Sample records for high-resolution straw tube

  1. The FINUDA straw tube detector

    NASA Astrophysics Data System (ADS)

    Zia, A.; Benussi, L.; Bertani, M.; Bianco, S.; Fabbri, F. L.; Gianotti, P.; Giardoni, M.; Lucherini, V.; Mecozzi, A.; Pace, E.; Passamonti, L.; Qaiser, N.; Russo, V.; Tomassini, S.; Sarwar, S.; Serdyouk, V.

    2001-04-01

    An array of 2424 2.6- m-long, 15- mm-diameter mylar straw tubes, arranged in two axial and four stereo layers, has been assembled at National Laboratories of Frascati of INFN for the FINUDA experiment. The array covers a cylindrical tracking surface of 18 m 2 and provides coordinate measurement in the drift direction and along the wire with a resolution of the order of 100 and 300 μm, respectively. The array has finished the commissioning phase and tests with cosmic rays are underway. The status straw tubes array and a very preliminary result from cosmic rays test are summarized in this work.

  2. A 18 m 2 cylindrical tracking detector made of 2.6 m long, stereo mylar straw tubes with 100 μm resolution

    NASA Astrophysics Data System (ADS)

    Benussi, L.; Bertani, M.; Bianco, S.; Fabbri, F. L.; Gianotti, P.; Giardoni, M.; Ghezzo, A.; Guaraldo, C.; Lanaro, A.; Locchi, P.; Lu, J.; Lucherini, V.; Mecozzi, A.; Pace, E.; Passamonti, L.; Qaisar, N.; Ricciardi, A.; Sarwar, S.; Serdyouk, V.; Trasatti, L.; Volkov, A.; Zia, A.

    1998-12-01

    An array of 2424 2.6 m-long, 15 mm-diameter mylar straw tubes, arranged in two axial and four stereo layers, has been assembled. The array covers a cylindrical tracking surface of 18 m 2 and provides coordinate measurement in the drift direction and along the wire. A correction of the systematic effects which are introduced by gravitational sag and electrostatics, thus dominating the detector performance especially with long straws, allows to determine wire position from drift-time distribution. The correction has been applied to reach a space resolution of 40 μm with DME, 100 μm with Ar+C 2H 6, and 100-200 μm with CO 2. Such a resolution is the best ever obtained for straws of these dimensions. A study of the gas leakage for the straw system has been performed, and results are reported. The array is being commissioned as a subdetector of the FINUDA spectrometer, and tracking performances are being studied with cosmic rays.

  3. Design and performance of a straw tube drift chamber

    NASA Astrophysics Data System (ADS)

    Oh, S. H.; Wesson, D. K.; Cooke, J.; Goshaw, A. T.; Robertson, W. J.; Walker, W. D.

    1991-06-01

    The design and performance of the straw drift chambers used in E735 is reported. The chambers are constructed from 2.5 cm radius aluminized mylar straw tubes with wall thickness less than 0.2 mm. Also, presented are the results of tests with 2 mm radius straw tubes. The small tube has a direct detector application at the Superconducting Super Collider.

  4. A Large Tracking Detector In Vacuum Consisting Of Self-Supporting Straw Tubes

    NASA Astrophysics Data System (ADS)

    Wintz, P.

    2004-02-01

    A novel technique to stretch the anode wire simply by the gas over-pressure inside straw drift tubes reduces the necessary straw weight to an absolute minimum. Our detector will consist of more than 3000 straws filling up a cylindrical tracking volume of 1m diameter and 30cm length. The projected spatial resolution is 200μm. The detector with a total mass of less than 15kg will be operated in vacuum, but will have an added wall thickness of 3mm mylar, only. The detector design, production experience and first results will be discussed.

  5. FPGA Online Tracking Algorithm for the PANDA Straw Tube Tracker

    NASA Astrophysics Data System (ADS)

    Liang, Yutie; Ye, Hua; Galuska, Martin J.; Gessler, Thomas; Kuhn, Wolfgang; Lange, Jens Soren; Wagner, Milan N.; Liu, Zhen'an; Zhao, Jingzhou

    2017-06-01

    A novel FPGA based online tracking algorithm for helix track reconstruction in a solenoidal field, developed for the PANDA spectrometer, is described. Employing the Straw Tube Tracker detector with 4636 straw tubes, the algorithm includes a complex track finder, and a track fitter. Implemented in VHDL, the algorithm is tested on a Xilinx Virtex-4 FX60 FPGA chip with different types of events, at different event rates. A processing time of 7 $\\mu$s per event for an average of 6 charged tracks is obtained. The momentum resolution is about 3\\% (4\\%) for $p_t$ ($p_z$) at 1 GeV/c. Comparing to the algorithm running on a CPU chip (single core Intel Xeon E5520 at 2.26 GHz), an improvement of 3 orders of magnitude in processing time is obtained. The algorithm can handle severe overlapping of events which are typical for interaction rates above 10 MHz.

  6. Vocal tract and glottal function during and after vocal exercising with resonance tube and straw.

    PubMed

    Guzman, Marco; Laukkanen, Anne-Maria; Krupa, Petr; Horáček, Jaromir; Švec, Jan G; Geneid, Ahmed

    2013-07-01

    The present study aimed to investigate the vocal tract and glottal function during and after phonation into a tube and a stirring straw. A male classically trained singer was assessed. Computerized tomography (CT) was performed when the subject produced [a:] at comfortable speaking pitch, phonated into the resonance tube and when repeating [a:] after the exercise. Similar procedure was performed with a narrow straw after 15 minutes silence. Anatomic distances and area measures were obtained from CT midsagittal and transversal images. Acoustic, perceptual, electroglottographic (EGG), and subglottic pressure measures were also obtained. During and after phonation into the tube or straw, the velum closed the nasal passage better, the larynx position lowered, and hypopharynx area widened. Moreover, the ratio between the inlet of the lower pharynx and the outlet of the epilaryngeal tube became larger during and after tube/straw phonation. Acoustic results revealed a stronger spectral prominence in the singer/speaker's formant cluster region after exercising. Listening test demonstrated better voice quality after straw/tube than before. Contact quotient derived from EGG decreased during both tube and straw and remained lower after exercising. Subglottic pressure increased during straw and remained somewhat higher after it. CT and acoustic results indicated that vocal exercises with increased vocal tract impedance lead to increased vocal efficiency and economy. One of the major changes was the more prominent singer's/speaker's formant cluster. Vocal tract and glottal modifications were more prominent during and after straw exercising compared with tube phonation. Copyright © 2013 The Voice Foundation. Published by Mosby, Inc. All rights reserved.

  7. Particle identification using the time-over-threshold measurements in straw tube detectors

    NASA Astrophysics Data System (ADS)

    Jowzaee, S.; Fioravanti, E.; Gianotti, P.; Idzik, M.; Korcyl, G.; Palka, M.; Przyborowski, D.; Pysz, K.; Ritman, J.; Salabura, P.; Savrie, M.; Smyrski, J.; Strzempek, P.; Wintz, P.

    2013-08-01

    The identification of charged particles based on energy losses in straw tube detectors has been simulated. The response of a new front-end chip developed for the PANDA straw tube tracker was implemented in the simulations and corrections for track distance to sense wire were included. Separation power for p - K, p - π and K - π pairs obtained using the time-over-threshold technique was compared with the one based on the measurement of collected charge.

  8. Experimental study of boron-coated straws with a neutron source

    NASA Astrophysics Data System (ADS)

    Xie, Zhaoyang; Zhou, Jianrong; Song, Yushou; Lacy, Jeffrey L.; Sun, Liang; Sun, Zhijia; Hu, Bitao; Chen, Yuanbo

    2018-04-01

    Multiple types of high quality neutron detectors are proposed for the first phase of the China Spallation Neutron Source (CSNS), which will be commissioned in 2018. Considering the shortage of 3He supply, a detector module composed of 49 boron-coated straws (BCS) was developed by Proportional Technologies Inc. (PTI). Each straw has a length of 1000 mm and a diameter of 7.5 mm. Seven straws are tightly packed in a tube, and seven tubes are organized in a row to form a detector module. The charge division method is used for longitudinal positioning. A specific readout system was utilized to output the signal and simultaneously encode each straw. The performance of this detector module was studied using a moderated 252Cf source at the Institute of High Energy Physics (IHEP). The signal amplitude spectrum indicates its n-gamma discrimination capability. Despite the complex readout method, a longitudinal resolution of FWHM=6.1 ± 0.5 mm was obtained. The three-dimensional positioning ability qualifies this BCS detector module as a promising detector for small angle neutron scattering.

  9. The effect of electrostatic and gravity force on offset wire inside tube

    NASA Astrophysics Data System (ADS)

    Oh, S. H.; Hazineh, D.; Wang, C.

    2018-04-01

    In a straw-tube detector, a wire that is offset with respect to the tube axis experiences a Coulomb force when high voltage is applied between the anode wire and the tube. This force results in a shifting of the wire and straw, in addition to the gravitational sag, and is a function of the tube and wire radius, initial offset, high voltage, tension and length. The presence of such effects is well known, but the precise magnitude of the shift for the anode wires under conditions of detector operation have not been previously documented with measurable confidence. In this work, we provide the first systematic measurements for the wire shift in straw-tube detectors due to gravity and the electrostatic force using an x-ray scanner developed for the Mu2e experiment. The data are compared to the solutions of the differential equations governing the system, and we find a good match between the two. The solutions can predict the final wire and straw positions from the initial positions measured without the high voltage, and the final wire and straw positions can then be used as an input to the track reconstruction software to improve the track position resolution.

  10. Design of the forward straw tube tracker for the PANDA experiment

    NASA Astrophysics Data System (ADS)

    Smyrski, J.; Apostolou, A.; Biernat, J.; Czyżycki, W.; Filo, G.; Fioravanti, E.; Fiutowski, T.; Gianotti, P.; Idzik, M.; Korcyl, G.; Korcyl, K.; Lisowski, E.; Lisowski, F.; Płażek, J.; Przyborowski, D.; Przygoda, W.; Ritman, J.; Salabura, P.; Savrie, M.; Strzempek, P.; Swientek, K.; Wintz, P.; Wrońska, A.

    2017-06-01

    The design of the Forward Tracker for the Forward Spectrometer of the PANDA experiment is described. The tracker consists of 6 tracking stations, each comprising 4 planar double layers of straw tube detectors, and has a total material budget of only 2% X0. The straws are made self-supporting by a 1 bar over-pressure of the working gas mixture (Ar/CO2). This allows to use lightweight and compact rectangular support frames for the double layers and to split the frames into pairs of C-shaped half-frames for an easier installation on the beam line.

  11. Optical and UV Sensing Sealed Tube Microchannel Plate Imaging Detectors with High Time Resolution

    NASA Astrophysics Data System (ADS)

    Siegmund, O.; Vallerga, J.; Tremsin, A.; Hull, J.; Elam, J.; Mane, A.

    2014-09-01

    Microchannel plate (MCP) based imaging, photon time tagging detector sealed tube schemes have a unique set of operational features that enable high time resolution astronomical and remote sensing applications to be addressed. New detectors using the cross strip (XS), cross delay line (XDL), or stripline anode readouts, a wide range of photocathode types, and advanced MCP technologies have been implemented to improve many performance characteristics. A variety of sealed tubes have been developed including 18mm XS readout devices with GaAs and SuperGenII photocathodes, 25mm XDL readout devices with SuperGenII and GaN photocathodes, and 20 x 20 cm sealed tubes with bialkali photocathodes and strip line readout. One key technology that has just become viable is the ability to make MCPs using atomic layer deposition (ALD) techniques. This employs nanofabrication of the active layers of an MCP on a microcapillary array. This technique opens new performance opportunities, including, very large MCP areas (>20cm), very low intrinsic background, lower radiation induced background, much longer overall lifetime and gain stability, and markedly lower outgassing which can improve the sealed tube lifetime and ease of fabrication. The XS readout has been implemented in formats of 22mm, 50mm and 100mm, and uses MCP charge signals detected on two orthogonal layers of conductive fingers to encode event X-Y positions. We have achieved spatial resolution XS detectors better than 25 microns FWHM, with good image linearity while at low gain (<10^6), substantially increasing local counting rate capabilities and the overall tube lifetime. XS tubes with updated electronics can encode event rates of >5 MHz with ~12% dead time and event timing accuracy of ~100ps. XDL sealed tubes in 25mm format demonstrate ~40 micron spatial resolution at up to ~2 MHz event rates, and have been developed with SupergenII visible regime photocathodes. The XDL tubes also achieve ~100 ps time resolution. Most

  12. Rice straw as a feedstock for biofuels: Availability, recalcitrance, and chemical properties: Rice straw as a feedstock for biofuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Satlewal, Alok; Agrawal, Ruchi; Bhagia, Samarthya

    The surplus availability of rice straw, its limited usage and environment pollution caused by inefficient burning has fostered research for its valorization to biofuels. This review elucidates the current status of rice straw potential around the globe along with recent advances in revealing the critical factors responsible for its recalcitrance and chemical properties. The role and accumulation of high silica content in rice straw has been elucidated with its impact on enzymatic hydrolysis in a biorefinery environment. The correlation of different pretreatment approaches in modifying the physiochemical properties of rice straw and improving the enzymatic accessibility has also been discussed.more » This study highlights new challenges, resolutions and opportunities for rice straw based biorefineries.« less

  13. A straw chambers' tracker for the high rate experiment 835 at the Fermilab accumulator

    NASA Astrophysics Data System (ADS)

    Bagnasco, S.; Dughera, G.; Giraudo, G.; Govi, G.; Marchetto, F.; Menichetti, E.; Pastrone, N.; Rumerio, P.; Trapani, P. P.

    1998-02-01

    Two layers of proportional drift tubes (aluminum mylar straws) are staggered in two cylindrical light chambers to measure charged particles' azimuthal angle. To stand the high rates (˜10 kHz/ cm2) and minimize the pile-up of the high luminosity experiment 835 at FNAL, a fast ASIC Amplifier-Shaper-Discriminator (ASD-8B) was chosen. The front-end electronics, designed exclusively with SMD components, was mounted on the downstream end plug of each chamber to avoid oscillations and noise. Design, construction and operational performances of these detectors are presented.

  14. Revisiting resolution in hydrodynamic countercurrent chromatography: tubing bore effect.

    PubMed

    Berthod, A; Faure, K

    2015-04-17

    A major challenge in countercurrent chromatography (CCC), the technique that works with a support-free biphasic liquid system, is to retain the liquid stationary phase inside the CCC column (Sf parameter). Two solutions are commercially available: the hydrostatic CCC columns, also called centrifugal partition chromatographs (CPC), with disks of interconnected channels and rotary seals, and the hydrodynamic CCC columns with bobbins of coiled open tube and no rotary seals. It was demonstrated that the amount of liquid stationary phase retained by a coiled tube was higher with larger bore tubing than with small bore tubes. At constant column volume, small bore tubing will be longer producing more efficiency than larger bore tube that will better retain the liquid stationary phase. Since the resolution equation in CCC is depending on both column efficiency and stationary phase retention ratio, the influence of the tubing bore should be studied. This theoretical work showed that there is an optimum tubing bore size depending on solute partition coefficient and mobile phase flow rate. The interesting result of the theoretical study is that larger tubing bores allow for dramatically reduced experiment durations for all solutes: in reversed phase CCC (polar mobile phase), hydrophobic solutes are usually highly retained. These apolar solutes can be separated by the same coil at high flow rates and reduced Sf with similar retention times as polar solutes separated at smaller flow rates and much higher Sf. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. High spatial resolution measurements of ram accelerator gas dynamic phenomena

    NASA Technical Reports Server (NTRS)

    Hinkey, J. B.; Burnham, E. A.; Bruckner, A. P.

    1992-01-01

    High spatial resolution experimental tube wall pressure measurements of ram accelerator gas dynamic phenomena are presented. The projectile resembles the centerbody of a ramjet and travels supersonically through a tube filled with a combustible gaseous mixture, with the tube acting as the outer cowling. Pressure data are recorded as the projectile passes by sensors mounted in the tube wall at various locations along the tube. Data obtained by using a special highly instrumented section of tube has allowed the recording of gas dynamic phenomena with a spatial resolution on the order of one tenth the projectile length. High spatial resolution tube wall pressure data from the three regimes of propulsion studied to date (subdetonative, transdetonative, and superdetonative) are presented and reveal the 3D character of the flowfield induced by projectile fins and the canting of the projectile body relative to the tube wall. Also presented for comparison to the experimental data are calculations made with an inviscid, 3D CFD code.

  16. Resin straw as an alternative system to securely store frozen microorganisms.

    PubMed

    Thammavongs, Bouachanh; Poncet, Jean-Marc; Desmasures, Nathalie; Guéguen, Micheline; Panoff, Jean-Michel

    2004-05-01

    Freezing of prokaryotic and eukaryotic microorganisms is the main interest in the study of cold stress responses of living organisms. In parallel, applications which arise from this approach are of two types: (i) optimization of the frozen starters used in food processing; and (ii) improvement of the ex situ preservation of microorganisms in collections. Currently, cryopreservation of microorganisms in collections is carried out in cryotubes, and bibliographical references related to freezing microorganisms packaged in straws are scarce. In this context, a preliminary study was completed to evaluate the technological potential of ionomeric resin straws compared to polycarbonate cryo-tubes. Survival under freezing stress was tested on three microorganisms selected for their biotechnological interest: two lactic acid bacteria, Lactococcus lactis subsp. cremoris and Lactobacillus delbrueckii subsp. bulgaricus and a deuteromycete fungus, Geotrichum candidum. The stress was carried out by repeated freezing-thawing cycles to artificially accelerate the lethal effect of freezing on the microorganisms. Two main results were obtained: (i) the survival rate values (per freezing-thawing cycle) seems to depend on the thermal type of the studied microorganism, and (ii) there was no, under our experimental conditions, significant difference between straws and tubes. However, conservation in the resin straws lead to a slight increase in the survival of L. cremoris and G. candidum compared to microtubes. In those conditions, straws seems an alternative system to securely store frozen microorganisms with three main characteristics: (i) a high resistance to thermal stress, (ii) a safe closing by hermetic weld, and (iii) a system for inviolable identification.

  17. Properties of high-quality long natural cellulose fibers from rice straw.

    PubMed

    Reddy, Narendra; Yang, Yiqi

    2006-10-18

    This paper reports the structure and properties of novel long natural cellulose fibers obtained from rice straw. Rice straw fibers have 64% cellulose with 63% crystalline cellulose, strength of 3.5 g/denier (450 MPa), elongation of 2.2%, and modulus of 200 g/denier (26 GPa), similar to that of linen fibers. The rice straw fibers reported here have better properties than any other natural cellulose fiber obtained from an agricultural byproduct. With a worldwide annual availability of 580 million tons, rice straw is an annually renewable, abundant, and cheap source for natural cellulose fibers. Using rice straw for high-value fibrous applications will help to add value to the rice crops, provide a sustainable resource for fibers, and also benefit the environment.

  18. High spatial resolution measurements in a single stage ram accelerator

    NASA Technical Reports Server (NTRS)

    Hinkey, J. B.; Burnham, E. A.; Bruckner, A. P.

    1992-01-01

    High spatial resolution experimental tube wall pressure measurements of ram accelerator gas dynamic phenomena are presented in this paper. The ram accelerator is a ramjet-in-tube device which operates in a manner similar to that of a conventional ramjet. The projectile resembles the centerbody of a ramjet and travels supersonically through a tube filled with a combustible gaseous mixture, with the tube acting as the outer cowling. Pressure data are recorded as the projectile passes by sensors mounted in the tube wall at various locations along the tube. Utilization of special highly instrumented sections of tube has allowed the recording of gas dynamic phenomena with high resolution. High spatial resolution tube wall pressure data from the three regimes of propulsion studied to date (subdetonative, transdetonative, and superdetonative) in a single stage gas mixture are presented and reveal the three-dimensional character of the flow field induced by projectile fins and the canting of the fins and the canting of the projectile body relative to the tube wall. Also presented for comparison to the experimental data are calculations made with an inviscid, three-dimensional CFD code. The knowledge gained from these experiments and simulations is useful in understanding the underlying nature of ram accelerator propulsive regimes, as well as assisting in the validation of three-dimensional CFD coded which model unsteady, chemically reactive flows.

  19. Cathode readout with stripped resistive drift tubes

    NASA Astrophysics Data System (ADS)

    Bychkov, V. N.; Kekelidze, G. D.; Novikov, E. A.; Peshekhonov, V. D.; Shafranov, M. D.; Zhiltsov, V. E.

    1995-12-01

    A straw tube drift chamber prototype has been constructed and tested. The straw tube material is mylar film covered with a carbon layer with a resistivity of 0.5, 30 and 70 kΩ/□. Both the anode wire and the cathode strip signals were detected to study the behaviour of the chamber in the presence of X-ray ionization. The construction and the results of the study are presented.

  20. Performance characterization of high quantum efficiency metal package photomultiplier tubes for time-of-flight and high-resolution PET applications.

    PubMed

    Ko, Guen Bae; Lee, Jae Sung

    2015-01-01

    Metal package photomultiplier tubes (PMTs) with a metal channel dynode structure have several advanced features for devising such time-of-flight (TOF) and high spatial resolution positron emission tomography (PET) detectors, thanks to their high packing density, large effective area ratio, fast time response, and position encoding capability. Here, we report on an investigation of new metal package PMTs with high quantum efficiency (QE) for high-resolution PET and TOF PET detector modules. The latest metal package PMT, the Hamamatsu R11265 series, is served with two kinds of photocathodes that have higher quantum efficiency than normal bialkali (typical QE ≈ 25%), super bialkali (SBA; QE ≈ 35%), and ultra bialkali (UBA; QE ≈ 43%). In this study, the authors evaluated the performance of the new PMTs with SBA and UBA photocathodes as a PET detector by coupling various crystal arrays. They also investigated the performance improvements of high QE, focusing in particular on a block detector coupled with a lutetium-based scintillator. A single 4 × 4 × 10 mm(3) LYSO, a 7 × 7 array of 3 × 3 × 20 mm(3) LGSO, a 9 × 9 array of 1.2 × 1.2 × 10 mm(3) LYSO, and a 6 × 6 array of 1.5 × 1.5 × 7 mm(3) LuYAP were used for evaluation. All coincidence data were acquired with a DRS4 based fast digitizer. This new PMT shows promising crystal positioning accuracy, energy and time discrimination performance for TOF, and high-resolution PET applications. The authors also found that a metal channel PMT with SBA was enough for both TOF and high-resolution application, although UBA gave a minor improvement to time resolution. However, significant performance improvement was observed in relative low light output crystals (LuYAP) coupled with UBA. The results of this study will be of value as a useful reference to select PMTs for high-performance PET detectors.

  1. [Experimental investigation of the straw pre-treatment to enhance its high solid anaerobic digestion].

    PubMed

    Jiang, Jian-Guo; Zhao, Zhen-Zhen; Du, Xue-Juan; Sui, Ji-Chao; Wu, Shi-Yao

    2007-04-01

    The straw contains a high content of lignin, which cannot be well utilized by anaerobic bacteria in high solid anaerobic digestion process. This paper presents the experimental investigation of the straw pre-treatment, which aims to destroy the complex structure of the lignin to enhance its high solid anaerobic digestion. The straw is pre-treated in different solutions including NaOH, ammonia, H2SO4, and carbamide. The pre-treating effects are expressed by COD concentration dissolved in the solutions and the 14-day biogas generation in the enhanced aerogenic experiment. Different affecting factors, such as the concentration of the chemical solution, the species of the straw, the pre-treatment reaction time, the reaction temperature and the size of the straw, are investigated. The results show that NaOH solution is the most effective pre-treatment chemical among the four different solutions. The experimental results still indicate that the accumulative biogas production can be 1 500 mL (10 g straw) in 14 days after pre-treatment in 4 mg/L NaOH solution and the dissolved COD in the solution reaches 39 000 mg/L after 24 hours. In addition, the experiment shows that the lignin content in the straw is reduced from 28% to 19% after pre-treatment in 1.5% (in weight) NaOH solution, and it can improve the straw treatment efficiency using high solid anaerobic digestion process.

  2. Cathode readout with stripped resistive drift tubes

    NASA Astrophysics Data System (ADS)

    Bychkov, V. N.; Kekelidze, G. D.; Novikov, E. A.; Peshekhonov, V. D.; Shafranov, M. D.; Zhiltsov, V. E.

    1994-11-01

    A straw tube drift chamber prototype has been constructed and tested. The straw tube material is mylar film covered with carbon layer of resistivity 0.5, 30 and 70 k Ohm/sq. The gas mixture used was Ar/CH4. Both the anode wire and cathode signals were detected in order to study the behaviour of the chamber in the presence of X-ray ionization. The construction and the results of the study are presented.

  3. Using QuickBird imagery to detect cover and spread of post-fire straw mulch after the 2006 Tripod Fire, Washington, USA

    Treesearch

    Sarah A. Lewis; Peter R. Robichaud

    2011-01-01

    Agricultural straw mulch is a commonly applied treatment for protecting resources at risk from runoff and erosion events after wildfires. High-resolution QuickBird satellite imagery was acquired after straw mulch was applied on the 2006 Tripod Fire in Washington. We tested whether the imagery was suitable for remotely assessing the areal coverage of the straw mulch...

  4. High resolution spectrograph. [for LST

    NASA Technical Reports Server (NTRS)

    Peacock, K.

    1975-01-01

    The high resolution spectrograph (HRS) is designed to be used with the Large Space Telescope (LST) for the study of spectra of point and extended targets in the spectral range 110 to 410 nm. It has spectral resolutions of 1,000; 30,000; and 100,000 and has a field of view as large as 10 arc sec. The spectral range and resolution are selectable using interchangeable optical components and an echelle spectrograph is used to display a cross dispersed spectrum on the photocathode of either of 2 SEC orthicon image tubes. Provisions are included for wavelength calibration, target identification and acquisition and thermal control. The system considerations of the instrument are described.

  5. High resolution studies of sunspots and flux tubes

    NASA Technical Reports Server (NTRS)

    Title, Alan

    1994-01-01

    This contract is for a three-year research study of sunspots and magnetic flux tubes in the solar atmosphere, using tunable filter images collected with a CCD camera during observing runs at the Canary Islands observatories in Spain. The best observations are analyzed and compared with theoretical models, to study the structure and dynamics of sunspots, their connections with surrounding magnetic fields, and the properties and evolution of smaller flux tubes in plage and quiet sun. Scientific results are reported at conferences and published in the appropriate journals. The contract is being performed by the Solar and Astrophysics Laboratory, part of the Lockheed Palo Alto Research Laboratory (LPARL) of the Research and Development Division (RDD) of Lockheed Missiles and Space Co., Inc. (LMSC). The principal investigator is Dr. Alan Title, and the research is done by him and other scientific staff at LPARL and Solar Physics Research Corporation (SPRC), often in collaboration with visiting scientists and students from other institutions. Highlights during this reporting period include completing the final version of a paper on the Evershed effect, writing a paper on magnetic diffusion, continuing work on contrast of small flux tubes, and work on the development of new models to interpret our sunspots observations.

  6. A drift chamber with a new type of straws for operation in vacuum

    NASA Astrophysics Data System (ADS)

    Azorskiy, N.; Glonti, L.; Gusakov, Yu.; Elsha, V.; Enik, T.; Kakurin, S.; Kekelidze, V.; Kislov, E.; Kolesnikov, A.; Madigozhin, D.; Movchan, S.; Polenkevich, I.; Potrebenikov, Yu.; Samsonov, V.; Shkarovskiy, S.; Sotnikov, S.; Zinchenko, A.; Danielsson, H.; Bendotti, J.; Degrange, J.; Dixon, N.; Lichard, P.; Morant, J.; Palladino, V.; Gomez, F. Perez; Ruggiero, G.; Vergain, M.

    2016-07-01

    A 2150×2150 mm2 registration area drift chamber capable of working in vacuum is presented. Thin-wall tubes (straws) of a new type are used in the chamber. A large share of these 9.80 mm diameter drift tubes are made in Dubna from metalized 36 μm Mylar film welded along the generatrix using an ultrasonic welding machine created at JINR. The main features of the chamber and some characteristics of the drift tubes are described. Four such chambers with the X, Y, U, V coordinates each, containing 7168 straws in total, are designed and produced at JINR and CERN. They are installed in the vacuum volume of the NA62 setup in order to study the ultra-rare decay K+ →π+ vv bar and to search for and study rare meson decays. In autumn 2014 the chambers were used for the first time for the data taking in the experimental run of the NA62 at CERN's SPS.

  7. A Panel Prototype for the Mu2e Straw Tube Tracker at Fermilab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lucà, Alessandra

    The Mu2e experiment will search for coherent, neutrino-less conversion of muons into electrons in the Coulomb field of an aluminum nucleus with a sensitivity of four orders of magnitude better than previous experiments. The signature of this process is an electron with energy nearly equal to the muon mass. Mu2e relies on a precision (0.1%) measurement of the outgoing electron momentum to separate signal from background. In order to achieve this goal, Mu2e has chosen a very low-mass straw tracker, made of 20,736 5 mm diameter thin-walled (15more » $$\\mu$$m) Mylar straws, held under tension to avoid the need for supports within the active volume, and arranged in an approximately 3 m long by 0.7 m radius cylinder, operated in vacuum and a 1 T magnetic field. Groups of 96 straws are assembled into modules, called panels. We present the prototype and the assembly procedure for a Mu2e tracker panel built at Fermilab« less

  8. Co-firing straw with coal in a swirl-stabilized dual-feed burner: modelling and experimental validation.

    PubMed

    Yin, Chungen; Kaer, Søren K; Rosendahl, Lasse; Hvid, Søren L

    2010-06-01

    This paper presents a comprehensive computational fluid dynamics (CFD) modelling study of co-firing wheat straw with coal in a 150kW swirl-stabilized dual-feed burner flow reactor, in which the pulverized straw particles (mean diameter of 451microm) and coal particles (mean diameter of 110.4microm) are independently fed into the burner through two concentric injection tubes, i.e., the centre and annular tubes, respectively. Multiple simulations are performed, using three meshes, two global reaction mechanisms for homogeneous combustion, two turbulent combustion models, and two models for fuel particle conversion. It is found that for pulverized biomass particles of a few hundred microns in diameter the intra-particle heat and mass transfer is a secondary issue at most in their conversion, and the global four-step mechanism of Jones and Lindstedt may be better used in modelling volatiles combustion. The baseline CFD models show a good agreement with the measured maps of main species in the reactor. The straw particles, less affected by the swirling secondary air jet due to the large fuel/air jet momentum and large particle response time, travels in a nearly straight line and penetrate through the oxygen-lean core zone; whilst the coal particles are significantly affected by secondary air jet and swirled into the oxygen-rich outer radius with increased residence time (in average, 8.1s for coal particles vs. 5.2s for straw particles in the 3m high reactor). Therefore, a remarkable difference in the overall burnout of the two fuels is predicted: about 93% for coal char vs. 73% for straw char. As the conclusion, a reliable modelling methodology for pulverized biomass/coal co-firing and some useful co-firing design considerations are suggested. Copyright 2010 Elsevier Ltd. All rights reserved.

  9. New type of drift tubes for gas-discharge detectors operating in vacuum: Production technology and quality control

    NASA Astrophysics Data System (ADS)

    Azorskii, N. I.; Gusakov, Yu. V.; Elsha, V. V.; Enik, T. L.; Ershov, Yu. V.; Kekelidze, V. D.; Kislov, E. M.; Kolesnikov, A. O.; Madigozhin, D. T.; Movchan, S. A.; Polenkevich, I. A.; Potrebenikov, Yu. K.; Samsonov, V. A.; Shkarovskiy, S. N.; Sotnikov, A. N.; Volkov, A. D.; Zinchenko, A. I.

    2017-01-01

    A device for fabricating thin-wall (straw) drift tubes using polyethylene terephthalate film 36 μm thick by ultrasonic welding is described together with the technique for controlling their quality. The joint width amounts to 0.4-1.0 mm. The joint breaking strength is 31.9 kg/mm2. The argon leakage from a tube of volume 188.6 cm3 under a pressure gradient of 1.0 atm does not exceed 0.3 × 10-3 cm3/min, which is mainly related to the absence of metallization in the joint vicinity. The high strength, the low tensile creep due to the absence of glued layers, the small value of gas leakage makes the new tubes capable of reliable and long-term operation in vacuum, which is confirmed by the operation of 7168 straw tubes for two years in the NA62 experiment.

  10. Plastic straw: future of high-speed signaling

    NASA Astrophysics Data System (ADS)

    Song, Ha Il; Jin, Huxian; Bae, Hyeon-Min

    2015-11-01

    The ever-increasing demand for bandwidth triggered by mobile and video Internet traffic requires advanced interconnect solutions satisfying functional and economic constraints. A new interconnect called E-TUBE is proposed as a cost-and-power-effective all-electrical-domain wideband waveguide solution for high-speed high-volume short-reach communication links. The E-TUBE achieves an unprecedented level of performance in terms of bandwidth-per-carrier frequency, power, and density without requiring a precision manufacturing process unlike conventional optical/waveguide solutions. The E-TUBE exhibits a frequency-independent loss-profile of 4 dB/m and has nearly 20-GHz bandwidth over the V band. A single-sideband signal transmission enabled by the inherent frequency response of the E-TUBE renders two-times data throughput without any physical overhead compared to conventional radio frequency communication technologies. This new interconnect scheme would be attractive to parties interested in high throughput links, including but not limited to, 100/400 Gbps chip-to-chip communications.

  11. The development of high resolution silicon x-ray microcalorimeters

    NASA Astrophysics Data System (ADS)

    Porter, F. S.; Kelley, R. L.; Kilbourne, C. A.

    2005-12-01

    Recently we have produced x-ray microcalorimeters with resolving powers approaching 2000 at 5.9 keV using a spare XRS microcalorimeter array. We attached 400 um square, 8 um thick HgTe absorbers using a variety of attachment methods to an XRS array and ran the detector array at temperatures between 40 and 60 mK. The best results were for absorbers attached using the standard XRS absorber-pixel thermal isolation scheme utilizing SU8 polymer tubes. In this scenario we achieved a resolution of 3.2 eV FWHM at 5.9 keV. Substituting a silicon spacer for the SU8 tubes also yielded sub-4eV results. In contrast, absorbers attached directly to the thermistor produced significant position dependence and thus degraded resolution. Finally, we tested standard 640um-square XRS detectors at reduced bias power at 50mK and achieved a resolution of 3.7eV, a 50% improvement over the XRS flight instrument. Implanted silicon microcalorimeters are a mature flight-qualified technology that still has a substantial phase space for future development. We will discuss these new high resolution results, the various absorber attachment schemes, planned future improvements, and, finally, their relevance to future high resolution x-ray spectrometers including Constellation-X.

  12. Technical design report for the overline{P}ANDA (Anti Proton Annihilations at Darmstadt) Straw Tube Tracker. Strong interaction studies with antiprotons

    NASA Astrophysics Data System (ADS)

    Erni, W.; Keshelashvili, I.; Krusche, B.; Steinacher, M.; Heng, Y.; Liu, Z.; Liu, H.; Shen, X.; Wang, Q.; Xu, H.; Aab, A.; Albrecht, M.; Becker, J.; Csapó, A.; Feldbauer, F.; Fink, M.; Friedel, P.; Heinsius, F. H.; Held, T.; Klask, L.; Koch, H.; Kopf, B.; Leiber, S.; Leyhe, M.; Motzko, C.; Pelizäus, M.; Pychy, J.; Roth, B.; Schröder, T.; Schulze, J.; Sowa, C.; Steinke, M.; Trifterer, T.; Wiedner, U.; Zhong, J.; Beck, R.; Bianco, S.; Brinkmann, K. T.; Hammann, C.; Hinterberger, F.; Kaiser, D.; Kliemt, R.; Kube, M.; Pitka, A.; Quagli, T.; Schmidt, C.; Schmitz, R.; Schnell, R.; Thoma, U.; Vlasov, P.; Walther, D.; Wendel, C.; Würschig, T.; Zaunick, H. G.; Bianconi, A.; Bragadireanu, M.; Caprini, M.; Pantea, D.; Pantelica, D.; Pietreanu, D.; Serbina, L.; Tarta, P. D.; Kaplan, D.; Fiutowski, T.; Idzik, M.; Mindur, B.; Przyborowski, D.; Swientek, K.; Czech, B.; Kistryn, M.; Kliczewski, S.; Kozela, A.; Kulessa, P.; Lebiedowicz, P.; Pysz, K.; Schäfer, W.; Siudak, R.; Szczurek, A.; Jowzaee, S.; Kajetanowicz, M.; Kamys, B.; Kistryn, S.; Korcyl, G.; Korcyl, K.; Krzemien, W.; Magiera, A.; Moskal, P.; Palka, M.; Rudy, Z.; Salabura, P.; Smyrski, J.; Wrońska, A.; Augustin, I.; Lehmann, I.; Nimorus, D.; Schepers, G.; Al-Turany, M.; Arora, R.; Deppe, H.; Flemming, H.; Gerhardt, A.; Götzen, K.; Jordi, A. F.; Kalicy, G.; Karabowicz, R.; Lehmann, D.; Lewandowski, B.; Lühning, J.; Maas, F.; Orth, H.; Patsyuk, M.; Peters, K.; Saito, T.; Schepers, G.; Schmidt, C. J.; Schmitt, L.; Schwarz, C.; Schwiening, J.; Traxler, M.; Voss, B.; Wieczorek, P.; Wilms, A.; Zühlsdorf, M.; Abazov, V. M.; Alexeev, G.; Arefiev, A.; Astakhov, V. I.; Barabanov, M. Yu.; Batyunya, B. V.; Davydov, Yu. I.; Dodokhov, V. Kh.; Efremov, A. A.; Fedunov, A. G.; Festchenko, A. A.; Galoyan, A. S.; Grigoryan, S.; Karmokov, A.; Koshurnikov, E. K.; Lobanov, V. I.; Lobanov, Yu. Yu.; Makarov, A. F.; Malinina, L. V.; Malyshev, V. L.; Mustafaev, G. A.; Olshevskiy, A.; Pasyuk, M. A.; Perevalova, E. A.; Piskun, A. A.; Pocheptsov, T. A.; Pontecorvo, G.; Rodionov, V. K.; Rogov, Yu. N.; Salmin, R. A.; Samartsev, A. G.; Sapozhnikov, M. G.; Shabratova, G. S.; Skachkova, A. N.; Skachkov, N. B.; Strokovsky, E. A.; Suleimanov, M. K.; Teshev, R. Sh.; Tokmenin, V. V.; Uzhinsky, V. V.; Vodopyanov, A. S.; Zaporozhets, S. A.; Zhuravlev, N. I.; Zorin, A. G.; Branford, D.; Glazier, D.; Watts, D.; Woods, P.; Britting, A.; Eyrich, W.; Lehmann, A.; Uhlig, F.; Dobbs, S.; Metreveli, Z.; Seth, K.; Tomaradze, A.; Xiao, T.; Bettoni, D.; Carassiti, V.; Cotta Ramusino, A.; Dalpiaz, P.; Drago, A.; Fioravanti, E.; Garzia, I.; Savriè, M.; Stancari, G.; Bianchi, N.; Gianotti, P.; Guaraldo, C.; Lucherini, V.; Orecchini, D.; Pace, E.; Bersani, A.; Bracco, G.; Macri, M.; Parodi, R. F.; Bremer, D.; Dormenev, V.; Drexler, P.; Düren, M.; Eissner, T.; Föhl, K.; Galuska, M.; Gessler, T.; Hayrapetyan, A.; Hu, J.; Koch, P.; Kröck, B.; Kühn, W.; Lange, S.; Liang, Y.; Merle, O.; Metag, V.; Moritz, M.; Münchow, D.; Nanova, M.; Novotny, R.; Spruck, B.; Stenzel, H.; Ullrich, T.; Werner, M.; Xu, H.; Euan, C.; Hoek, M.; Ireland, D.; Keri, T.; Montgomery, R.; Protopopescu, D.; Rosner, G.; Seitz, B.; Babai, M.; Glazenborg-Kluttig, A.; Kavatsyuk, M.; Lemmens, P.; Lindemulder, M.; Löhner, H.; Messchendorp, J.; Moeini, H.; Schakel, P.; Schreuder, F.; Smit, H.; Tambave, G.; van der Weele, J. C.; Veenstra, R.; Sohlbach, H.; Büscher, M.; Deermann, D.; Dosdall, R.; Esch, S.; Gillitzer, A.; Goldenbaum, F.; Grunwald, D.; Henssler, S.; Herten, A.; Hu, Q.; Kemmerling, G.; Kleines, H.; Kozlov, V.; Lehrach, A.; Maier, R.; Mertens, M.; Ohm, H.; Orfanitski, S.; Prasuhn, D.; Randriamalala, T.; Ritman, J.; Röder, M.; Schadmand, S.; Serdyuk, V.; Sterzenbach, G.; Stockmanns, T.; Wintz, P.; Wüstner, P.; Xu, H.; Kisiel, J.; Li, S.; Li, Z.; Sun, Z.; Xu, H.; Rigato, V.; Fissum, S.; Hansen, K.; Isaksson, L.; Lundin, M.; Schröder, B.; Achenbach, P.; Bleser, S.; Cahit, U.; Cardinali, M.; Denig, A.; Distler, M.; Fritsch, M.; Jasinski, P.; Kangh, D.; Karavdina, A.; Lauth, W.; Merkel, H.; Michel, M.; Mora Espi, M. C.; Müller, U.; Pochodzalla, J.; Sanchez, S.; Sanchez-Lorente, A.; Schlimme, S.; Sfienti, C.; Thiel, M.; Weber, T.; Dormenev, V. I.; Fedorov, A. A.; Korzhik, M. V.; Missevitch, O. V.; Balanutsa, V.; Chernetsky, V.; Demekhin, A.; Dolgolenko, A.; Fedorets, P.; Gerasimov, A.; Goryachev, V.; Varentsov, V.; Boukharov, A.; Malyshev, O.; Marishev, I.; Semenov, A.; Böhmer, F.; Dørheim, S.; Ketzer, B.; Paul, S.; Hergemöller, A. K.; Khoukaz, A.; Köhler, E.; Täschner, A.; Wessels, J.; Varma, R.; Chaterjee, A.; Jha, V.; Kailas, S.; Roy, B. J.; Yan, Y.; Chinorat, K.; Khanchai, K.; Ayut, L.; Pomrad, S.; Baldin, E.; Kotov, K.; Peleganchuk, S.; Tikhonov, Yu.; Boucher, J.; Chambert, V.; Dbeyssi, A.; Gumberidze, M.; Hennino, T.; Imre, M.; Kunne, R.; Le Galliard, C.; Ma, B.; Marchand, D.; Maroni, A.; Ong, S.; Ramstein, B.; Rosier, P.; Tomasi-Gustafsson, E.; Van de Wiele, J.; Boca, G.; Braghieri, A.; Costanza, S.; Genova, P.; Lavezzi, L.; Montagna, P.; Rotondi, A.; Abramov, V.; Belikov, N.; Davidenko, A.; Derevschikov, A.; Goncharenko, Y.; Grishin, V.; Kachanov, V.; Konstantinov, D.; Kormilitsin, V.; Melnik, Y.; Levin, A.; Minaev, N.; Mochalov, V.; Morozov, D.; Nogach, L.; Poslavskiy, S.; Ryazantsev, A.; Ryzhikov, S.; Semenov, P.; Shein, I.; Uzunian, A.; Vasiliev, A.; Yakutin, A.; Bäck, T.; Cederwall, B.; Makónyi, K.; Tegnér, P. E.; von Würtemberg, K. M.; Belostotski, S.; Gavrilov, G.; Itzotov, A.; Kashchuk, A.; Kisselev, A.; Kravchenko, P.; Levitskaya, O.; Manaenkov, S.; Miklukho, O.; Naryshkin, Y.; Veretennikov, D.; Vikhrov, V.; Zhadanov, A.; Alberto, D.; Amoroso, A.; Bussa, M. P.; Busso, L.; De Mori, F.; Destefanis, M.; Fava, L.; Ferrero, L.; Greco, M.; Maggiora, M.; Marcello, S.; Sosio, S.; Spataro, S.; Zotti, L.; Calvo, D.; Coli, S.; De Remigis, P.; Filippi, A.; Giraudo, G.; Lusso, S.; Mazza, G.; Morra, O.; Rivetti, A.; Wheadon, R.; Iazzi, F.; Lavagno, A.; Younis, H.; Birsa, R.; Bradamante, F.; Bressan, A.; Martin, A.; Clement, H.; Galander, B.; Caldeira Balkeståhl, L.; Calén, H.; Fransson, K.; Johansson, T.; Kupsc, A.; Marciniewski, P.; Thomé, E.; Wolke, M.; Zlomanczuk, J.; Díaz, J.; Ortiz, A.; Dmowski, K.; Duda, P.; Korzeniewski, R.; Slowinski, B.; Chlopik, A.; Guzik, Z.; Kosinski, K.; Melnychuk, D.; Wasilewski, A.; Wojciechowski, M.; Wronka, S.; Wysocka, A.; Zwieglinski, B.; Bühler, P.; Hartman, O. N.; Kienle, P.; Marton, J.; Suzuki, K.; Widmann, E.; Zmeskal, J.

    2013-02-01

    This document describes the technical layout and the expected performance of the Straw Tube Tracker (STT), the main tracking detector of the overline{P}ANDA target spectrometer. The STT encloses a Micro-Vertex-Detector (MVD) for the inner tracking and is followed in beam direction by a set of GEM stations. The tasks of the STT are the measurement of the particle momentum from the reconstructed trajectory and the measurement of the specific energy loss for a particle identification. Dedicated simulations with full analysis studies of certain proton-antiproton reactions, identified as being benchmark tests for the whole overline{P}ANDA scientific program, have been performed to test the STT layout and performance. The results are presented, and the time lines to construct the STT are described.

  13. High-resolution modeling of indirectly driven high-convergence layered inertial confinement fusion capsule implosions

    DOE PAGES

    Haines, Brian M.; Aldrich, C. H.; Campbell, J. M.; ...

    2017-04-24

    In this study, we present the results of high-resolution simulations of the implosion of high-convergence layered indirect-drive inertial confinement fusion capsules of the type fielded on the National Ignition Facility using the xRAGE radiation-hydrodynamics code. In order to evaluate the suitability of xRAGE to model such experiments, we benchmark simulation results against available experimental data, including shock-timing, shock-velocity, and shell trajectory data, as well as hydrodynamic instability growth rates. We discuss the code improvements that were necessary in order to achieve favorable comparisons with these data. Due to its use of adaptive mesh refinement and Eulerian hydrodynamics, xRAGE is particularlymore » well suited for high-resolution study of multi-scale engineering features such as the capsule support tent and fill tube, which are known to impact the performance of high-convergence capsule implosions. High-resolution two-dimensional (2D) simulations including accurate and well-resolved models for the capsule fill tube, support tent, drive asymmetry, and capsule surface roughness are presented. These asymmetry seeds are isolated in order to study their relative importance and the resolution of the simulations enables the observation of details that have not been previously reported. We analyze simulation results to determine how the different asymmetries affect hotspot reactivity, confinement, and confinement time and how these combine to degrade yield. Yield degradation associated with the tent occurs largely through decreased reactivity due to the escape of hot fuel mass from the hotspot. Drive asymmetries and the fill tube, however, degrade yield primarily via burn truncation, as associated instability growth accelerates the disassembly of the hotspot. Finally, modeling all of these asymmetries together in 2D leads to improved agreement with experiment but falls short of explaining the experimentally observed yield degradation

  14. Boron-coated straws as a replacement for 3He-based neutron detectors

    NASA Astrophysics Data System (ADS)

    Lacy, Jeffrey L.; Athanasiades, Athanasios; Sun, Liang; Martin, Christopher S.; Lyons, Tom D.; Foss, Michael A.; Haygood, Hal B.

    2011-10-01

    US and international government efforts to equip major seaports with large area neutron detectors, aimed to intercept the smuggling of nuclear materials, have precipitated a critical shortage of 3He gas. It is estimated that the annual demand of 3He for US security applications alone is more than the worldwide supply. This is strongly limiting the prospects of neutron science, safeguards, and other applications that rely heavily on 3He-based detectors. Clearly, alternate neutron detection technologies that can support large sensitive areas, and have low gamma sensitivity and low cost must be developed. We propose a low-cost technology based on long copper tubes (straws), coated on the inside with a thin layer of 10B-enriched boron carbide ( 10B 4C). In addition to the high abundance of boron on Earth and low cost of 10B enrichment, the boron-coated straw (BCS) detector offers distinct advantages over conventional 3He-based detectors, and alternate technologies such as 10BF 3 tubes and 10B-coated rigid tubes. These include better distribution inside moderator assemblies, many-times faster electronic signals, no pressurization, improved gamma-ray rejection, no toxic or flammable gases, and ease of serviceability. We present the performance of BCS detectors dispersed in a solid plastic moderator to address the need for portal monitoring. The design adopts the outer dimensions of currently deployed 3He-based monitors, but takes advantage of the small BCS diameter to achieve a more uniform distribution of neutron converter throughout the moderating material. We show that approximately 63 BCS detectors, each 205 cm long, distributed inside the moderator, can match or exceed the detection efficiency of typical monitors fitted with a 5 cm diameter 3He tube, 187 cm long, pressurized to 3 atm.

  15. Focal spot size reduction using asymmetric collimation to enable reduced anode angles with a conventional angiographic x-ray tube for use with high resolution detectors.

    PubMed

    Russ, M; Shankar, A; Setlur Nagesh, S V; Ionita, C N; Bednarek, D R; Rudin, S

    2017-02-11

    The high-resolution requirements for neuro-endovascular image-guided interventions (EIGIs) necessitate the use of a small focal-spot size; however, the maximum tube output limits for such small focal-spot sizes may not enable sufficient x-ray fluence after attenuation through the human head to support the desired image quality. This may necessitate the use of a larger focal spot, thus contributing to the overall reduction in resolution. A method for creating a higher-output small effective focal spot based on the line-focus principle has been demonstrated and characterized. By tilting the C-arm gantry, the anode-side of the x-ray field-of-view is accessible using a detector placed off-axis. This tilted central axis diminishes the resultant focal spot size in the anode-cathode direction by the tangent of the effective anode angle, allowing a medium focal spot to be used in place of a small focal spot with minimal losses in resolution but with increased tube output. Images were acquired of two different objects at the central axis, and with the C-arm tilted away from the central axis at 1° increments from 0°-7°. With standard collimation settings, only 6° was accessible, but using asymmetric extended collimation a maximum of 7° was accessed for enhanced comparisons. All objects were positioned perpendicular to the anode-cathode direction and images were compared qualitatively. The increasing advantage of the off-axis focal spots was quantitatively evidenced at each subsequent angle using the Generalized Measured-Relative Object Detectability metric (GM-ROD). This anode-tilt method is a simple and robust way of increasing tube output for a small field-of-view detector without diminishing the overall apparent resolution for neuro-EIGIs.

  16. Focal spot size reduction using asymmetric collimation to enable reduced anode angles with a conventional angiographic x-ray tube for use with high resolution detectors

    NASA Astrophysics Data System (ADS)

    Russ, M.; Shankar, A.; Setlur Nagesh, S. V.; Ionita, C. N.; Bednarek, D. R.; Rudin, S.

    2017-03-01

    The high-resolution requirements for neuro-endovascular image-guided interventions (EIGIs) necessitate the use of a small focal-spot size; however, the maximum tube output limits for such small focal-spot sizes may not enable sufficient x-ray fluence after attenuation through the human head to support the desired image quality. This may necessitate the use of a larger focal spot, thus contributing to the overall reduction in resolution. A method for creating a higher-output small effective focal spot based on the line-focus principle has been demonstrated and characterized. By tilting the C-arm gantry, the anode-side of the x-ray field-of-view is accessible using a detector placed off-axis. This tilted central axis diminishes the resultant focal spot size in the anode-cathode direction by the tangent of the effective anode angle, allowing a medium focal spot to be used in place of a small focal spot with minimal losses in resolution but with increased tube output. Images were acquired of two different objects at the central axis, and with the C-arm tilted away from the central axis at 1° increments from 0°-7°. With standard collimation settings, only 6° was accessible, but using asymmetric extended collimation a maximum of 7° was accessed for enhanced comparisons. All objects were positioned perpendicular to the anode-cathode direction and images were compared qualitatively. The increasing advantage of the off-axis focal spots was quantitatively evidenced at each subsequent angle using the Generalized Measured-Relative Object Detectability metric (GM-ROD). This anode-tilt method is a simple and robust way of increasing tube output for a small field-of-view detector without diminishing the overall apparent resolution for neuro-EIGIs.

  17. Microbial Activity and Silica Degradation in Rice Straw

    NASA Astrophysics Data System (ADS)

    Kim, Esther Jin-kyung

    Abundantly available agricultural residues like rice straw have the potential to be feedstocks for bioethanol production. Developing optimized conditions for rice straw deconstruction is a key step toward utilizing the biomass to its full potential. One challenge associated with conversion of rice straw to bioenergy is its high silica content as high silica erodes machinery. Another obstacle is the availability of enzymes that hydrolyze polymers in rice straw under industrially relevant conditions. Microbial communities that colonize compost may be a source of enzymes for bioconversion of lignocellulose to products because composting systems operate under thermophilic and high solids conditions that have been shown to be commercially relevant. Compost microbial communities enriched on rice straw could provide insight into a more targeted source of enzymes for the breakdown of rice straw polysaccharides and silica. Because rice straw is low in nitrogen it is important to understand the impact of nitrogen concentrations on the production of enzyme activity by the microbial community. This study aims to address this issue by developing a method to measure microbial silica-degrading activity and measure the effect of nitrogen amendment to rice straw on microbial activity and extracted enzyme activity during a high-solids, thermophilic incubation. An assay was developed to measure silica-degrading enzyme or silicase activity. This process included identifying methods of enzyme extraction from rice straw, identifying a model substrate for the assay, and optimizing measurement techniques. Rice straw incubations were conducted with five different levels of nitrogen added to the biomass. Microbial activity was measured by respiration and enzyme activity. A microbial community analysis was performed to understand the shift in community structure with different treatments. With increased levels of nitrogen, respiration and cellulose and hemicellulose degrading activity

  18. Manufacturing and process optimization of porous rice straw board

    NASA Astrophysics Data System (ADS)

    Liu, Dejun; Dong, Bing; Bai, Xuewei; Gao, Wei; Gong, Yuanjuan

    2018-03-01

    Development and utilization of straw resources and the production of straw board can dramatically reduce straw waste and environmental pollution associated with straw burning in China. However, the straw board production faces several challenges, such as improving the physical and mechanical properties, as well as eliminating its formaldehyde content. The recent research was to develop a new straw board compound adhesive containing both inorganic (MgSO4, MgCO3, active silicon and ALSiO4) and organic (bean gum and modified Methyl DiphenylDiisocyanate, MDI) gelling materials, to devise a new high frequency straw board hot pressing technique and to optimize the straw board production parameters. The results indicated that the key hot pressing parameters leading to porous straw board with optimal physical and mechanical properties. These parameters are as follows: an adhesive containing a 4:1 ratio of inorganic-to-organic gelled material, the percentage of adhesive in the total mass of preload straw materials is 40%, a hot-pressing temperature in the range of 120 °C to 140 °C, and a high frequency hot pressing for 10 times at a pressure of 30 MPa. Finally, the present work demonstrated that porous straw board fabricated under optimal manufacturing condition is an environmentally friendly and renewable materials, thereby meeting national standard of medium density fiberboard (MDF) with potential applications in the building industry.

  19. High-spatial resolution and high-spectral resolution detector for use in the measurement of solar flare hard X-rays

    NASA Technical Reports Server (NTRS)

    Desai, U. D.; Orwig, Larry E.

    1988-01-01

    In the areas of high spatial resolution, the evaluation of a hard X-ray detector with 65 micron spatial resolution for operation in the energy range from 30 to 400 keV is proposed. The basic detector is a thick large-area scintillator faceplate, composed of a matrix of high-density scintillating glass fibers, attached to a proximity type image intensifier tube with a resistive-anode digital readout system. Such a detector, combined with a coded-aperture mask, would be ideal for use as a modest-sized hard X-ray imaging instrument up to X-ray energies as high as several hundred keV. As an integral part of this study it was also proposed that several techniques be critically evaluated for X-ray image coding which could be used with this detector. In the area of high spectral resolution, it is proposed to evaluate two different types of detectors for use as X-ray spectrometers for solar flares: planar silicon detectors and high-purity germanium detectors (HPGe). Instruments utilizing these high-spatial-resolution detectors for hard X-ray imaging measurements from 30 to 400 keV and high-spectral-resolution detectors for measurements over a similar energy range would be ideally suited for making crucial solar flare observations during the upcoming maximum in the solar cycle.

  20. The influence of focal spot blooming on high-contrast spatial resolution in CT imaging.

    PubMed

    Grimes, Joshua; Duan, Xinhui; Yu, Lifeng; Halaweish, Ahmed F; Haag, Nicole; Leng, Shuai; McCollough, Cynthia

    2015-10-01

    The objective of this work was to investigate focal spot blooming effects on the spatial resolution of CT images and to evaluate an x-ray tube that uses dynamic focal spot control for minimizing focal spot blooming. The influence of increasing tube current at a fixed tube potential of 80 kV on high-contrast spatial resolution of seven different CT scanner models (scanners A-G), including one scanner that uses dynamic focal spot control to reduce focal spot blooming (scanner A), was evaluated. Spatial resolution was assessed using a wire phantom for the modulation transfer function (MTF) calculation and a copper disc phantom for measuring the slice sensitivity profile (SSP). The impact of varying the tube potential was investigated on two scanner models (scanners A and B) by measuring the MTF and SSP and also by using the resolution bar pattern module of the ACR CT phantom. The phantoms were scanned at 70-150 kV on scanner A and 80-140 kV on scanner B, with tube currents from 100 mA up to the maximum tube current available on each scanner. The images were reconstructed using a slice thickness of 0.6 mm with both smooth and sharp kernels. Additionally, focal spot size at varying tube potentials and currents was directly measured using pinhole and slit camera techniques. Evaluation of the MTF and SSP data from the 7 CT scanner models evaluated demonstrated decreased focal spot blooming for newer scanners, as evidenced by decreasing deviations in MTF and SSP as tube current varied. For scanners A and B, where focal spot blooming effects as a function of tube potential were assessed, the spatial resolution variation in the axial plane was much smaller on scanner A compared to scanner B as tube potential and current changed. On scanner A, the 50% MTF never decreased by more than 2% from the 50% MTF measured at 100 mA. On scanner B, the 50% MTF decreased by as much as 19% from the 50% MTF measured at 100 mA. Assessments of the SSP, the bar patterns in the ACR phantom and

  1. Natural cellulose fibers from soybean straw.

    PubMed

    Reddy, Narendra; Yang, Yiqi

    2009-07-01

    This paper reports the development of natural cellulose technical fibers from soybean straw with properties similar to the natural cellulose fibers in current use. About 220 million tons of soybean straw available in the world every year could complement the byproducts of other major food crops as inexpensive, abundant and annually renewable sources for natural cellulose fibers. Using the agricultural byproducts as sources for fibers could help to address the concerns on the future price and availability of both the natural and synthetic fibers in current use and also help to add value to the food crops. A simple alkaline extraction was used to obtain technical fibers from soybean straw and the composition, structure and properties of the fibers was studied. Technical fibers obtained from soybean straw have high cellulose content (85%) but low% crystallinity (47%). The technical fibers have breaking tenacity (2.7 g/den) and breaking elongation (3.9%) higher than those of fibers obtained from wheat straw and sorghum stalk and leaves but lower than that of cotton. Overall, the structure and properties of the technical fibers obtained from soybean straw indicates that the fibers could be suitable for use in textile, composite and other industrial applications.

  2. Future prospects for high resolution X-ray spectrometers

    NASA Technical Reports Server (NTRS)

    Canizares, C. R.

    1981-01-01

    Capabilities of the X-ray spectroscopy payloads were compared. Comparison of capabilities of AXAF in the context of the science to be achieved is reported. The Einstein demonstrated the tremendous scientific power of spectroscopy to probe deeply the astrophysics of all types of celestial X-ray source. However, it has limitations in sensitivity and resolution. Each of the straw man instruments has a sensitivity that is at least an order of magnitude better than that of the Einstein FPSC. The AXAF promises powerful spectral capability.

  3. Techniques to measure tension in wires or straw tubes

    NASA Astrophysics Data System (ADS)

    Oh, S. H.; Lin, S.; Wang, C.

    2018-01-01

    We discuss two different ways of measuring the tension in light wires and straws. The first technique uses an operational amplifier to subtract out the oscillating driving voltage mixed in the output voltage, which also has the signal. The isolated signal is amplified and displayed in an oscilloscope. In the second technique, an analog switch routes the oscillating voltage to a wire for a fraction of seconds, and then switches off the voltage. As the voltage is turned off, the induced signal from the wire is routed to an amplifier-rectifier circuit for a fraction of a second to measure the signal size as a function of the driving frequency. The first technique fits well to measure a single wire, while the second one fits well to measure many wires, 16 in our case, at a time.

  4. High-intensity xenon plasma discharge lamp for bulk-sensitive high-resolution photoemission spectroscopy.

    PubMed

    Souma, S; Sato, T; Takahashi, T; Baltzer, P

    2007-12-01

    We have developed a highly brilliant xenon (Xe) discharge lamp operated by microwave-induced electron cyclotron resonance (ECR) for ultrahigh-resolution bulk-sensitive photoemission spectroscopy (PES). We observed at least eight strong radiation lines from neutral or singly ionized Xe atoms in the energy region of 8.4-10.7 eV. The photon flux of the strongest Xe I resonance line at 8.437 eV is comparable to that of the He Ialpha line (21.218 eV) from the He-ECR discharge lamp. Stable operation for more than 300 h is achieved by efficient air-cooling of a ceramic tube in the resonance cavity. The high bulk sensitivity and high-energy resolution of PES using the Xe lines are demonstrated for some typical materials.

  5. A comprehensive biomass burning emission inventory with high spatial and temporal resolution in China

    NASA Astrophysics Data System (ADS)

    Zhou, Ying; Xing, Xiaofan; Lang, Jianlei; Chen, Dongsheng; Cheng, Shuiyuan; Wei, Lin; Wei, Xiao; Liu, Chao

    2017-02-01

    . As for the straw burning emission of various crops, corn straw burning has the largest contribution to all of the pollutants considered, except for CH4; rice straw burning has highest contribution to CH4 and the second largest contribution to other pollutants, except for SO2, OC, and Hg; wheat straw burning is the second largest contributor to SO2, OC, and Hg and the third largest contributor to other pollutants. Heilongjiang, Shandong, and Henan provinces located in the north-eastern and central-southern regions of China have higher emissions compared to other provinces in China. Gridded emissions, which were obtained through spatial allocation based on the gridded rural population and fire point data from emission inventories at county resolution, could better represent the actual situation. High biomass burning emissions are concentrated in the areas with more agricultural and rural activity. The months of April, May, June, and October account for 65 % of emissions from in-field crop residue burning, while, regarding EC, the emissions in January, February, October, November, and December are relatively higher than other months due to biomass domestic burning in heating season. There are regional differences in the monthly variations of emissions due to the diversity of main planted crops and climatic conditions. Furthermore, PM2.5 component results showed that OC, Cl-, EC, K+, NH4+, elemental K, and SO42- are the main PM2.5 species, accounting for 80 % of the total emissions. The species with relatively high contribution to NMVOC emission include ethylene, propylene, toluene, mp-xylene, and ethyl benzene, which are key species for the formation of secondary air pollution. The detailed biomass burning emission inventory developed by this study could provide useful information for air-quality modelling and could support the development of appropriate pollution-control strategies.

  6. Single Photon Counting Large Format Imaging Sensors with High Spatial and Temporal Resolution

    NASA Astrophysics Data System (ADS)

    Siegmund, O. H. W.; Ertley, C.; Vallerga, J. V.; Cremer, T.; Craven, C. A.; Lyashenko, A.; Minot, M. J.

    High time resolution astronomical and remote sensing applications have been addressed with microchannel plate based imaging, photon time tagging detector sealed tube schemes. These are being realized with the advent of cross strip readout techniques with high performance encoding electronics and atomic layer deposited (ALD) microchannel plate technologies. Sealed tube devices up to 20 cm square have now been successfully implemented with sub nanosecond timing and imaging. The objective is to provide sensors with large areas (25 cm2 to 400 cm2) with spatial resolutions of <20 μm FWHM and timing resolutions of <100 ps for dynamic imaging. New high efficiency photocathodes for the visible regime are discussed, which also allow response down below 150nm for UV sensing. Borosilicate MCPs are providing high performance, and when processed with ALD techniques are providing order of magnitude lifetime improvements and enhanced photocathode stability. New developments include UV/visible photocathodes, ALD MCPs, and high resolution cross strip anodes for 100 mm detectors. Tests with 50 mm format cross strip readouts suitable for Planacon devices show spatial resolutions better than 20 μm FWHM, with good image linearity while using low gain ( 106). Current cross strip encoding electronics can accommodate event rates of >5 MHz and event timing accuracy of 100 ps. High-performance ASIC versions of these electronics are in development with better event rate, power and mass suitable for spaceflight instruments.

  7. Contribution of the channel electron multiplier to the race of vacuum tubes towards picosecond resolution time

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pietri, G.

    1977-02-01

    The ability to tightly pack millions of microscopic secondary emitting channels into a two-dimensional, very thin, array known as a microchannel plate (MCP) provides excellent electrical charge or current amplification associated with an extremely short response time as well as very good spatial resolution. The ultimate performances in spatial and temporal resolutions achieved by MCP-based vacuum devices are discussed and illustrated by the description of a large range of experimental prototypes (photomultipliers, oscilloscope tubes, streak camera tubes, etc.) designed and produced at LEP, then tested in cooperation with Nuclear Research and Plasma Physics Centers in Europe and USA.

  8. Electro-optical design of a long slit streak tube

    NASA Astrophysics Data System (ADS)

    Tian, Liping; Tian, Jinshou; Wen, Wenlong; Chen, Ping; Wang, Xing; Hui, Dandan; Wang, Junfeng

    2017-11-01

    A small size and long slit streak tube with high spatial resolution was designed and optimized. Curved photocathode and screen were adopted to increase the photocathode working area and spatial resolution. High physical temporal resolution obtained by using a slit accelerating electrode. Deflection sensitivity of the streak tube was improved by adopting two-folded deflection plates. The simulations indicate that the photocathode effective working area can reach 30mm × 5mm. The static spatial resolution is higher than 40lp/mm and 12lp/mm along scanning and slit directions respectively while the physical temporal resolution is higher than 60ps. The magnification is 0.75 and 0.77 in scanning and slit directions. And also, the deflection sensitivity is as high as 37mm/kV. The external dimension of the streak tube are only ∅74mm×231mm. Thus, it can be applied to laser imaging radar system for large field of view and high range precision detection.

  9. Dosage dependent effect of high-resistance straw exercise in dysphonic and non-dysphonic women.

    PubMed

    Paes, Sabrina Mazzer; Behlau, Mara

    2017-03-09

    to study the dosage dependent effect of high-resistance straw exercise in women with behavioral dysphonia and in vocally healthy women. 25 dysphonic women (DG), with average age of 35 years (SD = 10.5) and 30 vocally healthy women (VHG), with average age of 31.6 years (SD = 10.3). The participants produced a continuous sound into a thin high-resistance straw for seven minutes, being interrupted after the first, third, fifth and seventh minute. At each interval, speech samples were recorded (sustained vowel and counting up to 20) and subsequently acoustically analyzed. Each participant reported the effort necessary to perform exercise and to speak, indicating their ratings on visual analog scales (VAS). with regard to the DG, the exercise caused positive vocal changes, especially between the third and fifth minute: less phonatory effort, increase in MPT, and reduction of F0 variability; these voice parameters deteriorated after five minutes. This fact associated with the increased effort to perform the exercise indicates a possible overload of the phonatory system. As to the VHG, MPT improved after one minute of exercise, while the other parameters did not change over time, probably due to the fact that the voices were not deviant; seven minutes did not seem to impose an overload in this population. positive vocal changes were observed with the high-resistance straw exercise; however, there are dosage restrictions, especially for dysphonic women.

  10. Tested R-value for straw bale walls and performance modeling for straw bale homes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Commins, T.R.; Stone, N.I.

    1998-07-01

    Since the late 1800's, houses have been built of straw. Contrary to nursery rhymes, these houses have proved sturdy and comfortable and not at all easy to blow down. In the last several years, as people have experimented with new and old building materials and looked for ways to halt rice field stubble burning, there has been a resurgence of homes built with straw. Unfortunately, there has been very little testing to determine the thermal performance of straw bale walls or to discover how these walls affect a home's heating and cooling energy consumption. Reported R-values for straw bale wallsmore » range from R-17 to R-54, depending on the test procedure, the type of straw used and the type of straw bale wall system. This paper reports on a test set-up by the California Energy Commission (Commission) and conducted in a nationally accredited lab, Architectural Testing Inc. (ATI) in Fresno, California. The paper describes the tested straw bale wall assemblies, the testing process, and problems encountered in the construction and testing of the walls. The paper also gives a reasonable R-value to use in calculating thermal performance of straw bale houses and presents findings that show that straw bale construction can decrease the heating and cooling energy usage of a typical house by up to a third over conventional practice.« less

  11. Fungal diversity of rice straw for meju fermentation.

    PubMed

    Kim, Dae-Ho; Kim, Seon-Hwa; Kwon, Soon-Wo; Lee, Jong-Kyu; Hong, Seung-Beom

    2013-12-01

    Rice straw is closely associated with meju fermentation and it is generally known that the rice straw provides meju with many kinds of microorganisms. In order to elucidate the origin of meju fungi, the fungal diversity of rice straw was examined. Rice straw was collected from 12 Jang factories where meju are produced, and were incubated under nine different conditions by altering the media (MEA, DRBC, and DG18), and temperature (15°C, 25°C, and 35°C). In total, 937 strains were isolated and identified as belonging to 39 genera and 103 species. Among these, Aspergillus, Cladosporium, Eurotium, Fusarium, and Penicillium were the dominant genera. Fusarium asiaticum (56.3%), Cladosporium cladosporioides (48.6%), Aspergillus tubingensis (37.5%), A. oryzae (31.9%), Eurotium repens (27.1%), and E. chevalieri (25.0%) were frequently isolated from the rice straw obtained from many factories. Twelve genera and 40 species of fungi that were isolated in the rice straw in this study were also isolated from meju. Specifically, A. oryzae, C. cladosporioides, E. chevalieri, E. repens, F. asiaticum, and Penicillium polonicum (11.8%), which are abundant species in meju, were also isolated frequently from rice straw. C. cladosporioides, F. asiaticum, and P. polonicum, which are abundant in the low temperature fermentation process of meju fermentation, were frequently isolated from rice straw incubated at 15°C and 25°C, whereas A. oryzae, E. repens, and E. chevalieri, which are abundant in the high temperature fermentation process of meju fermentation, were frequently isolated from rice straw incubated at 25°C and 35°C. This suggests that the mycobiota of rice straw has a large influence in the mycobiota of meju. The influence of fungi on the rice straw as feed and silage for livestock, and as plant pathogens for rice, are discussed as well.

  12. A simple tool for tubing modification to improve spiral high-speed counter-current chromatography for protein purification.

    PubMed

    Ito, Yoichiro; Ma, Xiaofeng; Clary, Robert

    2016-01-01

    A simple tool is introduced which can modify the shape of tubing to enhance the partition efficiency in high-speed countercurrent chromatography. It consists of a pair of interlocking identical gears, each coaxially holding a pressing wheel to intermittently compress plastic tubing in 0 - 10 mm length at every 1 cm interval. The performance of the processed tubing is examined in protein separation with 1.6 mm ID PTFE tubing intermittently pressed in 3 mm and 10 mm width both at 10 mm intervals at various flow rates and revolution speeds. A series of experiments was performed with a polymer phase system composed of polyethylene glycol and dibasic potassium phosphate each at 12.5% (w/w) in deionized water using three protein samples. Overall results clearly demonstrate that the compressed tubing can yield substantially higher peak resolution than the non-processed tubing. The simple tubing modifier is very useful for separation of proteins with high-speed countercurrent chromatography.

  13. A simple tool for tubing modification to improve spiral high-speed counter-current chromatography for protein purification

    PubMed Central

    Ito, Yoichiro; Ma, Xiaofeng; Clary, Robert

    2016-01-01

    A simple tool is introduced which can modify the shape of tubing to enhance the partition efficiency in high-speed countercurrent chromatography. It consists of a pair of interlocking identical gears, each coaxially holding a pressing wheel to intermittently compress plastic tubing in 0 – 10 mm length at every 1 cm interval. The performance of the processed tubing is examined in protein separation with 1.6 mm ID PTFE tubing intermittently pressed in 3 mm and 10 mm width both at 10 mm intervals at various flow rates and revolution speeds. A series of experiments was performed with a polymer phase system composed of polyethylene glycol and dibasic potassium phosphate each at 12.5% (w/w) in deionized water using three protein samples. Overall results clearly demonstrate that the compressed tubing can yield substantially higher peak resolution than the non-processed tubing. The simple tubing modifier is very useful for separation of proteins with high-speed countercurrent chromatography. PMID:27818942

  14. A compact high resolution ion mobility spectrometer for fast trace gas analysis.

    PubMed

    Kirk, Ansgar T; Allers, Maria; Cochems, Philipp; Langejuergen, Jens; Zimmermann, Stefan

    2013-09-21

    Drift tube ion mobility spectrometers (IMS) are widely used for fast trace gas detection in air, but portable compact systems are typically very limited in their resolving power. Decreasing the initial ion packet width improves the resolution, but is generally associated with a reduced signal-to-noise-ratio (SNR) due to the lower number of ions injected into the drift region. In this paper, we present a refined theory of IMS operation which employs a combined approach for the analysis of the ion drift and the subsequent amplification to predict both the resolution and the SNR of the measured ion current peak. This theoretical analysis shows that the SNR is not a function of the initial ion packet width, meaning that compact drift tube IMS with both very high resolution and extremely low limits of detection can be designed. Based on these implications, an optimized combination of a compact drift tube with a length of just 10 cm and a transimpedance amplifier has been constructed with a resolution of 183 measured for the positive reactant ion peak (RIP(+)), which is sufficient to e.g. separate the RIP(+) from the protonated acetone monomer, even though their drift times only differ by a factor of 1.007. Furthermore, the limits of detection (LODs) for acetone are 180 pptv within 1 s of averaging time and 580 pptv within only 100 ms.

  15. Soil bacterial community shifts associated with sugarcane straw removal

    NASA Astrophysics Data System (ADS)

    Pimentel, Laisa; Gumiere, Thiago; Andreote, Fernando; Cerri, Carlos

    2017-04-01

    In Brazil, the adoption of the mechanical unburned sugarcane harvest potentially increase the quantity of residue left in the field after harvesting. Economically, this material has a high potential for second generation ethanol (2G) production. However, crop residues have an essential role in diverse properties and processes in the soil. The greater part of the uncertainties about straw removal for 2G ethanol production is based on its effects in soil microbial community. In this sense, it is important to identify the main impacts of sugarcane straw removal on soil microbial community. Therefore, we conducted a field study, during one year, in Valparaíso (São Paulo state - Brazil) to evaluate the effects of straw decomposition on soil bacterial community. Specifically, we wanted: i) to compare the rates of straw removal and ii) to evaluate the effects of straw decomposition on soil bacterial groups over one year. The experiment was in a randomized block design with treatments arranged in strip plot. The treatments are different rates of sugarcane straw removal, namely: no removal, 50, 75 and 100% of straw removal. Soil sampling was carried out at 0, 4, 8 and 12 months after the sugarcane harvest (August 2015). Total DNA was extracted from soil using the PowersoilTM DNA Isolation kit. And the abundance of bacterial in each soil sample was estimated via quantification of 16S rRNA gene. The composition of the bacterial communities was estimated via terminal restriction fragment length polymorphism (T-RFLP) analysis, and the T-RF sizes were performed on a 3500 Genetic Analyzer. Finally, the results were examined with GeneMapper 4.1 software. There was bacterial community shifts through the time and among the rates of sugarcane straw removal. Bacterial community was firstly determined by the time scale, which explained 29.16% of total variation. Rates of straw removal explained 11.55% of shifts on bacterial community. Distribution through the time is an important

  16. Delignification of wheat straw by Pleurotus spp. under mushroom-growing conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsang, L.J.; Reid, I.D.; Coxworth, E.C.

    1987-06-01

    Pleurotus sajor-caju, P. sapidus, P. cornucopiae, and P. ostreatus mushrooms were produced on unsupplemented wheat straw. The yield of mushrooms averaged 3.6% (dry-weight basis), with an average 18% straw weight loss. Lignin losses (average, 11%) were lower than cellulose (20%) and hemicellulose (50%) losses. The cellulase digestibility of the residual straw after mushroom harvest was generally lower than that of the original straw. It does not appear feasible to simultaneously produce Pleurotus mushrooms and a highly delignified residue from wheat straw. (Refs. 24).

  17. A Simple Approach for Obtaining High Resolution, High Sensitivity ¹H NMR Metabolite Spectra of Biofluids with Limited Mass Supply

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Jian Zhi; Rommereim, Donald N.; Wind, Robert A.

    2006-11-01

    A simple approach is reported that yields high resolution, high sensitivity ¹H NMR spectra of biofluids with limited mass supply. This is achieved by spinning a capillary sample tube containing a biofluid at the magic angle at a frequency of about 80Hz. A 2D pulse sequence called ¹H PASS is then used to produce a high-resolution ¹H NMR spectrum that is free from magnetic susceptibility induced line broadening. With this new approach a high resolution ¹H NMR spectrum of biofluids with a volume less than 1.0 µl can be easily achieved at a magnetic field strength as low as 7.05T.more » Furthermore, the methodology facilitates easy sample handling, i.e., the samples can be directly collected into inexpensive and disposable capillary tubes at the site of collection and subsequently used for NMR measurements. In addition, slow magic angle spinning improves magnetic field shimming and is especially suitable for high throughput investigations. In this paper first results are shown obtained in a magnetic field of 7.05T on urine samples collected from mice using a modified commercial NMR probe.« less

  18. Characterization of fiber Bragg grating-based sensor array for high resolution manometry

    NASA Astrophysics Data System (ADS)

    Becker, Martin; Rothhardt, Manfred; Schröder, Kerstin; Voigt, Sebastian; Mehner, Jan; Teubner, Andreas; Lüpke, Thomas; Thieroff, Christoph; Krüger, Matthias; Chojetzki, Christoph; Bartelt, Hartmut

    2012-04-01

    The combination of fiber Bragg grating arrays integrated in a soft plastic tube is promising for high resolution manometry (HRM) where pressure measurements are done with high spatial resolution. The application as a medical device and in vivo experiments have to be anticipated by characterization with a measurement setup that simulates natural conditions. Good results are achieved with a pressure chamber which applies a well-defined pressure with a soft tubular membrane. It is shown that the proposed catheter design reaches accuracies down to 1 mbar and 1 cm.

  19. Discovery of Microorganisms and Enzymes Involved in High-Solids Decomposition of Rice Straw Using Metagenomic Analyses

    PubMed Central

    D’haeseleer, Patrik; Khudyakov, Jane; Burd, Helcio; Hadi, Masood; Simmons, Blake A.; Singer, Steven W.; Thelen, Michael P.; VanderGheynst, Jean S.

    2013-01-01

    High-solids incubations were performed to enrich for microbial communities and enzymes that decompose rice straw under mesophilic (35°C) and thermophilic (55°C) conditions. Thermophilic enrichments yielded a community that was 7.5 times more metabolically active on rice straw than mesophilic enrichments. Extracted xylanase and endoglucanse activities were also 2.6 and 13.4 times greater, respectively, for thermophilic enrichments. Metagenome sequencing was performed on enriched communities to determine community composition and mine for genes encoding lignocellulolytic enzymes. Proteobacteria were found to dominate the mesophilic community while Actinobacteria were most abundant in the thermophilic community. Analysis of protein family representation in each metagenome indicated that cellobiohydrolases containing carbohydrate binding module 2 (CBM2) were significantly overrepresented in the thermophilic community. Micromonospora, a member of Actinobacteria, primarily housed these genes in the thermophilic community. In light of these findings, Micromonospora and other closely related Actinobacteria genera appear to be promising sources of thermophilic lignocellulolytic enzymes for rice straw deconstruction under high-solids conditions. Furthermore, these discoveries warrant future research to determine if exoglucanases with CBM2 represent thermostable enzymes tolerant to the process conditions expected to be encountered during industrial biofuel production. PMID:24205054

  20. Rapid preparation of biosorbents with high ion exchange capacity from rice straw and bagasse for removal of heavy metals.

    PubMed

    Rungrodnimitchai, Supitcha

    2014-01-01

    This work describes the preparation of the cellulose phosphate with high ion exchange capacity from rice straw and bagasse for removal of heavy metals. In this study, rice straw and bagasse were modified by the reaction with phosphoric acid in the presence of urea. The introduced phosphoric group is an ion exchangeable site for heavy metal ions. The reaction by microwave heating yielded modified rice straw and modified bagasse with greater ion exchange capacities (∼3.62 meq/g) and shorter reaction time (1.5-5.0 min) than the phosphorylation by oil bath heating. Adsorption experiments towards Pb²⁺, Cd²⁺, and Cr³⁺ ions of the modified rice straw and the modified bagasse were performed at room temperature (heavy metal concentration 40 ppm, adsorbent 2.0 g/L). The kinetics of adsorption agreed with the pseudo-second-order model. It was shown that the modified rice straw and the modified bagasse could adsorb heavy metal ions faster than the commercial ion exchange resin (Dowax). As a result of Pb²⁺ sorption test, the modified rice straw (RH-NaOH 450W) removed Pb²⁺ much faster in the initial step and reached 92% removal after 20 min, while Dowax (commercial ion exchange resin) took 90 min for the same removal efficiency.

  1. Multilevel composition fractionation process for high-value utilization of wheat straw cellulose.

    PubMed

    Chen, Hong-Zhang; Liu, Zhi-Hua

    2014-01-01

    Biomass refining into multiple products has gained considerable momentum due to its potential benefits for economic and environmental sustainability. However, the recalcitrance of biomass is a major challenge in bio-based product production. Multilevel composition fractionation processes should be beneficial in overcoming biomass recalcitrance and achieving effective conversion of multiple compositions of biomass. The present study concerns the fractionation of wheat straw using steam explosion, coupled with ethanol extraction, and that this facilitates the establishment of sugars and lignin platform and enables the production of regenerated cellulose films. The results showed that the hemicellulose fractionation yield was 73% under steam explosion at 1.6 MPa for 5.2 minutes, while the lignin fractionation yield was 90% by ethanol extraction at 160°C for 2 hours and with 60% ethanol (v/v). The cellulose yield reached up to 93% after steam explosion coupled with ethanol extraction. Therefore, cellulose sugar, hemicellulose sugar, and lignin platform were established effectively in the present study. Long fibers (retained by a 40-mesh screening) accounted for 90% of the total cellulose fibers, and the glucan conversion of short fibers was 90% at 9.0 hours with a cellulase loading of 25 filter paper units/g cellulose in enzymatic hydrolysis. Regenerated cellulose film was prepared from long fibers using [bmim]Cl, and the tensile strength and breaking elongation was 120 MPa and 4.8%, respectively. The cross-section of regenerated cellulose film prepared by [bmim]Cl displayed homogeneous structure, which indicated a dense architecture and a better mechanical performance. Multilevel composition fractionation process using steam explosion followed by ethanol extraction was shown to be an effective process by which wheat straw could be fractionated into different polymeric fractions with high yields. High-value utilization of wheat straw cellulose was achieved by

  2. The effects of straw or straw-derived gasification biochar applications on soil quality and crop productivity: A farm case study.

    PubMed

    Hansen, Veronika; Müller-Stöver, Dorette; Imparato, Valentina; Krogh, Paul Henning; Jensen, Lars Stoumann; Dolmer, Anders; Hauggaard-Nielsen, Henrik

    2017-01-15

    Thermal gasification of straw is a highly efficient technology that produces bioenergy and gasification biochar that can be used as a soil amendment, thereby returning non-renewable nutrients and stable carbon, and securing soil quality and crop productivity. A Danish on-farm field study investigated the impact of traditional straw incorporation vs. straw removal for thermal gasification bioenergy production and the application of straw gasification biochar (GB) on soil quality and crop production. Two rates of GB were applied over three successive years in which the field was cropped with winter wheat (Triticum aestivum L.), winter oilseed rape (Brassica napus L.) and winter wheat, respectively, to assess the potential effects on the soil carbon pool, soil microorganisms, earthworms, soil chemical properties and crop yields. The application of GB did not increase the soil organic carbon content significantly and had no effect on crop yields. The application of straw and GB had a positive effect on the populations of bacteria and protists, but no effect on earthworms. The high rate of GB increased soil exchangeable potassium content and soil pH indicating its potassium bioavailability and liming properties. These results suggest, that recycling GB into agricultural soils has the potential to be developed into a system combining bioenergy generation from agricultural residues and crop production, while maintaining soil quality. However, future studies should be undertaken to assess its long-term effects and to identify the optimum balance between straw removal and biochar application rate. Copyright © 2016. Published by Elsevier Ltd.

  3. Evaluation of the Timing Properties of a High Quantum Efficiency Photomultiplier Tube

    NASA Astrophysics Data System (ADS)

    Peng, Qiyu; Choong, Woon-Seng; Moses, W. William

    2013-10-01

    We measured the timing resolution of 189 R9800-100 photomultiplier tubes (PMTs), which are a SBA (Super Bialkali, high quantum efficiency) variant of the R9800 high-performance PMT manufactured by Hamamatsu Photonics, and correlated their timing resolutions with various measures of PMT performance, namely Cathode Luminous Sensitivity (CLS), Anode Luminous Sensitivity (ALS), Gain times Collection Efficiency (GCE), Cathode Blue Sensitivity Index (CBSI), Anode Blue Sensitivity Index (ABSI) and dark current. The correlation results show: (1) strong correlations between timing resolution and ALS, ABSI, and GCE; (2) moderate correlations between timing resolution and CBSI; and (3) weak or no correlations between timing resolution and dark current and CLS. The results disclosed that all three measures that include data collected from the anode (ALS, ABSI, and GCE) affect the timing resolution more than either of the two measures that only include photocathode data (CBSI and CLS). We conclude that: (1) the photocathode Quantum Efficiency (QE) and the product of the Gain and the Collection Efficiency (GCE) are the two dominant factors that affect the timing resolution, (2) the GCE variation affects the timing resolution more than the QE variation in the R9800 PMT, and (3) the performance depends on photocathode position.

  4. Pyrolysis of agricultural biomass residues: Comparative study of corn cob, wheat straw, rice straw and rice husk.

    PubMed

    Biswas, Bijoy; Pandey, Nidhi; Bisht, Yashasvi; Singh, Rawel; Kumar, Jitendra; Bhaskar, Thallada

    2017-08-01

    Pyrolysis studies on conventional biomass were carried out in fixed bed reactor at different temperatures 300, 350, 400 and 450°C. Agricultural residues such as corn cob, wheat straw, rice straw and rice husk showed that the optimum temperatures for these residues are 450, 400, 400 and 450°C respectively. The maximum bio-oil yield in case of corn cob, wheat straw, rice straw and rice husk are 47.3, 36.7, 28.4 and 38.1wt% respectively. The effects of pyrolysis temperature and biomass type on the yield and composition of pyrolysis products were investigated. All bio-oils contents were mainly composed of oxygenated hydrocarbons. The higher area percentages of phenolic compounds were observed in the corn cob bio-oil than other bio-oils. From FT-IR and 1 H NMR spectra showed a high percentage of aliphatic functional groups for all bio-oils and distribution of products is different due to differences in the composition of agricultural biomass. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Three-dimensional interconnected porous graphitic carbon derived from rice straw for high performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Jin, Hong; Hu, Jingpeng; Wu, Shichao; Wang, Xiaolan; Zhang, Hui; Xu, Hui; Lian, Kun

    2018-04-01

    Three-dimensional interconnected porous graphitic carbon materials are synthesized via a combination of graphitization and activation process with rice straw as the carbon source. The physicochemical properties of the three-dimensional interconnected porous graphitic carbon materials are characterized by Nitrogen adsorption/desorption, Fourier-transform infrared spectroscopy, X-ray diffraction, Raman spectroscopy, Scanning electron microscopy and Transmission electron microscopy. The results demonstrate that the as-prepared carbon is a high surface area carbon material (a specific surface area of 3333 m2 g-1 with abundant mesoporous and microporous structures). And it exhibits superb performance in symmetric double layer capacitors with a high specific capacitance of 400 F g-1 at a current density of 0.1 A g-1, good rate performance with 312 F g-1 under a current density of 5 A g-1 and favorable cycle stability with 6.4% loss after 10000 cycles at a current density of 5 A g-1 in the aqueous electrolyte of 6M KOH. Thus, rice straw is a promising carbon source for fabricating inexpensive, sustainable and high performance supercapacitors' electrode materials.

  6. 13C NMR and XPS characterization of anion adsorbent with quaternary ammonium groups prepared from rice straw, corn stalk and sugarcane bagasse

    NASA Astrophysics Data System (ADS)

    Cao, Wei; Wang, Zhenqian; Zeng, Qingling; Shen, Chunhua

    2016-12-01

    Despite amino groups modified crop straw has been intensively studied as new and low-cost adsorbent for removal of anionic species from water, there is still a lack of clear characterization for amino groups, especially quaternary ammonium groups in the surface of crop straw. In this study, we used 13C NMR and XPS technologies to characterize adsorbents with quaternary ammonium groups prepared from rice straw, corn stalk and sugarcane bagasse. 13C NMR spectra clearly showed the presence of quaternary ammonium groups in lignocelluloses structure of modified crop straw. The increase of nitrogen observed in XPS survey spectra also indicated the existence of quaternary ammonium group in the surface of the adsorbents. The curve fitting of high-resolution XPS N1s and C1s spectra were conducted to probe the composition of nitrogen and carbon contained groups, respectively. The results showed the proportion of quaternary ammonium group significantly increased in the prepared adsorbent's surface that was dominated by methyl/methylene, hydroxyl, quaternary ammonium, ether and carbonyl groups. This study proved that 13C NMR and XPS could be successfully utilized for characterization of quaternary ammonium modified crop straw adsorbents.

  7. Chandra X-Ray Observatory High Resolution Mirror Assembly

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This photograph shows the mirrors of the High Resolution Mirror Assembly (HRMA) for the Chandra X-Ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF), being assembled in the Eastman Kodak Company in Rochester, New York. The AXAF was renamed CXO in 1999. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It observes x-rays from high-energy regions of the universe, such as hot gas in the remnants of exploded stars. The HRMA, the heart of the telescope system, is contained in the cylindrical 'telescope' portion of the observatory. Since high-energy x-rays would penetrate a normal mirror, special cylindrical mirrors were created. The two sets of four nested mirrors resemble tubes within tubes. Incoming x-rays graze off the highly polished mirror surface and are furneled to the instrument section for detection and study. TRW, Inc. was the prime contractor for the development of the CXO and NASA's Marshall Space Flight Center was responsible for its project management. The Observatory was launched July 22, 1999 aboard the Space Shuttle Columbia, STS-93 mission.

  8. Alkali pretreated of wheat straw and its enzymatic hydrolysis.

    PubMed

    Han, Lirong; Feng, Juntao; Zhang, Shuangxi; Ma, Zhiqing; Wang, Yonghong; Zhang, Xing

    2012-01-01

    The efficiency of enzymatic hydrolysis of cellulose can be improved by various pretreatments of the substrate. In order to increase the efficiency of enzymatic saccharification of the wheat straw, we determined the effect of different pretreatments on the physical structure, chemical components and enzymatic saccharification of wheat straw. Our results showed that combination of grinding and sodium hydroxide (NaOH) treatment had high effect on the enzymatic hydrolysis of wheat straws. The optimal pretreatment condition was to grind the wheat straws into the sizes of 120 meshes followed by treatment with 1.0% NaOH for 1.5 h (121°C/15psi). Under this condition, the cellulose content of wheat straw was increased by 44.52%, while the content of hemicellulose and lignin was decreased by 44.15% and 42.52%, respectively. Scanning Electronic Microscopy and infrared spectrum analyses showed that significant changes occurred in the structure of wheat straws after pretreatment, which is favorable for the hydrolysis and saccharification. Cellulase produced by Penicillium waksmanii F10-2 was used to hydrolyze the pretreated wheat straw and the optimal condition was determined to be 30 h of enzymatic reaction under the temperature of 55°C, pH 5.5 and substrate concentration of 3%.

  9. A compact large-format streak tube for imaging lidar

    NASA Astrophysics Data System (ADS)

    Hui, Dandan; Luo, Duan; Tian, Liping; Lu, Yu; Chen, Ping; Wang, Junfeng; Sai, Xiaofeng; Wen, Wenlong; Wang, Xing; Xin, Liwei; Zhao, Wei; Tian, Jinshou

    2018-04-01

    The streak tubes with a large effective photocathode area, large effective phosphor screen area, and high photocathode radiant sensitivity are essential for improving the field of view, depth of field, and detectable range of the multiple-slit streak tube imaging lidar. In this paper, a high spatial resolution, large photocathode area, and compact meshless streak tube with a spherically curved cathode and screen is designed and tested. Its spatial resolution reaches 20 lp/mm over the entire Φ28 mm photocathode working area, and the simulated physical temporal resolution is better than 30 ps. The temporal distortion in our large-format streak tube, which is shown to be a non-negligible factor, has a minimum value as the radius of curvature of the photocathode varies. Furthermore, the photocathode radiant sensitivity and radiant power gain reach 41 mA/W and 18.4 at the wavelength of 550 nm, respectively. Most importantly, the external dimensions of our streak tube are no more than Φ60 mm × 110 mm.

  10. Oyster mushroom cultivation with rice and wheat straw.

    PubMed

    Zhang, Ruihong; Li, Xiujin; Fadel, J G

    2002-05-01

    Cultivation of the oyster mushroom, Pleurotus sajor-caju, on rice and wheat straw without nutrient supplementation was investigated. The effects of straw size reduction method and particle size, spawn inoculation level, and type of substrate (rice straw versus wheat straw) on mushroom yield, biological efficiency, bioconversion efficiency, and substrate degradation were determined. Two size reduction methods, grinding and chopping, were compared. The ground straw yielded higher mushroom growth rate and yield than the chopped straw. The growth cycles of mushrooms with the ground substrate were five days shorter than with the chopped straw for a similar particle size. However, it was found that when the straw was ground into particles that were too small, the mushroom yield decreased. With the three spawn levels tested (12%, 16% and 18%), the 12% level resulted in significantly lower mushroom yield than the other two levels. Comparing rice straw with wheat straw, rice straw yielded about 10% more mushrooms than wheat straw under the same cultivation conditions. The dry matter loss of the substrate after mushroom growth varied from 30.1% to 44.3%. The straw fiber remaining after fungal utilization was not as degradable as the original straw fiber, indicating that the fungal fermentation did not improve the feed value of the straw.

  11. Evaluation of High Solids Alkaline Pretreatment of Rice Straw

    PubMed Central

    Cheng, Yu-Shen; Zheng, Yi; Yu, Chao Wei; Dooley, Todd M.; Jenkins, Bryan M.

    2010-01-01

    Fresh-harvested, air-dried rice straw was pretreated at a water content of 5 g H2O/g straw using sodium hydroxide (NaOH) and compared to pretreatment at 10 g H2O/g straw by hydrated lime (Ca(OH)2). Full factorial experiments including parallel wash-only treatments were completed with both sources of alkali. The experiments were designed to measure the effects of alkaline loading and pretreatment time on delignification and sugar yield upon enzymatic hydrolysis. Reaction temperature was held constant at 95°C for lime pretreatment and 55°C for NaOH pretreatment. The range of delignification was 13.1% to 27.0% for lime pretreatments and was 8.6% to 23.1% for NaOH pretreatments. Both alkaline loading and reaction time had significant positive effects (p < 0.001) on delignification under the design conditions, but only alkaline loading had a significant positive effect on enzymatic hydrolysis. Treatment at higher temperature also improved delignification; delignification with water alone ranged from 9.9% to 14.5% for pretreatment at 95°C, but there was little effect observed at 55°C. Post-pretreatment washing of biomass was not necessary for subsequent enzymatic hydrolysis. Maximum glucose yields were 176.3 mg/g dried biomass (48.5% conversion efficiency of total glucose) in lime-pretreated and unwashed biomass and were 142.3 mg/g dried biomass (39.2% conversion efficiency of total glucose) in NaOH-pretreated and unwashed biomass. PMID:20440580

  12. Evaluation of thermophilic fungal consortium for paddy straw composting.

    PubMed

    Kumar, Adesh; Gaind, Sunita; Nain, Lata

    2008-06-01

    Out of 10 thermophilic fungi isolated from wheat straw, farm yard manure, and soil, only three showed highest cellobiase, carboxymethyl cellulase, xylanase, and FPase activities. They were identified as Aspergillus nidulans (Th(4)), Scytalidium thermophilum (Th(5)), and Humicola sp. (Th(10)). A fungal consortium of these three fungi was used to compost a mixture (1:1) of silica rich paddy straw and lignin rich soybean trash. The composting of paddy straw for 3 months, during summer period in North India, resulted in a product with C:N ratio 9.5:1, available phosphorus 0.042% and fungal biomass 6.512 mg of N-acetyl glucosamine/100 mg of compost. However, a C:N ratio of 10.2:1 and highest humus content of 3.3% was achieved with 1:1 mixture of paddy straw and soybean trash. The fungal consortium was effective in converting high silica paddy straw into nutritionally rich compost thereby leading to economical and environment friendly disposal of this crop residue.

  13. In Situ Biodiesel Production from Fast-Growing and High Oil Content Chlorella pyrenoidosa in Rice Straw Hydrolysate

    PubMed Central

    Li, Penglin; Miao, Xiaoling; Li, Rongxiu; Zhong, Jianjiang

    2011-01-01

    Rice straw hydrolysate was used as lignocellulose-based carbon source for Chlorella pyrenoidosa cultivation and the feasibility of in situ biodiesel production was investigated. 13.7 g/L sugar was obtained by enzymatic hydrolyzation of rice straw. Chlorella pyrenoidosa showed a rapid growth in the rice straw hydrolysate medium, the maximum biomass concentration of 2.83 g/L was obtained in only 48 hours. The lipid content of the cells reached as high as 56.3%. In situ transesterification was performed for biodiesel production. The optimized condition was 1 g algal powder, 6 mL n-hexane, and 4 mL methanol with 0.5 M sulfuric acid at the temperature of 90°C in 2-hour reaction time, under which over 99% methyl ester content and about 95% biodiesel yield were obtained. The results suggested that the method has great potential in the production of biofuels with lignocellulose as an alternative carbon source for microalgae cultivation. PMID:21318171

  14. High temperature ceramic-tubed reformer

    NASA Astrophysics Data System (ADS)

    Williams, Joseph J.; Rosenberg, Robert A.; McDonough, Lane J.

    1990-03-01

    The overall objective of the HiPHES project is to develop an advanced high-pressure heat exchanger for a convective steam/methane reformer. The HiPHES steam/methane reformer is a convective, shell and tube type, catalytic reactor. The use of ceramic tubes will allow reaction temperature higher than the current state-of-the-art outlet temperatures of about 1600 F using metal tubes. Higher reaction temperatures increase feedstock conversion to synthesis gas and reduce energy requirements compared to currently available radiant-box type reformers using metal tubes. Reforming of natural gas is the principal method used to produce synthesis gas (primarily hydrogen and carbon monoxide, H2 and CO) which is used to produce hydrogen (for refinery upgrading), methanol, as well as several other important materials. The HiPHES reformer development is an extension of Stone and Webster's efforts to develop a metal-tubed convective reformer integrated with a gas turbine cycle.

  15. Bioconversion of Straw into Improved Fodder: Preliminary Treatment of Rice Straw Using Mechanical, Chemical and/or Gamma Irradiation

    PubMed Central

    2006-01-01

    Crude protein (CP) content of mechanically ground rice straw into small particles by an electric grinder and reducing value (RV) and soluble protein (SP) in the culture filtrate were lower than that of the chopped straw into 5~6 cm lengths when both ground and chopped straws were fermented with Aspergillus ochraceus, A. terreus or Trichoderma koningii, at steady conditions. The reduction rate of RV, SP and CP was 22.2, 2.4, 7.3%; 9.1, 4.9, 8.5% or 0.0, 0.0, 3.6% for the three fungi, respectively. Chemical pretreatment of straw by soaking in NH4OH for a day caused significant increase in CP of the fermented straw than the other alkali and acidic pretreatments. Gamma irradiation pretreatment of dry and wet straw with water, specially at higher doses, 100, 200 or 500 kGy, caused significant increase in RV and SP as CP in the fermented straw by any of these fungi. Chemical-physical combination pretreatment of rice straw reduced the applied dose of gamma irradiation required for increasing fermentable ability of fungi from 500 kGy to 10 kGy with approximately the same results. Significant increases in RV and SP of fermented straw generally occurred as the dose of gamma irradiation for pretreated straw, which combined with NH4OH, gradually rose. Whereas, the increase percentage in CP of fermented straw that was pretreated by NH4OH-10 kGy was 12.4%, 15.4% or 8.6% for A. ochraceus, A. terreus or T. koningii, respectively. PMID:24039464

  16. Selected properties of particleboard panels manufactured from rice straws of different geometries

    Treesearch

    Xianjun Li; Zhiyong Cai; Jerrold E. Winandy; Altaf H. Basta

    2010-01-01

    The objective is to evaluate the primary mechanical and physical properties of particleboard made from hammer-milled rice straw particles of six different categories and two types of resins. The results show the performance of straw particleboards is highly dependent upon the straw particle size controlled by the opening size of the perforated plate inside the hammer-...

  17. Development and assessment of multiplex high resolution melting assay as a tool for rapid single-tube identification of five Brucella species.

    PubMed

    Gopaul, Krishna K; Sells, Jessica; Lee, Robin; Beckstrom-Sternberg, Stephen M; Foster, Jeffrey T; Whatmore, Adrian M

    2014-12-11

    The zoonosis brucellosis causes economically significant reproductive problems in livestock and potentially debilitating disease of humans. Although the causative agent, organisms from the genus Brucella, can be differentiated into a number of species based on phenotypic characteristics, there are also significant differences in genotype that are concordant with individual species. This paper describes the development of a five target multiplex assay to identify five terrestrial Brucella species using real-time polymerase chain reaction (PCR) and subsequent high resolution melt curve analysis. This technology offers a robust and cost effective alternative to previously described hydrolysis-probe Single Nucleotide Polymorphism (SNP)-based species defining assays. Through the use of Brucella whole genome sequencing five species defining SNPs were identified. Individual HRM assays were developed to these target these changes and, following optimisation of primer concentrations, it was possible to multiplex all five assays in a single tube. In a validation exercise using a panel of 135 Brucella strains of terrestrial and marine origin, it was possible to distinguish the five target species from the other species within this panel. The HRM multiplex offers a number of diagnostic advantages over previously described SNP-based typing approaches. Further, and uniquely for HRM, the successful multiplexing of five assays in a single tube allowing differentiation of five Brucella species in the diagnostic laboratory in a cost-effective and timely manner is described. However there are possible limitations to using this platform on DNA extractions direct from clinical material.

  18. Methylation-Sensitive High Resolution Melting (MS-HRM).

    PubMed

    Hussmann, Dianna; Hansen, Lise Lotte

    2018-01-01

    Methylation-Sensitive High Resolution Melting (MS-HRM) is an in-tube, PCR-based method to detect methylation levels at specific loci of interest. A unique primer design facilitates a high sensitivity of the assays enabling detection of down to 0.1-1% methylated alleles in an unmethylated background.Primers for MS-HRM assays are designed to be complementary to the methylated allele, and a specific annealing temperature enables these primers to anneal both to the methylated and the unmethylated alleles thereby increasing the sensitivity of the assays. Bisulfite treatment of the DNA prior to performing MS-HRM ensures a different base composition between methylated and unmethylated DNA, which is used to separate the resulting amplicons by high resolution melting.The high sensitivity of MS-HRM has proven useful for detecting cancer biomarkers in a noninvasive manner in urine from bladder cancer patients, in stool from colorectal cancer patients, and in buccal mucosa from breast cancer patients. MS-HRM is a fast method to diagnose imprinted diseases and to clinically validate results from whole-epigenome studies. The ability to detect few copies of methylated DNA makes MS-HRM a key player in the quest for establishing links between environmental exposure, epigenetic changes, and disease.

  19. Physical Characterization of Natural Straw Fibers as Aggregates for Construction Materials Applications

    PubMed Central

    Bouasker, Marwen; Belayachi, Naima; Hoxha, Dashnor; Al-Mukhtar, Muzahim

    2014-01-01

    The aim of this paper is to find out new alternative materials that respond to sustainable development criteria. For this purpose, an original utilization of straw for the design of lightweight aggregate concretes is proposed. Four types of straw were used: three wheat straws and a barley straw. In the present study, the morphology and the porosity of the different straw aggregates was studied by SEM in order to understand their effects on the capillary structure and the hygroscopic behavior. The physical properties such as sorption-desorption isotherms, water absorption coefficient, pH, electrical conductivity and thermo-gravimetric analysis were also studied. As a result, it has been found that this new vegetable material has a very low bulk density, a high water absorption capacity and an excellent hydric regulator. The introduction of the straw in the water tends to make the environment more basic; this observation can slow carbonation of the binder matrix in the presence of the straw. PMID:28788605

  20. Pretreating wheat straw by phosphoric acid plus hydrogen peroxide for enzymatic saccharification and ethanol production at high solid loading.

    PubMed

    Qiu, Jingwen; Ma, Lunjie; Shen, Fei; Yang, Gang; Zhang, Yanzong; Deng, Shihuai; Zhang, Jing; Zeng, Yongmei; Hu, Yaodong

    2017-08-01

    Wheat straw was pretreated by phosphoric acid plus hydrogen peroxide (PHP) for enzymatic hydrolysis and ethanol fermentation at high solid loadings. Results indicated solid loading could reach 20% with 77.4% cellulose-glucose conversion and glucose concentration of 164.9g/L in hydrolysate, it even was promoted to 25% with only 3.4% decrease on cellulose-glucose conversion as the pretreated-wheat straw was dewatered by air-drying. 72.9% cellulose-glucose conversion still was achieved as the minimized enzyme input of 20mg protein/g cellulose was employed for hydrolysis at 20% solid loading. In the corresponding conditions, 100g wheat straw can yield 11.2g ethanol with concentration of 71.2g/L by simultaneous saccharification and fermentation. Thus, PHP-pretreatment benefitted the glucose or ethanol yield at high solid loadings with lower enzyme input. Additionally, decreases on the maximal cellulase adsorption and the direct-orange/direct-blue indicated drying the PHP-pretreated substrates negatively affected the hydrolysis due to the shrinkage of cellulase-size-accommodable pores. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Studies of relative gain and timing response of fine-mesh photomultiplier tubes in high magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sulkosky, V.; Allison, L.; Barber, C.

    We investigated the use of Hamamatsu fine-mesh photomultiplier tube assemblies H6152-70 and H6614-70 with regards to their gain and timing resolution in magnetic fields up to 1.9 T. Our results show that the H6614-70 assembly can operate reliably in magnetic fields exceeding 1.5 T, while preserving a reasonable timing resolution even with a gain reduction of a factor of ~100. The reduction of the relative gain of the H6152-70 is similar to the H6614-70's near 1.5 T, but its timing resolution worsens considerably at this high field.

  2. Design and implementation of the ATLAS TRT front end electronics

    NASA Astrophysics Data System (ADS)

    Newcomer, Mitch; Atlas TRT Collaboration

    2006-07-01

    The ATLAS TRT subsystem is comprised of 380,000 4 mm straw tube sensors ranging in length from 30 to 80 cm. Polypropelene plastic layers between straws and a xenon-based gas mixture in the straws allow the straws to be used for both tracking and transition radiation detection. Detector-mounted electronics with data sparsification was chosen to minimize the cable plant inside the super-conducting solenoid of the ATLAS inner tracker. The "on detector" environment required a small footprint, low noise, low power and radiation-tolerant readout capable of triggering at rates up to 20 MHz with an analog signal dynamic range of >300 times the discriminator setting. For tracking, a position resolution better than 150 μm requires leading edge trigger timing with ˜1 ns precision and for transition radiation detection, a charge collection time long enough to integrate the direct and reflected signal from the unterminated straw tube is needed for position-independent energy measurement. These goals have been achieved employing two custom Application-specific integrated circuits (ASICS) and board design techniques that successfully separate analog and digital functionality while providing an integral part of the straw tube shielding.

  3. Effect of torrefaction on the properties of rice straw high temperature pyrolysis char: Pore structure, aromaticity and gasification activity.

    PubMed

    Chen, Handing; Chen, Xueli; Qin, Yueqiang; Wei, Juntao; Liu, Haifeng

    2017-03-01

    The influence of torrefaction on the physicochemical characteristics of char during raw and water washed rice straw pyrolysis at 800-1200°C is investigated. Pore structure, aromaticity and gasification activity of pyrolysis chars are compared between raw and torrefied samples. For raw straw, BET specific surface area decreases with the increased torrefaction temperature at the same pyrolysis temperature and it approximately increases linearly with weight loss during pyrolysis. The different pore structure evolutions relate to the different volatile matters and pore structures between raw and torrefied straw. Torrefaction at higher temperature would bring about a lower graphitization degree of char during pyrolysis of raw straw. Pore structure and carbon crystalline structure evolutions of raw and torrefied water washed straw are different from these of raw straw during pyrolysis. For both raw and water washed straw, CO 2 gasification activities of pyrolysis chars are different between raw and torrefied samples. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Conformational ordering of biomolecules in the gas phase: nitrogen collision cross sections measured on a prototype high resolution drift tube ion mobility-mass spectrometer.

    PubMed

    May, Jody C; Goodwin, Cody R; Lareau, Nichole M; Leaptrot, Katrina L; Morris, Caleb B; Kurulugama, Ruwan T; Mordehai, Alex; Klein, Christian; Barry, William; Darland, Ed; Overney, Gregor; Imatani, Kenneth; Stafford, George C; Fjeldsted, John C; McLean, John A

    2014-02-18

    Ion mobility-mass spectrometry measurements which describe the gas-phase scaling of molecular size and mass are of both fundamental and pragmatic utility. Fundamentally, such measurements expand our understanding of intrinsic intramolecular folding forces in the absence of solvent. Practically, reproducible transport properties, such as gas-phase collision cross-section (CCS), are analytically useful metrics for identification and characterization purposes. Here, we report 594 CCS values obtained in nitrogen drift gas on an electrostatic drift tube ion mobility-mass spectrometry (IM-MS) instrument. The instrument platform is a newly developed prototype incorporating a uniform-field drift tube bracketed by electrodynamic ion funnels and coupled to a high resolution quadrupole time-of-flight mass spectrometer. The CCS values reported here are of high experimental precision (±0.5% or better) and represent four chemically distinct classes of molecules (quaternary ammonium salts, lipids, peptides, and carbohydrates), which enables structural comparisons to be made between molecules of different chemical compositions for the rapid "omni-omic" characterization of complex biological samples. Comparisons made between helium and nitrogen-derived CCS measurements demonstrate that nitrogen CCS values are systematically larger than helium values; however, general separation trends between chemical classes are retained regardless of the drift gas. These results underscore that, for the highest CCS accuracy, care must be exercised when utilizing helium-derived CCS values to calibrate measurements obtained in nitrogen, as is the common practice in the field.

  5. Conformational Ordering of Biomolecules in the Gas Phase: Nitrogen Collision Cross Sections Measured on a Prototype High Resolution Drift Tube Ion Mobility-Mass Spectrometer

    PubMed Central

    2014-01-01

    Ion mobility-mass spectrometry measurements which describe the gas-phase scaling of molecular size and mass are of both fundamental and pragmatic utility. Fundamentally, such measurements expand our understanding of intrinsic intramolecular folding forces in the absence of solvent. Practically, reproducible transport properties, such as gas-phase collision cross-section (CCS), are analytically useful metrics for identification and characterization purposes. Here, we report 594 CCS values obtained in nitrogen drift gas on an electrostatic drift tube ion mobility-mass spectrometry (IM-MS) instrument. The instrument platform is a newly developed prototype incorporating a uniform-field drift tube bracketed by electrodynamic ion funnels and coupled to a high resolution quadrupole time-of-flight mass spectrometer. The CCS values reported here are of high experimental precision (±0.5% or better) and represent four chemically distinct classes of molecules (quaternary ammonium salts, lipids, peptides, and carbohydrates), which enables structural comparisons to be made between molecules of different chemical compositions for the rapid “omni-omic” characterization of complex biological samples. Comparisons made between helium and nitrogen-derived CCS measurements demonstrate that nitrogen CCS values are systematically larger than helium values; however, general separation trends between chemical classes are retained regardless of the drift gas. These results underscore that, for the highest CCS accuracy, care must be exercised when utilizing helium-derived CCS values to calibrate measurements obtained in nitrogen, as is the common practice in the field. PMID:24446877

  6. [The influence of straw, particularly rice straw, together with calcium-cyanamide on the microbiological activity of two Portuguese soils (author's transl)].

    PubMed

    Glathe, H; El Din, A; Scheuer, A

    1976-01-01

    The influence of calcium-cyanamide upon the microbiological activity was tested in pot experiments under controlled conditions in two Portuguese soils (sandy and loamy) after the addition of rice or wheat straw (rice straw 0.275% N, wheat straw 0.307% N). The amount of straw was equalled to 100 dz/ha, the application of calcium-cyanamide to 25, 50 and 100 kg N/ha. In the containers treated with straw the total amount of microorganisms (Koch-method) was higher in sandy than in loamy soil after 30 days, but after 70 days it was higher in loamy soil. The content of active nitrogen (NH4 + NO3) increased, when calcium-cyanamide was added, but decreased after the application of straw. After 70 days sandy soil again showed an increase of active nitrogen. Straw increased the rates of CO2-production considerably, wheat straw was superior to rice straw. Calcium-cyanamide increased the CO2-production more in sandy than in loamy soil or German loess, which was also used for this experiment. Only in the case of rice straw higher doses of calcium-cyanamide had a positive effect. After 70 days the CO2-production rose only when rice straw was applied. The dehydrogenase-activity was increased in both soils, but a superiority of wheat straw occurred in sandy soil only. The microbiological activity in the pots with straw was higher in sandy than in loamy soil, the addition of calcium-cyanamide accelerated it. Doses of 25-50 kg N/ha are sufficient generally. The period of the formation of insoluble organic N-compounds, usually connected with the application of organic matter with a wide N:C-ratio, seems to be reduced by the addition of calcium-cyanamide.

  7. High-resolution computed tomography of the middle ear and mastoid. Part III. Surgically altered anatomy and pathology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swartz, J.D.; Goodman, R.S.; Russell, K.B.

    1983-08-01

    High-resolution computed tomography (CT) provides an excellent method for examination of the surgically altered middle ear and mastoid. Closed-cavity and open-cavity types of mastoidectomy are illustrated. Recurrent cholesteatoma in the mastoid bowl is easily diagnosed. Different types of tympanoplasty are discussed and illustrated, as are tympanostomy tubes and various ossicular reconstructive procedures. Baseline high-resolution CT of the postoperative middle ear and mastoid is recommended at approximately 3 months following the surgical procedure.

  8. Compostability and biodegradation study of PLA-wheat straw and PLA-soy straw based green composites in simulated composting bioreactor.

    PubMed

    Pradhan, Ranjan; Misra, Manjusri; Erickson, Larry; Mohanty, Amar

    2010-11-01

    A laboratory scale simulated composting facility (as per ASTM D 5338) was designed and utilized to determine and evaluate the extent of degradation of polylactic acid (PLA), untreated wheat and soy straw and injection moulded composites of PLA-wheat straw (70:30) and PLA-soy straw (70:30). The outcomes of the study revealed the suitability of the test protocol, validity of the test system and defined the compostability of the composites of PLA with unmodified natural substrate. The study would help to design composites using modified soy straw and wheat straw as reinforcement/filler to satisfy ASTM D 6400 specifications. Copyright 2010 Elsevier Ltd. All rights reserved.

  9. Using straw hydrolysate to cultivate Chlorella pyrenoidosa for high-value biomass production and the nitrogen regulation for biomass composition.

    PubMed

    Zhang, Tian-Yuan; Wang, Xiao-Xiong; Wu, Yin-Hu; Wang, Jing-Han; Deantes-Espinosa, Victor M; Zhuang, Lin-Lan; Hu, Hong-Ying; Wu, Guang-Xue

    2017-11-01

    Heterotrophic cultivation of Chlorella pyrenoidosa based on straw substrate was proposed as a promising approach in this research. The straw pre-treated by ammonium sulfite method was enzymatically hydrolyzed for medium preparation. The highest intrinsic growth rate of C. pyrenoidosa reached to 0.097h -1 in hydrolysate medium, which was quicker than that in glucose medium. Rising nitrogen concentration could significantly increase protein content and decrease lipid content in biomass, meanwhile fatty acids composition kept stable. The highest protein and lipid content in microalgal biomass reached to 62% and 32% under nitrogen excessive and deficient conditions, respectively. Over 40% of amino acids and fatty acids in biomass belonged to essential amino acids (EAA) and essential fatty acids (EFA), which were qualified for high-value uses. This research revealed the rapid biomass accumulation property of C. pyrenoidosa in straw hydrolysate medium and the effectiveness of nitrogen regulation to biomass composition at heterotrophic condition. Copyright © 2017. Published by Elsevier Ltd.

  10. Properties of Wheat-Straw Boards with Frw Based on Interface Treatment

    NASA Astrophysics Data System (ADS)

    Zhu, X. D.; Wang, F. H.; Liu, Y.

    This paper explored the effect of MDI, UF and FRW content on the mechanical and fire retardant property of straw based panels with surface alkali liquor processing. In order to manufacture the straw based panel with high quality, low toxic and fire retardant, the interface of wheat-straw was treated with alkaline liquid, and the orthogonal test was carried out to optimize the technical parameters. The conductivity and diffusion coefficient K of the straw material after alkaline liquid treatment increased obviously. This indicated that alkaline liquid treatment improved the surface wet ability of straw, which is helpful for the infiltration of resin. The results of orthogonal test showed that the optimized treating condition was alkaline liquid concentration as 0.4-0.8%, alkaline dosage as 1:2.5-1:4.5, alkalinetreated time as 12h-48 h.The physical and mechanical properties of wheat-straw boards after treated increased remarkably and it could satisfy the national standard. The improvement of the straw surface wet ability is helpful to the forming of chemical bond. Whereas the variance analysis of the fire retardant property of straw based panel showed that TTI, pkHRR and peak value appearance time were not affected by the MDI, UF and FRW content significantly. The results of orthogonal test showed that the optimized processing condition was MDI content as 3%, UF resin content as 6% and the FRW content as 10%.

  11. Bio-composites made from pine straw

    Treesearch

    Cheng Piao; Todd F. Shupe; Chung Y. Hse; Jamie Tang

    2004-01-01

    Pine straw is renewable natural resource that is under-utilized. The objective of this study was to evaluate the physical and mechanical performances of pine straw composites. Three panel density levels (0.8, 0.9, 1.0 g/cm2) and two resin content levels (1% pMDI + 4% UF, 2% pMDI + 4% UF) were selected as treatments. For the pine-straw-bamboo-...

  12. High-intensity focused ultrasound ablation around the tubing.

    PubMed

    Siu, Jun Yang; Liu, Chenhui; Zhou, Yufeng

    2017-01-01

    High-intensity focused ultrasound (HIFU) has been emerging as an effective and noninvasive modality in cancer treatment with very promising clinical results. However, a small vessel in the focal region could be ruptured, which is an important concern for the safety of HIFU ablation. In this study, lesion formation in the polyacrylamide gel phantom embedded with different tubing (inner diameters of 0.76 mm and 3 mm) at varied flow speeds (17-339 cm/s) by HIFU ablation was photographically recorded. Produced lesions have decreased length (~30%) but slightly increased width (~6%) in comparison to that without the embedded tubing. Meanwhile, bubble activities during the exposures were measured by passive cavitation detection (PCD) at the varied pulse repetition frequency (PRF, 10-30 Hz) and duty cycle (DC, 10%-20%) of the HIFU bursts. High DC and low flow speed were found to produce stronger bubble cavitation whereas no significant influence of the PRF. In addition, high-speed photography illustrated that the rupture of tubing was produced consistently after the first HIFU burst within 20 ms and then multiple bubbles would penetrate into the intraluminal space of tubing through the rupture site by the acoustic radiation force. Alignment of HIFU focus to the anterior surface, middle, and posterior surface of tubing led to different characteristics of vessel rupture and bubble introduction. In summary, HIFU-induced vessel rupture is possible as shown in this phantom study; produced lesion sizes and shapes are dependent on the focus alignment to the tubing, flow speed, and tubing properties; and bubble cavitation and the formation liquid jet may be one of the major mechanisms of tubing rupture as shown in the high-speed photography.

  13. Influence of moisture content, particle size and forming temperature on productivity and quality of rice straw pellets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishii, Kazuei, E-mail: k-ishii@eng.hokudai.ac.jp; Furuichi, Toru

    Highlights: • Optimized conditions were determined for the production of rice straw pellets. • The moisture content and forming temperature are key factors. • High quality rice pellets in the lower heating value and durability were produced. - Abstract: A large amount of rice straw is generated and left as much in paddy fields, which causes greenhouse gas emissions as methane. Rice straw can be used as bioenergy. Rice straw pellets are a promising technology because pelletization of rice straw is a form of mass and energy densification, which leads to a product that is easy to handle, transport, storemore » and utilize because of the increase in the bulk density. The operational conditions required to produce high quality rice straw pellets have not been determined. This study determined the optimal moisture content range required to produce rice straw pellets with high yield ratio and high heating value, and also determined the influence of particle size and the forming temperature on the yield ratio and durability of rice straw pellets. The optimal moisture content range was between 13% and 20% under a forming temperature of 60 or 80 °C. The optimal particle size was between 10 and 20 mm, considering the time and energy required for shredding, although the particle size did not significantly affect the yield ratio and durability of the pellets. The optimized conditions provided high quality rice straw pellets with nearly 90% yield ratio, ⩾12 MJ/kg for the lower heating value, and >95% durability.« less

  14. Bioconversion of straw into improved fodder: fungal flora decomposing rice straw.

    PubMed

    Helal, G A

    2005-09-01

    The fungal flora decomposing rice straw were investigated all over the soil of Sharkia Province, east of Nile Delta, Egypt, using the nylon net bag technique. Sixty-four straw-decomposing species belonging to 30 genera were isolated by the dilution plate method in ground rice straw-Czapek's agar medium at pH 6. The plates were incubated separately at 5℃, 25℃ and 45℃, respectively. Twenty nine species belonging to 14 genera were isolated at 5℃. The most frequent genus was Penicillium (seven species), and the next frequent genera were Acremonium (three species), Fusarium (three species), Alternaria, Chaetomium, Cladosporium, Mucor, Stachybotrys (two species) and Rhizopus stolonifer. At 25℃, 47 species belonging to 24 genera were isolated. The most frequent genus was Aspergillus (nine species), and the next frequent genera were ranked by Penicillium (five species), Chaetomium (three species), Fusarium (three species). Each of Alternaria, Cladosporium, Mucor, Myrothecium and Trichoderma was represented by two species. At 45℃, 15 species belonging to seven genera were isolated. These were seven species of Aspergillus, two species of Chaetomium and two species of Emericella, while Humicola, Malbranchea, Rhizomucor and Talaromyces were represented by one species respectively. The total counts of fungi the genera, and species per gram of dry straw were significantly affected by incubation temperature and soil analysis (P < 0.05).

  15. High Power Microwave Tubes: Basics and Trends, Volume 2

    NASA Astrophysics Data System (ADS)

    Kesari, Vishal; Basu, B. N.

    2018-01-01

    Volume 2 of the book begins with chapter 6, in which we have taken up conventional MWTs (such as TWTs, klystrons, including multi-cavity and multi-beam klystrons, klystron variants including reflex klystron, IOT, EIK, EIO and twystron, and crossed-field tubes, namely, magnetron, CFA and carcinotron). In chapter 7, we have taken up fast-wave tubes (such as gyrotron, gyro-BWO, gyro-klystron, gyro-TWT, CARM, SWCA, hybrid gyro-tubes and peniotron). In chapter 8, we discuss vacuum microelectronic tubes (such as klystrino module, THz gyrotron and clinotron BWO); plasma-assisted tubes (such as PWT, plasma-filled TWT, BWO, including PASOTRON, and gyrotron); and HPM (high power microwave) tubes (such as relativistic TWT, relativistic BWO, RELTRON (variant of relativistic klystron), relativistic magnetron, high power Cerenkov tubes including SWO, RDG or orotron, MWCG and MWDG, bremsstrahlung radiation type tube, namely, vircator, and M-type tube MILO). In Chapter 9, we provide handy information about the frequency and power ranges of common MWTs, although more such information is provided at relevant places in the rest of the book as and where necessary. Chapter 10 is an epilogue that sums up the authors' attempt to bring out the various aspects of the basics of and trends in high power MWTs.

  16. Characterization of nonderivatized plant cell walls using high-resolution solution-state NMR spectroscopy

    Treesearch

    Daniel J. Yelle; John Ralph; Charles R. Frihart

    2008-01-01

    A recently described plant cell wall dissolution system has been modified to use perdeuterated solvents to allow direct in-NMR-tube dissolution and high-resolution solution-state NMR of the whole cell wall without derivatization. Finely ground cell wall material dissolves in a solvent system containing dimethylsulfoxide-d6 and 1-methylimidazole-d6 in a ratio of 4:1 (v/...

  17. Comparative Properties of Bamboo and Rice Straw Pellets

    Treesearch

    Xianmiao Liu; Zhijia Liu; Benhua Fei; Zhiyong Cai; Zehui Jiang; Xing' e Liu

    2013-01-01

    Bamboo is a potential major bio-energy resource. Tests were carried out to compare and evaluate the property of bamboo and rice straw pellets, rice straw being the other main source of biomass solid fuel in China. All physical properties of untreated bamboo pellets (UBP), untreated rice straw pellets (URP), carbonized bamboo pellets (CBP), and carbonized rice straw...

  18. High-intensity focused ultrasound ablation around the tubing

    PubMed Central

    Siu, Jun Yang; Liu, Chenhui

    2017-01-01

    High-intensity focused ultrasound (HIFU) has been emerging as an effective and noninvasive modality in cancer treatment with very promising clinical results. However, a small vessel in the focal region could be ruptured, which is an important concern for the safety of HIFU ablation. In this study, lesion formation in the polyacrylamide gel phantom embedded with different tubing (inner diameters of 0.76 mm and 3 mm) at varied flow speeds (17–339 cm/s) by HIFU ablation was photographically recorded. Produced lesions have decreased length (~30%) but slightly increased width (~6%) in comparison to that without the embedded tubing. Meanwhile, bubble activities during the exposures were measured by passive cavitation detection (PCD) at the varied pulse repetition frequency (PRF, 10–30 Hz) and duty cycle (DC, 10%-20%) of the HIFU bursts. High DC and low flow speed were found to produce stronger bubble cavitation whereas no significant influence of the PRF. In addition, high-speed photography illustrated that the rupture of tubing was produced consistently after the first HIFU burst within 20 ms and then multiple bubbles would penetrate into the intraluminal space of tubing through the rupture site by the acoustic radiation force. Alignment of HIFU focus to the anterior surface, middle, and posterior surface of tubing led to different characteristics of vessel rupture and bubble introduction. In summary, HIFU-induced vessel rupture is possible as shown in this phantom study; produced lesion sizes and shapes are dependent on the focus alignment to the tubing, flow speed, and tubing properties; and bubble cavitation and the formation liquid jet may be one of the major mechanisms of tubing rupture as shown in the high-speed photography. PMID:29161293

  19. Resolution of lava tubes with ground penetrating radar: preliminary results from the TubeX project

    NASA Astrophysics Data System (ADS)

    Esmaeili, S.; Kruse, S.; Garry, W. B.; Whelley, P.; Young, K.; Jazayeri, S.; Bell, E.; Paylor, R.

    2017-12-01

    As early as the mid 1970's it was postulated that planetary tubes or caves on other planetary bodies (i.e., the Moon or Mars) could provide safe havens for human crews, protect life and shield equipment from harmful radiation, rapidly fluctuating surface temperatures, and even meteorite impacts. What is not clear, however, are the exploration methods necessary to evaluate a potential tube-rich environment to locate suitable tubes suitable for human habitation. We seek to address this knowledge gap using a suite of instruments to detect and document tubes in a terrestrial analog study at Lava Beds National Monument, California, USA. Here we describe the results of ground penetrating radar (GPR) profiles and light detection and ranging (LiDAR) scans. Surveys were conducted from the surface and within four lava tubes (Hercules Leg, Skull, Valentine and, Indian Well Caves) with varying flow composition, shape, and complexity. Results are shown across segments of these tubes where the tubes are <1 m to ranging > 10 m in height and the ceilings are 1 - 10 m below the surface. The GPR profiles over the tubes are, as expected, complex, due to scattering from fractures in roof material and three-dimensional heterogeneities. Point clouds derived from the LiDAR scans of both the interior and exterior of the lava tubes provide precise positioning of the tube geometry and depth of the ceiling and floor with respect to the surface topography. GPR profiles over LiDAR-mapped tube cross-sections are presented and compared against synthetic models of radar response to the measured geometry. This comparison will help to better understand the origins of characteristic features in the radar profiles. We seek to identify the optimal data processing and migration approaches to aid lava tube exploration of planetary surfaces.

  20. Parametric Study of High Frequency Pulse Detonation Tubes

    NASA Technical Reports Server (NTRS)

    Cutler, Anderw D.

    2008-01-01

    This paper describes development of high frequency pulse detonation tubes similar to a small pulse detonation engine (PDE). A high-speed valve injects a charge of a mixture of fuel and air at rates of up to 1000 Hz into a constant area tube closed at one end. The reactants detonate in the tube and the products exit as a pulsed jet. High frequency pressure transducers are used to monitor the pressure fluctuations in the device and thrust is measured with a balance. The effects of injection frequency, fuel and air flow rates, tube length, and injection location are considered. Both H2 and C2H4 fuels are considered. Optimum (maximum specific thrust) fuel-air compositions and resonant frequencies are identified. Results are compared to PDE calculations. Design rules are postulated and applications to aerodynamic flow control and propulsion are discussed.

  1. Timing of Tympanostomy Tube Placement and Efficacy of Palatoplasty Technique on the Resolution of Chronic Otitis Media: A Cross-sectional Analysis

    PubMed Central

    Brgoch, M. S.; Dodson, K. M.; Kim, T. C.; Kim, D. M.; Rhodes, J. L.

    2015-01-01

    Background: Chronic otitis media with effusion is a persistent complication essentially universal in children with cleft palate. The prevalence of chronic otitis media with effusion is hypothesized to be a result of Eustachian tube dysfunction secondary to the anomalous insertion of the palatal musculature. This study was designed to evaluate the timing of tympanostomy tube placement and the effect of primary palatoplasty technique on the recovery of Eustachian tube function and resolution of chronic otitis media with effusion. Methods: We performed a retrospective, cross-sectional analysis of the previous 99 consecutive patients who underwent a palatoplasty at our institution. Variables included timing of initial tympanostomy tube placement, palatoplasty technique, cleft type, and gender. These were then evaluated to assess their impact on the resolution of chronic otitis media with effusion. Resolution was established as an inverse function of the number of tympanostomy tubes placed in correlation with available audiometric/tympanographic data. For all models, a generalized linear mixed model was applied using a Poisson distribution and a log-link function where the outcome variable was the total number of tympanostomy tubes. For all tests, a P = .05 level of significance was used. Results: Of 99 palatoplasties performed, 94 patients were included in the study. Ninety-one percent of patients had documented chronic otitis media with effusion at the time of palatoplasty. Forty-four percent underwent straight-line repair with aggressive intravelar veloplasty, 36% had Furlow double z-plasty, 20% had straight-line repair without intravelar veloplasty. There was a statistically significant difference (F2,83 = 5.36, P = .0065) between the 3 types of repair. The mean number of tubes placed was 0.6000 ± 0.1225, 0.8519 ± 0.1776, and 1.4737 ± 0.2785 for intravelar veloplasty, Furlow double z-plasty, and straight line without intravelar veloplasty, respectively . With

  2. Feeding a high-concentrate corn straw diet increased the release of endotoxin in the rumen and pro-inflammatory cytokines in the mammary gland of dairy cows.

    PubMed

    Zhou, Jun; Dong, Guozhong; Ao, Changjin; Zhang, Sen; Qiu, Min; Wang, Xi; Wu, Yongxia; Erdene, Khas; Jin, Lu; Lei, Chunlong; Zhang, Zhu

    2014-08-01

    The objective of this study was to investigate the effects of feeding a high-concentrate corn straw diet on the release of endotoxin in the rumen and the changes of pro-inflammatory cytokines in the mammary gland of dairy cows in comparison with a low-concentrate corn straw diet and a low-concentrate mixed forage diet. Thirty second-parity Chinese Holstein cows in mid-lactation with a body condition score of 2.86 ± 0.29, weighing 543 ± 57 kg and producing 24.32 ± 3.86 kg milk per day were randomly assigned to 1 of the 3 diets (n = 10 per treatment): 1) low-concentrate mixed forage diet (LCF) with a concentrate to roughage ratio of 46 : 54; 2) high-concentrate corn straw diet (HCS) with a concentrate to roughage ratio of 65 : 35; 3) low-concentrate corn straw diet (LCS) with the same concentrate to roughage ratio (46 : 54) as LCF. The experiment lasted 6 weeks, and samples were collected in the last week. Milk samples were analyzed for conventional components, rumen fluid samples were analyzed for pH and endotoxin, and mammary arterial and venous plasma samples were analyzed for concentrations of interleukin (IL)-1β, IL-6, IL-8 and tumor necrosis factor alpha (TNF-α). Concentrations of endotoxin in rumen fluid and feces of cows fed HCS were significantly higher than those of cows fed LCS and LCF. Feeding HCS increased the release of IL-1β, IL-6 and IL-8 in the mammary gland compared with feeding LCS. Concentrations of cytokines (IL-1β and IL-8) in mammary venous plasma had a negative correlation with milk production efficiencies. Results indicated that the high-concentrate corn straw diet increased the concentrations of endotoxin in rumen fluid and feces. Furthermore, feeding the high-concentrate corn straw diet stimulated the mammary gland to release more pro-inflammatory cytokines. The results suggest that feeding a high-concentrate corn straw diet induce a higher pro-inflammatory response in the mammary gland and thus may partly decrease

  3. Growth of Pleurotus ostreatus on wheat straw and wheat-grain-based media: Biochemical aspects and preparation of mushroom inoculum.

    PubMed

    Sainos, E; Díaz-Godínez, G; Loera, O; Montiel-González, A M; Sánchez, C

    2006-10-01

    Mycelial growth, intracellular activity of proteases, laccases and beta-1,3-glucanases, and cytoplasmic protein were evaluated in the vegetative phase of Pleurotus ostreatus grown on wheat straw and in wheat-grain-based media in Petri dishes and in bottles. The productivity of the wheat straw and wheat-grain-based spawn in cylindrical polyethylene bags containing 5 kg of chopped straw was also determined. We observed high activity of proteases and high content of intracellular protein in cultures grown on wheat straw. This suggests that the proteases are not secreted into the medium and that the protein is an important cellular reserve. On the contrary, cultures grown on wheat straw secreted laccases into the medium, which could be induced by this substrate. P. ostreatus grown on media prepared with a combination of wheat straw and wheat grain showed a high radial growth rate in Petri dishes and a high level of mycelial growth in bottles. The productivities of wheat straw and wheat-grain-based spawn were similar. Our results show that cheaper and more productive mushroom spawn can be prepared by developing the mycelium on wheat straw and wheat-grain-based substrates.

  4. The thermal behaviour of the co-combustion between paper sludge and rice straw.

    PubMed

    Xie, Zeqiong; Ma, Xiaoqian

    2013-10-01

    The thermal characteristics and kinetics of paper sludge, rice straw and their blends were evaluated under combustion condition. The paper sludge was blended with rice straw in the range of 10-95 wt.% to investigate their co-combustion behaviour. There was significant interaction between rice straw and paper sludge in high temperature. The combustion of paper sludge and rice straw could be divided into two stages. The value of the activation energy obtained by the Friedman and the Ozawa-Flynn-Wall (OFW) first decreased and then increased with the conversion degree rising. The average activation energy did not monotonically decrease with increasing the percentage of rice straw in the blends. When the percentage of rice straw in the blends was 80%, the value of the average activation energy was the smallest, which was 139 kJ/mol obtained by OFW and 132 kJ/mol obtained by Friedman, respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Butterfly proboscis: natural combination of a drinking straw with a nanosponge

    NASA Astrophysics Data System (ADS)

    Kornev, Kostya; Monaenkova, Daria; Adler, Peter; Lee, Wah-Keat; Lehnert, Matthew; Andrukh, Taras; Beard, Charles; Rubin, Binyamin; Tokarev, Alexander

    2011-11-01

    The ability of Lepidoptera, or butterflies and moths, to drink liquids from rotting fruit and wet soil, as well as nectar from floral tubes, raises the question of whether the conventional view of the proboscis as a drinking straw can account for the withdrawal of fluids from porous substrates or of films and droplets from floral tubes. We discovered that the proboscis promotes capillary pull of liquids from diverse sources due to a hierarchical pore structure spanning nano- and microscales. X-ray phase-contrast imaging reveals that Plateau instability causes liquid bridges to form in the food canal, which are transported to the gut by the muscular sucking pump in the head. The dual functionality of the proboscis represents a key innovation for exploiting a vast range of nutritional sources. A transformative two-step model of capillary intake and suctioning can be applied not only to butterflies and moths but also potentially to vast numbers of other insects such as bees and flies. NSF EFRI - 0937985.

  6. Closed tubes preparation of graphite for high-precision AMS radiocarbon analysis

    NASA Astrophysics Data System (ADS)

    Hajdas, I.; Michczynska, D.; Bonani, G.; Maurer, M.; Wacker, L.

    2009-04-01

    Radiocarbon dating is an established tool applied in Geochronology. Technical developments of Accelerator Mass Spectrometry AMS, which allow measurements of samples containing less than 1 mg of carbon, opened opportunities for new applications. Moreover, high resolution records of the past changes require high-resolution chronologies i.e. sampling for 14C dating. In result, the field of applications is rapidly expanding and number of radiocarbon analysis is growing rapidly. Nowadays dedicated 14C AMS machines have great capacity for analysis but in order to keep up with the demand for analysis and provide the results as fast as possible a very efficient way of sample preparation is required. Sample preparation for 14C AMS analysis consists of two steps: separation of relevant carbon from the sample material (removing contamination) and preparation of graphite for AMS analysis. The last step usually involves reaction of CO2 with H2, in the presence of metal catalyst (Fe or Co) of specific mesh size heated to 550-625°C, as originally suggested by Vogel et al. (1984). Various graphitization systems have been built in order to fulfil the requirement of sample quality needed for high-precision radiocarbon data. In the early 90ties another method has been proposed (Vogel 1992) and applied by few laboratories mainly for environmental or biomedical samples. This method uses TiH2 as a source of H2 and can be easily and flexibly applied to produce graphite. Sample of CO2 is frozen in to the tube containing pre-conditioned Zn/TiH2 and Fe catalyst. Torch sealed tubes are then placed in the stepwise heated oven at 500/550°C and left to react for several hours. The greatest problem is the lack of control of the reaction completeness and considerable fractionation. However, recently reported results (Xu et al. 2007) suggest that high precision dating using graphite produced in closed tubes might be possible. We will present results of radiocarbon dating of the set of standards

  7. Effects of variety, cropping year, location and fertilizer application on nutritive value of durum wheat straw.

    PubMed

    Tolera, A; Tsegaye, B; Berg, T

    2008-04-01

    This study was carried out to assess the effects of variety, year, location and level of fertilizer application on chemical composition and in sacco dry matter (DM) degradability of durum wheat straw as well as to understand the relationship between straw quality and agronomic traits of the crop and to assess the possibilities of selecting wheat varieties that combine high grain yield with desirable straw quality. Two local (Arendeto and Tikur sinde) and two improved (Boohai and Gerardo) varieties of durum wheat (Triticum turgidum Desf.) were used in the experiment. The four varieties were grown at two locations (Akaki and Ejere) in the years 2001/2002 and 2002/2003 in 5 x 5 m plots in three replications. Diammonium phosphate and urea fertilizers were applied at four levels (0/0, 32/23, 41/23 and 64/46 kg/ha of nitrogen/phosphorus). Straw quality was assessed based on chemical composition and in sacco DM degradability. Correlation of straw quality with grain and straw yield and with other agronomic characteristics of the crop was determined. The potential utility index (a measure that integrates grain and digestible straw yield) was used for ranking of the varieties. The local varieties had higher crude protein (CP) and lower neutral detergent fibre contents and higher digestibility than the improved varieties. The cropping year and location had significant effect on CP content and degradability of the straw, which could be due to climatic variation. However, the fertilizer level did not have any significant effect on straw quality except that the CP content of the straw tended to increase with increasing level of fertilizer application. Based on the potential utility index the varieties ranked, in a decreasing order, as Tikur sinde > Arendeto > Gerardo > Boohai and the ranking was consistent across years and locations. Except the CP content, straw quality was not negatively correlated with grain and straw yield. This indicates that there is a possibility of

  8. Coproduction of xylose, lignosulfonate and ethanol from wheat straw.

    PubMed

    Zhu, Shengdong; Huang, Wangxiang; Huang, Wenjing; Wang, Ke; Chen, Qiming; Wu, Yuanxin

    2015-06-01

    A novel integrated process to coproduce xylose, lignosulfonate and ethanol from wheat straw was investigated. Firstly, wheat straw was treated by dilute sulfuric acid and xylose was recovered from its hydrolyzate. Its optimal conditions were 1.0wt% sulfuric acid, 10% (w/v) wheat straw loading, 100°C, and 2h. Then the acid treated wheat straw was treated by sulfomethylation reagent and its hydrolyzate containing lignosulfonate was directly recovered. Its optimal conditions were 150°C, 15% (w/v) acid treated wheat straw loading, and 5h. Finally, the two-step treated wheat straw was converted to ethanol through enzymatic hydrolysis and microbial fermentation. Under optimal conditions, 1kg wheat straw could produce 0.225kg xylose with 95% purity, 4.16kg hydrolyzate of sulfomethylation treatment containing 5.5% lignosulfonate, 0.183kg ethanol and 0.05kg lignin residue. Compared to present technology, this process is a potential economically profitable wheat straw biorefinery. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Cryopreservation of boar semen in mini- and maxi-straws.

    PubMed

    Bwanga, C O; de Braganca, M M; Einarsson, S; Rodriguez-Martinez, H

    1990-10-01

    Split ejaculates from four boars were frozen with a programmable freezing machine, in mini- (0.25 ml) and maxi- (5 ml) plastic straws with an extender at either acidic (6.3) or alkaline (7.4) pH. Glycerol (3%) was used as cryoprotectant. The freezing of the semen was monitored by way of thermocouples placed in the straws. Post-thaw motility and acrosome integrity were evaluated; the latter using phase contrast microscopy, eosin-nigrosin stain and electron microscopy. Post-thaw sperm motility was significantly higher when semen was frozen in mini-straws than in maxi-straws. For the mini-straws, the motility was better when semen was exposed to an acidic environment during freezing, but this beneficial effect of the low extracellular pH was not evident when maxi-straws were thawed. The motility of the spermatozoa diminished significantly during the thermoresistance test (0 h and 2 h time) at 37 degrees C in a similar way for both straws and extracellular pH's. The freezing procedure, no matter the extracellular pH, did not cause major acrosomal damages, but significantly more normal apical ridges were present in the mini-straws than in the maxi-straws. This in vitro evaluation indicated that the freezing method employed was better for mini- than for maxi-straws since the freezing of the 5 ml volumes was not homogeneous, due to the large section area between the surface and the core of the straw.

  10. Numerical viscosity and resolution of high-order weighted essentially nonoscillatory schemes for compressible flows with high Reynolds numbers.

    PubMed

    Zhang, Yong-Tao; Shi, Jing; Shu, Chi-Wang; Zhou, Ye

    2003-10-01

    A quantitative study is carried out in this paper to investigate the size of numerical viscosities and the resolution power of high-order weighted essentially nonoscillatory (WENO) schemes for solving one- and two-dimensional Navier-Stokes equations for compressible gas dynamics with high Reynolds numbers. A one-dimensional shock tube problem, a one-dimensional example with parameters motivated by supernova and laser experiments, and a two-dimensional Rayleigh-Taylor instability problem are used as numerical test problems. For the two-dimensional Rayleigh-Taylor instability problem, or similar problems with small-scale structures, the details of the small structures are determined by the physical viscosity (therefore, the Reynolds number) in the Navier-Stokes equations. Thus, to obtain faithful resolution to these small-scale structures, the numerical viscosity inherent in the scheme must be small enough so that the physical viscosity dominates. A careful mesh refinement study is performed to capture the threshold mesh for full resolution, for specific Reynolds numbers, when WENO schemes of different orders of accuracy are used. It is demonstrated that high-order WENO schemes are more CPU time efficient to reach the same resolution, both for the one-dimensional and two-dimensional test problems.

  11. Fuel Pellets from Wheat Straw: The Effect of Lignin Glass Transition and Surface Waxes on Pelletizing Properties

    Treesearch

    Wolfgang Stelte; Craig Clemons; Jens K. Holm; Jesper Ahrenfeldt; Ulrik B. Henriksen; Anand R. Sanadi

    2012-01-01

    The utilization of wheat straw as a renewable energy resource is limited due to its low bulk density. Pelletizing wheat straw into fuel pellets of high density increases its handling properties but is more challenging compared to pelletizing wood biomass. Straw has a lower lignin content and a high concentration of hydrophobic waxes on its outer surface that may limit...

  12. The effect of long or chopped straw on pig behaviour.

    PubMed

    Lahrmann, H P; Oxholm, L C; Steinmetz, H; Nielsen, M B F; D'Eath, R B

    2015-05-01

    In the EU, pigs must have permanent access to manipulable materials such as straw, rope, wood, etc. Long straw can fulfil this function, but can increase labour requirements for cleaning pens, and result in problems with blocked slatted floors and slurry systems. Chopped straw might be more practical, but what is the effect on pigs' behaviour of using chopped straw instead of long straw? Commercial pigs in 1/3 slatted, 2/3 solid pens of 15 pigs were provided with either 100 g/pig per day of long straw (20 pens) or of chopped straw (19 pens). Behavioural observations were made of three focal pigs per pen (one from each of small, medium and large weight tertiles) for one full day between 0600 and 2300 h at each of ~40 and ~80 kg. The time spent rooting/investigating overall (709 s/pig per hour at 40 kg to 533 s/pig per hour at 80 kg), or directed to the straw/solid floor (497 s/pig per hour at 40 kg to 343 s/pig per hour at 80 kg), was not affected by straw length but reduced with age. Time spent investigating other pigs (83 s/pig per hour at 40 kg), the slatted floor (57 s/pig per hour) or pen fixtures (21 s/pig per hour) was not affected by age or straw length. Aggressive behaviour was infrequent, but lasted about twice as long in pens with chopped straw (2.3 s/pig per hour at 40 kg) compared with pens with long straw (1.0 s/pig per hour at 40 kg, P=0.060). There were no significant effects of straw length on tail or ear lesions, but shoulders were significantly more likely to have minor scratches with chopped straw (P=0.031), which may reflect the higher levels of aggression. Smaller pigs showed more rooting/investigatory behaviour, and in particular directed towards the straw/solid floor and the slatted floor than their larger pen-mates. Females exhibited more straw and pen fixture-directed behaviour than males. There were no effects of pig size or sex on behaviour directed towards other pigs. In summary, pigs spent similar amounts of time interacting with straw

  13. Effect of integrating straw into agricultural soils on soil infiltration and evaporation.

    PubMed

    Cao, Jiansheng; Liu, Changming; Zhang, Wanjun; Guo, Yunlong

    2012-01-01

    Soil water movement is a critical consideration for crop yield in straw-integrated fields. This study used an indoor soil column experiment to determine soil infiltration and evaporation characteristics in three forms of direct straw-integrated soils (straw mulching, straw mixing and straw inter-layering). Straw mulching is covering the land surface with straw. Straw mixing is mixing straw with the top 10 cm surface soil. Then straw inter-layering is placing straw at the 20 cm soil depth. There are generally good correlations among the mulch integration methods at p < 0.05, and with average errors/biases <10%. Straw mixing exhibited the best effect in terms of soil infiltration, followed by straw mulching. Due to over-burden weight-compaction effect, straw inter-layering somehow retarded soil infiltration. In terms of soil water evaporation, straw mulching exhibited the best effect. This was followed by straw mixing and then straw inter-layering. Straw inter-layering could have a long-lasting positive effect on soil evaporation as it limited the evaporative consumption of deep soil water. The responses of the direct straw integration modes to soil infiltration and evaporation could lay the basis for developing efficient water-conservation strategies. This is especially useful for water-scarce agricultural regions such as the arid/semi-arid regions of China.

  14. Co-pyrolysis of rice straw and polypropylene using fixed-bed pyrolyzer

    NASA Astrophysics Data System (ADS)

    Izzatie, N. I.; Basha, M. H.; Uemura, Y.; Mazlan, M. A.; Hashim, M. S. M.; Amin, N. A. M.; Hamid, M. F.

    2016-11-01

    The present work encompasses the impact of temperature (450, 500, 550, 600 °C) on the properties of pyrolysis oil and on other product yield for the co-pyrolysis of Polypropylene (PP) plastics and rice straw. Co-pyrolysis of PP plastic and rice straw were conducted in a fixed-bed drop type pyrolyzer under an inert condition to attain maximum oil yield. Physically, the pyrolysis oil is dark-brown in colour with free flowing and has a strong acrid smell. Copyrolysis between these typically obtained in maximum pyrolysis oil yields up to 69% by ratio 1:1 at a maximum temperature of 550 °C. From the maximum yield of pyrolysis oil, characterization of pyrolysis product and effect of biomass type of the composition were evaluated. Pyrolysis oil contains a high water content of 66.137 wt.%. Furfural, 2- methylnaphthalene, tetrahydrofuran (THF), toluene and acetaldehyde were the major organic compounds found in pyrolysis oil of rice straw mixed with PP. Bio-char collected from co-pyrolysis of rice straw mixed with PP plastic has high calorific value of 21.190 kJ/g and also carbon content with 59.02 wt.% and could contribute to high heating value. The non-condensable gases consist of hydrogen, carbon monoxide, and methane as the major gas components.

  15. Adapter assembly prevents damage to tubing during high pressure tests

    NASA Technical Reports Server (NTRS)

    Stinett, L. L.

    1965-01-01

    Portable adapter assembly prevents damage to tubing and injury to personnel when pressurizing a system or during high pressure tests. The assembly is capable of withstanding high pressure. It is securely attached to the tubing stub end and may be removed without brazing, cutting or cleaning the tube.

  16. A time-accurate high-resolution TVD scheme for solving the Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Kim, Hyun Dae; Liu, Nan-Suey

    1992-01-01

    A total variation diminishing (TVD) scheme has been developed and incorporated into an existing time-accurate high-resolution Navier-Stokes code. The accuracy and the robustness of the resulting solution procedure have been assessed by performing many calculations in four different areas: shock tube flows, regular shock reflection, supersonic boundary layer, and shock boundary layer interactions. These numerical results compare well with corresponding exact solutions or experimental data.

  17. Comparison in partition efficiency of protein separation between four different tubing modifications in spiral high-speed countercurrent chromatography

    PubMed Central

    Ito, Yoichiro; Clary, Robert

    2016-01-01

    High-speed countercurrent chromatography with a spiral tube assembly can retain a satisfactory amount of stationary phase of polymer phase systems used for protein separation. In order to improve the partition efficiency a simple tool to modify the tubing shapes was fabricated, and the following four different tubing modifications were made: intermittently pressed at 10 mm width, flat, flat-wave, and flat-twist. Partition efficiencies of the separation column made from these modified tubing were examined in protein separation with an aqueous-aqueous polymer phase system at flow rates of 1–2 ml/min under 800 rpm. The results indicated that the column with all modified tubing improved the partition efficiency at a flow rate of 1 ml/min, but at a higher flow rate of 2 ml/min the columns made of flattened tubing showed lowered partition efficiency apparently due to the loss of the retained stationary phase. Among all the modified columns, the column with intermittently pressed tubing gave the best peak resolution. It may be concluded that the intermittently pressed and flat-twist improve the partition efficiency in a semi-preparative separation while other modified tubing of flat and flat-wave configurations may be used for analytical separations with a low flow rate. PMID:27790621

  18. Comparison in partition efficiency of protein separation between four different tubing modifications in spiral high-speed countercurrent chromatography.

    PubMed

    Ito, Yoichiro; Clary, Robert

    2016-12-01

    High-speed countercurrent chromatography with a spiral tube assembly can retain a satisfactory amount of stationary phase of polymer phase systems used for protein separation. In order to improve the partition efficiency a simple tool to modify the tubing shapes was fabricated, and the following four different tubing modifications were made: intermittently pressed at 10 mm width, flat, flat-wave, and flat-twist. Partition efficiencies of the separation column made from these modified tubing were examined in protein separation with an aqueous-aqueous polymer phase system at flow rates of 1-2 ml/min under 800 rpm. The results indicated that the column with all modified tubing improved the partition efficiency at a flow rate of 1 ml/min, but at a higher flow rate of 2 ml/min the columns made of flattened tubing showed lowered partition efficiency apparently due to the loss of the retained stationary phase. Among all the modified columns, the column with intermittently pressed tubing gave the best peak resolution. It may be concluded that the intermittently pressed and flat-twist improve the partition efficiency in a semi-preparative separation while other modified tubing of flat and flat-wave configurations may be used for analytical separations with a low flow rate.

  19. Lignocellulose degradation patterns, structural changes, and enzyme secretion by Inonotus obliquus on straw biomass under submerged fermentation.

    PubMed

    Xu, Xiangqun; Xu, Zhiqi; Shi, Song; Lin, Mengmeng

    2017-10-01

    This study examined the white rot fungus I. obliquus on the degradation of three types of straw biomass and the production of extracellular lignocellulolytic enzymes under submerged fermentation. The fungus process resulted in a highest lignin loss of 72%, 39%, and 47% in wheat straw, rice straw, and corn stover within 12days, respectively. In merely two days, the fungus selectively degraded wheat straw lignin by 37%, with only limited cellulose degradation (13%). Fourier transform infrared spectroscopy revealed that the fungus most effectively degraded the wheat straw lignin and rice straw crystalline cellulose. Scanning electronic microscopy showed the most pronounced structural changes in wheat straw. High activities of manganese peroxidase (159.0U/mL) and lignin peroxidase (123.4U/mL) were observed in wheat straw culture on Day 2 and 4, respectively. Rice straw was the best substrate to induce the production of cellulase and xylanase. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Production of bioethanol from wheat straw: An overview on pretreatment, hydrolysis and fermentation.

    PubMed

    Talebnia, Farid; Karakashev, Dimitar; Angelidaki, Irini

    2010-07-01

    Wheat straw is an abundant agricultural residue with low commercial value. An attractive alternative is utilization of wheat straw for bioethanol production. However, production costs based on the current technology are still too high, preventing commercialization of the process. In recent years, progress has been made in developing more effective pretreatment and hydrolysis processes leading to higher yield of sugars. The focus of this paper is to review the most recent advances in pretreatment, hydrolysis and fermentation of wheat straw. Based on the type of pretreatment method applied, a sugar yield of 74-99.6% of maximum theoretical was achieved after enzymatic hydrolysis of wheat straw. Various bacteria, yeasts and fungi have been investigated with the ethanol yield ranging from 65% to 99% of theoretical value. So far, the best results with respect to ethanol yield, final ethanol concentration and productivity were obtained with the native non-adapted Saccharomyses cerevisiae. Some recombinant bacteria and yeasts have shown promising results and are being considered for commercial scale-up. Wheat straw biorefinery could be the near-term solution for clean, efficient and economically-feasible production of bioethanol as well as high value-added products. Copyright 2009 Elsevier Ltd. All rights reserved.

  1. Whole slurry saccharification and fermentation of maleic acid-pretreated rice straw for ethanol production.

    PubMed

    Jung, Young Hoon; Park, Hyun Min; Kim, Kyoung Heon

    2015-09-01

    We evaluated the feasibility of whole slurry (pretreated lignocellulose) saccharification and fermentation for producing ethanol from maleic acid-pretreated rice straw. The optimized conditions for pretreatment were to treat rice straw at a high temperature (190 °C) with 1 % (w/v) maleic acid for a short duration (3 min ramping to 190 °C and 3 min holding at 190 °C). Enzymatic digestibility (based on theoretical glucose yield) of cellulose in the pretreated rice straw was 91.5 %. Whole slurry saccharification and fermentation of pretreated rice straw resulted in 83.2 % final yield of ethanol based on the initial quantity of glucan in untreated rice straw. These findings indicate that maleic acid pretreatment results in a high yield of ethanol from fermentation of whole slurry even without conditioning or detoxification of the slurry. Additionally, the separation of solids and liquid is not required; therefore, the economics of cellulosic ethanol fuel production are significantly improved. We also demonstrated whole slurry saccharification and fermentation of pretreated lignocellulose, which has rarely been reported.

  2. High energy resolution plastic scintillator

    NASA Astrophysics Data System (ADS)

    van Loef, Edgar V.; Feng, Patrick; Markosyan, Gary; Shirwadkar, Urmila; Doty, Patrick; Shah, Kanai S.

    2016-09-01

    In this paper we present results on a novel tin-loaded plastic scintillator. We will show that this particular plastic scintillator has a light output similar to that of BGO, a fast scintillation decay (< 10 ns), exhibits good neutron/gamma PSD with a Figure-of-Merit of 1.3 at 2.5 MeVee cut-off energy, and excellent energy resolution of about 12% (FWHM) at 662 keV. Under X-ray excitation, the radioluminescence spectrum exhibits a broad band between 350 and 500 nm peaking at 420 nm which is well-matched to bialkali photomultiplier tubes and UV-enhanced photodiodes.

  3. Segmented lasing tube for high temperature laser assembly

    DOEpatents

    Sawicki, Richard H.; Alger, Terry W.; Finucane, Raymond G.; Hall, Jerome P.

    1996-01-01

    A high temperature laser assembly capable of withstanding operating temperatures in excess of 1500.degree. C. is described comprising a segmented cylindrical ceramic lasing tube having a plurality of cylindrical ceramic lasing tube segments of the same inner and outer diameters non-rigidly joined together in axial alignment; insulation of uniform thickness surround the walls of the ceramic lasing tube; a ceramic casing, preferably of quartz, surrounding the insulation; and a fluid cooled metal jacket surrounds the ceramic casing. In a preferred embodiment, the inner surface of each of the ceramic lasing tube segments are provided with a pair of oppositely spaced grooves in the wall thereof parallel to the center axis of the segmented cylindrical ceramic lasing tube, and both of the grooves and the center axis of the segmented cylindrical ceramic lasing tube lie in a common plane, with the grooves in each ceramic lasing tube segment in circumferential alignment with the grooves in the adjoining ceramic lasing tube segments; and one or more ceramic plates, all lying in a common plane to one another and with the central axis of the segmented ceramic lasing tube, are received in the grooves to provide additional wall area in the segmented ceramic lasing tube for collision and return to ground state of metastable metal atoms within the segmented ceramic lasing tube.

  4. Ultra-fast framing camera tube

    DOEpatents

    Kalibjian, Ralph

    1981-01-01

    An electronic framing camera tube features focal plane image dissection and synchronized restoration of the dissected electron line images to form two-dimensional framed images. Ultra-fast framing is performed by first streaking a two-dimensional electron image across a narrow slit, thereby dissecting the two-dimensional electron image into sequential electron line images. The dissected electron line images are then restored into a framed image by a restorer deflector operated synchronously with the dissector deflector. The number of framed images on the tube's viewing screen is equal to the number of dissecting slits in the tube. The distinguishing features of this ultra-fast framing camera tube are the focal plane dissecting slits, and the synchronously-operated restorer deflector which restores the dissected electron line images into a two-dimensional framed image. The framing camera tube can produce image frames having high spatial resolution of optical events in the sub-100 picosecond range.

  5. Scale-up of wheat straw conversion to fuel ethanol at 100 liter scale

    USDA-ARS?s Scientific Manuscript database

    Wheat straw can serve as low cost feedstock for conversion to ethanol. Pretreatment is crucial prior to enzymatic hydrolysis. We have used dilute H2SO4 pretreatment at a high temperature for pretreatment of wheat straw. The pretreated hydrolyzate was bioabated using a novel fungal strain able to ...

  6. Drift tube suspension for high intensity linear accelerators

    DOEpatents

    Liska, D.J.; Schamaun, R.G.; Clark, D.C.; Potter, R.C.; Frank, J.A.

    1980-03-11

    The disclosure relates to a drift tube suspension for high intensity linear accelerators. The system comprises a series of box-sections girders independently adjustably mounted on a linear accelerator. A plurality of drift tube holding stems are individually adjustably mounted on each girder.

  7. High resolution time interval meter

    DOEpatents

    Martin, A.D.

    1986-05-09

    Method and apparatus are provided for measuring the time interval between two events to a higher resolution than reliability available from conventional circuits and component. An internal clock pulse is provided at a frequency compatible with conventional component operating frequencies for reliable operation. Lumped constant delay circuits are provided for generating outputs at delay intervals corresponding to the desired high resolution. An initiation START pulse is input to generate first high resolution data. A termination STOP pulse is input to generate second high resolution data. Internal counters count at the low frequency internal clock pulse rate between the START and STOP pulses. The first and second high resolution data are logically combined to directly provide high resolution data to one counter and correct the count in the low resolution counter to obtain a high resolution time interval measurement.

  8. Calibration of Fuji BAS-SR type imaging plate as high spatial resolution x-ray radiography recorder

    NASA Astrophysics Data System (ADS)

    Yan, Ji; Zheng, Jianhua; Zhang, Xing; Chen, Li; Wei, Minxi

    2017-05-01

    Image Plates as x-ray recorder have advantages including reusable, high dynamic range, large active area, and so on. In this work, Fuji BAS-SR type image plate combined with BAS-5000 scanner is calibrated. The fade rates of Image Plates has been measured using x-ray diffractometric in different room temperature; the spectral response of Image Plates has been measured using 241Am radioactive sealed source and fitting with linear model; the spatial resolution of Image Plates has been measured using micro-focus x-ray tube. The results show that Image Plates has an exponent decade curve and double absorption edge response curve. The spatial resolution of Image Plates with 25μ/50μ scanner resolution is 6.5lp/mm, 11.9lp/mm respectively and gold grid radiography is collected with 80lp/mm spatial resolution using SR-type Image Plates. BAS-SR type Image Plates can do high spatial resolution and quantitative radiographic works. It can be widely used in High energy density physics (HEDP), inertial confinement fusion (ICF) and laboratory astronomy physics.

  9. Structure of sunspot penumbrae - Fallen magnetic flux tubes

    NASA Technical Reports Server (NTRS)

    Wentzel, Donat G.

    1992-01-01

    A model is presented of a sunspot penumbra involving magnetic flux tubes that have fallen into the photosphere and float there. An upwelling at the inner end of a fallen tube continuously provides additional gas. This gas flows along and lengthens the tube and is observable as the Evershed flow. Fallen flux tubes may appear as bright streaks near the upwelling, but they become dark filaments further out. The model is corroborated by recent optical high-resolution magnetic data regarding the penumbral filaments, by the 12-micron magnetic measurements relevant to the height of the temperature minimum, and by photographs of the umbra/penumbra boundary.

  10. Potential of rice straw for bio-refining: An overview.

    PubMed

    Abraham, Amith; Mathew, Anil Kuruvilla; Sindhu, Raveendran; Pandey, Ashok; Binod, Parameswaran

    2016-09-01

    The biorefinery approach for the production of fuels and chemicals is gaining more and more attraction in recent years. The major advantages of biorefineries are the generation of multiple products with complete utilization of biomass with zero waste generation. Moreover the process will be economically viable when it targets low volume high value products in addition to high volume low value products like bioethanol. The present review discuss about the potential of rice straw based biorefinery. Since rice is a major staple food for many Asian countries, the utilization of the rice straw residue for fuel and chemicals would be very economical. The review focuses the availability and the potential of this residue for the production of fuel and other high value chemicals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Microbial utilization of rice straw and its derived biochar in a paddy soil.

    PubMed

    Pan, Fuxia; Li, Yaying; Chapman, Stephen James; Khan, Sardar; Yao, Huaiying

    2016-07-15

    The application of straw and biochar to soil has received great attention because of their potential benefits such as fertility improvement and carbon (C) sequestration. The abiotic effects of these materials on C and nitrogen (N) cycling in the soil ecosystem have been previously investigated, however, the effects of straw or its derived biochar on the soil microbial community structure and function are not well understood. For this purpose, a short-term incubation experiment was conducted using (13)C-labeled rice straw and its derived biochar ((13)C-labeled biochar) to deepen our understanding about soil microbial community dynamics and function in C sequestration and greenhouse gas emission in the acidic paddy soil amended with these materials. Regarding microbial function, biochar and straw applications increased CO2 emission in the initial stage of incubation and reached the highest level (0.52 and 3.96mgCkg(-1)soilh(-1)) at 1d and 3d after incubation, respectively. Straw amendment significantly (p<0.01) increased respiration rate, total phospholipid fatty acids (PLFAs) and (13)C-PLFA as compared to biochar amendment and the control. The amount and percent of Gram positive bacteria, fungi and actinomycetes were also significantly (p<0.05) higher in (13)C-labeled straw amended soil than the (13)C-labeled biochar amended soil. According to the (13)C data, 23 different PLFAs were derived from straw amended paddy soil, while only 17 PLFAs were derived from biochar amendments. The profile of (13)C-PLFAs derived from straw amendment was significantly (p<0.01) different from biochar amendment. The PLFAs18:1ω7c and cy17:0 (indicators of Gram negative bacteria) showed high relative abundances in the biochar amendment, while 10Me18:0, i17:0 and 18:2ω6,9c (indicators of actinomycetes, Gram positive bacteria and fungi, respectively) showed high relative abundance in the straw amendments. Our results suggest that the function, size and structure of the microbial

  12. AirCore-HR: a high-resolution column sampling to enhance the vertical description of CH4 and CO2

    NASA Astrophysics Data System (ADS)

    Membrive, Olivier; Crevoisier, Cyril; Sweeney, Colm; Danis, François; Hertzog, Albert; Engel, Andreas; Bönisch, Harald; Picon, Laurence

    2017-06-01

    An original and innovative sampling system called AirCore was presented by NOAA in 2010 Karion et al.(2010). It consists of a long ( > 100 m) and narrow ( < 1 cm) stainless steel tube that can retain a profile of atmospheric air. The captured air sample has then to be analyzed with a gas analyzer for trace mole fraction. In this study, we introduce a new AirCore aiming to improve resolution along the vertical with the objectives to (i) better capture the vertical distribution of CO2 and CH4, (ii) provide a tool to compare AirCores and validate the estimated vertical resolution achieved by AirCores. This (high-resolution) AirCore-HR consists of a 300 m tube, combining 200 m of 0.125 in. (3.175 mm) tube and a 100 m of 0.25 in. (6.35 mm) tube. This new configuration allows us to achieve a vertical resolution of 300 m up to 15 km and better than 500 m up to 22 km (if analysis of the retained sample is performed within 3 h). The AirCore-HR was flown for the first time during the annual StratoScience campaign from CNES in August 2014 from Timmins (Ontario, Canada). High-resolution vertical profiles of CO2 and CH4 up to 25 km were successfully retrieved. These profiles revealed well-defined transport structures in the troposphere (also seen in CAMS-ECMWF high-resolution forecasts of CO2 and CH4 profiles) and captured the decrease of CO2 and CH4 in the stratosphere. The multi-instrument gondola also carried two other low-resolution AirCore-GUF that allowed us to perform direct comparisons and study the underlying processing method used to convert the sample of air to greenhouse gases vertical profiles. In particular, degrading the AirCore-HR derived profiles to the low resolution of AirCore-GUF yields an excellent match between both sets of CH4 profiles and shows a good consistency in terms of vertical structures. This fully validates the theoretical vertical resolution achievable by AirCores. Concerning CO2 although a good agreement is found in terms of vertical structure

  13. The barley straw residues avoid high erosion rates in persimmon plantations. Eastern Spain

    NASA Astrophysics Data System (ADS)

    Cerdà, Artemi; González Pelayo, Óscar; Giménez-Morera, Antonio; Jordán, Antonio; Novara, Agata; Pereira, Paulo; Mataix-Solera, Jorge

    2015-04-01

    World persimmon production is 4 Millions tones and China produce more than 80 % of the total world yield. Korea and Japan are the second and the third producers respectively with 0.4 and 0.2 millions tones, and all three Asian countries concentrate more than 95 % of the world production. Spain produce less than 0.1 million tones but there is a sudden increase in new plantations due to the high prices and the new marked developed in Europe, Brazil and Arabic countries. The new chemically managed and highly mechanized plantations in Eastern Spain are using high doses of herbicides and the lack of vegetation is triggering high erosion rates. This paper aims to contribute with information about the soil losses on this new persimmon plantations and to develop strategies to reduce the soil and water losses. A 15 years old plantation of persimmon (Dyospirus lotus) was selected in Eastern Spain (Canals Municipality, La Costera District) to measure the soil losses on No-Tillage bare (herbicide treatments) management and on barley straw covered plots. The straw cover was applied 3 days before the expereriments at at doses that cover more than 50 % of the soil surface using 75 gr of straw per m2. Rainfall simulations under 55 mm h-1 rainfall intensity during one hour on 0.25 m2 plots were carried out on plots paired plots: bare and covered with straw. The measurements were carried out during July 2014 on paired plots, under very dry soil moisture contents ranging from 4.65 to 7.87 %. The results show that the 3% cover of vegetation of the control plots moved to more than 60% due to the application of the straw. This induced a delayed ponding (from 60 to 309 seconds) and surface runoff (from 262 to 815 seconds) and runoff outlet (418 to 1221 seconds). The runoff coefficients moved from 60 % in the control plots to 29 % in the straw covered and the runoff sediment concentration was dramatically reduced from 11 to 1 g l-1. The total soil losses were higher that 1 Kg per plot in

  14. Quality characteristic of liquid smoked straw mushroom (Volvariella volvacea) ball during storage

    NASA Astrophysics Data System (ADS)

    Kurniawan, C. W.; Atmaka, W.; Manuhara, G. J.; Sanjaya, A. P.

    2018-01-01

    Straw mushroom (Volvariella volvacea) ball was soaked for 15, 30, and 45 minutes with the concentration level 1%, 2%, and 3% (v/v) of the coconut shell liquid smoke. The chemical characteristics (water contains, total phenol, carbonil contains, total-N, TVB-N, and pH), microbiological characteristics (Total Plate Count), and sensory characteristics (color, flavor, taste, texture, and overalls) of the liquid smoked straw mushroom ball during 14 days storage at freezing temperature were investigated. The result showed that the water content and TVB-N were decreased after soaked and were increased after storaged. On the other hand, the result of total phenol, carbonyl content, and Total-N were increased after soaked and were decreased after storage. The level of pH and Total Plate Count of the straw mushroom ball were decreased during storage. Due to the sensory characteristics of the straw mushroom ball, the panelists provide high values for the straw mushroom ball which was soaked in 3% concentration level with 30 minutes soaked time. The best-soaked treatment was by soaked at 30 minutes with 3% concentration level liquid smoke. The straw mushroom ball has 70.95±0.10% water contains; 0.32±0.02% total phenol; 1.08±0.22% carbonyl contains; and 2.29±0.07% total-N.

  15. Effect of Pleurotus ostreatus and Erwinia carotovora on wheat straw digestibility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Streeter, C.L.; Conway, K.E.; Horn, G.W.

    1981-11-01

    The objectives of this study were to determine whether growing Pleurotus ostreatus and Erwinia carotovora on wheat straw would synergistically improve the digestibility of straw and whether there was a necessity of sterilizing the straw by autoclaving prior to inoculation. Dry matter decomposition of autoclaved and non-autoclaved straw was similar when both organisms were used in the system after 28 days incubation. However, in vitro ruminal dry matter digestibility of straw was significantly improved (P less than 10) only when the straw was autoclaved prior to inoculation with both organisms. (Refs. 21).

  16. A Segmented Neutron Detector with a High Position Resolution for the (p,pn) Reactions

    NASA Astrophysics Data System (ADS)

    Kubota, Yuki; Sasano, Masaki; Uesaka, Tomohiro; Dozono, Masanori; Itoh, Masatoshi; Kawase, Shoichiro; Kobayashi, Motoki; Lee, CheongSoo; Matsubara, Hiroaki; Miki, Kenjiro; Miya, Hiroyuki; Ota, Shinsuke; Sekiguchi, Kimiko; Shima, Tatsushi; Taguchi, Takahiro; Tamii, Atsushi; Tang, Tsz Leung; Tokieda, Hiroshi; Wakasa, Tomotsugu; Wakui, Takashi; Yasuda, Jumpei; Zenihiro, Juzo

    We are developing a neutron detector with a high position resolution to study the single particle properties of nuclei by the knockout (p,pn) reaction at intermediate energies. We constructed a prototype detector consisting of plastic scintillating fibers and multi-anode photomultiplier tubes (PMTs). Test experiments using 200- and 70-MeV proton and 199-, 188-, 68-, and 50-MeV neutron were performed for characterizing its performance. Preliminary results show that a position resolution of about 3 mm at full-width at half-maximum (FWHM) is realized as designed. The resulting separation-energy resolution to be obtained for (p,pn) measurement would be 1 MeV in FWHM, when the detector is used at a distance of 2 m from the target for measuring the neutron momentum.

  17. High temporal resolution delayed analysis of clinical microdialysate streams† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7an01209h

    PubMed Central

    Gowers, S. A. N.; Hamaoui, K.; Cunnea, P.; Anastasova, S.; Curto, V. F.; Vadgama, P.; Yang, G.-Z.; Papalois, V.; Drakakis, E. M.; Fotopoulou, C.; Weber, S. G.

    2018-01-01

    This paper presents the use of tubing to store clinical microdialysis samples for delayed analysis with high temporal resolution, offering an alternative to traditional discrete offline microdialysis sampling. Samples stored in this way were found to be stable for up to 72 days at –80 °C. Examples of how this methodology can be applied to glucose and lactate measurement in a wide range of in vivo monitoring experiments are presented. This paper presents a general model, which allows for an informed choice of tubing parameters for a given storage time and flow rate avoiding high back pressure, which would otherwise cause the microdialysis probe to leak, while maximising temporal resolution. PMID:29336454

  18. SHARPI: Solar High Angular Resolution Photometric Imager

    NASA Technical Reports Server (NTRS)

    Rabin, D.; Davila, J.; Content, D.; Keski-Kuha, R.; Oegerle, William (Technical Monitor)

    2002-01-01

    Observing the lower solar atmosphere with enough linear resolution (< 100 km) to study individual magnetic flux tubes and other features on scales comparable to the photon mean free path has proven to be a challenging and elusive goal. Space-borne instruments based on conventional heavy optics turned out to be too expensive, and adaptive optics on the ground made slow progress for many years. Nevertheless, the scientific case for high-resolution imaging and magnetography has only become more compelling over the last ten years. Today, ground-based adaptive optics is a promising approach for small fields of view at visible wavelengths. Space experiments will need to employ lightweight optics and low cost platforms. The Sunrise balloon experiment is one example. We describe a concept for a sounding rocket experiment that will achieve 0.1-arcsecond imaging using a lightweight, ultraprecise 55-cm mirror in the far ultraviolet (160 nm continuum, Lyman alpha, and possibly C IV 155 nm). The f/1.2 parabolic primary mirror is entering the final stages of production. The mirror is a ULE honeycomb design with front and back face sheets. The front sheet will be figured to 6.3 nm rms with microroughness 1 nm or better. For the initial proof of concept, we describe a no-frills, high-cadence imager aboard a Black Brant sounding rocket. Development of lightweight UV/EUV optics at Goddard Space Flight Center has been supported by the Internal Research and Development program.

  19. Rice straw addition as sawdust substitution in oyster mushroom (Pleurotus ostreatus) planted media

    NASA Astrophysics Data System (ADS)

    Utami, Christine Pamardining; Susilawati, Puspita Ratna

    2017-08-01

    Oyster mushroom is favorite by the people because of the high nutrients. The oyster mushroom cultivation usually using sawdust. The availability of sawdust become difficult to find. It makes difficulties of mushroom cultivation. Rice straw as an agricultural waste can be used as planted media of oyster mushroom because they contain much nutrition needed to the mushroom growth. The aims of this research were to analysis the influence of rice straw addition in a baglog as planted media and to analysis the concentration of rice straw addition which can substitute sawdust in planted media of oyster mushroom. This research used 4 treatment of sawdust and rice straw ratio K = 75 % : 0 %, P1 = 60 % : 15 %, P2 = 40 % : 35 %, P3 = 15 % : 60 %. The same material composition of all baglog was bran 20%, chalk 5%, and water 70%. The parameters used in this research were wet weight, dry weight, moisture content and number of the mushroom fruit body. Data analysis was used ANOVA test with 1 factorial. The results of this research based on statistical analysis showed that there was no influence of rice straw addition in a planted media on the oyster mushroomgrowth. 15% : 60% was the concentrationof rice straw additionwhich can substitute the sawdust in planted media of oyster mushroom.

  20. Bioconversion of Straw Into Improved Fodder: Mycoprotein Production and Cellulolytic Acivity of Rice Straw Decomposing Fungi

    PubMed Central

    2005-01-01

    Sixty two out of the sixty four species of fungal isolates tested could produce both exo-β1,4-gluconase (C1) and endo-β1,4-gluconase (Cx) on pure cellulose and rice straw as carbon source in Czapek's medium. Fifty-eight and fifteen species were able to grow at 25℃ and at 45℃, respectively. Eleven species could grow at both 25℃ and 45℃ while, four species appeared only at 45℃. The most cellulolytic species at 25℃ was Trichoderma koningii producing 1.164 C1 (mg glucose/1 ml culture filtrate/1 hr) and 2.690 Cx on pure cellulose, and 0.889 C1 and 1.810 Cx on rice straw, respectively. At 45℃, the most active thermotolerant species were Aspergillus terreus, followed by A. fumigatus. Talaromyces thermophilus was the highest active thermophilic species followed by Malbranchea sulfurea. Most of these species were also active in fermentation of rice straw at 25 and 45℃ (P<0.05). The most active ones were T. koningii, A. ochraceus and A. terreus, which produced 201.5, 193.1 and 188.1 mg crude protein/g dry straw, respectively. PMID:24049480

  1. Bioconversion of straw into improved fodder: mycoprotein production and cellulolytic acivity of rice straw decomposing fungi.

    PubMed

    Helal, G A

    2005-06-01

    Sixty two out of the sixty four species of fungal isolates tested could produce both exo-β1,4-gluconase (C1) and endo-β1,4-gluconase (Cx) on pure cellulose and rice straw as carbon source in Czapek's medium. Fifty-eight and fifteen species were able to grow at 25℃ and at 45℃, respectively. Eleven species could grow at both 25℃ and 45℃ while, four species appeared only at 45℃. The most cellulolytic species at 25℃ was Trichoderma koningii producing 1.164 C1 (mg glucose/1 ml culture filtrate/1 hr) and 2.690 Cx on pure cellulose, and 0.889 C1 and 1.810 Cx on rice straw, respectively. At 45℃, the most active thermotolerant species were Aspergillus terreus, followed by A. fumigatus. Talaromyces thermophilus was the highest active thermophilic species followed by Malbranchea sulfurea. Most of these species were also active in fermentation of rice straw at 25 and 45℃ (P<0.05). The most active ones were T. koningii, A. ochraceus and A. terreus, which produced 201.5, 193.1 and 188.1 mg crude protein/g dry straw, respectively.

  2. [Proximate analysis of straw by near infrared spectroscopy (NIRS)].

    PubMed

    Huang, Cai-jin; Han, Lu-jia; Liu, Xian; Yang, Zeng-ling

    2009-04-01

    Proximate analysis is one of the routine analysis procedures in utilization of straw for biomass energy use. The present paper studied the applicability of rapid proximate analysis of straw by near infrared spectroscopy (NIRS) technology, in which the authors constructed the first NIRS models to predict volatile matter and fixed carbon contents of straw. NIRS models were developed using Foss 6500 spectrometer with spectra in the range of 1,108-2,492 nm to predict the contents of moisture, ash, volatile matter and fixed carbon in the directly cut straw samples; to predict ash, volatile matter and fixed carbon in the dried milled straw samples. For the models based on directly cut straw samples, the determination coefficient of independent validation (R2v) and standard error of prediction (SEP) were 0.92% and 0.76% for moisture, 0.94% and 0.84% for ash, 0.88% and 0.82% for volatile matter, and 0.75% and 0.65% for fixed carbon, respectively. For the models based on dried milled straw samples, the determination coefficient of independent validation (R2v) and standard error of prediction (SEP) were 0.98% and 0.54% for ash, 0.95% and 0.57% for volatile matter, and 0.78% and 0.61% for fixed carbon, respectively. It was concluded that NIRS models can predict accurately as an alternative analysis method, therefore rapid and simultaneous analysis of multicomponents can be achieved by NIRS technology, decreasing the cost of proximate analysis for straw.

  3. Economic benefit analysis of cultivating Pleurotus ostreatus with rape straw

    NASA Astrophysics Data System (ADS)

    Guan, Qinlan; Gong, Mingfu; Tang, Mei

    2018-04-01

    The cultivation of Pleurotus ostreatus with rape straw not only can save the cultivation cost of P. ostreatus, but also can reuse the resources and protect the environment. By adding different proportion of rape straw to the cultivation material of P. ostreatus, the reasonable amount of rape straw was selected and the economic benefit of P. ostreatus cultivated with the optimum amount of rape straw was analyzed. The results showed that adding 10% to 40% rape straw to the cultivation material of P. ostreatus did not affect the yield and biological conversion rate of P. ostreatus, and the ratio of production and investment of the amount of rape straw in the range of 10% to 50% was higher than of cottonseed husk alone as the main material of the formula.

  4. Mars Life? - Microscopic Tube-like Structures

    NASA Image and Video Library

    1996-08-09

    This high-resolution scanning electron microscope image shows an unusual tube-like structural form that is less than 1/100th the width of a human hair in size found in meteorite ALH84001, a meteorite believed to be of Martian origin. http://photojournal.jpl.nasa.gov/catalog/PIA00288

  5. Integrated production of cellulosic bioethanol and succinic acid from rapeseed straw after dilute-acid pretreatment.

    PubMed

    Kuglarz, Mariusz; Alvarado-Morales, Merlin; Dąbkowska, Katarzyna; Angelidaki, Irini

    2018-05-29

    The aim of this study was to develop an integrated biofuel (cellulosic bioethanol) and biochemical (succinic acid) production process from rapeseed straw after dilute-acid pretreatment. Rapeseed straw pretreatment at 20% (w/v) solid loading and subsequent hydrolysis with Cellic® CTec2 resulted in high glucose yield (80%) and ethanol output (122-125 kg of EtOH/Mg of rapeseed straw). Supplementation the enzymatic process with 10% dosage of endoxylanases (Cellic® HTec2) reduced the hydrolysis time required to achieve the maximum glucan conversion by 44-46% and increased the xylose yield by 10% compared to the process with Cellic® CTec2. Significantly higher amounts of succinic acid were produced after fermentation of pretreatment liquor (48 kg/Mg of rapeseed straw, succinic acid yield: 60%) compared to fermentation of xylose-rich residue after ethanol production (35-37 kg/Mg of rapeseed straw, succinic yield: 68-71%). Results obtained in this study clearly proved the biorefinery potential of rapeseed straw. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. [Effects of selective microbial inhibitors on the microbial transformation of phosphorous in aggregates of highly weathered red soil with rice straw amendment].

    PubMed

    Ding, Long-jun; Xiao, He-ai; Wu, Jin-shui; Ge, Ti-da

    2010-07-01

    In order to further understand the mechanisms of microbial immobilization of phosphorous (P) in highly weathered red soil with organic amendment, an incubation test was conducted to investigate the roles of microbial functional groups in the transformation of P in 0.2-2 mm soil aggregates. Throughout the 90-day incubation period, amendment with rice straw induced a substantial increase in the amounts of microbial biomass C and P, Olsen-P, and organic P in the aggregates. Comparing with rice straw amendment alone, the amendment with rice straw plus fungal inhibitor actidione decreased the amount of microbial biomass C in the aggregates by 10.5%-31.8% in the first 30 days. Such a decrement was significantly larger than that (6.8%-11.6%) in the treatment amended with rice straw plus bacterial inhibitors tetracycline and streptomycin sulphate (P<0.01). After the first 30 days, the microbial biomass C remained constant. In the first 20 days, the amount of microbial biomass P in the aggregates was 10.0%-28.8% higher in the treatment amended with bacterial inhibitors than in the treatment amended with fungal inhibitor (P<0.01). All the results suggested that that both the fungal and the bacterial groups were involved in the microbial immobilization of P in the soil aggregates, and the fungal group played a relatively larger role.

  7. High Performance Pulse Tube Cryocoolers

    NASA Astrophysics Data System (ADS)

    Olson, J. R.; Roth, E.; Champagne, P.; Evtimov, B.; Nast, T. C.

    2008-03-01

    Lockheed Martin's Advanced Technology Center has been developing pulse tube cryocoolers for more than ten years. Recent innovations include successful testing of four-stage coldheads, no-load temperature below 4 K, and the recent development of a high-efficiency compressor. This paper discusses the predicted performance of single and multiple stage pulse tube coldheads driven by our new 6 kg "M5Midi" compressor, which is capable of 90% efficiency with 200 W input power, and a maximum input power of 1000 W. This compressor retains the simplicity of earlier LM-ATC compressors: it has a moving magnet and an external electrical coil, minimizing organics in the working gas and requiring no electrical penetrations through the pressure wall. Motor losses were minimized during design, resulting in a simple, easily-manufactured compressor with state-of-the-art motor efficiency. The predicted cryocooler performance is presented as simple formulae, allowing an engineer to include the impact of a highly-optimized cryocooler into a full system analysis. Performance is given as a function of the heat rejection temperature and the cold tip temperatures and cooling loads.

  8. [Microcuff pediatric tracheal tube. A new tracheal tube with a high volume-low pressure cuff for children].

    PubMed

    Weiss, M; Dullenkopf, A; Gerber, A C

    2004-01-01

    Principles and characteristics of the recently introduced Microcuff paediatric tracheal tube (Microcuff, GmbH, Weinheim, Germany) with anatomically based depth markings, cuff-free subglottic tube shaft and short high volume-low pressure cuff with ultrathin cuff membrane are presented. First available tubes (ID 4.0 mm) were evaluated regarding cuff pressures required to seal the trachea and regarding the distance from the tube tip to the carina. After obtaining approval of the local ethical committee, 20 children aged 2-4 years, receiving tracheal intubation under general anaesthesia with muscle paralysis, were included. The tubes were placed during direct laryngoscopy and the glottic depth marking placed between the vocal cords. Cuff pressure to prevent audible air leakage at standardised ventilator settings (PIP 20 cm H(2)O/PEEP 5 cm H(2)O/RR20 x min(-1)) was assessed by means of a cuff pressure manometer within 5 min after intubation. Subsequently, the distance from the tube tip to the tracheal carina was measured by means of fibre bronchoscopy. Data are presented as the median (range). Patient age was 3.0 years (2.0-3.9 years), weight 13.5 kg (9.1-19.2 kg) and body length 95 cm (79-105 cm). The lowest cuff pressure required to seal the trachea ranged from 4-14 cmH(2)O (median 10 cm H(2)O), the distance from tube tip to tracheal carina was to 2.9 cm (2.0-4.5 cm). The new Microcuff paediatric tracheal tube with ultrathin high volume-low pressure cuff required tracheal sealing pressures below tracheal wall pressures usually required with uncuffed tracheal tubes for efficient sealing and ventilation at 20 cm H(2)O peak inspiratory pressure. The distance from the tube tip to carina was in the safe range in all patients.

  9. An improved design of spiral tube assembly for separation of proteins by high-speed counter-current chromatography.

    PubMed

    Dasarathy, Dhweeja; Ito, Yoichiro

    2015-10-30

    A new spiral tube assembly was designed to improve the column capacity and partition efficiency for protein separation. This spiral tube assembly has greater column capacity than the original tubing because of an increase in radial grooves from 4 to 12 to accommodate more spiral layers and 12 narrow spots instead of 4 in each circular loop to interrupt the laminar flow that causes sample band broadening. Standard PTFE tubing (1.6mm ID) and the modified flat-twisted tubing were used as the separation column. The performances of both assemblies were compared for separating three stable test proteins including cytochrome c, myoglobin, and lysozyme using a two phase aqueous-aqueous solvent system composed of polyethylene glycol 1000 (12.5% w/w) and dibasic potassium phosphate (12.5% w/w). All samples were run at 1, 2, 3, and 5mL/min at both 800rpm and 1000rpm. The separation of these three protein samples produced high stationary phase retentions at 1, 2, and 3mL/min, yet separated efficiently at 5mL/min in 40min. After comparing the separation efficiency in terms of the peak resolutions, theoretical plate numbers, and separation times, it was determined that the flat-twisted tubing was more effective in separating these protein samples. In order to validate the efficacy of this novel assembly, a mixture of five protein samples (cytochrome c, myoglobin, ovalbumin, lysozyme, and hemoglobin) were separated, under the optimal conditions established with these three protein samples, at 1mL/min with a revolution speed of 1000rpm. There were high stationary phase retentions of around 60%, with effective separations, demonstrating the efficiency of the flat-twisted spiral tube assembly. The separation time of 6h was a limitation but can potentially be shortened by improving the strength of the column that will permit an increase in revolution speed and flow rate. This novel spiral separation column will allow rapid and efficient separation of mixtures with high yield of the

  10. Conjunctivodacryocystorhinostomy using a high-density porous polyethylene-coated tear drain tube.

    PubMed

    Pushker, Neelam; Khurana, Saurbhi; Shrey, Dinesh; Bajaj, Mandeep S; Chawla, Bhavna; Chandra, Mahesh

    2013-08-01

    To evaluate the outcome of conjunctivodacryocystorhinostomy using a high-density porous polyethylene (HDPP)-coated tear drain tube. Patients with epiphora due to a proximal lacrimal system block were included in a prospective interventional case study. A total of 22 eyes were treated with lacrimal bypass surgery using the HDPP-coated tube. On follow-up (12-41 months), 21 eyes had a patent well-positioned tube with subjective relief of epiphora. In one eye, a loose sleeve was noted during surgery. The tube dislodged postoperatively and was removed. A high success rate with only a few minor complications is achievable using a HDPP-coated tear drain tube for lacrimal bypass surgery. Long-term follow-up is required to look for tube blockage due to conjunctival or nasal mucosal overgrowth.

  11. Estimation and change tendency of rape straw resource in Leshan

    NASA Astrophysics Data System (ADS)

    Guan, Qinlan; Gong, Mingfu

    2018-04-01

    Rape straw in Leshan area are rape stalks, including stems, leaves and pods after removing rapeseed. Leshan area is one of the main rape planting areas in Sichuan Province and rape planting area is large. Each year will produce a lot of rape straw. Based on the analysis of the trend of rapeseed planting area and rapeseed yield from 2008 to 2014, the change trend of rape straw resources in Leshan from 2008 to 2014 was analyzed and the decision-making reference was provided for resource utilization of rape straw. The results showed that the amount of rape straw resources in Leshan was very large, which was more than 100,000 tons per year, which was increasing year by year. By 2014, the amount of rape straw resources in Leshan was close to 200,000 tons.

  12. A high resolution pneumatic stepping actuator for harsh reactor environments

    NASA Astrophysics Data System (ADS)

    Tippetts, Thomas B.; Evans, Paul S.; Riffle, George K.

    1993-01-01

    A reactivity control actuator for a high-power density nuclear propulsion reactor must be installed in close proximity to the reactor core. The energy input from radiation to the actuator structure could exceed hundreds of W/cc unless low-cross section, low-absorptivity materials are chosen. Also, for post-test handling and subsequent storage, materials should not be used that are activated into long half-life isotopes. Pneumatic actuators can be constructed from various reactor-compatible materials, but conventional pneumatic piston actuators generally lack the stiffness required for high resolution reactivity control unless electrical position sensors and compensated electronic control systems are used. To overcome these limitations, a pneumatic actuator is under development that positions an output shaft in response to a series of pneumatic pulses, comprising a pneumatic analog of an electrical stepping motor. The pneumatic pulses are generated remotely, beyond the strong radiation environment, and transmitted to the actuator through tubing. The mechanically simple actuator uses a nutating gear harmonic drive to convert motion of small pistons directly to high-resolution angular motion of the output shaft. The digital nature of this actuator is suitable for various reactor control algorithms but is especially compatible with the three bean salad algorithm discussed by Ball et al. (1991).

  13. Iron and manganese oxides modified maize straw to remove tylosin from aqueous solutions.

    PubMed

    Yin, Yongyuan; Guo, Xuetao; Peng, Dan

    2018-08-01

    Maize straw modified by iron and manganese oxides was synthesized via a simple and environmentally friendly method. Three maize straw materials, the original maize straw, maize straw modified by manganese oxides and maize straw modified by iron and manganese oxides, were detected by SEM, BET, XPS, XRD and FTIR. The results showed that maize straw was successfully modified and maize straw modified by iron and manganese oxides has a larger surface area than MS. According to the experimental data, the sorption trend could conform to the pseudo-second-order kinetic model well, and the sorption ability of tylosin on sorbents followed the order of original maize straw < maize straw modified by manganese oxides < maize straw modified by iron and manganese oxides. The study indicated that manganese oxides and iron-manganese oxides could significantly enhance the sorption capacity of original maize straw. The sorption isotherm data of tylosin on original maize straw fit a linear model well, while Freundlich models were more suitable for maize straw modified by manganese oxides and maize straw modified by iron and manganese oxides. The pH, ionic strength and temperature can affect the sorption process. The sorption mechanisms of tylosin on iron and manganese oxides modified maize straw were attribute to the surface complexes, electrostatic interactions, H bonding and hydrophobic interactions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. A super-resolution ultrasound method for brain vascular mapping

    PubMed Central

    O'Reilly, Meaghan A.; Hynynen, Kullervo

    2013-01-01

    Purpose: High-resolution vascular imaging has not been achieved in the brain due to limitations of current clinical imaging modalities. The authors present a method for transcranial ultrasound imaging of single micrometer-size bubbles within a tube phantom. Methods: Emissions from single bubbles within a tube phantom were mapped through an ex vivo human skull using a sparse hemispherical receiver array and a passive beamforming algorithm. Noninvasive phase and amplitude correction techniques were applied to compensate for the aberrating effects of the skull bone. The positions of the individual bubbles were estimated beyond the diffraction limit of ultrasound to produce a super-resolution image of the tube phantom, which was compared with microcomputed tomography (micro-CT). Results: The resulting super-resolution ultrasound image is comparable to results obtained via the micro-CT for small tissue specimen imaging. Conclusions: This method provides superior resolution to deep-tissue contrast ultrasound and has the potential to be extended to provide complete vascular network imaging in the brain. PMID:24320408

  15. Bioaugmentation with an acetate-type fermentation bacterium Acetobacteroides hydrogenigenes improves methane production from corn straw.

    PubMed

    Zhang, Jie; Guo, Rong-Bo; Qiu, Yan-Ling; Qiao, Jiang-Tao; Yuan, Xian-Zheng; Shi, Xiao-Shuang; Wang, Chuan-Shui

    2015-03-01

    The effect of bioaugmentation with an acetate-type fermentation bacterium in the phylum Bacteroidetes on the anaerobic digestion of corn straw was evaluated by batch experiments. Acetobacteroides hydrogenigenes is a promising strain for bioaugmentation with relatively high growth rate, hydrogen yields and acetate tolerance, which ferments a broad spectrum of pentoses, hexoses and polyoses mainly into acetate and hydrogen. During corn straw digestion, bioaugmentation with A. hydrogenigenes led to 19-23% increase of the methane yield, with maximum of 258.1 mL/g-corn straw achieved by 10% inoculation (control, 209.3 mL/g-corn straw). Analysis of lignocellulosic composition indicated that A. hydrogenigenes could increase removal rates of cellulose and hemicelluloses in corn straw residue by 12% and 5%, respectively. Further experiment verified that the addition of A. hydrogenigenes could improve the methane yields of methyl cellulose and xylan (models for cellulose and hemicelluloses, respectively) by 16.8% and 7.0%. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Very high resolution aerial films

    NASA Astrophysics Data System (ADS)

    Becker, Rolf

    1986-11-01

    The use of very high resolution aerial films in aerial photography is evaluated. Commonly used panchromatic, color, and CIR films and their high resolution equivalents are compared. Based on practical experience and systematic investigations, the very high image quality and improved height accuracy that can be achieved using these films are demonstrated. Advantages to be gained from this improvement and operational restrictions encountered when using high resolution film are discussed.

  17. Influence of straw incorporation with and without straw decomposer on soil bacterial community structure and function in a rice-wheat cropping system.

    PubMed

    Zhao, Jun; Ni, Tian; Xun, Weibing; Huang, Xiaolei; Huang, Qiwei; Ran, Wei; Shen, Biao; Zhang, Ruifu; Shen, Qirong

    2017-06-01

    To study the influence of straw incorporation with and without straw decomposer on bacterial community structure and biological traits, a 3-year field experiments, including four treatments: control without fertilizer (CK), chemical fertilizer (NPK), chemical fertilizer plus 7500 kg ha -1 straw incorporation (NPKS), and chemical fertilizer plus 7500 kg ha -1 straw incorporation and 300 kg ha -1 straw decomposer (NPKSD), were performed in a rice-wheat cropping system in Changshu (CS) and Jintan (JT) city, respectively. Soil samples were taken right after wheat (June) and rice (October) harvest in both sites, respectively. The NPKS and NPKSD treatments consistently increased crop yields, cellulase activity, and bacterial abundance in both sampling times and sites. Moreover, the NPKS and NPKSD treatments altered soil bacterial community structure, particularly in the wheat harvest soils in both sites, separating from the CK and NPK treatments. In the rice harvest soils, both NPKS and NPKSD treatments had no considerable impacts on bacterial communities in CS, whereas the NPKSD treatment significantly shaped bacterial communities compared to the other treatments in JT. These practices also significantly shifted the bacterial composition of unique operational taxonomic units (OTUs) rather than shared OTUs. The relative abundances of copiotrophic bacteria (Proteobacteria, Betaproteobacteria, and Actinobacteria) were positively correlated with soil total N, available N, and available P. Taken together, these results indicate that application of straw incorporation with and without straw decomposer could particularly stimulate the copiotrophic bacteria, enhance the soil biological activity, and thus, contribute to the soil productivity and sustainability in agro-ecosystems.

  18. Detection of α-thalassemia-1 Southeast Asian and Thai Type Deletions and β-thalassemia 3.5-kb Deletion by Single-tube Multiplex Real-time PCR with SYBR Green1 and High-resolution Melting Analysis

    PubMed Central

    Wiengkum, Thanatcha; Srithep, Sarinee; Chainoi, Isarapong; Singboottra, Panthong; Wongwiwatthananukit, Sanchai

    2011-01-01

    Background Prevention and control of thalassemia requires simple, rapid, and accurate screening tests for carrier couples who are at risk of conceiving fetuses with severe thalassemia. Methods Single-tube multiplex real-time PCR with SYBR Green1 and high-resolution melting (HRM) analysis were used for the identification of α-thalassemia-1 Southeast Asian (SEA) and Thai type deletions and β-thalassemia 3.5-kb gene deletion. The results were compared with those obtained using conventional gap-PCR. DNA samples were derived from 28 normal individuals, 11 individuals with α-thalassemia-1 SEA type deletion, 2 with α-thalassemia-1 Thai type deletion, and 2 with heterozygous β-thalassemia 3.5-kb gene deletion. Results HRM analysis indicated that the amplified fragments from α-thalassemia-1 SEA type deletion, α-thalassemia-1 Thai type deletion, β-thalassemia 3.5-kb gene deletion, and the wild-type β-globin gene had specific peak heights at mean melting temperature (Tm) values of 86.89℃, 85.66℃, 77.24℃, and 74.92℃, respectively. The results obtained using single-tube multiplex real-time PCR with SYBR Green1 and HRM analysis showed 100% consistency with those obtained using conventional gap-PCR. Conclusions Single-tube multiplex real-time PCR with SYBR Green1 and HRM analysis is a potential alternative for routine clinical screening of the common types of α- and β-thalassemia large gene deletions, since it is simple, cost-effective, and highly accurate. PMID:21779184

  19. HIGH CURRENT COAXIAL PHOTOMULTIPLIER TUBE

    DOEpatents

    Glass, N.W.

    1960-01-19

    A medium-gain photomultiplier tube having high current output, fast rise- time, and matched output impedance was developed. The photomultiplier tube comprises an elongated cylindrical envelope, a cylindrical anode supported at the axis of the envelope, a plurality of elongated spaced opaque areas on the envelope, and a plurality of light admitting windows. A photo-cathode is supported adjacent to each of the windows, and a plurality of secondary emissive dynodes are arranged in two types of radial arrays which are alternately positioned to fill the annular space between the anode and the envelope. The dynodes are in an array being radially staggered with respect to the dynodes in the adjacent array, the dynodes each having a portion arranged at an angle with respect to the electron path, such that electrons emitted by each cathode undergo multiplication upon impingement on a dynode and redirected flight to the next adjacent dynode.

  20. Bioconversion of rice straw into a soil-like substrate

    NASA Astrophysics Data System (ADS)

    Yu, Chengying; Liu, Hong; Xing, Yidong; Manukovsky, N. S.; Kovalev, V. S.; Gurevich, Yu. L.

    To increase the closure of bioregenerative life support systems (BLSS), the bioconversion of rice straw into a soil-like substrate (SLS) by mushrooms and worms has been studied. The results showed that rice straw could be treated better by aerobic fermentation and succeeding growth of mushrooms Pleurotus ostreatus. In this process the total content of lignocellulose in the straw was removed by 37.74%. Furthermore, 46.68 g (fresh weight) of mushrooms could be produced from 100.0 g (dry weight) of rice straw. During the conversion of rice straw into a starting SLS by mushrooms and worms, the matter loss was 77.31%. The lettuce has been planted in the SLS and the yield when lettuce was cultivated on the SLS (8.77gm-2day-1) was comparable to the yield obtained on the nutrient solution. In addition, the silicon in the SLS ash can reach upto 32% and the circulation of it is expected during the growth of rice.

  1. Heat and microbial treatments for nutritional upgrading of wheat straw

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milstein, O.; Vered, Y.; Sharma, A.

    1986-03-01

    The ligninolytic activities of four cellulolytic organisms were compared using straw. Only Aspergillus japonicus and Polyporous versicolor appreciably degraded lignin with A. japonicus yielding the most protein. In solid culture, most protein was produced by P. versicolor, closely followed by A. japonicus. Pertreatment of the straw by hot water facilitated biodegradation and protein production. The nutritional value of the residual straw was also increased by some fungal cultures. The greatest amount of degradable polysaccharide in the straw was made available by A. japonicus in liquid media and Pleurotus ostreatus in solid media. 29 references.

  2. Changes in preferences of gestating heifers fed untreated or ammoniated straw in different flavors.

    PubMed

    Atwood, S B; Provenza, F D; Wiedmeier, R D; Banner, R E

    2001-12-01

    We determined how a food's flavor and digestibility, along with an animal's recent experiences, influenced food preference and intake. In three experiments, pregnant heifers were fed a basal ration (7.75 kg/animal) of alfalfa, barley, corn silage, and a vitamin/mineral supplement from 1500 to 2200. Exp. 1 determined the influence of recent exposure to flavored straw. Animals were divided into two groups (n = 16/group) and fed either untreated or ammoniated straw with digestibilities of 43 and 58%, respectively. Within each group, half of the heifers were fed maple-flavored straw and the other half were fed coconut-flavored straw from 1100 one day to 0900 the next day, with no base ration. We then offered straw in both flavors from 1000 to 1200 for the next 5 d. Animals fed maple-flavored straw for 1 d generally preferred coconut- over maple-flavored straw for the next 5 d, whereas animals previously fed coconut-flavored straw preferred maple-flavored straw (P < 0.001). The change in preference was stronger when animals were fed untreated compared with ammoniated straw. Experiments 2 and 3 determined the influence of offering straw in different flavors, either in sequence (Exp. 2) or simultaneously (Exp. 3). In Exp. 2, we offered heifers (n = 16) straw in three flavors (maple from 0900 to 1100, coconut from 1100 to 1300, and unflavored from 1300 to 1500) and compared their intake with that of heifers (n = 16) offered unflavored straw throughout the day. In Exp. 3, we compared intake of heifers (n = 16) simultaneously offered straw in three flavors (coconut, maple, and unflavored) with that of heifers (n = 16) offered only unflavored straw from 1000 to 1500. In both experiments, straw intake and preference differed between heifers offered straw in a variety of flavors as opposed to only unflavored straw (P < 0.05), but animals fed a variety of flavors did not consistently eat more than those fed only one flavor. During a post-trial preference test, heifers previously

  3. Examining nanoparticle assemblies using high spatial resolution x-ray microtomography

    NASA Astrophysics Data System (ADS)

    Jenneson, P. M.; Luggar, R. D.; Morton, E. J.; Gundogdu, O.; Tüzün, U.

    2004-09-01

    An experimental system has been designed to examine the assembly of nanoparticles in a variety of process engineering applications. These applications include the harvesting from solutions of nanoparticles into green parts, and the subsequent sintering into finished components. The system is based on an x-ray microtomography with a spatial resolution down to 5μm. The theoretical limitations in x-ray imaging are considered to allow experimental optimization. A standard nondestructive evaluation type apparatus with a small focal-spot x-ray tube, high-resolution complementary metal oxide semiconductor flat-panel pixellated detector, and a mechanical rotational stage is used to image the static systems. Dynamic sintering processes are imaged using the same x-ray source and detector but a custom rotational stage which is contained in an environmental chamber where the temperature, atmospheric pressure, and compaction force can be controlled. Three-dimensional tomographic data sets are presented here for samples from the pharmaceutical, nutraceutical, biotechnology, and nanoparticle handling industries and show the microscopic features and defects which can be resolved with the system.

  4. Effect of water washing on the thermal behavior of rice straw.

    PubMed

    Said, N; Bishara, T; García-Maraver, A; Zamorano, M

    2013-11-01

    Rice straw can be used as a renewable fuel for heat and power generation. It is a viable mean of replacing fossil fuels and preventing pollution caused by open burning, especially in the areas where this residual biomass is generated. Nevertheless, the thermal conversion of rice straw can cause some operating problems such as slag formation, which negatively affects thermal conversion systems. So, the main objective of this research is studying the combustion behavior of rice straw samples collected from various regions by applying thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). In addition, the thermal behavior of ashes from rice straw was also analyzed in order to detect their melting points, and ash sintering was detected at different temperatures within the range between 550 and 1000°C. Since washing rice straw with water could reduce the content of undesirable inorganic compounds related to the ash fusibility, samples of washed rice straw were analyzed under combustion conditions to investigate its differences regarding the thermal behavior of rice straw. The results showed that rice straw washing led to a significant improvement in its thermal behavior, since it reduced the ash contents and sintering formation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Dynamics of Potassium Release and Adsorption on Rice Straw Residue

    PubMed Central

    Li, Jifu; Lu, Jianwei; Li, Xiaokun; Ren, Tao; Cong, Rihuan; Zhou, Li

    2014-01-01

    Straw application can not only increase crop yields, improve soil structure and enrich soil fertility, but can also enhance water and nutrient retention. The aim of this study was to ascertain the relationships between straw decomposition and the release-adsorption processes of K+. This study increases the understanding of the roles played by agricultural crop residues in the soil environment, informs more effective straw recycling and provides a method for reducing potassium loss. The influence of straw decomposition on the K+ release rate in paddy soil under flooded condition was studied using incubation experiments, which indicated the decomposition process of rice straw could be divided into two main stages: (a) a rapid decomposition stage from 0 to 60 d and (b) a slow decomposition stage from 60 to 110 d. However, the characteristics of the straw potassium release were different from those of the overall straw decomposition, as 90% of total K was released by the third day of the study. The batches of the K sorption experiments showed that crop residues could adsorb K+ from the ambient environment, which was subject to decomposition periods and extra K+ concentration. In addition, a number of materials or binding sites were observed on straw residues using IR analysis, indicating possible coupling sites for K+ ions. The aqueous solution experiments indicated that raw straw could absorb water at 3.88 g g−1, and this rate rose to its maximum 15 d after incubation. All of the experiments demonstrated that crop residues could absorb large amount of aqueous solution to preserve K+ indirectly during the initial decomposition period. These crop residues could also directly adsorb K+ via physical and chemical adsorption in the later period, allowing part of this K+ to be absorbed by plants for the next growing season. PMID:24587364

  6. Dynamics of potassium release and adsorption on rice straw residue.

    PubMed

    Li, Jifu; Lu, Jianwei; Li, Xiaokun; Ren, Tao; Cong, Rihuan; Zhou, Li

    2014-01-01

    Straw application can not only increase crop yields, improve soil structure and enrich soil fertility, but can also enhance water and nutrient retention. The aim of this study was to ascertain the relationships between straw decomposition and the release-adsorption processes of K(+). This study increases the understanding of the roles played by agricultural crop residues in the soil environment, informs more effective straw recycling and provides a method for reducing potassium loss. The influence of straw decomposition on the K(+) release rate in paddy soil under flooded condition was studied using incubation experiments, which indicated the decomposition process of rice straw could be divided into two main stages: (a) a rapid decomposition stage from 0 to 60 d and (b) a slow decomposition stage from 60 to 110 d. However, the characteristics of the straw potassium release were different from those of the overall straw decomposition, as 90% of total K was released by the third day of the study. The batches of the K sorption experiments showed that crop residues could adsorb K(+) from the ambient environment, which was subject to decomposition periods and extra K(+) concentration. In addition, a number of materials or binding sites were observed on straw residues using IR analysis, indicating possible coupling sites for K(+) ions. The aqueous solution experiments indicated that raw straw could absorb water at 3.88 g g(-1), and this rate rose to its maximum 15 d after incubation. All of the experiments demonstrated that crop residues could absorb large amount of aqueous solution to preserve K(+) indirectly during the initial decomposition period. These crop residues could also directly adsorb K(+) via physical and chemical adsorption in the later period, allowing part of this K(+) to be absorbed by plants for the next growing season.

  7. How do bendy straws bend? A study of re-configurability of multi-stable corrugated shells

    NASA Astrophysics Data System (ADS)

    Bende, Nakul; Selden, Sarah; Evans, Arthur; Santangelo, Christian; Hayward, Ryan

    Shape programmable systems have evolved to allow for reconfiguration of structures through a variety of mechanisms including swelling, stress-relaxation, and thermal expansion. Particularly, there has been a recent interest in systems that exhibit bi-stability or multi-stability to achieve transformation between two or more pre-programmed states. Here, we study the ubiquitous architecture of corrugated shells, such as drinking straws or bellows, which has been well known for centuries. Some of these structures exhibit almost continuous stability amongst a wide range of reconfigurable shapes, but the underlying mechanisms are not well understood. To understand multi-stability in `bendy-straw' structures, we study the unit bi-conical segment using experiments and finite element modeling to elucidate the key geometrical and mechanical factors responsible for its multi-stability. The simple transformations of a unit segment - a change in length or angle can impart complex re-configurability of a structure containing many of these units. The fundamental understanding provided of this simple multi-stable building block could yield improvements in shape re-configurability for a wide array of applications such as corrugated medical tubing, robotics, and deployable structures. NSF EFRI ODISSEI-1240441.

  8. Large Area and High Efficiency Photon Counting Imaging Detectors with High Time and Spatial Resolution for Night Time Sensing and Astronomy

    NASA Astrophysics Data System (ADS)

    Siegmund, O.; Vallerga, J.; Tremsin, A.; McPhate, J.; Frisch, H.; Elam, J.; Mane, A.; Wagner, R.; Varner, G.

    2012-09-01

    The development of large area photon counting, imaging, timing detectors with high performance has significance for applications in astronomy (such as our sensor on the SAAO SALT 10m telescope), night time remote reconnaissance, airborne/space situational awareness, and high-speed adaptive optics. Sealed tube configurations for optical/IR sensing also have applications in detection of Cherenkov light (RICH), biological single-molecule fluorescence lifetime imaging microscopy and neutron imaging applications. In open faced configurations these devices are important for UV and particle detection in space astrophysics, mass spectroscopy and many time-of flight applications. Currently available devices are limited to sizes of about 5 cm and use either conventional microchannel plates, or dynode multipliers for amplification, coupled coarse pad array readouts. Extension of these schemes to devices as large as 20 cm with high spatial resolution presents significant problems and potentially considerable cost. A collaboration (Large Area Picosecond Photon Detector) of the U. Chicago, Argonne National Laboratory, U.C. Berkeley, U. Hawaii and a number of other institutions has developed novel technologies to realize 20 cm format detectors in open face or sealed tube configurations. One critical component of this development is novel microchannel plates employing borosilicate micro-capillary arrays. The microchannel plates are based on a novel concept where the substrate is constructed from a borosilicate micro-capillary array that is made to function as a microchannel plate by deposition of resistive and secondary emissive layers using atomic layer deposition. The process is relatively inexpensive compared with conventional microchannel plates and allows very large microchannel plates to be produced with pore sizes as small as 10 microns. These provide many performance characteristics typical of conventional microchannel plates, but have been made in sizes up to 20 cm, have

  9. Equine Cyathostominae can develop to infective third-stage larvae on straw bedding.

    PubMed

    Love, Sandy; Burden, Faith A; McGirr, Eoghan C; Gordon, Louise; Denwood, Matthew J

    2016-08-31

    Domesticated grazing animals including horses and donkeys are frequently housed using deep litter bedding systems, where it is commonly presumed that there is no risk of infection from the nematodes that are associated with grazing at pasture. We use two different approaches to test whether equids could become infected with cyathostomines from the ingestion of deep litter straw bedding. Two herbage plot studies were performed in horticultural incubators set up to simulate three straw bedding scenarios and one grass turf positive control. Faeces were placed on 16 plots, and larval recoveries performed on samples of straw/grass substrate over 2- to 3-week periods. Within each incubator, a thermostat was set to maintain an environmental temperature of approximately 10 °C to 20 °C. To provide further validation, 24 samples of straw bedding were collected over an 8-week period from six barns in which a large number of donkeys were housed in a deep litter straw bedding system. These samples were collected from the superficial bedding at 16 sites along a "W" route through each barn. No infective larvae were recovered from any of the plots containing dry straw. However, infective cyathostomine larvae were first detected on day 8 from plots containing moist straw. In the straw bedding study, cyathostomine larvae were detected in 18 of the 24 samples. Additionally, in the two barns which were sampled serially, the level of larval infectivity generally increased from week to week, except when the straw bedding was removed and replaced. We have demonstrated that equine cyathostomines can develop to infective larvae on moist straw bedding. It is therefore possible for a horse or donkey bedded in deep litter straw to become infected by ingesting the contaminated straw. This has implications for parasite control in stabled equids and potentially in housed ruminants, and further investigation is required in order to establish the relative infective pressure from pasture versus

  10. Fabrication and characterization of a 0.5-mm lutetium oxyorthosilicate detector array for high-resolution PET applications.

    PubMed

    Stickel, Jennifer R; Qi, Jinyi; Cherry, Simon R

    2007-01-01

    With the increasing use of in vivo imaging in mouse models of disease, there are many interesting applications that demand imaging of organs and tissues with submillimeter resolution. Though there are other contributing factors, the spatial resolution in small-animal PET is still largely determined by the detector pixel dimensions. In this work, a pair of lutetium oxyorthosilicate (LSO) arrays with 0.5-mm pixels was coupled to multichannel photomultiplier tubes and evaluated for use as high-resolution PET detectors. Flood histograms demonstrated that most crystals were clearly identifiable. Energy resolution varied from 22% to 38%. The coincidence timing resolution was 1.42-ns full width at half maximum (FWHM). The intrinsic spatial resolution was 0.68-mm FWHM as measured with a 30-gauge needle filled with (18)F. The improvement in spatial resolution in a tomographic setting is demonstrated using images of a line source phantom reconstructed with filtered backprojection and compared with images obtained from 2 dedicated small-animal PET scanners. Finally, a projection image of the mouse foot is shown to demonstrate the application of these 0.5-mm LSO detectors to a biologic task. A pair of highly pixelated LSO detections has been constructed and characterized for use as high-spatial-resolution PET detectors. It appears that small-animal PET systems capable of a FWHM spatial resolution of 600 microm or less are feasible and should be pursued.

  11. Combined pretreatment using ozonolysis and ball milling to improve enzymatic saccharification of corn straw.

    PubMed

    Shi, Feng; Xiang, Heji; Li, Yongfu

    2015-03-01

    Two clean pretreatments, ozonolysis (OZ) and planetary ball milling (BM) were applied separately and in combination to improve the enzymatic hydrolysis of corn straw. Pretreatment of corn straw by OZ and BM alone improved the enzymatic hydrolysis significantly, primarily through delignification and decrystallization of cellulose, respectively. When combined, OZ-BM and BM-OZ pretreatments made the enzymatic hydrolysis more efficient. The glucose and xylose yield of corn straw treated with OZ for 90 min followed by BM for 8 min (OZ90-BM8) reached to 407.8 and 101.9 mg/g-straw, respectively under cellulase loading of 15 FPU/g-straw, which was fivefold more than that of untreated straw. Under much lower cellulase loading of 1.5 FPU/g-straw, the glucose and xylose yield of treated straw OZ90-BM8 remained at 416.0 and 108.4 mg/g-straw, respectively, while the yield of untreated straw decreased. These findings indicate that the combined OZ-BM can be used as a promising pretreatment for corn straw. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. High Resolution Integrated Hohlraum-Capsule Simulations for Virtual NIF Ignition Campaign

    NASA Astrophysics Data System (ADS)

    Jones, O. S.; Marinak, M. M.; Cerjan, C. J.; Clark, D. S.; Edwards, M. J.; Haan, S. W.; Langer, S. H.; Salmonson, J. D.

    2009-11-01

    We have undertaken a virtual campaign to assess the viability of the sequence of NIF experiments planned for 2010 that will experimentally tune the shock timing, symmetry, and ablator thickness of a cryogenic ignition capsule prior to the first ignition attempt. The virtual campaign consists of two teams. The ``red team'' creates realistic simulated diagnostic data for a given experiment from the output of a detailed radiation hydrodynamics calculation that has physics models that have been altered in a way that is consistent with probable physics uncertainties. The ``blue team'' executes a series of virtual experiments and interprets the simulated diagnostic data from those virtual experiments. To support this effort we have developed a capability to do very high spatial resolution integrated hohlraum-capsule simulations using the Hydra code. Surface perturbations for all ablator layer surfaces and the DT ice layer are calculated explicitly through mode 30. The effects of the fill tube, cracks in the ice layer, and defects in the ablator are included in models extracted from higher resolution calculations. Very high wave number mix is included through a mix model. We will show results from these calculations in the context of the ongoing virtual campaign.

  13. Straw use and availability for second generation biofuels in England.

    PubMed

    Glithero, Neryssa J; Wilson, Paul; Ramsden, Stephen J

    2013-08-01

    Meeting EU targets for renewable transport fuels by 2020 will necessitate a large increase in bioenergy feedstocks. Although deployment of first generation biofuels has been the major response to meeting these targets they are subject to wide debate on their sustainability leading to the development of second generation technologies which use lignocellulosic feedstocks. Second generation biofuel can be subdivided into those from dedicated bioenergy crops (DESGB), e.g. miscanthus, or those from co-products (CPSGB) such as cereal straw. Potential supply of cereal straw as a feedstock for CPSGB's is uncertain in England due to the difficulty in obtaining data and the uncertainty in current estimates. An on-farm survey of 249 farms (Cereal, General Cropping and Mixed) in England was performed and linked with Farm Business Survey data to estimate current straw use and potential straw availability. No significant correlations between harvested grain and straw yields were found for wheat and oilseed rape and only a weak correlation was observed for barley. In England there is a potential cereal straw supply of 5.27 Mt from arable farm types; 3.82 Mt are currently used and 1.45 Mt currently chopped and incorporated. If currently chopped and incorporated cereal straw from arable farm types was converted into bioethanol, this could represent 1.5% of the UK petrol consumption by energy equivalence. The variations in regional straw yields (t ha -1 ) have a great effect on the England supply of straw and the potential amount of bioethanol that can be produced.

  14. Design, the "Straw" Missing from the "Bricks" of IS Curricula

    ERIC Educational Resources Information Center

    Waguespack, Leslie J.

    2011-01-01

    As punishment in the biblical story of Moses the slaves were told they had to make bricks without straw. This was impossible because bricks made without straw had the appearance of strength and function but could not withstand the proof of actual use. The slaves' punishment was therefore not only to make bricks, but also to find the straw on their…

  15. Plant growth inhibitors isolated from sugarcane (Saccharum officinarum) straw.

    PubMed

    Sampietro, Diego Alejandro; Vattuone, Marta Amelia; Isla, María Ines

    2006-07-01

    Several compounds related with plant defense and pharmacological activities have been isolated from sugarcane. Straw phytotoxins and their possible mechanisms of growth inhibition are largely unknown. A bioassay-guided fractionation of the phytotoxic constituents leachated from a sugarcane straw led to the isolation of trans-ferulic (trans-FA), cis-ferulic (cis-FA), vanillic (VA) and syringic (SA) acids. The straw leachates and their identified constituents significantly inhibited root growth of lettuce and four weeds. VA was more phytotoxic to root elongation than FA and SA. The identified phenolic compounds significantly increased leakage of root cell constituents, inhibited dehydrogenase activity and reduced chlorophyll content in lettuce. VA and FA inhibited mitotic index while SA increased cell division. Additive (VA-FA and FA-SA) and synergistic (VA-SA) interactions on root growth were observed at the response level of EC(25). Although the isolated compounds differed in their relative phytotoxic activities, the observed physiological responses suggest that they have a common mode of action. HPLC analysis indicated that sugarcane straw can potentially release 1.43 (ratio 2:1, trans:cis), 1.14 and 0.14mmolkg(-1) (straw dry weight) of FA, VA and SA, respectively. As phenolic acids are often found spatially concentrated in the top soil layers under plant straws, further studies are needed to establish the impact of these compounds in natural settings.

  16. Investigation into Cause of High Temperature Failure of Boiler Superheater Tube

    NASA Astrophysics Data System (ADS)

    Ghosh, D.; Ray, S.; Roy, H.; Shukla, A. K.

    2015-04-01

    The failure of the boiler tubes occur due to various reasons like creep, fatigue, corrosion and erosion. This paper highlights a case study of typical premature failure of a final superheater tube of 210 MW thermal power plant boiler. Visual examination, dimensional measurement, chemical analysis, oxide scale thickness measurement, microstructural examination are conducted as part of the investigations. Apart from these investigations, sulfur print, Energy Dispersive spectroscopy (EDS) and X ray diffraction analysis (XRD) are also conducted to ascertain the probable cause of failure of final super heater tube. Finally it has been concluded that the premature failure of the super heater tube can be attributed to the combination of localized high tube metal temperature and loss of metal from the outer surface due to high temperature corrosion. The corrective actions have also been suggested to avoid this type of failure in near future.

  17. Coffee Stirrers and Drinking Straws as Disposable Spatulas

    ERIC Educational Resources Information Center

    Turano, Morgan A.; Lobuono, Cinzia; Kirschenbaum, Louis J.

    2015-01-01

    Although metal spatulas are damaged through everyday use and become discolored and corroded by chemical exposure, plastic drinking straws are inexpensive, sterile, and disposable, reducing the risk of cross-contamination during laboratory procedures. Drinking straws are also useful because they come in a variety of sizes; narrow sample containers…

  18. Prospects of rice straw as a raw material for paper making.

    PubMed

    Kaur, Daljeet; Bhardwaj, Nishi Kant; Lohchab, Rajesh Kumar

    2017-02-01

    Pulp and paper mills are indispensable for any nation as far as the growth of the nation is concerned. Due to fast growth in population, urbanization and industrialization, the demand and consumption of paper has increased tremendously. These put high load on our natural resources and force the industry to look for alternative raw material. Rice straw is a lignocellulosic material abundantly available in wood short countries like China, India, Bangladesh, etc. and can be used as raw material for this industry. Open burning of rice straw releases noxious green house gases to the air and poses serious threats to global air chemistry and human health. So, it is a dual benefit option (for farmers and industries) to use rice straw as a raw material in pulp and paper industry. Organosolv pulping using acids are the prominent choices of researchers to convert this residue into valuable pulp but in developed countries only. Developing world favours the soda and soda-AQ processes as these are economical. As a virtue of less lignin content in comparison to wood, rice straw requires less harsh conditions for cooking and can be easily pulped. Bleaching is a crucial step of paper making but also responsible for causing water pollution. Many studies revealed that during the process more than 500 chlorinated compounds are released that are highly toxic, bioaccumulative and carcinogenic in nature. Most of the industries over the globe switch on to the elemental chlorine free short sequence bleaching methods using chlorine dioxide, hypochlorite and hydrogen peroxide. This paper presented the effective need of ecofriendly, economically reliable pulping and bleaching sequences in case of rice straw to eliminate the problems of chlorinated compounds in wastewater of paper mills. Such approach of using waste as a raw material with its environmentally safe processing for making paper can prove to be valuable towards sustainable growth. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Drinking-Straw Microbalance and Seesaw: Stability and Instability

    ERIC Educational Resources Information Center

    Chapman, Peter; Glasser, Leslie

    2015-01-01

    The mechanics of a beam balance are little appreciated and seldom understood. We here consider the conditions that result in a stable balance, with center of gravity below the fulcrum (pivot point), while an unstable balance results when the center of gravity is above the fulcrum. The highly sensitive drinking-straw microbalance, which uses a…

  20. Evaluation of Biogas Production Performance and Archaeal Microbial Dynamics of Corn Straw during Anaerobic Co-Digestion with Cattle Manure Liquid.

    PubMed

    Zhang, Benyue; Zhao, Hongyan; Yu, Hairu; Chen, Di; Li, Xue; Wang, Weidong; Piao, Renzhe; Cui, Zongjun

    2016-04-28

    The rational utilization of crop straw as a raw material for natural gas production is of economic significance. In order to increase the efficiency of biogas production from agricultural straw, seasonal restrictions must be overcome. Therefore, the potential for biogas production via anaerobic straw digestion was assessed by exposing fresh, silage, and dry yellow corn straw to cow dung liquid extract as a nitrogen source. The characteristics of anaerobic corn straw digestion were comprehensively evaluated by measuring the pH, gas production, chemical oxygen demand, methane production, and volatile fatty acid content, as well as applying a modified Gompertz model and high-throughput sequencing technology to the resident microbial community. The efficiency of biogas production from fresh straw (433.8 ml/g) was higher than that of production from straw silage and dry yellow straw (46.55 ml/g and 68.75 ml/g, respectively). The cumulative biogas production from fresh straw, silage straw, and dry yellow straw was 365 l(-1) g(-1) VS, 322 l(-1) g-1 VS, and 304 l(-1) g(-1) VS, respectively, whereas cumulative methane production was 1,426.33%, 1,351.35%, and 1,286.14%, respectively, and potential biogas production was 470.06 ml(-1) g(-1) VS, 461.73 ml(-1) g(-1) VS, and 451.76 ml(-1) g(-1) VS, respectively. Microbial community analysis showed that the corn straw was mainly metabolized by acetate-utilizing methanogens, with Methanosaeta as the dominant archaeal community. These findings provide important guidance to the biogas industry and farmers with respect to rational and efficient utilization of crop straw resources as material for biogas production.

  1. Overview of the development of high-resolution 920 MHz NMR in NIMS

    NASA Astrophysics Data System (ADS)

    Shimizu, Tadashi; Hashi, Kenjiro; Goto, Atsushi; Tansyo, Masataka; Kiyoshi, Tsukasa; Matsumoto, Shinji; Wada, Hitoshi; Fujito, Teruaki; Hasegawa, Ken-ichi; Kirihara, Noriaki; Suematsu, Hiroto; Kida, Yoshiki; Yoshikawa, Masatoshi; Miki, Takashi; Ito, Satoshi; Hamada, Mamoru; Hayashi, Seiji

    2004-04-01

    We have developed a 920 MHz NMR system and performed the proton NMR measurement of ethylbenzene and water using the superconducting magnet operating at 21.6 T ( 920 MHz for proton), which is the highest field produced by a superconducting NMR magnet in the persistent mode. From the NMR measurements, it is verified that both homogeneity and stability of the magnet have a specification sufficient for a high-resolution NMR. The sensitivity has been examined by 1H NMR of 0.1% ethylbenzene in Wilmad 555 tube and obtained the signal-to-noise ratio as S/ N=2981, which is the highest record, to our knowledge, among the room temperature measurements.

  2. Potential of pelleted wheat straw as an alternative bedding material for broilers.

    PubMed

    Kheravii, S K; Swick, R A; Choct, M; Wu, S-B

    2017-06-01

    Broiler chickens are commonly placed on wood shavings as litter, but alternative litter sources are required due to the scarcity of wood shavings in many parts of the world. This study aimed to compare pelleted straw, chopped wheat straw, wood shavings, rice hulls, and shredded paper as litter candidates. Three-hundred-sixty Ross 308 one-day-old male chicks were used in this study. There were 5 litter treatments with 6 replicate pens, each with 12 birds. The feed conversion ratio (FCR) of birds reared on pelleted straw was improved compared (P < 0.05) to that of birds raised on rice hulls, whereas it did not differ for birds placed on wood shavings, rice hulls, chopped straw, or shredded paper. It was observed that the birds reared on wood shavings had higher relative gizzard weight at d 24 compared to those reared on pelleted straw (P < 0.05). Gizzard pH and measured cecal bacterial groups were not affected by the type of bedding material. Cecal bacterial groups measured at d 10 were not affected by bedding material. Birds reared on pelleted wheat straw had a lower incidence of footpad lesions than those on chopped straw and shredded paper on d 24 (P < 0.001) and 29 (P < 0.01). Litter source did not affect the occurrence of breast blisters at d 24, 29, or 35. On d 24, 29, and 35, pelleted straw litter was less caked than chopped straw and shredded paper (P < 0.001) whereas no significant differences were observed among pelleted straw, wood shavings, and rice hulls. The study demonstrated the potential benefits to using pelleted wheat straw as a bedding material. Further assessment of pelleting of wheat straw and other materials on broiler health, performance, and welfare are needed to determine the economic benefits of pelleted litter. © 2017 Poultry Science Association Inc.

  3. Environmental performance of straw-based pulp making: A life cycle perspective.

    PubMed

    Sun, Mingxing; Wang, Yutao; Shi, Lei

    2018-03-01

    Agricultural straw-based pulp making plays a vital role in pulp and paper industry, especially in forest deficient countries such as China. However, the environmental performance of straw-based pulp has scarcely been studied. A life cycle assessment on wheat straw-based pulp making in China was conducted to fill of the gaps in comprehensive environmental assessments of agricultural straw-based pulp making. On average, the global warming potential (GWP), GWP excluding biogenic carbon, acidification potential and eutrophication potential of wheat straw based pulp making are 2299kg CO 2 -eq, 4550kg CO 2 -eq, 16.43kg SO 2 -eq and 2.56kg Phosphate-eq respectively. The dominant factors contributing to environmental impacts are coal consumption, electricity consumption, and chemical (NaOH, ClO 2 ) input. Chemical input decrease and energy recovery increase reduce the total environmental impacts dramatically. Compared with wood-based and recycled pulp making, wheat straw-based pulp making has higher environmental impacts, which are mainly due to higher energy and chemical requirements. However, the environmental impacts of wheat straw-based pulp making are lower than hemp and flax based pulp making from previous studies. It is also noteworthy that biogenic carbon emission is significant in bio industries. If carbon sequestration is taken into account in pulp making industry, wheat straw-based pulp making is a net emitter rather than a net absorber of carbon dioxide. Since wheat straw-based pulp making provides an alternative for agricultural residue management, its evaluation framework should be expanded to further reveal its environmental benefits. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. DNA melting analysis: application of the "open tube" format for detection of mutant KRAS.

    PubMed

    Botezatu, Irina V; Kondratova, Valentina N; Shelepov, Valery P; Lichtenstein, Anatoly V

    2011-12-15

    High-resolution melting (HRM) analysis is a very effective method for genotyping and mutation scanning that is usually performed just after PCR amplification (the "closed tube" format). Though simple and convenient, the closed tube format makes the HRM dependent on the PCR mix, not generally optimal for DNA melting analysis. Here, the "open tube" format, namely the post-PCR optimization procedure (amplicon shortening and solution chemistry modification), is proposed. As a result, mutation scanning of short amplicons becomes feasible on a standard real-time PCR instrument (not primarily designed for HRM) using SYBR Green I. This approach has allowed us to considerably enhance the sensitivity of detecting mutant KRAS using both low- and high-resolution systems (the Bio-Rad iQ5-SYBR Green I and Bio-Rad CFX96-EvaGreen, respectively). The open tube format, though more laborious than the closed tube one, can be used in situations when maximal sensitivity of the method is needed. It also permits standardization of DNA melting experiments and the introduction of instruments of a "lower level" into the range of those suitable for mutation scanning. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Neutron multiplicity ,easurements With 3He alternative: Straw neutron detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukhopadhyay, Sanjoy; Wolff, Ronald S.; Meade, John A.

    Counting neutrons emitted by special nuclear material (SNM) and differentiating them from the background neutrons of various origins is the most effective passive means of detecting SNM. Unfortunately, neutron detection, counting, and partitioning in a maritime environment are complex due to the presence of high-multiplicity spallation neutrons (commonly known as “ship effect”) and to the complicated nature of the neutron scattering in that environment. In this study, a prototype neutron detector was built using 10B as the converter in a special form factor called “straws” that would address the above problems by looking into the details of multiplicity distributions ofmore » neutrons originating from a fissioning source. This paper describes the straw neutron multiplicity counter (NMC) and assesses the performance with those of a commercially available fission meter. The prototype straw neutron detector provides a large-area, efficient, lightweight, more granular (than fission meter) neutron-responsive detection surface (to facilitate imaging) to enhance the ease of application of fission meters. Presented here are the results of preliminary investigations, modeling, and engineering considerations leading to the construction of this prototype. This design is capable of multiplicity and Feynman variance measurements. This prototype may lead to a near-term solution to the crisis that has arisen from the global scarcity of 3He by offering a viable alternative to fission meters. This paper describes the work performed during a 2-year site-directed research and development (SDRD) project that incorporated straw detectors for neutron multiplicity counting. The NMC is a two-panel detector system. We used 10B (in the form of enriched boron carbide: 10B 4C) for neutron detection instead of 3He. In the first year, the project worked with a panel of straw neutron detectors, investigated its characteristics, and developed a data acquisition (DAQ) system to collect

  6. Neutron multiplicity measurements with 3He alternative: Straw neutron detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukhopadhyay, Sanjoy; Wolff, Ronald; Detwiler, Ryan

    Counting neutrons emitted by special nuclear material (SNM) and differentiating them from the background neutrons of various origins is the most effective passive means of detecting SNM. Unfortunately, neutron detection, counting, and partitioning in a maritime environment are complex due to the presence of high-multiplicity spallation neutrons (commonly known as ‘‘ship effect ’’) and to the complicated nature of the neutron scattering in that environment. A prototype neutron detector was built using 10B as the converter in a special form factor called ‘‘straws’’ that would address the above problems by looking into the details of multiplicity distributions of neutrons originatingmore » from a fissioning source. This paper describes the straw neutron multiplicity counter (NMC) and assesses the performance with those of a commercially available fission meter. The prototype straw neutron detector provides a large-area, efficient, lightweight, more granular (than fission meter) neutron-responsive detection surface (to facilitate imaging) to enhance the ease of application of fission meters. Presented here are the results of preliminary investigations, modeling, and engineering considerations leading to the construction of this prototype. This design is capable of multiplicity and Feynman variance measurements. This prototype may lead to a near-term solution to the crisis that has arisen from the global scarcity of 3He by offering a viable alternative to fission meters. This paper describes the work performed during a 2-year site-directed research and development (SDRD) project that incorporated straw detectors for neutron multiplicity counting. The NMC is a two-panel detector system. We used 10B (in the form of enriched boron carbide: 10B 4C) for neutron detection instead of 3He. In the first year, the project worked with a panel of straw neutron detectors, investigated its characteristics, and developed a data acquisition (DAQ) system to collect

  7. Neutron multiplicity ,easurements With 3He alternative: Straw neutron detectors

    DOE PAGES

    Mukhopadhyay, Sanjoy; Wolff, Ronald S.; Meade, John A.; ...

    2015-01-27

    Counting neutrons emitted by special nuclear material (SNM) and differentiating them from the background neutrons of various origins is the most effective passive means of detecting SNM. Unfortunately, neutron detection, counting, and partitioning in a maritime environment are complex due to the presence of high-multiplicity spallation neutrons (commonly known as “ship effect”) and to the complicated nature of the neutron scattering in that environment. In this study, a prototype neutron detector was built using 10B as the converter in a special form factor called “straws” that would address the above problems by looking into the details of multiplicity distributions ofmore » neutrons originating from a fissioning source. This paper describes the straw neutron multiplicity counter (NMC) and assesses the performance with those of a commercially available fission meter. The prototype straw neutron detector provides a large-area, efficient, lightweight, more granular (than fission meter) neutron-responsive detection surface (to facilitate imaging) to enhance the ease of application of fission meters. Presented here are the results of preliminary investigations, modeling, and engineering considerations leading to the construction of this prototype. This design is capable of multiplicity and Feynman variance measurements. This prototype may lead to a near-term solution to the crisis that has arisen from the global scarcity of 3He by offering a viable alternative to fission meters. This paper describes the work performed during a 2-year site-directed research and development (SDRD) project that incorporated straw detectors for neutron multiplicity counting. The NMC is a two-panel detector system. We used 10B (in the form of enriched boron carbide: 10B 4C) for neutron detection instead of 3He. In the first year, the project worked with a panel of straw neutron detectors, investigated its characteristics, and developed a data acquisition (DAQ) system to collect

  8. 10 K high frequency pulse tube cryocooler with precooling

    NASA Astrophysics Data System (ADS)

    Liu, Sixue; Chen, Liubiao; Wu, Xianlin; Zhou, Yuan; Wang, Junjie

    2016-07-01

    A high frequency pulse tube cryocooler with precooling (HPTCP) has been developed and tested to meet the requirement of weak magnetic signals measurement, and the performance characteristics are presented in this article. The HPTCP is a two-stage pulse tube cryocooler with the precooling-stage replaced by liquid nitrogen. Two regenerators completely filled with stainless steel (SS) meshes are used in the cooler. Together with cold inertance tubes and cold gas reservoir, a cold double-inlet configuration is used to control the phase relationship of the HPTCP. The experimental result shows that the cold double-inlet configuration has improved the performance of the cooler obviously. The effects of operation parameters on the performance of the cooler are also studied. With a precooling temperature of 78.5 K, the maximum refrigeration capacity is 0.26 W at 15 K and 0.92 W at 20 K when the input electric power are 174 W and 248 W respectively, and the minimum no-load temperature obtained is 10.3 K, which is a new record on refrigeration temperature for high frequency pulse tube cryocooler reported with SS completely used as regenerative matrix.

  9. High-Resolution Autoradiography

    NASA Technical Reports Server (NTRS)

    Towe, George C; Gomberg, Henry J; Freemen, J W

    1955-01-01

    This investigation was made to adapt wet-process autoradiography to metallurgical samples to obtain high resolution of segregated radioactive elements in microstructures. Results are confined to development of the technique, which was perfected to a resolution of less than 10 microns. The radioactive samples included carbon-14 carburized iron and steel, nickel-63 electroplated samples, a powder product containing nickel-63, and tungsten-185 in N-155 alloy.

  10. Significantly enhancing enzymatic hydrolysis of rice straw after pretreatment using renewable ionic liquid-water mixtures.

    PubMed

    Hou, Xue-Dan; Li, Ning; Zong, Min-Hua

    2013-05-01

    Pretreatment of rice straw by using renewable cholinium lysine ionic liquid ([Ch][Lys] IL)-water mixtures and subsequent enzymatic hydrolysis of the residues were conducted in this work. There is a clear correlation between the delignification capacity of the pretreatment solvent and its basicity. After pretreatment, surface area and pore volume of rice straw increased significantly, which substantially improved polysaccharides accessibility to enzymes and thus enhanced polysaccharides digestion. By carefully controlling the pretreatment severity (IL content, temperature and duration), loss of readily extractable xylan could be minimized. The sugar yields of 81% for glucose and 48% for xylose were achieved in the enzymatic hydrolysis of rice straw after pretreatment with 20% [Ch][Lys]-water mixture at 90 °C for 1 h. This pretreatment process is highly promising for industrial application because of high sugar yields, low energy input, short pretreatment time, and being environmentally benign and highly tolerant to moisture. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Newly isolated Penicillium oxalicum A592-4B secretes enzymes that degrade milled rice straw with high efficiency.

    PubMed

    Aoyama, Akihisa; Kurane, Ryuichiro; Matsuura, Akira; Nagai, Kazuo

    2015-01-01

    An enzyme producing micro-organism, which can directly saccharify rice straw that has only been crushed without undergoing the current acid or alkaline pretreatment, was found. From the homology with the ITS, 28S rDNA sequence, the strain named A592-4B was identified as Penicillium oxalicum. Activities of the A592-4B enzymes and commercial enzyme preparations were compared by Novozymes Cellic CTec2 and Genencore GC220. In the present experimental condition, activity of A592-4B enzymes was 2.6 times higher than that of CTec2 for degrading milled rice straw. Furthermore, even when a quarter amount of A592-4B enzyme was applied to the rice straw, the conversion rate was still higher than that by CTec2. By utilizing A592-4B enzymes, improved lignocellulose degradation yields can be achieved without pre-treatment of the substrates; thus, contributing to cost reduction as well as reducing environmental burden.

  12. A homemade high-resolution orthogonal-injection time-of-flight mass spectrometer with a heated capillary inlet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo Changjuan; Huang Zhengxu; Gao Wei

    2008-01-15

    We describe a homemade high-resolution orthogonal-injection time-of-flight (O-TOF) mass spectrometer combing a heated capillary inlet. The O-TOF uses a heated capillary tube combined with a radio-frequency only quadrupole (rf-only quadrupole) as an interface to help the ion transmission from the atmospheric pressure to the low-pressure regions. The principle, configuration of the O-TOF, and the performance of the instrument are introduced in this paper. With electrospray ion source, the performances of the mass resolution, the sensitivity, the mass range, and the mass accuracy are described. We also include our results obtained by coupling atmospheric pressure matrix-assisted laser deporption ionization with thismore » instrument.« less

  13. Binding and detoxification of chlorpyrifos by lactic acid bacteria on rice straw silage fermentation.

    PubMed

    Wang, Yan-Su; Wu, Tian-Hao; Yang, Yao; Zhu, Cen-Ling; Ding, Cheng-Long; Dai, Chuan-Chao

    2016-01-01

    This investigation examined the reduction of pesticide residues on straw inoculated with lactic acid bacteria (LAB) during ensiling. Lactobacillus casei WYS3 was isolated from rice straw that contained pesticide residues. Non-sterilized rice straw, which was inoculated with L. casei WYS3, showed increased removal of chlorpyrifos after ensiling, compared with rice straw that was not inoculated with L. casei WYS3 or sterilized rice straw. In pure culture, these strains can bind chlorpyrifos as indicated by high-performance liquid chromatography analysis. Viable L. casei WYS3 was shown to bind 33.3-42% of exogenously added chlorpyrifos. These results are similar to those of acid-treated cells but less than those of heat-treated cells, which were found to bind 32.0% and 77.2% of the added chlorpyrifos respectively. Furthermore, gas chromatography-mass spectrometry analysis determined that L. casei WYS3 detoxified chlorpyrifos via P-O-C cleavage. Real-time polymerized chain reaction analysis determined that organophosphorus hydrolase gene expression tripled after the addition of chlorpyrifos to LAB cultures, compared with the control group (without chlorpyrifos). This paper highlights the potential use of LAB starter cultures for the detoxification and removal of chlorpyrifos residues in the environment.

  14. Progressive Colonization of Bacteria and Degradation of Rice Straw in the Rumen by Illumina Sequencing

    PubMed Central

    Cheng, Yanfen; Wang, Ying; Li, Yuanfei; Zhang, Yipeng; Liu, Tianyi; Wang, Yu; Sharpton, Thomas J.; Zhu, Weiyun

    2017-01-01

    The aim of this study was to improve the utilization of rice straw as forage in ruminants by investigating the degradation pattern of rice straw in the dairy cow rumen. Ground up rice straw was incubated in situ in the rumens of three Holstein cows over a period of 72 h. The rumen fluid at 0 h and the rice straw at 0.5, 1, 2, 4, 6, 12, 24, 48, and 72 h were collected for analysis of the bacterial community and the degradation of the rice straw. The bacterial community and the carbohydrate-active enzymes in the rumen fluid were analyzed by metagenomics. The diversity of bacteria loosely and tightly attached to the rice straw was investigated by scanning electron microscopy and Miseq sequencing of 16S rRNA genes. The predominant genus in the rumen fluid was Prevotella, followed by Bacteroides, Butyrivibrio, unclassified Desulfobulbaceae, Desulfovibrio, and unclassified Sphingobacteriaceae. The main enzymes were members of the glycosyl hydrolase family, divided into four categories (cellulases, hemicellulases, debranching enzymes, and oligosaccharide-degrading enzymes), with oligosaccharide-degrading enzymes being the most abundant. No significant degradation of rice straw was observed between 0.5 and 6 h, whereas the rice straw was rapidly degraded between 6 and 24 h. The degradation then gradually slowed between 24 and 72 h. A high proportion of unclassified bacteria were attached to the rice straw and that Prevotella, Ruminococcus, and Butyrivibrio were the predominant classified genera in the loosely and tightly attached fractions. The composition of the loosely attached bacterial community remained consistent throughout the incubation, whereas a significant shift in composition was observed in the tightly attached bacterial community after 6 h of incubation. This shift resulted in a significant reduction in numbers of Bacteroidetes and a significant increase in numbers of Firmicutes. In conclusion, the degradation pattern of rice straw in the dairy cow rumen

  15. High Resolution Measurements In U-Channel Technique And Implications For Sedimentological Purposes

    NASA Astrophysics Data System (ADS)

    Acar, Dursun; Cagatay, Namık; Sarı, Erol; Eris, Kadir; Biltekin, Demet; Akcer, Sena; Meydan Gokdere, Feray; Makaroglu, Ozlem; Bulkan, Ozlem; Arslan, Tugce; Albut, Gulum; Yalamaz, Burak; Yakupoglu, Nurettin; Sabuncu, Asen; Fillikci, Betul; Yıldız, Guliz

    2016-04-01

    Mechanical features in-stu drilling for sediment cores and vacuum forces that affect while obtaining the sediments to the core tube are formed concave shaped deformations. Even in the half sections, concave deformation form still appears. During MCSL measurements, Laminae which forms concave shaped deformation, show interference thus, values indicate overall results for several laminae instead of single lamina. These interferenced data is not appropriate for paleoceanography studies which require extend accuracy and high frequency data set to describe geochemical and climatological effects in high resolution. U-Channel technique provides accurate location and isolated values for each lamina. In EMCOL Laboratories, U-channel provide well saturated and air-free environment for samples and, by using these technique U-channels are prepared with modificated MCSL for data acquisition. Even below millimeter scale sampling rate provides the separation of each lamina and, physical properties of every each lamina. Cover of u-channel is made by homogenous plastic in shape of rectangular prism geometry. Thus, during measurement, MSCL sensors may harm the sediment; however u-channel covers the sediment from this unwanted deformation from MSCL itself. U-channel technique can present micro scale angular changes in the laminae. Measurements that have been taken from U-channel are compared with the traditional half core measurements. Interestingly, accuracy of the positions for each lamina is much more detailed and, the resolution is progressively higher. Results from P Wave and Gamma ray density provide removed interference effects on each lamina. In this technique, it is high recommended that U-channel widens the resolution of core logging and generates more cleansed measurements in MCSL. For P- Wave Used Synthetic seismograms that modelled by MSCL data set which created from U-channel technique dictates each anomalies related with climatological and geological changes. Keywords

  16. Microbial production of biopolymers from the renewable resource wheat straw.

    PubMed

    Gasser, E; Ballmann, P; Dröge, S; Bohn, J; König, H

    2014-10-01

    Production of poly-ß-hydroxybutyrate (PHB) and the chemical basic compound lactate from the agricultural crop 'wheat straw' as a renewable carbon resource. A thermal pressure hydrolysis procedure for the breakdown of wheat straw was applied. By this means, the wheat straw was converted into a partially solubilized hemicellulosic fraction, consisting of sugar monomers, and an insoluble cellulosic fraction, containing cellulose, lignin and a small portion of hemicellulose. The insoluble cellulosic fraction was further hydrolysed by commercial enzymes in monomers. The production of PHB from the sugar monomers originating from hemicellulose or cellulose was achieved by the isolates Bacillus licheniformis IMW KHC 3 and Bacillus megaterium IMW KNaC 2. The basic chemical compound, lactate, a starting compound for the production of polylactide (PLA), was formed by some heterofermentative lactic acid bacteria (LAB) able to grow with xylose from the hemicellulosic wheat straw hydrolysate. Two strains were selected which were able to produce PHB from the sugars both from the hemicellulosic and the cellulosic fraction of the wheat straw. In addition, some of the LAB tested were capable of producing lactate from the hemicellulosic hydrolysate. The renewable resource wheat straw could serve as a substrate for microbiologically produced basic chemicals and biodegradable plastics. © 2014 The Society for Applied Microbiology.

  17. When a Spoonful of Fallacies Helps the Sweetener Go Down: The Corn Refiner Association's Use of Straw-Person Arguments in Health Debates Surrounding High-Fructose Corn Syrup.

    PubMed

    Heiss, Sarah N; Bates, Benjamin R

    2016-08-01

    The American public is increasingly concerned about risks associated with food additives like high-fructose corn syrup (HFCS). To promote its product as safe, the Corn Refiners Association (CRA) employed two forms of straw-person arguments. First, the CRA opportunistically misrepresented HFCS opposition as inept. Second, the CRA strategically chose to refute claims that were easier to defeat while remaining ambiguous about more complex points of contention. We argue that CRA's discursive contributions represented unreasonable yet sustainable use of straw-person arguments in debates surrounding health and risk.

  18. Low temperature high frequency coaxial pulse tube for space application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charrier, Aurelia; Charles, Ivan; Rousset, Bernard

    2014-01-29

    The 4K stage is a critical step for space missions. The Hershel mission is using a helium bath, which is consumed day by day (after depletion, the space mission is over) while the Plank mission is equipped with one He4 Joule-Thomson cooler. Cryogenic chain without helium bath is a challenge for space missions and 4.2K Pulse-Tube working at high frequency (around 30Hz) is one option to take it up. A low temperature Pulse-Tube would be suitable for the ESA space mission EChO (Exoplanet Characterisation Observatory, expected launch in 2022), which requires around 30mW cooling power at 6K; and for themore » ESA space mission ATHENA (Advanced Telescope for High ENergy Astrophysics), to pre-cool the sub-kelvin cooler (few hundreds of mW at 15K). The test bench described in this paper combines a Gifford-McMahon with a coaxial Pulse-Tube. A thermal link is joining the intercept of the Pulse-Tube and the second stage of the Gifford-McMahon. This intercept is a separator between the hot and the cold regenerators of the Pulse-Tube. The work has been focused on the cold part of this cold finger. Coupled with an active phase shifter, this Pulse-Tube has been tested and optimized and temperatures as low as 6K have been obtained at 30Hz with an intercept temperature at 20K.« less

  19. Solid-state anaerobic co-digestion of spent mushroom substrate with yard trimmings and wheat straw for biogas production.

    PubMed

    Lin, Yunqin; Ge, Xumeng; Li, Yebo

    2014-10-01

    Spent mushroom substrate (SMS) is a biomass waste generated from mushroom production. About 5 kg of SMS is generated for every kg of mushroom produced. In this study, solid state anaerobic digestion (SS-AD) of SMS, wheat straw, yard trimmings, and their mixtures was investigated at different feedstock to effluent ratios. SMS was found to be highly degradable, which resulted in inhibition of SS-AD due to volatile fatty acid (VFA) accumulation and a decrease in pH. This issue was addressed by co-digestion of SMS with either yard trimmings or wheat straw. SS-AD of SMS/yard trimmings achieved a cumulative methane yield of 194 L/kg VS, which was 16 and 2 times higher than that from SMS and yard trimmings, respectively. SS-AD of SMS/wheat straw obtained a cumulative methane yield of 269 L/kg VS, which was 23 times as high as that from SMS and comparable to that from wheat straw. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Enzymatic saccharification of biologically pre-treated wheat straw with white-rot fungi.

    PubMed

    Dias, Albino A; Freitas, Gil S; Marques, Guilhermina S M; Sampaio, Ana; Fraga, Irene S; Rodrigues, Miguel A M; Evtuguin, Dmitry V; Bezerra, Rui M F

    2010-08-01

    Wheat straw was submitted to a pre-treatment by the basidiomycetous fungi Euc-1 and Irpex lacteus, aiming to improve the accessibility of cellulose towards enzymatic hydrolysis via previous selective bio-delignification. This allowed the increase of substrate saccharification nearly four and three times while applying the basidiomycetes Euc-1 and I. lacteus, respectively. The cellulose/lignin ratio increased from 2.7 in the untreated wheat straw to 5.9 and 4.6 after the bio-treatment by the basidiomycetes Euc-1 and I. lacteus, respectively, thus evidencing the highly selective lignin biodegradation. The enzymatic profile of both fungi upon bio-treatment of wheat straw have been assessed including laccase, manganese-dependent peroxidase, lignin peroxidase, carboxymethylcellulase, xylanase, avicelase and feruloyl esterase activities. The difference in efficiency and selectivity of delignification within the two fungi treatments was interpreted in terms of specific lignolytic enzyme profiles and moderate xylanase and cellulolytic activities. (c) 2010 Elsevier Ltd. All rights reserved.

  1. Pretreatment and fractionation of wheat straw for production of fuel ethanol and value-added co-products in a biorefinery

    USDA-ARS?s Scientific Manuscript database

    An integrated process has been developed for a wheat straw biorefinery. In this process wheat straw was pretreated by soaking in aqueous ammonia (SAA), which extensively removed lignin but preserved high percentages of the carbohydrate fractions for subsequent bioconversion. The pretreatment condi...

  2. Hyperaccumulator straw improves the cadmium phytoextraction efficiency of emergent plant Nasturtium officinale.

    PubMed

    Li, Keqiang; Lin, Lijin; Wang, Jin; Xia, Hui; Liang, Dong; Wang, Xun; Liao, Ming'an; Wang, Li; Liu, Li; Chen, Cheng; Tang, Yi

    2017-08-01

    With the development of economy, the heavy metal contamination has become an increasingly serious problem, especially the cadmium (Cd) contamination. The emergent plant Nasturtium officinale R. Br. is a Cd-accumulator with low phytoremediation ability. To improve Cd phytoextraction efficiency of N. officinale, the straw from Cd-hyperaccumulator plants Youngia erythrocarpa, Galinsoga parviflora, Siegesbeckia orientalis, and Bidens pilosa was applied to Cd-contaminated soil and N. officinale was then planted; the study assessed the effect of hyperaccumulator straw on the growth and Cd accumulation of N. officinale. The results showed that application of hyperaccumulator species straws increased the biomass and photosynthetic pigment content and reduced the root/shoot ratio of N. officinale. All straw treatments significantly increased Cd content in roots, but significantly decreased Cd content in shoots of N. officinale. Applying hyperaccumulator straw significantly increased the total Cd accumulation in the roots, shoots, and whole plants of N. officinale. Therefore, application of straw from four hyperaccumulator species promoted the growth of N. officinale and improved the phytoextraction efficiency of N. officinale in Cd-contaminated paddy field soil; the straw of Y. erythrocarpa provided the most improvement.

  3. High resolution digital delay timer

    DOEpatents

    Martin, Albert D.

    1988-01-01

    Method and apparatus are provided for generating an output pulse following a trigger pulse at a time delay interval preset with a resolution which is high relative to a low resolution available from supplied clock pulses. A first lumped constant delay (20) provides a first output signal (24) at predetermined interpolation intervals corresponding to the desired high resolution time interval. Latching circuits (26, 28) latch the high resolution data (24) to form a first synchronizing data set (60). A selected time interval has been preset to internal counters (142, 146, 154) and corrected for circuit propagation delay times having the same order of magnitude as the desired high resolution. Internal system clock pulses (32, 34) count down the counters to generate an internal pulse delayed by an interval which is functionally related to the preset time interval. A second LCD (184) corrects the internal signal with the high resolution time delay. A second internal pulse is then applied to a third LCD (74) to generate a second set of synchronizing data (76) which is complementary with the first set of synchronizing data (60) for presentation to logic circuits (64). The logic circuits (64) further delay the internal output signal (72) to obtain a proper phase relationship of an output signal (80) with the internal pulses (32, 34). The final delayed output signal (80) thereafter enables the output pulse generator (82) to produce the desired output pulse (84) at the preset time delay interval following input of the trigger pulse (10, 12).

  4. Advantages of high-frequency Pulse-tube technology and its applications in infrared sensing

    NASA Astrophysics Data System (ADS)

    Arts, R.; Willems, D.; Mullié, J.; Benschop, T.

    2016-05-01

    The low-frequency pulse-tube cryocooler has been a workhorse for large heat lift applications. However, the highfrequency pulse tube has to date not seen the widespread use in tactical infrared applications that Stirling cryocoolers have had, despite significant advantages in terms of exported vibrations and lifetime. Thales Cryogenics has produced large series of high-frequency pulse-tube cryocoolers for non-infrared applications since 2005. However, the use of Thales pulse-tube cryocoolers for infrared sensing has to date largely been limited to high-end space applications. In this paper, the performances of existing available off-the-shelf pulse-tube cryocoolers are examined versus typical tactical infrared requirements. A comparison is made on efficiency, power density, reliability, and cost. An outlook is given on future developments that could bring the pulse-tube into the mainstream for tactical infrared applications.

  5. Ozone pretreatment and fermentative hydrolysis of wheat straw

    NASA Astrophysics Data System (ADS)

    Ben'ko, E. M.; Chukhchin, D. G.; Lunin, V. V.

    2017-11-01

    Principles of the ozone pretreatment of wheat straw for subsequent fermentation into sugars are investigated. The optimum moisture contents of straw in the ozonation process are obtained from data on the kinetics of ozone absorbed by samples with different contents of water. The dependence of the yield of reducing sugars in the fermentative reaction on the quantity of absorbed ozone is established. The maximum conversion of polysaccharides is obtained at ozone doses of around 3 mmol/g of biomass, and it exceeds the value for nonozonated samples by an order of magnitude. The yield of sugar falls upon increasing the dose of ozone. The process of removing lignin from the cell walls of straw during ozonation is visualized by means of scanning electron microscopy.

  6. Hydrologic Impact of Straw Mulch On Runoff from a Burned Area for Various Soil Water Content

    NASA Astrophysics Data System (ADS)

    Carnicle, M. M.; Moody, J. A.; Ahlstrom, A. K.

    2011-12-01

    Mountainous watersheds often exhibit increases in runoff and flash floods after wildfires. During 11 days of September 2010, the Fourmile Canyon wildfire burned 2500 hectares of the foothills of the Rocky Mountains near Boulder, Colorado. In an effort to minimize the risk of flash floods after the wildfire, Boulder County aerially applied straw mulch on high-risk areas selected primarily on the basis of their slopes and burn severities. The purpose of this research is to investigate the hydrologic response, specifically runoff, of a burned area where straw mulch is applied. We measured the runoff, at different soil water contents, from 0.8-m diameter plots. Paired plots were installed in June 2011 in a basin burned by the Fourmile Canyon Fire. Two sets of bounded, paired plot (two control and two experimental plots) were calibrated for 35 days without straw on either plot by measuring volumetric soil water content 2-3 times per week and measuring total runoff from each storm. Straw (5 cm thick) was added to the two experimental plots on 19 July 2011 and also to the funnels of two visual rain gages in order to measure the amount of rainfall absorbed by the straw. Initial results during the calibration period showed nearly linear relations between the volumetric soil water content of the control and experimental plots. The regression line for the runoff from the control versus the runoff from the experiment plot did not fit a linear trend; the variability may have been caused by two intense storms, which produced runoff that exceeded the capacity of the runoff gages. Also, during the calibration period, when soil water content was low the runoff coefficients were high. It is anticipated that the final results will show that the total runoff is greater on plots with no straw compared to those with straw, under conditions of various antecedent soil water content. We are continuing to collect data during the summer of 2011 to test this hypothesis.

  7. Ethanol/water pulps from sugar cane straw and their biobleaching with xylanase from Bacillus pumilus.

    PubMed

    Moriya, Regina Y; Gonçalves, Adilson R; Duarte, Marta C T

    2007-04-01

    The influence of independent variables (temperature and time) on the cooking of sugar cane straw with ethanol/water mixtures was studied to determine operating conditions that obtain pulp with high cellulose contents and a low lignin content. An experimental 2(2) design was applied for temperatures of 185 and 215 degrees C, and time of 1 and 2.5 h with the ethanol/water mixture concentration and constant straw-to-solvent ratio. The system was scaled-up at 200 degrees C cooking temperature for 2 h with 50% ethanol-water concentration, and 1:10 (w/v) straw-to-solvent ratio to obtain a pulp with 3.14 cP viscosity, 58.09 kappa-number, and the chemical composition of the pulps were 3.2% pentosan and 31.5% lignin. Xylanase from Bacillus pumilus was then applied at a loading of 5-150 IU/g dry pulp in the sugar cane straw ethanol/water pulp at 50 degrees C for 2 and 20 h. To ethanol/water pulps, the best enzyme dosage was found to be 20 IU/g dry pulp at 20 h, and a high enzyme dosage of 150 IU/g dry pulp did not decrease the kappa-number of the pulp.

  8. Preparation and Mechanical Properties of Pressed Straw Concrete Brick

    NASA Astrophysics Data System (ADS)

    Sumarni, S.; Wijanarko, W.

    2018-03-01

    Rice straws have been widely used as wall filler material in China, Australia, and United States, by spinning them into hays with an approximate dimension of 40 cm of height, 40cm of thickness and 60 cm of width, using a machine. Then, the hays are placed into a wall frame until they fill it completely. After that, the wall frame is covered with wire mesh and plastered. In this research, rice straws are to be used as concrete brick fillers, by pressing the straws into hays and then putting them into the concrete brick mold along with mortar. The objective of this research is to investigate the mechanical properties of concrete brick, namely: compressive strength, specific gravity, and water absorption power. This research used experimental research method. It was conducted by using concrete bricks which had 400 cm of width, 200 cm of height, and 100 cm of thickness, made from rice straws, cement, sand, and water as the test sample. The straws were each made different by their volume. The mortars used in this research were made from cement, sand, and water, with the ratio of 1:7:0.5. The concrete bricks were made by pressing straws mixed with glue into hays, and then cut by determined variations of volume. The variations of hays volume were 0 m3, 0.000625 m3, 0.00075 m3, 0.000875 m3, 0.00125 m3, 0.0015 m3, 0.00175 m3, 0.001875 m3, 0.00225 m3, and 0.002625 m3. There were 3 samples for each volumes of hays. The result shows that the straw concrete bricks reached the maximum compressive strength of 1.92 MPa, specific gravity of 1,702 kg/m3, and water absorption level of 3.9 %. Based on the provided measurements of products in the Standar Nasional Indonesia (Indonesian product standardization), the concrete bricks produced attained the prescribed standard quality.

  9. Current status and environment impact of direct straw return in China's cropland - A review.

    PubMed

    Li, Hui; Dai, Mingwei; Dai, Shunli; Dong, Xinju

    2018-09-15

    With the development of grain production technologies and improvement of rural living standard, the production and utilization of straw have significantly been changed in China. More than 1 billion tones of straw are produced per year, and vast amount of them are discarded without effective utilization, leading various environmental and social impacts. Straw return is an effective approach of the straw utilization that has been greatly recommended by government and scientists in China. This paper discussed the current status of the straw return in China. Specifically, the production and models of straw return were explored and their environmental impacts were extensively evaluated. It was concluded that straw could be positively effective on the improvement of the soil quality and the grain production. However, it appeared that the straw return also had several neglect negative effects, implying that further research and assessment on the returned straw are required before its large-scale promotion in China. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. A pulse-front-tilt–compensated streaked optical spectrometer with high throughput and picosecond time resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katz, J., E-mail: jkat@lle.rochester.edu; Boni, R.; Rivlis, R.

    A high-throughput, broadband optical spectrometer coupled to the Rochester optical streak system equipped with a Photonis P820 streak tube was designed to record time-resolved spectra with 1-ps time resolution. Spectral resolution of 0.8 nm is achieved over a wavelength coverage range of 480 to 580 nm, using a 300-groove/mm diffraction grating in conjunction with a pair of 225-mm-focal-length doublets operating at an f/2.9 aperture. Overall pulse-front tilt across the beam diameter generated by the diffraction grating is reduced by preferentially delaying discrete segments of the collimated input beam using a 34-element reflective echelon optic. The introduced delay temporally aligns themore » beam segments and the net pulse-front tilt is limited to the accumulation across an individual sub-element. The resulting spectrometer design balances resolving power and pulse-front tilt while maintaining high throughput.« less

  11. Involvement of Fenton chemistry in rice straw degradation by the lignocellulolytic bacterium Pantoea ananatis Sd-1.

    PubMed

    Ma, Jiangshan; Zhang, Keke; Huang, Mei; Hector, Stanton B; Liu, Bin; Tong, Chunyi; Liu, Qian; Zeng, Jiarui; Gao, Yan; Xu, Ting; Liu, Ying; Liu, Xuanming; Zhu, Yonghua

    2016-01-01

    Lignocellulolytic bacteria have revealed to be a promising source for biofuel production, yet the underlying mechanisms are still worth exploring. Our previous study inferred that the highly efficient lignocellulose degradation by bacterium Pantoea ananatis Sd-1 might involve Fenton chemistry (Fe 2+  + H 2 O 2  + H +  → Fe 3+  + OH· + H 2 O), similar to that of white-rot and brown-rot fungi. The aim of this work is to investigate the existence of this Fenton-based oxidation mechanism in the rice straw degradation process of P. ananatis Sd-1. After 3 days incubation of unpretreated rice straw with P. ananatis Sd-1, the percentage in weight reduction of rice straw as well as its cellulose, hemicellulose, and lignin components reached 46.7, 43.1, 42.9, and 37.9 %, respectively. The addition of different hydroxyl radical scavengers resulted in a significant decline ( P  < 0.001) in rice straw degradation. Pyrolysis gas chromatography-mass spectrometry and Fourier transform infrared spectroscopy analysis revealed the consistency of chemical changes of rice straw components that exists between P. ananatis Sd-1 and Fenton reagent treatment. In addition to the increased total iron ion concentration throughout the rice straw decomposition process, the Fe 3+ -reducing capacity of P. ananatis Sd-1 was induced by rice straw and predominantly contributed by aromatic compounds metabolites. The transcript levels of the glucose-methanol-choline oxidoreductase gene related to hydrogen peroxide production were significantly up-regulated (at least P  < 0.01) in rice straw cultures. Higher activities of GMC oxidoreductase and less hydrogen peroxide concentration in rice straw cultures relative to glucose cultures may be responsible for increasing rice straw degradation, which includes Fenton-like reactions. Our results confirmed the Fenton chemistry-assisted degradation model in P. ananatis Sd-1. We are among the first to show that a Fenton-based oxidation mechanism

  12. Nutraceutical and functional scenario of wheat straw.

    PubMed

    Pasha, Imran; Saeed, Farhan; Waqas, Khalid; Anjum, Faqir Muhammad; Arshad, Muhammad Umair

    2013-01-01

    In the era of nutrition, much focus has been remunerated to functional and nutraceutical foodstuffs. The health endorsing potential of such provisions is attributed to affluent phytochemistry. These dynamic constituents have functional possessions that are imperative for cereal industry. The functional and nutraceutical significance of variety of foods is often accredited to their bioactive molecules. Numerous components have been considered but wheat straw and its diverse components are of prime consideration. In this comprehensive dissertation, efforts are directed to elaborate the functional and nutraceutical importance of wheat straw. Wheat straw is lignocellulosic materials including cellulose, hemicellulose and lignin. It hold various bioactive compounds such as policosanols, phytosterols, phenolics, and triterpenoids, having enormous nutraceutical properties like anti-allergenic, anti-artherogenic, anti-inflammatory, anti-microbial, antioxidant, anti-thrombotic, cardioprotective and vasodilatory effects, antiviral, and anticancer. These compounds are protecting against various ailments like hypercholesterolemia, intermittent claudication, benign prostatic hyperplasia and cardiovascular diseases. Additionally, wheat straw has demonstrated successfully, low cost, renewable, versatile, widely distributed, easily available source for the production of biogas, bioethanol, and biohydrogen in biorefineries to enhance the overall effectiveness of biomass consumption in protected and eco-friendly environment. Furthermore, its role in enhancing the quality and extending the shelf life of bakery products through reducing the progression of staling and retrogradation is limelight of the article.

  13. Lingering Effects of Straw Phonation Exercises on Aerodynamic, Electroglottographic, and Acoustic Parameters.

    PubMed

    Kang, Jing; Xue, Chao; Piotrowski, David; Gong, Ting; Zhang, Yi; Jiang, Jack J

    2018-06-01

    This study aimed to investigate the duration of straw phonation effects using aerodynamic, electroglottographic, and acoustic metrics. Twenty-four participants were recruited to perform both a 5-minute and a 10-minute straw phonation exercise. Upon completion of the exercises, phonation threshold pressure (PTP), mean airflow, contact quotient, fundamental frequency, jitter, shimmer, and noise-to-harmonics ratio were measured over a 20-minute time frame. Parameters were measured before the intervention (baseline), immediately after the intervention (m0), 5 minutes (m5), 10 minutes (m10), 15 minutes (m15), and 20 minutes (m20) after the intervention. PTP significantly decreased immediately after 5 minutes of straw phonation and returned to initial state within 5 minutes. PTP remained decreased over 5 minutes after 10 minutes of straw phonation. Mean airflow increased immediately after both 5 minutes and 10 minutes of straw phonations and remained improved for 20 minutes. No significant changes were obtained for contact quotient and acoustic parameters over the intervention period. The results extended our knowledge of proper clinical application of straw phonation regarding the duration of exercise. This study confirmed that 10 minutes of straw phonation lead to optimal and relatively continuous effects in PTP and mean airflow. Although straw phonation did show lingering effects in aerodynamics, repeated practices were recommended to obtain optimum and therapeutic effects. Copyright © 2018 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  14. Assessment of a high-resolution central scheme for the solution of the relativistic hydrodynamics equations

    NASA Astrophysics Data System (ADS)

    Lucas-Serrano, A.; Font, J. A.; Ibáñez, J. M.; Martí, J. M.

    2004-12-01

    We assess the suitability of a recent high-resolution central scheme developed by \\cite{kurganov} for the solution of the relativistic hydrodynamic equations. The novelty of this approach relies on the absence of Riemann solvers in the solution procedure. The computations we present are performed in one and two spatial dimensions in Minkowski spacetime. Standard numerical experiments such as shock tubes and the relativistic flat-faced step test are performed. As an astrophysical application the article includes two-dimensional simulations of the propagation of relativistic jets using both Cartesian and cylindrical coordinates. The simulations reported clearly show the capabilities of the numerical scheme of yielding satisfactory results, with an accuracy comparable to that obtained by the so-called high-resolution shock-capturing schemes based upon Riemann solvers (Godunov-type schemes), even well inside the ultrarelativistic regime. Such a central scheme can be straightforwardly applied to hyperbolic systems of conservation laws for which the characteristic structure is not explicitly known, or in cases where a numerical computation of the exact solution of the Riemann problem is prohibitively expensive. Finally, we present comparisons with results obtained using various Godunov-type schemes as well as with those obtained using other high-resolution central schemes which have recently been reported in the literature.

  15. Rice straw-wood particle composite for sound absorbing wooden construction materials.

    PubMed

    Yang, Han-Seung; Kim, Dae-Jun; Kim, Hyun-Joong

    2003-01-01

    In this study, rice straw-wood particle composite boards were manufactured as insulation boards using the method used in the wood-based panel industry. The raw material, rice straw, was chosen because of its availability. The manufacturing parameters were: a specific gravity of 0.4, 0.6, and 0.8, and a rice straw content (10/90, 20/80, and 30/70 weight of rice straw/wood particle) of 10, 20, and 30 wt.%. A commercial urea-formaldehyde adhesive was used as the composite binder, to achieve 140-290 psi of bending modulus of rupture (MOR) with 0.4 specific gravity, 700-900 psi of bending MOR with 0.6 specific gravity, and 1400-2900 psi of bending MOR with a 0.8 specific gravity. All of the composite boards were superior to insulation board in strength. Width and length of the rice straw particle did not affect the bending MOR. The composite boards made from a random cutting of rice straw and wood particles were the best and recommended for manufacturing processes. Sound absorption coefficients of the 0.4 and 0.6 specific gravity boards were higher than the other wood-based materials. The recommended properties of the rice straw-wood particle composite boards are described, to absorb noises, preserve the temperature of indoor living spaces, and to be able to partially or completely substitute for wood particleboard and insulation board in wooden constructions.

  16. Selenium uptake by edible oyster mushrooms (Pleurotus sp.) from selenium-hyperaccumulated wheat straw.

    PubMed

    Bhatia, Poonam; Prakash, Ranjana; Prakash, N Tejo

    2013-01-01

    In an effort to produce selenium (Se)-fortifying edible mushrooms, five species of oyster mushroom (Pleurotus sp.), were cultivated on Se-rich wheat straw collected from a seleniferous belt of Punjab, India. Total selenium was analyzed in the selenium hyperaccumulated wheat straw and the fruiting bodies. Significantly high levels (p<0.0001) of Se uptake were observed in fruiting bodies of all mushrooms grown on Se-rich wheat straw. To the best of our knowledge, accumulation and quantification of selenium in mushrooms has hitherto not been reported with substrates naturally enriched with selenium. The results demonstrate the potential of selenium-rich agricultural residues as substrates for production of Se-enriched mushrooms and the ability of different species of oyster mushrooms to absorb and fortify selenium. The study envisages potential use of selenium-rich agricultural residues towards cultivation of Se-enriched mushrooms for application in selenium supplementation or neutraceutical preparations.

  17. Post-harvest N2O emissions were not affected by various types of oilseed straw incorporated into soil

    NASA Astrophysics Data System (ADS)

    Köbke, Sarah; Senbayram, Mehmet; Hegewald, Hannes; Christen, Olaf; Dittert, Klaus

    2015-04-01

    Oilseed rape post-harvest N2O emissions are seen highly critical as so far they are considered as one of the most crucial drawbacks in climate-saving bioenergy production systems. N2O emissions may substantially counterbalance the intended savings in CO2 emissions. Carbon-rich crop residues in conjunction with residual soil nitrate are seen as a key driver since they may serve as energy source for denitrification and, they may alter soil-borne N2O emissions. As oilseed rape straw is known to have high N/C ratio compared to other crop residues, its soil incorporation may specifically trigger post-harvest N2O emissions. Therefore, the aim of the present study was to determine post-harvest N2O emissions in soils amended with various types of oilseed rape straw (with different N/C ratio) and barley straw in field and incubation experiments. In the incubation experiment, oilseed rape or 15N labelled barley straw were mixed with soil at a rate of 1.3 t DM ha-1 and studied for 43 days. Treatments consisted of non-treated control soil (CK), 15N labelled barley straw (BST), oilseed rape straw (RST), 15N labelled barley straw + N (BST+N), or oilseed rape straw + N (RST+N). N fertilizer was applied to the soil surface as ammonium-nitrate at a rate of 100 kg N ha-1 and soil moisture was adjusted to 80% water-holding capacity. In the field experiment, during the vegetation period 15N labelled fertilizer (15NH415NO3) was used to generate 15N labelled oilseed rape straw (up to 5 at%). Here, the three fertilizer treatments consisted of 5 kg N ha-1 (RST-5), 150 kg N ha-1 (RST-150) and 180 kg N ha-1 (RST-180). Post-harvest N2O emissions were determined during the period of August 2013 to February 2014 by using static flux chambers. In the incubation trial, cumulative N2O emissions were 5, 29, 40 g N2O-N ha-1 148 days-1 in non-fertilized control, BST and RST treatments, respectively. Here, emissions were slightly higher in RST than BST (p

  18. Power spectral estimation of high-harmonics in echoes of wall resonances to improve resolution in non-invasive measurements of wall mechanical properties in rubber tube and ex-vivo artery.

    PubMed

    Bazan, I; Ramos, A; Balay, G; Negreira, C

    2018-07-01

    The aim of this work is to develop a new type of ultrasonic analysis of the mechanical properties of an arterial wall with improved resolution, and to confirm its feasibility under laboratory conditions. it is expected that this would facilitate a non-invasive path for accurate predictive diagnosis that enables an early detection & therapy of vascular pathologies. In particular, the objective is to detect and quantify the small elasticity changes (in Young's modulus E) of arterial walls, which precede pathology. A submicron axial resolution is required for this analysis, as the periodic widening of the wall (under oscillatory arterial pressure) varies between ±10 and 20 μm. This high resolution represents less than 1% of the parietal thickness (e.g., < 7 μm in carotid arteries). The novelty of our proposal is the new technique used to estimate the modulus E of the arterial walls, which achieves the requisite resolution. It calculates the power spectral evolution associated with the temporal dynamics in higher harmonics of the wall internal resonance f 0 . This was attained via the implementation of an autoregressive parametric algorithm that accurately detects parietal echo-dynamics during a heartbeat. Thus, it was possible to measure the punctual elasticity of the wall, with a higher resolution (> an order of magnitude) compared to conventional approaches. The resolution of a typical ultrasonic image is limited to several hundred microns, and thus, such small changes are undetected. The proposed procedure provides a non-invasive and direct measure of elasticity by doing an estimation of changes in the Nf 0 harmonics and wall thickness with a resolution of 0.1%, for first time. The results obtained by using the classic temporal cross-correlation method (TCC) were compared to those obtained with the new procedure. The latter allowed the evaluation of alterations in the elastic properties of arterial walls that are 30 times smaller than those being

  19. Comparison of different pretreatment strategies for enzymatic hydrolysis of wheat and barley straw.

    PubMed

    Rosgaard, Lisa; Pedersen, Sven; Meyer, Anne S

    2007-12-01

    In biomass-to-ethanol processes a physico-chemical pretreatment of the lignocellulosic biomass is a critical requirement for enhancing the accessibility of the cellulose substrate to enzymatic attack. This report evaluates the efficacy on barley and wheat straw of three different pretreatment procedures: acid or water impregnation followed by steam explosion versus hot water extraction. The pretreatments were compared after enzyme treatment using a cellulase enzyme system, Celluclast 1.5 L from Trichoderma reesei, and a beta-glucosidase, Novozyme 188 from Aspergillus niger. Barley straw generally produced higher glucose concentrations after enzymatic hydrolysis than wheat straw. Acid or water impregnation followed by steam explosion of barley straw was the best pretreatment in terms of resulting glucose concentration in the liquid hydrolysate after enzymatic hydrolysis. When the glucose concentrations obtained after enzymatic hydrolyses were related to the potential glucose present in the pretreated residues, the highest yield, approximately 48% (g g-1), was obtained with hot water extraction pretreatment of barley straw; this pretreatment also produced highest yields for wheat straw, producing a glucose yield of approximately 39% (g g-1). Addition of extra enzyme (Celluclast 1.5 L+Novozyme 188) during enzymatic hydrolysis resulted in the highest total glucose concentrations from barley straw, 32-39 g L-1, but the relative increases in glucose yields were higher on wheat straw than on barley straw. Maldi-TOF MS analyses of supernatants of pretreated barley and wheat straw samples subjected to acid and water impregnation, respectively, and steam explosion, revealed that the water impregnated + steam-exploded samples gave a wider range of pentose oligomers than the corresponding acid-impregnated samples.

  20. A solid state fungal fermentation-based strategy for the hydrolysis of wheat straw.

    PubMed

    Pensupa, Nattha; Jin, Meng; Kokolski, Matt; Archer, David B; Du, Chenyu

    2013-12-01

    This paper reports a solid-state fungal fermentation-based pre-treatment strategy to convert wheat straw into a fermentable hydrolysate. Aspergillus niger was firstly cultured on wheat straw for production of cellulolytic enzymes and then the wheat straw was hydrolyzed by the enzyme solution into a fermentable hydrolysate. The optimum moisture content and three wheat straw modification methods were explored to improve cellulase production. At a moisture content of 89.5%, 10.2 ± 0.13 U/g cellulase activity was obtained using dilute acid modified wheat straw. The addition of yeast extract (0.5% w/v) and minerals significantly improved the cellulase production, to 24.0 ± 1.76 U/g. The hydrolysis of the fermented wheat straw using the fungal culture filtrate or commercial cellulase Ctec2 was performed, resulting in 4.34 and 3.13 g/L glucose respectively. It indicated that the fungal filtrate harvested from the fungal fermentation of wheat straw contained a more suitable enzyme mixture than the commercial cellulase. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Biomass yield and feeding value of rye, triticale, and wheat straw produced under a dual-purpose management system.

    PubMed

    Ates, S; Keles, G; Demirci, U; Dogan, S; Ben Salem, H

    2017-11-01

    Dual-purpose management of winter cereals for grazing and grain production provides highly nutritive forage for ruminants in the spring and may positively affect straw feeding value. A 2-yr study investigated the effect of spring defoliation of triticale, wheat, and rye at the tillering and stem elongation stages on total biomass, grain yields, and straw quality. Furthermore, straws of spring-defoliated and undefoliated (control) cereal crops were evaluated for nutritional value and voluntary intake as a means of assessing the efficiency of dual-purpose management systems from the winter feeding context as well. The feeding study consisted of 9 total mixed rations (TMR), each containing 35% triticale, rye, or wheat straw obtained under 3 spring-defoliation regimens. The TMR were individually fed to fifty-four 1-yr-old Anatolian Merino ewes for 28 d. Defoliation of the crops at tillering did not affect the total biomass production or grain yields. However, biomass and grain yields were reduced ( < 0.01) by 55 and 52%, respectively, in crops defoliated at stem elongation. Straw of spring-defoliated cereals had less NDF and ADF concentrations ( < 0.01) but greater CP ( < 0.01), nonfiber carbohydrates ( < 0.01), and ME concentrations ( < 0.01) compared with straw from undefoliated crops. The increase in the nutritive value of straw led to greater nutrient digestion ( < 0.01) and intake of DM and OM of ewes ( < 0.01). However, sheep live weight gain did not differ among treatments ( > 0.77). This study indicated that straw feeding value and digestibility can be increased through spring defoliation.

  2. Study on high throughput nanomanufacturing of photopatternable nanofibers using tube nozzle electrospinning with multi-tubes and multi-nozzles

    NASA Astrophysics Data System (ADS)

    Fang, Sheng-Po; Jao, PitFee; Senior, David E.; Kim, Kyoung-Tae; Yoon, Yong-Kyu

    2017-12-01

    High throughput nanomanufacturing of photopatternable nanofibers and subsequent photopatterning is reported. For the production of high density nanofibers, the tube nozzle electrospinning (TNE) process has been used, where an array of micronozzles on the sidewall of a plastic tube are used as spinnerets. By increasing the density of nozzles, the electric fields of adjacent nozzles confine the cone of electrospinning and give a higher density of nanofibers. With TNE, higher density nozzles are easily achievable compared to metallic nozzles, e.g. an inter-nozzle distance as small as 0.5 cm and an average semi-vertical repulsion angle of 12.28° for 8-nozzles were achieved. Nanofiber diameter distribution, mass throughput rate, and growth rate of nanofiber stacks in different operating conditions and with different numbers of nozzles, such as 2, 4 and 8 nozzles, and scalability with single and double tube configurations are discussed. Nanofibers made of SU-8, photopatternable epoxy, have been collected to a thickness of over 80 μm in 240 s of electrospinning and the production rate of 0.75 g/h is achieved using the 2 tube 8 nozzle systems, followed by photolithographic micropatterning. TNE is scalable to a large number of nozzles, and offers high throughput production, plug and play capability with standard electrospinning equipment, and little waste of polymer.

  3. Local Heat Transfer for Finned-Tube Heat Exchangers using Oval Tubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Brien, James Edward; Sohal, Manohar Singh

    2000-08-01

    This paper presents the results of an experimental study of forced convection heat transfer in a narrow rectangular duct fitted with either a circular tube or an elliptical tube in crossflow. The duct was designed to simulate a single passage in a fin-tube heat exchanger. Heat transfer measurements were obtained using a transient technique in which a heated airflow is suddenly introduced to the test section. High-resolution local fin-surface temperature distributions were obtained at several times after initiation of the transient using an imaging infrared camera. Corresponding local fin-surface heat transfer coefficient distributions were then calculated from a locally appliedmore » one-dimensional semi-infinite inverse heat conduction model. Heat transfer results were obtained over an airflow rate ranging from 1.56 x 10-3 to 15.6 x 10-3 kg/s. These flow rates correspond to a duct-height Reynolds number range of 630 – 6300 with a duct height of 1.106 cm and a duct width-toheight ratio, W/H, of 11.25. The test cylinder was sized such that the diameter-to-duct height ratio, D/H is 5. The elliptical tube had an aspect ratio of 3:1 and a/H equal to 4.33. Results presented in this paper reveal visual and quantitative details of local fin-surface heat transfer distributions in the vicinity of circular and oval tubes and their relationship to the complex horseshoe vortex system that forms in the flow stagnation region. Fin surface stagnation-region Nusselt numbers are shown to be proportional to the square-root of Reynolds number.« less

  4. Using high-resolution displays for high-resolution cardiac data.

    PubMed

    Goodyer, Christopher; Hodrien, John; Wood, Jason; Kohl, Peter; Brodlie, Ken

    2009-07-13

    The ability to perform fast, accurate, high-resolution visualization is fundamental to improving our understanding of anatomical data. As the volumes of data increase from improvements in scanning technology, the methods applied to visualization must evolve. In this paper, we address the interactive display of data from high-resolution magnetic resonance imaging scanning of a rabbit heart and subsequent histological imaging. We describe a visualization environment involving a tiled liquid crystal display panel display wall and associated software, which provides an interactive and intuitive user interface. The oView software is an OpenGL application that is written for the VR Juggler environment. This environment abstracts displays and devices away from the application itself, aiding portability between different systems, from desktop PCs to multi-tiled display walls. Portability between display walls has been demonstrated through its use on walls at the universities of both Leeds and Oxford. We discuss important factors to be considered for interactive two-dimensional display of large three-dimensional datasets, including the use of intuitive input devices and level of detail aspects.

  5. a High Frequency Thermoacoustically-Driven Pulse Tube Cryocooler with Coaxial Resonator

    NASA Astrophysics Data System (ADS)

    Yu, G. Y.; Wang, X. T.; Dai, W.; Luo, E. C.

    2010-04-01

    High frequency thermoacoustically-driven pulse tube cryocoolers are quite promising due to their compact size and high reliability, which can find applications in space use. With continuous effort, a lowest cold head temperature of 68.3 K has been obtained on a 300 Hz pulse tube cryocooler driven by a standing-wave thermoacoustic heat engine with 4.0 MPa helium gas and 750 W heat input. To further reduce the size of the system, a coaxial resonator was designed and the two sub-systems, i.e., the pulse tube cryocooler and the standing-wave thermoacoustic heat engine were properly coupled through an acoustic amplifier tube, which leads to a system axial length of only about 0.7 m. The performance of the system with the coaxial resonator was tested, and shows moderate degradation compared to that with the in-line resonator, which might be attributed to the large flow loss of the 180 degree corner.

  6. Modified Rice Straw as Adsorbent Material to Remove Aflatoxin B1 from Aqueous Media and as a Fiber Source in Fino Bread

    PubMed Central

    Mohamed, Sherif R.; El-Desouky, Tarek A.; Hussein, Ahmed M. S.; Mohamed, Sherif S.; Naguib, Khayria M.

    2016-01-01

    The aims of the current work are in large part the benefit of rice straw to be used as adsorbent material and natural source of fiber in Fino bread. The rice straw was subjected to high temperature for modification process and the chemical composition was carried out and the native rice straw contained about 41.15% cellulose, 20.46% hemicellulose, and 3.91% lignin while modified rice straw has 42.10, 8.65, and 5.81%, respectively. The alkali number was tested and showed an increase in the alkali consumption due to the modification process. The different concentrations of modified rice straw, aflatoxin B1, and pH were tested for removal of aflatoxin B1 from aqueous media and the maximum best removal was at 5% modified rice straw, 5 ng/mL aflatoxin B1, and pH 7. The modified rice straw was added to Fino bread at a level of 5, 10, and 15% and the chemical, rheological, baking quality, staling, and sensory properties were studied. Modified rice straw induced an increase of the shelf life and the produced Fino bread has a better consistency. PMID:26989411

  7. Effect of Additions on Ensiling and Microbial Community of Senesced Wheat Straw

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David N. Thompson; Joni M. Barnes; Tracy P. Houghton

    2005-04-01

    Crop residues collected during or after grain harvest are available once per year and must be stored for extended periods. The combination of air, high moisture, and high microbial loads leads to shrinkage during storage and risk of spontaneous ignition. Ensiling is a wet preservation method that could be used to store these residues stably. To economically adapt ensiling to biomass that is harvested after it has senesced, the need for nutrient, moisture, and microbial additions must be determined. We tested the ensiling of senesced wheat straw in sealed columns for 83 d. The straw was inoculated with Lactobacillus plantarummore » and amended with several levels of water and free sugars. The ability to stabilize the straw polysaccharides was strongly influenced by both moisture and free sugars. Without the addition of sugar, the pH increased from 5.2 to as much as 9.1, depending on moisture level, and losses of 22% of the cellulose and 21% of the hemicellulose were observed. By contrast, when sufficient sugars were added and interstitial water was maintained, a final pH of 4.0 was attainable, with correspondingly low (<5%) losses of cellulose and hemicellulose. The results show that ensiling should be considered a promising method for stable storage of wet biorefinery feedstocks.« less

  8. Butterfly proboscis: combining a drinking straw with a nanosponge facilitated diversification of feeding habits

    PubMed Central

    Monaenkova, Daria; Lehnert, Matthew S.; Andrukh, Taras; Beard, Charles E.; Rubin, Binyamin; Tokarev, Alexander; Lee, Wah-Keat; Adler, Peter H.; Kornev, Konstantin G.

    2012-01-01

    The ability of Lepidoptera, or butterflies and moths, to drink liquids from rotting fruit and wet soil, as well as nectar from floral tubes, raises the question of whether the conventional view of the proboscis as a drinking straw can account for the withdrawal of fluids from porous substrates or of films and droplets from floral tubes. We discovered that the proboscis promotes capillary pull of liquids from diverse sources owing to a hierarchical pore structure spanning nano- and microscales. X-ray phase-contrast imaging reveals that Plateau instability causes liquid bridges to form in the food canal, which are transported to the gut by the muscular sucking pump in the head. The dual functionality of the proboscis represents a key innovation for exploiting a vast range of nutritional sources. We suggest that future studies of the adaptive radiation of the Lepidoptera take into account the role played by the structural organization of the proboscis. A transformative two-step model of capillary intake and suctioning can be applied not only to butterflies and moths but also potentially to vast numbers of other insects such as bees and flies. PMID:21849382

  9. Improvement of high-yield pulp properties by using a small amount of bleached wheat straw pulp.

    PubMed

    Zhang, Hongjie; He, Zhibin; Ni, Yonghao

    2011-02-01

    In this study, the potential of using bleached wheat straw pulp (BWSP) was explored to improve the tensile strength of the high-yield pulp (HYP) while preserving its high bulk property. The results showed that with the addition of 5-10% refined BWSP, the HYP tensile strength can be increased by about 10-20% without sacrificing the bulk. Similar results were obtained by adding refined BWSP into a mixed furnish of bleached kraft pulps (BKPs) and HYP. The explanation was that micro fines from refined BWSP can act as binders to improve the HYP interfiber bonding, as a result, the HYP tensile strength can be improved by using a small amount of BWSP, while the HYP bulk is not significantly affected. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. The Effects of Phonation Into Glass, Plastic, and LaxVox Tubes in Singers: A Systematic Review.

    PubMed

    Mendes, Amanda Louize Félix; Dornelas do Carmo, Rodrigo; Dias de Araújo, Aline Menezes Guedes; Paranhos, Luiz Renato; da Mota, Camila Silva Oliveira; Dias, Sheila Schneiberg Valença; Reis, Francisco Prado; Aragão, José Aderval

    2018-05-03

    The present study aimed to perform a systematic literature review to assess the effects of phonation therapy on voice quality and function in singers. The systematic search was performed in February and updated in October 2017. No restriction of year, language, or publication status was applied. The primary electronic databases searched were LILACS, SciELO, PubMed, and Cochrane. Kappa coefficient was used to assess the agreement between examiners in judging article eligibility. The eligible articles were analyzed based on their risk of bias using the tools proposed by the Joanna Briggs Institute. Mendeley Desktop 1.13.3 software package (Mendeley Ltd, London, UK) was used to standardize the references of identified articles. The general sample consisted of 1965 articles screened out of the electronic databases. Two examiners analyzed the sample in the search for eligible articles. The agreement between examiners reached excellent outcomes (kappa coefficient = 0.88). After the selection, phase 6 articles remained eligible. Together, the eligible studies accounted 141 subjects (65 men and 76 women) aged between 18 and 72 years old. Electroglottography was considered as the most common method (83.33%) of assessment of the effects of phonation therapy in singers. The most prevalent exercises within the therapies were phonation into straws and phonation into glass tubes. The phonation into glass tubes immersed in water, straws, and LaxVox tubes promoted positive effects on the voice quality in singers, such as more comfortable phonation, better voice projection, and economy in voice emission. Copyright © 2018 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  11. Development of a Low Cost High Frequency Pulse Tube Cryocooler

    NASA Astrophysics Data System (ADS)

    Wang, C.; Caughley, A. J.; Haywood, D. J.

    2008-03-01

    In cooperation with Industrial Research Ltd (IRL), Cryomech, Inc. is developing a low cost high frequency pulse tube cryocooler. The valveless compressor, developed at IRL, employs two S.S. diaphragms and a novel kinematics driven mechanism. The pulse tube cold head has co-axial configuration. It is separated from the compressor with a SS flexible line of 1 meter long. The test results demonstrate a very small orientation effect of the cold head (<3 K at any orientation). This pulse tube cryocooler provides flexibility for user's integration. It can provide 108W at 77K with an electric input power of 3.7 kW in the primary test.

  12. [Effects of different straw recycling and tillage methods on soil respiration and microbial activity].

    PubMed

    Li, Xiao-sha; Wu, Ning; Liu, Ling; Feng, Yu-peng; Xu, Xu; Han, Hui-fang; Ning, Tang-yuan; Li, Zeng-jia

    2015-06-01

    To explore the effects of different tillage methods and straw recycling on soil respiration and microbial activity in summer maize field during the winter wheat and summer maize double cropping system, substrate induced respiration method and CO2 release method were used to determine soil microbial biomass carbon, microbial activity, soil respiration, and microbial respiratory quotient. The experiment included 3 tillage methods during the winter wheat growing season, i.e., no-tillage, subsoiling and conventional tillage. Each tillage method was companied with 2 straw management patterns, i.e., straw recycling and no straw. The results indicated that the conservation tillage methods and straw recycling mainly affected 0-10 cm soil layer. Straw recycling could significantly improve the microbial biomass carbon and microbial activity, while decrease microbial respiratory quotient. Straw recycling could improve the soil respiration at both seedling stage and anthesis, however, it could reduce the soil respiration at filling stage, wax ripeness, and harvest stage. Under the same straw application, compared with conventional tillage, the soil respiration and microbial respiratory quotient in both subsoiling and no-tillage were reduced, while the microbial biomass carbon and microbial activity were increased. During the summer maize growing season, soil microbial biomass carbon and microbial activity were increased in straw returning with conservation tillage, while the respiratory quotient was reduced. In 0-10 cm soil layer, compared with conventional tillage, straw recycling with subsoiling and no-tillage significantly increased soil microbial biomass carbon by 95.8% and 74.3%, and increased soil microbial activity by 97.1% and 74.2%, respectively.

  13. [Interactions of straw, nitrogen fertilizer and bacterivorous nematodes on soil labile carbon and nitrogen and greenhouse gas emissions].

    PubMed

    Zhang, Teng-Hao; Wang, Nan; Liu, Man-Qiang; Li, Fang-Hui; Zhu, Kang-Li; Li, Hui-Xin; Hu, Feng

    2014-11-01

    A 3 x 2 factorial design of microcosm experiment was conducted to investigate the interactive effects of straw, nitrogen fertilizer and bacterivorous nematodes on soil microbial biomass carbon (C(mic)) and nitrogen (N(mic)), dissolved organic carbon (DOC) and nitrogen (DON), mineral nitrogen (NH(4+)-N and NO(3-)-N), and greenhouse gas (CO2, N2O and CH4) emissions. Results showed that straw amendment remarkably increased the numbers of bacterivorous nematodes and the contents of Cmic and Nmic, but Cmic and Nmic decreased with the increasing dose of nitrogen fertilization. The effects of bacterivorous nematodes strongly depended on either straw or nitrogen fertilization. The interactions of straw, nitrogen fertilization and bacterivorous nematodes on soil DOC, DON and mineral nitrogen were strong. Straw and nitrogen fertilization increased DOC and mineral nitrogen contents, but their influences on DON depended on the bacterivorous nematodes. The DOC and mineral nitrogen were negatively and positively influenced by the bacterivorous nematodes, re- spectively. Straw significantly promoted CO2 and N2O emissions but inhibited CH4 emission, while interactions between nematodes and nitrogen fertilization on emissions of greenhouse gases were obvious. In the presence of straw, nematodes increased cumulative CO2 emissions with low nitrogen fertilization, but decreased CO2 and N2O emissions with high nitrogen fertilization on the 56th day after incubation. In summary, mechanical understanding the soil ecological process would inevitably needs to consider the roles of soil microfauna.

  14. Thermal transitions of the amorphous polymers in wheat straw

    Treesearch

    Wolfgang Stelte; Craig Clemons; Jens K. Holm; Jesper Ahrenfeldt; Ulrik B. Henriksen; Anand R. Sanadi

    2011-01-01

    The thermal transitions of the amorphous polymers in wheat straw were investigated using dynamic mechanical thermal analysis (DMTA). The study included both natural and solvent extracted wheat straw, in moist (8–9% water content) and dry conditions, and was compared to spruce samples. Under these conditions two transitions arising from the glass transition of lignin...

  15. High Spatiotemporal Resolution Prostate MRI

    DTIC Science & Technology

    2016-09-01

    1 AD AWARD NUMBER: W81XWH-15-1-0341 TITLE: High Spatiotemporal Resolution Prostate MRI PRINCIPAL INVESTIGATOR: Stephen J. Riederer CONTRACTING...REPORT TYPE Annual 3. DATES COVERED 15 Aug 2015 - 14 Aug 2016 4. TITLE AND SUBTITLE High Spatiotemporal Resolution Prostate MRI 5a. CONTRACT NUMBER...improved means using MRI for detecting prostate cancer with the potential for differentiating disease aggressiveness. The hypothesis is that dynamic

  16. Release of Polyphenols Is the Major Factor Influencing the Bioconversion of Rice Straw to Lactic Acid.

    PubMed

    Chen, Xingxuan; Xue, Yiyun; Hu, Jiajun; Tsang, Yiu Fai; Gao, Min-Tian

    2017-11-01

    In this study, we found that p-coumaric acid (p-CA), ferulic acid (FA), and condensed tannins were released from rice straw during saccharification. The presence of polyphenols prolonged the lag phase and lowered the productivity of lactic acid. p-CA was identified as a key inhibitor. Tannins had a lower inhibitory effect than p-CA; FA had little inhibitory effect. Acid, alkaline, and ball milling pretreatments elicited different levels of polyphenol release from rice straw. Due to the different levels of polyphenol release in the pretreatment step, the enzymatic hydrolysates contained different concentrations of polyphenols. Compared with fermentation with a synthetic medium, fermentation with the hydrolysates of ball-milled rice straw provided much lower productivity and yield of lactic acid due to the presence of polyphenols. Removal of these compounds played an important role in lactic acid fermentation. When rice straw was alkaline pretreated, the hydrolysates contained few phenolic compounds, resulting in high productivity and yield of lactic acid (1.8 g/L/h and 26.7 g/100 g straw), which were comparable to those in a synthetic medium. This indicates that there is a correlation between removal of phenolic compounds and efficiency in lactic acid fermentation.

  17. Integrated Process for Ethanol, Biogas, and Edible Filamentous Fungi-Based Animal Feed Production from Dilute Phosphoric Acid-Pretreated Wheat Straw.

    PubMed

    Nair, Ramkumar B; Kabir, Maryam M; Lennartsson, Patrik R; Taherzadeh, Mohammad J; Horváth, Ilona Sárvári

    2018-01-01

    Integration of wheat straw for a biorefinery-based energy generation process by producing ethanol and biogas together with the production of high-protein fungal biomass (suitable for feed application) was the main focus of the present study. An edible ascomycete fungal strain Neurospora intermedia was used for the ethanol fermentation and subsequent biomass production from dilute phosphoric acid (0.7 to 1.2% w/v) pretreated wheat straw. At optimum pretreatment conditions, an ethanol yield of 84 to 90% of the theoretical maximum, based on glucan content of substrate straw, was observed from fungal fermentation post the enzymatic hydrolysis process. The biogas production from the pretreated straw slurry showed an improved methane yield potential up to 162% increase, as compared to that of the untreated straw. Additional biogas production, using the syrup, a waste stream obtained post the ethanol fermentation, resulted in a combined total energy output of 15.8 MJ/kg wheat straw. Moreover, using thin stillage (a waste stream from the first-generation wheat-based ethanol process) as a co-substrate to the biogas process resulted in an additional increase by about 14 to 27% in the total energy output as compared to using only wheat straw-based substrates. ᅟ.

  18. Morphologic 3D scanning of fallopian tubes to assist ovarian cancer diagnosis

    NASA Astrophysics Data System (ADS)

    Madore, Wendy-Julie; De Montigny, Etienne; Deschênes, Andréanne; Benboujja, Fouzi; Leduc, Mikael; Mes-Masson, Anne-Marie; Provencher, Diane M.; Rahimi, Kurosh; Boudoux, Caroline; Godbout, Nicolas

    2016-02-01

    Pathological evaluation of the fallopian tubes is an important diagnostic result but tumors can be missed using routine approaches. As the majority of high-grade serous ovarian cancers are now believed to originate in the fallopian tubes, pathological examination should include in a thorough examination of the excised ovaries and fallopian tubes. We present an dedicated imaging system for diagnostic exploration of human fallopian tubes. This system is based on optical coherence tomography (OCT), a laser imaging modality giving access to sub- epithelial tissue architecture. This system produces cross-sectional images up to 3 mm in depth, with a lateral resolution of ≍15μm and an axial resolution of ≍12μm. An endoscopic single fiber probe was developed to fit in a human fallopian tube. This 1.2 mm probe produces 3D volume data of the entire inner tube within a few minutes. To demonstrate the clinical potential of OCT for lesion identification, we studied 5 different ovarian lesions and healthy fallopian tubes. We imaged 52 paraffin-embedded human surgical specimens with a benchtop system and compared these images with histology slides. We also imaged and compared healthy oviducts from 3 animal models to find one resembling the human anatomy and to develop a functional ex vivo imaging procedure with the endoscopic probe. We also present an update on an ongoing clinical pilot study on women undergoing prophylactic or diagnostic surgery in which we image ex vivo fallopian tubes with the endoscopic probe.

  19. 3D integrated HYDRA simulations of hohlraums including fill tubes

    NASA Astrophysics Data System (ADS)

    Marinak, M. M.; Milovich, J.; Hammel, B. A.; Macphee, A. G.; Smalyuk, V. A.; Kerbel, G. D.; Sepke, S.; Patel, M. V.

    2017-10-01

    Measurements of fill tube perturbations from hydro growth radiography (HGR) experiments on the National Ignition Facility show spoke perturbations in the ablator radiating from the base of the tube. These correspond to the shadow of the 10 μm diameter glass fill tube cast by hot spots at early time. We present 3D integrated HYDRA simulations of these experiments which include the fill tube. Meshing techniques are described which were employed to resolve the fill tube structure and associated perturbations in the simulations. We examine the extent to which the specific illumination geometry necessary to accommodate a backlighter in the HGR experiment contributes to the spoke pattern. Simulations presented include high resolution calculations run on the Trinity machine operated by the Alliance for Computing at Extreme Scale (ACES) partnership. This work was performed under the auspices of the Lawrence Livermore National Security, LLC, (LLNS) under Contract No. DE-AC52-07NA27344.

  20. High Resolution Image Reconstruction from Projection of Low Resolution Images DIffering in Subpixel Shifts

    NASA Technical Reports Server (NTRS)

    Mareboyana, Manohar; Le Moigne-Stewart, Jacqueline; Bennett, Jerome

    2016-01-01

    In this paper, we demonstrate a simple algorithm that projects low resolution (LR) images differing in subpixel shifts on a high resolution (HR) also called super resolution (SR) grid. The algorithm is very effective in accuracy as well as time efficiency. A number of spatial interpolation techniques using nearest neighbor, inverse-distance weighted averages, Radial Basis Functions (RBF) etc. used in projection yield comparable results. For best accuracy of reconstructing SR image by a factor of two requires four LR images differing in four independent subpixel shifts. The algorithm has two steps: i) registration of low resolution images and (ii) shifting the low resolution images to align with reference image and projecting them on high resolution grid based on the shifts of each low resolution image using different interpolation techniques. Experiments are conducted by simulating low resolution images by subpixel shifts and subsampling of original high resolution image and the reconstructing the high resolution images from the simulated low resolution images. The results of accuracy of reconstruction are compared by using mean squared error measure between original high resolution image and reconstructed image. The algorithm was tested on remote sensing images and found to outperform previously proposed techniques such as Iterative Back Projection algorithm (IBP), Maximum Likelihood (ML), and Maximum a posterior (MAP) algorithms. The algorithm is robust and is not overly sensitive to the registration inaccuracies.

  1. Influence of rice straw polyphenols on cellulase production by Trichoderma reesei.

    PubMed

    Zheng, Wei; Zheng, Qin; Xue, Yiyun; Hu, Jiajun; Gao, Min-Tian

    2017-06-01

    In this study, we found that during cellulase production by Trichoderma reesei large amounts of polyphenols were released from rice straw when the latter was used as the carbon source. We identified and quantified the phenolic compounds in rice straw and investigated the effects of the phenolic compounds on cellulase production by T. reesei. The phenolic compounds of rice straw mainly consisted of phenolic acids and tannins. Coumaric acid (CA) and ferulic acid (FA) were the predominant phenolic acids, which inhibited cellulase production by T. reesei. When the concentrations of CA and FA in the broth increased to 0.06 g/L, cellulase activity decreased by 23% compared with that in the control culture. Even though the rice straw had a lower tannin than phenolic acid content, the tannins had a greater inhibitory effect than the phenolic acids on cellulase production by T. reesei. Tannin concentrations greater than 0.3 g/L completely inhibited cellulase production. Thus, phenolic compounds, especially tannins are the major inhibitors of cellulase production by T. reesei. Therefore, we studied the effects of pretreatments on the release of phenolic compounds. Ball milling played an important role in the release of FA and CA, and hot water extraction was highly efficient in removing tannins. By combining ball milling with extraction by water, the 2-fold higher cellulase activity than in the control culture was obtained. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  2. Shape sensing for torsionally compliant concentric-tube robots

    NASA Astrophysics Data System (ADS)

    Xu, Ran; Yurkewich, Aaron; Patel, Rajni V.

    2016-03-01

    Concentric-tube robots (CTR) consist of a series of pre-curved flexible tubes that make up the robot structure and provide the high dexterity required for performing surgical tasks in constrained environments. This special design introduces new challenges in shape sensing as large twisting is experienced by the torsionally compliant structure. In the literature, fiber Bragg grating (FBG) sensors are attached to needle-sized continuum robots for curvature sensing, but they are limited to obtaining bending curvatures since a straight sensor layout is utilized. For a CTR, in addition to bending curvatures, the torsion along the robots shaft should be determined to calculate the shape and pose of the robot accurately. To solve this problem, in our earlier work, we proposed embedding FBG sensors in a helical pattern into the tube wall. The strain readings are converted to bending curvatures and torsion by a strain-curvature model. In this paper, a modified strain-curvature model is proposed that can be used in conjunction with standard shape reconstruction algorithms for shape and pose calculation. This sensing technology is evaluated for its accuracy and resolution using three FBG sensors with 1 mm sensing segments that are bonded into the helical grooves of a pre-curved Nitinol tube. The results show that this sensorized robot can obtain accurate measurements: resolutions of 0.02 rad/m with a 100 Hz sampling rate. Further, the repeatability of the obtained measurements during loading and unloading conditions are presented and analyzed.

  3. Effects of application of corn straw on soil microbial community structure during the maize growing season.

    PubMed

    Lu, Ping; Lin, Yin-Hua; Yang, Zhong-Qi; Xu, Yan-Peng; Tan, Fei; Jia, Xu-Dong; Wang, Miao; Xu, De-Rong; Wang, Xi-Zhuo

    2015-01-01

    This study investigated the influence of corn straw application on soil microbial communities and the relationship between such communities and soil properties in black soil. The crop used in this study was maize (Zea mays L.). The five treatments consisted of applying a gradient (50, 100, 150, and 200%) of shattered corn straw residue to the soil. Soil samples were taken from May through September during the 2012 maize growing season. The microbial community structure was determined using phospholipid fatty acid (PLFA) analysis. Our results revealed that the application of corn straw influenced the soil properties and increased the soil organic carbon and total nitrogen. Applying corn straw to fields also influenced the variation in soil microbial biomass and community composition, which is consistent with the variations found in soil total nitrogen (TN) and soil respiration (SR). However, the soil carbon-to-nitrogen ratio had no effect on soil microbial communities. The abundance of PLFAs, TN, and SR was higher in C1.5 than those in other treatments, suggesting that the soil properties and soil microbial community composition were affected positively by the application of corn straw to black soil. A Principal Component Analysis indicated that soil microbial communities were different in the straw decomposition processes. Moreover, the soil microbial communities from C1.5 were significantly different from those of CK (p < 0.05). We also found a high ratio of fungal-to-bacterial PLFAs in black soil and significant variations in the ratio of monounsaturated-to-branched fatty acids with different straw treatments that correlated with SR (p < 0.05). These results indicated that the application of corn straw positively influences soil properties and soil microbial communities and that these properties affect these communities. The individual PLFA signatures were sensitive indicators that reflected the changes in the soil environment condition. © 2015 WILEY

  4. Straw blood cell count, growth, inhibition and comparison to apoptotic bodies.

    PubMed

    Wu, Yonnie; Henry, David C; Heim, Kyle; Tomkins, Jeffrey P; Kuan, Cheng-Yi

    2008-05-20

    Mammalian cells transform into individual tubular straw cells naturally in tissues and in response to desiccation related stress in vitro. The transformation event is characterized by a dramatic cellular deformation process which includes: condensation of certain cellular materials into a much smaller tubular structure, synthesis of a tubular wall and growth of filamentous extensions. This study continues the characterization of straw cells in blood, as well as the mechanisms of tubular transformation in response to stress; with specific emphasis placed on investigating whether tubular transformation shares the same signaling pathway as apoptosis. There are approximately 100 billion, unconventional, tubular straw cells in human blood at any given time. The straw blood cell count (SBC) is 45 million/ml, which accounts for 6.9% of the bloods dry weight. Straw cells originating from the lungs, liver and lymphocytes have varying nodules, hairiness and dimensions. Lipid profiling reveals severe disruption of the plasma membrane in CACO cells during transformation. The growth rates for the elongation of filaments and enlargement of rabbit straw cells is 0.6 approximately 1.1 (microm/hr) and 3.8 (microm(3)/hr), respectively. Studies using apoptosis inhibitors and a tubular transformation inhibitor in CACO2 cells and in mice suggested apoptosis produced apoptotic bodies are mediated differently than tubular transformation produced straw cells. A single dose of 0.01 mg/kg/day of p38 MAPK inhibitor in wild type mice results in a 30% reduction in the SBC. In 9 domestic animals SBC appears to correlate inversely with an animal's average lifespan (R2 = 0.7). Straw cells are observed residing in the mammalian blood with large quantities. Production of SBC appears to be constant for a given animal and may involve a stress-inducible protein kinase (P38 MAPK). Tubular transformation is a programmed cell survival process that diverges from apoptosis. SBCs may be an important

  5. High-Resolution X-Ray Telescopes

    NASA Technical Reports Server (NTRS)

    ODell, Stephen L.; Brissenden, Roger J.; Davis, William; Elsner, Ronald F.; Elvis, Martin; Freeman, Mark; Gaetz, Terry; Gorenstein, Paul; Gubarev, Mikhail V.

    2010-01-01

    Fundamental needs for future x-ray telescopes: a) Sharp images => excellent angular resolution. b) High throughput => large aperture areas. Generation-X optics technical challenges: a) High resolution => precision mirrors & alignment. b) Large apertures => lots of lightweight mirrors. Innovation needed for technical readiness: a) 4 top-level error terms contribute to image size. b) There are approaches to controlling those errors. Innovation needed for manufacturing readiness. Programmatic issues are comparably challenging.

  6. Integrated economic and environmental analysis of agricultural straw reuse in edible fungi industry

    PubMed Central

    Lu, Wencong; Yu, Shuao; Huang, Hairong

    2018-01-01

    Background China currently faces severe environmental pollution caused by burning agricultural straw; thus, resource utilization of these straws has become an urgent policy and practical objective for the Chinese government. Methods This study develops a bio-economic model, namely, “straw resource utilization for fungi in China (SRUFIC),” on the basis of a field survey of an edible fungi plant in Zhejiang, China, to investigate an integrated economic and environmental performance of straw reuse in fungi production. Five scenarios, which cover changes in the production scale, wage level, and price fluctuations of the main product and inputs, are simulated. Results Results reveal that (1) the pilot plant potentially provides enhanced economic benefits and disposes added agricultural residues by adjusting its production strategy; (2) the economic performance is most sensitive to fungi price fluctuations, whereas the environmental performance is more sensitive to production scale and price of fungi than other factors; (3) expanding the production scale can be the most efficient means of improving the performance of a plant economically and environmentally. Discussion Overall, agricultural straw reuse in the edible fungi industry can not only reduce the environmental risk derived from burning abandoned straws but also introduce economic benefits. Thus, the straw reuse in the fungi industry should be practiced in China, and specific economic incentive policies, such as price support or subsidies, must be implemented to promote the utilization of agricultural straws in the fungi industry. PMID:29682417

  7. Sugarcane straw removal effects on plant growth and stalk yield

    USDA-ARS?s Scientific Manuscript database

    There is growing interest in sugarcane straw removal from the field to use as raw material for bioenergy production. In contrast, sugarcane straw removal may have negative implications for many soil ecosystem services and subsequent plant growth. A two-year experiment was conducted at Bom Retiro and...

  8. a Study of a High Frequency Miniature Reservoir-Less Pulse Tube

    NASA Astrophysics Data System (ADS)

    Garaway, I.; Grossman, G.

    2008-03-01

    A miniature high frequency reservoir-less pulse tube cryocooler has been designed and tested in our laboratory. The cryocooler having a regenerator length of 12.0 mm and an overall volume of 2.3cc (excluding the compressor) reached a low temperature of 146K and provided 100mW of cooling at 160K. This experimental study shows that it is possible to miniaturize a pulse tube cryocooler to very short regenerator lengths by implementing a few basic principles: Most importantly, high operating frequencies at small tidal displacements, a regenerator matrix with small hydraulic diameters, and increased helium fill pressures. This study also shows that as the operating frequency of a miniature cryocooler increases, the reservoir becomes less necessary as a phase shifting device. At higher frequencies and appropriate inertance tube geometries, the impedance and capacitance of the inertance tube itself takes over the phase shifting task. An outline of the design and modeling principles is presented along with some details of the experimental apparatus and testing procedures.

  9. Performance analysis and optimization of high capacity pulse tube refrigerator

    NASA Astrophysics Data System (ADS)

    Ghahremani, Amir R.; Saidi, M. H.; Jahanbakhshi, R.; Roshanghalb, F.

    High capacity pulse tube refrigerator (HCPTR) is a new generation of cryocoolers tailored to provide more than 250 W of cooling power at cryogenic temperatures. The most important characteristics of HCPTR when compared to other types of pulse tube refrigerators are a powerful pressure wave generator, and an accurate design. In this paper the influence of geometrical and operating parameters on the performance of a double inlet pulse tube refrigerator (DIPTR) is studied. The model is validated with the existing experimental data. As a result of this optimization, a new configuration of HCPTR is proposed. This configuration provides 335 W at 80 K cold end temperature with a frequency of 50 Hz and COP of 0.05.

  10. Isolation of a rice endophytic bacterium, Pantoea sp. Sd-1, with ligninolytic activity and characterization of its rice straw degradation ability.

    PubMed

    Xiong, X Q; Liao, H D; Ma, J S; Liu, X M; Zhang, L Y; Shi, X W; Yang, X L; Lu, X N; Zhu, Y H

    2014-02-01

    This study focused on an endophytic bacterial strain, Pantoea sp. Sd-1, which can be used to degrade lignin and rice straw. This strain was isolated from rice seeds by an optimized surface sterilization method. Pantoea sp. Sd-1 showed exceptional ability to degrade rice straw and lignin. In rice straw or kraft lignin-containing medium supplemented with 1% glucose and 0.5% peptone, Pantoea sp. Sd-1 effectively reduced the rice straw mass weight by 54.5% after 6 days of treatment. The strain was also capable of reducing the lignin colour (52.4%) and content (69.1%) after 4 days of incubation. The findings suggested that the rice endophytic bacterium Pantoea sp. Sd-1 could be applied for the degradation of lignocellulose biomass, such as rice straw. Rice straw, an abundant agricultural by-product in China, is very difficult to degrade because of its high lignin content. Due to the immense environmental adaptability and biochemical versatility of bacteria, endophytic bacteria are useful resources for biodegradation. In this study, we screened for endophytic bacteria capable of biodegrading rice straw and lignin and obtained one strain, Pantoea sp. Sd-1, with suitable characteristics. Sd-1 could be used for degradation of rice straw and lignin, and may play an important role in biodegradation of this agricultural by-product. © 2013 The Society for Applied Microbiology.

  11. [Change in soil enzymes activities after adding biochar or straw by fluorescent microplate method].

    PubMed

    Zhang, Yu-Lan; Chen, Li-Jun; Duan, Zheng-Hu; Wu, Zhi-Jie; Sun, Cai-Xia; Wang, Jun-Yu

    2014-02-01

    The present work was aimed to study soil a-glucosidase and beta-glucosidase activities of and red soils based on fluorescence detection method combined with 96 microplates with TECAN Infinite 200 Multi-Mode Microplate Reader. We added biochar or straw (2.5 g air dry sample/50g air dry soil sample) into and red soils and the test was carried under fixed temperature and humidity condition (25 degrees C, 20% soil moisture content). The results showed that straw addition enhances soil alpha-glucosidase and beta-glucosidase activities, beta-glucosidase activity stimulated by rice straw treatment was higher than that of corn straw treatment, and activity still maintains strong after 40 days, accounting for increasing soil carbon transformation with straw inputting. Straw inputting increased soil nutrients contents and may promote microbial activity, which also lead to the increase oin enzyme Straw inputting increased soil nutrients contents and may promote microbial activity, which also lead to the increase oin enzyme activities. Different effects of straw kinds may be related to material source that needs further research. However, biochar inputting has little effect on soil alpha-glucosidase and beta-glucosidase activity. Biochar contains less available nutrients than straw and have degradation-resistant characteristics. Compared with the conventional spectrophotometric method, fluorescence microplate method is more sensitive to soil enzyme activities in suspension liquid, which can be used in a large number of samples. In brief, fluorescence microplate method is fast, accurate, and simple to determine soil enzymes activities.

  12. Microscopic Structural Changes in Paddy Straw Pretreated with Trichoderma reesei MTCC 164 and Coriolus versicolor MTCC 138.

    PubMed

    Phutela, Urmila Gupta; Sahni, Nidhi

    2013-06-01

    The present study reports the pretreatment of paddy straw by Trichoderma reesei MTCC 164 and Coriolus versicolor MTCC 138 to observe the changes in chemical composition and its correlation with change of surface structure, morphology and porosity of paddy straw. Compared with untreated straw, cellulose decreased by 15.9 and 19.3 % in T. reesei MTCC 164 and C. versicolor MTCC 138 pretreated paddy straw respectively. Lignin content increased by 41.4 % in T. reesei pretreated paddy straw whereas decreased by 19.1 % in C. versicolor pretreated straw. The microscopic structural changes were examined by scanning electron microscopy under reasonable conditions. Results showed that digestibility of paddy straw are increased by treating paddy straw with both the cultures. Both surface area and pore size of treated straw were increased partially due to solubilization of silica components.

  13. Long-term straw decomposition in agro-ecosystems described by a unified three-exponentiation equation with thermal time.

    PubMed

    Cai, Andong; Liang, Guopeng; Zhang, Xubo; Zhang, Wenju; Li, Ling; Rui, Yichao; Xu, Minggang; Luo, Yiqi

    2018-05-01

    Understanding drivers of straw decomposition is essential for adopting appropriate management practice to improve soil fertility and promote carbon (C) sequestration in agricultural systems. However, predicting straw decomposition and characteristics is difficult because of the interactions between many factors related to straw properties, soil properties, and climate, especially under future climate change conditions. This study investigated the driving factors of straw decomposition of six types of crop straw including wheat, maize, rice, soybean, rape, and other straw by synthesizing 1642 paired data from 98 published papers at spatial and temporal scales across China. All the data derived from the field experiments using little bags over twelve years. Overall, despite large differences in climatic and soil properties, the remaining straw carbon (C, %) could be accurately represented by a three-exponent equation with thermal time (accumulative temperature). The lignin/nitrogen and lignin/phosphorus ratios of straw can be used to define the size of labile, intermediate, and recalcitrant C pool. The remaining C for an individual type of straw in the mild-temperature zone was higher than that in the warm-temperature and subtropical zone within one calendar year. The remaining straw C after one thermal year was 40.28%, 37.97%, 37.77%, 34.71%, 30.87%, and 27.99% for rice, soybean, rape, wheat, maize, and other straw, respectively. Soil available nitrogen and phosphorus influenced the remaining straw C at different decomposition stages. For one calendar year, the total amount of remaining straw C was estimated to be 29.41 Tg and future temperature increase of 2 °C could reduce the remaining straw C by 1.78 Tg. These findings confirmed the long-term straw decomposition could be mainly driven by temperature and straw quality, and quantitatively predicted by thermal time with the three-exponent equation for a wide array of straw types at spatial and temporal

  14. The Impact of Post-Pretreatment Conditioning on Enzyme Accessibility and Water Interactions in Alkali Pretreated Rice Straw

    NASA Astrophysics Data System (ADS)

    Karuna, Nardrapee

    Rice straw, a high-abundance lignocellulosic residue from rice production has tremendous potential as a feedstock for biofuel production in California. In this study, the impact of post-alkali pretreatment conditioning schemes on enzyme saccharification efficiency was examined, particularly focusing on understanding resulting biomass compositional impacts on water interactions with the biomass and enzyme accessibility to the cellulose fraction. Rice straw was pretreated with sodium hydroxide and subsequently washed by two different conditions: 1) by extensive washing with distilled water to reduce the pH to the optimum for cellulases which is pH 5--6, and 2) immediate pH adjustment to pH 5--6 with hydrochloric acid before extensive washing with distilled water. The two post-pretreatment conditions gave significant differences in ash, acid-insoluble lignin, glucan and xylan compositions. Alkali pretreatment improved cellulase digestibility of rice straw, and water washing improved enzymatic digestibility more than neutralization. Hydrolysis reactions with a purified Trichoderma reesei Cel7A, a reducing-end specific cellulase, demonstrated that the differences in saccharification are likely due to differences in the accessibility of the cellulose fraction to the cellulolytic enzymes. Further analyses were conducted to study the mobility of the water associated with the rice straw samples by measuring T2 relaxation times of the water protons by 1H-Nuclear Magnetic Resonance (NMR) relaxometry. Results showed significant changes in water association with the rice straw due to the pretreatment and due to the two different post-pretreatment conditions. Pretreatment increased the amount of water at the surface of the rice straw samples as indicated by increased amplitude of the shortest T2 time peaks in the relaxation spectra. Moreover, the amount of water in the first T2 pool in the water washed sample was significantly greater than in the neutralized sample. These

  15. High-resolution scanning precession electron diffraction: Alignment and spatial resolution.

    PubMed

    Barnard, Jonathan S; Johnstone, Duncan N; Midgley, Paul A

    2017-03-01

    Methods are presented for aligning the pivot point of a precessing electron probe in the scanning transmission electron microscope (STEM) and for assessing the spatial resolution in scanning precession electron diffraction (SPED) experiments. The alignment procedure is performed entirely in diffraction mode, minimising probe wander within the bright-field (BF) convergent beam electron diffraction (CBED) disk and is used to obtain high spatial resolution SPED maps. Through analysis of the power spectra of virtual bright-field images extracted from the SPED data, the precession-induced blur was measured as a function of precession angle. At low precession angles, SPED spatial resolution was limited by electronic noise in the scan coils; whereas at high precession angles SPED spatial resolution was limited by tilt-induced two-fold astigmatism caused by the positive spherical aberration of the probe-forming lens. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Determination of the Airborne Sound Insulation of a Straw Bale Partition Wall

    NASA Astrophysics Data System (ADS)

    Teslík, Jiří; Fabian, Radek; Hrubá, Barbora

    2017-06-01

    This paper describes the results of a scientific project focused on determining of the Airborne Sound Insulation of a peripheral non-load bearing wall made of straw bales expressed by Weighted Sound Reduction Index. Weighted Sound Reduction Index was determined by measuring in the certified acoustic laboratory at the Faculty of Mechanical Engineering at Brno University of Technology. The measured structure of the straw wall was modified in combinations with various materials, so the results include a wide range of possible compositions of the wall. The key modification was application of plaster on both sides of the straw bale wall. This construction as is frequently done in actual straw houses. The additional measurements were performed on the straw wall with several variants of additional wall of slab materials. The airborne sound insulation value has been also measured in separate stages of the construction. Thus it is possible to compare and determinate the effect of the single layers on the airborne sound insulation.

  17. Bismuth@US-tubes as a Potential Contrast Agent for X-ray Imaging Applications

    PubMed Central

    Rivera, Eladio J.; Tran, Lesa A.; Hernández-Rivera, Mayra; Yoon, Diana; Mikos, Antonios G.; Rusakova, Irene A.; Cheong, Benjamin Y.; Cabreira-Hansen, Maria da Graça; Willerson, James T.; Perin, Emerson C.; Wilson, Lon J.

    2013-01-01

    The encapsulation of bismuth as BiOCl/Bi2O3 within ultra-short (ca. 50 nm) single-walled carbon nanocapsules (US-tubes) has been achieved. The Bi@US-tubes have been characterized by high-resolution transmission electron microscopy (HR-TEM), energy-dispersive X-ray spectroscopy (EDS), thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. Bi@US-tubes have been used for intracellular labeling of pig bone marrow-derived mesenchymal stem cells (MSCs) to show high X-ray contrast in computed tomography (CT) cellular imaging for the first time. The relatively high contrast is achieved with low bismuth loading (2.66% by weight) within the US-tubes and without compromising cell viability. X-ray CT imaging of Bi@US-tubes-labeled MSCs showed a nearly two-fold increase in contrast enhancement when compared to unlabeled MSCs in a 100 kV CT clinical scanner. The CT signal enhancement from the Bi@US-tubes is 500 times greater than polymer-coated Bi2S3 nanoparticles and several-fold that of any clinical iodinated contrast agent (CA) at the same concentration. Our findings suggest that the Bi@US-tubes can be used as a potential new class of X-ray CT agent for stem cell labeling and possibly in vivo tracking. PMID:24288589

  18. Treated domestic sewage irrigation significantly decreased the CH4, N2O and NH3 emissions from paddy fields with straw incorporation

    NASA Astrophysics Data System (ADS)

    Xu, Shanshan; Hou, Pengfu; Xue, Lihong; Wang, Shaohua; Yang, Linzhang

    2017-11-01

    NH3 volatilization loss, CH4 and N2O emissions were observed. The results indicate that domestic sewage irrigation combined with straw returning could be an environmentally friendly and resource-saving agricultural management measure for paddy fields with which to reduce the chemical N input, GHG emissions, and NH3 volatilization loss while maintaining high rice productivity.

  19. New concept high-speed and high-resolution color scanner

    NASA Astrophysics Data System (ADS)

    Nakashima, Keisuke; Shinoda, Shin'ichi; Konishi, Yoshiharu; Sugiyama, Kenji; Hori, Tetsuya

    2003-05-01

    We have developed a new concept high-speed and high-resolution color scanner (Blinkscan) using digital camera technology. With our most advanced sub-pixel image processing technology, approximately 12 million pixel image data can be captured. High resolution imaging capability allows various uses such as OCR, color document read, and document camera. The scan time is only about 3 seconds for a letter size sheet. Blinkscan scans documents placed "face up" on its scan stage and without any special illumination lights. Using Blinkscan, a high-resolution color document can be easily inputted into a PC at high speed, a paperless system can be built easily. It is small, and since the occupancy area is also small, setting it on an individual desk is possible. Blinkscan offers the usability of a digital camera and accuracy of a flatbed scanner with high-speed processing. Now, about several hundred of Blinkscan are mainly shipping for the receptionist operation in a bank and a security. We will show the high-speed and high-resolution architecture of Blinkscan. Comparing operation-time with conventional image capture device, the advantage of Blinkscan will make clear. And image evaluation for variety of environment, such as geometric distortions or non-uniformity of brightness, will be made.

  20. Novel Design for Centrifugal Countercurrent Chromatography: II. Studies on Novel Geometries of Zigzag Toroidal Tubing

    PubMed Central

    Yang, Yi; Aisa, Haji Akber; Ito, Yoichiro

    2009-01-01

    The toroidal column using a zigzag pattern has been improved in both retention of the stationary phase and peak resolution. To further improve the retention of stationary phase and peak resolution, a series of novel geometric designs of tubing (plain, mid-clamping, flattened and flat-twisted tubing) was evaluated their performance in CCC. The results showed that the tubing which was flattened vertically against centrifugal force (vert-flattened tubing) produced the best peak resolution among them. Using vert-flattened tubing a series of experiments was performed to study the effects of column capacity and sample size. The results indicated that a 0.25 ml capacity column is ideal for analysis of small amount samples. PMID:20454530

  1. Sugarcane straw harvest effects on soil quality and plant growth: preliminary data synthesis of a multi-local project running in Brazil

    NASA Astrophysics Data System (ADS)

    Cherubin, Maurício; Cerri, Carlos E. P.; Feigl, Brigitte J.; Cerri, Carlos C.

    2017-04-01

    Brazil is the largest sugarcane producer in the world, and consequently, it is one of major players in the bioenergy production sector. Despite that, growing demands for bioenergies have raised the interest of Brazilian sugarcane industry to harvest the sugarcane straw left on the field for cellulosic ethanol production and/or bioelectricity cogeneration. However, crop residues have a key role in the soil, affecting directly or indirectly multiple soil functions and related ecosystem services. Therefore, indiscriminate straw harvest could jeopardize soil quality, decreasing its capacity to sustain plant productivity over time. In order to evaluate the potential impacts of sugarcane straw harvest on soil quality and plant growth, we are conducting since 2014 a multi-local project across central-southern Brazil, the main core of sugarcane production in the world. A wide range of soil chemical, physical and biological parameters, as well as, plant biomass production has been quantified under increasing straw harvest intensities. Our preliminary findings have showed that short-term straw harvest management did not affect total organic C stocks; however, high straw harvest led to significant reduction in labile C forms (e.g., microbial biomass C and N), and abundance of microbial communities as well. Sugarcane straw harvest affects soil nutrient cycling, since significant amount of nutrients are removed annually by straw, especially in top (green) leaves. In addition, our data show that straw acts as a thermal insulator, decreasing soil temperature amplitude and keeping soil moisture for a longer time. Straw harvest management did not affect sugarcane yields in the first two crop seasons. Based on this first synthesis of the project, we conclude that short-term sugarcane straw harvest led to soil changes, especially in more sensitive and dynamic properties, which did not affect the plant yield. However, long-term impacts should be monitored towards a better

  2. Comparison of different pretreatment methods for separation hemicellulose from straw during the lignocellulosic bioethanol production

    NASA Astrophysics Data System (ADS)

    Eisenhuber, Katharina; Krennhuber, Klaus; Steinmüller, Viktoria; Kahr, Heike; Jäger, Alexander

    2013-04-01

    lead to increasing conversion of hemicellulose to xylose. In contrast, increasing sodium hydroxide concentrations degrade the hemicellulose to unknown derivates. Consequently, almost no sugars from hemicellulose remain for fermentation. The hydrolysis of sulfuric acid pretreated straw results in a maximum glucose concentration of 100 g/kg straw and a xylose concentration of nearly 30 g/kg. Sodium hydroxide pretreated and hydrolyzed straw leads to a maximum glucose concentration of 90 g/kg straw and a xylose concentration of nearly 20 g/kg. In comparison to the two chemical pretreatment methods (sodium hydroxide and sulfuric acid pretreatment), the steam explosion pretreatment (conditions: temperature 190°C, time 20 minutes) results in a higher glucose concentration of about 190 g/kg straw and a xylose concentration of nearly 75 g/kg straw after enzymatic hydrolysis of the dried straw. Because of the small effect the sodium hydroxide pretreatment has on xylose recovery, this method won't be used for separation and conversion of hemicellulose into xylose and arabinose. Although pretreatment with sulfuric acid achieved promising results, further research and economical considerations have to be performed. In conclusion, the steam explosion method is still the state of the art pretreatment method for the production of lignocellulosic biofuels. Alkaline methods destroy most of the xylose part of the sugar fraction and a loss of up to 25 % of the fermentable sugars is not acceptable for a sustainable biofuel production. The acid pretreatment yields high amounts of accessible hemicellulose and cellulose, but the consumption of chemicals for acid pretreatment and neutralization has to be taken into account when considering technical implementation.

  3. Milled cereal straw accelerates earthworm (Lumbricus terrestris) growth more than selected organic amendments.

    PubMed

    Sizmur, Tom; Martin, Elodie; Wagner, Kevin; Parmentier, Emilie; Watts, Chris; Whitmore, Andrew P

    2017-05-01

    Earthworms benefit agriculture by providing several ecosystem services. Therefore, strategies to increase earthworm abundance and activity in agricultural soils should be identified, and encouraged. Lumbricus terrestris earthworms primarily feed on organic inputs to soils but it is not known which organic amendments are the most effective for increasing earthworm populations. We conducted earthworm surveys in the field and carried out experiments in single-earthworm microcosms to determine the optimum food source for increasing earthworm biomass using a selection of crop residues and organic wastes available to agriculture. We found that although farmyard manure increased earthworm populations more than cereal straw in the field, straw increased earthworm biomass more than manures when milled and applied to microcosms. Earthworm growth rates were positively correlated with the calorific value of the amendment and straw had a much higher calorific value than farmyard manure, greenwaste compost, or anaerobic digestate. Reducing the particle size of straw by milling to <3 mm made the energy in the straw more accessible to earthworms. The benefits and barriers to applying milled straw to arable soils in the field are discussed.

  4. Removal of Cu(II) from acidic electroplating effluent by biochars generated from crop straws.

    PubMed

    Tong, Xuejiao; Xu, Renkou

    2013-04-01

    The removal efficiency of copper (Cu(II)) from an actual acidic electroplating effluent by biochars generated from canola, rice, soybean and peanut straws was investigated. The biochars simultaneously removed Cu(II) from the effluent, mainly through the mechanisms of adsorption and precipitation, and neutralized its acidity. The removal efficiency of Cu(II) by the biochars followed the order: peanut straw char > soybean straw char > canola straw char > rice straw char > a commercial activated carbonaceous material, which is consistent with the alkalinity of the biochars. The pH of the effluent was a key factor determining the removal efficiency of Cu(II) by biochars. Raising the initial pH of the effluent enhanced the removal of Cu(II) from it. The optimum pyrolysis temperature was 400 degrees C for producing biochar from crop straws for acidic wastewater treatment, and the optimum reaction time was 8 hr.

  5. Impact of straw mulch on populations of onion thrips (Thysanoptera: Thripidae) in onion.

    PubMed

    Larentzaki, E; Plate, J; Nault, B A; Shelton, A M

    2008-08-01

    Development of insecticide resistance in onion thrips, Thrips tabaci Lindeman (Thysanoptera: Thripidae), populations in onion (Allium spp.) fields and the incidence of the T. tabaci transmitted Iris yellow spot virus have stimulated interest in evaluating alternative management tactics. Effects of straw mulch applied in commercial onion fields in muck areas of western New York were assessed in 2006 and 2007 as a possible onion thrips management strategy. In trials in which no insecticides were applied for thrips control, straw mulch-treated plots supported significantly lower T. tabaci populations compared with control plots. In both years, the action thresholds of one or three larvae per leaf were reached in straw mulch treatments between 7 and 14 d later than in the control. Ground predatory fauna, as evaluated by pitfall trapping, was not increased by straw mulch in 2006; however, populations of the common predatory thrips Aeolothrips fasciatus (L.) (Thysanoptera: Aeolothripidae) were significantly lower in straw mulch plots in both years. Interference of straw mulch in the pupation and emergence of T. tabaci was investigated in the lab and their emergence was reduced by 54% compared with bare soil. In the field the overall yield of onions was not affected by the straw mulch treatment; however, the presence of jumbo grade onions (>77 mm) was increased in 2006, but not in 2007. These results indicate that populations of T. tabaci adults and larvae can be significantly reduced by the use of straw mulch without compromising overall onion yield. The use of this cultural practice in an onion integrated pest management program seems promising.

  6. Implications of depleted flux tubes in the Jovian magnetosphere

    NASA Astrophysics Data System (ADS)

    Russell, C. T.; Kivelson, M. G.; Kurth, W. S.; Gurnett, D. A.

    2000-10-01

    A rare but persistent phenomenon in the jovian magnetosphere is the occurrence of apparently depleted flux tubes, whose magnetic pressures are significantly above ambient levels. These flux tubes occur about 0.25% of the observing time in the region of the Io torus in the Galileo high resolution data. The importance of these tubes is that they can return to the inner magnetosphere the magnetic flux that has been convected radially outward with the iogenic plasma to the tail. The paucity of these tubes is consistent with the expected flux return rates if the tubes are moving inward at an average rate of about 5-10 km/s in the torus. Depleted flux tubes have yet to be observed inside of the Io orbit where the plasma beta is lower than in the hot torus. Estimates of the plasma density outside the tube from plasma wave measurements enable the average perpendicular temperature to be obtained from the magnetic field change. Extrapolating this temperature back to Io, we obtain an average ion temperature of approximately 60 eV. These values are generally consistent with earlier Voyager observations but on the low side of their range of uncertainty, and agree quite well with contemporaneous Galileo measurements where these are available.

  7. Implications of Depleted flux Tubes in the Jovian Magnetosphere

    NASA Technical Reports Server (NTRS)

    Russell, C. T.; Kivelson, M. G.; Kurth, W. S.; Gurnett, D. A.

    2000-01-01

    A rare but persistent phenomenon in the jovian magnetosphere is the occurrence of apparently depleted flux tubes, whose magnetic pressures are significantly above ambient levels. These flux tubes occur about 0.25% of the observing time in the region of the Io torus in the Galileo high resolution data. The importance of these tubes is that they can return to the inner magnetosphere the magnetic flux that has been convected radially outward with the iogenic plasma to the tail. The paucity of these tubes is consistent with the expected flux return rates if the tubes are moving inward at an average rate of about 5-10 km/s in the torus. Depleted flux tubes have yet to be observed inside of the lo orbit where the plasma beta is lower than in the hot torus. Estimates of the plasma density outside the tube from plasma wave measurements enable the average perpendicular temperature to be obtained from the magnetic field change. Extrapolating this temperature back to lo, we obtain an average ion temperature of approximately 60 eV. These values are generally consistent with earlier Voyager observations but on the low side of their range of uncertainty, and agree quite well with contemporaneous Galileo measurements where these are available.

  8. Tubes of rhombohedral boron nitride

    NASA Astrophysics Data System (ADS)

    Bourgeois, L.; Bando, Y.; Sato, T.

    2000-08-01

    The structure of boron nitride bamboo-like tubular whiskers grown from boron nitride powder is investigated by high-resolution transmission electron microscopy. Despite the relatively small size of the tubes (20-200 nm in diameter), they all exhibit rhombohedral-like ordering in their layer stacking. The tubular sheets also tend to have their [10 bar 1 0] direction parallel to the fibre axis. Particles of iron alloys are commonly found encapsulated inside or at the end of the filaments. It is suggested that iron plays an active role in the growth of the fibres.

  9. [Effect of Bt rice straw returning in soil on the growth and reproduction of Eisenia fetida.

    PubMed

    Cheng, Miao Miao; Shu, Ying Hua; Wang, Jian Wu

    2016-11-18

    Bacillus thuringiensis (Bt) protein can enter the soil through Bt crops straw returning to field, which may affect the growth and reproduction of soil animals, such as earthworms. Here, Bt rice (b2B138) and conventional rice (Anfeng A) straw were returned in soil to evaluate the impact of Bt rice on Eisenia fetida. Two varieties of rice straw were added into soil to breed E. fetida at the rates of 2.5%, 5%, 7.5% and 10%. The survival rate, relative growth rate, reproduction of earthworm, the Cry1Ab content in soil-straw mixture and earthworm were detected after 7, 15, 30, 45, 60, 75, 90 d. The results showed that Bt rice straw returning at higher concentrations (7.5% and 10%) inhibited the survival rate of E. fetida. Bt rice straw returning had no adverse effect on relative growth rate (RGR) of E. fetida. Bt rice straw treatment improved the reproduction of earthworms under 5%, 7.5% and 10% straw returning in soil. Enzyme-linked immunosorbent assay (ELISA) results indicated that immunoreactive Cry1Ab was detectable in soil-straw mixture and E. fetida from Bt rice treatments, and a strong decline was observed in soil-straw mixture with the increase of treated time. Therefore, Cry1Ab released from Bt rice straw returning at 2.5% and 5% concentration had no adverse effects on the growth and reproduction of E. fetida.

  10. Design and characterization of very high frequency pulse tube prototypes

    NASA Astrophysics Data System (ADS)

    Lopes, Diogo; Duval, Jean-Marc; Charles, Ivan; Butterworth, James; Trollier, Thierry; Tanchon, Julien; Ravex, Alain; Daniel, Christophe

    2012-06-01

    Weight and size are important features of a cryocooler when it comes to space applications. Given their reliability and low level of exported vibrations (due to the absence of moving cold parts), pulse tubes are good candidates for spatial purposes and their miniaturization has been the focus of many studies. We report on the design and performance of a small-scale very high frequency pulse tube prototype, modeled after two previous prototypes which were optimized with a numerical code.

  11. Influence of Regenerator Material on Performance of a 6K High Frequency Pulse Tube Cryocooler

    NASA Astrophysics Data System (ADS)

    J, Quan; YJ, Liu; XY, Li; JT, Liang

    2017-12-01

    As very low temperature high frequency pulse tube cryocooler has been a hot topic in the field of pulse tube cryocooler, improving the cryocooler’s performance is a common goal of researchers. By integrating the former results, we found that regenerator material is a key factor for the improvement of pulse tube cryocooler’s efficiency. In this paper, methods of simulation and experiment were used to investigate the influence of stacking style on performance of 6K high frequency pulse tube cryocooler. Finally, the lowest temperature has dropped from 8.8K to 6.7K and more than 10mW of cooling power is achieved at 8K with a two-stage thermally coupled high frequency pulse tube cryocooler. The results make the space application of NbN terahertz detectors possible.

  12. Xylanase and β-xylosidase production by Aspergillus ochraceus: new perspectives for the application of wheat straw autohydrolysis liquor.

    PubMed

    Michelin, Michele; Polizeli, Maria de Lourdes T M; Ruzene, Denise S; Silva, Daniel P; Vicente, António A; Jorge, João A; Terenzi, Héctor F; Teixeira, José A

    2012-01-01

    The xylanase biosynthesis is induced by its substrate-xylan. The high xylan content in some wastes such as wheat residues (wheat bran and wheat straw) makes them accessible and cheap sources of inducers to be mainly applied in great volumes of fermentation, such as those of industrial bioreactors. Thus, in this work, the main proposal was incorporated in the nutrient medium wheat straw particles decomposed to soluble compounds (liquor) through treatment of lignocellulosic materials in autohydrolysis process, as a strategy to increase and undervalue xylanase production by Aspergillus ochraceus. The wheat straw autohydrolysis liquor produced in several conditions was used as a sole carbon source or with wheat bran. The best conditions for xylanase and β-xylosidase production were observed when A. ochraceus was cultivated with 1% wheat bran added of 10% wheat straw liquor (produced after 15 min of hydrothermal treatment) as carbon source. This substrate was more favorable when compared with xylan, wheat bran, and wheat straw autohydrolysis liquor used separately. The application of this substrate mixture in a stirred tank bioreactor indicated the possibility of scaling up the process to commercial production.

  13. Improved scintimammography using a high-resolution camera mounted on an upright mammography gantry

    NASA Astrophysics Data System (ADS)

    Itti, Emmanuel; Patt, Bradley E.; Diggles, Linda E.; MacDonald, Lawrence; Iwanczyk, Jan S.; Mishkin, Fred S.; Khalkhali, Iraj

    2003-01-01

    99mTc-sestamibi scintimammography (SMM) is a useful adjunct to conventional X-ray mammography (XMM) for the assessment of breast cancer. An increasing number of studies has emphasized fair sensitivity values for the detection of tumors >1 cm, compared to XMM, particularly in situations where high glandular breast densities make mammographic interpretation difficult. In addition, SMM has demonstrated high specificity for cancer, compared to various functional and anatomic imaging modalities. However, large field-of-view (FOV) gamma cameras are difficult to position close to the breasts, which decreases spatial resolution and subsequently, the sensitivity of detection for tumors <1 cm. New dedicated detectors featuring small FOV and increased spatial resolution have recently been developed. In this setting, improvement in tumor detection sensitivity, particularly with regard to small cancers is expected. At Division of Nuclear Medicine, Harbor-UCLA Medical Center, we have performed over 2000 SMM within the last 9 years. We have recently used a dedicated breast camera (LumaGEM™) featuring a 12.8×12.8 cm 2 FOV and an array of 2×2×6 mm 3 discrete crystals coupled to a photon-sensitive photomultiplier tube readout. This camera is mounted on a mammography gantry allowing upright imaging, medial positioning and use of breast compression. Preliminary data indicates significant enhancement of spatial resolution by comparison with standard imaging in the first 10 patients. Larger series will be needed to conclude on sensitivity/specificity issues.

  14. Tubing modifications for countercurrent chromatography (CCC): Stationary phase retention and separation efficiency.

    PubMed

    Englert, Michael; Vetter, Walter

    2015-07-16

    Countercurrent chromatography (CCC) is a separation technique in which two immiscible liquid phases are used for the preparative purification of synthetic and natural products. In CCC the number of repetitive mixing and de-mixing processes, the retention of the stationary phase and the mass transfer between the liquid phases are significant parameters that influence the resolution and separation efficiency. Limited mass transfer is the main reason for peak broadening and a low number of theoretical plates along with impaired peak resolution in CCC. Hence, technical improvements with regard to column design and tubing modifications is an important aspect to enhance mixing and mass transfer. In this study we constructed a crimping tool which allowed us to make reproducible, semi-automated modifications of conventional round-shaped tubing. Six crimped tubing modifications were prepared, mounted onto multilayer coils which were subsequently installed in the CCC system. The stationary phase retention of the tubing modifications were compared to the conventional system with unmodified tubing in a hydrophobic, an intermediate and a hydrophilic two-phase solvent system. Generally, the tubing modifications provided higher capabilities to retain the stationary phase depending on the solvent system and flow rates. In the intermediate solvent system the separation efficiency was evaluated with a mixture of six alkyl p-hydroxybenzoates. The peak resolution could be increased up to 50% with one of the tubing modifications compared to the unmodified tubing. Using the most convincing tubing modification at fixed values for the stationary phase retention, a reasonable comparison to the unmodified tubing was achieved. The peak width could be reduced up to 49% and a strong positive impact at increased flow rates regarding peak resolution and theoretical plate number was observed compared to unmodified tubing. It could be concluded that the tubing modification enhanced the interphase

  15. High-solid anaerobic digestion of corn straw for methane production and pretreatment of bio-briquette.

    PubMed

    Li, Yeqing; Yan, Fang; Li, Tao; Zhou, Ying; Jiang, Hao; Qian, Mingyu; Xu, Quan

    2018-02-01

    In this study, an integrated process was developed to produce methane and high-quality bio-briquette (BB) using corn straw (CS) through high-solid anaerobic digestion (HS-AD). CS was anaerobic digested by using a leach bed reactor at four leachate recirculation strategies. After digesting for 28 days, highest methane yield of 179.6 mL/g-VS, which was corresponded to energy production of 5.55 MJ/kg-CS, was obtained at a higher initial recirculation rate of 32 L-leachate per day. Compared with bio-briquette manufactured from raw CS and lignite, the compressive, immersion and falling strength properties of bio-briquette made from AD-treated CS (solid digestate) and lignite were significantly improved. A preferred BB can be obtained with side compressive strength of 863.8 ± 10.8 N and calorific value of 20.21 MJ/kg-BB. The finding of this study indicated that the integrated process could be an alternative way to produce methane and high-quality BB with CS. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. A High-Resolution Endoscope of Small Diameter Using Electromagnetically Vibration of Single Fiber

    NASA Astrophysics Data System (ADS)

    Matsunaga, Tadao; Hino, Ryunosuke; Makishi, Wataru; Esashi, Masayoshi; Haga, Yoichi

    For high resolution visual inspection in the narrow space of the human body, small diameter endoscope has been developed which utilize electromagnetically vibration of single fiber. Thin endoscopes are effective for inspection in the narrow space of the human body, for example, in the blood vessel, lactiferous duct for detection infiltration of breast cancer, and periodontal gap between gingiva and tooth. This endoscope consists of single optical fiber and photofabricated driving coils. A collimator lens and a cylindrical permanent magnet are fixed on the optical fiber, and the tilted driving coils have been patterned on a 1.08 mm outer diameter thin tube. The fiber is positioned at the center of the tube which is patterned the coils. When an electrical alternating current at the resonance frequency is supplied to the coils, the permanent magnet which is fixed to the fiber is vibrated electromagnetically and scanned one or two dimensionally. This paper reports small diameter endoscope by using electromagnetically vibration of single fiber. Optical coherence tomography imaging has also been carried out with the fabricated endoscope and cross-section image of sub-surface skin of thumb was observed.

  17. High-resolution echocardiography

    NASA Technical Reports Server (NTRS)

    Nathan, R.

    1979-01-01

    High resolution computer aided ultrasound system provides two-and three-dimensional images of beating heart from many angles. System provides means for determining whether small blood vessels around the heart are blocked or if heart wall is moving normally without interference of dead and noncontracting muscle tissue.

  18. Barley HvPAPhy_a as transgene provides high and stable phytase activities in mature barley straw and in grains.

    PubMed

    Holme, Inger Baeksted; Dionisio, Giuseppe; Madsen, Claus Krogh; Brinch-Pedersen, Henrik

    2017-04-01

    The phytase purple acid phosphatase (HvPAPhy_a) expressed during barley seed development was evaluated as transgene for overexpression in barley. The phytase was expressed constitutively driven by the cauliflower mosaic virus 35S-promoter, and the phytase activity was measured in the mature grains, the green leaves and in the dry mature vegetative plant parts left after harvest of the grains. The T 2 -generation of HvPAPhy_a transformed barley showed phytase activity increases up to 19-fold (29 000 phytase units (FTU) per kg in mature grains). Moreover, also in green leaves and mature dry straw, phytase activities were increased significantly by 110-fold (52 000 FTU/kg) and 57-fold (51 000 FTU/kg), respectively. The HvPAPhy_a-transformed barley plants with high phytase activities possess triple potential utilities for the improvement of phosphate bioavailability. First of all, the utilization of the mature grains as feed to increase the release of bio-available phosphate and minerals bound to the phytate of the grains; secondly, the utilization of the powdered straw either directly or phytase extracted hereof as a supplement to high phytate feed or food; and finally, the use of the stubble to be ploughed into the soil for mobilizing phytate-bound phosphate for plant growth. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  19. High-resolution land cover classification using low resolution global data

    NASA Astrophysics Data System (ADS)

    Carlotto, Mark J.

    2013-05-01

    A fusion approach is described that combines texture features from high-resolution panchromatic imagery with land cover statistics derived from co-registered low-resolution global databases to obtain high-resolution land cover maps. The method does not require training data or any human intervention. We use an MxN Gabor filter bank consisting of M=16 oriented bandpass filters (0-180°) at N resolutions (3-24 meters/pixel). The size range of these spatial filters is consistent with the typical scale of manmade objects and patterns of cultural activity in imagery. Clustering reduces the complexity of the data by combining pixels that have similar texture into clusters (regions). Texture classification assigns a vector of class likelihoods to each cluster based on its textural properties. Classification is unsupervised and accomplished using a bank of texture anomaly detectors. Class likelihoods are modulated by land cover statistics derived from lower resolution global data over the scene. Preliminary results from a number of Quickbird scenes show our approach is able to classify general land cover features such as roads, built up area, forests, open areas, and bodies of water over a wide range of scenes.

  20. Whole-animal imaging with high spatio-temporal resolution

    NASA Astrophysics Data System (ADS)

    Chhetri, Raghav; Amat, Fernando; Wan, Yinan; Höckendorf, Burkhard; Lemon, William C.; Keller, Philipp J.

    2016-03-01

    We developed isotropic multiview (IsoView) light-sheet microscopy in order to image fast cellular dynamics, such as cell movements in an entire developing embryo or neuronal activity throughput an entire brain or nervous system, with high resolution in all dimensions, high imaging speeds, good physical coverage and low photo-damage. To achieve high temporal resolution and high spatial resolution at the same time, IsoView microscopy rapidly images large specimens via simultaneous light-sheet illumination and fluorescence detection along four orthogonal directions. In a post-processing step, these four views are then combined by means of high-throughput multiview deconvolution to yield images with a system resolution of ≤ 450 nm in all three dimensions. Using IsoView microscopy, we performed whole-animal functional imaging of Drosophila embryos and larvae at a spatial resolution of 1.1-2.5 μm and at a temporal resolution of 2 Hz for up to 9 hours. We also performed whole-brain functional imaging in larval zebrafish and multicolor imaging of fast cellular dynamics across entire, gastrulating Drosophila embryos with isotropic, sub-cellular resolution. Compared with conventional (spatially anisotropic) light-sheet microscopy, IsoView microscopy improves spatial resolution at least sevenfold and decreases resolution anisotropy at least threefold. Compared with existing high-resolution light-sheet techniques, such as lattice lightsheet microscopy or diSPIM, IsoView microscopy effectively doubles the penetration depth and provides subsecond temporal resolution for specimens 400-fold larger than could previously be imaged.

  1. High Resolution Deformation Time Series Estimation for Distributed Scatterers Using Terrasar-X Data

    NASA Astrophysics Data System (ADS)

    Goel, K.; Adam, N.

    2012-07-01

    In recent years, several SAR satellites such as TerraSAR-X, COSMO-SkyMed and Radarsat-2 have been launched. These satellites provide high resolution data suitable for sophisticated interferometric applications. With shorter repeat cycles, smaller orbital tubes and higher bandwidth of the satellites; deformation time series analysis of distributed scatterers (DSs) is now supported by a practical data basis. Techniques for exploiting DSs in non-urban (rural) areas include the Small Baseline Subset Algorithm (SBAS). However, it involves spatial phase unwrapping, and phase unwrapping errors are typically encountered in rural areas and are difficult to detect. In addition, the SBAS technique involves a rectangular multilooking of the differential interferograms to reduce phase noise, resulting in a loss of resolution and superposition of different objects on ground. In this paper, we introduce a new approach for deformation monitoring with a focus on DSs, wherein, there is no need to unwrap the differential interferograms and the deformation is mapped at object resolution. It is based on a robust object adaptive parameter estimation using single look differential interferograms, where, the local tilts of deformation velocity and local slopes of residual DEM in range and azimuth directions are estimated. We present here the technical details and a processing example of this newly developed algorithm.

  2. Comparison of heat transfer in liquid and slush nitrogen by numerical simulation of cooling rates for French straws used for sperm cryopreservation.

    PubMed

    Sansinena, M; Santos, M V; Zaritzky, N; Chirife, J

    2012-05-01

    Slush nitrogen (SN(2)) is a mixture of solid nitrogen and liquid nitrogen, with an average temperature of -207 °C. To investigate whether plunging a French plastic straw (commonly used for sperm cryopreservation) in SN(2) substantially increases cooling rates with respect to liquid nitrogen (LN(2)), a numerical simulation of the heat conduction equation with convective boundary condition was used to predict cooling rates. Calculations performed using heat transfer coefficients in the range of film boiling confirmed the main benefit of plunging a straw in slush over LN(2) did not arise from their temperature difference (-207 vs. -196 °C), but rather from an increase in the external heat transfer coefficient. Numerical simulations using high heat transfer (h) coefficients (assumed to prevail in SN(2)) suggested that plunging in SN(2) would increase cooling rates of French straw. This increase of cooling rates was attributed to a less or null film boiling responsible for low heat transfer coefficients in liquid nitrogen when the straw is placed in the solid-liquid mixture or slush. In addition, predicted cooling rates of French straws in SN(2) tended to level-off for high h values, suggesting heat transfer was dictated by heat conduction within the liquid filled plastic straw. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Dry co-digestion of sewage sludge and rice straw under mesophilic and thermophilic anaerobic conditions.

    PubMed

    Chu, Xiangqian; Wu, Guangxue; Wang, Jiaquan; Hu, Zhen-Hu

    2015-12-01

    Dry anaerobic digestion of sewage sludge can recover biogas as energy; however, its low C/N ratio limits it as a single substrate in the anaerobic digestion. Rice straw is an abundant agricultural residue in China, which is rich in carbon and can be used as carbon source. In the present study, the performance of dry co-digestion of sewage sludge and rice straw was investigated under mesophilic (35 °C) and thermophilic (55 °C) conditions. The operational factors impacting dry co-digestion of sewage sludge and rice straw such as C/N ratio, moisture content, and initial pH were explored under mesophilic conditions. The results show that low C/N ratios resulted in a higher biogas production rate, but a lower specific biogas yield; low moisture content of 65 % resulted in the instability of the digestion system and a low specific biogas yield. Initial pH ranging 7.0-9.0 did not affect the performance of the anaerobic digestion. The C/N ratio of 26-29:1, moisture content of 70-80 %, and pH 7.0-9.0 resulted in good performance in the dry mesophilic co-digestion of sewage sludge and rice straw. As compared with mesophilic digestion, thermophilic co-digestion of sewage sludge and rice straw significantly enhanced the degradation efficiency of the substrates and the specific biogas yield (p < 0.05) at the conditions of C/N ratio 26:1, moisture content 80 %, and natural initial pH. Although high concentrations of ammonia-nitrogen (NH4-N, 1500 mg/kg wet weight) were formed during thermophilic digestion, there was no obvious inhibition occurred. The results indicated that rice straw can be used as carbon source for the dry co-digestion of sewage sludge under mesophilic and thermophilic conditions.

  4. High-Resolution Characterizations of Grain Boundary Damage and Stress Corrosion Cracks in Cold-Rolled Alloy 690

    NASA Astrophysics Data System (ADS)

    Bruemmer, S. M.; Olszta, M. J.; Toloczko, M. B.; Thomas, L. E.

    Unidirectional cold rolling has been shown to promote intergranular stress corrosion cracking (IGSCC) in alloy 690 tested in PWR primary water. High-resolution scanning (SEM) and transmission electron microscopy (TEM) have been employed to investigate the microstructural reasons for this enhanced susceptibility in two stages, first examining grain boundary damage produced by cold rolling and second by characterization of stress corrosion crack tips. The degree of permanent grain boundary damage from cold rolling was found to depend directly on the initial IG precipitate distribution. Cold rolling to high levels of reduction was discovered to produce small IG voids and cracked carbides in alloys with a high density of grain boundary carbides. For the same degree of cold rolling, alloys with few IG carbides exhibited much less permanent damage. Although this difference in grain boundary damage appears to correlate with measured SCC growth rates, crack tip examinations reveal no interaction between the preexisting voids and cracked carbides with the propagation. In many cases, these features appeared to blunt propagation of IGSCC cracks. High-resolution characterizations are described for cold-rolled alloy 690 CRDM tubing and plate materials to gain insights into IGSCC mechanisms.

  5. Optimization of uncatalyzed steam explosion pretreatment of rapeseed straw for biofuel production.

    PubMed

    López-Linares, Juan C; Ballesteros, Ignacio; Tourán, Josefina; Cara, Cristóbal; Castro, Eulogio; Ballesteros, Mercedes; Romero, Inmaculada

    2015-08-01

    Rapeseed straw constitutes an agricultural residue with great potential as feedstock for ethanol production. In this work, uncatalyzed steam explosion was carried out as a pretreatment to increase the enzymatic digestibility of rapeseed straw. Experimental statistical design and response surface methodology were used to evaluate the influence of the temperature (185-215°C) and the process time (2.5-7.5min). According to the rotatable central composite design applied, 215°C and 7.5min were confirmed to be the optimal conditions, considering the maximization of enzymatic hydrolysis yield as optimization criterion. These conditions led to a maximum yield of 72.3%, equivalent to 81% of potential glucose in pretreated solid. Different configurations for bioethanol production from steam exploded rapeseed straw were investigated using the pretreated solid obtained under optimal conditions as a substrate. As a relevant result, concentrations of ethanol as high as 43.6g/L (5.5% by volume) were obtained as a consequence of using 20% (w/v) solid loading, equivalent to 12.4g ethanol/100g biomass. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Reinforcement of the bio-gas conversion from pyrolysis of wheat straw by hot caustic pre-extraction.

    PubMed

    Zhang, Lilong; Chen, Keli; He, Liang; Peng, Lincai

    2018-01-01

    Pyrolysis has attracted growing interest as a versatile means to convert biomass into valuable products. Wheat straw has been considered to be a promising biomass resource due to its low price and easy availability. However, most of the products obtained from wheat straw pyrolysis are usually of low quality. Hot soda extraction has the advantage of selective dissolution of lignin whilst retaining the carbohydrates. This can selectively convert biomass into high-quality desired products and suppress the formation of undesirable products. The aim of this study was to investigate the pyrolysis properties of wheat straw under different hot caustic pretreatment conditions. Compared with the untreated straw, a greater amount of gas was released and fewer residues were retained in the extracted wheat straw, which was caused by an increase in porosity. When the NaOH loading was 14%, the average pore size of the extracted straw increased by 12% and the cumulative pore volume increased by 157% compared with the untreated straw. The extracted straw obtained from the 14% NaOH extraction was clearly selective for pyrolysis products. On one hand, many lignin pyrolysis products disappeared, and only four main lignin-unit-pyrolysis products were retained. On the other hand, polysaccharide pyrolysis products were enriched. Both propanone and furfural have outstanding peak intensities that could account for approximately 30% of the total pyrolysis products. However, with the excessive addition of NaOH (i.e. > 22% w/w) during pretreatment, the conversion of bio-gas products decreased. Thermogravimetric and low-temperature nitrogen-adsorption analysis showed that the pore structure had been seriously destroyed, leading to the closing of the release paths of the bio-gas and thus increasing the re-polymerisation of small bio-gas molecules. After suitable extraction (14% NaOH loading extraction), a considerable amount (25%) of the soluble components dissolved out of the straw. This

  7. High-speed OH* chemiluminescence imaging of ignition through a shock tube end-wall

    NASA Astrophysics Data System (ADS)

    Troutman, V. A.; Strand, C. L.; Campbell, M. F.; Tulgestke, A. M.; Miller, V. A.; Davidson, D. F.; Hanson, R. K.

    2016-03-01

    A high-speed OH* chemiluminescence imaging diagnostic was developed to image the structure and homogeneity of combustion events behind reflected shock waves in the Stanford Constrained Reaction Volume Shock Tube. An intensified high-repetition-rate imaging system was used to acquire images of OH* chemiluminescence (near 308 nm) through a fused quartz shock tube end-wall window at 10-33 kHz during the combustion of n-heptane (21 % O2/Ar, φ = 0.5). In general, the imaging technique enabled observation of the main ignition event in the core of the shock tube that corresponded to typical markers of ignition (e.g., pressure rise), as well as localized ignition near the wall that preceded the main core ignition event for some conditions. Case studies were performed to illustrate the utility of this novel imaging diagnostic. First, by comparing localized wall ignition events to the core ignition event, the temperature homogeneity of the post-reflected shock gas near the end-wall was estimated to be within 0.5 % for the test condition presented (T=1159 hbox {K}, P=0.25 hbox {MPa}). Second, the effect of a recession in the shock tube wall, created by an observation window, on the combustion event was visualized. Localized ignition was observed near the window, but this disturbance did not propagate to the core of the shock tube before the main ignition event. Third, the effect of shock tube cleanliness was investigated by conducting tests in which the shock tube was not cleaned for multiple consecutive runs. For tests after no cleaning was performed, ignition events were concentrated in the lower half of the shock tube. In contrast, when the shock tube was cleaned, the ignition event was distributed around the entire circumference of the shock tube; validating the cleaning procedure.

  8. Effect of biological pretreatments in enhancing corn straw biogas production.

    PubMed

    Zhong, Weizhang; Zhang, Zhongzhi; Luo, Yijing; Sun, Shanshan; Qiao, Wei; Xiao, Meng

    2011-12-01

    A biological pretreatment with new complex microbial agents was used to pretreat corn straw at ambient temperature (about 20°C) to improve its biodegradability and anaerobic biogas production. A complex microbial agent dose of 0.01% (w/w) and pretreatment time of 15 days were appropriate for biological pretreatment. These treatment conditions resulted in 33.07% more total biogas yield, 75.57% more methane yield, and 34.6% shorter technical digestion time compared with the untreated sample. Analyses of chemical compositions showed 5.81-25.10% reductions in total lignin, cellulose, and hemicellulose contents, and 27.19-80.71% increases in hot-water extractives; these changes contributed to the enhancement of biogas production. Biological pretreatment could be an effective method for improving biodegradability and enhancing the highly efficient biological conversion of corn straw into bioenergy. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Cellulose accessibility and microbial community in solid state anaerobic digestion of rape straw.

    PubMed

    Tian, Jiang-Hao; Pourcher, Anne-Marie; Bureau, Chrystelle; Peu, Pascal

    2017-01-01

    Solid state anaerobic digestion (SSAD) with leachate recirculation is an appropriate method for the valorization of agriculture residues. Rape straw is a massively produced residue with considerable biochemical methane potential, but its degradation in SSAD remains poorly understood. A thorough study was conducted to understand the performance of rape straw as feedstock for laboratory solid state anaerobic digesters. We investigated the methane production kinetics of rape straw in relation to cellulose accessibility to cellulase and the microbial community. Improving cellulose accessibility through milling had a positive influence on both the methane production rate and methane yield. The SSAD of rape straw reached 60% of its BMP in a 40-day pilot-scale test. Distinct bacterial communities were observed in digested rape straw and leachate, with Bacteroidales and Sphingobacteriales as the most abundant orders, respectively. Archaeal populations showed no phase preference and increased chronologically. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. High Spatial Resolution Thermal Satellite Technologies

    NASA Technical Reports Server (NTRS)

    Ryan, Robert

    2003-01-01

    This document in the form of viewslides, reviews various low-cost alternatives to high spatial resolution thermal satellite technologies. There exists no follow-on to Landsat 7 or ASTER high spatial resolution thermal systems. This document reviews the results of the investigation in to the use of new technologies to create a low-cost useful alternative. Three suggested technologies are examined. 1. Conventional microbolometer pushbroom modes offers potential for low cost Landsat Data Continuity Mission (LDCM) thermal or ASTER capability with at least 60-120 ground sampling distance (GSD). 2. Backscanning could produce MultiSpectral Thermal Imager performance without cooled detectors. 3. Cooled detector could produce hyperspectral thermal class system or extremely high spatial resolution class instrument.

  11. Barley hulls and straw constituents and emulsifying properties of their hemicelluloses

    USDA-ARS?s Scientific Manuscript database

    Barley hulls (husks) are potential by-products of barley ethanol production. Barley straw is an abundant biomass in the regions producing barley for malting, feeds, and fuel ethanol. Both barley hulls and straw contain valuable hemicelluloses (arabinoxylans) and other useful carbohydrate and non-car...

  12. Characterization of domestic and foreign image intensifier tubes

    NASA Astrophysics Data System (ADS)

    Bender, Edward J.; Wood, Michael V.; Hosek, Daniel J.; Hart, Steve D.

    2013-06-01

    The market for military-use Generation 2 and Generation 3 image intensifier (I2) tubes has become truly global, with major manufacturers and customers spanning five continents. This worldwide market is becoming increasingly important to U.S. manufacturers, with the majority of U.S. Army intensifier fielding having been completed in 2012. Given this keen global competition, it is not surprising that the advertised tube performance of a given source is often discounted by competitors, and the customers have no objective "honest broker" to determine the relative accuracy of these claims. To help fill this void, the U.S. Army RDECOM CERDEC NVESD recently measured a number of domestic and foreign image intensifier tubes, using consistent test equipment/procedures with which the U.S. industry must correlate for Army tube deliveries. Data and analysis will be presented for the major tube parameters of luminance gain, equivalent background input (EBI), signal-to-noise ratio (SNR), limiting resolution, halo, and modulation transfer function (MTF). The bright-light resolution provided by various auto-gated and non-gated tubes will also be addressed, since this area has been an important factor in the international market. RDECOM CERDEC NVESD measurement data will be compared to the corresponding manufacturer specifications whenever possible.

  13. High resolution projection X-ray microscope equipped with fluorescent X-ray analyzer and its applications

    NASA Astrophysics Data System (ADS)

    Minami, K.; Saito, Y.; Kai, H.; Shirota, K.; Yada, K.

    2009-09-01

    We have newly developed an open type fine-focus X-ray tube "TX-510" to realize a spatial resolution of 50nm and to radiate low energy characteristic X-rays for giving high absorption contrast to images of microscopic organisms. The "TX-510" employs a ZrO/W(100) Schottky emitter and an "In-Lens Field Emission Gun". The key points of the improvements are (1) reduced spherical aberration coefficient of magnetic objective lens, (2) easy and accurate focusing, (3) newly designed astigmatism compensator, (4) segmented thin film target for interchanging the target materials by electron beam shift and (5) fluorescent X-ray analysis system.

  14. Tomographic Small-Animal Imaging Using a High-Resolution Semiconductor Camera

    PubMed Central

    Kastis, GA; Wu, MC; Balzer, SJ; Wilson, DW; Furenlid, LR; Stevenson, G; Barber, HB; Barrett, HH; Woolfenden, JM; Kelly, P; Appleby, M

    2015-01-01

    We have developed a high-resolution, compact semiconductor camera for nuclear medicine applications. The modular unit has been used to obtain tomographic images of phantoms and mice. The system consists of a 64 x 64 CdZnTe detector array and a parallel-hole tungsten collimator mounted inside a 17 cm x 5.3 cm x 3.7 cm tungsten-aluminum housing. The detector is a 2.5 cm x 2.5 cm x 0.15 cm slab of CdZnTe connected to a 64 x 64 multiplexer readout via indium-bump bonding. The collimator is 7 mm thick, with a 0.38 mm pitch that matches the detector pixel pitch. We obtained a series of projections by rotating the object in front of the camera. The axis of rotation was vertical and about 1.5 cm away from the collimator face. Mouse holders were made out of acrylic plastic tubing to facilitate rotation and the administration of gas anesthetic. Acquisition times were varied from 60 sec to 90 sec per image for a total of 60 projections at an equal spacing of 6 degrees between projections. We present tomographic images of a line phantom and mouse bone scan and assess the properties of the system. The reconstructed images demonstrate spatial resolution on the order of 1–2 mm. PMID:26568676

  15. Building a Straw Bridge

    ERIC Educational Resources Information Center

    Teaching Science, 2015

    2015-01-01

    This project is for a team of students (groups of two or three are ideal) to design and construct a model of a single-span bridge, using plastic drinking straws as the building material. All steps of the design, construction, testing and critiquing stages should be recorded by students in a journal. Students may like to include labelled diagrams,…

  16. High Resolution Melting (HRM) for High-Throughput Genotyping-Limitations and Caveats in Practical Case Studies.

    PubMed

    Słomka, Marcin; Sobalska-Kwapis, Marta; Wachulec, Monika; Bartosz, Grzegorz; Strapagiel, Dominik

    2017-11-03

    High resolution melting (HRM) is a convenient method for gene scanning as well as genotyping of individual and multiple single nucleotide polymorphisms (SNPs). This rapid, simple, closed-tube, homogenous, and cost-efficient approach has the capacity for high specificity and sensitivity, while allowing easy transition to high-throughput scale. In this paper, we provide examples from our laboratory practice of some problematic issues which can affect the performance and data analysis of HRM results, especially with regard to reference curve-based targeted genotyping. We present those examples in order of the typical experimental workflow, and discuss the crucial significance of the respective experimental errors and limitations for the quality and analysis of results. The experimental details which have a decisive impact on correct execution of a HRM genotyping experiment include type and quality of DNA source material, reproducibility of isolation method and template DNA preparation, primer and amplicon design, automation-derived preparation and pipetting inconsistencies, as well as physical limitations in melting curve distinction for alternative variants and careful selection of samples for validation by sequencing. We provide a case-by-case analysis and discussion of actual problems we encountered and solutions that should be taken into account by researchers newly attempting HRM genotyping, especially in a high-throughput setup.

  17. High Resolution Melting (HRM) for High-Throughput Genotyping—Limitations and Caveats in Practical Case Studies

    PubMed Central

    Słomka, Marcin; Sobalska-Kwapis, Marta; Wachulec, Monika; Bartosz, Grzegorz

    2017-01-01

    High resolution melting (HRM) is a convenient method for gene scanning as well as genotyping of individual and multiple single nucleotide polymorphisms (SNPs). This rapid, simple, closed-tube, homogenous, and cost-efficient approach has the capacity for high specificity and sensitivity, while allowing easy transition to high-throughput scale. In this paper, we provide examples from our laboratory practice of some problematic issues which can affect the performance and data analysis of HRM results, especially with regard to reference curve-based targeted genotyping. We present those examples in order of the typical experimental workflow, and discuss the crucial significance of the respective experimental errors and limitations for the quality and analysis of results. The experimental details which have a decisive impact on correct execution of a HRM genotyping experiment include type and quality of DNA source material, reproducibility of isolation method and template DNA preparation, primer and amplicon design, automation-derived preparation and pipetting inconsistencies, as well as physical limitations in melting curve distinction for alternative variants and careful selection of samples for validation by sequencing. We provide a case-by-case analysis and discussion of actual problems we encountered and solutions that should be taken into account by researchers newly attempting HRM genotyping, especially in a high-throughput setup. PMID:29099791

  18. Alkaline-assisted screw press pretreatment affecting enzymatic hydrolysis of wheat straw.

    PubMed

    Yan, Qingqi; Wang, Yumei; Rodiahwati, Wawat; Spiess, Antje; Modigell, Michael

    2017-02-01

    Screw press processing of biomass can be considered as a suitable mechanically based pretreatment for biofuel production since it disrupts the structure of lignocellulosic biomass with high shear and pressure forces. The combination with chemical treatment has been suggested to increase the conversion of lignocellulosic biomass to fermentable sugars. Within the study, the synergetic effect of alkaline (sodium hydroxide, NaOH) soaking and screw press pretreatment on wheat straw was evaluated based on, e.g., sugar recovery and energy efficiency. After alkaline soaking (at 0.1 M for 30 min) and sequential screw press pretreatment with various screw press configurations and modified screw barrel, the lignin content of pretreated wheat straw was quantified. In addition, the structure of pretreated wheat straw was investigated by scanning electron microscopy and measurement of specific surface area. It could be shown that removal of lignin is more important than increase of surface area of the biomass to reach a high sugar recovery. The rate constant of the enzymatic hydrolysis increased from 1.1 × 10 -3  1/h for the non-treated material over 2.3 × 10 -3  1/h for the alkaline-soaked material to 26.9 × 10 -3  1/h for alkaline-assisted screw press pretreated material, indicating a nearly 25-fold improvement of the digestibility by the combined chemo-mechanical pretreatment. Finally, the screw configuration was found to be an important factor for improving the sugar recovery and for reducing the specific energy consumption of the screw press pretreatment.

  19. Effect of wheat-maize straw return on the fate of nitrate in groundwater in the Huaihe River Basin, China.

    PubMed

    Li, Rongfu; Ruan, Xiaohong; Bai, Ying; Ma, Tianhai; Liu, Congqiang

    2017-08-15

    Straw return is becoming a routine practice in disposing of crop residues worldwide. However, the potential effect of such operation on the chemistry of local groundwater is not well documented. Here, shallow groundwater in an area where wheat-maize straw return is practiced was analyzed, and the seasonal changes in the nitrate concentration and the isotope compositions of NO 3 - and H 2 O were determined along two flow paths. Measured δD and δ 18 O in waters indicated that the groundwater was mainly recharged by atmospheric precipitation, while measured δ 15 N and δ 18 O in nitrate suggested that the sources for groundwater NO 3 - included urea fertilizer, soil nitrogen, and sewage/manure. Reduced NO 3 - concentrations coincided with an enrichment of organic matter in the groundwater of the straw return area, revealing an environmental condition that facilitates nitrate reduction, whereas increased δ 15 N-NO 3 - and δ 18 O-NO 3 - along the flow path suggested the occurrence of denitrification. Further analyses showed that, compared to the cases in the absence of straw return, as much as 80% and 90% of groundwater nitrate was removed in low and high water seasons in the straw return area, pointing to a potential positive effect of straw return to groundwater quality. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. An Inclusive Investigation on Conceivable Performance of Rice Straw Incinerated Electricity Generation

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Subhadeep; Mohanta, Subhajit

    2018-06-01

    Biomass energy is one of the potential renewable energy sources which occupy 77% of the available natural resources of the world. In India, agro residues constitute a major part of the total annual production of the biomass resource. Rice is the major crop in India that leaves substantial quantity of straw in the field. 34% of rice straw residue produced in the country is surplus and is either left in the field as uncollected or to a large extent open-field burnt. Thus, the unutilized rice straw is found promising for heat and power generation either through incineration (direct combustion) or thermo chemical conversion. This present work envisages the comprehensive performative evaluation of a rice straw supported biomass incineration power plant mainly through plant performance characterization, plant economics, and co-firing issues with emission analysis.

  1. An Inclusive Investigation on Conceivable Performance of Rice Straw Incinerated Electricity Generation

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Subhadeep; Mohanta, Subhajit

    2018-03-01

    Biomass energy is one of the potential renewable energy sources which occupy 77% of the available natural resources of the world. In India, agro residues constitute a major part of the total annual production of the biomass resource. Rice is the major crop in India that leaves substantial quantity of straw in the field. 34% of rice straw residue produced in the country is surplus and is either left in the field as uncollected or to a large extent open-field burnt. Thus, the unutilized rice straw is found promising for heat and power generation either through incineration (direct combustion) or thermo chemical conversion. This present work envisages the comprehensive performative evaluation of a rice straw supported biomass incineration power plant mainly through plant performance characterization, plant economics, and co-firing issues with emission analysis.

  2. High-voltage supply for neutron tubes in well-logging applications

    DOEpatents

    Humphreys, D.R.

    1982-09-15

    A high voltage supply is provided for a neutron tube used in well logging. The biased pulse supply of the invention combines DC and full pulse techniques and produces a target voltage comprising a substantial negative DC bias component on which is superimposed a pulse whose negative peak provides the desired negative voltage level for the neutron tube. The target voltage is preferably generated using voltage doubling techniques and employing a voltage source which generates bipolar pulse pairs having an amplitude corresponding to the DC bias level.

  3. High voltage supply for neutron tubes in well logging applications

    DOEpatents

    Humphreys, D. Russell

    1989-01-01

    A high voltage supply is provided for a neutron tube used in well logging. The "biased pulse" supply of the invention combines DC and "full pulse" techniques and produces a target voltage comprising a substantial negative DC bias component on which is superimposed a pulse whose negative peak provides the desired negative voltage level for the neutron tube. The target voltage is preferably generated using voltage doubling techniques and employing a voltage source which generates bipolar pulse pairs having an amplitude corresponding to the DC bias level.

  4. Economic value of urea-treated straw fed to lactating buffaloes during the dry season in Nepal.

    PubMed

    Chemjong, P B

    1991-08-01

    An experiment was conducted to study the effects of feeding urea-treated rice straw to lactating buffaloes in the Koshi Hills. Six pairs of similar buffaloes on farms were selected. All were given a conventional diet based on rice straw for four weeks, then one of each pair was given 15 to 20 kg/day of urea-treated rice straw for a period of four weeks while the control group received untreated rice straw. In the final four week period all animals were given the conventional diet. Feeding straw treated with 4% urea increased the voluntary intake of straw by 25% and increased milk yield by 1.6 litres/day compared with buffaloes fed the conventional diet containing untreated straw. Milk production remained elevated after the four-week treatment period had finished. The results show that buffalo cows fed urea-treated straw achieved better weight gain, and milk yield increased significantly (P less than 0.01) compared with the control animals. During the treatment period the net benefit was 4.0 (i.e. US$1.16) Nepalese currency rupees (NCRs) per day and the incremental rate of return was 46 per cent. Moreover, in the four weeks following the treatment period the net benefit was 10.0 NCRs (i.e. US$0.40) per day. Ensiling rice straw with 4% urea can be recommended as a safe, economical and suitable method for improving the nutritional value of rice straw on small farms in Nepal thus increasing milk production and liveweight of lactating buffaloes. The practice of feeding urea-treated straw is economic for farmers during the dry season from January to April.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. [Effect of straw-returning on the storage and distribution of different active fractions of soil organic carbon].

    PubMed

    Wang, Hul; Wang, Xu-dong; Tian, Xiao-hong

    2014-12-01

    The impacts of straw mulching and returning on the storage of soil dissolved organic carbon (DOC), particulate organic carbon (POC) and mineral associated organic carbon (MOC), and their proportions to the total organic carbon (TOC) were studied based on a field experiment. The results showed that compared to the treatment of wheat straw soil-returning (WR), the storage of TOC and MOC decreased by 4.1% and 9.7% respectively in 0-20 cm soil in the treatment with wheat straw mulching (WM), but the storage of DOC and POC increased by 207.7% and 11.9%, and TOC and POC increased significantly in 20-40 cm soil. Compared to the treatment with maize straw soil-returning (MR), the storage of TOC and MOC in the plough pan soil of the treatment with maize straw mulching (MM) increased by 13.6% and 14.6% , respectively. Compared to the WR-MR treatment, the storage of TOC and MOC in top soil (0-20 icm) significantly decreased by 8.5% and 10.3% respectively in WM-MM treatment. The storage of TOC, and POC in top soil was significantly higher in the treatments with maize straw soil-returning or mulching than that with wheat straw. Compared to the treatment without straw (CK), the storage of TOC in top soil increased by 5.2% to 18.0% in the treatments with straw returning or mulching in the six modes (WM, WR, MM, MR, WM-MM,WR-MR) (P<0.05), but the storage of TOC in the plough pan soil decreased by 8.0% to 11.5% (P<0.05) except for the treatments of WM and MM. The storage of DOC and DOC/TOC ratio decreased significantly in top soil in the treatments with straw mulching or returning in six modes. The storage of POC and POC/TOC ratio in WM and WM-MM treatments, MOC and MOC/TOC ratio in WR treatment, increased significantly in top soil. In the other three treatments with straw mulching and returning (MM, MR, WR-MR), the storage of POC and MOC increased significantly in top soil. These results suggested that straw mulching had the potential to accumulate active organic carbon fraction

  6. The properties of pellets from mixing bamboo and rice straw

    Treesearch

    Zhijia Liu; Xing' e Liu; Benhua Fei; Zehui Jiang; Zhiyong Cai; Yan Yu

    2013-01-01

    Rice straw pellets are the main type of biomass solid fuel and have great potential as a bioenergy resource of the future in China. But it also showed important problems because of its high content of ashes and its low gross calorific value, reducing the possibility to be used in domestic heating. It was certified that mixing different types of biomass materials was...

  7. [Effects of nitrogen application on decomposition and nutrient release of returned maize straw in Guanzhong Plain, Northwest China].

    PubMed

    Huang, Ting Miao; Wang, Zhao Hui; Hou, Yang Yi; Gu, Chi Ming; Li, Xiao; Zheng, Xian Feng

    2017-07-18

    With 15 N isotope labeled maize straw in nylon net bags and buried in the wheat field at two N rates of 0 and 200 kg N·hm -2 , the effects of nitrogen application on the decomposition of straw dry matter and the release dynamics of carbon, nitrogen, phosphorus and potassium (C, N, P and K) after maize straw retention were investigated in the winter wheat-summer maize rotation system in Guanzhong Plain, Shaanxi, China. Results showed that N application did not affect the decomposition of the returned straw C and dry matter, but promoted the release of P and inhibited the release of N and K from straw during sowing to wintering periods of winter wheat. From the grain filling to the harvest of winter wheat, the decomposition of the returned straw and the release of N, P and K were not affected, but the release of straw C was significantly enhanced by N application. The release dynamic of straw C was synchronized with the decomposition of the dry matter, and the C/N of straw declined gradually with the extension of wheat growing. Until the harvest of winter wheat, the accumulative decomposition rate of straw dry matter was less than 50%, and the total straw C release rate was around 47.9% to 51.1%. The C/N ratio of the returned straw was decreased from 32.2 to 20.2 and 17.9, respectively at N rates of 0 and 200 kg N·hm -2 . From sowing to harvest of winter wheat, the net release of N, P and K from the straw was observed. The N release was 7.2-9.4 kg·hm -2 and 12.7%-16.6% of the total straw N, and the P release was 1.29-1.44 kg·hm -2 and 29.0%-32.4% of the total straw P, while a great deal of K was released quickly, with approximately 80% of the straw K released before wintering, 51.8-52.5 kg·hm -2 and 90.5%-91.7% of the total straw K released at wheat harvest. It was suggested that the K fertilizer application should be decreased for the winter wheat due to the great amount K release from the returned maize straw, and an extra amount of N and P fertilizer should

  8. Ultra-high resolution coded wavefront sensor.

    PubMed

    Wang, Congli; Dun, Xiong; Fu, Qiang; Heidrich, Wolfgang

    2017-06-12

    Wavefront sensors and more general phase retrieval methods have recently attracted a lot of attention in a host of application domains, ranging from astronomy to scientific imaging and microscopy. In this paper, we introduce a new class of sensor, the Coded Wavefront Sensor, which provides high spatio-temporal resolution using a simple masked sensor under white light illumination. Specifically, we demonstrate megapixel spatial resolution and phase accuracy better than 0.1 wavelengths at reconstruction rates of 50 Hz or more, thus opening up many new applications from high-resolution adaptive optics to real-time phase retrieval in microscopy.

  9. A feasibility study of hydrothermal treatment of rice straw for multi-production of solid fuel and liquid fertilizer

    NASA Astrophysics Data System (ADS)

    Samnang, S.; Prawisudha, P.; Pasek, A. D.

    2017-05-01

    Energy use has increased steadily over the last century due to population and industry increase. With the growing of GHG, biomass becomes an essential contributor to the world energy need. Indonesia is the third rice producer in the world. Rice straw has been converted to solid fuel by Hydrothermal Treatment (HT) for electricity generation. HT is a boiling solid organic or inorganic substance in water at high pressure and temperature within a holding time. HT converts high moisture content biomass into dried, uniform, pulverized, and higher energy density solid fuels. HT can effectively transport nutrient components in biomass into a liquid product known as fertilizer. This paper deals with an evaluation of hydrothermal treatment of rice straw for solid fuel and liquid fertilizer. An investigation of rice straw characteristics were completed for Bandung rice straw with various condition of temperature, biomass-water ratio, and holding time in the purpose to find the changes of calorific value for solid product and (N, P, K, and pH) for liquid product. The results showed that solid product at 225 °C and 90 min consists in a heating value 13.8 MJ/kg equal to lignite B. Liquid product at 225 °C and 90 min had the NPK content similar to that of micronutrients compound liquid fertilizer. The dried solid product should be useful for Coal Fire Power Plant, and the liquid product is suitable for plants. This research proves that hydrothermal process can be applied to rice straw to produce solid fuel and liquid fertilizer with adequate quality.

  10. Modeling the greenhouse gas budget of straw returning in China: feasibility of mitigation and countermeasures.

    PubMed

    Lu, Fei; Wang, Xiao-Ke; Han, Bing; Ouyang, Zhi-Yun; Zheng, Hua

    2010-05-01

    Straw returning is considered to be one of the most promising carbon sequestration measures in China's cropland. A compound model, namely "Straw Returning and Burning Model-Expansion" (SRBME), was built to estimate the net mitigation potential, economic benefits, and air pollutant reduction of straw returning. Three scenarios, that is, baseline, "full popularization of straw returning (FP)," and "full popularization of straw returning and precision fertilization (FP + P)," were set to reflect popularization of straw returning. The results of the SRBME indicated that (1) compared with the soil carbon sequestration of 13.37 Tg/yr, the net mitigation potentials, which were 6.328 Tg/yr for the FP scenario and 9.179 Tg/yr for the FP + P scenario, had different trends when the full budget of the greenhouse gases was considered; (2) when the feasibility in connection with greenhouse gas (GHG) mitigation, economic benefits, and environmental benefits was taken into consideration, straw returning was feasible in 15 provinces in the FP scenario, with a total net mitigation potential of 7.192 TgCe/yr and the total benefits of CNY 1.473 billion (USD 216.6 million); (3) in the FP + P scenario, with the implementation of precision fertilization, straw returning was feasible in 26 provinces with a total net mitigation potential of 10.39 TgCe/yr and the total benefits of CNY 5.466 billion (USD 803.8 million); (4) any extent of change in the treatment of straw from being burnt to being returned would contribute to air pollution reduction; (5) some countermeasures, such as CH(4) reduction in rice paddies, precision fertilization, financial support, education and propaganda, would promote the feasibility of straw returning as a mitigation measure.

  11. Processes of heat and mass transfer in straw bales using flue gasses as a drying medium

    NASA Astrophysics Data System (ADS)

    Goryl, Wojciech; Szubel, Mateusz; Filipowicz, Mariusz

    2016-03-01

    Moisture content is a main problem of using straw in form of bales for energy production. The paper presents possibility of straw drying in dedicated, innovative and patented in Poland straw dryers which using flue gasses as a drying medium. Paper presents an improved way of drying which proved to be very sufficient. Temperature and humidity of straw during the process of drying were measured. The measurements helped understand and perform numerical model of heat and mass transfer inside the straw bale. By using CFD codes it was possible to perform analysis of phenomenon occurring inside the dried straw bale. Based on the CFD model, proposals of the optimization and improvement process of drying have been discussed. Experimental and computational data have been compared in terms of convergence. A satisfying degree of agreement has been achieved. Applying improved drying method, homogenous field of moisture content and temperature in the straw bale is achieved in a very cost effective way.

  12. High-speed imaging of inhomogeneous ignition in a shock tube

    NASA Astrophysics Data System (ADS)

    Tulgestke, A. M.; Johnson, S. E.; Davidson, D. F.; Hanson, R. K.

    2018-05-01

    Homogeneous and inhomogeneous ignition of real and surrogate fuels were imaged in two Stanford shock tubes, revealing the influence of small particle fragmentation. n-Heptane, iso-octane, and Jet A were studied, each mixed in an oxidizer containing 21% oxygen and ignited at low temperatures (900-1000 K), low pressures (1-2 atm), with an equivalence ratio of 0.5. Visible images (350-1050 nm) were captured through the shock tube endwall using a high-speed camera. Particles were found to arrive near the endwalls of the shock tubes approximately 5 ms after reflection of the incident shock wave. Reflected shock wave experiments using diaphragm materials of Lexan and steel were investigated. Particles collected from the shock tubes after each experiment were found to match the material of the diaphragm burst during the experiment. Following each experiment, the shock tubes were cleaned by scrubbing with cotton cloths soaked with acetone. Particles were observed to fragment after arrival near the endwall, often leading to inhomogeneous ignition of the fuel. Distinctly more particles were observed during experiments using steel diaphragms. In experiments exhibiting inhomogeneous ignition, flames were observed to grow radially until all the fuel within the cross section of the shock tube had been consumed. The influence of diluent gas (argon or helium) was also investigated. The use of He diluent gas was found to suppress the number of particles capable of causing inhomogeneous flames. The use of He thus allowed time history studies of ignition to extend past the test times that would have been limited by inhomogeneous ignition.

  13. Enhanced High Resolution RBS System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pollock, Thomas J.; Hass, James A.; Klody, George M.

    2011-06-01

    Improvements in full spectrum resolution with the second NEC high resolution RBS system are summarized. Results for 50 A ring TiN/HfO films on Si yielding energy resolution on the order of 1 keV are also presented. Detector enhancements include improved pulse processing electronics, upgraded shielding for the MCP/RAE detector, and reduced noise generated from pumping. Energy resolution measurements on spectra front edge coupled with calculations using 0.4mStr solid angle show that beam energy spread at 400 KeV from the Pelletron registered accelerator is less than 100 eV. To improve user throughput, magnet control has been added to the automatic datamore » collection. Depth profiles derived from experimental data are discussed. For the thin films profiled, depth resolutions were on the Angstrom level with the non-linear energy/channel conversions ranging from 100 to 200 eV.« less

  14. Influence of rice straw-derived dissolved organic matter on lactic acid fermentation by Rhizopus oryzae.

    PubMed

    Chen, Xingxuan; Wang, Xiahui; Xue, Yiyun; Zhang, Tian-Ao; Li, Yuhao; Hu, Jiajun; Tsang, Yiu Fai; Zhang, Hongsheng; Gao, Min-Tian

    2018-06-01

    Rice straw can be used as carbon sources for lactic acid fermentation. However, only a small amount of lactic acid is produced even though Rhizopus oryzae can consume glucose in rice straw-derived hydrolysates. This study correlated the inhibitory effect of rice straw with rice straw-derived dissolved organic matter (DOM). Lactic acid fermentations with and without DOM were conducted to investigate the effect of DOM on lactic acid fermentation by R. oryzae. Fermentation using control medium with DOM showed a similar trend to fermentation with rice straw-derived hydrolysates, showing that DOM contained the major inhibitor of rice straw. DOM assay indicated that it mainly consisted of polyphenols and polysaccharides. The addition of polyphenols and polysaccharides derived from rice straw confirmed that lactic acid fermentation was promoted by polysaccharides and significantly inhibited by polyphenols. The removal of polyphenols also improved lactic acid production. However, the loss of polysaccharides during the removal of polyphenols resulted in low glucose consumption. This study is the first to investigate the effects of rice straw-derived DOM on lactic acid fermentation by R. oryzae. The results may provide a theoretical basis for identifying inhibitors and promoters associated with lactic acid fermentation and for establishing suitable pretreatment methods. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  15. Application of the denitrification-decomposition model to predict carbon dioxide emissions under alternative straw retention methods.

    PubMed

    Chen, Can; Chen, Deli; Pan, Jianjun; Lam, Shu Kee

    2013-01-01

    Straw retention has been shown to reduce carbon dioxide (CO2) emission from agricultural soils. But it remains a big challenge for models to effectively predict CO2 emission fluxes under different straw retention methods. We used maize season data in the Griffith region, Australia, to test whether the denitrification-decomposition (DNDC) model could simulate annual CO2 emission. We also identified driving factors of CO2 emission by correlation analysis and path analysis. We show that the DNDC model was able to simulate CO2 emission under alternative straw retention scenarios. The correlation coefficients between simulated and observed daily values for treatments of straw burn and straw incorporation were 0.74 and 0.82, respectively, in the straw retention period and 0.72 and 0.83, respectively, in the crop growth period. The results also show that simulated values of annual CO2 emission for straw burn and straw incorporation were 3.45 t C ha(-1) y(-1) and 2.13 t C ha(-1) y(-1), respectively. In addition the DNDC model was found to be more suitable in simulating CO2 mission fluxes under straw incorporation. Finally the standard multiple regression describing the relationship between CO2 emissions and factors found that soil mean temperature (SMT), daily mean temperature (T mean), and water-filled pore space (WFPS) were significant.

  16. Application of the Denitrification-Decomposition Model to Predict Carbon Dioxide Emissions under Alternative Straw Retention Methods

    PubMed Central

    Chen, Deli; Pan, Jianjun; Lam, Shu Kee

    2013-01-01

    Straw retention has been shown to reduce carbon dioxide (CO2) emission from agricultural soils. But it remains a big challenge for models to effectively predict CO2 emission fluxes under different straw retention methods. We used maize season data in the Griffith region, Australia, to test whether the denitrification-decomposition (DNDC) model could simulate annual CO2 emission. We also identified driving factors of CO2 emission by correlation analysis and path analysis. We show that the DNDC model was able to simulate CO2 emission under alternative straw retention scenarios. The correlation coefficients between simulated and observed daily values for treatments of straw burn and straw incorporation were 0.74 and 0.82, respectively, in the straw retention period and 0.72 and 0.83, respectively, in the crop growth period. The results also show that simulated values of annual CO2 emission for straw burn and straw incorporation were 3.45 t C ha−1 y−1 and 2.13 t C ha−1 y−1, respectively. In addition the DNDC model was found to be more suitable in simulating CO2 mission fluxes under straw incorporation. Finally the standard multiple regression describing the relationship between CO2 emissions and factors found that soil mean temperature (SMT), daily mean temperature (T mean), and water-filled pore space (WFPS) were significant. PMID:24453915

  17. Fermentation Quality and Additives: A Case of Rice Straw Silage

    PubMed Central

    Oladosu, Yusuff; Magaji, Usman; Hussin, Ghazali; Ramli, Asfaliza; Miah, Gous

    2016-01-01

    Rice cultivation generates large amount of crop residues of which only 20% are utilized for industrial and domestic purposes. In most developing countries especially southeast Asia, rice straw is used as part of feeding ingredients for the ruminants. However, due to its low protein content and high level of lignin and silica, there is limitation to its digestibility and nutritional value. To utilize this crop residue judiciously, there is a need for improvement of its nutritive value to promote its utilization through ensiling. Understanding the fundamental principle of ensiling is a prerequisite for successful silage product. Prominent factors influencing quality of silage product include water soluble carbohydrates, natural microbial population, and harvesting conditions of the forage. Additives are used to control the fermentation processes to enhance nutrient recovery and improve silage stability. This review emphasizes some practical aspects of silage processing and the use of additives for improvement of fermentation quality of rice straw. PMID:27429981

  18. Fermentation Quality and Additives: A Case of Rice Straw Silage.

    PubMed

    Oladosu, Yusuff; Rafii, Mohd Y; Abdullah, Norhani; Magaji, Usman; Hussin, Ghazali; Ramli, Asfaliza; Miah, Gous

    2016-01-01

    Rice cultivation generates large amount of crop residues of which only 20% are utilized for industrial and domestic purposes. In most developing countries especially southeast Asia, rice straw is used as part of feeding ingredients for the ruminants. However, due to its low protein content and high level of lignin and silica, there is limitation to its digestibility and nutritional value. To utilize this crop residue judiciously, there is a need for improvement of its nutritive value to promote its utilization through ensiling. Understanding the fundamental principle of ensiling is a prerequisite for successful silage product. Prominent factors influencing quality of silage product include water soluble carbohydrates, natural microbial population, and harvesting conditions of the forage. Additives are used to control the fermentation processes to enhance nutrient recovery and improve silage stability. This review emphasizes some practical aspects of silage processing and the use of additives for improvement of fermentation quality of rice straw.

  19. Straw and Xylan Utilization by Pure Cultures of Nitrogen-Fixing Azospirillum spp

    PubMed Central

    Halsall, Dorothy M.; Turner, Graham L.; Gibson, Alan H.

    1985-01-01

    Azospirillum spp. were shown to utilize both straw and xylan, a major component of straw, for growth with an adequate combined N supply and also under N-limiting conditions. For most strains examined, a semisolid agar medium was satisfactory, but several strains appeared to be capable of slow metabolism of the agar. Subsequently, experiments were done with acid-washed sand supplemented with various carbon sources. In these experiments, authenticated laboratory strains, and all 16 recent field isolates from straw-amended soils, of both A. brasilense and A. lipoferum possessed the ability to utilize straw and xylan as energy sources for nitrogen fixation. Neither carboxymethyl cellulose nor cellulose was utilized. The strains and isolates differed in their abilities to utilize xylan and straw and in the efficiency of nitrogenase activity (CO2/C2H2 ratio). Reasonable levels of activity could be maintained for at least 14 days in the sand cultures. Nitrogenase activity (acetylene reduction) was confirmed by 15N2 incorporation. The level of nitrogenase activity observed was dependent on the time of the addition of acetylene to the culture vessels. PMID:16346730

  20. Cryoprotectant redistribution along the frozen straw probed by Raman spectroscopy.

    PubMed

    Karpegina, Yu A; Okotrub, K A; Brusentsev, E Yu; Amstislavsky, S Ya; Surovtsev, N V

    2016-04-01

    The distribution of cryoprotectant (10% glycerol) and ice along the frozen plastic straw (the most useful container for freezing mammalian semen, oocytes and embryos) was studied by Raman scattering technique. Raman spectroscopy being a contactless, non-invasive tool was applied for the straws filled with the cryoprotectant solution and frozen by controlled rate programs commonly used for mammalian embryos freezing. Analysis of Raman spectra measured at different points along the straw reveals a non-uniform distribution of the cryoprotectant. The ratio between non-crystalline solution and ice was found to be increased by several times at the bottom side of the solution column frozen by the standard freezing program. The increase of the cryoprotectant fraction occurs in the area where embryos or oocytes are normally placed during their freezing. Possible effects of the cooling rate and the ice nucleation temperature on the cryoprotectant fraction at the bottom side of the solution column were considered. Our findings highlight that the ice fraction around cryopreserved embryos or oocytes can differ significantly from the averaged one in the frozen plastic straws. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. High resolution data acquisition

    DOEpatents

    Thornton, G.W.; Fuller, K.R.

    1993-04-06

    A high resolution event interval timing system measures short time intervals such as occur in high energy physics or laser ranging. Timing is provided from a clock, pulse train, and analog circuitry for generating a triangular wave synchronously with the pulse train (as seen in diagram on patent). The triangular wave has an amplitude and slope functionally related to the time elapsed during each clock pulse in the train. A converter forms a first digital value of the amplitude and slope of the triangle wave at the start of the event interval and a second digital value of the amplitude and slope of the triangle wave at the end of the event interval. A counter counts the clock pulse train during the interval to form a gross event interval time. A computer then combines the gross event interval time and the first and second digital values to output a high resolution value for the event interval.

  2. High resolution data acquisition

    DOEpatents

    Thornton, Glenn W.; Fuller, Kenneth R.

    1993-01-01

    A high resolution event interval timing system measures short time intervals such as occur in high energy physics or laser ranging. Timing is provided from a clock (38) pulse train (37) and analog circuitry (44) for generating a triangular wave (46) synchronously with the pulse train (37). The triangular wave (46) has an amplitude and slope functionally related to the time elapsed during each clock pulse in the train. A converter (18, 32) forms a first digital value of the amplitude and slope of the triangle wave at the start of the event interval and a second digital value of the amplitude and slope of the triangle wave at the end of the event interval. A counter (26) counts the clock pulse train (37) during the interval to form a gross event interval time. A computer (52) then combines the gross event interval time and the first and second digital values to output a high resolution value for the event interval.

  3. Registration of 'Linkert' spring wheat with good straw strength and adult plant resistance to the Ug99 family of stem rust races

    USDA-ARS?s Scientific Manuscript database

    Straw strength is one of the most important criteria for spring wheat cultivar selection in the north central U.S. ‘Linkert’ (PI 672164) hard red spring wheat was released by the University of Minnesota Agricultural Experiment Station in 2013 and has very good straw strength, high grain protein con...

  4. Gas tube-switched high voltage DC power converter

    DOEpatents

    She, Xu; Bray, James William; Sommerer, Timothy John; Chokhawala, Rahul

    2018-05-15

    A direct current (DC)-DC converter includes a transformer and a gas tube-switched inverter circuit. The transformer includes a primary winding and a secondary winding. The gas tube-switched inverter circuit includes first and second inverter load terminals and first and second inverter input terminals. The first and second inverter load terminals are coupled to the primary winding. The first and second inverter input terminals are couplable to a DC node. The gas tube-switched inverter circuit further includes a plurality of gas tube switches respectively coupled between the first and second inverter load terminals and the first and second inverter input terminals. The plurality of gas tube switches is configured to operate to generate an alternating current (AC) voltage at the primary winding.

  5. Ridge-like lava tube systems in southeast Tharsis, Mars

    NASA Astrophysics Data System (ADS)

    Zhao, Jiannan; Huang, Jun; Kraft, Michael D.; Xiao, Long; Jiang, Yun

    2017-10-01

    Lava tubes are widely distributed in volcanic fields on a planetary surface and they are important means of lava transportation. We have identified 38 sinuous ridges with a lava-tube origin in southeast Tharsis. The lengths vary between 14 and 740 km, and most of them occur in areas with slopes < 0.3°. We analyzed their geomorphology in detail with CTX (Context Camera) and HiRISE (High Resolution Imaging Science Experiment) images and DTM (digital terrain model) derived from them. We identified three cross-sectional shapes of these sinuous ridges: round-crested, double-ridged, and flat-crested and described features associated with the lava tubes, including branches, axial cracks, collapsed pits, breakout lobes, and tube-fed lava deltas. Age determination results showed that most of the lava tubes formed in Late Hesperian and were active until the Hesperian-Amazonian boundary. We proposed that these lava tubes formed at relatively low local flow rate, low lava viscosity, and sustained magma supply during a long period. Besides, lava flow inflation is also important in the formation of the ridge-like lava tubes and some associated features. These lava tubes provide efficient lateral pathways for magma transportation over the relatively low topographic slopes in southeast Tharsis, and they are important for the formation of long lava flows in this region. The findings of this study provide an alternative formation mechanism for sinuous ridges on the martian surface.

  6. Development of television tubes for the large space telescope

    NASA Technical Reports Server (NTRS)

    Lowrance, J. L.; Zucchino, P.

    1971-01-01

    Princeton Observatory has been working for several years under NASA sponsorship to develop television type sensors to use in place of photographic film for space astronomy. The performance of an SEC-vidicon with a 25 mm x 25 mm active area, MgF2 window, and bi-alkali photocathode is discussed. Results from ground based use on the Coude spectrograph of the 200-inch Hale telescope are included. The intended use of this tube in an echelle spectrograph sounding rocket payload and on Stratoscope 2 for direct high resolution imagery is also discussed. The paper also discusses the large space telescope image sensor requirements and the development of a larger television tube for this mission.

  7. New high-precision drift-tube detectors for the ATLAS muon spectrometer

    NASA Astrophysics Data System (ADS)

    Kroha, H.; Fakhrutdinov, R.; Kozhin, A.

    2017-06-01

    Small-diameter muon drift tube (sMDT) detectors have been developed for upgrades of the ATLAS muon spectrometer. With a tube diameter of 15 mm, they provide an about an order of magnitude higher rate capability than the present ATLAS muon tracking detectors, the MDT chambers with 30 mm tube diameter. The drift-tube design and the construction methods have been optimised for mass production and allow for complex shapes required for maximising the acceptance. A record sense wire positioning accuracy of 5 μm has been achieved with the new design. In the serial production, the wire positioning accuracy is routinely better than 10 μm. 14 new sMDT chambers are already operational in ATLAS, further 16 are under construction for installation in the 2019-2020 LHC shutdown. For the upgrade of the barrel muon spectrometer for High-Luminosity LHC, 96 sMDT chambers will be contructed between 2020 and 2024.

  8. High resolution surface plasmon microscopy for cell imaging

    NASA Astrophysics Data System (ADS)

    Argoul, F.; Monier, K.; Roland, T.; Elezgaray, J.; Berguiga, L.

    2010-04-01

    We introduce a new non-labeling high resolution microscopy method for cellular imaging. This method called SSPM (Scanning Surface Plasmon Microscopy) pushes down the resolution limit of surface plasmon resonance imaging (SPRi) to sub-micronic scales. High resolution SPRi is obtained by the surface plasmon lauching with a high numerical aperture objective lens. The advantages of SPPM compared to other high resolution SPRi's rely on three aspects; (i) the interferometric detection of the back reflected light after plasmon excitation, (ii) the twodimensional scanning of the sample for image reconstruction, (iii) the radial polarization of light, enhancing both resolution and sensitivity. This microscope can afford a lateral resolution of - 150 nm in liquid environment and - 200 nm in air. We present in this paper images of IMR90 fibroblasts obtained with SSPM in dried environment. Internal compartments such as nucleus, nucleolus, mitochondria, cellular and nuclear membrane can be recognized without labelling. We propose an interpretation of the ability of SSPM to reveal high index contrast zones by a local decomposition of the V (Z) function describing the response of the SSPM.

  9. High-Resolution Simulations of Gas-Solids Jet Penetration Into a High Density Riser Flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Tingwen

    2011-05-01

    High-resolution simulations of a gas-solids jet in a 0.3 m diameter and 15.9 m tall circulating fluidized bed (CFB) riser were conducted with the open source software-MFIX. In the numerical simulations, both gas and solids injected through a 1.6 cm diameter radial-directed tube 4.3 m above the bottom distributor were tracked as tracers, which enable the analysis of the characteristics of a two-phase jet. Two jetting gas velocities of 16.6 and 37.2 m/s were studied with the other operating conditions fixed. Reasonable flow hydrodynamics with respect to overall pressure drop, voidage, and solids velocity distributions were predicted. Due to themore » different dynamic responses of gas and particles to the crossflow, a significant separation of gas and solids within the jet region was predicted for both cases. In addition, the jet characteristics based on tracer concentration and tracer mass fraction profiles at different downstream levels are discussed. Overall, the numerical predictions compare favorably to the experimental measurements made at NETL.« less

  10. Effects of sand and straw bedding on the lying behavior, cleanliness, and hoof and hock injuries of dairy cows.

    PubMed

    Norring, M; Manninen, E; de Passillé, A M; Rushen, J; Munksgaard, L; Saloniemi, H

    2008-02-01

    This experiment compared the effects of sand and straw bedding in free stalls on resting time, cleanliness, hock injuries, and hoof health of dairy cows and tested whether cow preferences for a bedding material depended on the familiarity with the material. A total of 52 dairy cows were kept either on straw bedded concrete stalls or sand stalls for at least 21 wk. The lying behavior was observed, and hock lesions, hoof health, and cleanliness of the cows and stalls were measured. A 5-d preference test between sand and straw stalls was conducted at the end of the experiment. The total daily duration of lying was longer for cows on straw bedding than on sand bedding (straw 749 +/- 16 vs. sand 678 +/- 19 min). During the preference test, cows that had been kept on straw bedding preferred lying in straw stalls [straw 218.7 (133.4 to 239.7) vs. sand 9.0 min (2.8 to 44.8)]; however, cows that had been kept on sand showed no preference [straw 101.3 (51.7 to 205.9) vs. sand 94.3 min (54.1 to 156.1, median and interquartile range)]. Although there were no differences in the dirtiness of stalls, the cows using straw stalls were dirtier than cows using sand stalls [straw 6.04 (5.39 to 6.28) vs. sand 4.19 (3.62 to 5.16)]. At the end of experiment the severity of hock lesions was lower for cows on sand than for cows on straw [sand 0.5 (0.0 to 1.0) vs. straw 1.0 (1.0 to 2.0)]. The improvement in overall hoof health over the observation period was greater for cows kept on sand compared with cows kept on straw [sand -2.00 (-3.75 to -0.25) vs. straw 0.00 (-2.00 to 2.00)]. Straw bedding increased the time that cows spend lying, and cows preferred straw stalls to sand stalls. However, previous experience with sand reduces avoidance of sand stalls. Sand stalls were advantageous for cow cleanliness and health; hock lesions and claw diseases healed more quickly for cows using sand stalls compared with straw.

  11. Different organic loading rates on the biogas production during the anaerobic digestion of rice straw: A pilot study.

    PubMed

    Zhou, Jun; Yang, Jun; Yu, Qing; Yong, Xiaoyu; Xie, Xinxin; Zhang, Lijuan; Wei, Ping; Jia, Honghua

    2017-11-01

    The aim of this work was to investigate the mesophilic methane fermentation of rice straw at different organic loading rates (OLRs) in a 300m 3 bioreactor. It was found that biogas production increased when the OLR was below 2.00kg VS substrate /(m 3 ·d). The average volumetric biogas production reached 0.86m 3 /(m 3 ·d) at an OLR of 2.00kg VS substrate /(m 3 ·d). Biogas production rate was 323m 3 /t dry rice straw over the whole process. The pH, chemical oxygen demand, volatile fatty acid, and NH 4 + -N concentrations were all in optimal range at different OLRs. High-throughput sequencing analysis indicated that Firmicutes, Fibrobacteres, and Spirochaetes predominated in straw samples. Chloroflexi, Proteobacteria, and Planctomycetes were more abundant in the slurry. The hydrogenotrophic pathway was the main biochemical pathway of methanogenesis in the reactor. This study provides new information regarding the OLR and the differences in the spatial distribution of specific microbiota in a rice straw biogas plant. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Gasification of rice straw in a fluidized-bed gasifier for syngas application in close-coupled boiler-gasifier systems.

    PubMed

    Calvo, L F; Gil, M V; Otero, M; Morán, A; García, A I

    2012-04-01

    The feasibility and operation performance of the gasification of rice straw in an atmospheric fluidized-bed gasifier was studied. The gasification was carried out between 700 and 850 °C. The stoichiometric air-fuel ratio (A/F) for rice straw was 4.28 and air supplied was 7-25% of that necessary for stoichiometric combustion. Mass and power balances, tar concentration, produced gas composition, gas phase ammonia, chloride and potassium concentrations, agglomeration tendencies and gas efficiencies were assessed. Agglomeration was avoided by replacing the normal alumina-silicate bed by a mixture of alumina-silicate sand and MgO. It was shown that it is possible to produce high quality syngas from the gasification of rice straw. Under the experimental conditions used, the higher heating value (HHV) of the produced gas reached 5.1 MJ Nm(-3), the hot gas efficiency 61% and the cold gas efficiency 52%. The obtained results prove that rice straw may be used as fuel for close-coupled boiler-gasifier systems. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. High-Temperature Graphitization Failure of Primary Superheater Tube

    NASA Astrophysics Data System (ADS)

    Ghosh, D.; Ray, S.; Roy, H.; Mandal, N.; Shukla, A. K.

    2015-12-01

    Failure of boiler tubes is the main cause of unit outages of the plant, which further affects the reliability, availability and safety of the unit. So failure analysis of boiler tubes is absolutely essential to predict the root cause of the failure and the steps are taken for future remedial action to prevent the failure in near future. This paper investigates the probable cause/causes of failure of the primary superheater tube in a thermal power plant boiler. Visual inspection, dimensional measurement, chemical analysis, metallographic examination and hardness measurement are conducted as the part of the investigative studies. Apart from these tests, mechanical testing and fractographic analysis are also conducted as supplements. Finally, it is concluded that the superheater tube is failed due to graphitization for prolonged exposure of the tube at higher temperature.

  14. Birinapant and Carboplatin in Treating Patients With Recurrent High Grade Ovarian, Fallopian Tube, or Primary Peritoneal Cancer

    ClinicalTrials.gov

    2018-04-26

    High Grade Fallopian Tube Serous Adenocarcinoma; High Grade Ovarian Serous Adenocarcinoma; Primary Peritoneal High Grade Serous Adenocarcinoma; Recurrent Fallopian Tube Carcinoma; Recurrent Ovarian Carcinoma; Recurrent Primary Peritoneal Carcinoma

  15. Using High Spatial Resolution Digital Imagery

    DTIC Science & Technology

    2005-02-01

    digital base maps were high resolution U.S. Geological Survey (USGS) Digital Orthophoto Quarter Quadrangles (DOQQ). The Root Mean Square Errors (RMSE...next step was to assign real world coordinates to the linear im- age. The mosaics were geometrically registered to the panchromatic orthophotos ...useable thematic map from high-resolution imagery. A more practical approach may be to divide the Refuge into a set of smaller areas, or tiles

  16. Thermophysical and mechanical characterization of clay bricks reinforced by alfa or straw fibers

    NASA Astrophysics Data System (ADS)

    Elhamdouni, Y.; Khabbazi, A.; Benayad, C.; Mounir, S.; Dadi, A.

    2017-03-01

    This work is part of the valuation of local materials such as clay (earth), alfa fiber and straw fiber. The goal is to use these materials as bricks in rural construction. These materials are abundant, natural, and renewable. The objective of this work is to study the thermal and mechanical behavior of a new material by mixing clay (chosen as the binder) with different mass percentages of alfa fiber (0.5%, 1%, 2%, 3%, 4%), and to compare these results with those of materials often used in the construction of individual houses in rural Morocco (clay + straw). The results obtained prove to us that using straw fibers can reduce the thermal conductivity compared to alfa fiber, which allows to have energy savings of 2% to 7%. By against, alfa fibers can improve the mechanical behavior of clay-based materials when compared to the clay + straw material (an increase of 8% to 17% in the tractive resistance by bending and 6% to 18% for compression resistance). These results also specify the optimal usage conditions of these fibers (alfa and straw) in the clay bricks.

  17. Wood strands as an alternative to agricultural straw for erosion control

    Treesearch

    Randy B. Foltz; James H. Dooley

    2004-01-01

    Agricultural straw is used in forested areas of the United States for erosion control on burned areas, harvest landings, decommissioned road prisms, road cuts and fills, and other areas of disturbed soil. However, an increased agronomic and ecological value for straw; an increased utilization for energy production, fiber panels, and other higher value uses; a...

  18. High resolution MR microscopy

    NASA Astrophysics Data System (ADS)

    Ciobanu, Luisa

    images on phantoms [11, 12] and biological samples (paramecia, algae, brain tissue, lipidic mesophases) obtained using using magnetic field gradients as large as 50 Tesla/meter (5000 G/cm) [13] and micro-coils [14]. Images have voxel resolution as high as (3.7 mum by 3.3 mum by 3.3 mum), or 41 mu m3 (41 femtoliters, containing 2.7 x 10 12 proton spins) [12], marginally the highest voxel resolution reported to date. They are also fully three dimensional, with wide fields of view.

  19. Efficient bioconversion of rice straw to ethanol with TiO2/UV pretreatment.

    PubMed

    Kang, Hee-Kyoung; Kim, Doman

    2012-01-01

    Rice straw is a lignocellulosic biomass that constitutes a renewable organic substance and alternative source of energy; however, its structure confounds the liberation of monosaccharides. Pretreating rice straw using a TiO(2)/UV system facilitated its hydrolysis with Accellerase 1000(™), suggesting that hydroxyl radicals (OH·) from the TiO(2)/UV system could degrade lignin and carbohydrates. TiO(2)/UV pretreatment was an essential step for conversion of hemicellulose to xylose; optimal conditions for this conversion were a TiO(2) concentration of 0.1% (w/v) and an irradiation time of 2 h with a UV-C lamp at 254 nm. After enzymatic hydrolysis, the sugar yields from rice straw pretreated with these parameters were 59.8 ± 0.7% of the theoretical for glucose (339 ± 13 mg/g rice straw) and 50.3 ± 2.8% for xylose (64 ± 3 mg/g rice straw). The fermentation of enzymatic hydrolysates containing 10.5 g glucose/L and 3.2 g xylose/L with Pichia stipitis produced 3.9 g ethanol/L with a corresponding yield of 0.39 g/g rice straw. The maximum possible ethanol conversion rate is 76.47%. TiO(2)/UV pretreatment can be performed at room temperature and atmospheric pressure and demonstrates potential in large-scale production of fermentable sugars.

  20. Cow comfort in tie-stalls: increased depth of shavings or straw bedding increases lying time.

    PubMed

    Tucker, C B; Weary, D M; von Keyserlingk, M A G; Beauchemin, K A

    2009-06-01

    Over half of US dairy operations use tie-stalls, but these farming systems have received relatively little research attention in terms of stall design and management. The current study tested the effects of the amount of 2 bedding materials, straw and shavings, on dairy cattle lying behavior. The effects of 4 levels of shavings, 3, 9, 15, and 24 kg/stall (experiment 1, n = 12), and high and low levels of straw in 2 separate experiments: 1, 3, 5, and 7 kg/stall (experiment 2, n = 12) and 0.5, 1, 2, and 3 kg/stall (experiment 3, n = 12) were assessed. Treatments were compared using a crossover design with lactating cows housed in tie-stalls fitted with mattresses. Treatments were applied for 1 wk. Total lying time, number of lying bouts, and the length of each lying bout was recorded with data loggers. In experiment 1, cows spent 3 min more lying down for each additional kilogram of shavings (11.0, 11.7, 11.6, and 12.1 +/- 0.24 h/d for 3, 9, 15, and 24 kg/stall shavings, respectively). In experiment 2, cows increased lying time by 12 min for every additional kilogram of straw (11.2, 12.0, 11.8, and 12.4 +/- 0.24 h/d for 1, 3, 5, and 7 kg/stall of straw, respectively). There were no differences in lying behavior among the lower levels of straw tested in experiment 3 (11.7 +/- 0.32 h/d). These results indicated that additional bedding above a scant amount improves cow comfort, as measured by lying time, likely because a well-bedded surface is more compressible.

  1. Comparison of Seven Chemical Pretreatments of Corn Straw for Improving Methane Yield by Anaerobic Digestion

    PubMed Central

    Song, Zilin; GaiheYang; Liu, Xiaofeng; Yan, Zhiying; Yuan, Yuexiang; Liao, Yinzhang

    2014-01-01

    Agriculture straw is considered a renewable resource that has the potential to contribute greatly to bioenergy supplies. Chemical pretreatment prior to anaerobic digestion can increase the anaerobic digestibility of agriculture straw. The present study investigated the effects of seven chemical pretreatments on the composition and methane yield of corn straw to assess their effectiveness of digestibility. Four acid reagents (H2SO4, HCl, H2O2, and CH3COOH) at concentrations of 1%, 2%, 3%, and 4% (w/w) and three alkaline reagents (NaOH, Ca(OH)2, and NH3·H2O) at concentrations of 4%, 6%, 8%, and 10% (w/w) were used for the pretreatments. All pretreatments were effective in the biodegradation of the lignocellulosic straw structure. The straw, pretreated with 3% H2O2 and 8% Ca(OH)2, acquired the highest methane yield of 216.7 and 206.6 mL CH4 g VS −1 in the acid and alkaline pretreatments, which are 115.4% and 105.3% greater than the untreated straw. H2O2 and Ca(OH)2 can be considered as the most favorable pretreatment methods for improving the methane yield of straw because of their effectiveness and low cost. PMID:24695485

  2. Comparison of seven chemical pretreatments of corn straw for improving methane yield by anaerobic digestion.

    PubMed

    Song, Zilin; GaiheYang; Liu, Xiaofeng; Yan, Zhiying; Yuan, Yuexiang; Liao, Yinzhang

    2014-01-01

    Agriculture straw is considered a renewable resource that has the potential to contribute greatly to bioenergy supplies. Chemical pretreatment prior to anaerobic digestion can increase the anaerobic digestibility of agriculture straw. The present study investigated the effects of seven chemical pretreatments on the composition and methane yield of corn straw to assess their effectiveness of digestibility. Four acid reagents (H2SO4, HCl, H2O2, and CH3COOH) at concentrations of 1%, 2%, 3%, and 4% (w/w) and three alkaline reagents (NaOH, Ca(OH)2, and NH3·H2O) at concentrations of 4%, 6%, 8%, and 10% (w/w) were used for the pretreatments. All pretreatments were effective in the biodegradation of the lignocellulosic straw structure. The straw, pretreated with 3% H2O2 and 8% Ca(OH)2, acquired the highest methane yield of 216.7 and 206.6 mL CH4 g VS(-1) in the acid and alkaline pretreatments, which are 115.4% and 105.3% greater than the untreated straw. H2O2 and Ca(OH)2 can be considered as the most favorable pretreatment methods for improving the methane yield of straw because of their effectiveness and low cost.

  3. Shiitake Medicinal Mushroom, Lentinus edodes (Higher Basidiomycetes) Productivity and Lignocellulolytic Enzyme Profiles during Wheat Straw and Tree Leaf Bioconversion.

    PubMed

    Elisashvili, Vladimir; Kachlishvili, Eva; Asatiani, Mikheil D

    2015-01-01

    Two commercial strains of Lentinus edodes have been comparatively evaluated for their productivity and lignocellulolytic enzyme profiles in mushroom cultivation using wheat straw or tree leaves as the growth substrates. Both substrates are profitable for recycling into shiitake fruit bodies. L. edodes 3715 gave the lowest yield of mushroom during tree leaves bioconversion with the biological efficiency (BE) 74.8% while the L. edodes 3721 BE achieved 83.4%. Cultivation of shiitake on wheat straw, especially in the presence of additional nitrogen source, increased the L. edodes 3721 BE to 92-95.3% owing to the high hydrolases activity and favorable conditions. Despite the quantitative variations, each strain of L. edodes had a similar pattern for secreting enzymes into the wheat straw and tree leaves. The mushrooms laccase and MnP activities were high during substrate colonization and declined rapidly during primordia appearance and fruit body development. While oxidase activity decreased, during the same period cellulases and xylanase activity raised sharply. Both cellulase and xylanase activity peaked at the mature fruit body stage. When mushrooms again shifted to the vegetative growth, oxidase activity gradually increased, whereas the hydrolases activity dropped rapidly. The MnP, CMCase, and FP activities of L. edodes 3721 during cultivation on wheat straw were higher than those during mushroom growth on tree leaves whereas the laccase activity was rather higher in fermentation of tree leaves. Enrichment of wheat straw with an additional nitrogen source rather favored to laccase, MnP, and FPA secretion during the vegetative stage of the L. edodes 3721 growth.

  4. A critical review of liquid helium temperature high frequency pulse tube cryocoolers for space applications

    NASA Astrophysics Data System (ADS)

    Wang, B.; Gan, Z. H.

    2013-08-01

    The importance of liquid helium temperature cooling technology in the aerospace field is discussed, and the results indicate that improving the efficiency of liquid helium cooling technologies, especially the liquid helium high frequency pulse tube cryocoolers, is the principal difficulty to be solved. The state of the art and recent developments of liquid helium high frequency pulse tube cryocoolers are summarized. The main scientific challenges for high frequency pulse tube cryocoolers to efficiently reach liquid helium temperatures are outlined, and the research progress addressing those challenges are reviewed. Additionally some possible solutions to the challenges are pointed out and discussed.

  5. High level expression of Acidothermus cellulolyticus β-1, 4-endoglucanase in transgenic rice enhances the hydrolysis of its straw by cultured cow gastric fluid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chou, Hong L.; Dai, Ziyu; Hsieh, Chia W.

    Large-scale production of effective cellulose hydrolytic enzymes is the key to the bioconversion of agricultural residues to ethanol. The goal of this study was to develop a rice plant as a bioreactor for the large-scale production of cellulose hydrolytic enzymes via genetic transformation, and to simultaneously improve rice straw as an efficient biomass feedstock for conversion of cellulose to glucose. In this study, the cellulose hydrolytic enzyme {beta}-1, 4-endoglucanase (E1) from the thermophilic bacterium Acidothermus cellulolyticus was overexpressed in rice through Agrobacterium-mediated transformation. The expression of the bacterial gene in rice was driven by the constitutive Mac promoter, a hybridmore » promoter of Ti plasmid mannopine synthetase promoter and cauliflower mosaic virus 35S promoter enhancer with the signal peptide of tobacco pathogenesis-related protein for targeting the protein to the apoplastic compartment for storage. A total of 52 transgenic rice plants from six independent lines expressing the bacterial enzyme were obtained, which expressed the gene at high levels with a normal phenotype. The specific activities of E1 in the leaves of the highest expressing transgenic rice lines were about 20 fold higher than those of various transgenic plants obtained in previous studies and the protein amounts accounted for up to 6.1% of the total leaf soluble protein. Zymogram and temperature-dependent activity analyses demonstrated the thermostability of the enzyme and its substrate specificity against cellulose, and a simple heat treatment can be used to purify the protein. In addition, hydrolysis of transgenic rice straw with cultured cow gastric fluid yielded almost twice more reducing sugars than wild type straw. Taken together, these data suggest that transgenic rice can effectively serve as a bioreactor for large-scale production of active, thermostable cellulose hydrolytic enzymes. As a feedstock, direct expression of large amount of

  6. Study on the flow nonuniformity in a high capacity Stirling pulse tube cryocooler

    NASA Astrophysics Data System (ADS)

    You, X.; Zhi, X.; Duan, C.; Jiang, X.; Qiu, L.; Li, J.

    2017-12-01

    High capacity Stirling-type pulse tube cryocoolers (SPTC) have promising applications in high temperature superconductive motor and gas liquefaction. However, with the increase of cooling capacity, its performance deviates from well-accepted one-dimensional model simulation, such as Sage and Regen, mainly due to the strong field nonuniformity. In this study, several flow straighteners placed at both ends of the pulse tube are investigated to improve the flow distribution. A two-dimensional model of the pulse tube based on the computational fluid dynamics (CFD) method has been built to study the flow distribution of the pulse tube with different flow straighteners including copper screens, copper slots, taper transition and taper stainless slot. A SPTC set-up which has more than one hundred Watts cooling power at 80 K has been built and tested. The flow straighteners mentioned above have been applied and tested. The results show that with the best flow straightener the cooling performance of the SPTC can be significantly improved. Both CFD simulation and experiment show that the straighteners have impacts on the flow distribution and the performance of the high capacity SPTC.

  7. Preference by horses for bedding pellets made from switchgrass (Panicum virgatum) straw

    USDA-ARS?s Scientific Manuscript database

    The bedding system used for stalled horses can impact their health and well-being. This study examined the saponin concentration in switchgrass (Panicum virgatum) straw, and bedding pellets made from switchgrass straw. Further, this study determined the palatability of bedding pellets made from sw...

  8. Extension of least squares spectral resolution algorithm to high-resolution lipidomics data.

    PubMed

    Zeng, Ying-Xu; Mjøs, Svein Are; David, Fabrice P A; Schmid, Adrien W

    2016-03-31

    Lipidomics, which focuses on the global study of molecular lipids in biological systems, has been driven tremendously by technical advances in mass spectrometry (MS) instrumentation, particularly high-resolution MS. This requires powerful computational tools that handle the high-throughput lipidomics data analysis. To address this issue, a novel computational tool has been developed for the analysis of high-resolution MS data, including the data pretreatment, visualization, automated identification, deconvolution and quantification of lipid species. The algorithm features the customized generation of a lipid compound library and mass spectral library, which covers the major lipid classes such as glycerolipids, glycerophospholipids and sphingolipids. Next, the algorithm performs least squares resolution of spectra and chromatograms based on the theoretical isotope distribution of molecular ions, which enables automated identification and quantification of molecular lipid species. Currently, this methodology supports analysis of both high and low resolution MS as well as liquid chromatography-MS (LC-MS) lipidomics data. The flexibility of the methodology allows it to be expanded to support more lipid classes and more data interpretation functions, making it a promising tool in lipidomic data analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. High Resolution CryoFESEM of Microbial Surfaces

    NASA Astrophysics Data System (ADS)

    Erlandsen, Stanley; Lei, Ming; Martin-Lacave, Ines; Dunny, Gary; Wells, Carol

    2003-08-01

    The outer surfaces of three microorganisms, Giardia lamblia, Enterococcus faecalis, and Proteus mirabilis, were investigated by cryo-immobilization followed by sublimation of extracellular ice and cryocoating with either Pt alone or Pt plus carbon. Cryocoated samples were examined at [minus sign]125°C in either an in-lens field emission SEM or a below-the-lens field emission SEM. Cryocoating with Pt alone was sufficient for low magnification observation, but attempts to do high-resolution imaging resulted in radiolysis and cracking of the specimen surface. Double coating with Pt and carbon, in combination with high resolution backscatter electron detectors, enabled high-resolution imaging of the glycocalyx of bacteria, revealing a sponge-like network over the surface. High resolution examination of bacterial flagella also revealed a periodic substructure. Common artifacts included radiolysis leading to “cracking” of the surface, and insufficient deposition of Pt resulting in the absence of detectable surface topography.

  10. Improvement of pump tubes for gas guns and shock tube drivers

    NASA Technical Reports Server (NTRS)

    Bogdanoff, D. W.

    1990-01-01

    In a pump tube, a gas is mechanically compressed, producing very high pressures and sound speeds. The intensely heated gas produced in such a tube can be used to drive light gas guns and shock tubes. Three concepts are presented that have the potential to allow substantial reductions in the size and mass of the pump tube to be achieved. The first concept involves the use of one or more diaphragms in the pump tube, thus replacing a single compression process by multiple, successive compressions. The second concept involves a radical reduction in the length-to-diameter ratio of the pump tube and the pump tube piston. The third concept involves shock heating of the working gas by high explosives in a cyclindrical geometry reusable device. Preliminary design analyses are performed on all three concepts and they appear to be quite feasible. Reductions in the length and mass of the pump tube by factors up to about 11 and about 7, respectively, are predicted, relative to a benchmark conventional pump tube.

  11. Evaluation of High Temperature Knitted Spring Tubes for Structural Seal Applications

    NASA Technical Reports Server (NTRS)

    Taylor, Shawn C.; DeMange, Jeffrey J.; Dunlap, Patrick H., Jr.; Steinetz, Bruce M.

    2004-01-01

    Control surface seals are crucial to current and future space vehicles, as they are used to seal the gaps surrounding body flaps, elevons, and other actuated exterior surfaces. During reentry, leakage of high temperature gases through these gaps could damage underlying lower temperature structures such as rudder drive motors and mechanical actuators, resulting in impaired vehicle control. To be effective, control surface seals must shield lower temperature structures from heat transfer by maintaining sufficient resiliency to remain in contact with opposing sealing surfaces through multiple compression cycles. The current seal exhibits significant loss of resiliency after a few compression cycles at elevated temperatures (i.e., 1900 F) and therefore would be inadequate for advanced space vehicles. This seal utilizes a knitted Inconel X-750 spring tube as its primary resilient element. As part of a larger effort to enhance seal resiliency, researchers at the NASA Glenn Research Center performed high temperature compression testing (up to 2000 F) on candidate spring tube designs employing material substitutions and modified geometries. These tests demonstrated significant improvements in spring tube resiliency (5.5x better at 1750 F) through direct substitution of heat treated Rene 41 alloy in the baseline knit design. The impact of geometry modification was minor within the range of parameters tested, however trends did suggest that moderate resiliency improvements could be obtained by optimizing the current spring tube geometry.

  12. Subsurface Feature Mapping of Mars using a High Resolution Ground Penetrating Radar System

    NASA Astrophysics Data System (ADS)

    Wu, T. S.; Persaud, D. M.; Preudhomme, M. A.; Jurg, M.; Smith, M. K.; Buckley, H.; Tarnas, J.; Chalumeau, C.; Lombard-Poirot, N.; Mann, B.

    2015-12-01

    As the closest Earth-like, potentially life-sustaining planet in the solar system, Mars' future of human exploration is more a question of timing than possibility. The Martian surface remains hostile, but its subsurface geology holds promise for present or ancient astrobiology and future habitation, specifically lava tube (pyroduct) systems, whose presence has been confirmed by HiRISE imagery.The location and characterization of these systems could provide a basis for understanding the evolution of the red planet and long-term shelters for future manned missions on Mars. To detect and analyze the subsurface geology of terrestrial bodies from orbit, a novel compact (smallsat-scale) and cost-effective approach called the High-resolution Orbiter for Mapping gEology by Radar (HOMER) has been proposed. Adapting interferometry techniques with synthetic aperture radar (SAR) to a ground penetrating radar system, a small satellite constellation is able to achieve a theoretical resolution of 50m from low-Mars orbit (LMO). Alongside this initial prototype design of HOMER, proposed data processing methodology and software and a Mars mission design are presented. This project was developed as part of the 2015 NASA Ames Academy for Space Exploration.

  13. Co-composting of livestock manure with rice straw: characterization and establishment of maturity evaluation system.

    PubMed

    Qian, Xiaoyong; Shen, Genxiang; Wang, Zhenqi; Guo, Chunxia; Liu, Yangqing; Lei, Zhongfang; Zhang, Zhenya

    2014-02-01

    Composting is considered to be a primary treatment method for livestock manure and rice straw, and high degree of maturity is a prerequisite for safe land application of the composting products. In this study pilot-scale experiments were carried out to characterize the co-composting process of livestock manure with rice straw, as well as to establish a maturity evaluation index system for the composts obtained. Two pilot composting piles with different feedstocks were conducted for 3 months: (1) swine manure and rice straw (SM-RS); and (2) dairy manure and rice straw (DM-RS). During the composting process, parameters including temperature, moisture, pH, total organic carbon (TOC), organic matter (OM), different forms of nitrogen (total, ammonia and nitrate), and humification index (humic acid and fulvic acid) were monitored in addition to germination index (GI), plant growth index (PGI) and Solvita maturity index. OM loss followed the first-order kinetic model in both piles, and a slightly faster OM mineralization was achieved in the SM-RS pile. Also, the SM-RS pile exhibited slightly better performance than the DM-RS according to the evolutions of temperature, OM degradation, GI and PGI. The C/N ratio, GI and PGI could be included in the maturity evaluation index system in which GI>120% and PGI>1.00 signal mature co-composts. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Pine straw harvesting, fire, and fertilization affect understory vegetation within a Louisiana longleaf pine stand

    Treesearch

    James D. Haywood

    2012-01-01

    Pine straw harvesting can provide an economic benefit to landowners, but the practice may also change the composition of plant communities. This research was initiated in a 34-year-old stand of longleaf pine (Pinus palustris Mill.) established in 1956 to study how pine straw management practices (fertilization, prescribed fire, and straw harvesting) affected plant...

  15. Determination of heat transfer coefficients in plastic French straws plunged in liquid nitrogen.

    PubMed

    Santos, M Victoria; Sansinena, M; Chirife, J; Zaritzky, N

    2014-12-01

    The knowledge of the thermodynamic process during the cooling of reproductive biological systems is important to assess and optimize the cryopreservation procedures. The time-temperature curve of a sample immersed in liquid nitrogen enables the calculation of cooling rates and helps to determine whether it is vitrified or undergoes phase change transition. When dealing with cryogenic liquids, the temperature difference between the solid and the sample is high enough to cause boiling of the liquid, and the sample can undergo different regimes such as film and/or nucleate pool boiling. In the present work, the surface heat transfer coefficients (h) for plastic French straws plunged in liquid nitrogen were determined using the measurement of time-temperature curves. When straws filled with ice were used the cooling curve showed an abrupt slope change which was attributed to the transition of film into nucleate pool boiling regime. The h value that fitted each stage of the cooling process was calculated using a numerical finite element program that solves the heat transfer partial differential equation under transient conditions. In the cooling process corresponding to film boiling regime, the h that best fitted experimental results was h=148.12±5.4 W/m(2) K and for nucleate-boiling h=1355±51 W/m(2) K. These values were further validated by predicting the time-temperature curve for French straws filled with a biological fluid system (bovine semen-extender) which undergoes freezing. Good agreement was obtained between the experimental and predicted temperature profiles, further confirming the accuracy of the h values previously determined for the ice-filled straw. These coefficients were corroborated using literature correlations. The determination of the boiling regimes that govern the cooling process when plunging straws in liquid nitrogen constitutes an important issue when trying to optimize cryopreservation procedures. Furthermore, this information can lead to

  16. Characterization and 2D structural model of corn straw and poplar leaf biochars.

    PubMed

    Zhao, Nan; Lv, YiZhong; Yang, XiXiang; Huang, Feng; Yang, JianWen

    2017-12-22

    The integrated experimental methods were used to analyze the physicochemical properties and structural characteristics and to build the 2D structural model of two kinds of biochars. Corn straw and poplar leaf biochars were gained by pyrolysing the raw materials slowly in a furnace at 300, 500, and 700 °C under oxygen-deficient conditions. Scanning electron microscope was applied to observe the surface morphology of the biochars. High temperatures destroyed the pore structures of the biochars, forming a particle mixture of varying sizes. The ash content, yield, pH, and surface area were also observed to describe the biochars' properties. The yield decreases as the pyrolysis temperature increases. The biochars are neutral to alkaline. The biggest surface area is 251.11 m 2 /g for 700 °C corn straw biochar. Elemental analysis, infrared microspectroscopy, solid-state C-13 NMR spectroscopy, and pyrolysis gas chromatography-mass spectrometry (Py-GC-MS) were also used to study the structural characteristics and build the 2D structural models of biochars. The C content in the corn straw and poplar leaf biochars increases with the increase of the pyrolysis temperature. A higher pyrolysis temperature makes the aryl carbon increase, and C=O, OH, and aliphatic hydrocarbon content decrease in the IR spectra. Solid-state C-13 NMR spectra show that a higher pyrolysis temperature makes the alkyl carbon and alkoxy carbon decrease and the aryl carbon increase. The results of IR microspectra and solid-state C-13 NMR spectra reveal that some noticeable differences exist in these two kinds of biochars and in the same type of biochar but under different pyrolysis temperatures. The conceptual elemental compositions of 500 °C corn straw and poplar leaf biochars are C 61 H 33 NO 13 and C 59 H 41 N 3 O 12 , respectively. Significant differences exist in the SEM images, physicochemical properties, and structural characteristics of corn straw and poplar leaf biochars.

  17. Effect of the combined physical and chemical treatments with microbial fermentation on corn straw degradation.

    PubMed

    Guo, Hongwei; Chang, Juan; Yin, Qingqiang; Wang, Ping; Lu, Min; Wang, Xiao; Dang, Xiaowei

    2013-11-01

    In order to improve corn straw degradation, steam explosion, sodium hydroxide soaking and Aspergillus oryzae fermentation were used. The optimal sodium hydroxide pretreatment condition for lignin degradation was obtained. The degradation rates of hemicellulose, cellulose and lignin were 54.68%, 17.76% and 33.14% for the exploded straw (P<0.05); 67.92%, 2.44% (P>0.05) and 76.54% for the alkali-treated straw (P<0.05); 75.98%, 39.93% and 77.88% for the exploded and alkali-treated straw (P<0.05), respectively. The following microbial fermentation could degrade hemicellulose and cellulose further (P<0.05). Cellulase, amylase and protease activities produced during microbial fermentation in the pretreated corn straw were lower than that in the untreated one (P<0.05); however, glucose content was increased by microbial fermentation (P<0.05). It can be concluded that the combined treatments of steam explosion, sodium hydroxide and microbial fermentation will be a good method for straw degradation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Biogas production from wheat straw and manure--impact of pretreatment and process operating parameters.

    PubMed

    Risberg, Kajsa; Sun, Li; Levén, Lotta; Horn, Svein Jarle; Schnürer, Anna

    2013-12-01

    Non-treated or steam-exploded straw in co-digestion with cattle manure was evaluated as a substrate for biogas production compared with manure as the sole substrate. All digestions were performed in laboratory-scale CSTR reactors (5L) operating with an organic loading late of approximately 2.8 g VS/L/day, independent of substrate mixture. The hydraulic retention was 25 days and an operating temperature of 37, 44 or 52°C. The co-digestion with steam exploded straw and manure was evaluated with two different mixtures, with different proportion. The results showed stable performance but low methane yields (0.13-0.21 N L CH4/kg VS) for both manure alone and in co-digestion with the straw. Straw appeared to give similar yield as manure and steam-explosion treatment of the straw did not increase gas yields. Furthermore, there were only slight differences at the different operating temperatures. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Biorefining of wheat straw using an acetic and formic acid based organosolv fractionation process.

    PubMed

    Snelders, Jeroen; Dornez, Emmie; Benjelloun-Mlayah, Bouchra; Huijgen, Wouter J J; de Wild, Paul J; Gosselink, Richard J A; Gerritsma, Jort; Courtin, Christophe M

    2014-03-01

    To assess the potential of acetic and formic acid organosolv fractionation of wheat straw as basis of an integral biorefinery concept, detailed knowledge on yield, composition and purity of the obtained streams is needed. Therefore, the process was performed, all fractions extensively characterized and the mass balance studied. Cellulose pulp yield was 48% of straw dry matter, while it was 21% and 27% for the lignin and hemicellulose-rich fractions. Composition analysis showed that 67% of wheat straw xylan and 96% of lignin were solubilized during the process, resulting in cellulose pulp of 63% purity, containing 93% of wheat straw cellulose. The isolated lignin fraction contained 84% of initial lignin and had a purity of 78%. A good part of wheat straw xylan (58%) ended up in the hemicellulose-rich fraction, half of it as monomeric xylose, together with proteins (44%), minerals (69%) and noticeable amounts of acids used during processing. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. High-resolution regional climate model evaluation using variable-resolution CESM over California

    NASA Astrophysics Data System (ADS)

    Huang, X.; Rhoades, A.; Ullrich, P. A.; Zarzycki, C. M.

    2015-12-01

    Understanding the effect of climate change at regional scales remains a topic of intensive research. Though computational constraints remain a problem, high horizontal resolution is needed to represent topographic forcing, which is a significant driver of local climate variability. Although regional climate models (RCMs) have traditionally been used at these scales, variable-resolution global climate models (VRGCMs) have recently arisen as an alternative for studying regional weather and climate allowing two-way interaction between these domains without the need for nudging. In this study, the recently developed variable-resolution option within the Community Earth System Model (CESM) is assessed for long-term regional climate modeling over California. Our variable-resolution simulations will focus on relatively high resolutions for climate assessment, namely 28km and 14km regional resolution, which are much more typical for dynamically downscaled studies. For comparison with the more widely used RCM method, the Weather Research and Forecasting (WRF) model will be used for simulations at 27km and 9km. All simulations use the AMIP (Atmospheric Model Intercomparison Project) protocols. The time period is from 1979-01-01 to 2005-12-31 (UTC), and year 1979 was discarded as spin up time. The mean climatology across California's diverse climate zones, including temperature and precipitation, is analyzed and contrasted with the Weather Research and Forcasting (WRF) model (as a traditional RCM), regional reanalysis, gridded observational datasets and uniform high-resolution CESM at 0.25 degree with the finite volume (FV) dynamical core. The results show that variable-resolution CESM is competitive in representing regional climatology on both annual and seasonal time scales. This assessment adds value to the use of VRGCMs for projecting climate change over the coming century and improve our understanding of both past and future regional climate related to fine

  1. A new high-resolution PET scanner dedicated to brain research

    NASA Astrophysics Data System (ADS)

    Watanabe, M.; Shimizu, K.; Omura, T.; Takahashi, M.; Kosugi, T.; Yoshikawa, E.; Sato, N.; Okada, H.; Yamashita, T.

    2002-06-01

    A high-resolution positron emission tomography (PET) scanner dedicated to brain studies has been developed and its physical performance was evaluated. The block detector consists of a new compact position-sensitive photomultiplier tube (PS-PMT, Hamamatsu R7600-C12) and an 8/spl times/4 bismuth germanate (BGO) array. The size of each crystal is 2.8 mm/spl times/6.55 mm/spl times/30 mm. The system has a total of 11 520 crystals arranged in 24 detector rings 508 mm in diameter (480 per ring). The field of view (FOV) is 330 mm in diameter/spl times/163 mm, which is sufficient to measure the entire human brain. The diameter of the scanner's opening is equal to the transaxial FOV (330 mm). The system can be operated in three-dimensional (3-D) data acquisition mode, when the slice septa are retracted. The mechanical motions of the gantry and bed are specially designed to measure the patient in various postures; lying, sitting, and even standing postures. The spatial resolution of 2.9 mm in both the transaxial and axial directions is obtained at the center of the FOV. The total system sensitivity is 6.4 kc/s/kBq/ml in two-dimensional (2-D) mode, with a 20-cm-diameter cylindrical phantom. The imaging capabilities of the scanner were studied with the Hoffman brain phantom and with a normal volunteer.

  2. High-Resolution Data for a Low-Resolution World

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brady, Brendan Williams

    2016-05-10

    In the past 15 years, the upper section of Cañon de Valle has been severely altered by wildfires and subsequent runoff events. Loss of root structures on high-angle slopes results in debris flow and sediment accumulation in the narrow canyon bottom. The original intent of the study described here was to better understand the changes occurring in watershed soil elevations over the course of several post-fire years. An elevation dataset from 5 years post-Cerro Grande fire was compared to high-resolution LiDAR data from 14 years post-Cerro Grande fire (also 3 years post-Las Conchas fire). The following analysis was motivated bymore » a problematic comparison of these datasets of unlike resolution, and therefore focuses on what the data reveals of itself. The objective of this study is to highlight the effects vegetation can have on remote sensing data that intends to read ground surface elevation.« less

  3. ENVIRONMENTAL IMPACT ASSESSMENT OF BIO-ETHANOL MADE FROM RICE STRAW CONSIDERING LAND OCCUPATION EFFECTS ON ECOSYSTEM

    NASA Astrophysics Data System (ADS)

    Motoshita, Masaharu; Yang, Cuifen; Genchi, Yutaka; Tahara, Kiyotaka; Inaba, Atsushi

    Most of rice straw produced as a byproduct is not or low utilized in Japan. However, it may be available for the production of bio-ethanol without threatening food supply because of its characteristics as one of the lignocellulosic materials. Though it has already been revealed in previous studies that bio-ethanol made from rice straw can contribute to reducing energy consumption and repressing greenhouse gas emissions, effects on ecosystem due to land occupation for rice straw production and ethanol refinery plant have not been evaluated. Thus, environmental impacts of bio-ethanol made from rice straw including effects on ecosystem caused by land occupation were evaluated in this study. Some differences among three representative assessment methods could be found in results of the effect on ecosystem due to land occupation for rice straw production and ethanol refinery plant. However, it is common among all assessment methods that the effect on ecosystem caused by land occupation dominates large part of total environmental impact of ethanol made from rice straw (72-83% of total impact). Bio-ethanol made from rice straw showed larger environmental impact compared to that of gasoline due to land occupation. The improvement of the operating rate and the productivity of ethanol refinery plants is especially necessary for repressing the environm ental impacts related to bio-ethanol production made from rice straw.

  4. High-resolution electron microscope

    NASA Technical Reports Server (NTRS)

    Nathan, R.

    1977-01-01

    Employing scanning transmission electron microscope as interferometer, relative phases of diffraction maximums can be determined by analysis of dark field images. Synthetic aperture technique and Fourier-transform computer processing of amplitude and phase information provide high resolution images at approximately one angstrom.

  5. High angular resolution at LBT

    NASA Astrophysics Data System (ADS)

    Conrad, A.; Arcidiacono, C.; Bertero, M.; Boccacci, P.; Davies, A. G.; Defrere, D.; de Kleer, K.; De Pater, I.; Hinz, P.; Hofmann, K. H.; La Camera, A.; Leisenring, J.; Kürster, M.; Rathbun, J. A.; Schertl, D.; Skemer, A.; Skrutskie, M.; Spencer, J. R.; Veillet, C.; Weigelt, G.; Woodward, C. E.

    2015-12-01

    High angular resolution from ground-based observatories stands as a key technology for advancing planetary science. In the window between the angular resolution achievable with 8-10 meter class telescopes, and the 23-to-40 meter giants of the future, LBT provides a glimpse of what the next generation of instruments providing higher angular resolution will provide. We present first ever resolved images of an Io eruption site taken from the ground, images of Io's Loki Patera taken with Fizeau imaging at the 22.8 meter LBT [Conrad, et al., AJ, 2015]. We will also present preliminary analysis of two data sets acquired during the 2015 opposition: L-band fringes at Kurdalagon and an occultation of Loki and Pele by Europa (see figure). The light curves from this occultation will yield an order of magnitude improvement in spatial resolution along the path of ingress and egress. We will conclude by providing an overview of the overall benefit of recent and future advances in angular resolution for planetary science.

  6. MOLA Topographic Constraints on Lava Tube Effusion Rates for Alba Patera, Mars

    NASA Technical Reports Server (NTRS)

    Riedel, S. J.; Sakimoto, S. E. H.

    2002-01-01

    Using high resolution MOLA (Mars Orbiter Laser Altimeter) topographic data to accurately model flow rates, we find that Alba Patera tube-fed flows within the mid to lower flanks could accommodate flow rates between 10 Pa s to 1.308 x 10(exp 6) Pa s. Additional information is contained in the original extended abstract.

  7. A method for generating high resolution satellite image time series

    NASA Astrophysics Data System (ADS)

    Guo, Tao

    2014-10-01

    There is an increasing demand for satellite remote sensing data with both high spatial and temporal resolution in many applications. But it still is a challenge to simultaneously improve spatial resolution and temporal frequency due to the technical limits of current satellite observation systems. To this end, much R&D efforts have been ongoing for years and lead to some successes roughly in two aspects, one includes super resolution, pan-sharpen etc. methods which can effectively enhance the spatial resolution and generate good visual effects, but hardly preserve spectral signatures and result in inadequate analytical value, on the other hand, time interpolation is a straight forward method to increase temporal frequency, however it increase little informative contents in fact. In this paper we presented a novel method to simulate high resolution time series data by combing low resolution time series data and a very small number of high resolution data only. Our method starts with a pair of high and low resolution data set, and then a spatial registration is done by introducing LDA model to map high and low resolution pixels correspondingly. Afterwards, temporal change information is captured through a comparison of low resolution time series data, and then projected onto the high resolution data plane and assigned to each high resolution pixel according to the predefined temporal change patterns of each type of ground objects. Finally the simulated high resolution data is generated. A preliminary experiment shows that our method can simulate a high resolution data with a reasonable accuracy. The contribution of our method is to enable timely monitoring of temporal changes through analysis of time sequence of low resolution images only, and usage of costly high resolution data can be reduces as much as possible, and it presents a highly effective way to build up an economically operational monitoring solution for agriculture, forest, land use investigation

  8. Sugarcane biomass for biorefineries: comparative composition of carbohydrate and non-carbohydrate components of bagasse and straw.

    PubMed

    Szczerbowski, Danielle; Pitarelo, Ana Paula; Zandoná Filho, Arion; Ramos, Luiz Pereira

    2014-12-19

    Two fractions of sugarcane, namely bagasse and straw (or trash), were characterized in relation to their chemical composition. Bagasse presented values of glucans, hemicelluloses, lignin and ash of 37.74, 27.23, 20.57 and 6.53%, respectively, while straw had 33.77, 27.38, 21.28 and 6.23% of these same components. Ash content was relatively high in both cane biomass fractions. Bagasse showed higher levels of contaminating oxides while straw had a higher content of alkaline and alkaline-earth oxides. A comparison between the polysaccharide chemical compositions of these lignocellulosic materials suggests that similar amounts of fermentable sugars are expected to arise from their optimal pretreatment and enzymatic hydrolysis. Details about the chemical properties of cane biomass holocellulose, hemicelluloses A and B and α-cellulose are provided, and these may offer a good opportunity for designing more efficient enzyme cocktails for substrate saccharification. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. SyPRID sampler: A large-volume, high-resolution, autonomous, deep-ocean precision plankton sampling system

    NASA Astrophysics Data System (ADS)

    Billings, Andrew; Kaiser, Carl; Young, Craig M.; Hiebert, Laurel S.; Cole, Eli; Wagner, Jamie K. S.; Van Dover, Cindy Lee

    2017-03-01

    The current standard for large-volume (thousands of cubic meters) zooplankton sampling in the deep sea is the MOCNESS, a system of multiple opening-closing nets, typically lowered to within 50 m of the seabed and towed obliquely to the surface to obtain low-spatial-resolution samples that integrate across 10 s of meters of water depth. The SyPRID (Sentry Precision Robotic Impeller Driven) sampler is an innovative, deep-rated (6000 m) plankton sampler that partners with the Sentry Autonomous Underwater Vehicle (AUV) to obtain paired, large-volume plankton samples at specified depths and survey lines to within 1.5 m of the seabed and with simultaneous collection of sensor data. SyPRID uses a perforated Ultra-High-Molecular-Weight (UHMW) plastic tube to support a fine mesh net within an outer carbon composite tube (tube-within-a-tube design), with an axial flow pump located aft of the capture filter. The pump facilitates flow through the system and reduces or possibly eliminates the bow wave at the mouth opening. The cod end, a hollow truncated cone, is also made of UHMW plastic and includes a collection volume designed to provide an area where zooplankton can collect, out of the high flow region. SyPRID attaches as a saddle-pack to the Sentry vehicle. Sentry itself is configured with a flight control system that enables autonomous survey paths to low altitudes. In its verification deployment at the Blake Ridge Seep (2160 m) on the US Atlantic Margin, SyPRID was operated for 6 h at an altitude of 5 m. It recovered plankton samples, including delicate living larvae, from the near-bottom stratum that is seldom sampled by a typical MOCNESS tow. The prototype SyPRID and its next generations will enable studies of plankton or other particulate distributions associated with localized physico-chemical strata in the water column or above patchy habitats on the seafloor.

  10. 18/20 T high magnetic field scanning tunneling microscope with fully low voltage operability, high current resolution, and large scale searching ability.

    PubMed

    Li, Quanfeng; Wang, Qi; Hou, Yubin; Lu, Qingyou

    2012-04-01

    We present a home-built 18/20 T high magnetic field scanning tunneling microscope (STM) featuring fully low voltage (lower than ±15 V) operability in low temperatures, large scale searching ability, and 20 fA high current resolution (measured by using a 100 GOhm dummy resistor to replace the tip-sample junction) with a bandwidth of 3.03 kHz. To accomplish low voltage operation which is important in achieving high precision, low noise, and low interference with the strong magnetic field, the coarse approach is implemented with an inertial slider driven by the lateral bending of a piezoelectric scanner tube (PST) whose inner electrode is axially split into two for enhanced bending per volt. The PST can also drive the same sliding piece to inertial slide in the other bending direction (along the sample surface) of the PST, which realizes the large area searching ability. The STM head is housed in a three segment tubular chamber, which is detachable near the STM head for the convenience of sample and tip changes. Atomic resolution images of a graphite sample taken under 17.6 T and 18.0001 T are presented to show its performance. © 2012 American Institute of Physics

  11. Soil aggregate and organic carbon distribution at dry land soil and paddy soil: the role of different straws returning.

    PubMed

    Huang, Rong; Lan, Muling; Liu, Jiang; Gao, Ming

    2017-12-01

    Agriculture wastes returning to soil is one of common ways to reuse crop straws in China. The returned straws are expected to improve the fertility and structural stability of soil during the degradation of straw it selves. The in situ effect of different straw (wheat, rice, maize, rape, and broad bean) applications for soil aggregate stability and soil organic carbon (SOC) distribution were studied at both dry land soil and paddy soil in this study. Wet sieving procedures were used to separate soil aggregate sizes. Aggregate stability indicators including mean weight diameter, geometric mean diameter, mean weight of specific surface area, and the fractal dimension were used to evaluate soil aggregate stability after the incubation of straws returning. Meanwhile, the variation and distribution of SOC in different-sized aggregates were further studied. Results showed that the application of straws, especially rape straw at dry land soil and rice straw at paddy soil, increased the fractions of macro-aggregate (> 0.25 mm) and micro-aggregate (0.25-0.053 mm). Suggesting the nutrients released from straw degradation promotes the growing of soil aggregates directly and indirectly. The application of different straws increased the SOC content at both soils and the SOC mainly distributed at < 0.53 mm aggregates. However, the contribution of SOC in macro- and micro-aggregates increased. Straw-applied paddy soil have a higher total SOC content but lower SOC contents at > 0.25 and 0.25-0.053 mm aggregates with dry land soil. Rape straw in dry land and rice straw in paddy field could stabilize soil aggregates and increasing SOC contents best.

  12. High-resolution, detailed simulations of low foot and high foot implosion experiments on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Clark, Daniel

    2015-11-01

    In order to achieve the several hundred Gbar stagnation pressures necessary for inertial confinement fusion ignition, implosion experiments on the National Ignition Facility (NIF) require the compression of deuterium-tritium fuel layers by a convergence ratio as high as forty. Such high convergence implosions are subject to degradation by a range of perturbations, including the growth of small-scale defects due to hydrodynamic instabilities, as well as longer scale modulations due to radiation flux asymmetries in the enclosing hohlraum. Due to the broad range of scales involved, and also the genuinely three-dimensional (3-D) character of the flow, accurately modeling NIF implosions remains at the edge of current radiation hydrodynamics simulation capabilities. This talk describes the current state of progress of 3-D, high-resolution, capsule-only simulations of NIF implosions aimed at accurately describing the performance of specific NIF experiments. Current simulations include the effects of hohlraum radiation asymmetries, capsule surface defects, the capsule support tent and fill tube, and use a grid resolution shown to be converged in companion two-dimensional simulations. The results of detailed simulations of low foot implosions from the National Ignition Campaign are contrasted against results for more recent high foot implosions. While the simulations suggest that low foot performance was dominated by ablation front instability growth, especially the defect seeded by the capsule support tent, high foot implosions appear to be dominated by hohlraum flux asymmetries, although the support tent still plays a significant role. Most importantly, it is found that a single, standard simulation methodology appears adequate to model both implosion types and gives confidence that such a model can be used to guide future implosion designs toward ignition. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory

  13. High spatial resolution compressed sensing (HSPARSE) functional MRI.

    PubMed

    Fang, Zhongnan; Van Le, Nguyen; Choy, ManKin; Lee, Jin Hyung

    2016-08-01

    To propose a novel compressed sensing (CS) high spatial resolution functional MRI (fMRI) method and demonstrate the advantages and limitations of using CS for high spatial resolution fMRI. A randomly undersampled variable density spiral trajectory enabling an acceleration factor of 5.3 was designed with a balanced steady state free precession sequence to achieve high spatial resolution data acquisition. A modified k-t SPARSE method was then implemented and applied with a strategy to optimize regularization parameters for consistent, high quality CS reconstruction. The proposed method improves spatial resolution by six-fold with 12 to 47% contrast-to-noise ratio (CNR), 33 to 117% F-value improvement and maintains the same temporal resolution. It also achieves high sensitivity of 69 to 99% compared the original ground-truth, small false positive rate of less than 0.05 and low hemodynamic response function distortion across a wide range of CNRs. The proposed method is robust to physiological noise and enables detection of layer-specific activities in vivo, which cannot be resolved using the highest spatial resolution Nyquist acquisition. The proposed method enables high spatial resolution fMRI that can resolve layer-specific brain activity and demonstrates the significant improvement that CS can bring to high spatial resolution fMRI. Magn Reson Med 76:440-455, 2016. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.

  14. HIGH-POWER TURBODRILL AND DRILL BIT FOR DRILLING WITH COILED TUBING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robert Radtke; David Glowka; Man Mohan Rai

    2008-03-31

    Commercial introduction of Microhole Technology to the gas and oil drilling industry requires an effective downhole drive mechanism which operates efficiently at relatively high RPM and low bit weight for delivering efficient power to the special high RPM drill bit for ensuring both high penetration rate and long bit life. This project entails developing and testing a more efficient 2-7/8 in. diameter Turbodrill and a novel 4-1/8 in. diameter drill bit for drilling with coiled tubing. The high-power Turbodrill were developed to deliver efficient power, and the more durable drill bit employed high-temperature cutters that can more effectively drill hardmore » and abrasive rock. This project teams Schlumberger Smith Neyrfor and Smith Bits, and NASA AMES Research Center with Technology International, Inc (TII), to deliver a downhole, hydraulically-driven power unit, matched with a custom drill bit designed to drill 4-1/8 in. boreholes with a purpose-built coiled tubing rig. The U.S. Department of Energy National Energy Technology Laboratory has funded Technology International Inc. Houston, Texas to develop a higher power Turbodrill and drill bit for use in drilling with a coiled tubing unit. This project entails developing and testing an effective downhole drive mechanism and a novel drill bit for drilling 'microholes' with coiled tubing. The new higher power Turbodrill is shorter, delivers power more efficiently, operates at relatively high revolutions per minute, and requires low weight on bit. The more durable thermally stable diamond drill bit employs high-temperature TSP (thermally stable) diamond cutters that can more effectively drill hard and abrasive rock. Expectations are that widespread adoption of microhole technology could spawn a wave of 'infill development' drilling of wells spaced between existing wells, which could tap potentially billions of barrels of bypassed oil at shallow depths in mature producing areas. At the same time, microhole coiled tube

  15. Environmentally friendly education: A passive solar, straw-bale school

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stone, L.; Dickinson, J.

    The Waldorf students in the Roaring Fork Valley of western Colorado are learning their reading, writing and arithmetic in the cozy confines of a solar heated, naturally lit, straw-bale school. The Waldorf education system, founded in 1919 by Austrian Rudolph Steiner, stresses what's appropriate for the kids, not what's easiest to teach. In constructing a new school, the Waldorf community wanted a building that would reflect their philosophy. There was a long list of requirements: natural, energy efficient, light, warm, alive, and earthy. Passive solar straw-bale construction brought together all those qualities.

  16. Temporal changes of the bacterial community colonizing wheat straw in the cow rumen.

    PubMed

    Jin, Wei; Wang, Ying; Li, Yuanfei; Cheng, Yanfen; Zhu, Weiyun

    2018-04-01

    This study used Miseq pyrosequencing and scanning electron microscopy to investigate the temporal changes in the bacterial community tightly attached to wheat straw in the cow rumen. The wheat straw was incubated in the rumens and samples were recovered at various times. The wheat straw degradation exhibited three phases: the first degradation phase occurred within 0.5 h, and the second degradation phase occurred after 6 h, with a stalling phase occurring between 0.5 and 6 h. Scanning electron microscopy revealed the colonization of the microorganisms on the wheat straw over time. The bacterial communities at 0.5, 6, 24, and 72 h were determined, corresponding to the degradation phases. Firmicutes and Bacteroidetes were the two most dominant phyla in the bacterial communities at the four time points. Principal coordinate analysis (PCoA) showed that the bacterial communities at the four time points were distinct from each other. The wheat straw-associated bacteria stabilized at the phylum level after 0.5 h of rumen incubation, and only modest phylum-level and family-level changes were observed for most taxa between 0.5 h and 72 h. The relative abundance of the dominant genera, Butyrivibrio, Coprococcus, Ruminococcus, Succiniclasticum, Clostridium, Prevotella, YRC22, CF231, and Treponema, changed significantly over time (P < .05). However, at the genus level, unclassified taxa accounted for 70.3% ± 6.1% of the relative abundance, indicating their probable importance in the degradation of wheat straw as well as in the temporal changes of the bacterial community. Thus, understanding the function of these unclassified taxa is of great importance for targeted improvement of forage use efficiency in ruminants. Collectively, our results revealed distinct degradation phases of wheat straw and corresponding changes in the colonized bacterial community. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Effect of Straw Amendment on Soil Zn Availability and Ageing of Exogenous Water-Soluble Zn Applied to Calcareous Soil.

    PubMed

    Chen, Yanlong; Cui, Juan; Tian, Xiaohong; Zhao, Aiqing; Li, Meng; Wang, Shaoxia; Li, Xiushaung; Jia, Zhou; Liu, Ke

    2017-01-01

    Organic matter plays a key role in availability and transformation of soil Zn (zinc), which greatly controls Zn concentrations in cereal grains and human Zn nutrition level. Accordingly, soils homogenized with the wheat straw (0, 12 g straw kg-1) and Zn fertilizer (0, 7 mg Zn kg-1) were buried and incubated in the field over 210 days to explore the response of soil Zn availability and the ageing of exogenous Zn to straw addition. Results indicated that adding straw alone scarcely affected soil DTPA-Zn concentration and Zn fractions because of the low Zn concentration of wheat straw and the high soil pH, and large clay and calcium carbonate contents. However, adding exogenous Zn plus straw increased the DTPA-Zn abundance by about 5-fold and had the similar results to adding exogenous Zn alone, corresponding to the increased Zn fraction loosely bounded to organic matter, which had a more dominant presence in Zn reaction than soil other constituents such as carbonate and minerals in calcareous soil. The higher relative amount of ineffective Zn (~50%) after water soluble Zn addition also occurred, and at the days of 120-165 and 180-210when the natural temperature and rainfall changed mildly, the ageing process of exogenous Zn over time was well evaluated by the diffusion equation, respectively. Consequently, combining crop residues with exogenous water soluble Zn application is promising strategy to maximize the availability of Zn in calcareous soil, but the higher ageing rate of Zn caused by the higher Zn mobility should be considered.

  18. Tracking chamber made of 15-mm mylar drift tubes

    NASA Astrophysics Data System (ADS)

    Kozhin, A.; Borisov, A.; Bozhko, N.; Fakhrutdinov, R.; Plotnikov, I.

    2017-05-01

    We are presenting a drift chamber composed from three layers of mylar drift tubes with outer diameter 15 mm. The pipe is made of strip of mylar film 125 micrometers thick covered with aluminium from the both sides. A strip of mylar is wrapped around the mandrel. Pipe is created by ultrasonic welding. A single drift tube is self-supported structure withstanding 350 g wire tension without supports and internal overpressure. About 400 such tubes were assembled. Design, quality control procedures of the drift tubes are described. Seven chambers were glued from these tubes of 560 mm length. Each chamber consists of 3 layers, 16 tubes per layer. Several chambers were tested with cosmic rays. Results of the tests, counting rate plateau and coordinate resolution are presented.

  19. Droplet Image Super Resolution Based on Sparse Representation and Kernel Regression

    NASA Astrophysics Data System (ADS)

    Zou, Zhenzhen; Luo, Xinghong; Yu, Qiang

    2018-02-01

    Microgravity and containerless conditions, which are produced via electrostatic levitation combined with a drop tube, are important when studying the intrinsic properties of new metastable materials. Generally, temperature and image sensors can be used to measure the changes of sample temperature, morphology and volume. Then, the specific heat, surface tension, viscosity changes and sample density can be obtained. Considering that the falling speed of the material sample droplet is approximately 31.3 m/s when it reaches the bottom of a 50-meter-high drop tube, a high-speed camera with a collection rate of up to 106 frames/s is required to image the falling droplet. However, at the high-speed mode, very few pixels, approximately 48-120, will be obtained in each exposure time, which results in low image quality. Super-resolution image reconstruction is an algorithm that provides finer details than the sampling grid of a given imaging device by increasing the number of pixels per unit area in the image. In this work, we demonstrate the application of single image-resolution reconstruction in the microgravity and electrostatic levitation for the first time. Here, using the image super-resolution method based on sparse representation, a low-resolution droplet image can be reconstructed. Employed Yang's related dictionary model, high- and low-resolution image patches were combined with dictionary training, and high- and low-resolution-related dictionaries were obtained. The online double-sparse dictionary training algorithm was used in the study of related dictionaries and overcome the shortcomings of the traditional training algorithm with small image patch. During the stage of image reconstruction, the algorithm of kernel regression is added, which effectively overcomes the shortcomings of the Yang image's edge blurs.

  20. Droplet Image Super Resolution Based on Sparse Representation and Kernel Regression

    NASA Astrophysics Data System (ADS)

    Zou, Zhenzhen; Luo, Xinghong; Yu, Qiang

    2018-05-01

    Microgravity and containerless conditions, which are produced via electrostatic levitation combined with a drop tube, are important when studying the intrinsic properties of new metastable materials. Generally, temperature and image sensors can be used to measure the changes of sample temperature, morphology and volume. Then, the specific heat, surface tension, viscosity changes and sample density can be obtained. Considering that the falling speed of the material sample droplet is approximately 31.3 m/s when it reaches the bottom of a 50-meter-high drop tube, a high-speed camera with a collection rate of up to 106 frames/s is required to image the falling droplet. However, at the high-speed mode, very few pixels, approximately 48-120, will be obtained in each exposure time, which results in low image quality. Super-resolution image reconstruction is an algorithm that provides finer details than the sampling grid of a given imaging device by increasing the number of pixels per unit area in the image. In this work, we demonstrate the application of single image-resolution reconstruction in the microgravity and electrostatic levitation for the first time. Here, using the image super-resolution method based on sparse representation, a low-resolution droplet image can be reconstructed. Employed Yang's related dictionary model, high- and low-resolution image patches were combined with dictionary training, and high- and low-resolution-related dictionaries were obtained. The online double-sparse dictionary training algorithm was used in the study of related dictionaries and overcome the shortcomings of the traditional training algorithm with small image patch. During the stage of image reconstruction, the algorithm of kernel regression is added, which effectively overcomes the shortcomings of the Yang image's edge blurs.

  1. Comparing the performance of Miscanthus x giganteus and wheat straw biomass in sulfuric acid based pretreatment.

    PubMed

    Kärcher, M A; Iqbal, Y; Lewandowski, I; Senn, T

    2015-03-01

    The objective of this study was to assess and compare the suitability of Miscanthus x giganteus and wheat straw biomass in dilute acid catalyzed pretreatment. Miscanthus and wheat straw were treated in a dilute sulfuric acid/steam explosion pretreatment. As a result of combining dilute sulfuric acid- and steam explosion pretreatment the hemicellulose hydrolysis yields (96% in wheat straw and 90% in miscanthus) in both substrates were higher than reported in literature. The combined severity factor (=CSF) for optimal hemicellulose hydrolysis was 1.9 and 1.5 in for miscanthus and wheat straw respectively. Because of the higher CSF value more furfural, furfuryl alcohol, 5-hydroxymethylfurfural and acetic acid was formed in miscanthus than in wheat straw pretreatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. High frequency two-stage pulse tube cryocooler with base temperature below 20 K

    NASA Astrophysics Data System (ADS)

    Yang, L. W.; Thummes, G.

    2005-02-01

    High frequency (30-50 Hz) multi-stage pulse tube coolers that are capable of reaching temperatures close to 20 K or even lower are a subject of recent research and development activities. This paper reports on the design and test of a two-stage pulse tube cooler which is driven by a linear compressor with nominal input power of 200 W at an operating frequency of 30-45 Hz. A parallel configuration of the two pulse tubes is used with the warm ends of the pulse tubes located at ambient temperature. For both stages, the regenerator matrix consists of a stack of stainless steel screen. At an operating frequency of 35 Hz and with the first stage at 73 K a lowest stationary temperature of 19.6 K has been achieved at the second stage. The effects of input power, frequency, average pressure, and cold head orientation on the cooling performance are also reported. An even lower no-load temperature can be expected from the use of lead or other regenerator materials of high heat capacity in the second stage.

  3. Effects of Mulching Tolerant Plant Straw on Soil Surface on Growth and Cadmium Accumulation of Galinsoga parviflora

    PubMed Central

    Lin, Lijin; Liao, Ming’an; Ren, Yajun; Luo, Li; Zhang, Xiao; Yang, Daiyu; He, Jing

    2014-01-01

    Pot and field experiments were conducted to study the effects of mulching with straw of cadmium (Cd) tolerant plants (Ranunculus sieboldii, Mazus japonicus, Clinopodium confine and Plantago asiatica) on growth and Cd accumulation of Galinsoga parviflora in Cd-contaminated soil. In the pot experiment, mulching with M. japonicus straw increased the root biomass, stem biomass, leaf biomass, shoot biomass, plant height and activities of antioxidant enzymes (superoxide dismutase, peroxidase and catalase) of G. parviflora compared with the control, whereas mulching with straws of R. sieboldii, C. confine and P. asiatica decreased these parameters. Straws of the four Cd-tolerant plants increased the Cd content in roots of G. parviflora compared with the control. However, only straws of M. japonicus and P. asiatica increased the Cd content in shoots of G. parviflora, reduced the soil pH, and increased the soil exchangeable Cd concentration. Straw of M. japonicus increased the amount of Cd extraction in stems, leaves and shoots of G. parviflora by 21.11%, 29.43% and 24.22%, respectively, compared with the control, whereas straws of the other three Cd-tolerant plants decreased these parameters. In the field experiment, the M. japonicus straw also increased shoot biomass, Cd content in shoots, and amount of Cd extraction in shoots of G. parviflora compared with the control. Therefore, straw of M. japonicus can be used to improve the Cd extraction ability of G. parviflora from Cd-contaminated soil. PMID:25490210

  4. Resolution enhancement of low-quality videos using a high-resolution frame

    NASA Astrophysics Data System (ADS)

    Pham, Tuan Q.; van Vliet, Lucas J.; Schutte, Klamer

    2006-01-01

    This paper proposes an example-based Super-Resolution (SR) algorithm of compressed videos in the Discrete Cosine Transform (DCT) domain. Input to the system is a Low-Resolution (LR) compressed video together with a High-Resolution (HR) still image of similar content. Using a training set of corresponding LR-HR pairs of image patches from the HR still image, high-frequency details are transferred from the HR source to the LR video. The DCT-domain algorithm is much faster than example-based SR in spatial domain 6 because of a reduction in search dimensionality, which is a direct result of the compact and uncorrelated DCT representation. Fast searching techniques like tree-structure vector quantization 16 and coherence search1 are also key to the improved efficiency. Preliminary results on MJPEG sequence show promising result of the DCT-domain SR synthesis approach.

  5. Polychlorinated dibenzo-p-dioxins, dibenzofurans, and dioxin-like polychlorinated biphenyls in rice straw smoke and their origins in Japan.

    PubMed

    Minomo, Kotaro; Ohtsuka, Nobutoshi; Nojiri, Kiyoshi; Hosono, Shigeo; Kawamura, Kiyoshi

    2011-08-01

    Polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), and dioxin-like polychlorinated biphenyls (DL-PCBs) contained in the smoke generated from rice straw burning in post-harvest paddy fields in Japan were analyzed to determine their congener profiles. Both the apportionment of toxic equivalent (TEQ) by using indicative congeners and the comparison of the homolog profiles showed that the PCDDs/PCDFs/DL-PCBs present in the rice-straw smoke were greatly influenced by those present as impurities in pentachlorophenol (PCP) and chlornitrofen (CNP, 4-nitrophenyl-2,4,6-trichlorophenyl ether) formulations that had been widely used as herbicides in paddy fields in Japan. Further, in order to investigate the effects of paddy-field soil on the PCDDs/PCDFs/DL-PCBs present in rice-straw smoke, PCDD/PCDF/DL-PCB homolog profiles of rice straw, rice-straw smoke and paddy-field soil were compared. Rice-straw smoke was generated by burning rice straw on a stainless-steel tray in a laboratory. The results suggested that the herbicides-originated PCDDs/PCDFs/DL-PCBs and the atmospheric PCDDs/PCDFs/DL-PCBs contributed predominantly to the presence of PCDDs/PCDFs/DL-PCBs in the rice-straw smoke while the contribution of PCDDs/PCDFs/DL-PCBs formed during rice straw burning was relatively minimal. The major sources of the PCDDs/PCDFs/DL-PCBs found in the rice-straw smoke were attributed primarily to the paddy-field soil adhered to the rice straw surface and secondarily to the air taken by the rice straw. The principal component analysis supported these conclusions. It is concluded that rice straw burning at paddy fields acts as a driving force in the transfer of PCDDs/PCDFs/DL-PCBs from paddy-field soil to the atmosphere. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. A cloud mask methodology for high resolution remote sensing data combining information from high and medium resolution optical sensors

    NASA Astrophysics Data System (ADS)

    Sedano, Fernando; Kempeneers, Pieter; Strobl, Peter; Kucera, Jan; Vogt, Peter; Seebach, Lucia; San-Miguel-Ayanz, Jesús

    2011-09-01

    This study presents a novel cloud masking approach for high resolution remote sensing images in the context of land cover mapping. As an advantage to traditional methods, the approach does not rely on thermal bands and it is applicable to images from most high resolution earth observation remote sensing sensors. The methodology couples pixel-based seed identification and object-based region growing. The seed identification stage relies on pixel value comparison between high resolution images and cloud free composites at lower spatial resolution from almost simultaneously acquired dates. The methodology was tested taking SPOT4-HRVIR, SPOT5-HRG and IRS-LISS III as high resolution images and cloud free MODIS composites as reference images. The selected scenes included a wide range of cloud types and surface features. The resulting cloud masks were evaluated through visual comparison. They were also compared with ad-hoc independently generated cloud masks and with the automatic cloud cover assessment algorithm (ACCA). In general the results showed an agreement in detected clouds higher than 95% for clouds larger than 50 ha. The approach produced consistent results identifying and mapping clouds of different type and size over various land surfaces including natural vegetation, agriculture land, built-up areas, water bodies and snow.

  7. Pretreatment of rapeseed straw by sodium hydroxide.

    PubMed

    Kang, Kyeong Eop; Jeong, Gwi-Taek; Park, Don-Hee

    2012-06-01

    Pretreatment method for rapeseed straw by sodium hydroxide was investigated for production of bioethanol and biobutanol. Various pretreatment parameters, including temperature, time, and sodium hydroxide concentration were optimized using a statistical method which is a central composite design of response surface methodology. In the case of sodium hydroxide pretreatment, optimal pretreatment conditions were found to be 7.9% sodium hydroxide concentration, 5.5 h of reaction time, and 68.4 °C of reaction temperature. The maximum glucose yield which can be recovered by enzymatic hydrolysis at the optimum conditions was 95.7% and the experimental result was 94.0 ± 4.8%. This experimental result was in agreement with the model prediction. An increase of surface area and pore size in pretreated rapeseed straw by sodium hydroxide pretreatment was observed by scanning electron microscope.

  8. Determination of absorption coefficient based on laser beam thermal blooming in gas-filled tube.

    PubMed

    Hafizi, B; Peñano, J; Fischer, R; DiComo, G; Ting, A

    2014-08-01

    Thermal blooming of a laser beam propagating in a gas-filled tube is investigated both analytically and experimentally. A self-consistent formulation taking into account heating of the gas and the resultant laser beam spreading (including diffraction) is presented. The heat equation is used to determine the temperature variation while the paraxial wave equation is solved in the eikonal approximation to determine the temporal and spatial variation of the Gaussian laser spot radius, Gouy phase (longitudinal phase delay), and wavefront curvature. The analysis is benchmarked against a thermal blooming experiment in the literature using a CO₂ laser beam propagating in a tube filled with air and propane. New experimental results are presented in which a CW fiber laser (1 μm) propagates in a tube filled with nitrogen and water vapor. By matching laboratory and theoretical results, the absorption coefficient of water vapor is found to agree with calculations using MODTRAN (the MODerate-resolution atmospheric TRANsmission molecular absorption database) and HITRAN (the HIgh-resolution atmospheric TRANsmission molecular absorption database).

  9. Interaction between the physical form of the starter feed and straw provision on growth performance of Holstein calves.

    PubMed

    Terré, M; Castells, Ll; Khan, M A; Bach, A

    2015-02-01

    Two experiments were conducted to assess the effect of physical form of a starter feed with or without straw supplementation on growth performance of Holstein calves. In experiment 1, a total of 32 calves were randomly assigned at 7 d of age to texturized starter feed (containing rolled barley, corn, and oats) without straw, texturized starter feed with chopped straw, and pelleted starter feed with chopped straw. All calves were offered 4 L of pasteurized whole milk twice daily from 7 to 35 d of age, 2 L of milk twice daily from 36 to 42 d of age, and 2 L of milk from 43 to 49 d of age. Animals were weaned at 50 d of age, and the study finished when calves were 63 d old. In experiment 2, a total of 60 calves (8 d of age) were randomly assigned to texturized starter feed (containing whole corn) without straw, pelleted starter feed without straw, and pelleted starter feed with chopped straw. All calves were offered the same milk replacer (MR; 23% crude protein and 19.5 fat) at 11% dry matter concentration, 4 L/d of MR until 14 d of age, 6 L/d of MR from 14 to 37 d, 3 L/d of MR from 38 to 44 d, and 1.5 L/d of MR from 45 to 52 d of age. The experiment finished when calves were 58 d old (1 wk after weaning). Rumen liquid pH was measured after weaning. In both studies, calves were individually housed in pens on sawdust bedding and starter feed and chopped straw were offered free choice in separate buckets. In experiment 1, starter feed and straw intake and growth did not differ among treatments. However, calves receiving straw showed a greater rumen pH compared with those not receiving straw. In experiment 2, pelleted started feed supplemented with straw fostered an increase in solid feed intake (as percentage of body weight) compared with a pelleted or texturized starter feed without straw supplementation. However, calves that received the texturized starter feed containing whole corn had rumen pH similar to those fed a pelleted starter feed with straw. Feeding a

  10. Single sensor processing to obtain high resolution color component signals

    NASA Technical Reports Server (NTRS)

    Glenn, William E. (Inventor)

    2010-01-01

    A method for generating color video signals representative of color images of a scene includes the following steps: focusing light from the scene on an electronic image sensor via a filter having a tri-color filter pattern; producing, from outputs of the sensor, first and second relatively low resolution luminance signals; producing, from outputs of the sensor, a relatively high resolution luminance signal; producing, from a ratio of the relatively high resolution luminance signal to the first relatively low resolution luminance signal, a high band luminance component signal; producing, from outputs of the sensor, relatively low resolution color component signals; and combining each of the relatively low resolution color component signals with the high band luminance component signal to obtain relatively high resolution color component signals.

  11. High-Resolution Mass Spectrometers

    NASA Astrophysics Data System (ADS)

    Marshall, Alan G.; Hendrickson, Christopher L.

    2008-07-01

    Over the past decade, mass spectrometry has been revolutionized by access to instruments of increasingly high mass-resolving power. For small molecules up to ˜400 Da (e.g., drugs, metabolites, and various natural organic mixtures ranging from foods to petroleum), it is possible to determine elemental compositions (CcHhNnOoSsPp…) of thousands of chemical components simultaneously from accurate mass measurements (the same can be done up to 1000 Da if additional information is included). At higher mass, it becomes possible to identify proteins (including posttranslational modifications) from proteolytic peptides, as well as lipids, glycoconjugates, and other biological components. At even higher mass (˜100,000 Da or higher), it is possible to characterize posttranslational modifications of intact proteins and to map the binding surfaces of large biomolecule complexes. Here we review the principles and techniques of the highest-resolution analytical mass spectrometers (time-of-flight and Fourier transform ion cyclotron resonance and orbitrap mass analyzers) and describe some representative high-resolution applications.

  12. Electricity generation from rapeseed straw hydrolysates using microbial fuel cells.

    PubMed

    Jablonska, Milena A; Rybarczyk, Maria K; Lieder, Marek

    2016-05-01

    Rapeseed straw is an attractive fuel material for microbial fuel cells (MFCs) due to its high content of carbohydrates (more than 60% carbohydrates). This study has demonstrated that reducing sugars can be efficiently extracted from raw rapeseed straw by combination of hydrothermal pretreatment and enzymatic hydrolysis followed by utilization as a fuel in two-chamber MFCs for electrical power generation. The most efficient method of saccharification of this lignocellulosic biomass (17%) turned out hydrothermal pretreatment followed by enzymatic hydrolysis. Electricity was produced using hydrolysate concentrations up to 150 mg/dm(3). The power density reached 54 mW/m(2), while CEs ranged from 60% to 10%, corresponding to the initial reducing sugar concentrations of 10-150 mg/dm(3). The COD degradation rates based on charge calculation increased from 0.445 g COD/m(2)/d for the hydrolysate obtained with the microwave treatment to 0.602 g COD/m(2)/d for the most efficient combination of hydrothermal treatment followed by enzymatic hydrolysis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Conversion of rice straw to bio-based chemicals: an integrated process using Lactobacillus brevis.

    PubMed

    Kim, Jae-Han; Block, David E; Shoemaker, Sharon P; Mills, David A

    2010-05-01

    Commercialization of lignocellulosic biomass as a feedstock for bio-based chemical production is problematic due to the high processing costs of pretreatment and saccharifying enzymes combined with low product yields. Such low product yield can be attributed, in large part, to the incomplete utilization of the various carbohydrate sugars found in the lignocellulosic biomass. In this study, we demonstrate that Lactobacillus brevis is able to simultaneously metabolize all fermentable carbohydrates in acid pre-processed rice straw hydrolysate, thereby allowing complete utilization of all released sugars. Inhibitors present in rice straw hydrolysate did not affect lactic acid production. Moreover, the activity of exogenously added cellulases was not reduced in the presence of growing cultures of L. brevis. These factors enabled the use of L. brevis in a process termed simultaneous saccharification and mixed sugar fermentation (SSMSF). In SSMSF with L. brevis, sugars present in rice straw hydrolysate were completely utilized while the cellulase maintained its maximum activity due to the lack of feedback inhibition from glucose and/or cellobiose. By comparison to a sequential hydrolysis and fermentation process, SSMSF reduced operation time and the amount of cellulase enzyme necessary to produce the same amount of lactic acid.

  14. Syngas production by chemical-looping gasification of wheat straw with Fe-based oxygen carrier.

    PubMed

    Hu, Jianjun; Li, Chong; Guo, Qianhui; Dang, Jiatao; Zhang, Quanguo; Lee, Duu-Jong; Yang, Yunlong

    2018-05-03

    The iron-based oxygen carriers (OC's), Fe 2 O 3 /support (Al 2 O 3 , TiO 2 , SiO 2 and ZrO 2 ), for chemical looping gasification of wheat straw were prepared using impregnation method. The surface morphology, crystal structure, carbon deposition potential, lattice oxygen activity and selectivity of the yielded OCs were examined. The Fe 2 O 3 /Al 2 O 3 OCs at 60% loading has the highest H 2 yield, H 2 /CO ratio, gas yield, and carbon conversion amongst the tested OC's. Parametric studies revealed that an optimal loading Fe 2 O 3 of 60%, steam-to-biomass ratio of 0.8 and oxygen carrier-to-biomass ratio of 1.0 led to the maximum H 2 /CO ratio, gas yield, H 2  + CO ratio, and carbon conversion from the gasified wheat straw. High temperature, up to 950 °C, enhanced the gasification performance. A kinetic network interpreted the noted experimental results. The lattice oxygen provided by the prepared Fe 2 O 3 /Al 2 O 3 oxygen carriers promotes chemical looping gasification efficiencies from wheat straw. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Coregistration of high-resolution Mars orbital images

    NASA Astrophysics Data System (ADS)

    Sidiropoulos, Panagiotis; Muller, Jan-Peter

    2015-04-01

    The systematic orbital imaging of the Martian surface started 4 decades ago from NASA's Viking Orbiter 1 & 2 missions, which were launched in August 1975, and acquired orbital images of the planet between 1976 and 1980. The result of this reconnaissance was the first medium-resolution (i.e. ≤ 300m/pixel) global map of Mars, as well as a variety of high-resolution images (reaching up to 8m/pixel) of special regions of interest. Over the last two decades NASA has sent 3 more spacecraft with onboard instruments for high-resolution orbital imaging: Mars Global Surveyor (MGS) having onboard the Mars Orbital Camera - Narrow Angle (MOC-NA), Mars Odyssey having onboard the Thermal Emission Imaging System - Visual (THEMIS-VIS) and the Mars Reconnaissance Orbiter (MRO) having on board two distinct high-resolution cameras, Context Camera (CTX) and High-Resolution Imaging Science Experiment (HiRISE). Moreover, ESA has the multispectral High resolution Stereo Camera (HRSC) onboard ESA's Mars Express with resolution up to 12.5m since 2004. Overall, this set of cameras have acquired more than 400,000 high-resolution images, i.e. with resolution better than 100m and as fine as 25 cm/pixel. Notwithstanding the high spatial resolution of the available NASA orbital products, their accuracy of areo-referencing is often very poor. As a matter of fact, due to pointing inconsistencies, usually form errors in roll attitude, the acquired products may actually image areas tens of kilometers far away from the point that they are supposed to be looking at. On the other hand, since 2004, the ESA Mars Express has been acquiring stereo images through the High Resolution Stereo Camera (HRSC), with resolution that is usually 12.5-25 metres per pixel. The achieved coverage is more than 64% for images with resolution finer than 20 m/pixel, while for ~40% of Mars, Digital Terrain Models (DTMs) have been produced with are co-registered with MOLA [Gwinner et al., 2010]. The HRSC images and DTMs

  16. Laboratory-based micro-X-ray fluorescence setup using a von Hamos crystal spectrometer and a focused beam X-ray tube

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kayser, Y., E-mail: yves.kayser@psi.ch; Paul Scherrer Institut, 5232 Villigen-PSI; Błachucki, W.

    2014-04-15

    The high-resolution von Hamos bent crystal spectrometer of the University of Fribourg was upgraded with a focused X-ray beam source with the aim of performing micro-sized X-ray fluorescence (XRF) measurements in the laboratory. The focused X-ray beam source integrates a collimating optics mounted on a low-power micro-spot X-ray tube and a focusing polycapillary half-lens placed in front of the sample. The performances of the setup were probed in terms of spatial and energy resolution. In particular, the fluorescence intensity and energy resolution of the von Hamos spectrometer equipped with the novel micro-focused X-ray source and a standard high-power water-cooled X-raymore » tube were compared. The XRF analysis capability of the new setup was assessed by measuring the dopant distribution within the core of Er-doped SiO{sub 2} optical fibers.« less

  17. High throughput screening of ligand binding to macromolecules using high resolution powder diffraction

    DOEpatents

    Von Dreele, Robert B.; D'Amico, Kevin

    2006-10-31

    A process is provided for the high throughput screening of binding of ligands to macromolecules using high resolution powder diffraction data including producing a first sample slurry of a selected polycrystalline macromolecule material and a solvent, producing a second sample slurry of a selected polycrystalline macromolecule material, one or more ligands and the solvent, obtaining a high resolution powder diffraction pattern on each of said first sample slurry and the second sample slurry, and, comparing the high resolution powder diffraction pattern of the first sample slurry and the high resolution powder diffraction pattern of the second sample slurry whereby a difference in the high resolution powder diffraction patterns of the first sample slurry and the second sample slurry provides a positive indication for the formation of a complex between the selected polycrystalline macromolecule material and at least one of the one or more ligands.

  18. Evaluation of the thermal and structural performance of straw bale construction

    NASA Astrophysics Data System (ADS)

    Beaudry, Kyle R.

    This thesis is primarily divided into two distinct experimental programs evaluating: 1) the thermal performance and, 2) the structural performance of straw bale construction. The thermal performance chapter describes hot-box testing (based on ASTM C1363-11) of seven straw bale wall panels to obtain their apparent thermal conductivity values. All panels were constructed with stacked bales and cement-lime plaster skins on each side of the bales. Four panels were made with traditional, 2-string field bales of densities ranging from 89.5 kg/m3 - 131 kg/m3 and with the bales on-edge (fibres perpendicular to the heat flow). Three panels were made with manufactured high-density bales (291 kg/m3 - 372 kg/m3). The fibres of the manufactured bales were randomly oriented. The key conclusion of this work is that within the experimental error, there is no difference in the apparent thermal conductivity value for panels using normal density bales and manufactured high-density bales up to a density of 333 kg/m3. The structural performance chapter describes gravity and transverse load testing (based on ASTM E72-15) of non-plastered modular straw bale wall (DBW) panels to evaluate their strength capacity and failure modes. The out-of-plane flexural (OPF) tests exhibited a mean ultimate bending moment of 49.7 kNm. The axial compression (AC) tests exhibited a mean ultimate line load of 161.0 kN/m. The local flexural header beam (HP) tests exhibited an ultimate line load of 31.6 kN/m. The OPF and AC capacities of the DBW exceeded the capacities exhibited by a conventional 38 mm x 140 mm stud wall. However, the DBW's header beam strength and stiffness was inferior to conventional stud wall.

  19. Mars Life? - Microscopic Tube-like Structures

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This high-resolution scanning electron microscope image shows an unusual tube-like structural form that is less than 1/100th the width of a human hair in size found in meteorite ALH84001, a meteorite believed to be of Martian origin. Although this structure is not part of the research published in the Aug. 16 issue of the journal Science, it is located in a similar carbonate glob in the meteorite. This structure will be the subject of future investigations that could confirm whether or not it is fossil evidence of primitive life on Mars 3.6 billion years ago.

  20. Rice straw mulch for post-fire erosion control: assessing non-target effects on vegetation communities

    Treesearch

    Kristen L. Shive; Becky L. Estes; Angela M. White; Hugh D. Safford; Kevin L. O' Hara; Scott L. Stephens

    2017-01-01

    Straw mulch is commonly used for post-fire erosion control in severely burned areas but this practice can introduce non-native species, even when certified weed-free straw is used. Rice straw has recently been promoted as an alternative to wheat under the hypothesis that non-native species that are able to grow in a rice field are unlikely to establish in dry forested...

  1. Texton-based super-resolution for achieving high spatiotemporal resolution in hybrid camera system

    NASA Astrophysics Data System (ADS)

    Kamimura, Kenji; Tsumura, Norimichi; Nakaguchi, Toshiya; Miyake, Yoichi

    2010-05-01

    Many super-resolution methods have been proposed to enhance the spatial resolution of images by using iteration and multiple input images. In a previous paper, we proposed the example-based super-resolution method to enhance an image through pixel-based texton substitution to reduce the computational cost. In this method, however, we only considered the enhancement of a texture image. In this study, we modified this texton substitution method for a hybrid camera to reduce the required bandwidth of a high-resolution video camera. We applied our algorithm to pairs of high- and low-spatiotemporal-resolution videos, which were synthesized to simulate a hybrid camera. The result showed that the fine detail of the low-resolution video can be reproduced compared with bicubic interpolation and the required bandwidth could be reduced to about 1/5 in a video camera. It was also shown that the peak signal-to-noise ratios (PSNRs) of the images improved by about 6 dB in a trained frame and by 1.0-1.5 dB in a test frame, as determined by comparison with the processed image using bicubic interpolation, and the average PSNRs were higher than those obtained by the well-known Freeman’s patch-based super-resolution method. Compared with that of the Freeman’s patch-based super-resolution method, the computational time of our method was reduced to almost 1/10.

  2. Enhanced yields and soil quality in a wheat-maize rotation using buried straw mulch.

    PubMed

    Guo, Zhibin; Liu, Hui; Wan, Shuixia; Hua, Keke; Jiang, Chaoqiang; Wang, Daozhong; He, Chuanlong; Guo, Xisheng

    2017-08-01

    Straw return may improve soil quality and crop yields. In a 2-year field study, a straw return method (ditch-buried straw return, DB-SR) was used to investigate the soil quality and crop productivity effects on a wheat-corn rotation system. This study consisted of three treatments, each with three replicates: (1) mineral fertilisation alone (CK0); (2) mineral fertilisation + 7500 kg ha -1 wheat straw incorporated at depth of 0-15 cm (NPKWS); and (3) mineral fertilisation + 7500 kg ha -1 wheat straw ditch buried at 15-30 cm (NPKDW). NPKWS and NPKDW enhanced crop yield and improved soil biotical properties compared to mineral fertilisation alone. NPKDW contributed to greater crop yields and soil nutrient availability at 15-30 cm depths, compared to NPKWS treatment. NPKDW enhanced soil microbial activity and bacteria species richness and diversity in the 0-15 cm layer. NPKWS increased soil microbial biomass, bacteria species richness and diversity at 15-30 cm. The comparison of the CK0 and NPKWS treatments indicates that a straw ditch buried by digging to the depth of 15-30 cm can improve crop yields and soil quality in a wheat-maize rotation system. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  3. Improvement of Aluminum-Air Battery Performances by the Application of Flax Straw Extract.

    PubMed

    Grishina, Ekaterina; Gelman, Danny; Belopukhov, Sergey; Starosvetsky, David; Groysman, Alec; Ein-Eli, Yair

    2016-08-23

    The effect of a flax straw extract on Al corrosion inhibition in a strong alkaline solution was studied by using electrochemical measurements, weight-loss analysis, SEM, and FTIR spectroscopy. Flax straw extract added (3 vol %) to the 5 m KOH solution to act as a mixed-type Al corrosion inhibitor. The electrochemistry of Al in the presence of a flax straw extract in the alkaline solution, the effect of the extract on the Al morphology and surface films formed, and the corrosion inhibition mechanism are discussed. Finally, the Al-air battery discharge capacity recorded from a cell that used the flax straw extract in the alkaline electrolyte is substantially higher than that with only a pure alkaline electrolyte. This improved sustainability of the Al anode is attributed to Al corrosion inhibition and, consequently, to hydrogen evolution suppression. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. High-Density, High-Resolution, Low-Cost Air Quality Sensor Networks for Urban Air Monitoring

    NASA Astrophysics Data System (ADS)

    Mead, M. I.; Popoola, O. A.; Stewart, G.; Bright, V.; Kaye, P.; Saffell, J.

    2012-12-01

    Monitoring air quality in highly granular environments such as urban areas which are spatially heterogeneous with variable emission sources, measurements need to be made at appropriate spatial and temporal scales. Current routine air quality monitoring networks generally are either composed of sparse expensive installations (incorporating e.g. chemiluminescence instruments) or higher density low time resolution systems (e.g. NO2 diffusion tubes). Either approach may not accurately capture important effects such as pollutant "hot spots" or adequately capture spatial (or temporal) variability. As a result, analysis based on data from traditional low spatial resolution networks, such as personal exposure, may be inaccurate. In this paper we present details of a sophisticated, low-cost, multi species (gas phase, speciated PM, meteorology) air quality measurement network methodology incorporating GPS and GPRS which has been developed for high resolution air quality measurements in urban areas. Sensor networks developed in the Centre for Atmospheric Science (University of Cambridge) incorporated electrochemical gas sensors configured for use in urban air quality studies operating at parts-per-billion (ppb) levels. It has been demonstrated that these sensors can be used to measure key air quality gases such as CO, NO and NO2 at the low ppb mixing ratios present in the urban environment (estimated detection limits <4ppb for CO and NO and <1ppb for NO2. Mead et al (submitted Aug., 2012)). Based on this work, a state of the art multi species instrument package for deployment in scalable sensor networks has been developed which has general applicability. This is currently being employed as part of a major 3 year UK program at London Heathrow airport (the Sensor Networks for Air Quality (SNAQ) Heathrow project). The main project outcome is the creation of a calibrated, high spatial and temporal resolution data set for O3, NO, NO2, SO2, CO, CO2, VOCstotal, size-speciated PM

  5. Straw management and greenhouse gas emissions in sugarcane cropping in São Paulo State, Brazil

    NASA Astrophysics Data System (ADS)

    Pitombo, L.; Cantarella, H.; Packer, A.; Ramos, N.; de Lima, M.; Carmo, J.

    2012-04-01

    Greenhouse gas emissions during the cropping would consolidate or derail the biofuels as an environmental commodity, mainly due to N2O emissions from fertilizers. It occurs because the Greenhouse Gas Potential of N2O is 298 times greater than CO2; thus, the range among the balance favorable or not is very close. Since in São Paulo State the sugarcane harvest has been changed from burned to no-burned form due to environmental and social factors, the straw is maintained in the field. However, primarily because straw changes carbon, nitrogen and water availability, we hypothesized that straw influences N2O emissions from soil. At this work, our aim is to determine the amount of applied fertilizer emitted as N2O in sugarcane crop with different levels of straw maintained in the field. The experiment was installed in October 2011 in a commercial area in São Paulo State, which is the principal producer in Brazil (22°22' S, 47°30'W). It is conducted in four blocks with four plots (12x15m) each with the treatments 0; 50; 75; 100% of produced straw by the crop maintained in the field. Nitrogen fertilizer was applied at line as ammonium nitrate (100 kg N ha-1) in all plots. Subplots were included with no nitrogen fertilizer for determination of background emissions. For gas efflux determination is adopted the chamber-based method, where is used the linear regression based on the curve generated from the four gas values measured along the 30 min intervals. The gas measurements are taken at fertilizer line and in between-row position. Inside the chambers (30 cm diameter) were placed the respective amount of straw (by area) and fertilizer (by length). We adopt high frequency of gas samplings to avoid quantification errors from seasonality. Among October and December the samplings are done in alternated days because we are waiting the peak emissions in this period as well as verify in other works. After December, the samplings interval will decrease progressively until once

  6. Immersion Gratings for Infrared High-resolution Spectroscopy

    NASA Astrophysics Data System (ADS)

    Sarugaku, Yuki; Ikeda, Yuji; Kobayashi, Naoto; Kaji, Sayumi; Sukegawa, Takashi; Sugiyama, Shigeru; Nakagawa, Takao; Arasaki, Takayuki; Kondo, Sohei; Nakanishi, Kenshi; Yasui, Chikako; Kawakita, Hideyo

    2016-10-01

    High-resolution spectroscopy in the infrared wavelength range is essential for observations of minor isotopologues, such as HDO for water, and prebiotic organic molecules like hydrocarbons/P-bearing molecules because numerous vibrational molecular bands (including non-polar molecules) are located in this wavelength range. High spectral resolution enables us to detect weak lines without spectral line confusion. This technique has been widely used in planetary sciences, e.g., cometary coma (H2O, CO, and organic molecules), the martian atmosphere (CH4, CO2, H2O and HDO), and the upper atmosphere of gas giants (H3+ and organic molecules such as C2H6). Spectrographs with higher resolution (and higher sensitivity) still have a potential to provide a plenty of findings. However, because the size of spectrographs scales with the spectral resolution, it is difficult to realize it.Immersion grating (IG), which is a diffraction grating wherein the diffraction surface is immersed in a material with a high refractive index (n > 2), provides n times higher spectral resolution compared to a reflective grating of the same size. Because IG reduces the size of spectrograph to 1/n compared to the spectrograph with the same spectral resolution using a conventional reflective grating, it is widely acknowledged as a key optical device to realize compact spectrographs with high spectral resolution.Recently, we succeeded in fabricating a CdZnTe immersion grating with the theoretically predicted diffraction efficiency by machining process using an ultrahigh-precision five-axis processing machine developed by Canon Inc. Using the same technique, we completed a practical germanium (Ge) immersion grating with both a reflection coating on the grating surface and the an AR coating on the entrance surface. It is noteworthy that the wide wavelength range from 2 to 20 um can be covered by the two immersion gratings.In this paper, we present the performances and the applications of the immersion

  7. HRSC: High resolution stereo camera

    USGS Publications Warehouse

    Neukum, G.; Jaumann, R.; Basilevsky, A.T.; Dumke, A.; Van Gasselt, S.; Giese, B.; Hauber, E.; Head, J. W.; Heipke, C.; Hoekzema, N.; Hoffmann, H.; Greeley, R.; Gwinner, K.; Kirk, R.; Markiewicz, W.; McCord, T.B.; Michael, G.; Muller, Jan-Peter; Murray, J.B.; Oberst, J.; Pinet, P.; Pischel, R.; Roatsch, T.; Scholten, F.; Willner, K.

    2009-01-01

    The High Resolution Stereo Camera (HRSC) on Mars Express has delivered a wealth of image data, amounting to over 2.5 TB from the start of the mapping phase in January 2004 to September 2008. In that time, more than a third of Mars was covered at a resolution of 10-20 m/pixel in stereo and colour. After five years in orbit, HRSC is still in excellent shape, and it could continue to operate for many more years. HRSC has proven its ability to close the gap between the low-resolution Viking image data and the high-resolution Mars Orbiter Camera images, leading to a global picture of the geological evolution of Mars that is now much clearer than ever before. Derived highest-resolution terrain model data have closed major gaps and provided an unprecedented insight into the shape of the surface, which is paramount not only for surface analysis and geological interpretation, but also for combination with and analysis of data from other instruments, as well as in planning for future missions. This chapter presents the scientific output from data analysis and highlevel data processing, complemented by a summary of how the experiment is conducted by the HRSC team members working in geoscience, atmospheric science, photogrammetry and spectrophotometry. Many of these contributions have been or will be published in peer-reviewed journals and special issues. They form a cross-section of the scientific output, either by summarising the new geoscientific picture of Mars provided by HRSC or by detailing some of the topics of data analysis concerning photogrammetry, cartography and spectral data analysis.

  8. Pilot scale dilute acid pretreatment of rice straw and fermentable sugar recovery at high solid loadings.

    PubMed

    Kapoor, Manali; Soam, Shveta; Agrawal, Ruchi; Gupta, Ravi P; Tuli, Deepak K; Kumar, Ravindra

    2017-01-01

    The aim of this work was to study the dilute acid pretreatment of rice straw (RS) and fermentable sugar recovery at high solid loadings at pilot scale. A series of pretreatment experiments were performed on RS resulting in >25wt% solids followed by enzymatic hydrolysis without solid-liquid separation at 20 and 25wt% using 10FPU/g of the pretreated residue. The overall sugar recovery including the sugars released in pretreatment and enzymatic hydrolysis was calculated along with a mass balance. Accordingly, the optimized conditions, i.e. 0.35wt% acid, 162°C and 10min were identified. The final glucose and xylose concentrations obtained were 83.3 and 31.9g/L respectively resulting in total concentration of 115.2g/L, with a potential to produce >50g/L of ethanol. This is the first report on pilot scale study on acid pretreatment of RS in a screw feeder horizontal reactor followed by enzymatic hydrolysis at high solid loadings. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Differential proteomic analysis of the secretome of Irpex lacteus and other white-rot fungi during wheat straw pretreatment.

    PubMed

    Salvachúa, Davinia; Martínez, Angel T; Tien, Ming; López-Lucendo, María F; García, Francisco; de Los Ríos, Vivian; Martínez, María Jesús; Prieto, Alicia

    2013-08-10

    Identifying new high-performance enzymes or enzyme complexes to enhance biomass degradation is the key for the development of cost-effective processes for ethanol production. Irpex lacteus is an efficient microorganism for wheat straw pretreatment, yielding easily hydrolysable products with high sugar content. Thus, this fungus was selected to investigate the enzymatic system involved in lignocellulose decay, and its secretome was compared to those from Phanerochaete chrysosporium and Pleurotus ostreatus which produced different degradation patterns when growing on wheat straw. Extracellular enzymes were analyzed through 2D-PAGE, nanoLC/MS-MS, and homology searches against public databases. In wheat straw, I. lacteus secreted proteases, dye-decolorizing and manganese-oxidizing peroxidases, and H2O2 producing-enzymes but also a battery of cellulases and xylanases, excluding those implicated in cellulose and hemicellulose degradation to their monosaccharides, making these sugars poorly available for fungal consumption. In contrast, a significant increase of β-glucosidase production was observed when I. lacteus grew in liquid cultures. P. chrysosporium secreted more enzymes implicated in the total hydrolysis of the polysaccharides and P. ostreatus produced, in proportion, more oxidoreductases. The protein pattern secreted during I. lacteus growth in wheat straw plus the differences observed among the different secretomes, justify the fitness of I. lacteus for biopretreatment processes in 2G-ethanol production. Furthermore, all these data give insight into the biological degradation of lignocellulose and suggest new enzyme mixtures interesting for its efficient hydrolysis.

  10. Study of performance of the ATLAS transition radiation tracker in run 1 of the LHC: Tracking characteristics

    NASA Astrophysics Data System (ADS)

    Belyaev, N.; Krasnopevtsev, D.; Smirnov, N.

    2018-01-01

    The ATLAS Transition Radiation Tracker (TRT) contains more than 350000 large straw tubes and it is the outermost of the three subsystems of the ATLAS Inner Detector (ID). The TRT contributes substantially to the ATLAS ID resolution for the tracks of high-energy particles, providing excellent particle identification capabilities and electron-pion separation. Basic performance parameters of the TRT related to its tracking function are described in this paper. The data used in this study were collected during the first period of the Large Hadron Collider (LHC) operation in 2012 with a proton collision energy of 8 TeV. The tracking performance of the TRT has been studied in the case of operating with a Xe-based gas mixture and as a function of the straw occupancy. Special attention was paid to investigation of tracking parameters inside hadronic jets. The experimental data and simulation are in reasonable agreement, even within the dense cores of the most energetic jets.

  11. High resolution scintillation detector with semiconductor readout

    DOEpatents

    Levin, Craig S.; Hoffman, Edward J.

    2000-01-01

    A novel high resolution scintillation detector array for use in radiation imaging such as high resolution Positron Emission Tomography (PET) which comprises one or more parallelepiped crystals with at least one long surface of each crystal being in intimate contact with a semiconductor photodetector such that photons generated within each crystal by gamma radiation passing therethrough is detected by the photodetector paired therewith.

  12. Radiological Shielding Design for the Neutron High-Resolution Backscattering Spectrometer EMU at the OPAL Reactor

    NASA Astrophysics Data System (ADS)

    Ersez, Tunay; Esposto, Fernando; Souza, Nicolas R. de

    2017-09-01

    The shielding for the neutron high-resolution backscattering spectrometer (EMU) located at the OPAL reactor (ANSTO) was designed using the Monte Carlo code MCNP 5-1.60. The proposed shielding design has produced compact shielding assemblies, such as the neutron pre-monochromator bunker with sliding cylindrical block shields to accommodate a range of neutron take-off angles, and in the experimental area - shielding of neutron focusing guides, choppers, flight tube, backscattering monochromator, and additional shielding elements inside the Scattering Tank. These shielding assemblies meet safety and engineering requirements and cost constraints. The neutron dose rates around the EMU instrument were reduced to < 0.5 µSv/h and the gamma dose rates to a safe working level of ≤ 3 µSv/h.

  13. High-Resolution Global Soil Moisture Map

    NASA Image and Video Library

    2015-05-19

    High-resolution global soil moisture map from NASA SMAP combined radar and radiometer instruments, acquired between May 4 and May 11, 2015 during SMAP commissioning phase. The map has a resolution of 5.6 miles (9 kilometers). The data gap is due to turning the instruments on and off during testing. http://photojournal.jpl.nasa.gov/catalog/PIA19337

  14. Development of miniature, high frequency pulse tube cryocoolers

    NASA Astrophysics Data System (ADS)

    Radebaugh, Ray; Garaway, Isaac; Veprik, Alexander M.

    2010-04-01

    Because acoustic power density is proportional to frequency, the size of pulse tube cryocoolers for a given refrigeration power can be reduced by operating them at higher frequencies. A frequency of about 60 Hz had been considered the maximum frequency that could be used while maintaining high efficiency. Recently, we have shown through modeling that by decreasing the volume and hydraulic diameter of the regenerator and increasing the average pressure, it is possible to maintain high efficiency even for frequencies of several hundred hertz. Subsequent experimental results have demonstrated high efficiencies for frequencies of 100 to 140 Hz. The very high power density achieved at higher pressures and higher frequencies leads to very short cooldown times and very compact devices. The use of even higher frequencies requires the development of special compressors designed for such conditions and the development of regenerator matrices with hydraulic diameters less than about 30 Μm. To demonstrate the advantages of higher frequency operation, we discuss here the development of a miniature pulse tube cryocooler designed to operate at 80 K with a frequency of 150 Hz and an average pressure of 5.0 MPa. The regenerator diameter and length are 4.4 mm and 27 mm, respectively. The lowest temperature achieved to date has been 97 K, but a net refrigeration power of 530 mW was achieved at 120 K. Acoustic mismatches with existing compressors significantly limit the efficiency, but necessary modifications to improve the acoustic impedance match between the compressor and the cold head are discussed briefly.

  15. Broadband rotary joint for high speed ultrahigh resolution endoscopic OCT imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Alemohammad, Milad; Yuan, Wu; Mavadia-Shukla, Jessica; Liang, Wenxuan; Yu, Xiaoyun; Yu, Shaoyong; Li, Xingde

    2016-03-01

    Endoscopic OCT is a promising technology enabling noninvasive in vivo imaging of internal organs, such as the gastrointestinal tract and airways. The past few years have witnessed continued efforts to achieve ultrahigh resolution and speed. It is well-known that the axial resolution in OCT imaging has a quadratic dependence on the central wavelength. While conventional OCT endoscopes operate in 1300 nm wavelength, the second-generation endoscopes are designed for operation around 800 nm where turn-key, broadband sources are becoming readily available. Traditionally 1300 nm OCT endoscopes are scanned at the proximal end, and a broadband fiber-optic rotary joint as a key component in scanning endoscopic OCT is commercially available. Bandwidths in commercial 800 nm rotary joints are unfortunately compromised due to severe chromatic aberration, which limits the resolution afforded by the broadband light source. In the past we remedied this limitation by using a home-made capillary-tube-based rotary joint where the maximum reliable speed is ~10 revolutions/second. In this submission we report our second-generation, home-built high-speed and broadband rotary joint for 800 nm wavelength, which uses achromatic doublets in order achieve broadband achromatic operation. The measured one-way throughput of the rotary joint is >67 % while the fluctuation of the double-pass coupling efficiency during 360° rotation is less than +/-5 % at a speed of 70 revolutions/second. We demonstrate the operation of this rotary joint in conjunction with our ultrahigh-resolution (2.4 µm in air) diffractive catheter by three-dimensional full-circumferential endoscopic imaging of guinea pig esophagus at 70 frames per second in vivo.

  16. High-resolution DEM Effects on Geophysical Flow Models

    NASA Astrophysics Data System (ADS)

    Williams, M. R.; Bursik, M. I.; Stefanescu, R. E. R.; Patra, A. K.

    2014-12-01

    Geophysical mass flow models are numerical models that approximate pyroclastic flow events and can be used to assess the volcanic hazards certain areas may face. One such model, TITAN2D, approximates granular-flow physics based on a depth-averaged analytical model using inputs of basal and internal friction, material volume at a coordinate point, and a GIS in the form of a digital elevation model (DEM). The volume of modeled material propagates over the DEM in a way that is governed by the slope and curvature of the DEM surface and the basal and internal friction angles. Results from TITAN2D are highly dependent upon the inputs to the model. Here we focus on a single input: the DEM, which can vary in resolution. High resolution DEMs are advantageous in that they contain more surface details than lower-resolution models, presumably allowing modeled flows to propagate in a way more true to the real surface. However, very high resolution DEMs can create undesirable artifacts in the slope and curvature that corrupt flow calculations. With high-resolution DEMs becoming more widely available and preferable for use, determining the point at which high resolution data is less advantageous compared to lower resolution data becomes important. We find that in cases of high resolution, integer-valued DEMs, very high-resolution is detrimental to good model outputs when moderate-to-low (<10-15°) slope angles are involved. At these slope angles, multiple adjacent DEM cell elevation values are equal due to the need for the DEM to approximate the low slope with a limited set of integer values for elevation. The first derivative of the elevation surface thus becomes zero. In these cases, flow propagation is inhibited by these spurious zero-slope conditions. Here we present evidence for this "terracing effect" from 1) a mathematically defined simulated elevation model, to demonstrate the terracing effects of integer valued data, and 2) a real-world DEM where terracing must be

  17. Induction of wheat straw delignification by Trametes species

    PubMed Central

    Knežević, Aleksandar; Stajić, Mirjana; Jovanović, Vladimir M.; Kovačević, Višnja; Ćilerdžić, Jasmina; Milovanović, Ivan; Vukojević, Jelena

    2016-01-01

    Wheat straw is the major crop residue in European countries which makes it the most promising material for bioconversion into biofuels. However, cellulose and hemicellulose are protected with lignin, so delignification is an inevitable phase in lignocellulose processing. The organisms predominantly responsible for its degradation are white-rot fungi and among them Trametes species represent promising degraders due to a well-developed ligninolytic enzyme system. Although numerous studies have confirmed that low molecular weight compounds can induce the production and activity of ligninolytic enzymes it is not clear how this reflects on the extent of delignification. The aim of the study was to assess the capacity of p-anisidine and veratryl alcohol to induce the production and activity of Mn-oxidizing peroxidases and laccases, and wheat straw delignification by six Trametes species. Significant inter- and intraspecific variations in activity and features of these enzymes were found, as well as differences in the potential of lignocellulose degradation in the presence or absence of inducers. Differences in the catalytic properties of synthesized enzyme isoforms strongly affected lignin degradation. Apart from enhanced lignin degradation, the addition of p-anisidine could significantly improve the selectivity of wheat straw ligninolysis, which was especially evident for T. hirsuta strains. PMID:27216645

  18. Investigation of anodic TiO2 nanotube composition with high spatial resolution AES and ToF SIMS

    NASA Astrophysics Data System (ADS)

    Dronov, Alexey; Gavrilin, Ilya; Kirilenko, Elena; Dronova, Daria; Gavrilov, Sergey

    2018-03-01

    High resolution Scanning Auger Electron Spectroscopy (AES) and Time-of-Flight Secondary Ion Mass-Spectrometry (ToF SIMS) were used to investigate structure and elemental composition variation of both across an array of TiO2 nanotubes (NTs) and single tube of an array. The TiO2 NT array was grown by anodic oxidation of Ti foil in fluorine-containing ethylene glycol electrolyte. It was found that the studied anodic TiO2 nanotubes have a layered structure with rather sharp interfaces. The differences in AES depth profiling results of a single tube with the focused primary electron beam (point analysis) and over an area of 75 μm in diameter of a nanotube array with the defocused primary electron beam are discussed. Depth profiling by ToF SIMS was carried out over approximately the same size of a nanotube array to determine possible ionic fragments in the structure. The analysis results show that the combination of both mentioned methods is useful for a detailed analysis of nanostructures with complex morphology and multi-layered nature.

  19. Polychaete Tubes, Turbulence, and Erosion of Fine-Grained Sediment

    NASA Astrophysics Data System (ADS)

    Kincke-Tootle, A.; Frank, D. P.; Briggs, K. B.; Calantoni, J.

    2016-02-01

    The role of polychaete tubes protruding through the benthic boundary layer in promoting or hindering erosion of fine-grained sediment was examined in laboratory experiments. Diver core samples of the top 10cm of sediment were collected west of Trinity Shoal off the Louisiana coast in 10-m depth. Diver cores were used in laboratory experiments conducted in a unidirectional flume. Tubes that were constructed by polychaetes, which comprised 70% of the species from the study area, were inserted into the core sediment surface. The sediment cores were then placed in the 2-m long test section of a small oscillatory flow tunnel and high-speed, stereo particle image velocimetry was used to determine the 2-dimensional, 3-component fluid velocity at high temporal (100 Hz) and spatial (< 1mm vector spacing) resolution. The tubes that protruded above the boundary layer allowed vortices to be initiated. Tubes are made up of shell fragments and fine-grained sediment, allowing for some rigidity and resistance to the flow. Rigidity determines the resistance causing small-scale eddies to form. The small-scale turbulence incited scour erosion, allowing fine-grained particles to be suspended into the water and in some cases coarser particles to be mobilized. Less-rigid tubes succumb to the shear stress, inhibit the formation of small-scale eddies, limit sediment erodibility, and increase the critical shear stress of the sediment. Discussion will focus on a modification to the critical Shields parameter to account for the effects of benthic biological activity.

  20. Effect of hydrogen peroxide pretreatment on the structural features and the enzymatic hydrolysis of rice straw.

    PubMed

    Wei, C J; Cheng, C Y

    1985-10-01

    Assessment was made to evaluate the effect of hydrogen peroxide pretreatment on the change of the structural features and the enzymatic hydrolysis of rice straw. Changes in the lignin content, weight loss, accessibility for Cadoxen, water holding capacity, and crystallinity of straw were measured during pretreatment to express the modification of the lignocellulosic structure of straw. The rates and the extents of enzymatic hydrolysis, cellulase adsorption, and cellobiose accumulation in the initial stage of hydrolysis were determined to study the pretreatment effect on hydrolysis. Pretreatment at 60 degrees C for 5 h in a solution with 1% (w/w) H(2)O(2) and NaOH resulted in 60% delignification, 40% weight loss, a fivefold increase in the accessibility for Cadoxen, an one times increase in the water-holding capacity, and only a slight decrease in crystallinity as compared with that of the untreated straw. Improvement on the pretreatment effect could be made by increasing the initial alkalinity and the pretreatment temperature of hydrogen peroxide solution. A saturated improvement on the structural features was found when the weight ratio of hydrogen peroxide to straw was above 0.25 g H(2)O(2)/g straw in an alkaline H(2)O(2) solution with 1% (w/w) NaOH at 32 degrees C. The initial rates and extents of hydrolysis, cellulase adsorption, and cellobiose accumulation in hydrolysis were enhanced in accordance with the improved structural features of straw pretreated. A four times increase in the extent of the enzymatic hydrolysis of straw for 24 h was attributed to the alkaline hydrogen peroxide pretreatment.

  1. Biosorption of copper ions from aqueous solution using rape straw powders: Optimization, equilibrium and kinetic studies.

    PubMed

    Liu, Xin; Chen, Zhao-Qiong; Han, Bin; Su, Chun-Li; Han, Qin; Chen, Wei-Zhong

    2018-04-15

    In this paper, the adsorption behaviors of Cu(II) from the aqueous solution using rape straw powders were studied. The effects of initial Cu(II) concentration, pH range and absorbent dosage on the adsorption efficiency of Cu(II) by rape straw powder were investigated by Box-Behnken Design based on response surface methodology. The values of coefficient constant of the nonlinear models were 0.9997, 0.9984 and 0.9944 for removal Cu(II) from aqueous solution using rape straw shell, seed pods and straw pith core, respectively, which could navigate the design space for various factors on effects of biosorption Cu(II) from aqueous solution. The various factors of pH and biosorbents dosage were the key factors that affecting the removal efficiency of Cu(II) from aqueous solution. The biosorption equilibrium data presented its favorable monolayer adsorption Cu(II) onto shell, seed pods and straw pith core, respectively. The pseudo-second order kinetic model was the proper approach to determine the adsorption kinetics. The biosorption of Cu(II) onto surfaces of rape straw powders were confirmed and ion-exchanged in the adsorption process by energy dispersive spectrometer. The critical groups, -OH, -CH, -NH 3 + , -CH 3 , -NH and -C-O, exhibited by the infrared spectra results, changed to suggest that these groups played critical roles, especially -CH 3 in the adsorption of copper ions onto rape straw powders. The study provided evidences that rape straw powders can be used for removing Cu(II) from aqueous water. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. O-space with high resolution readouts outperforms radial imaging.

    PubMed

    Wang, Haifeng; Tam, Leo; Kopanoglu, Emre; Peters, Dana C; Constable, R Todd; Galiana, Gigi

    2017-04-01

    While O-Space imaging is well known to accelerate image acquisition beyond traditional Cartesian sampling, its advantages compared to undersampled radial imaging, the linear trajectory most akin to O-Space imaging, have not been detailed. In addition, previous studies have focused on ultrafast imaging with very high acceleration factors and relatively low resolution. The purpose of this work is to directly compare O-Space and radial imaging in their potential to deliver highly undersampled images of high resolution and minimal artifacts, as needed for diagnostic applications. We report that the greatest advantages to O-Space imaging are observed with extended data acquisition readouts. A sampling strategy that uses high resolution readouts is presented and applied to compare the potential of radial and O-Space sequences to generate high resolution images at high undersampling factors. Simulations and phantom studies were performed to investigate whether use of extended readout windows in O-Space imaging would increase k-space sampling and improve image quality, compared to radial imaging. Experimental O-Space images acquired with high resolution readouts show fewer artifacts and greater sharpness than radial imaging with equivalent scan parameters. Radial images taken with longer readouts show stronger undersampling artifacts, which can cause small or subtle image features to disappear. These features are preserved in a comparable O-Space image. High resolution O-Space imaging yields highly undersampled images of high resolution and minimal artifacts. The additional nonlinear gradient field improves image quality beyond conventional radial imaging. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. High-sensitivity Leak-testing Method with High-Resolution Integration Technique

    NASA Astrophysics Data System (ADS)

    Fujiyoshi, Motohiro; Nonomura, Yutaka; Senda, Hidemi

    A high-resolution leak-testing method named HR (High-Resolution) Integration Technique has been developed for MEMS (Micro Electro Mechanical Systems) sensors such as a vibrating angular-rate sensor housed in a vacuum package. Procedures of the method to obtain high leak-rate resolution were as follows. A package filled with helium gas was kept in a small accumulation chamber to accumulate helium gas leaking from the package. After the accumulation, the accumulated helium gas was introduced into a mass spectrometer in a short period of time, and the flux of the helium gas was measured by the mass spectrometer as a transient phenomenon. The leak-rate of the package was calculated from the detected transient waveform of the mass spectrometer and the accumulation time of the helium gas in the accumulation chamber. Because the density of the helium gas in the vacuum chamber increased and the accumulated helium gas was measured in a very short period of time with the mass spectrometer, the peak strength of the transient waveform became high and the signal to noise ratio was much improved. The detectable leak-rate resolution of the technique reached 1×10-15 (Pa·m3/s). This resolution is 103 times superior to that of the conventional helium vacuum integration method. The accuracy of the measuring system was verified with a standard helium gas leak source. The results were well matched between theoretical calculation based on the leak-rate of the source and the experimental results within only 2% error.

  4. High-resolution wavefront control of high-power laser systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brase, J; Brown, C; Carrano, C

    1999-07-08

    Nearly every new large-scale laser system application at LLNL has requirements for beam control which exceed the current level of available technology. For applications such as inertial confinement fusion, laser isotope separation, laser machining, and laser the ability to transport significant power to a target while maintaining good beam quality is critical. There are many ways that laser wavefront quality can be degraded. Thermal effects due to the interaction of high-power laser or pump light with the internal optical components or with the ambient gas are common causes of wavefront degradation. For many years, adaptive optics based on thing deformablemore » glass mirrors with piezoelectric or electrostrictive actuators have be used to remove the low-order wavefront errors from high-power laser systems. These adaptive optics systems have successfully improved laser beam quality, but have also generally revealed additional high-spatial-frequency errors, both because the low-order errors have been reduced and because deformable mirrors have often introduced some high-spatial-frequency components due to manufacturing errors. Many current and emerging laser applications fall into the high-resolution category where there is an increased need for the correction of high spatial frequency aberrations which requires correctors with thousands of degrees of freedom. The largest Deformable Mirrors currently available have less than one thousand degrees of freedom at a cost of approximately $1M. A deformable mirror capable of meeting these high spatial resolution requirements would be cost prohibitive. Therefore a new approach using a different wavefront control technology is needed. One new wavefront control approach is the use of liquid-crystal (LC) spatial light modulator (SLM) technology for the controlling the phase of linearly polarized light. Current LC SLM technology provides high-spatial-resolution wavefront control, with hundreds of thousands of degrees of

  5. A high resolution soil moisture radiometer

    NASA Technical Reports Server (NTRS)

    Dod, L. R.

    1980-01-01

    The design of an L-band high resolution soil moisture radiometer is described. The selected system is a planar slotted waveguide array at L-band frequencies. The square aperture is 74.75 m by 74.75 m subdivided into 8 tilted subarrays. The system has a 290 km circular orbit and provides a spatial resolution of 1 km. The aperture forms 230 simultaneous beams in a cross-track pattern which covers a swath 420 km wide. A revisit time of 6 days is provided for an orbit inclination of 50 deg. The 1 km resolution cell allows an integration time of 1/7 second and sharing this time period sequentially between two orthogonal polarization modes can provide a temperature resolution of 0.7 K.

  6. Effects of straw mulch on soil water and winter wheat production in dryland farming

    PubMed Central

    Peng, Zhang; Ting, Wei; Haixia, Wang; Min, Wang; Xiangping, Meng; Siwei, Mou; Rui, Zhang; Zhikuan, Jia; Qingfang, Han

    2015-01-01

    The soil water supply is the main factor that limits dryland crop production in China. In a three-year field experiment at a dryland farming experimental station, we evaluated the effects of various straw mulch practices on soil water storage, grain yield, and water use efficiency (WUE) of winter wheat (Triticum aestivum). Field experiments were conducted with six different mulch combinations (two different mulch durations and three different mulch amounts): high (SM1; 9000 kg ha−1), medium (SM2; 6000 kg ha−1), and low (SM3; 3000 kg ha−1) straw mulch treatments for the whole period; and high (SM4), medium (SM5) and low (SM6) straw mulch treatments during the growth period only, where the control was the whole period without mulch (CK). Throughout the whole growth period of the three-year experiment, the average soil water content in the 0–200 cm soil layer increased by 0.7–22.5% compared with CK, while the WUE increased significantly by 30.6%, 32.7% and 24.2% with SM1, SM2, and SM3, respectively (P < 0.05). The yield increased by 13.3–23.0% when mulch was provided during the growth period, while the WUE increased by 15.2%, 17.2% and 18.0% with SM4, SM5, and SM6, respectively, compared with CK. PMID:26035528

  7. Calibration of medium-resolution monochrome cathode ray tube displays for the purpose of board examinations.

    PubMed

    Evanoff, M G; Roehrig, H; Giffords, R S; Capp, M P; Rovinelli, R J; Hartmann, W H; Merritt, C

    2001-06-01

    This report discusses calibration and set-up procedures for medium-resolution monochrome cathode ray tubes (CRTs) taken in preparation of the oral portion of the board examination of the American Board of Radiology (ABR). The board examinations took place in more than 100 rooms of a hotel. There was one display-station (a computer and the associated CRT display) in each of the hotel rooms used for the examinations. The examinations covered the radiologic specialties cardiopulmonary, musculoskeletal, gastrointestinal, vascular, pediatric, and genitourinary. The software used for set-up and calibration was the VeriLUM 4.0 package from Image Smiths in Germantown, MD. The set-up included setting minimum luminance and maximum luminance, as well as positioning of the CRT in each examination room with respect to reflections of roomlights. The calibration for the grey scale rendition was done meeting the Digital Imaging and communication in Medicine (DICOM) 14 Standard Display Function. We describe these procedures, and present the calibration data in. tables and graphs, listing initial values of minimum luminance, maximum luminance, and grey scale rendition (DICOM 14 standard display function). Changes of these parameters over the duration of the examination were observed and recorded on 11 monitors in a particular room. These changes strongly suggest that all calibrated CRTs be monitored over the duration of the examination. In addition, other CRT performance data affecting image quality such as spatial resolution should be included in set-up and image quality-control procedures.

  8. Effect of wheat and Miscanthus straw biochars on soil enzymatic activity, ecotoxicity, and plant yield

    NASA Astrophysics Data System (ADS)

    Mierzwa-Hersztek, Monika; Gondek, Krzysztof; Klimkowicz-Pawlas, Agnieszka; Baran, Agnieszka

    2017-07-01

    The variety of technological conditions and raw materials from which biochar is produced is the reason why its soil application may have different effects on soil properties and plant growth. The aim of this study was to evaluate the effect of the addition of wheat straw and Miscanthus giganteus straw (5 t DM ha-1) and biochar obtained from this materials in doses of 2.25 and 5 t DM ha-1 on soil enzymatic activity, soil ecotoxicity, and plant yield (perennial grass mixture with red clover). The research was carried out under field conditions on soil with the granulometric composition of loamy sand. No significant effect of biochar amendment on soil enzymatic activity was observed. The biochar-amended soil was toxic to Vibrio fischeri and exhibited low toxicity to Heterocypris incongruens. Application of wheat straw biochar and M. giganteus straw biochar in a dose of 5 t DM ha-1 contributed to an increase in plant biomass production by 2 and 14%, respectively, compared to the soil with mineral fertilisation. Biochars had a more adverse effect on soil enzymatic activity and soil ecotoxicity to H. incongruens and V. fischeri than non-converted wheat straw and M. giganteus straw, but significantly increased the grass crop yield.

  9. High resolution optical DNA mapping

    NASA Astrophysics Data System (ADS)

    Baday, Murat

    Many types of diseases including cancer and autism are associated with copy-number variations in the genome. Most of these variations could not be identified with existing sequencing and optical DNA mapping methods. We have developed Multi-color Super-resolution technique, with potential for high throughput and low cost, which can allow us to recognize more of these variations. Our technique has made 10--fold improvement in the resolution of optical DNA mapping. Using a 180 kb BAC clone as a model system, we resolved dense patterns from 108 fluorescent labels of two different colors representing two different sequence-motifs. Overall, a detailed DNA map with 100 bp resolution was achieved, which has the potential to reveal detailed information about genetic variance and to facilitate medical diagnosis of genetic disease.

  10. The use of steam explosion to increase the nutrition available from rice straw.

    PubMed

    Li, Bin; Chen, Kunjie; Gao, Xiang; Zhao, Chao; Shao, Qianjun; Sun, Qian; Li, Hua

    2015-01-01

    In the present study, rice straw was pretreated using steam-explosion (ST) technique to improve the enzymatic hydrolysis of potential reducing sugars for feed utilization. The response surface methodology based on central composite design was used to optimize the effects of steam pressure, pressure retention time, and straw moisture content on the yield of reducing sugar. All the investigated variables had significant effects (P < 0.001) on the reducing sugar yield. The optimum yield of 30.86% was obtained under the following pretreatment conditions: steam pressure, 1.54 MPa; pressure retention time, 140.5 Sec; and straw moisture content, 41.6%. The yield after thermal treatment under the same conditions was approximately 16%. Infrared (IR) radiation analysis showed a decrease in the cellulose IR crystallization index. ST noticeably increases reducing sugars in rice straw, and this technique may also be applicable to other cellulose/lignin sources of biomass. © 2014 International Union of Biochemistry and Molecular Biology, Inc.

  11. The effect of resonance tubes on glottal contact quotient with and without task instruction: a comparison of trained and untrained voices.

    PubMed

    Gaskill, Christopher S; Quinney, Dana M

    2012-05-01

    Phonation into narrow tubes or straws has been used as a voice training and voice therapy technique and belongs to a group of techniques known as semi-occluded vocal tract exercises. The use of what are called resonance tubes has received renewed attention in the voice research literature, in both theoretical and empirical studies. The assumption is that the partially occluded and lengthened vocal tract alters supraglottal acoustics in such a way as to allow phonation near a lowered first vocal tract formant, which has been suggested as a way to bring about a more efficient glottal closure pattern for sustained oscillation. In this study, two groups of male participants, 10 with no vocal training and 10 with classical vocal training, phonated into a resonance tube for approximately 1 minute. Electroglottography was used to estimate glottal contact quotient (CQ) during spoken /a/ vowels before tube phonation, during tube phonation, and again during spoken /a/ vowels after tube phonation. Half of each group of participants was made to keep pitch and loudness consistent for all phases of the experiment, replicating the method of a previous study by this author. The other half was instructed to practice phonating into the resonance tube before collecting data and was encouraged to find a pitch and loudness combination that maximized ease of phonation and a sense of forward oral resonance. Glottal CQ altered considerably from baseline for almost all participants during tube phonation, with a larger variability than that during vowel production. Small differences in glottal CQ were found as a function of training and instruction, with most participants' CQ increasing during tube phonation. A small post-tube phonation effect was found primarily for the trained and instructed group. Secondary single-subject analyses revealed large intersubject variation, highlighting the highly individualized response to the resonance tube task. Continued study of resonance tubes is

  12. A high efficiency coaxial pulse tube cryocooler operating at 60 K

    NASA Astrophysics Data System (ADS)

    Wang, Nailiang; Zhao, Miguang; Ou, Yangyang; Zhu, Qianglong; Wei, Lingjiao; Chen, Houlei; Cai, Jinghui; Liang, Jingtao

    2018-07-01

    In recent years, improved efficiency of pulse tube cryocoolers has been required by some space infrared detectors and special military applications. Based on this, a high efficiency single-stage coaxial pulse tube cryocooler which operates at 60 K is introduced in this paper. The cryocooler is numerically designed using SAGE, and details of the analysis are presented. The performance of the cryocooler at different input powers ranging from 100 W to 200 W is experimentally tested. Experimental results show that this cryocooler typically provides a cooling power of 7.7 W at 60 K with an input power of 200 W, and achieves a relative Carnot efficiency of around 15%. When the cooling power is around 6 W, the cryocooler achieves the best relative Carnot efficiency of around 15.9% at 60 K, which is the highest efficiency ever reported for a coaxial pulse tube cryocooler.

  13. Installation of straw barriers and silt fences.

    DOT National Transportation Integrated Search

    1976-01-01

    The most common types of temporary sediment control structures used by the Virginia Department of Highways and Transportation are straw barriers and silt fences. Based on observations made in Virginia and other parts of the nation, filter barriers ha...

  14. Metataxonomic profiling and prediction of functional behaviour of wheat straw degrading microbial consortia

    PubMed Central

    2014-01-01

    Background Mixed microbial cultures, in which bacteria and fungi interact, have been proposed as an efficient way to deconstruct plant waste. The characterization of specific microbial consortia could be the starting point for novel biotechnological applications related to the efficient conversion of lignocellulose to cello-oligosaccharides, plastics and/or biofuels. Here, the diversity, composition and predicted functional profiles of novel bacterial-fungal consortia are reported, on the basis of replicated aerobic wheat straw enrichment cultures. Results In order to set up biodegradative microcosms, microbial communities were retrieved from a forest soil and introduced into a mineral salt medium containing 1% of (un)treated wheat straw. Following each incubation step, sequential transfers were carried out using 1 to 1,000 dilutions. The microbial source next to three sequential batch cultures (transfers 1, 3 and 10) were analyzed by bacterial 16S rRNA gene and fungal ITS1 pyrosequencing. Faith’s phylogenetic diversity values became progressively smaller from the inoculum to the sequential batch cultures. Moreover, increases in the relative abundances of Enterobacteriales, Pseudomonadales, Flavobacteriales and Sphingobacteriales were noted along the enrichment process. Operational taxonomic units affiliated with Acinetobacter johnsonii, Pseudomonas putida and Sphingobacterium faecium were abundant and the underlying strains were successfully isolated. Interestingly, Klebsiella variicola (OTU1062) was found to dominate in both consortia, whereas K. variicola-affiliated strains retrieved from untreated wheat straw consortia showed endoglucanase/xylanase activities. Among the fungal players with high biotechnological relevance, we recovered members of the genera Penicillium, Acremonium, Coniochaeta and Trichosporon. Remarkably, the presence of peroxidases, alpha-L-fucosidases, beta-xylosidases, beta-mannases and beta-glucosidases, involved in lignocellulose

  15. Development of a highly sensitive one-tube nested real-time PCR for detecting Mycobacterium tuberculosis.

    PubMed

    Choi, Yeonim; Jeon, Bo-Young; Shim, Tae Sun; Jin, Hyunwoo; Cho, Sang-Nae; Lee, Hyeyoung

    2014-12-01

    Rapid, accurate detection of Mycobacterium tuberculosis is crucial in the diagnosis of tuberculosis (TB), but conventional diagnostic methods have limited sensitivity and specificity or are time consuming. A new highly sensitive nucleic acid amplification test, combined nested and real-time polymerase chain reaction (PCR) in a single tube (one-tube nested real-time PCR), was developed for detecting M. tuberculosis, which takes advantage of two PCR techniques, i.e., nested PCR and real-time PCR. One-tube nested real-time PCR was designed to have two sequential reactions with two sets of primers and dual probes for the insertion sequence (IS) 6110 sequence of M. tuberculosis in a single closed tube. The minimum limits of detection of IS6110 real-time PCR and IS6110 one-tube nested real-time PCR were 100 fg/μL and 1 fg/μL of M. tuberculosis DNA, respectively. AdvanSure TB/non-tuberculous mycobacteria (NTM) real-time PCR, IS6110 real-time PCR, and two-tube nested real-time PCR showed 100% sensitivity and 100% specificity for clinical M. tuberculosis isolates and NTM isolates. In comparison, the sensitivities of AdvanSure TB/NTM real-time PCR, single IS6110 real-time PCR, and one-tube nested real-time PCR were 91% (152/167), 94.6% (158/167), and 100% (167/167) for sputum specimens, respectively. In conclusion, IS6110 one-tube nested real-time PCR is useful for detecting M. tuberculosis due to its high sensitivity and simple manipulation. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Requirements on high resolution detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koch, A.

    For a number of microtomography applications X-ray detectors with a spatial resolution of 1 {mu}m are required. This high spatial resolution will influence and degrade other parameters of secondary importance like detective quantum efficiency (DQE), dynamic range, linearity and frame rate. This note summarizes the most important arguments, for and against those detector systems which could be considered. This article discusses the mutual dependencies between the various figures which characterize a detector, and tries to give some ideas on how to proceed in order to improve present technology.

  17. Sugarcane straw as a feedstock for xylitol production by Candida guilliermondii FTI 20037.

    PubMed

    Hernández-Pérez, Andrés Felipe; de Arruda, Priscila Vaz; Felipe, Maria das Graças de Almeida

    2016-01-01

    Sugarcane straw has become an available lignocellulosic biomass since the progressive introduction of the non-burning harvest in Brazil. Besides keeping this biomass in the field, it can be used as a feedstock in thermochemical or biochemical conversion processes. This makes feasible its incorporation in a biorefinery, whose economic profitability could be supported by integrated production of low-value biofuels and high-value chemicals, e.g., xylitol, which has important industrial and clinical applications. Herein, biotechnological production of xylitol is presented as a possible route for the valorization of sugarcane straw and its incorporation in a biorefinery. Nutritional supplementation of the sugarcane straw hemicellulosic hydrolyzate as a function of initial oxygen availability was studied in batch fermentation of Candida guilliermondii FTI 20037. The nutritional supplementation conditions evaluated were: no supplementation; supplementation with (NH4)2SO4, and full supplementation with (NH4)2SO4, rice bran extract and CaCl2·2H2O. Experiments were performed at pH 5.5, 30°C, 200rpm, for 48h in 125mL Erlenmeyer flasks containing either 25 or 50mL of medium in order to vary initial oxygen availability. Without supplementation, complete consumption of glucose and partial consumption of xylose were observed. In this condition the maximum xylitol yield (0.67gg(-1)) was obtained under reduced initial oxygen availability. Nutritional supplementation increased xylose consumption and xylitol production by up to 200% and 240%, respectively. The maximum xylitol volumetric productivity (0.34gL(-1)h(-1)) was reached at full supplementation and increased initial oxygen availability. The results demonstrated a combined effect of nutritional supplementation and initial oxygen availability on xylitol production from sugarcane straw hemicellulosic hydrolyzate. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  18. High power tube solid-state laser with zigzag propagation of pump and laser beam

    NASA Astrophysics Data System (ADS)

    Savich, Michael

    2015-02-01

    A novel resonator and pumping design with zigzag propagation of pumping and laser beams permits to design an improved tube Solid State Laser (SSL), solving the problem of short absorption path to produce a high power laser beam (100 - 1000kW). The novel design provides an amplifier module and laser oscillator. The tube-shaped SSL includes a gain element fiber-optically coupled to a pumping source. The fiber optic coupling facilitates light entry at compound Brewster's angle of incidence into the laser gain element and uses internal reflection to follow a "zigzag" path in a generally spiral direction along the length of the tube. Optics are arranged for zigzag propagation of the laser beam, while the cryogenic cooling system is traditional. The novel method of lasing uses advantages of cylindrical geometry to reach the high volume of gain medium with compactness and structural rigidity, attain high pump density and uniformity, and reach a low threshold without excessive increase of the temperature of the crystal. The design minimizes thermal lensing and stress effects, and provides high gain amplification, high power extraction from lasing medium, high pumping and lasing efficiency and a high beam quality.

  19. Improving enzymatic hydrolysis efficiency of wheat straw through sequential autohydrolysis and alkaline post-extraction.

    PubMed

    Wu, Xinxing; Huang, Chen; Zhai, Shengcheng; Liang, Chen; Huang, Caoxing; Lai, Chenhuan; Yong, Qiang

    2018-03-01

    In this work, a two-step pretreatment process of wheat straw was established by combining autohydrolysis pretreatment and alkaline post-extraction. The results showed that employing alkaline post-extraction to autohydrolyzed wheat straw could significantly improve its enzymatic hydrolysis efficiency from 36.0% to 83.7%. Alkaline post-extraction lead to the changes of the structure characteristics of autohydrolyzed wheat straw. Associations between enzymatic hydrolysis efficiency and structure characteristics were also studied. The results showed that the factors of structure characteristics such as delignification, xylan removal yield, crystallinity, accessibility and hydrophobicity are positively related to enzymatic hydrolysis efficiency within a certain range for alkaline post-extracted wheat straw. The results demonstrated that autohydrolysis coupled with alkaline post-extraction is an effective and promising method to gain fermentable sugars from biomass. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. The effects of different types of crop straw on the transformation of pentachlorophenol in flooded paddy soil.

    PubMed

    Lin, Jiajiang; Meng, Jun; He, Yan; Xu, Jianming; Chen, Zuliang; Brookes, Philip C

    2018-02-01

    The incorporation of various types of crop straw to agricultural soils has long been practiced to improve soil fertility. However, the effects of crop straw on the fate of organo-chlorine pesticides in flooded paddy soils are not well understood. The dechlorination of pentachlorophenol (PCP) in four vertical profiles (0-10, 10-20, 20-30, 30-50 mm depth) of two flooded paddy soils, a Plinthudult (Soil 1) and a Tropudult (Soil 2) was investigated following the application of four crop straws (rice, wheat, rape and Chinese milk vetch) to them. In all treatments, PCP dechlorination decreased with increasing soil depth. In the crop straw treatments, PCP was almost completely dechlorinated within 60 days, and rapidly transformed to 2,3,4,5-tetrachlorophenol, and further to 3,4,5-trichlorophenol. Further dechlorination of 3,4,5-trichlorophenol also occurred in all treatments except for the rape straw. It is possible that the NH 4 + and NO 3 - derived from the straw are responsible for the inhibition of the 3,4,5-trichlorophenol dechlorination. The reduction of Fe (III) and SO 4 2- increased following application of the crop straws. The RDA analysis indicated that the Fe (III) reducing bacteria might be involved in the ortho-dechlorination, while SO 4 2- reducing bacteria were involved in para- and meta-dechlorination of PCP. The complete detoxification of PCP depended upon both the crop straw type and soil properties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Superconducting High Resolution Fast-Neutron Spectrometers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hau, Ionel Dragos

    2006-01-01

    Superconducting high resolution fast-neutron calorimetric spectrometers based on 6LiF and TiB{sub 2} absorbers have been developed. These novel cryogenic spectrometers measure the temperature rise produced in exothermal (n, α) reactions with fast neutrons in 6Li and 10B-loaded materials with heat capacity C operating at temperatures T close to 0.1 K. Temperature variations on the order of 0.5 mK are measured with a Mo/Cu thin film multilayer operated in the transition region between its superconducting and its normal state. The advantage of calorimetry for high resolution spectroscopy is due to the small phonon excitation energies k BT on the order ofmore » μeV that serve as signal carriers, resulting in an energy resolution ΔE ~ (k BT 2C) 1/2, which can be well below 10 keV. An energy resolution of 5.5 keV has been obtained with a Mo/Cu superconducting sensor and a TiB 2 absorber using thermal neutrons from a 252Cf neutron source. This resolution is sufficient to observe the effect of recoil nuclei broadening in neutron spectra, which has been related to the lifetime of the first excited state in 7Li. Fast-neutron spectra obtained with a 6Li-enriched LiF absorber show an energy resolution of 16 keV FWHM, and a response in agreement with the 6Li(n, α) 3H reaction cross section and Monte Carlo simulations for energies up to several MeV. The energy resolution of order of a few keV makes this novel instrument applicable to fast-neutron transmission spectroscopy based on the unique elemental signature provided by the neutron absorption and scattering resonances. The optimization of the energy resolution based on analytical and numerical models of the detector response is discussed in the context of these applications.« less

  2. Net mitigation potential of straw return to Chinese cropland: estimation with a full greenhouse gas budget model.

    PubMed

    Lu, Fei; Wang, Xiaoke; Han, Bing; Ouyang, Zhiyun; Duan, Xiaonan; Zheng, Hua

    2010-04-01

    Based on the carbon-nitrogen cycles and greenhouse gas (GHG) mitigation and emission processes related to straw return and burning, a compound greenhouse gas budget model, the "Straw Return and Burning Model" (SRBM), was constructed to estimate the net mitigation potential of straw return to the soil in China. As a full GHG budget model, the SRBM addressed the following five processes: (1) soil carbon sequestration, (2) mitigation of synthetic N fertilizer substitution, (3) methane emission from rice paddies, (4) additional fossil fuel use for straw return, and (5) CH4 and N2O emissions from straw burning in the fields. Two comparable scenarios were created to reflect different degrees of implementation for straw return and straw burning. With GHG emissions and mitigation effects of the five processes converted into global warming potential (GWP), the net GHG mitigation was estimated. We concluded that (1) when the full greenhouse gas budget is considered, the net mitigation potential of straw return differs from that when soil carbon sequestration is considered alone; (2) implementation of straw return across a larger area of cropland in 10 provinces (i.e., Shanghai, Jiangsu, Zhejiang, Fujian, Jiangxi, Hubei, Hunan, Guangdong, Guangxi, and Hainan) will increase net GHG emission; (3) if straw return is promoted as a feasible mitigation measure in the remaining provinces, the total net mitigation potential before soil organic carbon (SOC) saturation will be 71.89 Tg CO2 equivalent (eqv)/yr, which is equivalent to 1.733% of the annual carbon emission from fossil fuel use in China in 2003; (4) after SOC saturation, only 13 of 21 provinces retain a relatively small but permanent net mitigation potential, while in the others the net GHG mitigation potential will gradually diminish; and (5) the major obstacle to the feasibility or permanence of straw return as a mitigation measure is the increased CH4 emission from rice paddies. The paper also suggests that comparable

  3. A High Resolution Scale-of-four

    DOE R&D Accomplishments Database

    Fitch, V.

    1949-08-25

    A high resolution scale-of-four has been developed to be used in conjunction with the nuclear particle detection devices in applications where the counting rate is unusually high. Specifically, it is intended to precede the commercially available medium resolution scaling circuits and so decrease the resolving time of the counting system. The circuit will function reliably on continuously recurring pulses separated by less than 0.1 microseconds. It will resolve two pulses (occurring at a moderate repetition rate) which are spaced at 0.04 microseconds. A five-volt input signal is sufficient to actuate the device.

  4. Sorption of tetracycline on biochar derived from rice straw under different temperatures

    PubMed Central

    Wang, Hua; Chu, Yixuan; Huang, Fang; Song, Yali; Xue, Xiangdong

    2017-01-01

    Biochars produced from the pyrolysis of waste biomass under limited oxygen conditions could serve as adsorbents in environmental remediation processes. Biochar samples derived from rice straw that were pyrolyzed at 300 (R300), 500 (R500) and 700°C (R700) were used as adsorbents to remove tetracycline from an aqueous solution. Both the Langmuir and Freundlich models fitted the adsorption data well (R2 > 0.919). The adsorption capacity increased with pyrolysis temperature. The R500 and R700 samples exhibited relative high removal efficiencies across a range of initial tetracycline concentrations (0.5mg/L-32mg/L) with the maximum (92.8%–96.7%) found for adsorption on R700 at 35°C. The relatively high surface area of the R700 sample and π–π electron-donor acceptor contributed to the high adsorption capacities. A thermodynamic analysis indicated that the tetracycline adsorption process was spontaneous and endothermic. The pH of solution was also found to influence the adsorption processes; the maximum adsorption capacity occurred at a pH of 5.5. These experimental results highlight that biochar derived from rice straw is a promising candidate for low-cost removal of tetracycline from water. PMID:28792530

  5. Effect of thermal pretreatment on chemical composition, physical structure and biogas production kinetics of wheat straw.

    PubMed

    Rajput, Asad Ayub; Zeshan; Visvanathan, Chettiyappan

    2018-05-21

    Hard lignocellulosic structure of wheat straw is the main hindrance in its anaerobic digestion. Thus, a laboratory scale batch experiment was conducted to study the effect of thermal pretreatment on anaerobic digestion of wheat straw. For this purpose, different thermal pretreatment temperatures of 120, 140, 160 and 180 °C were studied and the results were compared with raw wheat straw. Significant differences in biogas production were observed at temperature higher than 160 °C. Highest biogas yield of 615 Nml/gVS and volatile solids reduction of 69% was observed from wheat straw pretreated at 180 °C. Wheat straw pretreated at 180 °C showed 53% higher biogas yield as compared to untreated. Further, FTIR analysis revealed change in chemical bonds of lignocellulosic structure of wheat straw. Modified Gompertz model was best fitted on biogas production data and predicted shorter lag phase time and higher biogas production as the pretreatment temperature increased. Overall, change in lignocellulosic structure and increase in cellulose content were the main reason in enhancing biogas production. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. A DOI Detector With Crystal Scatter Identification Capability for High Sensitivity and High Spatial Resolution PET Imaging.

    PubMed

    Gu, Z; Prout, D L; Silverman, R W; Herman, H; Dooraghi, A; Chatziioannou, A F

    2015-06-01

    A new phoswich detector is being developed at the Crump Institute, aiming to provide improvements in sensitivity, and spatial resolution for PET. The detector configuration is comprised of two layers of pixelated scintillator crystal arrays, a glass light guide and a light detector. The annihilation photon entrance (top) layer is a 48 × 48 array of 1.01 × 1.01 × 7 mm 3 LYSO crystals. The bottom layer is a 32 × 32 array of 1.55 × 1.55 × 9 mm 3 BGO crystals. A tapered, multiple-element glass lightguide is used to couple the exit end of the BGO crystal array (52 × 52 mm 2 ) to the photosensitive area of the Position Sensitive Photomultiplier Tube (46 × 46 mm 2 ), allowing the creation of flat panel detectors without gaps between the detector modules. Both simulations and measurements were performed to evaluate the characteristics and benefits of the proposed design. The GATE Monte Carlo simulation indicated that the total fraction of the cross layer crystal scatter (CLCS) events in singles detection mode for this detector geometry is 13.2%. The large majority of these CLCS events (10.1% out of 13.2%) deposit most of their energy in a scintillator layer other than the layer of first interaction. Identification of those CLCS events for rejection or correction may lead to improvements in data quality and imaging performance. Physical measurements with the prototype detector showed that the LYSO, BGO and CLCS events were successfully identified using the delayed charge integration (DCI) technique, with more than 95% of the LYSO and BGO crystal elements clearly resolved. The measured peak-to-valley ratios (PVR) in the flood histograms were 3.5 for LYSO and 2.0 for BGO. For LYSO, the energy resolution ranged from 9.7% to 37.0% full width at half maximum (FWHM), with a mean of 13.4 ± 4.8%. For BGO the energy resolution ranged from 16.0% to 33.9% FWHM, with a mean of 18.6 ± 3.2%. In conclusion, these results demonstrate that the proposed detector is feasible and can

  7. A DOI Detector With Crystal Scatter Identification Capability for High Sensitivity and High Spatial Resolution PET Imaging

    PubMed Central

    Gu, Z.; Prout, D. L.; Silverman, R. W.; Herman, H.; Dooraghi, A.; Chatziioannou, A. F.

    2015-01-01

    A new phoswich detector is being developed at the Crump Institute, aiming to provide improvements in sensitivity, and spatial resolution for PET. The detector configuration is comprised of two layers of pixelated scintillator crystal arrays, a glass light guide and a light detector. The annihilation photon entrance (top) layer is a 48 × 48 array of 1.01 × 1.01 × 7 mm3 LYSO crystals. The bottom layer is a 32 × 32 array of 1.55 × 1.55 × 9 mm3 BGO crystals. A tapered, multiple-element glass lightguide is used to couple the exit end of the BGO crystal array (52 × 52 mm2) to the photosensitive area of the Position Sensitive Photomultiplier Tube (46 × 46 mm2), allowing the creation of flat panel detectors without gaps between the detector modules. Both simulations and measurements were performed to evaluate the characteristics and benefits of the proposed design. The GATE Monte Carlo simulation indicated that the total fraction of the cross layer crystal scatter (CLCS) events in singles detection mode for this detector geometry is 13.2%. The large majority of these CLCS events (10.1% out of 13.2%) deposit most of their energy in a scintillator layer other than the layer of first interaction. Identification of those CLCS events for rejection or correction may lead to improvements in data quality and imaging performance. Physical measurements with the prototype detector showed that the LYSO, BGO and CLCS events were successfully identified using the delayed charge integration (DCI) technique, with more than 95% of the LYSO and BGO crystal elements clearly resolved. The measured peak-to-valley ratios (PVR) in the flood histograms were 3.5 for LYSO and 2.0 for BGO. For LYSO, the energy resolution ranged from 9.7% to 37.0% full width at half maximum (FWHM), with a mean of 13.4 ± 4.8%. For BGO the energy resolution ranged from 16.0% to 33.9% FWHM, with a mean of 18.6 ± 3.2%. In conclusion, these results demonstrate that the proposed detector is feasible and can

  8. A DOI Detector With Crystal Scatter Identification Capability for High Sensitivity and High Spatial Resolution PET Imaging

    NASA Astrophysics Data System (ADS)

    Gu, Z.; Prout, D. L.; Silverman, R. W.; Herman, H.; Dooraghi, A.; Chatziioannou, A. F.

    2015-06-01

    A new phoswich detector is being developed at the Crump Institute, aiming to provide improvements in sensitivity, and spatial resolution for PET. The detector configuration is comprised of two layers of pixelated scintillator crystal arrays, a glass lightguide and a light detector. The annihilation photon entrance (top) layer is a 48×48 array of 1.01 × 1.01 × 7 mm3 LYSO crystals. The bottom layer is a 32 × 32 array of 1.55 × 1.55 × 9 mm3 BGO crystals. A tapered, multiple-element glass lightguide is used to couple the exit end of the BGO crystal array (52 × 52 mm2) to the photosensitive area of the Position Sensitive Photomultiplier Tube (46 × 46 mm2), allowing the creation of flat panel detectors without gaps between the detector modules. Both simulations and measurements were performed to evaluate the characteristics and benefits of the proposed design. The GATE Monte Carlo simulation indicated that the total fraction of the cross layer crystal scatter (CLCS) events in singles detection mode for this detector geometry is 13.2%. The large majority of these CLCS events (10.1% out of 13.2%) deposit most of their energy in a scintillator layer other than the layer of first interaction. Identification of those CLCS events for rejection or correction may lead to improvements in data quality and imaging performance. Physical measurements with the prototype detector showed that the LYSO, BGO and CLCS events were successfully identified using the delayed charge integration (DCI) technique, with more than 95% of the LYSO and BGO crystal elements clearly resolved. The measured peak-to-valley ratios (PVR) in the flood histograms were 3.5 for LYSO and 2.0 for BGO. For LYSO, the energy resolution ranged from 9.7% to 37.0% full width at half maximum (FWHM), with a mean of 13.4 ± 4.8%. For BGO the energy resolution ranged from 16.0% to 33.9% FWHM, with a mean of 18.6 ± 3.2%. In conclusion, these results demonstrate that the proposed detector is feasible and can

  9. Investigation on the Inertance Tubes of Pulse Tube Cryocooler Without Reservoir

    NASA Astrophysics Data System (ADS)

    Liu, Y. J.; Yang, L. W.; Liang, J. T.; Hong, G. T.

    2010-04-01

    Phase angle is of vital importance for high-efficiency pulse tube cryocoolers (PTCs). Inertance tube as the main phase shifter is useful for the PTCs to obtain appropriate phase angle. Experiments of inertance tube without reservoir under variable frequency, variable length and diameter of inertance tube and variable pressure amplitude are investigated respectively. In addition, the authors used DeltaEC, a computer program to predict the performance of low-amplitude thermoacoustic engines, to simulate the effects of inertance tube without reservoir. According to the comparison of experiments and theoretical simulations, DeltaEC method is feasible and effective to direct and improve the design of inertance tubes.

  10. Optimization of curved drift tubes for ultraviolet-ion mobility spectrometry

    NASA Astrophysics Data System (ADS)

    Ni, Kai; Ou, Guangli; Zhang, Xiaoguo; Yu, Zhou; Yu, Quan; Qian, Xiang; Wang, Xiaohao

    2015-08-01

    Ion mobility spectrometry (IMS) is a key trace detection technique for toxic pollutants and explosives in the atmosphere. Ultraviolet radiation photoionization source is widely used as an ionization source for IMS due to its advantages of high selectivity and non-radioactivity. However, UV-IMS bring problems that UV rays will be launched into the drift tube which will cause secondary ionization and lead to the photoelectric effect of the Faraday disk. So air is often used as working gas to reduce the effective distance of UV rays, but it will limit the application areas of UV-IMS. In this paper, we propose a new structure of curved drift tube, which can avoid abnormally incident UV rays. Furthermore, using curved drift tube may increase the length of drift tube and then improve the resolution of UV-IMS according to previous research. We studied the homogeneity of electric field in the curved drift tube, which determined the performance of UV-IMS. Numerical simulation of electric field in curved drift tube was conducted by SIMION in our study. In addition, modeling method and homogeneity standard for electric field were also presented. The influences of key parameters include radius of gyration, gap between electrode as well as inner diameter of curved drift tube, on the homogeneity of electric field were researched and some useful laws were summarized. Finally, an optimized curved drift tube is designed to achieve homogenous drift electric field. There is more than 98.75% of the region inside the curved drift tube where the fluctuation of the electric field strength along the radial direction is less than 0.2% of that along the axial direction.

  11. High resolution metric imaging payload

    NASA Astrophysics Data System (ADS)

    Delclaud, Y.

    2017-11-01

    Alcatel Space Industries has become Europe's leader in the field of high and very high resolution optical payloads, in the frame work of earth observation system able to provide military government with metric images from space. This leadership allowed ALCATEL to propose for the export market, within a French collaboration frame, a complete space based system for metric observation.

  12. Multilayer screen gives cathode ray tube high contrast

    NASA Technical Reports Server (NTRS)

    Bullinger, H.; Hilborn, E. H.

    1970-01-01

    Fabrication method for cathode ray tubes uses low-cost siloxane resin formulations. The resins contain sufficient methyl or phenyl groups for solubility in organic solvents. After vaporization and baking, the polymerized material is stable under vacuum and under temperatures required for tube fabrication.

  13. Enhanced Growth and Activities of the Dominant Functional Microbiota of Chicken Manure Composts in the Presence of Maize Straw.

    PubMed

    Zhang, Lili; Li, Lijuan; Pan, Xiaoguang; Shi, Zelu; Feng, Xihong; Gong, Bin; Li, Jian; Wang, Lushan

    2018-01-01

    As a consequence of intensive feeding, the bulk deposition of livestock manure causes severe environmental problems. Composting is a promising method for waste disposal, and the fermentation process is driven by microbial communities. However, chicken manure contains diverse gut microbes, mainly species derived from Proteobacteria , which may include pathogens that threaten human health. To evaluate composting as a harmless treatment of livestock manure, the dynamics of the microbiota in two chicken manure composts were studied, and the influences of adding maize straw on the compost microbiota were compared. The results revealed that microbes from Firmicutes including Bacillus and Lentibacillus are the most dominant degraders with a strong amino acid metabolism, and they secrete a diverse array of proteases as revealed in metaproteomics data. The addition of maize straw to the chicken manure compost accelerated species succession at the initial stage, and stimulated carbohydrate metabolism in the dominant microbiota. Besides, under the resulting high temperature (>70°C) conditions, the relative abundance of Proteobacteria was reduced by 78% in composts containing maize straw by day 4, which was faster than in compost without added maize straw, in which the abundance was reduced by 66%. Adding maize straw to chicken manure composts can therefore increase the fermentation temperature and inhibit the growth of Proteobacteria . In general, these findings provide increased insight into the dynamic changes among the dominant functional microbiota in chicken manure composts, and may contribute to the optimization of livestock manure composting on an industrial scale.

  14. High-Resolution Land Use and Land Cover Mapping

    USGS Publications Warehouse

    ,

    1999-01-01

    As the Nation?s population grows, quantifying, monitoring, and managing land use becomes increasingly important. The U.S. Geological Survey (USGS) has a long heritage of leadership and innovation in land use and land cover (LULC) mapping that has been the model both nationally and internationally for over 20 years. At present, the USGS is producing high-resolution LULC data for several watershed and urban areas within the United States. This high-resolution LULC mapping is part of an ongoing USGS Land Cover Characterization Program (LCCP). The four components of the LCCP are global (1:2,000,000-scale), national (1:100,000-scale), urban (1:24,000-scale), and special projects (various scales and time periods). Within the urban and special project components, the USGS Rocky Mountain Mapping Center (RMMC) is collecting historical as well as contemporary high-resolution LULC data. RMMC?s high-resolution LULC mapping builds on the heritage and success of previous USGS LULC programs and provides LULC information to meet user requirements.

  15. [Influence of Different Straws Returning with Landfill on Soil Microbial Community Structure Under Dry and Water Farming].

    PubMed

    Lan, Mu-ling; Gao, Ming

    2015-11-01

    Based on rice, wheat, corn straw and rape, broad bean green stalk as the research object, using phospholipid fatty acid (PLFA) method, combining principal component analysis method to study the soil microbial quantity, distribution of flora, community structure characteristics under dry and water farming as two different cultivated land use types. The PLFA analysis results showed that: under dry farming, total PLFA quantity ranged 8.35-25.15 nmol x g(-1), showed rape > broad bean > corn > rice > wheat, rape and broad bean significantly increased total PLFA quantity by 1.18 and 1.08 times compared to the treatment without straw; PLFA quantity of bacterial flora in treatments with straws was higher than that without straw, and fungal biomass was significantly increased, so was the species richness of microbial community. Under water faming, the treatments of different straws returning with landfill have improved the PLFA quantity of total soil microbial and flora comparing with the treatment without straw, fungi significantly increased, and species richness of microbial communities value also increased significantly. Total PLFA quantity ranged 4.04-22.19 nmol x g(-1), showed rice > corn > wheat > broad bean > rape, which in rape and broad bean treatments were lower than the treatment without straw; fungal PLFA amount in 5 kinds of straw except broad bean treatment was significantly higher than that of the treatment without straw, bacteria and total PLFA quantity in broad bean processing were significantly lower than those of other treatments, actinomycetes, G+, G- had no significant difference between all treatments; rice, wheat, corn, rape could significantly increase the soil microbial species richness index and dominance index under water faming. The results of principal component analysis showed that broad bean green stalk had the greatest impact on the microbial community structure in the dry soil, rape green stalk and wheat straw had the biggest influence on

  16. [Effects of cotton straw returning on soil organic carbon, nitrogen, phosphorus and potas-sium contents in soil aggregates].

    PubMed

    Wang, Shuang Lei; Liu, Yan Hui; Song, Xian Liang; Wei, Shao Bin; Li, Jin Pu; Nie, Jun Jun; Qin, Du Lin; Sun, Xue Zhen

    2016-12-01

    To clarify the effects of cotton straw returning on the composition and contents of nu-trients in different particle sizes of aggregates, two treatments with or without cotton straw returning were tested in continuous three years. After three years straw treatments, we collected undisturbed soil within 0-5, 5-10, 10-20 and 20-30 cm soil layers, and to measure the composition, soil organic carbon, nitrogen, phosphorus and potassium contents in different particle sizes of aggregates classified using dry sieving. Returning cotton straw into the field significantly increased particle contents of 2-5 mm and >5 mm aggregates in 0-5 cm soil layer, while the content of <0.25 mm micro-aggregates was decreased. Cotton straw returning significantly improved soil organic carbon, nitrogen, and potassium contents by 19.2%, 14.2% and 17.3%, respectively, compared to no returning control. In 5-10 cm soil layer, cotton straw returning increased the contents of 2-5 mm and >5 mm aggregates, reduced the content of <0.25 mm micro-aggregate, but significantly increased contents of soil organic carbon, available nitrogen and potassium by 19.6%, 12.6% and 23.4%, compared to no straw returning control. In 10-20 cm soil layer, cotton straw returning significantly reduced the content of <0.25 mm micro-aggregates, and significantly enhanced soil organic carbon, nitrogen, and potassium contents by 8.4%, 10.9% and 11.5%, compared to the control. However, in 20-30 cm soil layer, cotton straw returning only increased soil available potassium content by 12.0%, while there were no significant changes in particle size, organic carbon, nitrogen and phosphorus contents. We concluded that cotton straw returning could significantly improve the structure of surface soil by increasing the number of macro-aggregates, contents of organic carbon, available nitrogen and potassium in aggregates, while decreasing micro-aggregate content. The enhancement of the contribution of macro-aggregates to soil fertility

  17. Effects of Straw Return in Deep Soils with Urea Addition on the Soil Organic Carbon Fractions in a Semi-Arid Temperate Cornfield

    PubMed Central

    Li, Jiaqi; Lu, Jia; Fan, Qingfeng; Yu, Na; Zhang, Yuling; Dang, Xiuli; Zhang, Yulong

    2016-01-01

    Returning straw to deep soil layers by using a deep-ditching-ridge-ploughing method is an innovative management practice that improves soil quality by increasing the soil organic carbon (SOC) content. However, the optimum quantity of straw return has not been determined. To solve this practical production problem, the following treatments with different amounts of corn straw were investigated: no straw return, CK; 400 kg ha-1 straw, S400; 800 kg ha-1 straw, S800; 1200 kg ha-1 straw, S1200; and 1600 kg ha-1 straw, S1600. After straw was returned to the soil for two years, the microbial biomass C (MBC), easily oxidized organic C (EOC), dissolved organic C (DOC) and light fraction organic C (LFOC) content were measured at three soil depths (0–10, 10–20, and 20–40 cm). The results showed that the combined application of 800 kg ha-1 straw significantly increased the EOC, MBC, and LFOC contents and was a suitable agricultural practice for this region. Moreover, our results demonstrated that returning straw to deep soil layers was effective for increasing the SOC content. PMID:27123594

  18. Effects of Straw Return in Deep Soils with Urea Addition on the Soil Organic Carbon Fractions in a Semi-Arid Temperate Cornfield.

    PubMed

    Zou, Hongtao; Ye, Xuhong; Li, Jiaqi; Lu, Jia; Fan, Qingfeng; Yu, Na; Zhang, Yuling; Dang, Xiuli; Zhang, Yulong

    2016-01-01

    Returning straw to deep soil layers by using a deep-ditching-ridge-ploughing method is an innovative management practice that improves soil quality by increasing the soil organic carbon (SOC) content. However, the optimum quantity of straw return has not been determined. To solve this practical production problem, the following treatments with different amounts of corn straw were investigated: no straw return, CK; 400 kg ha-1 straw, S400; 800 kg ha-1 straw, S800; 1200 kg ha-1 straw, S1200; and 1600 kg ha-1 straw, S1600. After straw was returned to the soil for two years, the microbial biomass C (MBC), easily oxidized organic C (EOC), dissolved organic C (DOC) and light fraction organic C (LFOC) content were measured at three soil depths (0-10, 10-20, and 20-40 cm). The results showed that the combined application of 800 kg ha-1 straw significantly increased the EOC, MBC, and LFOC contents and was a suitable agricultural practice for this region. Moreover, our results demonstrated that returning straw to deep soil layers was effective for increasing the SOC content.

  19. The immediate effectiveness of barley straw mulch in reducing soil erodibility and surface runoff generation in Mediterranean vineyards.

    PubMed

    Prosdocimi, Massimo; Jordán, Antonio; Tarolli, Paolo; Keesstra, Saskia; Novara, Agata; Cerdà, Artemi

    2016-03-15

    Soil and water loss in agriculture is a major problem throughout the world, and especially in Mediterranean areas. Non-conservation agricultural practices have further aggravated the situation, especially in vineyards, which are affected by one of the highest rates of soil loss among cultivated lands. Therefore, it is necessary to find the right soil practices for more sustainable viticulture. In this regard, straw mulching has proven to be effective in other crop and fire affected soils, but, nonetheless, little research has been carried out in vineyards. This research tests the effect of barley straw mulching on soil erosion and surface runoff on vineyards in Eastern Spain where the soil and water losses are non-sustainable. An experiment was setup using rainfall simulation tests at 55 mm h(-1) over 1h on forty paired plots of 0.24 m(2): twenty bare and twenty straw covered. Straw cover varied from 48 to 90% with a median value of 59% as a result of the application of 75 g of straw per m(2). The use of straw mulch resulted in delayed ponding and runoff generation and, as a consequence, the median water loss decreased from 52.59 to 39.27% of the total rainfall. The straw cover reduced the median sediment concentration in runoff from 9.8 to 3.0 g L(-1) and the median total sediment detached from 70.34 to 15.62 g per experiment. The median soil erosion rate decreased from 2.81 to 0.63 Mg ha(-1)h(-1) due to the straw mulch protection. Straw mulch is very effective in reducing soil erodibility and surface runoff, and this benefit was achieved immediately after the application of the straw. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. A compact high-resolution X-ray ion mobility spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reinecke, T.; Kirk, A. T.; Heptner, A.

    For the ionization of gaseous samples, most ion mobility spectrometers employ radioactive ionization sources, e.g., containing {sup 63}Ni or {sup 3}H. Besides legal restrictions, radioactive materials have the disadvantage of a constant radiation with predetermined intensity. In this work, we replaced the {sup 3}H source of our previously described high-resolution ion mobility spectrometer with 75 mm drift tube length with a commercially available X-ray source. It is shown that the current configuration maintains the resolving power of R = 100 which was reported for the original setup containing a {sup 3}H source. The main advantage of an X-ray source ismore » that the intensity of the radiation can be adjusted by varying its operating parameters, i.e., filament current and acceleration voltage. At the expense of reduced resolving power, the sensitivity of the setup can be increased by increasing the activity of the source. Therefore, the performance of the setup can be adjusted to the specific requirements of any application. To investigate the relation between operating parameters of the X-Ray source and the performance of the ion mobility spectrometer, parametric studies of filament current and acceleration voltage are performed and the influence on resolving power, peak height, and noise is analyzed.« less

  1. Further Investigations of High Temperature Knitted Spring Tubes for Advanced Control Surface Seal Applications

    NASA Technical Reports Server (NTRS)

    Taylor, Shawn C.; DeMange, Jeffrey J.; Dunlap, Patrick H., Jr.; Steinetz, Bruce M.

    2006-01-01

    Knitted metallic spring tubes are the structural backbones that provide resiliency in control surface seals for use on current and future reusable space launch vehicles. Control surface seals fill the space between movable control surfaces such as body flaps, rudders and elevons, and the static body structures to which they are attached. These seals must remain in continuous contact with opposing surfaces to prevent the ingestion of damaging hot gases encountered during atmospheric re-entry. The Inconel X-750 (Special Metals Corporation) spring tube utilized in the baseline control surface seal shows significant resiliency loss when compressed at temperatures as low as 1200 F. High temperature compression testing and microstructural analysis show that creep is the dominant deformation mechanism leading to permanent set and resiliency loss in tested spring tube samples. Additional evaluation using a structured design of experiments approach shows that spring tube performance, primarily high temperature resiliency, can be enhanced through material substitution of Rene 41 (Allvac) alloy (for the baseline Inconel X-750 material) when coupled with specialized thermal processing.

  2. Strontium iodide scintillators for high energy resolution gamma ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Wilson, Cody M.; van Loef, Edgar V.; Glodo, Jarek; Cherepy, Nerine; Hull, Giulia; Payne, Stephen; Choong, Woon-Seng; Moses, William; Shah, Kanai S.

    2008-08-01

    Recently SrI2, a scintillator patented by Hofstadter in 1968, has been rediscovered and shown to possess remarkable scintillation properties. The light output of SrI2:Eu2+ has been measured to be even higher than previously observed and exceeds 120,000 photons/MeV, making it one of the brightest scintillators in existence. The crystal also has excellent energy resolution of less than 3% at 662 keV. The response is highly linear over a wide range of gamma ray energies. The emission of SrI2:Eu2+ and SrI2:Ce3+/Na+ is well-matched to both photomultiplier tubes and blue-enhanced silicon photodiodes. While SrI2:Eu2+ is relatively slow, SrI2:Ce3+/Na+ has a fast response. SrI2 crystals with many different dopant concentrations have been grown and characterized. In this presentation, crystal growth techniques as well as the effects of dopant concentration on the scintillation properties of SrI2, over the range 0.5% to 8% Eu2+ and 0.5% to 2% Ce3+/Na+, will be discussed in detail.

  3. Yield and size of oyster mushroom grown on rice/wheat straw basal substrate supplemented with cotton seed hull.

    PubMed

    Yang, Wenjie; Guo, Fengling; Wan, Zhengjie

    2013-10-01

    Oyster mushroom (Pleurotus ostreatus) was cultivated on rice straw basal substrate, wheat straw basal substrate, cotton seed hull basal substrate, and wheat straw or rice straw supplemented with different proportions (15%, 30%, and 45% in rice straw substrate, 20%, 30%, and 40% in wheat straw substrate) of cotton seed hull to find a cost effective substrate. The effect of autoclaved sterilized and non-sterilized substrate on growth and yield of oyster mushroom was also examined. Results indicated that for both sterilized substrate and non-sterilized substrate, oyster mushroom on rice straw and wheat basal substrate have faster mycelial growth rate, comparatively poor surface mycelial density, shorter total colonization period and days from bag opening to primordia formation, lower yield and biological efficiency, lower mushroom weight, longer stipe length and smaller cap diameter than that on cotton seed hull basal substrate. The addition of cotton seed hull to rice straw and wheat straw substrate slowed spawn running, primordial development and fruit body formation. However, increasing the amount of cotton seed hull can increase the uniformity and white of mycelium, yield and biological efficiency, and increase mushroom weight, enlarge cap diameter and shorten stipe length. Compared to the sterilized substrate, the non-sterilized substrate had comparatively higher mycelial growth rate, shorter total colonization period and days from bag opening to primordia formation. However, the non-sterilized substrate did not gave significantly higher mushroom yield and biological efficiency than the sterilized substrate, but some undesirable characteristics, i.e. smaller mushroom cap diameter and relatively long stipe length.

  4. A field experimental study on non-methane hydrocarbon (NMHC) emissions from a straw-returned maize cropping system.

    PubMed

    Zhang, Shuangqi; Deng, Mengsi; Shan, Ming; Zhou, Chuang; Liu, Wei; Xu, Xiaoqiu; Yang, Xudong

    2018-04-28

    Non-methane hydrocarbons (NMHCs) play an important role in the atmospheric environment. However, NMHC emissions from agricultural fields, especially their variations with straw return, are poorly understood. Therefore, a field study comprising two treatments, i.e., (1) S0 (straw removal) and (2) S1 (incorporation of maize straw at a rate of 9000 kg ha -1 ), was conducted in a straw-returned maize cropping system to characterize NMHC emissions as well as to estimate the effect of straw return on those emissions. Using a Gas Chromatography-Mass Spectrometer (GC-MS) method, 28 types of NMHCs were identified. The total NMHC emission from S0 was 2018 g ha -1 , where 1-methyl-3-propyl-benzene, (1-methylethyl)-benzene, and toluene were obviously predominant, whereas the total NMHC emission from S1 was 1903 g ha -1 , where 1-methyl-3-propyl-benzene, 2-methyl-pentane, and (1-methylethyl)-benzene were the main species. The results showed that straw return had opposing effects on NMHC emissions, ranging from -55.4% to 478.6%. Overall, the total NMHC emission with returned straw alone decreased by 2963 ng kg straw -1  h -1 . Furthermore, NMHC fluxes had higher correlations with soil temperature than with soil moisture or pH. Notably, the higher correlations of NMHC fluxes with 10 cm soil temperature than with 5 cm soil temperature indicate that soil in the deeper layer might play a more important role in NMHC fluxes. The results also suggest that more field study is needed to accurately estimate the effect of straw return on NMHC emissions from agroecosystems and fully understand its underlying mechanism. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. High resolution NMR imaging using a high field yokeless permanent magnet.

    PubMed

    Kose, Katsumi; Haishi, Tomoyuki

    2011-01-01

    We measured the homogeneity and stability of the magnetic field of a high field (about 1.04 tesla) yokeless permanent magnet with 40-mm gap for high resolution nuclear magnetic resonance (NMR) imaging. Homogeneity was evaluated using a 3-dimensional (3D) lattice phantom and 3D spin-echo imaging sequences. In the central sphere (20-mm diameter), peak-to-peak magnetic field inhomogeneity was about 60 ppm, and the root-mean-square was 8 ppm. We measured room temperature, magnet temperature, and NMR frequency of the magnet simultaneously every minute for about 68 hours with and without the thermal insulator of the magnet. A simple mathematical model described the magnet's thermal property. Based on magnet performance, we performed high resolution (up to [20 µm](2)) imaging with internal NMR lock sequences of several biological samples. Our results demonstrated the usefulness of the high field small yokeless permanent magnet for high resolution NMR imaging.

  6. Grid-converged solution and analysis of the unsteady viscous flow in a two-dimensional shock tube

    NASA Astrophysics Data System (ADS)

    Zhou, Guangzhao; Xu, Kun; Liu, Feng

    2018-01-01

    The flow in a shock tube is extremely complex with dynamic multi-scale structures of sharp fronts, flow separation, and vortices due to the interaction of the shock wave, the contact surface, and the boundary layer over the side wall of the tube. Prediction and understanding of the complex fluid dynamics are of theoretical and practical importance. It is also an extremely challenging problem for numerical simulation, especially at relatively high Reynolds numbers. Daru and Tenaud ["Evaluation of TVD high resolution schemes for unsteady viscous shocked flows," Comput. Fluids 30, 89-113 (2001)] proposed a two-dimensional model problem as a numerical test case for high-resolution schemes to simulate the flow field in a square closed shock tube. Though many researchers attempted this problem using a variety of computational methods, there is not yet an agreed-upon grid-converged solution of the problem at the Reynolds number of 1000. This paper presents a rigorous grid-convergence study and the resulting grid-converged solutions for this problem by using a newly developed, efficient, and high-order gas-kinetic scheme. Critical data extracted from the converged solutions are documented as benchmark data. The complex fluid dynamics of the flow at Re = 1000 are discussed and analyzed in detail. Major phenomena revealed by the numerical computations include the downward concentration of the fluid through the curved shock, the formation of the vortices, the mechanism of the shock wave bifurcation, the structure of the jet along the bottom wall, and the Kelvin-Helmholtz instability near the contact surface. Presentation and analysis of those flow processes provide important physical insight into the complex flow physics occurring in a shock tube.

  7. 9 CFR 72.19 - Interstate shipments and use of pine straw, grass, litter from quarantined area; prohibited until...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... straw, grass, litter from quarantined area; prohibited until disinfected. 72.19 Section 72.19 Animals... Interstate shipments and use of pine straw, grass, litter from quarantined area; prohibited until disinfected. Pine straw, grass, or similar litter collected from tick-infested pastures, ranges, or premises may...

  8. 9 CFR 72.19 - Interstate shipments and use of pine straw, grass, litter from quarantined area; prohibited until...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... straw, grass, litter from quarantined area; prohibited until disinfected. 72.19 Section 72.19 Animals... Interstate shipments and use of pine straw, grass, litter from quarantined area; prohibited until disinfected. Pine straw, grass, or similar litter collected from tick-infested pastures, ranges, or premises may...

  9. A high-resolution time-to-digital converter using a three-level resolution

    NASA Astrophysics Data System (ADS)

    Dehghani, Asma; Saneei, Mohsen; Mahani, Ali

    2016-08-01

    In this article, a three-level resolution Vernier delay line time-to-digital converter (TDC) was proposed. The proposed TDC core was based on the pseudo-differential digital architecture that made it insensitive to nMOS and pMOS transistor mismatches. It also employed a Vernier delay line (VDL) in conjunction with an asynchronous read-out circuitry. The time interval resolution was equal to the difference of delay between buffers of upper and lower chains. Then, via the extra chain included in the lower delay line, resolution was controlled and power consumption was reduced. This method led to high resolution and low power consumption. The measurement results of TDC showed a resolution of 4.5 ps, 12-bit output dynamic range, and integral nonlinearity of 1.5 least significant bits. This TDC achieved the consumption of 68.43 µW from 1.1-V supply.

  10. Automatic optimization high-speed high-resolution OCT retinal imaging at 1μm

    NASA Astrophysics Data System (ADS)

    Cua, Michelle; Liu, Xiyun; Miao, Dongkai; Lee, Sujin; Lee, Sieun; Bonora, Stefano; Zawadzki, Robert J.; Mackenzie, Paul J.; Jian, Yifan; Sarunic, Marinko V.

    2015-03-01

    High-resolution OCT retinal imaging is important in providing visualization of various retinal structures to aid researchers in better understanding the pathogenesis of vision-robbing diseases. However, conventional optical coherence tomography (OCT) systems have a trade-off between lateral resolution and depth-of-focus. In this report, we present the development of a focus-stacking optical coherence tomography (OCT) system with automatic optimization for high-resolution, extended-focal-range clinical retinal imaging. A variable-focus liquid lens was added to correct for de-focus in real-time. A GPU-accelerated segmentation and optimization was used to provide real-time layer-specific enface visualization as well as depth-specific focus adjustment. After optimization, multiple volumes focused at different depths were acquired, registered, and stitched together to yield a single, high-resolution focus-stacked dataset. Using this system, we show high-resolution images of the ONH, from which we extracted clinically-relevant parameters such as the nerve fiber layer thickness and lamina cribrosa microarchitecture.

  11. High-Resolution Broadband Spectral Interferometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erskine, D J; Edelstein, J

    2002-08-09

    We demonstrate solar spectra from a novel interferometric method for compact broadband high-resolution spectroscopy. The spectral interferometer (SI) is a hybrid instrument that uses a spectrometer to externally disperse the output of a fixed-delay interferometer. It also has been called an externally dispersed interferometer (EDI). The interferometer can be used with linear spectrometers for imaging spectroscopy or with echelle spectrometers for very broad-band coverage. EDI's heterodyning technique enhances the spectrometer's response to high spectral-density features, increasing the effective resolution by factors of several while retaining its bandwidth. The method is extremely robust to instrumental insults such as focal spot sizemore » or displacement. The EDI uses no moving parts, such as purely interferometric FTS spectrometers, and can cover a much wider simultaneous bandpass than other internally dispersed interferometers (e.g. HHS or SHS).« less

  12. [Effects of simulated acid rain on decomposition of soil organic carbon and crop straw].

    PubMed

    Zhu, Xue-Zhu; Huang, Yao; Yang, Xin-Zhong

    2009-02-01

    To evaluate the effects of acid rain on the organic carbon decomposition in different acidity soils, a 40-day incubation test was conducted with the paddy soils of pH 5.48, 6.70 and 8.18. The soils were amended with 0 and 15 g x kg(-1) of rice straw, adjusted to the moisture content of 400 g x kg(-1) air-dried soil by using simulated rain of pH 6.0, 4.5, and 3.0, and incubated at 20 degrees C. The results showed that straw, acid rain, and soil co-affected the CO2 emission from soil system. The amendment of straw increased the soil CO2 emission rate significantly. Acid rain had no significant effects on soil organic carbon decomposition, but significantly affected the straw decomposition in soil. When treated with pH 3.0 acid rain, the amount of decomposed straw over 40-day incubation in acid (pH 5.48) and alkaline (pH 8.18) soils was 8% higher, while that in neutral soil (pH 6.70) was 15% lower, compared to the treatment of pH 6.0 rain. In the treatment of pH 3.0 acid rain, the decomposition rate of soil organic C in acid (pH 5.48) soil was 43% and 50% (P < 0.05) higher than that in neutral (pH 6.70) and alkaline (pH 8.18) soils, while the decomposition rate of straw in neutral soil was 17% and 16% (P < 0.05) lower than that in acid and alkaline soils, respectively.

  13. A highly sensitive room temperature H2S gas sensor based on SnO2 multi-tube arrays bio-templated from insect bristles.

    PubMed

    Tian, Junlong; Pan, Feng; Xue, Ruiyang; Zhang, Wang; Fang, Xiaotian; Liu, Qinglei; Wang, Yuhua; Zhang, Zhijian; Zhang, Di

    2015-05-07

    A tin oxide multi-tube array (SMTA) with a parallel effect was fabricated through a simple and promising method combining chemosynthesis and biomimetic techniques; a biomimetic template was derived from the bristles on the wings of the Alpine Black Swallowtail butterfly (Papilio maackii). SnO2 tubes are hollow and porous structures with micro-pores regularly distributed on the wall. The morphology, the delicate microstructure and the crystal structure of this SMTA were characterized by super resolution digital microscopy, scanning electron microscopy, transmission electron microscopy and X-ray diffraction. The SMTA exhibits a high sensitivity to H2S gas at room temperature. It also exhibits a short response/recovery time, with an average value of 14/30 s at 5 ppm. In particular, heating is not required for the SMTA in the gas sensitivity measurement process. On the basis of these results, SMTA is proposed as a suitable new material for the design and fabrication of room-temperature H2S gas sensors.

  14. The Impact of Horizontal and Temporal Resolution on Convection and Precipitation with High-Resolution GEOS-5

    NASA Technical Reports Server (NTRS)

    Putman, William P.

    2012-01-01

    Using a high-resolution non-hydrostatic version of GEOS-5 with the cubed-sphere finite-volume dynamical core, the impact of spatial and temporal resolution on cloud properties will be evaluated. There are indications from examining convective cluster development in high resolution GEOS-5 forecasts that the temporal resolution within the model may playas significant a role as horizontal resolution. Comparing modeled convective cloud clusters versus satellite observations of brightness temperature, we have found that improved. temporal resolution in GEOS-S accounts for a significant portion of the improvements in the statistical distribution of convective cloud clusters. Using satellite simulators in GEOS-S we will compare the cloud optical properties of GEOS-S at various spatial and temporal resolutions with those observed from MODIS. The potential impact of these results on tropical cyclone formation and intensity will be examined as well.

  15. High resolution PFPE-based molding High resolution PFPE-based molding High resolution PFPE-based molding techniques for nanofabrication of high pattern density sub-20 nm features: A fundamental materials approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Stuart S; Samulski, Edward; Lopez, Renee

    2010-01-01

    ABSTRACT. Described herein is the development and investigation of PFPE-based elastomers for high resolution replica molding applications. The modulus of the elastomeric materials was increased through synthetic and additive approaches while maintaining relatively low surface energies (<25 mN/m). Using practically relevant large area master templates, we show that the resolution of the molds is strongly dependant upon the elastomeric mold modulus. A composite mold approach was used to form flexible molds out of stiff, high modulus materials that allow for replication of sub-20 nm post structures. Sub-100 nm line grating master templates, formed using e-beam lithography, were used to determinemore » the experimental stability of the molding materials. It was observed that as the feature spacing decreased, high modulus composite molds were able to effectively replicate the nano-grating structures without cracking or tear-out defects that typically occur with high modulus elastomers.« less

  16. Effects of grinding processes on enzymatic degradation of wheat straw.

    PubMed

    Silva, Gabriela Ghizzi D; Couturier, Marie; Berrin, Jean-Guy; Buléon, Alain; Rouau, Xavier

    2012-01-01

    The effectiveness of wheat straw fine to ultra-fine grindings at pilot scale was studied. The produced powders were characterised by their particle-size distribution (laser diffraction), crystallinity (WAXS) and enzymatic degradability (Trichoderma reesei enzymatic cocktail). A large range of wheat-straw powders was produced: from coarse (median particle size ∼800 μm) to fine particles (∼50 μm) using sieve-based grindings, then ultra-fine particles ∼20 μm by jet milling and ∼10 μm by ball milling. The wheat straw degradability was enhanced by the decrease of particle size until a limit: ∼100 μm, up to 36% total carbohydrate and 40% glucose hydrolysis yields. Ball milling samples overcame this limit up to 46% total carbohydrate and 72% glucose yields as a consequence of cellulose crystallinity reduction (from 22% to 13%). Ball milling appeared to be an effective pretreatment with similar glucose yield and superior carbohydrate yield compared to steam explosion pretreatment. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Videothoracoscopic surgery before and after chest tube drainage for children with complicated parapneumonic effusion.

    PubMed

    Knebel, Rogerio; Fraga, Jose Carlos; Amantea, Sergio Luis; Isolan, Paola Brolin Santis

    To evaluate the effectiveness of videothoracoscopic surgery in the treatment of complicated parapneumonic pleural effusion and to determine whether there is a difference in the videothoracoscopic surgery outcome before or after the chest tube drainage. The medical records of 79 children (mean age 35 months) undergoing videothoracoscopic surgery from January 2000 to December 2011 were retrospectively reviewed. The same treatment algorithm was used in the management of all patients. Patients were divided into two groups: in group 1, videothoracoscopic surgery was performed as the initial procedure; in group 2, videothoracoscopic surgery was performed after previous chest tube drainage. Videothoracoscopic surgery was effective in 73 children (92.4%); the other six (7.6%) needed another procedure. Sixty patients (75.9%) were submitted directly to videothoracoscopic surgery (group 1) and 19 (24%) primarily underwent chest tube drainage (group 2). Primary videothoracoscopic surgery was associated with a decrease of hospital stay (p=0.05), time to resolution (p=0.024), and time with a chest tube (p<0.001). However, there was no difference between the groups regarding the time until fever resolution, time with a chest tube, and the hospital stay after videothoracoscopic surgery. No differences were observed between groups regarding the need for further surgery and the presence of complications. Videothoracoscopic surgery is a highly effective procedure for treating children with complicated parapneumonic pleural effusion. When videothoracoscopic surgery is indicated in the presence of loculations (stage II or fibrinopurulent), no difference were observed in time of clinical improvement and hospital stay among the patients with or without chest tube drainage before videothoracoscopic surgery. Copyright © 2017 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  18. High-Resolution Array with Prony, MUSIC, and ESPRIT Algorithms

    DTIC Science & Technology

    1992-08-25

    N avalI Research La bora tory AD-A255 514 Washington, DC 20375-5320 NRL/FR/5324-92-9397 High-resolution Array with Prony, music , and ESPRIT...unlimited t"orm n pprovoiREPORT DOCUMENTATION PAGE OMB. o 0 104 0188 4. TITLE AND SUBTITLE S. FUNDING NUMBERS High-resolution Array with Prony. MUSIC . and...the array high-resolution properties of three algorithms: the Prony algo- rithm, the MUSIC algorithm, and the ESPRIT algorithm. MUSIC has been much

  19. Inspiratory Tube Condensation During High-Flow Nasal Cannula Therapy: A Bench Study.

    PubMed

    Chikata, Yusuke; Unai, Kazuaki; Izawa, Masayo; Okuda, Nao; Oto, Jun; Nishimura, Masaji

    2016-03-01

    High-flow nasal cannula (HFNC) therapy provides better humidification than conventional oxygen therapy. To allay loss of vapor as condensation, a servo-controlled heating wire is incorporated in the inspiratory tube, but condensation is not completely avoidable. We investigated factors that might affect condensation: thermal characteristics of the inspiratory tube, HFNC flow, and ambient temperature. We evaluated 2 types of HFNC tubes, SLH Flex 22-mm single tube and RT202. Both tubes were connected to a heated humidifier with water reservoir. HFNC flow was set at 20, 40, and 60 L/min, and FIO2 was set at 0.21. Air conditioning was used maintain ambient temperature at close to either 20 or 25°C. We weighed the tubes on a digital scale before (0 h) and at 3, 6, and 24 h after, turning on the heated humidifier, and calculated the amount of condensation by simple subtraction. The amount of distilled water used during 24 h was also recorded. At 25°C, there was little condensation, but at 20°C and HFNC flow of 20, 40, and 60 L/min for 24 h, the amount of condensation with the SLH was 50.2 ± 10.7, 44.3 ± 17.7, and 56.6 ± 13.9 mg, and the amount with the RT202 was 96.0 ± 35.1, 72.8 ± 8.2, and 64.9 ± 0.8 mg. When ambient temperature was set to 20°C, condensation with the RT202 was statistically significantly greater than with the SLH at all flow settings (P < .001). Ambient temperature statistically significantly influenced the amount of condensation in the tubes. Copyright © 2016 by Daedalus Enterprises.

  20. Degradation of wheat straw cell wall by white rot fungi Phanerochaete chrysosporium

    NASA Astrophysics Data System (ADS)

    Zeng, Jijiao

    The main aim of this dissertation research was to understand the natural microbial degradation process of lignocellulosic materials in order to develop a new, green and more effective pretreatment technology for bio-fuel production. The biodegradation of wheat straw by white rot fungi Phanerochaete chrysosporium was investigated. The addition of nutrients significantly improved the performance of P.chrysosporium on wheat straw degradation. The proteomic analysis indicated that this fungus produced various pepetides related to cellulose and lignin degradation while grown on the biomass. The structural analysis of lignin further showed that P.chrysosporium preferentially degraded hydroxycinnamtes in order to access cellulose. In details, the effects of carbon resource and metabolic pathway regulating compounds on manganeses peroxidase (MnP) were studied. The results indicated that MnP activity of 4.7 +/- 0.31 U mL-1 was obtained using mannose as a carbon source. The enzyme productivity further reached 7.36 +/- 0.05 U mL-1 and 8.77 +/- 0.23 U mL -1 when the mannose medium was supplemented with cyclic adenosine monophosphate (cAMP) and S-adenosylmethionine (SAM) respectively, revealing highest MnP productivity obtained by optimizing the carbon sources and supplementation with small molecules. In addition, the effects of nutrient additives for improving biological pretreatment of lignocellulosic biomass were studied. The pretreatment of wheat straw supplemented with inorganic salts (salts group) and tween 80 was examined. The extra nutrient significantly improved the ligninase expression leading to improve digestibility of lignocellulosic biomass. Among the solid state fermentation groups, salts group resulted in a substantial degradation of wheat straw within one week, along with the highest lignin loss (25 %) and ˜ 250% higher efficiency for the total sugar release through enzymatic hydrolysis. The results were correlated with pyrolysis GC-MS (Py

  1. Biogeochemical Processes That Produce Dissolved Organic Matter From Wheat Straw

    USGS Publications Warehouse

    Wershaw, Robert L.; Rutherford, David W.; Leenheer, Jerry A.; Kennedy, Kay R.; Cox, Larry G.; Koci, Donald R.

    2003-01-01

    The chemical reactions that lead to the formation of dissolved organic matter (DOM) in natural waters are poorly understood. Studies on the formation of DOM generally are complicated because almost all DOM isolates have been derived from mixtures of plant species composed of a wide variety of different types of precursor compounds for DOM formation. This report describes a study of DOM derived mainly from bales of wheat straw that had been left in a field for several years. During this period of time, black water from the decomposing wheat straw accumulated in pools in the field. The nuclear magnetic resonance and infrared spectra of the black water DOM indicate that it is composed almost entirely of lignin and carbohydrate polymeric units. Analysis by high-performance size-exclusion chromatography with multi-angle laser-light scattering detection indicates that the number average molecular weight of the DOM is 124,000 daltons. The results presented in this report indicate that the black water DOM is composed of hemicellulose chains cross-linked to lignin oligomers. These types of structures have been shown to exist in the hemicellulose matrix of plant cell walls. The cross-linked lignin-hemicellulose complexes apparently were released from partially degraded wheat-straw cell walls with little alteration. In solution in the black water, these lignin-hemicellulose polymers fold into compact globular particles in which the nonpolar parts of the polymer form the interiors of the particles and the polar groups are on the exterior surfaces of the particles. The tightly folded, compact conformation of these particles probably renders them relatively resistant to microbial degradation. This should be especially the case for the aromatic lignin structures that will be buried in the interiors of the particles.

  2. Fabricating High-Resolution X-Ray Collimators

    NASA Technical Reports Server (NTRS)

    Appleby, Michael; Atkinson, James E.; Fraser, Iain; Klinger, Jill

    2008-01-01

    A process and method for fabricating multi-grid, high-resolution rotating modulation collimators for arcsecond and sub-arcsecond x-ray and gamma-ray imaging involves photochemical machining and precision stack lamination. The special fixturing and etching techniques that have been developed are used for the fabrication of multiple high-resolution grids on a single array substrate. This technology has application in solar and astrophysics and in a number of medical imaging applications including mammography, computed tomography (CT), single photon emission computed tomography (SPECT), and gamma cameras used in nuclear medicine. This collimator improvement can also be used in non-destructive testing, hydrodynamic weapons testing, and microbeam radiation therapy.

  3. Study on the Effect of Straw Fiber on the Performance of Volcanic Slag Concrete

    NASA Astrophysics Data System (ADS)

    Xiao, Li-guang; Liu, Xi-xu

    2018-03-01

    In this paper, the effects of straw fiber on the working performance, mechanical properties and frost resistance of volcanic slag lightweight aggregate concrete were studied. The experimental results show that the straw fiber is subjected to surface carbonization treatment and mixed into the volcanic slag light aggregate concrete. The flexural strength and fracture pressure ratio of volcanic slag lightweight aggregate concrete are improved obviously Improved volcanic slag lightweight aggregate concrete brittleness improves toughness. Carbonized straw fiber greatly improves the frost resistance of volcanic slag lightweight aggregate concrete. So that the volcanic slag light aggregate concrete freeze-thaw cycle can reach 300 times.

  4. A high-resolution regional reanalysis for Europe

    NASA Astrophysics Data System (ADS)

    Ohlwein, C.

    2015-12-01

    Reanalyses gain more and more importance as a source of meteorological information for many purposes and applications. Several global reanalyses projects (e.g., ERA, MERRA, CSFR, JMA9) produce and verify these data sets to provide time series as long as possible combined with a high data quality. Due to a spatial resolution down to 50-70km and 3-hourly temporal output, they are not suitable for small scale problems (e.g., regional climate assessment, meso-scale NWP verification, input for subsequent models such as river runoff simulations). The implementation of regional reanalyses based on a limited area model along with a data assimilation scheme is able to generate reanalysis data sets with high spatio-temporal resolution. Within the Hans-Ertel-Centre for Weather Research (HErZ), the climate monitoring branch concentrates efforts on the assessment and analysis of regional climate in Germany and Europe. In joint cooperation with DWD (German Meteorological Service), a high-resolution reanalysis system based on the COSMO model has been developed. The regional reanalysis for Europe matches the domain of the CORDEX EURO-11 specifications, albeit at a higher spatial resolution, i.e., 0.055° (6km) instead of 0.11° (12km) and comprises the assimilation of observational data using the existing nudging scheme of COSMO complemented by a special soil moisture analysis with boundary conditions provided by ERA-Interim data. The reanalysis data set covers the past 20 years. Extensive evaluation of the reanalysis is performed using independent observations with special emphasis on precipitation and high-impact weather situations indicating a better representation of small scale variability. Further, the evaluation shows an added value of the regional reanalysis with respect to the forcing ERA Interim reanalysis and compared to a pure high-resolution dynamical downscaling approach without data assimilation.

  5. High Spatial Resolution Commercial Satellite Imaging Product Characterization

    NASA Technical Reports Server (NTRS)

    Ryan, Robert E.; Pagnutti, Mary; Blonski, Slawomir; Ross, Kenton W.; Stnaley, Thomas

    2005-01-01

    NASA Stennis Space Center's Remote Sensing group has been characterizing privately owned high spatial resolution multispectral imaging systems, such as IKONOS, QuickBird, and OrbView-3. Natural and man made targets were used for spatial resolution, radiometric, and geopositional characterizations. Higher spatial resolution also presents significant adjacency effects for accurate reliable radiometry.

  6. USGS aerial resolution targets.

    USGS Publications Warehouse

    Salamonowicz, P.H.

    1982-01-01

    It is necessary to measure the achievable resolution of any airborne sensor that is to be used for metric purposes. Laboratory calibration facilities may be inadequate or inappropriate for determining the resolution of non-photographic sensors such as optical-mechanical scanners, television imaging tubes, and linear arrays. However, large target arrays imaged in the field can be used in testing such systems. The USGS has constructed an array of resolution targets in order to permit field testing of a variety of airborne sensing systems. The target array permits any interested organization with an airborne sensing system to accurately determine the operational resolution of its system. -from Author

  7. Sieve tube geometry in relation to phloem flow.

    PubMed

    Mullendore, Daniel L; Windt, Carel W; Van As, Henk; Knoblauch, Michael

    2010-03-01

    Sieve elements are one of the least understood cell types in plants. Translocation velocities and volume flow to supply sinks with photoassimilates greatly depend on the geometry of the microfluidic sieve tube system and especially on the anatomy of sieve plates and sieve plate pores. Several models for phloem translocation have been developed, but appropriate data on the geometry of pores, plates, sieve elements, and flow parameters are lacking. We developed a method to clear cells from cytoplasmic constituents to image cell walls by scanning electron microscopy. This method allows high-resolution measurements of sieve element and sieve plate geometries. Sieve tube-specific conductivity and its reduction by callose deposition after injury was calculated for green bean (Phaseolus vulgaris), bamboo (Phyllostachys nuda), squash (Cucurbita maxima), castor bean (Ricinus communis), and tomato (Solanum lycopersicum). Phloem sap velocity measurements by magnetic resonance imaging velocimetry indicate that higher conductivity is not accompanied by a higher velocity. Studies on the temporal development of callose show that small sieve plate pores might be occluded by callose within minutes, but plants containing sieve tubes with large pores need additional mechanisms.

  8. High Frequency Single-Stage Multi-Bypass Pulse Tube Cryocooler for 23.8K

    NASA Astrophysics Data System (ADS)

    Yang, Junling; Hou, Xiaofeng; Yang, Luwei; Zhou, Yuan; Zhang, Liang

    2008-03-01

    A below 30K single-stage high-frequency multi-bypass pulse tube cryocooler(PTC) is introduced in this paper. At present, the lowest temperature of 27.46K has been achieved with input power of 100W and 23.8K with input power of 200W. Experiments show that if the area of multi-bypass and the length of inertance tube matching well, a better performance of PTC will be obtained.

  9. Tracing remobilization of nutrients and toxic elements after application of rice straw or derived ash / biochar in paddy soils

    NASA Astrophysics Data System (ADS)

    Schaller, Jörg; Wang, Jiajia; Planer-Friedrich, Britta

    2017-04-01

    More than 600 million tons of rice straw are produced each year as byproduct of rice grain production. As an increasing application, besides e.g. composting or fodder for animals, the straw remains on the field for decomposition and nutrient supply. A central concern during rice cultivation is accumulation of arsenic, but it is currently unclear how the application of rice straw or derived ash or biochar to paddy soils will influence arsenic uptake by the next generation of rice plants. Consequently, we assessed the element mobilization via soil microcosm incubations with straw or derived ash or biochar or without those amendments under flooding (40 days) and subsequent drainage (14 days). We focused on elements potentially influencing the uptake of arsenic by the next generation of rice plants (e.g. silicon, phosphorus, iron), or which are nutrients but toxic themselves at higher levels (sulfur, sulfide, iron, iron(II), manganese, copper, and zinc). We found significant differences in the release of arsenic, iron(II), sulfide, total sulfur, DOC, manganese, copper, and zinc . For example highest pore water Mn and As concentrations were found for soil amended with straw, whereas the straw amendment reduced S mobilization, possibly due to sulfate reduction by straw decomposing microbes. For P, we found highest pore water concentrations for straw, followed by biochar, ash and control. In summary, application of rice straw or derived ash or biochar strongly affect the element availability in paddy soil.

  10. Mass loss and chemical structures of wheat and maize straws in response to ultraviolet-B radiation and soil contact.

    PubMed

    Zhou, Guixiang; Zhang, Jiabao; Mao, Jingdong; Zhang, Congzhi; Chen, Lin; Xin, Xiuli; Zhao, Bingzi

    2015-10-01

    The role of photodegradation, an abiotic process, has been largely overlooked during straw decomposition in mesic ecosystems. We investigated the mass loss and chemical structures of straw decomposition in response to elevated UV-B radiation with or without soil contact over a 12-month litterbag experiment. Wheat and maize straw samples with and without soil contact were exposed to three radiation levels: a no-sunlight control, ambient solar UV-B, and artificially elevated UV-B radiation. A block control with soil contact was not included. Compared with the no-sunlight control, UV-B radiation increased the mass loss by 14-19% and the ambient radiation by 9-16% for wheat and maize straws without soil contact after 12 months. Elevated UV-B exposure decreased the decomposition rates of both wheat and maize straws when in contact with soil. Light exposure resulted in decreased O-alkyl carbons and increased alkyl carbons for both the wheat and maize straws compared with no-sunlight control. The difference in soil contact may influence the contribution of photodegradation to the overall straw decomposition process. These results indicate that we must take into account the effects of photodegradation when explaining the mechanisms of straw decomposition in mesic ecosystems.

  11. Mass loss and chemical structures of wheat and maize straws in response to ultraviolet-B radiation and soil contact

    PubMed Central

    Zhou, Guixiang; Zhang, Jiabao; Mao, Jingdong; Zhang, Congzhi; Chen, Lin; Xin, Xiuli; Zhao, Bingzi

    2015-01-01

    The role of photodegradation, an abiotic process, has been largely overlooked during straw decomposition in mesic ecosystems. We investigated the mass loss and chemical structures of straw decomposition in response to elevated UV-B radiation with or without soil contact over a 12-month litterbag experiment. Wheat and maize straw samples with and without soil contact were exposed to three radiation levels: a no-sunlight control, ambient solar UV-B, and artificially elevated UV-B radiation. A block control with soil contact was not included. Compared with the no-sunlight control, UV-B radiation increased the mass loss by 14–19% and the ambient radiation by 9–16% for wheat and maize straws without soil contact after 12 months. Elevated UV-B exposure decreased the decomposition rates of both wheat and maize straws when in contact with soil. Light exposure resulted in decreased O-alkyl carbons and increased alkyl carbons for both the wheat and maize straws compared with no-sunlight control. The difference in soil contact may influence the contribution of photodegradation to the overall straw decomposition process. These results indicate that we must take into account the effects of photodegradation when explaining the mechanisms of straw decomposition in mesic ecosystems. PMID:26423726

  12. Effects of biochar and maize straw on the short-term carbon and nitrogen dynamics in a cultivated silty loam in China.

    PubMed

    Zhu, Li-Xia; Xiao, Qian; Shen, Yu-Fang; Li, Shi-Qing

    2017-01-01

    Application of maize straw and biochar can potentially improve soil fertility and sequester carbon (C) in the soil, but little information is available about the effects of maize straw and biochar on the mineralization of soil C and nitrogen (N). We conducted a laboratory incubation experiment with five treatments of a cultivated silty loam, biochar produced from maize straw and/or maize straw: soil only (control), soil + 1 % maize straw (S), soil + 4 % biochar (B1), soil + 4 % biochar + 1 % maize straw (B1S), and soil + 8 % biochar + 1 % maize straw (B2S). CO 2 emissions, soil organic C, dissolved organic C, easily oxidized C, total N, mineral N, net N mineralization, and microbial biomass C and N of three replicates were measured periodically during the 60-day incubation using destructive sampling method. C mineralization was highest in treatment S, followed by B2S, B1S, the control, and B1. Total net CO 2 emissions suggested that negative or positive priming effect may occur between the biochar and straw according to the biochar addition rate, and biochar mineralization was minimal. By day 35, maize straw, irrespective of the rate of biochar addition, significantly increased microbial biomass C and N but decreased dissolved organic N. Biochar alone, however, had no significant effect on either microbial biomass C or N but decreased dissolved organic N. Mixing the soil with biochar and/or straw significantly increased soil organic C, easily oxidized C and total N contents, and decreased dissolved organic N content. Dissolved organic C contents showed mixed results. Notably, N was immobilized in soil mixed with straw and/or biochar, but the effect was stronger for soil mixed with straw, which may cause N deficiency for plant growth. The application of biochar and maize straw can thus affect soil C and N cycles, and the appropriate proportion of biochar and maize straw need further studies to increase C sequestration.

  13. Trichoderma-Inoculated Miscanthus Straw Can Replace Peat in Strawberry Cultivation, with Beneficial Effects on Disease Control.

    PubMed

    Debode, Jane; De Tender, Caroline; Cremelie, Pieter; Lee, Ana S; Kyndt, Tina; Muylle, Hilde; De Swaef, Tom; Vandecasteele, Bart

    2018-01-01

    Peat based growing media are not ecologically sustainable and often fail to support biological control. Miscanthus straw was (1) tested to partially replace peat; and (2) pre-colonized with a Trichoderma strain to increase the biological control capacity of the growing media. In two strawberry pot trials (denoted as experiment I & II), extruded and non-extruded miscanthus straw, with or without pre-colonization with T. harzianum T22, was used to partially (20% v/v) replace peat. We tested the performance of each mixture by monitoring strawberry plant development, nutrient content in the leaves and growing media, sensitivity of the fruit to the fungal pathogen Botrytis cinerea , rhizosphere community and strawberry defense responses. N immobilization by miscanthus straw reduced strawberry growth and yield in experiment II but not in I. The pre-colonization of the straw with Trichoderma increased the post-harvest disease suppressiveness against B. cinerea and changed the rhizosphere fungal microbiome in both experiments. In addition, defense-related genes were induced in experiment II. The use of miscanthus straw in growing media will reduce the demand for peat and close resource loops. Successful pre-colonization of this straw with biological control fungi will optimize crop cultivation, requiring fewer pesticide applications, which will benefit the environment and human health.

  14. Effect of rice straw application on microbial community and activity in paddy soil under different water status.

    PubMed

    Pan, Fuxia; Li, Yaying; Chapman, Stephen James; Yao, Huaiying

    2016-03-01

    Rice straw application and flooding are common practices in rice production, both of which can induce changes in the microbial community. This study used soil microcosms to investigate the impact of water status (saturated and nonsaturated) and straw application (10 g kg(-1) soil) on soil microbial composition (phospholipid fatty acid analysis) and activity (MicroResp(™) method). Straw application significantly increased total PLFA amount and individual PLFA components independent of soil moisture level. The amount of soil fungal PLFA was less than Gram-negative, Gram-positive, and actinomycete PLFA, except the drained treatment with rice straw application, which had higher fungal PLFA than actinomycete PLFA at the initial incubation stage. Straw amendment and waterlogging had different effects on microbial community structure and substrate-induced pattern. PLFA profiles were primarily influenced by straw application, whereas soil water status had the greater influence on microbial respiration. Of the variation in PLFA and respiration data, straw accounted for 30.1 and 16.7 %, while soil water status explained 7.5 and 29.1 %, respectively. Our results suggest that (1) the size of microbial communities in paddy soil is more limited by carbon substrate availability rather than by the anaerobic conditions due to waterlogging and (2) that soil water status is more important as a control of fungal growth and microbial community activity.

  15. High-resolution μCT of a mouse embryo using a compact laser-driven X-ray betatron source.

    PubMed

    Cole, Jason M; Symes, Daniel R; Lopes, Nelson C; Wood, Jonathan C; Poder, Kristjan; Alatabi, Saleh; Botchway, Stanley W; Foster, Peta S; Gratton, Sarah; Johnson, Sara; Kamperidis, Christos; Kononenko, Olena; De Lazzari, Michael; Palmer, Charlotte A J; Rusby, Dean; Sanderson, Jeremy; Sandholzer, Michael; Sarri, Gianluca; Szoke-Kovacs, Zsombor; Teboul, Lydia; Thompson, James M; Warwick, Jonathan R; Westerberg, Henrik; Hill, Mark A; Norris, Dominic P; Mangles, Stuart P D; Najmudin, Zulfikar

    2018-06-19

    In the field of X-ray microcomputed tomography (μCT) there is a growing need to reduce acquisition times at high spatial resolution (approximate micrometers) to facilitate in vivo and high-throughput operations. The state of the art represented by synchrotron light sources is not practical for certain applications, and therefore the development of high-brightness laboratory-scale sources is crucial. We present here imaging of a fixed embryonic mouse sample using a compact laser-plasma-based X-ray light source and compare the results to images obtained using a commercial X-ray μCT scanner. The radiation is generated by the betatron motion of electrons inside a dilute and transient plasma, which circumvents the flux limitations imposed by the solid or liquid anodes used in conventional electron-impact X-ray tubes. This X-ray source is pulsed (duration <30 fs), bright (>10 10 photons per pulse), small (diameter <1 μm), and has a critical energy >15 keV. Stable X-ray performance enabled tomographic imaging of equivalent quality to that of the μCT scanner, an important confirmation of the suitability of the laser-driven source for applications. The X-ray flux achievable with this approach scales with the laser repetition rate without compromising the source size, which will allow the recording of high-resolution μCT scans in minutes. Copyright © 2018 the Author(s). Published by PNAS.

  16. High efficiency multishot interleaved spiral-in/out: acquisition for high-resolution BOLD fMRI.

    PubMed

    Jung, Youngkyoo; Samsonov, Alexey A; Liu, Thomas T; Buracas, Giedrius T

    2013-08-01

    Growing demand for high spatial resolution blood oxygenation level dependent (BOLD) functional magnetic resonance imaging faces a challenge of the spatial resolution versus coverage or temporal resolution tradeoff, which can be addressed by methods that afford increased acquisition efficiency. Spiral acquisition trajectories have been shown to be superior to currently prevalent echo-planar imaging in terms of acquisition efficiency, and high spatial resolution can be achieved by employing multiple-shot spiral acquisition. The interleaved spiral in/out trajectory is preferred over spiral-in due to increased BOLD signal contrast-to-noise ratio (CNR) and higher acquisition efficiency than that of spiral-out or noninterleaved spiral in/out trajectories (Law & Glover. Magn Reson Med 2009; 62:829-834.), but to date applicability of the multishot interleaved spiral in/out for high spatial resolution imaging has not been studied. Herein we propose multishot interleaved spiral in/out acquisition and investigate its applicability for high spatial resolution BOLD functional magnetic resonance imaging. Images reconstructed from interleaved spiral-in and -out trajectories possess artifacts caused by differences in T2 decay, off-resonance, and k-space errors associated with the two trajectories. We analyze the associated errors and demonstrate that application of conjugate phase reconstruction and spectral filtering can substantially mitigate these image artifacts. After applying these processing steps, the multishot interleaved spiral in/out pulse sequence yields high BOLD CNR images at in-plane resolution below 1 × 1 mm while preserving acceptable temporal resolution (4 s) and brain coverage (15 slices of 2 mm thickness). Moreover, this method yields sufficient BOLD CNR at 1.5 mm isotropic resolution for detection of activation in hippocampus associated with cognitive tasks (Stern memory task). The multishot interleaved spiral in/out acquisition is a promising technique for

  17. Fabrication of CNT@void@SnO2@C with tube-in-tube nanostructure as high-performance anode for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Tian, Qinghua; Tian, Yang; Zhang, Zhengxi; Yang, Li; Hirano, Shin-ichi

    2015-09-01

    Tin dioxide/carbon composites is an important class of promising candidates for anode materials with superior electrochemical performance and thus have attracted extensive attention. Herein, a tube-in-tube nanostructure, denoted as CNT@void@SnO2@C, has been fabricated by a facile and novel strategy. The possible formation mechanism is also discussed and determined by TEM, XRD and XPS characterizations. As a promising anode material for lithium-ion batteries, the CNT@void@SnO2@C exhibits superior lithium storage properties, delivering a reversible capacity of 702.5 mAh g-1 at 200 mA g-1 even after 350 cycles. The excellent performances should be benefited from the peculiar tube-in-tube nanostructure, in which SnO2 located between CNT and outermost carbon coating layers can sure the structural integrity and high conductivity during long-term cycling, and one-dimensional void space formed between the inner CNT and outer SnO2@C nanotubes, in particular, can provide larger free space for alleviating the huge volume variation of SnO2 and accommodating the stress formed during repeated discharge/charge process.

  18. Visualizing biofilm formation in endotracheal tubes using endoscopic three-dimensional optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Heidari, Andrew E.; Moghaddam, Samer; Troung, Kimberly K.; Chou, Lidek; Genberg, Carl; Brenner, Matthew; Chen, Zhongping

    2015-12-01

    Biofilm formation has been linked to ventilator-associated pneumonia, which is a prevalent infection in hospital intensive care units. Currently, there is no rapid diagnostic tool to assess the degree of biofilm formation or cellular biofilm composition. Optical coherence tomography (OCT) is a minimally invasive, nonionizing imaging modality that can be used to provide high-resolution cross-sectional images. Biofilm deposited in critical care patients' endotracheal tubes was analyzed in vitro. This study demonstrates that OCT could potentially be used as a diagnostic tool to analyze and assess the degree of biofilm formation and extent of airway obstruction caused by biofilm in endotracheal tubes.

  19. SPARTAN II: An Instructional High Resolution Land Combat Model

    DTIC Science & Technology

    1993-03-01

    93M-09 SPARTAN II: AN INSTRUCTIONAL HIGH RESOLUTION LAND COMBAT MODEL THESIS DWquALfl’ 4 Presented to the Faculty of the School of Engineering of the...ADVISOR NAJ Edward Negrelli/ENS REALDER MAJ Bruce Marl an/MA LD1 { The goal of this thesis was to improve SPARTAN, a high resolution land combat model...should serve as a useful tool for learning about the advantages and disadvantages of high resolution combat modeling. I wish to thank I4AJ Edward

  20. Sequential and simultaneous strategies for biorefining of wheat straw using room temperature ionic liquids, xylanases and cellulases.

    PubMed

    Husson, Eric; Auxenfans, Thomas; Herbaut, Mickael; Baralle, Manon; Lambertyn, Virginie; Rakotoarivonina, Harivoni; Rémond, Caroline; Sarazin, Catherine

    2018-03-01

    Sequential and simultaneous strategies for fractioning wheat straw were developed in combining 1-ethyl-3-methyl imidazolium acetate [C2mim][OAc], endo-xylanases from Thermobacillus xylanilyticus and commercial cellulases. After [C2mim][OAc]-pretreatment, hydrolysis catalyzed by endo-xylanases of wheat straw led to efficient xylose production with very competitive yield (97.6 ± 1.3%). Subsequent enzymatic saccharification allowed achieving a total degradation of cellulosic fraction (>99%). These high performances revealed an interesting complementarity of [C2mim][OAc]- and xylanase-pretreatments for increasing enzymatic digestibility of cellulosic fraction in agreement with the structural and morphological changes of wheat straw induced by each of these pretreatment steps. In addition a higher tolerance of endo-xylanases from T. xylaniliticus to [C2mim][AcO] until 30% v/v than cellulases from T. reesei was observed. Based on this property, a simultaneous strategy combining [C2mim][OAc]- and endo-xylanases as pretreatment in a one-batch produced xylose with similar yield than those obtained by the sequential strategy. Copyright © 2017 Elsevier Ltd. All rights reserved.