices attached to a common substrate and part of He- and H-like Ar spectra could be recorded on the same detector when crystals were chosen to have similar Bragg angles. This setup cannot only extend the measurable Te up to 10 keV in the core region, but also extend the spatial coverage since He-like argon ions will be present in the outer plasma region. Similarly, crystal slices for He-like iron and argon spectra were adopted on the poloidal spectrometer. Wavelength calibration for absolute rotation velocity measurement will be studied using cadmium characteristic L-shell X-ray lines excited by plasma radiation. A Cd foil is placed before the crystal and can be inserted and retracted for in situ wavelength calibration. The Geant4 code was used to estimate X-ray fluorescence yield and optimize the thickness of the foil.

  4. Upgrades of imaging x-ray crystal spectrometers for high-resolution and high-temperature plasma diagnostics on EAST

    SciTech Connect

    Lyu, B. Wang, F. D.; Fu, J.; Li, Y. Y.; Pan, X. Y.; Chen, J.; Wan, B. N.; Bitter, M.; Hill, K. W.; Delgado-Aparicio, L. F.; Pablant, N.; Lee, S. G.; Shi, Y. J.; Ye, M. Y.

    2014-11-15

    Upgrade of the imaging X-ray crystal spectrometers continues in order to fulfill the high-performance diagnostics requirements on EAST. For the tangential spectrometer, a new large pixelated two-dimensional detector was deployed on tokamaks for time-resolved X-ray imaging. This vacuum-compatible detector has an area of 83.8 × 325.3 mm{sup 2}, a framing rate over 150 Hz, and water-cooling capability for long-pulse discharges. To effectively extend the temperature limit, a double-crystal assembly was designed to replace the previous single crystals for He-like argon line measurement. The tangential spectrometer employed two crystal slices attached to a common substrate and part of He- and H-like Ar spectra could be recorded on the same detector when crystals were chosen to have similar Bragg angles. This setup cannot only extend the measurable Te up to 10 keV in the core region, but also extend the spatial coverage since He-like argon ions will be present in the outer plasma region. Similarly, crystal slices for He-like iron and argon spectra were adopted on the poloidal spectrometer. Wavelength calibration for absolute rotation velocity measurement will be studied using cadmium characteristic L-shell X-ray lines excited by plasma radiation. A Cd foil is placed before the crystal and can be inserted and retracted for in situ wavelength calibration. The Geant4 code was used to estimate X-ray fluorescence yield and optimize the thickness of the foil.

  5. The diagnostic value of high-resolution ultrasonography for the detection of anterior disc displacement of the temporomandibular joint: a meta-analysis employing the HSROC statistical model.

    PubMed

    Dong, X Y; He, S; Zhu, L; Dong, T Y; Pan, S S; Tang, L J; Zhu, Z F

    2015-07-01

    The study aimed to assess the diagnostic value of high-resolution ultrasonography (HR-US) in the detection of anterior disc displacement (ADD) of the temporomandibular joint. Relevant trials reported in MEDLINE, the Chinese National Knowledge Infrastructure Database, the Chinese Biomedical Literature Database, and Embase were identified. A manual search was also performed. The quality of retrieved data was evaluated using the Quality Assessment of Diagnostic Accuracy Studies (QUADAS) criteria. Data were extracted and cross-checked, and a statistically rigorous meta-analysis was performed using a hierarchical summary receiver operating characteristic model (HSROC). The clinical utility of results was assessed using Fagan nomograms (Bayes theory). All data were evaluated using Stata software. A total 11 studies including 1096 subjects were included in the analysis; all reported the utility of HR-US for the diagnosis of ADD with reduction (ADDWR) and without reduction (ADDWoR). For ADDWR, the weighted sensitivity and specificity were 0.83 (95% confidence interval (CI) 0.78-0.88) and 0.85 (95% CI 0.76-0.92) respectively. The lambda value was 3.41 (95% CI 2.37-4.46) and the Fagan nomogram pre-test probability 58%, with a positive likelihood ratio (LR) of 6.01. The positive post-test probability was 89%, with a negative LR of 0.20. The negative post-test probability was 21%. The positive increase in diagnostic utility was 31% and the negative decrement in that value 37%. For ADDWoR, the weighted sensitivity and specificity values were 0.72 (95% CI 0.59-0.81) and 0.90 (95% CI 0.86-0.93), respectively. The lambda value was 3.69 (95% CI 2.39-4.99) and the Fagan nomogram pre-test probability 38%, with a positive LR of 7.00. The positive post-test probability was 82%, with a negative LR of 0.32. The negative post-test probability was 16%. The increase in diagnostic utility was 44% and the negative decrement in that value 22%. HR-US delivers acceptable performance when used to

  6. Bronchoalveolar lavage cellular analyses in conjunction with high-resolution computed tomography imaging as a diagnostic intervention for patients with suspected interstitial lung disease

    PubMed Central

    Chockalingam, Ammaiyappan; Duraiswamy, Ranganathan; Jagadeesan, Madhavan

    2016-01-01

    Background: Bronchoalveolar lavage (BAL) has gained acceptance for diagnosis of Interstitial lung disease (ILD). The advent of high-resolution computed tomography (HRCT) has reduced the clinical utility of BAL. This work has utilized the recommendations of the American Thoracic Society (ATS) to optimize BAL and the findings have been associated with clinical examination and HRCT to precisely narrow down the cause of ILD. Materials and Methods: BAL was performed on ILD suspects at the target site chosen based on HRCT. The procedure, transport, processing, and analysis of BAL fluid were performed as per the ATS guidelines. The clinical data, HRCT findings and BAL report were used to narrow down the diagnosis of ILD. The statistical analysis was performed to assess the significance. Results: The BAL procedure was optimized as per the recommendations of the ATS. In a cohort of 50 patients, Idiopathic pulmonary fibrosis, (8) hypersensitivity pneumonitis, (17) connective tissue disorder, (9) sarcoidosis, (3) pneumoconiosis, (5) acute respiratory distress syndrome, (2) eosinophilic lung disease (2) and lymphangitic carcinomatosa, (2) aspiration bronchiolitis (1) and pulmonary histiocytosis (1) were diagnosed. Statistically significant variation in differential counts was found in different ILDs. The different ILDs were classified based on the criteria described by the ATS. Clinical Significance: BAL along with clinical and HRCT findings improved the diagnostic accuracy by incorporating, the acute or chronic nature of the disease and the cause for acute exacerbation, which helped in the better management of ILDs. PMID:27185993

  7. A reference substance free diagnostic fragment ion-based approach for rapid identification of non-target components in Pudilan Xiaoyan oral liquid by high resolution mass spectrometry.

    PubMed

    Dai, Chen; Wang, Chong; Zhang, Chunhua; Wang, Guoxiang; Wang, Jin; Chen, Jun; Guo, Bin; Yang, Tianshu; Cai, Bo

    2016-05-30

    Rapid and reliable identification of non-target components in herbal preparations remains a primary challenge, especially when corresponding reference substances are inaccessible. In this work, an efficient post-experiment data processing methodology, named reference substance free diagnostic fragment ion (RSFDFI), was developed based on ultra-high-performance liquid chromatography coupled with linear ion trap-Orbitrap tandem mass spectrometry (UHPLC/LTQ-Orbitrap). The first step of this approach was to cluster the components that share common fragment ions into several groups. After querying the database using a predicted chemical formula, the component with the fewest primary hits was preferentially deduced based on its MS/MS spectrum. Once the structure was characterized, its common fragment ions could be used as the prior structural information to select the possible candidates that would facilitate the subsequent identification for each group. Taking Pudilan Xiaoyan oral liquid (PDL) as a model herbal preparation, which has been extensively used for the treatment of epidemic parotitis and children with hand-foot-mouth diseases, this strategy enables a nearly eight-fold narrowing of the database hits, with fifty-two components, including lignans, flavonoids, alkaloids and steroids, being rapidly identified. In conclusion, our work clearly demonstrates that integrating RSFDFI with high-resolution mass spectrometry is a powerful methodology for rapid identification of non-target components from herbal prescriptions and may open new avenues for chemical analysis in other complex mixtures.

  8. Optical and laser spectroscopic diagnostics for energy applications

    NASA Astrophysics Data System (ADS)

    Tripathi, Markandey Mani

    The continuing need for greater energy security and energy independence has motivated researchers to develop new energy technologies for better energy resource management and efficient energy usage. The focus of this dissertation is the development of optical (spectroscopic) sensing methodologies for various fuels, and energy applications. A fiber-optic NIR sensing methodology was developed for predicting water content in bio-oil. The feasibility of using the designed near infrared (NIR) system for estimating water content in bio-oil was tested by applying multivariate analysis to NIR spectral data. The calibration results demonstrated that the spectral information can successfully predict the bio-oil water content (from 16% to 36%). The effect of ultraviolet (UV) light on the chemical stability of bio-oil was studied by employing laser-induced fluorescence (LIF) spectroscopy. To simulate the UV light exposure, a laser in the UV region (325 nm) was employed for bio-oil excitation. The LIF, as a signature of chemical change, was recorded from bio-oil. From this study, it was concluded that phenols present in the bio-oil show chemical instability, when exposed to UV light. A laser-induced breakdown spectroscopy (LIBS)-based optical sensor was designed, developed, and tested for detection of four important trace impurities in rocket fuel (hydrogen). The sensor can simultaneously measure the concentrations of nitrogen, argon, oxygen, and helium in hydrogen from storage tanks and supply lines. The sensor had estimated lower detection limits of 80 ppm for nitrogen, 97 ppm for argon, 10 ppm for oxygen, and 25 ppm for helium. A chemiluminescence-based spectroscopic diagnostics were performed to measure equivalence ratios in methane-air premixed flames. A partial least-squares regression (PLS-R)-based multivariate sensing methodology was investigated. It was found that the equivalence ratios predicted with the PLS-R-based multivariate calibration model matched with the

  9. High Resolution Laboratory Spectroscopy

    NASA Astrophysics Data System (ADS)

    Brünken, S.; Schlemmer, S.

    2016-05-01

    In this short review we will highlight some of the recent advancements in the field of high-resolution laboratory spectroscopy that meet the needs dictated by the advent of highly sensitive and broadband telescopes like ALMA and SOFIA. Among these is the development of broadband techniques for the study of complex organic molecules, like fast scanning conventional absorption spectroscopy based on multiplier chains, chirped pulse instrumentation, or the use of synchrotron facilities. Of similar importance is the extension of the accessible frequency range to THz frequencies, where many light hydrides have their ground state rotational transitions. Another key experimental challenge is the production of sufficiently high number densities of refractory and transient species in the laboratory, where discharges have proven to be efficient sources that can also be coupled to molecular jets. For ionic molecular species sensitive action spectroscopic schemes have recently been developed to overcome some of the limitations of conventional absorption spectroscopy. Throughout this review examples demonstrating the strong interplay between laboratory and observational studies will be given.

  10. [High resolution laser transient spectroscopic technology under two-stage light gas-gun loading condition and stability study of shocked benzene].

    PubMed

    Zhao, Bei-Jing; Liu, Fu-Sheng; Wang, Wen-Peng; Zhang, Ning-Chao; Feng, Li-Peng; Zhang, Ming-Jian; Xue, Xue-Dong

    2013-10-01

    The present paper reports the high resolution transient Raman laser testing technology under two-stage light gas-gun loading experiment, and its application to studying the Raman spectroscopy of shocked benzene. In the experiments, the frequency shift of C-C stretching vibration (992 cm(-1)) and C-H stretching vibration peak (3 061 cm(-1)) in the low pressure section (less than 8 GPa) varies linearly with the pressure, and the results agree well with reported data in the literature. The structural changes in liquid benzene about 13 GPa were clarified firstly by the Raman spectral technique; the experimental results show that at a pressure of 9.7 GPa, the structural change of liquid benzene has taken place, not reported in the literature about 13 GPa. But the composition in the production is not clear. The measurement system provides an effective means to study the microstructure changes of transparent and translucent material under dynamic loading experiment.

  11. Spectroscopic study on deuterated benzenes. II. High-resolution laser spectroscopy and rotational structure in the S{sub 1} state

    SciTech Connect

    Kunishige, Sachi; Katori, Toshiharu; Baba, Masaaki; Hayashi, Masato; Hasegawa, Hirokazu; Ohshima, Yasuhiro

    2015-12-28

    High-resolution spectra of the S{sub 1}←S{sub 0} transition in jet-cooled deuterated benzenes were observed using pulse dye amplification of single-mode laser light and mass-selective resonance enhanced multiphoton ionization (REMPI) detection. The vibrational and rotational structures were accurately analyzed for the vibronic levels in the S{sub 1} state. The degenerate 6{sup 1} levels of C{sub 6}H{sub 6} or C{sub 6}D{sub 6} are split into 6a{sup 1} and 6b{sup 1} in many of deuterated benzenes. The rigid-rotor rotational constants were assessed and found to be slightly different between 6a and 6b because of different mean molecular structures. Their rotational levels are significantly shifted by Coriolis interactions. It was found that the Coriolis parameter proportionally changed with the number of substituted D atoms.

  12. High Resolution Spectroscopy and Imaging of Hot Astrophysical Plasmas

    NASA Astrophysics Data System (ADS)

    Kowalski, M. P.; Cruddace, R. G.; Gursky, H.; Yentis, D. J.; Barbee, T. W., Jr.; Goldstein, W. H.; Kordas, J. F.; Fritz, G. G.; Barstow, M. A.; Bannister, N. P.; Lapington, J. S.

    2001-12-01

    Future X-ray and EUV missions should include high-resolution spectrometers, permitting use of the full range of spectroscopic diagnostics, in particular measurement of line profiles and Doppler shifts. We present a design for such an instrument (APEX), which would fly on a Small Explorer Satellite and which employs multilayer-coated ion-etched gratings in a normal-incidence configuration. We have already flown successfully a prototype spectrometer (J-PEX) on a NASA sounding rocket. The resulting EUV spectrum of the white dwarf G191-B2B will be presented.

  13. High resolution spectroscopic studies of 1-(1-naphthyl)ethylamine in S 0 and S 1: exploring the dependence of circular dichroism on conformational structure

    NASA Astrophysics Data System (ADS)

    Plusquellic, David F.; Lavrich, Richard J.; Petralli-Mallow, Teresa; Davis, Scott; Korter, Timothy M.; Suenram, Richard D.

    2002-10-01

    Rotationally resolved spectra of gas-phase samples of 1-(1-naphthyl)-ethylamine (NEA) and amine deuterated forms have been obtained in the microwave and ultraviolet regions, with the isotopomers initially prepared in their zero-point vibrational levels by cooling in pulsed jet and molecular beam supersonic expansions. A single parameter set that includes inertial parameters and 14N nuclear quadrupole constants has accounted for nearly all transitions observed in the Fourier-transform microwave spectrum at 2 K and indicates the presence of only one geometrical isomer in the jet-cooled expansion. The rotational constants, dipole moment orientation, and the amine hydrogen atom positions have been used to identify the conformation of the attached chiral group from among nine possible isomeric forms. The S 1 rotational constants and electronic transition moment orientation have been obtained from high resolution molecular beam data of the band origin at 31771.56(2) cm -1. Excited state "gas phase" predictions from ab initio theory at the CIS/6-31G(d,p) and CIS/6-311 + G(d) levels are compared with the observed S 1 results and with circular dichroism (CD) data obtained for solution phase samples of ( S)-NEA in cyclohexane. Distinguishing spectral features are found in the calculated CD spectra of the three lowest energy conformers arising from rotation about the C-CH(NH 2)CH 3 bond, all of which are thermally populated at room temperature. While the predictions at both levels are in fair agreement with the observed gas phase results, CIS/6-31G(d,p) theory is found to be inadequate to model the condensed phase CD spectrum. In constrast, the calculated spectrum of the equilibrium mixture of conformers at the CIS/6-311 + G(d) level is in good qualitative agreement with the observed CD results and indicates the importance of diffuse functions for the accurate prediction of chiroptical properties of NEA. The most noteworthy exception is the predicted rotatory strength of the

  14. Chemical Synthesis and High Resolution Spectroscopic Characterization of 1-AZA-ADAMANTANE-4-ONE C_9H13NO from the Microwave to the Infrared

    NASA Astrophysics Data System (ADS)

    Pirali, Olivier; Goubet, Manuel; Boudon, Vincent; D'accolti, Lucia; Annese, Cosimo; Fusco, Caterina

    2016-06-01

    We have synthesized 1-aza-adamantane-4-one (C_9H13NO) starting from commercial 1,4-cyclohexanedionemonoethylene acetal and tosylmethylisocianide and following a procedure described in details in the literature. The high degree of sample purity was demonstrated by gas chromatography and mass spectrometric measurements, and its structure evidenced by 1H and 13C NMR spectroscopy. We present a thorough spectroscopic characterization of this molecule by gas phase vibrational and rotational spectroscopy. Accurate vibrational frequencies have been determined by infrared and far-infrared spectra. The pure rotational spectrum of the molecule has been recorded both by cavity-based Fourier-transform microwave spectroscopy in the 2-20 GHz region, by supersonically expanding the vapor pressure of the warm sample, and by room-temperature absorption spectroscopy in the 140-220 GHz range. Quantum-chemical calculations have enabled a fast analysis of the spectra. Accurate sets of rotational and centrifugal distorsion parameters of 1-aza-adamantane-4-one in its ground state and five vibrationally excited states have been derived from these measurements. Black, R. M. Synthesis, 1981, 829

  15. The Panchromatic High-Resolution Spectroscopic Survey of Local Group Star Clusters. I. General data reduction procedures for the VLT/X-shooter UVB and VIS arm

    NASA Astrophysics Data System (ADS)

    Schönebeck, Frederik; Puzia, Thomas H.; Pasquali, Anna; Grebel, Eva K.; Kissler-Patig, Markus; Kuntschner, Harald; Lyubenova, Mariya; Perina, Sibilla

    2014-12-01

    Aims: Our dataset contains spectroscopic observations of 29 globular clusters in the Magellanic Clouds and the Milky Way performed with VLT/X-shooter over eight full nights. To derive robust results instrument and pipeline systematics have to be well understood and properly modeled. We aim at a consistent data reduction procedure with an accurate understanding of the measurement accuracy limitations. Here we present detailed data reduction procedures for the VLT/X-shooter UVB and VIS arm. These are not restricted to our particular dataset, but are generally applicable to different kinds of X-shooter data without major limitation on the astronomical object of interest. Methods: ESO's X-shooter pipeline (v1.5.0) performs well and reliably for the wavelength calibration and the associated rectification procedure, yet we find several weaknesses in the reduction cascade that are addressed with additional calibration steps, such as bad pixel interpolation, flat fielding, and slit illumination corrections. Furthermore, the instrumental PSF is analytically modeled and used to reconstruct flux losses at slit transit. This also forms the basis for an optimal extraction of point sources out of the two-dimensional pipeline product. Regular observations of spectrophotometric standard stars obtained from the X-shooter archive allow us to detect instrumental variability, which needs to be understood if a reliable absolute flux calibration is desired. Results: A cascade of additional custom calibration steps is presented that allows for an absolute flux calibration uncertainty of ≲10% under virtually every observational setup, provided that the signal-to-noise ratio is sufficiently high. The optimal extraction increases the signal-to-noise ratio typically by a factor of 1.5, while simultaneously correcting for resulting flux losses. The wavelength calibration is found to be accurate to an uncertainty level of Δλ ≃ 0.02 Å. Conclusions: We find that most of the X

  16. Modernized active spectroscopic diagnostics (CXRS) of the T-10 tokamak

    SciTech Connect

    Krupin, V. A. Klyuchnikov, L. A. Korobov, K. V. Nemets, A. R. Nurgaliev, M. R.; Gorbunov, A. V.; Naumenko, N. N.; Troynov, V. I.; Tugarinov, S. N.; Fomin, F. V.

    2015-12-15

    This work presents the results of modernization of the CXRS (charge exchange recombination spectroscopy) diagnostics [1] at the T-10 tokamak. The relevance of this work is due to the importance of measurements of the ion temperature and nuclei density of the working gas and impurities for analysis of transport processes in the plasma ion component. Measurements of radial profiles of the ion temperature are extremely important for investigating the geodesic acoustic mode behavior which is conducted at the T-10 [2]. The modernized scheme of CXRS measurements, as well as the design and operational features of the spectrometer created for the new diagnostics, is described. Principles of data recording and further processing are considered in detail; attention is given to the problem of calibration of the whole complex of equipment. The performed changes in diagnostics allow the measurements to be taken simultaneously in three spectral intervals: in the region of the beam line H{sub α}, the CXRS line of carbon ion C{sup 5+}, and the CXRS line of one of the hydrogen-like ions: He{sup 1+}, Li{sup 2+}, N{sup 6+}, O{sup 7+} or Ne{sup 9+}. This makes it possible to measure the density profiles of two plasma impurities simultaneously, as well as the ion temperature from CXRS lines of different elements. The modernized diagnostics significantly broadens the possibilities of studying the physics of transport processes and quasi-coherent modes of plasma oscillations at the T-10.

  17. High-resolution headlamp

    NASA Astrophysics Data System (ADS)

    Gut, Carsten; Cristea, Iulia; Neumann, Cornelius

    2016-04-01

    The following article shall describe how human vision by night can be influenced. At first, front lighting systems that are already available on the market will be described, followed by their analysis with respect to the positive effects on traffic safety. Furthermore, how traffic safety by night can be increased since the introduction of high resolution headlamps shall be discussed.

  18. High resolution data acquisition

    DOEpatents

    Thornton, Glenn W.; Fuller, Kenneth R.

    1993-01-01

    A high resolution event interval timing system measures short time intervals such as occur in high energy physics or laser ranging. Timing is provided from a clock (38) pulse train (37) and analog circuitry (44) for generating a triangular wave (46) synchronously with the pulse train (37). The triangular wave (46) has an amplitude and slope functionally related to the time elapsed during each clock pulse in the train. A converter (18, 32) forms a first digital value of the amplitude and slope of the triangle wave at the start of the event interval and a second digital value of the amplitude and slope of the triangle wave at the end of the event interval. A counter (26) counts the clock pulse train (37) during the interval to form a gross event interval time. A computer (52) then combines the gross event interval time and the first and second digital values to output a high resolution value for the event interval.

  19. High resolution data acquisition

    DOEpatents

    Thornton, G.W.; Fuller, K.R.

    1993-04-06

    A high resolution event interval timing system measures short time intervals such as occur in high energy physics or laser ranging. Timing is provided from a clock, pulse train, and analog circuitry for generating a triangular wave synchronously with the pulse train (as seen in diagram on patent). The triangular wave has an amplitude and slope functionally related to the time elapsed during each clock pulse in the train. A converter forms a first digital value of the amplitude and slope of the triangle wave at the start of the event interval and a second digital value of the amplitude and slope of the triangle wave at the end of the event interval. A counter counts the clock pulse train during the interval to form a gross event interval time. A computer then combines the gross event interval time and the first and second digital values to output a high resolution value for the event interval.

  20. High-Resolution Autoradiography

    NASA Technical Reports Server (NTRS)

    Towe, George C; Gomberg, Henry J; Freemen, J W

    1955-01-01

    This investigation was made to adapt wet-process autoradiography to metallurgical samples to obtain high resolution of segregated radioactive elements in microstructures. Results are confined to development of the technique, which was perfected to a resolution of less than 10 microns. The radioactive samples included carbon-14 carburized iron and steel, nickel-63 electroplated samples, a powder product containing nickel-63, and tungsten-185 in N-155 alloy.

  1. Ultra high resolution tomography

    SciTech Connect

    Haddad, W.S.

    1994-11-15

    Recent work and results on ultra high resolution three dimensional imaging with soft x-rays will be presented. This work is aimed at determining microscopic three dimensional structure of biological and material specimens. Three dimensional reconstructed images of a microscopic test object will be presented; the reconstruction has a resolution on the order of 1000 A in all three dimensions. Preliminary work with biological samples will also be shown, and the experimental and numerical methods used will be discussed.

  2. Spectroscopic diagnostics of organic chemistry in the protostellar environment

    NASA Technical Reports Server (NTRS)

    Charnley, S. B.; Ehrenfreund, P.; Kuan, Y. J.

    2001-01-01

    A combination of astronomical observations, laboratory studies, and theoretical modelling is necessary to determine the organic chemistry of dense molecular clouds. We present spectroscopic evidence for the composition and evolution of organic molecules in protostellar environments. The principal reaction pathways to complex molecule formation by catalysis on dust grains and by reactions in the interstellar gas are described. Protostellar cores, where warming of dust has induced evaporation of icy grain mantles, are excellent sites in which to study the interaction between gas phase and grain-surface chemistries. We investigate the link between organics that are observed as direct products of grain surface reactions and those which are formed by secondary gas phase reactions of evaporated surface products. Theory predicts observable correlations between specific interstellar molecules, and also which new organics are viable for detection. We discuss recent infrared observations obtained with the Infrared Space Observatory, laboratory studies of organic molecules, theories of molecule formation, and summarise recent radioastronomical searches for various complex molecules such as ethers, azaheterocyclic compounds, and amino acids.

  3. Spectroscopic diagnostics of organic chemistry in the protostellar environment.

    PubMed

    Charnley, S B; Ehrenfreund, P; Kuan, Y J

    2001-03-15

    A combination of astronomical observations, laboratory studies, and theoretical modelling is necessary to determine the organic chemistry of dense molecular clouds. We present spectroscopic evidence for the composition and evolution of organic molecules in protostellar environments. The principal reaction pathways to complex molecule formation by catalysis on dust grains and by reactions in the interstellar gas are described. Protostellar cores, where warming of dust has induced evaporation of icy grain mantles, are excellent sites in which to study the interaction between gas phase and grain-surface chemistries. We investigate the link between organics that are observed as direct products of grain surface reactions and those which are formed by secondary gas phase reactions of evaporated surface products. Theory predicts observable correlations between specific interstellar molecules, and also which new organics are viable for detection. We discuss recent infrared observations obtained with the Infrared Space Observatory, laboratory studies of organic molecules, theories of molecule formation, and summarise recent radioastronomical searches for various complex molecules such as ethers, azaheterocyclic compounds, and amino acids.

  4. Spectroscopic Analysis and Thomson Scattering Diagnostics of Wire Produced Plasma

    NASA Astrophysics Data System (ADS)

    Plechaty, Christopher; Sotnikov, Vladimir; Main, Daniel; Caplinger, James; Wallerstein, Austin; Kim, Tony

    2014-10-01

    The Lower Hybrid Drift Instability (LHDI) in plasma is driven by the presence of inhomogeneities in density, temperature, or magnetic field (Krall 1971, Davidson 1977), and occurs in systems where the electrons are magnetized and the ions are effectively unmagnetized. The LHDI is thought to occur in magnetic reconnection (Huba 1977), and has also been investigated as a mitigation technique which can allow for communications to take place through the plasma formed around hypersonic aircraft (Sotnikov 2010). To further understand the phenomenology of the LHDI, we plan to carry out experiments at the Air Force Research Laboratory, in the newly formed Plasma Physics Sensors Laboratory. In experiment, a pulsed power generator is employed to produce plasma by passing current through single, or dual-wire configurations. To characterize the plasma, a Thomson scattering diagnostic is employed, along with a visible spectroscopy diagnostic. This work was performed under the auspices of the U.S. Department of Defense by Riverside Research under Contract BAA-FA8650-13-C-1539.

  5. Yttrium-90 internal pair production imaging using first generation PET/CT provides high-resolution images for qualitative diagnostic purposes.

    PubMed

    Kao, Y H; Tan, E H; Lim, K Y; Ng, C E; Goh, S W

    2012-07-01

    Yttrium-90 ((90)Y) internal pair production can be imaged by positron emission tomography (PET)/CT and is superior to bremsstrahlung single-photon emission CT/CT for evaluating hepatic (90)Y microsphere biodistribution. We illustrate a case of (90)Y imaging using first generation PET/CT technology, producing high-quality images for qualitative diagnostic purposes.

  6. Bioinformatic tools for using whole genome sequencing as a rapid high resolution diagnostic typing tool when tracing bioterror organisms in the food and feed chain.

    PubMed

    Segerman, Bo; De Medici, Dario; Ehling Schulz, Monika; Fach, Patrick; Fenicia, Lucia; Fricker, Martina; Wielinga, Peter; Van Rotterdam, Bart; Knutsson, Rickard

    2011-03-01

    The rapid technological development in the field of parallel sequencing offers new opportunities when tracing and tracking microorganisms in the food and feed chain. If a bioterror organism is deliberately spread it is of crucial importance to get as much information as possible regarding the strain as fast as possible to aid the decision process and select suitable controls, tracing and tracking tools. A lot of efforts have been made to sequence multiple strains of potential bioterror organisms so there is a relatively large set of reference genomes available. This study is focused on how to use parallel sequencing for rapid phylogenomic analysis and screen for genetic modifications. A bioinformatic methodology has been developed to rapidly analyze sequence data with minimal post-processing. Instead of assembling the genome, defining genes, defining orthologous relations and calculating distances, the present method can achieve a similar high resolution directly from the raw sequence data. The method defines orthologous sequence reads instead of orthologous genes and the average similarity of the core genome (ASC) is calculated. The sequence reads from the core and from the non-conserved genomic regions can also be separated for further analysis. Finally, the comparison algorithm is used to visualize the phylogenomic diversity of the bacterial bioterror organisms Bacillus anthracis and Clostridium botulinum using heat plot diagrams.

  7. Bartonellae in domestic and stray cats from Israel: comparison of bacterial cultures and high-resolution melt real-time PCR as diagnostic methods.

    PubMed

    Gutiérrez, Ricardo; Morick, Danny; Gross, Ifat; Winkler, Ronen; Abdeen, Ziad; Harrus, Shimon

    2013-12-01

    To determine the occurrence of feline bartonellosis in Israel, blood samples were collected from 179 stray and 155 domestic cats from 18 cities or villages in central and northcentral Israel. Samples were screened for Bartonella infection by culture isolation and molecular detection using high-resolution melt (HRM) real-time PCR assay targeting the 16S-23S rRNA internal transcribed spacer (ITS). All positive samples were confirmed by two additional HRM real-time PCR assays targeting two fragments of the β-subunit of RNA polymerase (rpoB) and the 16S rRNA genes. The prevalence of Bartonella spp. infection in the general tested population was 25.1% (84/334). A higher prevalence was detected in the stray (30.7%; 55/179) than the domestic cats (18.7%; 29/155). Bartonella henselae, Bartonella clarridgeiae, and Bartonella koehlerae were highly prevalent in both cat populations, however their distribution among the two populations varied significantly (p=0.016). B. clarridgeiae and B. koehlerae were found to be more prevalent in stray than domestic cats, whereas B. henselae was evenly distributed. Co-infection with two or more different Bartonella spp. was determined in 2.1% (7) of the cats. The ITS HRM real-time PCR assay used in this study was shown to have a greater screening power than bacterial isolation, detecting 94.0% (79/84) compared to 35.7% (30/84), respectively, of all positive samples. The high prevalence of these zoonotic Bartonella species, coupled with the overpopulation of stray cats, and increased numbers of domestic cats in the major urban centers in Israel represent a significant threat for the public health in this country.

  8. High-resolution ground-based spectroscopy: where and how ?

    NASA Astrophysics Data System (ADS)

    Pallavicini, R.

    2002-07-01

    An overview is presented of high-resolution optical spectrographs in operation or under development at large telescopes, with emphasis on those facilities best suited for the study of late-type stars and stellar surface inhomogeneities. Plans for the development of new high-resolution spectroscopic instruments are discussed with emphasis on the ICE spectrograph for the PEPSI spectropolarimeter at the LBT.

  9. HELIOS: A helium line-ratio spectral-monitoring diagnostic used to generate high resolution profiles near the ion cyclotron resonant heating antenna on TEXTOR

    SciTech Connect

    Unterberg, E. A.; Fehling, D. H.; Klepper, C. C.; Hillis, D. L.; Schmitz, O.; Stoschus, H.; Munoz-Burgos, J. M.; Van Wassenhove, G.

    2012-10-15

    Radial profiles of electron temperature and density are measured at high spatial ({approx}1 mm) and temporal ( Greater-Than-Or-Slanted-Equal-To 10 {mu}s) resolution using a thermal supersonic helium jet. A highly accurate detection system is applied to well-developed collisional-radiative model codes to produce the profiles. Agreement between this measurement and an edge Thomson scattering measurement is found to be within the error bars ( Less-Than-Or-Equivalent-To 20%). The diagnostic is being used to give profiles near the ion cyclotron resonant heating antenna on TEXTOR to better understand RF coupling to the core.

  10. HELIOS: a helium line-ratio spectral-monitoring diagnostic used to generate high resolution profiles near the ion cyclotron resonant heating antenna on TEXTOR.

    PubMed

    Unterberg, E A; Schmitz, O; Fehling, D H; Stoschus, H; Klepper, C C; Muñoz-Burgos, J M; Van Wassenhove, G; Hillis, D L

    2012-10-01

    Radial profiles of electron temperature and density are measured at high spatial (∼1 mm) and temporal (≥10 μs) resolution using a thermal supersonic helium jet. A highly accurate detection system is applied to well-developed collisional-radiative model codes to produce the profiles. Agreement between this measurement and an edge Thomson scattering measurement is found to be within the error bars (≲20%). The diagnostic is being used to give profiles near the ion cyclotron resonant heating antenna on TEXTOR to better understand RF coupling to the core.

  11. Spectroscopic diagnostics of plasma-chemical-vapor deposition from silane and germane

    NASA Astrophysics Data System (ADS)

    Hata, Nobuhiro; Matsuda, Akihisa; Tanaka, Kazunobu

    1987-04-01

    Coherent anti-Stokes Raman spectroscopy (CARS), laser-induced fluorescence (LIF), and emission spectroscopy are employed for the diagnostics of radio-frequency discharge plasmas of silane and germane; CARS signal of germane molecule; and LIF signal and ultraviolet emission signal of germanium atom in discharges, as well as signals from nongermanium-related neutral species are measured. The effect of hydrogen dilution on emission signal intensities in the steady-state discharge explains dynamic behaviors of the emission and CARS signal intensities in the closed discharge; these spectroscopic techniques are powerful diagnostic tools for gas-phase processes using mixed gas sources.

  12. Retrospective screening of relevant pesticide metabolites in food using liquid chromatography high resolution mass spectrometry and accurate-mass databases of parent molecules and diagnostic fragment ions.

    PubMed

    Polgár, László; García-Reyes, Juan F; Fodor, Péter; Gyepes, Attila; Dernovics, Mihály; Abrankó, László; Gilbert-López, Bienvenida; Molina-Díaz, Antonio

    2012-08-01

    In recent years, the detection and characterization of relevant pesticide metabolites in food is an important task in order to evaluate their formation, kinetics, stability, and toxicity. In this article, a methodology for the systematic screening of pesticides and their main metabolites in fruit and vegetable samples is described, using LC-HRMS and accurate-mass database search of parent compounds and their diagnostic fragment ions. The approach is based on (i) search for parent pesticide molecules; (ii) search for their metabolites in the positive samples, assuming common fragmentation pathways between the metabolites and parent pesticide molecules; and (iii) search for pesticide conjugates using the data from both parent species and diagnostic fragment ions. An accurate-mass database was constructed consisting of 1396 compounds (850 parent compounds, 447 fragment ions and 99 metabolites). The screening process was performed by the software in an automated fashion. The proposed methodology was evaluated with 29 incurred samples and the output obtained was compared to standard pesticide testing methods (targeted LC-MS/MS). Examples on the application of the proposed approach are shown, including the detection of several pesticide glycosides derivatives, which were found with significantly relevant intensities. Glucose-conjugated forms of parent compounds (e.g., fenhexamid-O-glucoside) and those of metabolites (e.g., despropyl-iprodione-N-glycoside) were detected. Facing the lack of standards for glycosylated pesticides, the study was completed with the synthesis of fenhexamid-O-glucoside for quantification purposes. In some cases the pesticide derivatives were found in a relatively high ratio, drawing the attention to these kinds of metabolites and showing that they should not be neglected in multi-residue methods. The global coverage obtained on the 29 analyzed samples showed the usefulness and benefits of the proposed approach and highlights the practical

  13. Large-field high-resolution Kirkpatrick-Baez amélioré-Kirkpatrick-Baez mixed microscope for multi-keV time-resolved x-ray imaging diagnostics of laser plasma

    NASA Astrophysics Data System (ADS)

    Yi, Shengzhen; Mu, Baozhong; Wang, Xin; Zhang, Zhong; Zhu, Jingtao; Wang, Zhanshan; He, Pengfei; Cao, Zhurong; Dong, Jianjun; Liu, Shenye; Ding, Yongkun

    2014-05-01

    A large-field high-resolution x-ray microscope was developed for multi-keV time-resolved x-ray imaging diagnostics of laser plasma at the Shenguang-III prototype facility. The microscope consists of Kirkpatrick-Baez amélioré (KBA) bimirrors and a KB single mirror corresponding to the imaging and temporal directions of a streak camera, respectively. KBA bimirrors coated with an Ir single layer were used to obtain high spatial resolutions within the millimeter-range field of view, and a KB mirror coated with Cr/C multilayers was used to obtain a specific spectral resolution around 4.3 keV. This study describes details of the microscope with regard to its optical design, mirror coatings, and assembly method. The experimental imaging results of the grid with 3 to 5 μm spatial resolution are also shown.

  14. High Resolution Doppler Imager

    NASA Technical Reports Server (NTRS)

    Hays, Paul B.

    1999-01-01

    This report summarizes the accomplishments of the High Resolution Doppler Imager (HRDI) on UARS spacecraft during the period 4/l/96 - 3/31/99. During this period, HRDI operation, data processing, and data analysis continued, and there was a high level of vitality in the HRDI project. The HRDI has been collecting data from the stratosphere, mesosphere, and lower thermosphere since instrument activation on October 1, 1991. The HRDI team has stressed three areas since operations commenced: 1) operation of the instrument in a manner which maximizes the quality and versatility of the collected data; 2) algorithm development and validation to produce a high-quality data product; and 3) scientific studies, primarily of the dynamics of the middle atmosphere. There has been no significant degradation in the HRDI instrument since operations began nearly 8 years ago. HRDI operations are fairly routine, although we have continued to look for ways to improve the quality of the scientific product, either by improving existing modes, or by designing new ones. The HRDI instrument has been programmed to collect data for new scientific studies, such as measurements of fluorescence from plants, measuring cloud top heights, and lower atmosphere H2O.

  15. High Resolution Formaldehyde Photochemistry

    NASA Astrophysics Data System (ADS)

    Ernest, C. T.; Bauer, D.; Hynes, A. J.

    2010-12-01

    Formaldehyde (HCHO) is the most abundant and most important organic carbonyl compound in the atmosphere. The sources of formaldehyde are the oxidation of methane, isoprene, acetone, and other volatile organic compounds (VOCs); fossil fuel combustion; and biomass burning. The dominant loss mechanism for formaldehyde is photolysis which occurs via two pathways: (R1) HCHO + hv → HCO + H (R2) HCHO + hv → H2 + CO The first pathway (R1) is referred to as the radical channel, while the second pathway (R2) is referred to as the molecular channel. The products of both pathways play a significant role in atmospheric chemistry. The CO that is produced in the molecular channel undergoes further oxidation to produce CO2. Under atmospheric conditions, the H atom and formyl radical that are produced in the radical channel undergo rapid reactions with O2 to produce the hydroperoxyl radical (HO2) via (R3) and (R4). (R3) HCO + O2 → HO2 + CO (R4) H + O2 → HO2 Thus, for every photon absorbed, the photolysis of formaldehyde can contribute one CO2 molecule to the global greenhouse budget or two HO2 radicals to the tropospheric HOx (OH + HO2) cycle. The HO2 radicals produced during formaldehyde photolysis have also been implicated in the formation of photochemical smog. The HO2 radicals act as radical chain carriers and convert NO to NO2, which ultimately results in the catalytic production of O3. Constraining the yield of HO2 produced via HCHO photolysis is essential for improving tropospheric chemistry models. In this study, both the absorption cross section and the quantum yield of the radical channel (R1) were measured at high resolution over the tropospherically relevant wavelength range 304-330 nm. For the cross section measurements a narrow linewidth Nd:YAG pumped dye laser was used with a multi-pass cell. Partial pressures of HCHO were kept below 0.3 torr. Simultaneous measurement of OH LIF in a flame allowed absolute calibration of the wavelength scale. Pressure

  16. High resolution time interval meter

    DOEpatents

    Martin, A.D.

    1986-05-09

    Method and apparatus are provided for measuring the time interval between two events to a higher resolution than reliability available from conventional circuits and component. An internal clock pulse is provided at a frequency compatible with conventional component operating frequencies for reliable operation. Lumped constant delay circuits are provided for generating outputs at delay intervals corresponding to the desired high resolution. An initiation START pulse is input to generate first high resolution data. A termination STOP pulse is input to generate second high resolution data. Internal counters count at the low frequency internal clock pulse rate between the START and STOP pulses. The first and second high resolution data are logically combined to directly provide high resolution data to one counter and correct the count in the low resolution counter to obtain a high resolution time interval measurement.

  17. APEX/J-PEX: A High-Resolution Spectrometer for EUV/X-ray Wavelengths

    NASA Astrophysics Data System (ADS)

    Kowalski, M. P.; Cruddace, R. G.; Gursky, H.; Yentis, D. J.

    2001-09-01

    Future X-ray and EUV missions should include high-resolution spectrometers, permitting use of the full range of spectroscopic diagnostics, in particular measurement of line profiles and Doppler shifts. We present a design for such an instrument (APEX), which would fly on a Small Explorer Satellite and which employs multilayer-coated ion-etched gratings in a normal-incidence configuration. We have already flown successfully a prototype spectrometer (J-PEX) on a NASA sounding rocket. The resulting EUV spectrum of the white dwarf G191-B2B will be presented.

  18. L-shell spectroscopic diagnostics of radiation from krypton HED plasma sources

    NASA Astrophysics Data System (ADS)

    Petkov, E. E.; Safronova, A. S.; Kantsyrev, V. L.; Shlyaptseva, V. V.; Rawat, R. S.; Tan, K. S.; Beiersdorfer, P.; Hell, N.; Brown, G. V.

    2016-11-01

    X-ray spectroscopy is a useful tool for diagnosing plasma sources due to its non-invasive nature. One such source is the dense plasma focus (DPF). Recent interest has developed to demonstrate its potential application as a soft x-ray source. We present the first spectroscopic studies of krypton high energy density plasmas produced on a 3 kJ DPF device in Singapore. In order to diagnose spectral features, and to obtain a more comprehensive understanding of plasma parameters, a new non-local thermodynamic equilibrium L-shell kinetic model for krypton was developed. It has the capability of incorporating hot electrons, with different electron distribution functions, in order to examine the effects that they have on emission spectra. To further substantiate the validity of this model, it is also benchmarked with data gathered from experiments on the electron beam ion trap (EBIT) at Lawrence Livermore National Laboratory, where data were collected using the high resolution EBIT calorimeter spectrometer.

  19. High Resolution EUV & FUV Spectroscopy of DA White Dwarfs

    NASA Astrophysics Data System (ADS)

    Barstow, M. A.; Good, S. A.; Bannister, N. P.; Burleigh, M. R.; Holberg, J. B.; Bruhweiler, F. C.; Napiwotzki, R.; Cruddace, R. G.; Kowalski, M. P.

    We report on recent results from a high-resolution spectroscopic survey of hot DA white dwarfs, based on IUE, FUSE and HST observations. For the first time, we address the measurement of element abundances in a completely objective manner with a spectroscopic model fitting technique, which allows us to consider formally the limits that can be placed on abundances in stars where no heavy elements are detected. We also include our latest analysis of the high resolution EUV spectrum of G191-B2B recorded by J-PEX.

  20. [Temperature distribution measurement of high energetic monopropellant by spectroscopic diagnostic technology].

    PubMed

    Zhang, Jie; Zou, Yan-wen; He, Jun; Yang, Rong-jie; Zhao, Wen-hua; Fang, Zhong-yan

    2004-10-01

    The combustion flame temperature distribution in the axes are measured by relative intensity method of the spectroscopic diagnostic technology for monopropellant hexanitrohexaazaisowurtzitane (HNIW) at 3 MPa and 5 MPa pressure, respectively. The investigation results show that the curves of combustion flame temperature distribution in all combustion course are accurately measured by relative intensity method for monopropellant HNIW. The measured highest combustion flame temperature in the axes are lower than theoretical combustion temperature at the same pressure, and are more close to theoretical combustion temperature along with the rising of the pressure. The experimental results indicate that the combustion flame temperature distribution can be measured by the relative intensity method for high energetic and high burning rate propellant at higher pressure.

  1. Fluorescent-spectroscopic and imaging methods of investigations for diagnostics of head and neck tumors and control of PDT

    NASA Astrophysics Data System (ADS)

    Edinak, N. E.; Chental, Victor V.; Komov, D.; Vaculovskaya, E.; Tabolinovskaya, T. D.; Abdullin, N. A.; Pustynsky, I.; Chatikhin, V.; Loschenov, Victor B.; Meerovich, Gennady A.; Stratonnikov, A. A.; Linkov, Kirill G.; Agafonov, Vladimir I.; Zuravleva, V.; Lukjanets, E.

    1996-01-01

    Methodics of PDT control and fluorescent-spectroscopic diagnostic of head and neck tumors and mammary gland cancer (nodular) with the use of Kr, He-Ne and semiconductor lasers and photosensitizer (PS) -- Al phtalocyanin (Photosense) are discussed. The results show that applied diagnostic methods permit us not only to identify the topology and malignancy of a tumor but also to correct PDT process directly during irradiation.

  2. New Solar Wind Diagnostic Using Both in Situ and Spectroscopic Measurements

    NASA Astrophysics Data System (ADS)

    Landi, E.; Gruesbeck, J. R.; Lepri, S. T.; Zurbuchen, T. H.

    2012-05-01

    We develop a new diagnostic technique that utilizes, at the same time, two completely different types of observations—in situ determinations of solar wind charge states and high-resolution spectroscopy of the inner solar corona—in order to study the temperature, density, and velocity of the solar wind as a function of height in the inner corona below the plasma freeze-in point. This technique relies on the ability to calculate the evolution of the ion charge composition as the solar wind escapes the Sun given the wind temperature, density, and velocity profiles as a function of distance. The resulting charge state composition can be used to predict frozen-in charge states as well as spectral line intensities. The predicted spectra and ion charge compositions can be compared with observations carried out when spectrometers and in situ instruments are in quadrature configuration to quantitatively test a set of assumptions regarding density, temperature, and velocity profiles in the low corona. Such a comparison can be used in two ways. If the input profiles are predicted by a theoretical solar wind model, this technique allows the benchmarking of the model. Otherwise, an empirical determination of the velocity, temperature, and density profiles can be achieved below the plasma freeze-in point applying a trial-and-error procedure to initial, user-specified profiles. To demonstrate this methodology, we have applied this technique to a state-of-the-art coronal hole and equatorial streamer model.

  3. High-Resolution US of Rheumatologic Diseases.

    PubMed

    Taljanovic, Mihra S; Melville, David M; Gimber, Lana H; Scalcione, Luke R; Miller, Margaret D; Kwoh, C Kent; Klauser, Andrea S

    2015-01-01

    For the past 15 years, high-resolution ultrasonography (US) is being routinely and increasingly used for initial evaluation and treatment follow-up of rheumatologic diseases. This imaging technique is performed by using high-frequency linear transducers and has proved to be a powerful diagnostic tool in evaluation of articular erosions, simple and complex joint and bursal effusions, tendon sheath effusions, and synovitis, with results comparable to those of magnetic resonance imaging, excluding detection of bone marrow edema. Crystal deposition diseases including gouty arthropathy and calcium pyrophosphate deposition disease (CPPD) have characteristic appearances at US, enabling differentiation between these two diseases and from inflammatory arthropathies. Enthesopathy, which frequently accompanies psoriatic and reactive arthritis, also has a characteristic appearance at high-resolution US, distinguishing these two entities from other inflammatory and metabolic arthropathies. The presence of Doppler signal in examined joints, bursae, and tendon sheaths indicates active synovitis. Microbubble echo contrast agents augment detection of tissue vascularity and may act in the future as a drug delivery vehicle. Frequently, joint, tendon sheath, and bursal fluid aspirations and therapeutic injections are performed under US guidance. The authors describe the high-resolution US technique including gray-scale, color or power Doppler, and contrast agent-enhanced US that is used in evaluation of rheumatologic diseases of the wrist and hand and the ankle and foot in their routine clinical practice. This article demonstrates imaging findings of normal joints, rheumatoid arthritis, gouty arthritis, CPPD, psoriatic and reactive arthritis, and osteoarthritis.

  4. ANL high-resolution injector

    SciTech Connect

    Minehara, E.; Kutschera, W.; Hartog, P.D.; Billquist, P.; Liu, Z.

    1986-05-01

    The ANL (Argonne National Laboratory) high-resolution injector has been installed to obtain higher mass resolution and higher preacceleration, and to utilize effectively the full mass range of ATLAS (Argonne tandem linac accelerator system). Preliminary results of the first beam test are reported briefly. The design and performance, in particular a high-mass-resolution magnet with aberration compensation, are discussed.

  5. High resolution digital delay timer

    DOEpatents

    Martin, Albert D.

    1988-01-01

    Method and apparatus are provided for generating an output pulse following a trigger pulse at a time delay interval preset with a resolution which is high relative to a low resolution available from supplied clock pulses. A first lumped constant delay (20) provides a first output signal (24) at predetermined interpolation intervals corresponding to the desired high resolution time interval. Latching circuits (26, 28) latch the high resolution data (24) to form a first synchronizing data set (60). A selected time interval has been preset to internal counters (142, 146, 154) and corrected for circuit propagation delay times having the same order of magnitude as the desired high resolution. Internal system clock pulses (32, 34) count down the counters to generate an internal pulse delayed by an interval which is functionally related to the preset time interval. A second LCD (184) corrects the internal signal with the high resolution time delay. A second internal pulse is then applied to a third LCD (74) to generate a second set of synchronizing data (76) which is complementary with the first set of synchronizing data (60) for presentation to logic circuits (64). The logic circuits (64) further delay the internal output signal (72) to obtain a proper phase relationship of an output signal (80) with the internal pulses (32, 34). The final delayed output signal (80) thereafter enables the output pulse generator (82) to produce the desired output pulse (84) at the preset time delay interval following input of the trigger pulse (10, 12).

  6. Advanced very high resolution radiometer

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The advanced very high resolution radiometer development program is considered. The program covered the design, construction, and test of a breadboard model, engineering model, protoflight model, mechanical structural model, and a life test model. Special bench test and calibration equipment was also developed for use on the program.

  7. A simple, high efficiency, high resolution spectropolarimeter

    NASA Astrophysics Data System (ADS)

    Barden, Samuel C.

    2012-09-01

    A simple concept is described that uses volume phase holographic gratings as polarizing dispersers for a high efficiency, high resolution spectropolarimeter. Although the idea has previously been mentioned in the literature as possible, such a concept has not been explored in detail. Performance analysis is presented for a VPHG spectropolarimeter concept that could be utilized for both solar and night-time astronomy. Instrumental peak efficiency can approach 100% with spectral dispersions permitting R~200,000 spectral resolution with diffraction limited telescopes. The instrument has 3-channels: two dispersed image planes with orthogonal polarization and an undispersed image plane. The concept has a range of versatility where it could be configured (with appropriate half-wave plates) for slit-fed spectroscopy or without slits for snapshot/hyperspectral/tomographic spectroscopic imaging. Multiplex gratings could also be used for the simultaneous recording of two separate spectral bands or multiple instruments could be daisy chained with beam splitters for further spectral coverage.

  8. High Resolution Laser Spectroscopy of Rhenium Carbide

    NASA Astrophysics Data System (ADS)

    Adam, Allan G.; Hall, Ryan M.; Linton, Colan; Tokaryk, Dennis

    2014-06-01

    The first spectroscopic study of rhenium carbide, ReC, has been performed using both low and high resolution techniques to collect rotationally resolved electronic spectra from 420 to 500nm. Laser-induced fluorescence (LIF), and dispersed fluorescence (DF) techniques were employed. ReC was formed in our laser ablation molecular jet apparatus by ablating a rhenium target rod in the presence of 1% methane in helium. The low resolution spectrum identified four bands of an electronic system belonging to ReC, three of which have been studied so far. Extensive hyperfine structure composed of six hyperfine components was observed in the high resolution spectrum, as well as a clear distinction between the 187ReC and 185ReC isotopologues. The data seems consistent with a ^4Π - ^4Σ- transition, as was predicted before experimentation. Dispersed fluorescence spectra allowed us to determine the ground state vibrational frequency (ωe"=994.4 ± 0.3 wn), and to identify a low-lying electronically excited state at Te"=1118.4 ± 0.4 wn with a vibrational frequency of ωe"=984 ± 2 wn. Personal communication, F. Grein, University of New Brunswick

  9. Comparative Very-High-Resolution VUV Spectroscopy

    NASA Astrophysics Data System (ADS)

    Lewis, B. R.; Gibson, S. T.; Baldwin, K. G. H.; Dooley, P. M.; Waring, K.

    Despite their importance to the photochemistry of the terrestrial atmosphere, and many experimental studies, previous characterization of the Schumann-Runge (SR) bands of O2, B3 Σ u- <- X3 Σ_g^- (v, 0) (1750-2050 Å) has been limited by poor experimental resolution. In addition, our understanding of the SR spectrum is incomplete, many rovibrational transitions in the perturbed region of the spectrum [B(v > 15)] remaining unassigned. We review new very-high-resolution measurements of the O2 photoabsorption cross section in the SR bands. Tunable, narrow-bandwidth background vacuum-ultraviolet (VUV) radiation for the measurements ( 7 × 105 resolving power) was generated by the two-photon-resonant difference-frequency four-wave mixing in Xe of excimer-pumped dye-laser radiation. With the aid of these cross-section measurements, rovibrational and line-shape analyses have led to new insights into the molecular structure and predissociation dynamics of O2. The current VUV laser-spectroscopic measurements are shown to compare favourably with results from two other very-high-resolution experimental techniques, namely laser-induced fluorescence spectroscopy and VUV Fourier-transform spectroscopy, the latter performed using a synchrotron source.

  10. High Resolution Spectroscopy to Support Atmospheric Measurements

    NASA Technical Reports Server (NTRS)

    Venkataraman, Malathy Devi

    2003-01-01

    Spectroscopic parameters (such as line position, intensity, broadening and shifting coefficients and their temperature dependences, line mixing coefficients etc.) for various molecular species of atmospheric interest are determined. In order to achieve these results, infrared spectra of several molecular bands are obtained using high-resolution recording instruments such as tunable diode laser spectrometer and Fourier transform spectrometers. Using sophisticated analysis routines (Multispectrum nonlinear least squares technique) these high-resolution infrared spectra are processed to determine the various spectral line parameters that are cited above. Spectra were taken using the McMath-Pierce Fourier transform spectrometer (FTS) at the National Solar Observatory on Kitt Peak, Arizona as well as the Bruker FTS at the Pacific Northwest National Laboratory (PNNL) at Richland, Washington. Most of the spectra are acquired not only at room temperature, but also at several different cold temperatures. This procedure is necessary to study the variation of the spectral line parameters as a function of temperature in order to simulate the Earth's and other planetary atmospheric environments. Depending upon the strength or weakness of the various bands recorded and analyzed, the length(s) of the absorption cells in which the gas samples under study are kept varied from a few centimeters up to several meters and the sample temperatures varied from approximately +30 C to -63 C. Research on several infrared bands of various molecular species and their isotopomers are undertaken. Those studies are briefly described.

  11. High Resolution Imaging Spectrometer (HIRIS)

    NASA Technical Reports Server (NTRS)

    Conley, Joseph M.; Herring, Mark; Norris, David D.

    1988-01-01

    The High Resolution Imaging Spectrometer (HIRIS), related data system, orbit, and mission operations are described. The pushbroom instrument simultaneously images the terrestrial surface in 192 spectral bands from 0.4 to 2.5 microns. The swath width is 30 km and spatial resolution is 30 m. It is planned to be launched with the Earth Observing System aboard the Space Station Polar Platform in 1995. Array detectors allow concurrent integration of the signals at 192,000 detector elements.

  12. DARPA high resolution display technologies

    NASA Astrophysics Data System (ADS)

    Slusarczuk, Marko

    1990-11-01

    Much of the information of interest to pilots in flight is display-limited, and is undergoing substantial expansion due to improved sensor output and signal processing; attention is accordingly given to digitally-based instrument display imaging in the present evaluation of high-resolution cockpit display technologies. Also noted are the advantages of digitally transmitted sensor data in cases where the airborne reconnaissance user may be able to analyze telemetered airborne data in real time and respond with requests to the pilot for more detailed information of specific battlefield sites.

  13. High-Resolution Imaging Spectrometer

    NASA Technical Reports Server (NTRS)

    Dozier, Jeff; Goetz, Alexander F. H.

    1990-01-01

    Earth resources observed in greater detail. High-Resolution Imaging Spectrometer, undergoing development for use in NASA's Earth Observing System, measures reflectance of Earth's surface in visible and near-infrared wavelengths. From an orbit around Earth, instrument scans surface of Earth in 200 wavelength bands simultaneously. Produces images enabling identification of minerals in rocks and soils, important algal pigments in oceans and inland waters, changes in spectra associated with biochemistry of plant canopies, compositions of atmospheric aerosols, sizes of grains in snow, and contamination of snow by impurities that absorb visible light.

  14. High Resolution Scanning Reflectarray Antenna

    NASA Technical Reports Server (NTRS)

    Romanofsky, Robert R. (Inventor); Miranda, Felix A. (Inventor)

    2000-01-01

    The present invention provides a High Resolution Scanning Reflectarray Antenna (HRSRA) for the purpose of tracking ground terminals and space craft communication applications. The present invention provides an alternative to using gimbaled parabolic dish antennas and direct radiating phased arrays. When compared to a gimbaled parabolic dish, the HRSRA offers the advantages of vibration free steering without incurring appreciable cost or prime power penalties. In addition, it offers full beam steering at a fraction of the cost of direct radiating arrays and is more efficient.

  15. High Resolution Spectroscopy to Support Atmospheric Measurements

    NASA Technical Reports Server (NTRS)

    Venkataraman, Malathy Devi

    2006-01-01

    The major research activities performed during the cooperative agreement enhanced our spectroscopic knowledge of molecules of atmospheric interest such as H2O (water vapor), O3 (ozone), HCN (hydrogen cyanide), CH4 (methane), NO2 (nitrogen dioxide) and CO (carbon monoxide). The data required for the analyses were obtained from two different Fourier Transform Spectrometers (FTS); one of which is located at the National Solar Observatory (NSO) on Kitt Peak, Arizona and the other instrument is located at the Pacific Northwest National Laboratories (PNNL) at Richland, Washington. The data were analyzed using a modified multispectrum nonlinear least squares fitting algorithm developed by Dr. D. Chris Benner of the College of William and Mary. The results from these studies made significant improvements in the line positons and intensities for these molecules. The measurements of pressure broadening and pressure induced line shift coefficients and the temperature dependence of pressure broadening and pressure induced shift coefficients for hundreds of infrared transitions of HCN, CO3 CH4 and H2O were also performed during this period. Results from these studies have been used for retrievals of stratospheric gas concentration profiles from data collected by several Upper Atmospheric Research Satellite (UARS) infrared instruments as well as in the analysis of high resolution atmospheric spectra such as those acquired by space-based, ground-based, and various balloon- and aircraft-borne experiments. Our results made significant contributions in several updates of the HITRAN (HIgh resolution TRANsmission) spectral line parameters database. This database enjoys worldwide recognition in research involving diversified scientific fields. The research conducted during the period 2003-2006 has resulted in publications given in this paper. In addition to Journal publications, several oral and poster presentations were given at various Scientific conferences within the United States

  16. X-ray spectroscopic diagnostics and modeling of polar-drive implosion experiments on the National Ignition Facility

    SciTech Connect

    Hakel, P. Kyrala, G. A.; Bradley, P. A.; Krasheninnikova, N. S.; Murphy, T. J.; Schmitt, M. J.; Tregillis, I. L.; Kanzleieter, R. J.; Batha, S. H.; Fontes, C. J.; Sherrill, M. E.; Kilcrease, D. P.; Regan, S. P.

    2014-06-15

    A series of experiments featuring laser-imploded plastic-shell targets filled with hydrogen or deuterium were performed on the National Ignition Facility. The shells (some deuterated) were doped in selected locations with Cu, Ga, and Ge, whose spectroscopic signals (indicative of local plasma conditions) were collected with a time-integrated, 1-D imaging, spectrally resolved, and absolute-intensity calibrated instrument. The experimental spectra compare well with radiation hydrodynamics simulations post-processed with a non-local thermal equilibrium atomic kinetics and spectroscopic-quality radiation-transport model. The obtained degree of agreement between the modeling and experimental data supports the application of spectroscopic techniques for the determination of plasma conditions, which can ultimately lead to the validation of theoretical models for thermonuclear burn in the presence of mix. Furthermore, the use of a lower-Z dopant element (e.g., Fe) is suggested for future experiments, since the ∼2 keV electron temperatures reached in mixed regions are not high enough to drive sufficient H-like Ge and Cu line emissions needed for spectroscopic plasma diagnostics.

  17. High Resolution Thermography In Medicine

    NASA Astrophysics Data System (ADS)

    Clark, R. P.; Goff, M. R.; Culley, J. E.

    1988-10-01

    A high resolution medical thermal imaging system using an 8 element SPRI1E detector is described. Image processing is by an Intellect 100 processor and is controlled by a DEC LSI 11/23 minicomputer. Image storage is with a 170 Mbyte winchester disc together with archival storage on 12 inch diameter optical discs having a capacity of 1 Gbyte per side. The system is currently being evaluated for use in physiology and medicine. Applications outlined include the potential of thermographic screening to identify genetic carriers in X-linked hypohidrotic ectodermal dysplasia (XED), detailed vas-cular perfusion studies in health and disease and the relation-ship between cutaneous blood flow, neurological peripheral function and skin surface temperature.

  18. Enhanced High Resolution RBS System

    NASA Astrophysics Data System (ADS)

    Pollock, Thomas J.; Hass, James A.; Klody, George M.

    2011-06-01

    Improvements in full spectrum resolution with the second NEC high resolution RBS system are summarized. Results for 50 Å TiN/HfO films on Si yielding energy resolution on the order of 1 keV are also presented. Detector enhancements include improved pulse processing electronics, upgraded shielding for the MCP/RAE detector, and reduced noise generated from pumping. Energy resolution measurements on spectra front edge coupled with calculations using 0.4mStr solid angle show that beam energy spread at 400 KeV from the Pelletron® accelerator is less than 100 eV. To improve user throughput, magnet control has been added to the automatic data collection. Depth profiles derived from experimental data are discussed. For the thin films profiled, depth resolutions were on the Angstrom level with the non-linear energy/channel conversions ranging from 100 to 200 eV.

  19. High Resolution Neutral Atom Microscope

    NASA Astrophysics Data System (ADS)

    Bucay, Igal; Castillo-Garza, Rodrigo; Stratis, Georgios; Raizen, Mark

    2015-03-01

    We are developing a high resolution neutral atom microscope based on metastable atom electron spectroscopy (MAES). When a metastable atom of a noble gas is near a solid, a surface electron will tunnel to an empty energy level of the metastable atom, thereby ejecting the excited electron from the atom. The emitted electrons carry information regarding the local topography and electronic, magnetic, and chemical structures of most hard materials. Furthermore, using a chromatic aberration corrected magnetic hexapole lens we expect to attain a spatial resolution below 10 nm. We will use this microscope to investigate how local phenomena can give rise to macroscopic effects in materials that cannot be probed using a scanning tunneling microscope, namely insulating transition metal oxides.

  20. High resolution spectrograph. [for LST

    NASA Technical Reports Server (NTRS)

    Peacock, K.

    1975-01-01

    The high resolution spectrograph (HRS) is designed to be used with the Large Space Telescope (LST) for the study of spectra of point and extended targets in the spectral range 110 to 410 nm. It has spectral resolutions of 1,000; 30,000; and 100,000 and has a field of view as large as 10 arc sec. The spectral range and resolution are selectable using interchangeable optical components and an echelle spectrograph is used to display a cross dispersed spectrum on the photocathode of either of 2 SEC orthicon image tubes. Provisions are included for wavelength calibration, target identification and acquisition and thermal control. The system considerations of the instrument are described.

  1. High-resolution imaging ellipsometer.

    PubMed

    Zhan, Qiwen; Leger, James R

    2002-08-01

    We report on a novel imaging ellipsometer using a high-numerical-aperture (NA) objective lens capable of measuring a two-dimensional ellipsometric signal with high resolution. Two-dimensional ellipsometric imaging is made possible by spatial filtering at the pupil plane of the objective. A Richards-Wolf vectorial diffraction model and geometrical optics model are developed to simulate the system. The thickness profile of patterned polymethyl methacrylate is measured for calibration purposes. Our instrument has a sensitivity of 5 A and provides spatial resolution of approximately 0.5 microm with 632.8-nm illumination. Its capability of measuring refractive-index variations with high spatial resolution is also demonstrated.

  2. A high resolution TDC subsystem

    SciTech Connect

    Geiges, R.; Merle, K. )

    1994-02-01

    A high resolution TDC subsystem was developed at the Institute for Nuclear Physics in Mainz. The TDC chip offers a time resolution of less than 300 ps and a programmable measurement range from 0 to 16 [mu]sec. The time measurement is done with a new, purely digital counting method. The chip can be operated in common start or common stop mode. In common start mode the chip is able to store up to 4 multiple hits per channel. The chip is used to build a transputer controlled subsystem for the measurement of the drift times of a vertical drift chamber. The design of the subsystem will be described and the first results from the tests of the prototype system will be presented.

  3. High resolution tomographic instrument development

    SciTech Connect

    Not Available

    1992-08-01

    Our recent work has concentrated on the development of high-resolution PET instrumentation reflecting in part the growing importance of PET in nuclear medicine imaging. We have developed a number of positron imaging instruments and have the distinction that every instrument has been placed in operation and has had an extensive history of application for basic research and clinical study. The present program is a logical continuation of these earlier successes. PCR-I, a single ring positron tomograph was the first demonstration of analog coding using BGO. It employed 4 mm detectors and is currently being used for a wide range of biological studies. These are of immense importance in guiding the direction for future instruments. In particular, PCR-II, a volume sensitive positron tomograph with 3 mm spatial resolution has benefited greatly from the studies using PCR-I. PCR-II is currently in the final stages of assembly and testing and will shortly be placed in operation for imaging phantoms, animals and ultimately humans. Perhaps the most important finding resulting from our previous study is that resolution and sensitivity must be carefully balanced to achieve a practical high resolution system. PCR-II has been designed to have the detection characteristics required to achieve 3 mm resolution in human brain under practical imaging situations. The development of algorithms by the group headed by Dr. Chesler is based on a long history of prior study including his joint work with Drs. Pelc and Reiderer and Stearns. This body of expertise will be applied to the processing of data from PCR-II when it becomes operational.

  4. High resolution tomographic instrument development

    SciTech Connect

    Not Available

    1992-01-01

    Our recent work has concentrated on the development of high-resolution PET instrumentation reflecting in part the growing importance of PET in nuclear medicine imaging. We have developed a number of positron imaging instruments and have the distinction that every instrument has been placed in operation and has had an extensive history of application for basic research and clinical study. The present program is a logical continuation of these earlier successes. PCR-I, a single ring positron tomograph was the first demonstration of analog coding using BGO. It employed 4 mm detectors and is currently being used for a wide range of biological studies. These are of immense importance in guiding the direction for future instruments. In particular, PCR-II, a volume sensitive positron tomograph with 3 mm spatial resolution has benefited greatly from the studies using PCR-I. PCR-II is currently in the final stages of assembly and testing and will shortly be placed in operation for imaging phantoms, animals and ultimately humans. Perhaps the most important finding resulting from our previous study is that resolution and sensitivity must be carefully balanced to achieve a practical high resolution system. PCR-II has been designed to have the detection characteristics required to achieve 3 mm resolution in human brain under practical imaging situations. The development of algorithms by the group headed by Dr. Chesler is based on a long history of prior study including his joint work with Drs. Pelc and Reiderer and Stearns. This body of expertise will be applied to the processing of data from PCR-II when it becomes operational.

  5. High resolution tomographic instrument development

    NASA Astrophysics Data System (ADS)

    Our recent work has concentrated on the development of high-resolution PET instrumentation reflecting in part the growing importance of PET in nuclear medicine imaging. We have developed a number of positron imaging instruments and have the distinction that every instrument has been placed in operation and has had an extensive history of application for basic research and clinical study. The present program is a logical continuation of these earlier successes. PCR-I, a single ring positron tomograph was the first demonstration of analog coding using BGO. It employed 4 mm detectors and is currently being used for a wide range of biological studies. These are of immense importance in guiding the direction for future instruments. In particular, PCR-II, a volume sensitive positron tomograph with 3 mm spatial resolution has benefitted greatly from the studies using PCR-I. PCR-II is currently in the final stages of assembly and testing and will shortly be placed in operation for imaging phantoms, animals and ultimately humans. Perhaps the most important finding resulting from our previous study is that resolution and sensitivity must be carefully balanced to achieve a practical high resolution system. PCR-II has been designed to have the detection characteristics required to achieve 3 mm resolution in human brain under practical imaging situations. The development of algorithms by the group headed by Dr. Chesler is based on a long history of prior study including his joint work with Drs. Pelc and Reiderer and Stearns. This body of expertise will be applied to the processing of data from PCR-II when it becomes operational.

  6. Mars high-resolution mapping

    NASA Astrophysics Data System (ADS)

    Batson, R. M.; Thomas, P. K.

    1991-06-01

    A series of photomosaics of high-resolution Viking Orbiter images of Mars is being prepared and published to support the Mars 1:500,000 scale geologic mapping program. More than 100 of these photomosaics were made manually, but for the last several years they have all been made digitally. The digital mosaics are published on the Mars Transverse Mercator (MTM) system, and they are also available to the appropriate principal investigators as digital files in the mosaicked digital image model (MDIM) format. The mosaics contain Viking Orbiter images with the highest available resolution: in some areas as high as 10 m/pixel. This resolution, where it exists, will support a 1:100,000 map scale. The full resolution of a mosaic is preserved in a digital file, but conventional lithographic publication of such large-scale inset maps will be done only if required by the geologic map author. When high-resolution images do not fill the neat lines of an MTM quadrangle, the medium-resolution (1/256 degrees/pixel, or 231 m/pixel) MDIM is used. The mosaics are tied by image-matching to the planetwide MDIM, in which random errors as large as 5 km (10 mm at 1:500,000 scale) are common; a few much larger, worst-case errors also occur. Because of the distribution of the errors, many large discrepancies appear along the cutlines between frames with very different resolutions. Furthermore, each block of quadrangles is compiled on its own local control system, and adjacent blocks, compiled later, are unlikely to match. Selection of areas to be mapped is based on geologic mapping proposals reviewed and recommended by the Mars 1:500,000 scale geologic mapping review panel. There is no intention to map the entire planet at this scale.

  7. HRSC: High resolution stereo camera

    USGS Publications Warehouse

    Neukum, G.; Jaumann, R.; Basilevsky, A.T.; Dumke, A.; Van Gasselt, S.; Giese, B.; Hauber, E.; Head, J. W.; Heipke, C.; Hoekzema, N.; Hoffmann, H.; Greeley, R.; Gwinner, K.; Kirk, R.; Markiewicz, W.; McCord, T.B.; Michael, G.; Muller, Jan-Peter; Murray, J.B.; Oberst, J.; Pinet, P.; Pischel, R.; Roatsch, T.; Scholten, F.; Willner, K.

    2009-01-01

    The High Resolution Stereo Camera (HRSC) on Mars Express has delivered a wealth of image data, amounting to over 2.5 TB from the start of the mapping phase in January 2004 to September 2008. In that time, more than a third of Mars was covered at a resolution of 10-20 m/pixel in stereo and colour. After five years in orbit, HRSC is still in excellent shape, and it could continue to operate for many more years. HRSC has proven its ability to close the gap between the low-resolution Viking image data and the high-resolution Mars Orbiter Camera images, leading to a global picture of the geological evolution of Mars that is now much clearer than ever before. Derived highest-resolution terrain model data have closed major gaps and provided an unprecedented insight into the shape of the surface, which is paramount not only for surface analysis and geological interpretation, but also for combination with and analysis of data from other instruments, as well as in planning for future missions. This chapter presents the scientific output from data analysis and highlevel data processing, complemented by a summary of how the experiment is conducted by the HRSC team members working in geoscience, atmospheric science, photogrammetry and spectrophotometry. Many of these contributions have been or will be published in peer-reviewed journals and special issues. They form a cross-section of the scientific output, either by summarising the new geoscientific picture of Mars provided by HRSC or by detailing some of the topics of data analysis concerning photogrammetry, cartography and spectral data analysis.

  8. High resolution time interval counter

    DOEpatents

    Condreva, Kenneth J.

    1994-01-01

    A high resolution counter circuit measures the time interval between the occurrence of an initial and a subsequent electrical pulse to two nanoseconds resolution using an eight megahertz clock. The circuit includes a main counter for receiving electrical pulses and generating a binary word--a measure of the number of eight megahertz clock pulses occurring between the signals. A pair of first and second pulse stretchers receive the signal and generate a pair of output signals whose widths are approximately sixty-four times the time between the receipt of the signals by the respective pulse stretchers and the receipt by the respective pulse stretchers of a second subsequent clock pulse. Output signals are thereafter supplied to a pair of start and stop counters operable to generate a pair of binary output words representative of the measure of the width of the pulses to a resolution of two nanoseconds. Errors associated with the pulse stretchers are corrected by providing calibration data to both stretcher circuits, and recording start and stop counter values. Stretched initial and subsequent signals are combined with autocalibration data and supplied to an arithmetic logic unit to determine the time interval in nanoseconds between the pair of electrical pulses being measured.

  9. High resolution time interval counter

    DOEpatents

    Condreva, K.J.

    1994-07-26

    A high resolution counter circuit measures the time interval between the occurrence of an initial and a subsequent electrical pulse to two nanoseconds resolution using an eight megahertz clock. The circuit includes a main counter for receiving electrical pulses and generating a binary word--a measure of the number of eight megahertz clock pulses occurring between the signals. A pair of first and second pulse stretchers receive the signal and generate a pair of output signals whose widths are approximately sixty-four times the time between the receipt of the signals by the respective pulse stretchers and the receipt by the respective pulse stretchers of a second subsequent clock pulse. Output signals are thereafter supplied to a pair of start and stop counters operable to generate a pair of binary output words representative of the measure of the width of the pulses to a resolution of two nanoseconds. Errors associated with the pulse stretchers are corrected by providing calibration data to both stretcher circuits, and recording start and stop counter values. Stretched initial and subsequent signals are combined with autocalibration data and supplied to an arithmetic logic unit to determine the time interval in nanoseconds between the pair of electrical pulses being measured. 3 figs.

  10. High resolution optoelectronic retinal prosthesis

    NASA Astrophysics Data System (ADS)

    Loudin, Jim; Dinyari, Rostam; Huie, Phil; Butterwick, Alex; Peumans, Peter; Palanker, Daniel

    2009-02-01

    Electronic retinal prostheses seek to restore sight in patients with retinal degeneration by delivering pulsed electric currents to retinal neurons via an array of microelectrodes. Most implants use inductive or optical transmission of information and power to an intraocular receiver, with decoded signals subsequently distributed to retinal electrodes through an intraocular cable. Surgical complexity could be minimized by an "integrated" prosthesis, in which both power and data are delivered directly to the stimulating array without any discrete components or cables. We present here an integrated retinal prosthesis system based on a photodiode array implant. Video frames are processed and imaged onto the retinal implant by a video goggle projection system operating at near-infrared wavelengths (~ 900 nm). Photodiodes convert light into pulsed electric current, with charge injection maximized by specially optimized series photodiode circuits. Prostheses of three different pixel densities (16 pix/mm2, 64 pix/mm2, and 256 pix/mm2) have been designed, simulated, and prototyped. Retinal tissue response to subretinal implants made of various materials has been investigated in RCS rats. The resulting prosthesis can provide sufficient charge injection for high resolution retinal stimulation without the need for implantation of any bulky discrete elements such as coils or tethers. In addition, since every pixel functions independently, pixel arrays may be placed separately in the subretinal space, providing visual stimulation to a larger field of view.

  11. High resolution imaging at Palomar

    NASA Technical Reports Server (NTRS)

    Kulkarni, Shrinivas R.

    1992-01-01

    For the last two years we have embarked on a program of understanding the ultimate limits of ground-based optical imaging. We have designed and fabricated a camera specifically for high resolution imaging. This camera has now been pressed into service at the prime focus of the Hale 5 m telescope. We have concentrated on two techniques: the Non-Redundant Masking (NRM) and Weigelt's Fully Filled Aperture (FFA) method. The former is the optical analog of radio interferometry and the latter is a higher order extension of the Labeyrie autocorrelation method. As in radio Very Long Baseline Interferometry (VLBI), both these techniques essentially measure the closure phase and, hence, true image construction is possible. We have successfully imaged binary stars and asteroids with angular resolution approaching the diffraction limit of the telescope and image quality approaching that of a typical radio VLBI map. In addition, we have carried out analytical and simulation studies to determine the ultimate limits of ground-based optical imaging, the limits of space-based interferometric imaging, and investigated the details of imaging tradeoffs of beam combination in optical interferometers.

  12. Evaluation of Advanced Bionics high resolution mode.

    PubMed

    Buechner, Andreas; Frohne-Buechner, Carolin; Gaertner, Lutz; Lesinski-Schiedat, Anke; Battmer, Rolf-Dieter; Lenarz, Thomas

    2006-07-01

    The objective of this paper is to evaluate the advantages of the Advanced Bionic high resolution mode for speech perception, through a retrospective analysis. Forty-five adult subjects were selected who had a minimum experience of three months' standard mode (mean of 10 months) before switching to high resolution mode. Speech perception was tested in standard mode immediately before fitting with high resolution mode, and again after a maximum of six months high resolution mode usage (mean of two months). A significant improvement was found, between 11 and 17%, depending on the test material. The standard mode preference does not give any indication about the improvement when switching to high resolution. Users who are converted within any study achieve a higher performance improvement than those converted in the clinical routine. This analysis proves the significant benefits of high resolution mode for users, and also indicates the need for guidelines for individual optimization of parameter settings in a high resolution mode program.

  13. High-resolution slug testing.

    PubMed

    Zemansky, G M; McElwee, C D

    2005-01-01

    The hydraulic conductivity (K) variation has important ramifications for ground water flow and the transport of contaminants in ground water. The delineation of the nature of that variation can be critical to complete characterization of a site and the planning of effective and efficient remedial measures. Site-specific features (such as high-conductivity zones) need to be quantified. Our alluvial field site in the Kansas River valley exhibits spatial variability, very high conductivities, and nonlinear behavior for slug tests in the sand and gravel aquifer. High-resolution, multilevel slug tests have been performed in a number of wells that are fully screened. A general nonlinear model based on the Navier-Stokes equation, nonlinear frictional loss, non-Darcian flow, acceleration effects, radius changes in the wellbore, and a Hvorslev model for the aquifer has been used to analyze the data, employing an automated processing system that runs within the Excel spreadsheet program. It is concluded that slug tests can provide the necessary data to identify the nature of both horizontal and vertical K variation in an aquifer and that improved delineation or higher resolution of K structure is possible with shorter test intervals. The gradation into zones of higher conductivity is sharper than seen previously, and the maximum conductivity observed is greater than previously measured. However, data from this project indicate that well development, the presence of fines, and the antecedent history of the well are important interrelated factors in regard to slug-test response and can prevent obtaining consistent results in some cases.

  14. Nonintrusive spectroscopic techniques for supersonic/hypersonic aerodynamics and combustion diagnostics

    NASA Technical Reports Server (NTRS)

    Exton, R. J.

    1992-01-01

    This paper presents an overview of the primary nonintrusive diagnostic techniques being developed by the NASA Langley Research Center to address the validation needs of Computational Fluid Dynamic (CFD) codes. The techniques include absorption in the UV and IR, Laser Induced Fluorescence, electron beam fluorescence, and a number of scattering techniques including Rayleigh, spontaneous Raman, and several coherent Raman spectroscopies. Most of the techniques are highly specialized, require complex data interpretation, and can satisfy only a few of the CFD needs. For these reasons, the evolving trend in flowfield diagnostics appears to favor a mode in which the diagnostic researcher, the experimental aerodynamicist, and the CFD community jointly define experiments based on the aeronautical requirements and on available diagnostic techniques.

  15. Planetary Atmospheres at High Resolution

    NASA Astrophysics Data System (ADS)

    Gurwell, M.; Butler, B.; Moullet, A.

    2013-10-01

    The long millimeter through submillimeter bands are particularly well suited for studying the wide variety of planetary atmospheres in our solar system. Temperatures ranging from a few 10s to hundreds of degrees, coupled with typically high densities (relative to the ISM) mean that thermal ‘continuum’ emission can be strong and molecular rotational transitions can be well-populated. Large bodies (Jovian and terrestrial planets) can be reasonably well studied by current interferometers such as the Submillimeter Array, IRAM Plateau de Bure Interferometer, and Combined Array for Research in Millimeter-wave Astronomy, yet many smaller bodies with atmospheres can only be crudely studied, primarily due to lack of sensitivity on baselines long enough to well resolve the object. Newly powerful interferometers such as the Atacama Large Millimeter/Submillimeter Array will usher in a new era of planetary atmospheric exploration. The vast sensitivity and spatial resolution of these arrays will increase our ability to image all bodies with extremely fine fidelity (due to the large number of antennas), and for study of smaller objects by resolving their disks into many pixels while providing the sensitivity necessary to detect narrow and/or weak line emission. New science topics will range from detailed mapping of HDO, ClO, and sulfur species in the mesosphere of Venus and PH3 and H2S in the upper tropospheres of the gas and ice giants, high SNR mapping of winds on Mars, Neptune and Titan, down to spectroscopic imaging of volcanic eruptions within the tenuous atmosphere on Io, resolved imaging of CO and other species in the atmosphere of Pluto, and even potentially detection of gases within the plumes of Enceladus.

  16. New generation of medium wattage metal halide lamps and spectroscopic tools for their diagnostics

    NASA Astrophysics Data System (ADS)

    Dunaevsky, A.; Tu, J.; Gibson, R.; Steere, T.; Graham, K.; van der Eyden, J.

    2010-11-01

    A new generation of ceramic metal halide high intensity discharge (HID) lamps has achieved high efficiencies by implementing new design concepts. The shape of the ceramic burner is optimized to withstand high temperatures with minimal thermal stress. Corrosion processes with the ceramic walls are slowed down via adoption of non-aggressive metal halide chemistry. Light losses over life due to tungsten deposition on the walls are minimized by maintaining a self-cleaning chemical process, known as tungsten cycle. All these advancements have made the new ceramic metal halide lamps comparable to high pressure sodium lamps for luminous efficacy, life, and maintenance while providing white light with high color rendering. Direct replacement of quartz metal halide lamps and systems results in the energy saving from 18 up to 50%. High resolution spectroscopy remains the major non-destructive tool for the ceramic metal halide lamps. Approaches to reliable measurements of relative partial pressures of the arc species are discussed.

  17. An advanced high resolution x-ray imager for laser-plasma interaction observation

    NASA Astrophysics Data System (ADS)

    Dennetiere, D.; Troussel, Ph.; Courtois, C.; Wrobel, R.; Audebert, P.

    2013-11-01

    We present here the latest results obtained with our high resolution broadband X-ray microscope. These results, both spatial and spectral, were obtained in several facilities such as Berlin's synchrotron Bessy II and LULI's laser ELFIE 100TW. The results show clearly the opportunity in high resolution microscopy that offer mirror based diagnostics.

  18. High resolution magnetic spectrometer SHARAQ in RIBF

    SciTech Connect

    Shimoura, S.

    2007-05-22

    For a new spectroscopy of nuclei using intense RI beams at RIBF, we started the SHARAQ project where a high-resolution SHARAQ spectrometer is being constructed together with a high-resolution secondary beam line. Physics motivation and the specification of the spectrometer are presented.

  19. High resolution scintillation detector with semiconductor readout

    DOEpatents

    Levin, Craig S.; Hoffman, Edward J.

    2000-01-01

    A novel high resolution scintillation detector array for use in radiation imaging such as high resolution Positron Emission Tomography (PET) which comprises one or more parallelepiped crystals with at least one long surface of each crystal being in intimate contact with a semiconductor photodetector such that photons generated within each crystal by gamma radiation passing therethrough is detected by the photodetector paired therewith.

  20. High Resolution PDF Measurements on Ag Nanoparticles

    SciTech Connect

    Rocha, Tulio C. R.; Martin, Chris; Kycia, Stefan; Zanchet, Daniela

    2009-01-29

    The quantitative analysis of structural defects in Ag nanoparticles was addressed in this work. We performed atomic scale structural characterization by a combination of x-ray diffraction (XRD) using the Pair Distribution Function analysis (PDF) and High Resolution Transmission Electron Microscopy (HRTEM). The XRD measurements were performed using an innovative instrumentation setup to provide high resolution PDF patterns.

  1. Experimental tests of a 263 GHz gyrotron for spectroscopic applications and diagnostics of various media

    SciTech Connect

    Glyavin, M. Yu. Denisov, G. G.; Zapevalov, V. E.; Chirkov, A. V.; Fokin, A. P.; Kholoptsev, V. V.; Kuftin, A. N.; Luchinin, A. G.; Golubyatnikov, G. Yu.; Malygin, V. I.; Morozkin, M. V.; Manuilov, V. N.; Proyavin, M. D.; Sedov, A. S.; Tsvetkov, A. I.; Sokolov, E. V.; Tai, E. M.

    2015-05-15

    A 263 GHz continuous-wave (CW) gyrotron was developed at the IAP RAS for future applications as a microwave power source in Dynamic Nuclear Polarization / Nuclear magnetic resonance (DNP/NMR) spectrometers. A new experimental facility with a computerized control was built to test this and subsequent gyrotrons. We obtained the maximum CW power up to 1 kW in the 15 kV/0.4 A operation regime. The power about 10 W, which is sufficient for many spectroscopic applications, was realized in the low current 14 kV/0.02 A regime. The possibility of frequency tuning by variation of the coolant temperature about 4 MHz/1 °C was demonstrated. The spectral width of the gyrotron radiation was about 10{sup −6}.

  2. High-Resolution Radar Imagery of Mars

    NASA Astrophysics Data System (ADS)

    Harmon, John K.; Nolan, M. C.

    2009-09-01

    We present high-resolution radar images of Mars obtained during the 2005 and 2007 oppositions. The images were constructed from long-code delay-Doppler observations made with the Arecibo S-band (13-cm) radar. The average image resolution of 3 km represented a better than order-of-magnitude improvement over pre-upgrade Arecibo imagery of the planet. Images of depolarized reflectivity (an indicator primarily of wavelength-scale surface roughness) show the same bright volcanic flow features seen in earlier imagery, but with much finer detail. A new image of the Elysium region shows fine detail in the radar-bright channels of Athabasca Vallis, Marte Vallis, and Grjota Vallis. The new images of Tharsis and Olympus Mons also show a complex array of radar-bright and radar-dark features. Southern Amazonis exhibits some of the most complex and puzzling radar-bright structure on the planet. Another curiosity is the Chryse/Xanthe/Channels region, where we find some radar-bright features in or adjacent to fluvial chaos structures. Chryse/Xanthe is also the only region of Mars showing radar-bright craters (which are rare on Mars but common on the Moon and Mercury). We also obtained the first delay-Doppler image showing the enhanced backscatter from the residual south polar ice cap. In addition to the depolarized imagery, we were able to make the first delay-Doppler images of the circular polarization ratio (an important diagnostic for surface roughness texture). We find that vast areas of the radar-bright volcanic regions have polarization ratios close to unity. Such high ratios are rare for terrestrial lava flows and only seen for extremely blocky surfaces giving high levels of multiple scattering.

  3. Optical caries diagnostics: comparison of laser spectroscopic PNC method with method of laser integral fluorescence

    NASA Astrophysics Data System (ADS)

    Masychev, Victor I.

    2000-11-01

    In this research we present the results of approbation of two methods of optical caries diagnostics: PNC-spectral diagnostics and caries detection by laser integral fluorescence. The research was conducted in a dental clinic. PNC-method analyses parameters of probing laser radiation and PNC-spectrums of stimulated secondary radiations: backscattering and endogenous fluorescence of caries-involved bacterias. He-Ne-laser ((lambda) =632,8 nm, 1-2mW) was used as a source of probing (stimulated) radiation. For registration of signals, received from intact and pathological teeth PDA-detector was applied. PNC-spectrums were processed by special algorithms, and were displayed on PC monitor. The method of laser integral fluorescence was used for comparison. In this case integral power of fluorescence of human teeth was measured. As a source of probing (stimulated) radiation diode lasers ((lambda) =655 nm, 0.1 mW and 630nm, 1mW) and He-Ne laser were applied. For registration of signals Si-photodetector was used. Integral power was shown in a digital indicator. Advantages and disadvantages of these methods are described in this research. It is disclosed that the method of laser integral power of fluorescence has the following characteristics: simplicity of construction and schema-technical decisions. However the method of PNC-spectral diagnostics are characterized by considerably more sensitivity in diagnostics of initial caries and capability to differentiate pathologies of various stages (for example, calculus/initial caries). Estimation of spectral characteristics of PNC-signals allows eliminating a number of drawbacks, which are character for detection by method of laser integral fluorescence (for instance, detection of fluorescent fillings, plagues, calculus, discolorations generally, amalgam, gold fillings as if it were caries.

  4. Comparison of laser spectroscopic PNC method with laser integral fluorescence in optical caries diagnostics

    NASA Astrophysics Data System (ADS)

    Masychev, Victor I.

    2001-05-01

    In this research we represent the results of approbation of two methods of optical caries diagnostics: PNC-spectral diagnostics and caries detection by laser integral fluorescence. The research was conducted in a dental clinic. PNC-method analyzes parameters of probing laser radiation and PNC-spectrums of stimulated secondary radiations: backscattering and endogenous fluorescence of caries- involved bacteria. Ia-Ne laser ((lambda) equals632.8 nm, 1-2 mW) was used as a source of probing (stimulated) radiation. For registration of signals, received from intact and pathological teeth PDA-detector was applied. PNC-spectrums were processed by special algorithms, and were displayed on PC monitor. The method of laser integral fluorescence was used for comparison. In this case integral power of fluorescence of human teeth was measured. As a source of probing (stimulated) radiation diode lasers ((lambda) equals655 nm, 0.1 mW and 630 nm, 1 mW) and Ia-Na laser were applied. For registration of signals Si-photodetector was used. Integral power was shown in a digital indicator. Advantages and disadvantages of these methods are described in this research. It is disclosed that the method of laser integral power of fluorescence has the following characteristics: simplicity of construction and schema-technical decisions. However the method of PNC-spectral diagnostics are characterized by considerably more sensitivity in diagnostics of initial caries and capability to differentiate pathologies of various stages (for example, calculus/initial caries). Estimation of spectral characteristics of PNC-signals allows eliminating a number of drawbacks, which are character for detection by method of laser integral fluorescence (for instance, detection of fluorescent fillings, plagues, calculus, discolorations generally, amalgam, gold fillings as if it were caries).

  5. High-resolution color images of Io

    NASA Technical Reports Server (NTRS)

    Mcewen, A. S.; Soderblom, L. A.

    1984-01-01

    Color versions of the highest resolution Voyager images of Io were produced by combining the low resolution color images with the high resolution, clear filter images. High resolution versions of the orange, blue, and violet filter images are produced by: orange = high-res clear * low-res orange / low-res clear blue = high-res clear * low-res blue / low-res clear violet = high-res clear * low-res violet / low-res clear. The spectral responses of the high and low resolution clear filter images cancel, leaving the color, while the spatial frequencies of the two low resolution images cancel, leaving the high resolution.

  6. High resolution, MRI-based, segmented, computerized head phantom

    SciTech Connect

    Zubal, I.G.; Harrell, C.R.; Smith, E.O.; Smith, A.L.; Krischlunas, P.

    1999-01-01

    The authors have created a high-resolution software phantom of the human brain which is applicable to voxel-based radiation transport calculations yielding nuclear medicine simulated images and/or internal dose estimates. A software head phantom was created from 124 transverse MRI images of a healthy normal individual. The transverse T2 slices, recorded in a 256x256 matrix from a GE Signa 2 scanner, have isotropic voxel dimensions of 1.5 mm and were manually segmented by the clinical staff. Each voxel of the phantom contains one of 62 index numbers designating anatomical, neurological, and taxonomical structures. The result is stored as a 256x256x128 byte array. Internal volumes compare favorably to those described in the ICRP Reference Man. The computerized array represents a high resolution model of a typical human brain and serves as a voxel-based anthropomorphic head phantom suitable for computer-based modeling and simulation calculations. It offers an improved realism over previous mathematically described software brain phantoms, and creates a reference standard for comparing results of newly emerging voxel-based computations. Such voxel-based computations lead the way to developing diagnostic and dosimetry calculations which can utilize patient-specific diagnostic images. However, such individualized approaches lack fast, automatic segmentation schemes for routine use; therefore, the high resolution, typical head geometry gives the most realistic patient model currently available.

  7. Spectroscopic determination of the composition of a 50 kV hydrogen diagnostic neutral beam

    NASA Astrophysics Data System (ADS)

    Feng, X.; Nornberg, M. D.; Craig, D.; Den Hartog, D. J.; Oliva, S. P.

    2016-11-01

    A grating spectrometer with an electron multiplying charge-coupled device camera is used to diagnose a 50 kV, 5 A, 20 ms hydrogen diagnostic neutral beam. The ion source density is determined from Stark broadened Hβ emission and the spectrum of Doppler-shifted Hα emission is used to quantify the fraction of ions at full, half, and one-third beam energy under a variety of operating conditions including fueling gas pressure and arc discharge current. Beam current is optimized at low-density conditions in the ion source while the energy fractions are found to be steady over most operating conditions.

  8. NOAA's Use of High-Resolution Imagery

    NASA Technical Reports Server (NTRS)

    Hund, Erik

    2007-01-01

    NOAA's use of high-resolution imagery consists of: a) Shoreline mapping and nautical chart revision; b) Coastal land cover mapping; c) Benthic habitat mapping; d) Disaster response; and e) Imagery collection and support for coastal programs.

  9. Development of advanced laser systems and spectroscopic techniques for combustion diagnostic applications

    NASA Astrophysics Data System (ADS)

    Kulatilaka, Waruna Dasal

    Single-longitudinal-mode, narrowband, injection-seeded, pulsed optical parametric (OP) systems have been developed, characterized, and applied for high-resolution spectroscopy of nitric oxide (NO). The OP systems were injection seeded at the idler wavelength using a near-infrared distributed feedback (DFB) diode laser. In the optical parametric generator (OPG) version, two counter-rotating, beta-barium borate (beta-BBO) crystals were pumped by the third-harmonic output of an injection-seeded Nd:YAG laser. An optical parametric oscillator (OPO) version has also been developed by incorporating a feedback cavity at the signal wavelength. The cavity length was not actively controlled. The output signal beam from OPG or OPO was amplified using an optical parametric amplifier (OPA) stage. In both the OPG and OPO, the signal and idler frequency bandwidths are nearly Fourier transform limited and were measured to be 220 MHz. The temporal pulses were smooth and near-Gaussian. The frequency-doubled signal output of the OPO/OPA system was used for single-photon, laser-induced fluorescence (LIF) and laser-induced polarization spectroscopy (LIPS) of NO. The signal output of the OPG/OPA system was also used for sub-Doppler, two-photon LIF of NO. A detailed investigation was also performed for electronic-resonance-enhanced coherent anti-Stokes Raman spectroscopy (ERE-CARS) of NO. In the ERE-CARS scheme, an ultraviolet probe-laser beam is tuned to an electronic resonance, resulting in a huge resonance enhancement of the ERE-CARS signal. The effect of drastic variations in electronic quenching rate on the NO ERE-CARS signal was investigated experimentally. In contrast to LIF, the ERE-CARS signal was nearly unaffected by the quenchers O2 and CO2. The ERE-CARS signal intensity was also found to increase rapidly between pressures of 0.1-2 bars and remain nearly constant thereafter up to 8 bars, whereas the NO LIF signal drops with increasing pressure. We have also detected NO down to

  10. Spectral analysis of tissues from patients with cancer using a portable spectroscopic diagnostic ratiometer unit

    NASA Astrophysics Data System (ADS)

    Sordillo, Laura A.; Pu, Yang; Sordillo, Peter P.; Budansky, Yury; Alfano, R. R.

    2014-05-01

    Spectral profiles of tissues from patients with breast carcinoma, malignant carcinoid and non-small cell lung carcinoma were acquired using native fluorescence spectroscopy. A novel spectroscopic ratiometer device (S3-LED) with selective excitation wavelengths at 280 nm and 335 nm was used to produce the emission spectra of the key biomolecules, tryptophan and NADH, in the tissue samples. In each of the samples, analysis of emission intensity peaks from biomolecules showed increased 340 nm/440 nm and 340 nm/460 nm ratios in the malignant samples compared to their paired normal samples. This most likely represented increased tryptophan to NADH ratios in the malignant tissue samples compared to their paired normal samples. Among the non-small cell lung carcinoma and breast carcinomas, it appeared that tumors of very large size or poor differentiation had an even greater increase in the 340 nm/440 nm and 340 nm/460 nm ratios. In the samples of malignant carcinoid, which is known to be a highly metabolically active tumor, a marked increase in these ratios was also seen.

  11. Spectroscopic, imaging, and probe diagnostics of laser plasma plumes expanding between confining surfaces

    SciTech Connect

    Yeates, P.; Kennedy, E. T.

    2010-11-15

    Laser plasma plumes were generated in aluminum rectangular cavities of fixed depth (6 mm) and varying height (2.0, 1.5, and 1.0 mm). Space and time resolved visible emission spectroscopy, gated intensified visible imaging, and Langmuir probe diagnostics were utilized to diagnose the evolution of the confined plasma plumes in comparison to freely expanding plasma plume generated from ablation of a planar target. The constrained plasma behavior displayed a multiphase history. Early stage interactions (t<100 ns) resulted in enhanced continuum and line emission, shockwave formation and plasma plume rebound. Later phase, long duration plasma-surface interactions (t>160 ns) resulted in sustained 'decay', i.e., a rapid termination of continuum emission, in concert with decreases in peak electron density (N{sub e}) and plasma temperature (T). This later phase originates from loss mechanisms which bleed the plasma plume of thermal energy and charged particles. These loss mechanisms increase in magnitude as the duration of the plasma-surface interaction increases. The transition from enhancement phase, originating from hydrodynamic containment, and plasma-surface collisions, to decay phase is described and occurs for each cavity at a different point in the space time history.

  12. Development of the Colorado High-resolution Echelle Stellar Spectrograph (CHESS)

    NASA Astrophysics Data System (ADS)

    France, Kevin; Beasley, Matthew; Kane, Robert; Nell, Nicholas; Burgh, Eric B.; Green, James C.

    2012-09-01

    A key astrophysical theme that will drive future UV/optical space missions is the life cycle of cosmic matter, from the flow of intergalactic gas into galaxies to the formation and evolution of exoplanetary systems. Spectroscopic systems capable of delivering high resolution with low backgrounds will be essential to addressing these topics. Towards this end, we are developing a rocket-borne instrument that will serve as a pathfinder for future high-sensitivity, highresolution UV spectrographs. The Colorado High-resolution Echelle Stellar Spectrograph (CHESS) will provide 2 km s-1 velocity resolution (R = 150,000) over the 100 - 160 nm bandpass that includes key atomic and molecular spectral diagnostics for the intergalactic medium (H I Lyman-series, O VI, N V, and C IV), exoplanetary atmospheres (H I Lyman-alpha, O I, and C II), and protoplanetary disks (H2 and CO electronic band systems). CHESS uses a novel mechanical collimator comprised of an array of 10 mm x 10 mm stainless steel tubes to feed a low-scatter, 69 grooves mm-1 echelle grating. The cross-disperser is a holographically ruled toroid, with 351 grooves mm-1. The spectral orders can be recorded with either a 40 mm cross-strip microchannel plate detector or a 3.5k x 3.5k δ-doped CCD. The microchannel plate will deliver 30 μm spatial resolution and employs new 64 amp/axis electronics to accommodate high count rate observations of local OB stars. CHESS is scheduled to be launched aboard a NASA Terrier/Black Brant IX sounding rocket from White Sands Missile Range in the summer of 2013.

  13. RAPID DAMAGE ASSESSMENT FROM HIGH RESOLUTION IMAGERY

    SciTech Connect

    Vijayaraj, Veeraraghavan; Bright, Eddie A; Bhaduri, Budhendra L

    2008-01-01

    Disaster impact modeling and analysis uses huge volumes of image data that are produced immediately following a natural or an anthropogenic disaster event. Rapid damage assessment is the key to time critical decision support in disaster management to better utilize available response resources and accelerate recovery and relief efforts. But exploiting huge volumes of high resolution image data for identifying damaged areas with robust consistency in near real time is a challenging task. In this paper, we present an automated image analysis technique to identify areas of structural damage from high resolution optical satellite data using features based on image content.

  14. High-Resolution Angioscopic Imaging During Endovascular Neurosurgery

    PubMed Central

    McVeigh, Patrick Z.; Sacho, Raphael; Weersink, Robert A.; Pereira, Vitor M.; Kucharczyk, Walter; Seibel, Eric J.; Wilson, Brian C.

    2014-01-01

    BACKGROUND: Endoluminal optical imaging, or angioscopy, has not seen widespread application during neurointerventional procedures, largely as a result of the poor imaging resolution of existing angioscopes. Scanning fiber endoscopes (SFEs) are a novel endoscopic platform that allows high-resolution video imaging in an ultraminiature form factor that is compatible with currently used distal access endoluminal catheters. OBJECTIVE: To test the feasibility and potential utility of high-resolution angioscopy with an SFE during common endovascular neurosurgical procedures. METHODS: A 3.7-French SFE was used in a porcine model system to image endothelial disruption, ischemic stroke and mechanical thrombectomy, aneurysm coiling, and flow-diverting stent placement. RESULTS: High-resolution, video-rate imaging was shown to be possible during all of the common procedures tested and provided information that was complementary to standard fluoroscopic imaging. SFE angioscopy was able to assess novel factors such as aneurysm base coverage fraction and side branch patency, which have previously not been possible to determine with conventional angiography. CONCLUSION: Endovascular imaging with an SFE provides important information on factors that cannot be assessed fluoroscopically and is a novel platform on which future neurointerventional techniques may be based because it allows for periprocedural inspection of the integrity of the vascular system and the deployed devices. In addition, it may be of diagnostic use for inspecting the vascular wall and postprocedure device evaluation. ABBREVIATIONS: CFB, coherent fiber bundle F, French SFE, scanning fiber endoscope PMID:24762703

  15. A High-Resolution Stopwatch for Cents

    ERIC Educational Resources Information Center

    Gingl, Z.; Kopasz, K.

    2011-01-01

    A very low-cost, easy-to-make stopwatch is presented to support various experiments in mechanics. The high-resolution stopwatch is based on two photodetectors connected directly to the microphone input of a sound card. Dedicated free open-source software has been developed and made available to download. The efficiency is demonstrated by a free…

  16. High-resolution two dimensional advective transport

    USGS Publications Warehouse

    Smith, P.E.; Larock, B.E.

    1989-01-01

    The paper describes a two-dimensional high-resolution scheme for advective transport that is based on a Eulerian-Lagrangian method with a flux limiter. The scheme is applied to the problem of pure-advection of a rotated Gaussian hill and shown to preserve the monotonicity property of the governing conservation law.

  17. SOLAR FLARE CHROMOSPHERIC LINE EMISSION: COMPARISON BETWEEN IBIS HIGH-RESOLUTION OBSERVATIONS AND RADIATIVE HYDRODYNAMIC SIMULATIONS

    SciTech Connect

    Costa, Fatima Rubio da; Petrosian, Vahé; Kleint, Lucia; Dalda, Alberto Sainz; Liu, Wei

    2015-05-01

    Solar flares involve impulsive energy release, which results in enhanced radiation over a broad spectral range and a wide range of heights. In particular, line emission from the chromosphere can provide critical diagnostics of plasma heating processes. Thus, a direct comparison between high-resolution spectroscopic observations and advanced numerical modeling results could be extremely valuable, but has not yet been attempted. In this paper, we present such a self-consistent investigation of an M3.0 flare observed by the Dunn Solar Telescope’s Interferometric Bi-dimensional Spectrometer (IBIS) on 2011 September 24 which we have modeled using the radiative hydrodynamic code RADYN. We obtained images and spectra of the flaring region with IBIS in Hα 6563 Å and Ca ii 8542 Å, and with RHESSI in X-rays. The latter observations were used to infer the non-thermal electron population, which was passed to RADYN to simulate the atmospheric response to electron collisional heating. We then synthesized spectral lines and compared their shapes and intensities to those observed by IBIS and found a general agreement. In particular, the synthetic Ca ii 8542 Å profile fits well to the observed profile, while the synthetic Hα profile is fainter in the core than for the observation. This indicates that Hα emission is more responsive to the non-thermal electron flux than the Ca ii 8542 Å emission. We suggest that it is necessary to refine the energy input and other processes to resolve this discrepancy.

  18. Solar Flare Chromospheric Line Emission: Comparison Between IBIS High-resolution Observations and Radiative Hydrodynamic Simulations

    NASA Astrophysics Data System (ADS)

    Rubio da Costa, Fatima; Kleint, Lucia; Petrosian, Vahé; Sainz Dalda, Alberto; Liu, Wei

    2015-05-01

    Solar flares involve impulsive energy release, which results in enhanced radiation over a broad spectral range and a wide range of heights. In particular, line emission from the chromosphere can provide critical diagnostics of plasma heating processes. Thus, a direct comparison between high-resolution spectroscopic observations and advanced numerical modeling results could be extremely valuable, but has not yet been attempted. In this paper, we present such a self-consistent investigation of an M3.0 flare observed by the Dunn Solar Telescope’s Interferometric Bi-dimensional Spectrometer (IBIS) on 2011 September 24 which we have modeled using the radiative hydrodynamic code RADYN. We obtained images and spectra of the flaring region with IBIS in Hα 6563 Å and Ca ii 8542 Å, and with RHESSI in X-rays. The latter observations were used to infer the non-thermal electron population, which was passed to RADYN to simulate the atmospheric response to electron collisional heating. We then synthesized spectral lines and compared their shapes and intensities to those observed by IBIS and found a general agreement. In particular, the synthetic Ca ii 8542 Å profile fits well to the observed profile, while the synthetic Hα profile is fainter in the core than for the observation. This indicates that Hα emission is more responsive to the non-thermal electron flux than the Ca ii 8542 Å emission. We suggest that it is necessary to refine the energy input and other processes to resolve this discrepancy.

  19. CARMENES science preparation. High-resolution spectroscopy of M dwarfs

    NASA Astrophysics Data System (ADS)

    Montes, D.; Caballero, J. A.; Jeffers, S.; Alonso-Floriano, F. J.; Mundt, R.; CARMENES Consortium

    2015-05-01

    To ensure an efficient use of CARMENES observing time, and the highest chances of success, it is necessary first to select the most promising targets. To achieve this, we are observing 500 M dwarfs at high-resolution (R = 30,000-48,000), from which we determine the projected rotational velocity vsin{i} with an accuracy better than 0.5-0.2 km/s and radial-velocity stability better than 0.2-0.1 km/s. Our aim is to have at least two spectra at different epochs of the final 300 CARMENES targets. Our observations with FEROS at ESO/MPG 2.2 m La Silla, CAFE at 2.2 m Calar Alto and HRS at Hobby Eberly Telescope allow us to identify single- and double-line spectroscopic binaries and, especially, fast rotators, which should be discarded from the target list for exoplanet searches. Here we present preliminary results.

  20. High-resolution ionization detector and array of such detectors

    DOEpatents

    McGregor, Douglas S.; Rojeski, Ronald A.

    2001-01-16

    A high-resolution ionization detector and an array of such detectors are described which utilize a reference pattern of conductive or semiconductive material to form interaction, pervious and measurement regions in an ionization substrate of, for example, CdZnTe material. The ionization detector is a room temperature semiconductor radiation detector. Various geometries of such a detector and an array of such detectors produce room temperature operated gamma ray spectrometers with relatively high resolution. For example, a 1 cm.sup.3 detector is capable of measuring .sup.137 Cs 662 keV gamma rays with room temperature energy resolution approaching 2% at FWHM. Two major types of such detectors include a parallel strip semiconductor Frisch grid detector and the geometrically weighted trapezoid prism semiconductor Frisch grid detector. The geometrically weighted detector records room temperature (24.degree. C.) energy resolutions of 2.68% FWHM for .sup.137 Cs 662 keV gamma rays and 2.45% FWHM for .sup.60 Co 1.332 MeV gamma rays. The detectors perform well without any electronic pulse rejection, correction or compensation techniques. The devices operate at room temperature with simple commercially available NIM bin electronics and do not require special preamplifiers or cooling stages for good spectroscopic results.

  1. High-Resolution Infrared Spectroscopy of Ge_2C_3

    NASA Astrophysics Data System (ADS)

    Thorwirth, S.; Lutter, V.; Schlemmer, S.; Giesen, T. F.; Gauss, J.

    2013-06-01

    Carbon-rich systems are of great importance in diverse areas of research like material science as well as astro- and structural chemistry. Despite this relevance, our knowledge of smaller cluster units is still fragmentary, particularly with respect to investigations at high-spectral resolution in the gas phase. Unequivocal assignment of spectral features to their molecular carriers is critically dependent on predictions from high-level quantum-chemical calculations. In turn, high-resolution studies provide useful information to assess the predictive power of quantum-chemical methods. This is particularly interesting for cluster systems harboring heavy elements for which so far relatively little is known from experiment. With this contribution, we would like to present a recent gas-phase study of a polyatomic germanium-carbon cluster, linear Ge_2C_3 (Ge=C=C=C=Ge), which was previously studied in an Ar matrix. The cluster was produced through laser ablation of germanium-graphite sample rods and observed in a free jet at wavelengths around 5μm. Additionally, quantum-chemical calculations of Ge_2C_3 were performed at the CCSD(T) level of theory. The production and observation of Ge_2C_3 suggests that many more binary clusters should be amenable to high-resolution spectroscopic techniques not only in the infrared but also in the microwave region. D. L. Robbins, C. M. L. Rittby, and W. R. M. Graham, J. Chem. Phys. 114, 3570 (2001).

  2. Gemini high-resolution optical spectrograph conceptual design

    NASA Astrophysics Data System (ADS)

    Szeto, Kei; McConnachie, Alan; Anthony, André; Bohlender, David; Crampton, David; Desaulniers, Pierre; Dunn, Jennifer; Hardy, Tim; Hill, Alexis; Monin, Dmitry; Pazder, John; Schwab, Christian; Spano, Paola; Starkenburg, Else; Thibault, Simon; Walker, Gordon; Venn, Kim; Zhang, Hu

    2012-09-01

    A multiplexed moderate resolution (R = 34,000) and a single object high resolution (R = 90,000) spectroscopic facility for the entire 340 - 950nm wavelength region has been designed for Gemini. The result is a high throughput, versatile instrument that will enable precision spectroscopy for decades to come. The extended wavelength coverage for these relatively high spectral resolutions is achieved by use of an Echelle grating with VPH cross-dispersers and for the R = 90,000 mode utilization of an image slicer. The design incorporates a fast, efficient, reliable system for acquiring targets over the7 arcmin field of Gemini. This paper outlines the science case development and requirements flow-down process that leads to the configuration of the HIA instrument and describes the overall GHOS conceptual design. In addition, this paper discusses design trades examined during the conceptual design study instrument group of the Herzberg Institute of Astrophysics has been commissioned by the Gemini Observatory as one of the three competing organizations to conduct a conceptual design study for a new Gemini High-Resolution Optical Spectrograph (GHOS). This paper outlines the science case development and requirements flow-down process that leads to the configuration of the HIA instrument and describes the overall GHOS conceptual design. In addition, this paper discusses design trades examined during the conceptual design study.

  3. Automated frame selection process for high-resolution microendoscopy

    NASA Astrophysics Data System (ADS)

    Ishijima, Ayumu; Schwarz, Richard A.; Shin, Dongsuk; Mondrik, Sharon; Vigneswaran, Nadarajah; Gillenwater, Ann M.; Anandasabapathy, Sharmila; Richards-Kortum, Rebecca

    2015-04-01

    We developed an automated frame selection algorithm for high-resolution microendoscopy video sequences. The algorithm rapidly selects a representative frame with minimal motion artifact from a short video sequence, enabling fully automated image analysis at the point-of-care. The algorithm was evaluated by quantitative comparison of diagnostically relevant image features and diagnostic classification results obtained using automated frame selection versus manual frame selection. A data set consisting of video sequences collected in vivo from 100 oral sites and 167 esophageal sites was used in the analysis. The area under the receiver operating characteristic curve was 0.78 (automated selection) versus 0.82 (manual selection) for oral sites, and 0.93 (automated selection) versus 0.92 (manual selection) for esophageal sites. The implementation of fully automated high-resolution microendoscopy at the point-of-care has the potential to reduce the number of biopsies needed for accurate diagnosis of precancer and cancer in low-resource settings where there may be limited infrastructure and personnel for standard histologic analysis.

  4. High resolution 3D nonlinear integrated inversion

    NASA Astrophysics Data System (ADS)

    Li, Yong; Wang, Xuben; Li, Zhirong; Li, Qiong; Li, Zhengwen

    2009-06-01

    The high resolution 3D nonlinear integrated inversion method is based on nonlinear theory. Under layer control, the log data from several wells (or all wells) in the study area and seismic trace data adjacent to the wells are input to a network with multiple inputs and outputs and are integratedly trained to obtain an adaptive weight function of the entire study area. Integrated nonlinear mapping relationships are built and updated by the lateral and vertical geologic variations of the reservoirs. Therefore, the inversion process and its inversion results can be constrained and controlled and a stable seismic inversion section with high resolution with velocity inversion, impedance inversion, and density inversion sections, can be gained. Good geologic effects have been obtained in model computation tests and real data processing, which verified that this method has high precision, good practicality, and can be used for quantitative reservoir analysis.

  5. High-Resolution X-Ray Telescopes

    NASA Technical Reports Server (NTRS)

    ODell, Stephen L.; Brissenden, Roger J.; Davis, William; Elsner, Ronald F.; Elvis, Martin; Freeman, Mark; Gaetz, Terry; Gorenstein, Paul; Gubarev, Mikhail V.

    2010-01-01

    Fundamental needs for future x-ray telescopes: a) Sharp images => excellent angular resolution. b) High throughput => large aperture areas. Generation-X optics technical challenges: a) High resolution => precision mirrors & alignment. b) Large apertures => lots of lightweight mirrors. Innovation needed for technical readiness: a) 4 top-level error terms contribute to image size. b) There are approaches to controlling those errors. Innovation needed for manufacturing readiness. Programmatic issues are comparably challenging.

  6. High resolution schemes for hyperbolic conservation laws

    NASA Technical Reports Server (NTRS)

    Harten, A.

    1983-01-01

    A class of new explicit second order accurate finite difference schemes for the computation of weak solutions of hyperbolic conservation laws is presented. These highly nonlinear schemes are obtained by applying a nonoscillatory first order accurate scheme to an appropriately modified flux function. The so-derived second order accurate schemes achieve high resolution while preserving the robustness of the original nonoscillatory first order accurate scheme. Numerical experiments are presented to demonstrate the performance of these new schemes.

  7. High-Resolution Traction Force Microscopy

    PubMed Central

    Plotnikov, Sergey V.; Sabass, Benedikt; Schwarz, Ulrich S.; Waterman, Clare M.

    2015-01-01

    Cellular forces generated by the actomyosin cytoskeleton and transmitted to the extracellular matrix (ECM) through discrete, integrin-based protein assemblies, that is, focal adhesions, are critical to developmental morphogenesis and tissue homeostasis, as well as disease progression in cancer. However, quantitative mapping of these forces has been difficult since there has been no experimental technique to visualize nanonewton forces at submicrometer spatial resolution. Here, we provide detailed protocols for measuring cellular forces exerted on two-dimensional elastic substrates with a high-resolution traction force microscopy (TFM) method. We describe fabrication of polyacrylamide substrates labeled with multiple colors of fiducial markers, functionalization of the substrates with ECM proteins, setting up the experiment, and imaging procedures. In addition, we provide the theoretical background of traction reconstruction and experimental considerations important to design a high-resolution TFM experiment. We describe the implementation of a new algorithm for processing of images of fiducial markers that are taken below the surface of the substrate, which significantly improves data quality. We demonstrate the application of the algorithm and explain how to choose a regularization parameter for suppression of the measurement error. A brief discussion of different ways to visualize and analyze the results serves to illustrate possible uses of high-resolution TFM in biomedical research. PMID:24974038

  8. A Portable, High Resolution, Surface Measurement Device

    NASA Technical Reports Server (NTRS)

    Ihlefeld, Curtis M.; Burns, Bradley M.; Youngquist, Robert C.

    2012-01-01

    A high resolution, portable, surface measurement device has been demonstrated to provide micron-resolution topographical plots. This device was specifically developed to allow in-situ measurements of defects on the Space Shuttle Orbiter windows, but is versatile enough to be used on a wide variety of surfaces. This paper discusses the choice of an optical sensor and then the decisions required to convert a lab bench optical measurement device into an ergonomic portable system. The necessary trade-offs between performance and portability are presented along with a description of the device developed to measure Orbiter window defects.

  9. High resolution SAR applications and instrument design

    NASA Technical Reports Server (NTRS)

    Dionisio, C.; Torre, A.

    1993-01-01

    The Synthetic Aperture Radar (SAR) has viewed, in the last two years, a huge increment of interest from many preset and potential users. The good spatial resolution associated to the all weather capability lead to considering SAR not only a scientific instrument but a tool for verifying and controlling the daily human relationships with the Earth Environment. New missions were identified for SAR as spatial resolution became lower than three meters: disasters, pollution, ships traffic, volcanic eruptions, earthquake effect are only a few of the possible objects which can be effectively detected, controlled and monitored by SAR mounted on satellites. High resolution radar design constraints and dimensioning are discussed.

  10. High resolution millimeter-wave imaging sensor

    NASA Technical Reports Server (NTRS)

    Wilson, W. J.; Howard, R. J.; Parks, G. S.

    1985-01-01

    A scanning 3-mm radiometer is described that has been built for use on a small aircraft to produce real time high resolution images of the ground when atmospheric conditions such as smoke, dust, and clouds make IR and visual sensors unusable. The sensor can be used for a variety of remote sensing applications such as measurements of snow cover and snow water equivalent, precipitation mapping, vegetation type and extent, surface moisture and temperature, and surface thermal inertia. The advantages of millimeter waves for cloud penetration and the ability to observe different physical phenomena make this system an attractive supplement to visible and IR remote sensing systems.

  11. High resolution extremity CT for biomechanics modeling

    SciTech Connect

    Ashby, A.E.; Brand, H.; Hollerbach, K.; Logan, C.M.; Martz, H.E.

    1995-09-23

    With the advent of ever more powerful computing and finite element analysis (FEA) capabilities, the bone and joint geometry detail available from either commercial surface definitions or from medical CT scans is inadequate. For dynamic FEA modeling of joints, precise articular contours are necessary to get appropriate contact definition. In this project, a fresh cadaver extremity was suspended in parafin in a lucite cylinder and then scanned with an industrial CT system to generate a high resolution data set for use in biomechanics modeling.

  12. A High Resolution Scale-of-four

    DOE R&D Accomplishments Database

    Fitch, V.

    1949-08-25

    A high resolution scale-of-four has been developed to be used in conjunction with the nuclear particle detection devices in applications where the counting rate is unusually high. Specifically, it is intended to precede the commercially available medium resolution scaling circuits and so decrease the resolving time of the counting system. The circuit will function reliably on continuously recurring pulses separated by less than 0.1 microseconds. It will resolve two pulses (occurring at a moderate repetition rate) which are spaced at 0.04 microseconds. A five-volt input signal is sufficient to actuate the device.

  13. High Resolution Image From Viking Lander 1

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Viking 1 took this high-resolution picture today, its third day on Mars. Distance from the camera to the nearfield (bottom) is about 4 meters (13 feet); to the horizon, about 3 kilometers (1.8 miles). The photo shows numerous angular blocks ranging in size from a few centimeters to several meters. The surface between the blocks is composed of fine-grained material. Accumulation of some fine-grained material behind blocks indicates wind deposition of dust and sand downwind of obstacles. The large block on the horizon is about 4 meters (13 feet) wide. Distance across the horizon is about 34 meters (110 feet).

  14. High Resolution Spectroscopy with Submillimeter-Wave

    NASA Astrophysics Data System (ADS)

    Kumar, Vinay; Dave, Hemant

    2003-03-01

    In order to explain the characteristic features of planetary atmosphere, detection and precise measurements of environmentally important gases such as CO, CIO, No becomes necessary. Since most of the polyatomic molecules have (ro-vibrational) transitions in submillimeter region 100 μ-1000μ), probing in this wavelength region is vital. The specific rotational and vibrational states are the result of interactions between different atoms in the molecule. Since each molecule has a unique arrangement of atoms, it has an exclusive submillimeter signature. We are developing a portable heterodyne receiver system at Physical Research Laboratory, Ahmedabad to perform high-resolution spectroscopy in this wavelength region.

  15. High-Resolution Scintimammography: A Pilot Study

    SciTech Connect

    Rachel F. Brem; Joelle M. Schoonjans; Douglas A. Kieper; Stan Majewski; Steven Goodman; Cahid Civelek

    2002-07-01

    This study evaluated a novel high-resolution breast-specific gamma camera (HRBGC) for the detection of suggestive breast lesions. Methods: Fifty patients (with 58 breast lesions) for whom a scintimammogram was clinically indicated were prospectively evaluated with a general-purpose gamma camera and a novel HRBGC prototype. The results of conventional and high-resolution nuclear studies were prospectively classified as negative (normal or benign) or positive (suggestive or malignant) by 2 radiologists who were unaware of the mammographic and histologic results. All of the included lesions were confirmed by pathology. Results: There were 30 benign and 28 malignant lesions. The sensitivity for detection of breast cancer was 64.3% (18/28) with the conventional camera and 78.6% (22/28) with the HRBGC. The specificity with both systems was 93.3% (28/30). For the 18 nonpalpable lesions, sensitivity was 55.5% (10/18) and 72.2% (13/18) with the general-purpose camera and the HRBGC, respectively. For lesions 1 cm, 7 of 15 were detected with the general-purpose camera and 10 of 15 with the HRBGC. Four lesions (median size, 8.5 mm) were detected only with the HRBGC and were missed by the conventional camera. Conclusion: Evaluation of indeterminate breast lesions with an HRBGC results in improved sensitivity for the detection of cancer, with greater improvement shown for nonpalpable and 1-cm lesions.

  16. High Resolution Camera for Mapping Titan Surface

    NASA Technical Reports Server (NTRS)

    Reinhardt, Bianca

    2011-01-01

    Titan, Saturn's largest moon, has a dense atmosphere and is the only object besides Earth to have stable liquids at its surface. The Cassini/Huygens mission has revealed the extraordinary breadth of geological processes shaping its surface. Further study requires high resolution imaging of the surface, which is restrained by light absorption by methane and scattering from aerosols. The Visual and Infrared Mapping Spectrometer (VIMS) onboard the Cassini spacecraft has demonstrated that Titan's surface can be observed within several windows in the near infrared, allowing us to process several regions in order to create a geological map and to determine the morphology. Specular reflections monitored on the lakes of the North Pole show little scattering at 5 microns, which, combined with the present study of Titan's northern pole area, refutes the paradigm that only radar can achieve high resolution mapping of the surface. The present data allowed us to monitor the evolution of lakes, to identify additional lakes at the Northern Pole, to examine Titan's hypothesis of non-synchronous rotation and to analyze the albedo of the North Pole surface. Future missions to Titan could carry a camera with 5 micron detectors and a carbon fiber radiator for weight reduction.

  17. Common high-resolution MMW scene generator

    NASA Astrophysics Data System (ADS)

    Saylor, Annie V.; McPherson, Dwight A.; Satterfield, H. DeWayne; Sholes, William J.; Mobley, Scott B.

    2001-08-01

    The development of a modularized millimeter wave (MMW) target and background high resolution scene generator is reported. The scene generator's underlying algorithms are applicable to both digital and real-time hardware-in-the-loop (HWIL) simulations. The scene generator will be configurable for a variety of MMW and multi-mode sensors employing state of the art signal processing techniques. At present, digital simulations for MMW and multi-mode sensor development and testing are custom-designed by the seeker vendor and are verified, validated, and operated by both the vendor and government in simulation-based acquisition. A typical competition may involve several vendors, each requiring high resolution target and background models for proper exercise of seeker algorithms. There is a need and desire by both the government and sensor vendors to eliminate costly re-design and re-development of digital simulations. Additional efficiencies are realized by assuring commonality between digital and HWIL simulation MMW scene generators, eliminating duplication of verification and validation efforts.

  18. High-Resolution PET Detector. Final report

    SciTech Connect

    Karp, Joel

    2014-03-26

    The objective of this project was to develop an understanding of the limits of performance for a high resolution PET detector using an approach based on continuous scintillation crystals rather than pixelated crystals. The overall goal was to design a high-resolution detector, which requires both high spatial resolution and high sensitivity for 511 keV gammas. Continuous scintillation detectors (Anger cameras) have been used extensively for both single-photon and PET scanners, however, these instruments were based on NaI(Tl) scintillators using relatively large, individual photo-multipliers. In this project we investigated the potential of this type of detector technology to achieve higher spatial resolution through the use of improved scintillator materials and photo-sensors, and modification of the detector surface to optimize the light response function.We achieved an average spatial resolution of 3-mm for a 25-mm thick, LYSO continuous detector using a maximum likelihood position algorithm and shallow slots cut into the entrance surface.

  19. Limiting liability via high resolution image processing

    SciTech Connect

    Greenwade, L.E.; Overlin, T.K.

    1996-12-31

    The utilization of high resolution image processing allows forensic analysts and visualization scientists to assist detectives by enhancing field photographs, and by providing the tools and training to increase the quality and usability of field photos. Through the use of digitized photographs and computerized enhancement software, field evidence can be obtained and processed as `evidence ready`, even in poor lighting and shadowed conditions or darkened rooms. These images, which are most often unusable when taken with standard camera equipment, can be shot in the worst of photographic condition and be processed as usable evidence. Visualization scientists have taken the use of digital photographic image processing and moved the process of crime scene photos into the technology age. The use of high resolution technology will assist law enforcement in making better use of crime scene photography and positive identification of prints. Valuable court room and investigation time can be saved and better served by this accurate, performance based process. Inconclusive evidence does not lead to convictions. Enhancement of the photographic capability helps solve one major problem with crime scene photos, that if taken with standard equipment and without the benefit of enhancement software would be inconclusive, thus allowing guilty parties to be set free due to lack of evidence.

  20. High-Resolution Shadowing of Transfer RNA

    PubMed Central

    Abermann, Reinhard J.; Yoshikami, Doju

    1972-01-01

    High-resolution shadowing with metals that melt at high temperatures was used to study macromolecules. Molecules of transfer RNA shadowed with tantalum-tungsten are readily visualized in an electron microscope. Mounting procedures for tRNA were perfected that reproducibly gave uniform distributions of both monomeric and dimeric tRNA particles, and allowed a statistical assessment of their gross shapes and sizes. Monomeric tRNA yielded a fairly homogeneous population of rod-shaped particles, with axial dimensions of about 40 × 85 Å. Dimers of yeast alanine tRNA held together by hydrogen bonds and dimers constructed by covalent linkage of the amino-acid acceptor (3′-) termini of monomers both gave slightly more heterogeneous populations of particles. Yet, their structures were also basically rod shaped, with their lengths ranging to about twice that of the monomer; this result indicates an end-to-end arrangement of the monomeric units within both dimers. These results suggest that the amino-acid acceptor terminus and the anticodon region are at the ends of the rod-shaped, dehydrated tRNA monomer visible by electron microscopy, consistent with the generally accepted view of tRNA structure in solution suggested by other workers using other methods. This study demonstrates that high-resolution shadowing with tantalum-tungsten provides a means to examine the three-dimensional structures of relatively small biological macromolecules. Images PMID:4504373

  1. High Resolution Photoelectron Spectroscopy of Au_2^- and Au_4^- by Photoelectron Imaging

    NASA Astrophysics Data System (ADS)

    Leon, Iker; Yang, Zheng; Wang, Lai-Sheng

    2013-06-01

    We report high resolution photoelectron spectra of Au_2^- and Au_4^- obtained with a newly-built photoelectron imaging apparatus. Gold anions are produced by laser vaporization and the desired specie is mass selected and focused into the collinear velocity-map imaging (VMI) lens assembly. The design of the imaging lens has allowed us to obtain less than 0.9% energy resolution for high kinetic energy electrons ( > 1eV) while maintaining wavenumber resolution for low kinetic energy electrons. Although gold dimer and tetramer have been studied in the past, we present spectroscopic results under high resolution. For Au_2^-, we report high resolution spectra with an accurate determination of the electron affinity together with a complete vibrational assignment, for both the anion and neutral ground states, while for Au_4^-, we are able to resolve a low frequency mode and obtain accurately the adiabatic detachment energy.

  2. Mid-infrared high resolution spectrometer for SOFIA

    NASA Astrophysics Data System (ADS)

    Kutyrev, Alexander; Moseley, Samuel H.; Bergin, Edwin A.; Bjoraker, Gordon; Melnick, Gary J.; Neufeld, David A.; Pontoppidan, Klaus; Roberge, Aki; Stacey, Gordon J.; Watson, Dan M.; Wollack, Edward

    2016-01-01

    Mid-infrared spectral range between 20 µm and 120 µm has a number of diagnostic atomic and molecular lines that can probe physical conditions in a variety of objects. In particular, protoplanetary disk clouds, YSO, planetary atmospheres would benefit from a high resolution spectroscopy in that wavelength range. Through its high spectral resolution the instrument would allow to obtain both physical and dynamical information on the clouds. Comprehensive observations of the various phases of gas in the protoplanetary disks with the instrument would allow to advance the knowledge of the processes leading to the formation of planetary systems. Such an instrument with high spectral resolving power and sensitivity would be a powerful addition to the current SOFIA instruments.

  3. Gas-Phase Molecular Dynamics: High Resolution Spectroscopy and Collision Dynamics of Transient Species

    SciTech Connect

    Hall, G.E.

    2011-05-31

    This research is carried out as part of the Gas-Phase Molecular Dynamics program in the Chemistry Department at Brookhaven National Laboratory. Chemical intermediates in the elementary gas-phase reactions involved in combustion chemistry are investigated by high resolution spectroscopic tools. Production, reaction, and energy transfer processes are investigated by transient, double resonance, polarization and saturation spectroscopies, with an emphasis on technique development and connection with theory, as well as specific molecular properties.

  4. Gas-Phase Molecular Dynamics: High Resolution Spectroscopy and Collision Dynamics of Transient Species

    SciTech Connect

    Hall G. E.; Goncharov, V.

    2012-05-29

    This research is carried out as part of the Gas-Phase Molecular Dynamics program in the Chemistry Department at Brookhaven National Laboratory. Chemical intermediates in the elementary gas-phase reactions involved in combustion chemistry are investigated by high resolution spectroscopic tools. Production, reaction, and energy transfer processes are investigated by transient, double resonance, polarization and saturation spectroscopies, with an emphasis on technique development and connection with theory, as well as specific molecular properties.

  5. Clementine High Resolution Camera Mosaicking Project

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This report constitutes the final report for NASA Contract NASW-5054. This project processed Clementine I high resolution images of the Moon, mosaicked these images together, and created a 22-disk set of compact disk read-only memory (CD-ROM) volumes. The mosaics were produced through semi-automated registration and calibration of the high resolution (HiRes) camera's data against the geometrically and photometrically controlled Ultraviolet/Visible (UV/Vis) Basemap Mosaic produced by the US Geological Survey (USGS). The HiRes mosaics were compiled from non-uniformity corrected, 750 nanometer ("D") filter high resolution nadir-looking observations. The images were spatially warped using the sinusoidal equal-area projection at a scale of 20 m/pixel for sub-polar mosaics (below 80 deg. latitude) and using the stereographic projection at a scale of 30 m/pixel for polar mosaics. Only images with emission angles less than approximately 50 were used. Images from non-mapping cross-track slews, which tended to have large SPICE errors, were generally omitted. The locations of the resulting image population were found to be offset from the UV/Vis basemap by up to 13 km (0.4 deg.). Geometric control was taken from the 100 m/pixel global and 150 m/pixel polar USGS Clementine Basemap Mosaics compiled from the 750 nm Ultraviolet/Visible Clementine imaging system. Radiometric calibration was achieved by removing the image nonuniformity dominated by the HiRes system's light intensifier. Also provided are offset and scale factors, achieved by a fit of the HiRes data to the corresponding photometrically calibrated UV/Vis basemap, that approximately transform the 8-bit HiRes data to photometric units. The sub-polar mosaics are divided into tiles that cover approximately 1.75 deg. of latitude and span the longitude range of the mosaicked frames. Images from a given orbit are map projected using the orbit's nominal central latitude. Polar mosaics are tiled into squares 2250 pixels on a

  6. High Resolution Powder Diffraction and Structure Determination

    SciTech Connect

    Cox, D. E.

    1999-04-23

    It is clear that high-resolution synchrotrons X-ray powder diffraction is a very powerful and convenient tool for material characterization and structure determination. Most investigations to date have been carried out under ambient conditions and have focused on structure solution and refinement. The application of high-resolution techniques to increasingly complex structures will certainly represent an important part of future studies, and it has been seen how ab initio solution of structures with perhaps 100 atoms in the asymmetric unit is within the realms of possibility. However, the ease with which temperature-dependence measurements can be made combined with improvements in the technology of position-sensitive detectors will undoubtedly stimulate precise in situ structural studies of phase transitions and related phenomena. One challenge in this area will be to develop high-resolution techniques for ultra-high pressure investigations in diamond anvil cells. This will require highly focused beams and very precise collimation in front of the cell down to dimensions of 50 {micro}m or less. Anomalous scattering offers many interesting possibilities as well. As a means of enhancing scattering contrast it has applications not only to the determination of cation distribution in mixed systems such as the superconducting oxides discussed in Section 9.5.3, but also to the location of specific cations in partially occupied sites, such as the extra-framework positions in zeolites, for example. Another possible application is to provide phasing information for ab initio structure solution. Finally, the precise determination of f as a function of energy through an absorption edge can provide useful information about cation oxidation states, particularly in conjunction with XANES data. In contrast to many experiments at a synchrotron facility, powder diffraction is a relatively simple and user-friendly technique, and most of the procedures and software for data analysis

  7. Clementine High Resolution Camera Mosaicking Project

    NASA Astrophysics Data System (ADS)

    1998-10-01

    This report constitutes the final report for NASA Contract NASW-5054. This project processed Clementine I high resolution images of the Moon, mosaicked these images together, and created a 22-disk set of compact disk read-only memory (CD-ROM) volumes. The mosaics were produced through semi-automated registration and calibration of the high resolution (HiRes) camera's data against the geometrically and photometrically controlled Ultraviolet/Visible (UV/Vis) Basemap Mosaic produced by the US Geological Survey (USGS). The HiRes mosaics were compiled from non-uniformity corrected, 750 nanometer ("D") filter high resolution nadir-looking observations. The images were spatially warped using the sinusoidal equal-area projection at a scale of 20 m/pixel for sub-polar mosaics (below 80 deg. latitude) and using the stereographic projection at a scale of 30 m/pixel for polar mosaics. Only images with emission angles less than approximately 50 were used. Images from non-mapping cross-track slews, which tended to have large SPICE errors, were generally omitted. The locations of the resulting image population were found to be offset from the UV/Vis basemap by up to 13 km (0.4 deg.). Geometric control was taken from the 100 m/pixel global and 150 m/pixel polar USGS Clementine Basemap Mosaics compiled from the 750 nm Ultraviolet/Visible Clementine imaging system. Radiometric calibration was achieved by removing the image nonuniformity dominated by the HiRes system's light intensifier. Also provided are offset and scale factors, achieved by a fit of the HiRes data to the corresponding photometrically calibrated UV/Vis basemap, that approximately transform the 8-bit HiRes data to photometric units. The sub-polar mosaics are divided into tiles that cover approximately 1.75 deg. of latitude and span the longitude range of the mosaicked frames. Images from a given orbit are map projected using the orbit's nominal central latitude. Polar mosaics are tiled into squares 2250 pixels on a

  8. High Resolution, High Frame Rate Video Technology

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Papers and working group summaries presented at the High Resolution, High Frame Rate Video (HHV) Workshop are compiled. HHV system is intended for future use on the Space Shuttle and Space Station Freedom. The Workshop was held for the dual purpose of: (1) allowing potential scientific users to assess the utility of the proposed system for monitoring microgravity science experiments; and (2) letting technical experts from industry recommend improvements to the proposed near-term HHV system. The following topics are covered: (1) State of the art in the video system performance; (2) Development plan for the HHV system; (3) Advanced technology for image gathering, coding, and processing; (4) Data compression applied to HHV; (5) Data transmission networks; and (6) Results of the users' requirements survey conducted by NASA.

  9. High-Resolution Broadband Spectral Interferometry

    SciTech Connect

    Erskine, D J; Edelstein, J

    2002-08-09

    We demonstrate solar spectra from a novel interferometric method for compact broadband high-resolution spectroscopy. The spectral interferometer (SI) is a hybrid instrument that uses a spectrometer to externally disperse the output of a fixed-delay interferometer. It also has been called an externally dispersed interferometer (EDI). The interferometer can be used with linear spectrometers for imaging spectroscopy or with echelle spectrometers for very broad-band coverage. EDI's heterodyning technique enhances the spectrometer's response to high spectral-density features, increasing the effective resolution by factors of several while retaining its bandwidth. The method is extremely robust to instrumental insults such as focal spot size or displacement. The EDI uses no moving parts, such as purely interferometric FTS spectrometers, and can cover a much wider simultaneous bandpass than other internally dispersed interferometers (e.g. HHS or SHS).

  10. High resolution wavefront measurement of aspheric optics

    NASA Astrophysics Data System (ADS)

    Erichsen, I.; Krey, S.; Heinisch, J.; Ruprecht, A.; Dumitrescu, E.

    2008-08-01

    With the recently emerged large volume production of miniature aspheric lenses for a wide range of applications, a new fast fully automatic high resolution wavefront measurement instrument has been developed. The Shack-Hartmann based system with reproducibility better than 0.05 waves is able to measure highly aspheric optics and allows for real time comparison with design data. Integrated advanced analysis tools such as calculation of Zernike coefficients, 2D-Modulation Transfer Function (MTF), Point Spread Function (PSF), Strehl-Ratio and the measurement of effective focal length (EFL) as well as flange focal length (FFL) allow for the direct verification of lens properties and can be used in a development as well as in a production environment.

  11. Improved methods for high resolution electron microscopy

    SciTech Connect

    Taylor, J.R.

    1987-04-01

    Existing methods of making support films for high resolution transmission electron microscopy are investigated and novel methods are developed. Existing methods of fabricating fenestrated, metal reinforced specimen supports (microgrids) are evaluated for their potential to reduce beam induced movement of monolamellar crystals of C/sub 44/H/sub 90/ paraffin supported on thin carbon films. Improved methods of producing hydrophobic carbon films by vacuum evaporation, and improved methods of depositing well ordered monolamellar paraffin crystals on carbon films are developed. A novel technique for vacuum evaporation of metals is described which is used to reinforce microgrids. A technique is also developed to bond thin carbon films to microgrids with a polymer bonding agent. Unique biochemical methods are described to accomplish site specific covalent modification of membrane proteins. Protocols are given which covalently convert the carboxy terminus of papain cleaved bacteriorhodopsin to a free thiol. 53 refs., 19 figs., 1 tab.

  12. High-resolution climate simulation using CAM

    NASA Astrophysics Data System (ADS)

    Bacmeister, J.; Neale, R. B.; Hannay, C.; Lauritzen, P. H.; Wehner, M. F.

    2012-12-01

    Thanks to the development of highly scalable dynamical cores that can exploit massively parallel computer architectures, we expect that global climate models in the next decade will run routinely at horizontal resolutions of 25 km or finer. Early results at these resolutions show clear improvements in simulating climatologically and societally-important mesoscale meteorology such as tropical cyclones. Improvements in regional circulations likely associated with topography are also obtained. Nevertheless many long-standing biases in climate simulations, e.g., the "double ITCZ" bias in precipitation, remain remarkably insensitive to increased resolution. This talk will present high-resolution global simulations using the community atmosphere model. Sensitivity of tropical cyclone climatology and precipitation statistics to model physics suites will be shown

  13. Improved methods for high resolution electron microscopy

    NASA Astrophysics Data System (ADS)

    Taylor, J. R.

    1987-04-01

    Existing methods of making support films for high resolution transmission electron microscopy are investigated and novel methods are developed. Existing methods of fabricating fenestrated, metal reinforced specimen supports (microgrids) are evaluated for their potential to reduce beam induced movement of monolamellar crystals of C44H90 paraffin supported on thin carbon films. Improved methods of producing hydrophobic carbon films by vacuum evaporation, and improved methods of depositing well ordered monolamellar paraffin crystals on carbon films are developed. A novel technique for vacuum evaporation of metals is described which is used to reinforce microgrids. A technique is also developed to bond thin carbon films to microgrids with a polymer bonding agent. Unique biochemical methods are described to accomplish site specific covalent modification of membrane proteins. Protocols are given which covalently convert the carboxy terminus of papain cleaved bacteriorhodopsin to a free thiol.

  14. Ultra-high resolution computed tomography imaging

    DOEpatents

    Paulus, Michael J.; Sari-Sarraf, Hamed; Tobin, Jr., Kenneth William; Gleason, Shaun S.; Thomas, Jr., Clarence E.

    2002-01-01

    A method for ultra-high resolution computed tomography imaging, comprising the steps of: focusing a high energy particle beam, for example x-rays or gamma-rays, onto a target object; acquiring a 2-dimensional projection data set representative of the target object; generating a corrected projection data set by applying a deconvolution algorithm, having an experimentally determined a transfer function, to the 2-dimensional data set; storing the corrected projection data set; incrementally rotating the target object through an angle of approximately 180.degree., and after each the incremental rotation, repeating the radiating, acquiring, generating and storing steps; and, after the rotating step, applying a cone-beam algorithm, for example a modified tomographic reconstruction algorithm, to the corrected projection data sets to generate a 3-dimensional image. The size of the spot focus of the beam is reduced to not greater than approximately 1 micron, and even to not greater than approximately 0.5 microns.

  15. Low noise and high resolution microchannel plate

    NASA Astrophysics Data System (ADS)

    Liu, Shulin; Pan, Jingsheng; Deng, Guangxu; Su, Detan; Xu, Zhiqing; Zhang, Yanyun

    2008-02-01

    To improve the Figure of Merit (FOM) and reduce the Equivalent Background Input (EBI) and Fixed-Pattern-Noise (FPN) in image intensifier, NVT (North Night Vision Technology Co., Ltd) has been researching and developing a low noise and high resolution Micro Channel Plate (MCP). The density of dark current of this new MCP is less than 0.5PA/cm2 (when MCP voltage at 1000V). The FPN and scintillation noise are reduced remarkably. Channel diameter is 6 μm and open area ratio is 60%~70%. The vacuum bakeout temperature could be as high as 500°C. This new kind of MCP will be extensively used in the supper generation and the third generation image intensifiers.

  16. High resolution analysis of satellite gradiometry

    NASA Technical Reports Server (NTRS)

    Colombo, O. L.

    1989-01-01

    Satellite gravity gradiometry is a technique now under development which, by the middle of the next decade, may be used for the high resolution charting from space of the gravity field of the earth and, afterwards, of other planets. Some data analysis schemes are reviewed for getting detailed gravity maps from gradiometry on both a global and a local basis. It also presents estimates of the likely accuracies of such maps, in terms of normalized spherical harmonics expansions, both using gradiometry alone and in combination with data from a Global Positioning System (GPS) receiver carried on the same spacecraft. It compares these accuracies with those of current and future maps obtained from other data (conventional tracking, satellite-satellite tracking, etc.), and also with the spectra of various signals of geophysical interest.

  17. High-resolution MRI: in vivo histology?

    PubMed Central

    Bridge, Holly; Clare, Stuart

    2005-01-01

    For centuries scientists have been fascinated with the question of how the brain works. Investigators have looked at both where different functions are localized and how the anatomical microstructure varies across the brain surface. Here we discuss how advances in magnetic resonance imaging (MRI) have allowed in vivo visualization of the fine structure of the brain that was previously only visible in post-mortem brains. We present data showing the correspondence between definitions of the primary visual cortex defined anatomically using very high-resolution MRI and functionally using functional MRI. We consider how this technology can be applied to allow the investigation of brains that differ from normal, and what this ever-evolving technology may be able to reveal about in vivo brain structure in the next few years. PMID:16553313

  18. A high resolution ultraviolet Shuttle glow spectrograph

    NASA Technical Reports Server (NTRS)

    Carruthers, George R.

    1993-01-01

    The High Resolution Shuttle Glow Spectrograph-B (HRSGS-B) is a small payload being developed by the Naval Research Laboratory. It is intended for study of shuttle surface glow in the 180-400 nm near- and middle-ultraviolet wavelength range, with a spectral resolution of 0.2 nm. It will search for, among other possible features, the band systems of excited NO which result from surface-catalyzed combination of N and O. It may also detect O2 Hertzberg bands and N2 Vegard-Kaplan bands resulting from surface recombination. This wavelength range also includes possible N2+ and OH emissions. The HRSGS-B will be housed in a Get Away Special canister, mounted in the shuttle orbiter payload bay, and will observe the glow on the tail of the orbiter.

  19. High-resolution reconstruction for terahertz imaging.

    PubMed

    Xu, Li-Min; Fan, Wen-Hui; Liu, Jia

    2014-11-20

    We present a high-resolution (HR) reconstruction model and algorithms for terahertz imaging, taking advantage of super-resolution methodology and algorithms. The algorithms used include projection onto a convex sets approach, iterative backprojection approach, Lucy-Richardson iteration, and 2D wavelet decomposition reconstruction. Using the first two HR reconstruction methods, we successfully obtain HR terahertz images with improved definition and lower noise from four low-resolution (LR) 22×24 terahertz images taken from our homemade THz-TDS system at the same experimental conditions with 1.0 mm pixel. Using the last two HR reconstruction methods, we transform one relatively LR terahertz image to a HR terahertz image with decreased noise. This indicates potential application of HR reconstruction methods in terahertz imaging with pulsed and continuous wave terahertz sources.

  20. HIRIS - The High Resolution Imaging Spectrometer

    NASA Technical Reports Server (NTRS)

    Dozier, Jeff

    1988-01-01

    The High-Resolution Imaging Spectrometer (HIRIS) is a JPL facility instrument designed for NASA's Earth Observing System (Eos).It will have 10-nm wide spectral bands from 0.4-2.5 microns at 30 m spatial resolution over a 30 km swath. The spectral resolution allows identification of many minerals in rocks and soils, important algal pigments in oceans and inland waters, spectral changes associated with plant canopy biochemistry, composition of atmospheric aerosols, and grain size of snow and its contamination by absorbing impurities. The bands wil have 12-bit quantization over a dynamic range suitable for bright targets, such as snow. For targets of low brightness, such as water bodies, image-motion compensation will allow gains up to a factor of eight to increase signal-to-noise ratios. In the 824-km orbit altitude proposed for Eos, the crosstrack pointing capability will allow 4-5 views during a 16-day revisit cycle.

  1. Constructing a WISE High Resolution Galaxy Atlas

    NASA Astrophysics Data System (ADS)

    Jarrett, T. H.; Masci, F.; Tsai, C. W.; Petty, S.; Cluver, M.; Assef, Roberto J.; Benford, D.; Blain, A.; Bridge, C.; Donoso, E.; Eisenhardt, P.; Fowler, J.; Koribalski, B.; Lake, S.; Neill, James D.; Seibert, M.; Sheth, K.; Stanford, S.; Wright, E.

    2012-08-01

    After eight months of continuous observations, the Wide-field Infrared Survey Explorer (WISE) mapped the entire sky at 3.4 μm, 4.6 μm, 12 μm, and 22 μm. We have begun a dedicated WISE High Resolution Galaxy Atlas project to fully characterize large, nearby galaxies and produce a legacy image atlas and source catalog. Here we summarize the deconvolution techniques used to significantly improve the spatial resolution of WISE imaging, specifically designed to study the internal anatomy of nearby galaxies. As a case study, we present results for the galaxy NGC 1566, comparing the WISE enhanced-resolution image processing to that of Spitzer, Galaxy Evolution Explorer, and ground-based imaging. This is the first paper in a two-part series; results for a larger sample of nearby galaxies are presented in the second paper.

  2. Computer synthesis of high resolution electron micrographs

    NASA Technical Reports Server (NTRS)

    Nathan, R.

    1976-01-01

    Specimen damage, spherical aberration, low contrast and noisy sensors combine to prevent direct atomic viewing in a conventional electron microscope. The paper describes two methods for obtaining ultra-high resolution in biological specimens under the electron microscope. The first method assumes the physical limits of the electron objective lens and uses a series of dark field images of biological crystals to obtain direct information on the phases of the Fourier diffraction maxima; this information is used in an appropriate computer to synthesize a large aperture lens for a 1-A resolution. The second method assumes there is sufficient amplitude scatter from images recorded in focus which can be utilized with a sensitive densitometer and computer contrast stretching to yield fine structure image details. Cancer virus characterization is discussed as an illustrative example. Numerous photographs supplement the text.

  3. High resolution detection system of capillary electrophoresis

    NASA Astrophysics Data System (ADS)

    Wang, Jie; Wang, Li Qiang; Shi, Yan; Zheng, Hua; Lu, Zu Kang

    2007-12-01

    The capillary electrophoresis (CE) with laser induced fluorescence detection (LIFD) system was founded according to confocal theory. The 3-D adjustment of the exciting and collecting optical paths was realized. The photomultiplier tube (PMT) is used and the signals are processed by a software designed by ourselves. Under computer control, high voltage is applied to appropriate reservoirs and to inject and separate DNA samples respectively. Two fluorescent dyes Thiazole Orange (TO) and SYBR Green I were contrasted. With both of the dyes, high signals-to-noise images were obtained with the CE-LIFD system. The single-bases can be distinguished from the electrophoretogram and high resolution of DNA sample separation was obtained.

  4. High-resolution adaptive spiking sonar.

    PubMed

    Alvarez, Fernando J; Kuc, Roman

    2009-05-01

    A new sonar system based on the conventional 6500 ranging module is presented that generates a sequence of spikes whose temporal density is related to the strength of the received echo. This system notably improves the resolution of a previous system by shortening the discharge cycle of the integrator included in the module. The operation is controlled by a PIC18F452 device, which can adapt the duration of the discharge to changing features of the echo, providing the system with a novel adaptive behavior. The performance of the new sensor is characterized and compared with that of the previous system by performing rotational scans of simple objects with different reflecting strengths. Some applications are suggested that exploit the high resolution and adaptability of this sensor.

  5. Constructing a WISE High Resolution Galaxy Atlas

    NASA Technical Reports Server (NTRS)

    Jarrett, T. H.; Masci, F.; Tsai, C. W.; Petty, S.; Cluver, M.; Assef, Roberto J.; Benford, D.; Blain, A.; Bridge, C.; Donoso, E.; Eisenhardt, P.; Fowler, J.; Koribalski, B.; Lake, S.; Neill, James D.; Seibert, M.; Stanford, S.; Wright, E.

    2012-01-01

    After eight months of continuous observations, the Wide-field Infrared Survey Explorer (WISE) mapped the entire sky at 3.4 micron, 4.6 micron, 12 micron, and 22 micron. We have begun a dedicated WISE High Resolution Galaxy Atlas project to fully characterize large, nearby galaxies and produce a legacy image atlas and source catalog. Here we summarize the deconvolution techniques used to significantly improve the spatial resolution of WISE imaging, specifically designed to study the internal anatomy of nearby galaxies. As a case study, we present results for the galaxy NGC 1566, comparing the WISE enhanced-resolution image processing to that of Spitzer, Galaxy Evolution Explorer, and ground-based imaging. This is the first paper in a two-part series; results for a larger sample of nearby galaxies are presented in the second paper.

  6. Limits of simulation based high resolution EBSD.

    PubMed

    Alkorta, Jon

    2013-08-01

    High resolution electron backscattered diffraction (HREBSD) is a novel technique for a relative determination of both orientation and stress state in crystals through digital image correlation techniques. Recent works have tried to use simulated EBSD patterns as reference patterns to achieve the absolute orientation and stress state of crystals. However, a precise calibration of the pattern centre location is needed to avoid the occurrence of phantom stresses. A careful analysis of the projective transformation involved in the formation of EBSD patterns has permitted to understand these phantom stresses. This geometrical analysis has been confirmed by numerical simulations. The results indicate that certain combinations of crystal strain states and sample locations (pattern centre locations) lead to virtually identical EBSD patterns. This ambiguity makes the problem of solving the absolute stress state of a crystal unfeasible in a single-detector configuration. PMID:23676453

  7. High-Resolution Anamorphic SPECT Imaging

    PubMed Central

    Durko, Heather L.; Barrett, Harrison H.; Furenlid, Lars R.

    2015-01-01

    We have developed a gamma-ray imaging system that combines a high-resolution silicon detector with two sets of movable, half-keel-edged copper-tungsten blades configured as crossed slits. These apertures can be positioned independently between the object and detector, producing an anamorphic image in which the axial and transaxial magnifications are not constrained to be equal. The detector is a 60 mm × 60 mm, one-millimeter-thick, one-megapixel silicon double-sided strip detector with a strip pitch of 59 μm. The flexible nature of this system allows the application of adaptive imaging techniques. We present system details; calibration, acquisition, and reconstruction methods; and imaging results. PMID:26160983

  8. High resolution solar X-ray studies

    NASA Technical Reports Server (NTRS)

    Blake, R. L.

    1974-01-01

    Two high resolution solar X-ray payloads and their launches on Aerobee rockets with pointing system are described. The payloads included 5 to 25A X-ray spectrometers, multiaperture X-ray cameras, and command box attitude control inflight by means of a television image radioed to ground. Spatial resolution ranged from five arc minutes to ten arc seconds and spectral resolution ranged from 500 to 3000. Several laboratory tasks were completed in order to achieve the desired resolution. These included (1) development of techniques to align grid collimators, (2) studies of the spectrometric properties of crystals, (3) measurements of the absorption coefficients of various materials used in X-ray spectrometers, (4) evaluation of the performance of multiaperture cameras, and (5) development of facilities.

  9. High resolution multimodal clinical ophthalmic imaging system.

    PubMed

    Mujat, Mircea; Ferguson, R Daniel; Patel, Ankit H; Iftimia, Nicusor; Lue, Niyom; Hammer, Daniel X

    2010-05-24

    We developed a multimodal adaptive optics (AO) retinal imager which is the first to combine high performance AO-corrected scanning laser ophthalmoscopy (SLO) and swept source Fourier domain optical coherence tomography (SSOCT) imaging modes in a single compact clinical prototype platform. Such systems are becoming ever more essential to vision research and are expected to prove their clinical value for diagnosis of retinal diseases, including glaucoma, diabetic retinopathy (DR), age-related macular degeneration (AMD), and retinitis pigmentosa. The SSOCT channel operates at a wavelength of 1 microm for increased penetration and visualization of the choriocapillaris and choroid, sites of major disease activity for DR and wet AMD. This AO system is designed for use in clinical populations; a dual deformable mirror (DM) configuration allows simultaneous low- and high-order aberration correction over a large range of refractions and ocular media quality. The system also includes a wide field (33 deg.) line scanning ophthalmoscope (LSO) for initial screening, target identification, and global orientation, an integrated retinal tracker (RT) to stabilize the SLO, OCT, and LSO imaging fields in the presence of lateral eye motion, and a high-resolution LCD-based fixation target for presentation of visual cues. The system was tested in human subjects without retinal disease for performance optimization and validation. We were able to resolve and quantify cone photoreceptors across the macula to within approximately 0.5 deg (approximately 100-150 microm) of the fovea, image and delineate ten retinal layers, and penetrate to resolve features deep into the choroid. The prototype presented here is the first of a new class of powerful flexible imaging platforms that will provide clinicians and researchers with high-resolution, high performance adaptive optics imaging to help guide therapies, develop new drugs, and improve patient outcomes.

  10. Ecological applications of high resolution spectrometry

    NASA Technical Reports Server (NTRS)

    Lawrence, William T.

    1989-01-01

    Future directions of NASA's space program plans include a significant effort at studying the Earth as a system of interrelated ecosystems. As part of NASA's Earth Observing System (Eos) Program a series of space platforms will be launched and operated to study the Earth with a variety of active and passive instruments. Several of the Eos instruments will be capable of imaging the planet's surface reflectance on a large number of very narrow portions of the solar spectrum. After the development of appropriate algorithms, this reflectance information will be used to determine key parameters about the structure and function of terrestrial and aquatic ecosystems and the pattern and processes of those systems across large areas of the globe. Algorithm development applicable to terrestrial systems will permit the inference of ecological processes from high resolution spectrometry data, similar to that to be forthcoming from the Eos mission. The first summer was spent working with tropical soils and relating their reflectance characteristics to particle size, iron content, and color. This summer the emphasis is on vegetation and work was begun with the Forest Ecosystems Dynamics Project in the Earth Resources Branch where both optical and radar characteristics of a mixed conifer/hardwood forest in Maine are being studied for use in a ecological modeling effort. A major series of aircraft overflights will take place throughout the summer. Laboratory and field spectrometers are used to measure the spectral reflectance of a hierarchy of vegetation from individual leaves to whole canopies for eventual modeling of their nutrient content using reflectance data. Key leaf/canopy parameters are being approximated including chlorophyll, nitrogen, phosphorus, water content, and leaf specific weight using high resolution spectrometry alone. Measurements are made of carbon exchange across the landscape for input to a spatial modeling effort to gauge production within the forest. A

  11. Pyramidal fractal dimension for high resolution images.

    PubMed

    Mayrhofer-Reinhartshuber, Michael; Ahammer, Helmut

    2016-07-01

    Fractal analysis (FA) should be able to yield reliable and fast results for high-resolution digital images to be applicable in fields that require immediate outcomes. Triggered by an efficient implementation of FA for binary images, we present three new approaches for fractal dimension (D) estimation of images that utilize image pyramids, namely, the pyramid triangular prism, the pyramid gradient, and the pyramid differences method (PTPM, PGM, PDM). We evaluated the performance of the three new and five standard techniques when applied to images with sizes up to 8192 × 8192 pixels. By using artificial fractal images created by three different generator models as ground truth, we determined the scale ranges with minimum deviations between estimation and theory. All pyramidal methods (PM) resulted in reasonable D values for images of all generator models. Especially, for images with sizes ≥1024×1024 pixels, the PMs are superior to the investigated standard approaches in terms of accuracy and computation time. A measure for the possibility to differentiate images with different intrinsic D values did show not only that the PMs are well suited for all investigated image sizes, and preferable to standard methods especially for larger images, but also that results of standard D estimation techniques are strongly influenced by the image size. Fastest results were obtained with the PDM and PGM, followed by the PTPM. In terms of absolute D values best performing standard methods were magnitudes slower than the PMs. Concluding, the new PMs yield high quality results in short computation times and are therefore eligible methods for fast FA of high-resolution images.

  12. Pyramidal fractal dimension for high resolution images

    NASA Astrophysics Data System (ADS)

    Mayrhofer-Reinhartshuber, Michael; Ahammer, Helmut

    2016-07-01

    Fractal analysis (FA) should be able to yield reliable and fast results for high-resolution digital images to be applicable in fields that require immediate outcomes. Triggered by an efficient implementation of FA for binary images, we present three new approaches for fractal dimension (D) estimation of images that utilize image pyramids, namely, the pyramid triangular prism, the pyramid gradient, and the pyramid differences method (PTPM, PGM, PDM). We evaluated the performance of the three new and five standard techniques when applied to images with sizes up to 8192 × 8192 pixels. By using artificial fractal images created by three different generator models as ground truth, we determined the scale ranges with minimum deviations between estimation and theory. All pyramidal methods (PM) resulted in reasonable D values for images of all generator models. Especially, for images with sizes ≥1024 ×1024 pixels, the PMs are superior to the investigated standard approaches in terms of accuracy and computation time. A measure for the possibility to differentiate images with different intrinsic D values did show not only that the PMs are well suited for all investigated image sizes, and preferable to standard methods especially for larger images, but also that results of standard D estimation techniques are strongly influenced by the image size. Fastest results were obtained with the PDM and PGM, followed by the PTPM. In terms of absolute D values best performing standard methods were magnitudes slower than the PMs. Concluding, the new PMs yield high quality results in short computation times and are therefore eligible methods for fast FA of high-resolution images.

  13. Pyramidal fractal dimension for high resolution images.

    PubMed

    Mayrhofer-Reinhartshuber, Michael; Ahammer, Helmut

    2016-07-01

    Fractal analysis (FA) should be able to yield reliable and fast results for high-resolution digital images to be applicable in fields that require immediate outcomes. Triggered by an efficient implementation of FA for binary images, we present three new approaches for fractal dimension (D) estimation of images that utilize image pyramids, namely, the pyramid triangular prism, the pyramid gradient, and the pyramid differences method (PTPM, PGM, PDM). We evaluated the performance of the three new and five standard techniques when applied to images with sizes up to 8192 × 8192 pixels. By using artificial fractal images created by three different generator models as ground truth, we determined the scale ranges with minimum deviations between estimation and theory. All pyramidal methods (PM) resulted in reasonable D values for images of all generator models. Especially, for images with sizes ≥1024×1024 pixels, the PMs are superior to the investigated standard approaches in terms of accuracy and computation time. A measure for the possibility to differentiate images with different intrinsic D values did show not only that the PMs are well suited for all investigated image sizes, and preferable to standard methods especially for larger images, but also that results of standard D estimation techniques are strongly influenced by the image size. Fastest results were obtained with the PDM and PGM, followed by the PTPM. In terms of absolute D values best performing standard methods were magnitudes slower than the PMs. Concluding, the new PMs yield high quality results in short computation times and are therefore eligible methods for fast FA of high-resolution images. PMID:27475069

  14. High Resolution Optical and NIR Spectra of HBC 722

    NASA Astrophysics Data System (ADS)

    Lee, Jeong-Eun; Park, Sunkyung; Green, Joel D.; Cochran, William D.; Kang, Wonseok; Lee, Sang-Gak; Sung, Hyun-Il

    2015-07-01

    We present the results of high resolution (R ≥ 30,000) optical and near-IR spectroscopic monitoring observations of HBC 722, a recent FU Orionis object that underwent an accretion burst in 2010. We observed HBC 722 in the optical/near-IR with the Bohyunsan Optical Echelle Spectrograph, Hobby–Eberly Telescope-HRS, and Immersion Grating Infrared Spectrograph, at various points in the outburst. We found atomic lines with strongly blueshifted absorption features or P Cygni profiles, both evidence of a wind driven by the accretion. Some lines show a broad double-peaked absorption feature, evidence of disk rotation. However, the wind-driven and disk-driven spectroscopic features are anti-correlated in time; the disk features became strong as the wind features disappeared. This anti-correlation might indicate that the rebuilding of the inner disk was interrupted by the wind pressure during the first 2 years. The half-width at half-depth of the double-peaked profiles decreases with wavelength, indicative of the Keplerian rotation; the optical spectra with the disk feature are fitted by a G5 template stellar spectrum convolved with a rotation velocity of 70 km s‑1 while the near-IR disk features are fitted by a K5 template stellar spectrum convolved with a rotation velocity of 50 km s‑1. Therefore, the optical and near-IR spectra seem to trace the disk at 39 and 76 R⊙, respectively. We fit a power-law temperature distribution in the disk, finding an index of 0.8, comparable to optically thick accretion disk models. Based on observations obtained with the Hobby–Eberly Telescope, which is a joint project of the University of Texas at Austin, the Pennsylvania State University, Stanford University, Ludwig-Maximilians-Universität München, and Georg-August-Universität Göttingen.

  15. HIGH RESOLUTION OPTICAL AND NIR SPECTRA OF HBC 722

    SciTech Connect

    Lee, Jeong-Eun; Park, Sunkyung; Green, Joel D.; Cochran, William D.; Kang, Wonseok; Lee, Sang-Gak; Sung, Hyun-Il E-mail: sunkyung@khu.ac.kr E-mail: wdc@astro.as.utexas.edu E-mail: sanggak@kywa.or.kr

    2015-07-01

    We present the results of high resolution (R ≥ 30,000) optical and near-IR spectroscopic monitoring observations of HBC 722, a recent FU Orionis object that underwent an accretion burst in 2010. We observed HBC 722 in the optical/near-IR with the Bohyunsan Optical Echelle Spectrograph, Hobby–Eberly Telescope-HRS, and Immersion Grating Infrared Spectrograph, at various points in the outburst. We found atomic lines with strongly blueshifted absorption features or P Cygni profiles, both evidence of a wind driven by the accretion. Some lines show a broad double-peaked absorption feature, evidence of disk rotation. However, the wind-driven and disk-driven spectroscopic features are anti-correlated in time; the disk features became strong as the wind features disappeared. This anti-correlation might indicate that the rebuilding of the inner disk was interrupted by the wind pressure during the first 2 years. The half-width at half-depth of the double-peaked profiles decreases with wavelength, indicative of the Keplerian rotation; the optical spectra with the disk feature are fitted by a G5 template stellar spectrum convolved with a rotation velocity of 70 km s{sup −1} while the near-IR disk features are fitted by a K5 template stellar spectrum convolved with a rotation velocity of 50 km s{sup −1}. Therefore, the optical and near-IR spectra seem to trace the disk at 39 and 76 R{sub ⊙}, respectively. We fit a power-law temperature distribution in the disk, finding an index of 0.8, comparable to optically thick accretion disk models.

  16. High Resolution Optical and NIR Spectra of HBC 722

    NASA Astrophysics Data System (ADS)

    Lee, Jeong-Eun; Park, Sunkyung; Green, Joel D.; Cochran, William D.; Kang, Wonseok; Lee, Sang-Gak; Sung, Hyun-Il

    2015-07-01

    We present the results of high resolution (R ≥ 30,000) optical and near-IR spectroscopic monitoring observations of HBC 722, a recent FU Orionis object that underwent an accretion burst in 2010. We observed HBC 722 in the optical/near-IR with the Bohyunsan Optical Echelle Spectrograph, Hobby-Eberly Telescope-HRS, and Immersion Grating Infrared Spectrograph, at various points in the outburst. We found atomic lines with strongly blueshifted absorption features or P Cygni profiles, both evidence of a wind driven by the accretion. Some lines show a broad double-peaked absorption feature, evidence of disk rotation. However, the wind-driven and disk-driven spectroscopic features are anti-correlated in time; the disk features became strong as the wind features disappeared. This anti-correlation might indicate that the rebuilding of the inner disk was interrupted by the wind pressure during the first 2 years. The half-width at half-depth of the double-peaked profiles decreases with wavelength, indicative of the Keplerian rotation; the optical spectra with the disk feature are fitted by a G5 template stellar spectrum convolved with a rotation velocity of 70 km s-1 while the near-IR disk features are fitted by a K5 template stellar spectrum convolved with a rotation velocity of 50 km s-1. Therefore, the optical and near-IR spectra seem to trace the disk at 39 and 76 R⊙, respectively. We fit a power-law temperature distribution in the disk, finding an index of 0.8, comparable to optically thick accretion disk models. Based on observations obtained with the Hobby-Eberly Telescope, which is a joint project of the University of Texas at Austin, the Pennsylvania State University, Stanford University, Ludwig-Maximilians-Universität München, and Georg-August-Universität Göttingen.

  17. High resolution spectroscopy to support atmospheric measurements

    NASA Technical Reports Server (NTRS)

    Smith, Mary Ann H.; Devi, V. Malathy; Rinsland, Curtis P.; Benner, D. Chris; Harvey, Gale A.

    1990-01-01

    Detailed knowledge of the molecular spectra of ozone and other infrared-active atmospheric species is needed for accurate calculation of atmospheric heating and cooling rates in climate models. Remote sensing experiments on the Nimbus-7 satellites and the Spacelab-3 Space Shuttle Mission have shown that space-based measurements of infrared absorption or emission can be used to accurately determine the concentrations and distributions of stratospheric species on a global scale. The objective of this research task is to improve knowledge of the spectroscopic line parameters (positions, intensities, assignments, halfwidths, and pressure-induced shifts) of key atmospheric constituents through laboratory measurements.

  18. Understanding reconstructed Dante spectra using high resolution spectroscopy

    NASA Astrophysics Data System (ADS)

    May, M. J.; Weaver, J.; Widmann, K.; Kemp, G. E.; Thorn, D.; Colvin, J. D.; Schneider, M. B.; Moore, A.; Blue, B. E.

    2016-11-01

    The Dante is an 18 channel filtered diode array used at the National Ignition Facility (NIF) to measure the spectrally and temporally resolved radiation flux between 50 eV and 20 keV from various targets. The absolute flux is determined from the radiometric calibration of the x-ray diodes, filters, and mirrors and a reconstruction algorithm applied to the recorded voltages from each channel. The reconstructed spectra are very low resolution with features consistent with the instrument response and are not necessarily consistent with the spectral emission features from the plasma. Errors may exist between the reconstructed spectra and the actual emission features due to assumptions in the algorithm. Recently, a high resolution convex crystal spectrometer, VIRGIL, has been installed at NIF with the same line of sight as the Dante. Spectra from L-shell Ag and Xe have been recorded by both VIRGIL and Dante. Comparisons of these two spectroscopic measurements yield insights into the accuracy of the Dante reconstructions.

  19. Optical multichannel analyzer techniques for high resolution optical spectroscopy

    SciTech Connect

    Chao, J.L.

    1980-06-01

    The development of optical multichannel analyzer techniques for UV/VIS spectroscopy is presented. The research focuses on the development of spectroscopic techniques for measuring high resolution spectral lineshape functions from the exciton phosphorescence in H/sub 2/-1,2,4,5-tetrachlorobenzene. It is found that the temperature dependent frequency shifts and widths confirm a theoretical model based on an exchange theory. The exchange of low energy phonon modes which couple with excited state exciton transitions is shown to display the proper temperature dependent behavior. In addition to the techniques for using the optical multichannel analyzer (OMA) to perform low light level target integration, the use of the OMA for capturing spectral information in transient pulsed laser applications is discussed. An OMP data acquisition system developed for real-time signal processng is described. Both hardware and software interfacing considerations for control and data acquisition by a microcomputer are described. The OMA detector is described in terms of the principles behind its photoelectron detection capabilities and its design is compared with other optoelectronic devices.

  20. Ultrasound-aided high-resolution biophotonic imaging

    NASA Astrophysics Data System (ADS)

    Wang, Lihong V.

    2003-10-01

    We develop novel biophotonic imaging for early-cancer detection, a grand challenge in cancer research, using nonionizing electromagnetic and ultrasonic waves. Unlike ionizing x-ray radiation, nonionizing electromagnetic waves such as optical waves are safe for biomedical applications and reveal new contrast mechanisms and functional information. For example, our spectroscopic oblique-incidence reflectometry can detect skin cancers based on functional hemoglobin parameters and cell nuclear size with 95% accuracy. Unfortunately, electromagnetic waves in the nonionizing spectral region do not penetrate biological tissue in straight paths as do x-rays. Consequently, high-resolution tomography based on nonionizing electromagnetic waves alone, as demonstrated by our Mueller optical coherence tomography, is limited to superficial tissue imaging. Ultrasonic imaging, on the contrary, furnishes good imaging resolution but has poor contrast in early-stage tumors and has strong speckle artifacts as well. We developed ultrasound-mediated imaging modalities by combining electromagnetic and ultrasonic waves synergistically. The hybrid modalities yield speckle-free electromagnetic-contrast at ultrasonic resolution in relatively large biological tissue. In ultrasound-modulated (acousto)-optical tomography, a focused ultrasonic wave encodes diffuse laser light in scattering biological tissue. In photo-acoustic (thermo-acoustic) tomography, a low-energy laser (RF) pulse induces ultrasonic waves in biological tissue due to thermoelastic expansion.

  1. High-Resolution EUV Spectroscopy of White Dwarfs

    NASA Astrophysics Data System (ADS)

    Kowalski, Michael P.; Wood, K. S.; Barstow, M. A.

    2014-01-01

    We compare results of high-resolution EUV spectroscopic measurements of the isolated white dwarf G191-B2B and the binary system Feige 24 obtained with the J-PEX (Joint Plasmadynamic Experiment), which was sponsored jointly by the U.S. Naval Research Laboratory and NASA. J-PEX delivers the world's highest resolution in EUV and does so at high effective area (e.g., more effective area in a sounding rocket than is available with Chandra at adjacent energies, but in a waveband Chandra cannot reach). The capability J-PEX represents is applicable to the astrophysics of hot plasmas in stellar coronae, white dwarfs and the ISM. G191-B2B and Feige 24 are quite distinct hot white dwarf systems having in common that they are bright in the portion of the EUV where He emission features and edges occur, hence they can be exploited to probe both the stellar atmosphere and the ISM, separating those components by model-fitting that sums over all relevant (He) spectral features in the band. There is evidence from these fits that atmospheric He is being detected but the result is more conservatively cast as a pair of upper limits. We discuss how longer duration satellite observations with the same instrumentation could increase exposure to detect atmospheric He in these and other nearby hot white dwarfs.

  2. Crusta: Visualizing High-resolution Global Data

    NASA Astrophysics Data System (ADS)

    Bernardin, T. S.; Kreylos, O.; Bowles, C. J.; Cowgill, E.; Hamann, B.; Kellogg, L. H.

    2009-12-01

    Virtual globes have become indispensable tools for visualizing, understanding and presenting data from Earth and other planetary bodies. The scientific community has invested much effort into exploiting existing globes to their fullest potential by refining and adapting their capabilities to better satisfy specific needs. For example, Google Earth provides users with the ability to view hillshade images derived from airborne LiDAR data such as the 2007 Northern California GeoEarthScope data. However, because most available globes were not designed with the specific needs of geoscientists in mind, shortcomings are becoming increasingly evident in geoscience applications such as terrain visualization. In particular, earth scientists struggle to visualize digital elevation models with both high spatial resolution (0.5 - 1 square meters per sample) and large extent (>2000 square kilometers), such as those obtained with airborne LiDAR. To address the specific earth science need of real-time terrain visualization of LiDAR data, we are developing Crusta as part of a close collaboration involving earth and computer scientists. Crusta is a new virtual globe that differs from widely used globes by both providing accurate global data representation and the ability to easily visualize custom topographic and image data. As a result, Crusta enables real-time, interactive visualization of high resolution digital elevation data spanning thousands of square kilometers, such as the complete 2007 Northern California GeoEarthScope airborne LiDAR data set. To implement an accurate data representation and avoid distortion of the display at the poles, where other projections have singularities, Crusta represents the globe as a thirty-sided polyhedron. Each side of this polyhedron can be subdivided to an arbitrarily fine grid on the surface of the globe, which allows Crusta to accommodate input data of arbitrary resolution ranging from global (e.g., Blue Marble) to local (e.g., a tripod

  3. Superconducting High Resolution Fast-Neutron Spectrometers

    SciTech Connect

    Hau, Ionel Dragos

    2006-01-01

    Superconducting high resolution fast-neutron calorimetric spectrometers based on 6LiF and TiB{sub 2} absorbers have been developed. These novel cryogenic spectrometers measure the temperature rise produced in exothermal (n, α) reactions with fast neutrons in 6Li and 10B-loaded materials with heat capacity C operating at temperatures T close to 0.1 K. Temperature variations on the order of 0.5 mK are measured with a Mo/Cu thin film multilayer operated in the transition region between its superconducting and its normal state. The advantage of calorimetry for high resolution spectroscopy is due to the small phonon excitation energies kBT on the order of μeV that serve as signal carriers, resulting in an energy resolution ΔE ~ (kBT2C)1/2, which can be well below 10 keV. An energy resolution of 5.5 keV has been obtained with a Mo/Cu superconducting sensor and a TiB2 absorber using thermal neutrons from a 252Cf neutron source. This resolution is sufficient to observe the effect of recoil nuclei broadening in neutron spectra, which has been related to the lifetime of the first excited state in 7Li. Fast-neutron spectra obtained with a 6Li-enriched LiF absorber show an energy resolution of 16 keV FWHM, and a response in agreement with the 6Li(n, α)3H reaction cross section and Monte Carlo simulations for energies up to several MeV. The energy resolution of order of a few keV makes this novel instrument applicable to fast-neutron transmission spectroscopy based on the unique elemental signature provided by the neutron absorption and scattering resonances. The optimization of the energy resolution based on analytical and numerical models of the detector response is discussed in the context of these applications.

  4. High resolution scanning electron microscopy of plasmodesmata.

    PubMed

    Brecknock, Sarah; Dibbayawan, Teresa P; Vesk, Maret; Vesk, Peter A; Faulkner, Christine; Barton, Deborah A; Overall, Robyn L

    2011-10-01

    Symplastic transport occurs between neighbouring plant cells through functionally and structurally dynamic channels called plasmodesmata (PD). Relatively little is known about the composition of PD or the mechanisms that facilitate molecular transport into neighbouring cells. While transmission electron microscopy (TEM) provides 2-dimensional information about the structural components of PD, 3-dimensional information is difficult to extract from ultrathin sections. This study has exploited high-resolution scanning electron microscopy (HRSEM) to reveal the 3-dimensional morphology of PD in the cell walls of algae, ferns and higher plants. Varied patterns of PD were observed in the walls, ranging from uniformly distributed individual PD to discrete clusters. Occasionally the thick walls of the giant alga Chara were fractured, revealing the surface morphology of PD within. External structures such as spokes, spirals and mesh were observed surrounding the PD. Enzymatic digestions of cell wall components indicate that cellulose or pectin either compose or stabilise the extracellular spokes. Occasionally, the PD were fractured open and desmotubule-like structures and other particles were observed in their central regions. Our observations add weight to the argument that Chara PD contain desmotubules and are morphologically similar to higher plant PD.

  5. High-resolution imaging using endoscopic holography

    NASA Astrophysics Data System (ADS)

    Bjelkhagen, Hans I.

    1990-08-01

    Endoscopic holography or endoholography combines the features of endoscopy and holography. The purpose of endoholographic imaging is to provide the physician with a unique means of extending diagnosis by providing a life-like record of tissue. Endoholographic recording will provide means for microscopic examination of tissue and in some cases may obviate the need to excise specimens for biopsy. In this method holograms which have the unique properties of three-dimensionality large focal depth and high resolution are made with a newly designed endoscope. The endoscope uses a single-mode optical fiber for illumination and single-beam reflection holograms are recorded in close contact with the tissue at the distal end of the endoscope. The holograms are viewed under a microscope. By using the proper combinations of dyes for staining specific tissue types with various wavelengths of laser illumination increased contrast on the cellular level can be obtained. Using dyes such as rose bengal in combination with the 514. 5 nm line of an argon ion laser and trypan blue or methylene blue with the 647. 1 nm line of a krypton ion laser holograms of the stained colon of a dog showed the architecture of the colon''s columnar epithelial cells. It is hoped through chronological study using this method in-vivo an increased understanding of the etiology and pathology of diseases such as Crohn''s diseases colitis proctitis and several different forms of cancer will help to their control. 1.

  6. Holographic high-resolution endoscopic image recording

    NASA Astrophysics Data System (ADS)

    Bjelkhagen, Hans I.

    1991-03-01

    Endoscopic holography or endoholography combines the features of endoscopy and holography. The purpose of endoholographic imaging is to provide the physician with a unique means of extending diagnosis by providing a life-like record of tissue. Endoholographic recording will provide means for microscopic examination of tissue and in some cases may obviate the need to excise specimens for biopsy. In this method holograms which have the unique properties of three-dimensionality large focal depth and high resolution are made with a newly designed endoscope. The endoscope uses a single-mode optical fiber for illumination and single-beam reflection holograms are recorded in close contact with the tissue at the distal end of the endoscope. The holograms are viewed under a microscope. By using the proper combinations of dyes for staining specific tissue types with various wavelengths of laser illumination increased contrast on the cellular level can be obtained. Using dyes such as rose bengal in combination with the 514. 5 nm line of an argon ion laser and trypan blue or methylene blue with the 647. 1 nm line of a krypton ion laser holograms of the stained colon of a dog showed the architecture of the colon''s columnar epithelial cells. It is hoped through chronological study using this method in-vivo an increased understanding of the etiology and pathology of diseases such as Crohn''s diseases colitis proctitis and several different forms of cancer will help

  7. High-resolution light microscopy of nanoforms

    NASA Astrophysics Data System (ADS)

    Vodyanoy, Vitaly; Pustovyy, Oleg; Vainrub, Arnold

    2007-09-01

    We developed a high resolution light imaging system. Diffraction gratings with 100 nm width lines as well as less than 100 nm size features of different-shaped objects are clearly visible on a calibrated microscope test slide (Vainrub et al., Optics Letters, 2006, 31, 2855). The two-point resolution increase results from a known narrowing of the central diffraction peak for the annular aperture. Better visibility and advanced contrast of the smallest features in the image are due to enhancement of high spatial frequencies in the optical transfer function. The imaging system is portable, low energy, and battery operated. It has been adapted to use in both transmitting and reflecting light. It is particularly applicable for motile nanoform systems where structure and functions can be depicted in real time. We have isolated micrometer and submicrometer particles, termed proteons, from human and animal blood. Proteons form by reversible seeded aggregation of proteins around proteon nucleating centers (PNCs). PNCs are comprised of 1-2nm metallic nanoclusters containing 40-300 atoms. Proteons are capable of spontaneous assembling into higher nanoform systems assuming structure of complicated topology. The arrangement of complex proteon system mimics the structure of a small biological cell. It has structures that imitate membrane and nucleolus or nuclei. Some of these nanoforms are motile. They interact and divide. Complex nanoform systems can spontaneously reduce to simple proteons. The physical properties of these nanoforms could shed some light on the properties of early life forms or forms at extreme conditions.

  8. High-resolution CCD imaging alternatives

    NASA Astrophysics Data System (ADS)

    Brown, D. L.; Acker, D. E.

    1992-08-01

    High resolution CCD color cameras have recently stimulated the interest of a large number of potential end-users for a wide range of practical applications. Real-time High Definition Television (HDTV) systems are now being used or considered for use in applications ranging from entertainment program origination through digital image storage to medical and scientific research. HDTV generation of electronic images offers significant cost and time-saving advantages over the use of film in such applications. Further in still image systems electronic image capture is faster and more efficient than conventional image scanners. The CCD still camera can capture 3-dimensional objects into the computing environment directly without having to shoot a picture on film develop it and then scan the image into a computer. 2. EXTENDING CCD TECHNOLOGY BEYOND BROADCAST Most standard production CCD sensor chips are made for broadcast-compatible systems. One popular CCD and the basis for this discussion offers arrays of roughly 750 x 580 picture elements (pixels) or a total array of approximately 435 pixels (see Fig. 1). FOR. A has developed a technique to increase the number of available pixels for a given image compared to that produced by the standard CCD itself. Using an inter-lined CCD with an overall spatial structure several times larger than the photo-sensitive sensor areas each of the CCD sensors is shifted in two dimensions in order to fill in spatial gaps between adjacent sensors.

  9. High resolution animated scenes from stills.

    PubMed

    Lin, Zhouchen; Wang, Lifeng; Wang, Yunbo; Kang, Sing Bing; Fang, Tian

    2007-01-01

    Current techniques for generating animated scenes involve either videos (whose resolution is limited) or a single image (which requires a significant amount of user interaction). In this paper, we describe a system that allows the user to quickly and easily produce a compelling-looking animation from a small collection of high resolution stills. Our system has two unique features. First, it applies an automatic partial temporal order recovery algorithm to the stills in order to approximate the original scene dynamics. The output sequence is subsequently extracted using a second-order Markov Chain model. Second, a region with large motion variation can be automatically decomposed into semiautonomous regions such that their temporal orderings are softly constrained. This is to ensure motion smoothness throughout the original region. The final animation is obtained by frame interpolation and feathering. Our system also provides a simple-to-use interface to help the user to fine-tune the motion of the animated scene. Using our system, an animated scene can be generated in minutes. We show results for a variety of scenes. PMID:17356221

  10. High-resolution microwave images of Saturn

    NASA Technical Reports Server (NTRS)

    Grossman, A. W.; Muhleman, D. O.; Berge, G. L.

    1989-01-01

    An analysis of high-resolution microwave images of Saturn and Saturn's individual rings is presented. Radio interferometric observations of Saturn taken at the Very Large Array in New Mexico at wavelengths of 2 and 6 centimeters reveal interesting new features in both the atmosphere and rings. The resulting maps show an increase in brightness temperature of about 3 K from equator to pole at both wavelengths, while the 6-centimeter map shows a bright band at northern midlatitudes. The data are consistent with a radiative transfer model of the atmosphere that constrains the well-mixed, fully saturated, NH3 mixing ratio to be 0.00012 in a region just below the NH3 clouds, while the observed bright band indicates a 25 percent relative decrease of NH3 in northern midlatitudes. Brightness temperatures for the classical rings are presented. Ring brightness shows a variation with azimuth and is linearly polarized at an average value of about 5 percent. The variations in ring polarization suggest that at least 20 percent of the ring brightness is the result of a single scattering process.

  11. Laser wavelength comparison by high resolution interferometry.

    PubMed

    Layer, H P; Deslattes, R D; Schweitzer, W G

    1976-03-01

    High resolution interferometry has been used to determine the wavelength ratio between two molecularly stabilized He-Ne lasers, one locked to a methane absorption at 3.39 microm and the other locked to the k peak of (129)I(2) at 633 nm. An optical beat frequency technique gave fractional orders while a microwave sideband method yielded the integer parts. Conventional (third derivative) peak seeking servoes stabilized both laser and cavity lengths. Reproducibility of the electronic control system and optics was a few parts in 10(12), while systematic errors associated with curvature of the cavity mirrors limited the accuracy of the wavelength ratio measurement to 2 parts in 10(10). The measured wavelength ratio of the methane stabilized He-Ne laser at 3.39 microm [P(7) line, nu(3) band] to the (129)I(2) (k peak) stabilized He-Ne laser at 633 nm was 5.359 049 260 6 (0.000 2 ppm). This ratio agrees with that calculated from the (lower accuracy) results of earlier wavelength measurements made relative to the (86)Kr standard. Its higher accuracy thus permits a provisional extension of the frequency scale based on the cesium oscillator into the visible spectrum.

  12. High-resolution microwave images of saturn.

    PubMed

    Grossman, A W; Muhleman, D O; Berge, G L

    1989-09-15

    An analysis of high-resolution microwave images of Saturn and Saturn's individual rings is presented. Radio interferometric observations of Saturn taken at the Very Large Array in New Mexico at wavelengths of 2 and 6 centimeters reveal interesting new features in both the atmosphere and rings. The resulting maps show an increase in brightness temperature of about 3 K from equator to pole at both wavelengths, while the 6-centimeter map shows a bright band at northern mid-latitudes. The data are consistent with a radiative transfer model of the atmosphere that constrains the well-mixed, fully saturated, NH(3) mixing ratio to be 1.2 x 10(-4) in a region just below the NH(3) clouds, while the observed bright band indicates a 25 percent relative decrease of NH(3) in northern mid-latitudes. Brightness temperatures for the classical rings are presented. Ring brightness shows a variation with azimuth and is linearly polarized at an average value of about 5 percent. The variations in ring polarization suggest that at least 20 percent of the ring brightness is the result of a single scattering process.

  13. High Resolution Microendoscopy for Quantitative Diagnosis of Esophageal Neoplasia

    NASA Astrophysics Data System (ADS)

    Shin, Dongsuk

    Esophageal cancer is the eighth most common cancer in the world. Cancers of the esophagus account for 3.8% of all cases of cancers, with approximately 482,300 new cases reported in 2008 worldwide. In the United States alone, it is estimated that approximately 18,000 new cases will be diagnosed in 2013, and 15,210 deaths are expected. Despite advances in surgery and chemoradiation therapy, these advances have not led to a significant increase in survival rates, primarily because diagnosis often at an advanced and incurable stage when treatment is more difficult and less successful. Accurate, objective methods for early detection of esophageal neoplasia are needed. Here, quantitative classification algorithms for high resolution miscroendoscopic images were developed to distinguish between esophageal neoplastic and non-neoplastic tissue. A clinical study in 177 patients with esophageal squamous cell carcinoma (ESCC) was performed to evaluate the diagnostic performance of the classification algorithm in collaboration with the Mount Sinai Medical Center in the United States, the First Hospital of Jilin University in China, and the Cancer Institute and Hospital, the Chinese Academy of Medical Science in China. The study reported a sensitivity and specificity of 93% and 92%, respectively, in the training set, 87% and 97%, respectively, in the test set, and 84% and 95%, respectively, in an independent validation set. Another clinical study in 31 patients with Barrett's esophagus resulted in a sensitivity of 84% and a specificity of 85%. Finally, a compact, portable version of the high resolution microendoscopy (HRME) device using a consumer-grade camera was developed and a series of biomedical experimental studies were carried out to assess the capability of the device.

  14. Potential High Resolution Dosimeters For MRT

    NASA Astrophysics Data System (ADS)

    Bräuer-Krisch, E.; Rosenfeld, A.; Lerch, M.; Petasecca, M.; Akselrod, M.; Sykora, J.; Bartz, J.; Ptaszkiewicz, M.; Olko, P.; Berg, A.; Wieland, M.; Doran, S.; Brochard, T.; Kamlowski, A.; Cellere, G.; Paccagnella, A.; Siegbahn, E. A.; Prezado, Y.; Martinez-Rovira, I.; Bravin, A.; Dusseau, L.; Berkvens, P.

    2010-07-01

    Microbeam Radiation Therapy (MRT) uses highly collimated, quasi-parallel arrays of X-ray microbeams of 50-600 keV, produced by 2nd and 3rd generation synchrotron sources, such as the National Synchrotron Light Source (NSLS) in the U.S., and the European Synchrotron Radiation Facility (ESRF) in France, respectively. High dose rates are necessary to deliver therapeutic doses in microscopic volumes, to avoid spreading of the microbeams by cardiosynchronous movement of the tissues. A small beam divergence and a filtered white beam spectrum in the energy range between 30 and 250 keV results in the advantage of steep dose gradients with a sharper penumbra than that produced in conventional radiotherapy. MRT research over the past 20 years has allowed a vast number of results from preclinical trials on different animal models, including mice, rats, piglets and rabbits. Microbeams in the range between 10 and 100 micron width show an unprecedented sparing of normal radiosensitive tissues as well as preferential damage to malignant tumor tissues. Typically, MRT uses arrays of narrow (˜25-100 micron-wide) microplanar beams separated by wider (100-400 microns centre-to-centre, c-t-c) microplanar spaces. We note that thicker microbeams of 0.1-0.68 mm used by investigators at the NSLS are still called microbeams, although some invesigators in the community prefer to call them minibeams. This report, however, limits it discussion to 25-100 μm microbeams. Peak entrance doses of several hundreds of Gy are surprisingly well tolerated by normal tissues. High resolution dosimetry has been developed over the last two decades, but typical dose ranges are adapted to dose delivery in conventional Radiation Therapy (RT). Spatial resolution in the sub-millimetric range has been achieved, which is currently required for quality assurance measurements in Gamma-knife RT. Most typical commercially available detectors are not suitable for MRT applications at a dose rate of 16000 Gy/s, micron

  15. Large Scale, High Resolution, Mantle Dynamics Modeling

    NASA Astrophysics Data System (ADS)

    Geenen, T.; Berg, A. V.; Spakman, W.

    2007-12-01

    To model the geodynamic evolution of plate convergence, subduction and collision and to allow for a connection to various types of observational data, geophysical, geodetical and geological, we developed a 4D (space-time) numerical mantle convection code. The model is based on a spherical 3D Eulerian fem model, with quadratic elements, on top of which we constructed a 3D Lagrangian particle in cell(PIC) method. We use the PIC method to transport material properties and to incorporate a viscoelastic rheology. Since capturing small scale processes associated with localization phenomena require a high resolution, we spend a considerable effort on implementing solvers suitable to solve for models with over 100 million degrees of freedom. We implemented Additive Schwartz type ILU based methods in combination with a Krylov solver, GMRES. However we found that for problems with over 500 thousend degrees of freedom the convergence of the solver degraded severely. This observation is known from the literature [Saad, 2003] and results from the local character of the ILU preconditioner resulting in a poor approximation of the inverse of A for large A. The size of A for which ILU is no longer usable depends on the condition of A and on the amount of fill in allowed for the ILU preconditioner. We found that for our problems with over 5×105 degrees of freedom convergence became to slow to solve the system within an acceptable amount of walltime, one minute, even when allowing for considerable amount of fill in. We also implemented MUMPS and found good scaling results for problems up to 107 degrees of freedom for up to 32 CPU¡¯s. For problems with over 100 million degrees of freedom we implemented Algebraic Multigrid type methods (AMG) from the ML library [Sala, 2006]. Since multigrid methods are most effective for single parameter problems, we rebuild our model to use the SIMPLE method in the Stokes solver [Patankar, 1980]. We present scaling results from these solvers for 3D

  16. Potential High Resolution Dosimeters For MRT

    SciTech Connect

    Braeuer-Krisch, E.; Brochard, T.; Prezado, Y.; Bravin, A.; Berkvens, P.; Rosenfeld, A.; Lerch, M.; Petasecca, M.; Akselrod, M.; Sykora, J.; Bartz, J.; Ptaszkiewicz, M.; Olko, P.; Berg, A.; Wieland, M.; Doran, S.; Kamlowski, A.; Cellere, G.

    2010-07-23

    Microbeam Radiation Therapy (MRT) uses highly collimated, quasi-parallel arrays of X-ray microbeams of 50-600 keV, produced by 2nd and 3rd generation synchrotron sources, such as the National Synchrotron Light Source (NSLS) in the U.S., and the European Synchrotron Radiation Facility (ESRF) in France, respectively. High dose rates are necessary to deliver therapeutic doses in microscopic volumes, to avoid spreading of the microbeams by cardiosynchronous movement of the tissues. A small beam divergence and a filtered white beam spectrum in the energy range between 30 and 250 keV results in the advantage of steep dose gradients with a sharper penumbra than that produced in conventional radiotherapy. MRT research over the past 20 years has allowed a vast number of results from preclinical trials on different animal models, including mice, rats, piglets and rabbits. Microbeams in the range between 10 and 100 micron width show an unprecedented sparing of normal radiosensitive tissues as well as preferential damage to malignant tumor tissues. Typically, MRT uses arrays of narrow ({approx}25-100 micron-wide) microplanar beams separated by wider (100-400 microns centre-to-centre, c-t-c) microplanar spaces. We note that thicker microbeams of 0.1-0.68 mm used by investigators at the NSLS are still called microbeams, although some invesigators in the community prefer to call them minibeams. This report, however, limits it discussion to 25-100 {mu}m microbeams. Peak entrance doses of several hundreds of Gy are surprisingly well tolerated by normal tissues. High resolution dosimetry has been developed over the last two decades, but typical dose ranges are adapted to dose delivery in conventional Radiation Therapy (RT). Spatial resolution in the sub-millimetric range has been achieved, which is currently required for quality assurance measurements in Gamma-knife RT. Most typical commercially available detectors are not suitable for MRT applications at a dose rate of 16000 Gy

  17. Toward high-resolution optoelectronic retinal prosthesis

    NASA Astrophysics Data System (ADS)

    Palanker, Daniel; Huie, Philip; Vankov, Alexander; Asher, Alon; Baccus, Steven

    2005-04-01

    It has been already demonstrated that electrical stimulation of retina can produce visual percepts in blind patients suffering from macular degeneration and retinitis pigmentosa. Current retinal implants provide very low resolution (just a few electrodes), while several thousand pixels are required for functional restoration of sight. We present a design of the optoelectronic retinal prosthetic system that can activate a retinal stimulating array with pixel density up to 2,500 pix/mm2 (geometrically corresponding to a visual acuity of 20/80), and allows for natural eye scanning rather than scanning with a head-mounted camera. The system operates similarly to "virtual reality" imaging devices used in military and medical applications. An image from a video camera is projected by a goggle-mounted infrared LED-LCD display onto the retina, activating an array of powered photodiodes in the retinal implant. Such a system provides a broad field of vision by allowing for natural eye scanning. The goggles are transparent to visible light, thus allowing for simultaneous utilization of remaining natural vision along with prosthetic stimulation. Optical control of the implant allows for simple adjustment of image processing algorithms and for learning. A major prerequisite for high resolution stimulation is the proximity of neural cells to the stimulation sites. This can be achieved with sub-retinal implants constructed in a manner that directs migration of retinal cells to target areas. Two basic implant geometries are described: perforated membranes and protruding electrode arrays. Possibility of the tactile neural stimulation is also examined.

  18. Decadal prediction with a high resolution model

    NASA Astrophysics Data System (ADS)

    Monerie, Paul-Arthur; Valcke, Sophie; Terray, Laurent; Moine, Marie-Pierre

    2016-04-01

    The ability of a high resolution coupled atmosphere-ocean general circulation model (with a horizontal resolution of the quarter degree in the ocean and of about 50 km in the atmosphere) to predict the annual means of temperature, precipitation, sea-ice volume and extent is assessed. Reasonable skill in predicting sea surface temperatures and surface air temperature is obtained, especially over the North Atlantic, the tropical Atlantic and the Indian Ocean. The skill in predicting precipitations is weaker and not significant. The Sea Ice Extent and volume are also reasonably predicted in winter (March) and summer (September). It is however argued that the skill is mainly due to the atmosphere feeding in well-mixed GHGs. The mid-90's subpolar gyre warming is assessed. The model simulates a warming of the North Atlantic Ocean, associated with an increase of the meridional heat transport, a strengthening of the North Atlantic current and a deepening of the mixed layer over the Labrador Sea. The atmosphere plays a role in the warming through a modulation of the North Atlantic Oscillation and a shrinking of the subpolar gyre. At the 3-8 years lead-time, a negative anomaly of pressure, located south of the subpolar gyre is associated with the wind speed decrease over the subpolar gyre. It prevents oceanic heat-loss and favors the northward move, from the subtropical to the subpolar gyre, of anomalously warm and salty water, leading to its warming. We finally argued that the subpolar gyre warming is triggered by the ocean dynamic but the atmosphere can contributes to its sustaining. This work is realised in the framework of the EU FP7 SPECS Project.

  19. High-resolution phylogenetic microbial community profiling

    SciTech Connect

    Singer, Esther; Coleman-Derr, Devin; Bowman, Brett; Schwientek, Patrick; Clum, Alicia; Copeland, Alex; Ciobanu, Doina; Cheng, Jan-Fang; Gies, Esther; Hallam, Steve; Tringe, Susannah; Woyke, Tanja

    2014-03-17

    The representation of bacterial and archaeal genome sequences is strongly biased towards cultivated organisms, which belong to merely four phylogenetic groups. Functional information and inter-phylum level relationships are still largely underexplored for candidate phyla, which are often referred to as microbial dark matter. Furthermore, a large portion of the 16S rRNA gene records in the GenBank database are labeled as environmental samples and unclassified, which is in part due to low read accuracy, potential chimeric sequences produced during PCR amplifications and the low resolution of short amplicons. In order to improve the phylogenetic classification of novel species and advance our knowledge of the ecosystem function of uncultivated microorganisms, high-throughput full length 16S rRNA gene sequencing methodologies with reduced biases are needed. We evaluated the performance of PacBio single-molecule real-time (SMRT) sequencing in high-resolution phylogenetic microbial community profiling. For this purpose, we compared PacBio and Illumina metagenomic shotgun and 16S rRNA gene sequencing of a mock community as well as of an environmental sample from Sakinaw Lake, British Columbia. Sakinaw Lake is known to contain a large age of microbial species from candidate phyla. Sequencing results show that community structure based on PacBio shotgun and 16S rRNA gene sequences is highly similar in both the mock and the environmental communities. Resolution power and community representation accuracy from SMRT sequencing data appeared to be independent of GC content of microbial genomes and was higher when compared to Illumina-based metagenome shotgun and 16S rRNA gene (iTag) sequences, e.g. full-length sequencing resolved all 23 OTUs in the mock community, while iTags did not resolve closely related species. SMRT sequencing hence offers various potential benefits when characterizing uncharted microbial communities.

  20. High Resolution Global View of Io

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Io, the most volcanic body in the solar system is seen in the highest resolution obtained to date by NASA's Galileo spacecraft. The smallest features that can be discerned are 2.5 kilometers in size. There are rugged mountains several kilometers high, layered materials forming plateaus, and many irregular depressions called volcanic calderas. Several of the dark, flow-like features correspond to hot spots, and may be active lava flows. There are no landforms resembling impact craters, as the volcanism covers the surface with new deposits much more rapidly than the flux of comets and asteroids can create large impact craters. The picture is centered on the side of Io that always faces away from Jupiter; north is to the top.

    Color images acquired on September 7, 1996 have been merged with higher resolution images acquired on November 6, 1996 by the Solid State Imaging (CCD) system aboard NASA's Galileo spacecraft. The color is composed of data taken, at a range of 487,000 kilometers, in the near-infrared, green, and violet filters and has been enhanced to emphasize the extraordinary variations in color and brightness that characterize Io's face. The high resolution images were obtained at ranges which varied from 245,719 kilometers to 403,100 kilometers.

    Launched in October 1989, Galileo entered orbit around Jupiter on December 7, 1995. The spacecraft's mission is to conduct detailed studies of the giant planet, its largest moons and the Jovian magnetic environment. The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  1. High-resolution line-shape spectroscopy during a laser pulse based on Dual-Broad-Band-CARS interferometry

    SciTech Connect

    Vereschagin, Konstantin A; Vereschagin, Alexey K; Smirnov, Valery V; Stelmakh, O M; Fabelinskii, V I; Clauss, W; Klimenko, D N; Oschwald, M E-mail: Al_Vereshchagin@mail.r E-mail: stelmakh@kapella.gpi.r

    2006-07-31

    A high-resolution spectroscopic method is developed for recording Raman spectra of molecular transitions in transient objects during a laser pulse with a resolution of {approx}0.1 cm{sup -1}. The method is based on CARS spectroscopy using a Fabry-Perot interferometer for spectral analysis of the CARS signal and detecting a circular interferometric pattern on a two-dimensional multichannel photodetector. It is shown that the use of the Dual-Broad-Band-CARS configuration to obtain the CARS process provides the efficient averaging of the spectral-amplitude noise of the CARS signal generated by a laser pulse and, in combination with the angular integration of the two-dimensional interference pattern, considerably improves the quality of interferograms. The method was tested upon diagnostics of the transient oxygen-hydrogen flame where information on the shapes of spectral lines of the Q-branch of hydrogen molecules required for measuring temperature was simultaneously obtained and used. (special issue devoted to the 90th anniversary of a.m. prokhorov)

  2. Spectroscopic detection of the blanch response at the heel of the foot: a possible diagnostic for stage I pressure ulcers

    NASA Astrophysics Data System (ADS)

    Kohlenberg, Elicia M.; Zanca, Jeanne; Brienza, David M.; Levasseur, Michelle A.; Sowa, Michael G.

    2005-09-01

    Pressure ulcers (sores) can occur when there is constant pressure being applied to tissue for extended periods of time. Immobile people are particularly prone to this problem. Ideally, pressure damage is detected at an early stage, pressure relief is applied and the pressure ulcer is averted. One of the hallmarks of pressure damaged skin is an obliterated blanch response due to compromised microcirculation near the surface of the skin. Visible reflectance spectroscopy can noninvasively probe the blood circulation of the upper layers of skin by measuring the electronic transitions arising from hemoglobin, the primary oxygen carrying protein in blood. A spectroscopic test was developed on a mixed population of 30 subjects to determine if the blanch response could be detected in healthy skin with high sensitivity and specificity regardless of the pigmentation of the skin. Our results suggest that a spectroscopic based blanch response test can accurately detect the blanching of healthy tissue and has the potential to be developed into a screening test for early stage I pressure ulcers.

  3. Laboratory Astrophysics in Support of High-Resolution X-ray Astronomy

    NASA Astrophysics Data System (ADS)

    Beiersdorfer, Peter

    2016-06-01

    X-ray astronomy entered a new era with the advent of high-spectral resolution grating spectrometers aboard the Chandra and XMM-Newton X-ray observatories and, very recently, with the launch of the high-resolution calorimeter (SXS) aboard the Hitomi mission. The ability to perform spectrally resolved observations has necessitated increasing accuracies in the spectral models used to analyze astrophysical data. Our laboratory measurements have responded to that need by assessing the fidelity of the atomic data used in the models and by calibrating specific spectral diagnostics. Our spectroscopy measurements are mostly carried out at the electron beam ion trap facility at Livermore, which produces the relevant ions in a density and temperature environment similar to those of astrophysical plasmas. Recent measurements include the identification of lines seen with Chandra's LETGS in astrophysical spectra but missing in the models; wavelength determinations of K-shell transitions in L-shell ions and of L-shell transitions in M-shell ions needed for the interpretation of absorption line features; and the calibration of the line emission of key spectroscopic diagnostics, such as the L-shell lines of Fe XVII. Observations with Hitomi's SXS will be sensitive to X-ray line formation by charge exchange, which has already been associated with the X-ray emission from comets and which has been suggested as an alternative explanation of the 3.55 keV line, both so far only observed with CCD resolution. Line formation by charge exchange has been another area of our laboratory astrophysics work, and we have recently uncovered that a large fraction of double charge exchange events decay unexpectedly by double X-ray emission. Moreover, we have shown that electron rearrangement following double charge exchange can lead to X-ray energies well in excess of those predicted by current charge exchange models.This work was performed under the auspices of the U.S. Department of Energy by LLNL

  4. High Resolution Airborne Shallow Water Mapping

    NASA Astrophysics Data System (ADS)

    Steinbacher, F.; Pfennigbauer, M.; Aufleger, M.; Ullrich, A.

    2012-07-01

    In order to meet the requirements of the European Water Framework Directive (EU-WFD), authorities face the problem of repeatedly performing area-wide surveying of all kinds of inland waters. Especially for mid-sized or small rivers this is a considerable challenge imposing insurmountable logistical efforts and costs. It is therefore investigated if large-scale surveying of a river system on an operational basis is feasible by employing airborne hydrographic laser scanning. In cooperation with the Bavarian Water Authority (WWA Weilheim) a pilot project was initiated by the Unit of Hydraulic Engineering at the University of Innsbruck and RIEGL Laser Measurement Systems exploiting the possibilities of a new LIDAR measurement system with high spatial resolution and high measurement rate to capture about 70 km of riverbed and foreland for the river Loisach in Bavaria/Germany and the estuary and parts of the shoreline (about 40km in length) of lake Ammersee. The entire area surveyed was referenced to classic terrestrial cross-section surveys with the aim to derive products for the monitoring and managing needs of the inland water bodies forced by the EU-WFD. The survey was performed in July 2011 by helicopter and airplane and took 3 days in total. In addition, high resolution areal images were taken to provide an optical reference, offering a wide range of possibilities on further research, monitoring, and managing responsibilities. The operating altitude was about 500 m to maintain eye-safety, even for the aided eye, the airspeed was about 55 kts for the helicopter and 75 kts for the aircraft. The helicopter was used in the alpine regions while the fixed wing aircraft was used in the plains and the urban area, using appropriate scan rates to receive evenly distributed point clouds. The resulting point density ranged from 10 to 25 points per square meter. By carefully selecting days with optimum water quality, satisfactory penetration down to the river bed was achieved

  5. High Resolution Velocity Structure in Eastern Turkey

    SciTech Connect

    Pasyanos, M; Gok, R; Zor, E; Walter, W

    2004-09-03

    We investigate the crustal and upper mantle structure of eastern Turkey where the Anatolian, Arabian and Eurasian Plates meet and form a complex tectonic structure. The Bitlis suture is a continental collision zone between the Anatolian plateau and the Arabian plate. Broadband data available through the Eastern Turkey Seismic Experiment (ETSE) provided a unique opportunity for studying the high resolution velocity structure. Zor et al. found an average 46 km thick crust in Anatolian plateau using six-layered grid search inversion of the ETSE receiver functions. Receiver functions are sensitive to the velocity contrast of interfaces and the relative travel time of converted and reverberated waves between those interfaces. The interpretation of receiver function alone with many-layered parameterization may result in an apparent depth-velocity tradeoff. In order to improve previous velocity model, we employed the joint inversion method with many layered parameterization of Julia et al. (2000) to the ETSE receiver functions. In this technique, the receiver function and surface-wave observations are combined into a single algebraic equation and each data set is weighted by an estimate of the uncertainty in the observations. We consider azimuthal changes of receiver functions and have stacked them into different groups. We calculated the receiver functions using iterative time-domain deconvolution technique and surface wave group velocity dispersion curves between 10-100 sec. We are making surface wave dispersion measurements at the ETSE stations and have incorporated them into a regional group velocity model. Preliminary results indicate a strong trend in the long period group velocity in the northeast. This indicates slow upper mantle velocities in the region consistent with Pn, Sn and receiver function results. We started with both the 1-D model that is obtained with the 12 tones dam explosion shot data recorded by ETSE network and the existing receiver function

  6. The HFIP High Resolution Hurricane Forecast Test

    NASA Astrophysics Data System (ADS)

    Nance, L. B.; Bernardet, L.; Bao, S.; Brown, B.; Carson, L.; Fowler, T.; Halley Gotway, J.; Harrop, C.; Szoke, E.; Tollerud, E. I.; Wolff, J.; Yuan, H.

    2010-12-01

    Tropical cyclones are a serious concern for the nation, causing significant risk to life, property and economic vitality. The National Oceanic and Atmospheric Administration (NOAA) National Weather Service has a mission of issuing tropical cyclone forecasts and warnings, aimed at protecting life and property and enhancing the national economy. In the last 10 years, the errors in hurricane track forecasts have been reduced by about 50% through improved model guidance, enhanced observations, and forecaster expertise. However, little progress has been made during this period toward reducing forecasted intensity errors. To address this shortcoming, NOAA established the Hurricane Forecast Improvement Project (HFIP) in 2007. HFIP is a 10-year plan to improve one to five day tropical cyclone forecasts, with a focus on rapid intensity change. Recent research suggests that prediction models with grid spacing less than 1 km in the inner core of the hurricane may provide a substantial improvement in intensity forecasts. The 2008-09 staging of the High Resolution Hurricane (HRH) Test focused on quantifying the impact of increased horizontal resolution in numerical models on hurricane intensity forecasts. The primary goal of this test was an evaluation of the effect of increasing horizontal resolution within a given model across a variety of storms with different intensity, location and structure. The test focused on 69 retrospectives cases from the 2005 and 2007 hurricane seasons. Six modeling groups participated in the HRH test utilizing a variety of models, including three configurations of the Weather Research and Forecasting (WRF) model, the operational GFDL model, the Navy’s tropical cyclone model, and a model developed at the University of Wisconsin-Madison (UWM). The Development Testbed Center (DTC) was tasked with providing objective verification statistics for a variety of metrics. This presentation provides an overview of the HRH Test and a summary of the standard

  7. High resolution photoemission experiments on copper oxide superconductors

    NASA Astrophysics Data System (ADS)

    Rameau, Jonathan David

    The mechanism for achieving high transition temperatures (T c) in copper oxide superconductors and the nature of the mysterious "pseudogap" phase from which this phenomenon arises are two of the most pressing issues in solid state physics. High resolution angle resolved photoemission spectroscopy (ARPES), which can directly probe the momentum and energy dependence of the electronic structure of a crystal, is considered one of the foremost tools for unraveling these mysteries. In this thesis we present work on both the further development of the ARPES technique itself and the results of two experiments on the high temperature superconductor Bi2Sr2CaCu2O8+delta (BSCCO)---the drosophila of copper oxide superconductors---based upon these analytical and experimental advances. On the analytical side we have shown that the precision of any ARPES experiment can be radically enhanced by using the Lucy-Richardson method (LRM) of iterative deconvolution to remove the worst effects of experimental resolution broadening present in all ARPES spectra. On the experimental side we have constructed a deep ultraviolet laser system capable of increasing our data acquisition rate by more than an order of magnitude compared to what is possible using traditional synchrotron radiation sources at the same momentum and energy resolutions. Using the LRM, in conjunction with synchrotron radiation, spectroscopic evidence was found for the existence of incoherent Cooper pairs in underdoped BSCCO in the normal pseudogap state (above Tc). At the same time an asymmetry between the particle and hole states of BSCCO was found, implying that doped Mott insulators, of which BSCCO is a primordial example, are characterized by the presence of a Fermi-Luttinger surface, rather than a Fermi surface, as would be the case for a simple metal. This study provided the first spectroscopic evidence for either phenomenon. In our second experiment we were able to use the LRM on data acquired with the laser ARPES

  8. High Resolution Infrared Spectroscopy of [1.1.1] Propellane

    SciTech Connect

    Kirkpatrick, Robynne W.; Masiello, Tony; Jariyasopit, Narumol; Weber, Alfons; Nibler, Joseph W.; Maki, Arthur; Blake, Thomas A.; Hubler, Timothy L.

    2008-01-08

    The infrared spectrum of [1.1.1]propellane has been recorded at high resolution (0.002 cm-1) with individual rovibrational lines resolved for the first time. This initial report presents the ground state constants for this molecule determined from the analysis of five of the eight infrared-allowed fundamentals v9(e'), v10(e'), v12(e'), v14(a2''), v15(a2''), as well as of several combination bands. In nearly all cases it was found that the upper states of the transitions exhibit some degree of perturbation but, by use of the combination difference method, the assigned frequencies provided over 4000 consistent ground state difference values. Analysis of these gave for the parameters of the ground state the following values, in cm-1: B0 = 0.28755833(14), DJ = 1.1313(5)x10-7, DJK = -1.2633(7)x10-7, HJ = 0.72(4)x10-13, HJK = -2.24(13)x10-13, and HKJ = 2.25(15)x10-13, where the numbers in parentheses indicate twice the uncertainties in the last quoted digit(s) of the parameters. Gaussian ab initio calculations, especially with the computed anharmonic corrections to some of the spectroscopic parameters, assisted in the assignments of the bands and also provided information on the electron distribution in the bridge-head carbon-carbon bond.

  9. High-Resolution He I Spectropolarimetry of Chromospheric Fibrils

    NASA Astrophysics Data System (ADS)

    Schad, Thomas A.; Penn, M. J.

    2011-05-01

    Of spectral diagnostics for the magnetic field in the solar chromosphere, the He I triplet at 1083 nm offers a comparatively simple means to determine both the magnitude and direction of the field vector. The triplet forms over a narrow range of heights when compared to strong optical lines, and recently the mechanisms that influence its polarization have been well characterized, thus allowing inversions of the magnetic field from observed Stokes profiles. We discuss recent work with the Facility Infrared Spectropolarimeter (FIRS) at the Dunn Solar Telescope (DST), New Mexico, USA to measure and infer the magnetic field vector of chromospheric fibrils. FIRS is designed to perform fast diffraction-limited dual-beam spectropolarimetry simultaneously at visible and infrared wavelengths through the use of multiple slits and narrowband filters. It can be operated in congress with the High Order Adaptive Optics (HOAO) system of the DST as well as with the Interferometric BiDimensional Spectropolarimeter (IBIS). Here we present high-resolution FIRS observations of chromospheric fibrils which employ the HOAO system under great seeing. We calibrate these observations for the full effect of the FIRS-DST combined analysis system on the Stokes vector which allow us to define the observed Stokes geometry with respect to solar coordinates. Full inversions of our measurements incorporating the effects of atomic polarization, the Hanle effect, and the Zeeman effect will be presented showing support for chromospheric fibrils that are aligned with the magnetic field direction.

  10. Low-dose high-resolution CT of lung parenchyma

    SciTech Connect

    Zwirewich, C.V.; Mayo, J.R.; Mueller, N.L. )

    1991-08-01

    To evaluate the efficacy of low-dose high-resolution computed tomography (HRCT) in the assessment of lung parenchyma, three observers reviewed the scans of 31 patients. The 1.5-mm-collimation, 2-second, 120-kVp scans were obtained at 20 and 200 mA at selected identical levels in the chest. The observers evaluated the visualization of normal pulmonary anatomy, various parenchymal abnormalities and their distribution, and artifacts. The low-dose and conventional scans were equivalent in the evaluation of vessels, lobar and segmental bronchi, and anatomy of secondary pulmonary lobules, and in characterizing the extent and distribution of reticulation, honeycomb cysts, and thickened interlobular septa. The low-dose technique failed to demonstrate ground-glass opacity in two of 10 cases (20%) and emphysema in one of nine cases (11%), in which they were evident but subtle on the high-dose scans. These differences were not statistically significant. Linear streak artifact was more prominent on images acquired with the low-dose technique, but the two techniques were judged equally diagnostic in 97% of cases. The authors conclude that HRCT images acquired at 20 mA yield anatomic information equivalent to that obtained with 200-mA scans in the majority of patients, without significant loss of spatial resolution or image degradation due to linear streak artifact.

  11. High-resolution MRI encoding using radiofrequency phase gradients.

    PubMed

    Sharp, Jonathan C; King, Scott B; Deng, Qunli; Volotovskyy, Vyacheslav; Tomanek, Boguslaw

    2013-11-01

    Although MRI offers highly diagnostic medical imagery, patient access to this modality worldwide is very limited when compared with X-ray or ultrasound. One reason for this is the expense and complexity of the equipment used to generate the switched magnetic fields necessary for MRI encoding. These field gradients are also responsible for intense acoustic noise and have the potential to induce nerve stimulation. We present results with a new MRI encoding principle which operates entirely without the use of conventional B0 field gradients. This new approach--'Transmit Array Spatial Encoding' (TRASE)--uses only the resonant radiofrequency (RF) field to produce Fourier spatial encoding equivalent to conventional MRI. k-space traversal (image encoding) is achieved by spin refocusing with phase gradient transmit fields in spin echo trains. A transmit coil array, driven by just a single transmitter channel, was constructed to produce four phase gradient fields, which allows the encoding of two orthogonal spatial axes. High-resolution two-dimensional-encoded in vivo MR images of hand and wrist were obtained at 0.2 T. TRASE exploits RF field phase gradients, and offers the possibility of very low-cost diagnostics and novel experiments exploiting unique capabilities, such as imaging without disturbance of the main B0 magnetic field. Lower field imaging (<1 T) and micro-imaging are favorable application domains as, in both cases, it is technically easier to achieve the short RF pulses desirable for long echo trains, and also to limit RF power deposition. As TRASE is simply an alternative mechanism (and technology) of moving through k space, there are many close analogies between it and conventional B0 -encoded techniques. TRASE is compatible with both B0 gradient encoding and parallel imaging, and so hybrid sequences containing all three spatial encoding approaches are possible.

  12. High-resolution optical spectroscopy of RS Ophiuchi during 2008 - 2009

    NASA Astrophysics Data System (ADS)

    Somero, A.; Hakala, P.; Wynn, G. A.

    2016-10-01

    RS Ophiuchi is a symbiotic variable and a recurrent nova. We have monitored it with the Nordic Optical Telescope and obtained 30 high resolution (R=46 000) optical spectra over one orbital cycle during quiescence. To our knowledge this is the best-sampled high resolution spectroscopic dataset of RS Oph over one orbital period. We do not detect any direct signatures of an accretion disc such as double peaked emission lines, but many line profiles are complex consisting of superimposed emission and absorption components. We measure the spin of the red giant and conclude that it is tidally locked to the binary orbit. We observe Na I absorption features, probably arising from the circumbinary medium, that has been shaped by previous recurrent nova outbursts. We do not detect any intrinsic polarisation in the optical wavelengths.

  13. High temperature and high resolution uv photoelectron spectroscopy using supersonic molecular beams

    SciTech Connect

    Wang, Lai-Sheng; Reutt-Robey, J.E.; Niu, B.; Lee, Y.T.; Shirley, D.A.; Maryland Univ., College Park, MD . Dept. of Chemistry and Biochemistry; Lawrence Berkeley Lab., CA )

    1989-07-01

    A high temperature molecular beam source with electron bombardment heating has been built for high resolution photoelectron spectroscopic studies of high temperature species and clusters. This source has the advantages of: producing an intense, continuous, seeded molecular beam, eliminating the interference of the heating mechanism from the photoelectron measurement. Coupling the source with our hemispherical electron energy analyzer, we can obtain very high resolution HeI{alpha} (584{angstrom}) photoelectron spectra of high temperature species. Vibrationally-resolved photoelectron spectra of PbSe, As{sub 2}, As{sub 4}, and ZnCl{sub 2} are shown to demonstrate the performance of the new source. 25 refs., 8 figs., 1 tab.

  14. Diagnosis of Type-I hiatal hernia: a comparison of high-resolution manometry and endoscopy.

    PubMed

    Khajanchee, Y S; Cassera, M A; Swanström, L L; Dunst, C M

    2013-01-01

    Sliding Type-I hiatal hernia is commonly diagnosed using upper endoscopy, barium swallow or less commonly, esophageal manometry. Current data suggest that endoscopy is superior to barium swallow or esophageal manometry. Recently, high-resolution manometry has become available for the assessment of esophageal motility. This novel technology is capable of displaying spatial and topographic pressure profiles of gastroesophageal junction and crural diaphragm in real time. The objective of the current study was to compare the specificity and sensitivity of high-resolution manometry and endoscopy in the diagnosis of sliding hiatal hernia in patients with gastroesophageal reflux disease. Data were analyzed retrospectively for 83 consecutive patients (61% females, mean age 52 ± 13.2 years) with objective gastroesophageal reflux disease who were considered for laparoscopic antireflux surgery between January 2006 and January 2009 and had preoperative high-resolution manometry and endoscopy. Manometrically, hiatal hernia was defined as separation of the gastroesophageal junction >2.0 cm from the crural diaphragm. Intraoperative diagnosis of hiatal hernia was used as the gold standard. Sensitivity, specificity and likelihood ratios of a positive test and a negative test were used to compare the performance of the two diagnostic modalities. Forty-two patients were found to have a Type-I sliding hiatal hernia (>2 cm) during surgery. Twenty-two patients had manometric criteria for a hiatal hernia by high-resolution manometry, and 36 patients were described as having a hiatal hernia by preoperative endoscopy. False positive results were significantly fewer (higher specificity) with high-resolution manometry as compared with endoscopy (4.88% vs. 31.71%, P= 0.01). There were no significant differences in the false negative results (sensitivity) between the two diagnostic modalities (47.62% vs. 45.24%, P= 0.62). Analysis of likelihood ratios of a positive and negative test

  15. An automated image processing routine for segmentation of cell cytoplasms in high-resolution autofluorescence images

    NASA Astrophysics Data System (ADS)

    Walsh, Alex J.; Skala, Melissa C.

    2014-02-01

    The heterogeneity of genotypes and phenotypes within cancers is correlated with disease progression and drug-resistant cellular sub-populations. Therefore, robust techniques capable of probing majority and minority cell populations are important both for cancer diagnostics and therapy monitoring. Herein, we present a modified CellProfiler routine to isolate cytoplasmic fluorescence signal on a single cell level from high resolution auto-fluorescence microscopic images.

  16. ASIC-enabled High Resolution Optical Time Domain Reflectometer

    NASA Astrophysics Data System (ADS)

    Skendzic, Sandra

    Fiber optics has become the preferred technology in communication systems because of what it has to offer: high data transmission rates, immunity to electromagnetic interference, and lightweight, flexible cables. An optical time domain reflectometer (OTDR) provides a convenient method of locating and diagnosing faults (e.g. break in a fiber) along a fiber that can obstruct crucial optical pathways. Both the ability to resolve the precise location of the fault and distinguish between two discrete, closely spaced faults are figures of merit. This thesis presents an implementation of a high resolution OTDR through the use of a compact and programmable ASIC (application specific integrated circuit). The integration of many essential OTDR functions on a single chip is advantageous over existing commercial instruments because it enables small, lightweight packaging, and offers low power and cost efficiency. Furthermore, its compactness presents the option of placing multiple ASICs in parallel, which can conceivably ease the characterization of densely populated fiber optic networks. The OTDR ASIC consists of a tunable clock, pattern generator, precise timer, electrical receiver, and signal sampling circuit. During OTDR operation, the chip generates narrow electrical pulse, which can then be converted to optical format when coupled with an external laser diode driver. The ASIC also works with an external photodetector to measure the timing and amplitude of optical reflections in a fiber. It has a 1 cm sampling resolution, which allows for a 2 cm spatial resolution. While this OTDR ASIC has been previously demonstrated for multimode fiber fault diagnostics, this thesis focuses on extending its functionality to single mode fiber. To validate this novel approach to OTDR, this thesis is divided into five chapters: (1) introduction, (2) implementation, (3), performance of ASIC-based OTDR, (4) exploration in optical pre-amplification with a semiconductor optical amplifier, and

  17. High-resolution spectroscopy with the multi-anode microchannel array detector systems

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.; Joseph, C. L.; Wolf, S. C.

    1982-01-01

    The results of a series of high-resolution spectroscopic observations undertaken with a linear (1 x 1024)-pixel visible-light Multi-Anode Microchannel Array (MAMA) detector on the Coudespectrograph of the 2.2-meter telescope at the Mauna Kea Observatory and on the vacuum spectrograph of the McMath Solar telescope at the Kitt Peak National Observatory are described. In addition, the two-dimensional MAMA detector systems with (16 x 1024)-pixel, (24 x 1024)-pixel, and (256 x 1024)-pixel formats which are now being readied for use in a series of ground-based, balloon, and sounding-rocket observing programs are briefly described.

  18. High-resolution fibre-fed spectrograph for the 6-m telescope. Polarimetric unit

    NASA Astrophysics Data System (ADS)

    Kukushkin, D. E.; Sazonenko, D. A.; Bakholdin, A. V.; Yushkin, M. V.; Bychkov, V. D.

    2016-04-01

    We report the computation of the design of a polarimetric unit for the optical scheme of the fiberfed high-resolution spectrograph for the 6-m Russian telescope.We discuss a variant of its integration into the design of conversion optics at the input of the fiber path if the instrument and estimate the efficiency of the entire pre-fiber optical system. The luminous efficiency of the assembly is equal to 80 and 90% when operated in the polarimetry and normal spectroscopic modes, respectively.We estimate the lower limit for the distorting instrumental effects of the polarimetric unit.

  19. Optic for an endoscope/borescope having high resolution and narrow field of view

    DOEpatents

    Stone, Gary F.; Trebes, James E.

    2003-10-28

    An optic having optimized high spatial resolution, minimal nonlinear magnification distortion while at the same time having a limited chromatic focal shift or chromatic aberrations. The optic located at the distal end of an endoscopic inspection tool permits a high resolution, narrow field of view image for medical diagnostic applications, compared to conventional optics for endoscopic instruments which provide a wide field of view, low resolution image. The image coverage is over a narrow (<20 degrees) field of view with very low optical distortion (<5% pin cushion or barrel distortion. The optic is also optimized for best color correction as well as to aid medical diagnostics.

  20. Clinical applications of esophageal impedance monitoring and high-resolution manometry.

    PubMed

    Kessing, Boudewijn F; Smout, André J P M; Bredenoord, Albert J

    2012-06-01

    Esophageal impedance monitoring and high-resolution manometry (HRM) are useful tools in the diagnostic work-up of patients with upper gastrointestinal complaints. Impedance monitoring increases the diagnostic yield for gastroesophageal reflux disease in adults and children and has become the gold standard in the diagnostic work-up of reflux symptoms. Its role in the work-up for belching disorders and rumination seems promising. HRM is superior to other diagnostic tools for the evaluation of achalasia and contributes to a more specific classification of esophageal disorders in patients with non-obstructive dysphagia. The role of HRM in patients with dysphagia after laparoscopic placement of an adjustable gastric band seems promising. Future studies will further determine the clinical implications of the new insights which have been acquired with these techniques. This review aims to describe the clinical applications of impedance monitoring and HRM. PMID:22350944

  1. High resolution airborne geophysics at hazardous waste disposal sites

    SciTech Connect

    Beard, L.P.; Nyquist, J.E.; Doll, W.E.; Chong Foo, M.; Gamey, T.J.

    1995-06-01

    In 1994, a high resolution helicopter geophysical survey was conducted over portions of the Oak Ridge Reservation, Tennessee. The 1800 line kilometer survey included multi-frequency electromagnetic and magnetic sensors. The areas covered by the high resolution portion of the survey were selected on the basis of their importance to the environmental restoration effort and on data obtained from the reconnaissance phase of the airborne survey in which electromagnetic, magnetic, and radiometric data were collected over the entire Oak Ridge Reservation in 1992--1993. The high resolution phase had lower sensor heights, more and higher EM frequencies, and tighter line spacings than did the reconnaissance survey. When flying over exceptionally clear areas, the high resolution bird came within a few meters of the ground surface. Unfortunately, even sparse trees and power or phone lines could prevent the bird from being towed safely at low altitude, and over such areas it was more usual for it to be flown at about the same altitude as the bird in the reconnaissance survey, about 30m. Even so, the magnetometers used in the high resolution phase were 20m closer to the ground than in the reconnaissance phase because they were mounted on the tail of the bird rather than on the tow cable above the bird. The EM frequencies used in the high resolution survey ranged from 7400Hz to 67000Hz. Only the horizontal coplanar loop configuration was used in the high resolution flyovers.

  2. High resolution comparative genomic hybridisation in clinical cytogenetics

    PubMed Central

    Kirchhoff, M.; Rose, H.; Lundsteen, C.

    2001-01-01

    High resolution comparative genomic hybridisation (HR-CGH) is a diagnostic tool in our clinical cytogenetics laboratory. The present survey reports the results of 253 clinical cases in which 47 abnormalities were detected. Among 144 dysmorphic and mentally retarded subjects with a normal conventional karyotype, 15 (10%) had small deletions or duplications, of which 11 were interstitial. In addition, a case of mosaic trisomy 9 was detected. Among 25 dysmorphic and mentally retarded subjects carrying apparently balanced de novo translocations, four had deletions at translocation breakpoints and two had deletions elsewhere in the genome. Seventeen of 19 complex rearrangements were clarified by HR-CGH. A small supernumerary marker chromosome occurring with low frequency and the breakpoint of a mosaic r(18) case could not be clarified. Three of 19 other abnormalities could not be confirmed by HR-CGH. One was a Williams syndrome deletion and two were DiGeorge syndrome deletions, which were apparently below the resolution of HR-CGH. However, we were able to confirm Angelman and Prader-Willi syndrome deletions, which are about 3-5 Mb. We conclude that HR-CGH should be used for the evaluation of (1) dysmorphic and mentally retarded subjects where normal karyotyping has failed to show abnormalities, (2) dysmorphic and mentally retarded subjects carrying apparently balanced de novo translocations, (3) apparently balanced de novo translocations detected prenatally, and (4) for clarification of complex structural rearrangements.


Keywords: comparative genomic hybridisation; chromosome analysis; chromosome aberrations; dysmorphism PMID:11694545

  3. Electron Beam-Blip Spectroscopic Diagnostics of the Scrape-off-Layer Parallel Transport in C-2

    NASA Astrophysics Data System (ADS)

    Osin, Dmitry; Thompson, Matthew; Garate, Eusebio; TAE Team

    2015-11-01

    C-2 is a microscopically stable, high-performance field-reversed configuration (FRC), where high plasma temperatures with significant fast ion population and record lifetimes were achieved by a combination of tangential neutral beam injection, electrically biased plasma guns at the ends and wall conditioning. FRC confinement depends on the properties of both the open and closed field lines, therefore, understanding the electron transport in the scrape-of-layer (SOL) is critical. To study parallel heat conduction in SOL, a high-energy pulsed electron beam (e-beam) was injected on-axis into C-2 to produce a heat pulse, which causes a fast rise and slower decay of the electron temperature, Te, in the SOL. The heat-blip was observed by means of He-jet spectroscopy. A small fraction of the total deposited e-beam energy is necessary to explain the measured Te increase. The electron thermal conductivity along the magnetic field lines can be inferred from the Te decay. Experiments suggest that a high energy e-beam pulse can serve as a direct diagnostic of heat transport in the SOL.

  4. Study on re-sputtering during CN{sub x} film deposition through spectroscopic diagnostics of plasma

    SciTech Connect

    Liang, Peipei; Yang, Xu; Li, Hui; Cai, Hua; Sun, Jian; Xu, Ning; Wu, Jiada

    2015-10-15

    A nitrogen-carbon plasma was generated during the deposition of carbon nitride (CN{sub x}) thin films by pulsed laser ablation of a graphite target in a discharge nitrogen plasma, and the optical emission of the generated nitrogen-carbon plasma was measured for the diagnostics of the plasma and the characterization of the process of CN{sub x} film deposition. The nitrogen-carbon plasma was recognized to contain various species including nitrogen molecules and molecular ions excited in the ambient N{sub 2} gas, carbon atoms and atomic ions ablated from the graphite target and CN radicals. The temporal evolution and spatial distribution of the CN emission and their dependence on the substrate bias voltage show two groups of CN radicals flying in opposite directions. One represents the CN radicals formed as the products of the reactions occurring in the nitrogen-carbon plasma, revealing the reactive deposition of CN{sub x} film due to the reactive expansion of the ablation carbon plasma in the discharge nitrogen plasma and the effective formation of gaseous CN radicals as precursors for CN{sub x} film growth. The other one represents the CN radicals re-sputtered from the growing CN{sub x} film by energetic plasma species, evidencing the re-sputtering of the growing film accompanying film growth. And, the re-sputtering presents ion-induced sputtering features.

  5. A contribution to spectroscopic diagnostics and cathode sheath modeling of micro-hollow gas discharge in argon

    NASA Astrophysics Data System (ADS)

    Cvejić, M.; Spasojević, Dj.; Šišović, N. M.; Konjević, N.

    2011-08-01

    In this paper, the hydrogen Balmer beta line shape from a micro-hollow gas discharge (MHGD) in argon with traces of hydrogen is used for simultaneous diagnostics of plasma and cathode sheath (CS) parameters. For this purpose, a simple model of relevant processes responsible for the line broadening is introduced and applied to the Balmer beta profile recorded from a MHGD generated in the microhole (diameter 100 μm at narrow side and 130 μm at wider side) of a gold-alumina-gold sandwich in the pressure range (100-900 mbar). The electron number density Ne in the range (0.4-4.5) × 1020 m-3 is determined from the width of the central part of the Balmer beta line profile, while, from the extended wings of the Balmer beta profile, induced by dc Stark effect, the next three parameters are determined: the average value Ea of electric field strength in the CS in the range (16-95 kV/cm), the electric field strength E0 at the cathode surface in the range (32-190 kV/cm), and the CS thickness zg in the range (18-70 μm). All four MHGD parameters, Ne, Ea, E0, and zg, compare reasonably well with results of the modeling experiment by M. J. Kushner [J. Phys. D: Appl. Phys. 38, 1633 (2005)]. The results for Ne are compared with other emission experiments.

  6. Widely tunable mode-hop free external cavity quantum cascade lasers for high resolution spectroscopy and chemical sensing

    NASA Astrophysics Data System (ADS)

    Wysocki, G.; Lewicki, R.; Curl, R. F.; Tittel, F. K.; Diehl, L.; Capasso, F.; Troccoli, M.; Hofler, G.; Bour, D.; Corzine, S.; Maulini, R.; Giovannini, M.; Faist, J.

    2008-09-01

    Recent progress in the development of room temperature, continuous wave, widely tunable, mode-hop-free mid-infrared external cavity quantum cascade laser (EC-QCL) spectroscopic sources is reported. A single mode tuning range of 155 cm-1 (˜ 8% of the center wavelength) with a maximum power of 11.1 mW and 182 cm-1 (˜ 15% of the center wavelength) with a maximum power of 50 mW was obtained for 5.3 and 8.4 μm EC-QCLs respectively. This technology is particularly suitable for high resolution spectroscopic applications, multi species trace-gas detection and spectroscopic measurements of broadband absorbers. Several examples of spectroscopic measurements performed using EC-QCL based spectrometers are demonstrated.

  7. A contribution to spectroscopic diagnostics and cathode sheath modeling of micro-hollow gas discharge in argon

    SciTech Connect

    Cvejic, M.; Spasojevic, Dj.; Sisovic, N. M.; Konjevic, N.

    2011-08-01

    In this paper, the hydrogen Balmer beta line shape from a micro-hollow gas discharge (MHGD) in argon with traces of hydrogen is used for simultaneous diagnostics of plasma and cathode sheath (CS) parameters. For this purpose, a simple model of relevant processes responsible for the line broadening is introduced and applied to the Balmer beta profile recorded from a MHGD generated in the microhole (diameter 100 {mu}m at narrow side and 130 {mu}m at wider side) of a gold-alumina-gold sandwich in the pressure range (100-900 mbar). The electron number density N{sub e} in the range (0.4-4.5) x 10{sup 20} m{sup -3} is determined from the width of the central part of the Balmer beta line profile, while, from the extended wings of the Balmer beta profile, induced by dc Stark effect, the next three parameters are determined: the average value E{sub a} of electric field strength in the CS in the range (16-95 kV/cm), the electric field strength E{sub 0} at the cathode surface in the range (32-190 kV/cm), and the CS thickness z{sub g} in the range (18-70 {mu}m). All four MHGD parameters, N{sub e}, E{sub a}, E{sub 0}, and z{sub g}, compare reasonably well with results of the modeling experiment by M. J. Kushner [J. Phys. D: Appl. Phys. 38, 1633 (2005)]. The results for N{sub e} are compared with other emission experiments.

  8. Contamination-free transmission electron microscopy for high-resolution carbon elemental mapping of polymers.

    PubMed

    Horiuchi, Shin; Hanada, Takeshi; Ebisawa, Masaharu; Matsuda, Yasuhiro; Kobayashi, Motoyasu; Takahara, Atsushi

    2009-05-26

    Specimen contamination induced by electron beam irradiation has long been a serious problem for high-resolution imaging and analysis by a transmission electron microscope (TEM). It creates a deposition of carbonaceous compounds on a region under study, causing the loss of resolution. We developed a method to reduce the beam-induced specimen contamination by cleaning a TEM with activated oxygen radicals. The hydrocarbon contaminants accumulated inside the microscope's chamber can be etched away by gentle chemical oxidation without causing any damage to the microscope. The "contamination-free TEM" can effectively suppress the deposition of carbon-rich products on a specimen and therefore enables us to perform high-resolution carbon elemental mapping by energy-filtering transmission electron microscopy (EFTEM). In this study, we investigated the structure of polymer brushes immobilized on a silica nanoparticle (SiNP), of which molecular weight, length, and density of the brushes had been characterized in detail. The isolated particle showed the stretched formations of the polymer chains growing from the surface, while the densely distributed particles showed the connection of the polymer chains between neighboring particles. Moreover, the polymer brush layer and the surface initiator could be differentiated from each other by the component-specific contrast achieved by electron spectroscopic imaging (ESI). The contamination-free TEM can allow us to perform high-resolution carbon mapping and is expected to provide deep insights of soft materials' nanostructures. PMID:19402650

  9. Advances in high-resolution RIXS for the study of excitation spectra under high pressure

    NASA Astrophysics Data System (ADS)

    Kim, Jungho

    2016-07-01

    Hard X-ray resonant inelastic X-ray scattering (RIXS) is a promising X-ray spectroscopic tool for measuring low-energy excitation spectra from complex materials under high pressure. In the past, these measurements have been stymied by technical difficulties inherent in measuring a tiny sample, held at high pressure, inside a diamond anvil cell. Now, due to substantial advances in X-ray instrumentation, high-resolution (? meV) RIXS spectrometers at third-generation synchrotron radiation sources have started to successfully address these samples in their extreme environment. However, compared to elastic X-ray scattering and X-ray emission spectroscopy, RIXS is a very photon hungry technique and high-resolution RIXS for samples under high pressure is in its infancy. In this review, the fundamentals of the high-resolution RIXS and associated instrumentation are presented, as well as technical details of diamond anvil cells, sample preparation, and the measurement geometry. Experimental data from measurements of 3d- and 5d-transition metal oxides are shown and future improvements of the RIXS technique in the context of high pressure are discussed.

  10. Applications of High Resolution Mid-Infrared Spectroscopy for Atmospheric and Environmental Measurements

    NASA Astrophysics Data System (ADS)

    Roscioli, Joseph R.; McManus, J. Barry; Nelson, David; Zahniser, Mark; Herndon, Scott C.; Shorter, Joanne; Yacovitch, Tara I.; Jervis, Dylan; Dyroff, Christoph; Kolb, Charles E.

    2016-06-01

    For the past 20 years, high resolution infrared spectroscopy has served as a valuable tool to measure gas-phase concentrations of ambient gas samples. We review recent advances in atmospheric sampling using direct absorption high resolution mid-infrared spectroscopy from the perspective of light sources, detectors, and optical designs. Developments in diode, quantum cascade and interband cascade laser technology have led to thermoelectrically-cooled single-mode laser sources capable of operation between 800 wn and 3100 wn, with <10 MHz resolution and >10 mW power. Advances in detector and preamplifier technology have yielded thermoelectriocally-cooled sensors capable of room-temperature operation with extremely high detectivities. Finally, novel spectrometer optical designs have led to robust multipass absorption cells capable of >400 m effective pathlength in a compact package. In combination with accurate spectroscopic databases, these developments have afforded dramatic improvements in measurement sensitivity, accuracy, precision, and selectivity. We will present several examples of the applications of high resolution mid-IR spectrometers in real-world field measurements at sampling towers and aboard mobile platforms such as vehicles and airplanes.

  11. Diagnostics for ITER

    SciTech Connect

    Donne, A. J. H.; Hellermann, M. G. von; Barnsley, R.

    2008-10-22

    After an introduction into the specific challenges in the field of diagnostics for ITER (specifically high level of nuclear radiation, long pulses, high fluxes of particles to plasma facing components, need for reliability and robustness), an overview will be given of the spectroscopic diagnostics foreseen for ITER. The paper will describe both active neutral-beam based diagnostics as well as passive spectroscopic diagnostics operating in the visible, ultra-violet and x-ray spectral regions.

  12. High resolution integral holography using Fourier ptychographic approach.

    PubMed

    Li, Zhaohui; Zhang, Jianqi; Wang, Xiaorui; Liu, Delian

    2014-12-29

    An innovative approach is proposed for calculating high resolution computer generated integral holograms by using the Fourier Ptychographic (FP) algorithm. The approach initializes a high resolution complex hologram with a random guess, and then stitches together low resolution multi-view images, synthesized from the elemental images captured by integral imaging (II), to recover the high resolution hologram through an iterative retrieval with FP constrains. This paper begins with an analysis of the principle of hologram synthesis from multi-projections, followed by an accurate determination of the constrains required in the Fourier ptychographic integral-holography (FPIH). Next, the procedure of the approach is described in detail. Finally, optical reconstructions are performed and the results are demonstrated. Theoretical analysis and experiments show that our proposed approach can reconstruct 3D scenes with high resolution.

  13. Update on High-Resolution Geodetically Controlled LROC Polar Mosaics

    NASA Astrophysics Data System (ADS)

    Archinal, B.; Lee, E.; Weller, L.; Richie, J.; Edmundson, K.; Laura, J.; Robinson, M.; Speyerer, E.; Boyd, A.; Bowman-Cisneros, E.; Wagner, R.; Nefian, A.

    2015-10-01

    We describe progress on high-resolution (1 m/pixel) geodetically controlled LROC mosaics of the lunar poles, which can be used for locating illumination resources (for solar power or cold traps) or landing site and surface operations planning.

  14. High Resolution CryoFESEM of Microbial Surfaces

    NASA Astrophysics Data System (ADS)

    Erlandsen, Stanley; Lei, Ming; Martin-Lacave, Ines; Dunny, Gary; Wells, Carol

    2003-08-01

    The outer surfaces of three microorganisms, Giardia lamblia, Enterococcus faecalis, and Proteus mirabilis, were investigated by cryo-immobilization followed by sublimation of extracellular ice and cryocoating with either Pt alone or Pt plus carbon. Cryocoated samples were examined at [minus sign]125°C in either an in-lens field emission SEM or a below-the-lens field emission SEM. Cryocoating with Pt alone was sufficient for low magnification observation, but attempts to do high-resolution imaging resulted in radiolysis and cracking of the specimen surface. Double coating with Pt and carbon, in combination with high resolution backscatter electron detectors, enabled high-resolution imaging of the glycocalyx of bacteria, revealing a sponge-like network over the surface. High resolution examination of bacterial flagella also revealed a periodic substructure. Common artifacts included radiolysis leading to “cracking” of the surface, and insufficient deposition of Pt resulting in the absence of detectable surface topography.

  15. High resolution difference schemes for compressible gas dynamics

    SciTech Connect

    Woodward, P.; Colella, P.

    1980-07-30

    The advantages and disadvantages of four new high-resolution difference schemes, namely the von Neumann-Richtmyer, Godunovs, MUSCL and Glimms, for mathematically representing physical conditions in compressible gas flows are compared. (LCL)

  16. Methodology of high-resolution photography for mural condition database

    NASA Astrophysics Data System (ADS)

    Higuchi, R.; Suzuki, T.; Shibata, M.; Taniguchi, Y.

    2015-08-01

    Digital documentation is one of the most useful techniques to record the condition of cultural heritage. Recently, high-resolution images become increasingly useful because it is possible to show general views of mural paintings and also detailed mural conditions in a single image. As mural paintings are damaged by environmental stresses, it is necessary to record the details of painting condition on high-resolution base maps. Unfortunately, the cost of high-resolution photography and the difficulty of operating its instruments and software have commonly been an impediment for researchers and conservators. However, the recent development of graphic software makes its operation simpler and less expensive. In this paper, we suggest a new approach to make digital heritage inventories without special instruments, based on our recent our research project in Üzümlü church in Cappadocia, Turkey. This method enables us to achieve a high-resolution image database with low costs, short time, and limited human resources.

  17. Utilization of high resolution computed tomography to visualize the three dimensional structure and function of plant vasculature

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High resolution x-ray computed tomography (HRCT) is a non-destructive diagnostic imaging technique with sub-micron resolution capability that is now being used to evaluate the structure and function of plant xylem network in three dimensions (3D). HRCT imaging is based on the same principles as medi...

  18. AVHRR/1-FM Advanced Very High Resolution Radiometer

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The advanced very high resolution radiometer is discussed. The program covers design, construction, and test of a breadboard model, engineering model, protoflight model, mechanical/structural model, and a life test model. Special bench test and calibration equipment was developed for use on the program. The flight model program objectives were to fabricate, assemble and test four of the advanced very high resolution radiometers along with a bench cooler and collimator.

  19. Volumetric expiratory high-resolution CT of the lung.

    PubMed

    Nishino, Mizuki; Hatabu, Hiroto

    2004-11-01

    We developed a volumetric expiratory high-resolution CT (HRCT) protocol that provides combined inspiratory and expiratory volumetric imaging of the lung without increasing radiation exposure, and conducted a preliminary feasibility assessment of this protocol to evaluate diffuse lung disease with small airway abnormalities. The volumetric expiratory high-resolution CT increased the detectability of the conducting airway to the areas of air trapping (P<0.0001), and added significant information about extent and distribution of air trapping (P<0.0001).

  20. High Resolution Spectroscopy in the Divertor and Edge Regions of Alcator-C Mode and Measurement of Radiative Transfer in Vacuum-UV Line Emission from Magnetic Fusion Devices

    SciTech Connect

    Griem, Hans R.

    2005-03-01

    Spectroscopic diagnostics were carried out both at MIT and at the University of Maryland. At MIT, measurements were made of toroidal flow velocities in the mid-plane of the inner and outer scrape-off layers (SOL) of Alcator C-Mod plasmas, using a high-resolution spectrograph. Subsequently, the MIT/Alcator procedures based upon visible spectroscopy were transferred to the new Maryland centrifugal experiment (MCX). In a further effort towards data refinement, we expanded the hydrogen measurements from the n approaches to 2 Balmer series in the visible to the n approaches to 1 Lyman series in the vacuum-ultraviolet (vuv) spectral region. Recent results were presented at APS Division of Plasma Physics meetings and published in Physics of Plasmas in 2004 and 2005. Further details can be found in the annual progress reports to the Department of Energy.

  1. Optical emission spectroscopic diagnostics of a non-thermal atmospheric pressure helium-oxygen plasma jet for biomedical applications

    NASA Astrophysics Data System (ADS)

    Thiyagarajan, Magesh; Sarani, Abdollah; Nicula, Cosmina

    2013-06-01

    In this work, we have applied optical emission spectroscopy diagnostics to investigate the characteristics of a non-thermal atmospheric pressure helium plasma jet. The discharge characteristics in the active and afterglow region of the plasma jet, that are critical for biomedical applications, have been investigated. The voltage-current characteristics of the plasma discharge were analyzed and the average plasma power was measured to be around 18 W. The effect of addition of small fractions of oxygen at 0.1%-0.5% on the plasma jet characteristics was studied. The addition of oxygen resulted in a decrease in plasma plume length due to the electronegativity property of oxygen. Atomic and molecular lines of selected reactive plasma species that are considered to be useful to induce biochemical reactions such as OH transitions A2Σ+(ν=0,1)→X2Π(Δν =0) at 308 nm and A2Σ+(ν=0,1)→X2Π(Δν =1) at 287 nm, O I transitions 3p5P→3s5S0 at 777.41 nm, and 3p3P→3s3S0 at 844.6 nm, N2(C-B) second positive system with electronic transition C3Πu→B3Πg in the range of 300-450 nm and N2+(B-X) first negative system with electronic transition B2Σu+→X2Σg+(Δν =0) at 391.4 nm have been studied. The atomic emission lines of helium were identified, including the He I transitions 3p3P0→2s3S at 388.8 nm, 3p1P0→ 2s1S at 501.6 nm, 3d3D→2p3P0 at 587.6 nm, 3d1D→2p1P0 at 667.8 nm, 3s3S1→2p3P0 at 706.5 nm, 3s1S0→2p1P0 at 728.1 nm, and Hα transition 2p-3d at 656.3 nm. Using a spectral fitting method, the OH radicals at 306-312 nm, the rotational and vibrational temperatures equivalent to gas temperatures of the discharge was measured and the effective non-equilibrium nature of the plasma jet was demonstrated. Our results show that, in the entire active plasma region, the gas temperature remains at 310 ± 25 K and 340 ± 25 K and it increases to 320 ± 25 K and 360 ± 25 K in the afterglow region of the plasma jet for pure helium and helium/oxygen (0.1%) mixture

  2. Receiver operator characteristic (ROC) curve analysis of super high resolution video for histopathology

    NASA Astrophysics Data System (ADS)

    Bloom, Kenneth J.; Rozek, L. S.; Weinstein, Ronald S.

    1987-10-01

    The receiver operator characteristic (ROC) curve is used to assess the ability of a diagnostic test to distinguish between two discreet states, such as tumor present or tumor absent in a histopathologic section. We have used ROC methodology to assess the ability of pathologists to diagnose frozen section biopsies of breast tissue as benign or malignant, using both a conventional light microscope and a high resolution camera/monitor system. 115 consecutive frozen section breast biopsies were reviewed using each of the above modalities. Results yielded identical ROC curves for the conventional light microscope and high resolution camera/monitor system. Furthermore, the percentage of cases in which pathologists rendered an "equivocal" diagnosis was the same with both modalities.

  3. High-resolution thermal imaging methodology for non-destructive evaluation of historic structures

    NASA Astrophysics Data System (ADS)

    Hess, Michael; Vanoni, David; Petrovic, Vid; Kuester, Falko

    2015-11-01

    This paper presents a methodology for automated, portable thermography, for the acquisition of high-resolution thermal image mosaics supporting the non-destructive evaluation of historic structures. The presented approach increases the spatial resolution of thermal surveys to a level of detail needed for building scale analysis. The integration of a robotic camera platform enables automated alignment of multiple images into a high-resolution thermal image mosaic giving a holistic view of the structure while maintaining a level of detail equaling or exceeding that of traditional spot surveys using existing cameras. Providing a digital workflow for automated data and metadata recording increases the consistency and accuracy of surveys regardless of the location or operator. An imaging workflow and instrumentation are shown for a case-study on buildings in Florence, Italy demonstrating the effectiveness of this methodology for structural diagnostics.

  4. High-resolution X-ray spectroscopy of T Tauri stars in the Taurus-Auriga complex

    NASA Astrophysics Data System (ADS)

    Telleschi, A.; Güdel, M.; Briggs, K. R.; Audard, M.; Scelsi, L.

    2007-06-01

    Context: Differences have been reported between the X-ray emission of accreting and non-accreting stars. Some observations have suggested that accretion shocks could be responsible for part of the X-ray emission in classical T Tauri stars (CTTS). Aims: We present high-resolution X-ray spectroscopy for nine pre-main sequence stars in order to test the proposed spectroscopic differences between accreting and non-accreting pre-main sequence stars. Methods: We used X-ray spectroscopy from the XMM-Newton Reflection Grating Spectrometers and the EPIC instruments. We interpret the spectra using optically thin thermal models with variable abundances, together with an absorption column density. For BP Tau and AB Aur we derive electron densities from the O vii triplets. Results: Using the O vii/O viii count ratios as a diagnostic for cool plasma, we find that CTTS display a soft excess (with equivalent electron temperatures of ≈2.5{-}3 MK) when compared with WTTS or zero-age main-sequence stars. Although the O vii triplet in BP Tau is consistent with a high electron density (3.4 × 1011 cm-3), we find low density for the accreting Herbig star AB Aur (ne < 1010 cm-3). The element abundances of accreting and non-accreting stars are similar. The Ne abundance is found to be high (4-6 times the Fe abundance) in all K and M-type stars. In contrast, for the three G-type stars (SU Aur, HD 283572, and HP Tau/G2), we find an enhanced Fe abundance (0.4-0.8 times solar photospheric values) compared to later-type stars. Conclusions: Adding the results from our sample to former high-resolution studies of T Tauri stars, we find a soft excess in all accreting stars, but in none of the non-accretors. On the other hand, high electron density and high Ne/Fe abundance ratios do not seem to be present in all accreting pre-main sequence stars.

  5. Early Doppler Performance from New Generation High Resolution Optical and near Infrared Planet-hunting Spectrographs

    NASA Astrophysics Data System (ADS)

    Ge, Jian; Varosi, F.; Powell, S.; Zhao, B.; Schofield, S.; Liu, J.; Warner, C.; Sithajan, S.; Li, R.; Muterspaugh, M. W.; Williamson, M. W.; Avner, L.; Jakeman, H.

    2014-01-01

    The next generation of radial velocity (RV) planet surveys require high precision (sub m/s for optical and 1-3 m/s for near infrared (NIR)) and high cadence 100 RV measurements per star) to systematically reach low mass planet populations, including habitable Earth-like planets, around FGKM dwarfs and study their properties. These require new sensitive optical and NIR high resolution spectrographs. At UF, we have developed two new generation optical and NIR high resolution spectrographs for high precision RV low mass planet surveys. The optical high resolution spectrograph called EXtremely high Precision ExtrasolaR planet Tracker (EXPERT) III (EXPERT-III), was commissioned at the Automatic Spectroscopic Telescope (AST), a robotic telescope at Fairborn Observatory in Arizona in July 2013 and has produced a spectral resolution of about 100,000 and a simultaneous wavelength coverage of 0.38-0.9 mm with a 4kx4k back-illuminated Fairchild CCD detector. The early RV measurements show that this instrument has reached ~0.7 m/s RV precision and daily instrument stability is better than 5m/s. The near IR spectrograph, called the Florida IR Silicon immersion grating spectromeTer (FIRST), has produced 60,000 at 0.8-1.8 microns with a 2kx2k H2RG IR array. FIRST is the first high resolution NIR spectrograph taking full advantage of an innovative silicon immersion grating to achieve high spectral resolution (3.4 times higher than a commercially available echelle grating of the equal size and blaze angle) in an extremely compact design. FIRST is schedule to be commissioned at AST in October 2013. Here we report on-sky RV performance and early science results from the AST robotic observations.

  6. Some results from the exploration of the solar atmosphere with high-resolution x-ray-EUV spectroscopy at the Naval Research Laboratory.

    PubMed

    Doschek, G A

    2015-11-01

    The Naval Research Laboratory has been one of the world leaders in high-resolution UV-x-ray solar spectroscopy. Much has been learned about the morphology and physical conditions in the atmosphere from spectroscopic instrumentation flown on orbiting spacecraft. In this short summary I discuss the solar atmosphere and our current knowledge of it, and show some of the results obtained by spectroscopic investigations at the Naval Research Laboratory. PMID:26560622

  7. Far Infrared High Resolution Synchrotron FTIR Spectroscopy of the Low Frequency Bending Modes of Dmso

    NASA Astrophysics Data System (ADS)

    Cuisset, Arnaud; Smirnova, Irina; Bocquet, Robin; Hindle, Francis; Mouret, Gael; Sadovskii, Dmitrii A.; Pirali, Olivier; Roy, Pascale

    2010-06-01

    In addition to its importance for industrial and environmental studies, the monitoring of DiMethylSulfOxyde (DMSO, (CH_3)_2SO) concentrations is of considerable interest for civil protection. The existing high resolution gas phase spectroscopic data of DMSO only concerned the pure rotational transitions in the ground state. In the Far-IR domain, the low-frequency rovibrational transitions have never previously resolved. The high brightness of the AILES beamline of the synchrotron SOLEIL and the instrumental sensitivity provided by the multipass cell allowed to measure for the first time these transitions. 1581 A-type and C-type transitions in the ν11 band have been assigned and 25 molecular constants of Watson's s-form hamiltonian developed to degree 8 have been fitted within the experimental accuracy. The use of then synchrotron radiation has opened many possibilities for new spectroscopic studies. Together with several other recent studies, our successful measurement and analysis of DMSO convincingly demonstrates the potential of the AILES beamline for high resolution FIR spectroscopy. Thus our present work is just at the beginning of unraveling the rovibrational structure of low frequency bending and torsional vibrational states of DMSO and yielding important comprehensive structural and spectroscopic information on this molecule. L. Margules, R. A. Motienko, E. A. Alekseev, J. Demaison, J. Molec. Spectrosc., 260(23),2009 V. Typke, M. Dakkouri, J. Molec. Struct., 599(177),2001 A. Cuisset, L. Nanobashvili, I. Smirnova, R. Bocquet, F. Hindle, G. Mouret, O. Pirali, P. Roy, D. Sadovskii, Chem. Phys. Lett., accepted for publication

  8. Design and implementation of spaceborne high resolution infrared touch screen

    NASA Astrophysics Data System (ADS)

    Li, Tai-guo; Li, Wen-xin; Dong, Yi-peng; Ma, Wen; Xia, Jia-gao

    2015-10-01

    For the consideration of the special application environment of the electronic products used in aerospace and to further more improve the human-computer interaction of the manned aerospace area. The research is based on the design and implementation way of the high resolution spaceborne infrared touch screen on the basis of FPGA and DSP frame structure. Beside the introduction of the whole structure for the high resolution spaceborne infrared touch screen system, this essay also gives the detail information about design of hardware for the high resolution spaceborne infrared touch screen system, FPGA design, GUI design and DSP algorithm design based on Lagrange interpolation. What is more, the easy makes a comprehensive research of the reliability design for the high resolution spaceborne infrared touch screen for the special purpose of it. Besides, the system test is done after installation of spaceborne infrared touch screen. The test result shows that the system is simple and reliable enough, which has a stable running environment and high resolution, which certainly can meet the special requirement of the manned aerospace instrument products.

  9. Characterization of spatially resolved high resolution x-ray spectrometers for high energy density physics and light source experiments

    SciTech Connect

    Hill, K. W. Bitter, M.; Delgado-Aparacio, L.; Efthimion, P.; Pablant, N. A.; Lu, J.; Beiersdorfer, P.; Chen, H.; Magee, E.

    2014-11-15

    A high resolution 1D imaging x-ray spectrometer concept comprising a spherically bent crystal and a 2D pixelated detector is being optimized for diagnostics of small sources such as high energy density physics (HEDP) and synchrotron radiation or x-ray free electron laser experiments. This instrument is used on tokamak experiments for Doppler measurements of ion temperature and plasma flow velocity profiles. Laboratory measurements demonstrate a resolving power, E/ΔE of order 10 000 and spatial resolution better than 10 μm. Initial tests of the high resolution instrument on HEDP plasmas are being performed.

  10. EDITORIAL: High-resolution noncontact atomic force microscopy High-resolution noncontact atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Pérez, Rubén; García, Ricardo; Schwarz, Udo

    2009-06-01

    original papers authored by many of the leading groups in the field with the goal of providing a well-balanced overview on the state-of-the-art in this rapidly evolving field. These papers, many of which are based on notable presentations given during the Madrid conference, feature highlights such as (1) the development of sophisticated force spectroscopy procedures that are able to map the complete 3D tip-sample force field on different surfaces; (2) the considerable resolution improvement of Kelvin probe force microscopy (reaching, in some cases, the atomic scale), which is accompanied by a thorough, quantitative understanding of the contrast observed; (3) the perfecting of atomic resolution imaging on insulating substrates, which helps reshape our microscopic understanding of surface properties and chemical activity of these surfaces; (4) the description of instrumental and methodological developments that pave the way to the atomic-scale characterization of magnetic and electronic properties of nanostructures, and last but not least (5) the extension of dynamic imaging modes to high-resolution operation in liquids, ultimately achieving atomic resolution. The latter developments are already having a significant impact in the highly competitive field of biological imaging under physiological conditions. This special issue of Nanotechnology would not have been possible without the highly professional support from Nina Couzin, Amy Harvey, Alex Wotherspoon and the entire Nanotechnology team at IOP Publishing. We are thankful for their help in pushing this project forward. We also thank the authors who have contributed their excellent original articles to this issue, the referees whose comments have helped make the issue an accurate portrait of this rapidly moving field, and the entire NC-AFM community that continues to drive NC-AFM to new horizons.

  11. High-resolution Urban Image Classification Using Extended Features

    SciTech Connect

    Vatsavai, Raju

    2011-01-01

    High-resolution image classification poses several challenges because the typical object size is much larger than the pixel resolution. Any given pixel (spectral features at that location) by itself is not a good indicator of the object it belongs to without looking at the broader spatial footprint. Therefore most modern machine learning approaches that are based on per-pixel spectral features are not very effective in high- resolution urban image classification. One way to overcome this problem is to extract features that exploit spatial contextual information. In this study, we evaluated several features in- cluding edge density, texture, and morphology. Several machine learning schemes were tested on the features extracted from a very high-resolution remote sensing image and results were presented.

  12. High resolution single particle refinement in EMAN2.1.

    PubMed

    Bell, James M; Chen, Muyuan; Baldwin, Philip R; Ludtke, Steven J

    2016-05-01

    EMAN2.1 is a complete image processing suite for quantitative analysis of grayscale images, with a primary focus on transmission electron microscopy, with complete workflows for performing high resolution single particle reconstruction, 2-D and 3-D heterogeneity analysis, random conical tilt reconstruction and subtomogram averaging, among other tasks. In this manuscript we provide the first detailed description of the high resolution single particle analysis pipeline and the philosophy behind its approach to the reconstruction problem. High resolution refinement is a fully automated process, and involves an advanced set of heuristics to select optimal algorithms for each specific refinement task. A gold standard FSC is produced automatically as part of refinement, providing a robust resolution estimate for the final map, and this is used to optimally filter the final CTF phase and amplitude corrected structure. Additional methods are in-place to reduce model bias during refinement, and to permit cross-validation using other computational methods.

  13. High resolution single particle refinement in EMAN2.1.

    PubMed

    Bell, James M; Chen, Muyuan; Baldwin, Philip R; Ludtke, Steven J

    2016-05-01

    EMAN2.1 is a complete image processing suite for quantitative analysis of grayscale images, with a primary focus on transmission electron microscopy, with complete workflows for performing high resolution single particle reconstruction, 2-D and 3-D heterogeneity analysis, random conical tilt reconstruction and subtomogram averaging, among other tasks. In this manuscript we provide the first detailed description of the high resolution single particle analysis pipeline and the philosophy behind its approach to the reconstruction problem. High resolution refinement is a fully automated process, and involves an advanced set of heuristics to select optimal algorithms for each specific refinement task. A gold standard FSC is produced automatically as part of refinement, providing a robust resolution estimate for the final map, and this is used to optimally filter the final CTF phase and amplitude corrected structure. Additional methods are in-place to reduce model bias during refinement, and to permit cross-validation using other computational methods. PMID:26931650

  14. Single sensor processing to obtain high resolution color component signals

    NASA Technical Reports Server (NTRS)

    Glenn, William E. (Inventor)

    2010-01-01

    A method for generating color video signals representative of color images of a scene includes the following steps: focusing light from the scene on an electronic image sensor via a filter having a tri-color filter pattern; producing, from outputs of the sensor, first and second relatively low resolution luminance signals; producing, from outputs of the sensor, a relatively high resolution luminance signal; producing, from a ratio of the relatively high resolution luminance signal to the first relatively low resolution luminance signal, a high band luminance component signal; producing, from outputs of the sensor, relatively low resolution color component signals; and combining each of the relatively low resolution color component signals with the high band luminance component signal to obtain relatively high resolution color component signals.

  15. High-resolution inverse Raman and resonant-wave-mixing spectroscopy

    SciTech Connect

    Rahn, L.A.

    1993-12-01

    These research activities consist of high-resolution inverse Raman spectroscopy (IRS) and resonant wave-mixing spectroscopy to support the development of nonlinear-optical techniques for temperature and concentration measurements in combustion research. Objectives of this work include development of spectral models of important molecular species needed to perform coherent anti-Stokes Raman spectroscopy (CARS) measurements and the investigation of new nonlinear-optical processes as potential diagnostic techniques. Some of the techniques being investigated include frequency-degenerate and nearly frequency-degenerate resonant four-wave-mixing (DFWM and NDFWM), and resonant multi-wave mixing (RMWM).

  16. High-Resolution Spectroscopy with the Chandra X-ray Observatory

    ScienceCinema

    Canizares, Claude R. [MIT, Cambridge, Massachusetts, United States

    2016-07-12

    The capabilities of the Chandra X-ray Observatory and XMM-Newton for high-resolution spectroscopy have brought tradition plasma diagnostic techniques to the study of cosmic plasma. Observations have probed nearly every class of astronomical object, from young proto-starts through massive O starts and black hole binaries, supernova remnants, active galactic nuclei, and the intergalactic medium. Many of these sources show remarkable rich spectra that reveal new physical information, such as emission measure distributions, elemental abundances, accretion disk and wind signatures, and time variability. This talk will present an overview of the Chandra instrumentaton and selected examples of spectral observations of astrophysical and cosmological importance.

  17. High-resolution PET (positron emission tomography) for medical science studies

    SciTech Connect

    Budinger, T.F.; Derenzo, S.E.; Huesman, R.H.; Jagust, W.J.; Valk, P.E. )

    1989-09-01

    One of the unexpected fruits of basic physics research and the computer revolution is the noninvasive imaging power available to today's physician. Technologies that were strictly the province of research scientists only a decade or two ago now serve as the foundations for such standard diagnostic tools as x-ray computer tomography (CT), magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS), ultrasound, single photon emission computed tomography (SPECT), and positron emission tomography (PET). Furthermore, prompted by the needs of both the practicing physician and the clinical researcher, efforts to improve these technologies continue. This booklet endeavors to describe the advantages of achieving high resolution in PET imaging. 6 refs., 21 figs.

  18. High-resolution PET [Positron Emission Tomography] for Medical Science Studies

    DOE R&D Accomplishments Database

    Budinger, T. F.; Derenzo, S. E.; Huesman, R. H.; Jagust, W. J.; Valk, P. E.

    1989-09-01

    One of the unexpected fruits of basic physics research and the computer revolution is the noninvasive imaging power available to today's physician. Technologies that were strictly the province of research scientists only a decade or two ago now serve as the foundations for such standard diagnostic tools as x-ray computer tomography (CT), magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS), ultrasound, single photon emission computed tomography (SPECT), and positron emission tomography (PET). Furthermore, prompted by the needs of both the practicing physician and the clinical researcher, efforts to improve these technologies continue. This booklet endeavors to describe the advantages of achieving high resolution in PET imaging.

  19. Modified Noise Power Ratio testing of high resolution digitizers

    SciTech Connect

    McDonald, T.S.

    1994-05-01

    A broadband, full signal range, side-by-side (tandem) test method for estimating the internal noise performance of high resolution digitizers is described and illustrated. The technique involves a re-definition of the traditional Noise Power Ratio (NPR) test, a change that not only makes this test applicable to higher resolution systems than was previously practical, but also enhances its value and flexibility. Since coherence analysis is the basis of this new definition, and since the application of coherence procedures to high resolution data poses several problems, this report discusses these problems and their resolution.

  20. High-resolution seismic studies applied to injected geothermal fluids

    SciTech Connect

    Smith, A.T.; Kasameyer, P.

    1985-01-01

    The application of high-resolution microseismicity studies to the problem of monitoring injected fluids is one component of the Geothermal Injection Monitoring Project at LLNL. The evaluation of microseismicity includes the development of field techniques, and the acquisition and processing of events during the initial development of a geothermal field. To achieve a specific detection threshold and location precision, design criteria are presented for seismic networks. An analysis of a small swarm near Mammoth Lakes, California, demonstrates these relationships and the usefulness of high-resolution seismic studies. A small network is currently monitoring the Mammoth-Pacific geothermal power plant at Casa Diablo as it begins production.

  1. Theoretical Problems in High Resolution Solar Physics, 2

    NASA Technical Reports Server (NTRS)

    Athay, G. (Editor); Spicer, D. S. (Editor)

    1987-01-01

    The Science Working Group for the High Resolution Solar Observatory (HRSO) laid plans beginning in 1984 for a series of workshops designed to stimulate a broadbased input from the scientific community to the HRSO mission. These workshops have the dual objectives of encouraging an early start on the difficult theoretical problems in radiative transfer, magnetohydrodynamics, and plasma physics that will be posed by the HRSO data, and maintaining current discussions of results in high resolution solar studies. This workshop was the second in the series. The workshop format presented invited review papers during the formal sessions and contributed poster papers for discussions during open periods. Both are presented.

  2. Wide swath and high resolution optical imaging satellite of Japan

    NASA Astrophysics Data System (ADS)

    Katayama, Haruyoshi; Kato, Eri; Imai, Hiroko; Sagisaka, Masakazu

    2016-05-01

    The "Advanced optical satellite" (tentative name) is a follow-on mission from ALOS. Mission objectives of the advanced optical satellite is to build upon the existing advanced techniques for global land observation using optical sensors, as well as to promote data utilization for social needs. Wide swath and high resolution optical imager onboard the advanced optical satellite will extend the capabilities of earlier ALOS missions. The optical imager will be able to collect high-resolution (< 1 m) and wide-swath (70 km) images with high geo-location accuracy. This paper introduces a conceptual design of the advanced optical satellite.

  3. Microbeam X-Ray Standing Wave and High Resolution Diffraction

    SciTech Connect

    Kazimirov, A.; Bilderback, D.H.; Huang, R.; Sirenko, A.

    2004-05-12

    Post-focusing collimating optics are introduced as a tool to condition X-ray microbeams for the use in high-resolution X-ray diffraction and scattering techniques. As an example, a one-bounce imaging capillary and miniature Si(004) channel-cut crystal were used to produce a microbeam with 10 {mu}m size and an ultimate angular resolution of 2.5 arc sec. This beam was used to measure the strain in semiconductor microstructures by using X-ray high resolution diffraction and standing wave techniques to {delta}d/d < 5x10-4.

  4. On the application and extension of Harten's high resolution scheme

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Warming, R. F.; Harten, A.

    1982-01-01

    Extensions of a second order high resolution explicit method for the numerical computation of weak solutions of one dimensonal hyperbolic conservation laws are discussed. The main objectives were (1) to examine the shock resoluton of Harten's method for a two dimensional shock reflection problem, (2) to study the use of a high resolution scheme as a post-processor to an approximate steady state solution, and (3) to construct an implicit in the delta-form using Harten's scheme for the explicit operator and a simplified iteration matrix for the implicit operator.

  5. High resolution BPMS with integrated gain correction system

    SciTech Connect

    Wendt, M.; Briegel, C.; Eddy, N.; Fellenz, B.; Gianfelice, E.; Prieto, P.; Rechenmacher, R.; Voy, D.; Terunuma, N.; Urakawa, J.; /KEK, Tsukuba

    2009-08-01

    High resolution beam position monitors (BPM) are an essential tool to achieve and reproduce a low vertical beam emittance at the KEK Accelerator Test Facility (ATF) damping ring. The ATF damping ring (DR) BPMs are currently upgraded with new high resolution read-out electronics. Based on analog and digital down-conversion techniques, the upgrade includes an automatic gain calibration system to correct for slow drift effects and ensure high reproducible beam position readings. The concept and its technical realization, as well as preliminary results of beam studies are presented.

  6. High-resolution low-dose scanning transmission electron microscopy

    PubMed Central

    Buban, James P.; Ramasse, Quentin; Gipson, Bryant; Browning, Nigel D.; Stahlberg, Henning

    2010-01-01

    During the past two decades instrumentation in scanning transmission electron microscopy (STEM) has pushed toward higher intensity electron probes to increase the signal-to-noise ratio of recorded images. While this is suitable for robust specimens, biological specimens require a much reduced electron dose for high-resolution imaging. We describe here protocols for low-dose STEM image recording with a conventional field-emission gun STEM, while maintaining the high-resolution capability of the instrument. Our findings show that a combination of reduced pixel dwell time and reduced gun current can achieve radiation doses comparable to low-dose TEM. PMID:19915208

  7. High-resolution low-dose scanning transmission electron microscopy.

    PubMed

    Buban, James P; Ramasse, Quentin; Gipson, Bryant; Browning, Nigel D; Stahlberg, Henning

    2010-01-01

    During the past two decades instrumentation in scanning transmission electron microscopy (STEM) has pushed toward higher intensity electron probes to increase the signal-to-noise ratio of recorded images. While this is suitable for robust specimens, biological specimens require a much reduced electron dose for high-resolution imaging. We describe here protocols for low-dose STEM image recording with a conventional field-emission gun STEM, while maintaining the high-resolution capability of the instrument. Our findings show that a combination of reduced pixel dwell time and reduced gun current can achieve radiation doses comparable to low-dose TEM.

  8. Feasibility of endovascular optical coherence tomography for high-resolution carotid vessel wall imaging

    NASA Astrophysics Data System (ADS)

    Cheng, Kyle H. Y.; Sun, Cuiru; Cruz, Juan P.; Marotta, Thomas R.; Spears, Julian; Montanera, Walter J.; Herman, Peter R.; Thind, Aman; Courtney, Brian; Standish, Beau A.; Yang, Victor X. D.

    2012-02-01

    Carotid Artery Stenting (CAS) is a procedure that treats carotid atherosclerosis which should be monitored by in vivo high resolution imaging for the quality of the procedure and potential complications. The purpose of this pilot study is to evaluate the ability of optical coherence tomography to construct high resolution two and three dimensional images of stenting in porcine carotid artery for high accuracy diagnostic purposes. Four Yorkshire pigs were anaesthetized and catheterized. A state-of-the-art optical coherence tomography (OCT) system (Lightlab Imaging, St. Jude Medical Inc.) and an automated injector were used to obtain both healthy and stented porcine carotid artery images. Data obtained were then processed for visualization. The state-of-the-art OCT system was able to capture high resolution images of both healthy and stented carotid arteries. High quality three dimensional images of stented carotid arteries were constructed, clearly depicting stent apposition and thrombus formation over different stents. The results demonstrated that current state-of-the-art OCT system can be used to generate high quality three dimensional images of carotid arterial stents for accurate diagnosis of stent apposition and complications under appropriate imaging conditions.

  9. High-resolution bent-crystal spectrometer for the ultra-soft x-ray region

    SciTech Connect

    Beiersdorfer, P.; von Goeler, S.; Bitter, M.; Hill, K.W.; Hulse, R.A.; Walling, R.S.

    1988-10-01

    A multichannel vacuum Brag-crystal spectrometer has been developed for high-resolution measurements of the line emission from tokamak plasmas in the wavelength region between 4 and 25 /angstrom/. The spectrometer employs a bent crystal in Johann geometry and a microchannel-plate intensified photodiode array. The instrument is capable of measuring high-resolution spectra (lambda/..delta..lambda approx. 3000) with fast time resolution (4 msec per spectrum) and good spatial resolution (3 cm). The spectral bandwidth is ..delta..lambda/lambda/sub 0/ = 8/angstrom/. A simple tilt mechanism allows access to different wavelength intervals. In order to illustrate the utility of the new spectrometer, time- and space-resolved measurements of the n = 3 to n = 2 spectrum of selenium from the Princeton Large Torus tokamak plasmas are presented. The data are used to determine the plasma transport parameters and to infer the radial distribution of fluorinelike, neonlike, and sodiumlike ions of selenium in the plasma. The new ultra-soft x-ray spectrometer has thus enabled us to demonstrate the utility of high-resolution L-shell spectroscopy of neonlike ions as a fusion diagnostic. 43 refs., 23 figs.

  10. High-resolution Bent-crystal Spectrometer for the Ultra-soft X-ray Region

    DOE R&D Accomplishments Database

    Beiersdorfer, P.; von Goeler, S.; Bitter, M.; Hill, K. W.; Hulse, R. A.; Walling, R. S.

    1988-10-01

    A multichannel vacuum Brag-crystal spectrometer has been developed for high-resolution measurements of the line emission from tokamak plasmas in the wavelength region between 4 and 25 angstrom. The spectrometer employs a bent crystal in Johann geometry and a microchannel-plate intensified photodiode array. The instrument is capable of measuring high-resolution spectra (lambda/..delta..lambda approx. 3000) with fast time resolution (4 msec per spectrum) and good spatial resolution (3 cm). The spectral bandwidth is ..delta..lambda/lambda{sub 0} = 8 angstrom. A simple tilt mechanism allows access to different wavelength intervals. In order to illustrate the utility of the new spectrometer, time- and space-resolved measurements of the n = 3 to n = 2 spectrum of selenium from the Princeton Large Torus tokamak plasmas are presented. The data are used to determine the plasma transport parameters and to infer the radial distribution of fluorinelike, neonlike, and sodiumlike ions of selenium in the plasma. The new ultra-soft x-ray spectrometer has thus enabled us to demonstrate the utility of high-resolution L-shell spectroscopy of neonlike ions as a fusion diagnostic.

  11. A HIGH-RESOLUTION SPECTROSCOPIC SEARCH FOR THE REMAINING DONOR FOR TYCHO'S SUPERNOVA

    SciTech Connect

    Kerzendorf, Wolfgang E.; Yong, David; Schmidt, Brian P.; Murphy, Simon J.; Bessell, Michael S.; Simon, Joshua D.; Jeffery, C. Simon; Anderson, Jay; Podsiadlowski, Philipp; Gal-Yam, Avishay; Silverman, Jeffrey M.; Filippenko, Alexei V.; Nomoto, Ken'ichi; Venn, Kim A.; Foley, Ryan J.

    2013-09-10

    In this paper, we report on our analysis using Hubble Space Telescope astrometry and Keck-I HIRES spectroscopy of the central six stars of Tycho's supernova remnant (SN 1572). With these data, we measured the proper motions, radial velocities, rotational velocities, and chemical abundances of these objects. Regarding the chemical abundances, we do not confirm the unusually high [Ni/Fe] ratio previously reported for Tycho-G. Rather, we find that for all metrics in all stars, none exhibit the characteristics expected from traditional Type Ia supernova single-degenerate-scenario calculations. The only possible exception is Tycho-B, a rare, metal-poor A-type star; however, we are unable to find a suitable scenario for it. Thus, we suggest that SN 1572 cannot be explained by the standard single-degenerate model.

  12. A High-resolution Spectroscopic Search for the Remaining Donor for Tycho's Supernova

    NASA Astrophysics Data System (ADS)

    Kerzendorf, Wolfgang E.; Yong, David; Schmidt, Brian P.; Simon, Joshua D.; Jeffery, C. Simon; Anderson, Jay; Podsiadlowski, Philipp; Gal-Yam, Avishay; Silverman, Jeffrey M.; Filippenko, Alexei V.; Nomoto, Ken'ichi; Murphy, Simon J.; Bessell, Michael S.; Venn, Kim A.; Foley, Ryan J.

    2013-09-01

    In this paper, we report on our analysis using Hubble Space Telescope astrometry and Keck-I HIRES spectroscopy of the central six stars of Tycho's supernova remnant (SN 1572). With these data, we measured the proper motions, radial velocities, rotational velocities, and chemical abundances of these objects. Regarding the chemical abundances, we do not confirm the unusually high [Ni/Fe] ratio previously reported for Tycho-G. Rather, we find that for all metrics in all stars, none exhibit the characteristics expected from traditional Type Ia supernova single-degenerate-scenario calculations. The only possible exception is Tycho-B, a rare, metal-poor A-type star; however, we are unable to find a suitable scenario for it. Thus, we suggest that SN 1572 cannot be explained by the standard single-degenerate model.

  13. Spectroscopic Low Coherence Interferometry

    NASA Astrophysics Data System (ADS)

    Bosschaart, Nienke; van Leeuwen, T. G.; Aalders, Maurice C.; Hermann, Boris; Drexler, Wolfgang; Faber, Dirk J.

    Low-coherence interferometry (LCI) allows high-resolution volumetric imaging of tissue morphology and provides localized optical properties that can be related to the physiological status of tissue. This chapter discusses the combination of spatial and spectroscopic information by means of spectroscopic OCT (sOCT) and low-coherence spectroscopy (LCS). We describe the theory behind these modalities for the assessment of spatially resolved optical absorption and (back)scattering coefficient spectra. These spectra can be used for the highly localized quantification of chromophore concentrations and assessment of tissue organization on (sub)cellular scales. This leads to a wealth of potential clinical applications, ranging from neonatology for the determination of billibrubin concentrations, to oncology for the optical assessment of the aggressiveness of a cancerous lesion.

  14. Human enamel structure studied by high resolution electron microscopy

    SciTech Connect

    Wen, S.L. )

    1989-01-01

    Human enamel structural features are characterized by high resolution electron microscopy. The human enamel consists of polycrystals with a structure similar to Ca10(PO4)6(OH)2. This article describes the structural features of human enamel crystal at atomic and nanometer level. Besides the structural description, a great number of high resolution images are included. Research into the carious process in human enamel is very important for human beings. This article firstly describes the initiation of caries in enamel crystal at atomic and unit-cell level and secondly describes the further steps of caries with structural and chemical demineralization. The demineralization in fact, is the origin of caries in human enamel. The remineralization of carious areas in human enamel has drawn more and more attention as its potential application is realized. This process has been revealed by high resolution electron microscopy in detail in this article. On the other hand, the radiation effects on the structure of human enamel are also characterized by high resolution electron microscopy. In order to reveal this phenomenon clearly, a great number of electron micrographs have been shown, and a physical mechanism is proposed. 26 references.

  15. Reproducible high-resolution multispectral image acquisition in dermatology

    NASA Astrophysics Data System (ADS)

    Duliu, Alexandru; Gardiazabal, José; Lasser, Tobias; Navab, Nassir

    2015-07-01

    Multispectral image acquisitions are increasingly popular in dermatology, due to their improved spectral resolution which enables better tissue discrimination. Most applications however focus on restricted regions of interest, imaging only small lesions. In this work we present and discuss an imaging framework for high-resolution multispectral imaging on large regions of interest.

  16. High-resolution imaging of upper limb neuropathies.

    PubMed

    Howe, Benjamin Matthew; Spinner, Robert J; Felmlee, Joel P; Amrami, Kimberly K

    2015-04-01

    MRI of the peripheral nerves continues to grow technologically and in clinical use. This article reviews the technological aspects and basic interpretation of high-resolution MR imaging of the upper extremity nerves. These techniques work with 1.5-, or preferably 3-T, scanners regardless of vendors. The article also includes selected pitfalls in the interpretation of upper extremity nerve MRI.

  17. Persistence Diagrams of High-Resolution Temporal Rainfall

    NASA Astrophysics Data System (ADS)

    Fernández Méndez, F.; Carsteanu, A. A.

    2015-12-01

    This study applies Topological Data Analysis (TDA), by generating persistence diagrams to uncover patterns in the data of high-resolution temporal rainfall intensities from Iowa City (IIHR, U of Iowa). Persistence diagrams are a way to identify essential cycles in state-space representations of the data.

  18. Application of Classification Models to Pharyngeal High-Resolution Manometry

    ERIC Educational Resources Information Center

    Mielens, Jason D.; Hoffman, Matthew R.; Ciucci, Michelle R.; McCulloch, Timothy M.; Jiang, Jack J.

    2012-01-01

    Purpose: The authors present 3 methods of performing pattern recognition on spatiotemporal plots produced by pharyngeal high-resolution manometry (HRM). Method: Classification models, including the artificial neural networks (ANNs) multilayer perceptron (MLP) and learning vector quantization (LVQ), as well as support vector machines (SVM), were…

  19. High-Resolution Land Use and Land Cover Mapping

    USGS Publications Warehouse

    ,

    1999-01-01

    As the Nation?s population grows, quantifying, monitoring, and managing land use becomes increasingly important. The U.S. Geological Survey (USGS) has a long heritage of leadership and innovation in land use and land cover (LULC) mapping that has been the model both nationally and internationally for over 20 years. At present, the USGS is producing high-resolution LULC data for several watershed and urban areas within the United States. This high-resolution LULC mapping is part of an ongoing USGS Land Cover Characterization Program (LCCP). The four components of the LCCP are global (1:2,000,000-scale), national (1:100,000-scale), urban (1:24,000-scale), and special projects (various scales and time periods). Within the urban and special project components, the USGS Rocky Mountain Mapping Center (RMMC) is collecting historical as well as contemporary high-resolution LULC data. RMMC?s high-resolution LULC mapping builds on the heritage and success of previous USGS LULC programs and provides LULC information to meet user requirements.

  20. High-Resolution Nuclear Magnetic Resonance of Solids.

    ERIC Educational Resources Information Center

    Maciel, Gary E.

    1984-01-01

    Examines recent developments in techniques for obtaining high-resolution nuclear magnetic resonance (NMR) spectra on solid samples, discussing the kinds of applications for which these techniques are well suited. Also discusses the characteristics of NMR of solids and generating magnetization for NMR in solids. (JN)

  1. High resolution bone mineral densitometry with a gamma camera

    NASA Technical Reports Server (NTRS)

    Leblanc, A.; Evans, H.; Jhingran, S.; Johnson, P.

    1983-01-01

    A technique by which the regional distribution of bone mineral can be determined in bone samples from small animals is described. The technique employs an Anger camera interfaced to a medical computer. High resolution imaging is possible by producing magnified images of the bone samples. Regional densitometry of femurs from oophorectomised and bone mineral loss.

  2. Workshop on high-resolution, large-acceptance spectrometers

    SciTech Connect

    Zeidman, B.

    1981-01-01

    The purpose of the Workshop on High-Resolution, Large-Acceptance Spectrometers was to provide a means for exchange of information among those actively engaged in the design and construction of these new spectrometers. Thirty-seven papers were prepared for the data base.

  3. High-resolution TFT-LCD for spatial light modulator

    NASA Astrophysics Data System (ADS)

    Lee, JaeWon; Kim, Yong-Hae; Byun, Chun-Won; Pi, Jae-Eun; Oh, Himchan; Kim, GiHeon; Lee, Myung-Lae; Chu, Hye-Yong; Hwang, Chi-Sun

    2014-06-01

    SLM with very fine pixel pitch is needed for the holographic display system. Among various kinds of SLMs, commercially available high resolution LCoS has been widely used as a spatial light modulator. But the size of commercially available LCoS SLM is limited because the manufacturing technology of LCoS is based on the semiconductor process developed on small size Si wafer. Recently very high resolution flat panel display panel (~500ppi) was developed as a "retina display". Until now, the pixel pitch of flat panel display is several times larger than the pixel pitch of LCoS. But considering the possibility of shrink down the pixel pitch with advanced lithographic tools, the application of flat panel display will make it possible to build a SLM with high spatial bandwidth product. We simulated High resolution TFT-LCD panel on glass substrate using oxide semiconductor TFT with pixel pitch of 20um. And we considered phase modulation behavior of LC(ECB) mode. The TFT-LCD panel is reflective type with 4-metal structure with organic planarization layers. The technical challenge for high resolution large area SLM will be discussed with very fine pixel.

  4. Plant respirometer enables high resolution of oxygen consumption rates

    NASA Technical Reports Server (NTRS)

    Foster, D. L.

    1966-01-01

    Plant respirometer permits high resolution of relatively small changes in the rate of oxygen consumed by plant organisms undergoing oxidative metabolism in a nonphotosynthetic state. The two stage supply and monitoring system operates by a differential pressure transducer and provides a calibrated output by digital or analog signals.

  5. High Resolution Digital Imaging of Paintings: The Vasari Project.

    ERIC Educational Resources Information Center

    Martinez, Kirk

    1991-01-01

    Describes VASARI (the Visual Art System for Archiving and Retrieval of Images), a project funded by the European Community to show the feasibility of high resolution colormetric imaging directly from paintings. The hardware and software used in the system are explained, storage on optical disks is described, and initial results are reported. (five…

  6. HIGH RESOLUTION RESISTIVITY LEAK DETECTION DATA PROCESSING & EVALUATION MEHTODS & REQUIREMENTS

    SciTech Connect

    SCHOFIELD JS

    2007-10-04

    This document has two purposes: {sm_bullet} Describe how data generated by High Resolution REsistivity (HRR) leak detection (LD) systems deployed during single-shell tank (SST) waste retrieval operations are processed and evaluated. {sm_bullet} Provide the basic review requirements for HRR data when Hrr is deployed as a leak detection method during SST waste retrievals.

  7. Large-field high-resolution mosaic movies

    NASA Astrophysics Data System (ADS)

    Hammerschlag, Robert H.; Sliepen, Guus; Bettonvil, Felix C. M.; Jägers, Aswin P. L.; Sütterlin, Peter; Lin, Yong; Martin, Sara F.; Panasenco, Olga; Romashets, Eugene P.

    2013-08-01

    Movies with fields-of-view larger than normal, for high-resolution telescopes, will give a better understanding of processes on the Sun such as filament and active region developments and their possible interactions. New active regions can serve as an igniter of the eruption of a nearby filament. A method to create a large field-of-view is to join several fields-of-view into a mosaic. Fields are imaged quickly, one after another, using fast telescope-pointing. Such a pointing cycle has been automated at the Dutch open telescope (DOT), a high-resolution solar telescope located on the Canary Island La Palma. The number and positions of the subfields are calculated automatically and represented by an array of bright points in the guider image which indicates the subfield centers inside the drawn rectangle of the total field on the computer screen with the whole-sun image. Automatic production of flats is also programmed. For the first time, mosaic movies were programmed from stored information on automated telescope motions. The mosaic movies show larger regions of the solar disk in high resolution and fill a gap between available whole-sun images with limited spatial resolution of synoptic telescopes including space instruments and small-field high-cadence movies of high-resolution solar telescopes.

  8. Evacuee Compliance Behavior Analysis using High Resolution Demographic Information

    SciTech Connect

    Lu, Wei; Han, Lee; Liu, Cheng; Tuttle, Mark A; Bhaduri, Budhendra L

    2014-01-01

    The purpose of this study is to examine whether evacuee compliance behavior with route assignments from different resolutions of demographic data would impact the evacuation performance. Most existing evacuation strategies assume that travelers will follow evacuation instructions, while in reality a certain percent of evacuees do not comply with prescribed instructions. In this paper, a comparison study of evacuation assignment based on Traffic Analysis Zones (TAZ) and high resolution LandScan USA Population Cells (LPC) were conducted for the detailed road network representing Alexandria, Virginia. A revised platform for evacuation modeling built on high resolution demographic data and activity-based microscopic traffic simulation is proposed. The results indicate that evacuee compliance behavior affects evacuation efficiency with traditional TAZ assignment, but it does not significantly compromise the efficiency with high resolution LPC assignment. The TAZ assignment also underestimates the real travel time during evacuation, especially for high compliance simulations. This suggests that conventional evacuation studies based on TAZ assignment might not be effective at providing efficient guidance to evacuees. From the high resolution data perspective, traveler compliance behavior is an important factor but it does not impact the system performance significantly. The highlight of evacuee compliance behavior analysis should be emphasized on individual evacuee level route/shelter assignments, rather than the whole system performance.

  9. High resolution data base for use with MAP

    SciTech Connect

    Tapley, W.C.; Harris, D.B.

    1987-05-05

    A high resolution cartographic data base of thw World is available from the CIA. We obtained this data, extracted portions of the data, and produced cartographic files of varying resolutions. The resulting data files are of the proper format for use with MAP (2), our in-house cartographic plotting program.

  10. High-resolution axial MR imaging of tibial stress injuries

    PubMed Central

    2012-01-01

    Purpose To evaluate the relative involvement of tibial stress injuries using high-resolution axial MR imaging and the correlation with MR and radiographic images. Methods A total of 33 patients with exercise-induced tibial pain were evaluated. All patients underwent radiograph and high-resolution axial MR imaging. Radiographs were taken at initial presentation and 4 weeks later. High-resolution MR axial images were obtained using a microscopy surface coil with 60 × 60 mm field of view on a 1.5T MR unit. All images were evaluated for abnormal signals of the periosteum, cortex and bone marrow. Results Nineteen patients showed no periosteal reaction at initial and follow-up radiographs. MR imaging showed abnormal signals in the periosteal tissue and partially abnormal signals in the bone marrow. In 7 patients, periosteal reaction was not seen at initial radiograph, but was detected at follow-up radiograph. MR imaging showed abnormal signals in the periosteal tissue and entire bone marrow. Abnormal signals in the cortex were found in 6 patients. The remaining 7 showed periosteal reactions at initial radiograph. MR imaging showed abnormal signals in the periosteal tissue in 6 patients. Abnormal signals were seen in the partial and entire bone marrow in 4 and 3 patients, respectively. Conclusions Bone marrow abnormalities in high-resolution axial MR imaging were related to periosteal reactions at follow-up radiograph. Bone marrow abnormalities might predict later periosteal reactions, suggesting shin splints or stress fractures. High-resolution axial MR imaging is useful in early discrimination of tibial stress injuries. PMID:22574840

  11. High-resolution NMR spectroscopy of encapsulated proteins dissolved in low-viscosity fluids

    NASA Astrophysics Data System (ADS)

    Nucci, Nathaniel V.; Valentine, Kathleen G.; Wand, A. Joshua

    2014-04-01

    High-resolution multi-dimensional solution NMR is unique as a biophysical and biochemical tool in its ability to examine both the structure and dynamics of macromolecules at atomic resolution. Conventional solution NMR approaches, however, are largely limited to examinations of relatively small (<25 kDa) molecules, mostly due to the spectroscopic consequences of slow rotational diffusion. Encapsulation of macromolecules within the protective nanoscale aqueous interior of reverse micelles dissolved in low viscosity fluids has been developed as a means through which the ‘slow tumbling problem' can be overcome. This approach has been successfully applied to diverse proteins and nucleic acids ranging up to 100 kDa, considerably widening the range of biological macromolecules to which conventional solution NMR methodologies may be applied. Recent advances in methodology have significantly broadened the utility of this approach in structural biology and molecular biophysics.

  12. Performance of a laser frequency comb calibration system with a high-resolution solar echelle spectrograph

    NASA Astrophysics Data System (ADS)

    Doerr, H.-P.; Kentischer, T. J.; Steinmetz, T.; Probst, R. A.; Franz, M.; Holzwarth, R.; Udem, Th.; Hänsch, T. W.; Schmidt, W.

    2012-09-01

    Laser frequency combs (LFC) provide a direct link between the radio frequency (RF) and the optical frequency regime. The comb-like spectrum of an LFC is formed by exact equidistant laser modes, whose absolute optical frequencies are controlled by RF-references such as atomic clocks or GPS receivers. While nowadays LFCs are routinely used in metrological and spectroscopic fields, their application in astronomy was delayed until recently when systems became available with a mode spacing and wavelength coverage suitable for calibration of astronomical spectrographs. We developed a LFC based calibration system for the high-resolution echelle spectrograph at the German Vacuum Tower Telescope (VTT), located at the Teide observatory, Tenerife, Canary Islands. To characterize the calibration performance of the instrument, we use an all-fiber setup where sunlight and calibration light are fed to the spectrograph by the same single-mode fiber, eliminating systematic effects related to variable grating illumination.

  13. High-resolution NMR spectroscopy of encapsulated proteins dissolved in low-viscosity fluids.

    PubMed

    Nucci, Nathaniel V; Valentine, Kathleen G; Wand, A Joshua

    2014-04-01

    High-resolution multi-dimensional solution NMR is unique as a biophysical and biochemical tool in its ability to examine both the structure and dynamics of macromolecules at atomic resolution. Conventional solution NMR approaches, however, are largely limited to examinations of relatively small (<25kDa) molecules, mostly due to the spectroscopic consequences of slow rotational diffusion. Encapsulation of macromolecules within the protective nanoscale aqueous interior of reverse micelles dissolved in low viscosity fluids has been developed as a means through which the 'slow tumbling problem' can be overcome. This approach has been successfully applied to diverse proteins and nucleic acids ranging up to 100kDa, considerably widening the range of biological macromolecules to which conventional solution NMR methodologies may be applied. Recent advances in methodology have significantly broadened the utility of this approach in structural biology and molecular biophysics. PMID:24656086

  14. High-resolution NMR spectroscopy of encapsulated proteins dissolved in low-viscosity fluids

    PubMed Central

    Nucci, Nathaniel V.; Valentine, Kathleen G.; Wand, A. Joshua

    2014-01-01

    High-resolution multi-dimensional solution NMR is unique as a biophysical and biochemical tool in its ability to examine both the structure and dynamics of macromolecules at atomic resolution. Conventional solution NMR approaches, however, are largely limited to examinations of relatively small (< 25 kDa) molecules, mostly due to the spectroscopic consequences of slow rotational diffusion. Encapsulation of macromolecules within the protective nanoscale aqueous interior of reverse micelles dissolved in low viscosity fluids has been developed as a means through which the ‘slow tumbling problem’ can be overcome. This approach has been successfully applied to diverse proteins and nucleic acids ranging up to 100 kDa, considerably widening the range of biological macromolecules to which conventional solution NMR methodologies may be applied. Recent advances in methodology have significantly broadened the utility of this approach in structural biology and molecular biophysics. PMID:24656086

  15. Chemical Analysis of Exhaled Human Breath Using High Resolution Mm-Wave Rotational Spectra

    NASA Astrophysics Data System (ADS)

    Guo, Tianle; Branco, Daniela; Thomas, Jessica; Medvedev, Ivan; Dolson, David; Nam, Hyun-Joo; O, Kenneth

    2014-06-01

    High resolution rotational spectroscopy enables chemical sensors that are both sensitive and highly specific, which is well suited for analysis of expired human breath. We have previously reported on detection of breath ethanol, methanol, acetone, and acetaldehyde using THz sensors. This paper will outline our present efforts in this area, with specific focus on our ongoing quest to correlate levels of blood glucose with concentrations of a few breath chemicals known to be affected by elevated blood sugar levels. Prospects, challenges and future plans will be outlined and discussed. Fosnight, A.M., B.L. Moran, and I.R. Medvedev, Chemical analysis of exhaled human breath using a terahertz spectroscopic approach. Applied Physics Letters, 2013. 103(13): p. 133703-5.

  16. High-resolution spectroscopy and mode identification in non-radially pulsating stars

    NASA Astrophysics Data System (ADS)

    Pollard, K. R.; Wright, D. J.; Zima, W.; Cottrell, P. L.; De Cat, P.

    2008-12-01

    We have obtained high-resolution spectroscopic data of a sample of non-radially pulsating stars with the HERCULES spectrograph on the 1.0-m telescope at the Mt John University Observatory in New Zealand. We have developed and used a new technique which cross- correlates stellar spectra with scaled delta function templates to obtain high signal-to-noise representative spectral line profiles for further analysis. Using these profiles, and employing the Fourier Parameter Fit method, we have been able to place constraints on the degree, ℓ, and azimuthal order, m, of the non-radial pulsation modes in one β Cephei star, V2052 Oph and two γ Doradus stars, QW Pup and HD 139095.

  17. High-Resolution Infrared and Electron-Diffraction Studies of Trimethylenecyclopropane ([3]-Radialene)

    SciTech Connect

    Wright, Corey; Holmes, Joshua; Nibler, Joseph W.; Hedberg, Kenneth; White, James D.; Hedberg, Lise; Weber, Alfons; Blake, Thomas A.

    2013-05-16

    Combined high-resolution spectroscopic, electron-diffraction, and quantum theoretical methods are particularly advantageous for small molecules of high symmetry and can yield accurate structures that reveal subtle effects of electron delocalization on molecular bonds. The smallest of the radialene compounds, trimethylenecyclopropane, [3]-radialene, has been synthesized and examined in the gas phase by these methods. The first high-resolution infrared spectra have been obtained for this molecule of D3h symmetry, leading to an accurate B0 rotational constant value of 0.1378629(8) cm-1, within 0.5% of the value obtained from electronic structure calculations (density functional theory (DFT) B3LYP/cc-pVTZ). This result is employed in an analysis of electron-diffraction data to obtain the rz bond lengths (in Å): C-H = 1.072 (17), C-C = 1.437 (4), and C=C = 1.330 (4). The analysis does not lead to an accurate value of the HCH angle; however, from comparisons of theoretical and experimental angles for similar compounds, the theoretical prediction of 117.5° is believed to be reliable to within 2°. The effect of electron delocalization in radialene is to reduce the single C-C bond length by 0.07 Å compared to that in cyclopropane.

  18. Analysis of high-resolution spectra from a hybrid interferometric/dispersive spectrometer

    NASA Astrophysics Data System (ADS)

    Ko, Phyllis; Scott, Jill R.; Jovanovic, Igor

    2015-12-01

    To more fully take advantage of a low-cost, small footprint hybrid interferometric/dispersive spectrometer, a mathematical reconstruction technique was developed to accurately capture the high-resolution and relative peak intensities from complex spectral patterns. A Fabry-Perot etalon was coupled to a Czerny-Turner spectrometer, leading to increased spectral resolution by more than an order of magnitude without the commensurate increase in spectrometer size. Measurement of the industry standard Hg 313.1555/313.1844 nm doublet yielded a ratio of 0.682, which agreed well with an independent measurement and literature values. The doublet separation (29 pm) is similar to the U isotope shift (25 pm) at 424.437 nm that is of interest to monitoring nuclear nonproliferation activities. Additionally, the technique was applied to LIBS measurement of the mineral cinnabar (HgS) and resulted in a ratio of 0.682. This reconstruction method could enable significantly smaller, portable high-resolution instruments with isotopic specificity, benefiting a variety of spectroscopic applications.

  19. Analysis of high-resolution spectra from a hybrid interferometric/dispersive spectrometer

    DOE PAGESBeta

    Ko, Phyllis; Scott, Jill R.; Jovanovic, Igor

    2015-09-05

    To fully take advantage of a low-cost, small footprint hybrid interferometric/dispersive spectrometer, a math- ematical reconstruction technique was developed to accurately capture the high-resolution and relative peak intensities from complex patterns. A Fabry-Perot etalon was coupled to a Czerny-Turner spectrometer, in- creasing spectral resolution by an order of magnitude without the commensurate increase in spectrometer size. Measurement of the industry standard Hg 313.1555/313.1844 nm doublet yielded a ratio of 0.682 with 1.8%error, which agreed well with an independent measurement and literature values. The doublet separation (29 pm), is similar to the U isotope shift (25 pm) at 424.437 nm thatmore » is of interest to monitoring nuclear nonpro-liferation activities. Additionally, the technique was applied to a LIBS measurement of the mineral cinnabar (HgS) and resulted in a ratio of 0.681. In addition, this reconstruction method could enable significantly smaller, portable high-resolution instruments with isotopic specificity, benefiting a variety of spectroscopic applications.« less

  20. Analysis of high-resolution spectra from a hybrid interferometric/dispersive spectrometer

    SciTech Connect

    Ko, Phyllis; Scott, Jill R.; Jovanovic, Igor

    2015-09-05

    To fully take advantage of a low-cost, small footprint hybrid interferometric/dispersive spectrometer, a math- ematical reconstruction technique was developed to accurately capture the high-resolution and relative peak intensities from complex patterns. A Fabry-Perot etalon was coupled to a Czerny-Turner spectrometer, in- creasing spectral resolution by an order of magnitude without the commensurate increase in spectrometer size. Measurement of the industry standard Hg 313.1555/313.1844 nm doublet yielded a ratio of 0.682 with 1.8%error, which agreed well with an independent measurement and literature values. The doublet separation (29 pm), is similar to the U isotope shift (25 pm) at 424.437 nm that is of interest to monitoring nuclear nonpro-liferation activities. Additionally, the technique was applied to a LIBS measurement of the mineral cinnabar (HgS) and resulted in a ratio of 0.681. In addition, this reconstruction method could enable significantly smaller, portable high-resolution instruments with isotopic specificity, benefiting a variety of spectroscopic applications.

  1. High-Resolution Structure of the Photosynthetic Mn4Ca Catalyst from X-ray Spectroscopy

    SciTech Connect

    Yachandra, Vittal; Yano, Junko; Kern, Jan; Pushkar, Yulia; Sauer, Kenneth; Glatzel, Pieter; Bergmann, Uwe; Messinger, Johannes; Zouni, Athina; Yachandra, Vittal K.

    2007-08-01

    The application of high-resolution X-ray spectroscopy methods to study the photosynthetic water oxidizing complex, which contains a unique hetero-nuclear catalytic Mn4Ca cluster, are described. Issues of X-ray damage especially at the metal sites in the Mn4Ca cluster are discussed. The structure of the Mn4Ca catalyst at high-resolution which has so far eluded attempts of determination by X-ray diffraction, EXAFS and other spectroscopic techniques has been addressed using polarized EXAFS techniques applied to oriented PS II membrane preparations and PS II single crystals. A review of how the resolution of traditional EXAFS techniques can be improved, using methods such as range-extended EXAFS is presented, and the changes that occur in the structure of the cluster as it advances through the catalytic cycle are described. X-ray absorption and emission techniques (XANES and K? emission) have been used earlier to determine the oxidation states of the Mn4Ca cluster, and in this report we review the use of X-ray resonant Raman spectroscopy to understand the electronic structure of the Mn4Ca cluster as it cycles through the intermediate S-states.

  2. High-resolution X-ray spectroscopy of four active galaxies - Probing the intercloud medium

    NASA Astrophysics Data System (ADS)

    Lum, Kenneth S. K.; Canizares, Claude R.; Markert, Thomas H.; Arnaud, Keith A.

    1990-07-01

    The focal plane crystal spectrometer (FPCS) on the Einstein Observatory has been used to perform a high-resolution spectroscopic search for oxygen X-ray line emission from four active galaxies: Fairall 9, Mrk 421, Mrk 501, and PKS 0548 - 322. Specifically, O VIII Ly-alpha and Ly-beta, whose unredshifted energies are 653 and 775 eV, respectively, were sought. No narrow-line emission was detected within the energy bands searched. Upper limits are calculated on the line flux from these sources of 30 eV equivalent width and use a photoionization model to place corresponding upper limits on the densities of diffuse gas surrounding the active nuclei. The upper limits on gas density range from about 0.02-50/cu cm and probe various radial distances from the central source. This is the first time high-resolution X-ray spectroscopy has been used to place constraints on the intercloud medium in active galaxies.

  3. Active compensation of flexure on the High-Resolution Optical Spectrograph for Gemini

    NASA Astrophysics Data System (ADS)

    D'Arrigo, P.; Diego, Francisco; Walker, David D.

    1997-03-01

    Gravity-induced flexure has been a long-standing challenge in Cassegrain spectrographs at 4-meter class telescopes; it is the more so at the scale of 8-meter telescopes. This is of particular concern for the Gemini high resolution optical spectrograph, which will be Cassegrain-mounted for its routine mode of operation. In this paper we address the general flexure problem, and how to solve it with the use of active optics. We also present the results of an experimental active flexure compensation system for the ISIS (intermediate- dispersion spectroscopic and imaging system) spectrograph on the 4.2 m William Herschel Telescope (WHT). This instrument, called ISAAC (ISIS spectrograph automatic active collimator), is based on the concept of active correction, where spectrum drifts, due to the spectrograph flexing under the effect of gravity, are compensated by the movement of an active optical element (in this case a fine steering tip-tilt collimator mirror). The experiment showed that active compensation can reduce flexure down to less than 3 micrometer over four hours of telescope motions, dramatically improving the spectrograph performance. The results of the experiment are used to discuss a flexure compensation system for the high resolution optical spectrograph (HROS) for the 8 m Gemini telescope.

  4. a Thz Photomixing Synthesizer Based on a Fiber Frequency Comb for High Resolution Rotational Spectroscopy

    NASA Astrophysics Data System (ADS)

    Hindle, Francis; Mouret, Gael; Cuisset, Arnaud; Yang, Chun; Eliet, Sophie; Bocquet, Robin

    2010-06-01

    To date the principal application for photomixing sources has been for high resolution spectroscopy of gases due to the large tuning range and spectral purity. New Developments of the Opto-Electronic THz Spectrometer have been performed in order to obtain a powerful tool for High-Resolution Spectroscopy. The combination of two extended cavity laser diodes and fast charge carrier lifetime semiconductor materials has allowed a continuous-wave THz spectrometer to be constructed based on optical heterodyning. Unlike many THz sources, this instrument gives access to all frequencies in the range 0.3 to 3.5 THz with a resolution of 1 MHz. The main spectroscopic applications of this spectrometer were dedicated to line profile analysis of rotational transitions referenced in the spectroscopic databases. One limitation of the THz spectrometer was accuracy with which the generated frequency is known. Recently, this obstacle has been circled with the construction of a photomixing spectrometer where the two pump lasers are phase locked to two modes of a repetition rate stabilized frequency doubled fiber laser frequency comb. In order to achieve a tuning range in excess to 100 MHz a third cw laser was required in the new configuration of the THz spectrometer. To assess the performances of this instrument, the frequencies of the pure rotational transitions of OCS molecules have been measured between 0,8 to 1,2 THz. A rms inferior to 100 kHz, deduced from the frequencies measured, demonstrates that the THz photomixing synthesizer is now able to be competitive with microwave and submillimeter techniques. S. Matton, F. Rohart, R. Bocquet, D. Bigourd, A. Cuisset, F. Hindle, G. Mouret, J. Mol. Spectrosc., 2006, 239: 182. C. Yang, J. Buldyreva, I. E. Gordon, F. Rohart, A. Cuisset, G. Mouret, R. Bocquet, F. Hindle, J. Quant. Spectrosc. Radiat. Transfer, 2008, 109: 2857. G. Mouret, F. Hindle, A. Cuisset, C. Yang, R. Bocquet, M. Lours, D. Rovera, Opt. Express, 2009, 17: 22031.

  5. MARVEL analysis of the measured high-resolution spectra of 14NH3

    NASA Astrophysics Data System (ADS)

    Al Derzi, Afaf R.; Furtenbacher, Tibor; Tennyson, Jonathan; Yurchenko, Sergei N.; Császár, Attila G.

    2015-08-01

    Accurate, experimental rotational-vibrational energy levels and line positions, with associated labels and uncertainties, are reported for the ground electronic state of the symmetric-top 14NH3 molecule. All levels and lines are based on critically reviewed and validated high-resolution experimental spectra taken from 56 literature sources. The transition data are in the 0.7-17 000 cm-1 region, with a large gap between 7000 and 15 000 cm-1. The MARVEL (Measured Active Rotational-Vibrational Energy Levels) algorithm is used to determine the energy levels. Out of the 29 450 measured transitions 10 041 and 18 947 belong to ortho- and para-14NH3, respectively. A careful analysis of the related experimental spectroscopic network (SN) allows 28 530 of the measured transitions to be validated, 18 178 of these are unique, while 462 transitions belong to floating components. Despite the large number of spectroscopic measurements published over the last 80 years, the transitions determine only 30 vibrational band origins of 14NH3, 8 for ortho- and 22 for para-14NH3. The highest J value, where J stands for the rotational quantum number, for which an energy level is validated is 31. The number of experimental-quality ortho- and para-14NH3 rovibrational energy levels is 1724 and 3237, respectively. The MARVEL energy levels are checked against ones in the BYTe first-principles database, determined previously. The lists of validated lines and levels for 14NH3 are deposited in the Supporting Information to this paper. Combination of the MARVEL energy levels with first-principles absorption intensities yields a huge number of experimental-quality rovibrational lines, which should prove to be useful for the understanding of future complex high-resolution spectroscopy on 14NH3; these lines are also deposited in the Supporting Information to this paper.

  6. High-resolution climate simulation of the last glacial maximum

    SciTech Connect

    Erickson III, David J

    2008-01-01

    The climate of the last glacial maximum (LGM) is simulated with a high-resolution atmospheric general circulation model, the NCAR CCM3 at spectral truncation of T170, corresponding to a grid cell size of roughly 75 km. The purpose of the study is to assess whether there are significant benefits from the higher resolution simulation compared to the lower resolution simulation associated with the role of topography. The LGM simulations were forced with modified CLIMAP sea ice distribution and sea surface temperatures (SST) reduced by 1 C, ice sheet topography, reduced CO{sub 2}, and 21,000 BP orbital parameters. The high-resolution model captures modern climate reasonably well, in particular the distribution of heavy precipitation in the tropical Pacific. For the ice age case, surface temperature simulated by the high-resolution model agrees better with those of proxy estimates than does the low-resolution model. Despite the fact that tropical SSTs were only 2.1 C less than the control run, there are many lowland tropical land areas 4-6 C colder than present. Comparison of T170 model results with the best constrained proxy temperature estimates (noble gas concentrations in groundwater) now yield no significant differences between model and observations. There are also significant upland temperature changes in the best resolved tropical mountain belt (the Andes). We provisionally attribute this result in part as resulting from decreased lateral mixing between ocean and land in a model with more model grid cells. A longstanding model-data discrepancy therefore appears to be resolved without invoking any unusual model physics. The response of the Asian summer monsoon can also be more clearly linked to local geography in the high-resolution model than in the low-resolution model; this distinction should enable more confident validation of climate proxy data with the high-resolution model. Elsewhere, an inferred salinity increase in the subtropical North Atlantic may have

  7. High-resolution DEM Effects on Geophysical Flow Models

    NASA Astrophysics Data System (ADS)

    Williams, M. R.; Bursik, M. I.; Stefanescu, R. E. R.; Patra, A. K.

    2014-12-01

    Geophysical mass flow models are numerical models that approximate pyroclastic flow events and can be used to assess the volcanic hazards certain areas may face. One such model, TITAN2D, approximates granular-flow physics based on a depth-averaged analytical model using inputs of basal and internal friction, material volume at a coordinate point, and a GIS in the form of a digital elevation model (DEM). The volume of modeled material propagates over the DEM in a way that is governed by the slope and curvature of the DEM surface and the basal and internal friction angles. Results from TITAN2D are highly dependent upon the inputs to the model. Here we focus on a single input: the DEM, which can vary in resolution. High resolution DEMs are advantageous in that they contain more surface details than lower-resolution models, presumably allowing modeled flows to propagate in a way more true to the real surface. However, very high resolution DEMs can create undesirable artifacts in the slope and curvature that corrupt flow calculations. With high-resolution DEMs becoming more widely available and preferable for use, determining the point at which high resolution data is less advantageous compared to lower resolution data becomes important. We find that in cases of high resolution, integer-valued DEMs, very high-resolution is detrimental to good model outputs when moderate-to-low (<10-15°) slope angles are involved. At these slope angles, multiple adjacent DEM cell elevation values are equal due to the need for the DEM to approximate the low slope with a limited set of integer values for elevation. The first derivative of the elevation surface thus becomes zero. In these cases, flow propagation is inhibited by these spurious zero-slope conditions. Here we present evidence for this "terracing effect" from 1) a mathematically defined simulated elevation model, to demonstrate the terracing effects of integer valued data, and 2) a real-world DEM where terracing must be

  8. High-resolution structure of the native histone octamer

    SciTech Connect

    Wood, Christopher M.; Nicholson, James M.; Lambert, Stanley J.; Chantalat, Laurent; Reynolds, Colin D.; Baldwin, John P.

    2005-06-01

    The high-resolution (1.90 Å) model of the native histone octamer allows structural comparisons to be made with the nucleosome-core particle, along with an identification of a likely core-histone binding site. Crystals of native histone octamers (H2A–H2B)–(H4–H3)–(H3′–H4′)–(H2B′–H2A′) from chick erythrocytes in 2 M KCl, 1.35 M potassium phosphate pH 6.9 diffract X-rays to 1.90 Å resolution, yielding a structure with an R{sub work} value of 18.7% and an R{sub free} of 22.2%. The crystal space group is P6{sub 5}, the asymmetric unit of which contains one complete octamer. This high-resolution model of the histone-core octamer allows further insight into intermolecular interactions, including water molecules, that dock the histone dimers to the tetramer in the nucleosome-core particle and have relevance to nucleosome remodelling. The three key areas analysed are the H2A′–H3–H4 molecular cluster (also H2A–H3′–H4′), the H4–H2B′ interaction (also H4′–H2B) and the H2A′–H4 β-sheet interaction (also H2A–H4′). The latter of these three regions is important to nucleosome remodelling by RNA polymerase II, as it is shown to be a likely core-histone binding site, and its disruption creates an instability in the nucleosome-core particle. A majority of the water molecules in the high-resolution octamer have positions that correlate to similar positions in the high-resolution nucleosome-core particle structure, suggesting that the high-resolution octamer model can be used for comparative studies with the high-resolution nucleosome-core particle.

  9. Edge Density Imaging Measurements of DIII-D Tokamak Plasmas using a Lithium Beam Probe and High Resolution Camera

    NASA Astrophysics Data System (ADS)

    Martin, M. F.; Stoschus, H.; Thomas, D. M.; Pace, D. C.

    2012-10-01

    The Lithium Atomic Beam (LIBEAM) used on DIII-D has shown considerable potential to diagnose the density profile ne(r) with a radial resolution of δr = 0.5 cm within the pedestal region. The LIBEAM parameters are E < 30 keV and ˜10 mA of equivalent neutral lithium current. Through the use of a filtered high resolution PCO Pixelfly CCD camera, the spectroscopic emission of the 670.8 nm Li[2p-2s] transition due to collisional excitation of the neutral lithium atoms is captured and analyzed. By appropriate image analysis, a high resolution profile of the beam intensity Ib can be discerned. Through the use of this beam intensity profile and collisional radiative models (CRM) the fine scale structure of the edge density profile ne(r) can be observed.

  10. Generation of Tunable Coherent Radiation Below 1000 Angstroms Applied to High-Resolution Spectroscopy of Xenon.

    NASA Astrophysics Data System (ADS)

    Bonin, Keith Donald

    This thesis involves the study of the problem of generating broadly tunable, narrowband, coherent extreme ultraviolet (XUV) radiation and using it to perform high -resolution spectroscopic studies of xenon. The coherent XUV radiation was efficiently generated by two-photon resonant four-wave mixing in krypton. The input laser beams to the nonlinear generation process were produced using a Nd:YAG driver laser at 1.064 (mu)m. This was doubled to 5320 (ANGSTROM) in order to pump a pulsed fluorescein dye laser at 5440 (ANGSTROM). The 5440 (ANGSTROM) radiation was doubled to 2720 (ANGSTROM) and this radiation was summed with the original 1.064 (mu)m beam to yield light at 2166.6 (ANGSTROM) (the 4p('6 1)S(,0) (--->) 5p 5/2 (,2) two-photon resonance in krypton). A second tunable dye laser produced laser pulses with wavelengths between 6100 (ANGSTROM) - 7250 (ANGSTROM). This laser system enabled us to produce XUV radiation at various regions between 921 (ANGSTROM) and 943 (ANGSTROM). Power efficiencies as high as 10(' -5) were achieved and the linewidth of the coherent XUV was (TURN)0.3 cm('-1). Since a two-photon resonance was used to enhance the XUV output efficiency, electric-dipole two-photon selection rules were derived for the most general case of two input photons with unequal frequencies. In order to perform high-resolution spectroscopic studies with this system, we utilized a Fizeau interferometer based wavemeter to measure the input wavelengths to the four-wave mixing process to an accuracy of 2 parts in 10('6). The Fizeau wavemeter and the coherent XUV radiation system enabled us to study the autoionization region of xenon between its two ionization limits at 1022.1 (ANGSTROM) and 922.76 (ANGSTROM) with extremely high resolution. Altogether a total of 12 autoionizing resonances were scanned in frequency. The results include a combination of photoabsorption and ionization measurements. The agreement between the coherent XUV results and the best available

  11. Space to Think: Large, High-Resolution Displays for Sensemaking

    SciTech Connect

    Andrews, Christopher P.; Endert, Alexander; North, Chris

    2010-05-05

    Space supports human cognitive abilities in a myriad of ways. The note attached to the side of the monitor, the papers spread out on the desk, diagrams scrawled on a whiteboard, and even the keys left out on the counter are all examples of using space to recall, reveal relationships, and think. Technological advances have made it possible to construct large display environments in which space has real meaning. This paper examines how increased space affects the way displays are regarded and used within the context of the cognitively demanding task of sensemaking. A study was conducted observing analysts using a prototype large, high-resolution display to solve an analytic problem. This paper reports on the results of this study and suggests a number of potential design criteria for future sensemaking tools developed for large, high-resolution displays.

  12. High resolution map of light pollution over Poland

    NASA Astrophysics Data System (ADS)

    Netzel, Henryka; Netzel, Paweł

    2016-09-01

    In 1976 Berry introduced a simple mathematical equation to calculate artificial night sky brightness at zenith. In the original model cities, considered as points with given population, are only sources of light emission. In contrary to Berry's model, we assumed that all terrain surface can be a source of light. Emission of light depends on percent of built up area in a given cell. We based on Berry's model. Using field measurements and high-resolution data we obtained the map of night sky brightness over Poland in 100-m resolution. High resolution input data, combined with a very simple model, makes it possible to obtain detailed structures of the night sky brightness without complicating the calculations.

  13. Temperature-dependent high resolution absorption cross sections of propane

    NASA Astrophysics Data System (ADS)

    Beale, Christopher A.; Hargreaves, Robert J.; Bernath, Peter F.

    2016-10-01

    High resolution (0.005 cm-1) absorption cross sections have been measured for pure propane (C3H8). These cross sections cover the 2550-3500 cm-1 region at five temperatures (from 296 to 700 K) and were measured using a Fourier transform spectrometer and a quartz cell heated by a tube furnace. Calibrations were made by comparison to the integrated cross sections of propane from the Pacific Northwest National Laboratory. These are the first high resolution absorption cross sections of propane for the 3 μm region at elevated temperatures. The cross sections provided may be used to monitor propane in combustion environments and in astronomical sources such as the auroral regions of Jupiter, brown dwarfs and exoplanets.

  14. High-resolution imaging of cellular processes in Caenorhabditis elegans.

    PubMed

    Maddox, Amy S; Maddox, Paul S

    2012-01-01

    Differential interference contrast (DIC) imaging of Caenorhabditis elegans embryogenesis led to a Nobel Prize in Physiology or Medicine (Sulston et al., 1983) as did the first use of green fluorescent protein (GFP) in a transgenic C. elegans (Chalfie et al., 1994). Given that C. elegans is free living, does not require exceptional environmental control, and is optically clear, live imaging is a powerful tool in for this model system. Combining genetics with high-resolution imaging has continued to make important contributions to many fields. In this chapter, we discuss how certain aspects of high-resolution microscopy are implemented. This is not an exhaustive review of microscopy; it is meant to be a helpful guide and point of reference for some basic concepts in imaging. While these concepts are largely true for all biological imaging, they are chosen as particularly important for C. elegans. PMID:22226519

  15. Fabricating High-Resolution X-Ray Collimators

    NASA Technical Reports Server (NTRS)

    Appleby, Michael; Atkinson, James E.; Fraser, Iain; Klinger, Jill

    2008-01-01

    A process and method for fabricating multi-grid, high-resolution rotating modulation collimators for arcsecond and sub-arcsecond x-ray and gamma-ray imaging involves photochemical machining and precision stack lamination. The special fixturing and etching techniques that have been developed are used for the fabrication of multiple high-resolution grids on a single array substrate. This technology has application in solar and astrophysics and in a number of medical imaging applications including mammography, computed tomography (CT), single photon emission computed tomography (SPECT), and gamma cameras used in nuclear medicine. This collimator improvement can also be used in non-destructive testing, hydrodynamic weapons testing, and microbeam radiation therapy.

  16. Turbine component casting core with high resolution region

    DOEpatents

    Kamel, Ahmed; Merrill, Gary B.

    2014-08-26

    A hollow turbine engine component with complex internal features can include a first region and a second, high resolution region. The first region can be defined by a first ceramic core piece formed by any conventional process, such as by injection molding or transfer molding. The second region can be defined by a second ceramic core piece formed separately by a method effective to produce high resolution features, such as tomo lithographic molding. The first core piece and the second core piece can be joined by interlocking engagement that once subjected to an intermediate thermal heat treatment process thermally deform to form a three dimensional interlocking joint between the first and second core pieces by allowing thermal creep to irreversibly interlock the first and second core pieces together such that the joint becomes physically locked together providing joint stability through thermal processing.

  17. Progressive display of very high resolution images using wavelets.

    PubMed Central

    Zhang, Ya; Wang, James Z.

    2002-01-01

    Digital or digitized biomedical images often have very high resolutions', which make them difficult or impossible to display on computer screens. Therefore, it is desirable to develop a multiresolution display method with which users can freely browse the contents of those high resolution images. In this paper, we present an improved wavelet-based progressive image display algorithm by stressing on the encoding and decoding process. The encoder, which dynamically determines levels of transform and partition of coefficients, is based on a modified Haar wavelet transform. The decoder retrieves the necessary data and reconstructs the requested region at a scale specified by the user. A prototype system, which enables virtually any size of images to be displayed progressively, has been implemented based on this algorithm. The system has low computational complexity for both encoding and decoding process. Images Figure 2 PMID:12476909

  18. The theory and practice of high resolution scanning electron microscopy

    SciTech Connect

    Joy, D.C. Oak Ridge National Lab., TN )

    1990-01-01

    Recent advances in instrumentation have produced the first commercial examples of what can justifiably be called High Resolution Scanning Electron Microscopes. The key components of such instruments are a cold field emission gun, a small-gap immersion probe-forming lens, and a clean dry-pumped vacuum. The performance of these microscopes is characterized by several major features including a spatial resolution, in secondary electron mode on solid specimens, which can exceed 1nm on a routine basis; an incident probe current density of the order of 10{sup 6} amps/cm{sup 2}; and the ability to maintain these levels of performance over an accelerating voltage range of from 1 to 30keV. This combination of high resolution, high probe current, low contamination and flexible electron-optical conditions provides many new opportunitites for the application of the SEM to materials science, physics, and the life sciences. 27 refs., 14 figs.

  19. High-resolution array processing using implicit eigenvector weighting techniques

    SciTech Connect

    Steele, A.K. ); Byrne, C.L. )

    1990-01-01

    Many high-resolution bearing estimators require the explicit calculation of the eigenvectors and eigenvalues of the cross-spectral matrix of the sensor outputs. Once the eigenvectors have been calculated, various different estimators can be derived by altering the eigenvalues to give a re-weighing of the eigenvectors. For example, in the MUSIC method the eigenvalues corresponding to those eigenvectors in the noise subspace are set to unity, while the eigenvalues corresponding to those eigenvectors in the signal subspace are set to zero. These weighing functions are reminiscent of ideal filter responses in analog filter theory, where practical filters are designed by using polynomial approximations to the ideal desired response. In this paper, the approximation theory developed for filter design is used to derive high-resolution bearing estimators that do not require explicit calculation of the eigenvectors.

  20. High Resolution Scanning Electron Microscopy of Cells Using Dielectrophoresis

    PubMed Central

    Tang, Shi-Yang; Zhang, Wei; Soffe, Rebecca; Nahavandi, Sofia; Shukla, Ravi; Khoshmanesh, Khashayar

    2014-01-01

    Ultrastructural analysis of cells can reveal valuable information about their morphological, physiological, and biochemical characteristics. Scanning electron microscopy (SEM) has been widely used to provide high-resolution images from the surface of biological samples. However, samples need to be dehydrated and coated with conductive materials for SEM imaging. Besides, immobilizing non-adherent cells during processing and analysis is challenging and requires complex fixation protocols. In this work, we developed a novel dielectrophoresis based microfluidic platform for interfacing non-adherent cells with high-resolution SEM at low vacuum mode. The system enables rapid immobilization and dehydration of samples without deposition of chemical residues over the cell surface. Moreover, it enables the on-chip chemical stimulation and fixation of immobilized cells with minimum dislodgement. These advantages were demonstrated for comparing the morphological changes of non-budding and budding yeast cells following Lyticase treatment. PMID:25089528

  1. High-resolution x-ray phase tomography

    NASA Astrophysics Data System (ADS)

    Peele, Andrew G.; Thomas, C. David L.; Clement, John G.; Arhatari, Benedicta D.; Hannah, Kevin M.; Doshi, Chandni; Putkunz, Corey T.; Clark, Jesse N.

    2010-09-01

    X-ray tomography is a workhorse tool of non-destructive imaging. It is used to probe three-dimensional structures across a wide range of length scales for objects that offer good absorption contrast to x-rays. In recent years extremely high resolution imaging (on the order of tens of nanometres) has become possible due to technological advances in x-ray optics. At the same time the requirement for strong absorption contrast has been relaxed thanks to the advent of new experimental and algorithmic techniques in phase imaging. Advances in both resolution and phase imaging can be combined to image biological samples at the sub-cellular level. I will report on recent advances in our work including improvements to the current approaches in extracting phase information at high resolution from measurements of the diffracted intensity from a sample. I will also discuss our current experimental status.

  2. [Development of a high resolution simultaneous microwave plasma torch spectrometer].

    PubMed

    Jiang, Jie; Huan, Yan-Fu; Jin, Wei; Feng, Guo-Dong; Fei, Qiang; Cao, Yan-Bo; Jin, Qin-Han

    2007-11-01

    A unique high resolution simultaneous microwave plasma torch (MPT) atomic emission spectrometer was developed and studied preliminarily. Some advanced technologies were applied to the spectrometer, such as echelle grating, UV-intensified CCD array detector, adjustable microwave generator, and water cooling system for the generator, etc. The detection limits of the spectrometer for some elements were determined, the spectral resolution and pixel resolution of the spectrometer were calculated, and an analysis of a practical sample was carried out. The preliminary results demonstrate that such simultaneous spectrometer has advantages of saving sample and time, possessing high sensitivity and resolution, and low-cost for the purchase and maintenance. Taking analytical figures of merit into consideration, the high resolution simultaneous MPT spectrometer will have extended application areas and greater competition potential as compared with sequential MPT spectrometers.

  3. Note: Differential amplified high-resolution tilt angle measurement system.

    PubMed

    Zhao, Shijie; Li, Yan; Zhang, Enyao; Huang, Pei; Wei, Haoyun

    2014-09-01

    A high-resolution tilt angle measurement system is presented in this paper. In this system, the measurement signal is amplified by two steps: (1) amplified by operational amplifier and (2) differential amplified by two MEMS-based inclinometers. The novel application not only amplifies the signal but, more importantly, substantially reduces the electrical interference and common-mode noise among the same circuit design. Thus, both the extremely high resolution and great long-term stability are achieved in this system. Calibrated by an autocollimator, the system shows a resolution of 2 arc sec. The accuracy is better than ±1.5 arc sec. The zero-drift error is below ±1 arc sec and ±2 arc sec in the short and long term, respectively.

  4. Note: Differential amplified high-resolution tilt angle measurement system

    NASA Astrophysics Data System (ADS)

    Zhao, Shijie; Li, Yan; Zhang, Enyao; Huang, Pei; Wei, Haoyun

    2014-09-01

    A high-resolution tilt angle measurement system is presented in this paper. In this system, the measurement signal is amplified by two steps: (1) amplified by operational amplifier and (2) differential amplified by two MEMS-based inclinometers. The novel application not only amplifies the signal but, more importantly, substantially reduces the electrical interference and common-mode noise among the same circuit design. Thus, both the extremely high resolution and great long-term stability are achieved in this system. Calibrated by an autocollimator, the system shows a resolution of 2 arc sec. The accuracy is better than ±1.5 arc sec. The zero-drift error is below ±1 arc sec and ±2 arc sec in the short and long term, respectively.

  5. Parallelization and Algorithmic Enhancements of High Resolution IRAS Image Construction

    NASA Technical Reports Server (NTRS)

    Cao, Yu; Prince, Thomas A.; Tereby, Susan; Beichman, Charles A.

    1996-01-01

    The Infrared Astronomical Satellite caried out a nearly complete survey of the infrared sky, and the survey data are important for the study of many astrophysical phenomena. However, many data sets at other wavelengths have higher resolutions than that of the co-added IRAS maps, and high resolution IRAS images are strongly desired both for their own information content and their usefulness in correlation. The HIRES program was developed by the Infrared Processing and Analysis Center (IPAC) to produce high resolution (approx. 1') images from IRAS data using the Maximum Correlation Method (MCM). We describe the port of HIRES to the Intel Paragon, a massively parallel supercomputer, other software developments for mass production of HIRES images, and the IRAS Galaxy Atlas, a project to map the Galactic plane at 60 and 100(micro)m.

  6. Airborne laser scanning for high-resolution mapping of Antarctica

    NASA Astrophysics Data System (ADS)

    Csatho, Bea; Schenk, Toni; Krabill, William; Wilson, Terry; Lyons, William; McKenzie, Garry; Hallam, Cheryl; Manizade, Serdar; Paulsen, Timothy

    In order to evaluate the potential of airborne laser scanning for topographic mapping in Antarctica and to establish calibration/validation sites for NASA's Ice, Cloud and land Elevation Satellite (ICESat) altimeter mission, NASA, the U.S. National Science Foundation (NSF), and the U.S. Geological Survey (USGS) joined forces to collect high-resolution airborne laser scanning data.In a two-week campaign during the 2001-2002 austral summer, NASA's Airborne Topographic Mapper (ATM) system was used to collect data over several sites in the McMurdo Sound area of Antarctica (Figure 1a). From the recorded signals, NASA computed laser points and The Ohio State University (OSU) completed the elaborate computation/verification of high-resolution Digital Elevation Models (DEMs) in 2003. This article reports about the DEM generation and some exemplary results from scientists using the geomorphologic information from the DEMs during the 2003-2004 field season.

  7. Protein-DNA binding in high-resolution

    PubMed Central

    Mahony, Shaun; Pugh, B. Franklin

    2015-01-01

    Recent advances in experimental and computational methodologies are enabling ultra-high resolution genome-wide profiles of protein-DNA binding events. For example, the ChIP-exo protocol precisely characterizes protein-DNA crosslinking patterns by combining chromatin immunoprecipitation (ChIP) with 5′ → 3′ exonuclease digestion. Similarly, deeply sequenced chromatin accessibility assays (e.g. DNase-seq and ATACseq) enable the detection of protected footprints at protein-DNA binding sites. With these techniques and others, we have the potential to characterize the individual nucleotides that interact with transcription factors, nucleosomes, RNA polymerases, and other regulatory proteins in a particular cellular context. In this review, we explain the experimental assays and computational analysis methods that enable high-resolution profiling of protein-DNA binding events. We discuss the challenges and opportunities associated with such approaches. PMID:26038153

  8. High resolution reservoir geological modelling using outcrop information

    SciTech Connect

    Zhang Changmin; Lin Kexiang; Liu Huaibo

    1997-08-01

    This is China`s first case study of high resolution reservoir geological modelling using outcrop information. The key of the modelling process is to build a prototype model and using the model as a geological knowledge bank. Outcrop information used in geological modelling including seven aspects: (1) Determining the reservoir framework pattern by sedimentary depositional system and facies analysis; (2) Horizontal correlation based on the lower and higher stand duration of the paleo-lake level; (3) Determining the model`s direction based on the paleocurrent statistics; (4) Estimating the sandbody communication by photomosaic and profiles; (6) Estimating reservoir properties distribution within sandbody by lithofacies analysis; and (7) Building the reservoir model in sandbody scale by architectural element analysis and 3-D sampling. A high resolution reservoir geological model of Youshashan oil field has been built by using this method.

  9. Effective Area of the AXAF High Resolution Camera (HRC)

    NASA Technical Reports Server (NTRS)

    Patnaude, Daniel; Pease, Deron; Donnelly, Hank; Juda, Mike; Jones, Christine; Murray, Steve; Zombeck, Martin; Kraft, Ralph; Kenter, Almus; Meehan, Gary; Meehan, Gary; Swartz, Doug; Elsner, Ron

    1998-01-01

    The AXAF High-Resolution Camera (HRC) was calibrated at NASA MSFC's X-Ray Calibration Facility (XRCF) during 1997 March and April. We have undertaken an analysis of the HRC effective area using all data presently available from the XRCF. We discuss our spectral fitting of the beam-normalization detectors (BNDs), our method of removing higher order contamination lines present in the spectra, and corrections for beam non-uniformities. We apply a model of photon absorption depth in order to fit a smooth curve to the quantum efficiency of the detector. This is then combined with the most recent model of the AXAF High-Resolution Mirror Assembly (HRMA) to determine the ensemble effective area versus energy for the HRC. We also address future goals and concerns.

  10. A Procedure for High Resolution Satellite Imagery Quality Assessment

    PubMed Central

    Crespi, Mattia; De Vendictis, Laura

    2009-01-01

    Data products generated from High Resolution Satellite Imagery (HRSI) are routinely evaluated during the so-called in-orbit test period, in order to verify if their quality fits the desired features and, if necessary, to obtain the image correction parameters to be used at the ground processing center. Nevertheless, it is often useful to have tools to evaluate image quality also at the final user level. Image quality is defined by some parameters, such as the radiometric resolution and its accuracy, represented by the noise level, and the geometric resolution and sharpness, described by the Modulation Transfer Function (MTF). This paper proposes a procedure to evaluate these image quality parameters; the procedure was implemented in a suitable software and tested on high resolution imagery acquired by the QuickBird, WorldView-1 and Cartosat-1 satellites. PMID:22412312

  11. High Resolution Measurements and Electronic Structure Calculations of a Diazanaphthalene

    NASA Astrophysics Data System (ADS)

    Gruet, Sébastien; Goubet, Manuel; Pirali, Olivier

    2014-06-01

    Polycyclic Aromatic Hydrocarbons (PAHs) have long been suspected to be the carriers of so called Unidentified Infrared Bands (UIBs). Most of the results published in the literature report rotationally unresolved spectra of pure carbon as well as heteroatom-containing PAHs species. To date for this class of molecules, the principal source of rotational informations is ruled by microwave (MW) spectroscopy while high resolution measurements reporting rotational structure of the infrared (IR) vibrational bands are very scarce. Recently, some high resolution techniques provided interesting new results to rotationally resolve the IR and far-IR bands of these large carbonated molecules of astrophysical interest. One of them is to use the bright synchrotron radiation as IR continuum source of a high resolution Fourier transform (FTIR) spectrometer. We report the very complementary analysis of the [1,6] naphthyridine (a N-bearing PAH) for which we recorded the microwave spectrum at the PhLAM laboratory (Lille) and the high resolution far-infrared spectrum on the AILES beamline at synchrotron facility SOLEIL. MW spectroscopy provided highly accurate rotational constants in the ground state to perform Ground State Combinations Differences (GSCD) allowing the analysis of the two most intense FT-FIR bands in the 50-900 wn range. Moreover, during this presentation the negative value of the inertial defect in the GS of the molecule will be discussed. A. Leger, J. L. Puget, Astron. Astrophys. 137, L5-L8 (1984) L. J. Allamandola et al. Astrophys. J. 290, L25-L28 (1985). Z. Kisiel et al. J. Mol. Spectrosc. 217, 115 (2003) S. Thorwirth et al. Astrophys. J. 662, 1309 (2007) D. McNaughton et al. J. Chem. Phys. 124, 154305 (2011). S. Albert et al. Faraday Discuss. 150, 71-99 (2011) B. E. Brumfield et al. Phys. Chem. Lett. 3, 1985-1988 (2012) O. Pirali et al. Phys. Chem. Chem. Phys. 15, 10141 (2013).

  12. High-resolution, cryogenic, side-entry type specimen stage

    DOEpatents

    King, Wayne E.; Merkle, Karl L.

    1979-01-01

    A high-resolution, cryogenic side-entry type specimen stage includes a copper block within which a specimen can be positioned in the electron beam of an electron microscope, one end of the copper block constituting a specimen heat exchanger, means for directing a flow of helium at cryogenic temperature into the heat exchanger, and electrical leads running from the specimen to the exterior of the microscope for four point D.C. electrical resistivity measurements.

  13. Achievement of a 920-MHz High Resolution NMR

    NASA Astrophysics Data System (ADS)

    Hashi, Kenjiro; Shimizu, Tadashi; Goto, Atsushi; Kiyoshi, Tsukasa; Matsumoto, Shinji; Wada, Hitoshi; Fujito, Teruaki; Hasegawa, Ken-ichi; Yoshikawa, Masatoshi; Miki, Takashi; Ito, Satoshi; Hamada, Mamoru; Hayashi, Seiji

    2002-06-01

    We have developed a 920-MHz NMR system and performed the proton NMR measurement of H 2O and ethylbenzene using the superconducting magnet operating at 21.6 T (920 MHz for proton), which is the highest field produced by a superconducting NMR magnet in the persistent mode. From the NMR measurements, it is verified that both homogeneity and stability of the magnet have a specification sufficient for a high resolution NMR.

  14. High resolution microwave spectrometer sounder (HIMSS), volume 1, book 2

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The following topics are presented with respect to the high resolution microwave spectrometer sounder (HIMSS) that is to be used as an instrument for NASA's Earth Observing System (EOS): (1) preliminary program plans; (2) contract end item (CEI) specification; and (3) the instrument interface description document. Under the preliminary program plans section, plans dealing with the following subject areas are discussed: spares, performance assurance, configuration management, software implementation, contamination, calibration management, and verification.

  15. High-resolution schemes for hyperbolic conservation laws

    NASA Technical Reports Server (NTRS)

    Harten, A.

    1982-01-01

    A class of new explicit second order accurate finite difference schemes for the computation of weak solutions of hyperbolic conservation laws is presented. These highly nonlinear schemes are obtained by applying a nonoscillatory first order accurae scheme to an appropriately modified flux function. The so derived second order accurate schemes achieve high resolution while preserving the robustness of the original nonoscillatory first order accurate scheme.

  16. LandScan 2013 High Resolution Global Population Data Set

    SciTech Connect

    2014-07-01

    The LandScan data set is a worldwide population database compiled on a 30"x30" latitude/longitude grid. Census counts (at sub-national level) were apportioned to each grid cell based on likelihood coefficients, which are based on land cover, slope, road proximity, high-resolution imagery, and other data sets. The LandScan data set was developed as part of Oak Ridge National Laboratory (ORNL) Global Population Project for estimating ambient populations at risk.

  17. New Challenges in High-Resolution Modeling of Hurricanes

    NASA Astrophysics Data System (ADS)

    Chen, S. S.

    2006-12-01

    The extreme active Atlantic hurricane seasons in recent years have highlighted the urgent need for a better understanding of the factors that contribute to hurricane intensity and for development of the corresponding advanced hurricane prediction models to improve intensity forecasts. The lack of skill in present forecasts of hurricane structure and intensity may be attributed in part to deficiencies in the current prediction models: insufficient grid resolution, inadequate surface and boundary layer formulations, and the lack of full coupling to a dynamic ocean. The extreme high winds, intense rainfall, large ocean waves, and copious sea spray in hurricanes push the surface-exchange parameters for temperature, water vapor, and momentum into untested regimes. The recent modeling effort is to develop and test a fully coupled atmosphere-wave-ocean modeling system that is capable of resolving the eye and eyewall in a hurricane at ~1 km grid resolution. The new challenges for these very high resolution models are the corresponding physical representations at 1-km scale, including microphysics, sub-grid turbulence parameterization, atmospheric boundary layer, physical processes at the air-sea interface with surface waves among others. The lack of accurate initial conditions for high-resolution hurricane modeling presents another major challenge. Improvements in initial conditions rest on the use of more airborne and remotely sensed observations in high-resolution assimilation systems and on the application of advanced assimilation schemes to hurricanes. This study aimed to provide an overview of these new challenges using high-resolution model simulations of Hurricanes Isabel (2003), Frances (2004), Katrina and Rita (2005) that were observed extensively by two recent field programs, namely, the Coupled Boundary Layer Air-Sea Transfer (CBLAST)-Hurricane in 2003-2004 and the Hurricane Rainbands and Intensity Change Experiment (RAINEX) in 2005.

  18. High resolution microwave spectrometer sounder (HIMSS), volume 1, book 1

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The following topics are presented with respect to the high resolution microwave spectrometer sounder (HIMSS) that is to be used as an instrument for NASA's Earth Observing System (EOS): (1) an instrument overview; (2) an instrument description; (3) the instrument's conceptual design; (4) technical risks and offsets; (5) instrument reliability; (6) commands and telemetry; (7) mass and power budgets; (8) integration and test program; (9) program implementation; and (10) phase CD schedule.

  19. Applications of high-resolution remote sensing image data

    NASA Technical Reports Server (NTRS)

    Strome, W. M.; Leckie, D.; Miller, J.; Buxton, R.

    1990-01-01

    There are many situations in which the image resolution of satellite data is insufficient to provide the detail required for resource management and environmental monitoring. This paper will focus on applications of high-resolution (0.4 to 10 m) airborne multispectral and imaging spectrometer data acquired in Canada using the MEIS II multispectral line imager and the PMI imaging spectrometer. Applications discussed will include forestry, mapping, and geobotany.

  20. Optical alignment of high resolution Fourier transform spectrometers

    NASA Technical Reports Server (NTRS)

    Breckinridge, J. B.; Ocallaghan, F. G.; Cassie, A. G.

    1980-01-01

    Remote sensing, high resolution FTS instruments often contain three primary optical subsystems: Fore-Optics, Interferometer Optics, and Post, or Detector Optics. We discuss the alignment of a double-pass FTS containing a cat's-eye retro-reflector. Also, the alignment of fore-optics containing confocal paraboloids with a reflecting field stop which relays a field image onto a camera is discussed.

  1. High-resolution structure of the native histone octamer

    PubMed Central

    Wood, Christopher M.; Nicholson, James M.; Lambert, Stanley J.; Chantalat, Laurent; Reynolds, Colin D.; Baldwin, John P.

    2005-01-01

    Crystals of native histone octamers (H2A–H2B)–(H4–H3)–(H3′–H4′)–(H2B′–­H2A′) from chick erythrocytes in 2 M KCl, 1.35 M potassium phosphate pH 6.9 diffract X-rays to 1.90 Å resolution, yielding a structure with an R work value of 18.7% and an R free of 22.2%. The crystal space group is P65, the asymmetric unit of which contains one complete octamer. This high-resolution model of the histone-core octamer allows further insight into intermolecular interactions, including water molecules, that dock the histone dimers to the tetramer in the nucleosome-core particle and have relevance to nucleosome remodelling. The three key areas analysed are the H2A′–H3–H4 molecular cluster (also H2A–H3′–H4′), the H4–H2B′ interaction (also H4′–H2B) and the H2A′–H4 β-sheet interaction (also H2A–H4′). The latter of these three regions is important to nucleosome remodelling by RNA polymerase II, as it is shown to be a likely core-histone binding site, and its disruption creates an instability in the nucleosome-core particle. A majority of the water molecules in the high-resolution octamer have positions that correlate to similar positions in the high-­resolution nucleosome-core particle structure, suggesting that the high-resolution octamer model can be used for comparative studies with the high-resolution nucleosome-core particle. PMID:16511091

  2. The Goddard High Resolution Spectrograph: Instrument, goals, and science results

    NASA Technical Reports Server (NTRS)

    Brandt, J. C.; Heap, S. R.; Beaver, E. A.; Boggess, A.; Carpenter, K. G.; Ebbets, D. C.; Hutchings, J. B.; Jura, M.; Leckrone, D. S.; Linsky, J. L.

    1994-01-01

    The Goddard High Resolution Spectrograph (GHRS), currently in Earth orbit on the Hubble Space Telescope (HST), operates in the wavelength range 1150-3200 A with spectral resolutions (lambda/delta lambda) of approximately 2 x 10(exp 3), 2 x 10(exp 4), and 1 x 10(exp 3). The instrument and its development from inception, its current status, the approach to operations, representative results in the major areas of the scientific goals, and prospects for the future are described.

  3. High-resolution imagery applications in the littorals

    NASA Astrophysics Data System (ADS)

    Abileah, Ronald

    2001-12-01

    We focus on three applications of high-resolution imagery in the littorals: mapping bathymetry, monitoring the health of coral reefs, and taking censuses of marine mammals. All three applications show the importance and potential benefits of higher-resolution imagery. Increased radiometric sensitivity and the simultaneous collection of panchromatic and multispectral imagery are also important. An Ikonos image of Maui is used to demonstrate these applications. We also briefly explain some important differences between multispectral remote sensing over water and land.

  4. High-Resolution Wind Measurements for Offshore Wind Energy Development

    NASA Technical Reports Server (NTRS)

    Nghiem, Son V.; Neumann, Gregory

    2011-01-01

    A mathematical transform, called the Rosette Transform, together with a new method, called the Dense Sampling Method, have been developed. The Rosette Transform is invented to apply to both the mean part and the fluctuating part of a targeted radar signature using the Dense Sampling Method to construct the data in a high-resolution grid at 1-km posting for wind measurements over water surfaces such as oceans or lakes.

  5. High resolution fiber optic interferometer: FY94 final report

    SciTech Connect

    Baldwin, D.P.; Zamzow, D.S.; D`Silva, A.P.

    1994-12-31

    Objective is a field, on-line high resolution spectrometer system capable of resolving the optical emission from actinide isotopes in an inductively coupled plasma. AOTF (acousto-optic tunable filter) and FFP (fiber optic Fabry-Perot) were combined in this spectrometer, using bulk optical materials. The AOTF-FFP system was tested on U-235/U-238 and RCRA metals. Future development is described; a commercialization plan is attached.

  6. Adaptive optics with pupil tracking for high resolution retinal imaging.

    PubMed

    Sahin, Betul; Lamory, Barbara; Levecq, Xavier; Harms, Fabrice; Dainty, Chris

    2012-02-01

    Adaptive optics, when integrated into retinal imaging systems, compensates for rapidly changing ocular aberrations in real time and results in improved high resolution images that reveal the photoreceptor mosaic. Imaging the retina at high resolution has numerous potential medical applications, and yet for the development of commercial products that can be used in the clinic, the complexity and high cost of the present research systems have to be addressed. We present a new method to control the deformable mirror in real time based on pupil tracking measurements which uses the default camera for the alignment of the eye in the retinal imaging system and requires no extra cost or hardware. We also present the first experiments done with a compact adaptive optics flood illumination fundus camera where it was possible to compensate for the higher order aberrations of a moving model eye and in vivo in real time based on pupil tracking measurements, without the real time contribution of a wavefront sensor. As an outcome of this research, we showed that pupil tracking can be effectively used as a low cost and practical adaptive optics tool for high resolution retinal imaging because eye movements constitute an important part of the ocular wavefront dynamics.

  7. Characterization of high-resolution HafSOx inorganic resists

    NASA Astrophysics Data System (ADS)

    Oleksak, R. P.; Herman, G. S.

    2014-04-01

    Inorganic resists are of considerable interest for advanced lithography at the nanoscale due to the potential for high resolution, low line width roughness (LWR), and high sensitivity. Historically inorganic resists suffered from low sensitivity, however approaches have been identified to increase sensitivity while maintaining high contrast. An aqueous precursor of Hf(OH)4-2x-2y(O2)x(SO4)y·qH2O (HafSOx) has been demonstrated with excellent sensitivity to EUV and electrons, while still obtaining high resolution and low LWR. In this work, we characterize both HafSOx precursor solutions and spin-coated thin films using high-resolution transmission electron microscopy (HR-TEM) with energy-dispersive X-ray spectroscopy (EDS) elemental analysis. HR-TEM of precursor solutions drop cast onto TEM grids confirmed the presence of nanoscale particles. HR-TEM cross sectional images showed that spin-coated HafSOx films are initially uniform in appearance and composition for thin (12 nm) films, however thicker (30 nm) films display segregation of species leading to multilayer structures. Regardless of film thickness, extended exposure to the high energy TEM electron beam induces significant migration of oxygen species to the Si interface. These species result in the formation of SiOx layers that increase in thickness with an increase in TEM electron beam dose. Sulfate is also very mobile in the films and likely assists in the significant condensation exhibited in completely processed films.

  8. Quantification of Murine Pancreatic Tumors by High Resolution Ultrasound

    PubMed Central

    Sastra, Stephen A.; Olive, Kenneth P.

    2013-01-01

    Summary Ultrasonography is a powerful imaging modality that enables non-invasive, real time visualization of abdominal organs and tissues. This technology may be adapted for use in mice through the utilization of higher frequency transducers, allowing for extremely high resolution imaging of the mouse pancreas. This technique is particularly well-suited to pancreas imaging due to the ultrasonographic properties of the normal mouse pancreas, easily accessible imaging planes for the head and tail of the mouse pancreas, and the comparative difficulty in imaging the mouse pancreas with other technologies. A suite of measurements tools is available to characterize the normal and diseased states of tissues. Of particular utility for cancer applications is the ability to use tomography to construct a 3D tumor volume, enabling longitudinal imaging studies to track tumor development, or response to therapies. Here, we describe a detailed method for performing high resolution ultrasound to detect and measure pancreatic lesions in a genetically engineered mouse model of pancreatic ductal using the VisualSonics Vevo2100 High Resolution Ultrasound System. The method includes preparation of the animal for imaging, 2D and 3D image acquisition, and post-acquisition analysis of tumors volumes. The combined procedure has been utilized extensively by our group and others for the preclinical evaluation of novel therapeutic agents in the treatment of pancreatic ductal adenocarcinoma (1–4). PMID:23359158

  9. High resolution surface plasmon microscopy for cell imaging

    NASA Astrophysics Data System (ADS)

    Argoul, F.; Monier, K.; Roland, T.; Elezgaray, J.; Berguiga, L.

    2010-04-01

    We introduce a new non-labeling high resolution microscopy method for cellular imaging. This method called SSPM (Scanning Surface Plasmon Microscopy) pushes down the resolution limit of surface plasmon resonance imaging (SPRi) to sub-micronic scales. High resolution SPRi is obtained by the surface plasmon lauching with a high numerical aperture objective lens. The advantages of SPPM compared to other high resolution SPRi's rely on three aspects; (i) the interferometric detection of the back reflected light after plasmon excitation, (ii) the twodimensional scanning of the sample for image reconstruction, (iii) the radial polarization of light, enhancing both resolution and sensitivity. This microscope can afford a lateral resolution of - 150 nm in liquid environment and - 200 nm in air. We present in this paper images of IMR90 fibroblasts obtained with SSPM in dried environment. Internal compartments such as nucleus, nucleolus, mitochondria, cellular and nuclear membrane can be recognized without labelling. We propose an interpretation of the ability of SSPM to reveal high index contrast zones by a local decomposition of the V (Z) function describing the response of the SSPM.

  10. Fabrication High Resolution Metrology Target By Step And Repeat Method

    NASA Astrophysics Data System (ADS)

    Dusa, Mircea

    1983-10-01

    Based on the photolithography process generally used to generate high resolution masks for semiconductor I.C.S, we found a very useful industrial application of laser technology.First, we have generated high resolution metrology targets which are used in industrial measurement laser interferometers as difra.ction gratings. Secondi we have generated these targets using step and repeat machine, with He-Ne laser interferometer controlled state, as a pattern generator, due to suitable computer programming.Actually, high resolution metrology target, means two chromium plates, one of which is called the" rule" the other one the "vernier". In Fig.1 we have the configuration of the rule and the vernier. The rule has a succesion of 3 μM lines generated as a difraction grating on a 4 x 4 inch chromium blank. The vernier has several exposed fields( areas) having 3 - 15 μm lines, fields placed on very precise position on the chromium blank surface. High degree of uniformity, tight CD tolerances, low defect density required by the targets, creates specialised problems during processing. Details of the processing, together with experimental results will be presented. Before we start to enter into process details, we have to point out that the dimensional requirements of the reticle target, are quite similar or perhaps more strict than LSI master casks. These requirements presented in Fig.2.

  11. Progress in high-resolution x-ray holographic microscopy

    SciTech Connect

    Jacobsen, C.; Kirz, J.; Howells, M.; McQuaid, K.; Rothman, S.; Feder, R.; Sayre, D.

    1987-07-01

    Among the various types of x-ray microscopes that have been demonstrated, the holographic microscope has had the largest gap between promise and performance. The difficulties of fabricating x-ray optical elements have led some to view holography as the most attractive method for obtaining the ultimate in high resolution x-ray micrographs; however, we know of no investigations prior to 1987 that clearly demonstrated submicron resolution in reconstructed images. Previous efforts suffered from problems such as limited resolution and dynamic range in the recording media, low coherent x-ray flux, and aberrations and diffraction limits in visible light reconstruction. We have addressed the recording limitations through the use of an undulator x-ray source and high-resolution photoresist recording media. For improved results in the readout and reconstruction steps, we have employed metal shadowing and transmission electron microscopy, along with numerical reconstruction techniques. We believe that this approach will allow holography to emerge as a practical method of high-resolution x-ray microscopy. 30 refs., 4 figs.

  12. High resolution ultrasonic spectroscopy system for nondestructive evaluation

    NASA Technical Reports Server (NTRS)

    Chen, C. H.

    1991-01-01

    With increased demand for high resolution ultrasonic evaluation, computer based systems or work stations become essential. The ultrasonic spectroscopy method of nondestructive evaluation (NDE) was used to develop a high resolution ultrasonic inspection system supported by modern signal processing, pattern recognition, and neural network technologies. The basic system which was completed consists of a 386/20 MHz PC (IBM AT compatible), a pulser/receiver, a digital oscilloscope with serial and parallel communications to the computer, an immersion tank with motor control of X-Y axis movement, and the supporting software package, IUNDE, for interactive ultrasonic evaluation. Although the hardware components are commercially available, the software development is entirely original. By integrating signal processing, pattern recognition, maximum entropy spectral analysis, and artificial neural network functions into the system, many NDE tasks can be performed. The high resolution graphics capability provides visualization of complex NDE problems. The phase 3 efforts involve intensive marketing of the software package and collaborative work with industrial sectors.

  13. Machine Learning Based Road Detection from High Resolution Imagery

    NASA Astrophysics Data System (ADS)

    Lv, Ye; Wang, Guofeng; Hu, Xiangyun

    2016-06-01

    At present, remote sensing technology is the best weapon to get information from the earth surface, and it is very useful in geo- information updating and related applications. Extracting road from remote sensing images is one of the biggest demand of rapid city development, therefore, it becomes a hot issue. Roads in high-resolution images are more complex, patterns of roads vary a lot, which becomes obstacles for road extraction. In this paper, a machine learning based strategy is presented. The strategy overall uses the geometry features, radiation features, topology features and texture features. In high resolution remote sensing images, the images cover a great scale of landscape, thus, the speed of extracting roads is slow. So, roads' ROIs are firstly detected by using Houghline detection and buffering method to narrow down the detecting area. As roads in high resolution images are normally in ribbon shape, mean-shift and watershed segmentation methods are used to extract road segments. Then, Real Adaboost supervised machine learning algorithm is used to pick out segments that contain roads' pattern. At last, geometric shape analysis and morphology methods are used to prune and restore the whole roads' area and to detect the centerline of roads.

  14. Modeling high-resolution broadband discourse in complex adaptive systems.

    PubMed

    Dooley, Kevin J; Corman, Steven R; McPhee, Robert D; Kuhn, Timothy

    2003-01-01

    Numerous researchers and practitioners have turned to complexity science to better understand human systems. Simulation can be used to observe how the microlevel actions of many human agents create emergent structures and novel behavior in complex adaptive systems. In such simulations, communication between human agents is often modeled simply as message passing, where a message or text may transfer data, trigger action, or inform context. Human communication involves more than the transmission of texts and messages, however. Such a perspective is likely to limit the effectiveness and insight that we can gain from simulations, and complexity science itself. In this paper, we propose a model of how close analysis of discursive processes between individuals (high-resolution), which occur simultaneously across a human system (broadband), dynamically evolve. We propose six different processes that describe how evolutionary variation can occur in texts-recontextualization, pruning, chunking, merging, appropriation, and mutation. These process models can facilitate the simulation of high-resolution, broadband discourse processes, and can aid in the analysis of data from such processes. Examples are used to illustrate each process. We make the tentative suggestion that discourse may evolve to the "edge of chaos." We conclude with a discussion concerning how high-resolution, broadband discourse data could actually be collected. PMID:12876447

  15. Inorganic WS2 nanotubes revealed atom by atom using ultra-high-resolution transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Bar Sadan, Maya; Heidelmann, Markus; Houben, Lothar; Tenne, Reshef

    2009-08-01

    The characterization of nanostructures to the atomic dimensions becomes more important, as devices based on a single particle are being produced. In particular, inorganic nanotubes were shown to host interesting properties making them excellent candidates for various devices. The WS2 nanotubes outperform the bulk in their mechanical properties offering numerous applications especially as part of high strength nanocomposites. In contrast, their electrical properties are less remarkable. The structure-function relationship can be investigated by aberration-corrected high-resolution transmission electron microscopy (HRTEM), which enables the insight into their atomic structure as well as performing spectroscopic measurements down to the atomic scale. In the present work, the deciphering of atomic structure and the chiral angle of the different shells in a multiwall WS2 nanotube is demonstrated. In certain cases, the helicity of the structure can also be deduced. Finally, first electron energy loss spectra (EELS) of a single tube are presented, acquired by a new acquisition technique that allows for high spatial resolution (denoted StripeSTEM). The measured band gap values correspond with the values found in literature for thin films, obtained by spectroscopic techniques, and are higher than the values resulting from STM measurements.

  16. Spectroscopic mode identification in gamma Doradus stars

    NASA Astrophysics Data System (ADS)

    Rylvia Pollard, Karen

    2015-08-01

    The MUSICIAN programme at the University of Canterbury has been successfully identifying frequencies and pulsation modes in many gamma Doradus stars using hundreds of precise, high resolution spectroscopic observations. This paper describes some of these frequency and mode identifications and the emerging patterns of the programme.

  17. HSSH revisited: The high-resolution Fourier transform spectrum of the ground state between 30 and 90 cm -1

    NASA Astrophysics Data System (ADS)

    Plummer, G. M.; Winnewisser, G.; Winnewisser, M.; Hahn, J.; Reinartz, K.

    1987-12-01

    The spectrum of disulfane (HSSH) between 30 and 380 cm -1 has been recorded in absorption using a new high-resolution Fourier transform spectrometer at the Justus-Liebig Universität Giessen. The spectrometer is briefly described, as well as procedures concerning the synthesis and handling of this quasi-stable species. A combined analysis of previous microwave data on the HSSH ground state and over 600 newly assigned lines between 30 and 90 cm -1 has been carried out, yielding the effective spectroscopic parameters of the Watson S-reduced Hamiltonian. Examples of the strikingly simple perpendicular spectrum of this nearly symmetric prolate rotor are presented.

  18. Metallicity determination of M dwarfs. High-resolution infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Lindgren, Sara; Heiter, Ulrike; Seifahrt, Andreas

    2016-02-01

    Context. Several new techniques to determine the metallicity of M dwarfs with better precision have been developed over the last decades. However, most of these studies were based on empirical methods. In order to enable detailed abundance analysis, standard methods established for warmer solar-like stars, i.e. model-dependent methods using fitting of synthetic spectra, still need to be used. Aims: In this work we continue the reliability confirmation and development of metallicity determinations of M dwarfs using high-resolution infrared spectra. The reliability was confirmed through analysis of M dwarfs in four binary systems with FGK dwarf companions and by comparison with previous optical studies of the FGK dwarfs. Methods: The metallicity determination was based on spectra taken in the J band (1.1-1.4 μm) with the CRIRES spectrograph. In this part of the infrared, the density of stellar molecular lines is limited, reducing the amount of blends with atomic lines enabling an accurate continuum placement. Lines of several atomic species were used to determine the stellar metallicity. Results: All binaries show excellent agreement between the derived metallicity of the M dwarf and its binary companion. Our results are also in good agreement with values found in the literature. Furthermore, we propose an alternative way to determine the effective temperature of M dwarfs of spectral types later than M2 through synthetic spectral fitting of the FeH lines in our observed spectra. Conclusions: We have confirmed that a reliable metallicity determination of M dwarfs can be achieved using high-resolution infrared spectroscopy. We also note that metallicites obtained with photometric metallicity calibrations available for M dwarfs only partly agree with the results we obtain from high-resolution spectroscopy. Based on data obtained at ESO-VLT, Paranal Observatory, Chile, Program ID 082.D-0838(A) and 084.D-1042(A).

  19. High-resolution extended source optical coherence tomography.

    PubMed

    Yu, Xiaojun; Liu, Xinyu; Chen, Si; Luo, Yuemei; Wang, Xianghong; Liu, Linbo

    2015-10-01

    High resolution optical coherence tomography (OCT) is capable of providing detailed tissue microstructures that are critical for disease diagnosis, yet its sensitivity is usually degraded since the system key components are typically not working at their respective center wavelengths. We developed a novel imaging system that achieves enhanced sensitivity without axial resolution degradation by the use of a spectrally encoded extended source (SEES) technique; it allows larger sample power without exceeding the maximum permissible exposure (MPE). In this study, we demonstrate a high-resolution extended source (HRES) OCT system, which is capable of providing a transverse resolution of 4.4 µm and an axial resolution of 2.1 µm in air with the SEES technique. We first theoretically show a sensitivity advantage of 6-dB of the HRES-OCT over that of its point source counterpart using numerical simulations, and then experimentally validate the applicability of the SEES technique to high-resolution OCT (HR-OCT) by comparing the HRES-OCT with an equivalent point-source system. In the HRES-OCT system, a dispersive prism was placed in the infinity space of the sample arm optics to spectrally extend the visual angle (angular subtense) of the light source to 10.3 mrad. This extended source allowed ~4 times larger MPE than its point source counterpart, which results in an enhancement of ~6 dB in sensitivity. Specifically, to solve the unbalanced dispersion between the sample and the reference arm optics, we proposed easy and efficient methods for system calibration and dispersion correction, respectively. With a maximum scanning speed reaching up to 60K A-lines/s, we further conducted imaging experiments with HRES-OCT using the human fingertip in vivo and the swine eye tissues ex vivo. Results demonstrate that the HRES-OCT is able to achieve significantly larger penetration depth than its conventional point source OCT counterpart.

  20. Proceedings of the workshop on high resolution computed microtomography (CMT)

    SciTech Connect

    1997-02-01

    The purpose of the workshop was to determine the status of the field, to define instrumental and computational requirements, and to establish minimum specifications required by possible users. The most important message sent by implementers was the remainder that CMT is a tool. It solves a wide spectrum of scientific problems and is complementary to other microscopy techniques, with certain important advantages that the other methods do not have. High-resolution CMT can be used non-invasively and non-destructively to study a variety of hierarchical three-dimensional microstructures, which in turn control body function. X-ray computed microtomography can also be used at the frontiers of physics, in the study of granular systems, for example. With high-resolution CMT, for example, three-dimensional pore geometries and topologies of soils and rocks can be obtained readily and implemented directly in transport models. In turn, these geometries can be used to calculate fundamental physical properties, such as permeability and electrical conductivity, from first principles. Clearly, use of the high-resolution CMT technique will contribute tremendously to the advancement of current R and D technologies in the production, transport, storage, and utilization of oil and natural gas. It can also be applied to problems related to environmental pollution, particularly to spilling and seepage of hazardous chemicals into the Earth's subsurface. Applications to energy and environmental problems will be far-ranging and may soon extend to disciplines such as materials science--where the method can be used in the manufacture of porous ceramics, filament-resin composites, and microelectronics components--and to biomedicine, where it could be used to design biocompatible materials such as artificial bones, contact lenses, or medication-releasing implants. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  1. High resolution Arctic snow observations: SnowNet (Invited)

    NASA Astrophysics Data System (ADS)

    Hiemstra, C. A.; Sturm, M.; Gelvin, A. B.; Berezovskaya, S.; Saari, S. P.; Finnegan, D. C.; Liston, G. E.

    2009-12-01

    Snow’s importance has become especially prominent in the terrestrial Arctic, where snow dominates the landscape most of the year and changes in snow arrival, depth, and melt have substantial energy budget and biotic consequences. Yet, the Arctic presents formidable challenges to accurate snow measurements because snow depths can vary greatly over relatively short distances (< 10 m). Snow distribution patterns in windy environments, such as the Arctic, arise from interactions among wind, snow, vegetation, and topography. In this environment, snow is transported easily and is retained in topographic depressions, near taller vegetation, and deposited on the lee sides of hills. Reliable observations of where snow exists in the Arctic landscape can be difficult to obtain, and estimates vary depending on where snow is sampled. Measurements tend to be widely distributed and sparse. In addition, observed changes in Arctic vegetation (e.g., increasing shrubs) and land surfaces (e.g., thermokarst) complicate matters further. In response to this critical shortcoming in Arctic snow measurements, we have developed a prototype observational network (SnowNet) that employs standard meteorological observations and high resolution topographic and vegetation data in concert with a comprehensive spatially-intensive snow measurement program. Our sites at Barrow (started 2007) and Imnavait Creek (started 2008), Alaska, feature frequent site visits and intensive spatial sampling of snow depths and densities and snow-surface topography. Both sites have high resolution (~20 cm) topographic and vegetation data layers generated from remote sensing and ground surveys. Further, we have been incorporating extremely high-resolution (< 10 cm) ground-based LiDAR snow and vegetation datasets that allow us to identify relationships among topography, vegetation, and snow in Arctic environments. In addition, we have collected tens of thousands of manual snow depths across our research sites. This

  2. Large-field high-resolution mosaic movies

    NASA Astrophysics Data System (ADS)

    Hammerschlag, Robert H.; Sliepen, Guus; Bettonvil, Felix C. M.; Jägers, Aswin P. L.; Sütterlin, Peter; Martin, Sara F.

    2012-09-01

    Movies with fields-of-view larger than normal for high-resolution telescopes will give a better understanding of processes on the Sun, such as filament and active region developments and their possible interactions. New active regions can influence, by their emergence, their environment to the extent of possibly serving as an igniter of the eruption of a nearby filament. A method to create a large field-of-view is to join several fields-of-view into a mosaic. Fields are imaged quickly one after another using fast telescope-pointing. Such a pointing cycle has been automated at the Dutch Open Telescope (DOT), a high-resolution solar telescope located on the Canary Island La Palma. The observer can draw with the computer mouse the desired total field in the guider-telescope image of the whole Sun. The guider telescope is equipped with an H-alpha filter and electronic enhancement of contrast in the image for good visibility of filaments and prominences. The number and positions of the subfields are calculated automatically and represented by an array of bright points indicating the subfield centers inside the drawn rectangle of the total field on the computer screen with the whole-sun image. When the exposures start the telescope repeats automatically the sequence of subfields. Automatic production of flats is also programmed including defocusing and fast motion over the solar disk of the image field. For the first time mosaic movies were programmed from stored information on automated telescope motions from one field to the next. The mosaic movies fill the gap between whole-sun images with limited resolution of synoptic telescopes including space instruments and small-field high-cadence movies of high-resolution solar telescopes.

  3. External cavity quantum cascade lasers for spectroscopic applications

    NASA Astrophysics Data System (ADS)

    Tsai, Tracy

    Mid-infrared spectroscopy is a powerful tool in monitoring trace gases for applications in atmospheric science, industrial processes, and homeland security. However, although current mid-infrared spectrometers (i.e. Fourier Transform Spectrometers or FTS) have a wide spectral range for multi-species and/or broadband molecular detection, they are too large with slow scan rates for practical use in high resolution spectroscopic applications. Quantum cascade lasers (QCLs) are compact, powerful, and efficient mid-infrared sources that can be quantum engineered with broadband gain profiles. Placed inside a diffraction grating based external cavity arrangement, they can easily provide >100 cm -1 frequency range with a spectral resolution limited by the laser linewidth (˜10-3 cm-1). Therefore, the external cavity quantum cascade laser (EC-QCL) provides both high spectral resolution and a wide frequency range. This thesis describes the study and development of EC-QCLs for spectroscopic applications. A new active wavelength method is presented to simplify the spectrometer system by allowing for reliable operation of the EC-QCL without additional wavelength diagnostic equipment. Typically, such equipment must be added to the spectrometer, because the grating equation is inaccurate in describing the EC-QCL output wavelength due to spectral misalignment of other wavelength-selective resonances in the EC-QCL. The active wavelength locking method automatically controls the EC-QCL wavelength, which improves the accuracy of the grating equation to 0.06 cm-1 and offers an ultimate 3σ precision of 0.042 cm-1. For industrial spectroscopic sensing applications in which scan rates must be on the order of kilohertz so that the turbulent gas system can be approximated as a quasi-stable one, a fast-wavelength-scanning folded EC-QCL design capable of 1 kHz scan rate is presented. Two modes of operation have been studied: 1) low resolution pulsed mode and 2) high resolution continuous

  4. Multispectral high-resolution hologram generation using orthographic projection images

    NASA Astrophysics Data System (ADS)

    Muniraj, I.; Guo, C.; Sheridan, J. T.

    2016-08-01

    We present a new method of synthesizing a digital hologram of three-dimensional (3D) real-world objects from multiple orthographic projection images (OPI). A high-resolution multiple perspectives of 3D objects (i.e., two dimensional elemental image array) are captured under incoherent white light using synthetic aperture integral imaging (SAII) technique and their OPIs are obtained respectively. The reference beam is then multiplied with the corresponding OPI and integrated to form a Fourier hologram. Eventually, a modified phase retrieval algorithm (GS/HIO) is applied to reconstruct the hologram. The principle is validated experimentally and the results support the feasibility of the proposed method.

  5. High-Resolution, Wide-Field-of-View Scanning Telescope

    NASA Technical Reports Server (NTRS)

    Sepulveda, Cesar; Wilson, Robert; Seshadri, Suresh

    2007-01-01

    A proposed telescope would afford high resolution over a narrow field of view (<0.10 ) while scanning over a total field of view nominally 16 wide without need to slew the entire massive telescope structure. The telescope design enables resolution of a 1-m-wide object in a 50- km-wide area of the surface of the Earth as part of a 200-km-wide area field of view monitored from an orbit at an altitude of 700 km. The conceptual design of this telescope could also be adapted to other applications both terrestrial and extraterrestrial in which there are requirements for telescopes that afford both wide- and narrow-field capabilities. In the proposed telescope, the scanning would be effected according to a principle similar to that of the Arecibo radio telescope, in which the primary mirror is stationary with respect to the ground and a receiver is moved across the focal surface of the primary mirror. The proposed telescope would comprise (1) a large spherical primary mirror that would afford high resolution over a narrow field of view and (2) a small displaceable optical relay segment that would be pivoted about the center of an aperture stop to effect the required scanning (see figure). Taken together, both comprise a scanning narrow-angle telescope that does not require slewing the telescope structure. In normal operation, the massive telescope structure would stare at a fixed location on the ground. The inner moveable relay optic would be pivoted to scan the narrower field of view over the wider one, making it possible to retain a fixed telescope orientation, while obtaining high-resolution images over multiple target areas during an interval of 3 to 4 minutes in the intended orbit. The pivoting relay segment of the narrow-angle telescope would include refractive and reflective optical elements, including two aspherical mirrors, to counteract the spherical aberration of the primary mirror. Overall, the combination of the primary mirror and the smaller relay optic

  6. High resolution upgrade of the ATF damping ring BPM system

    SciTech Connect

    Terunuma, N.; Urakawa, J.; Frisch, J.; May, J.; McCormick, D.; Nelson, J.; Seryi, A.; Smith, T.; Woodley, M.; Briegel, C.; Dysert, R.; /Fermilab

    2008-05-01

    A beam position monitor (BPM) upgrade at the KEK Accelerator Test Facility (ATF) damping ring has been accomplished in its first stage, carried out by a KEK/FNAL/SLAC collaboration under the umbrella of the global ILC R&D effort. The upgrade consists of a high resolution, high reproducibility read-out system, based on analog and digital downconversion techniques, digital signal processing, and also tests a new automatic gain error correction schema. The technical concept and realization, as well as preliminary results of beam studies are presented.

  7. High-Resolution Spectroscopy of Some Very Inactive Southern Stars

    NASA Astrophysics Data System (ADS)

    Villarreal, A.; King, J. R.; Soderblom, D. R.; Henry, T. J.

    2001-12-01

    We have obtained high-resolution echelle spectra of a few dozen solar-type stars that an earlier low resolution Ca II H & K survey suggested have modest evels of chromospheric activity. We present Hα -based chromospheric activity measures, binarity information, and Li abundances of the sample. As expected, our spectra: confirm the low levels of chromospheric activity; suggest that these objects are apparently single; indicate the stars have small projected rotational velocities; and yield low photospheric abundances of Li. This work was supported by NSF grant AST-0086576 to JRK.

  8. High resolution collimator system for X-ray detector

    DOEpatents

    Eberhard, Jeffrey W.; Cain, Dallas E.

    1987-01-01

    High resolution in an X-ray computerized tomography (CT) inspection system is achieved by using a collimator/detector combination to limit the beam width of the X-ray beam incident on a detector element to the desired resolution width. In a detector such as a high pressure Xenon detector array, a narrow tapered collimator is provided above a wide detector element. The collimator slits have any desired width, as small as a few mils at the top, the slit width is easily controlled, and they are fabricated on standard machines. The slit length determines the slice thickness of the CT image.

  9. Measurement of stratospheric HBr using high resolution far infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Carlotti, M.; Ade, P. A. R.; Carli, B.; Ciarpallini, P.; Cortesi, U.; Griffin, M. J.; Lepri, G.; Mencaraglia, F.; Murray, A. G.; Nolt, I. G.; Park, J. H.; Radostitz, J. V.

    Far infrared spectral features of HBr have been observed in the stratospheric emission spectrum using a balloon borne high resolution Fourier transform spectrometer equipped with a high sensitivity detector specially designed for this purpose. The value of 1.6±0.6 parts per trillion in volume for the HBr mixing ratio has been retrieved, from the global-fit analysis of 121 spectra, in the 25-36.5 km altitude range. The result is briefly compared with models and previous assessments.

  10. High-resolution speckle imaging through strong atmospheric turbulence.

    PubMed

    Hope, Douglas A; Jefferies, Stuart M; Hart, Michael; Nagy, James G

    2016-05-30

    We demonstrate that high-resolution imaging through strong atmospheric turbulence can be achieved by acquiring data with a system that captures short exposure ("speckle") images using a range of aperture sizes and then using a bootstrap multi-frame blind deconvolution restoration process that starts with the smallest aperture data. Our results suggest a potential paradigm shift in how we image through atmospheric turbulence. No longer should image acquisition and post processing be treated as two independent processes: they should be considered as intimately related.

  11. High-resolution Brillouin analysis of composite materials beams

    NASA Astrophysics Data System (ADS)

    London, Yosef; Antman, Yair; Silbiger, Maayan; Efraim, Liel; Froochzad, Avihay; Adler, Gadi; Levenberg, Eyal; Zadok, Avi

    2015-09-01

    High-resolution Brillouin optical correlation domain analysis of fibers embedded within beams of composite materials is performed with 4 cm resolution and 0.5 MHz sensitivity. Two new contributions are presented. First, analysis was carried out continuously over 30 hours following the production of a beam, observing heating during exothermal curing and buildup of residual strains. Second, the bending stiffness and Young's modulus of the composite beam were extracted based on distributed strain measurements, taken during a static three-point bending experiment. The calculated parameters were used to forecast the beam deflections. The latter were favorably compared against external displacement measurements.

  12. Coregistration of high-resolution Mars orbital images

    NASA Astrophysics Data System (ADS)

    Sidiropoulos, Panagiotis; Muller, Jan-Peter

    2015-04-01

    The systematic orbital imaging of the Martian surface started 4 decades ago from NASA's Viking Orbiter 1 & 2 missions, which were launched in August 1975, and acquired orbital images of the planet between 1976 and 1980. The result of this reconnaissance was the first medium-resolution (i.e. ≤ 300m/pixel) global map of Mars, as well as a variety of high-resolution images (reaching up to 8m/pixel) of special regions of interest. Over the last two decades NASA has sent 3 more spacecraft with onboard instruments for high-resolution orbital imaging: Mars Global Surveyor (MGS) having onboard the Mars Orbital Camera - Narrow Angle (MOC-NA), Mars Odyssey having onboard the Thermal Emission Imaging System - Visual (THEMIS-VIS) and the Mars Reconnaissance Orbiter (MRO) having on board two distinct high-resolution cameras, Context Camera (CTX) and High-Resolution Imaging Science Experiment (HiRISE). Moreover, ESA has the multispectral High resolution Stereo Camera (HRSC) onboard ESA's Mars Express with resolution up to 12.5m since 2004. Overall, this set of cameras have acquired more than 400,000 high-resolution images, i.e. with resolution better than 100m and as fine as 25 cm/pixel. Notwithstanding the high spatial resolution of the available NASA orbital products, their accuracy of areo-referencing is often very poor. As a matter of fact, due to pointing inconsistencies, usually form errors in roll attitude, the acquired products may actually image areas tens of kilometers far away from the point that they are supposed to be looking at. On the other hand, since 2004, the ESA Mars Express has been acquiring stereo images through the High Resolution Stereo Camera (HRSC), with resolution that is usually 12.5-25 metres per pixel. The achieved coverage is more than 64% for images with resolution finer than 20 m/pixel, while for ~40% of Mars, Digital Terrain Models (DTMs) have been produced with are co-registered with MOLA [Gwinner et al., 2010]. The HRSC images and DTMs

  13. A High Resolution Microprobe Study of EETA79001 Lithology C

    NASA Technical Reports Server (NTRS)

    Schrader, Christian M.; Cohen, B. A.; Donovan, J. J.; Vicenzi, E. P.

    2010-01-01

    Antarctic meteorite EETA79001 has received substantial attention for possibly containing a component of Martian soil in its impact glass (Lithology C) [1]. The composition of Martian soil can illuminate near-surface processes such as impact gardening [2] and hydrothermal and volcanic activity [3,4]. Impact melts in meteorites represent our most direct samples of Martian regolith. We present the initial findings from a high-resolution electron microprobe study of Lithology C from Martian meteorite EETA79001. As this study develops we aim to extract details of a potential soil composition and to examine Martian surface processes using elemental ratios and correlations.

  14. Homology Groups of High-Resolution Temporal Rainfall

    NASA Astrophysics Data System (ADS)

    Vásquez Aguilar, R.; Carsteanu, A. A.

    2015-12-01

    Using high-resolution temporal rainfall intensities from Iowa City, IA (IIHR, U of Iowa), we perform an analysis of the homology groups generated by data connectivity in state space, and attempt a qualitative interpretation of the first and second homology groups. Let us note that homology groups are generated, in the context of topological data analysis (TDA), by representing the data in n-dimensional state space and building a connectivity diagram according to the respective distances between the data points. Subsequently, the topological invariants of the resulting connected structures are being analyzed.

  15. High-resolution continuum observations of the Sun

    NASA Technical Reports Server (NTRS)

    Zirin, Harold

    1987-01-01

    The aim of the PFI or photometric filtergraph instrument is to observe the Sun in the continuum with as high resolution as possible and utilizing the widest range of wavelengths. Because of financial and political problems the CCD was eliminated so that the highest photometric accuracy is only obtainable by comparison with the CFS images. Presently there is a limitation to wavelengths above 2200 A due to the lack of sensitivity of untreated film below 2200 A. Therefore the experiment at present consists of a film camera with 1000 feet of film and 12 filters. The PFI experiments are outlined using only two cameras. Some further problems of the experiment are addressed.

  16. Design of a High Resolution Hexapod Positioning Mechanism

    NASA Technical Reports Server (NTRS)

    Britt, Jamie

    2001-01-01

    This paper describes the development of a high resolution, six-degree of freedom positioning mechanism. This mechanism, based on the Stewart platform concept, was designed for use with the Developmental Comparative Active Optics Telescope Testbed (DCATT), a ground-based technology testbed for the Next Generation Space Telescope (NGST). The mechanism provides active control to the DCATT telescope's segmented primary mirror. Emphasis is on design decisions and technical challenges. Significant issues include undesirable motion properties of PZT-inchworm actuators, testing difficulties, dimensional stability, and use of advanced composite materials. Supporting test data from prototype mechanisms is presented.

  17. Design of a High Resolution Hexapod Positioning Mechanism

    NASA Technical Reports Server (NTRS)

    Britt, Jamie; Brodeur, Stephen J. (Technical Monitor)

    2001-01-01

    This paper describes the development of a high resolution, six-degree of freedom positioning mechanism. This mechanism, based on the Stewart platform concept, was designed for use with the Developmental Comparative Active Optics Telescope Testbed (DCATT), a ground-based technology testbed for the Next Generation Space Telescope (NGST). The mechanism provides active control to the DCATT telescope's segmented primary mirror. Emphasis is on design decisions and technical challenges. Significant issues include undesirable motion properties of PZT-inchworm actuators, testing difficulties, dimensional stability and use of advanced composite materials. Supporting test data from prototype mechanisms is presented.

  18. High-resolution (30 m) lunar radar images

    NASA Technical Reports Server (NTRS)

    Zisk, Stanley H.

    1988-01-01

    New high-resolution radar images of the lunar surface are being produced using the Haystack Observatory range-Doppler radar system. The goals are to: investigate the decameter-scale properties of the lunar surface, as an aid in the understanding of the geophysical history of the moon; and to improve the understanding of the mechanisms of planetary radar backscattering, to aid in the interpretation of the coarser-resolution images which were and will be obtained from planetary probe missions and other earth-based observations.

  19. Saturn - high-resolution filtered image of Enceladus

    NASA Technical Reports Server (NTRS)

    1981-01-01

    This high-resolution filtered image of Enceladus was made from several images obtained Aug. 25 by Voyager 2 from a range of 119,000 kilometers (74,000 miles). It shows further surface detail on this Saturnian moon (also viewed in the accompanying release P-23955C/BW, S-2-50, imaged about the same time). Enceladus is seen to resemble Jupiter's Galilean satellite Ganymede, which is, however, about 10 times larger. Faintly visible here in 'Saturnshine' is the hemisphere turned away from the sun. The Voyager project is managed for NASA by the Jet Propulsion Laboratory, Pasadena, Calif.

  20. Alternative high-resolution lithographic technologies for optical applications

    NASA Astrophysics Data System (ADS)

    Zeitner, Uwe D.; Weichelt, Tina; Bourgin, Yannick; Kinder, Robert

    2016-03-01

    Modern optical applications have special demands on the lithographic fabrication technologies. This relates to the lateral shape of the structures as well as to their three dimensional surface profile. On the other hand optical nano-structures are often periodic which allows for the use of dedicated lithographic exposure principles. The paper briefly reviews actual developments in the field of optical nano-structure generation. Special emphasis will be given to two technologies: electron-beam lithography based on a flexible cell-projection method and the actual developments in diffractive mask aligner lithography. Both offer a cost effective fabrication alternative for high resolution structures or three-dimensional optical surface profiles.

  1. High-resolution satellite imagery for mesoscale meteorological studies

    NASA Technical Reports Server (NTRS)

    Johnson, David B.; Flament, Pierre; Bernstein, Robert L.

    1994-01-01

    In this article high-resolution satellite imagery from a variety of meteorological and environmental satellites is compared. Digital datasets from Geostationary Operational Environmental Satellite (GOES), National Oceanic and Atmospheric Administration (NOAA), Defense Meteorological Satellite Program (DMSP), Landsat, and Satellite Pour l'Observation de la Terre (SPOT) satellites were archived as part of the 1990 Hawaiian Rainband Project (HaRP) and form the basis of the comparisons. During HaRP, GOES geostationary satellite coverage was marginal, so the main emphasis is on the polar-orbiting satellites.

  2. High-resolution CT findings in pulmonary hyalinizing granuloma.

    PubMed

    Shibata, Yoshihiro; Kobayashi, Takeshi; Hattori, Yuki; Matsui, Osamu; Gabata, Toshifumi; Tamori, Shunichi; Minato, Hiroshi; Ohta, Yasuhiko

    2007-11-01

    A 47-year-old man with pulmonary hyalinizing granuloma is herein presented. The patient, whose chief complaint was a mild cough, was found by chest radiograph to have multiple bilateral nodules. Subsequent high-resolution computed tomography demonstrated multiple slightly irregular nodules, perinodular ground-glass opacity, peribronchovascular interstitial thickening, and cysts. A mild enlargement of systemic lymph nodes was also noted. Laboratory tests disclosed a slight elevation in the C-reactive protein, gamma-globulin, interleukin-6, and soluble interleukin-2 receptor levels. A histopathologic examination of the specimen yielded from a thoracoscopic lung biopsy resulted in a definite diagnosis of pulmonary hyalinizing granuloma. PMID:18043399

  3. Nowcasting for a high-resolution weather radar network

    NASA Astrophysics Data System (ADS)

    Ruzanski, Evan

    Short-term prediction (nowcasting) of high-impact weather events can lead to significant improvement in warnings and advisories and is of great practical importance. Nowcasting using weather radar reflectivity data has been shown to be particularly useful. The Collaborative Adaptive Sensing of the Atmosphere (CASA) radar network provides high-resolution reflectivity data amenable to producing valuable nowcasts. The high-resolution nature of CASA data requires the use of an efficient nowcasting approach, which necessitated the development of the Dynamic Adaptive Radar Tracking of Storms (DARTS) and sinc kernel-based advection nowcasting methodology. This methodology was implemented operationally in the CASA Distributed Collaborative Adaptive Sensing (DCAS) system in a robust and efficient manner necessitated by the high-resolution nature of CASA data and distributed nature of the environment in which the nowcasting system operates. Nowcasts up to 10 min to support emergency manager decision-making and 1--5 min to steer the CASA radar nodes to better observe the advecting storm patterns for forecasters and researchers are currently provided by this system. Results of nowcasting performance during the 2009 CASA IP experiment are presented. Additionally, currently state-of-the-art scale-based filtering methods were adapted and evaluated for use in the CASA DCAS to provide a scale-based analysis of nowcasting. DARTS was also incorporated in the Weather Support to Deicing Decision Making system to provide more accurate and efficient snow water equivalent nowcasts for aircraft deicing decision support relative to the radar-based nowcasting method currently used in the operational system. Results of an evaluation using data collected from 2007--2008 by the Weather Service Radar-1988 Doppler (WSR-88D) located near Denver, Colorado, and the National Center for Atmospheric Research Marshall Test Site near Boulder, Colorado, are presented. DARTS was also used to study the

  4. Clickstream data yields high-resolution maps of science

    SciTech Connect

    Bollen, Johan; Van De Sompel, Herbert; Hagberg, Aric; Bettencourt, Luis; Chute, Ryan; Rodriguez, Marko A; Balakireva, Lyudmila

    2009-01-01

    Intricate maps of science have been created from citation data to visualize the structure of scientific activity. However, most scientific publications are now accessed online. Scholarly web portals record detailed log data at a scale that exceeds the number of all existing citations combined. Such log data is recorded immediately upon publication and keeps track of the sequences of user requests (clickstreams) that are issued by a variety of users across many different domains. Given these advantagees of log datasets over citation data, we investigate whether they can produce high-resolution, more current maps of science.

  5. Design and test of a High-Resolution EUV Spectroheliometer

    NASA Technical Reports Server (NTRS)

    Berger, Thomas E.; Timothy, J. G.; Walker, Arthur B. C., Jr.; Kirby, Helen; Morgan, Jeffrey S.; Jain, Surendra K.; Saxena, Ajay K.; Bhattacharyya, Jagadish C.; Huber, Martin C. E.; Tondello, Giuseppe

    1992-01-01

    The HiRES High-Resolution EUV Spectroheliometer is a sounding rocket instrument yielding very high spatial, spectral, and temporal resolution images of the solar outer atmosphere, on the basis of a 45-cm Gregorian telescope feeding a normal-incidence stigmatic EUV spectrometer with imaging multianode microchannel-array detector system, as well as an IR spectrometer with imaging CCD detector system. Attention is given to the expected performance of this system, including the effects of vibrational misalignments due to the sounding rocket flight environment.

  6. High resolution infrared datasets useful for validating stratospheric models

    NASA Technical Reports Server (NTRS)

    Rinsland, Curtis P.

    1992-01-01

    An important objective of the High Speed Research Program (HSRP) is to support research in the atmospheric sciences that will improve the basic understanding of the circulation and chemistry of the stratosphere and lead to an interim assessment of the impact of a projected fleet of High Speed Civil Transports (HSCT's) on the stratosphere. As part of this work, critical comparisons between models and existing high quality measurements are planned. These comparisons will be used to test the reliability of current atmospheric chemistry models. Two suitable sets of high resolution infrared measurements are discussed.

  7. Computing with high-resolution upwind schemes for hyperbolic equations

    NASA Technical Reports Server (NTRS)

    Chakravarthy, S. R.; Osher, S.

    1985-01-01

    Computational aspects of modern high-resolution upwind finite-difference schemes for hyperbolic systems of conservation laws are examined. An operational unification is demonstrated for constructing a wide class of flux-difference-split and flux-split schemes based on the design principles underlying total variation diminishing (TVD) schemes. Consideration is also given to TVD scheme design by preprocessing, the extension of preprocessing and postprocessing approaches to general control volumes, the removal of expansion shocks and 'glitches', relaxation methods for implicit TVD schemes, and a new family of high-accuracy TVD schemes.

  8. Applied high resolution geophysical methods: Offshore geoengineering hazards

    SciTech Connect

    Trabant, P.K.

    1984-01-01

    This book is an examination of the purpose, methodology, equipment, and data interpretation of high-resolution geophysical methods, which are used to assess geological and manmade engineering hazards at offshore construction locations. It is a state-of-the-art review. Contents: 1. Introduction. 2. Maring geophysics, an overview. 3. Marine geotechnique, an overview. 4. Echo sounders. 5. Side scan sonar. 6. Subbottom profilers. 7. Seismic sources. 8. Single-channel seismic reflection systems. 9. Multifold acquisition and digital processing. 10. Marine magnetometers. 11. Marine geoengineering hazards. 12. Survey organization, navigation, and future developments. Appendix. Glossary. References. Index.

  9. High-resolution MR neurography of diffuse peripheral nerve lesions.

    PubMed

    Thawait, S K; Chaudhry, V; Thawait, G K; Wang, K C; Belzberg, A; Carrino, J A; Chhabra, A

    2011-09-01

    High-resolution MR imaging of peripheral nerves is becoming more common and practical with the increasing availability of 3T magnets. There are multiple reports of MR imaging of peripheral nerves in compression and entrapment neuropathies. However, there is a relative paucity of literature on MRN appearance of diffuse peripheral nerve lesions. We attempted to highlight the salient imaging features of myriad diffuse peripheral nerve disorders and imaging techniques for MRN. Using clinical and pathologically proved relevant examples, we present the MRN appearance of various types of diffuse peripheral nerve lesions, such as traumatic, inflammatory, infectious, hereditary, radiation-induced, neoplastic, and tumor variants. PMID:20966057

  10. High-resolution imaging of globular cluster cores

    NASA Technical Reports Server (NTRS)

    Weir, N.; Piotto, G.; Djorgovski, S.

    1990-01-01

    An approach based on the maximum entropy method aimed at increasing angular resolution to study globular cluster cores is presented. To perform the image restoration the Gull-Skilling (1989) MEMSYS-3 code for maximum entropy reconstruction of arbitrary data sets was used. This software was recently applied to restoration of ESO images of the R136 object in the core of the 30 Doradus nebula. It was demonstrated that the software made it possible to restore an image at subpixel spatial scales which facilitates the detection of very high-resolution structure in the restored image.

  11. High-Resolution Protein Structure Determination by Serial Femtosecond Crystallography

    PubMed Central

    Boutet, Sébastien; Lomb, Lukas; Williams, Garth J.; Barends, Thomas R. M.; Aquila, Andrew; Doak, R. Bruce; Weierstall, Uwe; DePonte, Daniel P.; Steinbrener, Jan; Shoeman, Robert L.; Messerschmidt, Marc; Barty, Anton; White, Thomas A.; Kassemeyer, Stephan; Kirian, Richard A.; Seibert, M. Marvin; Montanez, Paul A.; Kenney, Chris; Herbst, Ryan; Hart, Philip; Pines, Jack; Haller, Gunther; Gruner, Sol M.; Philipp, Hugh T.; Tate, Mark W.; Hromalik, Marianne; Koerner, Lucas J.; van Bakel, Niels; Morse, John; Ghonsalves, Wilfred; Arnlund, David; Bogan, Michael J.; Caleman, Carl; Fromme, Raimund; Hampton, Christina Y.; Hunter, Mark S.; Johansson, Linda C.; Katona, Gergely; Kupitz, Christopher; Liang, Mengning; Martin, Andrew V.; Nass, Karol; Redecke, Lars; Stellato, Francesco; Timneanu, Nicusor; Wang, Dingjie; Zatsepin, Nadia A.; Schafer, Donald; Defever, James; Neutze, Richard; Fromme, Petra; Spence, John C. H.; Chapman, Henry N.; Schlichting, Ilme

    2013-01-01

    Structure determination of proteins and other macromolecules has historically required the growth of high-quality crystals sufficiently large to diffract x-rays efficiently while withstanding radiation damage. We applied serial femtosecond crystallography (SFX) using an x-ray free-electron laser (XFEL) to obtain high-resolution structural information from microcrystals (less than 1 micrometer by 1 micrometer by 3 micrometers) of the well-characterized model protein lysozyme. The agreement with synchrotron data demonstrates the immediate relevance of SFX for analyzing the structure of the large group of difficult-to-crystallize molecules. PMID:22653729

  12. High-resolution protein structure determination by serial femtosecond crystallography.

    PubMed

    Boutet, Sébastien; Lomb, Lukas; Williams, Garth J; Barends, Thomas R M; Aquila, Andrew; Doak, R Bruce; Weierstall, Uwe; DePonte, Daniel P; Steinbrener, Jan; Shoeman, Robert L; Messerschmidt, Marc; Barty, Anton; White, Thomas A; Kassemeyer, Stephan; Kirian, Richard A; Seibert, M Marvin; Montanez, Paul A; Kenney, Chris; Herbst, Ryan; Hart, Philip; Pines, Jack; Haller, Gunther; Gruner, Sol M; Philipp, Hugh T; Tate, Mark W; Hromalik, Marianne; Koerner, Lucas J; van Bakel, Niels; Morse, John; Ghonsalves, Wilfred; Arnlund, David; Bogan, Michael J; Caleman, Carl; Fromme, Raimund; Hampton, Christina Y; Hunter, Mark S; Johansson, Linda C; Katona, Gergely; Kupitz, Christopher; Liang, Mengning; Martin, Andrew V; Nass, Karol; Redecke, Lars; Stellato, Francesco; Timneanu, Nicusor; Wang, Dingjie; Zatsepin, Nadia A; Schafer, Donald; Defever, James; Neutze, Richard; Fromme, Petra; Spence, John C H; Chapman, Henry N; Schlichting, Ilme

    2012-07-20

    Structure determination of proteins and other macromolecules has historically required the growth of high-quality crystals sufficiently large to diffract x-rays efficiently while withstanding radiation damage. We applied serial femtosecond crystallography (SFX) using an x-ray free-electron laser (XFEL) to obtain high-resolution structural information from microcrystals (less than 1 micrometer by 1 micrometer by 3 micrometers) of the well-characterized model protein lysozyme. The agreement with synchrotron data demonstrates the immediate relevance of SFX for analyzing the structure of the large group of difficult-to-crystallize molecules.

  13. High-resolution protein structure determination by serial femtosecond crystallography.

    PubMed

    Boutet, Sébastien; Lomb, Lukas; Williams, Garth J; Barends, Thomas R M; Aquila, Andrew; Doak, R Bruce; Weierstall, Uwe; DePonte, Daniel P; Steinbrener, Jan; Shoeman, Robert L; Messerschmidt, Marc; Barty, Anton; White, Thomas A; Kassemeyer, Stephan; Kirian, Richard A; Seibert, M Marvin; Montanez, Paul A; Kenney, Chris; Herbst, Ryan; Hart, Philip; Pines, Jack; Haller, Gunther; Gruner, Sol M; Philipp, Hugh T; Tate, Mark W; Hromalik, Marianne; Koerner, Lucas J; van Bakel, Niels; Morse, John; Ghonsalves, Wilfred; Arnlund, David; Bogan, Michael J; Caleman, Carl; Fromme, Raimund; Hampton, Christina Y; Hunter, Mark S; Johansson, Linda C; Katona, Gergely; Kupitz, Christopher; Liang, Mengning; Martin, Andrew V; Nass, Karol; Redecke, Lars; Stellato, Francesco; Timneanu, Nicusor; Wang, Dingjie; Zatsepin, Nadia A; Schafer, Donald; Defever, James; Neutze, Richard; Fromme, Petra; Spence, John C H; Chapman, Henry N; Schlichting, Ilme

    2012-07-20

    Structure determination of proteins and other macromolecules has historically required the growth of high-quality crystals sufficiently large to diffract x-rays efficiently while withstanding radiation damage. We applied serial femtosecond crystallography (SFX) using an x-ray free-electron laser (XFEL) to obtain high-resolution structural information from microcrystals (less than 1 micrometer by 1 micrometer by 3 micrometers) of the well-characterized model protein lysozyme. The agreement with synchrotron data demonstrates the immediate relevance of SFX for analyzing the structure of the large group of difficult-to-crystallize molecules. PMID:22653729

  14. Breast tumor segmentation in high resolution x-ray phase contrast analyzer based computed tomography

    SciTech Connect

    Brun, E.; Grandl, S.; Sztrókay-Gaul, A.; Gasilov, S.; Barbone, G.; Mittone, A.; Coan, P.; Bravin, A.

    2014-11-01

    Purpose: Phase contrast computed tomography has emerged as an imaging method, which is able to outperform present day clinical mammography in breast tumor visualization while maintaining an equivalent average dose. To this day, no segmentation technique takes into account the specificity of the phase contrast signal. In this study, the authors propose a new mathematical framework for human-guided breast tumor segmentation. This method has been applied to high-resolution images of excised human organs, each of several gigabytes. Methods: The authors present a segmentation procedure based on the viscous watershed transform and demonstrate the efficacy of this method on analyzer based phase contrast images. The segmentation of tumors inside two full human breasts is then shown as an example of this procedure’s possible applications. Results: A correct and precise identification of the tumor boundaries was obtained and confirmed by manual contouring performed independently by four experienced radiologists. Conclusions: The authors demonstrate that applying the watershed viscous transform allows them to perform the segmentation of tumors in high-resolution x-ray analyzer based phase contrast breast computed tomography images. Combining the additional information provided by the segmentation procedure with the already high definition of morphological details and tissue boundaries offered by phase contrast imaging techniques, will represent a valuable multistep procedure to be used in future medical diagnostic applications.

  15. High-resolution ultrasound imaging and noninvasive optoacoustic monitoring of blood variables in peripheral blood vessels

    NASA Astrophysics Data System (ADS)

    Petrov, Irene Y.; Petrov, Yuriy; Prough, Donald S.; Esenaliev, Rinat O.

    2011-03-01

    Ultrasound imaging is being widely used in clinics to obtain diagnostic information non-invasively and in real time. A high-resolution ultrasound imaging platform, Vevo (VisualSonics, Inc.) provides in vivo, real-time images with exceptional resolution (up to 30 microns) using high-frequency transducers (up to 80 MHz). Recently, we built optoacoustic systems for probing radial artery and peripheral veins that can be used for noninvasive monitoring of total hemoglobin concentration, oxyhemoglobin saturation, and concentration of important endogenous and exogenous chromophores (such as ICG). In this work we used the high-resolution ultrasound imaging system Vevo 770 for visualization of the radial artery and peripheral veins and acquired corresponding optoacoustic signals from them using the optoacoustic systems. Analysis of the optoacoustic data with a specially developed algorithm allowed for measurement of blood oxygenation in the blood vessels as well as for continuous, real-time monitoring of arterial and venous blood oxygenation. Our results indicate that: 1) the optoacoustic technique (unlike pure optical approaches and other noninvasive techniques) is capable of accurate peripheral venous oxygenation measurement; and 2) peripheral venous oxygenation is dependent on skin temperature and local hemodynamics. Moreover, we performed for the first time (to the best of our knowledge) a comparative study of optoacoustic arterial oximetry and a standard pulse oximeter in humans and demonstrated superior performance of the optoacoustic arterial oximeter, in particular at low blood flow.

  16. An Experimental High-Resolution Forecast System During the Vancouver 2010 Winter Olympic and Paralympic Games

    NASA Astrophysics Data System (ADS)

    Mailhot, J.; Milbrandt, J. A.; Giguère, A.; McTaggart-Cowan, R.; Erfani, A.; Denis, B.; Glazer, A.; Vallée, M.

    2014-01-01

    Environment Canada ran an experimental numerical weather prediction (NWP) system during the Vancouver 2010 Winter Olympic and Paralympic Games, consisting of nested high-resolution (down to 1-km horizontal grid-spacing) configurations of the GEM-LAM model, with improved geophysical fields, cloud microphysics and radiative transfer schemes, and several new diagnostic products such as density of falling snow, visibility, and peak wind gust strength. The performance of this experimental NWP system has been evaluated in these winter conditions over complex terrain using the enhanced mesoscale observing network in place during the Olympics. As compared to the forecasts from the operational regional 15-km GEM model, objective verification generally indicated significant added value of the higher-resolution models for near-surface meteorological variables (wind speed, air temperature, and dewpoint temperature) with the 1-km model providing the best forecast accuracy. Appreciable errors were noted in all models for the forecasts of wind direction and humidity near the surface. Subjective assessment of several cases also indicated that the experimental Olympic system was skillful at forecasting meteorological phenomena at high-resolution, both spatially and temporally, and provided enhanced guidance to the Olympic forecasters in terms of better timing of precipitation phase change, squall line passage, wind flow channeling, and visibility reduction due to fog and snow.

  17. Spectroscopically Unlocking Exoplanet Characteristics

    NASA Astrophysics Data System (ADS)

    Lewis, Nikole

    2016-05-01

    Spectroscopy plays a critical role in a number of areas of exoplanet research. The first exoplanets were detected by precisely measuring Doppler shifts in high resolution (R ~ 100,000) stellar spectra, a technique that has become known as the Radial Velocity (RV) method. The RV method provides critical constraints on exoplanet masses, but is currently limited to some degree by robust line shape predictions. Beyond the RV method, spectroscopy plays a critical role in the characterization of exoplanets beyond their mass and radius. The Hubble Space Telescope has spectroscopically observed the atmospheres of exoplanets that transit their host stars as seen from Earth giving us key insights into atmospheric abundances of key atomic and molecular species as well as cloud optical properties. Similar spectroscopic characterization of exoplanet atmospheres will be carried out at higher resolution (R ~ 100-3000) and with broader wavelength coverage with the James Webb Space Telescope. Future missions such as WFIRST that seek to the pave the way toward the detection and characterization of potentially habitable planets will have the capability of directly measuring the spectra of exoplanet atmospheres and potentially surfaces. Our ability to plan for and interpret spectra from exoplanets relies heavily on the fidelity of the spectroscopic databases available and would greatly benefit from further laboratory and theoretical work aimed at optical properties of atomic, molecular, and cloud/haze species in the pressure and temperature regimes relevant to exoplanet atmospheres.

  18. Evaluation of a high resolution silicon PET insert module

    NASA Astrophysics Data System (ADS)

    Grkovski, Milan; Brzezinski, Karol; Cindro, Vladimir; Clinthorne, Neal H.; Kagan, Harris; Lacasta, Carlos; Mikuž, Marko; Solaz, Carles; Studen, Andrej; Weilhammer, Peter; Žontar, Dejan

    2015-07-01

    Conventional PET systems can be augmented with additional detectors placed in close proximity of the region of interest. We developed a high resolution PET insert module to evaluate the added benefit of such a combination. The insert module consists of two back-to-back 1 mm thick silicon sensors, each segmented into 1040 1 mm2 pads arranged in a 40 by 26 array. A set of 16 VATAGP7.1 ASICs and a custom assembled data acquisition board were used to read out the signal from the insert module. Data were acquired in slice (2D) geometry with a Jaszczak phantom (rod diameters of 1.2-4.8 mm) filled with 18F-FDG and the images were reconstructed with ML-EM method. Both data with full and limited angular coverage from the insert module were considered and three types of coincidence events were combined. The ratio of high-resolution data that substantially improves quality of the reconstructed image for the region near the surface of the insert module was estimated to be about 4%. Results from our previous studies suggest that such ratio could be achieved at a moderate technological expense by using an equivalent of two insert modules (an effective sensor thickness of 4 mm).

  19. High resolution 3D fluorescence tomography using ballistic photons

    NASA Astrophysics Data System (ADS)

    Zheng, Jie; Nouizi, Farouk; Cho, Jaedu; Kwong, Jessica; Gulsen, Gultekin

    2015-03-01

    We are developing a ballistic-photon based approach for improving the spatial resolution of fluorescence tomography using time-domain measurements. This approach uses early photon information contained in measured time-of-fight distributions originating from fluorescence emission. The time point spread functions (TPSF) from both excitation light and emission light are acquired with gated single photon Avalanche detector (SPAD) and time-correlated single photon counting after a short laser pulse. To determine the ballistic photons for reconstruction, the lifetime of the fluorophore and the time gate from the excitation profiles will be used for calibration, and then the time gate of the fluorescence profile can be defined by a simple time convolution. By mimicking first generation CT data acquisition, the sourcedetector pair will translate across and also rotate around the subject. The measurement from each source-detector position will be reshaped into a histogram that can be used by a simple back-projection algorithm in order to reconstruct high resolution fluorescence images. Finally, from these 2D sectioning slides, a 3D inclusion can be reconstructed accurately. To validate the approach, simulation of light transport is performed for biological tissue-like media with embedded fluorescent inclusion by solving the diffusion equation with Finite Element Method using COMSOL Multiphysics simulation. The reconstruction results from simulation studies have confirmed that this approach drastically improves the spatial resolution of fluorescence tomography. Moreover, all the results have shown the feasibility of this technique for high resolution small animal imaging up to several centimeters.

  20. Very High Resolution Simulations of Compressible, Turbulent Flows

    SciTech Connect

    Woodward, P R; Porter, D H; Sytine, I; Anderson, S E; Mirin, A A; Curtis, B C; Cohen, R H; Dannevik, W P; Dimits, A M; Eliason, D E; Winkler, K-H; Hodson, S W

    2001-04-26

    The steadily increasing power of supercomputing systems is enabling very high resolution simulations of compressible, turbulent flows in the high Reynolds number limit, which is of interest in astrophysics as well as in several other fluid dynamical applications. This paper discusses two such simulations, using grids of up to 8 billion cells. In each type of flow, convergence in a statistical sense is observed as the mesh is refined. The behavior of the convergent sequences indicates how a subgrid-scale model of turbulence could improve the treatment of these flows by high-resolution Euler schemes like PPM. The best resolved case, a simulation of a Richtmyer-Meshkov mixing layer in a shock tube experiment, also points the way toward such a subgrid-scale model. Analysis of the results of that simulation indicates a proportionality relationship between the energy transfer rate from large to small motions and the determinant of the deviatoric symmetric strain as well as the divergence of the velocity for the large-scale field.

  1. High-Resolution Mars Camera Test Image of Moon (Infrared)

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This crescent view of Earth's Moon in infrared wavelengths comes from a camera test by NASA's Mars Reconnaissance Orbiter spacecraft on its way to Mars. The mission's High Resolution Imaging Science Experiment camera took the image on Sept. 8, 2005, while at a distance of about 10 million kilometers (6 million miles) from the Moon. The dark feature on the right is Mare Crisium. From that distance, the Moon would appear as a star-like point of light to the unaided eye. The test verified the camera's focusing capability and provided an opportunity for calibration. The spacecraft's Context Camera and Optical Navigation Camera also performed as expected during the test.

    The Mars Reconnaissance Orbiter, launched on Aug. 12, 2005, is on course to reach Mars on March 10, 2006. After gradually adjusting the shape of its orbit for half a year, it will begin its primary science phase in November 2006. From the mission's planned science orbit about 300 kilometers (186 miles) above the surface of Mars, the high resolution camera will be able to discern features as small as one meter or yard across.

  2. Unsupervised Feature Learning for High-Resolution Satellite Image Classification

    SciTech Connect

    Cheriyadat, Anil M

    2013-01-01

    The rich data provided by high-resolution satellite imagery allow us to directly model geospatial neighborhoods by understanding their spatial and structural patterns. In this paper we explore an unsupervised feature learning approach to model geospatial neighborhoods for classification purposes. While pixel and object based classification approaches are widely used for satellite image analysis, often these approaches exploit the high-fidelity image data in a limited way. In this paper we extract low-level features to characterize the local neighborhood patterns. We exploit the unlabeled feature measurements in a novel way to learn a set of basis functions to derive new features. The derived sparse feature representation obtained by encoding the measured features in terms of the learned basis function set yields superior classification performance. We applied our technique on two challenging image datasets: ORNL dataset representing one-meter spatial resolution satellite imagery representing five land-use categories and, UCMERCED dataset consisting of 21 different categories representing sub-meter resolution overhead imagery. Our results are highly promising and, in the case of UCMERCED dataset we outperform the best results obtained for this dataset. We show that our feature extraction and learning methods are highly effective in developing a detection system that can be used to automatically scan large-scale high-resolution satellite imagery for detecting large-facility.

  3. Differentiation of Staphylococcus spp. by high-resolution melting analysis.

    PubMed

    Slany, Michal; Vanerkova, Martina; Nemcova, Eva; Zaloudikova, Barbora; Ruzicka, Filip; Freiberger, Tomas

    2010-12-01

    High-resolution melting analysis (HRMA) is a fast (post-PCR) high-throughput method to scan for sequence variations in a target gene. The aim of this study was to test the potential of HRMA to distinguish particular bacterial species of the Staphylococcus genus even when using a broad-range PCR within the 16S rRNA gene where sequence differences are minimal. Genomic DNA samples isolated from 12 reference staphylococcal strains (Staphylococcus aureus, Staphylococcus capitis, Staphylococcus caprae, Staphylococcus epidermidis, Staphylococcus haemolyticus, Staphylococcus hominis, Staphylococcus intermedius, Staphylococcus saprophyticus, Staphylococcus sciuri, Staphylococcus simulans, Staphylococcus warneri, and Staphylococcus xylosus) were subjected to a real-time PCR amplification of the 16S rRNA gene in the presence of fluorescent dye EvaGreen™, followed by HRMA. Melting profiles were used as molecular fingerprints for bacterial species differentiation. HRMA of S. saprophyticus and S. xylosus resulted in undistinguishable profiles because of their identical sequences in the analyzed 16S rRNA region. The remaining reference strains were fully differentiated either directly or via high-resolution plots obtained by heteroduplex formation between coamplified PCR products of the tested staphylococcal strain and phylogenetically unrelated strain.

  4. Providing Internet Access to High-Resolution Mars Images

    NASA Technical Reports Server (NTRS)

    Plesea, Lucian

    2008-01-01

    The OnMars server is a computer program that provides Internet access to high-resolution Mars images, maps, and elevation data, all suitable for use in geographical information system (GIS) software for generating images, maps, and computational models of Mars. The OnMars server is an implementation of the Open Geospatial Consortium (OGC) Web Map Service (WMS) server. Unlike other Mars Internet map servers that provide Martian data using an Earth coordinate system, the OnMars WMS server supports encoding of data in Mars-specific coordinate systems. The OnMars server offers access to most of the available high-resolution Martian image and elevation data, including an 8-meter-per-pixel uncontrolled mosaic of most of the Mars Global Surveyor (MGS) Mars Observer Camera Narrow Angle (MOCNA) image collection, which is not available elsewhere. This server can generate image and map files in the tagged image file format (TIFF), Joint Photographic Experts Group (JPEG), 8- or 16-bit Portable Network Graphics (PNG), or Keyhole Markup Language (KML) format. Image control is provided by use of the OGC Style Layer Descriptor (SLD) protocol. The OnMars server also implements tiled WMS protocol and super-overlay KML for high-performance client application programs.

  5. Providing Internet Access to High-Resolution Lunar Images

    NASA Technical Reports Server (NTRS)

    Plesea, Lucian

    2008-01-01

    The OnMoon server is a computer program that provides Internet access to high-resolution Lunar images, maps, and elevation data, all suitable for use in geographical information system (GIS) software for generating images, maps, and computational models of the Moon. The OnMoon server implements the Open Geospatial Consortium (OGC) Web Map Service (WMS) server protocol and supports Moon-specific extensions. Unlike other Internet map servers that provide Lunar data using an Earth coordinate system, the OnMoon server supports encoding of data in Moon-specific coordinate systems. The OnMoon server offers access to most of the available high-resolution Lunar image and elevation data. This server can generate image and map files in the tagged image file format (TIFF) or the Joint Photographic Experts Group (JPEG), 8- or 16-bit Portable Network Graphics (PNG), or Keyhole Markup Language (KML) format. Image control is provided by use of the OGC Style Layer Descriptor (SLD) protocol. Full-precision spectral arithmetic processing is also available, by use of a custom SLD extension. This server can dynamically add shaded relief based on the Lunar elevation to any image layer. This server also implements tiled WMS protocol and super-overlay KML for high-performance client application programs.

  6. High resolution mapping of total deposition of acidifying pollutants

    NASA Astrophysics Data System (ADS)

    de Vos, Thierri; Zhang, Leiming

    2012-09-01

    A framework has been developed to estimate dry and wet deposition over Southern Belgium for a variety of acidifying substances on a 5 × 5 km2 grid. Concentrations of different compounds in the atmosphere or in the precipitation are provided by the measurement networks (both stations and gauges) and are interpolated over Southern Belgium. Dry deposition velocities are calculated using local meteorology and land use information, following the approach described in Zhang et al. (2001, 2003). Local precipitation is provided by merged radar-gauge observations. This is the first high resolution framework for Southern Belgium computing both time- and space-dependent deposition, using a modified kriging interpolation method (for SO2 and NO2), as well as radar-based precipitation. Estimated dry and wet depositions are compared with long range transport (LRT) model results, based on the European emission inventories. Although a good agreement is observed between our results and LRT model results on the annual totals averaged over Southern Belgium, the extent of agreement for the spatial variability of the annual deposition differs significantly from one pollutant to another. This new framework provides consistent high resolution maps for several pollutants, while improving the mapping of dry and wet deposition in Southern Belgium, in order to assess critical loads exceedances.

  7. Invariance Techniques And High-Resolution Null Steering

    NASA Astrophysics Data System (ADS)

    Roy, R.; Kailath, T.

    1988-02-01

    Over the past several decades, a significant amount of research has been performed in the area of high-resolution signal parameter estimation. It is a problem of significance in many signal processing applications including direction-of-arrival estimation in which the locations of multiple sources whose radiation is received by an array of sensors are sought. Much of the research has focussed on approaches based on the formation of optimal weight or copy vectors, procedures derived from the conventional practice of beamforming. This class of approached to parameter estimation problems has come to be known as high-resolution spectral analysis/beamforming since the introduction of the maximum entropy (MEM) method by Burg in 1967, and the maximum-likelihood (ML) method by Capon in 1969. These techniques provide increased resolution and accuracy over their predecessors (including conventional beamforming, but suffer from model mismatch. MUSIC and ESPRIT are recently developed geometric techniques that exploit the underlying model and thereby achieve significant improvements in performance. In this paper, these techniques are summarized. From basic physical principles, it is shown that ESPRIT is actually a multidimensional null steering algorithm, an interpretation with significant intuitive appeal. Finally, optimal signal copy vectors that naturally arise from the algorithm are presented, and their properties as beamforming vectors for this class of problems are discussed.

  8. High resolution three-dimensional prostate ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Li, Yinbo; Patil, Abhay; Hossack, John A.

    2006-03-01

    This work reports on the application of ultrasound elastography to prostate cancer detection using a high resolution three-dimensional (3D) ultrasound imaging system. The imaging was performed at a relatively high frequency (14 MHz), yielding very fine resolution that is optimal for prostate ultrasound imaging. The fine resolution achieved aids in locating smaller lesions than are normally detectable. Elasticity was measured with a quantitative and automatically controlled "Synthetic Digital Rectal Examination (SDRE)" wherein a smoothly increasing force was applied by injecting water, controlled by an electronic syringe pump, into a latex cover over the transrectal transducer. The lesion identified as stiffened tissue was visually enhanced by colorizing and superimposing it over the conventional B-mode image. Experimental results using a tissue-mimicking phantom demonstrated that the reconstruction accuracy of the I-Beam transducer resulted in less than 15% volumetric error. Thus, this high resolution 3D prostate elastography is possible and may provide reliable and accurate determination of the size and the location of cancers, which may result in improved specificity and sensitivity of cancer detection.

  9. High-resolution diffraction grating interferometric transducer of linear displacements

    NASA Astrophysics Data System (ADS)

    Shang, Ping; Xia, Haojie; Fei, Yetai

    2016-01-01

    A high-resolution transducer of linear displacements is presented. The system is based on semiconductor laser illumination and a diffraction grating applied as a length master. The theory of the optical method is formulated using Doppler description. The relationship model among the interference strips, measurement errors, grating deflection around the X, Y and Z axes and translation along the Z axis is built. The grating interference strips' direction and space is not changed with movement along the X (direction of grating movement), Y (direction of grating line), Z axis, and the direction and space has a great effect when rotating around the X axis. Moreover the space is little affected by deflection around the Z axis however the direction is changed dramatically. In addition, the strips' position shifted rightward or downwards respectively for deflection around the X or Y axis. Because the emitted beams are separated on the grating plane, the tilt around the X axis error of the stage during motion will lead to the optical path difference of the two beams resulting in phase shift. This study investigates the influence of the tilt around the X axis error. Experiments show that after yaw error compensation, the high-resolution diffraction grating interferometric transducer readings can be significantly improved. The error can be reduced from +/-80 nm to +/-30 nm in maximum.

  10. High-Resolution Transmission Electron Microscopy Using Negative Spherical Aberration

    NASA Astrophysics Data System (ADS)

    Jia, Chun-Lin; Lentzen, Markus

    2004-04-01

    A novel imaging mode for high-resolution transmission electron microscopy is described. It is based on the adjustment of a negative value of the spherical aberration CS of the objective lens of a transmission electron microscope equipped with a multipole aberration corrector system. Negative spherical aberration applied together with an overfocus yields high-resolution images with bright-atom contrast. Compared to all kinds of images taken in conventional transmission electron microscopes, where the then unavoidable positive spherical aberration is combined with an underfocus, the contrast is dramatically increased. This effect can only be understood on the basis of a full nonlinear imaging theory. Calculations show that the nonlinear contrast contributions diminish the image contrast relative to the linear image for a positive-CS setting whereas they reinforce the image contrast relative to the linear image for a negative-CS setting. The application of the new mode to the imaging of oxygen in SrTiO3 and YBa2Cu3O7 demonstrates the benefit to materials science investigations. It allows us to image directly, without further image processing, strongly scattering heavy-atom columns together with weakly scattering light-atom columns.

  11. High resolution multiplexed functional imaging in live embyros (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Xu, Dongli; Peng, Leilei

    2016-03-01

    Optical projection tomography (OPT) creates isotropic 3D imaging of tissue. Two approaches exist today: Wide-field OPT illuminates the entire sample and acquires projection images with a camera; Scanning-laser optical tomography (SLOT) generates the projection with a moving laser beam and point detector. SLOT has superior light collecting efficiency than wide-field optical tomography, making it ideal for tissue fluorescence imaging. Regardless the approach, traditional OPT has to compromise between the resolution and the depth of view. In traditional SLOT, the focused Gaussian beam diverges quickly from the focused plane, making it impossible to achieve high resolution imaging through a large volume specimen. We report using Bessel beam instead of Gaussian beam to perform SLOT. By illuminating samples with a narrow Bessel beam throughout an extended depth, high-resolution projection images can be measured in large volume. Under Bessel illumination, the projection image contains signal from annular-rings of the Bessel beam. Traditional inverse Radon transform of these projections will result in ringing artifacts in reconstructed imaging. Thus a modified 3D filtered back projection algorithm is developed to perform tomography reconstructing of Bessel-illuminated projection images. The resulting 3D imaging is free of artifact and achieved cellular resolution in extended sample volume. The system is applied to in-vivo imaging of transgenic Zebrafish embryos. Results prove Bessel SLOT a promising imaging method in development biology research.

  12. Mapping Crop Yield and Sow Date Using High Resolution Imagery

    NASA Astrophysics Data System (ADS)

    Royal, K.

    2015-12-01

    Keitasha Royal, Meha Jain, Ph.D., David Lobell, Ph.D Mapping Crop Yield and Sow Date Using High Resolution ImageryThe use of satellite imagery in agriculture is becoming increasingly more significant and valuable. Due to the emergence of new satellites, such as Skybox, these satellites provide higher resolution imagery (e.g 1m) therefore improving the ability to map smallholder agriculture. For the smallholder farm dominated area of northern India, Skybox high-resolution satellite imagery can aid in understanding how to improve farm yields. In particular, we are interested in mapping winter wheat in India, as this region produces approximately 80% of the country's wheat crop, which is important given that wheat is a staple crop that provides approximately 20% of household calories. In northeast India, the combination of increased heat stress, limited irrigation access, and the difficulty for farmers to access advanced farming technologies results in farmers only producing about 50% of their potential crop yield. The use of satellite imagery can aid in understanding wheat yields through time and help identify ways to increase crop yields in the wheat belt of India. To translate Skybox satellite data into meaningful information about wheat fields, we examine vegetation indices, such as the normalized difference vegetation index (NDVI), to measure the "greenness" of plants to help determine the health of the crops. We test our ability to predict crop characteristics, like sow date and yield, using vegetation indices of 59 fields for which we have field data in Bihar, India.

  13. High-resolution time-frequency distributions for fall detection

    NASA Astrophysics Data System (ADS)

    Amin, Moeness G.; Zhang, Yimin D.; Boashash, Boualem

    2015-05-01

    In this paper, we examine the role of high-resolution time-frequency distributions (TFDs) of radar micro-Doppler signatures for fall detection. The work supports the recent and rising interest in using emerging radar technology for elderly care and assisted living. Spectrograms have been the de facto joint-variable signal representation, depicting the signal power in both time and frequency. Although there have been major advances in designing quadratic TFDs which are superior to spectrograms in terms of detailing the local signal behavior, the contributions of these distributions in the area of human motion classifications and their offerings in enhanced feature extractions have not yet been properly evaluated. The main purpose of this paper is to show the effect of using high-resolution TFD kernels, in lieu of spectrogram, on fall detection. We focus on the extended modified B-distribution (EMBD) and exploit the level of details it provides as compared with the coarse and smoothed time-frequency signatures offered by spectrograms.

  14. A miniature high-resolution accelerometer utilizing electron tunneling

    NASA Technical Reports Server (NTRS)

    Rockstad, Howard K.; Kenny, T. W.; Reynolds, J. K.; Kaiser, W. J.; Vanzandt, T. R.; Gabrielson, Thomas B.

    1992-01-01

    New methods have been developed to implement high-resolution position sensors based on electron tunneling. These methods allow miniaturization while utilizing the position sensitivity of electron tunneling to give high resolution. A single-element tunneling accelerometer giving a displacement resolution of 0.002 A/sq rt Hz at 10 Hz, corresponding to an acceleration resolution of 5 x 10 exp -8 g/sq rt Hz, is described. A new dual-element tunneling structure which overcomes the narrow bandwidth limitations of a single-element structure is described. A sensor with an operating range of 5 Hz to 10 kHz, which can have applications as an acoustic sensor, is discussed. Noise is analyzed for fundamental thermal vibration of the suspended masses and is compared to electronic noise. It is shown that miniature tunnel accelerometers can achieve resolution such that thermal noise in the suspended masses is the dominant cause of the resolution limit. With a proof mass of order 100 mg, noise analysis predicts limiting resolutions approaching 10 exp -9 g/sq rt Hz in a 300 Hz band and 10 exp -8 g/sq rt Hz at 1 kHz.

  15. SPIDER Progress Towards High Resolution Correlated Fission Product Data

    NASA Astrophysics Data System (ADS)

    Shields, Dan; Meierbachtol, Krista; Tovesson, Fredrik; Arnold, Charles; Blackeley, Rick; Bredeweg, Todd; Devlin, Matt; Hecht, Adam; Jandel, Marian; Jorgenson, Justin; Nelson, Ron; White, Morgan; Spider Team

    2014-09-01

    The SPIDER detector (SPectrometer for Ion DEtermination in fission Research) is under development with the goal of obtaining high-resolution, high-efficiency, correlated fission product data needed for many applications including the modeling of next generation nuclear reactors, stockpile stewardship, and the fundamental understanding of the fission process. SPIDER simultaneously measures velocity and energy of both fission products to calculate fission product yields (FPYs), neutron multiplicity (ν), and total kinetic energy (TKE). A detailed description of the prototype SPIDER detector components will be presented. Characterization measurements with alpha and spontaneous fission sources will also be discussed. LA-UR-14-24875. The SPIDER detector (SPectrometer for Ion DEtermination in fission Research) is under development with the goal of obtaining high-resolution, high-efficiency, correlated fission product data needed for many applications including the modeling of next generation nuclear reactors, stockpile stewardship, and the fundamental understanding of the fission process. SPIDER simultaneously measures velocity and energy of both fission products to calculate fission product yields (FPYs), neutron multiplicity (ν), and total kinetic energy (TKE). A detailed description of the prototype SPIDER detector components will be presented. Characterization measurements with alpha and spontaneous fission sources will also be discussed. LA-UR-14-24875. This work is in part supported by LANL Laboratory Directed Research and Development Projects 20110037DR and 20120077DR.

  16. High-resolution electron microscopy of advanced materials

    SciTech Connect

    Mitchell, T.E.; Kung, H.H.; Sickafus, K.E.; Gray, G.T. III; Field, R.D.; Smith, J.F.

    1997-11-01

    This final report chronicles a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The High-Resolution Electron Microscopy Facility has doubled in size and tripled in quality since the beginning of the three-year period. The facility now includes a field-emission scanning electron microscope, a 100 kV field-emission scanning transmission electron microscope (FE-STEM), a 300 kV field-emission high-resolution transmission electron microscope (FE-HRTEM), and a 300 kV analytical transmission electron microscope. A new orientation imaging microscope is being installed. X-ray energy dispersive spectrometers for chemical analysis are available on all four microscopes; parallel electron energy loss spectrometers are operational on the FE-STEM and FE-HRTEM. These systems enable evaluation of local atomic bonding, as well as chemical composition in nanometer-scale regions. The FE-HRTEM has a point-to-point resolution of 1.6 {angstrom}, but the resolution can be pushed to its information limit of 1 {angstrom} by computer reconstruction of a focal series of images. HRTEM has been used to image the atomic structure of defects such as dislocations, grain boundaries, and interfaces in a variety of materials from superconductors and ferroelectrics to structural ceramics and intermetallics.

  17. Wide-field, high-resolution Fourier ptychographic microscopy

    PubMed Central

    Zheng, Guoan; Horstmeyer, Roarke; Yang, Changhuei

    2014-01-01

    In this article, we report an imaging method, termed Fourier ptychographic microscopy (FPM), which iteratively stitches together a number of variably illuminated, low-resolution intensity images in Fourier space to produce a wide-field, high-resolution complex sample image. By adopting a wavefront correction strategy, the FPM method can also correct for aberrations and digitally extend a microscope’s depth-of-focus beyond the physical limitations of its optics. As a demonstration, we built a microscope prototype with a resolution of 0.78 μm, a field-of-view of ~120 mm2, and a resolution-invariant depth-of-focus of 0.3 mm (characterized at 632 nm). Gigapixel colour images of histology slides verify FPM’s successful operation. The reported imaging procedure transforms the general challenge of high-throughput, high-resolution microscopy from one that is coupled to the physical limitations of the system’s optics to one that is solvable through computation. PMID:25243016

  18. Synthetic vision helicopter flights using high resolution LIDAR terrain data

    NASA Astrophysics Data System (ADS)

    Sindlinger, A.; Meuter, M.; Barraci, N.; Güttler, M.; Klingauf, U.; Schiefele, J.; Howland, D.

    2006-05-01

    Helicopters are widely used for operations close to terrain such as rescue missions; therefore all-weather capabilities are highly desired. To minimize or even avoid the risk of collision with terrain and obstacles, Synthetic Vision Systems (SVS) could be used to increase situational awareness. In order to demonstrate this, helicopter flights have been performed in the area of Zurich, Switzerland A major component of an SVS is the three-dimensional (3D) depiction of terrain data, usually presented on the primary flight display (PFD). The degree of usability in low level flight applications is a function of the terrain data quality. Today's most precise, large scale terrain data are derived from airborne laser scanning technologies such as LIDAR (light detection and ranging). A LIDAR dataset provided by Swissphoto AG, Zurich with a resolution of 1m was used. The depiction of high resolution terrain data consisting of 1 million elevation posts per square kilometer on a laptop in an appropriate area around the helicopter is challenging. To facilitate the depiction of the high resolution terrain data, it was triangulated applying a 1.5m error margin making it possible to depict an area of 5x5 square kilometer around the helicopter. To position the camera correctly in the virtual scene the SVS had to be supplied with accurate navigation data. Highly flexible and portable measurement equipment which easily could be used in most aircrafts was designed. Demonstration flights were successfully executed in September, October 2005 in the Swiss Alps departing from Zurich.

  19. Precision glass molding of high-resolution diffractive optical elements

    NASA Astrophysics Data System (ADS)

    Prater, Karin; Dukwen, Julia; Scharf, Toralf; Herzig, Hans P.; Plöger, Sven; Hermerschmidt, Andreas

    2016-04-01

    The demand of high resolution diffractive optical elements (DOE) is growing. Smaller critical dimensions allow higher deflection angles and can fulfill more demanding requirements, which can only be met by using electron-beam lithography. Replication techniques are more economical, since the high cost of the master can be distributed among a larger number of replicas. The lack of a suitable mold material for precision glass molding has so far prevented an industrial use. Glassy Carbon (GC) offers a high mechanical strength and high thermal strength. No anti-adhesion coatings are required in molding processes. This is clearly an advantage for high resolution, high aspect ratio microstructures, where a coating with a thickness between 10 nm and 200 nm would cause a noticeable rounding of the features. Electron-beam lithography was used to fabricate GC molds with highest precision and feature sizes from 250 nm to 2 μm. The master stamps were used for precision glass molding of a low Tg glass L-BAL42 from OHARA. The profile of the replicated glass is compared to the mold with the help of SEM images. This allows discussion of the max. aspect-ratio and min. feature size. To characterize optical performances, beamsplitting elements are fabricated and their characteristics were investigated, which are in excellent agreement to theory.

  20. Observing submesoscale currents from high resolution surface roughness images

    NASA Astrophysics Data System (ADS)

    Rascle, N.; Chapron, B.; Nouguier, F.; Mouche, A.; Ponte, A.

    2015-12-01

    At times, high resolution sea surface roughness variations can provide stunning details of submesoscale upper ocean dynamics. As interpreted, transformations of short scale wind waves by horizontal current gradients are responsible for those spectacular observations. Here we present tow major advances towards the quantitative interpretation of those observations. First, we show that surface roughness variations mainly trace two particular characteristics of the current gradient tensor, the divergence and the strain in the wind direction. Local vorticity and shear in the wind direction should not affect short scale roughness distribution and would not be detectable. Second, we discuss the effect of the viewing direction using sets of quasi-simultaneous sun glitter images, taken from different satellites to provide different viewing configurations. We show that upwind and crosswind viewing observations can be markedly different. As further confirmed with idealized numerical simulations, this anisotropy well traces surface current strain area, while more isotropic contrasts likely trace areas dominated by surface divergence conditions. These findings suggest the potential to directly observe surface currents at submesoscale by using high resolution roughness observations at multiple azimuth viewing angles.

  1. A compact high-resolution X-ray powder diffractometer

    PubMed Central

    Fewster, Paul F.; Trout, David R. D.

    2013-01-01

    A new powder diffractometer operating in transmission mode is described. It can work as a rapid very compact instrument or as a high-resolution instrument, and the sample preparation is simplified. The incident beam optics create pure Cu Kα1 radiation, giving rise to peak widths of ∼0.1° in 2θ in compact form with a sample-to-detector minimum radius of 55 mm, reducing to peak widths of <0.05° in high-resolution mode by increasing the detector radius to 240 mm. The resolution of the diffractometer is shown to be governed by a complex mixture of angular divergence, sample size, diffraction effects and the dimensions of the detector pixels. The data can be collected instantaneously, which combined with trivial sample preparation and no sample alignment, makes it a suitable method for very rapid phase identification. As the detector is moved further from the sample, the angular step from the pixel dimension is reduced and the resolution improves significantly for very detailed studies, including structure determination and analysis of the microstructure. The advantage of this geometry is that the resolution of the diffractometer can be calculated precisely and the instrumental artefacts can be analysed easily without a sample present. The performance is demonstrated with LaB6 and paracetamol, and a critical appraisal of the uncertainties in the measurements is presented. The instantaneous data collection offers possibilities in dynamic experiments. PMID:24282331

  2. High-resolution Imaging Techniques for the Assessment of Osteoporosis

    PubMed Central

    Krug, Roland; Burghardt, Andrew J.; Majumdar, Sharmila; Link, Thomas M.

    2010-01-01

    Synopsis The importance of assessing the bone’s microarchitectural make-up in addition to its mineral density in the context of osteoporosis has been emphasized in a number of publications. The high spatial resolution required to resolve the bone’s microstructure in a clinically feasible scan time is challenging. Currently, the best suited modalities meeting these requirements in vivo are high-resolution peripheral quantitative imaging (HR-pQCT) and magnetic resonance imaging (MRI). Whereas HR-pQCT is limited to peripheral skeleton regions like the wrist and ankle, MRI can also image other sites like the proximal femur but usually with lower spatial resolution. In addition Multidetector-CT has been used for high-resolution imaging of trabecular bone structure, however, the radiation dose is a limiting factor. This article provides an overview of the different modalities, technical requirements and recent developments in this emerging field. Details regarding imaging protocols as well as image post-processing methods for bone structure quantification are discussed. PMID:20609895

  3. High resolution sequence stratigraphic concepts applied to geostatistical modeling

    SciTech Connect

    Desaubliaux, G.; De Lestang, A.P.; Eschard, R.

    1995-08-01

    Lithofacies simulations using a high resolution 3D grid allow to enhance the geometries of internal heterogeneities of reservoirs. In this study the series simulated were the Ness formation, part of the Brent reservoir in the Dunbar field located in the Viking graben of the North Sea. Simulations results have been used to build the reservoir layering supporting the 3D grid used for reservoir engineering, and also used as a frame to study the effects of secondary diagenetic processes on petrophysical properties. The method used is based on a geostatistical study and integrates the following data: a geological model using sequence stratigraphic concepts to define lithofacies sequences and associated bounding surfaces, well data (cores and logs) used as database for geostatistical analysis and simulations, seismic data: a 3D seismic survey has been used to define the internal surfaces bounding the units, outcrop data: The Mesa Verde formation (Colorado, USA) has been used as an outcrop analog to calibrate geostatistical parameters for the simulations (horizontal range of the variograms). This study illustrates the capacity to use high resolution sequence stratigraphic concepts to improve the simulations of reservoirs when the lack of subsurface information reduce the accuracy of geostatistical analysis.

  4. Towards Ultra-High Resolution Models of Climate and Weather

    SciTech Connect

    Wehner, Michael; Oliker, Leonid; Shalf, John

    2007-01-01

    We present a speculative extrapolation of the performance aspects of an atmospheric general circulation model to ultra-high resolution and describe alternative technological paths to realize integration of such a model in the relatively near future. Due to a superlinear scaling of the computational burden dictated by stability criterion, the solution of the equations of motion dominate the calculation at ultra-high resolutions. From this extrapolation, it is estimated that a credible kilometer scale atmospheric model would require at least a sustained ten petaflop computer to provide scientifically useful climate simulations. Our design study portends an alternate strategy for practical power-efficient implementations of petaflop scale systems. Embedded processor technology could be exploited to tailor a custom machine designed to ultra-high climate model specifications at relatively affordable cost and power considerations. The major conceptual changes required by a kilometer scale climate model are certain to be difficult to implement. Although the hardware, software, and algorithms are all equally critical in conducting ultra-high climate resolution studies, it is likely that the necessary petaflop computing technology will be available in advance of a credible kilometer scale climate model.

  5. The Ultraviolet Spectroscopic Legacy of HST

    NASA Astrophysics Data System (ADS)

    Ayres, Thomas R.

    2016-01-01

    Hubble Space Telescope has been a spectacularly successful platform for spectroscopy in the diagnostic-rich far-ultraviolet (FUV: 120-170 nm) and near-ultraviolet (NUV: 170-310 nm) regions. HST has hosted four generations of UV instruments, beginning with Faint Object Spectrograph (FOS) and Goddard High-Resolution Spectrograph (GHRS) in the original 1990 payload, followed by Space Telescope Imaging Spectrograph (STIS) in 1997, and more recently Cosmic Origins Spectrograph (COS) as part of Servicing Mission 4 in 2009. The latter two instruments have contributed by far the lion's share of HST's spectroscopic archive: STIS, because of its longevity (thirteen years in operation so far, although with a hiatus between 2004-2009); and COS because of its high sensitivity, which allows efficient observations, and thus many more targets in a typical GO program. STIS benefits from a compact echelle design, and the sharp stable imaging of HST, to provide high-resolution (3-7 km s-1) spectra of bright objects, including stars, nebulae, quasars, novae, and so forth. COS achieves astounding sensitivity in the FUV by a sophisticated design that compensates for the spherical abberation of HST's primary mirror, disperses the target's light, and focuses the spectral image all with just a single optical element. While the spectral resolution of COS (about 18 km s-1) is not as high as that of STIS, it is adequate for diverse investigations, including faint broad-lined AGN at the edge of the Universe, hot stars in nearby galaxies, and magnetically active planet-hosting red dwarfs in the solar neighborhood. Thanks in part to the "UV Initiative" in recent HST proposal cycles, there have been several large efforts involving both STIS and COS, to assemble important spectral collections, including full UV atlases of representative hot and cool stars at high resolution with STIS; long time series of archetype AGN ("reverberation mapping") with COS; and hundreds of sightlines to distant

  6. High resolution Physio-chemical Tissue Analysis: Towards Non-invasive In Vivo Biopsy

    PubMed Central

    Xu, Guan; Meng, Zhuo-xian; Lin, Jian-die; Deng, Cheri X.; Carson, Paul L.; Fowlkes, J. Brian; Tao, Chao; Liu, Xiaojun; Wang, Xueding

    2016-01-01

    Conventional gold standard histopathologic diagnosis requires information of both high resolution structural and chemical changes in tissue. Providing optical information at ultrasonic resolution, photoacoustic (PA) technique could provide highly sensitive and highly accurate tissue characterization noninvasively in the authentic in vivo environment, offering a replacement for histopathology. A two-dimensional (2D) physio-chemical spectrogram (PCS) combining micrometer to centimeter morphology and chemical composition simultaneously can be generated for each biological sample with PA measurements at multiple optical wavelengths. This spectrogram presents a unique 2D “physio-chemical signature” for any specific type of tissue. Comprehensive analysis of PCS, termed PA physio-chemical analysis (PAPCA), can lead to very rich diagnostic information, including the contents of all relevant molecular and chemical components along with their corresponding histological microfeatures, comparable to those accessible by conventional histology. PAPCA could contribute to the diagnosis of many diseases involving diffusive patterns such as fatty liver. PMID:26842459

  7. High resolution Physio-chemical Tissue Analysis: Towards Non-invasive In Vivo Biopsy

    NASA Astrophysics Data System (ADS)

    Xu, Guan; Meng, Zhuo-Xian; Lin, Jian-Die; Deng, Cheri X.; Carson, Paul L.; Fowlkes, J. Brian; Tao, Chao; Liu, Xiaojun; Wang, Xueding

    2016-02-01

    Conventional gold standard histopathologic diagnosis requires information of both high resolution structural and chemical changes in tissue. Providing optical information at ultrasonic resolution, photoacoustic (PA) technique could provide highly sensitive and highly accurate tissue characterization noninvasively in the authentic in vivo environment, offering a replacement for histopathology. A two-dimensional (2D) physio-chemical spectrogram (PCS) combining micrometer to centimeter morphology and chemical composition simultaneously can be generated for each biological sample with PA measurements at multiple optical wavelengths. This spectrogram presents a unique 2D “physio-chemical signature” for any specific type of tissue. Comprehensive analysis of PCS, termed PA physio-chemical analysis (PAPCA), can lead to very rich diagnostic information, including the contents of all relevant molecular and chemical components along with their corresponding histological microfeatures, comparable to those accessible by conventional histology. PAPCA could contribute to the diagnosis of many diseases involving diffusive patterns such as fatty liver.

  8. An Experimental Investigation of Detonation Corner-Turning Using High Resolution Radiography

    SciTech Connect

    Molitoris, J D; Andreski, H G; Garza, R G; Batteux, J D; Souers, P C

    2006-07-19

    We have performed experiments investigating detonation corner turning over a range of high-explosives including LX-17, Composition B, LX-04 and Tritonal. The primary diagnostic utilized here was a new high-resolution x-ray system that was capable of recording a time sequence of the detonation process as it negotiated the corner of interest and propagated. For LX-17 our data detail the formation of a significant dead-zone. Although the detonation eventually turned the corner in LX-17, the dead zone persisted to late times and evidence exists that it never was consumed by either detonation or fast combustion processes. In LX-17 the detonations ability to corner-turn increases as the density is reduced. Furthermore, lowering the density decreases the size of the dead-zone and alters its shape. The other high-explosives investigated were able to turn the corner immediately with no indication of any dead-zone formation.

  9. High-resolution detectors for medical applications and synchrotron radiation research

    NASA Astrophysics Data System (ADS)

    Babichev, E. A.; Baru, S. E.; Grigoriev, D. N.; Groshev, V. R.; Leonov, V. V.; Papushev, P. A.; Porosev, V. V.; Savinov, G. A.; Shayakhmetov, V. R.; Shekhtman, L. I.; Tikhonov, Yu. A.; Ukraintsev, Yu. G.; Yurchenko, Yu. B.

    2011-02-01

    In the present report, we summarize our experience in the development of high-resolution position sensitive gas detectors for medicine and synchrotron radiation experiments at Budker Institute of Nuclear Physics for the last years. We have designed several versions of Multistrip Ionisation Chambers with a channel pitch varying from 0.4 down to 0.1 mm. The high quantum efficiency (>65%) of these detectors allow its application in high quality diagnostic imaging. The detector with 0.1 mm strip pitch and 20 atm pressure of Xe demonstrates the best possible DQE and spatial resolution for gaseous detectors in a wide range of X-ray energies. Additionally, the initial results of feasibility study of the detector for beam position monitoring for Heavy Ion Therapy System are presented too.

  10. High-Resolution Electronics: Spontaneous Patterning of High-Resolution Electronics via Parallel Vacuum Ultraviolet (Adv. Mater. 31/2016).

    PubMed

    Liu, Xuying; Kanehara, Masayuki; Liu, Chuan; Sakamoto, Kenji; Yasuda, Takeshi; Takeya, Jun; Minari, Takeo

    2016-08-01

    On page 6568, T. Minari and co-workers describe spontaneous patterning based on the parallel vacuum ultraviolet (PVUV) technique, enabling the homogeneous integration of complex, high-resolution electronic circuits, even on large-scale, flexible, transparent substrates. Irradiation of PVUV to the hydrophobic polymer surface precisely renders the selected surface into highly wettable regions with sharply defined boundaries, which spontaneously guides a metal nanoparticle ink into a series of circuit lines and gaps with the widths down to a resolution of 1 μm.

  11. High-Resolution Electronics: Spontaneous Patterning of High-Resolution Electronics via Parallel Vacuum Ultraviolet (Adv. Mater. 31/2016).

    PubMed

    Liu, Xuying; Kanehara, Masayuki; Liu, Chuan; Sakamoto, Kenji; Yasuda, Takeshi; Takeya, Jun; Minari, Takeo

    2016-08-01

    On page 6568, T. Minari and co-workers describe spontaneous patterning based on the parallel vacuum ultraviolet (PVUV) technique, enabling the homogeneous integration of complex, high-resolution electronic circuits, even on large-scale, flexible, transparent substrates. Irradiation of PVUV to the hydrophobic polymer surface precisely renders the selected surface into highly wettable regions with sharply defined boundaries, which spontaneously guides a metal nanoparticle ink into a series of circuit lines and gaps with the widths down to a resolution of 1 μm. PMID:27511534

  12. Spatially encoded pulse sequences for the acquisition of high resolution NMR spectra in inhomogeneous fields

    NASA Astrophysics Data System (ADS)

    Shapira, Boaz; Frydman, Lucio

    2006-09-01

    We have recently proposed a protocol for retrieving nuclear magnetic resonance (NMR) spectra based on a spatially-dependent encoding of the MR interactions. It has also been shown that the spatial selectivity with which spins are manipulated during such encoding opens up new avenues towards the removal of magnetic field inhomogeneities; not by demanding extreme Bo field uniformities, but rather by compensating for the dephasing effects introduced by the field distribution at a radiofrequency excitation and/or refocusing level. The present study discusses in further detail a number of strategies deriving from this principle, geared at acquiring both uni- as well as multi-dimensional spectroscopic data at high resolution conditions. Different variants are presented, tailored according to the relative sensitivity and chemical nature of the spin system being explored. In particular a simple multi-scan experiment is discussed capable of affording substantial improvements in the spectral resolution, at nearly no sensitivity or scaling penalties. This new compensation scheme is therefore well-suited for the collection of high-resolution data in low-field systems possessing limited signal-to-noise ratios, where magnetic field heterogeneities might present a serious obstacle. Potential areas of applications of these techniques include high-field in vivo NMR studies in regions near tissue/air interfaces, clinical low field MR spectroscopy on relatively large off-center volumes difficult to shim, and ex situ NMR. The principles of the different compensation methods are reviewed and experimentally demonstrated for one-dimensional inhomogeneities; further improvements and extensions are briefly discussed.

  13. High Resolution Spectroscopy of Naphthalene Calibrated by AN Optical Frequency Comb

    NASA Astrophysics Data System (ADS)

    Nishiyama, Akiko; Nakashima, Kazuki; Matsuba, Ayumi; Misono, Masatoshi

    2015-06-01

    In high-resolution molecular spectroscopy, the precise measure of the optical frequency is crucial to evaluate minute shifts and splittings of the energy levels. On the other hand, in such spectroscopy, thousands of spectral lines distributed over several wavenumbers have to be measured by a continuously scanning cw laser. Therefore, the continuously changing optical frequency of the scanning laser has to be determined with enough precision. To satisfy these contradictory requirements, we have been developed two types of high-resolution spectroscopic systems employing an optical frequency comb. One of the systems employs RF band-pass filters to generate equally spaced frequency markers for optical frequency calibration, and is appropriate for wide wavelength-range measurement with relatively high scanning rate.^a In the other system, the beat frequency between the optical frequency comb and the scanning laser is controlled by an acousto-optic frequency shifter. This system is suitable for more precise measurement, and enables detailed analyses of frequency characteristics of scanning laser.^b In the present study, we observe Doppler-free two-photon absorption spectra of A^1B1u (v_4 = 1) ← X^1A_g (v = 0) transition of naphthalene around 298 nm. The spectral lines are rotationally resolved and the resolution is about 100 kHz. For ^qQ transition, the rotational lines are assigned, and molecular constants in the excited state are determined. In addition, we analyze the origin of the measured linewidth and Coriolis interactions between energy levels. To determine molecular constants more precisely, we proceed to measure and analyze spectra of other transitions, such as ^sS transitions. ^a A. Nishiyama, D. Ishikawa, and M. Misono, J. Opt. Soc. Am. B 30, 2107 (2013). ^b A. Nishiyama, A. Matsuba, and M. Misono, Opt. Lett. 39, 4923 (2014).

  14. The Volatile Chemistry Of Jupiter-family Comets Determined From High-resolution Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Dello Russo, Neil; Vervack, R.; Weaver, H.; Kobayashi, H.; Kawakita, H.; Biver, N.; Bockelée-Morvan, D.; Crovisier, J.

    2009-09-01

    The chemistry of Jupiter-family comets (JFCs) has been extensively studied at optical wavelengths using spectroscopic and photometric techniques. However, the coma species detected at optical wavelengths are daughter and granddaughter photodissociation products that are often not easily related to species present in the nucleus. Because JFCs are generally of moderate productivity, studies of their parent volatile chemistries have lagged owing to sensitivity issues. Recently, studies at radio and infrared wavelengths have revealed the parent volatile chemistry in a small group of JFCs. Here, we report and compare recent results on the chemistry of JFCs using high-resolution infrared spectroscopy. The main goals of this research are to: (1) chemically characterize JFCs using high-resolution infrared spectroscopy in order to build a taxonomy based on parent volatile composition, (2) determine if the parent volatile chemistry of JFCs is consistent with formation conditions or evolutionary processing history, and (3) compare abundances of daughter fragments (e.g., C2, CN, NH, NH2) and their suspected parents (e.g., C2H2, C2H6, HCN, NH3) in JFCs whose chemistries were measured at both infrared and optical wavelengths. Understanding the parent sources of daughter fragments in comets not only provides information on the common infrared/optical database but may also give clues to the parent volatile chemistry in the large number of comets observed only at optical wavelengths. Because JFCs are the most practical mission targets, chemical composition can be one discriminator in determining desirable future targets. Furthermore, determining the range of chemical diversity within the JFC population can help put results of previous missions (e.g. Deep Impact, Stardust) in better context. This work was supported by the NASA Planetary Astronomy and Planetary Atmospheres Programs.

  15. Development of AN External Cavity Quantum Cascade Laser Spectrometer for High-Resolution Spectroscopy of Molecular Ions

    NASA Astrophysics Data System (ADS)

    Stewart, Jacob T.; Gibson, Bradley M.; McCall, Benjamin J.

    2013-06-01

    Quantum cascade lasers (QCLs) have proven to be valuable tools for performing high-resolution infrared spectroscopy because of their high output powers and availability throughout the mid-infrared region of the electromagnetic spectrum. Despite their usefulness, typical QCLs can only be frequency tuned within a narrow window, requiring a specific laser to be used for measuring a specific molecular target. Recent advances in QCL technology have improved the tuning range of QCLs by creating lasers with broader gain profiles which can be used in an external cavity setup to produce widely-tunable, single-mode infrared radiation. In collaboration with the Wysocki research group at Princeton, we are developing a high-resolution infrared spectrometer based on an external cavity QCL (EC-QCL) system, which will allow us to perform spectroscopy from ˜1120 - 1250 cm^{-1}. We will present details of the development of the instrument, as well as preliminary spectroscopic results using the EC-QCL system. We will also outline future work we plan to perform with this spectrometer, particularly high-resolution spectroscopy of molecular ions.

  16. ECCO2: High Resolution Global Ocean and Sea Ice Data Synthesis

    NASA Astrophysics Data System (ADS)

    Menemenlis, D.; Campin, J.; Heimbach, P.; Hill, C.; Lee, T.; Nguyen, A.; Schodlok, M.; Zhang, H.

    2008-12-01

    The Estimating the Circulation and Climate of the Ocean, Phase II (ECCO2) project aims to produce a best- possible, time-evolving synthesis of most available ocean and sea-ice data at a resolution that permits ocean eddies. ECCO2 analyses are obtained via least squares fit of a global, full-depth-ocean, and sea-ice configuration of the Massachusetts Institute of Technology general circulation model (MITgcm) to the available satellite and in-situ data. What sets apart ECCO2 analyses from operational high-resolution ocean data assimilation products is their physical consistency; the analyses do not contain discontinuities when and where data are ingested. ECCO2 analyses are intended to help quantify the role of the oceans in the global carbon cycle, to understand the recent evolution of the polar oceans, to monitor time-evolving term balances within and between different components of the Earth system, and for many other science applications. A first ECCO2 analysis for the 1992-2007 period has been obtained using a Green's Function approach to estimate initial temperature and salinity conditions, surface boundary conditions, and several empirical model parameters. Data constraints include altimetry, gravity, drifter, hydrographic, and sea-ice data. A large complement of high-frequency and high-resolution diagnostics has been saved; these diagnostics are made available to the scientific community via ftp and OPeNDAP servers at http://ecco2.org. This presentation provides a brief overview of this first ECCO2 analysis, of the estimation methodology, of the solution characteristics, and of some early science applications.

  17. High-resolution interferometric imaging of stress propagation in pediatric and adult skulls

    NASA Astrophysics Data System (ADS)

    Conerty, Michelle D.; Castracane, James; Clow, Lawrence P., Jr.; Koltai, Peter J.; Mouzakes, Jason

    1997-05-01

    Variations based on bone growth and development make stress and fracture propagation differ greatly in pediatric skulls as compared to adult skulls. Differentiating the stress propagation between the pediatric and adult skulls can improve diagnostic prediction when presented with direct frontal impact on a pediatric skull, a fairly common occurrence in the clinical environment. Critical diagnostic information can be learned from an in depth study of stress propagation as a function of impact force at critical locations on the periorbital region of the human skull. The Division of Pediatric Otolaryngology at Albany Medical College and InterScience, Inc. are utilizing electronic speckle pattern interferometry detection (ESPI) and high resolution imaging to evaluate and compare stress propagation in pediatric and adult skulls. A dual detection ESPI system was developed which integrates a medium resolution (2/3') CCD capable of real-time image processing, with a high resolution, megapixel detector capable of limited real time acquisition and image processing in software. Options to allow for high speed detection include integrating a custom, high performance image intensifier with the megapixel detector leg to be used as a high speed gate. The dual optical layout will allow for continuous and pulsed ESPI evaluation of calibrated impacts at specific landmarks on the skull. The goal of this work is to produce a full quantitative analysis of the stress propagation in pediatric versus adult skulls for a better understanding of bone dynamics. The work presented below concentrates on the development of the dual detection ESPI system and initial results achieved with an adult cadaver skull.

  18. High-resolution sonography for distinguishing neoplastic gallbladder polyps and staging gallbladder cancer.

    PubMed

    Kim, Jung Hoon; Lee, Jae Young; Baek, Jee Hyun; Eun, Hyo Won; Kim, Young Jae; Han, Joon Koo; Choi, Byung Ihn

    2015-02-01

    OBJECTIVE. The purposes of this study were to compare staging accuracy of high-resolution sonography (HRUS) with combined low- and high-MHz transducers with that of conventional sonography for gallbladder cancer and to investigate the differences in the imaging findings of neoplastic and nonneoplastic gallbladder polyps. MATERIALS AND METHODS. Our study included 37 surgically proven gallbladder cancer (T1a = 7, T1b = 2, T2 = 22, T3 = 6), including 15 malignant neoplastic polyps and 73 surgically proven polyps (neoplastic = 31, nonneoplastic = 42) that underwent HRUS and conventional transabdominal sonography. Two radiologists assessed T-category and predefined polyp findings on HRUS and conventional transabdominal sonography. Statistical analyses were performed using chi-square and McNemar tests. RESULTS. The diagnostic accuracy for the T category was T1a = 92-95%, T1b = 89-95%, T2 = 78-86%, and T3 = 84-89%, all with good agreement (κ = 0.642) using HRUS. The diagnostic accuracy for differentiating T1 from T2 or greater than T2 was 92% and 89% on HRUS and 65% and 70% with conventional transabdominal sonography. Statistically common findings for neoplastic polyps included size greater than 1 cm, single lobular surface, vascular core, hypoechoic polyp, and hypoechoic foci (p < 0.05). The value of HRUS in the differential diagnosis of a gallbladder polyp was more clearly depicted internal echo foci than conventional transabdominal sonography (39 vs 21). A polyp size greater than 1 cm was independently associated with a neoplastic polyp (odds ratio = 7.5, p = 0.02). The AUC of a polyp size greater than 1 cm was 0.877. The sensitivity and specificity were 66.67% and 89.13%, respectively. CONCLUSION. HRUS is a simple method that enables accurate T categorization of gallbladder carcinoma. It provides high-resolution images of gallbladder polyps and may have a role in stratifying the risk for malignancy.

  19. Universal multifractal analysis of high-resolution snowfall data

    NASA Astrophysics Data System (ADS)

    Raupach, Timothy; Gires, Auguste; Tchiguirinskaia, Ioulia; Schertzer, Daniel; Berne, Alexis

    2016-04-01

    Universal multifractal analysis offers useful insights into the scaling properties of precipitation data. While much work has been done on the scaling properties of rainfall fields, less is known about the scaling properties of solid precipitation such as snowfall, especially at high resolution. We present results of a universal multifractal (UM) analysis of high-resolution solid precipitation data. The data were recorded using a 2D-video-disdrometer (2DVD) situated in the Swiss Alps. Analysis was performed on a one-hour period of snowfall, during which time the mean wind speed was zero, temperatures were low, and no hail was detected. The 2DVD recorded information on individual particles, from which we calculated snow mass. Three "cuts" of the spatio-temporal snowfall process were analysed using the UM framework. First, high-resolution timeseries of precipitation intensity at 100 ms temporal resolution were analysed. These results show two scaling regimes with a transition area between them. Second, we analysed reconstructed vertical columns of particle concentration and snow mass, assuming no horizontal wind and constant vertical velocity (equal to the one recorded on the ground). Strong scaling was observed in the particle concentration fields, with the influence of large (and therefore rare) snowflakes degrading the quality of the scaling observed for higher moments of the particle distribution. There was a clear difference between the measured fields and fields in which the vertical distribution of particles was made homogeneous, indicating that the measured snowfall fields contained non-homogeneous fields. Scaling behaviour was observed down to vertical scales of about 0.5 m, which is similar to published results using rain data. Finally, we used the UM framework to investigate the scaling properties of 2D maps of snow accumulation over a subset of the instrument collection area of 5.12 x 5.12 cm^2. As expected from the vertical column analysis, given that

  20. High resolution modelling of extreme precipitation events in urban areas

    NASA Astrophysics Data System (ADS)

    Siemerink, Martijn; Volp, Nicolette; Schuurmans, Wytze; Deckers, Dave

    2015-04-01

    The present day society needs to adjust to the effects of climate change. More extreme weather conditions are expected, which can lead to longer periods of drought, but also to more extreme precipitation events. Urban water systems are not designed for such extreme events. Most sewer systems are not able to drain the excessive storm water, causing urban flooding. This leads to high economic damage. In order to take appropriate measures against extreme urban storms, detailed knowledge about the behaviour of the urban water system above and below the streets is required. To investigate the behaviour of urban water systems during extreme precipitation events new assessment tools are necessary. These tools should provide a detailed and integral description of the flow in the full domain of overland runoff, sewer flow, surface water flow and groundwater flow. We developed a new assessment tool, called 3Di, which provides detailed insight in the urban water system. This tool is based on a new numerical methodology that can accurately deal with the interaction between overland runoff, sewer flow and surface water flow. A one-dimensional model for the sewer system and open channel flow is fully coupled to a two-dimensional depth-averaged model that simulates the overland flow. The tool uses a subgrid-based approach in order to take high resolution information of the sewer system and of the terrain into account [1, 2]. The combination of using the high resolution information and the subgrid based approach results in an accurate and efficient modelling tool. It is now possible to simulate entire urban water systems using extreme high resolution (0.5m x 0.5m) terrain data in combination with a detailed sewer and surface water network representation. The new tool has been tested in several Dutch cities, such as Rotterdam, Amsterdam and The Hague. We will present the results of an extreme precipitation event in the city of Schiedam (The Netherlands). This city deals with