Science.gov

Sample records for high-resolution x-ray computed

  1. Mechanisms of Porphyroblast Crystallization: Results from High-Resolution Computed X-ray Tomography.

    PubMed

    Carlson, W D; Denison, C

    1992-08-28

    Quantitative three-dimensional analysis of rock textures is now possible with the use of high-resolution computed x-ray tomography. When applied to metamorphic rocks, this technique provides data on the sizes and positions of minerals that allow mechanisms of porphyroblast crystallization to be identified. Statistical analysis of the sizes and spatial disposition of thousands of garnet crystals in three regionally metamorphosed rocks with diverse mineralogies, in conjunction with simple numerical models for crystallization, reveals in all cases the dominance of crystallization mechanisms whose kinetics are governed by rates of intergranular diffusion of nutrients.

  2. High-resolution x-ray computed tomography to understand ruminant phylogeny

    NASA Astrophysics Data System (ADS)

    Costeur, Loic; Schulz, Georg; Müller, Bert

    2014-09-01

    High-resolution X-ray computed tomography has become a vital technique to study fossils down to the true micrometer level. Paleontological research requires the non-destructive analysis of internal structures of fossil specimens. We show how X-ray computed tomography enables us to visualize the inner ear of extinct and extant ruminants without skull destruction. The inner ear, a sensory organ for hearing and balance has a rather complex three-dimensional morphology and thus provides relevant phylogenetical information what has been to date essentially shown in primates. We made visible the inner ears of a set of living and fossil ruminants using the phoenix x-ray nanotom®m (GE Sensing and Inspection Technologies GmbH). Because of the high absorbing objects a tungsten target was used and the experiments were performed with maximum accelerating voltage of 180 kV and a beam current of 30 μA. Possible stem ruminants of the living families are known in the fossil record but extreme morphological convergences in external structures such as teeth is a strong limitation to our understanding of the evolutionary history of this economically important group of animals. We thus investigate the inner ear to assess its phylogenetical potential for ruminants and our first results show strong family-level morphological differences.

  3. Applied x-ray computed tomography with high resolution in paleontology using laboratory and synchrotron sources

    NASA Astrophysics Data System (ADS)

    Bidola, Pidassa; Pacheco, Mirian L. A. F.; Stockmar, Marco K.; Achterhold, Klaus; Pfeiffer, Franz; Beckmann, Felix; Tafforeau, Paul; Herzen, Julia

    2014-09-01

    X-ray computed tomography (CT) has become an established technique in the biomedical imaging or materials science research. Its ability to non-destructively provide high-resolution images of samples makes it attractive for diverse fields of research especially the paleontology. Exceptionally, the Precambrian is a geological time of rocks deposition containing several fossilized early animals, which still need to be investigated in order to predict the origin and evolution of early life. Corumbella werneri is one of those fossils skeletonized in Corumbá (Brazil). Here, we present a study on selected specimens of Corumbella werneri using absorption-based contrast imaging at diverse tomographic setups. We investigated the potential of conventional laboratory-based device and synchrotron radiation sources to visualize internal structures of the fossils. The obtained results are discussed as well as the encountered limitations of those setups.

  4. Breast tumor segmentation in high resolution x-ray phase contrast analyzer based computed tomography

    SciTech Connect

    Brun, E.; Grandl, S.; Sztrókay-Gaul, A.; Gasilov, S.; Barbone, G.; Mittone, A.; Coan, P.; Bravin, A.

    2014-11-01

    Purpose: Phase contrast computed tomography has emerged as an imaging method, which is able to outperform present day clinical mammography in breast tumor visualization while maintaining an equivalent average dose. To this day, no segmentation technique takes into account the specificity of the phase contrast signal. In this study, the authors propose a new mathematical framework for human-guided breast tumor segmentation. This method has been applied to high-resolution images of excised human organs, each of several gigabytes. Methods: The authors present a segmentation procedure based on the viscous watershed transform and demonstrate the efficacy of this method on analyzer based phase contrast images. The segmentation of tumors inside two full human breasts is then shown as an example of this procedure’s possible applications. Results: A correct and precise identification of the tumor boundaries was obtained and confirmed by manual contouring performed independently by four experienced radiologists. Conclusions: The authors demonstrate that applying the watershed viscous transform allows them to perform the segmentation of tumors in high-resolution x-ray analyzer based phase contrast breast computed tomography images. Combining the additional information provided by the segmentation procedure with the already high definition of morphological details and tissue boundaries offered by phase contrast imaging techniques, will represent a valuable multistep procedure to be used in future medical diagnostic applications.

  5. Cross-Disciplinary Geological Research Using High-Resolution X-ray Computed Tomography

    NASA Astrophysics Data System (ADS)

    Ketcham, R. A.; Carlson, W. D.; Rowe, T. B.

    2002-12-01

    High-resolution X-ray computed tomography (CT) generates three-dimensional imagery of solid objects depicting X-ray attenuation, which is a function of density and atomic number. It is thus ideal for studying many features and quantities that are best observed, understood, and characterized in 3D, in objects from millimeter to decimeter scale. The High-resolution X-ray CT Facility at the University of Texas at Austin (UTCT) was established in the spring of 1997 to make this technology available to the geoscientific community. Since becoming an NSF-supported multi-user facility in 1999, UTCT has done scanning and data analysis for 31 NSF projects across 8 programs. The support of the EAR instrumentation and facilities program has been pivotal in the development of the technical expertise and computational tools that allow CT data to be utilized to their fullest potential. In particular, the stability provided by NSF has allowed us to initiate multi-year development projects while also responding to the immediate research needs and requests of our large and growing user community. Our largest software project, for efficiently identifying, separating, and measuring thousands of objects in a data volume, has been used to study vesicles in meteoritic basalts, crystals in metamorphic rocks, clasts in impact breccias, and troilite particles in meteorites. Because our facility is unique not only in geology but in the general natural science community as well, we have been a focal point for research on a wide range of problems. This has enabled us to accrue considerable advantages from being able to take lessons and techniques obtained from or developed for one field and apply them to entirely different research areas. In one example, a research project in paleoanthropology to investigate the link between trabecular (spongy) bone structure and joint usage resulted in the implementation and improvement of techniques developed by the material engineering and medical

  6. Structural analysis of advanced polymeric foams by means of high resolution X-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Nacucchi, M.; De Pascalis, F.; Scatto, M.; Capodieci, L.; Albertoni, R.

    2016-06-01

    Advanced polymeric foams with enhanced thermal insulation and mechanical properties are used in a wide range of industrial applications. The properties of a foam strongly depend upon its cell structure. Traditionally, their microstructure has been studied using 2D imaging systems based on optical or electron microscopy, with the obvious disadvantage that only the surface of the sample can be analysed. To overcome this shortcoming, the adoption of X-ray micro-tomography imaging is here suggested to allow for a complete 3D, non-destructive analysis of advanced polymeric foams. Unlike metallic foams, the resolution of the reconstructed structural features is hampered by the low contrast in the images due to weak X-ray absorption in the polymer. In this work an advanced methodology based on high-resolution and low-contrast techniques is used to perform quantitative analyses on both closed and open cells foams. Local structural features of individual cells such as equivalent diameter, sphericity, anisotropy and orientation are statistically evaluated. In addition, thickness and length of the struts are determined, underlining the key role played by the achieved resolution. In perspective, the quantitative description of these structural features will be used to evaluate the results of in situ mechanical and thermal test on foam samples.

  7. Reciprocal Grids: A Hierarchical Algorithm for Computing Solution X-ray Scattering Curves from Supramolecular Complexes at High Resolution.

    PubMed

    Ginsburg, Avi; Ben-Nun, Tal; Asor, Roi; Shemesh, Asaf; Ringel, Israel; Raviv, Uri

    2016-08-22

    In many biochemical processes large biomolecular assemblies play important roles. X-ray scattering is a label-free bulk method that can probe the structure of large self-assembled complexes in solution. As we demonstrate in this paper, solution X-ray scattering can measure complex supramolecular assemblies at high sensitivity and resolution. At high resolution, however, data analysis of larger complexes is computationally demanding. We present an efficient method to compute the scattering curves from complex structures over a wide range of scattering angles. In our computational method, structures are defined as hierarchical trees in which repeating subunits are docked into their assembly symmetries, describing the manner subunits repeat in the structure (in other words, the locations and orientations of the repeating subunits). The amplitude of the assembly is calculated by computing the amplitudes of the basic subunits on 3D reciprocal-space grids, moving up in the hierarchy, calculating the grids of larger structures, and repeating this process for all the leaves and nodes of the tree. For very large structures, we developed a hybrid method that sums grids of smaller subunits in order to avoid numerical artifacts. We developed protocols for obtaining high-resolution solution X-ray scattering data from taxol-free microtubules at a wide range of scattering angles. We then validated our method by adequately modeling these high-resolution data. The higher speed and accuracy of our method, over existing methods, is demonstrated for smaller structures: short microtubule and tobacco mosaic virus. Our algorithm may be integrated into various structure prediction computational tools, simulations, and theoretical models, and provide means for testing their predicted structural model, by calculating the expected X-ray scattering curve and comparing with experimental data.

  8. High Resolution Computed Tomography

    DTIC Science & Technology

    1992-07-31

    samples. 14. SUBJECTTERMS 15. NUMBER OF PAGES 38 High Resolution, Microfocus , Characterization, X - Ray , Micrography, Computed Tomography (CT), Failure...high resolutions (50 g.tm feature sensitivity) when a small field of view (50 mm) is used [11]. Specially designed detectors and a microfocus X - ray ...Wright Laboratories. Feldkamp [14] at Ford used a microfocus X - ray source and an X - ray image intensifier to develop a system capable of 20 g.m

  9. High-Resolution X-Ray Telescopes

    NASA Technical Reports Server (NTRS)

    ODell, Stephen L.; Brissenden, Roger J.; Davis, William; Elsner, Ronald F.; Elvis, Martin; Freeman, Mark; Gaetz, Terry; Gorenstein, Paul; Gubarev, Mikhail V.

    2010-01-01

    Fundamental needs for future x-ray telescopes: a) Sharp images => excellent angular resolution. b) High throughput => large aperture areas. Generation-X optics technical challenges: a) High resolution => precision mirrors & alignment. b) Large apertures => lots of lightweight mirrors. Innovation needed for technical readiness: a) 4 top-level error terms contribute to image size. b) There are approaches to controlling those errors. Innovation needed for manufacturing readiness. Programmatic issues are comparably challenging.

  10. Changes in bone macro- and microstructure in diabetic obese mice revealed by high resolution microfocus X-ray computed tomography.

    PubMed

    Kerckhofs, G; Durand, M; Vangoitsenhoven, R; Marin, C; Van der Schueren, B; Carmeliet, G; Luyten, F P; Geris, L; Vandamme, K

    2016-10-19

    High resolution microfocus X-ray computed tomography (HR-microCT) was employed to characterize the structural alterations of the cortical and trabecular bone in a mouse model of obesity-driven type 2 diabetes (T2DM). C57Bl/6J mice were randomly assigned for 14 weeks to either a control diet-fed (CTRL) or a high fat diet (HFD)-fed group developing obesity, hyperglycaemia and insulin resistance. The HFD group showed an increased trabecular thickness and a decreased trabecular number compared to CTRL animals. Midshaft tibia intracortical porosity was assessed at two spatial image resolutions. At 2 μm scale, no change was observed in the intracortical structure. At 1 μm scale, a decrease in the cortical vascular porosity of the HFD bone was evidenced. The study of a group of 8 week old animals corresponding to animals at the start of the diet challenge revealed that the decreased vascular porosity was T2DM-dependant and not related to the ageing process. Our results offer an unprecedented ultra-characterization of the T2DM compromised skeletal micro-architecture and highlight an unrevealed T2DM-related decrease in the cortical vascular porosity, potentially affecting the bone health and fragility. Additionally, it provides some insights into the technical challenge facing the assessment of the rodent bone structure using HR-microCT imaging.

  11. Changes in bone macro- and microstructure in diabetic obese mice revealed by high resolution microfocus X-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Kerckhofs, G.; Durand, M.; Vangoitsenhoven, R.; Marin, C.; van der Schueren, B.; Carmeliet, G.; Luyten, F. P.; Geris, L.; Vandamme, K.

    2016-10-01

    High resolution microfocus X-ray computed tomography (HR-microCT) was employed to characterize the structural alterations of the cortical and trabecular bone in a mouse model of obesity-driven type 2 diabetes (T2DM). C57Bl/6J mice were randomly assigned for 14 weeks to either a control diet-fed (CTRL) or a high fat diet (HFD)-fed group developing obesity, hyperglycaemia and insulin resistance. The HFD group showed an increased trabecular thickness and a decreased trabecular number compared to CTRL animals. Midshaft tibia intracortical porosity was assessed at two spatial image resolutions. At 2 μm scale, no change was observed in the intracortical structure. At 1 μm scale, a decrease in the cortical vascular porosity of the HFD bone was evidenced. The study of a group of 8 week old animals corresponding to animals at the start of the diet challenge revealed that the decreased vascular porosity was T2DM-dependant and not related to the ageing process. Our results offer an unprecedented ultra-characterization of the T2DM compromised skeletal micro-architecture and highlight an unrevealed T2DM-related decrease in the cortical vascular porosity, potentially affecting the bone health and fragility. Additionally, it provides some insights into the technical challenge facing the assessment of the rodent bone structure using HR-microCT imaging.

  12. Changes in bone macro- and microstructure in diabetic obese mice revealed by high resolution microfocus X-ray computed tomography

    PubMed Central

    Kerckhofs, G.; Durand, M.; Vangoitsenhoven, R.; Marin, C.; Van der Schueren, B.; Carmeliet, G.; Luyten, F. P.; Geris, L.; Vandamme, K.

    2016-01-01

    High resolution microfocus X-ray computed tomography (HR-microCT) was employed to characterize the structural alterations of the cortical and trabecular bone in a mouse model of obesity-driven type 2 diabetes (T2DM). C57Bl/6J mice were randomly assigned for 14 weeks to either a control diet-fed (CTRL) or a high fat diet (HFD)-fed group developing obesity, hyperglycaemia and insulin resistance. The HFD group showed an increased trabecular thickness and a decreased trabecular number compared to CTRL animals. Midshaft tibia intracortical porosity was assessed at two spatial image resolutions. At 2 μm scale, no change was observed in the intracortical structure. At 1 μm scale, a decrease in the cortical vascular porosity of the HFD bone was evidenced. The study of a group of 8 week old animals corresponding to animals at the start of the diet challenge revealed that the decreased vascular porosity was T2DM-dependant and not related to the ageing process. Our results offer an unprecedented ultra-characterization of the T2DM compromised skeletal micro-architecture and highlight an unrevealed T2DM-related decrease in the cortical vascular porosity, potentially affecting the bone health and fragility. Additionally, it provides some insights into the technical challenge facing the assessment of the rodent bone structure using HR-microCT imaging. PMID:27759061

  13. Development of a lab-scale, high-resolution, tube-generated X-ray computed-tomography system for three-dimensional (3D) materials characterization

    SciTech Connect

    Mertens, J.C.E. Williams, J.J. Chawla, Nikhilesh

    2014-06-01

    The design and construction of a modular high resolution X-ray computed tomography (XCT) system is highlighted in this paper. The design approach is detailed for meeting a specified set of instrument performance goals tailored towards experimental versatility and high resolution imaging. The XCT tool is unique in the detector and X-ray source design configuration, enabling control in the balance between detection efficiency and spatial resolution. The system package is also unique: The sample manipulation approach implemented enables a wide gamut of in situ experimentation to analyze structure evolution under applied stimulus, by optimizing scan conditions through a high degree of controllability. The component selection and design process is detailed: Incorporated components are specified, custom designs are shared, and the approach for their integration into a fully functional XCT scanner is provided. Custom designs discussed include the dual-target X-ray source cradle which maintains position and trajectory of the beam between the two X-ray target configurations with respect to a scintillator mounting and positioning assembly and the imaging sensor, as well as a novel large-format X-ray detector with enhanced adaptability. The instrument is discussed from an operational point of view, including the details of data acquisition and processing implemented for 3D imaging via micro-CT. The performance of the instrument is demonstrated on a silica-glass particle/hydroxyl-terminated-polybutadiene (HTPB) matrix binder PBX simulant. Post-scan data processing, specifically segmentation of the sample's relevant microstructure from the 3D reconstruction, is provided to demonstrate the utility of the instrument. - Highlights: • Custom built X-ray tomography system for microstructural characterization • Detector design for maximizing polychromatic X-ray detection efficiency • X-ray design offered for maximizing X-ray flux with respect to imaging resolution • Novel lab

  14. High resolution X-ray scattering measurements

    NASA Technical Reports Server (NTRS)

    Zombeck, M. V.; Braeuninger, H.; Ondrusch, A.; Predehl, P.

    1982-01-01

    The results of high angular resolution grazing incidence scattering measurements of highly polished, coated optical flats in the X-ray spectral range of 1.5 to 6.4 keV are reported. The interpretation of these results in terms of surface microtopography is presented and the implications for grazing incidence X-ray imaging are discussed.

  15. High Resolution X-ray Imaging

    NASA Technical Reports Server (NTRS)

    Cash, Webster

    2002-01-01

    NAG5-5020 covered a period of 7.5 years during which a great deal of progress was made in x-ray optical techniques under this grant. We survived peer review numerous times during the effort to keep the grant going. In 1994, when the grant started we were actively pursuing the application of spherical mirrors to improving x-ray telescopes. We had found that x-ray detectors were becoming rapidly more sophisticated and affordable, but that x-ray telescopes were only being improved through the intense application of money within the AXAF program. Clearly new techniques for the future were needed. We were successful in developing and testing at the HELSTF facility in New Mexico a four reflection coma-corrected telescope made from spheres. We were able to demonstrate 0.3 arcsecond resolution, almost to the diffraction limit of the system. The community as a whole was, at that time, not particularly interested in looking past AXAF (Chandra) and the effort needed to evolve. Since we had reached the diffraction limit using non-Wolter optics we then decided to see if we could build an x-ray interferometer in the laboratory. In the lab the potential for improved resolution was substantial. If synthetic aperture telescopes could be built in space, then orders of magnitude improvement would become feasible. In 1998 NASA, under the direction of Dr. Nick White of Goddard, started a study to assess the potential and feasibility of x-ray interferometry in space. My work became of central interest to the committee because it indicated that such was possible. In early 1999 we had the breakthrough that allowed us build a practical interferometer. By using flats and hooking up with the Marshall Space Flight Center facilities we were able to demonstrate fringes at 1.25keV on a one millimeter baseline. This actual laboratory demonstration provided the solid proof of concept that NASA needed.

  16. High Resolution X-ray Imaging

    NASA Technical Reports Server (NTRS)

    Cash, Webster

    2002-01-01

    NAG5-5020 covered a period of 7.5 years during which a great deal of progress was made in x-ray optical techniques under this grant. We survived peer review numerous times during the effort to keep the grant going. In 1994, when the grant started we were actively pursuing the application of spherical mirrors to improving x-ray telescopes. We had found that x-ray detectors were becoming rapidly more sophisticated and affordable, but that x-ray telescopes were only being improved through the intense application of money within the AXAF program. Clearly new techniques for the future were needed. We were successful in developing and testing at the HELSTF facility in New Mexico a four reflection coma-corrected telescope made from spheres. We were able to demonstrate 0.3 arcsecond resolution, almost to the diffraction limit of the system. The community as a whole was, at that time, not particularly interested in looking past AXAF (Chandra) and the effort needed to evolve. Since we had reached the diffraction limit using non-Wolter optics we then decided to see if we could build an x-ray interferometer in the laboratory. In the lab the potential for improved resolution was substantial. If synthetic aperture telescopes could be built in space, then orders of magnitude improvement would become feasible. In 1998 NASA, under the direction of Dr Nick White of Goddard, started a study to assess the potential and feasibility of x-ray interferometry in space. My work became of central interest to the committee because it indicated that such was possible. In early 1999 we had the breakthrough that allowed us build a practical interferometer. By using flats and hooking up with the Marshall Space Flight Center facilities we were able to demonstrate fringes at 1.25keV on a one millimeter baseline. This actual laboratory demonstration provided the solid proof of concept that NASA needed. As the year progressed the future of x-ray astronomy jelled around the Maxim program. Maxim is a

  17. High resolution X-ray CT for advanced electronics packaging

    NASA Astrophysics Data System (ADS)

    Oppermann, M.; Zerna, T.

    2017-02-01

    Advanced electronics packaging is a challenge for non-destructive Testing (NDT). More, smaller and mostly hidden interconnects dominate modern electronics components and systems. To solve the demands of customers to get products with a high functionality by low volume, weight and price (e.g. mobile phones, personal medical monitoring systems) often the designers use System-in-Package solutions (SiP). The non-destructive testing of such devices is a big challenge. So our paper will impart fundamentals and applications for non-destructive evaluation of inner structures of electronics packaging for quality assurance and reliability investigations with a focus on X-ray methods, especially on high resolution X-ray computed tomography (CT).

  18. Fabricating High-Resolution X-Ray Collimators

    NASA Technical Reports Server (NTRS)

    Appleby, Michael; Atkinson, James E.; Fraser, Iain; Klinger, Jill

    2008-01-01

    A process and method for fabricating multi-grid, high-resolution rotating modulation collimators for arcsecond and sub-arcsecond x-ray and gamma-ray imaging involves photochemical machining and precision stack lamination. The special fixturing and etching techniques that have been developed are used for the fabrication of multiple high-resolution grids on a single array substrate. This technology has application in solar and astrophysics and in a number of medical imaging applications including mammography, computed tomography (CT), single photon emission computed tomography (SPECT), and gamma cameras used in nuclear medicine. This collimator improvement can also be used in non-destructive testing, hydrodynamic weapons testing, and microbeam radiation therapy.

  19. The application of high resolution X-ray computed tomography on naturally deformed rock salt: Multi-scale investigations of the structural inventory

    NASA Astrophysics Data System (ADS)

    Thiemeyer, Nicolas; Habersetzer, Jörg; Peinl, Mark; Zulauf, Gernold; Hammer, Jörg

    2015-08-01

    X-ray computed tomography (CT) represents a useful technique providing new perspectives and insights for the structural investigation of naturally-deformed rock salt. Several samples of Permian rock salt from Gorleben, Asse and Teutschenthal (Germany) were investigated by exploiting the non-destructive nature of μCT and nCT techniques particularly for salt rocks. CT imaging enabled the visualization and quantification of anhydrite impurities, pore space and fluid phases located along grain-boundaries or trapped as intracrystalline inclusions. Disseminated grains and aggregates of anhydrite in rock salt of the Gorleben salt dome have been visualized and quantified by μCT for the first time in order to portray their spatial occurrence. The visualization of anhydrite aggregates and pore space shows no correlation between their spatial distributions. This independence excludes the anhydrite to be responsible for elevated porosity (0.87 ± 0.07 vol.-%). High-resolution nCT scans (≤1 μm voxel size) of single intracrystalline and grain-boundary fluid inclusions from Gorleben and Asse rock salt allowed the visualization and quantification of their various phase components. A major achievement is the detailed description of the morphology and shape of the fluid inclusions and of their phase components, which has not been conducted in rock salt research by high-resolution X-ray CT imaging before.

  20. High resolution, large area, high energy x-ray tomography

    SciTech Connect

    Trebes, J.E.; Dolan, K.W.; Haddad, W.S.; Haskins, J.J.; Lerche, R.A.; Logan, C.M.; Perkins, D.E.; Schneberk, D.J.; Rikard, R.D.

    1997-08-01

    An x-ray tomography system is being developed for high resolution inspection of large objects. The goal is to achieve 25 micron resolution over object sizes that are tens of centimeters in extent. Typical objects will be metal in composition and therefore high energy, few MeV x-rays will be required. A proof-of-principle system with a limited field of view has been developed. Preliminary results are presented.

  1. Broadband high resolution X-ray spectral analyzer

    DOEpatents

    Silver, Eric H.; Legros, Mark; Madden, Norm W.; Goulding, Fred; Landis, Don

    1998-01-01

    A broad bandwidth high resolution x-ray fluorescence spectrometer has a performance that is superior in many ways to those currently available. It consists of an array of 4 large area microcalorimeters with 95% quantum efficiency at 6 keV and it produces x-ray spectra between 0.2 keV and 7 keV with an energy resolution of 7 to 10 eV. The resolution is obtained at input count rates per array element of 10 to 50 Hz in real-time, with analog pulse processing and thermal pile-up rejection. This performance cannot be matched by currently available x-ray spectrometers. The detectors are incorporated into a compact and portable cryogenic refrigerator system that is ready for use in many analytical spectroscopy applications as a tool for x-ray microanalysis or in research applications such as laboratory and astrophysical x-ray and particle spectroscopy.

  2. Broadband high resolution X-ray spectral analyzer

    DOEpatents

    Silver, E.H.; Legros, M.; Madden, N.W.; Goulding, F.; Landis, D.

    1998-07-07

    A broad bandwidth high resolution X-ray fluorescence spectrometer has a performance that is superior in many ways to those currently available. It consists of an array of 4 large area microcalorimeters with 95% quantum efficiency at 6 keV and it produces X-ray spectra between 0.2 keV and 7 keV with an energy resolution of 7 to 10 eV. The resolution is obtained at input count rates per array element of 10 to 50 Hz in real-time, with analog pulse processing and thermal pile-up rejection. This performance cannot be matched by currently available X-ray spectrometers. The detectors are incorporated into a compact and portable cryogenic refrigerator system that is ready for use in many analytical spectroscopy applications as a tool for X-ray microanalysis or in research applications such as laboratory and astrophysical X-ray and particle spectroscopy. 6 figs.

  3. Three-Dimensional Imaging and Numerical Reconstruction of Graphite/Epoxy Composite Microstructure Based on Ultra-High Resolution X-Ray Computed Tomography

    NASA Technical Reports Server (NTRS)

    Czabaj, M. W.; Riccio, M. L.; Whitacre, W. W.

    2014-01-01

    A combined experimental and computational study aimed at high-resolution 3D imaging, visualization, and numerical reconstruction of fiber-reinforced polymer microstructures at the fiber length scale is presented. To this end, a sample of graphite/epoxy composite was imaged at sub-micron resolution using a 3D X-ray computed tomography microscope. Next, a novel segmentation algorithm was developed, based on concepts adopted from computer vision and multi-target tracking, to detect and estimate, with high accuracy, the position of individual fibers in a volume of the imaged composite. In the current implementation, the segmentation algorithm was based on Global Nearest Neighbor data-association architecture, a Kalman filter estimator, and several novel algorithms for virtualfiber stitching, smoothing, and overlap removal. The segmentation algorithm was used on a sub-volume of the imaged composite, detecting 508 individual fibers. The segmentation data were qualitatively compared to the tomographic data, demonstrating high accuracy of the numerical reconstruction. Moreover, the data were used to quantify a) the relative distribution of individual-fiber cross sections within the imaged sub-volume, and b) the local fiber misorientation relative to the global fiber axis. Finally, the segmentation data were converted using commercially available finite element (FE) software to generate a detailed FE mesh of the composite volume. The methodology described herein demonstrates the feasibility of realizing an FE-based, virtual-testing framework for graphite/fiber composites at the constituent level.

  4. Gas scintillation glass GEM detector for high-resolution X-ray imaging and CT

    NASA Astrophysics Data System (ADS)

    Fujiwara, T.; Mitsuya, Y.; Fushie, T.; Murata, K.; Kawamura, A.; Koishikawa, A.; Toyokawa, H.; Takahashi, H.

    2017-04-01

    A high-spatial-resolution X-ray-imaging gaseous detector has been developed with a single high-gas-gain glass gas electron multiplier (G-GEM), scintillation gas, and optical camera. High-resolution X-ray imaging of soft elements is performed with a spatial resolution of 281 μm rms and an effective area of 100×100 mm. In addition, high-resolution X-ray 3D computed tomography (CT) is successfully demonstrated with the gaseous detector. It shows high sensitivity to low-energy X-rays, which results in high-contrast radiographs of objects containing elements with low atomic numbers. In addition, the high yield of scintillation light enables fast X-ray imaging, which is an advantage for constructing CT images with low-energy X-rays.

  5. High resolution collimator system for X-ray detector

    DOEpatents

    Eberhard, Jeffrey W.; Cain, Dallas E.

    1987-01-01

    High resolution in an X-ray computerized tomography (CT) inspection system is achieved by using a collimator/detector combination to limit the beam width of the X-ray beam incident on a detector element to the desired resolution width. In a detector such as a high pressure Xenon detector array, a narrow tapered collimator is provided above a wide detector element. The collimator slits have any desired width, as small as a few mils at the top, the slit width is easily controlled, and they are fabricated on standard machines. The slit length determines the slice thickness of the CT image.

  6. Note: design and construction of a multi-scale, high-resolution, tube-generated x-ray computed-tomography system for three-dimensional (3D) imaging.

    PubMed

    Mertens, J C E; Williams, J J; Chawla, Nikhilesh

    2014-01-01

    The design and construction of a high resolution modular x-ray computed tomography (XCT) system is described. The approach for meeting a specified set of performance goals tailored toward experimental versatility is highlighted. The instrument is unique in its detector and x-ray source configuration, both of which enable elevated optimization of spatial and temporal resolution. The process for component selection is provided. The selected components are specified, the custom component design discussed, and the integration of both into a fully functional XCT instrument is outlined. The novelty of this design is a new lab-scale detector and imaging optimization through x-ray source and detector modularity.

  7. Robust phase retrieval for high resolution edge illumination x-ray phase-contrast computed tomography in non-ideal environments

    NASA Astrophysics Data System (ADS)

    Zamir, Anna; Endrizzi, Marco; Hagen, Charlotte K.; Vittoria, Fabio A.; Urbani, Luca; de Coppi, Paolo; Olivo, Alessandro

    2016-08-01

    Edge illumination x-ray phase contrast tomography is a recently developed imaging technique which enables three-dimensional visualisation of low-absorbing materials. Dedicated phase retrieval algorithms can provide separate computed tomography (CT) maps of sample absorption, refraction and scattering properties. In this paper we propose a novel “modified local retrieval” method which is capable of accurately retrieving sample properties in a range of realistic, non-ideal imaging environments. These include system misalignment, defects in the used optical elements and system geometry variations over time due to vibrations or temperature fluctuations. System instabilities were analysed, modelled and incorporated into a simulation study. As a result, an additional modification was introduced to the retrieval procedure to account for changes in the imaging system over time, as well as local variations over the field of view. The performance of the proposed method was evaluated in comparison to a previously used “global retrieval” method by applying both approaches to experimental CT data of a rat’s heart acquired in a non-ideal environment. The use of the proposed method resulted in the removal of major artefacts, leading to a significant improvement in image quality. This method will therefore enable acquiring high-resolution, reliable CT data of large samples in realistic settings.

  8. Robust phase retrieval for high resolution edge illumination x-ray phase-contrast computed tomography in non-ideal environments

    PubMed Central

    Zamir, Anna; Endrizzi, Marco; Hagen, Charlotte K.; Vittoria, Fabio A.; Urbani, Luca; De Coppi, Paolo; Olivo, Alessandro

    2016-01-01

    Edge illumination x-ray phase contrast tomography is a recently developed imaging technique which enables three-dimensional visualisation of low-absorbing materials. Dedicated phase retrieval algorithms can provide separate computed tomography (CT) maps of sample absorption, refraction and scattering properties. In this paper we propose a novel “modified local retrieval” method which is capable of accurately retrieving sample properties in a range of realistic, non-ideal imaging environments. These include system misalignment, defects in the used optical elements and system geometry variations over time due to vibrations or temperature fluctuations. System instabilities were analysed, modelled and incorporated into a simulation study. As a result, an additional modification was introduced to the retrieval procedure to account for changes in the imaging system over time, as well as local variations over the field of view. The performance of the proposed method was evaluated in comparison to a previously used “global retrieval” method by applying both approaches to experimental CT data of a rat’s heart acquired in a non-ideal environment. The use of the proposed method resulted in the removal of major artefacts, leading to a significant improvement in image quality. This method will therefore enable acquiring high-resolution, reliable CT data of large samples in realistic settings. PMID:27502296

  9. UT-CT: A National Resource for Applications of High-Resolution X-ray Computed Tomography in the Geological Sciences

    NASA Astrophysics Data System (ADS)

    Carlson, W. D.; Ketcham, R. A.; Rowe, T. B.

    2002-12-01

    An NSF-sponsored (EAR-IF) shared multi-user facility dedicated to research applications of high-resolution X-ray computed tomography (CT) in the geological sciences has been in operation since 1997 at the University of Texas at Austin. The centerpiece of the facility is an industrial CT scanner custom-designed for geological applications. Because the instrument can optimize trade-offs among penetrating ability, spatial resolution, density discrimination, imaging modes, and scan times, it can image a very broad range of geological specimens and materials, and thus offers significant advantages over medical scanners and desktop microtomographs. Two tungsten-target X-ray sources (200-kV microfocal and 420-kV) and three X-ray detectors (image-intensifier, high-sensitivity cadmium tungstate linear array, and high-resolution gadolinium-oxysulfide radiographic line scanner) can be used in various combinations to meet specific imaging goals. Further flexibility is provided by multiple imaging modes: second-generation (translate-rotate), third-generation (rotate-only; centered and variably offset), and cone-beam (volume CT). The instrument can accommodate specimens as small as about 1 mm on a side, and as large as 0.5 m in diameter and 1.5 m tall. Applications in petrology and structural geology include measuring crystal sizes and locations to identify mechanisms governing the kinetics of metamorphic reactions; visualizing relationships between alteration zones and abundant macrodiamonds in Siberian eclogites to elucidate metasomatic processes in the mantle; characterizing morphologies of spiral inclusion trails in garnet to test hypotheses of porphyroblast rotation during growth; measuring vesicle size distributions in basaltic flows for determination of elevation at the time of eruption to constrain timing and rates of continental uplift; analysis of the geometry, connectivity, and tortuosity of migmatite leucosomes to define the topology of melt flow paths, for numerical

  10. The Astro-E High Resolution X-Ray Spectrometer

    NASA Technical Reports Server (NTRS)

    Kelley, Richard L.; Audley, Michael D.; Boyce, Kevin R.; Breon, Susan R.; Fujimoto, Ryuichi; Gendreau, Keith C.; Holt, Stephen S.; Ishisaki, Yoshitaka; McCammon, Dan; Mihara, Tatehiro

    1999-01-01

    The Astro-E High Resolution X-ray Spectrometer (XRS) was developed jointly by the NASA/Goddard Space Flight Center and the Institute of Space and Astronautical Science in Japan. The instrument is based on a new approach to spectroscopy, the X-ray microcalorimeter. This device senses the energies of individual X-ray photons as heat with extreme precision. A 32 channel array of microcalorimeters is being employed, each with an energy resolution of about 12 eV at 6 keV (the Fe-K region). This will provide spectral resolving power 10 times higher than any other non-dispersive X-ray spectrometer. The instrument incorporates a three stage cooling system capable of operating the array at 60 mK for about two years in orbit. The array sits at the focus of a grazing incidence conical mirror. The quantum efficiency of the microcalorimeters and the reflectivity of the X-ray mirror system combine to give high throughput over the 0.3-12 keV energy band. This new capability will enable the study of a wide range of high-energy astrophysical sources with unprecedented spectral sensitivity. This paper presents the basic design requirements and implementation of the XRS, and also describes the instrument parameters and performance.

  11. New constraints on the origin of the Skaergaard intrusion Cu-Pd-Au mineralization: Insights from high-resolution X-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Godel, Bélinda; Rudashevsky, Nikolay S.; Nielsen, Troels F. D.; Barnes, Stephen J.; Rudashevsky, Vladimir N.

    2014-03-01

    This contribution presents the first detailed three-dimensional (3D) in situ analysis of samples from the Platinova Reef using high-resolution X-ray computed tomography (HRXCT) and 3D image processing and quantification coupled with microscopic and mineralogical investigations. Our HRXCT analyses reveal the complex textural relationships between Cu-rich sulfides (bulk composition close to bornite), skaergaardite (PdCu), Au-rich phases, silicates and Fe-Ti oxides and provide unequivocal textural evidences, not observed previously. The association in 3D between Cu-rich sulfide globules, PdCu alloy and ilmenite is inconsistent with a hydrothermal origin of the Cu-Pd mineralization. In contrast, our results combined with phase diagrams strongly support a primary magmatic origin for the Cu-Pd mineralization where Cu and Pd-rich, Fe-poor sulfide liquid represents a cumulus phase that forms by in-situ nucleation. These sulfide droplets and attached skaergaardite grains were trapped during the formation and crystallization of the Fe-Ti oxides. Subsequent, post-cumulus processes led to the partial to total dissolution of the sulfide not entirely enclosed by the Fe-Ti oxides (i.e., not protected from reaction) leading to the observed variability in Cu and Pd composition at the aggregate (sulfide + PdCu) scale and to the occurrence of free PdCu alloys. In contrast to the PdCu alloy, gold-bearing minerals are never observed entirely enclosed within the Fe-Ti oxide. Two hypotheses can be envisaged for the formation of the gold enriched layer in the upper part of the section. Gold may have either precipitated from high-temperature late magmatic Cl-rich fluids. Alternatively, gold may have been enriched during fractional crystallization after sulfide had been suppressed from the liquidus after the Pd layer crystallized and then deposited along redox barriers.

  12. Experimental Study of High-Temperature Fracture Propagation in Anthracite and Destruction of Mudstone from Coalfield Using High-Resolution Microfocus X-ray Computed Tomography

    NASA Astrophysics Data System (ADS)

    Xiao, Yang; Lu, Jun-Hui; Wang, Cai-Ping; Deng, Jun

    2016-09-01

    The coalfield fire is determined by fractures of coal and rock that provide tunnel for gases and heat exchange. To study fracture propagation at high temperatures, high-resolution X-ray computed tomography (CT) was used to scan anthracite and mudstone samples collected from the Qinshui coalfield, Shanxi Province, northern China. The samples were scanned at 100 °C intervals as they were subjected to temperatures of up to 500 °C. Three-dimensional images were reconstructed by the CT software to analyze changes in the fractures and pores in the samples. The experimental results show that fracturing of anthracite began at 200 °C. The generation rate of fractures in the coal samples increases slowly below 300 °C, but above 300 °C there is a sharp increase in fracture development. This indicates that the thermal fracturing temperature threshold for anthracite is 300 °C. During the experiment, it was found that preexisting fractures, voids, and regenerative fractures formed around the hard portions of anthracite particles or along the weak boundaries between particles. Some regenerative fractures developed along the fabric of the relatively crystalline particles within the particle and terminate at the edge of the particle or where the fracture encounters a harder portion of coal. Some fractures even expanded enough to be transformed into voids as temperatures rose. In the mudstone, the porosity changed suddenly at 300 °C. This indicated that there was a void generated at 200 °C, but the void expanded when the temperature was increased. However, changes in the void were not obvious from 200 to 300 °C.

  13. High Resolution Energetic X-ray Imager (HREXI)

    NASA Astrophysics Data System (ADS)

    Grindlay, Jonathan

    We propose to design and build the first imaging hard X-ray detector system that incorporates 3D stacking of closely packed detector readouts in finely-spaced imaging arrays with their required data processing and control electronics. In virtually all imaging astronomical detectors, detector readout is done with flex connectors or connections that are not vertical but rather horizontal , requiring loss of focal plane area. For high resolution pixel detectors needed for high speed event-based X-ray imaging, from low energy applications (CMOS) with focusing X-ray telescopes, to hard X-ray applications with pixelated CZT for large area coded aperture telescopes, this new detector development offers great promise. We propose to extend our previous and current APRA supported ProtoEXIST program that has developed the first large area imaging CZT detectors and demonstrated their astrophysical capabilities on two successful balloon flight to a next generation High Resolution Energetic X-ray Imager (HREXI), which would incorporate microvia technology for the first time to connect the readout ASIC on each CZT crystal directly to its control and data processing system. This 3-dimensional stacking of detector and readout/control system means that large area (>2m2) imaging detector planes for a High Resolution Wide-field hard X-ray telescope can be built with initially greatly reduced detector gaps and ultimately with no gaps. This increases detector area, efficiency, and simplicity of detector integration. Thus higher sensitivity wide-field imagers will be possible at lower cost. HREXI will enable a post-Swift NASA mission such as the EREXS concept proposed to PCOS to be conducted as a future MIDEX mission. This mission would conduct a high resolution (<2 arcmin) , broad band (5 200 keV) hard X-ray survey of black holes on all scales with ~10X higher sensitivity than Swift. In the current era of Time Domain Astrophysics, such a survey capability, in conjunction with a n

  14. Fabricating High Resolution Mirrors for Hand X-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Speegle, Chet O.; Ramsey, Brian D.; Engelhaupt, Darell; Six, N. Frank (Technical Monitor)

    2001-01-01

    We describe the fabrication process for producing high-resolution conical mirrors for hard x-ray astronomy. When flown aboard stratospheric balloons, these high-resolution reflective mirrors focus hard x-rays (10-70 keV) emitted from cosmic sources such as supernovae, neutron stars, and quasars onto imaging focal plane detectors. Focused hard x-ray images allow scientists to determine the elemental compositions, temperatures, magnetic fields, velocities, and gravitational fields of these celestial bodies. The fabrication process involves generating super-polished mandrels, mandrel metrology, mirror shell nickel electroforming, and mirror testing. Each mandrel is a cylinder consisting of two conical segments; each segment is approximately 305-mm long. Through precision grinding these mandrels before super polishing, we have achieved 30 arc seconds, half power diameter replicated mirrors. During a May 2001 high atmosphere balloon flight, these mirrors focused high energy x-rays from three different celestial sources. However, we seek to improve the angular resolutions of future mirror shells by a factor of two. To achieve this goal, we have begun single point diamond turning the mandrels before super polishing. This has allowed greater precision tolerances on mandrel surface roughness and axial figure errors before super polishing. Surface roughnesses before polishing have been reduced from approximately 60 nm to approximately 15 nm. The peak to valley axial figure profile errors have been reduced from approximately 1.0 micrometers to approximately 0.4 micrometers. We are currently in Phase 2 of the HERO (high energy replicated optics) program which entails the production of sixteen 6-m-focal-length mirror modules, each containing a nested array of 15 mirror shells of diameters ranging from 50-mm to 94-mm. This flight is slated for the fall of 2003.

  15. High-speed classification of coherent X-ray diffraction patterns on the K computer for high-resolution single biomolecule imaging.

    PubMed

    Tokuhisa, Atsushi; Arai, Junya; Joti, Yasumasa; Ohno, Yoshiyuki; Kameyama, Toyohisa; Yamamoto, Keiji; Hatanaka, Masayuki; Gerofi, Balazs; Shimada, Akio; Kurokawa, Motoyoshi; Shoji, Fumiyoshi; Okada, Kensuke; Sugimoto, Takashi; Yamaga, Mitsuhiro; Tanaka, Ryotaro; Yokokawa, Mitsuo; Hori, Atsushi; Ishikawa, Yutaka; Hatsui, Takaki; Go, Nobuhiro

    2013-11-01

    Single-particle coherent X-ray diffraction imaging using an X-ray free-electron laser has the potential to reveal the three-dimensional structure of a biological supra-molecule at sub-nanometer resolution. In order to realise this method, it is necessary to analyze as many as 1 × 10(6) noisy X-ray diffraction patterns, each for an unknown random target orientation. To cope with the severe quantum noise, patterns need to be classified according to their similarities and average similar patterns to improve the signal-to-noise ratio. A high-speed scalable scheme has been developed to carry out classification on the K computer, a 10PFLOPS supercomputer at RIKEN Advanced Institute for Computational Science. It is designed to work on the real-time basis with the experimental diffraction pattern collection at the X-ray free-electron laser facility SACLA so that the result of classification can be feedback for optimizing experimental parameters during the experiment. The present status of our effort developing the system and also a result of application to a set of simulated diffraction patterns is reported. About 1 × 10(6) diffraction patterns were successfully classificatied by running 255 separate 1 h jobs in 385-node mode.

  16. High resolution x-ray scattering and diffraction

    SciTech Connect

    Moncton, D.

    1983-01-01

    In the general class of high resolution x-ray scattering studies experiments one analyzes the distribution of photon energies and wave vectors resulting from illumination of a sample with collimated monochromatic radiation. Applications abound in the field of structural physics, which may be described as the study of structures for their intrinsic physical interest. This includes studies of novel states of matter, phase transitions, and dynamics. As both the wave vector and the energy of scattered photons are of interest, one may conceptually divide high resolution experimental setups for this work into two classes: those with high Q-resolution (momemtum transfer analysis) and those with high E-resolution (energy transfer analysis). The former class is exemplified by the existing experimental station on SSRL wiggler experimental station VII-2 and the proposed high Q-resolution wiggler station for NSLS Phase II. The latter class is dependent on extremely high flux, as discussed more fully below, and the possibility of constructing a high E-resolution scattering station fed by an x-ray undulator is one of the exciting opportunities presented by the proposed construction of a 6 GeV storage ring.

  17. High Resolution Adjustable Mirror Control for X-ray Astronomy

    NASA Astrophysics Data System (ADS)

    Trolier-McKinstry, Susan

    We propose to build and test thin film transistor control circuitry for a new highresolution adjustable X-ray mirror technology. This control circuitry will greatly simplify the wiring scheme to address individual actuator cells. The result will be a transformative improvement for the X-ray Surveyor mission concept: mathematical models, which fit the experimental data quite well, indicate that 0.5 arcsecond imaging is feasible through this technique utilizing thin slumped glass substrates with uncorrected angular resolution of order 5-10 arcseconds. In order to correct for figures errors in a telescope with several square meters of collecting area, millions of actuator cells must be set and held at specific voltages. It is clearly not feasible to do this via millions of wires, each one connected to an actuator. Instead, we propose to develop and test thin-film technology that operates on the same principle as megapixel computer screens. We will develop the technologies needed to build thin film piezoelectric actuators, controlled by thin film ZnO transistors, on flexible polyimide films, and to connect those films to the back surfaces of X-ray mirrors on thin glass substrates without deforming the surface. These technologies represent a promising avenue of the development of mirrors for the X-Ray Surveyor mission concept. Such a telescope will make possible detailed studies of a wide variety of astrophysical sources. One example is the Warm-Hot Intergalactic Medium (WHIM), which is thought to account for a large fraction of the normal matter in the universe but which has not been detected unambiguously to date. Another is the growth of supermassive black holes in the early universe. This proposal supports NASA's goals of technical advancement of technologies suitable for future missions, and training of graduate students.

  18. High Resolution X-Ray Phase Contrast Imaging With Acoustic Tissue-Selective Contrast Enhancement

    DTIC Science & Technology

    2006-06-01

    microfocus x - ray source. Rev. Sci. Instr. 68, 2774 (1997). 8. Krol, A. et al. Laser-based microfocused x - ray source for mammography: Feasibility study...W81XWH-04-1-0481 TITLE: High Resolution X - ray Phase Contrast Imaging With Acoustic Tissue-Selective Contrast Enhancement PRINCIPAL...REPORT TYPE Annual 3. DATES COVERED (From - To) 1 Jun 2005 – 31 May 2006 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER High Resolution X - ray

  19. Development of high resolution imaging detectors for x ray astronomy

    NASA Technical Reports Server (NTRS)

    Murray, S. S.; Schwartz, D. A.

    1992-01-01

    This final report summarizes our past activities and discusses the work performed over the period of 1 April 1990 through 1 April 1991 on x-ray optics, soft x-ray (0.1 - 10 KeV) imaging detectors, and hard x-ray (10 - 300 KeV) imaging detectors. If microchannel plates (MCPs) can be used to focus x-rays with a high efficiency and good angular resolution, they will revolutionize the field of x-ray optics. An x-ray image of a point source through an array of square MCP pores compared favorably with our ray tracing model for the MCP. Initial analysis of this image demonstrates the feasibility of MCPs for soft x-rays. Our work continues with optimizing the performance of our soft x-ray MCP imaging detectors. This work involves readout technology that should provide improved MCP readout devices (thin film crossed grid, curved, and resistive sheets), defect removal in MCPs, and photocathode optimization. In the area of hard x-ray detector development we have developed two different techniques for producing a CsI photocathode thickness of 10 to 100 microns, such that it is thick enough to absorb the high energy x-rays and still allow the photoelectrons to escape to the top MCP of a modified soft x-ray imaging detector. The methods involve vacuum depositing a thick film of CsI on a strong back, and producing a converter device that takes the place of the photocathode.

  20. High resolution energy-sensitive digital X-ray

    DOEpatents

    Nygren, David R.

    1995-01-01

    An apparatus and method for detecting an x-ray and for determining the depth of penetration of an x-ray into a semiconductor strip detector. In one embodiment, a semiconductor strip detector formed of semiconductor material is disposed in an edge-on orientation towards an x-ray source such that x-rays From the x-ray source are incident upon and substantially perpendicular to the front edge of the semiconductor strip detector. The semiconductor strip detector is formed of a plurality of segments. The segments are coupled together in a collinear arrangement such that the semiconductor strip detector has a length great enough such that substantially all of the x-rays incident on the front edge of the semiconductor strip detector interact with the semiconductor material which forms the semiconductor strip detector. A plurality of electrodes are connected to the semiconductor strip detect or such that each one of the of semiconductor strip detector segments has at least one of the of electrodes coupled thereto. A signal processor is also coupled to each one of the electrodes. The present detector detects an interaction within the semiconductor strip detector, between an x-ray and the semiconductor material, and also indicates the depth of penetration of the x-ray into the semiconductor strip detector at the time of the interaction.

  1. High resolution energy-sensitive digital X-ray

    DOEpatents

    Nygren, D.R.

    1995-07-18

    An apparatus and method for detecting an x-ray and for determining the depth of penetration of an x-ray into a semiconductor strip detector. In one embodiment, a semiconductor strip detector formed of semiconductor material is disposed in an edge-on orientation towards an x-ray source such that x-rays from the x-ray source are incident upon and substantially perpendicular to the front edge of the semiconductor strip detector. The semiconductor strip detector is formed of a plurality of segments. The segments are coupled together in a collinear arrangement such that the semiconductor strip detector has a length great enough such that substantially all of the x-rays incident on the front edge of the semiconductor strip detector interact with the semiconductor material which forms the semiconductor strip detector. A plurality of electrodes are connected to the semiconductor strip detector such that each one of the semiconductor strip detector segments has at least one of the of electrodes coupled thereto. A signal processor is also coupled to each one of the electrodes. The present detector detects an interaction within the semiconductor strip detector, between an x-ray and the semiconductor material, and also indicates the depth of penetration of the x-ray into the semiconductor strip detector at the time of the interaction. 5 figs.

  2. High Resolution X-ray-Induced Acoustic Tomography

    PubMed Central

    Xiang, Liangzhong; Tang, Shanshan; Ahmad, Moiz; Xing, Lei

    2016-01-01

    Absorption based CT imaging has been an invaluable tool in medical diagnosis, biology, and materials science. However, CT requires a large set of projection data and high radiation dose to achieve superior image quality. In this letter, we report a new imaging modality, X-ray Induced Acoustic Tomography (XACT), which takes advantages of high sensitivity to X-ray absorption and high ultrasonic resolution in a single modality. A single projection X-ray exposure is sufficient to generate acoustic signals in 3D space because the X-ray generated acoustic waves are of a spherical nature and propagate in all directions from their point of generation. We demonstrate the successful reconstruction of gold fiducial markers with a spatial resolution of about 350 μm. XACT reveals a new imaging mechanism and provides uncharted opportunities for structural determination with X-ray. PMID:27189746

  3. A ROSAT high resolution x ray image of NGC 1068

    NASA Technical Reports Server (NTRS)

    Halpern, J.

    1993-01-01

    The soft x ray properties of the Seyfert 2 galaxy NGC 1068 are a crucial test of the 'hidden Seyfert 1' model. It is important to determine whether the soft x rays come from the nucleus, or from a number of other possible regions in the circumnuclear starburst disk. We present preliminary results of a ROSAT HRI observation of NGC 1068 obtained during the verification phase. The fraction of x rays that can be attributed to the nucleus is about 70 percent so the 'soft x ray problem' remains. There is also significant diffuse x ray flux on arcminute scales, which may be related to the 'diffuse ionized medium' seen in optical emission lines, and the highly ionized Fe K(alpha) emission seen by BBXRT.

  4. High Resolution X-ray-Induced Acoustic Tomography.

    PubMed

    Xiang, Liangzhong; Tang, Shanshan; Ahmad, Moiz; Xing, Lei

    2016-05-18

    Absorption based CT imaging has been an invaluable tool in medical diagnosis, biology, and materials science. However, CT requires a large set of projection data and high radiation dose to achieve superior image quality. In this letter, we report a new imaging modality, X-ray Induced Acoustic Tomography (XACT), which takes advantages of high sensitivity to X-ray absorption and high ultrasonic resolution in a single modality. A single projection X-ray exposure is sufficient to generate acoustic signals in 3D space because the X-ray generated acoustic waves are of a spherical nature and propagate in all directions from their point of generation. We demonstrate the successful reconstruction of gold fiducial markers with a spatial resolution of about 350 μm. XACT reveals a new imaging mechanism and provides uncharted opportunities for structural determination with X-ray.

  5. High Resolution X-ray-Induced Acoustic Tomography

    NASA Astrophysics Data System (ADS)

    Xiang, Liangzhong; Tang, Shanshan; Ahmad, Moiz; Xing, Lei

    2016-05-01

    Absorption based CT imaging has been an invaluable tool in medical diagnosis, biology, and materials science. However, CT requires a large set of projection data and high radiation dose to achieve superior image quality. In this letter, we report a new imaging modality, X-ray Induced Acoustic Tomography (XACT), which takes advantages of high sensitivity to X-ray absorption and high ultrasonic resolution in a single modality. A single projection X-ray exposure is sufficient to generate acoustic signals in 3D space because the X-ray generated acoustic waves are of a spherical nature and propagate in all directions from their point of generation. We demonstrate the successful reconstruction of gold fiducial markers with a spatial resolution of about 350 μm. XACT reveals a new imaging mechanism and provides uncharted opportunities for structural determination with X-ray.

  6. X-ray computed tomography

    NASA Astrophysics Data System (ADS)

    1993-05-01

    The primary advantage of the X-ray computed tomography (XRCT) NDE method is that features are not superposed in the image, thereby rendering them easier to interpret than radiographic projection images. Industrial XRCT systems, unlike medical diagnostic systems, have no size and dosage constraints; they are accordingly used for systems from the scale of gas turbine blades, with hundreds-of-kV energies, to those of the scale of ICBMs, requiring MV-level X-ray energies.

  7. Proceedings of the workshop on X-ray computed microtomography

    SciTech Connect

    1998-02-01

    This report consists of vugraphs from the nine presentations at the conference. Titles of the presentations are: CMT: Applications and Techniques; Computer Microtomography Using X-rays from Third Generation Synchrotron X-ray; Approaches to Soft-X-ray Nanotomography; Diffraction Enhanced Tomography; X-ray Computed Microtomography Applications at the NSLS; XCMT Applications in Forestry and Forest Products; 3DMA: Investigating Three Dimensional Pore Geometry from High Resolution Images; X-ray Computed Microtomography Studies of Volcanic Rock; and 3-D Visualization of Tomographic Volumes.

  8. Towards high-resolution ptychographic x-ray diffraction microscopy

    SciTech Connect

    Takahashi, Yukio; Suzuki, Akihiro; Yamauchi, Kazuto; Zettsu, Nobuyuki; Kohmura, Yoshiki; Ishikawa, Tetsuya; Senba, Yasunori; Ohashi, Haruhiko

    2011-06-01

    Ptychographic x-ray diffraction microscopy is a lensless imaging technique with a large field of view and high spatial resolution, which is also useful for characterizing the wavefront of an x-ray probe. The performance of this technique is degraded by positioning errors due to the drift between the sample and illumination optics. We propose an experimental approach for correcting the positioning errors and demonstrate success by two-dimensionally reconstructing both the wavefront of the focused x-ray beam and the complex transmissivity of the weakly scattering objects at the pixel resolution of better than 10 nm in the field of view larger than 5 {mu}m. This method is applicable to not only the observation of organelles inside cells or nano-mesoscale structures buried within bulk materials but also the characterization of probe for single-shot imaging with x-ray free electron lasers.

  9. High resolution, low energy avalanche photodiode X-ray detectors

    NASA Technical Reports Server (NTRS)

    Farrell, R.; Vanderpuye, K.; Entine, G.; Squillante, M. R.

    1991-01-01

    Silicon avalanche photodiodes have been fabricated, and their performance as X-ray detectors has been measured. Photon sensitivity and energy resolution were measured as a function of size and operating parameters. Noise thresholds as low as 212 eV were obtained at room temperature, and backscatter X-ray fluorescence data were obtained for aluminum and other light elements. It is concluded that the results with the X-ray detector are extremely encouraging, and the performance is challenging the best available proportional counters. While not at the performance level of either cryogenic silicon or HgI2, these device operate at room temperature and can be reproduced in large numbers and with much larger areas than typically achieved with HgI2. In addition, they are rugged and appear to be indefinitely stable.

  10. Laser Produced X-Ray for High Resolution Lithography.

    DTIC Science & Technology

    2014-09-26

    Neodymium Laser Pulse ....... ....................... ... 24 Figure 11. Densitometer Trace of Al X-Ray Spectrum ........... ... 26...typical x-ray lithography experiments, 100 joule light pulses with a nanosecond pulse width (full-width-half-maximum) were produced with a neodymium -doped...34."..’’’.. ’ ’.’/ .. ".-".’ ’ ’ . > . . ’ ’ ’ ’ ’ , ’ : . r "" ’ "" " " ". . . .;" 23 The Laser -, The laser used in prior research is a neodymium

  11. Bendable X-ray Optics for High Resolution Imaging

    NASA Technical Reports Server (NTRS)

    Gubarev, M.; Ramsey, B.; Kilaru, K.; Atkins, C.; Broadway, D.

    2014-01-01

    Current state-of the-art for x-ray optics fabrication calls for either the polishing of massive substrates into high-angular-resolution mirrors or the replication of thin, lower-resolution, mirrors from perfectly figured mandrels. Future X-ray Missions will require a change in this optics fabrication paradigm in order to achieve sub-arcsecond resolution in light-weight optics. One possible approach to this is to start with perfectly flat, light-weight surface, bend it into a perfect cone, form the desired mirror figure by material deposition, and insert the resulting mirror into a telescope structure. Such an approach is currently being investigated at MSFC, and a status report will be presented detailing the results of finite element analyses, bending tests and differential deposition experiments.

  12. High Resolution X-Ray Spectra of WR 6

    NASA Astrophysics Data System (ADS)

    Huenemoerder, D.; Gayley, K.; Hamann, W.-R.; Ignace, R.; Nichols, J.; Oskinova, L. M.; Pollock, A. M. T.; Schulz, N.

    As WR 6 is a putatively single WN4 star, and is relatively bright (V = 6.9), it is an ideal case for studying the wind mechanisms in these extremely luminous stars. To obtain higher resolution spectra at higher energy (above 1 keV) than previously obtained with the XMM/Newton RGS, we have observed WR 6 with the Chandra High Energy Transmission Grating Spectrometer for 450 ks. We have resolved emission lines of S, Si, Mg, Ne, and Fe, which all show a “fin"-shaped prole, characteristic of a self-absorbed uniformly expanding shell. Steep blue edges gives robust maximal expansion velocities of about 2000 km/s, somewhat larger than the 1700km/s derived from UV lines. The He-like lines all indicate that X-ray emitting plasmas are far from the photosphere - even at the higher energies where opacity is lowest { as was also the case for the longer wavelength lines observed with XMM-Newton/RGS. Abundances determined from X-ray spectral modeling indicate enhancements consistent with nucleosynthesis. The star was also variable in X-rays and in simultaneous optical photometry obtained with Chandra aspect camera, but not coherently with the optically known period of 3.765 days.

  13. Implementation of digital multiplexing for high resolution X-ray detector arrays.

    PubMed

    Sharma, P; Swetadri Vasan, S N; Titus, A H; Cartwright, A N; Bednarek, D R; Rudin, S

    2012-01-01

    We describe and demonstrate for the first time the use of the novel Multiple Module Multiplexer (MMMIC) for a 2×2 array of new electron multiplying charge coupled device (EMCCD) based x-ray detectors. It is highly desirable for x-ray imaging systems to have larger fields of view (FOV) extensible in two directions yet to still be capable of doing high resolution imaging over regions-of-interest (ROI). The MMMIC achieves these goals by acquiring and multiplexing data from an array of imaging modules thereby enabling a larger FOV, and at the same time allowing high resolution ROI imaging through selection of a subset of modules in the array. MMMIC also supports different binning modes. This paper describes how a specific two stage configuration connecting three identical MMMICs is used to acquire and multiplex data from a 2×2 array of EMCCD based detectors. The first stage contains two MMMICs wherein each MMMIC is getting data from two EMCCD detectors. The multiplexed data from these MMMICs is then forwarded to the second stage MMMIC in the similar fashion. The second stage that has only one MMMIC gives the final 12 bit multiplexed data from four modules. This data is then sent over a high speed Camera Link interface to the image processing computer. X-ray images taken through the 2×2 array of EMCCD based detectors using this two stage configuration of MMMICs are shown successfully demonstrating the concept.

  14. Cryogenic, high-resolution x-ray detector with high count rate capability

    DOEpatents

    Frank, Matthias; Mears, Carl A.; Labov, Simon E.; Hiller, Larry J.; Barfknecht, Andrew T.

    2003-03-04

    A cryogenic, high-resolution X-ray detector with high count rate capability has been invented. The new X-ray detector is based on superconducting tunnel junctions (STJs), and operates without thermal stabilization at or below 500 mK. The X-ray detector exhibits good resolution (.about.5-20 eV FWHM) for soft X-rays in the keV region, and is capable of counting at count rates of more than 20,000 counts per second (cps). Simple, FET-based charge amplifiers, current amplifiers, or conventional spectroscopy shaping amplifiers can provide the electronic readout of this X-ray detector.

  15. High Resolution X-Ray Spectroscopy with a Microcalorimeter

    SciTech Connect

    Norrell, J.; Anderson, I.

    2005-01-01

    Energy-dispersive spectrometry (EDS) is often the preferred choice for X-ray microanalysis, but there are still many disadvantages associated with EDS, the most significant of which is the relatively poor energy resolution, which limits detection sensitivity and the ability to distinguish among closely spaced spectral features, limiting even qualitative analysis. A new type of EDS detector that operates on the principle of microcalorimetry has the potential to eliminate this shortcoming, reaching resolutions an order of magnitude better. The detector consists of an absorber in thermal contact with a transition edge sensor (TES). An X-ray from the specimen hits the absorber and manifests itself as a change in temperature. Because the system is kept at 80 mK, the heat capacity is low and the temperature spike is observable. The TES responds to the increase in temperature by transitioning from its superconducting to its normal conducting state, thus sharply raising the overall resistance of the circuit. The circuit is kept at a constant voltage, so the increase in resistance is manifested as a decrease in current flow. This decrease in current is measured by a superconducting quantum interference device (SQUID), and by integrating the current over time, the energy of the incident X-ray is determined. The prototype microcalorimeter was developed by NIST, and this technology is now available commercially through a partnership between Vericold Technologies and EDAX International. ORNL has received the first of these commercial microcalorimeters in the United States. The absorber in this detector is gold, and the TES consists of a gold-iridium bilayer. It is designed to offer spectral resolution of 10-15 eV at a count rate of ~150 s-1. The goal of this project was to analyze and document the performance of the detector, with particular attention given to the effects of an X-ray optic used to improve collection efficiency, the multiple window system and any other sources

  16. High resolution x-ray and gamma ray imaging using diffraction lenses with mechanically bent crystals

    DOEpatents

    Smither, Robert K.

    2008-12-23

    A method for high spatial resolution imaging of a plurality of sources of x-ray and gamma-ray radiation is provided. High quality mechanically bent diffracting crystals of 0.1 mm radial width are used for focusing the radiation and directing the radiation to an array of detectors which is used for analyzing their addition to collect data as to the location of the source of radiation. A computer is used for converting the data to an image. The invention also provides for the use of a multi-component high resolution detector array and for narrow source and detector apertures.

  17. High Resolution X-Ray Diffraction of Macromolecules with Synchrotron Radiation

    NASA Technical Reports Server (NTRS)

    Stojanoff, Vivian; Boggon, Titus; Helliwell, John R.; Judge, Russell; Olczak, Alex; Snell, Edward H.; Siddons, D. Peter; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    We recently combined synchrotron-based monochromatic X-ray diffraction topography methods with triple axis diffractometry and rocking curve measurements: high resolution X-ray diffraction imaging techniques, to better understand the quality of protein crystals. We discuss these methods in the light of results obtained on crystals grown under different conditions. These non destructive techniques are powerful tools in the characterization of the protein crystals and ultimately will allow to improve, develop, and understand protein crystal growth. High resolution X-ray diffraction imaging methods will be discussed in detail in light of recent results obtained on Hen Egg White Lysozyme crystals and other proteins.

  18. Very high resolution UV and X-ray spectroscopy and imagery of solar active regions

    NASA Technical Reports Server (NTRS)

    Bruner, M.; Brown, W. A.; Haisch, B. M.

    1987-01-01

    A scientific investigation of the physics of the solar atmosphere, which uses the techniques of high resolution soft X-ray spectroscopy and high resolution UV imagery, is described. The experiments were conducted during a series of three sounding rocket flights. All three flights yielded excellent images in the UV range, showing unprecedented spatial resolution. The second flight recorded the X-ray spectrum of a solar flare, and the third that of an active region. A normal incidence multi-layer mirror was used during the third flight to make the first astronomical X-ray observations using this new technique.

  19. High resolution, high rate X-ray spectrometer

    DOEpatents

    Goulding, Frederick S.; Landis, Donald A.

    1987-01-01

    A pulse processing system (10) for use in an X-ray spectrometer in which a ain channel pulse shaper (12) and a fast channel pulse shaper (13) each produce a substantially symmetrical triangular pulse (f, p) for each event detected by the spectrometer, with the pulse width of the pulses being substantially independent of the magnitude of the detected event and with the pulse width of the fast pulses (p) being substantially shorter than the pulse width of the main channel pulses (f). A pile-up rejector circuit (19) allows output pulses to be generated, with amplitudes linearly related to the magnitude of the detected events, whenever the peak of a main channel pulse (f) is not affected by a preceding or succeeding main channel pulse, while inhibiting output pulses wherein peak magnitudes of main channel pulses are affected by adjacent pulses. The substantially symmetrical triangular main channel pulses (f) are generated by the weighted addition (27-31) of successive RC integrations (24, 25, 26) of an RC differentiated step wave (23). The substantially symmetrical triangular fast channel pulses (p) are generated by the RC integration ( 43) of a bipolar pulse (o) in which the amplitude of the second half is 1/e that of the first half, with the RC time constant of integration being equal to one-half the width of the bipolar pulse.

  20. Ultraprecision motion control technique for high-resolution x-ray instrumentation

    SciTech Connect

    Shu, D.; Toellner, T. S.; Alp, E. E.

    2000-07-17

    With the availability of third-generation hard x-ray synchrotron radiation sources, such as the Advanced Photon Source (APS) at Argonne National Laboratory, x-ray inelastic scattering and x-ray nuclear resonant scattering provide powerful means for investigating the vibrational dynamics of a variety of materials and condensed matter systems. Novel high-resolution hard x-ray optics with meV energy resolution requires a compact positioning mechanism with 20--50-nrad angular resolution and stability. In this paper, the authors technical approach to this design challenge is presented. Sensitivity and stability test results are also discussed.

  1. Experimental setup for high resolution x-ray spectroscopy of solids and liquid samples

    NASA Astrophysics Data System (ADS)

    Yin, Zhong; Rajković, Ivan; Raiser, Dirk; Scholz, Mirko; Techert, Simone

    2013-09-01

    Here we present a next-generation experimental setup for high-resolution X-ray spectroscopy of solid and liquid samples in the soft X-ray region to elucidate the complex molecular structures of (bio)chemical systems. The setup consists of a main target chamber, a target holder for either solid samples or a liquid jet delivery system, and a high-resolution soft X-ray grating spectrometer. This setup is in commissioning at PETRA III, presently one of the most brilliant storage ring based X-ray radiation sources in the world. The newly designed grazing incidence grating spectrometer is utilized for high-resolution measurement in the XUV range from 1 nm up to 6 nm.

  2. High-Resolution and Lightweight X-ray Optics for the X-Ray Surveyor

    NASA Astrophysics Data System (ADS)

    Zhang, William

    Envisioned in "Enduring Quest, Daring Visions" and under study by NASA as a potential major mission for the 2020s, the X-ray Surveyor mission will likely impose three requirements on its optics: (1) high angular resolution: 0.5 PSF, (2) large effective area: e10,000 cm2 or more, and (3) affordable production cost: $500M. We propose a technology that can meet these requirements by 2020. It will help the X-ray Surveyor secure the endorsement of the coming decadal survey and enable its implementation following WFIRST. The technology comprises four elements: (1) fabrication of lightweight single crystal silicon mirrors, (2) coating these mirrors with iridium to maximize effective area without figure degradation, (3) alignment and bonding of these mirrors to form meta-shells that will be integrated to make a mirror assembly, and (4) systems engineering to ensure that the mirror assembly meet all science performance and spaceflight environmental requirements. This approach grows out of our existing approach based on glass slumping. Using glass slumping technology, we have been able to routinely build and test mirror modules of 10half-power diameter (HPD). While comparable in HPD to XMM-Newtons electroformed nickel mirrors, these mirror modules are 10 times lighter. Likewise, while comparable in weight to Suzakus epoxy-replicated aluminum foil mirrors, these modules have 10 times better HPD. These modules represent the current state of the art of lightweight X-ray optics. Although both successful and mature, the glass slumping technology has reached its limit and cannot achieve sub-arc second HPD. Therefore, we are pursuing the new approach based on polishing single crystal silicon. The new approach will enable the building and testing of mirror modules, called meta-shells, capable of 3HPD by 2018 and 1HPD by 2020, and has the potential to reach diffraction limits ( 0.1) in the 2020s.

  3. High Resolution Temporal and Spectral Monitoring of Eta Carinae's X-Ray Emission the June Eclipse

    NASA Technical Reports Server (NTRS)

    Corcoran, M. F.; Hamaguchi, K.; Henley, D.; Pittard, J. M.; Gull, T. R.; Davidson, K.; Swank, J. H.; Petre, R.; Ishibashi, K.

    2004-01-01

    The supermassive and luminous star Eta Carinae undergoes strong X-ray variations every 5.5 years when its 2-10 keV X-ray emission brightens rapidly with wild fluctuations before dropping by a factor of 100 to a minimum lasting 3 months. The most recent X-ray "eclipse" began in June 2003 and during this time Eta Carinae was intensely observed throughout the electromagnetic spectrum. Here we report the first results of frequent monitoring of the 2-10 keV band X-ray emission by the Rossi X-ray Timing Explorer along wit high resolution X-ray spectra obtained with the transmission gratings on the Chandra X-ray Observatory. We compare these observations to those results obtained during the previous X-ray eclipse in 1998, and interpret the variations in the X-ray brightness, in the amount of absorption, in the X-ray emission measure and in the K-shell emission lines in terms of a colliding wind binary model.

  4. High-resolution ab initio Three-dimensional X-ray Diffraction Microscopy

    SciTech Connect

    Chapman, H N; Barty, A; Marchesini, S; Noy, A; Cui, C; Howells, M R; Rosen, R; He, H; Spence, J H; Weierstall, U; Beetz, T; Jacobsen, C; Shapiro, D

    2005-08-19

    Coherent X-ray diffraction microscopy is a method of imaging non-periodic isolated objects at resolutions only limited, in principle, by the largest scattering angles recorded. We demonstrate X-ray diffraction imaging with high resolution in all three dimensions, as determined by a quantitative analysis of the reconstructed volume images. These images are retrieved from the 3D diffraction data using no a priori knowledge about the shape or composition of the object, which has never before been demonstrated on a non-periodic object. We also construct 2D images of thick objects with infinite depth of focus (without loss of transverse spatial resolution). These methods can be used to image biological and materials science samples at high resolution using X-ray undulator radiation, and establishes the techniques to be used in atomic-resolution ultrafast imaging at X-ray free-electron laser sources.

  5. High-resolution ab initio three-dimensional x-ray diffraction microscopy

    SciTech Connect

    Chapman, Henry N.; Barty, Anton; Marchesini, Stefano; Noy, Aleksandr; Hau-Riege, Stefan P.; Cui, Congwu; Howells, Malcolm R.; Rosen, Rachel; He, Haifeng; Spence, John C. H.; Weierstall, Uwe; Beetz, Tobias; Jacobsen, Chris; Shapiro, David

    2006-01-01

    Coherent x-ray diffraction microscopy is a method of imaging nonperiodic isolated objects at resolutions limited, in principle, by only the wavelength and largest scattering angles recorded. We demonstrate x-ray diffraction imaging with high resolution in all three dimensions, as determined by a quantitative analysis of the reconstructed volume images. These images are retrieved from the three-dimensional diffraction data using no a priori knowledge about the shape or composition of the object, which has never before been demonstrated on a nonperiodic object. We also construct two-dimensional images of thick objects with greatly increased depth of focus (without loss of transverse spatial resolution). These methods can be used to image biological and materials science samples at high resolution with x-ray undulator radiation and establishes the techniques to be used in atomic-resolution ultrafast imaging at x-ray free-electron laser sources.

  6. High-resolution ab initio three-dimensional x-ray diffraction microscopy

    DOE PAGES

    Chapman, Henry N.; Barty, Anton; Marchesini, Stefano; ...

    2006-01-01

    Coherent x-ray diffraction microscopy is a method of imaging nonperiodic isolated objects at resolutions limited, in principle, by only the wavelength and largest scattering angles recorded. We demonstrate x-ray diffraction imaging with high resolution in all three dimensions, as determined by a quantitative analysis of the reconstructed volume images. These images are retrieved from the three-dimensional diffraction data using no a priori knowledge about the shape or composition of the object, which has never before been demonstrated on a nonperiodic object. We also construct two-dimensional images of thick objects with greatly increased depth of focus (without loss of transverse spatialmore » resolution). These methods can be used to image biological and materials science samples at high resolution with x-ray undulator radiation and establishes the techniques to be used in atomic-resolution ultrafast imaging at x-ray free-electron laser sources.« less

  7. A versatile, highly-efficient, high-resolution von Hamos Bragg crystal x-ray spectrometer

    SciTech Connect

    Vane, C.R.; Smith, M.S.; Raman, S.

    1988-01-01

    An efficient, high-resolution, vertical-focusing, Bragg crystal x-ray spectrometer has been specifically designed and constructed for use in measurements of x rays produced in collisions of energetic heavy ions. In this report the design and resulting operational characteristics of the final instrument are fully described. A wide variety of sample data is also included to illustrate the utility of this device in several areas of research. 14 refs., 38 figs.

  8. High resolution x-ray CMT: Reconstruction methods

    SciTech Connect

    Brown, J.K.

    1997-02-01

    This paper qualitatively discusses the primary characteristics of methods for reconstructing tomographic images from a set of projections. These reconstruction methods can be categorized as either {open_quotes}analytic{close_quotes} or {open_quotes}iterative{close_quotes} techniques. Analytic algorithms are derived from the formal inversion of equations describing the imaging process, while iterative algorithms incorporate a model of the imaging process and provide a mechanism to iteratively improve image estimates. Analytic reconstruction algorithms are typically computationally more efficient than iterative methods; however, analytic algorithms are available for a relatively limited set of imaging geometries and situations. Thus, the framework of iterative reconstruction methods is better suited for high accuracy, tomographic reconstruction codes.

  9. Calibration of a high resolution grating soft x-ray spectrometer.

    PubMed

    Magee, E W; Dunn, J; Brown, G V; Cone, K V; Park, J; Porter, F S; Kilbourne, C A; Kelley, R L; Beiersdorfer, P

    2010-10-01

    The calibration of the soft x-ray spectral response of a large radius of curvature, high resolution grating spectrometer (HRGS) with a back-illuminated charge-coupled device detector is reported. The instrument is cross-calibrated for the 10-50 Å waveband at the Lawrence Livermore National Laboratory electron beam ion trap (EBIT) x-ray source with the EBIT calorimeter spectrometer. The HRGS instrument is designed for laser-produced plasma experiments and is important for making high dynamic range measurements of line intensities, line shapes, and x-ray sources.

  10. Digital Signal Processors for Cryogenic High-Resolution X-Ray Detector Readout

    SciTech Connect

    Friedrich, S; Drury, O; Bechstein, S; Henning, W; Momayezi, M

    2003-01-01

    The authors are developing fast digital signal processors (DSPs) to read out superconducting high-resolution X-ray detectors with on-line pulse processing. For superconducting tunnel junction (STJ) detector read-out, the DSPs offer on-line filtering, rise time discrimination and pile-up rejection. Compared to analog pulse processing, DSP readout somewhat degrades the detector resolution, but improves the spectral purity of the detector response. They discuss DSP performance with the 9-channel STJ array for synchrotron-based high-resolution X-ray spectroscopy.

  11. High Resolution X-Ray Micro-CT of Ultra-Thin Wall Space Components

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Rauser, R. W.; Bowman, Randy R.; Bonacuse, Peter; Martin, Richard E.; Locci, I. E.; Kelley, M.

    2012-01-01

    A high resolution micro-CT system has been assembled and is being used to provide optimal characterization for ultra-thin wall space components. The Glenn Research Center NDE Sciences Team, using this CT system, has assumed the role of inspection vendor for the Advanced Stirling Convertor (ASC) project at NASA. This article will discuss many aspects of the development of the CT scanning for this type of component, including CT system overview; inspection requirements; process development, software utilized and developed to visualize, process, and analyze results; calibration sample development; results on actual samples; correlation with optical/SEM characterization; CT modeling; and development of automatic flaw recognition software. Keywords: Nondestructive Evaluation, NDE, Computed Tomography, Imaging, X-ray, Metallic Components, Thin Wall Inspection

  12. High Resolution Higher Energy X-ray Microscope for Mesoscopic Materials

    NASA Astrophysics Data System (ADS)

    Snigireva, I.; Snigirev, A.

    2013-10-01

    We developed a novel X-ray microscopy technique to study mesoscopically structured materials, employing compound refractive lenses. The easily seen advantage of lens-based methodology is the possibility to retrieve high resolution diffraction pattern and real-space images in the same experimental setup. Methodologically the proposed approach is similar to the studies of crystals by high resolution transmission electron microscopy. The proposed microscope was applied for studying of mesoscopic materials such as natural and synthetic opals, inverted photonic crystals.

  13. Interstellar dust grain composition from high-resolution X-ray absorption edge structure

    NASA Astrophysics Data System (ADS)

    Corrales, Lia

    2016-06-01

    X-ray light is sufficient to excite electrons from n=1 (K-shell) and n=2 (L-shell) energy levels of neutral interstellar metals, causing a sharp increase in the absorption cross-section. Near the ionization energy, the shape of the photoelectric absorption edge depends strongly on whether the atom is isolated or bound in molecules or minerals (dust). With high resolution X-ray spectroscopy, we can directly measure the state of metals and the mineral composition of dust in the interstellar medium. In addition, the scattering contribution to the X-ray extinction cross-section can be used to gauge grain size, shape, and filling factor. In order to fully take advantage of major advances in high resolution X-ray spectroscopy, lab measurements of X-ray absorption fine structure (XAFS) from suspected interstellar minerals are required. Optical constants derived from the absorption measurements can be used with Mie scattering or anomalous diffraction theory in order to model the full extinction cross-sections from the interstellar medium. Much like quasar spectra are used to probe other intergalactic gas, absorption spectroscopy of Galactic X-ray binaries and bright stars will yield key insights to the mineralogy and evolution of dust grains in the Milky Way.

  14. High-resolution structure of the photosynthetic Mn4Ca catalyst from X-ray spectroscopy.

    PubMed

    Yano, Junko; Kern, Jan; Pushkar, Yulia; Sauer, Kenneth; Glatzel, Pieter; Bergmann, Uwe; Messinger, Johannes; Zouni, Athina; Yachandra, Vittal K

    2008-03-27

    The application of high-resolution X-ray spectroscopy methods to study the photosynthetic water oxidizing complex, which contains a unique hetero-nuclear catalytic Mn4Ca cluster, is described. Issues of X-ray damage, especially at the metal sites in the Mn4Ca cluster, are discussed. The structure of the Mn4Ca catalyst at high resolution, which has so far eluded attempts of determination by X-ray diffraction, X-ray absorption fine structure (EXAFS) and other spectroscopic techniques, has been addressed using polarized EXAFS techniques applied to oriented photosystem II (PSII) membrane preparations and PSII single crystals. A review of how the resolution of traditional EXAFS techniques can be improved, using methods such as range-extended EXAFS, is presented, and the changes that occur in the structure of the cluster as it advances through the catalytic cycle are described. X-ray absorption and emission techniques (XANES and Kbeta emission) have been used earlier to determine the oxidation states of the Mn4Ca cluster, and in this report we review the use of X-ray resonant Raman spectroscopy to understand the electronic structure of the Mn4Ca cluster as it cycles through the intermediate S-states.

  15. The effects of dust scattering on high-resolution X-ray absorption edge structure

    NASA Astrophysics Data System (ADS)

    Corrales, Lia; Garcia, Javier; Wilms, Joern; Baganoff, Frederick K.

    2016-04-01

    In high resolution X-ray spectroscopy, dust scattering significantly enhances the total extinction optical depth and alters the shape of photoelectric absorption edges. This effect is modulated by the dust grain size distribution, spatial location along the line of sight, and the imaging resolution of the X-ray telescope. We focus in particular on the Fe L-edge at 0.7 keV, fitting a template for the total extinction to the high resolution spectrum of three X-ray binaries from the Chandra archive: GX 9+9, XTE J1817-330, and Cyg X-1. In cases where dust is intrinsic to the source, a covering factor based on the angular extent of the dusty material must be applied to the extinction curve, regardless of imaging resolution. We discuss the various astrophysical cases in which scattering effects need to be taken into account.

  16. A normal incidence, high resolution X-ray telescope for solar coronal observations

    NASA Technical Reports Server (NTRS)

    Golub, L.

    1984-01-01

    A Normal Incidence high resolution X-ray Telescope is reported. The design of a telescope assembly which, after fabrication, will be integrated with the mirror fabrication process is described. The assembly is engineered to fit into the Black Brant rocket skin to survive sounding rocket launch conditions. A flight ready camera is modified and tested.

  17. Ultra-high aspect ratio high-resolution nanofabrication for hard X-ray diffractive optics.

    PubMed

    Chang, Chieh; Sakdinawat, Anne

    2014-06-27

    Although diffractive optics have played a major role in nanoscale soft X-ray imaging, high-resolution and high-efficiency diffractive optics have largely been unavailable for hard X-rays where many scientific, technological and biomedical applications exist. This is owing to the long-standing challenge of fabricating ultra-high aspect ratio high-resolution dense nanostructures. Here we report significant progress in ultra-high aspect ratio nanofabrication of high-resolution, dense silicon nanostructures using vertical directionality controlled metal-assisted chemical etching. The resulting structures have very smooth sidewalls and can be used to pattern arbitrary features, not limited to linear or circular. We focus on the application of X-ray zone plate fabrication for high-efficiency, high-resolution diffractive optics, and demonstrate the process with linear, circular, and spiral zone plates. X-ray measurements demonstrate high efficiency in the critical outer layers. This method has broad applications including patterning for thermoelectric materials, battery anodes and sensors among others.

  18. High-resolution x-ray diffraction microscopy of specifically labeled yeast cells

    DOE PAGES

    Nelson, Johanna; Huang, Xiaojing; Steinbrener, Jan; ...

    2010-04-20

    X-ray diffraction microscopy complements other x-ray microscopy methods by being free of lens-imposed radiation dose and resolution limits, and it allows for high-resolution imaging of biological specimens too thick to be viewed by electron microscopy. We report here the highest resolution (11-13 nm) x-ray diffraction micrograph of biological specimens, and a demonstration of molecular-specific gold labeling at different depths within cells via through-focus propagation of the reconstructed wavefield. The lectin concanavalin A conjugated to colloidal gold particles was used to label the α-mannan sugar in the cell wall of the yeast Saccharomyces cerevisiae. Cells were plunge-frozen in liquid ethane andmore » freeze-dried, after which they were imaged whole using x-ray diffraction microscopy at 750 eV photon energy.« less

  19. High-resolution x-ray diffraction microscopy of specifically labeled yeast cells

    SciTech Connect

    Nelson, Johanna; Huang, Xiaojing; Steinbrener, Jan; Shapiro, David; Kirz, Janos; Marchesini, Stephano; Neiman, Aaron M.; Turner, Joshua J.; Jacobsen, Chris

    2010-04-20

    X-ray diffraction microscopy complements other x-ray microscopy methods by being free of lens-imposed radiation dose and resolution limits, and it allows for high-resolution imaging of biological specimens too thick to be viewed by electron microscopy. We report here the highest resolution (11-13 nm) x-ray diffraction micrograph of biological specimens, and a demonstration of molecular-specific gold labeling at different depths within cells via through-focus propagation of the reconstructed wavefield. The lectin concanavalin A conjugated to colloidal gold particles was used to label the α-mannan sugar in the cell wall of the yeast Saccharomyces cerevisiae. Cells were plunge-frozen in liquid ethane and freeze-dried, after which they were imaged whole using x-ray diffraction microscopy at 750 eV photon energy.

  20. Development of spatially resolved high resolution x-ray spectroscopy for fusion and light-source research

    NASA Astrophysics Data System (ADS)

    Lu, J.; Hill, K. W.; Bitter, M.; Delgado-Aparicio, L.; Pablant, N. A.; Efthimion, P.; Beiersdorfer, P.; Chen, H.; Widmann, K.; Sanchez del Rio, M.

    2014-09-01

    One dimensional spatially resolved high resolution x-ray spectroscopy with spherically bent crystals and 2D pixelated detectors is an established technique on magnetic confinement fusion (MCF) experiments world wide for Doppler measurements of spatial profiles of plasma ion temperature and flow velocity. This technique is being further developed for diagnosis of High Energy Density Physics (HEDP) plasmas at laser-plasma facilities and synchrotron/x-ray free electron laser (XFEL) facilities. Useful spatial resolution (micron scale) of such small-scale plasma sources requires magnification, because of the finite pixel size of x-ray CCD detectors (13.5 μm). A von-Hamos like spectrometer using spherical crystals is capable of magnification, as well as uniform sagittal focusing across the full x-ray spectrum, and is being tested in laboratory experiments using a tungsten-target microfocus (5-10 μm) x-ray tube and 13-μm pixel x-ray CCD. A spatial resolution better than 10 μm has been demonstrated. Good spectral resolution is indicated by small differences (0.02 - 0.1 eV) of measured line widths with best available published natural line widths. Progress and status of HEDP measurements and the physics basis for these diagnostics are presented. A new type of x-ray crystal spectrometer with a convex spherically bent crystal is also reported. The status of testing of a 2D imaging microscope using matched pairs of spherical crystals with x rays will also be presented. The use of computational x-ray optics codes in development of these instrumental concepts is addressed.

  1. High-Resolution Structure of the Photosynthetic Mn4Ca Catalyst from X-ray Spectroscopy

    SciTech Connect

    Yachandra, Vittal; Yano, Junko; Kern, Jan; Pushkar, Yulia; Sauer, Kenneth; Glatzel, Pieter; Bergmann, Uwe; Messinger, Johannes; Zouni, Athina; Yachandra, Vittal K.

    2007-08-01

    The application of high-resolution X-ray spectroscopy methods to study the photosynthetic water oxidizing complex, which contains a unique hetero-nuclear catalytic Mn4Ca cluster, are described. Issues of X-ray damage especially at the metal sites in the Mn4Ca cluster are discussed. The structure of the Mn4Ca catalyst at high-resolution which has so far eluded attempts of determination by X-ray diffraction, EXAFS and other spectroscopic techniques has been addressed using polarized EXAFS techniques applied to oriented PS II membrane preparations and PS II single crystals. A review of how the resolution of traditional EXAFS techniques can be improved, using methods such as range-extended EXAFS is presented, and the changes that occur in the structure of the cluster as it advances through the catalytic cycle are described. X-ray absorption and emission techniques (XANES and K? emission) have been used earlier to determine the oxidation states of the Mn4Ca cluster, and in this report we review the use of X-ray resonant Raman spectroscopy to understand the electronic structure of the Mn4Ca cluster as it cycles through the intermediate S-states.

  2. High Resolution Triple Axis X-Ray Diffraction Analysis of II-VI Semiconductor Crystals

    NASA Technical Reports Server (NTRS)

    Volz, H. M.; Matyi, R. J.

    1999-01-01

    The objective of this research program is to develop methods of structural analysis based on high resolution triple axis X-ray diffractometry (HRTXD) and to carry out detailed studies of defect distributions in crystals grown in both microgravity and ground-based environments. HRTXD represents a modification of the widely used double axis X-ray rocking curve method for the characterization of grown-in defects in nearly perfect crystals. In a double axis rocking curve experiment, the sample is illuminated by a monochromatic X-ray beam and the diffracted intensity is recorded by a fixed, wide-open detector. The intensity diffracted by the sample is then monitored as the sample is rotated through the Bragg reflection condition. The breadth of the peak, which is often reported as the full angular width at half the maximum intensity (FWHM), is used as an indicator of the amount of defects in the sample. This work has shown that high resolution triple axis X-ray diffraction is an effective tool for characterizing the defect structure in semiconductor crystals, particularly at high defect densities. Additionally, the technique is complimentary to X-ray topography for defect characterization in crystals.

  3. High Resolution X-Ray Absorption Spectroscopy: Distribution of Matter in and around Galaxies

    NASA Astrophysics Data System (ADS)

    Schulz, Norbert; MIT/CAT Team

    2015-10-01

    The chemical evolution of the Universe embraces aspects that reachdeep into modern astrophysics and cosmology. We want to know how present and past matter is affected by various levels and types of nucleo-synthesis and stellar evolution. Three major categories were be identified: 1. The study of pre-mordial star formation including periods of super-massive black hole formation, 2. The embedded evolution of the intergalactic medium IGM, 3. The status and evolution of stars and the interstellar medium ISM in galaxies. Today a fourth category relates to our understanding of dark matter in relationwith these three categories. The X-ray band is particularly sensitive to K- and L-shell absorption and scattering from high abundant elements like C, N, O, Ne, Mg, Si, S,Ar, Ca, Fe, and Ni. Like the Lyman alpha forest in the optical band, absorbers in the IGM produce an X-ray line forest along the line of sight in the X-rayspectrum of a background quasar. Similary bright X-ray sources within galaxies and the Milky Way produce a continuum, which is being absorbed by elements invarious phases of the ISM. High resolution X-ray absorption surveys are possible with technologies ready for flight within decade. == high efficiency X-ray optics with optical performance 3== high resolution X-ray gratings with R 3000 for E 1.5 keV== X-ray micro-calorimeters with R 2000 for E 1.5 keV. The vision for the next decade needs to lead to means and strategies which allows us to perform such absorption surveys as effectively as surveys are now or in very near future quite common in astronomy pursued in other wave length bands such as optical, IR, and sub-mm.

  4. Development of high-resolution x-ray CT system using parallel beam geometry

    NASA Astrophysics Data System (ADS)

    Yoneyama, Akio; Baba, Rika; Hyodo, Kazuyuki; Takeda, Tohoru; Nakano, Haruhisa; Maki, Koutaro; Sumitani, Kazushi; Hirai, Yasuharu

    2016-01-01

    For fine three-dimensional observations of large biomedical and organic material samples, we developed a high-resolution X-ray CT system. The system consists of a sample positioner, a 5-μm scintillator, microscopy lenses, and a water-cooled sCMOS detector. Parallel beam geometry was adopted to attain a field of view of a few mm square. A fine three-dimensional image of birch branch was obtained using a 9-keV X-ray at BL16XU of SPring-8 in Japan. The spatial resolution estimated from the line profile of a sectional image was about 3 μm.

  5. Development of high-resolution x-ray CT system using parallel beam geometry

    SciTech Connect

    Yoneyama, Akio Baba, Rika; Hyodo, Kazuyuki; Takeda, Tohoru; Nakano, Haruhisa; Maki, Koutaro; Sumitani, Kazushi; Hirai, Yasuharu

    2016-01-28

    For fine three-dimensional observations of large biomedical and organic material samples, we developed a high-resolution X-ray CT system. The system consists of a sample positioner, a 5-μm scintillator, microscopy lenses, and a water-cooled sCMOS detector. Parallel beam geometry was adopted to attain a field of view of a few mm square. A fine three-dimensional image of birch branch was obtained using a 9-keV X-ray at BL16XU of SPring-8 in Japan. The spatial resolution estimated from the line profile of a sectional image was about 3 μm.

  6. High-resolution X-ray diffraction in crystalline structures with quantum dots

    NASA Astrophysics Data System (ADS)

    Punegov, V. I.

    2015-05-01

    We review the current status of nondestructive high-resolution X-ray diffractometry research on semiconductor structures with quantum dots (QDs). The formalism of the statistical theory of diffraction is used to consider the coherent and diffuse X-ray scattering in crystalline systems with nanoinclusions. Effects of the shape, elastic strain, and lateral and vertical QD correlation on the diffuse scattering angular distribution near the reciprocal lattice nodes are considered. Using short-period and multicomponent superlattices as an example, we demonstrate the efficiency of data-assisted simulations in the quantitative analysis of nanostructured materials.

  7. Fine-pitch glass GEM for high-resolution X-ray imaging

    NASA Astrophysics Data System (ADS)

    Fujiwara, T.; Mitsuya, Y.; Toyokawa, H.

    2016-12-01

    We have developed a fine-pitch glass gas electron multiplier (G-GEM) for high-resolution X-ray imaging. The fine-pitch G-GEM is made of a 400 μm thick photo-etchable glass substrate with 150 μm pitch holes. It is fabricated using the same wet etching technique as that for the standard G-GEM. In this work, we present the experimental results obtained with a single fine-pitch G-GEM with a 50 × 50 mm2 effective area. We recorded an energy resolution of 16.2% and gas gain up to 5,500 when the detector was irradiated with 5.9 keV X-rays. We present a 50 × 50 mm2 X-ray radiograph image acquired with a scintillation gas and optical readout system.

  8. Research relative to high resolution camera on the advanced X-ray astrophysics facility

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The HRC (High Resolution Camera) is a photon counting instrument to be flown on the Advanced X-Ray Astrophysics Facility (AXAF). It is a large field of view, high angular resolution, detector for the x-ray telescope. The HRC consists of a CsI coated microchannel plate (MCP) acting as a soft x-ray photocathode, followed by a second MCP for high electronic gain. The MCPs are readout by a crossed grid of resistively coupled wires to provide high spatial resolution along with timing and pulse height data. The instrument will be used in two modes, as a direct imaging detector with a limiting sensitivity of 10 to the -15 ergs sq cm sec in a 10 to the 5th second exposure, and as a readout for an objective transmission grating providing spectral resolution of several hundreds to thousands.

  9. Compact high-resolution differential interference contrast soft x-ray microscopy

    SciTech Connect

    Bertilson, Michael C.; Hofsten, Olov von; Lindblom, Magnus; Hertz, Hans M.; Vogt, Ulrich

    2008-02-11

    We demonstrate high-resolution x-ray differential interference contrast (DIC) in a compact soft x-ray microscope. Phase contrast imaging is enabled by the use of a diffractive optical element objective which is matched to the coherence conditions in the microscope setup. The performance of the diffractive optical element objective is evaluated in comparison with a normal zone plate by imaging of a nickel siemens star pattern and linear grating test objects. Images obtained with the DIC optic exhibit typical DIC enhancement in addition to the normal absorption contrast. Contrast transfer functions based on modulation measurements in the obtained images show that the DIC optic gives a significant increase in contrast without reducing the spatial resolution. The phase contrast operation mode now available for our compact soft x-ray microscope will be a useful tool for future studies of samples with low absorption contrast.

  10. High resolution x-ray fluorescence spectroscopy - a new technique for site- and spin-selectivity

    SciTech Connect

    Wang, Xin

    1996-12-01

    X-ray spectroscopy has long been used to elucidate electronic and structural information of molecules. One of the weaknesses of x-ray absorption is its sensitivity to all of the atoms of a particular element in a sample. Through out this thesis, a new technique for enhancing the site- and spin-selectivity of the x-ray absorption has been developed. By high resolution fluorescence detection, the chemical sensitivity of K emission spectra can be used to identify oxidation and spin states; it can also be used to facilitate site-selective X-ray Absorption Near Edge Structure (XANES) and site-selective Extended X-ray Absorption Fine Structure (EXAFS). The spin polarization in K fluorescence could be used to generate spin selective XANES or spin-polarized EXAFS, which provides a new measure of the spin density, or the nature of magnetic neighboring atoms. Finally, dramatic line-sharpening effects by the combination of absorption and emission processes allow observation of structure that is normally unobservable. All these unique characters can enormously simplify a complex x-ray spectrum. Applications of this novel technique have generated information from various transition-metal model compounds to metalloproteins. The absorption and emission spectra by high resolution fluorescence detection are interdependent. The ligand field multiplet model has been used for the analysis of K{alpha} and K{beta} emission spectra. First demonstration on different chemical states of Fe compounds has shown the applicability of site selectivity and spin polarization. Different interatomic distances of the same element in different chemical forms have been detected using site-selective EXAFS.

  11. High-resolution observations of X-ray transitions in Fe XXV-XXIII

    NASA Technical Reports Server (NTRS)

    Seely, J. F.; Feldman, U.

    1985-01-01

    The wavelengths of X-ray transitions in Fe XXV-XXIII have been measured using a high-resolution spectrum reflected from the Ge(13-1) planes. A number of transitions have been resolved for the first time in solar flare spectra, and the contributions of the Fe XXIV n = 3 satellites to the Fe XXV parent lines are discussed. The QED contributions to the wavelengths of the Fe XXIV n = 3 satellite transitions have been determined.

  12. High resolution x-ray medical sequential image acquisition and processing system based on PCI interface

    NASA Astrophysics Data System (ADS)

    Lu, Dongming; Chen, Qian; Gu, Guohua

    2003-11-01

    In the field of medical application, it is of great importance to adopt digital image processing technique. Based on the characteristics of medical image, we introduced the digital image processing method to the X-ray imaging system, and developed a high resolution x-ray medical sequential image acquisition and processing system that employs image enhancer and CCD. This system consists of three basic modules, namely sequential image acquisition, data transfer and system control, and image processing. Under the control of FPGA (Field Programmable Gate Array), images acquired by the front-end circuit are transmitted to a PC through high speed PCI bus, and then optimized by the image processing program. The software kits, which include PCI Device Driver and Image Processing Package, are developed with Visual C++ Language based on Windows OS. In this paper, we present a general introduction to the principle and the operating procedure of X-ray Sequential Image Acquisition and Processing System, with special emphasis on the key issues of the hardware design. In addition, the context, principle, status quo and the digitizing trend of X-ray Imaging are explained succinctly. Finally, the preliminary experimental results are shown to demonstrate that the system is capable of achieving high quality X-ray sequential images.

  13. High-resolution x-ray imaging for microbiology at the Advanced Photon Source

    SciTech Connect

    Lai, B.; Kemner, K. M.; Maser, J.; Schneegurt, M. A.; Cai, Z.; Ilinski, P. P.; Kulpa, C. F.; Legnini, D. G.; Nealson, K. H.; Pratt, S. T.; Rodrigues, W.; Tischler, M. L.; Yun, W.

    1999-11-02

    Exciting new applications of high-resolution x-ray imaging have emerged recently due to major advances in high-brilliance synchrotrons sources and high-performance zone plate optics. Imaging with submicron resolution is now routine with hard x-rays: the authors have demonstrated 150 run in the 6--10 keV range with x-ray microscopes at the Advanced Photon Source (APS), a third-generation synchrotrons radiation facility. This has fueled interest in using x-ray imaging in applications ranging from the biomedical, environmental, and materials science fields to the microelectronics industry. One important application they have pursued at the APS is a study of the microbiology of bacteria and their associated extracellular material (biofilms) using fluorescence microanalysis. No microscopy techniques were previously available with sufficient resolution to study live bacteria ({approx}1 {micro}m x 4 {micro}m in size) and biofilms in their natural hydrated state with better than part-per-million elemental sensitivity and the capability of determining g chemical speciation. In vivo x-ray imaging minimizes artifacts due to sample fixation, drying, and staining. This provides key insights into the transport of metal contaminants by bacteria in the environment and potential new designs for remediation and sequestration strategies.

  14. Multilayer optics for monochromatic high-resolution x-ray imaging mircoscopes

    NASA Astrophysics Data System (ADS)

    Troussel, Ph.; Do, A.; Gontier, D.; Dennetiere, D.; Høghøj, P.; Hedacq, S.

    2015-08-01

    Within the framework of its researches on Inertial Confinement Fusion (ICF), the "Commissariat à l'Énergie Atomique et aux Énergies Alternatives" (CEA) studies and designs advanced X-ray diagnostics in order to probe dense plasmas produced by Laser facilities. The final goal for those diagnostics is to be used during experiments on the Laser Megajoules french facility (LMJ) at Bordeaux. We present two types of advanced monochromatic High Resolution X-ray Imaging microscopes (HRXI) who have high spatial resolution capability (3-6 μm) and high efficiency. The first microscope so-called MERSSIX consists of two toroïdals mirrors mounted into a Wolter type geometry and working at grazing incidence. Non-periodic multilayer (depth graded) mirrors were developed with special coatings designed to provide broadband X-ray reflectance in the 1 - 22 keV energy range. Associated to this Wolter microscope a potential monochromatic third mirror coated with a multilayer stack can be used for monochromatic application in that range. The second microscope is composed of a transmission gold Fresnel Phase Zone Plate (FPZP) and a narrow bandwidth multilayer mirror. We present an experimental study with X-ray plasma-source and a complete characterization of the X-ray optics on the synchrotron radiation facility BESSY II. Potentialities (a few μspatial resolution monochromatic images) and complementarity of these two monochromatic HRXI are discussed. The design of the MLs for each microscope is detailed.

  15. High resolution x-ray microtomography of biological samples: Requirements and strategies for satisfying them

    SciTech Connect

    Loo, B.W. Jr. ||; Rothman, S.S. |

    1997-02-01

    High resolution x-ray microscopy has been made possible in recent years primarily by two new technologies: microfabricated diffractive lenses for soft x-rays with about 30-50 nm resolution, and high brightness synchrotron x-ray sources. X-ray microscopy occupies a special niche in the array of biological microscopic imaging methods. It extends the capabilities of existing techniques mainly in two areas: a previously unachievable combination of sub-visible resolution and multi-micrometer sample size, and new contrast mechanisms. Because of the soft x-ray wavelengths used in biological imaging (about 1-4 nm), XM is intermediate in resolution between visible light and electron microscopies. Similarly, the penetration depth of soft x-rays in biological materials is such that the ideal sample thickness for XM falls in the range of 0.25 - 10 {mu}m, between that of VLM and EM. XM is therefore valuable for imaging of intermediate level ultrastructure, requiring sub-visible resolutions, in intact cells and subcellular organelles, without artifacts produced by thin sectioning. Many of the contrast producing and sample preparation techniques developed for VLM and EM also work well with XM. These include, for example, molecule specific staining by antibodies with heavy metal or fluorescent labels attached, and sectioning of both frozen and plastic embedded tissue. However, there is also a contrast mechanism unique to XM that exists naturally because a number of elemental absorption edges lie in the wavelength range used. In particular, between the oxygen and carbon absorption edges (2.3 and 4.4 nm wavelength), organic molecules absorb photons much more strongly than does water, permitting element-specific imaging of cellular structure in aqueous media, with no artifically introduced contrast agents. For three-dimensional imaging applications requiring the capabilities of XM, an obvious extension of the technique would therefore be computerized x-ray microtomography (XMT).

  16. The first high-resolution X-ray spectrum of a Herbig star: AB Aurigae

    NASA Astrophysics Data System (ADS)

    Telleschi, A.; Güdel, M.; Briggs, K. R.; Skinner, S. L.; Audard, M.; Franciosini, E.

    2007-06-01

    Context: The X-ray emission from Herbig Ae/Be stars remains to be explained. In later-type T Tauri stars, X-rays are thought to be produced by magnetically trapped coronal plasma, although accretion-shock induced X-rays have also been suggested. In earlier-type (OB) stars, shocks in unstable winds are thought to produce X-rays. Aims: We present the first high-resolution X-ray spectrum of a prototypical Herbig star AB Aurigae), measure and interpret various spectral features, and compare our results with model predictions. Methods: We use X-ray spectroscopy data from the XMM-Newton Reflection Grating Spectrometers and the EPIC instruments. The spectra are interpreted using thermal, optically thin emission models with variable element abundances and a photoelectric absorption component. We interpret line flux ratios in the He-like triplet of O vii as a function of electron density and the UV radiation field. We use the nearby co-eval classical T Tauri star SU Aur as a comparison. Results: AB Aurigae reveals a soft X-ray spectrum, most plasma being concentrated at 1-6 MK. The He-like triplet reveals no signs of increased densities as reported for some accreting T Tau stars in the literature. There are also no clear indications of strong abundance anomalies in the emitting plasma. The light curve displays modulated variability, with a period of ≈42 h. Conclusions: It is unlikely that a nearby, undetected lower-mass companion is the source of the X-rays. Accretion shocks close to the star would be expected to be irradiated by the photosphere, leading to alteration in the He-like triplet fluxes of O vii, which we do not measure. Also, no indications for high densities are found, although the mass accretion rate is presently unknown. Emission from wind shocks is unlikely, given the weak radiation pressure. A possible explanation would be a solar-like magnetic corona. Magnetically confined winds are a very promising alternative. The X-ray period is indeed close to

  17. Very High Resolution Solar X-ray Imaging Using Diffractive Optics

    NASA Technical Reports Server (NTRS)

    Dennis, B. R.; Skinner, G. K.; Li, M. J.; Shih, A. Y.

    2012-01-01

    This paper describes the development of X-ray diffractive optics for imaging solar flares with better than 0.1 arcsec angular resolution. X-ray images with this resolution of the greater than or equal to 10 MK plasma in solar active regions and solar flares would allow the cross-sectional area of magnetic loops to be resolved and the coronal flare energy release region itself to be probed. The objective of this work is to obtain X-ray images in the iron-line complex at 6.7 keV observed during solar flares with an angular resolution as fine as 0.1 arcsec - over an order of magnitude finer than is now possible. This line emission is from highly ionized iron atoms, primarily Fe xxv, in the hottest flare plasma at temperatures in excess of approximately equal to 10 MK. It provides information on the flare morphology, the iron abundance, and the distribution of the hot plasma. Studying how this plasma is heated to such high temperatures in such short times during solar flares is of critical importance in understanding these powerful transient events, one of the major objectives of solar physics.We describe the design, fabrication, and testing of phase zone plate X-ray lenses with focal lengths of approximately equal to 100 m at these energies that would be capable of achieving these objectives. We show how such lenses could be included on a two-spacecraft formation-flying mission with the lenses on the spacecraft closest to the Sun and an X-ray imaging array on the second spacecraft in the focal plane approximately equal to 100 m away. High resolution X-ray images could be obtained when the two spacecraft are aligned with the region of interest on the Sun. Requirements and constraints for the control of the two spacecraft are discussed together with the overall feasibility of such a formation-flying mission.

  18. Interlaced X-ray diffraction computed tomography

    PubMed Central

    Vamvakeros, Antonios; Jacques, Simon D. M.; Di Michiel, Marco; Senecal, Pierre; Middelkoop, Vesna; Cernik, Robert J.; Beale, Andrew M.

    2016-01-01

    An X-ray diffraction computed tomography data-collection strategy that allows, post experiment, a choice between temporal and spatial resolution is reported. This strategy enables time-resolved studies on comparatively short timescales, or alternatively allows for improved spatial resolution if the system under study, or components within it, appear to be unchanging. The application of the method for studying an Mn–Na–W/SiO2 fixed-bed reactor in situ is demonstrated. Additionally, the opportunities to improve the data-collection strategy further, enabling post-collection tuning between statistical, temporal and spatial resolutions, are discussed. In principle, the interlaced scanning approach can also be applied to other pencil-beam tomographic techniques, like X-ray fluorescence computed tomography, X-ray absorption fine structure computed tomography, pair distribution function computed tomography and tomographic scanning transmission X-ray microscopy. PMID:27047305

  19. Interlaced X-ray diffraction computed tomography.

    PubMed

    Vamvakeros, Antonios; Jacques, Simon D M; Di Michiel, Marco; Senecal, Pierre; Middelkoop, Vesna; Cernik, Robert J; Beale, Andrew M

    2016-04-01

    An X-ray diffraction computed tomography data-collection strategy that allows, post experiment, a choice between temporal and spatial resolution is reported. This strategy enables time-resolved studies on comparatively short timescales, or alternatively allows for improved spatial resolution if the system under study, or components within it, appear to be unchanging. The application of the method for studying an Mn-Na-W/SiO2 fixed-bed reactor in situ is demonstrated. Additionally, the opportunities to improve the data-collection strategy further, enabling post-collection tuning between statistical, temporal and spatial resolutions, are discussed. In principle, the interlaced scanning approach can also be applied to other pencil-beam tomographic techniques, like X-ray fluorescence computed tomography, X-ray absorption fine structure computed tomography, pair distribution function computed tomography and tomographic scanning transmission X-ray microscopy.

  20. The effects of dust scattering on high-resolution X-ray absorption edge structure

    NASA Astrophysics Data System (ADS)

    Corrales, L.; García, J.; Wilms, J.; Baganoff, F.

    2016-06-01

    High energy studies of astrophysical dust complement observations of dusty interstellar gas at other wavelengths. With high resolution X-ray spectroscopy, dust scattering significantly enhances the total extinction optical depth and alters the shape of photoelectric absorption edges. This effect is modulated by the dust grain size distribution, spatial location along the line of sight, and the imaging resolution of the X-ray telescope. At soft energies, the spectrum of scattered light is likely to have significant features at the 0.3 keV (C-K), 0.5 keV (O-K), and 0.7 keV (Fe-L) photoelectric absorption edges. This direct probe of ISM dust grain elements will be important for (i) understanding the relative abundances of graphitic grains or PAHs versus silicates, and (ii) measuring the depletion of gas phase elements into solid form. We focus in particular on the Fe-L edge, fitting a template for the total extinction to the high resolution spectrum of three X-ray binaries from the Chandra archive: GX 9+9, XTE J1817-330, and Cyg X-1. We discuss ways in which spectroscopy with XMM can yield insight into dust obscured objects such as stars, binaries, AGN, and foreground quasar absorption line systems.

  1. A Curved Image-Plate Detector System for High-Resolution Synchrotron X-ray Diffraction

    SciTech Connect

    Sarin, P.; Haggerty, R; Yoon, W; Knapp, M; Berghaeuser, A; Zschack, P; Karapetrova, E; Yang, N; Kriven, W

    2009-01-01

    The developed curved image plate (CIP) is a one-dimensional detector which simultaneously records high-resolution X-ray diffraction (XRD) patterns over a 38.7 2{theta} range. In addition, an on-site reader enables rapid extraction, transfer and storage of X-ray intensity information in {le}30 s, and further qualifies this detector to study kinetic processes in materials science. The CIP detector can detect and store X-ray intensity information linearly proportional to the incident photon flux over a dynamical range of about five orders of magnitude. The linearity and uniformity of the CIP detector response is not compromised in the unsaturated regions of the image plate, regardless of saturation in another region. The speed of XRD data acquisition together with excellent resolution afforded by the CIP detector is unique and opens up wide possibilities in materials research accessible through X-ray diffraction. This article presents details of the basic features, operation and performance of the CIP detector along with some examples of applications, including high-temperature XRD.

  2. High resolution x-ray lensless imaging by differential holographic encoding

    SciTech Connect

    Zhu, D.; Guizar-Sicairos, M.; Wu, B.; Scherz, A.; Acremann, Y.; Tylisczcak, T.; Fischer, P.; Friedenberger, N.; Ollefs, K.; Farle, M.; Fienup, J. R.; Stohr, J.

    2009-11-02

    X-ray free electron lasers (X-FEL{sub s}) will soon offer femtosecond pulses of laterally coherent x-rays with sufficient intensity to record single-shot coherent scattering patterns for nanoscale imaging. Pulse trains created by splitand-delay techniques even open the door for cinematography on unprecedented nanometer length and femtosecond time scales. A key to real space ultrafast motion pictures is fast and reliable inversion of the recorded reciprocal space scattering patterns. Here we for the first time demonstrate in the x-ray regime the power of a novel technique for lensless high resolution imaging, previously suggested by Guizar-Sicairos and Fienup termed holography with extended reference by autocorrelation linear differential operation, HERALD0. We have achieved superior resolution over conventional x-ray Fourier transform holography (FTH) without sacrifices in SNR or significant increase in algorithmic complexity. By combining images obtained from individual sharp features on an extended reference, we further show that the resolution can be even extended beyond the reference fabrication limits. Direct comparison to iterative phase retrieval image reconstruction and images recorded with stateof- the-art zone plate microscopes is presented. Our results demonstrate the power of HERALDO as a favorable candidate for robust inversion of single-shot coherent scattering patterns.

  3. High-Resolution X-Ray Lensless Imaging by Differential Holographic Encoding

    SciTech Connect

    Zhu, Diling; Guizar-Sicairos, Manuel; Wu, Benny; Scherz, Andreas; Acremann, Yves; Tyliszczak, Tolek; Fischer, Peter; Friedenberger, Nina; Ollefs, Katharina; Farle, Michael; Fienup, James R.; Stöhr, Joachim

    2010-07-01

    X-ray free electron lasers (X-FELs) will soon offer femtosecond pulses of laterally coherent x-rays with sufficient intensity to record single-shot coherent scattering patterns for nanoscale imaging. Pulse trains created by split and- delay techniques even open the door for cinematography on unprecedented nanometer length and femtosecond time scales. A key to real space ultrafast motion pictures is fast and reliable inversion of the recorded reciprocal space scattering patterns. Here we for the first time demonstrate in the x-ray regime the power of a novel technique for lensless high resolution imaging, previously suggested by Guizar-Sicairos and Fienup termed holography with extended reference by autocorrelation linear differential operation, HERALD0. We have achieved superior resolution over conventional x-ray Fourier transform holography (FTH) without sacrifices in SNR or significant increase in algorithmic complexity. By combining images obtained from individual sharp features on an extended reference, we further show that the resolution can be even extended beyond the reference fabrication limits. Direct comparison to iterative phase retrieval image reconstruction and images recorded with state of-the-art zone plate microscopes is presented. Our results demonstrate the power of HERALDO as a favorable candidate for robust inversion of single-shot coherent scattering patterns.

  4. High-resolution x-ray diffraction of epitaxial bismuth chalcogenide topological insulator layers

    NASA Astrophysics Data System (ADS)

    Holý, V.; Kriegner, D.; Steiner, H.; Stangl, J.; Bauer, G.; Springholz, G.

    2017-03-01

    Stoichiometry and lattice structure of epitaxial layers of topological insulators Bi2Te3 and Bi2Se3 grown by molecular-beam epitaxy is studied by high-resolution x-ray diffraction. We show that the stoichiometry of Bi2X3 – δ (X  =  Te, Se) epitaxial layers depends on the additional flux of the chalcogens Te or Se during growth. If no excess flux is employed, the resulting structure is very close to Bi1X1 (δ  =  1), whereas with a high excess flux the stoichiometric Bi2X3 phase is obtained. From the x-ray data we determined the lattice parameters of the layers and their dependence on composition δ, as well as the degree of crystal quality of the layers. Invited talk at 8th International Workshop on Advanced Materials Science and Nanotechnology (IWAMSN2016), 8–12 November 2016, Ha Long City, Vietnam.

  5. Pollen structure visualization using high-resolution laboratory-based hard X-ray tomography.

    PubMed

    Li, Qiong; Gluch, Jürgen; Krüger, Peter; Gall, Martin; Neinhuis, Christoph; Zschech, Ehrenfried

    2016-10-14

    A laboratory-based X-ray microscope is used to investigate the 3D structure of unstained whole pollen grains. For the first time, high-resolution laboratory-based hard X-ray microscopy is applied to study pollen grains. Based on the efficient acquisition of statistically relevant information-rich images using Zernike phase contrast, both surface- and internal structures of pine pollen - including exine, intine and cellular structures - are clearly visualized. The specific volumes of these structures are calculated from the tomographic data. The systematic three-dimensional study of pollen grains provides morphological and structural information about taxonomic characters that are essential in palynology. Such studies have a direct impact on disciplines such as forestry, agriculture, horticulture, plant breeding and biodiversity.

  6. Hiresmon: A Fast High Resolution Beam Position Monitor for Medium Hard and Hard X-Rays

    SciTech Connect

    Menk, Ralf Hendrik; Giuressi, Dario; Arfelli, Fulvia; Rigon, Luigi

    2007-01-19

    The high-resolution x-ray beam position monitor (XBPM) is based on the principle of a segmented longitudinal ionization chamber with integrated readout and USB2 link. In contrast to traditional transversal ionization chambers here the incident x-rays are parallel to the collecting field which allows absolute intensity measurements with a precision better than 0.3 %. Simultaneously the beam position in vertical and horizontal direction can be measured with a frame rate of one kHz. The precision of position encoding depends only on the SNR of the synchrotron radiation and is in the order of micro meters at one kHz frame rate and 108 photon /sec at 9 KeV.

  7. Progress on the fabrication of high resolution and lightweight monocrystalline silicon x-ray mirrors

    NASA Astrophysics Data System (ADS)

    Riveros, Raul E.; Biskach, Michael P.; Allgood, Kim D.; Mazzarella, James R.; Sharpe, Marton V.; Zhang, William W.

    2016-07-01

    Monocrystalline silicon is an excellent X-ray mirror substrate material due to its high stiffness, low density, high thermal conductivity, zero internal stress, and commercial availability. Our work at NASA Goddard Space Flight Center focuses on identifying and developing a manufacturing process to produce high resolution and lightweight X-ray mirror segments in a cost and time effective manner. Previous efforts focused on demonstrating the feasibility of cylindrical silicon mirror polishing and lightweighting. Present efforts are aimed towards producing true paraboloidal and hyperboloidal mirror surfaces on the lightweight silicon segments. This paper presents results from these recent investigations, including a mirror which features a surface quality sufficient for a 3 arcsecond telescope.

  8. High-resolution X-ray imaging of Plasmodium falciparum-infected red blood cells.

    PubMed

    Williams, Garth J; Hanssen, Eric; Peele, Andrew G; Pfeifer, Mark A; Clark, Jesse; Abbey, Brian; Cadenazzi, Guido; de Jonge, Martin D; Vogt, Stefan; Tilley, Leann; Nugent, Keith A

    2008-10-01

    Methods for imaging cellular architecture and ultimately macromolecular complexes and individual proteins, within a cellular environment, are an important goal for cell and molecular biology. Coherent diffractive imaging (CDI) is a method of lensless imaging that can be applied to any individual finite object. A diffraction pattern from a single biological structure is recorded and an iterative Fourier transform between real space and reciprocal space is used to reconstruct information about the architecture of the sample to high resolution. As a test system for cellular imaging, we have applied CDI to an important human pathogen, the malaria parasite, Plasmodium falciparum. We have employed a novel CDI approach, known as Fresnel CDI, which uses illumination with a curved incident wavefront, to image red blood cells infected with malaria parasites. We have examined the intrinsic X-ray absorption contrast of these cells and compared them with cells contrasted with heavy metal stains or immunogold labeling. We compare CDI images with data obtained from the same cells using scanning electron microscopy, light microscopy, and scanning X-ray fluorescence microscopy. We show that CDI can offer new information both within and at the surface of complex biological specimens at a spatial resolution of better than 40 nm. and we demonstrate an imaging modality that conveniently combines scanning X-ray fluorescence microscopy with CDI. The data provide independent confirmation of the validity of the coherent diffractive image and demonstrate that CDI offers the potential to become an important and reliable new high-resolution imaging modality for cell biology. CDI can detect features at high resolution within unsectioned cells.

  9. High-Resolution X-Ray Spectra of the Symbiotic Star SS73 17

    NASA Technical Reports Server (NTRS)

    Eze, R. N. C.; Luna, G. J. M.; Smith, R. K.

    2010-01-01

    SS73 17 was an innocuous Mira-type symbiotic star until the International Gamma-Ray Astrophysics Laboratory and Swift discovered its bright hard X-ray emission, adding it to the small class of "hard X-ray emitting symbiotics." Suzaku observations in 2006 then showed it emits three bright iron lines as well, with little to no emission in the 0.3-2.0 keV bandpass. We present here follow-up observations with the Chandra High Energy Transmission Grating and Suzaku that confirm the earlier detection of strong emission lines of Fe K(alpha) fluorescence, Fe XXV and Fe XXVI but also show significantly more soft X-ray emission. The high-resolution spectrum also shows emission lines of other highly ionized ions as Si xiv and possibly S XVI. In addition, a re-analysis of the 2006 Suzaku data using the latest calibration shows that the hard (15-50 keV) X-ray emission is brighter than previously thought and remains constant in both the 2006 and 2008 data. The G ratio calculated from the Fe xxv lines shows that these lines are thermal, not photoionized, in origin.With the exception of the hard X-ray emission, the spectra from both epochs can be fit using thermal radiation assuming a differential emission measure based on a cooling-flow model combined with a full and partial absorber. We show that acceptable fits can be obtained for all the data in the 1-10 keV band varying only the partial absorber. Based on the temperature and accretion rate, the thermal emission appears to be arising from the boundary layer between the accreting white dwarf and the accretion disk.

  10. High resolution X-ray diffraction imaging of lead tin telluride

    NASA Technical Reports Server (NTRS)

    Steiner, Bruce; Dobbyn, Ronald C.; Black, David; Burdette, Harold; Kuriyama, Masao; Spal, Richard; Simchick, Richard; Fripp, Archibald

    1991-01-01

    High resolution X-ray diffraction images of two directly comparable crystals of lead tin telluride, one Bridgman-grown on Space Shuttle STS 61A and the other terrestrially Bridgman-grown under similar conditions from identical material, present different subgrain structure. In the terrestrial, sample 1 the appearance of an elaborate array of subgrains is closely associated with the intrusion of regions that are out of diffraction in all of the various images. The formation of this elaborate subgrain structure is inhibited by growth in microgravity.

  11. Coordinated Observations of X-ray and High-resolution EUV Active Region Dynamics

    NASA Technical Reports Server (NTRS)

    Savage, Sabrina

    2013-01-01

    The recently-launched High-resolution Coronal imager (Hi-C) sounding rocket provided the highest resolution images of coronal loops and other small-scale structures in the 193 Angstrom passband to date. With just 5 minutes of observations, the instrument recorded a variety of dynamic coronal events -- including even a small B-class flare. We will present our results comparing these extreme-ultraviolet (EUV) observations with X-ray imaging from Hinode/XRT as well as EUV AIA data to identify sources of hot plasma rooted in the photosphere and track their affect on the overall topology and dynamics of the active region.

  12. Coordinated Observations of X-ray and High-Resolution EUV Active Region Dynamics

    NASA Technical Reports Server (NTRS)

    Savage, Sabrina; Cirtain, Jonathan; Winebarger, Amy; Kobayashi, Ken; Golub, Leon; Korreck, Kelly

    2013-01-01

    The recently-launched High-resolution Coronal imager (Hi-C) sounding rocket provided the highest resolution images of coronal loops and other small-scale structures in the 193 Angstrom passband to date. With just 5 minutes of observations, the instrument recorded a variety of dynamic coronal events -- including even a small B-class flare. We will present our results comparing these extreme-ultraviolet (EUV) observations with X-ray imaging from Hinode/XRT as well as EUV AIA data to identify sources of hot plasma rooted in the photosphere and track their affect on the overall topology and dynamics of the active region.

  13. High-Resolution Spectroscopy with the Chandra X-ray Observatory

    ScienceCinema

    Canizares, Claude R. [MIT, Cambridge, Massachusetts, United States

    2016-07-12

    The capabilities of the Chandra X-ray Observatory and XMM-Newton for high-resolution spectroscopy have brought tradition plasma diagnostic techniques to the study of cosmic plasma. Observations have probed nearly every class of astronomical object, from young proto-starts through massive O starts and black hole binaries, supernova remnants, active galactic nuclei, and the intergalactic medium. Many of these sources show remarkable rich spectra that reveal new physical information, such as emission measure distributions, elemental abundances, accretion disk and wind signatures, and time variability. This talk will present an overview of the Chandra instrumentaton and selected examples of spectral observations of astrophysical and cosmological importance.

  14. High resolution hard X-ray spectra of solar and cosmic sources. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Schwartz, R. A.

    1984-01-01

    High resolution hard X-ray observations of a large solar flare and the Crab Nebula were obtained during balloon flights using an array of cooled germanium planar detectors. In addition, high time resolution high sensitivity measurements were obtained with a 300 square cm NaI/CsI phoswich scintillator. The Crab spectrum from both flights was searched without finding evidence of line emission below 200 keV. In particular, for the 73 keV line previously reported a 3 sigma upper limit for a narrow (1 keV FWHM) line .0019 and .0014 ph square cm/sec for the 1979 and 1980 flights, respectively was obtained.

  15. Calibration of High-Resolution X-Ray Tomography With Atomic Force Microscopy

    PubMed Central

    Kalukin, Andrew R.; Winn, Barry; Wang, Yuxin; Jacobsen, Chris; Levine, Zachary H.; Fu, Joseph

    2000-01-01

    For two-dimensional x-ray imaging of thin films, the technique of scanning transmission x-ray microscopy (STXM) has achieved images with feature sizes as small as 40 nm in recent years. However, calibration of three-dimensional tomographic images that are produced with STXM data at this scale has not yet been described in the scientific literature, and the calibration procedure has novel problems that have not been encountered by x-ray tomography carried out at a larger scale. In x-ray microtomography, for example, one always has the option of using optical imaging on a section of the object to verify the x-ray projection measurements; with STXM, on the other hand, the sample features are too small to be resolved by light at optical wavelengths. This fact implies that one must rely on procedures with higher resolution, such as atomic force microscopy (AFM), for the calibration. Such procedures, however, generally depend on a highly destructive sectioning of the sample, and are difficult to interpret because they give surface information rather than depth information. In this article, a procedure for calibration is described that overcomes these limitations and achieves a calibration of an STXM tomography image with an AFM image and a scanning electron microscopy image of the same object. A Ge star-shaped pattern was imaged at a synchrotron with a scanning transmission x-ray microscope. Nineteen high-resolution projection images of 200 × 200 pixels were tomographically reconstructed into a three-dimensional image. Features in two-dimensional images as small as 40 nm and features as small as 80 nm in the three-dimensional reconstruction were resolved. Transverse length scales based on atomic force microscopy, scanning electron microscopy, x-ray transmission and tomographic reconstruction agreed to within 10 nm. Toward the center of the sample, the pattern thickness calculated from projection images was (51 ± 15) nm vs (80 ± 52) nm for tomographic reconstruction

  16. High Resolution, Non-Dispersive X-Ray Calorimeter Spectrometers on EBITs and Orbiting Observatories

    NASA Technical Reports Server (NTRS)

    Porter, Frederick S.

    2010-01-01

    X-ray spectroscopy is the primary tool for performing atomic physics with Electron beam ion trap (EBITs). X-ray instruments have generally fallen into two general categories, 1) dispersive instruments with very high spectral resolving powers but limited spectral range, limited count rates, and require an entrance slit, generally, for EBITs, defined by the electron beam itself, and 2) non-dispersive solid-state detectors with much lower spectral resolving powers but that have a broad dynamic range, high count rate ability and do not require a slit. Both of these approaches have compromises that limit the type and efficiency of measurements that can be performed. In 1984 NASA initiated a program to produce a non-dispersive instrument with high spectral resolving power for x-ray astrophysics based on the cryogenic x-ray calorimeter. This program produced the XRS non-dispersive spectrometers on the Astro-E, Astro-E2 (Suzaku) orbiting observatories, the SXS instrument on the Astro-H observatory, and the planned XMS instrument on the International X-ray Observatory. Complimenting these spaceflight programs, a permanent high-resolution x-ray calorimeter spectrometer, the XRS/EBIT, was installed on the LLNL EBIT in 2000. This unique instrument was upgraded to a spectral resolving power of 1000 at 6 keV in 2003 and replaced by a nearly autonomous production-class spectrometer, the EBIT Calorimeter Spectrometer (ECS), in 2007. The ECS spectrometer has a simultaneous bandpass from 0.07 to over 100 keV with a spectral resolving power of 1300 at 6 keV with unit quantum efficiency, and 1900 at 60 keV with a quantum efficiency of 30%. X-ray calorimeters are event based, single photon spectrometers with event time tagging to better than 10 us. We are currently developing a follow-on instrument based on a newer generation of x-ray calorimeters with a spectral resolving power of 3000 at 6 keV, and improved timing and measurement cadence. The unique capabilities of the x-ray

  17. PREFACE: XTOP 2004 -- 7th Biennial Conference on High Resolution X-Ray Diffraction and Imaging

    NASA Astrophysics Data System (ADS)

    Holý, Vaclav

    2005-05-01

    The 7th Biennial Conference on High Resolution X-Ray Diffraction and Imaging (XTOP 2004) was held in the Prague suburb of Pruhonice, Czech Republic, during 7-10 September 2004. It was organized by the Czech and Slovak Crystallographic Association in cooperation with the Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Masaryk University, Brno, and Charles University, Prague. XTOP 2004 took place just after EPDIC IX (European Powder Diffraction Conference) organised in Prague by the same Association during 2-5 September 2004. The Organizing Committee was supported by an International Programme Committee including about 20 prominent scientists from several European and overseas countries, whose helpful suggestions for speakers are acknowledged. The conference was sponsored by the International Union of Crystallography and by several industrial sponsors; this sponsorship allowed us to support about 20 students and young scientists. In total, 147 official delegates and 8 accompanying persons from 16 countries of three continents attended our conference. The scientific programme of the conference was divided into 11 half-day sessions and 2 poster sessions. The participants presented 147 accepted contributions; of these 9 were 45-minute long invited talks, 34 were 20-minute oral presentations and 104 were posters. All posters were displayed for the whole meeting to ensure maximum exposure and interaction between delegates. We followed the very good experience from the previous conference, XTOP 2002, and also organized pre-conference tutorial lectures presented by experts in the field: `Imaging with hard synchrotron radiation' (J Härtwig, Grenoble), `High-resolution x-ray diffractometry: determination of strain and composition' (J Stangl, Linz), `X-ray grazing-incidence scattering from surfaces and nanostructures' (U Pietsch, Potsdam) and `Hard x-ray optics' (J Hrdý, Prague). According to the recommendation of the International Program Committee

  18. Modeling High-resolution Spectra from X-ray Illuminated Accretion Disks

    NASA Astrophysics Data System (ADS)

    Garcia, Javier; Kallman, T.

    2010-01-01

    This work is focused on the study of X-ray illuminated accretion disks around compact objects by modeling their structure and reprocessed spectra. Use of low-accuracy and incomplete atomic data is a key limitation in models which have been calculated so far. We remedy this situation by incorporating data for line energies, transition probabilities and photoionization cross sections taken from various sources, most notably calculations using the R-matrix suite of codes. We also implement a self-consistent approach for the radiative transfer of X-rays and the heating and ionization of the gas. These promise to lead to significant improvements in the understanding of the X-ray observations of active galactic nuclei (AGN), X-ray binaries and galactic black holes. By performing detailed radiative transfer calculations we have computed the reflected spectra from constant density slabs for different input parameters (e.g., density, strength of incident X-rays, iron abundance), including the redistribution of photons due to Compton scattering. Although broad and skewed iron emission lines observed in many accreting systems are often attributed to the Doppler effect and gravitational redshift, our results show that Comptonization can be responsible for a significant fraction of the line broadening. By analyzing simulated Suzaku observations from our models, we provide equivalent and physical widths and line centroid energies for atomic lines, absorption edges and recombination continua (among other features). These are provided in tabular and graphical form that can be used directly in the interpretation of observational data.

  19. Hitomi X-ray Astronomy Satellite: Power of High-Resolution Spectroscopy

    NASA Astrophysics Data System (ADS)

    Odaka, Hirokazu; Aff001

    2017-01-01

    Hitomi (ASTRO-H) is an X-ray observatory developed by an international collaboration led by JAXA. An X-ray microcalorimeter onboard this satellite has opened a new window of high-resolution spectroscopy with an unprecedented energy resolution of 5 eV (FWHM) at 6 keV. The spacecraft was launched on February 17, 2016 from Tanegashima Island, Japan, and we completed initial operations including deployment of the hard X-ray imagers on the extensible optical bench. All scientific instruments had successfully worked until the sudden loss of the mission on March 26. We have obtained a spectrum showing fully resolved emission lines through the first-light observation of the Perseus Cluster. The line-of-sight velocity dispersion of 164 +/- 10 km s-1 reveals the quiescent environment of intracluster medium at the cluster core, implying that measured cluster mass requires little correction for the turbulent pressure. We also discuss observations to the Galactic Center which could be performed with Hitomi.

  20. Narrow Line X-Ray Calibration Source for High Resolution Microcalorimeters

    NASA Technical Reports Server (NTRS)

    Hokin, M.S.; McCammon, D.; Morgan, K.M.; Bandler, Simon Richard; Lee, S.J.; Moseley, S.H.; Smith, S.J.

    2013-01-01

    We are developing a narrow line calibration source for use with X-ray microcalorimeters. At energies below 300 electronvolts fluorescent lines are intrinsically broad, making calibration of high resolution detectors difficult. This source consists of a 405 nanometers (3 electronvolts) laser diode coupled to an optical fiber. The diode is pulsed to create approximately one hundred photons in a few microseconds. If the pulses are short compared to the rise time of the detector, they will be detected as single events with a total energy in the soft X-ray range. Poisson fluctuations in photon number per pulse create a comb of X-ray lines with 3 electronvolts spacing, so detectors with energy resolution better than 2 electronvolts are required to resolve the individual lines. Our currently unstabilized diode has a multimode width less than 1 nanometer, giving a 300 electronvolt event a Full width at half maximum (FWHM) less than 0.1 electronvolts. By varying the driving voltage, or pulse width, the source can produce a comb centered on a wide range of energies. The calibration events are produced at precisely known times. This allows continuous calibration of a flight mission without contaminating the observed spectrum and with minimal deadtime.

  1. Design of High Resolution Soft X-Ray Microcalorimeters Using Magnetic Penetration Thermometers

    NASA Technical Reports Server (NTRS)

    Busch. Sarah; Balvin, Manuel; Bandler, Simon; Denis, Kevin; Finkbeiner, Fred; Porst, Jan-Patrick; Sadlier, Jack; Smith, Stephen; Stevenson, Thomas

    2012-01-01

    We have designed high-resolution soft x-ray microcalorimeters using magnetic penetration thermometers (MPTs) in an array of pixels covering a total of 2 square centimeters to have a resolving power of 300 at energies around 300 eV. This performance is desirable for studying the soft x-ray background from the warm hot intergalactic medium. MPT devices have small sensor heat capacity and high responsivities, which makes them excellent detector technology for attempting to attain sub-eV resolution. We are investigating the feasibility of pixels with absorbers that are 625 x 625 square micrometers, up to 1 x 1 square millimeters in area and 0.35 micrometer thick and thinner. Our tests have shown that suspended gold absorbers 0.35 micrometers thick (RRR = 6.7) are feasible to fabricate. We modeled the thermal diffusion from such thin gold over the size of a 625 x 625 square micrometer absorber, and conclude that the effect of the thermalization on the resolution of a 300 eV photon is an additional approximately 0.2 eV FWHM of broadening. We discuss the thermal effects of small absorber attachment sterns on solid substrate, as well as considerations for multiplexed readout. We will present the progress we have made towards building and testing this soft x-ray detector.

  2. Final report: high resolution lensless 3D imaging of nanostructures with coherent x-rays

    SciTech Connect

    Jacobsen, Chris

    2011-04-14

    This project helped pioneer the core capabilities of coherent diffraction imaging (CDI) using X rays at synchrotron light source facilities. We developed an apparatus that was used for CDI at the Advanced Light Source, and applied it to 2D and 3D imaging of nanostructures. We also explored a number of conceptual and computational issues on the reconstruction of CDI data.

  3. A high-resolution x-ray spectrometer for a kaon mass measurement

    NASA Astrophysics Data System (ADS)

    Phelan, Kevin; Suzuki, Ken; Zmeskal, Johann; Tortorella, Daniele; Bühler, Matthias; Hertrich, Theo

    2017-02-01

    The ASPECT consortium (Adaptable Spectrometer Enabled by Cryogenic Technology) is currently constructing a generalised cryogenic platform for cryogenic detector work which will be able to accommodate a wide range of sensors. The cryogenics system is based on a small mechanical cooler with a further adiabatic demagnetisation stage and will work with cryogenic detectors at sub-Kelvin temperatures. The commercial aim of the consortium is to produce a compact, user-friendly device with an emphasis on reliability and portability which can easily be transported for specialised on-site work, such as beam-lines or telescope facilities. The cryogenic detector platform will accommodate a specially developed cryogenic sensor, either a metallic magnetic calorimeter or a magnetic penetration-depth thermometer. The detectors will be designed to work in various temperatures regions with an emphasis on optimising the various detector resolutions for specific temperatures. One resolution target is of about 10 eV at the energies range typically created in kaonic atoms experiments (soft x-ray energies). A following step will see the introduction of continuous, high-power, sub-Kelvin cooling which will bring the cryogenic basis for a high resolution spectrometer system to the market. The scientific goal of the project will produce an experimental set-up optimised for kaon-mass measurements performing high-resolution x-ray spectroscopy on a beam-line provided foreseeably by the J-PARC (Tokai, Japan) or DAΦNE (Frascati, Italy) facilities.

  4. Focal spot deblurring for high resolution direct conversion x-ray detectors

    NASA Astrophysics Data System (ADS)

    Setlur Nagesh, S. V.; Rana, R.; Russ, M.; Ionita, Ciprian N.; Bednarek, D. R.; Rudin, S.

    2016-03-01

    Small pixel high resolution direct x-ray detectors have the advantage of higher spatial sampling and decreased blurring characteristic. The limiting factors for such systems becomes the degradation due to the focal spot size. One solution is a smaller focal spot; however, this can limit the output of the x-ray tube. Here a software solution of deconvolving with an estimated focal spot blur is presented. To simulate images from a direct detector affected with focal-spot blur, first a set of high-resolution stent images (FRED from Microvention, Inc., Tustin, CA) were acquired using a 75μm pixel size Dexela-Perkin-Elmer detector and frame averaged to reduce quantum noise. Then the averaged image was blurred with a known Gaussian blur. To add noise to the blurred image a flat-field image was multiplied with the blurred image. Both the ideal and the noisy-blurred images were then deconvolved with the known Gaussian function using either threshold-based inverse filtering or Weiner deconvolution. The blur in the ideal image was removed and the details were recovered successfully. However, the inverse filtering deconvolution process is extremely susceptible to noise. The Weiner deconvolution process was able to recover more of the details of the stent from the noisy-blurred image, but for noisier images, stent details are still lost in the recovery process.

  5. High-efficiency blazed transmission gratings for high-resolution soft x-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Heilmann, Ralf K.; Bruccoleri, Alexander R.; Schattenburg, Mark L.

    2015-09-01

    High-resolution spectroscopy of astrophysical sources is the key to gaining a quantitative understanding of the history, dynamics, and current conditions of the cosmos. A large-area (> 1,000 cm2), high resolving power (R = λ/Δλ> 3000) soft x-ray grating spectrometer (XGS) that covers the lines of C, N, O, Ne and Fe ions is the ideal tool to address a number of high-priority science questions from the 2010 Decadal Survey, such as the connection between super-massive black holes and large-scale structure via cosmic feedback, the evolution of large- scale structure, the behavior of matter at high densities, and the conditions close to black holes. While no grating missions or instruments are currently approved, an XGS aboard a potential future X-ray Surveyor could easily surpass the above performance metrics. To improve the chances for future soft x-ray grating spectroscopy missions or instruments, grating technology has to progress and advance to higher Technology Readiness Levels (TRLs). To that end we have developed Critical-Angle Transmission (CAT) gratings that combine the advantages of blazed reflection gratings (high efficiency, use of higher diffraction orders) with those of conventional transmission gratings (low mass, relaxed alignment tolerances and temperature requirements, high transparency at higher energies). A CAT grating-based spectrometer can provide performance 1-2 orders of magnitude better than current grating instruments on Chandra and Newton-XMM with minimal resource requirements. At present we have fabricated large-area freestanding CAT gratings with narrow integrated support structures from silicon-on- insulator wafers using advanced lithography and a combination of deep reactive-ion and wet etching. Our latest x-ray test results show record high absolute diffraction efficiencies in blazed orders in excess of 30% with room for improvement.

  6. High-resolution visualization of airspace structures in intact mice via synchrotron phase-contrast X-ray imaging (PCXI)

    PubMed Central

    Parsons, David W; Morgan, Kaye; Donnelley, Martin; Fouras, Andreas; Crosbie, Jeffrey; Williams, Ivan; Boucher, Richard C; Uesugi, Kentaro; Yagi, Naoto; Siu, Karen K W

    2008-01-01

    Anatomical visualization of airspace-containing organs in intact small animals has been limited by the resolution and contrast available from current imaging methods such as X-ray, micro-computed tomography and magnetic resonance imaging. Determining structural relationships and detailed anatomy has therefore relied on suitable fixation, sectioning and histological processing. More complex and informative analyses such as orthogonal views of an organ and three-dimensional structure visualizations have required different animals and image sets, laboriously processed to gather this complementary structural information. Precise three-dimensional anatomical views have always been difficult to achieve in small animals. Here we report the ability of phase-contrast synchrotron X-ray imaging to provide detailed two- and three-dimensional visualization of airspace organ structures in intact animals. Using sub-micrometre square pixel charge-coupled device array detectors, the structure and anatomy of hard and soft tissues, and of airspaces, is readily available using phase-contrast synchrotron X-ray imaging. Moreover, software-controlled volume-reconstructions of tomographic images not only provide unsurpassed image clarity and detail, but also selectable anatomical views that cannot be obtained with established histological techniques. The morphology and structure of nasal and lung airways and the middle ear are illustrated in intact mice, using two- and three-dimensional representations. The utility of phase-contrast synchrotron X-ray imaging for non-invasively localizing objects implanted within airspaces, and the detection of gas bubbles transiting live airways, are other novel features of this visualization methodology. The coupling of phase-contrast synchrotron X-ray imaging technology with software-based reconstruction techniques holds promise for novel and high-resolution non-invasive examination of airspace anatomy in small animal models. PMID:19172736

  7. High-resolution Bent-crystal Spectrometer for the Ultra-soft X-ray Region

    DOE R&D Accomplishments Database

    Beiersdorfer, P.; von Goeler, S.; Bitter, M.; Hill, K. W.; Hulse, R. A.; Walling, R. S.

    1988-10-01

    A multichannel vacuum Brag-crystal spectrometer has been developed for high-resolution measurements of the line emission from tokamak plasmas in the wavelength region between 4 and 25 angstrom. The spectrometer employs a bent crystal in Johann geometry and a microchannel-plate intensified photodiode array. The instrument is capable of measuring high-resolution spectra (lambda/..delta..lambda approx. 3000) with fast time resolution (4 msec per spectrum) and good spatial resolution (3 cm). The spectral bandwidth is ..delta..lambda/lambda{sub 0} = 8 angstrom. A simple tilt mechanism allows access to different wavelength intervals. In order to illustrate the utility of the new spectrometer, time- and space-resolved measurements of the n = 3 to n = 2 spectrum of selenium from the Princeton Large Torus tokamak plasmas are presented. The data are used to determine the plasma transport parameters and to infer the radial distribution of fluorinelike, neonlike, and sodiumlike ions of selenium in the plasma. The new ultra-soft x-ray spectrometer has thus enabled us to demonstrate the utility of high-resolution L-shell spectroscopy of neonlike ions as a fusion diagnostic.

  8. Direct and quantitative comparison of pixelated density profiles to high resolution X-ray reflectivity data.

    SciTech Connect

    Fenter, Paul; Lee, S. S.; Skelton, A A; Cummings, Peter T

    2011-01-01

    A method for comparing pixelated density profiles (e.g. obtained from molecular dynamics or other computational techniques) with experimental X-ray reflectivity data both directly and quantitatively is described. The conditions under which such a comparison can be made quantitatively (e.g. with errors <1%) are determined theoretically by comparing calculated structure factors for an intrinsic continuous density profile with those obtained from density profiles that have been binned into regular spatial increments. The accuracy of the X-ray reflectivity calculations for binned density profiles is defined in terms of the inter-relationships between resolution of the X-ray reflectivity data (i.e. its range in momentum transfer), the chosen bin size and the width of the intrinsic density profile. These factors play a similar role in the application of any structure-factor calculations that involve the use of pixelated density profiles, such as those obtained from iterative phasing algorithms for inverting structures from X-ray reflectivity and coherent diffraction imaging data. Finally, it is shown how simulations of a quartz water interface can be embedded into an exact description of the bulk phases (including the substrate crystal and the fluid water, below and above the actual interface) to quantitatively reproduce the experimental reflectivity data of a solid liquid interface.

  9. High Resolution X-Ray Phase Contrast Imaging with Acoustic Tissue-Selective Contrast Enhancement

    DTIC Science & Technology

    2005-06-01

    microfocus x - ray source. Rev. Sci. Instr. 68, 2774 (1997). 8. Krol, A. et al. Laser-based microfocused x - ray ...high spatial coherence, such as synchrotrons 46, microfocus x - ray tubes 7, or laser plasma x - ray sources 8,9are employed is the phase contrast component...imaging apparatus to determine the deflection of the bead as a function of acoustic pressure. The x - rays , generated by a microfocus x - ray tube

  10. Conception of broadband stigmatic high-resolution spectrometers for the soft X-ray range

    SciTech Connect

    Vishnyakov, E A; Shatokhin, A N; Ragozin, E N

    2015-04-30

    We formulate an approach to the development of stigmatic high-resolution spectral instruments for the soft X-ray range (λ ≤ 300 Å), which is based on the combined operation of normalincidence multilayer mirrors (including broadband aperiodic ones) and grazing-incidence reflection gratings with nonequidistant grooves (so-called VLS gratings). A concave multilayer mirror serves to produce a slightly astigmatic image of the radiation source (for instance, an entrance slit), and the diffraction grating produces a set of its dispersed stigmatic spectral images. The width of the operating spectral region is determined by the aperiodic structure of the multilayer mirror and may range up to an octave in wavelength. (laser applications and other topics in quantum electronics)

  11. Development of a high resolution x-ray spectrometer for the National Ignition Facility (NIF)

    NASA Astrophysics Data System (ADS)

    Hill, K. W.; Bitter, M.; Delgado-Aparicio, L.; Efthimion, P. C.; Ellis, R.; Gao, L.; Maddox, J.; Pablant, N. A.; Schneider, M. B.; Chen, H.; Ayers, S.; Kauffman, R. L.; MacPhee, A. G.; Beiersdorfer, P.; Bettencourt, R.; Ma, T.; Nora, R. C.; Scott, H. A.; Thorn, D. B.; Kilkenny, J. D.; Nelson, D.; Shoup, M.; Maron, Y.

    2016-11-01

    A high resolution (E/ΔE = 1200-1800) Bragg crystal x-ray spectrometer is being developed to measure plasma parameters in National Ignition Facility experiments. The instrument will be a diagnostic instrument manipulator positioned cassette designed mainly to infer electron density in compressed capsules from Stark broadening of the helium-β (1s2-1s3p) lines of krypton and electron temperature from the relative intensities of dielectronic satellites. Two conically shaped crystals will diffract and focus (1) the Kr Heβ complex and (2) the Heα (1s2-1s2p) and Lyα (1s-2p) complexes onto a streak camera photocathode for time resolved measurement, and a third cylindrical or conical crystal will focus the full Heα to Heβ spectral range onto an image plate to provide a time integrated calibration spectrum. Calculations of source x-ray intensity, spectrometer throughput, and spectral resolution are presented. Details of the conical-crystal focusing properties as well as the status of the instrumental design are also presented.

  12. Temperature gradient analyzers for compact high-resolution X-ray spectrometers

    PubMed Central

    Ishikawa, D.; Baron, A. Q. R.

    2010-01-01

    Compact high-resolution X-ray spectrometers with a one-dimensional temperature gradient at the analyzer crystal are considered. This gradient, combined with the use of a position-sensitive detector, makes it possible to relax the usual Rowland-circle condition, allowing increased space at the sample position for a given energy resolution or arm radius. Thus, for example, it is estimated that ∼meV resolution is possible with a 3 m analyzer arm and 200 mm clearance between the sample and detector. Simple analytic formulae are provided, supported by excellent agreement with ray-tracing simulations. One variation of this method also allows the detector position sensitivity to be used to determine momentum transfer, effectively improving momentum resolution without reducing (slitting down) the analyzer size. Application to medium-resolution (∼10–100 meV) inelastic X-ray scattering spectrometers with large angular acceptance is discussed, where this method also allows increased space at the sample. In some cases the application of a temperature gradient can improve the energy resolution even with a single-element detector. PMID:20029107

  13. Revisit of alpha-chitin crystal structure using high resolution X-ray diffraction data.

    PubMed

    Sikorski, Pawel; Hori, Ritsuko; Wada, Masahisa

    2009-05-11

    High resolution synchrotron X-ray fiber diffraction data recorded from crab tendon chitin have been used to describe the crystal structure of alpha-chitin. Crystal structures at 100 and 300 K have been solved using restrained crystallographic refinement against diffraction intensities measured from the fiber diffraction patterns. The unit cell contains two polymer chains in a 2(1) helix conformation and in the antiparallel orientation. The best agreement between predicated and observed X-ray diffraction intensities is obtained for a model that includes two distinctive conformations of C6-O6 hydroxymethl group. Those conformations are different from what is proposed in the generally accepted alpha-chitin crystal structure (J. Mol. Biol. 1978, 120, 167-181). Based on refined positions of the O6 atoms, a network of hydrogen bonds involving O6 is proposed. This network of hydrogen bonds can explain the main features of the polarized FTIR spectra of alpha-chitin and sheds some light on the origin of splitting of the amide I band observed on alpha-chitin IR spectra.

  14. Determination of plutonium in spent nuclear fuel using high resolution X-ray

    DOE PAGES

    McIntosh, Kathryn G.; Reilly, Sean D.; Havrilla, George J.

    2015-05-30

    Characterization of Pu is an essential aspect of safeguards operations at nuclear fuel reprocessing facilities. A novel analysis technique called hiRX (high resolution X-ray) has been developed for the direct measurement of Pu in spent nuclear fuel dissolver solutions. hiRX is based on monochromatic wavelength dispersive X-ray fluorescence (MWDXRF), which provides enhanced sensitivity and specificity compared with conventional XRF techniques. A breadboard setup of the hiRX instrument was calibrated using spiked surrogate spent fuel (SSF) standards prepared as dried residues. Samples of actual spent fuel were utilized to evaluate the performance of the hiRX. The direct detection of just 39more » ng of Pu is demonstrated. Initial quantitative results, with error of 4–27% and precision of 2% relative standard deviation (RSD), were obtained for spent fuel samples. The limit of detection for Pu (100 s) within an excitation spot of 200 μm diameter was 375 pg. This study demonstrates the potential for the hiRX technique to be utilized for the rapid, accurate, and precise determination of Pu. Moreover, the results highlight the analytical capability of hiRX for other applications requiring sensitive and selective nondestructive analyses.« less

  15. Development of a high resolution x-ray spectrometer for the National Ignition Facility (NIF)

    DOE PAGES

    Hill, K. W.; Bitter, M.; Delgado-Aparicio, L.; ...

    2016-09-28

    A high resolution (E/ΔE = 1200-1800) Bragg crystal x-ray spectrometer is being developed to measure plasma parameters in National Ignition Facility experiments. The instrument will be a diagnostic instrument manipulator positioned cassette designed mainly to infer electron density in compressed capsules from Stark broadening of the helium-β (1s2-1s3p) lines of krypton and electron temperature from the relative intensities of dielectronic satellites. Two conically shaped crystals will diffract and focus (1) the Kr Heβ complex and (2) the Heα (1s2-1s2p) and Lyα (1s-2p) complexes onto a streak camera photocathode for time resolved measurement, and a third cylindrical or conical crystal willmore » focus the full Heα to Heβ spectral range onto an image plate to provide a time integrated calibration spectrum. Calculations of source x-ray intensity, spectrometer throughput, and spectral resolution are presented. Furthermore, details of the conical-crystal focusing properties as well as the status of the instrumental design are also presented.« less

  16. ISIS: An Interactive Spectral Interpretation System for High Resolution X-Ray Spectroscopy

    NASA Astrophysics Data System (ADS)

    Houck, J. C.; Denicola, L. A.

    The Interactive Spectral Interpretation System (ISIS) is designed to facilitate the interpretation and analysis of high resolution X-ray spectra like those obtained using the grating spectrographs on Chandra and XMM and the microcalorimeter on Astro-E. It is being developed as an interactive tool for studying the physics of X-ray spectrum formation, supporting measurement and identification of spectral features, and interaction with a database of atomic structure parameters and plasma emission models. The current version uses the atomic data and collisional ionization equilibrium models in the Astrophysical Plasma Emission Database (APED) of Brickhouse et.al., and also provides access to earlier plasma emission models including Raymond-Smith and MEKAL. Although the current version focuses on collisional ionization equilibrium plasmas, the system is designed to allow use of other databases to provide better support for studies of non-equilibrium and photoionized plasmas. To maximize portability between Unix operating systems, ISIS is being written entirely in ANSI C using free-software components (CFITSIO, PGPLOT and S-Lang).

  17. Development of a high resolution x-ray spectrometer for the National Ignition Facility (NIF).

    PubMed

    Hill, K W; Bitter, M; Delgado-Aparicio, L; Efthimion, P C; Ellis, R; Gao, L; Maddox, J; Pablant, N A; Schneider, M B; Chen, H; Ayers, S; Kauffman, R L; MacPhee, A G; Beiersdorfer, P; Bettencourt, R; Ma, T; Nora, R C; Scott, H A; Thorn, D B; Kilkenny, J D; Nelson, D; Shoup, M; Maron, Y

    2016-11-01

    A high resolution (E/ΔE = 1200-1800) Bragg crystal x-ray spectrometer is being developed to measure plasma parameters in National Ignition Facility experiments. The instrument will be a diagnostic instrument manipulator positioned cassette designed mainly to infer electron density in compressed capsules from Stark broadening of the helium-β (1s(2)-1s3p) lines of krypton and electron temperature from the relative intensities of dielectronic satellites. Two conically shaped crystals will diffract and focus (1) the Kr Heβ complex and (2) the Heα (1s(2)-1s2p) and Lyα (1s-2p) complexes onto a streak camera photocathode for time resolved measurement, and a third cylindrical or conical crystal will focus the full Heα to Heβ spectral range onto an image plate to provide a time integrated calibration spectrum. Calculations of source x-ray intensity, spectrometer throughput, and spectral resolution are presented. Details of the conical-crystal focusing properties as well as the status of the instrumental design are also presented.

  18. Design and performance of AERHA, a high acceptance high resolution soft x-ray spectrometer

    SciTech Connect

    Chiuzbăian, Sorin G. Hague, Coryn F.; Brignolo, Stefania; Baumier, Cédric; Lüning, Jan; Avila, Antoine; Delaunay, Renaud; Mariot, Jean-Michel; Jaouen, Nicolas; Polack, François; Thomasset, Muriel; Lagarde, Bruno; Nicolaou, Alessandro; Sacchi, Maurizio

    2014-04-15

    A soft x-ray spectrometer based on the use of an elliptical focusing mirror and a plane varied line spacing grating is described. It achieves both high resolution and high overall efficiency while remaining relatively compact. The instrument is dedicated to resonant inelastic x-ray scattering studies. We set out how this optical arrangement was judged best able to guarantee performance for the 50 − 1000 eV range within achievable fabrication targets. The AERHA (adjustable energy resolution high acceptance) spectrometer operates with an effective angular acceptance between 100 and 250 μsr (energy dependent) and a resolving power well in excess of 5000 according to the Rayleigh criterion. The high angular acceptance is obtained by means of a collecting pre-mirror. Three scattering geometries are available to enable momentum dependent measurements with 135°, 90°, and 50° scattering angles. The instrument operates on the Synchrotron SOLEIL SEXTANTS beamline which serves as a high photon flux 2 × 200 μm{sup 2} focal spot source with full polarization control.

  19. Design and performance of AERHA, a high acceptance high resolution soft x-ray spectrometer

    NASA Astrophysics Data System (ADS)

    Chiuzbǎian, Sorin G.; Hague, Coryn F.; Avila, Antoine; Delaunay, Renaud; Jaouen, Nicolas; Sacchi, Maurizio; Polack, François; Thomasset, Muriel; Lagarde, Bruno; Nicolaou, Alessandro; Brignolo, Stefania; Baumier, Cédric; Lüning, Jan; Mariot, Jean-Michel

    2014-04-01

    A soft x-ray spectrometer based on the use of an elliptical focusing mirror and a plane varied line spacing grating is described. It achieves both high resolution and high overall efficiency while remaining relatively compact. The instrument is dedicated to resonant inelastic x-ray scattering studies. We set out how this optical arrangement was judged best able to guarantee performance for the 50 - 1000 eV range within achievable fabrication targets. The AERHA (adjustable energy resolution high acceptance) spectrometer operates with an effective angular acceptance between 100 and 250 μsr (energy dependent) and a resolving power well in excess of 5000 according to the Rayleigh criterion. The high angular acceptance is obtained by means of a collecting pre-mirror. Three scattering geometries are available to enable momentum dependent measurements with 135°, 90°, and 50° scattering angles. The instrument operates on the Synchrotron SOLEIL SEXTANTS beamline which serves as a high photon flux 2 × 200 μm2 focal spot source with full polarization control.

  20. High-resolution x-ray absorption spectroscopy studies of metal compounds in neurodegenerative brain tissue

    NASA Astrophysics Data System (ADS)

    Collingwood, J. F.; Mikhaylova, A.; Davidson, M. R.; Batich, C.; Streit, W. J.; Eskin, T.; Terry, J.; Barrea, R.; Underhill, R. S.; Dobson, J.

    2005-01-01

    Fluorescence mapping and microfocus X-ray absorption spectroscopy are used to detect, locate and identify iron biominerals and other inorganic metal accumulations in neurodegenerative brain tissue at sub-cellular resolution (<5 microns). Recent progress in developing the technique is reviewed. Synchrotron X-rays are used to map tissue sections for metals of interest, and XANES and XAFS are used to characterise anomalous concentrations of the metals in-situ so that they can be correlated with tissue structures and disease pathology. Iron anomalies associated with biogenic magnetite, ferritin and haemoglobin are located and identified in an avian tissue model with a pixel resolution ~5 microns. Subsequent studies include brain tissue sections from transgenic Huntington's mice, and the first high-resolution mapping and identification of iron biominerals in human Alzheimer's and control autopsy brain tissue. Technical developments include use of microfocus diffraction to obtain structural information about biominerals in-situ, and depositing sample location grids by lithography for the location of anomalies by conventional microscopy. The combined techniques provide a breakthrough in the study of both intra- and extra-cellular iron compounds and related metals in tissue. The information to be gained from this approach has implications for future diagnosis and treatment of neurodegeneration, and for our understanding of the mechanisms involved.

  1. High-resolution x-ray absorption spectroscopy studies of metal compounds in neurodegenerative brain tissue

    SciTech Connect

    Collingwood, J.F.; Mikhaylova, A.; Davidson, M.R.; Batich, C.; Streit, W.J.; Eskin, T.; Terry, J.; Barrea, R.; Underhill, R.S.; Dobson, J.

    2008-06-16

    Fluorescence mapping and microfocus X-ray absorption spectroscopy are used to detect, locate and identify iron biominerals and other inorganic metal accumulations in neurodegenerative brain tissue at sub-cellular resolution (< 5 microns). Recent progress in developing the technique is reviewed. Synchrotron X-rays are used to map tissue sections for metals of interest, and XANES and XAFS are used to characterize anomalous concentrations of the metals in-situ so that they can be correlated with tissue structures and disease pathology. Iron anomalies associated with biogenic magnetite, ferritin and haemoglobin are located and identified in an avian tissue model with a pixel resolution {approx} 5 microns. Subsequent studies include brain tissue sections from transgenic Huntington's mice, and the first high-resolution mapping and identification of iron biominerals in human Alzheimer's and control autopsy brain tissue. Technical developments include use of microfocus diffraction to obtain structural information about biominerals in-situ, and depositing sample location grids by lithography for the location of anomalies by conventional microscopy. The combined techniques provide a breakthrough in the study of both intra- and extra-cellular iron compounds and related metals in tissue. The information to be gained from this approach has implications for future diagnosis and treatment of neurodegeneration, and for our understanding of the mechanisms involved.

  2. Development of a high resolution x-ray spectrometer for the National Ignition Facility (NIF)

    SciTech Connect

    Hill, K. W.; Bitter, M.; Delgado-Aparicio, L.; Efthimion, P. C.; Ellis, R.; Gao, L.; Maddox, J.; Pablant, N. A.; Schneider, M. B.; Chen, H.; Ayers, S.; Kauffman, R. L.; MacPhee, A. G.; Beiersdorfer, P.; Bettencourt, R.; Ma, T.; Nora, R. C.; Scott, H. A.; Thorn, D. B.; Kilkenny, J. D.; Nelson, D.; Shoup, III, M.; Maron, Y.

    2016-09-28

    A high resolution (E/ΔE = 1200-1800) Bragg crystal x-ray spectrometer is being developed to measure plasma parameters in National Ignition Facility experiments. The instrument will be a diagnostic instrument manipulator positioned cassette designed mainly to infer electron density in compressed capsules from Stark broadening of the helium-β (1s2-1s3p) lines of krypton and electron temperature from the relative intensities of dielectronic satellites. Two conically shaped crystals will diffract and focus (1) the Kr Heβ complex and (2) the Heα (1s2-1s2p) and Lyα (1s-2p) complexes onto a streak camera photocathode for time resolved measurement, and a third cylindrical or conical crystal will focus the full Heα to Heβ spectral range onto an image plate to provide a time integrated calibration spectrum. Calculations of source x-ray intensity, spectrometer throughput, and spectral resolution are presented. Furthermore, details of the conical-crystal focusing properties as well as the status of the instrumental design are also presented.

  3. Determination of plutonium in spent nuclear fuel using high resolution X-ray

    SciTech Connect

    McIntosh, Kathryn G.; Reilly, Sean D.; Havrilla, George J.

    2015-05-30

    Characterization of Pu is an essential aspect of safeguards operations at nuclear fuel reprocessing facilities. A novel analysis technique called hiRX (high resolution X-ray) has been developed for the direct measurement of Pu in spent nuclear fuel dissolver solutions. hiRX is based on monochromatic wavelength dispersive X-ray fluorescence (MWDXRF), which provides enhanced sensitivity and specificity compared with conventional XRF techniques. A breadboard setup of the hiRX instrument was calibrated using spiked surrogate spent fuel (SSF) standards prepared as dried residues. Samples of actual spent fuel were utilized to evaluate the performance of the hiRX. The direct detection of just 39 ng of Pu is demonstrated. Initial quantitative results, with error of 4–27% and precision of 2% relative standard deviation (RSD), were obtained for spent fuel samples. The limit of detection for Pu (100 s) within an excitation spot of 200 μm diameter was 375 pg. This study demonstrates the potential for the hiRX technique to be utilized for the rapid, accurate, and precise determination of Pu. Moreover, the results highlight the analytical capability of hiRX for other applications requiring sensitive and selective nondestructive analyses.

  4. High-resolution X-Ray Spectroscopy Reveals the Special Nature of Wolf-Rayet Star Winds

    NASA Astrophysics Data System (ADS)

    Oskinova, L. M.; Gayley, K. G.; Hamann, W.-R.; Huenemoerder, D. P.; Ignace, R.; Pollock, A. M. T.

    2012-03-01

    We present the first high-resolution X-ray spectrum of a putatively single Wolf-Rayet (WR) star. 400 ks observations of WR 6 by the XMM-Newton telescope resulted in a superb quality high-resolution X-ray spectrum. Spectral analysis reveals that the X-rays originate far out in the stellar wind, more than 30 stellar radii from the photosphere, and thus outside the wind acceleration zone where the line-driving instability (LDI) could create shocks. The X-ray emitting plasma reaches temperatures up to 50 MK and is embedded within the unshocked, "cool" stellar wind as revealed by characteristic spectral signatures. We detect a fluorescent Fe line at ≈6.4 keV. The presence of fluorescence is consistent with a two-component medium, where the cool wind is permeated with the hot X-ray emitting plasma. The wind must have a very porous structure to allow the observed amount of X-rays to escape. We find that neither the LDI nor any alternative binary scenario can explain the data. We suggest a scenario where X-rays are produced when the fast wind rams into slow "sticky clumps" that resist acceleration. Our new data show that the X-rays in single WR star are generated by some special mechanism different from the one operating in the O-star winds.

  5. Ultra-high resolution computed tomography imaging

    DOEpatents

    Paulus, Michael J.; Sari-Sarraf, Hamed; Tobin, Jr., Kenneth William; Gleason, Shaun S.; Thomas, Jr., Clarence E.

    2002-01-01

    A method for ultra-high resolution computed tomography imaging, comprising the steps of: focusing a high energy particle beam, for example x-rays or gamma-rays, onto a target object; acquiring a 2-dimensional projection data set representative of the target object; generating a corrected projection data set by applying a deconvolution algorithm, having an experimentally determined a transfer function, to the 2-dimensional data set; storing the corrected projection data set; incrementally rotating the target object through an angle of approximately 180.degree., and after each the incremental rotation, repeating the radiating, acquiring, generating and storing steps; and, after the rotating step, applying a cone-beam algorithm, for example a modified tomographic reconstruction algorithm, to the corrected projection data sets to generate a 3-dimensional image. The size of the spot focus of the beam is reduced to not greater than approximately 1 micron, and even to not greater than approximately 0.5 microns.

  6. So Many Rockets - The Road to High Resolution Imaging in X-rays

    NASA Astrophysics Data System (ADS)

    Murray, Stephen S.

    2013-01-01

    When I first begin to work on new imaging detectors for X-ray Astronomy I was at AS&E and I worked with Leon Van Speybroeck and Ed Kellogg on a sounding rocket project. We starting by using a microchannel plate image intensifier to detect X-ray photons and convert them to flashes of light that were recorded on 35 mm film frames. Simultaneously there was a 16 mm star camera taking frames so we could tell where the X-rays were coming from. I spent about 6 years working on this payload, eventually becoming the PI and evolving the detector from a film readout to an electronic readout (the crossed grid charge detector) that was the basis for the Einstein, ROSAT and Chandra High Resolution Imagers and Cameras. We had a series of about 6 or so rocket flights culminating in the 1978 flight that actually worked. We detected three photons from Sco X1, and background data from that flight allowed us to set the detector front bias voltage to minimize non-X-ray background for the Einstein HRI. Just about everything that could go wrong on those rockets did go wrong, from a switch not closing to a rocket misfire, to pointing 180 degrees off target. But we learned something each flight and kept coming back to try again. The worse thing for me was having to stay up all night at White Sands in a small darkroom where I could avoid the night crawlers and scorpions that frightened me to death. Not to mention the daredevil helicopter pilots who flew us to the recovery site hugging the ground at top speed all the way there! None-the-less, in the end we succeeded in our goals, and there is nothing so exciting as watching your payload being launched at night (even it did mean sneaking out from the bunker to do it!). Thanks to NASA and the US Navy's White Sands USS Desert Ship (LLS-1; Land Locked Ship - 1) for all the support.

  7. High-resolution synchrotron X-ray analysis of bioglass-enriched hydrogels.

    PubMed

    Gorodzha, Svetlana; Douglas, Timothy E L; Samal, Sangram K; Detsch, Rainer; Cholewa-Kowalska, Katarzyna; Braeckmans, Kevin; Boccaccini, Aldo R; Skirtach, Andre G; Weinhardt, Venera; Baumbach, Tilo; Surmeneva, Maria A; Surmenev, Roman A

    2016-05-01

    Enrichment of hydrogels with inorganic particles improves their suitability for bone regeneration by enhancing their mechanical properties, mineralizability, and bioactivity as well as adhesion, proliferation, and differentiation of bone-forming cells, while maintaining injectability. Low aggregation and homogeneous distribution maximize particle surface area, promoting mineralization, cell-particle interactions, and homogenous tissue regeneration. Hence, determination of the size and distribution of particles/particle agglomerates in the hydrogel is desirable. Commonly used techniques have drawbacks. High-resolution techniques (e.g., SEM) require drying. Distribution in the dry state is not representative of the wet state. Techniques in the wet state (histology, µCT) are of lower resolution. Here, self-gelling, injectable composites of Gellan Gum (GG) hydrogel and two different types of sol-gel-derived bioactive glass (bioglass) particles were analyzed in the wet state using Synchrotron X-ray radiation, enabling high-resolution determination of particle size and spatial distribution. The lower detection limit volume was 9 × 10(-5) mm(3) . Bioglass particle suspensions were also studied using zeta potential measurements and Coulter analysis. Aggregation of bioglass particles in the GG hydrogels occurred and aggregate distribution was inhomogeneous. Bioglass promoted attachment of rat mesenchymal stem cells (rMSC) and mineralization.

  8. Construction of hydrodynamic bead models from high-resolution X-ray crystallographic or nuclear magnetic resonance data.

    PubMed Central

    Byron, O

    1997-01-01

    Computer software such as HYDRO, based upon a comprehensive body of theoretical work, permits the hydrodynamic modeling of macromolecules in solution, which are represented to the computer interface as an assembly of spheres. The uniqueness of any satisfactory resultant model is optimized by incorporating into the modeling procedure the maximal possible number of criteria to which the bead model must conform. An algorithm (AtoB, for atoms to beads) that permits the direct construction of bead models from high resolution x-ray crystallographic or nuclear magnetic resonance data has now been formulated and tested. Models so generated then act as informed starting estimates for the subsequent iterative modeling procedure, thereby hastening the convergence to reasonable representations of solution conformation. Successful application of this algorithm to several proteins shows that predictions of hydrodynamic parameters, including those concerning solvation, can be confirmed. PMID:8994627

  9. Real-time, high-resolution x-ray diffraction measurements on shocked crystals at a synchrotron facility.

    PubMed

    Gupta, Y M; Turneaure, Stefan J; Perkins, K; Zimmerman, K; Arganbright, N; Shen, G; Chow, P

    2012-12-01

    The Advanced Photon Source (APS) at Argonne National Laboratory was used to obtain real-time, high-resolution x-ray diffraction measurements to determine the microscopic response of shock-compressed single crystals. Disk shaped samples were subjected to plane shock wave compression by impacting them with half-inch diameter, flat-faced projectiles. The projectiles were accelerated to velocities ranging between 300 and 1200 m/s using a compact powder gun designed specifically for use at a synchrotron facility. The experiments were designed to keep the sample probed volume under uniaxial strain and constant stress for a duration longer than the 153.4 ns spacing between x-ray bunches. X-rays from a single pulse (<100 ps duration) out of the periodic x-ray pulses emitted by the synchrotron were used for the diffraction measurements. A synchronization and x-ray detection technique was developed to ensure that the measured signal was obtained unambiguously from the desired x-ray pulse incident on the sample while the sample was in a constant uniaxial strain state. The synchronization and x-ray detection techniques described can be used for a variety of x-ray measurements on shock compressed solids and liquids at the APS. Detailed procedures for applying the Bragg-Brentano parafocusing approach to single crystals at the APS are presented. Analytic developments to determine the effects of crystal substructure and non-ideal geometry on the diffraction pattern position and shape are presented. Representative real-time x-ray diffraction data, indicating shock-induced microstructural changes, are presented for a shock-compressed Al(111) sample. The experimental developments presented here provided, in part, the impetus for the Dynamic Compression Sector (DCS) currently under development at the APS. Both the synchronization∕x-ray detection methods and the analysis equations for high-resolution single crystal x-ray diffraction can be used at the DCS.

  10. Real-time, high-resolution x-ray diffraction measurements on shocked crystals at a synchrotron facility

    NASA Astrophysics Data System (ADS)

    Gupta, Y. M.; Turneaure, Stefan J.; Perkins, K.; Zimmerman, K.; Arganbright, N.; Shen, G.; Chow, P.

    2012-12-01

    The Advanced Photon Source (APS) at Argonne National Laboratory was used to obtain real-time, high-resolution x-ray diffraction measurements to determine the microscopic response of shock-compressed single crystals. Disk shaped samples were subjected to plane shock wave compression by impacting them with half-inch diameter, flat-faced projectiles. The projectiles were accelerated to velocities ranging between 300 and 1200 m/s using a compact powder gun designed specifically for use at a synchrotron facility. The experiments were designed to keep the sample probed volume under uniaxial strain and constant stress for a duration longer than the 153.4 ns spacing between x-ray bunches. X-rays from a single pulse (<100 ps duration) out of the periodic x-ray pulses emitted by the synchrotron were used for the diffraction measurements. A synchronization and x-ray detection technique was developed to ensure that the measured signal was obtained unambiguously from the desired x-ray pulse incident on the sample while the sample was in a constant uniaxial strain state. The synchronization and x-ray detection techniques described can be used for a variety of x-ray measurements on shock compressed solids and liquids at the APS. Detailed procedures for applying the Bragg-Brentano parafocusing approach to single crystals at the APS are presented. Analytic developments to determine the effects of crystal substructure and non-ideal geometry on the diffraction pattern position and shape are presented. Representative real-time x-ray diffraction data, indicating shock-induced microstructural changes, are presented for a shock-compressed Al(111) sample. The experimental developments presented here provided, in part, the impetus for the Dynamic Compression Sector (DCS) currently under development at the APS. Both the synchronization/x-ray detection methods and the analysis equations for high-resolution single crystal x-ray diffraction can be used at the DCS.

  11. Active x-ray optics for Generation-X, the next high resolution x-ray observatory

    NASA Astrophysics Data System (ADS)

    Elvis, Martin; Brissenden, R. J.; Fabbiano, G.; Schwartz, D. A.; Reid, P.; Podgorski, W.; Eisenhower, M.; Juda, M.; Phillips, J.; Cohen, L.; Wolk, S.

    2006-06-01

    X-rays provide one of the few bands through which we can study the epoch of reionization, when the first galaxies, black holes and stars were born. To reach the sensitivity required to image these first discrete objects in the universe needs a major advance in X-ray optics. Generation-X (Gen-X) is currently the only X-ray astronomy mission concept that addresses this goal. Gen-X aims to improve substantially on the Chandra angular resolution and to do so with substantially larger effective area. These two goals can only be met if a mirror technology can be developed that yields high angular resolution at much lower mass/unit area than the Chandra optics, matching that of Constellation-X (Con-X). We describe an approach to this goal based on active X-ray optics that correct the mid-frequency departures from an ideal Wolter optic on-orbit. We concentrate on the problems of sensing figure errors, calculating the corrections required, and applying those corrections. The time needed to make this in-flight calibration is reasonable. A laboratory version of these optics has already been developed by others and is successfully operating at synchrotron light sources. With only a moderate investment in these optics the goals of Gen-X resolution can be realized.

  12. Ab initio simulation of diffractometer instrumental function for high-resolution X-ray diffraction.

    PubMed

    Mikhalychev, Alexander; Benediktovitch, Andrei; Ulyanenkova, Tatjana; Ulyanenkov, Alex

    2015-06-01

    Modeling of the X-ray diffractometer instrumental function for a given optics configuration is important both for planning experiments and for the analysis of measured data. A fast and universal method for instrumental function simulation, suitable for fully automated computer realization and describing both coplanar and noncoplanar measurement geometries for any combination of X-ray optical elements, is proposed. The method can be identified as semi-analytical backward ray tracing and is based on the calculation of a detected signal as an integral of X-ray intensities for all the rays reaching the detector. The high speed of calculation is provided by the expressions for analytical integration over the spatial coordinates that describe the detection point. Consideration of the three-dimensional propagation of rays without restriction to the diffraction plane provides the applicability of the method for noncoplanar geometry and the accuracy for characterization of the signal from a two-dimensional detector. The correctness of the simulation algorithm is checked in the following two ways: by verifying the consistency of the calculated data with the patterns expected for certain simple limiting cases and by comparing measured reciprocal-space maps with the corresponding maps simulated by the proposed method for the same diffractometer configurations. Both kinds of tests demonstrate the agreement of the simulated instrumental function shape with the measured data.

  13. Achromatic and high-resolution full-field X-ray microscopy based on total-reflection mirrors.

    PubMed

    Matsuyama, Satoshi; Emi, Yoji; Kino, Hidetoshi; Kohmura, Yoshiki; Yabashi, Makina; Ishikawa, Tetsuya; Yamauchi, Kazuto

    2015-04-20

    We developed an achromatic and high-resolution full-field X-ray microscope based on advanced Kirkpatrick-Baez mirror optics that comprises two pairs of elliptical mirrors and hyperbolic mirrors utilizing the total reflection of X-rays. Performance tests to investigate the spatial resolution and chromatic aberration were performed at SPring-8. The microscope clearly resolved the pattern with ~100-nm feature size. Imaging the pattern by changing the X-ray energy revealed achromatism in the wide energy range of 8-11 keV.

  14. High-resolution dichroic imaging of magnetic flux distributions in superconductors with scanning x-ray microscopy

    SciTech Connect

    Ruoß, S. Stahl, C.; Weigand, M.; Schütz, G.; Albrecht, J.

    2015-01-12

    The penetration of magnetic flux into high-temperature superconductors has been observed using a high-resolution technique based on x-ray magnetic circular dichroism. Superconductors coated with thin soft-magnetic layers are observed in a scanning x-ray microscope under the influence of external magnetic fields. Resulting electric currents in the superconductor create an inhomogeneous magnetic field distribution above the superconductor and lead to a local reorientation of the ferromagnetic layer. Measuring the local magnetization of the ferromagnet by x-ray absorption microscopy with circular-polarized radiation allows the analysis of the magnetic flux distribution in the superconductor with a spatial resolution on the nanoscale.

  15. High-Resolution X-Ray Imaging of Colliding Radio-Jet Galaxies

    NASA Technical Reports Server (NTRS)

    Born, Kirk D.; Whitmore, Brad

    1996-01-01

    We received ROSAT data for four program objects:3C31,3C278,3C449,and NGC1044. The first three sources were observed with the ROSAT HRI instrument. Our plan was to use the HRI to image the hot gas distribution in a few pairs of strongly disturbed interacting elliptical galaxies which are also strong radio sources having a bent-jet source morphology. The PSPC was used for NGC1044 in order to obtain a flux measurement to use in planning future High Resolution Imager (HRI) observations of that source. Though we never requested such HRI observations of NGC1044, others have used those archival PSPC data from our project for other research projects and analyses. The goal of the program was to elucidate the detailed distribution of hot gas into which the jets flow. The X-ray data were consequently analyzed in conjunction with existing VLA radio maps, optical broad-band and H-alpha Charge Couple device (CCD) images, and optical kinematic data to constrain models for the propagation of ballistic jets in interacting galaxies. We were able to test and validate the claimed causal connection between tidal interaction, the presence of gas, and the onset of activity in galaxies. The full multi-wavelength multi-observatory analyses described here are still on-going and will be published in the future. Because of the relevance of this research to on-going work in the field of active galaxies, the grant was used to support travel to several scientific meetings where our x-ray analysis, numerical modeling, and related radio results were presented and discussed.

  16. Meta-shell Approach for Constructing Lightweight and High Resolution X-Ray Optics

    NASA Technical Reports Server (NTRS)

    McClelland, Ryan S.

    2016-01-01

    Lightweight and high resolution optics are needed for future space-based x-ray telescopes to achieve advances in high-energy astrophysics. Past missions such as Chandra and XMM-Newton have achieved excellent angular resolution using a full shell mirror approach. Other missions such as Suzaku and NuSTAR have achieved lightweight mirrors using a segmented approach. This paper describes a new approach, called meta-shells, which combines the fabrication advantages of segmented optics with the alignment advantages of full shell optics. Meta-shells are built by layering overlapping mirror segments onto a central structural shell. The resulting optic has the stiffness and rotational symmetry of a full shell, but with an order of magnitude greater collecting area. Several meta-shells so constructed can be integrated into a large x-ray mirror assembly by proven methods used for Chandra and XMM-Newton. The mirror segments are mounted to the meta-shell using a novel four point semi-kinematic mount. The four point mount deterministically locates the segment in its most performance sensitive degrees of freedom. Extensive analysis has been performed to demonstrate the feasibility of the four point mount and meta-shell approach. A mathematical model of a meta-shell constructed with mirror segments bonded at four points and subject to launch loads has been developed to determine the optimal design parameters, namely bond size, mirror segment span, and number of layers per meta-shell. The parameters of an example 1.3 m diameter mirror assembly are given including the predicted effective area. To verify the mathematical model and support opto-mechanical analysis, a detailed finite element model of a meta-shell was created. Finite element analysis predicts low gravity distortion and low thermal distortion. Recent results are discussed including Structural Thermal Optical Performance (STOP) analysis as well as vibration and shock testing of prototype meta-shells.

  17. High resolution X-ray fluorescence imaging for a microbeam radiation therapy treatment planning system

    NASA Astrophysics Data System (ADS)

    Chtcheprov, Pavel; Inscoe, Christina; Burk, Laurel; Ger, Rachel; Yuan, Hong; Lu, Jianping; Chang, Sha; Zhou, Otto

    2014-03-01

    Microbeam radiation therapy (MRT) uses an array of high-dose, narrow (~100 μm) beams separated by a fraction of a millimeter to treat various radio-resistant, deep-seated tumors. MRT has been shown to spare normal tissue up to 1000 Gy of entrance dose while still being highly tumoricidal. Current methods of tumor localization for our MRT treatments require MRI and X-ray imaging with subject motion and image registration that contribute to the measurement error. The purpose of this study is to develop a novel form of imaging to quickly and accurately assist in high resolution target positioning for MRT treatments using X-ray fluorescence (XRF). The key to this method is using the microbeam to both treat and image. High Z contrast media is injected into the phantom or blood pool of the subject prior to imaging. Using a collimated spectrum analyzer, the region of interest is scanned through the MRT beam and the fluorescence signal is recorded for each slice. The signal can be processed to show vascular differences in the tissue and isolate tumor regions. Using the radiation therapy source as the imaging source, repositioning and registration errors are eliminated. A phantom study showed that a spatial resolution of a fraction of microbeam width can be achieved by precision translation of the mouse stage. Preliminary results from an animal study showed accurate iodine profusion, confirmed by CT. The proposed image guidance method, using XRF to locate and ablate tumors, can be used as a fast and accurate MRT treatment planning system.

  18. High resolution, multiple-energy linear sweep detector for x-ray imaging

    DOEpatents

    Perez-Mendez, Victor; Goodman, Claude A.

    1996-01-01

    Apparatus for generating plural electrical signals in a single scan in response to incident X-rays received from an object. Each electrical signal represents an image of the object at a different range of energies of the incident X-rays. The apparatus comprises a first X-ray detector, a second X-ray detector stacked upstream of the first X-ray detector, and an X-ray absorber stacked upstream of the first X-ray detector. The X-ray absorber provides an energy-dependent absorption of the incident X-rays before they are incident at the first X-ray detector, but provides no absorption of the incident X-rays before they are incident at the second X-ray detector. The first X-ray detector includes a linear array of first pixels, each of which produces an electrical output in response to the incident X-rays in a first range of energies. The first X-ray detector also includes a circuit that generates a first electrical signal in response to the electrical output of each of the first pixels. The second X-ray detector includes a linear array of second pixels, each of which produces an electrical output in response to the incident X-rays in a second range of energies, broader than the first range of energies. The second X-ray detector also includes a circuit that generates a second electrical signal in response to the electrical output of each of the second pixels.

  19. High resolution, multiple-energy linear sweep detector for x-ray imaging

    DOEpatents

    Perez-Mendez, V.; Goodman, C.A.

    1996-08-20

    Apparatus is disclosed for generating plural electrical signals in a single scan in response to incident X-rays received from an object. Each electrical signal represents an image of the object at a different range of energies of the incident X-rays. The apparatus comprises a first X-ray detector, a second X-ray detector stacked upstream of the first X-ray detector, and an X-ray absorber stacked upstream of the first X-ray detector. The X-ray absorber provides an energy-dependent absorption of the incident X-rays before they are incident at the first X-ray detector, but provides no absorption of the incident X-rays before they are incident at the second X-ray detector. The first X-ray detector includes a linear array of first pixels, each of which produces an electrical output in response to the incident X-rays in a first range of energies. The first X-ray detector also includes a circuit that generates a first electrical signal in response to the electrical output of each of the first pixels. The second X-ray detector includes a linear array of second pixels, each of which produces an electrical output in response to the incident X-rays in a second range of energies, broader than the first range of energies. The second X-ray detector also includes a circuit that generates a second electrical signal in response to the electrical output of each of the second pixels. 12 figs.

  20. High-Resolution X-Ray and Light Beam Induced Current (LBIC) Measurements of Multcrystalline Silicon Solar Cells

    SciTech Connect

    Jellison Jr, Gerald Earle; Budai, John D; Bennett, Charlee J C; Tischler, Jonathan Zachary; Duty, Chad E; Yelundur, V.; Rohatgi, A.

    2010-01-01

    High-resolution, spatially-resolved x-ray Laue patterns and high-resolution light beam induced current (LBIC) measurements are combined to study two multicrystalline solar cells made from the Heat Exchanger Method (HEM) and the Sting Ribbon Growth technique. The LBIC measurements were made at 4 different wavelengths (488, 633, 780, and 980 nm), resulting in penetration depths ranging from <1 {mu}m to >100 {mu}m. There is a strong correlation between the x-ray and LBIC measurements, showing that some twins and grain boundaries are effective in the reduction of local quantum efficiency, while others are benign.

  1. Characterization of spatially resolved high resolution x-ray spectrometers for high energy density physics and light source experiments

    SciTech Connect

    Hill, K. W. Bitter, M.; Delgado-Aparacio, L.; Efthimion, P.; Pablant, N. A.; Lu, J.; Beiersdorfer, P.; Chen, H.; Magee, E.

    2014-11-15

    A high resolution 1D imaging x-ray spectrometer concept comprising a spherically bent crystal and a 2D pixelated detector is being optimized for diagnostics of small sources such as high energy density physics (HEDP) and synchrotron radiation or x-ray free electron laser experiments. This instrument is used on tokamak experiments for Doppler measurements of ion temperature and plasma flow velocity profiles. Laboratory measurements demonstrate a resolving power, E/ΔE of order 10 000 and spatial resolution better than 10 μm. Initial tests of the high resolution instrument on HEDP plasmas are being performed.

  2. X-ray rocking curve measurements of bent crystals. [used in High Resolution Spectrometer in Advanced X-ray Astrophysics Facility

    NASA Technical Reports Server (NTRS)

    Hakim, M. B.; Muney, W. S.; Fowler, W. B.; Woodgate, B. E.

    1988-01-01

    A three-crystal laboratory X-ray spectrometer is used to measure the Bragg reflection from concave cylindrically curved crystals to be used in the high-resolution X-ray spectrometer of the NASA Advanced X-ray Astrophysics Facility (AXAF). The first two crystals, in the dispersive (1.1) arrangement, select a narrow collimated monochromatic beam in the Cu K-alpha(1) line at 1.5 A (8.1 keV), which illuminates the test crystal. The angular centroids of rocking curves measured along the surface provide a measure of the conformity of the crystal to the desired radius of curvature. Individual and combined rocking-curve widths and areas provide a measure of the resolution and efficiency at 1.54 A. The crystals analyzed included LiF(200), PET, and acid phthalates such as TAP.

  3. A normal incidence, high resolution X-ray telescope for solar coronal observations

    NASA Technical Reports Server (NTRS)

    Golub, L.

    1984-01-01

    Efforts directed toward the completion of an X-ray telescope assembly design, the procurement of major components, and the coordination of optical fabrication and X-ray multilayer testing are reported.

  4. Ptychographic X-ray computed tomography at the nanoscale.

    PubMed

    Dierolf, Martin; Menzel, Andreas; Thibault, Pierre; Schneider, Philipp; Kewish, Cameron M; Wepf, Roger; Bunk, Oliver; Pfeiffer, Franz

    2010-09-23

    X-ray tomography is an invaluable tool in biomedical imaging. It can deliver the three-dimensional internal structure of entire organisms as well as that of single cells, and even gives access to quantitative information, crucially important both for medical applications and for basic research. Most frequently such information is based on X-ray attenuation. Phase contrast is sometimes used for improved visibility but remains significantly harder to quantify. Here we describe an X-ray computed tomography technique that generates quantitative high-contrast three-dimensional electron density maps from phase contrast information without reverting to assumptions of a weak phase object or negligible absorption. This method uses a ptychographic coherent imaging approach to record tomographic data sets, exploiting both the high penetration power of hard X-rays and the high sensitivity of lensless imaging. As an example, we present images of a bone sample in which structures on the 100 nm length scale such as the osteocyte lacunae and the interconnective canalicular network are clearly resolved. The recovered electron density map provides a contrast high enough to estimate nanoscale bone density variations of less than one per cent. We expect this high-resolution tomography technique to provide invaluable information for both the life and materials sciences.

  5. High Resolution X-Ray Phase Contrast Imaging with Acoustic Tissue-Selective Contrast Enhancement

    DTIC Science & Technology

    2007-06-01

    Contrast and resolution in imaging with microfocus x - ray source. Rev. Sci. Instr. 68, 2774 (1997). 8. Krol, A. et al. Laser-based microfocused x - ray ...water jet of carbon suspension and imaged using a microfocus x - ray source coupled in-line with a synchronously gated intensified optically coupled...

  6. Application of a high-resolution x-ray fluorescence analyzer.

    SciTech Connect

    Adams, B. W.; Attenkofer, K.; Experimental Facilities Division

    2006-01-01

    We have developed a high resolution x-ray fluorescence analyzer based on the principle of active optics. It combines a resolution of ca. 5 eV with a tunability over several keV and a wide solid-angle coverage (ca. 2 by 5 degrees). To date, this analyzer has been used in near-edge spectroscopy of gallium in GaAs, and for the detection and chemical speciation of trace amounts platinum in soot from an diesel engine. The latter application illustrates the use of the analyzer to enhance the signal-to-background ratio in trace-element x-ray fluorescence analysis. The analyzer is shown schematically in Fig. 1. In it, a strip of silicon is bent by an axial force from two pushers at its ends, and eight correctors act from above to bring the shape of the bent crystal to approximate a logarithmic spiral. A more detailed description of the device, its underlying theory, and adjustment procedures may be found elsewhere. The sample consisted of soot collected from the exhaust of a diesel engine burning a fuel with a platinum-based additive that was tested for the purpose of facilitating clean combustion. The concentration of platinum in the soot was about 100 ppm, and the chemical speciation (oxidation state, dispersed or in the form of nanoparticles, etc.) was unknown. A small speck of this soot containing 10{sup 12} to 10{sup 13} atoms was placed into the x-ray beam of the 11-ID-D station of the APS. The incident photon energy was scanned over the Pt L{sub 3} edge, and the Pt L{sub {alpha}1} fluorescence was detected using two silicon drift detectors (Vortex), one directly and one with the analyzer. The purpose of the analyzer in this application was to enhance the energy resolution by a factor of about 50 (250 eV for the drift detector, 5 eV for the analyzer), and thus reduce the background of elastically or Compton-scattered photons, while keeping the fluorescent line. Whereas the detector with the analyzer recorded a clear signature of platinum in the form of an absorption

  7. Atlas of High Resolution X-ray spectra: a Diagnostic Tool of the Hot Universe

    NASA Astrophysics Data System (ADS)

    Bensch, K.; Santos-Lleo, M.; Gonzalez-Riestra, R.

    2014-07-01

    We present an Atlas of High Resolution X-ray spectra obtained with the Reflection Grating Spectrometer, RGS, on-board XMM-Newton. All the public RGS1 and RGS2 exposures have been analysed in order to identify those containing useful data and classified according to some pre-defined quality criteria. We found that out of 18000 RGS1&RGS2 exposures, about 4300 are useful, of which 220/2300 provide very-good/good quality spectra. The spectra are grouped according target Simbad Object Class. The spectra are plotted and information is provided about important properties point-like or extended emission and presence or absence of emission lines and line identification if applicable. The Atlas clearly shows differences when comparing different object classes, but not only that, differences are also found among different objects in an individual class and even among different spectra of an individual object. Spectral properties that characterize the different object classes as well as their variability properties are discussed.

  8. High-resolution X-ray spectroscopy of late-type stars with CHANDRA

    NASA Astrophysics Data System (ADS)

    Mewe, R.; Raassen, A. J. J.; Kaastra, J. S.; van der Meer, R. L. J.; Brinkman, A. C.

    We have analyzed high-resolution (Δλ ≅ 0.06 Å) X-ray spectra in the region 6-180 Å of the coronae of the cool stars Capella, Procyon, and α Centauri. These stars were observed with the the CHANDRA Low Energy Transmission Grating Spectrometer (LETGS) between Sep. and Dec. 1999. Temperatures are derived from line ratios of helium-like lines and long-wavelength iron lines. Electron densities are obtained for the relatively cooler (few MK) and more tenuous (⪅ 10 11 cm -3) plasma components from the forbidden to intercombination line ratios in the helium-like triplets of O, N, and C and for the hotter (⪆ 5 MK) and denser (⪆ 10 12 cm -3) components (such as occur in Capella) from the helium-like triplets of Mg and Si and the ratios of Fe XIX-Fe XXII 2ℓ-2ℓ' lines above 90 Å. The implications of these results for the coronal structure are discussed.

  9. NIST High Resolution X-Ray Diffraction Standard Reference Material: SRM 2000

    NASA Astrophysics Data System (ADS)

    Windover, Donald; Gil, David L.; Henins, Albert; Cline, James P.

    2009-09-01

    NIST recently released a standard reference material (SRM) for the calibration of high resolution X-ray diffraction (HRXRD) instruments. HRXRD is extensively used in the characterization of lattice distortion in thin single, epitaxial crystal layers on single-crystal wafer substrates. Currently, there is a great need for improved accuracy and transferability for the measurement of strain fields in these epitaxial thin films. This implies an essential need for the calibration of HRXRD instruments to allow measurement intercomparison for both research and manufacturing communities. This first HRXRD SRM release provides certified measurements of diffraction features for a silicon reference substrate, Si (220) in transmission and Si (004) in reflection, allowing for calibration of either monochromator wavelength or goniometer angles. The SRM also provides information on the surface-to-crystal-plane misalignment, which allows calibration of sample holders and sample alignment hardware. This calibration should reduce the uncertainties when comparing, for instance, reciprocal space maps. Here we present a detailed description of these measured values and provide methods for using these to calibrate HRXRD instrumentation. SRM 2000 provides the semiconductor and the larger nanoscience community with the first nanometer length-scale reference standard with femtometer accuracy; the Si (220) transmission-feature-derived silicon lattice spacing, dSRM, has a value of 0.1920161 nm with an expanded uncertainty, U (dSRM), of 0.87 fm.

  10. Ultra-high resolution water window x ray microscope optics design and analysis

    NASA Technical Reports Server (NTRS)

    Shealy, David L.; Wang, C.

    1993-01-01

    This project has been focused on the design and analysis of an ultra-high resolution water window soft-x-ray microscope. These activities have been accomplished by completing two tasks contained in the statement of work of this contract. The new results from this work confirm: (1) that in order to achieve resolutions greater than three times the wavelength of the incident radiation, it will be necessary to use spherical mirror surfaces and to use graded multilayer coatings on the secondary in order to accommodate the large variations of the angle of incidence over the secondary when operating the microscope at numerical apertures of 0.35 or greater; (2) that surface contour errors will have a significant effect on the optical performance of the microscope and must be controlled to a peak-to-valley variation of 50-100 A and a frequency of 8 periods over the surface of a mirror; and (3) that tolerance analysis of the spherical Schwarzschild microscope has been shown that the water window operations will require 2-3 times tighter tolerances to achieve a similar performance of operations with 130 A radiation. These results have been included in a manuscript included in the appendix.

  11. FRONT-END ASIC FOR HIGH RESOLUTION X-RAY SPECTROMETERS.

    SciTech Connect

    DE GERONIMO,G.; CHEN, W.; FRIED, J.; LI, Z.; PINELLI, D.A.; REHAK, P.; VERNON, E.; GASKIN, J.A.; RAMSEY, B.D.; ANELLI, G.

    2007-10-27

    We present an application specific integrated circuit (ASIC) for high-resolution x-ray spectrometers. The ASIC is designed to read out signals from a pixelated silicon drift detector (SDD). Each hexagonal pixel has an area of 15 mmz and an anode capacitance of less than 100 fF. There is no integrated Field Effect transistor (FET) in the pixel, rather, the readout is done by wirebonding the anodes to the inputs of the ASIC. The ASIC provides 14 channels of low-noise charge amplification, high-order shaping with baseline stabilization, and peak detection with analog memory. The readout is sparse and based on low voltage differential signaling. An interposer provides all the interconnections required to bias and operate the system. The channel dissipates 1.6 mW. The complete 14-pixel unit covers an area of 210 mm{sup 2}, dissipates 12 mW cm{sup -2}, and can be tiled to cover an arbitrarily large detection area. We measured a preliminary resolution of 172 eV at -35 C on the 6 keV peak of a {sup 55}Fe source.

  12. Early Tumor Development Captured Through Nondestructive, High Resolution Differential Phase Contrast X-ray Imaging

    PubMed Central

    Beheshti, A.; Pinzer, B. R.; McDonald, J. T.; Stampanoni, M.; Hlatky, L.

    2014-01-01

    Although a considerable amount is known about molecular dysregulations in later stages of tumor progression, much less is known about the regulated processes supporting initial tumor growth. Insight into such processes can provide a fuller understanding of carcinogenesis, with implications for cancer treatment and risk assessment. Work from our laboratory suggests that organized substructure emerges during tumor formation. The goal here was to examine the feasibility of using state-of-the-art differential phase contrast X-ray imaging to investigate density differentials that evolve during early tumor development. To this end the beamline for TOmographic Microscopy and Coherent rAdiology experimenTs (TOMCAT) at the Swiss Light Source was used to examine the time-dependent assembly of substructure in developing tumors. Differential phase contrast (DPC) imaging based on grating interferometry as implemented with TOMCAT, offers sensitivity to density differentials within soft tissues and a unique combination of high resolution coupled with a large field of view that permits the accommodation of larger tissue sizes (1 cm in diameter), difficult with other imaging modalities. PMID:24125488

  13. High resolution simulation of beam dynamics in electron linacs for x-ray free electron lasers

    NASA Astrophysics Data System (ADS)

    Qiang, J.; Ryne, R. D.; Venturini, M.; Zholents, A. A.; Pogorelov, I. V.

    2009-10-01

    In this paper we report on large-scale high resolution simulations of beam dynamics in electron linacs for the next-generation x-ray free electron lasers (FELs). We describe key features of a parallel macroparticle simulation code including three-dimensional (3D) space-charge effects, short-range structure wakefields, coherent synchrotron radiation (CSR) wakefields, and treatment of radio-frequency (rf) accelerating cavities using maps obtained from axial field profiles. We present a study of the microbunching instability causing severe electron beam fragmentation in the longitudinal phase space which is a critical issue for future FELs. Using parameters for a proposed FEL linac at Lawrence Berkeley National Laboratory (LBNL), we show that a large number of macroparticles (beyond 100 million) is generally needed to control the numerical macroparticle shot noise and avoid overestimating the microbunching instability. We explore the effect of the longitudinal grid on simulation results. We also study the effect of initial uncorrelated energy spread on the final uncorrelated energy spread of the beam for the FEL linac.

  14. High resolution three dimensional microscopy of biological microstructures using zone plate lenses with x-ray laser illumination

    SciTech Connect

    Trebes, J.

    1990-12-12

    One of the goals of biomedical research is the development of imaging techniques capable of producing high resolution ({approximately}300{Angstrom}) three dimensional images of structures within live cells. Recent developments in zone plate lenses at LBL and in x-ray lasers at LLNL indicate that flash three dimensional x-ray microscopy of live biological objects can be achieved in the near term. This concept for a microscope utilizes an x-ray laser to backlit immunogold labeled biological objects. These backlit objects are then imaged with low f-number, high resolution zone plate lenses. Backlighting and imaging along several different directions allows a three dimensional image to be obtained using tomographic techniques.

  15. Hard x-ray monochromator with milli-electron volt bandwidth for high-resolution diffraction studies of diamond crystals

    SciTech Connect

    Stoupin, Stanislav; Shvyd'ko, Yuri; Shu Deming; Khachatryan, Ruben; Xiao, Xianghui; DeCarlo, Francesco; Goetze, Kurt; Roberts, Timothy; Roehrig, Christian; Deriy, Alexey

    2012-02-15

    We report on design and performance of a high-resolution x-ray monochromator with a spectral bandwidth of {Delta}E{sub X}{approx_equal} 1.5 meV, which operates at x-ray energies in the vicinity of the backscattering (Bragg) energy E{sub H} = 13.903 keV of the (008) reflection in diamond. The monochromator is utilized for high-energy-resolution diffraction characterization of diamond crystals as elements of advanced x-ray crystal optics for synchrotrons and x-ray free-electron lasers. The monochromator and the related controls are made portable such that they can be installed and operated at any appropriate synchrotron beamline equipped with a pre-monochromator.

  16. Hard x-ray monochromator with milli-electron volt bandwidth for high-resolution diffraction studies of diamond crystals.

    PubMed

    Stoupin, Stanislav; Shvyd'ko, Yuri; Shu, Deming; Khachatryan, Ruben; Xiao, Xianghui; DeCarlo, Francesco; Goetze, Kurt; Roberts, Timothy; Roehrig, Christian; Deriy, Alexey

    2012-02-01

    We report on design and performance of a high-resolution x-ray monochromator with a spectral bandwidth of ΔE(X) ≃ 1.5 meV, which operates at x-ray energies in the vicinity of the backscattering (Bragg) energy E(H) = 13.903 keV of the (008) reflection in diamond. The monochromator is utilized for high-energy-resolution diffraction characterization of diamond crystals as elements of advanced x-ray crystal optics for synchrotrons and x-ray free-electron lasers. The monochromator and the related controls are made portable such that they can be installed and operated at any appropriate synchrotron beamline equipped with a pre-monochromator.

  17. Hard x-ray monochromator with milli-electron volt bandwidth for high-resolution diffraction studies of diamond crystals.

    SciTech Connect

    Stoupin, S.; Shvydko, Y.; Shu, D.; Khachatryan, R.; Xiao, X.

    2012-01-01

    We report on design and performance of a high-resolution x-ray monochromator with a spectral bandwidth of {Delta}E{sub x} {approx_equal} 1.5 meV, which operates at x-ray energies in the vicinity of the backscattering (Bragg) energy E{sub H} = 13.903 keV of the (008) reflection in diamond. The monochromator is utilized for high-energy-resolution diffraction characterization of diamond crystals as elements of advanced x-ray crystal optics for synchrotrons and x-ray free-electron lasers. The monochromator and the related controls are made portable such that they can be installed and operated at any appropriate synchrotron beamline equipped with a pre-monochromator.

  18. Design and performance of a soft-x-ray interferometer for ultra-high-resolution fourier transform spectroscopy

    SciTech Connect

    Moler, E.J.; Hussain, Z.; Duarte, R.M.; Howells, M.R.

    1997-04-01

    A Fourier Transform Soft X-ray spectrometer (FT-SX) has been designed and is under construction for the Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory as a branch of beamline 9.3.2. The spectrometer is a novel soft x-ray interferometer designed for ultra-high resolution (theoretical resolving power E/{delta}E{approximately}10{sup 6}) spectroscopy in the photon energy region of 60-120 eV. This instrument is expected to provide experimental results which sensitively test models of correlated electron processes in atomic and molecular physics. The design criteria and consequent technical challenges posed by the short wavelengths of x-rays and desired resolving power are discussed. The fundamental and practical aspects of soft x-ray interferometry are also explored.

  19. Design and image-quality performance of high resolution CMOS-based X-ray imaging detectors for digital mammography

    NASA Astrophysics Data System (ADS)

    Cha, B. K.; Kim, J. Y.; Kim, Y. J.; Yun, S.; Cho, G.; Kim, H. K.; Seo, C.-W.; Jeon, S.; Huh, Y.

    2012-04-01

    In digital X-ray imaging systems, X-ray imaging detectors based on scintillating screens with electronic devices such as charge-coupled devices (CCDs), thin-film transistors (TFT), complementary metal oxide semiconductor (CMOS) flat panel imagers have been introduced for general radiography, dental, mammography and non-destructive testing (NDT) applications. Recently, a large-area CMOS active-pixel sensor (APS) in combination with scintillation films has been widely used in a variety of digital X-ray imaging applications. We employed a scintillator-based CMOS APS image sensor for high-resolution mammography. In this work, both powder-type Gd2O2S:Tb and a columnar structured CsI:Tl scintillation screens with various thicknesses were fabricated and used as materials to convert X-ray into visible light. These scintillating screens were directly coupled to a CMOS flat panel imager with a 25 × 50 mm2 active area and a 48 μm pixel pitch for high spatial resolution acquisition. We used a W/Al mammographic X-ray source with a 30 kVp energy condition. The imaging characterization of the X-ray detector was measured and analyzed in terms of linearity in incident X-ray dose, modulation transfer function (MTF), noise-power spectrum (NPS) and detective quantum efficiency (DQE).

  20. Anti-scatter grid artifact elimination for high resolution x-ray imaging CMOS detectors

    NASA Astrophysics Data System (ADS)

    Rana, R.; Singh, V.; Jain, A.; Bednarek, D. R.; Rudin, S.

    2015-03-01

    Higher resolution in dynamic radiological imaging such as angiography is increasingly being demanded by clinicians; however, when standard anti-scatter grids are used with such new high resolution detectors, grid-line artifacts become more apparent resulting in increased structured noise that may overcome the contrast signal improvement benefits of the scatter-reducing grid. Although grid-lines may in theory be eliminated by dividing the image of a patient taken with the grid by a flat-field image taken with the grid obtained prior to the clinical image, unless the remaining additive scatter contribution is subtracted in real-time from the dynamic clinical image sequence before the division by the reference image, severe grid-line artifacts may remain. To investigate grid-line elimination, a stationary Smit Röntgen X-ray grid (line density: 70 lines/cm, grid ratio 13:1) was used with both a 75 micron-pixel CMOS detector and a standard 194 micron-pixel flat panel detector (FPD) to image an artery block insert placed in a modified uniform frontal head phantom for a 20 x 20cm FOV (approximately). Contrast and contrast-to-noise ratio (CNR) were measured with and without scatter subtraction prior to grid-line correction. The fixed pattern noise caused by the grid was substantially higher for the CMOS detector compared to the FPD and caused a severe reduction of CNR. However, when the scatter subtraction corrective method was used, the removal of the fixed pattern noise (grid artifacts) became evident resulting in images with improved CNR.

  1. Anti-scatter grid artifact elimination for high resolution x-ray imaging CMOS detectors

    PubMed Central

    Rana, R.; Singh, V.; Jain, A.; Bednarek, D.R.; Rudin, S.

    2015-01-01

    Higher resolution in dynamic radiological imaging such as angiography is increasingly being demanded by clinicians; however, when standard anti-scatter grids are used with such new high resolution detectors, grid-line artifacts become more apparent resulting in increased structured noise that may overcome the contrast signal improvement benefits of the scatter-reducing grid. Although grid-lines may in theory be eliminated by dividing the image of a patient taken with the grid by a flat-field image taken with the grid obtained prior to the clinical image, unless the remaining additive scatter contribution is subtracted in real-time from the dynamic clinical image sequence before the division by the reference image, severe grid-line artifacts may remain. To investigate grid-line elimination, a stationary Smit Röntgen X-ray grid (line density: 70 lines/cm, grid ratio 13:1) was used with both a 75 micron-pixel CMOS detector and a standard 194 micron-pixel flat panel detector (FPD) to image an artery block insert placed in a modified uniform frontal head phantom for a 20 × 20cm FOV (approximately). Contrast and contrast-to-noise ratio (CNR) were measured with and without scatter subtraction prior to grid-line correction. The fixed pattern noise caused by the grid was substantially higher for the CMOS detector compared to the FPD and caused a severe reduction of CNR. However, when the scatter subtraction corrective method was used, the removal of the fixed pattern noise (grid artifacts) became evident resulting in images with improved CNR. PMID:26877578

  2. Anti-scatter grid artifact elimination for high resolution x-ray imaging CMOS detectors.

    PubMed

    Rana, R; Singh, V; Jain, A; Bednarek, D R; Rudin, S

    Higher resolution in dynamic radiological imaging such as angiography is increasingly being demanded by clinicians; however, when standard anti-scatter grids are used with such new high resolution detectors, grid-line artifacts become more apparent resulting in increased structured noise that may overcome the contrast signal improvement benefits of the scatter-reducing grid. Although grid-lines may in theory be eliminated by dividing the image of a patient taken with the grid by a flat-field image taken with the grid obtained prior to the clinical image, unless the remaining additive scatter contribution is subtracted in real-time from the dynamic clinical image sequence before the division by the reference image, severe grid-line artifacts may remain. To investigate grid-line elimination, a stationary Smit Röntgen X-ray grid (line density: 70 lines/cm, grid ratio 13:1) was used with both a 75 micron-pixel CMOS detector and a standard 194 micron-pixel flat panel detector (FPD) to image an artery block insert placed in a modified uniform frontal head phantom for a 20 × 20cm FOV (approximately). Contrast and contrast-to-noise ratio (CNR) were measured with and without scatter subtraction prior to grid-line correction. The fixed pattern noise caused by the grid was substantially higher for the CMOS detector compared to the FPD and caused a severe reduction of CNR. However, when the scatter subtraction corrective method was used, the removal of the fixed pattern noise (grid artifacts) became evident resulting in images with improved CNR.

  3. Multiple pre-edge structures in Cu K -edge x-ray absorption spectra of high- Tc cuprates revealed by high-resolution x-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Gougoussis, C.; Rueff, J.-P.; Calandra, M.; D'Astuto, M.; Jarrige, I.; Ishii, H.; Shukla, A.; Yamada, I.; Azuma, M.; Takano, M.

    2010-06-01

    Using high-resolution x-ray absorption spectroscopy and state-of-the-art electronic structure calculations we demonstrate that the pre-edge region at the Cu K edge of high- Tc cuprates is composed of several excitations invisible in standard x-ray absorption spectra. We consider in detail the case of Ca2-xCuO2Cl2 and show that the many pre-edge excitations (two for c -axis polarization, four for in-plane polarization and out-of-plane incident x-ray momentum) are dominated by off-site transitions and intersite hybridization. This demonstrates the relevance of approaches beyond the single-site model for the description of the pre edges of correlated materials. Finally, we show the occurrence of a doubling of the main edge peak that is most visible when the polarization is along the c axis. This doubling, that has not been seen in any previous absorption data in cuprates, is not reproduced by first-principles calculations. We suggest that this peak is due to many-body charge-transfer excitations while all the other visible far-edge structures are single particle in origin. Our work indicates that previous interpretations of the Cu K -edge x-ray absorption spectra in high- Tc cuprates can be profitably reconsidered.

  4. High-reflectivity High-resolution X-ray Crystal Optics with Diamonds

    SciTech Connect

    Shvyd’ko, Y.; Stoupin, S; Cunsolo, A; Said, A; Huang, X

    2010-01-01

    Owing to the depth to which hard X-rays penetrate into most materials, it is commonly accepted that the only way to realize hard-X-ray mirrors with near 100% reflectance is under conditions of total external reflection at grazing incidence to a surface. At angles away from grazing incidence, substantial reflectance of hard X-rays occurs only as a result of constructive interference of the waves scattered from periodically ordered atomic planes in crystals (Bragg diffraction). Theory predicts that even at normal incidence the reflection of X-rays from diamond under the Bragg condition should approach 100% - substantially higher than from any other crystal. Here we demonstrate that commercially produced synthetic diamond crystals do indeed show an unprecedented reflecting power at normal incidence and millielectronvolt-narrow reflection bandwidths for hard X-rays. Bragg diffraction measurements of reflectivity and the energy bandwidth show remarkable agreement with theory. Such properties are valuable to the development of hard-X-ray optics, and could greatly assist the realization of fully coherent X-ray sources, such as X-ray free-electron laser oscillators.

  5. High-resolution X-ray emission spectroscopy with transition-edge sensors: present performance and future potential.

    PubMed

    Uhlig, J; Doriese, W B; Fowler, J W; Swetz, D S; Jaye, C; Fischer, D A; Reintsema, C D; Bennett, D A; Vale, L R; Mandal, U; O'Neil, G C; Miaja-Avila, L; Joe, Y I; El Nahhas, A; Fullagar, W; Gustafsson, F Parnefjord; Sundström, V; Kurunthu, D; Hilton, G C; Schmidt, D R; Ullom, J N

    2015-05-01

    X-ray emission spectroscopy (XES) is a powerful element-selective tool to analyze the oxidation states of atoms in complex compounds, determine their electronic configuration, and identify unknown compounds in challenging environments. Until now the low efficiency of wavelength-dispersive X-ray spectrometer technology has limited the use of XES, especially in combination with weaker laboratory X-ray sources. More efficient energy-dispersive detectors have either insufficient energy resolution because of the statistical limits described by Fano or too low counting rates to be of practical use. This paper updates an approach to high-resolution X-ray emission spectroscopy that uses a microcalorimeter detector array of superconducting transition-edge sensors (TESs). TES arrays are discussed and compared with conventional methods, and shown under which circumstances they are superior. It is also shown that a TES array can be integrated into a table-top time-resolved X-ray source and a soft X-ray synchrotron beamline to perform emission spectroscopy with good chemical sensitivity over a very wide range of energies.

  6. High-resolution X-ray spectroscopy of rare events: a different look at local structure and chemistry

    PubMed Central

    Glatzel, Pieter; Robblee, John H.; Messinger, Johannes; Fernandez, Carmen; Cinco, Roehl; Visser, Henk; McFarlane, Karen; Bellacchio, Emanuele; Pizarro, Shelly; Sauer, Kenneth; Yachandra, Vittal K.; Klein, Melvin P.; Cox, Billie L.; Nealson, Kenneth H.; Cramer, Stephen P.

    2014-01-01

    The combination of large-acceptance high-resolution X-ray optics with bright synchrotron sources permits quantitative analysis of rare events such as X-ray fluorescence from very dilute systems, weak fluorescence transitions or X-ray Raman scattering. Transition-metal Kβ fluorescence contains information about spin and oxidation state; examples of the characterization of the Mn oxidation states in the oxygen-evolving complex of photosystem II and Mn-consuming spores from the marine bacillus SG-1 are presented. Weaker features of the Kβ spectrum resulting from valence-level and ‘interatomic’ ligand to metal transitions contain detailed information on the ligand-atom type, distance and orientation. Applications of this spectral region to characterize the local structure of model compounds are presented. X-ray Raman scattering (XRS) is an extremely rare event, but also represents a unique technique to obtain bulk-sensitive low-energy (<600 eV) X-ray absorption fine structure (XAFS) spectra using hard (~10 keV) X-rays. A photon is inelastically scattered, losing part of its energy to promote an electron into an unoccupied level. In many cases, the cross section is proportional to that of the corresponding absorption process yielding the same X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) features. XRS finds application for systems that defy XAFS analysis at low energies, e.g. liquids or highly concentrated complex systems, reactive compounds and samples under extreme conditions (pressure, temperature). Recent results are discussed. PMID:11512725

  7. High Resolution X-Ray Spectroscopy of the Local Hot Gas along the 3C 273 Sightline

    NASA Astrophysics Data System (ADS)

    Fang, Taotao; Jiang, Xiaochuan

    2014-04-01

    X-ray observations of highly ionized metal absorption lines at z = 0 provide critical information on the hot gas distribution in and around the Milky Way. We present a study of more than 10 yr of Chandra and XMM-Newton observations of 3C 273, one of the brightest extragalactic X-ray sources. Compared with previous works, we obtain much tighter constraints on the physical properties of the X-ray absorber. We also find a large, non-thermal velocity at ~100-150 km s-1, the main reason for the higher line equivalent width when compared with other sightlines. Using joint analysis with X-ray emission and ultraviolet observations, we derive a size of 5-15 kpc and a temperature of (1.5-1.8) × 106 K for the X-ray absorber. The 3C 273 sightline passes through a number of Galactic structures, including radio loops I and IV, the North Polar Spur, and the neighborhood of the newly discovered "Fermi bubbles." We argue that the X-ray absorber is unlikely to be associated with the nearby radio loops I and IV; however, the non-thermal velocity can be naturally explained as the result of the expansion of the "Fermi bubbles." Our data imply a shock-expansion velocity of 200-300 km s-1. Our study indicates a likely complex environment for the production of the Galactic X-ray absorbers along different sightlines, and highlights the significance of probing galactic feedback with high resolution X-ray spectroscopy.

  8. HIGH RESOLUTION X-RAY SPECTROSCOPY OF THE LOCAL HOT GAS ALONG THE 3C 273 SIGHTLINE

    SciTech Connect

    Fang, Taotao; Jiang, Xiaochuan

    2014-04-20

    X-ray observations of highly ionized metal absorption lines at z = 0 provide critical information on the hot gas distribution in and around the Milky Way. We present a study of more than 10 yr of Chandra and XMM-Newton observations of 3C 273, one of the brightest extragalactic X-ray sources. Compared with previous works, we obtain much tighter constraints on the physical properties of the X-ray absorber. We also find a large, non-thermal velocity at ∼100-150 km s{sup –1}, the main reason for the higher line equivalent width when compared with other sightlines. Using joint analysis with X-ray emission and ultraviolet observations, we derive a size of 5-15 kpc and a temperature of (1.5-1.8) × 10{sup 6} K for the X-ray absorber. The 3C 273 sightline passes through a number of Galactic structures, including radio loops I and IV, the North Polar Spur, and the neighborhood of the newly discovered ''Fermi bubbles''. We argue that the X-ray absorber is unlikely to be associated with the nearby radio loops I and IV; however, the non-thermal velocity can be naturally explained as the result of the expansion of the ''Fermi bubbles''. Our data imply a shock-expansion velocity of 200-300 km s{sup –1}. Our study indicates a likely complex environment for the production of the Galactic X-ray absorbers along different sightlines, and highlights the significance of probing galactic feedback with high resolution X-ray spectroscopy.

  9. Applying very high resolution microfocus X-ray CT and 3-D reconstruction to the human auditory apparatus.

    PubMed

    Shibata, T; Nagano, T

    1996-08-01

    Conventional high-resolution X-ray computed tomography (XCT) is an important medical technique because it provides sectional images (tomograms) of internal structures without destroying the specimen. However, it is difficult to observe and to analyze fine structures less than a few cubic millimeters in size because of its low spatial resolution of 0.4 mm. Overcoming this problem would not only enable visualization of human anatomical structures in living subjects by means of computer images but would make it possible to obtain the equivalent of microscopic images by XCT without making microscopic sections of biopsy material, which would allow the examination of the entire body and detection of focal lesions at an early stage. Bonse et al. and Kinney et al. studied absorption contrast microtomography by using synchrotron radiation and achieved 8-microns spatial resolution in human cancellous bone. Recently, Momose et al. reported examining the soft tissue of cancerous rabbit liver by a modification of the phase-contrast technique using synchrotron radiation with a spatial resolution of 30 microns (ref. 4). However, the equipment for synchrotron radiation requires a great deal of space and is very expensive. Aoki et al., on a different tack, reported microtomography of frog embryos by using a conventional laboratory microfocus X-ray source with a spot size of about 2 microns (ref. 5). As no human tomographic studies by superresolution microfocus XCT (MFXCT) using a normal open-type X-ray source have been reported, we tried using MFXCT with a maximum experimental spatial resolution of 2.5 microns, especially designed for industrial use, on the auditory ossicles of a human fetus, the smallest and lightest bones in the skeletal system. No XCT studies of fetal auditory ossicles have been reported to date. The fine tomograms with three-dimensional reconstructions obtained showed the existence of an apparently previously undescribed joint between the tympanic ring and the

  10. Plant Tissues in 3D via X-Ray Tomography: Simple Contrasting Methods Allow High Resolution Imaging

    PubMed Central

    Staedler, Yannick M.; Masson, David; Schönenberger, Jürg

    2013-01-01

    Computed tomography remains strongly underused in plant sciences despite its high potential in delivering detailed 3D phenotypical information because of the low X-ray absorption of most plant tissues. Existing protocols to study soft tissues display poor performance, especially when compared to those used on animals. More efficient protocols to study plant material are therefore needed. Flowers of Arabidopsis thaliana and Marcgravia caudata were immersed in a selection of contrasting agents used to treat samples for transmission electron microscopy. Grayscale values for floral tissues and background were measured as a function of time. Contrast was quantified via a contrast index. The thick buds of Marcgravia were scanned to determine which contrasting agents best penetrate thick tissues. The highest contrast increase with cytoplasm-rich tissues was obtained with phosphotungstate, whereas osmium tetroxide and bismuth tatrate displayed the highest contrast increase with vacuolated tissues. Phosphotungstate also displayed the best sample penetration. Furthermore, infiltration with phosphotungstate allowed imaging of all plants parts at a high resolution of 3 µm, which approaches the maximum resolution of our equipment: 1.5 µm. The high affinity of phosphotungstate for vasculature, cytoplasm-rich tissue, and pollen causes these tissues to absorb more X-rays than the surrounding tissues, which, in turn, makes these tissues appear brighter on the scan data. Tissues with different brightness can then be virtually dissected from each other by selecting the bracket of grayscale to be visualized. Promising directions for the future include in silico phenotyping and developmental studies of plant inner parts (e.g., ovules, vasculature, pollen, and cell nuclei) via virtual dissection as well as correlations of quantitative phenotypes with omics datasets. Therefore, this work represents a crucial improvement of previous methods, allowing new directions of research to be

  11. Plant tissues in 3D via X-ray tomography: simple contrasting methods allow high resolution imaging.

    PubMed

    Staedler, Yannick M; Masson, David; Schönenberger, Jürg

    2013-01-01

    Computed tomography remains strongly underused in plant sciences despite its high potential in delivering detailed 3D phenotypical information because of the low X-ray absorption of most plant tissues. Existing protocols to study soft tissues display poor performance, especially when compared to those used on animals. More efficient protocols to study plant material are therefore needed. Flowers of Arabidopsis thaliana and Marcgravia caudata were immersed in a selection of contrasting agents used to treat samples for transmission electron microscopy. Grayscale values for floral tissues and background were measured as a function of time. Contrast was quantified via a contrast index. The thick buds of Marcgravia were scanned to determine which contrasting agents best penetrate thick tissues. The highest contrast increase with cytoplasm-rich tissues was obtained with phosphotungstate, whereas osmium tetroxide and bismuth tatrate displayed the highest contrast increase with vacuolated tissues. Phosphotungstate also displayed the best sample penetration. Furthermore, infiltration with phosphotungstate allowed imaging of all plants parts at a high resolution of 3 µm, which approaches the maximum resolution of our equipment: 1.5 µm. The high affinity of phosphotungstate for vasculature, cytoplasm-rich tissue, and pollen causes these tissues to absorb more X-rays than the surrounding tissues, which, in turn, makes these tissues appear brighter on the scan data. Tissues with different brightness can then be virtually dissected from each other by selecting the bracket of grayscale to be visualized. Promising directions for the future include in silico phenotyping and developmental studies of plant inner parts (e.g., ovules, vasculature, pollen, and cell nuclei) via virtual dissection as well as correlations of quantitative phenotypes with omics datasets. Therefore, this work represents a crucial improvement of previous methods, allowing new directions of research to be

  12. Dark-field X-ray ptychography: Towards high-resolution imaging of thick and unstained biological specimens

    NASA Astrophysics Data System (ADS)

    Suzuki, Akihiro; Shimomura, Kei; Hirose, Makoto; Burdet, Nicolas; Takahashi, Yukio

    2016-10-01

    The phase shift of light or electrons in objects is now necessary for probing weak-phase objects such as unstained biological specimens. Optical microscopy (OM) and transmission electron microscopy (TEM) have been used to observe weak-phase objects. However, conventional OM has low spatial resolution and TEM is limited to thin specimens. Here, we report on the development of dark-field X-ray ptychography, which combines X-ray ptychography and X-ray in-line holography, to observe weak-phase objects with a phase resolution better than 0.01 rad, a spatial resolution better than 15 nm, and a field of view larger than 5 μm. We apply this method to the observation of both the outline and magnetosomes of the magnetotactic bacteria MO-1. Observation of thick samples with high resolution is expected to find broad applications in not only biology but also materials science.

  13. Dark-field X-ray ptychography: Towards high-resolution imaging of thick and unstained biological specimens

    PubMed Central

    Suzuki, Akihiro; Shimomura, Kei; Hirose, Makoto; Burdet, Nicolas; Takahashi, Yukio

    2016-01-01

    The phase shift of light or electrons in objects is now necessary for probing weak-phase objects such as unstained biological specimens. Optical microscopy (OM) and transmission electron microscopy (TEM) have been used to observe weak-phase objects. However, conventional OM has low spatial resolution and TEM is limited to thin specimens. Here, we report on the development of dark-field X-ray ptychography, which combines X-ray ptychography and X-ray in-line holography, to observe weak-phase objects with a phase resolution better than 0.01 rad, a spatial resolution better than 15 nm, and a field of view larger than 5 μm. We apply this method to the observation of both the outline and magnetosomes of the magnetotactic bacteria MO-1. Observation of thick samples with high resolution is expected to find broad applications in not only biology but also materials science. PMID:27734961

  14. Observation of immuno-labeled cells at high resolution using soft X-ray microscope at Ritsumeikan University SR Center

    NASA Astrophysics Data System (ADS)

    Yamamoto, A.; Takemoto, K.; Fukui, T.; Yoshimura, Y.; Okuno, K.; Namba, H.; Kihara, H.

    2009-09-01

    Mouse fibroblast cell line NIH3T3 cells were labeled with the heavy metal (silver and gold) and observed intracellular structure under an X-ray microscope. Microtubules, Golgi apparatus and early endosomes of NIH3T3 cells were stained with immuno-gold nanoparticles, and immuno-staining was intensified by silver or gold enhancement procedure. Using a transmission soft X-ray microscope beamline (BL12) at Ritsumeikan University SR center, we observed immuno-stained NIH3T3 cells with several wavelengths just below and above oxygen edge (λ = 2.32 nm). Using this method, cytoskeleton (microtubules) and organelles (Golgi apparatus and early endosomes) were successfully imaged with high resolution. Thus, immuno-gold silver and gold enhancement technique is useful for specific labeling of intracellular structure under an X-ray microscope.

  15. Prototype high resolution multienergy soft x-ray array for NSTX

    SciTech Connect

    Tritz, K.; Stutman, D.; Finkenthal, M.; Delgado-Aparicio, L.; Kaita, R.; Roquemore, L.

    2010-10-15

    A novel diagnostic design seeks to enhance the capability of multienergy soft x-ray (SXR) detection by using an image intensifier to amplify the signals from a larger set of filtered x-ray profiles. The increased number of profiles and simplified detection system provides a compact diagnostic device for measuring T{sub e} in addition to contributions from density and impurities. A single-energy prototype system has been implemented on NSTX, comprised of a filtered x-ray pinhole camera, which converts the x-rays to visible light using a CsI:Tl phosphor. SXR profiles have been measured in high performance plasmas at frame rates of up to 10 kHz, and comparisons to the toroidally displaced tangential multi-energy SXR have been made.

  16. Development of High Resolution Hard X-Ray Telescope with Multilayer Coatings

    NASA Technical Reports Server (NTRS)

    Brinton, John C. (Technical Monitor); Gorenstein, Paul

    2004-01-01

    The major objective of this program is the development of a focusing hard X-ray telescope with moderately high angular resolution, i .e. comparable to the telescopes of XMM-Newton. The key ingredients of the telescope are a depth graded multilayer coatings and electroformed nickel substrates that are considerably lighter weight than those of previous missions such as XMM-Newton, which have had conventional single metal layer reflective coatings and have operated at much lower energy X-rays. The ultimate target mission for this technology is the Hard X-Ray Telescope (HXT) of the Constellation X-Ray Mission. However, it is applicable to potential SMEX and MIDEX programs as well.

  17. High Resolution X-ray Phase Contrast Imaging with Acoustic Tissue-Selective Contrast Enhancement

    DTIC Science & Technology

    2008-06-01

    murine liver. 15. SUBJECT TERMS X-ray, ultrasound, phase contrast, imaging, elastography 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF...of the veins in a mouse liver that was excised from an euthanized mouse, fixed in paraformaldehyde and subsequently dried. The vascular tree is...clearly visible in the x-ray image. Contrast agent injections into the portal vein of another mouse liver verified that the veins are imaged and not

  18. A high-resolution large-acceptance analyzer for X-ray fluorescence and Raman spectroscopy

    SciTech Connect

    Bergmann, Uwe; Cramer, Stephen P.

    2001-08-02

    A newly designed multi-crystal X-ray spectrometer and its applications in the fields of X-ray fluorescence and X-ray Raman spectroscopy are described. The instrument is based on 8 spherically curved Si crystals, each with a 3.5 inch diameter form bent to a radius of 86 cm. The crystals are individually aligned in the Rowland geometry capturing a total solid angle of 0.07 sr. The array is arranged in a way that energy scans can be performed by moving the whole instrument, rather than scanning each crystal by itself. At angles close to back scattering the energy resolution is between 0.3 and 1 eV depending on the beam dimensions at the sample. The instrument is mainly designed for X-ray absorption and fluorescence spectroscopy of transition metals in dilute systems such as metalloproteins. First results of the Mn K{beta} (3p -> 1s) emission in photosystem II are shown. An independent application of the instrument is the technique of X-ray Raman spectroscopy which can address problems similar to those in traditional soft X-ray absorption spectroscopies, and initial results are presented.

  19. Ultra-high-resolution inelastic X-ray scattering at high-repetition-rate self-seeded X-ray free-electron lasers

    PubMed Central

    Chubar, Oleg; Geloni, Gianluca; Kocharyan, Vitali; Madsen, Anders; Saldin, Evgeni; Serkez, Svitozar; Shvyd’ko, Yuri; Sutter, John

    2016-01-01

    Inelastic X-ray scattering (IXS) is an important tool for studies of equilibrium dynamics in condensed matter. A new spectrometer recently proposed for ultra-high-resolution IXS (UHRIX) has achieved 0.6 meV and 0.25 nm−1 spectral and momentum-transfer resolutions, respectively. However, further improvements down to 0.1 meV and 0.02 nm−1 are required to close the gap in energy–momentum space between high- and low-frequency probes. It is shown that this goal can be achieved by further optimizing the X-ray optics and by increasing the spectral flux of the incident X-ray pulses. UHRIX performs best at energies from 5 to 10 keV, where a combination of self-seeding and undulator tapering at the SASE-2 beamline of the European XFEL promises up to a 100-fold increase in average spectral flux compared with nominal SASE pulses at saturation, or three orders of magnitude more than what is possible with storage-ring-based radiation sources. Wave-optics calculations show that about 7 × 1012 photons s−1 in a 90 µeV bandwidth can be achieved on the sample. This will provide unique new possibilities for dynamics studies by IXS. PMID:26917127

  20. Ultra-high-resolution inelastic X-ray scattering at high-repetition-rate self-seeded X-ray free-electron lasers.

    PubMed

    Chubar, Oleg; Geloni, Gianluca; Kocharyan, Vitali; Madsen, Anders; Saldin, Evgeni; Serkez, Svitozar; Shvyd'ko, Yuri; Sutter, John

    2016-03-01

    Inelastic X-ray scattering (IXS) is an important tool for studies of equilibrium dynamics in condensed matter. A new spectrometer recently proposed for ultra-high-resolution IXS (UHRIX) has achieved 0.6 meV and 0.25 nm(-1) spectral and momentum-transfer resolutions, respectively. However, further improvements down to 0.1 meV and 0.02 nm(-1) are required to close the gap in energy-momentum space between high- and low-frequency probes. It is shown that this goal can be achieved by further optimizing the X-ray optics and by increasing the spectral flux of the incident X-ray pulses. UHRIX performs best at energies from 5 to 10 keV, where a combination of self-seeding and undulator tapering at the SASE-2 beamline of the European XFEL promises up to a 100-fold increase in average spectral flux compared with nominal SASE pulses at saturation, or three orders of magnitude more than what is possible with storage-ring-based radiation sources. Wave-optics calculations show that about 7 × 10(12) photons s(-1) in a 90 µeV bandwidth can be achieved on the sample. This will provide unique new possibilities for dynamics studies by IXS.

  1. Ultra-high-resolution inelastic X-ray scattering at high-repetition-rate self-seeded X-ray free-electron lasers

    SciTech Connect

    Chubar, Oleg; Geloni, Gianluca; Kocharyan, Vitali; Madsen, Anders; Saldin, Evgeni; Serkez, Svitozar; Shvyd'ko, Yuri; Sutter, John

    2016-03-01

    Inelastic X-ray scattering (IXS) is an important tool for studies of equilibrium dynamics in condensed matter. A new spectrometer recently proposed for ultra-high-resolution IXS (UHRIX) has achieved 0.6 meV and 0.25 nm₋1spectral and momentum-transfer resolutions, respectively. However, further improvements down to 0.1 meV and 0.02 nm₋1are required to close the gap in energy–momentum space between high- and low-frequency probes. It is shown that this goal can be achieved by further optimizing the X-ray optics and by increasing the spectral flux of the incident X-ray pulses. UHRIX performs best at energies from 5 to 10 keV, where a combination of self-seeding and undulator tapering at the SASE-2 beamline of the European XFEL promises up to a 100-fold increase in average spectral flux compared with nominal SASE pulses at saturation, or three orders of magnitude more than what is possible with storage-ring-based radiation sources. Wave-optics calculations show that about 7 × 1012 photons s₋1in a 90 µeV bandwidth can be achieved on the sample. Ultimately, this will provide unique new possibilities for dynamics studies by IXS.

  2. Ultra-high-resolution inelastic X-ray scattering at high-repetition-rate self-seeded X-ray free-electron lasers

    DOE PAGES

    Chubar, Oleg; Geloni, Gianluca; Kocharyan, Vitali; ...

    2016-03-01

    Inelastic X-ray scattering (IXS) is an important tool for studies of equilibrium dynamics in condensed matter. A new spectrometer recently proposed for ultra-high-resolution IXS (UHRIX) has achieved 0.6 meV and 0.25 nm₋1spectral and momentum-transfer resolutions, respectively. However, further improvements down to 0.1 meV and 0.02 nm₋1are required to close the gap in energy–momentum space between high- and low-frequency probes. It is shown that this goal can be achieved by further optimizing the X-ray optics and by increasing the spectral flux of the incident X-ray pulses. UHRIX performs best at energies from 5 to 10 keV, where a combination of self-seedingmore » and undulator tapering at the SASE-2 beamline of the European XFEL promises up to a 100-fold increase in average spectral flux compared with nominal SASE pulses at saturation, or three orders of magnitude more than what is possible with storage-ring-based radiation sources. Wave-optics calculations show that about 7 × 1012 photons s₋1in a 90 µeV bandwidth can be achieved on the sample. Ultimately, this will provide unique new possibilities for dynamics studies by IXS.« less

  3. High Resolution, 20-100 keV X-ray Backlighters for ICF and HEDS Experiments

    NASA Astrophysics Data System (ADS)

    Park, Hye-Sook; Koch, J. A.; Landen, O. L.; Phillips, T. W.; Schmid, G. J.

    2002-11-01

    We are studying the feasibility of high resolution radiography using short pulse high intensity lasers. Specifically we wish to better characterize and optimize the Kalpha X-ray production and brightness created by relativistic electron plasma interactions in the target material. We plan to utilize this Kalpha source as a backlighter to image various stages of implosions and planar driven high Z materials. Particularly interesting are the production of Kalpha's in the range 20 100 keV. In order to assess in detail the characteristics of such high energy X-ray backlighters, we are performing experiments using the 10 J, 100 fs JanUSP laser at LLNL. We will measure Kalpha source generation efficiency as function of laser beam parameters such as pulse duration, spot size and laser beam energy. We are also developing a high resolution hard X-ray imaging detector system. This paper will present initial results from the JanUSP experiments. Reference:D.K. Bradley, O.L. Landen, A.B. Bullock, S.G. Glendinning, and R.E. Turner, "Efficient, High Spatial-Temporal Resolution, 1-100 keV X-ray Radiography," Opt. Lett. 27(2002) 134.

  4. Coordination defects in bismuth-modified arsenic selenide glasses: High-resolution x-ray photoelectron spectroscopy measurements

    SciTech Connect

    Golovchak, Roman; Shpotyuk, Oleh

    2008-05-01

    The possibility of coordination defects formation in Bi-modified chalcogenide glasses is examined by high-resolution x-ray photoelectron spectroscopy. The results provide evidence for the formation of positively charged fourfold coordinated defects on As and Bi sites in glasses with low Bi concentration. At high Bi concentration, mixed As{sub 2}Se{sub 3}-Bi{sub 2}Se{sub 3} nanocrystallites are formed in the investigated Se-rich As-Se glasses.

  5. High-resolution X-ray crystal structure of bovine H-protein using the high-pressure cryocooling method

    PubMed Central

    Higashiura, Akifumi; Ohta, Kazunori; Masaki, Mika; Sato, Masaru; Inaka, Koji; Tanaka, Hiroaki; Nakagawa, Atsushi

    2013-01-01

    Recently, many technical improvements in macromolecular X-ray crystallography have increased the number of structures deposited in the Protein Data Bank and improved the resolution limit of protein structures. Almost all high-resolution structures have been determined using a synchrotron radiation source in conjunction with cryocooling techniques, which are required in order to minimize radiation damage. However, optimization of cryoprotectant conditions is a time-consuming and difficult step. To overcome this problem, the high-pressure cryocooling method was developed (Kim et al., 2005 ▶) and successfully applied to many protein-structure analyses. In this report, using the high-pressure cryocooling method, the X-ray crystal structure of bovine H-protein was determined at 0.86 Å resolution. Structural comparisons between high- and ambient-pressure cryocooled crystals at ultra-high resolution illustrate the versatility of this technique. This is the first ultra-high-resolution X-ray structure obtained using the high-pressure cryocooling method. PMID:24121354

  6. Bismuth Passivation Technique for High-Resolution X-Ray Detectors

    NASA Technical Reports Server (NTRS)

    Chervenak, James; Hess, Larry

    2013-01-01

    The Athena-plus team requires X-ray sensors with energy resolution of better than one part in 3,000 at 6 keV X-rays. While bismuth is an excellent material for high X-ray stopping power and low heat capacity (for large signal when an X-ray is stopped by the absorber), oxidation of the bismuth surface can lead to electron traps and other effects that degrade the energy resolution. Bismuth oxide reduction and nitride passivation techniques analogous to those used in indium passivation are being applied in a new technique. The technique will enable improved energy resolution and resistance to aging in bismuth-absorber-coupled X-ray sensors. Elemental bismuth is lithographically integrated into X-ray detector circuits. It encounters several steps where the Bi oxidizes. The technology discussed here will remove oxide from the surface of the Bi and replace it with nitridized surface. Removal of the native oxide and passivating to prevent the growth of the oxide will improve detector performance and insulate the detector against future degradation from oxide growth. Placing the Bi coated sensor in a vacuum system, a reduction chemistry in a plasma (nitrogen/hydrogen (N2/H2) + argon) is used to remove the oxide and promote nitridization of the cleaned Bi surface. Once passivated, the Bi will perform as a better X-ray thermalizer since energy will not be trapped in the bismuth oxides on the surface. A simple additional step, which can be added at various stages of the current fabrication process, can then be applied to encapsulate the Bi film. After plasma passivation, the Bi can be capped with a non-diffusive layer of metal or dielectric. A non-superconducting layer is required such as tungsten or tungsten nitride (WNx).

  7. Validation of the 4D NCAT simulation tools for use in high-resolution x-ray CT research

    NASA Astrophysics Data System (ADS)

    Segars, W. P.; Mahesh, Mahadevappa; Beck, T.; Frey, E. C.; Tsui, B. M. W.

    2005-04-01

    We validate the computer-based simulation tools developed in our laboratory for use in high-resolution CT research. The 4D NURBS-based cardiac-torso (NCAT) phantom was developed to provide a realistic and flexible model of the human anatomy and physiology. Unlike current phantoms in CT, the 4D NCAT has the advantage, due to its design, that its organ shapes can be changed to realistically model anatomical variations and patient motion. To efficiently simulate high-resolution CT images, we developed a unique analytic projection algorithm (including scatter and quantum noise) to accurately calculate projections directly from the surface definition of the phantom given parameters defining the CT scanner and geometry. The projection data are reconstructed into CT images using algorithms developed in our laboratory. The 4D NCAT phantom contains a level of detail that is close to impossible to produce in a physical test object. We, therefore, validate our CT simulation tools and methods through a series of direct comparisons with data obtained experimentally using existing, simple physical phantoms at different doses and using different x-ray energy spectra. In each case, the first-order simulations were found to produce comparable results (<12%). We reason that since the simulations produced equivalent results using simple test objects, they should be able to do the same in more anatomically realistic conditions. We conclude that, with the ability to provide realistic simulated CT image data close to that from actual patients, the simulation tools developed in this work will have applications in a broad range of CT imaging research.

  8. High-resolution interference-monochromator for hard X-rays.

    PubMed

    Tsai, Yi-Wei; Chang, Ying-Yi; Wu, Yu-Hsin; Lee, Kun-Yuan; Liu, Shih-Lun; Chang, Shih-Lin

    2016-12-26

    An X-ray interference-monochromator combining a Fabry-Perot resonator (FPR) and a double-crystal monochromator (DCM) is proposed and realized for obtaining single-mode X-rays with 3.45 meV energy resolution. The monochromator is based on the generation of cavity interference fringes from a FPR and single-mode selection of the transmission spectrum by a DCM of a nearly backward symmetric reflection geometry. The energy of the monochromator can be tuned within 2500 meV(= ΔE) by temperature control of the FPR and the DCM crystals in the range of ΔT = 70 K at room temperature. The diffraction geometry and small size of the optical components used make the interference-monochromator very easy to be adapted in modern synchrotron beamlines and X-ray optics applications.

  9. High-resolution hard x-ray magnetic imaging with dichroic ptychography

    NASA Astrophysics Data System (ADS)

    Donnelly, Claire; Scagnoli, Valerio; Guizar-Sicairos, Manuel; Holler, Mirko; Wilhelm, Fabrice; Guillou, Francois; Rogalev, Andrei; Detlefs, Carsten; Menzel, Andreas; Raabe, Jörg; Heyderman, Laura J.

    2016-08-01

    Imaging the magnetic structure of a material is essential to understanding the influence of the physical and chemical microstructure on its magnetic properties. Magnetic imaging techniques, however, have been unable to probe three-dimensional micrometer-size systems with nanoscale resolution. Here we present the imaging of the magnetic domain configuration of a micrometer-thick FeGd multilayer with hard x-ray dichroic ptychography at energies spanning both the Gd L3 edge and the Fe K edge, providing a high spatial resolution spectroscopic analysis of the complex x-ray magnetic circular dichroism. With a spatial resolution reaching 45 nm , this advance in hard x-ray magnetic imaging is a first step towards the investigation of buried magnetic structures and extended three-dimensional magnetic systems at the nanoscale.

  10. Affordable and Lightweight High-Resolution X-ray Optics for Astronomical Missions

    NASA Technical Reports Server (NTRS)

    Zhang, W. W.; Biskach, M. P.; Bly, V. T.; Carter, J. M.; Chan, K. W.; Gaskin, J. A.; Hong, M.; Hohl, B. R.; Jones, W. D.; Kolodziejczak, J. J.

    2014-01-01

    Future x-ray astronomical missions require x-ray mirror assemblies that provide both high angular resolution and large photon collecting area. In addition, as x-ray astronomy undertakes more sensitive sky surveys, a large field of view is becoming increasingly important as well. Since implementation of these requirements must be carried out in broad political and economical contexts, any technology that meets these performance requirements must also be financially affordable and can be implemented on a reasonable schedule. In this paper we report on progress of an x-ray optics development program that has been designed to address all of these requirements. The program adopts the segmented optical design, thereby is capable of making both small and large mirror assemblies for missions of any size. This program has five technical elements: (1) fabrication of mirror substrates, (2) coating, (3) alignment, (4) bonding, and (5) mirror module systems engineering and testing. In the past year we have made progress in each of these five areas, advancing the angular resolution of mirror modules from 10.8 arc-seconds half-power diameter reported (HPD) a year ago to 8.3 arc-seconds now. These mirror modules have been subjected to and passed all environmental tests, including vibration, acoustic, and thermal vacuum. As such this technology is ready for implementing a mission that requires a 10-arc-second mirror assembly. Further development in the next two years would make it ready for a mission requiring a 5-arc-second mirror assembly. We expect that, by the end of this decade, this technology would enable the x-ray astrophysical community to compete effectively for a major x-ray mission in the 2020s that would require one or more 1-arc-second mirror assemblies for imaging, spectroscopic, timing, and survey studies.

  11. X-Ray Computed Tomography for Failure Analysis Investigations

    DTIC Science & Technology

    1993-05-01

    AD-A268 086 WL-TR-93-4047 X - RAY COMPUTED TOMOGRAPHY FOR FAILURE ANALYSIS INVESTIGATIONS Richard H. Bossi William Shepherd Boeing Defense & Space... X - Ray Computed Tomography for Failure Analysis Investigations PE: 63112F PR: 3153 6. AUTilOR(S) TA: 00 Richard H. Bossi and William Shepherd WU: 06 7...feature detection and three-dimensional positioning capability of X - ray computed tomography are valuable and cost saving assets to a failure analysis

  12. Development of High Resolution Hard X-Ray Telescope with Multilayer Coatings

    NASA Technical Reports Server (NTRS)

    Gorenstein, Paul; Brinton, John C. (Technical Monitor)

    2003-01-01

    The activities that occurred during the first year of the grant were: a) completed construction of the large multilayer deposition facility; b) Coated a large number of flat substrates and the interiors of cylindrical X-ray telescope shell substrates with uniform period and depth graded periods of tungsten-silicon (W/Is) bi-layers and other coatings; c) studied the influence of various factors affecting the quality of the multilayer coatings by measuring their reflection efficiency at 8 keV and higher energy X-rays.

  13. High resolution stationary digital breast tomosynthesis using distributed carbon nanotube x-ray source array

    PubMed Central

    Qian, Xin; Tucker, Andrew; Gidcumb, Emily; Shan, Jing; Yang, Guang; Calderon-Colon, Xiomara; Sultana, Shabana; Lu, Jianping; Zhou, Otto; Spronk, Derrek; Sprenger, Frank; Zhang, Yiheng; Kennedy, Don; Farbizio, Tom; Jing, Zhenxue

    2012-01-01

    Purpose: The purpose of this study is to investigate the feasibility of increasing the system spatial resolution and scanning speed of Hologic Selenia Dimensions digital breast tomosynthesis (DBT) scanner by replacing the rotating mammography x-ray tube with a specially designed carbon nanotube (CNT) x-ray source array, which generates all the projection images needed for tomosynthesis reconstruction by electronically activating individual x-ray sources without any mechanical motion. The stationary digital breast tomosynthesis (s-DBT) design aims to (i) increase the system spatial resolution by eliminating image blurring due to x-ray tube motion and (ii) reduce the scanning time. Low spatial resolution and long scanning time are the two main technical limitations of current DBT technology. Methods: A CNT x-ray source array was designed and evaluated against a set of targeted system performance parameters. Simulations were performed to determine the maximum anode heat load at the desired focal spot size and to design the electron focusing optics. Field emission current from CNT cathode was measured for an extended period of time to determine the stable life time of CNT cathode for an expected clinical operation scenario. The source array was manufactured, tested, and integrated with a Selenia scanner. An electronic control unit was developed to interface the source array with the detection system and to scan and regulate x-ray beams. The performance of the s-DBT system was evaluated using physical phantoms. Results: The spatially distributed CNT x-ray source array comprised 31 individually addressable x-ray sources covering a 30 angular span with 1 pitch and an isotropic focal spot size of 0.6 mm at full width at half-maximum. Stable operation at 28 kV(peak) anode voltage and 38 mA tube current was demonstrated with extended lifetime and good source-to-source consistency. For the standard imaging protocol of 15 views over 14, 100 mAs dose, and 2 × 2 detector

  14. High-resolution and ultrafast imaging using betatron x-rays from laser wakefield accelerators

    NASA Astrophysics Data System (ADS)

    Najmudin, Zulfikar

    2015-11-01

    Laser wakefield accelerators now routinely produce ~GeV energy gain in ~cm plasmas. and are simultaneously capable of producing high brightness and spatially coherent hard x-ray beams. This unique light-source has been used for medical applications, and also for ultrafast imaging in high energy density science. The experiments were performed with the Astra Gemini laser producing 10 J pulses with duration ~ 40 fs focussed to produce a spot of 25 μ m (fwhm) in a gas-cell of variable length to produce a low divergence beam of x-rays. The length of the gas cell was optimised to produce high contrast x-ray images of radiographed test objects. This source was used for full tomographic imaging of a human trabecular bone sample, with resolution exceeding the ~ 100 μ m level required for CT applications. Phase-contrast imaging of human prostate and mouse neonates at the micron level was also demonstrated. These studies indicate the usefulness of these sources in research and clinical applications. The ultrafast nature of the source was also demonstrated by performing time resolved imaging of a laser driven shock. The ultrashort duration of the x-ray source essentially freeze the motion of these fast moving transient phenomena.

  15. The High-Resolution X-Ray Microcalorimeter Spectrometer, SXS, on Astro-H

    NASA Technical Reports Server (NTRS)

    Mitsuda, Kazuhisa; Kelley, Richard L.; Boyce, Kevin R.; Brown, Gregory V.; Costantini, Elisa; DiPirro, Michael J.; Ezoe, Yuichiro; Fujimoto, Ryuichi; Gendreau, Keith C.; denHerder, Jan-Willem; Hoshino, Akio; Ishisaki, Yoshitaka; Kilbourne, Caroline A.; Kitamoto, Shunji; McCammon, Dan; Murakami, Masahide; Murakami, Hiroshi; Ogawa, Mina; Ohashi, Takaya; Okamoto, Atsushi; Paltani, Stephane; Pohl, Martin; Porter, F. Scott; Sato, Yoichi; Shinozaki, Keisuke

    2012-01-01

    The science and an overview of the Soft X-ray Spectrometer onboard the STRO-H mission are presented. The SXS consists of X-ray focusing mirrors and a microcalorimeter array and is developed by international collaboration lead by JAXA and NASA with European participation. The detector is a 6 x 6 format microcalorimeter array operated at a cryogenic temperature of 50 mK and covers a 3' x 3' field of view of the X-ray telescope of 5.6 m focal length. We expect an energy resolution better than 7 eV (FWHM, requirement) with a goal of 4 eV. The effective area of the instrument will be 225 square centimeters at 7 keV; by a factor of about two larger than that of the X-ray microcalorimeter on board Suzaku. One of the main scientific objectives of the SXS is to investigate turbulent and/or macroscopic motions of hot gas in clusters of galaxies.

  16. Development of High Resolution Hard X-Ray Telescope with Multi-Layer Coatings

    NASA Technical Reports Server (NTRS)

    Gorenstein, Paul; Brinton, John C. (Technical Monitor)

    2005-01-01

    This is the annual report for the third year of a three-year program. Previous annual reports have described progress achieved in the first and second years. The major objective of this program is the development of a focusing hard X-ray telescope with moderately high angular resolution, i.e. comparable to the telescopes of XMM-Newton. The key ingredients of the telescope are a depth graded multilayer coatings and electroformed nickel substrates that are considerably lighter weight than those of previous missions such as XMM-Newton, which have had conventional single metal layer reflective coatings and have operated at much lower energy X-rays. The ultimate target mission for this technology is the Hard X-Ray Telescope (HXT) of the Constellation X-Ray Mission. However, it is applicable to potential SMEX and MIDEX programs as well. We are building upon technology that has proven to be successful in the XMM-Newton and SWIFT missions. The improvements that we are adding are a significant reduction in mass without much loss of angular resolution and an order of magnitude extension of the bandwidth through the use of multilayer coatings. The distinctive feature of this approach compared to those of other hard X-ray telescope programs is that we expect the angular resolution to be superior than telescopes made by other methods thanks to the structural integrity of the substrates. They are thin walled complete cylinders of revolution with a Wolter Type 1 figure; the front half is a parabola, the rear half a hyperbola.

  17. HIGH-RESOLUTION X-RAY SPECTROSCOPY OF THE BURSTING PULSAR GRO J1744-28

    SciTech Connect

    Degenaar, N.; Miller, J. M.; Harrison, F. A.; Kennea, J. A.; Kouveliotou, C.; Younes, G.

    2014-11-20

    The bursting pulsar GRO J1744-28 is a Galactic low-mass X-ray binary that distinguishes itself by displaying type-II X-ray bursts: brief, bright flashes of X-ray emission that likely arise from spasmodic accretion. Combined with its coherent 2.1 Hz X-ray pulsations and relatively high estimated magnetic field, it is a particularly interesting source to study the physics of accretion flows around neutron stars. Here we report on Chandra/High Energy Transmission Grating observations obtained near the peak of its bright 2014 accretion outburst. Spectral analysis suggests the presence of a broad iron emission line centered at E {sub l} ≅ 6.7 keV. Fits with a disk reflection model yield an inclination angle of i ≅ 52° and an inner disk radius of R {sub in} ≅ 85 GM/c {sup 2}, which is much further out than typically found for neutron star low-mass X-ray binaries. Assuming that the disk is truncated at the magnetospheric radius of the neutron star, we estimate a magnetic field strength of B ≅ (2-6) × 10{sup 10} G. Furthermore, we identify an absorption feature near ≅ 6.85 keV that could correspond to blue-shifted Fe XXV and point to a fast disk wind with an outflow velocity of v {sub out} ≅ (7.5-8.2) × 10{sup 3} km s{sup –1} (≅ 0.025c-0.027c). If the covering fraction and filling factor are large, this wind could be energetically important and perhaps account for the fact that the companion star lost significant mass while the magnetic field of the neutron star remained strong.

  18. High-resolution X-Ray Spectroscopy of the Bursting Pulsar GRO J1744-28

    NASA Astrophysics Data System (ADS)

    Degenaar, N.; Miller, J. M.; Harrison, F. A.; Kennea, J. A.; Kouveliotou, C.; Younes, G.

    2014-11-01

    The bursting pulsar GRO J1744-28 is a Galactic low-mass X-ray binary that distinguishes itself by displaying type-II X-ray bursts: brief, bright flashes of X-ray emission that likely arise from spasmodic accretion. Combined with its coherent 2.1 Hz X-ray pulsations and relatively high estimated magnetic field, it is a particularly interesting source to study the physics of accretion flows around neutron stars. Here we report on Chandra/High Energy Transmission Grating observations obtained near the peak of its bright 2014 accretion outburst. Spectral analysis suggests the presence of a broad iron emission line centered at E l ~= 6.7 keV. Fits with a disk reflection model yield an inclination angle of i ~= 52° and an inner disk radius of R in ~= 85 GM/c 2, which is much further out than typically found for neutron star low-mass X-ray binaries. Assuming that the disk is truncated at the magnetospheric radius of the neutron star, we estimate a magnetic field strength of B ~= (2-6) × 1010 G. Furthermore, we identify an absorption feature near ~= 6.85 keV that could correspond to blue-shifted Fe XXV and point to a fast disk wind with an outflow velocity of v out ~= (7.5-8.2) × 103 km s-1 (sime 0.025c-0.027c). If the covering fraction and filling factor are large, this wind could be energetically important and perhaps account for the fact that the companion star lost significant mass while the magnetic field of the neutron star remained strong.

  19. A system for high-resolution x-ray phase-contrast imaging and tomography of biological specimens

    NASA Astrophysics Data System (ADS)

    Poletto, Luca; Caldon, Matteo; Tondello, Giuseppe; Megighian, Aram

    2008-08-01

    A system for high-resolution X-ray diagnostics is presented. It consists of a microfocus X-ray source with spot size of 5 μm that is operated in the 10-90 kV range. The detector is a Ce:YAG crystal coupled to a CCD camera with 5μm pixel size and 1392x1040 format. The magnification of the optical coupling is chosen in the 1 to 4 range, giving a spatial resolving element of 5 to 20 μm. The sample to be acquired is mounted on a motorized rototranslation stage for the automatic acquisition of the X-tay views both for tomography and phase-contrast imaging. The sample is positioned half-way between the source and the detector. X-ray images show very high contrast due to phase effects in addition to absorption. Some images of biological specimens are presented to assess the capability of revealing very low differences in density due to the presence of phase contrast. A complete high-resolution tomography of a drosophila is presented.

  20. Acoustic phonons in chrysotile asbestos probed by high-resolution inelastic x-ray scattering

    SciTech Connect

    Mamontov, Eugene; Vakhrushev, S. B.; Kumzerov, Yu. A,; Alatas, A.

    2009-01-01

    Acoustic phonons in an individual, oriented fiber of chrysotile asbestos (chemical formula Mg{sub 3}Si{sub 2}O{sub 5}(OH){sub 4}) were observed at room temperature in the inelastic x-ray measurement with a very high (meV) resolution. The x-ray scattering vector was aligned along [1 0 0] direction of the reciprocal lattice, nearly parallel to the long axis of the fiber. The latter coincides with [1 0 0] direction of the direct lattice and the axes of the nano-channels. The data were analyzed using a damped harmonic oscillator model. Analysis of the phonon dispersion in the first Brillouin zone yielded the longitudinal sound velocity of (9200 {+-} 600) m/s.

  1. Depth Probing Soft X-ray Microprobe (DPSXRM) for High Resolution Probing of Earth's Microstructural Samples

    NASA Astrophysics Data System (ADS)

    Dikedi, P. N.

    2015-12-01

    The Cambrian explosion; occurrence of landslides in very dry weather conditions; rockslides; dead, shriveled-up and crumbled leaves possessing fossil records with the semblance of well preserved, flat leaves; abundance of trilobite tracks in lower and higher rock layers; and sailing stones are enigmas demanding demystifications. These enigmas could be elucidated when data on soil structure, texture and strength are provided by some device with submicrometre accuracy; for these and other reasons, the design of a Depth Probing Soft X-ray Microprobe (DPSXRM), is being proposed; it is expected to deliver soft X-rays, at spatial resolution, ϛ≥600nm and to probe at the depth of 0.5m in 17s. The microprobe is portable compared to a synchrotron radiation facility (Diamond Light Source has land size of 43,300m2); spatial resolution,ϛ , of the DPSXRM surpasses those of the X-ray Fluorescence microanalysis (10µm), electron microprobe (1-3µm) and ion microprobe (5->30µm); the DPSXRM has allowance for multiple targets. Vanadium and Manganese membranes are proposed owing to respective 4.952KeV VKα1 and 5.899KeV MnKα1 X-rays emitted, which best suits micro-probing of Earth's microstructural samples. Compound systems like the Kirk-Patrick and Baez and Wolter optics, aspheric mirrors like elliptical and parabolic optics, small apertures and Abbe sine condition are employed to reduce or remove astigmatism, obliquity, comatic and spherical aberrations—leading to good image quality. Results show that 5.899KeV MnKα1 and 4.952KeV VKα1 soft X-rays will travel a distance of 2.75mm to form circular patches of radii 2.2mm and 2.95mm respectively. Zone plate with nth zone radius of 1.5mm must be positioned 1.5mm and 2mm from the electron gun if circular patches must be formed from 4.952KeV VKα1 and 5.899KeV MnKα1 soft X-rays respectively. The focal lengths of 0.25μm≤ƒ≤1.50μm and 0.04μm≤ƒ≤0.2μm covered by 4.952KeV VKα1 and 5.899KeV Mn Kα1 soft X-Rays, will

  2. Single-crystal sapphire microstructure for high-resolution synchrotron X-ray monochromators

    SciTech Connect

    Asadchikov, Victor E.; Butashin, Andrey V.; Buzmakov, Alexey V.; Deryabin, Alexander N.; Kanevsky, Vladimir M.; Prokhorov, Igor A.; Roshchin, Boris S.; Volkov, Yuri O.; Zolotov, Dennis A.; Jafari, Atefeh; Alexeev, Pavel; Cecilia, Angelica; Baumbach, Tilo; Bessas, Dimitrios; Danilewsky, Andreas N.; Sergueev, Ilya; Wille, Hans -Christian; Hermann, Raphael P.

    2016-03-22

    We report on the growth and characterization of several sapphire single crystals for the purpose of x-ray optics applications. Structural defects were studied by means of laboratory double-crystal X-ray diffractometry and white beam synchrotron-radiation topography. The investigations confirmed that the main defect types are dislocations. The best quality crystal was grown using the Kyropoulos technique with a dislocation density of 102-103 cm-2 and a small area with approximately 2*2 mm2 did not show dislocation contrast in many reflections and has suitable quality for application as a backscattering monochromator. As a result, a clear correlation between growth rate and dislocation density is observed, though growth rate is not the only parameter impacting the quality.

  3. High-Resolution X-Ray Scattering Topography Using Synchrotron Radiation Microbeam

    NASA Astrophysics Data System (ADS)

    Chikaura, Yoshinori; Suzuki, Yoshifumi; Kii, Hideki

    1994-02-01

    Although spatial resolution is the most essential factor determining the function of X-ray topography, it has not been improved in 30 years in spite of increasing requirements for highly-resolvable topography in materials science. X-ray scattering topography using a microbeam is a method capable of overcoming this resolution problem. Because the maximum resolution of an apparatus using a sealed-off tube is limited to 20 µ m, we designed and constructed scattering topography equipment using a synchrotron radiation microbeam. In the experiment, the slit system forms the microbeam 7 µ m in diameter. We observed a cellulose distribution in bamboo as a testing material. When the scanning step was 2 µ m, we attained spatial resolution less than 5 µ m.

  4. Microcalorimeters for High Resolution X-Ray Spectroscopy of Laboratory and Astrophysical Plasmas

    NASA Technical Reports Server (NTRS)

    Silver, E.; Flowers, Bobby J. (Technical Monitor)

    2003-01-01

    The proposal has three major objectives. The first focuses on advanced neutron-transmutation-doped (NTD)-based microcalorimeter development. Our goal is to develop an array of microcalorimeters with sub- 5 eV energy resolution that can operate with pile-up-free throughput of at least 100 Hz per pixel. The second objective is to establish our microcalorimeter as an essential x-ray diagnostic for laboratory astrophysics studies. We propose to develop a dedicated microcalorimeter spectrometer for the EBIT (electron beam ion trap). This instrument will incorporate the latest detector and cryogenic technology that we have available. The third objective is to investigate innovative ideas related to possible flight opportunities. These include compact, long lived cryo-systems, ultra-low temperature cold stages, low mass and low power electronics, and novel assemblies of thin windows with high x-ray transmission.

  5. A high resolution gas scintillation proportional counter for studying low energy cosmic X-ray sources

    NASA Technical Reports Server (NTRS)

    Hamilton, T. T.; Hailey, C. J.; Ku, W. H.-M.; Novick, R.

    1980-01-01

    In recent years much effort has been devoted to the development of large area gas scintillation proportional counters (GSPCs) suitable for use in X-ray astronomy. The paper deals with a low-energy GSPC for use in detecting sub-keV X-rays from cosmic sources. This instrument has a measured energy resolution of 85 eV (FWHM) at 149 eV over a sensitive area of 5 sq cm. The development of imaging capability for this instrument is discussed. Tests are performed on the feasibility of using an arrangement of several phototubes placed adjacent to one another to determine event locations in a large flat counter. A simple prototype has been constructed and successfully operated.

  6. Single-crystal sapphire microstructure for high-resolution synchrotron X-ray monochromators

    DOE PAGES

    Asadchikov, Victor E.; Butashin, Andrey V.; Buzmakov, Alexey V.; ...

    2016-03-22

    We report on the growth and characterization of several sapphire single crystals for the purpose of x-ray optics applications. Structural defects were studied by means of laboratory double-crystal X-ray diffractometry and white beam synchrotron-radiation topography. The investigations confirmed that the main defect types are dislocations. The best quality crystal was grown using the Kyropoulos technique with a dislocation density of 102-103 cm-2 and a small area with approximately 2*2 mm2 did not show dislocation contrast in many reflections and has suitable quality for application as a backscattering monochromator. As a result, a clear correlation between growth rate and dislocation densitymore » is observed, though growth rate is not the only parameter impacting the quality.« less

  7. Inelastic X-ray scattering with very high resolution at the ESRF

    NASA Astrophysics Data System (ADS)

    Krisch, M.; Sette, F.

    2017-01-01

    The investigation of phonon dispersion in crystalline materials and collective atom motions in disordered matter such as liquids and glasses by inelastic X-ray scattering has attracted a diversified user community with the advent of 3rd generation synchrotron sources. The present article provides a short historical account of the research field and discusses selected highlights of research performed on the ESRF inelastic scattering beamlines ID16 and ID28 in the past ten years.

  8. High-Resolution X-Ray Spectroscopy of the Galactic Supernova Remnant Puppis A with the XMM-Newton RGS

    NASA Technical Reports Server (NTRS)

    Katsuda, Satoru; Tsunemi, Hiroshi; Mori, Koji; Uchida, Hiroyuki; Petre, Robert; Yamada, Shinya; Akamatsu, Hiroki; Konami, Saori; Tamagawa, Toru

    2012-01-01

    We present high-resolution X-ray spectra of cloud-shock interaction regions in the eastern and northern rims of the Galactic supernova remnant Puppis A, using the Reflection Grating Spectrometer onboard the XMM-Newton satellite. A number of emission lines including K(alpha) triplets of He-like N, O , and Ne are clearly resolved for the first time. Intensity ratios of forbidden to resonance lines in the triplets are found to be higher than predictions by thermal emission models having plausible plasma parameters. The anomalous line ratios cannot be reproduced by effects of resonance scattering, recombination, or inner-shell ionization processes, but could be explained by charge-exchange emission that should arise at interfaces between the cold/warm clouds and the hot plasma. Our observations thus provide observational support for charge-exchange X-ray emission in supernova remnants.

  9. High resolution imaging with multilayer soft X-ray, EUV and FUV telescopes of modest aperture and cost

    NASA Technical Reports Server (NTRS)

    Walker, Arthur B. C., Jr.; Lindblom, Joakim F.; Timothy, J. G.; Hoover, Richard B.; Barbee, Troy W., Jr.; Baker, Phillip C.; Powell, Forbes R.

    1991-01-01

    The development of multilayer reflective coatings now permits soft X-ray, EUV and FUV radiation to be efficiently imaged by conventional normal incidence optical configurations. Telescopes with quite modest apertures can, in principle, achieve images with resolutions which would require apertures of 1.25 meters or more at visible wavelengths. The progress is reviewed which has been made in developing compact telescopes for ultra-high resolution imaging of the sun at soft X-ray, EUV and FUV wavelengths, including laboratory test results and astronomical images obtained with rocket-borne multilayer telescopes. The factors are discussed which limit the resolution which has been achieved so far, and the problems which must be addressed to attain, and surpass the 0.1 arc-second level. The application of these technologies to the development of solar telescopes for future space missions is also described.

  10. High-resolution quasi-monochromatic X-ray imaging using a Fresnel phase zone plate and a multilayer mirror.

    PubMed

    Do, A; Troussel, Ph; Baton, S D; Dervieux, V; Gontier, D; Lecherbourg, L; Loupias, B; Obst, L; Pérez, F; Renaudin, P; Reverdin, Ch; Rubbelynck, C; Stemmler, Ph; Soullié, G

    2017-01-01

    High-resolution, high-sensitivity X-ray imaging is a real challenge in laser plasma diagnostic to attain reliable data in high-energy density plasma experiments. In this context, ultra-high-intensity lasers generate hot and dense plasma but only in a small volume. An experiment has been performed at the LULI2000 laser facility to diagnose such plasma conditions from thermal spectroscopic data. To image the emission zone plasma's Al Heβ, a Fresnel-lens-based X-ray imager has been developed. It features a 846 μm-diameter Fresnel Phase Zone Plate (FPZP) and a Pd/B4C multilayer mirror (thickness d = 5.1 nm). This association can be used between 1500 eV and 2100 eV. The FPZP's efficiency was measured on a synchrotron facility (SOLEIL) and its spatial resolution in a laser facility (EQUINOX). The mirror reflectivity was measured on the synchrotron facility BESSY II. With experimental conditions, the system resolution reaches 3.8 ± 0.6 μm with an adequate efficiency in the 1800 eV-1900 eV energy range with a solid angle of 9 × 10(-6) sr. Consequently, a FPZP is an excellent optics setup for high-resolution quasi-monochromatic X-ray imaging and provides a good collection angle. Bragg-Fresnel lenses, based on the principle of FPZP and mirrors, are currently designed for an X-ray imager at the Laser MégaJoule facility.

  11. Objectives and Layout of a High-Resolution X-ray Imaging Crystal Spectrometer for the Large Helical Device (LHD)

    SciTech Connect

    Bitter, M; Gates, D; Monticello, D; Neilson, H; Reiman, A; Roquemore, A L; Morita, S; Goto, M; Yamada, H

    2010-07-29

    A high-resolution X-ray imaging crystal spectrometer, whose concept was tested on NSTX and Alcator C-Mod, is being designed for LHD. This instrument will record spatially resolved spectra of helium-like Ar16+ and provide ion temperature profiles with spatial and temporal resolutions of < 2 cm and ≥ 10 ms. The stellarator equilibrium reconstruction codes, STELLOPT and PIES, will be used for the tomographic inversion of the spectral data. The spectrometer layout and instrumental features are largely determined by the magnetic field structure of LHD.

  12. A high resolution small animal radiation research platform (SARRP) with x-ray tomographic guidance capabilities

    PubMed Central

    Wong, John; Armour, Elwood; Kazanzides, Peter; Iordachita, Iulian; Tryggestad, Erik; Deng, Hua; Matinfar, Mohammad; Kennedy, Christopher; Liu, Zejian; Chan, Timothy; Gray, Owen; Verhaegen, Frank; McNutt, Todd; Ford, Eric; DeWeese, Theodore L.

    2008-01-01

    Purpose To demonstrate the CT imaging, conformal irradiation and treatment planning capabilities of a small animal radiation research platform (SARRP). Methods The SARRP employs a dual-focal spot, constant voltage x-ray source mounted on a gantry with a source-to-isocenter distance of 35 cm. Gantry rotation is limited to 120° from vertical. Eighty to 100 kVp x-rays from the smaller 0.4 mm focal spot are used for imaging. Both 0.4 mm and 3.0 mm focal spots operate at 225 kVp for irradiation. Robotic translate/rotate stages are used to position the animal. Cone-beam (CB) CT imaging is achieved by rotating the horizontal animal between the stationary x-ray source and a flat-panel detector. Radiation beams range from 0.5 mm in diameter to (60 × 60) mm2. Dosimetry is measured with radio-chromic films. Monte Carlo dose calculations are employed for treatment planning. The combination of gantry and robotic stage motions facilitate conformal irradiation. Results The SARRP spans 3 ft × 4 ft × 6 ft (WxLxH). Depending on filtration, the isocenter dose outputs at 1 cm depth in water range from 22 to 375 cGy/min from the smallest to the largest radiation fields. The 20% to 80% dose fall-off spans 0.16 mm. CBCT with (0.6 × 0.6 × 0.6) mm3 voxel resolution is acquired with less than 1 cGy. Treatment planning is performed at sub-mm resolution. Conclusions The capability of the SARRP to deliver highly focal beams to multiple animal model systems provides new research opportunities that more realistically bridge laboratory research and clinical translation. PMID:18640502

  13. The high resolution X-ray imaging detector planes for the MIRAX mission

    NASA Astrophysics Data System (ADS)

    Rodrigues, B. H. G.; Grindlay, J. E.; Allen, B.; Hong, J.; Barthelmy, S.; Braga, J.; D'Amico, F.; Rothschild, R. E.

    2013-09-01

    The MIRAX X-ray observatory, the first Brazilian-led astrophysics space mission, is designed to perform an unprecedented wide-field, wide-band hard X-ray (5-200 keV) survey of Galactic X-ray transient sources. In the current configuration, MIRAX will carry a set of four coded-masks telescopes with high spatial resolution Cadmium Zinc Telluride (CZT) detector planes, each one consisting of an array of 64 closely tiled CZT pixelated detectors. Taken together, the four telescopes will have a total detection area of 959 cm2, a large field of view (60° × 60° FWHM), high angular resolution for this energy range (6 arcmin) and very good spectral resolution ( ~ 2 keV @ 60 keV). A stratospheric balloon-borne prototype of one of the MIRAX telescopes has been developed, tested and flown by the Harvard-Smithsonian Center for Astrophysics (CfA) as part of the ProtoEXIST program. In this paper we show results of validation and calibration tests with individual CZT detectors of the ProtoEXIST second generation experiment (P2). Each one of 64 detector units of the P2 detector plane consists of an ASIC, developed by Caltech for the NuSTAR telescope, hybridized to a CZT crystal with 0.6 mm pixel size. The performance of each detector was evaluated using radioactive sources in the laboratory. The calibration results show that the P2 detectors have average energy resolution of ~ 2.1 keV @ 60 keV and 2.3 @ 122 keV. P2 was also successfully tested on near-space environment on a balloon flight, demonstrating the detector unit readiness for integration on a space mission telescope, as well as satisfying all MIRAX mission requirements.

  14. Direct Polishing of Full-Shell, High-Resolution X-Ray Optics

    NASA Technical Reports Server (NTRS)

    Roche, Jacqueline M.; Gubarev, Mikhail V.; Smith, W. Scott; O'Dell, Stephen L.; Kolodziejczak, Jeffrey J.; Weisskopf, Martin C.; Ramsey, Brian D.; Elsner, Ronald F.

    2014-01-01

    Future x-ray telescopes will likely require lightweight mirrors to attain the large collecting areas needed to accomplish the science objectives. Understanding and demonstrating processes now is critical to achieving sub-arcsecond performance in the future. Consequently, designs not only of the mirrors but of fixtures for supporting them during fabrication, metrology, handling, assembly, and testing must be adequately modeled and verified. To this end, MSFC is using finite-element modeling to study the effects of mounting on thin, full-shell grazing-incidence mirrors, during all processes leading to a flight.

  15. Combinatorial Screening of Advanced Scintillators for High Resolution X-ray Detectors

    SciTech Connect

    Cheng, Shifan; Tao, Dejie; Lynch, Michael; Yuan, Xianglong; Li, Yiqun

    2008-05-12

    The lack of efficient scintillators is a major problem for developing powerful x-ray detectors that are widely used in homeland security, industrial and scientific research. Intematix has developed and applied a high throughput screening process and corresponding crystal growth technology to significantly speed up the discovery process for new efficient scintillators. As a result, Intematix has invented and fabricated three new scintillators both in powder and bulk forms, which possess promising properties such as better radiation hardness and better matching for silicon diode.

  16. Two-dimensional Detector for High Resolution Soft X-ray Imaging

    SciTech Connect

    Ejima, Takeo; Ogasawara, Shodo; Hatano, Tadashi; Yanagihara, Mihiro; Yamamoto, Masaki

    2010-06-23

    A new two-dimensional (2D) detector for detecting soft X-ray (SX) images was developed. The detector has a scintillator plate to convert a SX image into a visible (VI) one, and a relay optics to magnify and detect the converted VI image. In advance of the fabrication of the detector, quantum efficiencies of scintillators were investigated. As a result, a Ce:LYSO single crystal on which Zr thin film was deposited was used as an image conversion plate. The spatial resolution of fabricated detector is 3.0 {mu}m, and the wavelength range which the detector has sensitivity is 30-6 nm region.

  17. High resolution synchrotron-based radiography and tomography using hard X-rays at the BAM line (BESSY II)

    NASA Astrophysics Data System (ADS)

    Rack, A.; Zabler, S.; Müller, B. R.; Riesemeier, H.; Weidemann, G.; Lange, A.; Goebbels, J.; Hentschel, M.; Görner, W.

    2008-02-01

    The use of high brilliance and partial coherent synchrotron light for radiography and computed tomography (CT) allows to image micro-structured, multi-component specimens with different contrast modes and resolutions up to submicrometer range. This is of high interest for materials research, life science and non-destructive evaluation applications. An imaging setup for microtomography and radiography installed at BESSY II (a third generation synchrotron light source located in Berlin, Germany) as part of its first hard X-ray beamline (BAM line) can now be used for absorption, refraction as well as phase contrast — dedicated to inhouse research and applications by external users. Monochromatic synchrotron light between 6 keV and 80 keV is attained via a fully automated double multilayer monochromator. For imaging applications the synchrotron beam transmitted by the sample is converted with a scintillator into visible light. By use of microscope optics this luminescence image is then projected onto, e.g., a CCD chip. Several scintillating materials are used in order to optimise the performance of the detector system. Different optical systems are available for imaging ranging from a larger field of view and moderate resolutions (macroscope — up to 14 mm×14 mm field of view) to high resolution (microscope — down to 0.35 μm pixel size), offering magnifications from 1.8× to 40×. Additionally asymmetric cut Bragg crystals in front of the scintillator can be used for a further magnification in one dimension by a factor of about 20. Slow and fast cameras are available, with up to 16 bit dynamic range. We show the suitability of the setup for numerous applications from materials research and life science.

  18. Three-Dimensional High-Resolution Optical/X-Ray Stereoscopic Tracking Velocimetry

    NASA Technical Reports Server (NTRS)

    Cha, Soyoung S.; Ramachandran, Naryanan

    2005-01-01

    Measurement of three-dimensional (3-D) three-component velocity fields is of great importance in a variety of research and industrial applications for understanding materials processing, fluid physics, and strain/displacement measurements. The 3-D experiments in these fields most likely inhibit the use of conventional techniques, which are based only on planar and optically-transparent-field observation. Here, we briefly review the current status of 3-D diagnostics for motion/velocity detection, for both optical and x-ray systems. As an initial step for providing 3-D capabilities, we have developed stereoscopic tracking velocimetry (STV) to measure 3-D flow/deformation through optical observation. The STV is advantageous in system simplicity, for continually observing 3-D phenomena in near real-time. In an effort to enhance the data processing through automation and to avoid the confusion in tracking numerous markers or particles, artificial neural networks are employed to incorporate human intelligence. Our initial optical investigations have proven the STV to be a very viable candidate for reliably measuring 3-D flow motions. With previous activities focused on improving the processing efficiency, overall accuracy, and automation based on the optical system, the current efforts is directed to the concurrent expansion to the x-ray system for broader experimental applications.

  19. Three-Dimensional High-Resolution Optical/X-Ray Stereoscopic Tracking Velocimetry

    NASA Technical Reports Server (NTRS)

    Cha, Soyoung S.; Ramachandran, Narayanan

    2004-01-01

    Measurement of three-dimensional (3-D) three-component velocity fields is of great importance in a variety of research and industrial applications for understanding materials processing, fluid physics, and strain/displacement measurements. The 3-D experiments in these fields most likely inhibit the use of conventional techniques, which are based only on planar and optically-transparent-field observation. Here, we briefly review the current status of 3-D diagnostics for motion/velocity detection, for both optical and x-ray systems. As an initial step for providing 3-D capabilities, we nave developed stereoscopic tracking velocimetry (STV) to measure 3-D flow/deformation through optical observation. The STV is advantageous in system simplicity, for continually observing 3- D phenomena in near real-time. In an effort to enhance the data processing through automation and to avoid the confusion in tracking numerous markers or particles, artificial neural networks are employed to incorporate human intelligence. Our initial optical investigations have proven the STV to be a very viable candidate for reliably measuring 3-D flow motions. With previous activities are focused on improving the processing efficiency, overall accuracy, and automation based on the optical system, the current efforts is directed to the concurrent expansion to the x-ray system for broader experimental applications.

  20. Development of an ultra-high resolution diffraction grating forsoft x-rays

    SciTech Connect

    Voronov, Dmitriy L.; Cambie, Rossana; Feshchenko, Ruslan M.; Gullikson, Eric M.; Padmore, Howard A.; Vinogradov, Alexander V.; Yashchuk, Valeriy V.

    2007-08-21

    Resonant Inelastic X-ray Scattering (RIXS) is the one of themost powerful methods for investigation of the electronic structure ofmaterials, specifically of excitations in correlated electron systems.However the potential of the RIXS technique has not been fully exploitedbecause conventional grating spectrometers have not been capable ofachieving the extreme resolving powers that RIXS can utilize. State ofthe art spectrometers in the soft x-ray energy range achieve ~;0.25 eVresolution, compared to the energy scales of soft excitations andsuperconducting gap openings down to a few meV. Development ofdiffraction gratings with super high resolving power is necessary tosolve this problem. In this paper we study the possibilities offabrication of gratings of resolving power of up to 106 for the 0.5 1.5KeV energy range. This energy range corresponds to all or most of theuseful dipole transitions for elements of interest in most correlatedelectronic systems, i.e., oxygen K-edge of relevance to all oxides, thetransition metal L2,3 edges, and the M4,5 edges of the rare earths.Various approaches based on different kinds of diffraction gratings suchas deep-etched multilayer gratings, and multilayer coated echelettes arediscussed. We also present simulations of diffraction efficiency for suchgratings, and investigate the necessary fabricationtolerances.

  1. High-Resolution and Quantitative X-Ray Phase-Contrast Tomography for Mouse Brain Research.

    PubMed

    Xi, Yan; Lin, Xiaojie; Yuan, Falei; Yang, Guo-Yuan; Zhao, Jun

    2015-01-01

    Imaging techniques for visualizing cerebral vasculature and distinguishing functional areas are essential and critical to the study of various brain diseases. In this paper, with the X-ray phase-contrast imaging technique, we proposed an experiment scheme for the ex vivo mouse brain study, achieving both high spatial resolution and improved soft-tissue contrast. This scheme includes two steps: sample preparation and volume reconstruction. In the first step, we use heparinized saline to displace the blood inside cerebral vessels and then replace it with air making air-filled mouse brain. After sample preparation, X-ray phase-contrast tomography is performed to collect the data for volume reconstruction. Here, we adopt a phase-retrieval combined filtered backprojection method to reconstruct its three-dimensional structure and redesigned the reconstruction kernel. To evaluate its performance, we carried out experiments at Shanghai Synchrotron Radiation Facility. The results show that the air-tissue structured cerebral vasculatures are highly visible with propagation-based phase-contrast imaging and can be clearly resolved in reconstructed cross-images. Besides, functional areas, such as the corpus callosum, corpus striatum, and nuclei, are also clearly resolved. The proposed method is comparable with hematoxylin and eosin staining method but represents the studied mouse brain in three dimensions, offering a potential powerful tool for the research of brain disorders.

  2. The High Resolution Microcalorimeter Soft X-ray Spectrometer for the Astro-H Mission

    NASA Astrophysics Data System (ADS)

    Kelley, Richard L.; Mitsuda, K.; International SXS Team

    2013-04-01

    We are developing the Soft X-Ray Spectrometer (SXS) for the JAXA Astro-H mission. The instrument is based on a 36-pixel array of semiconductor micro calorimeters that provides high spectral resolution over the 0.3-12 keV energy band at the focus of a high throughput, grazing-incidence x-ray mirror, giving a 3 x 3 arcmin field of view and more than 200 cm2 of collecting area at 6 keV. The instrument is a collaboration between the JAXA Institute of Space and Astronautical Science and their partners in Japan, the NASA/Goddard Space Flight Center, the University of Wisconsin, the Space Research Organization of the Netherlands, and Geneva University. The principal components of the spectrometer are the microcalorimeter detector system, low-temperature anticoincidence detector, 3-stage ADR and dewar. The dewar is a long-life, hybrid design with a superfluid helium cryostat, Joule-Thomson cooler, and Stirling coolers. The instrument is capable of achieving 4-5 eV resolution across the array and is designed to operate for at least three years in orbit, and can operate either without liquid helium or the cooling power of the Joule-Thomson cooler. In this presentation we describe the design and status of the Astro-H/SXS instrument.

  3. High-resolution 22-52 keV backlighter sources and application to X-ray radiography

    NASA Astrophysics Data System (ADS)

    Vaughan, K.; Moore, A. S.; Smalyuk, V.; Wallace, K.; Gate, D.; Glendinning, S. G.; McAlpin, S.; Park, H. S.; Sorce, C.; Stevenson, R. M.

    2013-09-01

    The requirement for sources of hard X-rays suitable for high resolution radiography through large ρR targets is prominent in many aspects of current laser-driven plasma physics research. In recent work using the OMEGA EP laser facility [L. J. Waxer, M. J. Guardalben, J. H. Kelly et al., CLEO/QELS, Optical Society of America, San Jose, CA, IEEE (2008)] at the Laboratory for Laser Energetics (LLE) in Rochester, NY, experiments have been performed to measure characteristics of 22-52 keV X-ray sources using high intensity short-pulse lasers. High quality point projection, two-dimensional radiography was demonstrated by irradiating microwire targets with laser intensities of 1016 W cm-2-1019 W cm-2. Microwire targets were manufactured to dimensions of 10 μm × 10 μm × 300 μm and were supported by a 100 μm × 300 μm × 6 μm low-Z substrate. Measurements of the k-α conversion efficiency and X-ray source-size are discussed and, of particular importance for radiography, the spectral purity of the backlighter is characterized to assess the relative importance of the Kα emission to bremsstrahlung background.

  4. Warm Absorbers in X-rays (WAX), a comprehensive high resolution grating spectral study of a sample of Seyfert galaxies

    NASA Astrophysics Data System (ADS)

    Laha, S.; Guainazzi, M.; Dewangan, G.; Chakravorty, S.; Kembhavi, A.

    2014-07-01

    We present results from a homogeneous analysis of the broadband 0.3-10 keV CCD resolution as well as of soft X-ray high-resolution grating spectra of a hard X-ray flux-limited sample of 26 Seyfert galaxies observed with XMM-Newton. We could put a strict lower limit on the detection fraction of 50%. We find a gap in the distribution of the ionisation parameter in the range 0.5X-rays. The WA parameters show no correlation among themselves, except for one case. The shallow slope of the logξ versus logv_{out} linear regression (0.12± 0.03) is inconsistent with the scaling laws predicted by radiation or magneto-hydrodynamic-driven winds. Our results suggest also that WA and Ultra Fast Outflows (UFOs) do not represent extreme manifestation of the same astrophysical system.

  5. Resonant x-ray emission spectroscopy of liquid water: novel instrumentation, high resolution, and the"map" approach

    SciTech Connect

    Weinhardt, L.; Fuchs, O.; Blum, M.; Bär, M.; Weigand, M.; Denlinger, J.D.; Zubavichus, Y.; Zharnikov, M.; Grunze, M.; Heske, C.; Umbach, E.

    2008-06-17

    Techniques to study the electronic structure of liquids are rare. Most recently, resonant x-ray emission spectroscopy (XES) has been shown to be an extremely versatile spectroscopy to study both occupied and unoccupied electronic states for liquids in thermodynamic equilibrium. However, XES requires high-brilliance soft x-ray synchrotron radiation and poses significant technical challenges to maintain a liquid sample in an ultra-high vacuum environment. Our group has therefore developed and constructed a novel experimental setup for the study of liquids, with the long-term goal of investigating the electronic structure of biological systems in aqueous environments. We have developed a flow-through liquid cell in which the liquid is separated from vacuum by a thin Si3N4 or SiC window and which allows a precise control of temperature. This approach has significant advantages compared to static liquids cells used in the past. Furthermore, we have designed a dedicated high-transmission, high-resolution soft x-ray spectrometer. The high transmission makes it possible to measure complete resonant XES"maps" in less than an hour, giving unprecedented detailed insight into the electronic structure of the investigated sample. Using this new equipment we have investigated the electronic structure of liquid water. Furthermore, our XES spectra and maps give information about ultra-fast dissociation on the timescale of the O 1s core hole lifetime, which is strongly affected by the initial state hydrogen bonding configuration.

  6. Wide-band, high-resolution soft x-ray spectrometer for the Electron Beam Ion Trap

    SciTech Connect

    Brown, G.V.; Beiersdorfer, P.; Widmann, K.

    1999-01-01

    We have constructed two wide-band, high-resolution vacuum flat crystal spectrometers and implemented them on the Electron Beam Ion Trap located at the Lawrence Livermore National Laboratory. Working in unison, these spectrometers can measure an x-ray bandwidth {le}9 {Angstrom} in the soft x-ray region below 21 {Angstrom}. In order to achieve this large bandwidth each spectrometer houses either two 125 mm {times} 13 mm {times} 2 mm RAP (rubidium acid phthalate, 2d=26.121 {Angstrom}), two 114 mm {times} 13 mm {times} 2 mm TlAP (thallium acid phthalate, 2d=25.75 {Angstrom}) crystals, or some combination thereof, for dispersion and two position sensitive proportional counters for detection of x rays. The spectrometers are used to measure wavelengths and relative intensities of the L-shell line emission from FethinspXVII{endash}XXIV for comparison with spectra obtained from astrophysical and laboratory plasmas. The wide wavelength coverage attainable by these spectrometers makes it possible to measure all the L-shell emission from a given iron ion species simultaneously. {copyright} {ital 1999 American Institute of Physics.}

  7. Evaluation of dislocation densities in HgCdTe films by high-resolution x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Wang, Qingxue; Yang, Jianrong; Wei, Yanfeng; Fang, Weizheng; He, Li

    2005-01-01

    The dislocation densities in HgCdTe films grown on CdZnTe by Liquid Phase Epitaxy (LPE) are calculated based on their effects on the x-ray rocking curves. The dislocation densities derived from three kinds of methods, i.e. FWHM of X-ray double axis diffraction, Williamson-Hall plot and Pseudo-Voigt function, are approximately the same. It is found that the thickness of HgCdTe epilayers about 10 um is large enough so that effect of crystallize size on the rocking curves width can be ignored. Because the intrinsic FWHM of HgCdTe and the instrumental function of high resolution X-ray diffraction are neglected in Williamson-Hall plot and Pseudo-Voigt function, the dislocation densities obtained by these methods are a little larger than those derived from the first kind of method. Among three kinds of methods, Pseudo-Voigt function method is the easiest one to fit the rocking curves and calculate the dislocation densities.

  8. To get the most out of high resolution X-ray tomography: A review of the post-reconstruction analysis

    NASA Astrophysics Data System (ADS)

    Liu, Yijin; Kiss, Andrew M.; Larsson, Daniel H.; Yang, Feifei; Pianetta, Piero

    2016-03-01

    X-ray microscopy has been well-recognized as one of the most important techniques for research in a wide range of scientific disciplines including materials science, geoscience, and bio-medical science. Advances in X-ray sources, optics, detectors, and imaging methodologies have made significant improvements to non-destructive reconstructions of the three dimensional (3D) structure of specimens over a wide range of length scales with different contrast mechanisms. A strength of 3D imaging is a "seeing is believing" way of reporting and analyzing data to better understand the structure/function characteristics of a sample. In addition to the excellent visualization capability, X-ray computed tomography has a lot more to offer. In this article, we review some of the experimental and analytical methods that enrich and extract scientifically relevant information from tomographic data. Several scientific cases are discussed along with how they enhance the tomographic dataset.

  9. High-resolution spectroscopic diagnostics of very high-temperature plasmas in the hard x-ray regime

    SciTech Connect

    Widmann, Klaus

    1999-12-06

    Motivated by the need for establishing a reliable database useful for the application of x-ray spectroscopic tools for the diagnostic of very high temperature plasmas, high-resolution crystal spectrometer measurements have been performed investigating the characteristic K-shell radiation of highly charged krypton and xenon. The measurements, which have been performed at the Electron-Beam-Ion-Trap (EBIT) facility of the Lawrence Livermore National Laboratory, include the investigation of the n = 2 → 1 transitions in heliumlike krypton (Kr34+) and innershell excited lithiumlike krypton (Kr{sup 33+}) utilizing a conventional reflection-type crystal spectrometer of von Hamos geometry. The electron-excitation-energy selective measurements map the contribution of the dielectronic recombination lines providing the means of accurate interpretation of the line profiles of the characteristic Kα x-ray emission of plasmas. The high-resolution measurements of the n = 2 → 1 transitions in heliumlike xenon (Xe52+) and hydrogenlike xenon (Xe53+) were based on a new transmission-type crystal spectrometer of DuMond geometry. The resolving power of the developed spectrometer was sufficient for charge state specific observation allowing the determination of the electron-impact excitation cross section for the hydrogen- and heliumlike Kα transitions. The disagreement with theoretically predicted values is a measure of the magnitude of the Breit interaction for the highly charged high-Z ions.

  10. Microfabric and anisotropy of elastic waves in sandstone - An observation using high-resolution X-ray microtomography

    NASA Astrophysics Data System (ADS)

    Kahl, Wolf-Achim; Hinkes, Robert; Feeser, Volker; Holzheid, Astrid

    2013-04-01

    Petrophysical experiments, using acoustic velocities to characterise anisotropies of mechanical behaviour of rocks are of essential relevance to understand the geomechanical behaviour of sandstone reservoirs under changing stress fields. Here, we present high-resolution X-ray microtomography (μ-CT) as a supplementary research tool to interpret anisotropic ultrasound velocities in sandstones with variation of isotopic stress. Specimens of two Lower Cretaceous sandstones (localities Bentheim and Obernkirchen, both Germany) have been used in petrophysical laboratory experiments under dry conditions to study ultrasonic sound velocities (frequency of signal input 1 MHz). Subsequently, oriented micro-plugs drilled from the sandstone samples were investigated using high-resolution X-ray microtomography. By means of image processing of the reconstructed scan images, geometric attributes such as mean structural thickness, orientation and tortuosity were evaluated from the μ-CT data for both pore space and grain skeleton. Our observations clearly indicate the different roles of pore space and grain skeleton in regard to the propagation of ultrasonic waves: because the pores do not transmit the waves, it was sufficient to investigate the average thickness of this fabric element. In contrast, as the ultrasonic waves traverse the rock via the adjacent grains, it was necessary to survey the actual travel lengths of seismic waves in the sandstone grain skeleton.

  11. Integrated reflectivity measurements of hydrogen phthalate crystals for high-resolution soft x-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Zastrau, U.; Förster, E.

    2014-09-01

    The integrated x-ray reflectivity of Potassium Hydrogen Phthalate (KAP) and Rubidium Hydrogen Phthalate (RAP) crystals is studied at a photon energy of (1740±14) eV using a double-crystal setup. The absolute measured reflectivities are in < 5% agreement with the values predicted by the dynamic diffraction theory for perfect crystals when absorption is included. Within 4% experimental error margins, specimen that were exposed to ambient conditions over many years show identical reflectivity as specimen that were cleaved just before the measurement. No differences are observed between cleaving off a 10 μm surface layer and splitting the entire crystal bulk of 2 mm thickness. We conclude that at 1.7 keV photon energy the penetration depth of ~ 1 μm is large compared to a potentially deteriorated surface layer of a few 10 nm.

  12. Chemically amplified negative resist optimized for high-resolution x-ray lithography

    NASA Astrophysics Data System (ADS)

    Nakamura, Jiro; Kawai, Yoshio; Deguchi, Kimiyoshi; Oda, Masatoshi; Matsuda, Tadahito

    1999-06-01

    We have developed a three-component negative resist for x- ray lithography which is composed of monodispersed polyhydroxystyrene as a base polymer, hexamethoxymethylmelamine as a cross-linker, and alicyclic- bromides containing ketonic groups as an acid generator. To enlarge the contrast of the dissolution rate between the exposed and unexposed films, polyhydroxystyrene was partially protected by t-butoxycarbonyl groups and organic bases were added to the resist component. Among the bromic compounds we evaluated as acid generators, the alicyclic- bromides containing ketonic groups produced hydrobromic acids most efficiently. The resolution of the new resist remains nice down to 80-nm line-and-space patterns at a proximity gap of 20 micrometers , and 70-nm patterns at a gap of 10 micrometers with a resist sensitivity of 150 mJ/cm2.

  13. Optimizing Transition Edge Sensors for High-Resolution X-ray Spectroscopy

    SciTech Connect

    Saab, Tarek; Bandler, Simon R.; Boyce, Kevin; Chervenak, James A.; Figueroa-Feliciano, Enectali; Iyomoto, Naoko; Kelley, Richard L.; Kilbourne, Caroline A.; Porter, Frederick S.; Sadleir, John E

    2006-09-07

    Transition Edge Sensors (TES) have found applications as astronomical detectors ranging from the microwave to the gamma ray energy bands. Each energy band, however, imposes a different set of requirements on the TES such as energy and timing resolution, focal plane coverage, and the mechanisms by which the signal is coupled to the detector. This paper focuses on the development of TESs optimized for the 0.1-10 keV energy range at the NASA Goddard Space Flight Center. Such detectors are suitable candidates for some of the upcoming X-ray observatories such as NeXT and Constellation-X. Ongoing efforts at producing, characterizing, and modeling such devices, as well as the latest results, are discussed.

  14. High Resolution X-Ray Microangiography of 4T1 Tumor in Mouse Using Synchrotron Radiation

    SciTech Connect

    Sun Jianqi; Liu Ping; Gu Xiang; Liu Xiaoxia; Zhao Jun; Xiao Tiqiao; Xu, Lisa X.

    2010-07-23

    Angiogenesis is very important in tumor growth and metastasis. But in clinic, only vessels lager than 200 {mu}m in diameter, can be observed using conventional medical imaging. Synchrotron radiation (SR) phase contrast imaging, whose spatial resolution can reach as high as 1 {mu}m, has great advantages in imaging soft tissue structures, such as blood vessels and tumor tissues. In this paper, the morphology of newly formed micro-vessels in the mouse 4T1 tumor samples was firstly studied with contrast agent. Then, the angiogenesis in nude mice tumor window model was observed without contrast agent using the SR phase contrast imaging at the beamline for X-ray imaging and biomedical applications, Shanghai Synchrotron Radiation Facility (SSRF). The images of tumors showed dense, irregular and tortuous tumor micro-vessels with the smallest size of 20-30 {mu}m in diameter.

  15. High-resolution X-ray absorption spectroscopy of iron carbonyl complexes.

    PubMed

    Atkins, Andrew J; Bauer, Matthias; Jacob, Christoph R

    2015-06-07

    We apply high-energy-resolution fluorescence-detected (HERFD) X-ray absorption near-edge spectroscopy (XANES) to study iron carbonyl complexes. Mono-, bi-, and tri-nuclear carbonyl complexes and pure carbonyl complexes as well as carbonyl complexes containing hydrocarbon ligands are considered. The HERFD-XANES spectra reveal multiple pre-edge peaks with individual signatures for each complex, which could not be detected previously with conventional XANES spectroscopy. These peaks are assigned and analysed with the help of TD-DFT calculations. We demonstrate that the pre-edge peaks can be used to distinguish the different types of iron-iron interactions in carbonyl complexes. This opens up new possibilities for applying HERFD-XANES spectroscopy to probe the electronic structure of iron catalysts.

  16. High Resolution Double Crystal X-Ray Diffractometry and Topography of Iii-V Semiconductor Compounds

    NASA Astrophysics Data System (ADS)

    Cockerton, Simon

    Available from UMI in association with The British Library. Requires signed TDF. Double crystal diffractometry and topography are now routinely used in many laboratories for the inspection of epitaxially grown devices. However the trend towards thinner layers and more complex structures requires the continual development of novel approaches using these techniques. This thesis is concerned with the development of these approaches to study the structural uniformity of semiconductor materials. The uniformity of large single crystals of lithium niobate has been studied using synchrotron radiation and double crystal X-ray topography. This study has shown a variety of contrast features including low angle grain boundaries and non-uniform dislocation densities. The abruptness of an interface between a layer and the underlying substrate has been studied using glancing incidence asymmetric reflections. Comparisons to simulated structures revealed that a closer match was achieved by the inclusion of a highly mismatched interfacial layer. This study illustrates the need for careful comparison between experimental and simulated rocking curves as different structures may produce very similar rocking curves. A double crystal topographic study of a AlGaAs laser structure revealed X-ray interference fringes. These are shown to be produced from the interaction of two simultaneously diffracting layers separated by a thin layer. Possible formation mechanisms have been discussed showing that these fringes are capable of revealing changes in the active layer at the atomic level. A novel approach has also been developed using synchrotron radiation to study the non -stoichiometry of GaAs. This approach uses the quasi-forbidden reflections which are present in III-V semiconductors due to the differences in the atomic scattering factors. This study has also discussed the behaviour of strong and weak reflections in the region of absorption edges and modelled their behaviour using the

  17. Quantitative cone beam X-ray luminescence tomography/X-ray computed tomography imaging

    SciTech Connect

    Chen, Dongmei; Zhu, Shouping Chen, Xueli; Chao, Tiantian; Cao, Xu; Zhao, Fengjun; Huang, Liyu; Liang, Jimin

    2014-11-10

    X-ray luminescence tomography (XLT) is an imaging technology based on X-ray-excitable materials. The main purpose of this paper is to obtain quantitative luminescence concentration using the structural information of the X-ray computed tomography (XCT) in the hybrid cone beam XLT/XCT system. A multi-wavelength luminescence cone beam XLT method with the structural a priori information is presented to relieve the severe ill-posedness problem in the cone beam XLT. The nanophosphors and phantom experiments were undertaken to access the linear relationship of the system response. Then, an in vivo mouse experiment was conducted. The in vivo experimental results show that the recovered concentration error as low as 6.67% with the location error of 0.85 mm can be achieved. The results demonstrate that the proposed method can accurately recover the nanophosphor inclusion and realize the quantitative imaging.

  18. High-resolution Crystal Spectroscopy of Charge-Exchange Produced K-shell X-ray Emission Lines

    NASA Astrophysics Data System (ADS)

    Beiersdorfer, P.; Bitter, M.; Olson, R.; Marion, M.

    2005-05-01

    Charge-exchange spectral models needed to describe and predict the X-ray emission of cometary and planetary atmospheres interacting with solar wind heavy ions are under development and require laboratory data for guidance. The relative intensity of the four K-shell emission lines in heliumlike ions is particularly uncertain, as the individual lines have not yet been fully resolved in charge-exchange-produced spectra. Using a high-resolution crystal spectrometer, we have measured the charge exchange induced K-shell X-ray emission from Ar16+ following the interaction of Ar17+ ions with fast, 40 keV/amu deuterium atoms. The measurement was performed on the National Spherical Torus Experiment (NSTX). The Ar17+ ions were constituents of the plasma, while deuterium was injected via a 80 keV neutral beam. During the brief, 20 ms neutral beam injection emission from electron-impact collisions ceases, and X-ray line emission is solely due to charge exchange. The measurement fully resolves the resonance, intercombination, and forbidden lines. We have constructed a complete radiative cascade model of Ar16+ that includes electron capture into levels as high as n=29 and all E1, M1, E2, and M2 radiative transitions. We find excellent agreement between the model and the NSTX crystyal spectrum. We will present these findings as well as our predictions of the emission in other spectral bands from the optical and extreme ultraviolet to the soft X-ray region. This work was performed under the auspices of the U.S. DOE by UC-LLNL under contract W-7405-Eng-48, by UMR under contract DE-FG02-84ER53175, and by PPPL under contract DE-AC02-76CHO3073.

  19. Imaging of pore networks and related interfaces in soil systems by using high resolution X-ray micro-CT

    NASA Astrophysics Data System (ADS)

    Zacher, Gerhard; Eickhorst, Thilo; Schmidt, Hannes; Halisch, Matthias

    2016-04-01

    Today's high-resolution X-ray CT with its powerful tubes and great detail detectability lends itself naturally to geological and pedological applications. Those include the non-destructive interior examination and textural analysis of rock and soil samples and their permeability and porosity - to name only a few. Especially spatial distribution and geometry of pores, mineral phases and fractures are important for the evaluation of hydrologic and aeration properties in soils as well as for root development in the soil matrix. The possibility to visualize a whole soil aggregate or root tissue in a non-destructive way is undoubtedly the most valuable feature of this type of analysis and is a new area for routine application of high resolution X-ray micro-CT. The paper outlines recent developments in hard- and software requirements for high resolution CT. It highlights several pedological applications which were performed with the phoenix nanotom m, the first 180 kV nanofocus CT system tailored specifically for extremely high-resolution scans of variable sized samples with voxel-resolutions down to < 300 nm. In addition very good contrast resolution can be obtained as well which is necessary to distinguish biogenic material in soil aggregates amongst others. We will address visualization and quantification of porous networks in 3D in different environmental samples ranging from clastic sedimentary rock to soil cores and individual soil aggregates. As several processes and habitat functions are related to various pore sizes imaging of the intact soil matrix will be presented on different scales of interest - from the mm-scale representing the connectivity of macro-pores down to the micro-scale representing the space of microbial habitats. Therefore, soils were impregnated with resin and scanned via X-ray CT. Scans at higher resolution were obtained from sub-volumes cut from the entire resin impregnated block and from crop roots surrounded by rhizosphere soil. Within the

  20. SAPHIRE (scintillator avalanche photoconductor with high resolution emitter readout) for low dose x-ray imaging: Spatial resolution

    SciTech Connect

    Li Dan; Zhao Wei

    2008-07-15

    An indirect flat panel imager (FPI) with programmable avalanche gain and field emitter array (FEA) readout is being investigated for low-dose and high resolution x-ray imaging. It is made by optically coupling a structured x-ray scintillator, e.g., thallium (Tl) doped cesium iodide (CsI), to an amorphous selenium (a-Se) avalanche photoconductor called high-gain avalanche rushing amorphous photoconductor (HARP). The charge image created by the scintillator/HARP (SHARP) combination is read out by the electron beams emitted from the FEA. The proposed detector is called scintillator avalanche photoconductor with high resolution emitter readout (SAPHIRE). The programmable avalanche gain of HARP can improve the low dose performance of indirect FPI while the FEA can be made with pixel sizes down to 50 {mu}m. Because of the avalanche gain, a high resolution type of CsI (Tl), which has not been widely used in indirect FPI due to its lower light output, can be used to improve the high spatial frequency performance. The purpose of the present article is to investigate the factors affecting the spatial resolution of SAPHIRE. Since the resolution performance of the SHARP combination has been well studied, the focus of the present work is on the inherent resolution of the FEA readout method. The lateral spread of the electron beam emitted from a 50 {mu}mx50 {mu}m pixel FEA was investigated with two different electron-optical designs: mesh-electrode-only and electrostatic focusing. Our results showed that electrostatic focusing can limit the lateral spread of electron beams to within the pixel size of down to 50 {mu}m. Since electrostatic focusing is essentially independent of signal intensity, it will provide excellent spatial uniformity.

  1. SAPHIRE (scintillator avalanche photoconductor with high resolution emitter readout) for low dose x-ray imaging: spatial resolution.

    PubMed

    Li, Dan; Zhao, Wei

    2008-07-01

    An indirect flat panel imager (FPI) with programmable avalanche gain and field emitter array (FEA) readout is being investigated for low-dose and high resolution x-ray imaging. It is made by optically coupling a structured x-ray scintillator, e.g., thallium (Tl) doped cesium iodide (CsI), to an amorphous selenium (a-Se) avalanche photoconductor called high-gain avalanche rushing amorphous photoconductor (HARP). The charge image created by the scintillator/HARP (SHARP) combination is read out by the electron beams emitted from the FEA. The proposed detector is called scintillator avalanche photoconductor with high resolution emitter readout (SAPHIRE). The programmable avalanche gain of HARP can improve the low dose performance of indirect FPI while the FEA can be made with pixel sizes down to 50 microm. Because of the avalanche gain, a high resolution type of CsI (Tl), which has not been widely used in indirect FPI due to its lower light output, can be used to improve the high spatial frequency performance. The purpose of the present article is to investigate the factors affecting the spatial resolution of SAPHIRE. Since the resolution performance of the SHARP combination has been well studied, the focus of the present work is on the inherent resolution of the FEA readout method. The lateral spread of the electron beam emitted from a 50 microm x 50 microm pixel FEA was investigated with two different electron-optical designs: mesh-electrode-only and electrostatic focusing. Our results showed that electrostatic focusing can limit the lateral spread of electron beams to within the pixel size of down to 50 microm. Since electrostatic focusing is essentially independent of signal intensity, it will provide excellent spatial uniformity.

  2. TU-A-9A-07: X-Ray Acoustic Computed Tomography (XACT): 100% Sensitivity to X-Ray Absorption

    SciTech Connect

    Xiang, L; Ahmad, M; Nikoozadeh, A; Pratx, G; Khuri-Yakub, B; Xing, L

    2014-06-15

    Purpose: To assess whether X-ray acoustic computed tomography (XACT) is more sensitive to X-ray absorption than that of the conventional X-ray imaging. Methods: First, a theoretical model was built to analyze the X-ray absorption sensitivity of XACT imaging and conventional X-ray imaging. Second, an XACT imaging system was developed to evaluate the X-ray induced acoustic signal generation as well as the sensitivity improvement over transmission x-ray imaging. Ultra-short x-ray pulses (60-nanosecond) were generated from an X-ray source operated at the energy of 150 kVp with a 10-Hz repetition rate. The X-ray pulse was synchronized with the acoustic detection via a x-ray scintillation triggering to acquire the X-ray induced acoustic signal. Results: Theoretical analysis shows that X-ray induced acoustic signal is sensitive only to the X-ray absorption, while completely insensitive to out the X-ray scattering and fluorescence. XACT has reduced background and increased contrast-to-noise ratio, and therefore has increased sensitivity compared to transmission x-ray imaging. For a 50-μm size, gadolinium insertion in tissue exposed to 40 keV X-rays; the sensitivity of XACT imaging is about 28.9 times higher than that of conventional X-ray imaging. Conclusion: X-ray acoustic computer tomography (XACT) as a new imaging modality combines X-ray absorption contrast and high ultrasonic resolution in a single modality. It is feasible to improve the imaging sensitivity with XACT imaging compared with conventional X-ray imaging. Taking advantage of the high ultrasonic resolution, it is possible to perform 3-D imaging with a single x-ray pulse with arrays of transducers without any mechanical motion of the imaging system. This single-shot capability offers the potential of reducing radiation dose by a factor of 1000, and imaging 100 times faster when compared to the conventional X-ray CT, and thus revolutionizing x-ray imaging applications in medicine and biology. The authors

  3. [Microdiffraction measurements of natural tooth by high resolution X-ray diffraction equipment].

    PubMed

    Xue, Jing; Li, Wei; Liao, Yunmao; Zhou, Jinglin; Song, Jukun

    2008-02-01

    The main mineral component of natural tooth was determined as calcium apatite many years ago; most of them exist in the form of hydroxyapatite with different crystallites. If a tooth decayed, the crystalline of hydroxyapatite would be changed and decomposed. In our experiment, a natural tooth with caries was measured by high resolution XRD equipment: X'pert Pro. Three spots which included normal enamel, normal dentin and caries tissue were analyzed. The results showed that tooth was a kind of biological mixed crystal composed of many crystal phases, the main crystal phase was hydroxyapatite. From normal enamel to normal dentin and to caries tissue, the length of the a-axis of hydroxyapatite crystallite increased, the length of the c-axis of hydroxyapatite crystallite remained unchanged. The crystal sizes were: normal enamel D002 = 27.600 nm; normal dentin D002 = 16.561 nm; caries tissue D002 = 13.163 nm. Crystallinity: normal enamel>normal dentin>caries tissue. According to our experiment, tooth could be conveniently studied by high resolution microdiffracion XRD equipment.

  4. Upgrades of the high resolution imaging x-ray crystal spectrometers on experimental advanced superconducting tokamak

    SciTech Connect

    Lu, B.; Wang, F.; Fu, J.; Li, Y.; Wan, B.; Shi, Y.; Bitter, M.; Hill, K. W.; Lee, S. G.

    2012-10-15

    Two imaging x-ray crystal spectrometers, the so-called 'poloidal' and 'tangential' spectrometers, were recently implemented on experimental advanced superconducting tokamak (EAST) to provide spatially and temporally resolved impurity ion temperature (T{sub i}), electron temperature (T{sub e}) and rotation velocity profiles. They are derived from Doppler width of W line for Ti, the intensity ratio of Li-like satellites to W line for Te, and Doppler shift of W line for rotation. Each spectrometer originally consisted of a spherically curved crystal and a two-dimensional multi-wire proportional counter (MWPC) detector. Both spectrometers have now been upgraded. The layout of the tangential spectrometer was modified, since it had to be moved to a different port, and the spectrometer was equipped with two high count rate Pilatus detectors (Model 100 K) to overcome the count rate limitation of the MWPC and to improve its time resolution. The poloidal spectrometer was equipped with two spherically bent crystals to record the spectra of He-like and H-like argon simultaneously and side by side on the original MWPC. These upgrades are described, and new results from the latest EAST experimental campaign are presented.

  5. High Resolution X-Ray Spectroscopy and Imaging of Supernova Remnant N132D

    NASA Technical Reports Server (NTRS)

    Behar, Ehud; Rasmussen, Andrew; Griffiths, R. Gareth; Dennerl, Konrad; Audard, Marc; Aschenbach, Bernd

    2000-01-01

    The observation of the supernova remnant N132D by the scientific instruments on board the XMM-Newton satellite is presented. The X-rays from N132D are dispersed into a detailed line-rich spectrum using the Reflection Grating Spectrometers. Spectral lines of C, N, O, Ne, Mg, Si, S, and Fe are identified. Images of the remnant, in narrow wavelength bands, produced by the European Photon Imaging Cameras reveal a complex spatial structure of the ionic distribution. While K - shell Fe seems to originate near the centre, all of the other ions are observed along the shell. An emission excess of O(6+) over O(7+) is detected on the northeastern edge of the remnant. This can be a sign of hot ionising conditions, or it can reflect a relatively cool region. Spectral fitting of the CCD spectrum suggests high temperatures in this region, but a detailed analysis of the atomic processes involved in producing the O(6+) spectral lines leads to the conclusion that the intensities of these lines alone cannot provide a conclusive distinction between the two scenarios.

  6. High-Resolution X-Ray Spectroscopy of the Seyfert 2 Galaxy Circinus with Chandra

    NASA Technical Reports Server (NTRS)

    Sambruna, Rita M.; Netzer, Hagai; Kaspi, Shai; Brandt, W. N.; Chartas, G.; Garmire, G. P.; Nousek, John A.; Weaver, K. A.

    2000-01-01

    Results from a 60 ks Chandra High Energy Transmission Grating Spectrometer (HETGS) observation of the nearby Seyfert 2 Circinus are presented. The spectrum shows a wealth of emission lines at both soft and hard X-rays, including lines of Ne, Mg, Si, S, Ar, Ca, and Fe, and a prominent Fe K(alpha) line at 6.4 keV. We identify several of the He-like components and measure several of the Lyman lines of the N-like ions. The lines' profiles are unresolved at the limited signal-to-noise ratio of the data. Our analysis of the zeroth-order image in a companion paper constrains the size of the emission region to be 20-60 pc, suggesting that emission within this volume is almost entirely due to the reprocessing of the obscured central source. Here we show that a model containing two distinct components can reproduce almost all the observed properties of this gas. The ionized component can explain the observed intensities of the ionized species, assuming twice-solar composition and an N is proportional r(exp -1.5) density distribution. The neutral component is highly concentrated, well within the 0.8" point source, and is responsible for almost all of the observed K(alpha) (6.4 keV) emission. Circinus seems to be different than Mkn 3 in terms of its gas distribution.

  7. HIGH RESOLUTION X-RAY FLUORESCENCE MICRO-TOMOGRAPHY ON SINGLE SEDIMENT PARTICLES.

    SciTech Connect

    VINCZE,L.; VEKEMANS,B.; SZALOKI,I.; JANSSENS,K.; VAN GRIEKEN,R.; FENG,H.; JONES,K.W.; ADAMS,F.

    2002-07-29

    This work focuses on the investigation of the distribution of contaminants in individual sediment particles from the New York/New Jersey Harbor. Knowledge of the spatial distribution of the contaminants within the particles is needed to enable (1) more sophisticated approaches to the understanding of the fate and transport of the contaminants in the environment and (2) more refined methods for cleaning the sediments. The size of the investigated particles ranges from 30-80 microns. Due to the low concentration of the elements of interest and the microscopic size of the environmental particles in these measurements, the small size and high intensity of the analyzing X-ray beam was critical. The high photon flux at the ESRF Microfocus beam line (ID13) was used as the basis for fluorescence tomography to investigate whether the inorganic compounds are taken upon the surface organic coating or whether they are distributed through the volume of the grains being analyzed. The experiments were done using a 13 keV monochromatic beam of approximately 2 {micro}m in size having an intensity of 10{sup 10} ph/s, allowing absolute detection limits on the 0.04-1 fg level for Ti, Cr, Mn, Fe, Ni, and Zn.

  8. Dysprosium compounds studied by resonant inelastic X-ray scattering and high-resolution X-ray absorption near edge structure spectroscopy.

    PubMed

    Zhou, K J; Cui, M Q; Hua, W; Ma, C Y; Zhao, Y D; Huang, Y Y; He, W; Wu, Z Y

    2008-11-15

    A set of resonant inelastic X-ray scattering (RIXS) studies focusing on the 2p64f(n)-->2p54f(n)5d1(2p54f(n+1)5d0)-->2p63d94f(n)5d1(2p63d94f(n+1)5d0) channel of dysprosium in Dy metal, Dy2O3, DyNi3 and Dy25Fe18 compounds have been carried out. Data showed with high statistics and resolution, the different delocalization degree of the 5d band of dysprosium in these compounds, e.g., decreasing from Dy metal to DyNi3, Dy25Fe18 and to dysprosium oxide, in agreement with the high-resolution XANES (HRXANES) spectra. Band structure calculations performed on Dy metal and Dy2O3 confirm both RIXS and HRXANES results in the increasing delocalization of the dysprosium 5d band in Dy metal with respect to Dy2O3. The 5d orbital occupancies of DyNi3 and Dy25Fe18 alloys have been also studied by comparison of the HRXANES white line (WL) area with the behavior of the final states energy position in RIXS spectra and we show that DyNi3 has a higher 5d orbital occupancy than Dy25Fe18.

  9. X-ray High-resolution Spectroscopy for Laser-produced Plasma

    NASA Astrophysics Data System (ADS)

    Barbato, F.; Scarpellini, D.; Malizia, A.; Gaudio, P.; Richetta, M.; Antonelli, L.

    The study of the emission spectrum gives information about the material generating the spectrum itself and the condition in which this is generated. The wavelength spectra lines are linked to the specific element and plasma conditions (electron temperature, density), while their shape is influenced by several physical effects like Stark and Doppler ones. In this work we study the X-ray emission spectra of a copper laser-produced plasma by using a spherical bent crystal spectrometer to measure the electron temperature. The facility used is the laser TVLPS, at the Tor Vergata University in Rome. It consists of a Nd:Glass source (in first harmonic - 1064 nm) whose pulse parameters are: 8 J in energy, time duration of 15 ns and a focal spot diameter of 200 μm. The adopted spectrometer is based on a spherical bent crystal of muscovite. The device combines the focusing property of a spherical mirror with the Bragg's law. This allows to obtain a great power resolution but a limited range of analysis. In our case the resolution is on average 80 eV. As it is well-known, the position of the detector on the Rowland's circle is linked to the specific spectral range which has been studied. To select the area to be investigated, we acquired spectra by means of a flat spectrometer. The selected area is centered on 8.88 Å. To calibrate the spectrum we wrote a ray-tracing MATLAB code, which calculates the detector alignment parameters and calibration curve. We used the method of line ratio to measure the electron temperature. This is possible because we assumed the plasma to be in LTE condition. The temperature value was obtained comparing the experimental one, given by the line ratio, with the theoretical one, preceded by FLYCHK simulations.

  10. Large-aperture high-resolution x-ray collimator for the Solar Maximum Mission.

    PubMed

    Nobles, R A; Acton, L W; Joki, E G; Leibacher, J W; Peterson, R C

    1980-09-01

    A description is presented of a flight-qualified large-aperture 12 x 12-sec of arc angular resolution multigrid x-ray collimator developed for the Solar Maximum Mission (SMM) flat crystal spectrometer. This collimator, designed for the 1.4-22.4-A wavelength range, utilizes an optical bench/metering structure to align and support prealigned grid subassemblies. One advantage of this scheme is to provide ready access to the grid subassemblies for inspection and/or servicing. The optical bench is a lightweight, rigid, and stable aluminum honeycomb structure. Aluminum is a viable material choice in this application because of the good thermal control expected in the SMM instrument package. The grids are of a compound and bimetallic design, having 63.5-microm square holes on an 88.9-microm spacing in 8-microm thick gold, which is in turn supported by a 76-microm thick Invar grid having 600-microm square holes on a 739-microm spacing. The small apertures in the gold provide the 12-sec of arc collimation with the Invar grids providing wide angle off-axis blocking out to an ~35-min of arc view angle. The collimator has seven individual channels, four of a 5.1- x 10-cm area and three of a 1.3- x 10-cm area. Laboratory measurements gave an average angular resolution of 12.5-sec of arc FWHM with 0.259 transmission for the large area channels and 12.0 sec of arc and 0.200 transmission for the small area channels. A hypothetical perfectly aligned collimator would have 12.5-sec of arc resolution and 0.300 transmission. A thermal filter composed of two layers of ~1000-A thick aluminum prevents solar heating of the front collimator grids by absorbing longer wavelength radiation while passing most of the x radiation in the band of interest. The filter was flight qualified by passing a protoflight acoustic test environment of 147-dB total sound level, 20-microN/M(2) reference, for 1-min duration.

  11. Coherent X-ray beam metrology using 2D high-resolution Fresnel-diffraction analysis.

    PubMed

    Ruiz-Lopez, M; Faenov, A; Pikuz, T; Ozaki, N; Mitrofanov, A; Albertazzi, B; Hartley, N; Matsuoka, T; Ochante, Y; Tange, Y; Yabuuchi, T; Habara, T; Tanaka, K A; Inubushi, Y; Yabashi, M; Nishikino, M; Kawachi, T; Pikuz, S; Ishikawa, T; Kodama, R; Bleiner, D

    2017-01-01

    Direct metrology of coherent short-wavelength beamlines is important for obtaining operational beam characteristics at the experimental site. However, since beam-time limitation imposes fast metrology procedures, a multi-parametric metrology from as low as a single shot is desirable. Here a two-dimensional (2D) procedure based on high-resolution Fresnel diffraction analysis is discussed and applied, which allowed an efficient and detailed beamline characterization at the SACLA XFEL. So far, the potential of Fresnel diffraction for beamline metrology has not been fully exploited because its high-frequency fringes could be only partly resolved with ordinary pixel-limited detectors. Using the high-spatial-frequency imaging capability of an irradiated LiF crystal, 2D information of the coherence degree, beam divergence and beam quality factor M(2) were retrieved from simple diffraction patterns. The developed beam metrology was validated with a laboratory reference laser, and then successfully applied at a beamline facility, in agreement with the source specifications.

  12. Extracting the redox orbitals in Li battery materials with high-resolution x-ray compton scattering spectroscopy.

    PubMed

    Suzuki, K; Barbiellini, B; Orikasa, Y; Go, N; Sakurai, H; Kaprzyk, S; Itou, M; Yamamoto, K; Uchimoto, Y; Wang, Yung Jui; Hafiz, H; Bansil, A; Sakurai, Y

    2015-02-27

    We present an incisive spectroscopic technique for directly probing redox orbitals based on bulk electron momentum density measurements via high-resolution x-ray Compton scattering. Application of our method to spinel Li_{x}Mn_{2}O_{4}, a lithium ion battery cathode material, is discussed. The orbital involved in the lithium insertion and extraction process is shown to mainly be the oxygen 2p orbital. Moreover, the manganese 3d states are shown to experience spatial delocalization involving 0.16±0.05 electrons per Mn site during the battery operation. Our analysis provides a clear understanding of the fundamental redox process involved in the working of a lithium ion battery.

  13. Vibronic fine structure in high-resolution x-ray absorption spectra from ion-bombarded boron nitride nanotubes

    SciTech Connect

    Petravic, Mladen; Peter, Robert; Varasanec, Marijana; Li Luhua; Chen Ying; Cowie, Bruce C. C.

    2013-05-15

    The authors have applied high-resolution near-edge x-ray absorption fine structure measurements around the nitrogen K-edge to study the effects of ion-bombardment on near-surface properties of boron nitride nanotubes. A notable difference has been observed between surface sensitive partial electron yield (PEY) and bulk sensitive total electron yield (TEY) fine-structure measurements. The authors assign the PEY fine structure to the coupling of excited molecular vibrational modes to electronic transitions in NO molecules trapped just below the surface. Oxidation resistance of the boron nitride nanotubes is significantly reduced by low energy ion bombardment, as broken B-N bonds are replaced by N-O bonds involving oxygen present in the surface region. In contrast to the PEY spectra, the bulk sensitive TEY measurements on as-grown samples do not exhibit any fine structure while the ion-bombarded samples show a clear vibronic signature of molecular nitrogen.

  14. Visualisation by high resolution synchrotron X-ray phase contrast micro-tomography of gas films on submerged superhydrophobic leaves.

    PubMed

    Lauridsen, Torsten; Glavina, Kyriaki; Colmer, Timothy David; Winkel, Anders; Irvine, Sarah; Lefmann, Kim; Feidenhans'l, Robert; Pedersen, Ole

    2014-10-01

    Floods can completely submerge terrestrial plants but some wetland species can sustain O2 and CO2 exchange with the environment via gas films forming on superhydrophobic leaf surfaces. We used high resolution synchrotron X-ray phase contrast micro-tomography in a novel approach to visualise gas films on submerged leaves of common cordgrass (Spartina anglica). 3D tomograms enabled a hitherto unmatched level of detail regarding the micro-topography of leaf gas films. Gas films formed only on the superhydrophobic adaxial leaf side (water droplet contact angle, Φ=162°) but not on the abaxial side (Φ=135°). The adaxial side of the leaves of common cordgrass is plicate with a longitudinal system of parallel grooves and ridges and the vast majority of the gas film volume was found in large ∼180μm deep elongated triangular volumes in the grooves and these volumes were connected to each neighbouring groove via a fine network of gas tubules (∼1.7μm diameter) across the ridges. In addition to the gas film retained on the leaf exterior, the X-ray phase contrast micro-tomography also successfully distinguished gas spaces internally in the leaf tissues, and the tissue porosity (gas volume per unit tissue volume) ranged from 6.3% to 20.3% in tip and base leaf segments, respectively. We conclude that X-ray phase contrast micro-tomography is a powerful tool to obtain quantitative data of exterior gas features on biological samples because of the significant difference in electron density between air, biological tissues and water.

  15. Development of High Resolution Mirrors and Cd-Zn-Te Detectors for Hard X-ray Astronomy

    NASA Technical Reports Server (NTRS)

    Ramsey, Brian D.; Speegle, Chet O.; Gaskin, Jessica; Sharma, Dharma; Engelhaupt, Darell; Six, N. Frank (Technical Monitor)

    2002-01-01

    We describe the fabrication and implementation of a high-resolution conical, grazing- incidence, hard X-ray (20-70 keV) telescope. When flown aboard stratospheric balloons, these mirrors are used to image cosmic sources such as supernovae, neutron stars, and quasars. The fabrication process involves generating super-polished mandrels, mirror shell electroforming, and mirror testing. The cylindrical mandrels consist of two conical segments; each segment is approximately 305 mm long. These mandrels are first, precision ground to within approx. 1.0 micron straightness along each conical segment and then lapped and polished to less than 0.5 micron straightness. Each mandrel segment is the super-polished to an average surface roughness of approx. 3.25 angstrom rms. By mirror shell replication, this combination of good figure and low surface roughness has enabled us to achieve 15 arcsec, confirmed by X-ray measurements in the Marshall Space Flight Center 102 meter test facility. To image the focused X-rays requires a focal plane detector with appropriate spatial resolution. For 15 arcsec optics of 6 meter focal length, this resolution must be around 200 microns. In addition, the detector must have a high efficiency, relatively high energy resolution, and low background. We are currently developing Cadmium-Zinc-Telluride fine-pixel detectors for this purpose. The detectors under study consist of a 16x16 pixel array with a pixel pitch of 300 microns and are 1 mm and 2 mm thick. At 60 keV, the measured energy resolution is around 2%.

  16. High resolution imaging of the ultrastructure of living algal cells using soft x-ray contact microscopy

    SciTech Connect

    Ford, T.W.; Cotton, R.A.; Page, A.M.; Tomie, T.; Majima, T.; Stead, A.D.

    1995-12-31

    Soft x-ray contact microscopy provides the biologist with a technique for examining the ultrastructure of living cells at a much higher resolution than that possible by various forms of light microscopy. Readout of the developed photoresist using atomic force microscopy (AFM) produces a detailed map of the carbon densities generated in the resist following exposure of the specimen to water-window soft x-rays (2--4nm) produced by impact of a high energy laser onto a suitable target. The established high resolution imaging method of transmission electron microscopy (TEM) has inherent problems in the chemical pre-treatment required for producing the ultrathin sections necessary for this technique. Using the unicellular green alga Chlamydomonas the ultrastructural appearance of the cells following SXCM and TEM has been compared. While SXCM confirms the basic structural organization of the cell as seen by TEM (e.g., the organization of the thylakoid membranes within the chloroplast; flagellar insertion into the cytoplasm), there are important differences. These are in the appearance of the cell covering and the presence of carbon-dense spherical cellular inclusions.

  17. High Resolution X-Ray Spectroscopy of zeta Puppis with the XMM-Newton Reflection Grating Spectrometer

    NASA Technical Reports Server (NTRS)

    Kahn, S. M.; Leutenegger, M. A.; Cottam, J.; Rauw, G.; Vreux, J.-M.; denBoggende, A. J. F.; Mewe, R.; Guedel, M.

    2000-01-01

    We present the first high resolution X-ray spectrum of the bright O4Ief supergiant star Puppis, obtained with the Reflection Grating Spectrometer on- board XMM-Newton. The spectrum exhibits bright emission lines of hydrogen-like and helium-like ions of nitrogen, oxygen, neon, magnesium, and silicon, as well as neon-like ions of iron. The lines are all significantly resolved, with characteristic velocity widths of order 1000 - 1500 km/ s. The nitrogen lines are especially strong, and indicate that the shocked gas in the wind is mixed with CNO-burned material, as has been previously inferred for the atmosphere of this star from ultraviolet spectra. We find that the forbidden to intercombination line ratios within the helium-like triplets are anomalously low for N VI, O VII, and Ne IX. While this is sometimes indicative of high electron density, we show that in this case, it is instead caused by the intense ultraviolet radiation field of the star. We use this interpretation to derive constraints on the location of the X-ray emitting shocks within the wind that agree remarkably well with current theoretical models for this system.

  18. High-resolution non-invasive 3D imaging of paint microstructure by synchrotron-based X-ray laminography

    NASA Astrophysics Data System (ADS)

    Reischig, Péter; Helfen, Lukas; Wallert, Arie; Baumbach, Tilo; Dik, Joris

    2013-06-01

    The characterisation of the microstructure and micromechanical behaviour of paint is key to a range of problems related to the conservation or technical art history of paintings. Synchrotron-based X-ray laminography is demonstrated in this paper to image the local sub-surface microstructure in paintings in a non-invasive and non-destructive way. Based on absorption and phase contrast, the method can provide high-resolution 3D maps of the paint stratigraphy, including the substrate, and visualise small features, such as pigment particles, voids, cracks, wood cells, canvas fibres etc. Reconstructions may be indicative of local density or chemical composition due to increased attenuation of X-rays by elements of higher atomic number. The paint layers and their interfaces can be distinguished via variations in morphology or composition. Results of feasibility tests on a painting mockup (oak panel, chalk ground, vermilion and lead white paint) are shown, where lateral and depth resolution of up to a few micrometres is demonstrated. The method is well adapted to study the temporal evolution of the stratigraphy in test specimens and offers an alternative to destructive sampling of original works of art.

  19. High resolution imaging with multilayer soft x-ray, EUV and FUV telescopes of modest aperture and cost

    SciTech Connect

    Walker, A.B.C. Jr.; Lindblom, J.F.; Timothy, J.G. . Center for Space Science and Astrophysics); Hoover, R.B. . George C. Marshall Space Flight Center); Barbee, T.W. Jr. ); Baker, P.C. ); Powell, F.R. (Luxel, Inc., Friday Har

    1990-04-01

    The development of multilayer reflective coatings now permits soft x- ray, EUV and FUV radiation ({lambda}{lambda} {approximately} 40{angstrom}--2000{angstrom}) to be efficiently imaged by conventional normal incidence optical configurations. Telescopes with quite modest apertures ({approximately}0.1--0.5 meters) can, in principle, achieve images with resolutions ({approximately}0.1 arc- second or better) which would require apertures of 1.25 meters or more at visible wavelengths. We review the progress which has been made in developing compact telescopes for ultra-high resolution imaging of the sun at soft x-ray, EUV and FUV wavelengths, including laboratory test results and astronomical images obtained with rocket- borne multilayer telescopes. We discuss the factors which limit the resolution which has been achieved so far, and the problems which must be addressed to attain, and surpass the 0.1 arc-second level. We also describe the application of these technologies to the development of solar telescopes for future space missions. 64 refs., 5 figs., 1 tab.

  20. Neutron and high-resolution room-temperature X-ray data collection from crystallized lytic polysaccharide monooxygenase

    SciTech Connect

    Bacik, John -Paul; Mekasha, Sophanit; Forsberg, Zarah; Kovalevsky, Andrey; Nix, Jay C.; Cuneo, Matthew J.; Coates, Leighton; Vaaje-Kolstad, Gustav; Chen, Julian C. -H.; Eijsink, Vincent G. H.; Unkefer, Clifford J.

    2015-01-01

    Bacteria and fungi express lytic polysaccharide monooxgyenase (LPMO) enzymes that act in conjunction with canonical hydrolytic sugar-processing enzymes to rapidly convert polysaccharides such as chitin, cellulose and starch to single monosaccharide products. In order to gain a better understanding of the structure and oxidative mechanism of these enzymes, large crystals (1–3 mm3) of a chitin-processing LPMO from the Gram-positive soil bacterium Jonesia denitrificans were grown and screened for their ability to diffract neutrons. In addition to the collection of neutron diffraction data, which were processed to 2.1 Å resolution, a high-resolution room-temperature X-ray diffraction data set was collected and processed to 1.1 Å resolution in space group P212121. To our knowledge, this work marks the first successful neutron crystallographic experiment on an LPMO. As a result, joint X-ray/neutron refinement of the resulting data will reveal new details of the structure and mechanism of this recently discovered class of enzymes.

  1. Neutron and high-resolution room-temperature X-ray data collection from crystallized lytic polysaccharide monooxygenase

    DOE PAGES

    Bacik, John -Paul; Mekasha, Sophanit; Forsberg, Zarah; ...

    2015-01-01

    Bacteria and fungi express lytic polysaccharide monooxgyenase (LPMO) enzymes that act in conjunction with canonical hydrolytic sugar-processing enzymes to rapidly convert polysaccharides such as chitin, cellulose and starch to single monosaccharide products. In order to gain a better understanding of the structure and oxidative mechanism of these enzymes, large crystals (1–3 mm3) of a chitin-processing LPMO from the Gram-positive soil bacterium Jonesia denitrificans were grown and screened for their ability to diffract neutrons. In addition to the collection of neutron diffraction data, which were processed to 2.1 Å resolution, a high-resolution room-temperature X-ray diffraction data set was collected and processedmore » to 1.1 Å resolution in space group P212121. To our knowledge, this work marks the first successful neutron crystallographic experiment on an LPMO. As a result, joint X-ray/neutron refinement of the resulting data will reveal new details of the structure and mechanism of this recently discovered class of enzymes.« less

  2. Determination of lattice parameters, strain state and composition in semipolar III-nitrides using high resolution X-ray diffraction

    SciTech Connect

    Frentrup, Martin Wernicke, Tim; Stellmach, Joachim; Kneissl, Michael; Hatui, Nirupam; Bhattacharya, Arnab

    2013-12-07

    In group-III-nitride heterostructures with semipolar or nonpolar crystal orientation, anisotropic lattice and thermal mismatch with the buffer or substrate lead to a complex distortion of the unit cells, e.g., by shearing of the lattice. This makes an accurate determination of lattice parameters, composition, and strain state under assumption of the hexagonal symmetry impossible. In this work, we present a procedure to accurately determine the lattice constants, strain state, and composition of semipolar heterostructures using high resolution X-ray diffraction. An analysis of the unit cell distortion shows that four independent lattice parameters are sufficient to describe this distortion. Assuming only small deviations from an ideal hexagonal structure, a linear expression for the interplanar distances d{sub hkl} is derived. It is used to determine the lattice parameters from high resolution X-ray diffraction 2ϑ-ω-scans of multiple on- and off-axis reflections via a weighted least-square fit. The strain and composition of ternary alloys are then evaluated by transforming the elastic parameters (using Hooke's law) from the natural crystal-fixed coordinate system to a layer-based system, given by the in-plane directions and the growth direction. We illustrate our procedure taking an example of (112{sup ¯}2) Al{sub κ}Ga{sub 1−κ}N epilayers with Al-contents over the entire composition range. We separately identify the in-plane and out-of-plane strains and discuss origins for the observed anisotropy.

  3. Bulk crystal growth, and high-resolution x-ray diffraction results of LiZnP semiconductor material

    NASA Astrophysics Data System (ADS)

    Montag, Benjamin W.; Reichenberger, Michael A.; Sunder, Madhana; Ugorowski, Philip B.; Nelson, Kyle A.; McGregor, Douglas S.

    2015-06-01

    Nowotny-Juza compounds continue to be explored as a candidate for solid-state neutron detectors. Such a device would have greater efficiency, in a compact form, than present day gas-filled 3He and 10BF3 detectors. The 6Li(n,t)4He reaction yields a total Q-value of 4.78 MeV, larger than 10B, an energy easily identified above background radiations. Hence, devices fabricated from semiconducting compounds containing either natural Li (nominally 7.5% 6Li) or enriched 6Li (usually 95% 6Li) may provide a semiconductor material for compact high efficiency neutron detectors. Starting material was synthesized by preparing equimolar portions of Li, Zn, and P sealed under vacuum (10-6 Torr) in quartz ampoules lined with boron nitride and subsequently reacted in a compounding furnace [1]. The synthesized material showed signs of high impurity levels from material and electrical property characterizations. A static vacuum sublimation in quartz was performed to help purify the synthesized material [2]. Bulk crystalline samples were grown from the purified material. An ingot 9.6 mm in diameter and 4.0 mm in length was harvested. Individual samples were characterized for crystallinity on a Bruker AXS Inc. D2 CRYSO, energy dispersive x-ray diffractometer, and a Bruker AXS D8 DISCOVER, high-resolution x-ray diffractometer with a 0.004° beam divergence. The (220) orientation was characterized as the main orientation with the D2 CRYSO, and confirmed with the D8 DISCOVER. An out-of-plane high-resolution rocking curve yielded a 0.417° full width at half maximum (FWHM) for the (220) LiZnP. In-plane ordering was confirmed by observation of the (311) orientation, where a rocking curve was collected with a FWHM of 0.294°.

  4. An X-ray Absorption Edge Detector for High-Resolution Measurement of Undulator Effective K-Parameter

    SciTech Connect

    Yang, B.; Galayda, J.N.; /SLAC

    2007-03-07

    The spectrum of angle-integrated undulator radiation displays a sharp edge at every harmonic photon energy. A technique utilizing this feature to measure minute changes in K-parameters of an undulator in a free-electron laser has been proposed. To date, this technique requires the use of crystal monochromators as bandpass filters whose energy centroid depends on the incident angle of the x-ray beam. In this work we propose to use the absorption edge of an appropriate element as an energy-selective detector whose response is truly independent of the angle of the x-ray beam, and hence independent of electron beam direction and emittance. We will discuss the basic design concept of the detection system and illustrate its projected performance with computer simulations.

  5. A detailed analysis of the high-resolution X-ray spectra of NGC 3516: variability of the ionized absorbers

    SciTech Connect

    Huerta, E. M.; Krongold, Y.; Jimenez-Bailon, E.; Nicastro, F.; Mathur, S.; Longinotti, A. L.

    2014-09-20

    The 1.5 Seyfert galaxy NGC 3516 presents a strong time variability in X-rays. We re-analyzed the nine observations performed in 2006 October by XMM-Newton and Chandra in the 0.3 to 10 keV energy band. An acceptable model was found for the XMM-Newton data fitting the EPIC-PN and RGS spectra simultaneously; later, this model was successfully applied to the contemporary Chandra high-resolution data. The model consists of a continuum emission component (power law + blackbody) absorbed by four ionized components (warm absorbers), and 10 narrow emission lines. Three absorbing components are warm, producing features only in the soft X-ray band. The fourth ionization component produces Fe XXV and Fe XXVI in the hard-energy band. We study the time response of the absorbing components to the well-detected changes in the X-ray luminosity of this source and find that the two components with the lower ionization state show clear opacity changes consistent with gas close to photoionization equilibrium. These changes are supported by the models and by differences in the spectral features among the nine observations. On the other hand, the two components with higher ionization state do not seem to respond to continuum variations. The response time of the ionized absorbers allows us to constrain their electron density and location. We find that one component (with intermediate ionization) must be located within the obscuring torus at a distance 2.7 × 10{sup 17} cm from the central engine. This outflowing component likely originated in the accretion disk. The three remaining components are at distances larger than 10{sup 16}-10{sup 17} cm. Two of the absorbing components in the soft X-rays have similar outflow velocities and locations. These components may be in pressure equilibrium, forming a multi-phase medium, if the gas has metallicity larger than the solar one (≳ 5 Z {sub ☉}). We also search for variations in the covering factor of the ionized absorbers (although partial

  6. Simple load frame for in situ computed tomography and x-ray tomographic microscopy

    SciTech Connect

    Breunig, T.M. ); Stock, S.R.; Brown, R.C. )

    1993-05-01

    In many instances, the response of a sample to external stimuli must be observed repeatedly during the course of an experiment. The sequence in which features are formed is often critical to proper identification of the mechanisms operating, for example, in fatigue and fracture. Merely observing what is visible at the surface of the sample can be misleading or can provide inadequate information about what governs fatigue crack growth or about what controls the fracture process. X-ray imaging allows one to observe the interior of samples and is an attractive technique to use with in situ stressing of test specimens. Here, a simple compact, inexpensive load frame is described for in situ x-ray computed tomography and for very high resolution computed tomography, termed x-ray tomographic microscopy. The load frame is evaluated, and its use is illustrated by observations of crack closure as a function of load in a notched tensile sample of Al-Li-2090.

  7. High Resolution X-Ray Astronomy with the Chandra Observatory Stellar Point Sources and Extended Gaseous Emission of Cen Chandra X-Ray Observations of Clusters of Galaxies

    NASA Astrophysics Data System (ADS)

    Kim, Dong-Woo

    2000-02-01

    I will introduce the Chandra Observatory and new results obtained during the Chandra OAC phase. These include the newly discovered X-ray jet in PKS 0637-752; X-ray jet, characteristics of point sources and extended emission in Cen A; and contact discontinuities and merger evidence of A2142.

  8. Multiple pinhole collimator based X-ray luminescence computed tomography.

    PubMed

    Zhang, Wei; Zhu, Dianwen; Lun, Michael; Li, Changqing

    2016-07-01

    X-ray luminescence computed tomography (XLCT) is an emerging hybrid imaging modality, which is able to improve the spatial resolution of optical imaging to hundreds of micrometers for deep targets by using superfine X-ray pencil beams. However, due to the low X-ray photon utilization efficiency in a single pinhole collimator based XLCT, it takes a long time to acquire measurement data. Herein, we propose a multiple pinhole collimator based XLCT, in which multiple X-ray beams are generated to scan a sample at multiple positions simultaneously. Compared with the single pinhole based XLCT, the multiple X-ray beam scanning method requires much less measurement time. Numerical simulations and phantom experiments have been performed to demonstrate the feasibility of the multiple X-ray beam scanning method. In one numerical simulation, we used four X-ray beams to scan a cylindrical object with 6 deeply embedded targets. With measurements from 6 angular projections, all 6 targets have been reconstructed successfully. In the phantom experiment, we generated two X-ray pencil beams with a collimator manufactured in-house. Two capillary targets with 0.6 mm edge-to-edge distance embedded in a cylindrical phantom have been reconstructed successfully. With the two beam scanning, we reduced the data acquisition time by 50%. From the reconstructed XLCT images, we found that the Dice similarity of targets is 85.11% and the distance error between two targets is less than 3%. We have measured the radiation dose during XLCT scan and found that the radiation dose, 1.475 mSv, is in the range of a typical CT scan. We have measured the changes of the collimated X-ray beam size and intensity at different distances from the collimator. We have also studied the effects of beam size and intensity in the reconstruction of XLCT.

  9. Opportunities for X-ray Science in Future Computing Architectures

    SciTech Connect

    Foster, Ian

    2011-02-09

    The world of computing continues to evolve rapidly. In just the past 10 years, we have seen the emergence of petascale supercomputing, cloud computing that provides on-demand computing and storage with considerable economies of scale, software-as-a-service methods that permit outsourcing of complex processes, and grid computing that enables federation of resources across institutional boundaries. These trends show no sign of slowing down. The next 10 years will surely see exascale, new cloud offerings, and other terabit networks. This talk reviews various of these developments and discusses their potential implications for x-ray science and x-ray facilities.

  10. Fast prototyping of high-aspect ratio, high-resolution x-ray masks by gas-assisted focused ion beam

    NASA Technical Reports Server (NTRS)

    Hartley, F.; Malek, C.; Neogi, J.

    2001-01-01

    The capacity of chemically-assisted focused ion beam (fib) etching systems to undertake direct and highly anisotropic erosion of thin and thick gold (or other high atomic number [Z])coatings on x-ray mask membranes/substrates provides new levels of precision, flexibility, simplification and rapidity in the manufacture of mask absorber patterns, allowing the fast prototyping of high aspect ratio, high-resolution masks for deep x-ray lithography.

  11. Simulations of a protein crystal with a high resolution X-ray structure: evaluation of force fields and water models.

    PubMed

    Cerutti, David S; Freddolino, Peter L; Duke, Robert E; Case, David A

    2010-10-14

    We use classical molecular dynamics and 16 combinations of force fields and water models to simulate a protein crystal observed by room-temperature X-ray diffraction. The high resolution of the diffraction data (0.96 Å) and the simplicity of the crystallization solution (nearly pure water) make it possible to attribute any inconsistencies between the crystal structure and our simulations to artifacts of the models rather than inadequate representation of the crystal environment or uncertainty in the experiment. All simulations were extended for 100 ns of production dynamics, permitting some long-time scale artifacts of each model to emerge. The most noticeable effect of these artifacts is a model-dependent drift in the unit cell dimensions, which can become as large as 5% in certain force fields; the underlying cause is the replacement of native crystallographic contacts with non-native ones, which can occur with heterogeneity (loss of crystallographic symmetry) in simulations with some force fields. We find that the AMBER FF99SB force field maintains a lattice structure nearest that seen in the X-ray data, and produces the most realistic atomic fluctuations (by comparison to crystallographic B-factors) of all the models tested. We find that the choice of water model has a minor effect in comparison to the choice of protein model. We also identify a number of artifacts that occur throughout all of the simulations: excessive formation of hydrogen bonds or salt bridges between polar groups and loss of hydrophobic interactions. This study is intended as a foundation for future work that will identify individual parameters in each molecular model that can be modified to improve their representations of protein structure and thermodynamics.

  12. Overcoming x-ray tube small focal spot output limitations for high resolution region of interest imaging

    NASA Astrophysics Data System (ADS)

    Gupta, Sandesh K.; Jain, Amit; Bednarek, Daniel R.; Rudin, Stephen

    2012-03-01

    We investigate methods to increase x-ray tube output to enable improved quantum image quality with a higher generalized-NEQ (GNEQ) while maintaining a small focal-spot size for the new high-resolution Micro-angiographic Fluoroscope (MAF) Region of Interest (ROI) imaging system. Rather than using a larger focal spot to increase tubeloading capacity with degraded resolution, we evaluated separately or in combination three methods to increase tube output: 1) reducing the anode angle and lengthening the filament to maintain a constant effective small focal-spot size, 2) using the standard medium focal spot viewed from a direction on the anode side of the field and 3) increasing the frame rate (frames/second) in combination with temporal filter. The GNEQ was compared for the MAF for the small focal-spot at the central axis, and for the medium focal-spot with a higher output on the anode side as well as for the small focal spot with different temporal recursive filtering weights. A net output increase of about 4.0 times could be achieved with a 2-degree anode angle (without the added filtration) and a 4 times longer filament compared to that of the standard 8-degree target. The GNEQ was also increased for the medium focal-spot due to its higher output capacity and for the temporally filtered higher frame rate. Thus higher tube output, while maintaining a small effective focal-spot, should be achievable using one or more of the three methods described with only small modifications of standard x-ray tube geometry.

  13. Metal-ligand Covalency of Iron Complexes from High-Resolution Resonant Inelastic X-ray Scattering

    PubMed Central

    Lundberg, Marcus; Kroll, Thomas; DeBeer, Serena; Bergmann, Uwe; Wilson, Samuel A.; Glatzel, Pieter; Nordlund, Dennis; Hedman, Britt; Hodgson, Keith O.; Solomon, Edward I.

    2013-01-01

    Data from Kα resonant inelastic X-ray scattering (RIXS) have been used to extract electronic structure information, i.e., the covalency of metal-ligand bonds, for four iron complexes using an experimentally based theoretical model. Kα RIXS involves resonant 1s → 3d excitation and detection of the 2p → 1s (Kα) emission. This two-photon process reaches similar final states as single-photon L-edge (2p → 3d) X-ray absorption spectroscopy (XAS), but involves only hard X-rays and can therefore be used to get high-resolution L-edge-like spectra for metal proteins, solution catalysts and their intermediates. To analyze the information content of Kα RIXS spectra, data have been collected for four characteristic σ-donor and π-backdonation complexes; ferrous tacn [FeII(tacn)2]Br2, ferrocyanide [FeII(CN)6]K4, ferric tacn [FeIII(tacn)2]Br3 and ferricyanide [FeIII(CN)6]K3. From these spectra metal-ligand covalencies can be extracted using a charge-transfer multiplet model, without previous information from the L-edge XAS experiment. A direct comparison of L-edge XAS and Kα RIXS spectra show that the latter reaches additional final states, e.g., when exciting into the eg (σ*) orbitals, and the splitting between final states of different symmetry provides an extra dimension that makes Kα RIXS a more sensitive probe of σ-bonding. Another key difference between L-edge XAS and Kα RIXS is the π-backbonding features in ferro- and ferricyanide that are significantly more intense in L-edge XAS compared to Kα RIXS. This shows that two methods are complimentary in assigning electronic structure. The Kα RIXS approach can thus be used as a stand-alone method, in combination with L-edge XAS for strongly covalent systems that are difficult to probe by UV/Vis spectroscopy, or as an extension to conventional absorption spectroscopy for a wide range of transition metal enzymes and catalysts. PMID:24131028

  14. Molecular origins of nonlinear optical activity in zinc tris(thiourea)sulfate revealed by high-resolution x-ray diffraction data and ab initio calculations

    NASA Astrophysics Data System (ADS)

    Cole, Jacqueline M.; Hickstein, Daniel D.

    2013-11-01

    Structure-property relationships are established in the nonlinear optical (NLO) material, zinc tris(thiourea)sulfate (ZTS), via an experimental charge-density study, x-ray constrained wave-function refinement, and quantum-mechanical calculations. The molecular charge-transfer characteristics of ZTS, that are important for NLO activity, are topologically analyzed via a multipolar refinement of high-resolution x-ray diffraction data, which is supported by neutron diffraction measurements. The extent to which each chemical bond is ionic or covalent in nature is categorized by Laplacian-based bonding classifiers of the electron density; these include bond ellipticities, energy densities, and the local source function. Correspondingly, the NLO origins of ZTS are judged to best resemble those of organic NLO materials. The molecular dipole moment, μi, and (hyper)polarizability coefficients, αij and βijk, are calculated from the experimental diffraction data using the x-ray constrained wave-function method. Complementary gas-phase ab initio quantum-mechanical calculations of μi, αij, and βijk offer a supporting comparison. When taken alone, the experimental charge-density analysis does not fare well in deriving μi, αij, or βijk, which is not entirely surprising given that the associated calculations are only generally valid for organic molecules. However, by refining the x-ray data within the constrained wave-function method, the evaluations of μi, αij, and βijk are shown to agree very well with those from ab initio calculations and show remarkable normalization to experimental refractive index measurements. The small differences observed between ab initio and x-ray constrained wave-function refinement results can be related directly to gas- versus solid-state phase differences. μi is found to be 28.3 Debye (gas phase) and 29.7 Debye (solid state) while βijk coefficients are not only significant but are also markedly three dimensional in form. Accordingly

  15. Application of sensitive, high-resolution imaging at a commercial lab-based X-ray micro-CT system using propagation-based phase retrieval.

    PubMed

    Bidola, P; Morgan, K; Willner, M; Fehringer, A; Allner, S; Prade, F; Pfeiffer, F; Achterhold, K

    2017-02-09

    Several dedicated commercial lab-based micro-computed tomography (μCT) systems exist, which provide high-resolution images of samples, with the capability to also deliver in-line phase contrast. X-ray phase contrast is particularly beneficial when visualizing very small features and weakly absorbing samples. The raw measured projections will include both phase and absorption effects. Extending our previous work that addressed the optimization of experimental conditions at the commercial ZEISS Xradia 500 Versa system, single-distance phase-contrast imaging is demonstrated on complex biological and material samples. From data captured at this system, we demonstrate extraction of the phase signal or the correction of the mixed image for the phase shift, and show how this procedure increases the contrast and removes artefacts. These high-quality images, measured without the use of a synchrotron X-ray source, demonstrate that highly sensitive, micrometre-resolution imaging of 3D volumes is widely accessible using commercially advanced laboratory devices.

  16. [Build and Demonstrate a X-Ray Interferometer and Build and Fly a High Resolution Telescope on a Sounding Rocket}

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This report is written with eight months still go on the 36 month period of the grant. This grant, as originally proposed three years ago, was two pronged - to build and demonstrate a practical x-ray interferometer, and to build and fly a high resolution telescope on a sounding rocket. As we started into these projects, we received community feedback that led to our giving priority to the interferometer., The rocket would achieve O.2-arcsecond resolution that, while better, than that of Chandra, would, because of the limited signal of a sub-orbital flight, not be of substantially greater scientific use. The interferometry, on the other hand, shows the potential for many orders of magnitude improvement. For this reason we gave priority to the lab interferometry, and the building of the telescope lagged behind. With our new understanding (and practical demonstration) of how to build an interferometer, we changed the telescope design from spherical surfaces in the Kirkpatrick-Baez configuration, to an interferometer with resolution between .005 and .05 arcseconds.

  17. Study of Explosive Electron Emission from a Pin Cathode Using High Resolution Point-Projection X-Ray Radiography

    NASA Astrophysics Data System (ADS)

    Pikuz, S. A.; Shelkovenko, T. A.; Hammer, D. A.; Parkevich, E. V.; Tilikin, I. N.; Mingaleev, A. R.; Agafonov, A. V.

    2015-11-01

    Most studies of Explosive Electron Emission (EEE) are based on the idea of cathode flares developing after explosion of metal whiskers (micron scale pins) on the cathode surface. The physical state of the pin material, the spatial structure of the explosion and its origin are still a matter of conjecture. In this work we used high-resolution point projection x-ray radiography to observe micron scale pin explosion in a high-current diode. Pin cathodes made from 10-25 micron Cu or Mo wires were placed in gaps in return current circuits of hybrid X-pinches on the XP and BIN pulsers. Pin lengths were varied over a range 1-4 mm and pin-anode gaps within 0.05-3 mm. The diode current and voltage were measured. In experiments with small pin-anode gap (0.1 - 1 mm) development of an expanded dense core of the pin was observed except the pin tip with length 100-200 microns indicating significant energy deposition in the wire material. In experiments with bigger gaps there was no visible wire core expansion within the spatial resolution of the experimental technique. Work at Cornell was supported by the National Nuclear Security Administration Stewardship Sciences Academic Programs under Department of Energy Cooperative Agreement No. DE-NA0001836 and at the Lebedev Institute by the RSF grant 142200273.

  18. An indirect flat-panel detector with avalanche gain for low dose x-ray imaging: SAPHIRE (scintillator avalanche photoconductor with high resolution emitter readout)

    NASA Astrophysics Data System (ADS)

    Zhao, Wei; Li, Dan; Rowlands, J. A.; Egami, N.; Takiguchi, Y.; Nanba, M.; Honda, Y.; Ohkawa, Y.; Kubota, M.; Tanioka, K.; Suzuki, K.; Kawai, T.

    2008-03-01

    An indirect flat-imager with programmable avalanche gain and field emitter array (FEA) readout is being investigated for low-dose x-ray imaging with high resolution. It is made by optically coupling a structured x-ray scintillator CsI (Tl) to an amorphous selenium (a-Se) avalanche photoconductor called HARP (high-gain avalanche rushing photoconductor). The charge image created by HARP is read out by electron beams generated by the FEA. The proposed detector is called SAPHIRE (Scintillator Avalanche Photoconductor with HIgh Resolution Emitter readout). The avalanche gain of HARP depends on both a-Se thickness and applied electric field E Se. At E Se of > 80 V/μm, the avalanche gain can enhance the signal at low dose (e.g. fluoroscopy) and make the detector x-ray quantum noise limited down to a single x-ray photon. At high exposure (e.g. radiography), the avalanche gain can be turned off by decreasing E Se to < 70 V/μm. In this paper the imaging characteristics of the FEA readout method, including the spatial resolution and noise, were investigated experimentally using a prototype optical HARP-FEA image sensor. The potential x-ray imaging performance of SAPHIRE, especially the aspect of programmable gain to ensure wide dynamic range and x-ray quantum noise limited performance at the lowest exposure in fluoroscopy, was investigated.

  19. High Resolution Spectroscopy of X-ray Quasars: Searching for the X-ray Absorption from the Warm-Hot Intergalactic Medium

    NASA Technical Reports Server (NTRS)

    Fang, Taotao; Canizares, Claude R.; Marshall, Herman L.

    2004-01-01

    We present a survey of six low to moderate redshift quasars with Chandra and XMM-Newton. The primary goal is to search for the narrow X-ray absorption lines produced by highly ionized metals in the Warm-Hot Intergalactic Medium. All the X-ray spectra can be well fitted by a power law with neutral hydrogen absorption. Only one feature is detected at above 3-sigma level in all the spectra, which is consistent with statistic fluctuation. We discuss the implications in our understanding of the baryon content of the universe. We also discuss the implication of the non-detection of the local (z approx. 0) X-ray absorption.

  20. High-resolution X-ray spectroscopy of the X-ray burster and 11 Hz pulsar IGR J17480-2446

    NASA Astrophysics Data System (ADS)

    Canizares, Claude

    2013-09-01

    The detection and identification of photospheric absorption lines from a neutron star would allow measurement of their gravitational redshift and hence the neutron star compactness. In principle, the line shape would allow unique determination of M and R. X-ray bursters are, in most respects, the ideal targets for this search, but most rotate so rapidly that any lines are too broadened to detect. However, the recently discovered X-ray burster Terzan 5 X-2 spins at only 11 Hz, 20x slower than the next slowest rotator. We propose a TOO observation with HETGS to search for narrow lines of ionized Fe when this X-ray transient next becomes active. This is the best chance ever to detect a narrow atomic line in a neutron star.

  1. High-resolution X-ray spectroscopy of the X-ray burster and 11 Hz pulsar IGR J17480-2446

    NASA Astrophysics Data System (ADS)

    Canizares, Claude

    2014-09-01

    The detection and identification of photospheric absorption lines from a neutron star would allow measurement of their gravitational redshift and hence the neutron star compactness. In principle, the line shape would allow unique determination of M and R. X-ray bursters are, in most respects, the ideal targets for this search, but most rotate so rapidly that any lines are too broadened to detect. However, the recently discovered X-ray burster Terzan 5 X-2 spins at only 11 Hz, 20x slower than the next slowest rotator. We propose a TOO observation with HETGS to search for narrow lines of ionized Fe when this X-ray transient next becomes active. This is the best chance ever to detect a narrow atomic line in a neutron star.

  2. High-resolution and high-sensitivity phase-contrast imaging by focused hard x-ray ptychography with a spatial filter

    NASA Astrophysics Data System (ADS)

    Takahashi, Yukio; Suzuki, Akihiro; Furutaku, Shin; Yamauchi, Kazuto; Kohmura, Yoshiki; Ishikawa, Tetsuya

    2013-03-01

    We demonstrate high-resolution and high-sensitivity x-ray phase-contrast imaging of a weakly scattering extended object by scanning coherent diffractive imaging, i.e., ptychography, using a focused x-ray beam with a spatial filter. We develop the x-ray illumination optics installed with the spatial filter to collect coherent diffraction patterns with a high signal-to-noise ratio. We quantitatively visualize the object with a slight phase shift (˜λ/320) at spatial resolution better than 17 nm in a field of view larger than ˜2×2μm2. The present coherent method has a marked potential for high-resolution and wide-field-of-view observation of weakly scattering objects such as biological soft tissues.

  3. Data fusion in neutron and X-ray computed tomography

    SciTech Connect

    Schrapp, Michael J.; Goldammer, Matthias; Schulz, Michael; Issani, Siraj; Bhamidipati, Suryanarayana; Böni, Peter

    2014-10-28

    We present a fusion methodology between neutron and X-ray computed tomography (CT). On the one hand, the inspection by X-ray CT of a wide class of multimaterials in non-destructive testing applications suffers from limited information of object features. On the other hand, neutron imaging can provide complementary data in such a way that the combination of both data sets fully characterizes the object. In this contribution, a novel data fusion procedure, called Fusion Regularized Simultaneous Algebraic Reconstruction Technique, is developed where the X-ray reconstruction is modified to fulfill the available data from the imaging with neutrons. The experiments, which were obtained from an aluminum profile containing a steel screw, and attached carbon fiber plates demonstrate that the image quality in CT can be significantly improved when the proposed fusion method is used.

  4. X-ray Crystallographic Computations Using a Programmable Calculator.

    ERIC Educational Resources Information Center

    Attard, Alfred E.; Lee, Henry C.

    1979-01-01

    Describes six crystallographic programs which have been developed to illustrate the range of usefulness of programmable calculators in providing computational assistance in chemical analysis. These programs are suitable for the analysis of x-ray diffraction data in the laboratory by students. (HM)

  5. X-ray clusters from a high-resolution hydrodynamic PPM simulation of the cold dark matter universe

    NASA Technical Reports Server (NTRS)

    Bryan, Greg L.; Cen, Renyue; Norman, Michael L.; Ostriker, Jermemiah P.; Stone, James M.

    1994-01-01

    A new three-dimensional hydrodynamic code based on the piecewise parabolic method (PPM) is utilized to compute the distribution of hot gas in the standard Cosmic Background Explorer (COBE)-normalized cold dark matter (CDM) universe. Utilizing periodic boundary conditions, a box with size 85 h(exp-1) Mpc, having cell size 0.31 h(exp-1) Mpc, is followed in a simulation with 270(exp 3)=10(exp 7.3) cells. Adopting standard parameters determined from COBE and light-element nucleosynthesis, Sigma(sub 8)=1.05, Omega(sub b)=0.06, we find the X-ray-emitting clusters, compute the luminosity function at several wavelengths, the temperature distribution, and estimated sizes, as well as the evolution of these quantities with redshift. The results, which are compared with those obtained in the preceding paper (Kang et al. 1994a), may be used in conjuction with ROSAT and other observational data sets. Overall, the results of the two computations are qualitatively very similar with regard to the trends of cluster properties, i.e., how the number density, radius, and temeprature depend on luminosity and redshift. The total luminosity from clusters is approximately a factor of 2 higher using the PPM code (as compared to the 'total variation diminishing' (TVD) code used in the previous paper) with the number of bright clusters higher by a similar factor. The primary conclusions of the prior paper, with regard to the power spectrum of the primeval density perturbations, are strengthened: the standard CDM model, normalized to the COBE microwave detection, predicts too many bright X-ray emitting clusters, by a factor probably in excess of 5. The comparison between observations and theoretical predictions for the evolution of cluster properties, luminosity functions, and size and temperature distributions should provide an important discriminator among competing scenarios for the development of structure in the universe.

  6. Characterization of x-ray imaging crystal spectrometer for high-resolution spatially-resolved x-ray Thomson scattering measurements in shock-compressed experiments

    NASA Astrophysics Data System (ADS)

    Lu, J.; Hill, K. W.; Bitter, M.; Pablant, N. A.; Delgado-Aparicio, L. F.; Efthimion, P. C.; Lee, H. J.; Zastrau, U.

    2017-01-01

    We have proposed, designed and built a dual-channel x-ray imaging crystal spectrometer (XICS) for spectrally- and spatially-resolved x-ray Thomson scattering (XRTS) measurements in the Matter in Extreme Conditions (MEC) end station at the Linac Coherent Light Source (LCLS). This spectrometer employs two spherically-bent germanium (Ge) 220 crystals, which are combined to form a large aperture dispersive element with a spectral bandwidth of 300 eV that enables both the elastic and inelastic x-ray scattering peaks to be simultaneously measured. The apparatus and its characterization are described. A resolving power of 1900 was demonstrated and a spatial resolution of 12 μm was achieved in calibration tests. For XRTS measurements, a narrow-bandwidth (ΔE/E<0.003) LCLS x-ray free electron laser (XFEL) beam at 5.07 keV was used to probe a dense carbon plasma produced in shock-compressed samples of different forms of carbon. Preliminary results of the scattering experiments from Pyrolytic Graphite samples that illustrate the utility of the instrument are presented.

  7. Precision mechanical structure of an ultra-high-resolution spectrometer for inelastic X-ray scattering instrument

    DOEpatents

    Shu, Deming; Shvydko, Yuri; Stoupin, Stanislav A.; Khachatryan, Ruben; Goetze, Kurt A.; Roberts, Timothy

    2015-04-14

    A method and an ultrahigh-resolution spectrometer including a precision mechanical structure for positioning inelastic X-ray scattering optics are provided. The spectrometer includes an X-ray monochromator and an X-ray analyzer, each including X-ray optics of a collimating (C) crystal, a pair of dispersing (D) element crystals, anomalous transmission filter (F) and a wavelength (W) selector crystal. A respective precision mechanical structure is provided with the X-ray monochromator and the X-ray analyzer. The precision mechanical structure includes a base plate, such as an aluminum base plate; positioning stages for D-crystal alignment; positioning stages with an incline sensor for C/F/W-crystal alignment, and the positioning stages including flexure-based high-stiffness structure.

  8. High-resolution short-exposure small-animal laboratory x-ray phase-contrast tomography

    PubMed Central

    Larsson, Daniel H.; Vågberg, William; Yaroshenko, Andre; Yildirim, Ali Önder; Hertz, Hans M.

    2016-01-01

    X-ray computed tomography of small animals and their organs is an essential tool in basic and preclinical biomedical research. In both phase-contrast and absorption tomography high spatial resolution and short exposure times are of key importance. However, the observable spatial resolutions and achievable exposure times are presently limited by system parameters rather than more fundamental constraints like, e.g., dose. Here we demonstrate laboratory tomography with few-ten μm spatial resolution and few-minute exposure time at an acceptable dose for small-animal imaging, both with absorption contrast and phase contrast. The method relies on a magnifying imaging scheme in combination with a high-power small-spot liquid-metal-jet electron-impact source. The tomographic imaging is demonstrated on intact mouse, phantoms and excised lungs, both healthy and with pulmonary emphysema. PMID:27958376

  9. High-resolution short-exposure small-animal laboratory x-ray phase-contrast tomography

    NASA Astrophysics Data System (ADS)

    Larsson, Daniel H.; Vågberg, William; Yaroshenko, Andre; Yildirim, Ali Önder; Hertz, Hans M.

    2016-12-01

    X-ray computed tomography of small animals and their organs is an essential tool in basic and preclinical biomedical research. In both phase-contrast and absorption tomography high spatial resolution and short exposure times are of key importance. However, the observable spatial resolutions and achievable exposure times are presently limited by system parameters rather than more fundamental constraints like, e.g., dose. Here we demonstrate laboratory tomography with few-ten μm spatial resolution and few-minute exposure time at an acceptable dose for small-animal imaging, both with absorption contrast and phase contrast. The method relies on a magnifying imaging scheme in combination with a high-power small-spot liquid-metal-jet electron-impact source. The tomographic imaging is demonstrated on intact mouse, phantoms and excised lungs, both healthy and with pulmonary emphysema.

  10. High resolution X-ray structure of dTDP-glucose 4,6-dehydratase from Streptomyces venezuelae.

    PubMed

    Allard, Simon T M; Cleland, W W; Holden, Hazel M

    2004-01-16

    Desosamine is a 3-(dimethylamino)-3,4,6-trideoxyhexose found in some macrolide antibiotics. In Streptomyces venezuelae, there are seven genes required for the biosynthesis of this unusual sugar. One of the genes, desIV, codes for a dTDP-glucose 4,6-dehydratase, which is referred to as DesIV. The reaction mechanisms for these types of dehydratases are quite complicated with proton abstraction from the sugar 4'-hydroxyl group and hydride transfer to NAD+, proton abstraction at C-5, and elimination of the hydroxyl group at C-6 of the sugar, and finally return of a proton to C-5 and a hydride from NADH to C-6. Here we describe the cloning, overexpression, and purification, and high resolution x-ray crystallographic analysis to 1.44 A of wild-type DesIV complexed with dTDP. Additionally, for this study, a double site-directed mutant protein (D128N/E129Q) was prepared, crystallized as a complex with NAD+ and the substrate dTDP-glucose and its structure determined to 1.35 A resolution. In DesIV, the phenolate group of Tyr(151) and O(gamma) of Thr(127) lie at 2.7 and 2.6 A, respectively from the 4'-hydroxyl group of the dTDP-glucose substrate. The side chain of Asp(128) is in the correct position to function as a general acid for proton donation to the 6'-hydroxyl group while the side chain of Glu(129) is ideally situated to serve as the general base for proton abstraction at C-5. This investigation provides further detailed information for understanding the exquisite chemistry that occurs in these remarkable enzymes.

  11. A high-resolution gamma-ray and hard X-ray spectrometer for solar flare observations in Max 1991

    NASA Technical Reports Server (NTRS)

    Lin, R. P.; Curtis, D. W.; Harvey, P.; Hurley, K.; Primbsch, J. H.; Smith, D. M.; Pelling, R. M.; Duttweiler, F.

    1988-01-01

    A long duration balloon flight instrument for Max 1991 designed to study the acceleration of greater than 10 MeV ions and greater than 15 keV electrons in solar flares through high resolution spectroscopy of the gamma ray lines and hard X-ray and gamma ray continuum is described. The instrument, HIREGS, consists of an array of high-purity, n-type coaxial germanium detectors (HPGe) cooled to less than 90 K and surrounded by a bismuth germanate (BGO) anticoincidence shield. It will cover the energy range 15 keV to 20 MeV with keV spectral resolution, sufficient for accurate measurement of all parameters of the expected gamma ray lines with the exception of the neutron capture deuterium line. Electrical segmentation of the HPGe detector into a thin front segment and a thick rear segment, together with pulse-shape discrimination, provides optimal dynamic range and signal-to-background characteristics for flare measurements. Neutrons and gamma rays up to approximately 0.1 to 1 GeV can be detected and identified with the combination of the HPGe detectors and rear BGO shield. The HIREGS is planned for long duration balloon flights (LDBF) for solar flare studies during Max 1991. The two exploratory LDBFs carried out at mid-latitudes in 1987 to 1988 are described, and the LDBFs in Antarctica, which could in principle provide 24 hour/day solar coverage and very long flight durations (20 to 30 days) because of minimal ballast requirements are discussed.

  12. High-resolution x-ray diffraction study of the heavy-fermion compound YbBiPt

    SciTech Connect

    Ueland, B. G.; Saunders, S. M.; Bud'ko, S. L.; Schmiedeshoff, G. M.; Canfield, P. C.; Kreyssig, A.; Goldman, A. I.

    2015-11-30

    In this study, YbBiPt is a heavy-fermion compound possessing significant short-range antiferromagnetic correlations below a temperature of T*=0.7K, fragile antiferromagnetic order below TN = 0.4K, a Kondo temperature of TK ≈ 1K, and crystalline-electric-field splitting on the order of E/kB = 1 – 10K. Whereas the compound has a face-centered-cubic lattice at ambient temperature, certain experimental data, particularly those from studies aimed at determining its crystalline-electric-field scheme, suggest that the lattice distorts at lower temperature. Here, we present results from high-resolution, high-energy x-ray diffraction experiments which show that, within our experimental resolution of ≈ 6 – 10 × 10–5 Å, no structural phase transition occurs between T = 1.5 and 50 K. In combination with results from dilatometry measurements, we further show that the compound's thermal expansion has a minimum at ≈ 18 K and a region of negative thermal expansion for 9 ≲ T ≲ 18 K. Despite diffraction patterns taken at 1.6 K which indicate that the lattice is face-centered cubic and that the Yb resides on a crystallographic site with cubic point symmetry, we demonstrate that the linear thermal expansion may be modeled using crystalline-electric-field level schemes appropriate for Yb3+ residing on a site with either cubic or less than cubic point symmetry.

  13. High-resolution x-ray diffraction study of the heavy-fermion compound YbBiPt

    DOE PAGES

    Ueland, B. G.; Saunders, S. M.; Bud'ko, S. L.; ...

    2015-11-30

    In this study, YbBiPt is a heavy-fermion compound possessing significant short-range antiferromagnetic correlations below a temperature of T*=0.7K, fragile antiferromagnetic order below TN = 0.4K, a Kondo temperature of TK ≈ 1K, and crystalline-electric-field splitting on the order of E/kB = 1 – 10K. Whereas the compound has a face-centered-cubic lattice at ambient temperature, certain experimental data, particularly those from studies aimed at determining its crystalline-electric-field scheme, suggest that the lattice distorts at lower temperature. Here, we present results from high-resolution, high-energy x-ray diffraction experiments which show that, within our experimental resolution of ≈ 6 – 10 × 10–5 Å,more » no structural phase transition occurs between T = 1.5 and 50 K. In combination with results from dilatometry measurements, we further show that the compound's thermal expansion has a minimum at ≈ 18 K and a region of negative thermal expansion for 9 ≲ T ≲ 18 K. Despite diffraction patterns taken at 1.6 K which indicate that the lattice is face-centered cubic and that the Yb resides on a crystallographic site with cubic point symmetry, we demonstrate that the linear thermal expansion may be modeled using crystalline-electric-field level schemes appropriate for Yb3+ residing on a site with either cubic or less than cubic point symmetry.« less

  14. Computer synthesis of high resolution electron micrographs

    NASA Technical Reports Server (NTRS)

    Nathan, R.

    1976-01-01

    Specimen damage, spherical aberration, low contrast and noisy sensors combine to prevent direct atomic viewing in a conventional electron microscope. The paper describes two methods for obtaining ultra-high resolution in biological specimens under the electron microscope. The first method assumes the physical limits of the electron objective lens and uses a series of dark field images of biological crystals to obtain direct information on the phases of the Fourier diffraction maxima; this information is used in an appropriate computer to synthesize a large aperture lens for a 1-A resolution. The second method assumes there is sufficient amplitude scatter from images recorded in focus which can be utilized with a sensitive densitometer and computer contrast stretching to yield fine structure image details. Cancer virus characterization is discussed as an illustrative example. Numerous photographs supplement the text.

  15. X-Ray Computed Tomography Monitors Damage in Composites

    NASA Technical Reports Server (NTRS)

    Baaklini, George Y.

    1997-01-01

    The NASA Lewis Research Center recently codeveloped a state-of-the-art x-ray CT facility (designated SMS SMARTSCAN model 100-112 CITA by Scientific Measurement Systems, Inc., Austin, Texas). This multipurpose, modularized, digital x-ray facility includes an imaging system for digital radiography, CT, and computed laminography. The system consists of a 160-kV microfocus x-ray source, a solid-state charge-coupled device (CCD) area detector, a five-axis object-positioning subassembly, and a Sun SPARCstation-based computer system that controls data acquisition and image processing. The x-ray source provides a beam spot size down to 3 microns. The area detector system consists of a 50- by 50- by 3-mm-thick terbium-doped glass fiber-optic scintillation screen, a right-angle mirror, and a scientific-grade, digital CCD camera with a resolution of 1000 by 1018 pixels and 10-bit digitization at ambient cooling. The digital output is recorded with a high-speed, 16-bit frame grabber that allows data to be binned. The detector can be configured to provide a small field-of-view, approximately 45 by 45 mm in cross section, or a larger field-of-view, approximately 60 by 60 mm in cross section. Whenever the highest spatial resolution is desired, the small field-of-view is used, and for larger samples with some reduction in spatial resolution, the larger field-of-view is used.

  16. High Resolution X-ray CMT Imaging of Supercritical CO2 in Porous Media: Experimental Challenges, Solutions, and Results

    NASA Astrophysics Data System (ADS)

    Herring, A. L.; Andersson, L.; Newell, D. L.; Carey, J. W.; Wildenschild, D.

    2013-12-01

    Geologic carbon dioxide (CO2) sequestration has been proposed as a climate change mitigation strategy to limit emissions of CO2 to the atmosphere from large fossil-fuel burning CO2 point sources; however, there are concerns associated with the long-term stability of a mobile subsurface CO2 plume. Capillary trapping of supercritical CO2 (scCO2), wherein the CO2 is held within the pore structure of the geologic matrix by capillary forces, is a more secure form of subsurface storage than structural trapping, which relies on an impermeable caprock to contain the buoyant CO2 plume. To understand the multiphase physics of CO2 transport, and to subsequently produce quantitative estimates of potential CO2 capillary trapping, it is necessary to study field, core, and pore-scale processes. X-ray computed microtomography (x-ray CMT) allows for three-dimensional (3D) in-situ visualization of fluid phases within and the physical structure of a porous medium at the pore-scale. We have designed and built a mobile experimental set-up capable of running at pressures up to 2000 PSI and temperatures up to 50°C, made with materials that are compatible with corrosive fluids. Our experimental procedure includes pressurizing, mixing, and separating fluids; and subsequently running immiscible drainage and imbibition flow experiments with brine and supercritical CO2. With this set-up and procedure, we successfully conducted a brine-scCO2 drainage experiment in Bentheimer sandstone at 1200 PSI and 36°C, and confirmed and quantified CO2 flow in the sandstone core via synchrotron-based x-ray CMT with a resolution of 4.65 μm at the Advanced Photon Source at Argonne National Laboratory. We have proven that we can observe, on a pore-scale basis, the movement of supercritical CO2 within a porous media. The properties of supercritical CO2 (e.g. viscosity, density, interfacial tension and solubility in brine) vary significantly with changes in pressure and temperature; consequently, precise

  17. Quasimonochromatic x-ray computed tomography by the balanced filter method using a conventional x-ray source.

    PubMed

    Saito, Masatoshi

    2004-12-01

    A quasimonochromatic x-ray computed tomography (CT) system utilizing balanced filters has recently been developed for acquiring quantitative CT images. This system consisted of basic components such as a conventional x-ray generator for radiography, a stage for mounting and rotating objects, and an x-ray line sensor camera. Metallic sheets of Er and Yb were used as the balanced filters for obtaining quasimonochromatic incident x rays that include the characteristic lines of the W Kalpha doublet from a tungsten target. The mean energy and energy width of the quasimonochromatic x rays were determined to be 59.0 and 1.9 keV, respectively, from x-ray spectroscopic measurements using a high-purity Ge detector. The usefulness of the present x-ray CT system was demonstrated by obtaining spatial distributions of the linear attenuation coefficients of three selected samples--a 20 cm diameter cylindrical water phantom, a 3.5 cm diameter aluminum rod, and a human head phantom. The results clearly indicate that this apparatus is surprisingly effective for estimating the distribution of the linear attenuation coefficients without any correction of the beam-hardening effect. Thus, implementing the balanced filter method on an x-ray CT scanner has promise in producing highly quantitative CT images.

  18. Proceedings of the workshop on high resolution computed microtomography (CMT)

    SciTech Connect

    1997-02-01

    The purpose of the workshop was to determine the status of the field, to define instrumental and computational requirements, and to establish minimum specifications required by possible users. The most important message sent by implementers was the remainder that CMT is a tool. It solves a wide spectrum of scientific problems and is complementary to other microscopy techniques, with certain important advantages that the other methods do not have. High-resolution CMT can be used non-invasively and non-destructively to study a variety of hierarchical three-dimensional microstructures, which in turn control body function. X-ray computed microtomography can also be used at the frontiers of physics, in the study of granular systems, for example. With high-resolution CMT, for example, three-dimensional pore geometries and topologies of soils and rocks can be obtained readily and implemented directly in transport models. In turn, these geometries can be used to calculate fundamental physical properties, such as permeability and electrical conductivity, from first principles. Clearly, use of the high-resolution CMT technique will contribute tremendously to the advancement of current R and D technologies in the production, transport, storage, and utilization of oil and natural gas. It can also be applied to problems related to environmental pollution, particularly to spilling and seepage of hazardous chemicals into the Earth's subsurface. Applications to energy and environmental problems will be far-ranging and may soon extend to disciplines such as materials science--where the method can be used in the manufacture of porous ceramics, filament-resin composites, and microelectronics components--and to biomedicine, where it could be used to design biocompatible materials such as artificial bones, contact lenses, or medication-releasing implants. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  19. High resolution biomedical imaging system with direct detection of x-rays via a charge coupled device

    DOEpatents

    Atac, Muzaffer; McKay, Timothy A.

    1998-01-01

    An imaging system is provided for direct detection of x-rays from an irradiated biological tissue. The imaging system includes an energy source for emitting x-rays toward the biological tissue and a charge coupled device (CCD) located immediately adjacent the biological tissue and arranged transverse to the direction of irradiation along which the x-rays travel. The CCD directly receives and detects the x-rays after passing through the biological tissue. The CCD is divided into a matrix of cells, each of which individually stores a count of x-rays directly detected by the cell. The imaging system further includes a pattern generator electrically coupled to the CCD for reading a count from each cell. A display device is provided for displaying an image representative of the count read by the pattern generator from the cells of the CCD.

  20. High resolution biomedical imaging system with direct detection of x-rays via a charge coupled device

    DOEpatents

    Atac, M.; McKay, T.A.

    1998-04-21

    An imaging system is provided for direct detection of x-rays from an irradiated biological tissue. The imaging system includes an energy source for emitting x-rays toward the biological tissue and a charge coupled device (CCD) located immediately adjacent the biological tissue and arranged transverse to the direction of irradiation along which the x-rays travel. The CCD directly receives and detects the x-rays after passing through the biological tissue. The CCD is divided into a matrix of cells, each of which individually stores a count of x-rays directly detected by the cell. The imaging system further includes a pattern generator electrically coupled to the CCD for reading a count from each cell. A display device is provided for displaying an image representative of the count read by the pattern generator from the cells of the CCD. 13 figs.

  1. High resolution grazing-incidence in-plane x-ray diffraction for measuring the strain of a Si thin layer.

    PubMed

    Omote, Kazuhiko

    2010-12-01

    We have measured the strain of a thin Si layer deposited on a SiGe layer using a high resolution x-ray diffraction system. The Si layer was deposited on the SiGe layer in order to introduce a tensile strain to the Si layer. To measure the in-plane lattice constant accurately, we have employed so-called grazing-incidence in-plane diffraction. For this measurement, we have made a new five-axis x-ray goniometer which has four ordinal circles (ω, 2θ, χ, φ) plus a counter-χ-axis for selecting the exit angle of the diffracted x-rays. In grazing-incidence geometry, an incident x-ray is focused on the sample surface in order to obtain good diffraction intensity even though the layer thickness is less than 5 nm. Because diffracted x-rays are detected through analyzer crystals, the diffraction angle can be determined with an accuracy of ± 0.0003°. This indicates that the strain sensitivity is about 10( - 5) when we measure in-plane Si 220 diffraction. Use of x-ray diffraction could be the best standard metrology method for determining strain in thin layers. Furthermore, we have demonstrated that incident/exit angle selected in-plane diffraction is very useful for height/depth selective strain determination.

  2. X-ray high-resolution diffraction and reflectivity studies of defects related to the mechanical treatment of ? single crystals

    NASA Astrophysics Data System (ADS)

    Mazur, K.; Sass, J.; Eichhorn, F.

    1998-07-01

    Triple-crystal x-ray diffractometry and x-ray reflectometry have been used to determine defects in 0953-8984/10/27/007/img7 epi-ready wafers caused by mechanical treatment. Reciprocal space maps around the 400 lattice point were separately made for mechanically polished wafers before and after etching treatment. The lattice imperfections have been studied by measuring the diffusion scattering. The surface morphology has been controlled by means of x-ray reflectometry. It was shown that measurements of diffuse scattering could be made with good sensitivity in a reasonable time when there was a moderate difference between the d spacing of the sample and the monochromator.

  3. Computing Composition/Depth Profiles From X-Ray Diffraction

    NASA Technical Reports Server (NTRS)

    Wiedemann, K. E.; Unnam, J.

    1986-01-01

    Diffraction-intensity bands deconvolved relatively quickly. TIBAC constructs composition/depth profiles from X-ray diffraction-intensity bands. Intensity band extremely sensitive to shape of composition/depth profile. TIBAC incorporates straightforward transformation of intensity band that retains accuracy of earlier simulation models, but is several orders of magnitude faster in total computational time. TIBAC written in FORTRAN 77 for batch execution.

  4. Non-invasive predictors of human cortical bone mechanical properties: T(2)-discriminated H NMR compared with high resolution X-ray.

    PubMed

    Horch, R Adam; Gochberg, Daniel F; Nyman, Jeffry S; Does, Mark D

    2011-01-21

    Recent advancements in magnetic resonance imaging (MRI) have enabled clinical imaging of human cortical bone, providing a potentially powerful new means for assessing bone health with molecular-scale sensitivities unavailable to conventional X-ray-based diagnostics. To this end, (1)H nuclear magnetic resonance (NMR) and high-resolution X-ray signals from human cortical bone samples were correlated with mechanical properties of bone. Results showed that (1)H NMR signals were better predictors of yield stress, peak stress, and pre-yield toughness than were the X-ray derived signals. These (1)H NMR signals can, in principle, be extracted from clinical MRI, thus offering the potential for improved clinical assessment of fracture risk.

  5. High-resolution thermal imaging with a combination of nano-focus X-ray diffraction and ultra-fast chip calorimetry.

    PubMed

    Rosenthal, Martin; Doblas, David; Hernandez, Jaime J; Odarchenko, Yaroslav I; Burghammer, Manfred; Di Cola, Emanuela; Spitzer, Denis; Antipov, A E; Aldoshin, L S; Ivanov, Dimitri A

    2014-01-01

    A microelectromechanical-systems-based calorimeter designed for use on a synchrotron nano-focused X-ray beamline is described. This instrument allows quantitative DC and AC calorimetric measurements over a broad range of heating/cooling rates (≤100000 K s(-1)) and temperature modulation frequencies (≤1 kHz). The calorimeter was used for high-resolution thermal imaging of nanogram-sized samples subjected to X-ray-induced heating. For a 46 ng indium particle, the measured temperature rise reaches ∼0.2 K, and is directly correlated to the X-ray absorption. Thermal imaging can be useful for studies of heterogeneous materials exhibiting physical and/or chemical transformations. Moreover, the technique can be extended to three-dimensional thermal nanotomography.

  6. High-resolution time-resolved x-ray microscope for inertial confinement fusion (ICF) target dynamics experiments

    SciTech Connect

    Ellis, R.J.; Kilkenny, J.D.; Levesque, R.A.; Phillion, D.W.; Deane, D.J.

    1987-10-01

    A versatile x-ray microscope diagnostic has been built to perform target dynamics experiments on the Nova Ten Beam target irradiation facility. This system is based on Wolter's axisymmetric focusing scheme. An alignment system is described which provides for both quick and accurate alignment of the x-ray optic. Results are presented showing the system resolution and accuracy of alignment. Images from target dynamics experiments are also presented. 9 refs.

  7. High-resolution multi-MeV x-ray radiography using relativistic laser-solid interaction

    SciTech Connect

    Courtois, C.; Compant La Fontaine, A.; Barbotin, M.; Bazzoli, S.; Brebion, D.; Bourgade, J. L.; Gazave, J.; Lagrange, J. M.; Landoas, O.; Le Dain, L.; Lefebvre, E.; Pichoff, N.; Edwards, R.; Aedy, C.; Biddle, L.; Drew, D.; Gardner, M.; Ramsay, M.; Simons, A.; Sircombe, N.

    2011-02-15

    When high intensity ({>=}10{sup 19} W cm{sup -2}) laser light interacts with matter, multi-MeV electrons are produced. These electrons can be utilized to generate a MeV bremsstrahlung x-ray emission spectrum as they propagate into a high-Z solid target positioned behind the interaction area. The short duration (<10 ps) and the small diameter (<500 {mu}m) of the x-ray pulse combined with the MeV x-ray spectrum offers an interesting alternative to conventional bremsstrahlung x-ray sources based on an electron accelerator used to radiograph dense, rapidly moving objects. In experiments at the Omega EP laser, a multi-MeV x-ray source is characterized consistently with number of independent diagnostics. An unfiltered x-ray dose of approximately 2 rad in air at 1 m and a source diameter of less than 350 {mu}m are inferred. Radiography of a complex and high area density (up to 61 g/cm{sup 2}) object is then performed with few hundred microns spatial resolution.

  8. X-ray Computed Tomographic Investigation of the Porosity and Morphology of Plasma Electrolytic Oxidation Coatings.

    PubMed

    Zhang, Xun; Aliasghari, Sepideh; Němcová, Aneta; Burnett, Timothy L; Kuběna, Ivo; Šmíd, Miroslav; Thompson, George E; Skeldon, Peter; Withers, Philip J

    2016-04-06

    Plasma electrolytic oxidation (PEO) is of increasing interest for the formation of ceramic coatings on metals for applications that require diverse coating properties, such as wear and corrosion resistance, low thermal conductivity, and biocompatibility. Porosity in the coatings can have an important impact on the coating performance. However, the quantification of the porosity in coatings can be difficult due to the wide range of pore sizes and the complexity of the coating morphology. In this work, a PEO coating formed on titanium is examined using high resolution X-ray computed tomography (X-ray CT). The observations are validated by comparisons of surface views and cross-sectional views of specific coating features obtained using X-ray CT and scanning electron microscopy. The X-ray CT technique is shown to be capable of resolving pores with volumes of at least 6 μm(3). Furthermore, the shapes of large pores are revealed and a correlation is demonstrated between the locations of the pores, nodules on the coating surface, and depressions in the titanium substrate. The locations and morphologies of the pores, which constitute 5.7% of the coating volume, indicate that they are generated by release of oxygen gas from the molten coating.

  9. Heterogeneous computing for vertebra detection and segmentation in x-ray images.

    PubMed

    Lecron, Fabian; Mahmoudi, Sidi Ahmed; Benjelloun, Mohammed; Mahmoudi, Saïd; Manneback, Pierre

    2011-01-01

    The context of this work is related to the vertebra segmentation. The method we propose is based on the active shape model (ASM). An original approach taking advantage of the edge polygonal approximation was developed to locate the vertebra positions in a X-ray image. Despite the fact that segmentation results show good efficiency, the time is a key variable that has always to be optimized in a medical context. Therefore, we present how vertebra extraction can efficiently be performed in exploiting the full computing power of parallel (GPU) and heterogeneous (multi-CPU/multi-GPU) architectures. We propose a parallel hybrid implementation of the most intensive steps enabling to boost performance. Experimentations have been conducted using a set of high-resolution X-ray medical images, showing a global speedup ranging from 3 to 22, by comparison with the CPU implementation. Data transfer times between CPU and GPU memories were included in the execution times of our proposed implementation.

  10. A novel technique combining high-resolution synchrotron x-ray microtomography and x-ray diffraction for characterization of micro particulates

    NASA Astrophysics Data System (ADS)

    Merrifield, David R.; Ramachandran, Vasuki; Roberts, Kevin J.; Armour, Wesley; Axford, Danny; Basham, Mark; Connolley, Thomas; Evans, Gwyndaf; McAuley, Katherine E.; Owen, Robin L.; Sandy, James

    2011-11-01

    The processing of solids, such as crystals, is strongly influenced by the surface properties of the material. In recent years the pharmaceutical industry has shown great interest in identifying, or chemically speciating, the molecular components of crystal faces. Formerly, characterization of the molecular identity of crystal faces was restricted to the study of large single crystals. This would have been primarily for structure determination as part of the drug registration process. Diamond Light Source in Oxfordshire is a new synchrotron facility in the UK, having 18 operational beamlines with 4 more in the construction phase. Beamlines at this medium energy light source enable the study of micron-sized objects in great detail. It is well known that x-ray microtomography (XMT) can be used to investigate the external morphology of a crystal whereas x-ray diffraction (XRD) is used to study the molecular orientation, structure and packing within the crystal. The objective of this research is to assess the feasibility of, and thereby develop a new methodology for, characterizing the molecular identity of a particular face of a crystalline particle at a scale of scrutiny of 20-50 µm by combining these two powerful techniques. This work demonstrates the application of XMT and XRD to investigate respectively the shape and crystalline phase/orientation of relevant test crystals. This research has applications in the pharmaceutical industry in that when the exact molecular nature of a particular face is known, the important physico-pharmaceutical properties stemming from that can be better understood. Some initial data are presented and discussed.

  11. Porosity characterization of fiber-reinforced ceramic matrix composite using synchrotron X-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Zou, C.; Marrow, T. J.; Reinhard, C.; Li, B.; Zhang, C.; Wang, S.

    2016-03-01

    The pore structure and porosity of a continuous fiber reinforced ceramic matrix composite has been characterized using high-resolution synchrotron X-ray computed tomography (XCT). Segmentation of the reconstructed tomograph images reveals different types of pores within the composite, the inter-fiber bundle open pores displaying a "node-bond" geometry, and the intra-fiber bundle isolated micropores showing a piping shape. The 3D morphology of the pores is resolved and each pore is labeled. The quantitative filtering of the pores measures a total porosity 8.9% for the composite, amid which there is about 7.1~ 9.3% closed micropores.

  12. Inside marginal adaptation of crowns by X-ray micro-computed tomography

    SciTech Connect

    Dos Santos, T. M.; Lima, I.; Lopes, R. T.; Author, S. B. Jr.

    2015-07-01

    The objective of this work was to access dental arcade by using X-ray micro-computed tomography. For this purpose high resolution system was used and three groups were studied: Zirkonzahn CAD-CAM system, IPS e.max Press, and metal ceramic. The three systems assessed in this study showed results of marginal and discrepancy gaps clinically accepted. The great result of 2D and 3D evaluations showed that the used technique is a powerful method to investigate quantitative characteristics of dental arcade. (authors)

  13. Hot gas in the cold dark matter scenario: X-ray clusters from a high-resolution numerical simulation

    NASA Technical Reports Server (NTRS)

    Kang, Hyesung; Cen, Renyue; Ostriker, Jeremiah P.; Ryu, Dongsu

    1994-01-01

    A new, three-dimensional, shock-capturing hydrodynamic code is utilized to determine the distribution of hot gas in a standard cold dark matter (CDM) model of the universe. Periodic boundary conditions are assumed: a box with size 85 h(exp -1) Mpc having cell size 0.31 h(exp -1) Mpc is followed in a simulation with 270(exp 3) = 10(exp 7.3) cells. Adopting standard parameters determined from COBE and light-element nucleosynthesis, sigma(sub 8) = 1.05, omega(sub b) = 0.06, and assuming h = 0.5, we find the X-ray-emitting clusters and compute the luminosity function at several wavelengths, the temperature distribution, and estimated sizes, as well as the evolution of these quantities with redshift. We find that most of the total X-ray emissivity in our box originates in a relatively small number of identifiable clusters which occupy approximately 10(exp -3) of the box volume. This standard CDM model, normalized to COBE, produces approximately 5 times too much emission from clusters having L(sub x) is greater than 10(exp 43) ergs/s, a not-unexpected result. If all other parameters were unchanged, we would expect adequate agreement for sigma(sub 8) = 0.6. This provides a new and independent argument for lower small-scale power than standard CDM at the 8 h(exp -1) Mpc scale. The background radiation field at 1 keV due to clusters in this model is approximately one-third of the observed background, which, after correction for numerical effects, again indicates approximately 5 times too much emission and the appropriateness of sigma(sub 8) = 0.6. If we have used the observed ratio of gas to total mass in clusters, rather than basing the mean density on light-element nucleosynthesis, then the computed luminosity of each cluster would have increased still further, by a factor of approximately 10. The number density of clusters increases to z approximately 1, but the luminosity per typical cluster decreases, with the result that evolution in the number density of bright

  14. Hot gas in the cold dark matter scenario: X-ray clusters from a high-resolution numerical simulation

    NASA Astrophysics Data System (ADS)

    Kang, Hyesung; Cen, Renyue; Ostriker, Jeremiah P.; Ryu, Dongsu

    1994-06-01

    A new, three-dimensional, shock-capturing hydrodynamic code is utilized to determine the distribution of hot gas in a standard cold dark matter (CDM) model of the universe. Periodic boundary conditions are assumed: a box with size 85 h-1 Mpc having cell size 0.31 h-1 Mpc is followed in a simulation with 2703 = 107.3 cells. Adopting standard parameters determined from COBE and light-element nucleosynthesis, sigma8 = 1.05, omegab = 0.06, and assuming h = 0.5, we find the X-ray-emitting clusters and compute the luminosity function at several wavelengths, the temperature distribution, and estimated sizes, as well as the evolution of these quantities with redshift. We find that most of the total X-ray emissivity in our box originates in a relatively small number of identifiable clusters which occupy approximately 10-3 of the box volume. This standard CDM model, normalized to COBE, produces approximately 5 times too much emission from clusters having Lx is greater than 1043 ergs/s, a not-unexpected result. If all other parameters were unchanged, we would expect adequate agreement for sigma8 = 0.6. This provides a new and independent argument for lower small-scale power than standard CDM at the 8 h-1 Mpc scale. The background radiation field at 1 keV due to clusters in this model is approximately one-third of the observed background, which, after correction for numerical effects, again indicates approximately 5 times too much emission and the appropriateness of sigma8 = 0.6. If we have used the observed ratio of gas to total mass in clusters, rather than basing the mean density on light-element nucleosynthesis, then the computed luminosity of each cluster would have increased still further, by a factor of approximately 10. The number density of clusters increases to z approximately 1, but the luminosity per typical cluster decreases, with the result that evolution in the number density of bright clusters is moderate in this redshift range, showing a broad peak near z = 0

  15. Multi-Mounted X-Ray Computed Tomography

    PubMed Central

    Fu, Jian; Liu, Zhenzhong; Wang, Jingzheng

    2016-01-01

    Most existing X-ray computed tomography (CT) techniques work in single-mounted mode and need to scan the inspected objects one by one. It is time-consuming and not acceptable for the inspection in a large scale. In this paper, we report a multi-mounted CT method and its first engineering implementation. It consists of a multi-mounted scanning geometry and the corresponding algebraic iterative reconstruction algorithm. This approach permits the CT rotation scanning of multiple objects simultaneously without the increase of penetration thickness and the signal crosstalk. Compared with the conventional single-mounted methods, it has the potential to improve the imaging efficiency and suppress the artifacts from the beam hardening and the scatter. This work comprises a numerical study of the method and its experimental verification using a dataset measured with a developed multi-mounted X-ray CT prototype system. We believe that this technique is of particular interest for pushing the engineering applications of X-ray CT. PMID:27073911

  16. Computational Simulations of High Intensity X-Ray Matter Interaction

    SciTech Connect

    London, R A; Rionta, R; Tatchyn, R; Roessler, S

    2001-08-02

    Free electron lasers have the promise of producing extremely high-intensity short pulses of coherent, monochromatic radiation in the 1-10 keV energy range. For example, the Linac Coherent Light Source at Stanford is being designed to produce an output intensity of 2 x 10{sup 14} W/cm{sup 2} in a 230 fs pulse. These sources will open the door to many novel research studies. However, the intense x-ray pulses may damage the optical components necessary for studying and controlling the output. At the full output intensity, the dose to optical components at normal incidence ranges from 1-10 eV/atom for low-Z materials (Z < 14) at photon energies of 1 keV. It is important to have an understanding of the effects of such high doses in order to specify the composition, placement, and orientation of optical components, such as mirrors and monochromators. Doses of 10 eV/atom are certainly unacceptable since they will lead to ablation of the surface of the optical components. However, it is not precisely known what the damage thresholds are for the materials being considered for optical components for x-ray free electron lasers. In this paper, we present analytic estimates and computational simulations of the effects of high-intensity x-ray pulses on materials. We outline guidelines for the maximum dose to various materials and discuss implications for the design of optical components.

  17. Fast X-ray luminescence computed tomography imaging.

    PubMed

    Liu, Xin; Liao, Qimei; Wang, Hongkai

    2014-06-01

    X-ray luminescence computed tomography (XLCT) opens new possibilities to perform molecular imaging with X-ray. However, challenges remain in dynamic XLCT imaging, where short scan time, good spatial resolution, and whole-body field of view should be considered simultaneously. In this paper, by the use of a single-view XLCT reconstruction method based on a compressive sensing (CS) technique, incorporating a cone beam XLCT imaging system, we implement fast 3-D XLCT imaging. To evaluate the performance of the method, two types of phantom experiments were performed based on a cone beam XLCT imaging system. In Case 1, one tube filled with the X-ray-excitable nanophosphor (Gd 2O 3 :Eu (3+)) was immerged in different positions in the phantom to evaluate the effect of the source position on single-view XLCT reconstruction accuracy. In Case 2, two tubes filled with Gd 2O 3 :Eu (3+) were immerged in different heights in the phantom to evaluate the whole-body imaging performance of single-view XLCT reconstruction. The experimental results indicated that the tubes used in previous phantom experiments can be resolved from single-view XCLT reconstruction images. The location error is less than 1.2 mm. In addition, since only one view data are needed to implement 3-D XLCT imaging, the acquisition time can be greatly reduced (∼1 frame/s) compared with previous XLCT systems. Hence, the technique is suited for imaging the fast distribution of the X-ray-excitable nanophosphors within a biological object.

  18. High resolution x-ray Thomson scattering measurements from cryogenic hydrogen jets using the linac coherent light source.

    PubMed

    Fletcher, L B; Zastrau, U; Galtier, E; Gamboa, E J; Goede, S; Schumaker, W; Ravasio, A; Gauthier, M; MacDonald, M J; Chen, Z; Granados, E; Lee, H J; Fry, A; Kim, J B; Roedel, C; Mishra, R; Pelka, A; Kraus, D; Barbrel, B; Döppner, T; Glenzer, S H

    2016-11-01

    We present the first spectrally resolved measurements of x-rays scattered from cryogenic hydrogen jets in the single photon counting limit. The 120 Hz capabilities of the LCLS, together with a novel hydrogen jet design [J. B. Kim et al., Rev. Sci. Instrum. (these proceedings)], allow for the ability to record a near background free spectrum. Such high-dynamic-range x-ray scattering measurements enable a platform to study ultra-fast, laser-driven, heating dynamics of hydrogen plasmas. This measurement has been achieved using two highly annealed pyrolytic graphite crystal spectrometers to spectrally resolve 5.5 keV x-rays elastically and inelastically scattered from cryogenic hydrogen and focused on Cornell-SLAC pixel array detectors [S. Herrmann et al., Nucl. Instrum. Methods Phys. Res., Sect. A 718, 550 (2013)].

  19. High resolution x-ray Thomson scattering measurements from cryogenic hydrogen jets using the linac coherent light source

    NASA Astrophysics Data System (ADS)

    Fletcher, L. B.; Zastrau, U.; Galtier, E.; Gamboa, E. J.; Goede, S.; Schumaker, W.; Ravasio, A.; Gauthier, M.; MacDonald, M. J.; Chen, Z.; Granados, E.; Lee, H. J.; Fry, A.; Kim, J. B.; Roedel, C.; Mishra, R.; Pelka, A.; Kraus, D.; Barbrel, B.; Döppner, T.; Glenzer, S. H.

    2016-11-01

    We present the first spectrally resolved measurements of x-rays scattered from cryogenic hydrogen jets in the single photon counting limit. The 120 Hz capabilities of the LCLS, together with a novel hydrogen jet design [J. B. Kim et al., Rev. Sci. Instrum. (these proceedings)], allow for the ability to record a near background free spectrum. Such high-dynamic-range x-ray scattering measurements enable a platform to study ultra-fast, laser-driven, heating dynamics of hydrogen plasmas. This measurement has been achieved using two highly annealed pyrolytic graphite crystal spectrometers to spectrally resolve 5.5 keV x-rays elastically and inelastically scattered from cryogenic hydrogen and focused on Cornell-SLAC pixel array detectors [S. Herrmann et al., Nucl. Instrum. Methods Phys. Res., Sect. A 718, 550 (2013)].

  20. Component analyses of urinary nanocrystallites of uric acid stone formers by combination of high-resolution transmission electron microscopy, fast Fourier transformation, energy dispersive X-ray spectroscopy, X-ray diffraction and Fourier transform infrared spectroscopy.

    PubMed

    Sun, Xin-Yuan; Xue, Jun-Fa; Xia, Zhi-Yue; Ouyang, Jian-Ming

    2015-06-01

    This study aimed to analyse the components of nanocrystallites in urines of patients with uric acid (UA) stones. X-ray diffraction (XRD), Fourier transform infrared spectroscopy, high-resolution transmission electron microscopy (HRTEM), fast Fourier transformation (FFT) of HRTEM, and energy dispersive X-ray spectroscopy (EDS) were performed to analyse the components of these nanocrystallites. XRD and FFT showed that the main component of urinary nanocrystallites was UA, which contains a small amount of calcium oxalate monohydrate and phosphates. EDS showed the characteristic absorption peaks of C, O, Ca and P. The formation of UA stones was closely related to a large number of UA nanocrystallites in urine. A combination of HRTEM, FFT, EDS and XRD analyses could be performed accurately to analyse the components of urinary nanocrystallites.

  1. Optical Demonstration of a Medical Imaging System with an EMCCD-Sensor Array for Use in a High Resolution Dynamic X-ray Imager.

    PubMed

    Qu, Bin; Huang, Ying; Wang, Weiyuan; Sharma, Prateek; Kuhls-Gilcrist, Andrew T; Cartwright, Alexander N; Titus, Albert H; Bednarek, Daniel R; Rudin, Stephen

    2010-10-30

    Use of an extensible array of Electron Multiplying CCDs (EMCCDs) in medical x-ray imager applications was demonstrated for the first time. The large variable electronic-gain (up to 2000) and small pixel size of EMCCDs provide effective suppression of readout noise compared to signal, as well as high resolution, enabling the development of an x-ray detector with far superior performance compared to conventional x-ray image intensifiers and flat panel detectors. We are developing arrays of EMCCDs to overcome their limited field of view (FOV). In this work we report on an array of two EMCCD sensors running simultaneously at a high frame rate and optically focused on a mammogram film showing calcified ducts. The work was conducted on an optical table with a pulsed LED bar used to provide a uniform diffuse light onto the film to simulate x-ray projection images. The system can be selected to run at up to 17.5 frames per second or even higher frame rate with binning. Integration time for the sensors can be adjusted from 1 ms to 1000 ms. Twelve-bit correlated double sampling AD converters were used to digitize the images, which were acquired by a National Instruments dual-channel Camera Link PC board in real time. A user-friendly interface was programmed using LabVIEW to save and display 2K × 1K pixel matrix digital images. The demonstration tiles a 2 × 1 array to acquire increased-FOV stationary images taken at different gains and fluoroscopic-like videos recorded by scanning the mammogram simultaneously with both sensors. The results show high resolution and high dynamic range images stitched together with minimal adjustments needed. The EMCCD array design allows for expansion to an M×N array for arbitrarily larger FOV, yet with high resolution and large dynamic range maintained.

  2. Imaging crystal spectrometer for high-resolution x-ray measurements on electron beam ion traps and tokamaks

    NASA Astrophysics Data System (ADS)

    Beiersdorfer, P.; Magee, E. W.; Hell, N.; Brown, G. V.

    2016-11-01

    We describe a crystal spectrometer implemented on the Livermore electron beam ion traps that employ two spherically bent quartz crystals and a cryogenically cooled back-illuminated charge-coupled device detector to measure x rays with a nominal resolving power of λ/Δλ ≥ 10 000. Its focusing properties allow us to record x rays either with the plane of dispersion perpendicular or parallel to the electron beam and, thus, to preferentially select one of the two linear x-ray polarization components. Moreover, by choice of dispersion plane and focussing conditions, we use the instrument either to image the distribution of the ions within the 2 cm long trap region, or to concentrate x rays of a given energy to a point on the detector, which optimizes the signal-to-noise ratio. We demonstrate the operation and utility of the new instrument by presenting spectra of Mo34+, which prepares the instrument for use as a core impurity diagnostic on the NSTX-U spherical torus and other magnetic fusion devices that employ molybdenum as plasma facing components.

  3. Imaging crystal spectrometer for high-resolution x-ray measurements on electron beam ion traps and tokamaks.

    PubMed

    Beiersdorfer, P; Magee, E W; Hell, N; Brown, G V

    2016-11-01

    We describe a crystal spectrometer implemented on the Livermore electron beam ion traps that employ two spherically bent quartz crystals and a cryogenically cooled back-illuminated charge-coupled device detector to measure x rays with a nominal resolving power of λ/Δλ ≥ 10 000. Its focusing properties allow us to record x rays either with the plane of dispersion perpendicular or parallel to the electron beam and, thus, to preferentially select one of the two linear x-ray polarization components. Moreover, by choice of dispersion plane and focussing conditions, we use the instrument either to image the distribution of the ions within the 2 cm long trap region, or to concentrate x rays of a given energy to a point on the detector, which optimizes the signal-to-noise ratio. We demonstrate the operation and utility of the new instrument by presenting spectra of Mo(34+), which prepares the instrument for use as a core impurity diagnostic on the NSTX-U spherical torus and other magnetic fusion devices that employ molybdenum as plasma facing components.

  4. X-Ray Computed Tomography of Tranquility Base Moon Rock

    NASA Technical Reports Server (NTRS)

    Jones, Justin S.; Garvin, Jim; Viens, Mike; Kent, Ryan; Munoz, Bruno

    2016-01-01

    X-ray Computed Tomography (CT) was used for the first time on the Apollo 11 Lunar Sample number 10057.30, which had been previously maintained by the White House, then transferred back to NASA under the care of Goddard Space Flight Center. Results from this analysis show detailed images of the internal structure of the moon rock, including vesicles (pores), crystal needles, and crystal bundles. These crystals, possibly the common mineral ilmenite, are found in abundance and with random orientation. Future work, in particular a greater understanding of these crystals and their formation, may lead to a more in-depth understanding of the lunar surface evolution and mineral content.

  5. Incorporation of Mn in AlxGa1 -xN probed by x-ray absorption and emission spectroscopy, high-resolution microscopy, x-ray diffraction, and first-principles calculations

    NASA Astrophysics Data System (ADS)

    Rovezzi, Mauro; Schlögelhofer, Wolfgang; Devillers, Thibaut; Szwacki, Nevill Gonzalez; Li, Tian; Adhikari, Rajdeep; Glatzel, Pieter; Bonanni, Alberta

    2015-09-01

    Synchrotron radiation x-ray absorption and emission spectroscopy techniques, complemented by high-resolution transmission electron microscopy methods and density functional theory calculations, are employed to investigate the effect of Mn in AlxGa1 -xN :Mn samples with an Al content up to 100%. The atomic and electronic structure of Mn is established together with its local environment and valence state. A dilute alloy without precipitation is obtained for AlxGa1 -xN :Mn with Al concentrations up to 82%, and the surfactant role of Mn in the epitaxial process is confirmed.

  6. Imaging Analysis of the Hard X-Ray Telescope ProtoEXIST2 and New Techniques for High-resolution Coded-aperture Telescopes

    NASA Astrophysics Data System (ADS)

    Hong, Jaesub; Allen, Branden; Grindlay, Jonathan; Barthelmy, Scott

    2017-01-01

    Wide-field (≳100 deg{}2) hard X-ray coded-aperture telescopes with high angular resolution (≲2‧) will enable a wide range of time domain astrophysics. For instance, transient sources such as gamma-ray bursts can be precisely localized without the assistance of secondary focusing X-ray telescopes to enable rapid followup studies. On the other hand, high angular resolution in coded-aperture imaging introduces a new challenge in handling the systematic uncertainty: the average photon count per pixel is often too small to establish a proper background pattern or model the systematic uncertainty in a timescale where the model remains invariant. We introduce two new techniques to improve detection sensitivity, which are designed for, but not limited to, a high-resolution coded-aperture system: a self-background modeling scheme which utilizes continuous scan or dithering operations, and a Poisson-statistics based probabilistic approach to evaluate the significance of source detection without subtraction in handling the background. We illustrate these new imaging analysis techniques in high resolution coded-aperture telescope using the data acquired by the wide-field hard X-ray telescope ProtoEXIST2 during a high-altitude balloon flight in fall 2012. We review the imaging sensitivity of ProtoEXIST2 during the flight, and demonstrate the performance of the new techniques using our balloon flight data in comparison with a simulated ideal Poisson background.

  7. Preliminary Results on Studying of Meteorites from Geological Museum of Kazan University by X-Ray Fluorescence and Computed X-Ray Tomography

    NASA Astrophysics Data System (ADS)

    Kuzina, D. M.; Nurgaliev, D. K.; Gareev, B. I.; Batalin, G. A.; Silantev, V. V.; Statsenko, E. O.

    2017-02-01

    Micro X-ray fluorescence and X-ray computed tomography used for studying meteorites (particularly chondrules and iron-nickel alloys) from Geological Museum (Kazan), their elemental composition, and distribution of these objects in the body of meteorite.

  8. Development of Small-Pixel CZT Detectors for Future High-Resolution Hard X-ray Missions

    NASA Astrophysics Data System (ADS)

    Beilicke, Matthias

    Owing to recent breakthroughs in grazing incidence mirror technology, next-generation hard X-ray telescopes will achieve angular resolutions of between 5 and 10 arc seconds - about an order of magnitude better than that of the NuSTAR hard X-ray telescope. As a consequence, the next generation of hard X-ray telescopes will require pixelated hard X- ray detectors with pixels on a grid with a lattice constant of between 120 and 240 um. Additional detector requirements include a low energy threshold of less than 5 keV and an energy resolution of less than 1 keV. The science drivers for a high angular-resolution hard X-ray mission include studies and measurements of black hole spins, the cosmic evolution of super-massive black holes, AGN feedback, and the behavior of matter at very high densities. We propose a R&D research program to develop, optimize and study the performance of 100-200 um pixel pitch CdTe and Cadmium Zinc Telluride (CZT) detectors of 1-2 mm thickness. Our program aims at a comparison of the performance achieved with CdTe and CZT detectors, and the optimization of the pixel, steering grid, and guard ring anode patterns. Although these studies will use existing ASICs (Application Specific Integrated Circuits), our program also includes modest funds for the development of an ultra-low noise ASIC with a 2-D grid of readout pads that can be directly bonded to the 100-200 um pixel pitch CdTe and CZT detectors. The team includes the Washington University group (Prof. M. Beilicke and Co-I Prof. H.S.W. Krawczynski et al.), and co-investigator G. De Geronimo at Brookhaven National Laboratory (BNL). The Washington University group has a 10 year track record of innovative CZT detector R&D sponsored by the NASA Astronomy and Physics Research and Analysis (APRA) program. The accomplishments to date include the development of CZT detectors with pixel pitches between 350 um and 2.5 mm for the ProtoExist, EXIST, and X-Calibur hard X-ray missions with some of the best

  9. High-resolution single-shot spectral monitoring of hard x-ray free-electron laser radiation

    SciTech Connect

    Makita, M.; Karvinen, P.; Zhu, D.; Juranic, P. N.; Grünert, J.; Cartier, S.; Jungmann-Smith, J. H.; Lemke, H. T.; Mozzanica, A.; Nelson, S.; Patthey, L.; Sikorski, M.; Song, S.; Feng, Y.; David, C.

    2015-10-16

    We have developed an on-line spectrometer for hard x-ray free-electron laser (XFEL) radiation based on a nanostructured diamond diffraction grating and a bent crystal analyzer. Our method provides high spectral resolution, interferes negligibly with the XFEL beam, and can withstand the intense hard x-ray pulses at high repetition rates of >100 Hz. The spectrometer is capable of providing shot-to-shot spectral information for the normalization of data obtained in scientific experiments and optimization of the accelerator operation parameters. We have demonstrated these capabilities of the setup at the Linac Coherent Light Source, in self-amplified spontaneous emission mode at full energy of >1 mJ with a 120 Hz repetition rate, obtaining a resolving power of Ε/δΕ > 3 × 104. In conclusion, the device was also used to monitor the effects of pulse duration down to 8 fs by analysis of the spectral spike width.

  10. An alternative scheme of angular-dispersion analyzers for high-resolution medium-energy inelastic X-ray scattering.

    PubMed

    Huang, Xian Rong

    2011-11-01

    The development of medium-energy inelastic X-ray scattering optics with meV and sub-meV resolution has attracted considerable efforts in recent years. Meanwhile, there are also concerns or debates about the fundamental and feasibility of the involved schemes. Here the central optical component, the back-reflection angular-dispersion monochromator or analyzer, is analyzed. The results show that the multiple-beam diffraction effect together with transmission-induced absorption can noticeably reduce the diffraction efficiency, although it may not be a fatal threat. In order to improve the efficiency, a simple four-bounce analyzer is proposed that completely avoids these two adverse effects. The new scheme is illustrated to be a feasible alternative approach for developing meV- to sub-meV-resolution inelastic X-ray scattering spectroscopy.

  11. High-resolution hard x-ray spectroscopy of high-temperature plasmas using an array of quantum microcalorimeters.

    PubMed

    Thorn, Daniel B; Gu, Ming F; Brown, Greg V; Beiersdorfer, Peter; Porter, F Scott; Kilbourne, Caroline A; Kelley, Richard L

    2008-10-01

    Quantum microcalorimeters show promise in being able to fully resolve x-ray spectra from heavy highly charged ions, such as would be found in hot plasmas with temperatures in excess of 50 keV. Quantum microcalorimeter arrays are able to achieve this as they have a high-resolving power and good effective quantum efficiency for hard x-ray photons up to 60 keV. To demonstrate this, we present a measurement using an array of thin HgTe quantum microcalorimeters to measure the K-shell spectrum of hydrogenlike through carbonlike praseodymium (Z=57). With this device we are able to attain a resolving power, E/DeltaE, of 1000 at a photon energy of 37 keV.

  12. High-resolution, high-transmission soft x-ray spectrometer for the study of biological samples.

    PubMed

    Fuchs, O; Weinhardt, L; Blum, M; Weigand, M; Umbach, E; Bär, M; Heske, C; Denlinger, J; Chuang, Y-D; McKinney, W; Hussain, Z; Gullikson, E; Jones, M; Batson, P; Nelles, B; Follath, R

    2009-06-01

    We present a variable line-space grating spectrometer for soft x-rays that covers the photon energy range between 130 and 650 eV. The optical design is based on the Hettrick-Underwood principle and tailored to synchrotron-based studies of radiation-sensitive biological samples. The spectrometer is able to record the entire spectral range in one shot, i.e., without any mechanical motion, at a resolving power of 1200 or better. Despite its slitless design, such a resolving power can be achieved for a source spot as large as (30 x 3000) microm2, which is important for keeping beam damage effects in radiation-sensitive samples low. The high spectrometer efficiency allows recording of comprehensive two-dimensional resonant inelastic soft x-ray scattering (RIXS) maps with good statistics within several minutes. This is exemplarily demonstrated for a RIXS map of highly oriented pyrolytic graphite, which was taken within 10 min.

  13. X-ray computed tomography using curvelet sparse regularization

    SciTech Connect

    Wieczorek, Matthias Vogel, Jakob; Lasser, Tobias; Frikel, Jürgen; Demaret, Laurent; Eggl, Elena; Pfeiffer, Franz; Kopp, Felix; Noël, Peter B.

    2015-04-15

    Purpose: Reconstruction of x-ray computed tomography (CT) data remains a mathematically challenging problem in medical imaging. Complementing the standard analytical reconstruction methods, sparse regularization is growing in importance, as it allows inclusion of prior knowledge. The paper presents a method for sparse regularization based on the curvelet frame for the application to iterative reconstruction in x-ray computed tomography. Methods: In this work, the authors present an iterative reconstruction approach based on the alternating direction method of multipliers using curvelet sparse regularization. Results: Evaluation of the method is performed on a specifically crafted numerical phantom dataset to highlight the method’s strengths. Additional evaluation is performed on two real datasets from commercial scanners with different noise characteristics, a clinical bone sample acquired in a micro-CT and a human abdomen scanned in a diagnostic CT. The results clearly illustrate that curvelet sparse regularization has characteristic strengths. In particular, it improves the restoration and resolution of highly directional, high contrast features with smooth contrast variations. The authors also compare this approach to the popular technique of total variation and to traditional filtered backprojection. Conclusions: The authors conclude that curvelet sparse regularization is able to improve reconstruction quality by reducing noise while preserving highly directional features.

  14. Upgrades of imaging x-ray crystal spectrometers for high-resolution and high-temperature plasma diagnostics on EAST

    SciTech Connect

    Lyu, B. Wang, F. D.; Fu, J.; Li, Y. Y.; Pan, X. Y.; Chen, J.; Wan, B. N.; Bitter, M.; Hill, K. W.; Delgado-Aparicio, L. F.; Pablant, N.; Lee, S. G.; Shi, Y. J.; Ye, M. Y.

    2014-11-15

    Upgrade of the imaging X-ray crystal spectrometers continues in order to fulfill the high-performance diagnostics requirements on EAST. For the tangential spectrometer, a new large pixelated two-dimensional detector was deployed on tokamaks for time-resolved X-ray imaging. This vacuum-compatible detector has an area of 83.8 × 325.3 mm{sup 2}, a framing rate over 150 Hz, and water-cooling capability for long-pulse discharges. To effectively extend the temperature limit, a double-crystal assembly was designed to replace the previous single crystals for He-like argon line measurement. The tangential spectrometer employed two crystal slices attached to a common substrate and part of He- and H-like Ar spectra could be recorded on the same detector when crystals were chosen to have similar Bragg angles. This setup cannot only extend the measurable Te up to 10 keV in the core region, but also extend the spatial coverage since He-like argon ions will be present in the outer plasma region. Similarly, crystal slices for He-like iron and argon spectra were adopted on the poloidal spectrometer. Wavelength calibration for absolute rotation velocity measurement will be studied using cadmium characteristic L-shell X-ray lines excited by plasma radiation. A Cd foil is placed before the crystal and can be inserted and retracted for in situ wavelength calibration. The Geant4 code was used to estimate X-ray fluorescence yield and optimize the thickness of the foil.

  15. The dedicated high-resolution grazing-incidence X-ray scattering beamline 8-ID-E at the Advanced Photon Source.

    PubMed

    Jiang, Zhang; Li, Xuefa; Strzalka, Joseph; Sprung, Michael; Sun, Tao; Sandy, Alec R; Narayanan, Suresh; Lee, Dong Ryeol; Wang, Jin

    2012-07-01

    As an increasingly important structural-characterization technique, grazing-incidence X-ray scattering (GIXS) has found wide applications for in situ and real-time studies of nanostructures and nanocomposites at surfaces and interfaces. A dedicated beamline has been designed, constructed and optimized at beamline 8-ID-E at the Advanced Photon Source for high-resolution and coherent GIXS experiments. The effectiveness and applicability of the beamline and the scattering techniques have been demonstrated by a host of experiments including reflectivity, grazing-incidence static and kinetic scattering, and coherent surface X-ray photon correlation spectroscopy. The applicable systems that can be studied at 8-ID-E include liquid surfaces and nanostructured thin films.

  16. High-resolution x-ray diffraction investigation of relaxation and dislocations in SiGe layers grown on (001), (011), and (111) Si substrates

    SciTech Connect

    Zhylik, A.; Benediktovich, A.; Ulyanenkov, A.; Guerault, H.; Myronov, M.; Dobbie, A.; Leadley, D. R.; Ulyanenkova, T.

    2011-06-15

    This work presents a detailed characterization, using high-resolution x-ray diffraction, of multilayered Si{sub 1-x}Ge{sub x} heterostructures grown on (001), (011), and (111) Si substrates by reduced pressure chemical vapor deposition. Reciprocal space mapping has been used to determine both the strain and Ge concentration depth profiles within each layer of the heterostructures after initially determining the crystallographic tilt of all the layers. Both symmetric and asymmetric reciprocal space maps were measured on each sample, and the evaluation was performed simultaneously for the whole data set. The ratio of misfit to threading dislocation densities has been estimated for each individual layer based on an analysis of diffuse x-ray scattering from the defects.

  17. Development of a High Resolution X-Ray Imaging Crystal Spectrometer for Measurement of Ion-Temperature and Rotation-Velocity Profiles in Fusion Energy Research Plasmas

    SciTech Connect

    Hill, K W; Broennimann, Ch; Eikenberry, E F; Ince-Cushman, A; Lee, S G; Rice, J E; Scott, S

    2008-02-27

    A new imaging high resolution x-ray crystal spectrometer (XCS) has been developed to measure continuous profiles of ion temperature and rotation velocity in fusion plasmas. Following proof-of-principle tests on the Alcator C-Mod tokamak and the NSTX spherical tokamak, and successful testing of a new silicon, pixilated detector with 1MHz count rate capability per pixel, an imaging XCS is being designed to measure full profiles of Ti and vφ on C-Mod. The imaging XCS design has also been adopted for ITER. Ion-temperature uncertainty and minimum measurable rotation velocity are calculated for the C-Mod spectrometer. The affects of x-ray and nuclear-radiation background on the measurement uncertainties are calculated to predict performance on ITER.

  18. In Situ Ptychography of Heterogeneous Catalysts using Hard X-Rays: High Resolution Imaging at Ambient Pressure and Elevated Temperature.

    PubMed

    Baier, Sina; Damsgaard, Christian D; Scholz, Maria; Benzi, Federico; Rochet, Amélie; Hoppe, Robert; Scherer, Torsten; Shi, Junjie; Wittstock, Arne; Weinhausen, Britta; Wagner, Jakob B; Schroer, Christian G; Grunwaldt, Jan-Dierk

    2016-02-01

    A new closed cell is presented for in situ X-ray ptychography which allows studies under gas flow and at elevated temperature. In order to gain complementary information by transmission and scanning electron microscopy, the cell makes use of a Protochips E-chipTM which contains a small, thin electron transparent window and allows heating. Two gold-based systems, 50 nm gold particles and nanoporous gold as a relevant catalyst sample, were used for studying the feasibility of the cell. Measurements showing a resolution around 40 nm have been achieved under a flow of synthetic air and during heating up to temperatures of 933 K. An elevated temperature exhibited little influence on image quality and resolution. With this study, the potential of in situ hard X-ray ptychography for investigating annealing processes of real catalyst samples is demonstrated. Furthermore, the possibility to use the same sample holder for ex situ electron microscopy before and after the in situ study underlines the unique possibilities available with this combination of electron microscopy and X-ray microscopy on the same sample.

  19. Improvement of the radiation hardness of a directly converting high resolution intra-oral X-ray imaging sensor

    NASA Astrophysics Data System (ADS)

    Spartiotis, Konstantinos; Pyyhtiä, Jouni; Schulman, Tom

    2003-11-01

    The radiation tolerance of a directly converting digital intra-oral X-ray imaging sensor reported in Spartiotis et al. [Nucl. Instr. and Meth. A 501 (2003) 594] has been tested using a typical dental X-ray beam spectrum. Radiation induced degradation in the performance of the sensor which consists of CMOS signal readout circuits bump bonded to a high resistivity silicon pixel detector was observed already before a dose (in air) of 1 krad. Both increase in the leakage current of the pixel detector manufactured by Sintef, Norway and signal leakage to ground from the gate of the pixel input MOSFETs of the readout circuit were observed and measured. The sensitive part of the CMOS circuit was identified as the protection diode of the gate of the input MOSFET. After removing the gate protection diode no signal leakage was observed up to a dose of 5 krad (air) which approximately corresponds to 125.000 typical dental X-ray exposures. The radiation hardness of the silicon pixel detector was improved by using a modified oxidation process supplied by Colibrys, Switzerland. The improved pixel detectors showed no increase in the leakage current at dental doses.

  20. High-resolution wide-angle X-ray scattering of protein solutions: effect of beam dose on protein integrity.

    PubMed

    Fischetti, Robert F; Rodi, Diane J; Mirza, Ahmed; Irving, Thomas C; Kondrashkina, Elena; Makowski, Lee

    2003-09-01

    Wide-angle X-ray scattering patterns from proteins in solution contain information relevant to the determination of protein fold. At relevant scattering angles, however, these data are weak, and the degree to which they might be used to categorize the fold of a protein is unknown. Preliminary work has been performed at the BioCAT insertion-device beamline at the Advanced Photon Source which demonstrates that one can collect X-ray scattering data from proteins in solution to spacings of at least 2.2 A (q = 2.8 A(-1)). These data are sensitive to protein conformational states, and are in good agreement with the scattering predicted by the program CRYSOL using the known three-dimensional atomic coordinates of the protein. An important issue in the exploitation of this technique as a tool for structural genomics is the extent to which the high intensity of X-rays available at third-generation synchrotron sources chemically or structurally damage proteins. Various data-collection protocols have been investigated demonstrating conditions under which structural degradation of even sensitive proteins can be minimized, making this technique a viable tool for protein fold categorization, the study of protein folding, unfolding, protein-ligand interactions and domain movement.

  1. Investigation of I.C. samples using X-ray computer tomography

    NASA Astrophysics Data System (ADS)

    Bord, S.; Clement, A.; Lecomte, J. C.; Marmeggi, J. C.

    2004-11-01

    Structure complexity combined with high integration level in microelectronic industry is making the analysis more and more difficult. Non Destructive Analysis of either new semiconductor generation (e.g BGA, Flipchip) or double-sided printed circuit boards, is becoming very difficult as most of the critical structure features are hidden. Although 2D-X-rays inspection is still the most popular non-destructive inspection technique (with acoustic tomography), we need advance inspection tools to improve our analysis capability. Micro 3-D tomography system, combining high-resolution microfocus X-rays technology with state of the art computer aided 3D-reconstruction possibilities provides an answer to technicians. After few minutes' data acquisition, the systems enables you to access to structure details, by using fast specimen non destructive slicing (layers analysis), and tomosynthesis 3D-reconstruction images. Test object can be visualized under arbitrary angles. As defect detectability is close to 20 microns with 3D mode, most of the critical features are detectable, without modifying specimen integrity. Several examples extracted from BGA, Flipchip, and PCB analysis show the advantage offered by this new tomography technique to microelectronic community. Key words. X-ray, radiography, inspection, Non-Destructive-Analysis, tomosynthesis, industrial application.

  2. Development of a portable x-ray computed tomographic imaging system for drill-site investigation of recovered core

    SciTech Connect

    Freifeld, Barry M.; Kneafsey, Timothy J.; Tomutsa, Liviu; Pruess, Jacob

    2003-05-01

    A portable x-ray computed tomography (CT) system was constructed for imaging core at drill sites. Performing drill-site-based x-ray scanning and CT analysis permits rapid evaluation of core properties (such as density, lithologic structure, and macroporosity distribution) and allows for real-time decision making for additional core-handling procedures. Because of the speed with which scanning is performed, systematic imaging and electronic cataloging of all retrieved core is feasible. Innovations (such as a novel clamshell shielding arrangement integrated with system interlocks) permit safe operation of the x-ray system in a busy core handling area. The minimization of the volume encapsulated with shielding reduces the overall system weight and facilitates instrument portability. The x-ray system as originally fabricated had a 110 kV x-ray source with a fixed 300-micron focal spot size. A 15 cm image intensifier with a cesium iodide phosphor input screen was coupled to a CCD for image capture. The CT system has since been modified with a 130 kV micro-focal x-ray source. With the x-ray system's variable focal spot size, high-resolution studies (10-micron resolution) can be performed on core plugs and coarser (100-micron resolution) images can be acquired of whole drill cores. The development of an aluminum compensator has significantly improved the dynamic range and accuracy of the system. An x-ray filter has also been incorporated, permitting rapid acquisition of multi-energy scans for more quantitative analysis of sample mineralogy. The x-ray CT system has operated reliably under extreme field conditions, which have varied from shipboard to arctic.

  3. Cutting edge imaging of human cochlea by industrial high resolution computed micro tomography

    NASA Astrophysics Data System (ADS)

    Fischer, Björn; Krüger, Peter; Poznyakovskiy, Anton A.; Zahnert, Thomas

    2012-03-01

    Validation of statistically confirmed geometrical models of the human inner ear requires precise image data of bony structures and soft tissue. By optimization and application of our Industrial High Resolution Micro Computer Tomograph (microCT, Fraunhofer IZFP), we achieve an image quality known so far only from synchrotron X-ray tomography. To improve the generation of X-ray photons, the micro focus X-ray tube was equipped with a high performance transmission target with diamond carrier to achieve a higher photon flux at the same focal diameter. Additionally, our new alignment tool allows post-acquisition correction of adjustment incorrectness which plays a key role in reconstruction of high resolution microCT-data. However, an accurate segmentation of the cochlea is still problematic due to the low X-ray absorption contrast of the inner membranes of scalae. To solve this problem, the soft tissue was stained by putting the specimen into an iodine solution. The resulting data are of outstanding quality and provide the basin for an extensive anatomical study and further development of statistical geometrical models of the human inner ear.

  4. Design of the high-resolution soft X-ray imaging system on the Joint Texas Experimental Tokamak

    SciTech Connect

    Li, Jianchao; Ding, Yonghua Zhang, Xiaoqing; Xiao, Zhengyu; Zhuang, Ge

    2014-11-15

    A new soft X-ray diagnostic system has been designed on the Joint Texas Experimental Tokamak (J-TEXT) aiming to observe and survey the magnetohydrodynamic (MHD) activities. The system consists of five cameras located at the same toroidal position. Each camera has 16 photodiode elements. Three imaging cameras view the internal plasma region (r/a < 0.7) with a spatial resolution about 2 cm. By tomographic method, heat transport outside from the 1/1 mode X-point during the sawtooth collapse is found. The other two cameras with a higher spatial resolution 1 cm are designed for monitoring local MHD activities respectively in plasma core and boundary.

  5. Chemical and Physical Parameters from X-Ray High-resolution Spectra of the Galactic Nova V959 Mon

    NASA Astrophysics Data System (ADS)

    Peretz, U.; Orio, M.; Behar, E.; Bianchini, A.; Gallagher, J.; Rauch, T.; Tofflemire, B.; Zemko, P.

    2016-09-01

    Two observations of V959 Mon done using the Chandra X-ray gratings during the late outburst phases (2012 September and December) offer extraordinary insight into the physics and chemistry of this Galactic ONe nova. The X-ray flux was 1.7 × 10-11 erg cm-2 s-1 and 8.6 × 10-12 erg cm-2 s-1, respectively, at the two epochs. The first result, coupled with electron density diagnostics and compared with published optical and ultraviolet observations, indicates that most likely in 2012 September, the X-rays originated from a very small fraction of the ejecta, concentrated in very dense clumps. We obtained a fairly good fit to the September spectrum with a model of plasma in collisional ionization equilibrium with two components; one at a temperature of 0.78 keV, associated with flat-topped and asymmetrical emission lines, blueshifted by ≃710-930 km s-1 the other one at a temperature of 4.5 keV, mostly contributing to the high-energy continuum. However, we cannot rule out a range of plasma temperatures between these two extremes; we also modeled the spectrum as a static cooling flow, but the available models and the data quality are not adequate yet to differentiate between the two-component fit and a smoothly varying temperature structure. In December, the central white dwarf (WD) became visible in X-rays. We estimate an effective temperature of ≃680,000 K, consistent with a WD mass ≥slant 1.1 M ⊙. The WD flux is modulated with the orbital period, indicating high inclination, and two quasi-periodic modulations with hour timescales were also observed. No hot plasma component with a temperature above 0.5 keV was observed in December, and the blueshifted component cooled to kT ≃ 0.45 keV. Additionally, new emission lines due to a much cooler plasma appeared, which were not observed two months earlier. We estimate abundances and yields of elements in the nova wind that cannot be measured in the optical spectra and confirm the high Ne abundance previously derived

  6. Electronic Structure of AC-Clusters and High-Resolution X-ray Spectra of Actinides in Solids

    SciTech Connect

    Kulagin, Nicolay Alex

    2007-07-01

    Ab initio calculations using SCF approach for and analysis of results of investigation of the electronic structure of the clusters RAn+:[L]k with rare earths or actinides were carried out for the clusters in solids and liquids. Theoretical results for the electronic structure, radial integrals and energy of X- ray lines are presented for AC ions with unoccupied 5f-shell in the clusters in oxides, chlorides and fluorides environment. Possibility of collapse of nf-shell for the separate clusters and identification of electronic state of ions with unstable nuclei, are discussed, too. (author)

  7. Design of the high-resolution soft X-ray imaging system on the Joint Texas Experimental Tokamak.

    PubMed

    Li, Jianchao; Ding, Yonghua; Zhang, Xiaoqing; Xiao, Zhengyu; Zhuang, Ge

    2014-11-01

    A new soft X-ray diagnostic system has been designed on the Joint Texas Experimental Tokamak (J-TEXT) aiming to observe and survey the magnetohydrodynamic (MHD) activities. The system consists of five cameras located at the same toroidal position. Each camera has 16 photodiode elements. Three imaging cameras view the internal plasma region (r/a < 0.7) with a spatial resolution about 2 cm. By tomographic method, heat transport outside from the 1/1 mode X-point during the sawtooth collapse is found. The other two cameras with a higher spatial resolution 1 cm are designed for monitoring local MHD activities respectively in plasma core and boundary.

  8. Geoscience Applications of Synchrotron X-ray Computed Microtomography

    NASA Astrophysics Data System (ADS)

    Rivers, M. L.

    2009-05-01

    Computed microtomography is the extension to micron spatial resolution of the CAT scanning technique developed for medical imaging. Synchrotron sources are ideal for the method, since they provide a monochromatic, parallel beam with high intensity. High energy storage rings such as the Advanced Photon Source at Argonne National Laboratory produce x-rays with high energy, high brilliance, and high coherence. All of these factors combine to produce an extremely powerful imaging tool for earth science research. Techniques that have been developed include: - Absorption and phase contrast computed tomography with spatial resolution approaching one micron - Differential contrast computed tomography, imaging above and below the absorption edge of a particular element - High-pressure tomography, imaging inside a pressure cell at pressures above 10GPa - High speed radiography, with 100 microsecond temporal resolution - Fluorescence tomography, imaging the 3-D distribution of elements present at ppm concentrations. - Radiographic strain measurements during deformation at high confining pressure, combined with precise x- ray diffraction measurements to determine stress. These techniques have been applied to important problems in earth and environmental sciences, including: - The 3-D distribution of aqueous and organic liquids in porous media, with applications in contaminated groundwater and petroleum recovery. - The kinetics of bubble formation in magma chambers, which control explosive volcanism. - Accurate crystal size distributions in volcanic systems, important for understanding the evolution of magma chambers. - The equation-of-state of amorphous materials at high pressure using both direct measurements of volume as a function of pressure and also by measuring the change x-ray absorption coefficient as a function of pressure. - The formation of frost flowers on Arctic sea-ice, which is important in controlling the atmospheric chemistry of mercury. - The distribution of

  9. Crystal structure of silica-ZSM-12 by the combined use of high-resolution solid-state MAS NMR spectroscopy and synchrotron x-ray powder diffraction

    SciTech Connect

    Fyfe, C.A.; Kokotailo, G.T. ); Gies, H.; Marler, B. ); Cox, D.E. )

    1990-05-03

    The crystal structure of the synthetic zeolite silica-ZSM-12, 56 SiO{sub 2}, has been solved by the combined use of high-resolution solid-state MAS NMR spectroscopy and high-resolution synchrotron X-ray powder diffraction ZSM-12 crystallizes in the monoclinic space group C2/c with a{sub 0} = 24.863 {angstrom}, b{sub 0} = 5.012 {angstrom}, c{sub 0} = 24.328 {angstrom}, and {beta} = 107.7{degree}. The zeolite host structure is built from corner-linked SiO{sub 4} tetrahedra to give a three-dimensional 4-connected net. The pores of the structure are one-dimensional channels that do not intersect, with 12-membered ring pore openings of approximately 5.6 {times} 7.7 {angstrom}. The structure of ZSM-12 is frequently twinned with (100) as the twin plane, which indicates a new zeolite structure type.

  10. High-resolution single-shot spectral monitoring of hard x-ray free-electron laser radiation

    DOE PAGES

    Makita, M.; Karvinen, P.; Zhu, D.; ...

    2015-10-16

    We have developed an on-line spectrometer for hard x-ray free-electron laser (XFEL) radiation based on a nanostructured diamond diffraction grating and a bent crystal analyzer. Our method provides high spectral resolution, interferes negligibly with the XFEL beam, and can withstand the intense hard x-ray pulses at high repetition rates of >100 Hz. The spectrometer is capable of providing shot-to-shot spectral information for the normalization of data obtained in scientific experiments and optimization of the accelerator operation parameters. We have demonstrated these capabilities of the setup at the Linac Coherent Light Source, in self-amplified spontaneous emission mode at full energy ofmore » >1 mJ with a 120 Hz repetition rate, obtaining a resolving power of Ε/δΕ > 3 × 104. In conclusion, the device was also used to monitor the effects of pulse duration down to 8 fs by analysis of the spectral spike width.« less

  11. High-intensity x-ray holography: an approach to high-resolution snapshot imaging of biological specimens

    SciTech Connect

    Solem, J.C.

    1982-08-01

    The crucial physical and technological issues pertaining to the holographic imaging of biological structures with a short-pulse, high-intensity, high-quantum-energy laser were examined. The limitations of x-ray optics are discussed. Alternative holographic techniques were considered, and it was concluded that far-field Fresnel transform holography (Fraunhofer holography) using a photoresist recording surface is most tractable with near term technology. The hydrodynamic expansion of inhomogeneities within the specimen is discussed. It is shown that expansion is the major source of image blurring. Analytic expressions were derived for the explosion of protein concentrations in an x-ray transparent cytoplasm, compared with numerical calculations, and corrections derived to account for the competitive transport processes by which these inhomogeneities lose energy. It is concluded that for the near term Fresnel transform holography, particularly, far-field or Fraunhofer holography, is more practical than Fourier transform holography. Of the alternative fine grain recording media for use with Fresnel transform holography, a photo-resist is most attractive. For best resolution, exposure times must be limited to a few picoseconds, and this calls for investigation of mechanisms to shutter the laser or gate the recording surface. The best contrast ratio between the nitrogen-bearing polymers (protein and the nucleic acids) and water is between the K-edges of oxygen and nitrogen.

  12. Utilization of high resolution computed tomography to visualize the three dimensional structure and function of plant vasculature

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High resolution x-ray computed tomography (HRCT) is a non-destructive diagnostic imaging technique with sub-micron resolution capability that is now being used to evaluate the structure and function of plant xylem network in three dimensions (3D). HRCT imaging is based on the same principles as medi...

  13. Advances in x-ray computed microtomography at the NSLS

    SciTech Connect

    Dowd, B.A.; Andrews, A.B.; Marr, R.B.; Siddons, D.P.; Jones, K.W.; Peskin, A.M.

    1998-08-01

    The X-Ray Computed Microtomography workstation at beamline X27A at the NSLS has been utilized by scientists from a broad range of disciplines from industrial materials processing to environmental science. The most recent applications are presented here as well as a description of the facility that has evolved to accommodate a wide variety of materials and sample sizes. One of the most exciting new developments reported here resulted from a pursuit of faster reconstruction techniques. A Fast Filtered Back Transform (FFBT) reconstruction program has been developed and implemented, that is based on a refinement of the gridding algorithm first developed for use with radio astronomical data. This program has reduced the reconstruction time to 8.5 sec for a 929 x 929 pixel{sup 2} slice on an R10,000 CPU, more than 8x reduction compared with the Filtered Back-Projection method.

  14. ADVANCES IN X-RAY COMPUTED MICROTOMOGRAPHY AT THE NSLS.

    SciTech Connect

    DOWD,B.A.

    1998-08-07

    The X-Ray Computed Microtomography workstation at beamline X27A at the NSLS has been utilized by scientists from a broad range of disciplines from industrial materials processing to environmental science. The most recent applications are presented here as well as a description of the facility that has evolved to accommodate a wide variety of materials and sample sizes. One of the most exciting new developments reported here resulted from a pursuit of faster reconstruction techniques. A Fast Filtered Back Transform (FFBT) reconstruction program has been developed and implemented, that is based on a refinement of the ''gridding'' algorithm first developed for use with radio astronomical data. This program has reduced the reconstruction time to 8.5 sec for a 929 x 929 pixel{sup 2} slice on an R10,000 CPU, more than 8x reduction compared with the Filtered Back-Projection method.

  15. Computer-controlled Cauchois-type x-ray spectrometer

    NASA Astrophysics Data System (ADS)

    André, J. M.; Kefi, M.; Avila, A.; Couillaux, P.; Bonnelle, C.

    1987-03-01

    A laboratory x-ray spectrometer designed for routine analysis in the 15-60-keV spectral range is described. It consists of a 40-cm bent-crystal transmission spectrometer in the Cauchois geometry, controlled by a microcomputer. The choice of the crystal analyzer and of the detection system is discussed. The instrument is well suited for large spectral range x-ray absorption and emission spectroscopy (XAS, XES) and x-ray source diagnostics.

  16. X-ray acoustic computed tomography with pulsed x-ray beam from a medical linear accelerator

    PubMed Central

    Xiang, Liangzhong; Han, Bin; Carpenter, Colin; Pratx, Guillem; Kuang, Yu; Xing, Lei

    2013-01-01

    Purpose: The feasibility of medical imaging using a medical linear accelerator to generate acoustic waves is investigated. This modality, x-ray acoustic computed tomography (XACT), has the potential to enable deeper tissue penetration in tissue than photoacoustic tomography via laser excitation. Methods: Short pulsed (μs-range) 10 MV x-ray beams with dose-rate of approximately 30 Gy/min were generated from a medical linear accelerator. The acoustic signals were collected with an ultrasound transducer (500 KHz central frequency) positioned around an object. The transducer, driven by a computer-controlled step motor to scan around the object, detected the resulting acoustic signals in the imaging plane at each scanning position. A pulse preamplifier, with a bandwidth of 20 KHz–2 MHz at −3 dB, and switchable gains of 40 and 60 dB, received the signals from the transducer and delivered the amplified signals to a secondary amplifier. The secondary amplifier had bandwidth of 20 KHz–30 MHz at −3 dB, and a gain range of 10–60 dB. Signals were recorded and averaged 128 times by an oscilloscope. A sampling rate of 100 MHz was used to record 2500 data points at each view angle. One set of data incorporated 200 positions as the receiver moved 360°. The x-ray generated acoustic image was then reconstructed with the filtered back projection algorithm. Results: The x-ray generated acoustic signals were detected from a lead rod embedded in a chicken breast tissue. The authors found that the acoustic signal was proportional to the x-ray dose deposition, with a correlation of 0.998. The two-dimensional XACT images of the lead rod embedded in chicken breast tissue were found to be in good agreement with the shape of the object. Conclusions: The first x-ray acoustic computed tomography image is presented. The new modality may be useful for a number of applications, such as providing the location of a fiducial, or monitoring x-ray dose distribution during radiation therapy

  17. 3D printing of preclinical X-ray computed tomographic data sets.

    PubMed

    Doney, Evan; Krumdick, Lauren A; Diener, Justin M; Wathen, Connor A; Chapman, Sarah E; Stamile, Brian; Scott, Jeremiah E; Ravosa, Matthew J; Van Avermaete, Tony; Leevy, W Matthew

    2013-03-22

    Three-dimensional printing allows for the production of highly detailed objects through a process known as additive manufacturing. Traditional, mold-injection methods to create models or parts have several limitations, the most important of which is a difficulty in making highly complex products in a timely, cost-effective manner.(1) However, gradual improvements in three-dimensional printing technology have resulted in both high-end and economy instruments that are now available for the facile production of customized models.(2) These printers have the ability to extrude high-resolution objects with enough detail to accurately represent in vivo images generated from a preclinical X-ray CT scanner. With proper data collection, surface rendering, and stereolithographic editing, it is now possible and inexpensive to rapidly produce detailed skeletal and soft tissue structures from X-ray CT data. Even in the early stages of development, the anatomical models produced by three-dimensional printing appeal to both educators and researchers who can utilize the technology to improve visualization proficiency. (3, 4) The real benefits of this method result from the tangible experience a researcher can have with data that cannot be adequately conveyed through a computer screen. The translation of pre-clinical 3D data to a physical object that is an exact copy of the test subject is a powerful tool for visualization and communication, especially for relating imaging research to students, or those in other fields. Here, we provide a detailed method for printing plastic models of bone and organ structures derived from X-ray CT scans utilizing an Albira X-ray CT system in conjunction with PMOD, ImageJ, Meshlab, Netfabb, and ReplicatorG software packages.

  18. High-speed data acquisition for three-dimensional x-ray and neutron computed tomography

    NASA Astrophysics Data System (ADS)

    Davis, Anthony W.; Claytor, Thomas N.; Sheats, Matthew J.

    1999-09-01

    Computed tomography for nondestructive evaluation applications has been limited by system cost, resolution, and time requirements for three-dimensional data sets. FlashCT (Flat panel Amorphous Silicon High-Resolution Computed Tomography) is a system developed at Los Alamos National Laboratory to address these three problems. Developed around a flat panel amorphous silicon detector array, FlashCT is suitable for low to medium energy x-ray and neutron computed tomography at 127- micron resolution. Overall system size is small, allowing rapid transportation to a variety of radiographic sources. System control software was developed in LabVIEW for Windows NT to allow multithreading of data acquisition, data correction, and staging motor control. The system control software simplifies data collection and allows fully automated control of the data acquisition process, leading toward remote or unattended operation. The first generation of the FlashCT Data Acquisition System was completed in August 1998, and since that time the system has been tested using x-ray sources ranging in energy from 60 kV to 20MV. The system has also been used to collect data for thermal neutron computed tomography at the Los Alamos Neutron Science Center (LANSCE). System improvements have been proposed to provide faster data collection and greater dynamic range during data collection.

  19. High Speed Data Acquisition System for Three-Dimensional X-Ray and Neutron Computed Tomography

    SciTech Connect

    Davis, A.W.; Claytor, T.N.; Sheats, M.J.

    1999-07-01

    Computed tomography for nondestructive evaluation applications has been limited by system cost, resolution, and time requirements for three-dimensional data sets. FlashCT (Flat panel Amorphous Silicon High-Resolution Computed Tomography) is a system developed at Los Alamos National Laboratory to address these three problems. Developed around a flat panel amorphous silicon detector array, FlashCT is suitable for low to medium energy x-ray and neutron computed tomography at 127-micron resolution. Overall system size is small, allowing rapid transportation to a variety of radiographic sources. System control software was developed in LabVIEW for Windows NT to allow multithreading of data acquisition, data correction, and staging motor control. The system control software simplifies data collection and allows fully automated control of the data acquisition process, leading toward remote or unattended operation. The first generation of the FlashCT Data Acquisition System was completed in Au gust 1998, and since that time the system has been tested using x-ray sources ranging in energy from 60 kV to 20MV. The system has also been used to collect data for thermal neutron computed tomography at Los Alamos Neutron Science Center (LANSCE). System improvements have been proposed to provide faster data collection and greater dynamic range during data collection.

  20. High resolution x-ray absorption and emission spectroscopy of Li x CoO2 single crystals as a function delithiation

    NASA Astrophysics Data System (ADS)

    Simonelli, L.; Paris, E.; Iwai, C.; Miyoshi, K.; Takeuchi, J.; Mizokawa, T.; Saini, N. L.

    2017-03-01

    The effect of delithiation in Li x CoO2 is studied by high resolution Co K-edge x-ray absorption and x-ray emission spectroscopy. Polarization dependence of the x-ray absorption spectra on single crystal samples is exploited to reveal information on the anisotropic electronic structure. We find that the electronic structure of Li x CoO2 is significantly affected by delithiation in which the Co ions oxidation state tending to change from 3+  to 4+. The Co intersite (intrasite) 4p–3d hybridization suffers a decrease (increase) by delithiation. The unoccupied 3d t 2g orbitals with a 1g symmetry, containing substantial O 2p character, hybridize isotropically with Co 4p orbitals and likely to have itinerant character unlike anisotropically hybridized 3d e g orbitals. Such a peculiar electronic structure could have significant effect on the mobility of Li in Li x CoO2 cathode and hence the battery characteristics.

  1. Advancement in Understanding Volcanic Processes by 4D Synchrotron X-ray Computed Microtomography Imaging of Rock Textures

    NASA Astrophysics Data System (ADS)

    Polacci, M.; Arzilli, F.; La Spina, G.

    2015-12-01

    X-ray computed microtomography (μCT) is the only high-resolution, non-destructive technique that allows visualization and processing of geomaterials directly in three-dimensions. This, together with the development of more and more sophisticated imaging techniques, have generated in the last ten years a widespread application of this methodology in Earth Sciences, from structural geology to palaeontology to igneous petrology to volcanology. Here, I will describe how X-ray μCT has contributed to advance our knowledge of volcanic processes and eruption dynamics and illustrate the first, preliminary results from 4D (space+time) X-ray microtomographic experiments of magma kinetics in basaltic systems.

  2. Phase-contrast x-ray computed tomography for observing biological specimens and organic materials

    NASA Astrophysics Data System (ADS)

    Momose, Atsushi; Takeda, Tohoru; Itai, Yuji

    1995-02-01

    A novel three-dimensional x-ray imaging method has been developed by combining a phase-contrast x-ray imaging technique with x-ray computed tomography. This phase-contrast x-ray computed tomography (PCX-CT) provides sectional images of organic specimens that would produce absorption-contrast x-ray CT images with little contrast. Comparing PCX-CT images of rat cerebellum and cancerous rabbit liver specimens with corresponding absorption-contrast CT images shows that PCX-CT is much more sensitive to the internal structure of organic specimens.

  3. X-ray Computed Tomography of coal: Final report

    SciTech Connect

    Maylotte, D.H.; Spiro, C.L.; Kosky, P.G.; Lamby, E.J.

    1986-12-01

    X-ray Computed Tomography (CT) is a method of mapping with x-rays the internal structures of coal. The technique normally produces 2-D images of the internal structures of an object. These images can be recast to create pseudo 3-D representations. CT of coal has been explored for a variety of different applications to coal and coal processing technology. In a comparison of CT data with conventional coal analyses and petrography, CT was found to offer a good indication of the total ash content of the coal. The spatial distribution of the coal mineral matter as seen with CT has been suggested as an indicator of coal washability. Studies of gas flow through coal using xenon gas as a tracer have shown the extremely complicated nature of the modes of penetration of gas through coal, with significant differences in the rates at which the gas can pass along and across the bedding planes of coal. In a special furnace designed to allow CT images to be taken while the coal was being heated, the pyrolysis and gasification of coal have been studied. Gasification rates with steam and CO/sub 2/ for a range of coal ranks have been obtained, and the location of the gasification reactions within the piece of coal can be seen. Coal drying and the progress of the pyrolysis wave into coal have been examined when the coal was subjected to the kind of sudden temperature jump that it might experience in fixed bed gasifier applications. CT has also been used to examine stable flow structures within model fluidized beds and the accessibility of lump coal to microbial desulfurization. 53 refs., 242 figs., 26 tabs.

  4. X-ray Computed Tomography Observation of Methane Hydrate Dissociation

    USGS Publications Warehouse

    Tomutsa, L.; Freifeld, B.; Kneafsey, T.J.; Stern, L.A.

    2002-01-01

    Deposits of naturally occurring methane hydrate have been identified in permafrost and deep oceanic environments with global reserves estimated to be twice the total amount of energy stored in fossil fuels. The fundamental behavior of methane hydrate in natural formations, while poorly understood, is of critical importance if the economic recovery of methane from hydrates is to be accomplished. In this study, computed X-ray tomography (CT) scanning is used to image an advancing dissociation front in a heterogeneous gas hydrate/sand sample at 0.1 MPa. The cylindrical methane hydrate and sand aggregate, 2.54 cm in diameter and 6.3 cm long, was contained in a PVC sample holder that was insulated on all but one end. At the uninsulated end, the dissociated gas was captured and the volume of gas monitored. The sample was initially imaged axially using X-ray CT scanning within the methane hydrate stability zone by keeping the sample temperature at 77??K. Subsequently, as the sample warmed through the methane hydrate dissociation point at 194??K and room pressure, gas was produced and the temperature at the bottom of the sample plug was monitored while CT images were acquired. The experiment showed that CT imaging can resolve the reduction in density (as seen by a reduction in beam attenuation) of the hydrate/sand aggregate due to the dissociation of methane hydrate. In addition, a comparison of CT images with gas flow and temperature measurements reveals that the CT scanner is able to resolve accurately and spatially the advancing dissociation front. Future experiments designed to better understand the thermodynamics of hydrate dissociation are planned to take advantage of the temporal and spatial resolution that the CT scanner provides.

  5. Density functional study for the bridged dinuclear center based on a high-resolution X-ray crystal structure of ba3 cytochrome c oxidase from Thermus thermophilus.

    PubMed

    Du, Wen-Ge Han; Noodleman, Louis

    2013-12-16

    Strong electron density for a peroxide type dioxygen species bridging the Fea3 and CuB dinuclear center (DNC) was observed in the high-resolution (1.8 Å) X-ray crystal structures (PDB entries 3S8G and 3S8F) of ba3 cytochrome c oxidase (CcO) from Thermus thermophilus. The crystals represent the as-isolated X-ray photoreduced CcO structures. The bridging peroxide was proposed to arise from the recombination of two radiation-produced HO(•) radicals formed either very near to or even in the space between the two metals of the DNC. It is unclear whether this peroxide species is in the O2(2-), O2(•)(-), HO2(-), or the H2O2 form and what is the detailed electronic structure and binding geometry including the DNC. In order to answer what form of this dioxygen species was observed in the DNC of the 1.8 Å X-ray CcO crystal structure (3S8G), we have applied broken-symmetry density functional theory (BS-DFT) geometric and energetic calculations (using OLYP potential) on large DNC cluster models with different Fea3-CuB oxidation and spin states and with O2(2-), O2(•)(-), HO2(-), or H2O2 in the bridging position. By comparing the DFT optimized geometries with the X-ray crystal structure (3S8G), we propose that the bridging peroxide is HO2(-). The X-ray crystal structure is likely to represent the superposition of the Fea3(2+)-(HO2(-))-CuB(+) DNC's in different states (Fe(2+) in low spin (LS), intermediate spin (IS), or high spin (HS)) with the majority species having the proton of the HO2(-) residing on the oxygen atom (O1) which is closer to the Fea3(2+) site in the Fea3(2+)-(HO-O)(-)-CuB(+) conformation. Our calculations show that the side chain of Tyr237 is likely trapped in the deprotonated Tyr237(-) anion form in the 3S8G X-ray crystal structure.

  6. A high resolution gamma-ray and hard X-ray spectrometer (HIREGS) for long duration balloon flights

    NASA Astrophysics Data System (ADS)

    Pelling, M.; Feffer, P. T.; Hurley, K.; Kane, S. R.; Lin, R. P.; McBride, S.; Primbsch, J. H.; Smith, D. M.; Youseffi, K.; Zimmer, G.

    1992-10-01

    The elements of a high resolution gamma-ray spectrometer, developed for observations of solar flares, are described. Emphasis is given to those aspects of the system that relate to its operation on a long duration balloon platform. The performance of the system observed in its first flight, launched from McMurdo Station, Antarctica on 10 January, 1992, is discussed. Background characteristics of the antarctic balloon environment are compared with those observed in conventional mid-latitude balloon flights and the general advantages of long duration ballooning are discussed.

  7. Root uptake and reduction of hexavalent chromium by aquatic macrophytes as assessed by high-resolution X-ray emission.

    PubMed

    Espinoza-Quiñones, Fernando R; Martin, Neiva; Stutz, Guillermo; Tirao, German; Palácio, Soraya M; Rizzutto, Márcia A; Módenes, Aparecido N; Silva, Fernando G; Szymanski, Nayara; Kroumov, Alexander D

    2009-09-01

    Aquatic macrophytes Salvinia auriculata, Pistia stratiotes and Eichhornia crassipes were chosen to investigate the Cr(VI) reduced by root-based biosorption in a chromium uptake experiment, using a high-resolution XRF technique. These plants were grown in hydroponics medium supplied with non-toxic Cr concentrations during a 27-day metal uptake experiment. The high-resolution Cr-Kbeta fluorescence spectra for dried root tissues and Cr reference material (100% Cr, Cr(2)O(3), and CrO(3)) were measured using an XRF spectrometer. For all species of aquatic plant treated with Cr(VI), the energy of the Cr-Kbeta(2,5) line was shifted around 8 eV below the same spectral line identified for the Cr(VI) reference, but it was also near to the line identified for the Cr(III) reference. Moreover, there was a lack of the strong Cr-Kbeta'' line assigned to the Cr(VI) reference material within the Cr(VI)-treated plant spectra, suggesting the reduction of Cr(VI) for other less toxic oxidation states of Cr. As all Cr-Kbeta spectra of root tissue species were compared, the peak energies and lineshape patterns of the Cr-Kbeta(2,5) line are coincident for the same aquatic plant species, when they were treated with Cr(III) and Cr(VI). Based on the experimental evidence, the Cr(VI) reduction process has happened during metal biosorption by these plants.

  8. High-resolution elemental mapping of human placental chorionic villi using synchrotron X-ray fluorescence spectroscopy

    PubMed Central

    Punshon, Tracy; Chen, Si; Finney, Lydia; Howard, Louisa; Jackson, Brian P.; Karagas, Margaret R.; Ornvold, Kim

    2015-01-01

    The placenta is the organ that mediates transport of nutrients and waste materials between mother and fetus. Synchrotron X-ray fluorescence microanalysis (SXRF) is a tool for imaging the distribution and quantity of elements in biological tissue, which can be used to study metal transport across biological membranes. Our aims were to pilot placental biopsy specimen preparation techniques that could be integrated into an ongoing epidemiology birth bohort study without harming rates of sample acquisition. We studied the effects of fixative (formalin or glutaraldehyde) and storage duration (30 days or immediate processing) on metal distribution and abundance and investigated a thaw-fixation protocol for archived specimens stored at −80°C. We measured fixative elemental composition with and without a placental biopsy via ICP-MS to quantify fixative-induced elemental changes. Formalin fixed specimens showed hemolysis of erythrocytes. The glutaraldehyde-paraformaldehyde solution in HEPES buffer (GTA-HEPES) had superior anatomical preservation, avoided hemolysis and minimized elemental loss, although some cross-linking of exogenous Zn was evident. Elemental loss from tissue stored in fixative for 1 month showed variable losses (≈ 40% with GTA-HEPES), suggesting storage duration be controlled for. Thawing of tissue held at −80°C in GTA-HEPES solution provided high quality visual images and elemental images. PMID:26138895

  9. High-resolution elemental mapping of human placental chorionic villi using synchrotron X-ray fluorescence spectroscopy

    DOE PAGES

    Punshon, Tracy; Chen, Si; Finney, Lydia; ...

    2015-07-03

    The placenta is the organ that mediates transport of nutrients and waste materials between mother and fetus. Synchrotron X-ray fluorescence (SXRF) microanalysis is a tool for imaging the distribution and quantity of elements in biological tissue, which can be used to study metal transport across biological membranes. Our aims were to pilot placental biopsy specimen preparation techniques that could be integrated into an ongoing epidemiology birth cohort study without harming rates of sample acquisition. We studied the effects of fixative (formalin or glutaraldehyde) and storage duration (30 days or immediate processing) on metal distribution and abundance and investigated a thaw-fixationmore » protocol for archived specimens stored at -80° C. We measured fixative elemental composition with and without a placental biopsy via inductively coupled plasma mass spectrometry (ICP-MS) to quantify fixative-induced elemental changes. Formalin-fixed specimens showed hemolysis of erythrocytes. The glutaraldehyde-paraformaldehyde solution in HEPES buffer (GTA-HEPES) had superior anatomical preservation, avoided hemolysis, and minimized elemental loss, although some cross-linking of exogenous Zn was evident. Elemental loss from tissue stored in fixative for 1 month showed variable losses (≈ 40 % with GTA-HEPES), suggesting storage duration be controlled for. Lastly, thawing of tissue held at -80 °C in a GTA-HEPES solution provided high-quality visual images and elemental images« less

  10. High-resolution elemental mapping of human placental chorionic villi using synchrotron X-ray fluorescence spectroscopy

    SciTech Connect

    Punshon, Tracy; Chen, Si; Finney, Lydia; Howard, Louisa; Jackson, Brian P.; Karagas, Margaret R.; Ornvold, Kim

    2015-07-03

    The placenta is the organ that mediates transport of nutrients and waste materials between mother and fetus. Synchrotron X-ray fluorescence (SXRF) microanalysis is a tool for imaging the distribution and quantity of elements in biological tissue, which can be used to study metal transport across biological membranes. Our aims were to pilot placental biopsy specimen preparation techniques that could be integrated into an ongoing epidemiology birth cohort study without harming rates of sample acquisition. We studied the effects of fixative (formalin or glutaraldehyde) and storage duration (30 days or immediate processing) on metal distribution and abundance and investigated a thaw-fixation protocol for archived specimens stored at -80° C. We measured fixative elemental composition with and without a placental biopsy via inductively coupled plasma mass spectrometry (ICP-MS) to quantify fixative-induced elemental changes. Formalin-fixed specimens showed hemolysis of erythrocytes. The glutaraldehyde-paraformaldehyde solution in HEPES buffer (GTA-HEPES) had superior anatomical preservation, avoided hemolysis, and minimized elemental loss, although some cross-linking of exogenous Zn was evident. Elemental loss from tissue stored in fixative for 1 month showed variable losses (≈ 40 % with GTA-HEPES), suggesting storage duration be controlled for. Lastly, thawing of tissue held at -80 °C in a GTA-HEPES solution provided high-quality visual images and elemental images

  11. High-resolution x-ray and γ-ray imaging using a scintillator-coupled electron-multiplying CCD

    NASA Astrophysics Data System (ADS)

    Hall, David; Holland, Andrew

    2009-08-01

    Over the last decade the rapid advancements in CCD technology have lead to significant developments in the field of low-light-level, Electron-Multiplying CCDs (EM-CCDs). The addition of a gain register before output allows signal electrons to be multiplied without increasing the external noise. This low effective readout noise, which can be reduced to the sub-electron level, allows very small signal levels to be detected. Caesium iodide is one of the most popular scintillation materials due to its many desirable properties. Approximately 60 photons are produced per keV of incident X-ray or γ-ray with wavelengths peaking at 550 nm (dependent on doping), matching the peak in the quantum efficiency of the back-illuminated CCD97 of over 90%. Using a scintillator coupled to an EMCCD it is possible to resolve individual interactions inside the scintillator. Multiple frames can be taken in quick succession with hundreds of interactions per frame. These interactions can be analysed individually using sub-pixel centroiding and the data compiled to create an image of a much higher resolution than that achieved with a single integrated frame. The interaction mechanism inside the scintillator is discussed with relation to the spatial and spectral resolution of the camera system. Analysis of individual events opens up the possibility of energy discrimination through the profiling of each interaction.

  12. A Quantitative Analysis of Room Temperature Recrystallization Kinetics in Electroplated Copper Films using High Resolution X-ray Diffraction

    SciTech Connect

    A Ying; K Witt; J Jordan-Sweet; R Rosenberg; I Noyan

    2011-12-31

    Time-resolved in situ x-ray diffraction measurements were used to study the room-temperature recrystallization kinetics of electroplated copper thin films with thicknesses between 400 and 1000 nm. The thinnest films exhibited limited recrystallization and subsequent growth of grains, while recrystallized grains in the thicker films grew until all as-plated microstructure was consumed. For all films, recrystallized grains that belonged to the majority texture component, <111>, started growing after the shortest incubation time. These grains exhibited volumetric growth until they achieved the film thickness. After this point the growth mode became planar, with the <111>-type grains growing in the plane of the film. Grains with the <111> direction normal to the film surface started growing after the <111>-type grains switched to planar growth. However, the planar growth of this texture component finished at the same time as the growth of the <111> grains. Profile fitting of the 111 peak permitted the separation of the diffraction signals from recrystallized and as-plated grain populations. The average strains in these two populations, calculated from the peak position of the corresponding {l_brace}111{r_brace} reflections, were different, indicating a heterogeneous stress state within this texture component. The increasing volume fraction of recrystallized <111> grains with time was monitored via the variation in the diffracted intensity. This variation could be represented by the Johnson-Mehl-Avrami-Kolmogorov model.

  13. X-ray microtomography (micro-CT): a reference technology for high-resolution quantification of xylem embolism in trees.

    PubMed

    Cochard, H; Delzon, S; Badel, E

    2015-01-01

    As current methods for measuring xylem embolism in trees are indirect and prone to artefacts, there is an ongoing controversy over the capacity of trees to resist or recover from embolism. The debate will not end until we get direct visualization of the vessel content. Here, we propose desktop X-ray microtomography (micro-CT) as a reference direct technique to quantify xylem embolism and thus validate more widespread measurements based upon either hydraulic or acoustic methods. We used desktop micro-CT to measure embolism levels in dehydrated or centrifuged shoots of laurel - a long-vesseled species thought to display daily cycles of embolism formation and refilling. Our direct observations demonstrate that this Mediterranean species is highly resistant to embolism and is not vulnerable to drought-induced embolism in a normal range of xylem tensions. We therefore recommend that embolism studies in long-vesseled species should be validated by direct methods such as micro-CT to clear up any misunderstandings on their physiology.

  14. High resolution X-ray structures of mouse major urinary protein nasal isoform in complex with pheromones

    SciTech Connect

    Perez-Miller, Samantha; Zou, Qin; Novotny, Milos V.; Hurley, Thomas D.

    2010-09-07

    In mice, the major urinary proteins (MUP) play a key role in pheromonal communication by binding and transporting semiochemicals. MUP-IV is the only isoform known to be expressed in the vomeronasal mucosa. In comparison with the MUP isoforms that are abundantly excreted in the urine, MUP-IV is highly specific for the male mouse pheromone 2-sec-butyl-4,5-dihydrothiazole (SBT). To examine the structural basis of this ligand preference, we determined the X-ray crystal structure of MUP-IV bound to three mouse pheromones: SBT, 2,5-dimethylpyrazine, and 2-heptanone. We also obtained the structure of MUP-IV with 2-ethylhexanol bound in the cavity. These four structures show that relative to the major excreted MUP isoforms, three amino acid substitutions within the binding calyx impact ligand coordination. The F103 for A along with F54 for L result in a smaller cavity, potentially creating a more closely packed environment for the ligand. The E118 for G substitution introduces a charged group into a hydrophobic environment. The sidechain of E118 is observed to hydrogen bond to polar groups on all four ligands with nearly the same geometry as seen for the water-mediated hydrogen bond network in the MUP-I and MUP-II crystal structures. These differences in cavity size and interactions between the protein and ligand are likely to contribute to the observed specificity of MUP-IV.

  15. High-resolution molybdenum K-edge X-ray absorption spectroscopy analyzed with time-dependent density functional theory.

    PubMed

    Lima, Frederico A; Bjornsson, Ragnar; Weyhermüller, Thomas; Chandrasekaran, Perumalreddy; Glatzel, Pieter; Neese, Frank; DeBeer, Serena

    2013-12-28

    X-ray absorption spectroscopy (XAS) is a widely used experimental technique capable of selectively probing the local structure around an absorbing atomic species in molecules and materials. When applied to heavy elements, however, the quantitative interpretation can be challenging due to the intrinsic spectral broadening arising from the decrease in the core-hole lifetime. In this work we have used high-energy resolution fluorescence detected XAS (HERFD-XAS) to investigate a series of molybdenum complexes. The sharper spectral features obtained by HERFD-XAS measurements enable a clear assignment of the features present in the pre-edge region. Time-dependent density functional theory (TDDFT) has been previously shown to predict K-pre-edge XAS spectra of first row transition metal compounds with a reasonable degree of accuracy. Here we extend this approach to molybdenum K-edge HERFD-XAS and present the necessary calibration. Modern pure and hybrid functionals are utilized and relativistic effects are accounted for using either the Zeroth Order Regular Approximation (ZORA) or the second order Douglas-Kroll-Hess (DKH2) scalar relativistic approximations. We have found that both the predicted energies and intensities are in excellent agreement with experiment, independent of the functional used. The model chosen to account for relativistic effects also has little impact on the calculated spectra. This study provides an important calibration set for future applications of molybdenum HERFD-XAS to complex catalytic systems.

  16. High-resolution elemental mapping of human placental chorionic villi using synchrotron X-ray fluorescence spectroscopy.

    PubMed

    Punshon, Tracy; Chen, Si; Finney, Lydia; Howard, Louisa; Jackson, Brian P; Karagas, Margaret R; Ornvold, Kim

    2015-09-01

    The placenta is the organ that mediates transport of nutrients and waste materials between mother and fetus. Synchrotron X-ray fluorescence (SXRF) microanalysis is a tool for imaging the distribution and quantity of elements in biological tissue, which can be used to study metal transport across biological membranes. Our aims were to pilot placental biopsy specimen preparation techniques that could be integrated into an ongoing epidemiology birth cohort study without harming rates of sample acquisition. We studied the effects of fixative (formalin or glutaraldehyde) and storage duration (30 days or immediate processing) on metal distribution and abundance and investigated a thaw-fixation protocol for archived specimens stored at -80 °C. We measured fixative elemental composition with and without a placental biopsy via inductively coupled plasma mass spectrometry (ICP-MS) to quantify fixative-induced elemental changes. Formalin-fixed specimens showed hemolysis of erythrocytes. The glutaraldehyde-paraformaldehyde solution in HEPES buffer (GTA-HEPES) had superior anatomical preservation, avoided hemolysis, and minimized elemental loss, although some cross-linking of exogenous Zn was evident. Elemental loss from tissue stored in fixative for 1 month showed variable losses (≈40 % with GTA-HEPES), suggesting storage duration be controlled for. Thawing of tissue held at -80 °C in a GTA-HEPES solution provided high-quality visual images and elemental images.

  17. A first principles study of the binding of formic acid in catalase complementing high resolution X-ray structures

    NASA Astrophysics Data System (ADS)

    Rovira, Carme; Alfonso-Prieto, Mercedes; Biarnés, Xevi; Carpena, Xavi; Fita, Ignacio; Loewen, Peter C.

    2006-03-01

    Density functional molecular dynamics simulations using a QM/MM approach are used to get insight into the binding modes of formic acid in catalase. Two ligand binding sites are found, named A and B, in agreement with recent high resolution structures of catalase with bound formic acid. In addition, the calculations show that the His56 residue is protonated and the ligand is present as a formate anion. The lowest energy minimum structure ( A) corresponds to the ligand interacting with both the heme iron and the catalytic residues (His56 and Asn129). The second minimum energy structure ( B) corresponds to the situation in which the ligand interacts solely with the catalytic residues. A mechanism for the process of formic acid binding in catalase is suggested.

  18. A High Resolution Soft X-ray Monochromator Focused by the Holographic Effect of a VLS grating

    SciTech Connect

    Polack, Francis; Lagarde, Bruno; Idir, Mourad

    2007-01-19

    The combination of a plane linear grating and a plane mirror is known for giving high resolution monochromators, especially when used in collimated beam between sagittaly focusing mirrors. It is shown here that, if a varied line spacing grating is used instead of the linear one, the combination may have an intrinsic focusing power and does not require any internal focusing mirror. The condition for this is to keep constant the ratio of the cosines of grating incidence and emergence angles, and this ratio should be smaller than 1. The combination is compatible with a line illumination of the grating and therefore allows the use of variable groove depth (VGD) gratings that will extend the working range of each grating. Examples taken from beamlines under construction at SOLEIL are given and the predicted resolving power is compared to a classical configuration.

  19. Human thyroid specimen imaging by fluorescent x-ray computed tomography with synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Takeda, Tohoru; Yu, Quanwen; Yashiro, Toru; Yuasa, Tetsuya; Hasegawa, Yasuo; Itai, Yuji; Akatsuka, Takao

    1999-09-01

    Fluorescent x-ray computed tomography (FXCT) is being developed to detect non-radioactive contrast materials in living specimens. The FXCT system consists of a silicon (111) channel cut monochromator, an x-ray slit and a collimator for fluorescent x ray detection, a scanning table for the target organ and an x-ray detector for fluorescent x-ray and transmission x-ray. To reduce Compton scattering overlapped on the fluorescent K(alpha) line, incident monochromatic x-ray was set at 37 keV. The FXCT clearly imaged a human thyroid gland and iodine content was estimated quantitatively. In a case of hyperthyroidism, the two-dimensional distribution of iodine content was not uniform, and thyroid cancer had a small amount of iodine. FXCT can be used to detect iodine within thyroid gland quantitatively and to delineate its distribution.

  20. Digital Radiography and X-ray Computed Tomography Slice Inspection of an Aluminum Truss Section

    DTIC Science & Technology

    2011-09-01

    3. Results The DR and XCT scans of the specimen were done using the 225-keV microfocus x - ray tube and II/CCD camera setup in centered rotate-only...Digital Radiography and X - ray Computed Tomography Slice Inspection of an Aluminum Truss Section by William H. Green ARL-MR-791 September...Digital Radiography and X - ray Computed Tomography Slice Inspection of an Aluminum Truss Section William H. Green Weapons and Materials

  1. Statistical analysis of multipole-model-derived structural parameters and charge-density properties from high-resolution X-ray diffraction experiments.

    PubMed

    Kamiński, Radosław; Domagała, Sławomir; Jarzembska, Katarzyna N; Hoser, Anna A; Sanjuan-Szklarz, W Fabiola; Gutmann, Matthias J; Makal, Anna; Malińska, Maura; Bąk, Joanna M; Woźniak, Krzysztof

    2014-01-01

    A comprehensive analysis of various properties derived from multiple high-resolution X-ray diffraction experiments is reported. A total of 13 charge-density-quality data sets of α-oxalic acid dihydrate (C2H2O4·2H2O) were subject to Hansen-Coppens-based modelling of electron density. The obtained parameters and properties were then statistically analysed yielding a clear picture of their variability across the different measurements. Additionally, a computational approach (CRYSTAL and PIXEL programs) was utilized to support and examine the experimental findings. The aim of the study was to show the real accuracy and interpretation limits of the charge-density-derived data. An investigation of raw intensities showed that most of the reflections (60-70%) fulfil the normality test and the lowest ratio is observed for weak reflections. It appeared that unit-cell parameters are determined to the order of 10(-3) Å (for cell edges) and 10(-2) ° (for angles), and compare well with the older studies of the same compound and with the new 100 K neutron diffraction data set. Fit discrepancy factors are determined within a 0.5% range, while the residual density extrema are about ±0.16 (3) e Å(-3). The geometry is very well reproducible between different data sets. Regarding the multipole model, the largest errors are present on the valence shell charge-transfer parameters. In addition, symmetry restrictions of multipolar parameters, with respect to local coordinate systems, are well preserved. Standard deviations for electron density are lowest at bond critical points, being especially small for the hydrogen-bonded contacts. The same is true for kinetic and potential energy densities. This is also the case for the electrostatic potential distribution, which is statistically most significant in the hydrogen-bonded regions. Standard deviations for the integrated atomic charges are equal to about 0.1 e. Dipole moments for the water molecule are comparable with

  2. Three-dimensional analysis of vesicle and crystal fragment textures in pumice using high-resolution X-ray CT: Textural evidence of eruptive processes

    NASA Astrophysics Data System (ADS)

    Ketcham, R. A.; Gardner, J. E.; Abbott, S.

    2011-12-01

    Three-dimensional analysis of high-resolution X-ray computed tomographic (CT) imagery of pumice from Popocatépetl Volcano in central Mexico yields fresh insights into processes of vesicle formation and coalescence and crystal fragmentation that occur during explosive volcanism. Six ~2 cm pumice fragments of varying bulk vesicularity were imaged at ~20 μm resolution. Three-dimensional blob and fabric analysis quantitatively document textural features, and visualization facilitated contextualization of measurements and overall interpretation. Vesicles range in size from mm-scale to below the resolution of the scan data. By comparing the whole-sample 3D vesicle size distributions derived from CT with more detailed distributions from sub-volumes obtained by standard petrographic analysis, we can discern two distinct, roughly log-normal populations in each sample. Vesicles in all samples have preferred orientations, and fabric analysis based on the star volume distribution and displayed as 3D rose diagrams documents a range of preferred shapes from elongate to flattened. Aspect ratios range from 1 to 6, and converge to values of ~2-3 with increasing size. Surface to volume ratios show increasing departure from sphericity with increasing size, which is probably attributable in large part to irregular shapes caused by coalescence. The vesicle fabric was strongest in the highest-vesicularity sample. Some pumices showed evidence of welding or poor mixing between two or more differently devolatilized portions of melt. Interfaces are in some cases apparently welded, with low-vesicularity glass contact zones, and in others are simply sub-planar intersections between distinct glasses. In one instance of the latter, correlated vesicle and phenocryst orientations across both melt portions and not parallel to their interface suggests that their juxtaposition took place before final eruption, while there was still time for fabric development. The pumices show abundant evidence of

  3. Scale analysis using X-ray microfluorescence and computed radiography

    NASA Astrophysics Data System (ADS)

    Candeias, J. P.; de Oliveira, D. F.; dos Anjos, M. J.; Lopes, R. T.

    2014-02-01

    Scale deposits are the most common and most troublesome damage problems in the oil field and can occur in both production and injection wells. They occur because the minerals in produced water exceed their saturation limit as temperatures and pressures change. Scale can vary in appearance from hard crystalline material to soft, friable material and the deposits can contain other minerals and impurities such as paraffin, salt and iron. In severe conditions, scale creates a significant restriction, or even a plug, in the production tubing. This study was conducted to qualify the elements present in scale samples and quantify the thickness of the scale layer using synchrotron radiation micro-X-ray fluorescence (SRμXRF) and computed radiography (CR) techniques. The SRμXRF results showed that the elements found in the scale samples were strontium, barium, calcium, chromium, sulfur and iron. The CR analysis showed that the thickness of the scale layer was identified and quantified with accuracy. These results can help in the decision making about removing the deposited scale.

  4. X-ray computed tomography for additive manufacturing: a review

    NASA Astrophysics Data System (ADS)

    Thompson, A.; Maskery, I.; Leach, R. K.

    2016-07-01

    In this review, the use of x-ray computed tomography (XCT) is examined, identifying the requirement for volumetric dimensional measurements in industrial verification of additively manufactured (AM) parts. The XCT technology and AM processes are summarised, and their historical use is documented. The use of XCT and AM as tools for medical reverse engineering is discussed, and the transition of XCT from a tool used solely for imaging to a vital metrological instrument is documented. The current states of the combined technologies are then examined in detail, separated into porosity measurements and general dimensional measurements. In the conclusions of this review, the limitation of resolution on improvement of porosity measurements and the lack of research regarding the measurement of surface texture are identified as the primary barriers to ongoing adoption of XCT in AM. The limitations of both AM and XCT regarding slow speeds and high costs, when compared to other manufacturing and measurement techniques, are also noted as general barriers to continued adoption of XCT and AM.

  5. High resolution soft x-ray spectroscopy of low Z K-shell emission from laser-produced plasmas

    SciTech Connect

    Dunn, J; Magee, E W; Shepherd, R; Chen, H; Hansen, S B; Moon, S J; Brown, G V; Gu, M; Beiersdorfer, P; Purvis, M A

    2008-05-21

    A large radius, R = 44.3 m, High Resolution Grating Spectrometer (HRGS) with 2400 line/mm variable line spacing has been designed for laser-produced plasma experiments conducted at the Lawrence Livermore National Laboratory Jupiter Laser Facility. The instrument has been run with a low-noise, charge-coupled device detector to record high signal-to-noise spectra in the 10-50 {angstrom} wavelength range. The instrument can be run with a 10-20 {micro}m wide slit to achieve the best spectral resolving power, approaching 1000 and similar to crystal spectrometers at 12-20 {angstrom}, or in slitless operation with a small symmetrical emission source. We describe preliminary spectra emitted from various H-like and He-like low Z ion plasmas heated by 100-500 ps (FWHM), 527 nm wavelength laser pulses. This instrument can be developed as a useful spectroscopy platform relevant to laboratory-based astrophysics as well as high energy density plasma studies.

  6. High-resolution soft X-ray spectra of Scorpius X-1 - The structure of circumsource accreting material

    NASA Technical Reports Server (NTRS)

    Kahn, S. M.; Seward, F. D.; Chlebowski, T.

    1984-01-01

    Four observations of Scorpius X-1 with the Objective Grating Spectrometer of the Einstein Observatory have provided high-resolution spectra (lambda/Delta lambda = approximately 20-50) in the wavelength range 7-46 A. The spectra reveal the presence of absorption structure due to oxygen, nitrogen, and iron, and variable emission structure associated with ionized iron and nitrogen. The strengths of these features suggest that the N/O abundance ratio in the absorbing and line emitting gas is anomalously high, which might indicate that these spectral components are associated with processed material, probably accreting matter transferred from the surface of an evolved companion. Constraints on the inclination of the system, however, imply that this cool, dense, accreting material must be well out of the plane of the binary system. Possible models for the origin and nature of this circumsource medium are discussed. An extensive discussion of the calibration of the Objective Grating Spectrometer and of the analysis of spectra acquired by that instrument is also provided.

  7. High resolution soft x-ray spectroscopy of low Z K-shell emission from laser-produced plasmas.

    PubMed

    Dunn, J; Magee, E W; Shepherd, R; Chen, H; Hansen, S B; Moon, S J; Brown, G V; Gu, M-F; Beiersdorfer, P; Purvis, M A

    2008-10-01

    A large radius, R=44.3 m, high resolution grating spectrometer (HRGS) with 2400 lines/mm variable line spacing has been designed for laser-produced plasma experiments conducted at the Lawrence Livermore National Laboratory Jupiter Laser Facility. The instrument has been run with a low-noise, charge-coupled device detector to record high signal-to-noise spectra in the 10-50 A wavelength range. The instrument can be run with a 10-20 microm wide slit to achieve the best spectral resolving power, approaching 1000 and similar to crystal spectrometers at 12-20 A, or in slitless operation with a small symmetrical emission source. We describe preliminary spectra emitted from various H-like and He-like low Z ion plasmas heated by 100-500 ps (full width at half maximum), 527 nm wavelength laser pulses. This instrument can be developed as a useful spectroscopy platform relevant to laboratory-based astrophysics as well as high energy density plasma studies.

  8. The XMM-Newton View of Stellar Coronae: High-Resolution X-Ray Spectroscopy of Capella

    NASA Technical Reports Server (NTRS)

    Audard, M.; Behar, E.; Guedel, M.; Raassen, A. J. J.; Porquet, D.; Mewe, R.; Foley, C. A.; Bromage, G. E.

    2000-01-01

    We present the high-resolution RGS spectrum of the bright stellar binary Capella observed by the XMM-Newton satellite. A multi-thermal approach has been applied to fit the data and derive elemental abundances. The differential emission measure distribution is reconstructed using a Chebychev polynomial fit. The DEM shape is found to display a sharp peak around 7 MK, consistent with previous EUVE and ASCA results. A small but significant amount of emission measure is required around 1.8 MK in order to explain the O VII He-like triplet and the C VI Ly(alpha) line. Using the sensitivity to temperature of dielectronic recombination lines from O VI around 22 A, we confirm that the cool plasma temperature needs to be higher than 1.2 MK. In the approximation of a cool plasma described by one temperature, we used line ratios from the forbidden, intercombination, and resonance lines of the O VII triplet and derived an average density for the cool coronal plasma at the low density limit. A tentative study of line ratios from the M XI triplet gives an average temperature close to the sharp peak in emission measure and an average density of the order of 10(exp 12)cu cm, three orders of magnitude higher than for O VII. Implications for the coronal physics of Capella are discussed. We complement this paper with a discussion of the importance of the atomic code uncertainties on the spectral fitting procedure.

  9. Package for Interactive Analysis of Line Emission (Analysis of UV-X-Ray High-Resolution Emission Spectra)

    NASA Technical Reports Server (NTRS)

    Kashyap, Vinay; Hunter, Paul (Technical Monitor)

    2003-01-01

    PINTofALE is an IDL based package to analyze high-resolution grating spectra. The first version was made available to the public on 3 February 2001. Since then we have carried out numerous changes, and the current release is version 1.5, released on 9 October 2002. The changes include upgrades to handle higher versions of IDL, the new version of the CHIANTI database (v4), major enhancements in user-friendliness, improved handling of response matrices, the ability to handle 24-bit color, access to the Atomic Plasma Emission Database (APED), and beta releases of Markov Chain Monte Carlo (MCMC) based DEM fitting routines. Plans for the future include: inclusion of MCMC techniques in the fitting programs, enhanced graphics capabilities, an overhaul of the line and continuum database structure, and bug fixes. In September 2002, we hired a data analyst (LiWei Lin) to work on PINTofALE. Mr.Lin is concentrating on incorporating MCMC as well as simpler Monte-Carlo techniques, fast RMF convolution, etc., into the code base, as well as reviewing the existing documentation and searching for bugs. A detailed description of the package, together with fairly detailed documentation, example walks-throughs, and downloadable tar files, are available on-line from http://hea-www. harvard.edu/PINTofALE/

  10. Improved Ga grading of sequentially produced Cu(In,Ga)Se2 solar cells studied by high resolution X-ray fluorescence

    NASA Astrophysics Data System (ADS)

    Schöppe, Philipp; Schnohr, Claudia S.; Oertel, Michael; Kusch, Alexander; Johannes, Andreas; Eckner, Stefanie; Burghammer, Manfred; Martínez-Criado, Gema; Reislöhner, Udo; Ronning, Carsten

    2015-01-01

    There is particular interest to investigate compositional inhomogeneity of Cu(In,Ga)Se2 solar cell absorbers. We introduce an approach in which focused ion beam prepared thin lamellas of complete solar cell devices are scanned with a highly focused synchrotron X-ray beam. Analyzing the resulting fluorescence radiation ensures high resolution compositional analysis combined with high spatial resolution. Thus, we are able to detect subtle variations of the Ga/(Ga + In) ratio down to 0.01 on a submicrometer scale. We observed that for sequentially processed solar cells a higher selenization temperature leads to absorbers with almost homogenous Ga/(Ga + In) ratio, which significantly improved the conversion efficiency.

  11. Improved Ga grading of sequentially produced Cu(In,Ga)Se{sub 2} solar cells studied by high resolution X-ray fluorescence

    SciTech Connect

    Schöppe, Philipp; Schnohr, Claudia S.; Oertel, Michael; Kusch, Alexander; Johannes, Andreas; Eckner, Stefanie; Reislöhner, Udo; Ronning, Carsten; Burghammer, Manfred; Martínez-Criado, Gema

    2015-01-05

    There is particular interest to investigate compositional inhomogeneity of Cu(In,Ga)Se{sub 2} solar cell absorbers. We introduce an approach in which focused ion beam prepared thin lamellas of complete solar cell devices are scanned with a highly focused synchrotron X-ray beam. Analyzing the resulting fluorescence radiation ensures high resolution compositional analysis combined with high spatial resolution. Thus, we are able to detect subtle variations of the Ga/(Ga + In) ratio down to 0.01 on a submicrometer scale. We observed that for sequentially processed solar cells a higher selenization temperature leads to absorbers with almost homogenous Ga/(Ga + In) ratio, which significantly improved the conversion efficiency.

  12. High-Resolution Hard X-Ray and Gamma-Ray Spectrometers Based on Superconducting Absorbers Coupled to Superconducting Transition Edge Sensors

    SciTech Connect

    van den Berg, M.; Chow, D.; Loshak, A.; Cunningham, M.F.; Barbee, T.W.; Matthias, F.; Labov, S.E.

    2000-09-21

    We are developing detectors based on bulk superconducting absorbers coupled to superconducting transition edge sensors (TES) for high-resolution spectroscopy of hard X-rays and soft gamma-rays. We have achieved an energy resolution of 70 eV FWHM at 60 keV using a 1 x 1 x 0.25 mm{sup 3} Sn absorber coupled to a Mo/Cu multilayer TES with a transition temperature of 100 mK. The response of the detector is compared with a simple model using only material properties data and characteristics derived from IV-measurements. We have also manufactured detectors using superconducting absorbers with a higher stopping power, such as Pb and Ta. We present our first measurements of these detectors, including the thermalization characteristics of the bulk superconducting absorbers. The differences in performance between the detectors are discussed and an outline of the future direction of our detector development efforts is given.

  13. Structural studies of a non-stoichiometric channel hydrate using high resolution X-ray powder diffraction, solid-state nuclear magnetic resonance, and moisture sorption methods.

    PubMed

    Kiang, Y-H; Cheung, Eugene; Stephens, Peter W; Nagapudi, Karthik

    2014-09-01

    Structural investigations of a nonstoichiometric hydrate, AMG 222 tosylate, a DPP-IV inhibitor in clinical development for type II diabetes, were performed using a multitechnique approach. The moisture sorption isotherm is in good agreement with a simple Langmuir model, suggesting that the hydrate water is located in well-defined crystallographic sites, which become vacant during dehydration. Crystal structures of AMG 222 tosylate at ambient and dry conditions were determined from high-resolution X-ray diffraction using the direct space method. On the basis of these crystal structures, hydrated water is located in channels formed by the drug framework. Upon dehydration, an isostructural dehydrate is formed with the channels remaining void and accessible to water for rehydration. Kitaigorodskii packing coefficients of the solid between relative humidity of 0% and 90% indicate that the equilibrium form of AMG 222 tosylate is the fully hydrated monohydrate.

  14. Gold nanoparticles as high-resolution X-ray imaging contrast agents for the analysis of tumor-related micro-vasculature

    SciTech Connect

    Chien C.; Yong C.; Hsiang-Hsin, C.; Sheng-Feng, L.; Kang-Chao W.; Xiaoqing C.; Yeukuang, H.; Petibois, C.; Margaritondo, G.

    2012-03-12

    Angiogenesis is widely investigated in conjunction with cancer development, in particular because of the possibility of early stage detection and of new therapeutic strategies. However, such studies are negatively affected by the limitations of imaging techniques in the detection of microscopic blood vessels (diameter 3-5 {micro}m) grown under angiogenic stress. We report that synchrotron-based X-ray imaging techniques with very high spatial resolution can overcome this obstacle, provided that suitable contrast agents are used. We tested different contrast agents based on gold nanoparticles (AuNPs) for the detection of cancer-related angiogenesis by synchrotron microradiology, microtomography and high resolution X-ray microscopy. Among them only bare-AuNPs in conjunction with heparin injection provided sufficient contrast to allow in vivo detection of small capillary species (the smallest measured lumen diameters were 3-5 {micro}m). The detected vessel density was 3-7 times higher than with other nanoparticles. We also found that bare-AuNPs with heparin allows detecting symptoms of local extravascular nanoparticle diffusion in tumor areas where capillary leakage appeared. Although high-Z AuNPs are natural candidates as radiology contrast agents, their success is not guaranteed, in particular when targeting very small blood vessels in tumor-related angiography. We found that AuNPs injected with heparin produced the contrast level needed to reveal--for the first time by X-ray imaging--tumor microvessels with 3-5 {micro}m diameter as well as extravascular diffusion due to basal membrane defenestration. These results open the interesting possibility of functional imaging of the tumor microvasculature, of its development and organization, as well as of the effects of anti-angiogenic drugs.

  15. High-resolution X-Ray Spectroscopy of the Seyfert 1 Galaxy Mrk 1040. Revealing the Failed Nuclear Wind with Chandra

    NASA Astrophysics Data System (ADS)

    Reeves, J. N.; Braito, V.; Behar, E.; Fischer, T. C.; Kraemer, S. B.; Lobban, A.; Nardini, E.; Porquet, D.; Turner, T. J.

    2017-03-01

    High-resolution X-ray spectroscopy of the warm absorber in the nearby X-ray bright Seyfert 1 galaxy Mrk 1040 is presented. The observations were carried out in the 2013–2014 timeframe using the Chandra High Energy Transmission Grating with a total exposure of 200 ks. A multitude of absorption lines from Ne, Mg, and Si are detected from a wide variety of ionization states. In particular, the detection of inner K-shell absorption lines from Ne, Mg, and Si, from charge states ranging from F-like to Li-like ions, suggests the presence of a substantial amount of low-ionization absorbing gas, illuminated by a steep soft X-ray continuum. The observations reveal at least three warm absorbing components ranging in ionization parameter from {log}(ξ /{erg} {cm} {{{s}}}-1)=0{--}2 and with column densities of {N}{{H}}=1.5{--}4.0× {10}21 cm‑2. The velocity profiles imply that the outflow velocities of the absorbing gas are low and within ±100 km s‑1 of the systemic velocity of Mrk 1040, which suggests that any outflowing gas may have stalled in this AGN on large enough scales. The warm absorber is likely located far from the black hole, within 300 pc of the nucleus, and is spatially coincident with emission from an extended narrow-line region as seen in the Hubble Space Telescope images. The iron K-band spectrum reveals only narrow emission lines, with Fe Kα at 6.4 keV consistent with originating from reflection off Compton-thick pc-scale reprocessing gas.

  16. High-Resolution X-Ray Spectroscopy of a Low-Luminosity Active Galactic Nucleus: The Structure and Dynamics of M81*

    NASA Astrophysics Data System (ADS)

    Young, A. J.; Nowak, M. A.; Markoff, S.; Marshall, H. L.; Canizares, C. R.

    2007-11-01

    We present Chandra HETGS observations of the low-luminosity active galactic nucleus (LLAGN) of M81. The HETGS is unique in providing high-resolution spectroscopy of the central 1" of M81, including the iron K bandpass. The continuum is a power law of photon index Γ=1.8, similar to that seen in highly luminous AGNs. Highly ionized emission lines, characteristic of gas at temperatures of T=106-108 K, are detected. Many of these thermal lines are velocity broadened, with a FWHM of approximately 1500 km s-1. A separate thermal component is associated with a 2557 km s-1 redshifted Fe XXVI emission line, characteristic of gas at temperatures T=107.4-108 K. Neutral Fe, Ar, and Si Kα fluorescence lines indicate the presence of cold, dense material. The Si Kα fluorescence line is velocity broadened, with a FWHM of 1200 km s-1. If the fluorescence lines are produced by reflection from cold, Compton thick material, then the line strengths are not compatible with solar abundances, instead favoring enhanced Ar and Si abundances with respect to the Fe abundance. The Fe Kα line is narrow, with no evidence of a thin disk extending inside 55rg (where rg=GM/c2 is the gravitational radius for a black hole of mass M). We show that a simple spectral model used to represent the expectations from a radiatively inefficient accretion flow (RIAF) describes the X-ray data well, while in a companion paper we will show that jet models with parameters similar to fits of hard state X-ray binaries describe both the X-ray and broadband (radio/optical) spectra. The HETGS spectra we present here offer an unprecedented view of the inner workings of a low-luminosity accretion flow, and thus can quantitatively constrain theoretical accretion flow models of LLAGNs such as M81*.

  17. Volume Visualizing High-Resolution Turbulence Computations

    NASA Astrophysics Data System (ADS)

    Clyne, John; Scheitlin, Tim; Weiss, Jeffrey B.

    Using several volume-visualization packages including a new package we developed called Volsh, we investigate a 25-Gbyte dataset from a 2563 computation of decaying quasi-geostrophic turbulence. We compare surface fitting and direct volume rendering approaches, as well as a number of techniques for producing feature-revealing spatial cues. We also study the pros and cons of using batch and interactive tools for visualizing the data and discuss the relative merits of using each approach. We find that each tool has its own advantages and disadvantages, and a combination of tools is most effective at exploring large four-dimensional scalar datasets. The resulting visualizations show several new phenomena in the dynamics of coherent vortices.

  18. A new x-ray computed tomography system for laboratory mouse imaging

    SciTech Connect

    Paulus, M.J.; Sari-Sarraf, H.; Gleason, S.S.; Bobrek, M.; Hicks, J.S.; Johnson, D.K.; Behel, J.K.; Thompson, L.H.; Allen, W.C.

    1999-06-01

    Two versions of a new high-resolution x-ray computed tomography system are being developed to screen mutagenized mice in the Oak Ridge National Laboratory Mammalian Genetics Research Facility. The first prototype employs a single-pixel cadmium zinc telluride detector with a pinhole collimator operating in pulse counting mode. The second version employs a phosphor screen/CCD detector operating in current mode. The major system hardware includes a low-energy X-ray tube, two linear translation stages and a rotational stage. For the single-pixel detector, image resolution is determined by the step size of the detector stage; preliminary images have been acquired at 100 {micro}m and 250 {micro}m resolutions. The resolution of the phosphor screen detector is determined by the modulation transfer function of the phosphor screen; images with resolutions approaching 50 {micro}m have been acquired. The system performance with the two detectors is described and recent images are presented.

  19. Impurity precipitation in atomized particles evidenced by nano x-ray diffraction computed tomography

    SciTech Connect

    Bonnin, Anne; Wright, Jonathan P.; Tucoulou, Rémi; Palancher, Hervé

    2014-08-25

    Performances and physical properties of high technology materials are influenced or even determined by their initial microstructure and by the behavior of impurity phases. Characterizing these impurities and their relations with the surrounding matrix is therefore of primary importance but it unfortunately often requires a destructive approach, with the risk of misinterpreting the observations. The improvement we have done in high resolution X-ray diffraction computed tomography combined with the use of an X-ray nanoprobe allows non-destructive crystallographic description of materials with microscopic heterogeneous microstructure (with a grain size between 10 nm and 10 μm). In this study, the grain localization in a 2D slice of a 20 μm solidified atomized γU-Mo particle is shown and a minority U(C,O) phase (1 wt. %) with sub-micrometer sized grains was characterized inside. Evidence is presented showing that the onset of U(C,O) grain crystallization can be described by a precipitation mechanism since one single U-Mo grain has direct orientation relationship with more than one surrounding U(C,O) grains.

  20. Development of 36M-pixel x-ray detector for large field of view and high-resolution micro-CT

    NASA Astrophysics Data System (ADS)

    Umetani, Keiji; Kawata, Yoshiki; Niki, Noboru

    2016-10-01

    A high-resolution and large field-of-view micro-CT system is indispensable for the visualization of fine threedimensional (3-D) structures of a large specimen. Such a system drastically increases the overall number of effective sensor pixels. At SPring-8 over a decade ago, a micro-CT system based on a 10M-pixel CCD camera was developed for 3-D specimen imaging of centimeter-sized objects with approximately 7 μm spatial resolution. Subsequently, more recent studies have required systems with higher spatial resolution and a wider field-of-view. Detectors with spatial resolution of around 5 μm can visualize capillaries. However, such detectors make it extremely expensive to develop a new x-ray detector with several tens of megapixels in a conventional manner. Fortunately, dizzying advances in image sensor technology for consumer appliances have enabled the development of x-ray detectors with spatial resolution of around 5 μm using a commercial digital single-lens reflex camera fitted with a 36M-pixel CMOS image sensor for the visualization of fine 3-D structures of large human lung specimens. This paper describes a comparison of the performance offered by the new 36M-pixel micro-CT system and the 10M-pixel system.

  1. High Resolution X-ray Diffraction Dataset for Bacillus licheniformis Gamma Glutamyl Transpeptidase-acivicin complex: SUMO-Tag Renders High Expression and Solubility.

    PubMed

    Kumari, Shobha; Pal, Ravi Kant; Gupta, Rani; Goel, Manisha

    2017-02-01

    Gamma glutamyl transpeptidase, (GGT) is a ubiquitous protein which plays a central role in glutathione metabolism and has myriad clinical implications. It has been shown to be a virulence factor for pathogenic bacteria, inhibition of which results in reduced colonization potential. However, existing inhibitors are effective but toxic and therefore search is on for novel inhibitors, which makes it imperative to understand the interactions of various inhibitors with the protein in substantial detail. High resolution structures of protein bound to different inhibitors can serve this purpose. Gamma glutamyl transpeptidase from Bacillus licheniformis is one of the model systems that have been used to understand the structure-function correlation of the protein. The structures of the native protein (PDB code 4OTT), of its complex with glutamate (PDB code 4OTU) and that of its precursor mimic (PDB code 4Y23) are available, although at moderate/low resolution. In the present study, we are reporting the preliminary analysis of, high resolution X-ray diffraction data collected for the co-crystals of B. licheniformis, Gamma glutamyl transpeptidase, with its inhibitor, Acivicin. Crystals belong to the orthorhombic space group P212121 and diffract X-ray to 1.45 Å resolution. This is the highest resolution data reported for all GGT structures available till now. The use of SUMO fused expression system enhanced yield of the target protein in the soluble fraction, facilitating recovery of protein with high purity. The preliminary analysis of this data set shows clear density for the inhibitor, acivicin, in the protein active site.

  2. The dust-scattering component of X-ray extinction: effects on continuum fitting and high-resolution absorption edge structure

    NASA Astrophysics Data System (ADS)

    Corrales, L. R.; García, J.; Wilms, J.; Baganoff, F.

    2016-05-01

    Small angle scattering by dust grains causes a significant contribution to the total interstellar extinction for any X-ray instrument with sub-arcminute resolution (Chandra, Swift, XMM-Newton). However, the dust-scattering component is not included in the current absorption models: phabs, TBabs, and TBnew. We simulate a large number of Chandra spectra to explore the bias in the spectral fit and NH measurements obtained without including extinction from dust scattering. We find that without incorporating dust scattering, the measured NH will be too large by a baseline level of 25 per cent. This effect is modulated by the imaging resolution of the telescope, because some amount of unresolved scattered light will be captured within the aperture used to extract point source information. In high-resolution spectroscopy, dust scattering significantly enhances the total extinction optical depth and the shape of the photoelectric absorption edges. We focus in particular on the Fe-L edge at 0.7 keV, showing that the total extinction template fits well to the high-resolution spectrum of three X-ray binaries from the Chandra archive: GX 9+9, XTE J1817-330, and Cyg X-1. In cases where dust is intrinsic to the source, a covering factor based on the angular extent of the dusty material must be applied to the extinction curve, regardless of angular imaging resolution. This approach will be particularly relevant for dust in quasar absorption line systems and might constrain clump sizes in active galactic nuclei.

  3. Catalytic Mechanism of Perosamine N-Acetyltransferase Revealed by High-Resolution X-ray Crystallographic Studies and Kinetic Analyses

    SciTech Connect

    Thoden, James B.; Reinhardt, Laurie A.; Cook, Paul D.; Menden, Patrick; Cleland, W.W.; Holden, Hazel M.

    2012-09-17

    N-Acetylperosamine is an unusual dideoxysugar found in the O-antigens of some Gram-negative bacteria, including the pathogenic Escherichia coli strain O157:H7. The last step in its biosynthesis is catalyzed by PerB, an N-acetyltransferase belonging to the left-handed {beta}-helix superfamily of proteins. Here we describe a combined structural and functional investigation of PerB from Caulobacter crescentus. For this study, three structures were determined to 1.0 {angstrom} resolution or better: the enzyme in complex with CoA and GDP-perosamine, the protein with bound CoA and GDP-N-acetylperosamine, and the enzyme containing a tetrahedral transition state mimic bound in the active site. Each subunit of the trimeric enzyme folds into two distinct regions. The N-terminal domain is globular and dominated by a six-stranded mainly parallel {beta}-sheet. It provides most of the interactions between the protein and GDP-perosamine. The C-terminal domain consists of a left-handed {beta}-helix, which has nearly seven turns. This region provides the scaffold for CoA binding. On the basis of these high-resolution structures, site-directed mutant proteins were constructed to test the roles of His 141 and Asp 142 in the catalytic mechanism. Kinetic data and pH-rate profiles are indicative of His 141 serving as a general base. In addition, the backbone amide group of Gly 159 provides an oxyanion hole for stabilization of the tetrahedral transition state. The pH-rate profiles are also consistent with the GDP-linked amino sugar substrate entering the active site in its unprotonated form. Finally, for this investigation, we show that PerB can accept GDP-3-deoxyperosamine as an alternative substrate, thus representing the production of a novel trideoxysugar.

  4. 21 CFR 892.1750 - Computed tomography x-ray system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Computed tomography x-ray system. 892.1750 Section 892.1750 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1750 Computed tomography x-ray...

  5. 21 CFR 892.1750 - Computed tomography x-ray system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Computed tomography x-ray system. 892.1750 Section 892.1750 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1750 Computed tomography x-ray...

  6. 21 CFR 892.1750 - Computed tomography x-ray system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Computed tomography x-ray system. 892.1750 Section 892.1750 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1750 Computed tomography x-ray...

  7. 21 CFR 892.1750 - Computed tomography x-ray system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Computed tomography x-ray system. 892.1750 Section 892.1750 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1750 Computed tomography x-ray...

  8. 21 CFR 892.1750 - Computed tomography x-ray system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Computed tomography x-ray system. 892.1750 Section 892.1750 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1750 Computed tomography x-ray...

  9. A theoretical and experimental evaluation of the microangiographic fluoroscope: A high-resolution region-of-interest x-ray imager

    SciTech Connect

    Jain, Amit; Bednarek, D. R.; Ionita, Ciprian; Rudin, S.

    2011-07-15

    Purpose: The increasing need for better image quality and high spatial resolution for successful endovascular image-guided interventions (EIGIs) and the inherent limitations of the state-of-the-art detectors provide motivation to develop a detector system tailored to the specific, demanding requirements of neurointerventional applications.Method: A microangiographic fluoroscope (MAF) was developed to serve as a high-resolution, region-of-interest (ROI) x-ray imaging detector in conjunction with large lower-resolution full field-of-view (FOV) state-of-the-art x-ray detectors. The newly developed MAF is an indirect x-ray imaging detector capable of providing real-time images (30 frames per second) with high-resolution, high sensitivity, no lag and low instrumentation noise. It consists of a CCD camera coupled to a Gen 2 dual-stage microchannel plate light image intensifier (LII) through a fiber-optic taper. A 300 {mu}m thick CsI(Tl) phosphor serving as the front end is coupled to the LII. The LII is the key component of the MAF and the large variable gain provided by it enables the MAF to operate as a quantum-noise-limited detector for both fluoroscopy and angiography. Results: The linear cascade model was used to predict the theoretical performance of the MAF, and the theoretical prediction showed close agreement with experimental findings. Linear system metrics such as MTF and DQE were used to gauge the detector performance up to 10 cycles/mm. The measured zero frequency DQE(0) was 0.55 for an RQA5 spectrum. A total of 21 stages were identified for the whole imaging chain and each stage was characterized individually. Conclusions: The linear cascade model analysis provides insight into the imaging chain and may be useful for further development of the MAF detector. The preclinical testing of the prototype detector in animal procedures is showing encouraging results and points to the potential for significant impact on EIGIs when used in conjunction with a state

  10. X-Ray Computed Tomography for Advanced Materials and Processes.

    DTIC Science & Technology

    1992-06-30

    1991, San Diego, CA., ASNT. 12. S. R. Stock, T. M. Breunig , A. Guvenilir, J. H. Kinney and M. C. Nichols, "Nondestructive X-ray Tomographic Microscopy...Materials, San Antonio, TX, Nov. 1990, ASTM. 13. T. M. Breunig , S. R. Stock, and S. D. Antolovich, "A F.amework Relating Macroscopic Measures and Physical...T. M. Breunig , S. R. Stock, J. H. Kinney, A. Guvenilir, and M. C. Nichols, "Impact of X-ray Tomographic Microscopy on Deformation Studies of a SiC/Al

  11. Computer simulation of a backscattered X-ray fluorescence system.

    PubMed

    Al-Ghorabie, Fayez H H

    2015-01-01

    An EGSnrc user code is developed to simulate a backscattered geometry in vivo x-ray fluorescence system for the measurement of platinum concentration in head and neck tumours. The user code is fundamentally based on a previous study which used the EGS4 Monte Carlo code. The new user code, which we have developed in this study, has new improvements which made it able to simulate the process of photon transportation through the different components of the modelled x-ray fluorescence system. The simulation process included modelling of the photon source, collimators, phantoms and detector. Simulation results were compared and evaluated against x-ray fluorescence data obtained experimentally from an existing system developed by the Swansea In vivo Analysis and Cancer Research Group. In addition, simulation results of this study were also compared with our previous study in which the EGS4 user code was used. Comparison between results has shown that the new EGSnrc user code was able to reproduce the spectral shape obtained using the experimental x-ray fluorescence system. The area under the Compton peak differs by 2.5% between the experimental measurement and the EGSnrc simulation. Similarly, the area under the two Pt Kα peaks differs by 2.3% and 2.2%.

  12. Miniature, mobile X-ray computed radiography system

    DOEpatents

    Watson, Scott A; Rose, Evan A

    2017-03-07

    A miniature, portable x-ray system may be configured to scan images stored on a phosphor. A flash circuit may be configured to project red light onto a phosphor and receive blue light from the phosphor. A digital monochrome camera may be configured to receive the blue light to capture an article near the phosphor.

  13. BraX-Ray: an X-ray of the Brazilian computer science graduate programs.

    PubMed

    Digiampietri, Luciano A; Mena-Chalco, Jesús P; Vaz de Melo, Pedro O S; Malheiro, Ana P R; Meira, Dânia N O; Franco, Laryssa F; Oliveira, Leonardo B

    2014-01-01

    Research productivity assessment is increasingly relevant for allocation of research funds. On one hand, this assessment is challenging because it involves both qualitative and quantitative analysis of several characteristics, most of them subjective in nature. On the other hand, current tools and academic social networks make bibliometric data web-available to everyone for free. Those tools, especially when combined with other data, are able to create a rich environment from which information on research productivity can be extracted. In this context, our work aims at characterizing the Brazilian Computer Science graduate programs and the relationship among themselves. We (i) present views of the programs from different perspectives, (ii) rank the programs according to each perspective and a combination of them, (iii) show correlation between assessment metrics, (iv) discuss how programs relate to another, and (v) infer aspects that boost programs' research productivity. The results indicate that programs with a higher insertion in the coauthorship network topology also possess a higher research productivity between 2004 and 2009.

  14. Dual-gate photo thin-film transistor: a “smart” pixel for high- resolution and low-dose X-ray imaging

    NASA Astrophysics Data System (ADS)

    Wang, Kai; Ou, Hai; Chen, Jun

    2015-06-01

    Since its emergence a decade ago, amorphous silicon flat panel X-ray detector has established itself as a ubiquitous platform for an array of digital radiography modalities. The fundamental building block of a flat panel detector is called a pixel. In all current pixel architectures, sensing, storage, and readout are unanimously kept separate, inevitably compromising resolution by increasing pixel size. To address this issue, we hereby propose a “smart” pixel architecture where the aforementioned three components are combined in a single dual-gate photo thin-film transistor (TFT). In other words, the dual-gate photo TFT itself functions as a sensor, a storage capacitor, and a switch concurrently. Additionally, by harnessing the amplification effect of such a thin-film transistor, we for the first time created a single-transistor active pixel sensor. The proof-of-concept device had a W/L ratio of 250μm/20μm and was fabricated using a simple five-mask photolithography process, where a 130nm transparent ITO was used as the top photo gate, and a 200nm amorphous silicon as the absorbing channel layer. The preliminary results demonstrated that the photocurrent had been increased by four orders of magnitude due to light-induced threshold voltage shift in the sub-threshold region. The device sensitivity could be simply tuned by photo gate bias to specifically target low-level light detection. The dependence of threshold voltage on light illumination indicated that a dynamic range of at least 80dB could be achieved. The "smart" pixel technology holds tremendous promise for developing high-resolution and low-dose X-ray imaging and may potentially lower the cancer risk imposed by radiation, especially among paediatric patients.

  15. Experimental Realisation of High-sensitivity Laboratory X-ray Grating-based Phase-contrast Computed Tomography

    NASA Astrophysics Data System (ADS)

    Birnbacher, Lorenz; Willner, Marian; Velroyen, Astrid; Marschner, Mathias; Hipp, Alexander; Meiser, Jan; Koch, Frieder; Schröter, Tobias; Kunka, Danays; Mohr, Jürgen; Pfeiffer, Franz; Herzen, Julia

    2016-04-01

    The possibility to perform high-sensitivity X-ray phase-contrast imaging with laboratory grating-based phase-contrast computed tomography (gbPC-CT) setups is of great interest for a broad range of high-resolution biomedical applications. However, achieving high sensitivity with laboratory gbPC-CT setups still poses a challenge because several factors such as the reduced flux, the polychromaticity of the spectrum, and the limited coherence of the X-ray source reduce the performance of laboratory gbPC-CT in comparison to gbPC-CT at synchrotron facilities. In this work, we present our laboratory X-ray Talbot-Lau interferometry setup operating at 40 kVp and describe how we achieve the high sensitivity yet unrivalled by any other laboratory X-ray phase-contrast technique. We provide the angular sensitivity expressed via the minimum resolvable refraction angle both in theory and experiment, and compare our data with other differential phase-contrast setups. Furthermore, we show that the good stability of our high-sensitivity setup allows for tomographic scans, by which even the electron density can be retrieved quantitatively as has been demonstrated in several preclinical studies.

  16. Experimental Realisation of High-sensitivity Laboratory X-ray Grating-based Phase-contrast Computed Tomography

    PubMed Central

    Birnbacher, Lorenz; Willner, Marian; Velroyen, Astrid; Marschner, Mathias; Hipp, Alexander; Meiser, Jan; Koch, Frieder; Schröter, Tobias; Kunka, Danays; Mohr, Jürgen; Pfeiffer, Franz; Herzen, Julia

    2016-01-01

    The possibility to perform high-sensitivity X-ray phase-contrast imaging with laboratory grating-based phase-contrast computed tomography (gbPC-CT) setups is of great interest for a broad range of high-resolution biomedical applications. However, achieving high sensitivity with laboratory gbPC-CT setups still poses a challenge because several factors such as the reduced flux, the polychromaticity of the spectrum, and the limited coherence of the X-ray source reduce the performance of laboratory gbPC-CT in comparison to gbPC-CT at synchrotron facilities. In this work, we present our laboratory X-ray Talbot-Lau interferometry setup operating at 40 kVp and describe how we achieve the high sensitivity yet unrivalled by any other laboratory X-ray phase-contrast technique. We provide the angular sensitivity expressed via the minimum resolvable refraction angle both in theory and experiment, and compare our data with other differential phase-contrast setups. Furthermore, we show that the good stability of our high-sensitivity setup allows for tomographic scans, by which even the electron density can be retrieved quantitatively as has been demonstrated in several preclinical studies. PMID:27040492

  17. High-resolution triple-crystal x-ray-diffraction experiments performed at the Australian National Beamline Facility in Japan (abstract)

    NASA Astrophysics Data System (ADS)

    Nikulin, A. Yu.; Stevenson, A. W.; Hashizume, H.; Wilkins, S. W.; Cookson, D.; Foran, G.; Garrett, R. F.

    1995-02-01

    The x-ray-diffraction results reported here are from the first high-resolution triple-crystal experiments to be performed at the Australian National Beamline Facility at the Photon Factory. The heart of the facility is a multipurpose two-axis high-resolution vacuum diffractometer (BIGDIFF) Z. Barnea et al., Rev. Sci. Instrum. 63, 1069 (1992) capable of use for high-resolution powder diffraction (using both conventional scintillation detectors and imaging plates), protein crystallography, reflectometry, as well as single-crystal diffractometry. The present experiments were conducted on BIGDIFF in triple-crystal diffraction mode with a monolithic channel-cut Si monochromator (supplied by Professor M. Hart), a single-crystal Si sample, and a four-reflection monolithic channel-cut Si analyzer crystal. The Si(111) sample is a part of a wafer which had been implanted with 100 keV B+ ions (doses 1×1015 and 5×1015 cm-2) through a one-dimensional 0.5 μm thick oxide strip pattern with a 5.83 μm period and 4 μm open region. The triple-crystal data were collected in the form of two-dimensional intensity maps in the vicinity of the 111 Bragg peak, varying the sample rotation (ω) and the analyzer/scintillation detector rotation (2θ). The first results were collected in air both with the as-described sample and after the oxide layer had been removed. Certain slice scans (one-dimensional sections of the two-dimensional intensity maps) were also collected with a vacuum of 1 Torr and reveal considerable improvement in signal to background. The data will be compared with a recent similar study A. Yu. Nikulin et al., J. Appl. Cryst. 27, 338 (1994) performed on BL-14B at the Photon Factory. The new data collected in air indicate that lattice distortion may be mapped with a resolution of approximately 160 Å, to a depth of approximately 1.0 μm, providing valuable quantitative information on ion diffusion in such implanted materials. The slice scans collected in vacuum indicate

  18. High resolution magnetic resonance imaging of the calcaneus: age-related changes in trabecular structure and comparison with dual X-ray absorptiometry measurements

    NASA Technical Reports Server (NTRS)

    Ouyang, X.; Selby, K.; Lang, P.; Engelke, K.; Klifa, C.; Fan, B.; Zucconi, F.; Hottya, G.; Chen, M.; Majumdar, S.; Genant, H. K.

    1997-01-01

    A high-resolution magnetic resonance imaging (MRI) protocol, together with specialized image processing techniques, was applied to the quantitative measurement of age-related changes in calcaneal trabecular structure. The reproducibility of the technique was assessed and the annual rates of change for several trabecular structure parameters were measured. The MR-derived trabecular parameters were compared with calcaneal bone mineral density (BMD), measured by dual X-ray absorptiometry (DXA) in the same subjects. Sagittal MR images were acquired at 1.5 T in 23 healthy women (mean age: 49.3 +/- 16.6 [SD]), using a three-dimensional gradient echo sequence. Image analysis procedures included internal gray-scale calibration, bone and marrow segmentation, and run-length methods. Three trabecular structure parameters, apparent bone volume (ABV/TV), intercept thickness (I.Th), and intercept separation (I.Sp) were calculated from the MR images. The short- and long-term precision errors (mean %CV) of these measured parameters were in the ranges 1-2% and 3-6%, respectively. Linear regression of the trabecular structure parameters vs. age showed significant correlation: ABV/TV (r2 = 33.7%, P < 0.0037), I.Th (r2 = 26.6%, P < 0.0118), I.Sp (r2 = 28.9%, P < 0.0081). These trends with age were also expressed as annual rates of change: ABV/TV (-0.52%/year), I.Th (-0.33%/year), and I.Sp (0.59%/year). Linear regression analysis also showed significant correlation between the MR-derived trabecular structure parameters and calcaneal BMD values. Although a larger group of subjects is needed to better define the age-related changes in trabecular structure parameters and their relation to BMD, these preliminary results demonstrate that high-resolution MRI may potentially be useful for the quantitative assessment of trabecular structure.

  19. Region of interest processing for iterative reconstruction in x-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Kopp, Felix K.; Nasirudin, Radin A.; Mei, Kai; Fehringer, Andreas; Pfeiffer, Franz; Rummeny, Ernst J.; Noël, Peter B.

    2015-03-01

    The recent advancements in the graphics card technology raised the performance of parallel computing and contributed to the introduction of iterative reconstruction methods for x-ray computed tomography in clinical CT scanners. Iterative maximum likelihood (ML) based reconstruction methods are known to reduce image noise and to improve the diagnostic quality of low-dose CT. However, iterative reconstruction of a region of interest (ROI), especially ML based, is challenging. But for some clinical procedures, like cardiac CT, only a ROI is needed for diagnostics. A high-resolution reconstruction of the full field of view (FOV) consumes unnecessary computation effort that results in a slower reconstruction than clinically acceptable. In this work, we present an extension and evaluation of an existing ROI processing algorithm. Especially improvements for the equalization between regions inside and outside of a ROI are proposed. The evaluation was done on data collected from a clinical CT scanner. The performance of the different algorithms is qualitatively and quantitatively assessed. Our solution to the ROI problem provides an increase in signal-to-noise ratio and leads to visually less noise in the final reconstruction. The reconstruction speed of our technique was observed to be comparable with other previous proposed techniques. The development of ROI processing algorithms in combination with iterative reconstruction will provide higher diagnostic quality in the near future.

  20. Analysis of iterative region-of-interest image reconstruction for x-ray computed tomography

    PubMed Central

    Sidky, Emil Y.; Kraemer, David N.; Roth, Erin G.; Ullberg, Christer; Reiser, Ingrid S.; Pan, Xiaochuan

    2014-01-01

    Abstract. One of the challenges for iterative image reconstruction (IIR) is that such algorithms solve an imaging model implicitly, requiring a complete representation of the scanned subject within the viewing domain of the scanner. This requirement can place a prohibitively high computational burden for IIR applied to x-ray computed tomography (CT), especially when high-resolution tomographic volumes are required. In this work, we aim to develop an IIR algorithm for direct region-of-interest (ROI) image reconstruction. The proposed class of IIR algorithms is based on an optimization problem that incorporates a data fidelity term, which compares a derivative of the estimated data with the available projection data. In order to characterize this optimization problem, we apply it to computer-simulated two-dimensional fan-beam CT data, using both ideal noiseless data and realistic data containing a level of noise comparable to that of the breast CT application. The proposed method is demonstrated for both complete field-of-view and ROI imaging. To demonstrate the potential utility of the proposed ROI imaging method, it is applied to actual CT scanner data. PMID:25685824

  1. Native Chemical Ligation at Asx-Cys, Glx-Cys: Chemical Synthesis and High Resolution X-ray Structure of ShK Toxin by Racemic Protein Crystallography

    PubMed Central

    Dang, Bobo; Kubota, Tomoya; Mandal, Kalyaneswar; Bezanilla, Francisco; Kent, Stephen B. H.

    2013-01-01

    We have re-examined the utility of native chemical ligation at −Gln/Glu-Cys− [Glx-Cys] and −Asn/Asp-Cys− [Asx-Cys] sites. Using the improved thioaryl catalyst 4-mercaptophenylacetic acid (MPAA), native chemical ligation could be performed at −Gln-Cys− and Asn-Cys− sites without side reactions. After optimization, ligation at a −Glu-Cys− could also be used as a ligation site, with minimal levels of byproduct formation. However, −Asp-Cys− is not appropriate for use as a site for native chemical ligation because of formation of significant amounts of β-linked byproduct. The feasibility of native chemical ligation at −Gln-Cys− enabled a convergent total chemical synthesis of the enantiomeric forms of the ShK toxin protein molecule. The D-ShK protein molecule was ~50,000-fold less active in blocking the Kv1.3 channel than the L-ShK protein molecule. Racemic protein crystallography was used to obtain high resolution X-ray diffraction data for ShK toxin. The structure was solved by direct methods and showed significant differences from the previously reported NMR structures in some regions of the ShK protein molecule. PMID:23919482

  2. M-shell resolved high-resolution X-ray spectroscopic study of transient matter evolution driven by hot electrons in kJ-laser produced plasmas

    NASA Astrophysics Data System (ADS)

    Condamine, F. P.; Šmíd, M.; Renner, O.; Dozières, M.; Thais, F.; Angelo, P.; Rosmej, F. B.

    2017-03-01

    Hot electrons represent a key subject for high intensity laser produced plasmas and atomic physics. Simulations of the radiative properties indicate a high sensitivity to hot electrons, that in turn provides the possibility for their detailed characterization by high-resolution spectroscopic methods. Of particular interest is X-ray spectroscopy due to reduced photo-absorption in dense matter and their efficient generation by hot electrons (inner-shell ionization/excitation). Here, we report on an experimental campaign conducted at the ns, kJ laser facility PALS at Prague in Czech Republic. Thin copper foils have been irradiated with 1ω pulses. Two spherically bent quartz Bragg crystal spectrometers with high spectral (λ/Δλ > 5000) and spatial resolutions (Δx = 30µm) have been set up simultaneously to achieve a high level of confidence for the complex Kα emission group. In particular, this group, which shows a strong overlap between lines, can be resolved in several substructures. Furthermore, an emission on the red wing of the Kα2 transition (λ = 1.5444A) could be identified with Hartree-Fock atomic structure calculations. We discuss possible implications for the analysis of non-equilibrium phenomena and present first simulations.

  3. The evolution of Ga and As core levels in the formation of Fe/GaAs (001):A high resolution soft x-ray photoelectron spectroscopic study

    SciTech Connect

    Thompson, Jamie; Neal, James; Shen, Tiehan; Morton, Simon; Tobin, James; Waddill, George Dan; Matthew, Jim; Greig, Denis; Hopkinson, Mark

    2008-07-14

    A high resolution soft x-ray photoelectron spectroscopic study of Ga and As 3d core levels has been conducted for Fe/GaAs (001) as a function of Fe thickness. This work has provided unambiguous evidence of substrate disrupting chemical reactions induced by the Fe overlayer--a quantitative analysis of the acquired spectra indicates significantly differing behavior of Ga and As during Fe growth, and our observations have been compared with existing theoretical models. Our results demonstrate that the outdiffusing Ga and As remain largely confined to the interface region, forming a thin intermixed layer. Whereas at low coverages Fe has little influence on the underlying GaAs substrate, the onset of substrate disruption when the Fe thickness reaches 3.5 Angstrom results in major changes in the energy distribution curves (EDCs) of both As and Ga 3d cores. Our quantitative analysis suggests the presence of two additional As environments of metallic character: one bound to the interfacial region and another which, as confirmed by in situ oxidation experiments, surface segregates and persists over a wide range of overlayer thickness. Analysis of the corresponding Ga 3d EDCs found not two, but three additional environments--also metallic in nature. Two of the three are interface resident whereas the third undergoes outdiffusion at low Fe coverages. Based on the variations of the integrated intensities of each component, we present a schematic of the proposed chemical makeup of the Fe/GaAs (001) system.

  4. The evolution of Ga and As core levels in the formation of Fe/GaAs (001): A high resolution soft x-ray photoelectron spectroscopic study

    SciTech Connect

    Thompson, Jamie D. W.; Neal, James R.; Shen, Tiehan H.; Morton, Simon A.; Tobin, James G.; Dan Waddill, G.; Matthew, Jim A. D.; Greig, Denis; Hopkinson, Mark

    2008-07-15

    A high resolution soft x-ray photoelectron spectroscopic study of Ga and As 3d core levels has been conducted for Fe/GaAs (001) as a function of Fe thickness. This work has provided unambiguous evidence of substrate disrupting chemical reactions induced by the Fe overlayer--a quantitative analysis of the acquired spectra indicates significantly differing behavior of Ga and As during Fe growth, and our observations have been compared with existing theoretical models. Our results demonstrate that the outdiffusing Ga and As remain largely confined to the interface region, forming a thin intermixed layer. Whereas at low coverages Fe has little influence on the underlying GaAs substrate, the onset of substrate disruption when the Fe thickness reaches 3.5 A results in major changes in the energy distribution curves (EDCs) of both As and Ga 3d cores. Our quantitative analysis suggests the presence of two additional As environments of metallic character: one bound to the interfacial region and another which, as confirmed by in situ oxidation experiments, surface segregates and persists over a wide range of overlayer thickness. Analysis of the corresponding Ga 3d EDCs found not two, but three additional environments--also metallic in nature. Two of the three are interface resident whereas the third undergoes outdiffusion at low Fe coverages. Based on the variations of the integrated intensities of each component, we present a schematic of the proposed chemical makeup of the Fe/GaAs (001) system.

  5. High-resolution fluorescence mapping of impurities in historical zinc oxide pigments: hard X-ray nanoprobe applications to the paints of Pablo Picasso

    NASA Astrophysics Data System (ADS)

    Casadio, Francesca; Rose, Volker

    2013-04-01

    Here for the first time we describe the use of high resolution nanoprobe X-ray fluorescence (XRF) mapping for the analysis of artists' paints, hierarchically complex materials typically composed of binder, pigments, fillers, and other additives. The work undertaken at the nanoprobe sought to obtain highly spatially resolved, highly sensitive mapping of metal impurities (Pb, Cd, Fe, and other metals) in submicron particles of zinc oxide pigments used in early 20th century artists' tube paints and enamel paints, with particular emphasis on Ripolin, a popular brand of French house paint used extensively by Pablo Picasso and some of his contemporaries. Analysis revealed that the Zn oxide particles only contain a little Fe, proving that the highest quality Zn oxide pigment, free of Pb and Cd, was used for Ripolin house paints as well as artists' paints. Nanoprobe XRF mapping also demonstrated that artists' tube paints generally have more abundant fillers and additional whites (based on Pb, Ti, Ca) than Ripolin paints, which contain mostly pure zinc oxide. The chemical characterization of paints at the nanoscale opens the path to a better understanding of their fabrication and chemical reactivity.

  6. High-Resolution X-Ray Study of Nematic-Smectic-A And Smectic-A-Reentrant-Nematic Transitions in Liquid-Crystal-Aerosil Gels

    SciTech Connect

    Ramazanoglu, M.; Larochelle, S.; Garland, C.W.; Birgeneau, R.J.

    2009-05-21

    We have studied the effects of quenched random disorder created by dispersed aerosil nanoparticle gels on the nematic to smectic- A (N- SmA ) and smectic- A to reentrant nematic ( SmA -RN) phase transitions of thermotropic liquid-crystal mixtures of hexyloxycyanobiphenyl (6OCB) and octyloxycyanobiphenyl (8OCB). These effects are probed using high-resolution synchrotron x-ray diffraction techniques. We find that the reentrant characteristics of the system are largely unchanged by the presence of the aerosil gel network. By comparing measurements of the smectic static structure amplitude for this 8OCB- 6OCB+aerosil system with those for butyloxybenzilidene-octylaniline (4O.8)+aerosil gels, we find that the short-range smectic order in the smectic- A phase is significantly weaker in the reentrant system. This result is consistent with the behavior seen in pure 8OCB-6OCB mixtures. The strength of the smectic ordering decreases progressively as the 6OCB concentration is increased. Detailed line shape analysis shows that the high- and low-temperature nematic phases (N and RN) are similar to each other.

  7. High-resolution x-ray study of nematic-smectic- A and smectic- A -reentrant-nematic transitions in liquid-crystal-aerosil gels

    NASA Astrophysics Data System (ADS)

    Ramazanoglu, M.; Larochelle, S.; Garland, C. W.; Birgeneau, R. J.

    2008-03-01

    We have studied the effects of quenched random disorder created by dispersed aerosil nanoparticle gels on the nematic to smectic- A (N- SmA ) and smectic- A to reentrant nematic ( SmA -RN) phase transitions of thermotropic liquid-crystal mixtures of hexyloxycyanobiphenyl (6OCB) and octyloxycyanobiphenyl (8OCB). These effects are probed using high-resolution synchrotron x-ray diffraction techniques. We find that the reentrant characteristics of the system are largely unchanged by the presence of the aerosil gel network. By comparing measurements of the smectic static structure amplitude for this 8OCB- 6OCB+aerosil system with those for butyloxybenzilidene-octylaniline (4O.8)+aerosil gels, we find that the short-range smectic order in the smectic- A phase is significantly weaker in the reentrant system. This result is consistent with the behavior seen in pure 8OCB-6OCB mixtures. The strength of the smectic ordering decreases progressively as the 6OCB concentration is increased. Detailed line shape analysis shows that the high- and low-temperature nematic phases (N and RN) are similar to each other.

  8. Modeling Shift-Variant X-Ray Focal Spot Blur for High-Resolution Flat-Panel Cone-Beam CT

    PubMed Central

    Tilley, Steven; Zbijewski, Wojciech; Siewerdsen, Jeffrey H.; Stayman, J. Webster

    2016-01-01

    Flat-panel cone-beam CT (CBCT) has been applied clinically in a number of high-resolution applications. Increasing geometric magnification can potentially improve resolution, but also increases blur due to an extended x-ray focal-spot. We present a shift-variant focal-spot blur model and incorporate it into a model-based iterative-reconstruction algorithm. We apply this algorithm to simulation and CBCT test-bench data. In a trabecular bone simulation study, we find traditional reconstruction approaches without a blur model exhibit shift-variant resolution properties that depend greatly on the acquisition protocol (e.g. short vs. full scans) and the anode angles of the rays used to reconstruct a particular region. For physical CBCT experiments focal spot blur was characterized and a spatial resolution phantom was scanned and reconstructed. In both experiments image quality using the shift-variant model was significantly improved over approaches that modeled no blur or only a shift-invariant blur, suggesting a potential means to overcome traditional CBCT spatial resolution and system design limitations. PMID:28361129

  9. High resolution soft x-ray bending magnet beamline 9.3.2 with circularly polarized radiation capability at the Advanced Light Source

    SciTech Connect

    Hussain, Z.; Heimann, P.A.; McKinney, W.; Padmore, H.A.; Huff, W.R.A.; Kellar, S.A.; Moler, E.J. |; Fadley, C.S. |; Shirley, D.A.

    1995-08-01

    Bending magnet beamline 9.3.2 at the Advanced Light Source (ALS) was designed for high resolution spectroscopy in the soft x-ray energy region, covering a range from 30 eV to 1500 eV with three gratings. The monochromator itself is a standard fixed included angle 55 m spherical grating monochromator and was originally used at the Stanford Synchrotron Radiation Laboratory (SSRL) as a prototype for later insertion device based monochromators for the ALS. For operations at the ALS, the toroidal pre-mirror used at SSRL to vertically focus onto the entrance slit and horizontally focus onto the exit slit was replaced by two separate crossed mirrors (Kirkpatrick-Baez configuration). Circularly polarized radiation is obtained by inserting a water-cooled movable aperture in front of the vertically focusing mirror to allow selecting the beam either above or below the horizontal plane. To maintain a stable beam intensity through the entrance slit, the photocurrent signals from the upper and lower jaws of the entrance slit are utilized to set a feedback loop with the vertically deflecting mirror Piezoelectric drive. The beamline end station has a rotatable platform (through 60{degree}) that accommodates two experimental chambers, enabling the synchrotron radiation to be directed to either one without breaking vacuum.

  10. X-ray luminescence computed tomography via selective excitation: a feasibility study.

    PubMed

    Pratx, Guillem; Carpenter, Colin M; Sun, Conroy; Xing, Lei

    2010-12-01

    X-ray luminescence computed tomography (XLCT) is proposed as a new molecular imaging modality based on the selective excitation and optical detection of X-ray-excitable phosphor nanoparticles. These nano-sized particles can be fabricated to emit near-infrared (NIR) light when excited with X-rays, and, because because both X-rays and NIR photons propagate long distances in tissue, they are particularly well suited for in vivo biomedical imaging. In XLCT, tomographic images are generated by irradiating the subject using a sequence of programmed X-ray beams, while sensitive photo-detectors measure the light diffusing out of the subject. By restricting the X-ray excitation to a single, narrow beam of radiation, the origin of the optical photons can be inferred regardless of where these photons were detected, and how many times they scattered in tissue. This study presents computer simulations exploring the feasibility of imaging small objects with XLCT, such as research animals. The accumulation of 50 nm phosphor nanoparticles in a 2-mm-diameter target can be detected and quantified with subpicomolar sensitivity using less than 1 cGy of radiation dose. Provided sufficient signal-to-noise ratio, the spatial resolution of the system can be made as high as needed by narrowing the beam aperture. In particular, 1 mm spatial resolution was achieved for a 1-mm-wide X-ray beam. By including an X-ray detector in the system, anatomical imaging is performed simultaneously with molecular imaging via standard X-ray computed tomography (CT). The molecular and anatomical images are spatially and temporally co-registered, and, if a single-pixel X-ray detector is used, they have matching spatial resolution.

  11. Recent Advances in Computational Studies of Charge Exchange X-ray Emission

    NASA Astrophysics Data System (ADS)

    Cumbee, Renata

    2016-06-01

    Interest in astrophysical sources of charge exchange (CX) has grown since X-ray emission from comet Hyakutake was first observed, the origin of which is primarily due to CX processes between neutral species in the comet’s atmosphere and highly charged ions from the solar wind. More recent observations have shown that CX may have a significant contribution to the X-ray emission spectra of a wide variety of environments within our solar system including solar wind charge exchange (SWCX) with neutral gases in the heliosphere and in planetary atmospheres, as well as beyond the solar system in galaxy clusters, supernova remnants, and star forming galaxies.While the basic process of CX has been studied for many decades, the reliability of the existing data is not uniform, and the coverage of the astrophysically important projectile and target combinations and collisional velocities is insufficient. The need for reliable and robust CX X-ray emission models will only be amplified with the with the high resolution X-ray spectra expected from the soft X-ray imaging calorimeter spectrometer (SXS) onboard the Hitomi X-ray observatory. In this talk, I will discuss recent advances in theoretical CX cross sections and X-ray modeling with a focus on CX diagnostics. The need for experimental X-ray spectra and cross sections for benchmarking current theory will also be highlighted. This work was performed in collaboration with David Lyons, Patrick Mullen, David Schultz, Phillip Stancil, and Robin Shelton. Work at UGA was partially supported by NASA grant NNX09AC46G.

  12. Optimized Detector Angular Configuration Increases the Sensitivity of X-ray Fluorescence Computed Tomography (XFCT).

    PubMed

    Ahmad, Moiz; Bazalova-Carter, Magdalena; Fahrig, Rebecca; Xing, Lei

    2015-05-01

    In this work, we demonstrated that an optimized detector angular configuration based on the anisotropic energy distribution of background scattered X-rays improves X-ray fluorescence computed tomography (XFCT) detection sensitivity. We built an XFCT imaging system composed of a bench-top fluoroscopy X-ray source, a CdTe X-ray detector, and a phantom motion stage. We imaged a 6.4-cm-diameter phantom containing different concentrations of gold solution and investigated the effect of detector angular configuration on XFCT image quality. Based on our previous theoretical study, three detector angles were considered. The X-ray fluorescence detector was first placed at 145 (°) (approximating back-scatter) to minimize scatter X-rays. XFCT image quality was compared to images acquired with the detector at 60 (°) (forward-scatter) and 90 (°) (side-scatter). The datasets for the three different detector positions were also combined to approximate an isotropically arranged detector. The sensitivity was optimized with detector in the 145 (°) back-scatter configuration counting the 78-keV gold Kβ1 X-rays. The improvement arose from the reduced energy of scattered X-ray at the 145 (°) position and the large energy separation from gold K β1 X-rays. The lowest detected concentration in this configuration was 2.5 mgAu/mL (or 0.25% Au with SNR = 4.3). This concentration could not be detected with the 60 (°) , 90 (°) , or isotropic configurations (SNRs = 1.3, 0, 2.3, respectively). XFCT imaging dose of 14 mGy was in the range of typical clinical X-ray CT imaging doses. To our knowledge, the sensitivity achieved in this experiment is the highest in any XFCT experiment using an ordinary bench-top X-ray source in a phantom larger than a mouse ( > 3 cm).

  13. Deterministic Computer-Controlled Polishing Process for High-Energy X-Ray Optics

    NASA Technical Reports Server (NTRS)

    Khan, Gufran S.; Gubarev, Mikhail; Speegle, Chet; Ramsey, Brian

    2010-01-01

    A deterministic computer-controlled polishing process for large X-ray mirror mandrels is presented. Using tool s influence function and material removal rate extracted from polishing experiments, design considerations of polishing laps and optimized operating parameters are discussed

  14. X-ray computed tomography for virtually unrolling damaged papyri

    NASA Astrophysics Data System (ADS)

    Allegra, Dario; Ciliberto, Enrico; Ciliberto, Paolo; Petrillo, Giuseppe; Stanco, Filippo; Trombatore, Claudia

    2016-03-01

    The regular format for ancient works of literature was the papyrus roll. Recently many efforts to perform virtual restoration of this archeological artifact have been done. In fact the case of ancient rolled papyrus is very intriguing. Old papyruses are the substrates of very important historical information, probably being the use of papyrus dated to the Pre-Dynastic Period. Papyrus degradation is often very hard so that physical unrolling is sometime absolutely impossible. In this paper, authors describe their effort in setting a new virtual restoration methodology based on software manipulation of X-ray tomographic images. A realistic model, obtained by painting a hieroglyph inscription of Thutmosis III on a papyrus substrate made by the original method described by Plinius the Elder and by pigments and binders compatible with the Egyptian use (ochers with natural glue), was made for the X-ray investigation. A GE Optima 660 64 slice was used to obtain a stack of tomographic slices of the rolled model. Each slice appears as spiral. The intensity variations along the cross-sectional result from ink on the papyrus. The files were elaborated with original software, written by the use of MATLAB high-level language, and the final result was quite similar to the radiography of the physically unrolled sheet.

  15. The Best of Both Worlds: 3D X-ray Microscopy with Ultra-high Resolution and a Large Field of View

    NASA Astrophysics Data System (ADS)

    Li, W.; Gelb, J.; Yang, Y.; Guan, Y.; Wu, W.; Chen, J.; Tian, Y.

    2011-09-01

    3D visualizations of complex structures within various samples have been achieved with high spatial resolution by X-ray computed nanotomography (nano-CT). While high spatial resolution generally comes at the expense of field of view (FOV). Here we proposed an approach that stitched several 3D volumes together into a single large volume to significantly increase the size of the FOV while preserving resolution. Combining this with nano-CT, 18-μm FOV with sub-60-nm resolution has been achieved for non-destructive 3D visualization of clustered yeasts that were too large for a single scan. It shows high promise for imaging other large samples in the future.

  16. Chandra Discovery of Intervening, Local and Intrinsic Highly Ionized Absorption in an extremely bright high resolution X-ray spectrum of an Extragalactic Source

    NASA Astrophysics Data System (ADS)

    Nicastro, F.; Elvis, M.; Fang, T.; Mathur, S.; Siemiginowska, A.; Zezas, A.

    2003-03-01

    In this contribution we present the brightest high resolution X-ray spectrum ever taken for an extragalactic source. Following our ToO request, Chandra observed the blazar Mkn 421 (z=0.03) during an exceptionally high-luminosity flare. The observation lasted about 100 ks, during which the source reached a flux level of > 0.1 Crab in the 0.5-2 keV band This allowed us to collect 4.2 million counts in the 1st-order ACIS-LETG spectrum of Mkn 421, and more than 3000 counts per resolution elements at the rest frame wavelength of the OVII Kα resonant transitions (21.6 Å). A forest of very weak (EW=3.1-10 mÅ) resonant absorption lines is detected from the rest frame wavelength of the OVII Kα all the way down to the position of the OVII Kα line at the source redshift. We identify these lines as due to: (a) Local Group Warm-Hot Intergalactic Medium (WHIM) absorption, (b) intervening WHIM absorption at redshifts z=0.01 (associated with faint H Lyα absorption) and z=0.025, and (c) intrinsic source absorption. The strongest of these systems is associated with the local WHIM first discovered along the line of sight to PKS 2155-304 (Nicastro et al., 2002, 2003), and now observed (always with consistent gas properties) along all the lines of sight for which Chandra high resolution spectra with sufficient signal to noise ratio are available. The faintest systems (probing OVII column densities as low as 1015 cm-2) are those identified as due to the two intervening WHIM systems. If both these identification are correct this discovery implies a number of intervening OVII WHIM systems per unit redshift of dN/dz(NOVII>1015) = 75, about 3-4 times larger than the corresponding number estimated for OVI systems in the local Universe (down to OVI EW of 60 mÅ). The WHIM baryon fraction implied depends slightly on the ionization correction applied, and ranges between 40 % and 60 % of the total baryons at z<2, so confirming hydrodynamical simulation predictions and accounting for all of

  17. Comprehensive Non-Destructive Conservation Documentation of Lunar Samples Using High-Resolution Image-Based 3D Reconstructions and X-Ray CT Data

    NASA Technical Reports Server (NTRS)

    Blumenfeld, E. H.; Evans, C. A.; Oshel, E. R.; Liddle, D. A.; Beaulieu, K.; Zeigler, R. A.; Hanna, R. D.; Ketcham, R. A.

    2015-01-01

    Established contemporary conservation methods within the fields of Natural and Cultural Heritage encourage an interdisciplinary approach to preservation of heritage material (both tangible and intangible) that holds "Outstanding Universal Value" for our global community. NASA's lunar samples were acquired from the moon for the primary purpose of intensive scientific investigation. These samples, however, also invoke cultural significance, as evidenced by the millions of people per year that visit lunar displays in museums and heritage centers around the world. Being both scientifically and culturally significant, the lunar samples require a unique conservation approach. Government mandate dictates that NASA's Astromaterials Acquisition and Curation Office develop and maintain protocols for "documentation, preservation, preparation and distribution of samples for research, education and public outreach" for both current and future collections of astromaterials. Documentation, considered the first stage within the conservation methodology, has evolved many new techniques since curation protocols for the lunar samples were first implemented, and the development of new documentation strategies for current and future astromaterials is beneficial to keeping curation protocols up to date. We have developed and tested a comprehensive non-destructive documentation technique using high-resolution image-based 3D reconstruction and X-ray CT (XCT) data in order to create interactive 3D models of lunar samples that would ultimately be served to both researchers and the public. These data enhance preliminary scientific investigations including targeted sample requests, and also provide a new visual platform for the public to experience and interact with the lunar samples. We intend to serve these data as they are acquired on NASA's Astromaterials Acquisistion and Curation website at http://curator.jsc.nasa.gov/. Providing 3D interior and exterior documentation of astromaterial

  18. Progress in electron-multiplying CCD (EMCCD) based high-resolution high-sensitivity x-ray detector for fluoroscopy and radiography

    NASA Astrophysics Data System (ADS)

    Kuhls, Andrew T.; Yadava, Girijesh; Patel, Vikas; Bednarek, Daniel R.; Rudin, Stephen

    2007-03-01

    A new high-resolution, high-sensitivity, low-noise x-ray detector based on EMCCDs has been developed. The EMCCD detector module consists of a 1kx1k, 8μm pixel EMCCD camera coupled to a CsI(Tl) scintillating phosphor via a fiber optic taper (FOT). Multiple modules can be used to provide the desired field-of-view (FOV). The detector is capable of acquisitions over 30fps. The EMCCD's variable gain of up to 2000x for the pixel signal enables high sensitivity for fluoroscopic applications. With a 3:1 FOT, the detector can operate with a 144μm effective pixel size, comparable to current flat-panel detectors. Higher resolutions of 96 and 48μm pixel size can also be achieved with various binning modes. The detector MTFs and DQEs were calculated using a linear-systems analysis. The zero frequency DQE was calculated to be 59% at 74 kVp. The DQE for the 144μm pixel size was shown to exhibit quantum-noise limited behavior down to ~0.1μR using a conservative 30x gain. At this low exposure, gains above 30x showed limited improvements in DQE suggesting such increased gains may not be necessary. For operation down to 48µm pixel sizes, the detector instrumentation noise equivalent exposure (INEE), defined as the exposure where the instrumentation noise equals the quantum-noise, was <0.1μR for a 20x gain. This new technology may provide improvements over current flat-panel detectors for applications such as fluoroscopy and angiography requiring high frame rates, resolution, dynamic range and sensitivity while maintaining essentially no lag and very low INEE. Initial images from a prototype detector are also presented.

  19. Raman spectroscopy adds complementary detail to the high-resolution x-ray crystal structure of photosynthetic PsbP from Spinacia oleracea.

    PubMed

    Kopecky, Vladimir; Kohoutova, Jaroslava; Lapkouski, Mikalai; Hofbauerova, Katerina; Sovova, Zofie; Ettrichova, Olga; González-Pérez, Sergio; Dulebo, Alexander; Kaftan, David; Smatanova, Ivana Kuta; Revuelta, Jose L; Arellano, Juan B; Carey, Jannette; Ettrich, Rüdiger

    2012-01-01

    Raman microscopy permits structural analysis of protein crystals in situ in hanging drops, allowing for comparison with Raman measurements in solution. Nevertheless, the two methods sometimes reveal subtle differences in structure that are often ascribed to the water layer surrounding the protein. The novel method of drop-coating deposition Raman spectropscopy (DCDR) exploits an intermediate phase that, although nominally "dry," has been shown to preserve protein structural features present in solution. The potential of this new approach to bridge the structural gap between proteins in solution and in crystals is explored here with extrinsic protein PsbP of photosystem II from Spinacia oleracea. In the high-resolution (1.98 Å) x-ray crystal structure of PsbP reported here, several segments of the protein chain are present but unresolved. Analysis of the three kinds of Raman spectra of PsbP suggests that most of the subtle differences can indeed be attributed to the water envelope, which is shown here to have a similar Raman intensity in glassy and crystal states. Using molecular dynamics simulations cross-validated by Raman solution data, two unresolved segments of the PsbP crystal structure were modeled as loops, and the amino terminus was inferred to contain an additional beta segment. The complete PsbP structure was compared with that of the PsbP-like protein CyanoP, which plays a more peripheral role in photosystem II function. The comparison suggests possible interaction surfaces of PsbP with higher-plant photosystem II. This work provides the first complete structural picture of this key protein, and it represents the first systematic comparison of Raman data from solution, glassy, and crystalline states of a protein.

  20. Visualization of x-ray computer tomography using computer-generated holography

    NASA Astrophysics Data System (ADS)

    Daibo, Masahiro; Tayama, Norio

    1998-09-01

    The theory converted from x-ray projection data to the hologram directly by combining the computer tomography (CT) with the computer generated hologram (CGH), is proposed. The purpose of this study is to offer the theory for realizing the all- electronic and high-speed seeing through 3D visualization system, which is for the application to medical diagnosis and non- destructive testing. First, the CT is expressed using the pseudo- inverse matrix which is obtained by the singular value decomposition. CGH is expressed in the matrix style. Next, `projection to hologram conversion' (PTHC) matrix is calculated by the multiplication of phase matrix of CGH with pseudo-inverse matrix of the CT. Finally, the projection vector is converted to the hologram vector directly, by multiplication of the PTHC matrix with the projection vector. Incorporating holographic analog computation into CT reconstruction, it becomes possible that the calculation amount is drastically reduced. We demonstrate the CT cross section which is reconstituted by He-Ne laser in the 3D space from the real x-ray projection data acquired by x-ray television equipment, using our direct conversion technique.

  1. Spectrally resolving and scattering-compensated x-ray luminescence/fluorescence computed tomography

    PubMed Central

    Cong, Wenxiang; Shen, Haiou; Wang, Ge

    2011-01-01

    The nanophosphors, or other similar materials, emit near-infrared (NIR) light upon x-ray excitation. They were designed as optical probes for in vivo visualization and analysis of molecular and cellular targets, pathways, and responses. Based on the previous work on x-ray fluorescence computed tomography (XFCT) and x-ray luminescence computed tomography (XLCT), here we propose a spectrally-resolving and scattering-compensated x-ray luminescence/fluorescence computed tomography (SXLCT or SXFCT) approach to quantify a spatial distribution of nanophosphors (other similar materials or chemical elements) within a biological object. In this paper, the x-ray scattering is taken into account in the reconstruction algorithm. The NIR scattering is described in the diffusion approximation model. Then, x-ray excitations are applied with different spectra, and NIR signals are measured in a spectrally resolving fashion. Finally, a linear relationship is established between the nanophosphor distribution and measured NIR data using the finite element method and inverted using the compressive sensing technique. The numerical simulation results demonstrate the feasibility and merits of the proposed approach. PMID:21721815

  2. X-ray clusters in a cold dark matter + lambda universe: A direct, large-scale, high-resolution, hydrodynamic simulation

    NASA Technical Reports Server (NTRS)

    Cen, Renyue; Ostriker, Jeremiah P.

    1994-01-01

    A new, three-dimensional, shock-capturing, hydrodynamic code is utilized to determine the distribution of hot gas in a cold dark matter (CDM) + lambda model universe. Periodic boundary conditions are assumed: a box with size 85/h Mpc, having cell size 0.31/h Mpc, is followed in a simulation with 270(exp 3) = 10(exp 7.3) cells. We adopt omega = 0.45, lambda = 0.55, h identically equal to H/100 km/s/Mpc = 0.6, and then, from the cosmic background explorer (COBE) and light element nucleosynthesis, sigma(sub 8) = 0.77, omega(sub b) = 0.043. We identify the X-ray emitting clusters in the simulation box, compute the luminosity function at several wavelength bands, the temperature function and estimated sizes, as well as the evolution of these quantities with redshift. This open model succeeds in matching local observations of clusters in contrast to the standard omega = 1, CDM model, which fails. It predicts an order of magnitude decline in the number density of bright (h nu = 2-10 keV) clusters from z = 0 to z = 2 in contrast to a slight increase in the number density for standard omega = 1, CDM model. This COBE-normalized CDM + lambda model produces approximately the same number of X-ray clusters having L(sub x) greater than 10(exp 43) erg/s as observed. The background radiation field at 1 keV due to clusters is approximately the observed background which, after correction for numerical effects, again indicates that the model is consistent with observations.

  3. Achieving high-resolution soft-tissue imaging with cone-beam CT: a two-pronged approach for modulation of x-ray fluence and detector gain

    NASA Astrophysics Data System (ADS)

    Graham, S. A.; Siewerdsen, J. H.; Moseley, D. J.; Keller, H.; Shkumat, N. A.; Jaffray, D. A.

    2005-04-01

    Cone-beam computed tomography (CBCT) presents a highly promising and challenging advanced application of flat-panel detectors (FPDs). The great advantage of this adaptable technology is in the potential for sub-mm 3D spatial resolution in combination with soft-tissue detectability. While the former is achieved naturally by CBCT systems incorporating modern FPD designs (e.g., 200 - 400 um pixel pitch), the latter presents a significant challenge due to limitations in FPD dynamic range, large field of view, and elevated levels of x-ray scatter in typical CBCT configurations. We are investigating a two-pronged strategy to maximizing soft-tissue detectability in CBCT: 1) front-end solutions, including novel beam modulation designs (viz., spatially varying compensators) that alleviate detector dynamic range requirements, reduce x-ray scatter, and better distribute imaging dose in a manner suited to soft-tissue visualization throughout the field of view; and 2) back-end solutions, including implementation of an advanced FPD design (Varian PaxScan 4030CB) that features dual-gain and dynamic gain switching that effectively extends detector dynamic range to 18 bits. These strategies are explored quantitatively on CBCT imaging platforms developed in our laboratory, including a dedicated CBCT bench and a mobile isocentric C-arm (Siemens PowerMobil). Pre-clinical evaluation of improved soft-tissue visibility was carried out in phantom and patient imaging with the C-arm device. Incorporation of these strategies begin to reveal the full potential of CBCT for soft-tissue visualization, an essential step in realizing broad utility of this adaptable technology for diagnostic and image-guided procedures.

  4. High resolution computed tomography of advanced composite and ceramic materials

    NASA Technical Reports Server (NTRS)

    Yancey, R. N.; Klima, S. J.

    1991-01-01

    Advanced composite and ceramic materials are being developed for use in many new defense and commercial applications. In order to achieve the desired mechanical properties of these materials, the structural elements must be carefully analyzed and engineered. A study was conducted to evaluate the use of high resolution computed tomography (CT) as a macrostructural analysis tool for advanced composite and ceramic materials. Several samples were scanned using a laboratory high resolution CT scanner. Samples were also destructively analyzed at the locations of the scans and the nondestructive and destructive results were compared. The study provides useful information outlining the strengths and limitations of this technique and the prospects for further research in this area.

  5. Assessment of natural enamel lesions with optical coherence tomography in comparison with microfocus x-ray computed tomography

    PubMed Central

    Espigares, Jorge; Sadr, Alireza; Hamba, Hidenori; Shimada, Yasushi; Otsuki, Masayuki; Tagami, Junji; Sumi, Yasunori

    2015-01-01

    Abstract. A technology to characterize early enamel lesions is needed in dentistry. Optical coherence tomography (OCT) is a noninvasive method that provides high-resolution cross-sectional images. The aim of this study is to compare OCT with microfocus x-ray computed tomography (μCT) for assessment of natural enamel lesions in vitro. Ten human teeth with visible white spot-like changes on the enamel smooth surface and no cavitation (ICDAS code 2) were subjected to imaging by μCT (SMX-100CT, Shimadzu) and 1300-nm swept-source OCT (Dental SS-OCT, Panasonic Health Care). In μCT, the lesions appeared as radiolucent dark areas, while in SS-OCT, they appeared as areas of increased signal intensity beneath the surface. An SS-OCT attenuation coefficient based on Beer–Lambert law could discriminate lesions from sound enamel. Lesion depth ranged from 175 to 606  μm in SS-OCT. A correlation between μCT and SS-OCT was found regarding lesion depth (R=0.81, p<0.001) and also surface layer thickness (R=0.76, p<0.005). The images obtained clinically in real time using the dental SS-OCT system are suitable for the assessment of natural subsurface lesions and their surface layer, providing comparable images to a laboratory high-resolution μCT without the use of x-ray. PMID:26158079

  6. Assessment of natural enamel lesions with optical coherence tomography in comparison with microfocus x-ray computed tomography.

    PubMed

    Espigares, Jorge; Sadr, Alireza; Hamba, Hidenori; Shimada, Yasushi; Otsuki, Masayuki; Tagami, Junji; Sumi, Yasunori

    2015-01-01

    A technology to characterize early enamel lesions is needed in dentistry. Optical coherence tomography (OCT) is a noninvasive method that provides high-resolution cross-sectional images. The aim of this study is to compare OCT with microfocus x-ray computed tomography ([Formula: see text]) for assessment of natural enamel lesions in vitro. Ten human teeth with visible white spot-like changes on the enamel smooth surface and no cavitation (ICDAS code 2) were subjected to imaging by μCT (SMX-100CT, Shimadzu) and 1300-nm swept-source OCT (Dental SS-OCT, Panasonic Health Care). In [Formula: see text], the lesions appeared as radiolucent dark areas, while in SS-OCT, they appeared as areas of increased signal intensity beneath the surface. An SS-OCT attenuation coefficient based on Beer-Lambert law could discriminate lesions from sound enamel. Lesion depth ranged from 175 to [Formula: see text] in SS-OCT. A correlation between [Formula: see text] and SS-OCT was found regarding lesion depth ([Formula: see text], [Formula: see text]) and also surface layer thickness ([Formula: see text], [Formula: see text]). The images obtained clinically in real time using the dental SS-OCT system are suitable for the assessment of natural subsurface lesions and their surface layer, providing comparable images to a laboratory high-resolution [Formula: see text] without the use of x-ray.

  7. Temperature map computation for X-ray clusters of galaxies

    NASA Astrophysics Data System (ADS)

    Bourdin, H.; Sauvageot, J.-L.; Slezak, E.; Bijaoui, A.; Teyssier, R.

    2004-02-01

    Recent numerical simulations have shown that the variations of the gas temperature in clusters of galaxies are indicative of the dynamical state of these clusters. Maps of the temperature variation show complex structures with different shapes at different spatial scales, such as hot compression regions, filaments, cooling flows, or large-scale temperature profiles. A new multiscale spectro-imagery algorithm for restoring the spatial temperature variations within clusters of galaxies is presented here. It has been especially developed to work with the EPIC MOS1, MOS2 and PN spectro-imagers on board the XMM-Newton satellite. The temperature values are fitted to an emission model that includes the source, the cosmic X-ray background and cosmic-ray induced particle background. The spatial temperature variations are coded at different scales in the wavelet space using the Haar wavelet and denoised by thresholding the wavelet coefficients. Our local temperature estimator behaves asymptotically like an optimal mininum variance bound estimator. But it is highly sensitive to the instrumental and astrophysical backgrounds, so that a good knowledge of each component of the emission model is required. Our algorithm has been applied to a simulated 60 ks observation of a merging cluster at z =0.1. The cluster at different stages of merging has been provided by 3-D hydrodynamical simulations of structure formation (AMR). The multiscale approach has enabled us to restore the faint structures within the core of the merging subgroups where the gas emissivity is high, but also the temperature decrease at large scale in their external regions.

  8. Computing elastic moduli on 3-D X-ray computed tomography image stacks

    NASA Astrophysics Data System (ADS)

    Garboczi, E. J.; Kushch, V. I.

    2015-03-01

    A numerical task of current interest is to compute the effective elastic properties of a random composite material by operating on a 3D digital image of its microstructure obtained via X-ray computed tomography (CT). The 3-D image is usually sub-sampled since an X-ray CT image is typically of order 10003 voxels or larger, which is considered to be a very large finite element problem. Two main questions for the validity of any such study are then: can the sub-sample size be made sufficiently large to capture enough of the important details of the random microstructure so that the computed moduli can be thought of as accurate, and what boundary conditions should be chosen for these sub-samples? This paper contributes to the answer of both questions by studying a simulated X-ray CT cylindrical microstructure with three phases, cut from a random model system with known elastic properties. A new hybrid numerical method is introduced, which makes use of finite element solutions coupled with exact solutions for elastic moduli of square arrays of parallel cylindrical fibers. The new method allows, in principle, all of the microstructural data to be used when the X-ray CT image is in the form of a cylinder, which is often the case. Appendix A describes a similar algorithm for spherical sub-samples, which may be of use when examining the mechanical properties of particles. Cubic sub-samples are also taken from this simulated X-ray CT structure to investigate the effect of two different kinds of boundary conditions: forced periodic and fixed displacements. It is found that using forced periodic displacements on the non-geometrically periodic cubic sub-samples always gave more accurate results than using fixed displacements, although with about the same precision. The larger the cubic sub-sample, the more accurate and precise was the elastic computation, and using the complete cylindrical sample with the new method gave still more accurate and precise results. Fortran 90

  9. Digital computer processing of X-ray photos

    NASA Technical Reports Server (NTRS)

    Nathan, R.; Selzer, R. H.

    1967-01-01

    Digital computers correct various distortions in medical and biological photographs. One of the principal methods of computer enhancement involves the use of a two-dimensional digital filter to modify the frequency spectrum of the picture. Another computer processing method is image subtraction.

  10. Analytical computation of the off-axis effective area of grazing incidence X-ray mirrors

    NASA Astrophysics Data System (ADS)

    Spiga, D.; Cotroneo, V.; Basso, S.; Conconi, P.

    2009-10-01

    Aims: Focusing mirrors for X-ray telescopes in grazing incidence, introduced in the 70s, are characterized in terms of their performance by their imaging quality and effective area, which in turn determines their sensitivity. Even though the on-axis effective area is assumed in general to characterize the collecting power of an X-ray optic, the telescope capability of imaging extended X-ray sources is also determined by the variation in its effective area with the off-axis angle. The effective area, in general, decreases as the X-ray source moves off-axis, causing a loss of sensitivity in the peripheral regions of the telescope's field of view. Methods: The complex task of designing optics for future X-ray telescopes entails detailed computations of both imaging quality and effective area on- and off-axis. Because of their apparent complexity, both aspects have been, so far, treated by using ray-tracing routines aimed at simulating the interaction of X-ray photons with the reflecting surfaces of a given focusing system. Although this approach has been widely exploited and proven to be effective, it would also be attractive to regard the same problem from an analytical viewpoint, to assess an optical design of an X-ray optical module with a simpler calculation than a ray-tracing routine. This would also improve the efficiency of optimization tasks when designing the X-ray optical modules. In this paper, we thereby focused on developing analytical solutions to compute the off-axis effective area of double-reflection X-ray mirrors. Results: We have developed useful analytical formulae for the off-axis effective area of a double-reflection mirror in the double cone approximation, requiring only an integration and the standard routines to calculate the X-ray coating reflectivity for a given incidence angle. The computation is easily applicable also to Wolter-I mirrors (such as those of NeXT, NuSTAR, HEXIT-SAT, IXO) and the approximation improves as the f-number of the

  11. Evolution of titania nanotubes-supported WO{sub x} species by in situ thermo-Raman spectroscopy, X-ray diffraction and high resolution transmission electron microscopy

    SciTech Connect

    Cortes-Jacome, M.A.; Angeles-Chavez, C.; Morales, M.; Lopez-Salinas, E.; Toledo-Antonio, J.A.

    2007-10-15

    Structural evolution of WO{sub x} species on the surface of titania nanotubes was followed by in situ thermo-Raman spectroscopy. A total of 15 wt% of W atoms were loaded on the surface of a hydroxylated titania nanotubes by impregnation with ammonium metatungstate solution and then, the sample was thermally treated in a Linkam cell at different temperatures in nitrogen flow. The band characteristic of the W=O bond was observed at 962 cm{sup -1} in the dried sample, which vanished between 300 and 700 deg. C, and reappear again after annealing at 800 deg. C, along with a broad band centered at 935 cm{sup -1}, attributed to the v{sub 1} vibration of W=O in tetrahedral coordination. At 900 and 1000 deg. C, the broad band decomposed into four bands at 923, 934, 940 and 950 cm{sup -1}, corresponding to the symmetric and asymmetric vibration of W=O bonds in Na{sub 2}WO{sub 4} and Na{sub 2}W{sub 2}O{sub 7} phases as determined by X-ray diffraction and High resolution transmission electron microscopy (HRTEM). The structure of the nanotubular support was kept at temperatures below 450 deg. C, thereafter, it transformed into anatase being stabilized at temperatures as high as 900 deg. C. At 1000 deg. C, anatase phase partially converted into rutile. After annealing at 1000 deg. C, a core-shell model material was obtained, with a shell of ca. 5 nm thickness, composed of sodium tungstate nanoclusters, and a core composed mainly of rutile TiO{sub 2} phase. - Graphical abstract: Titania nanotubes loaded with 15 wt% W atoms were characterized from room temperature (rt) to 1000 deg. C by thermo-Raman spectroscopy in N{sub 2}. At 1000 deg. C, a core-shell model material was obtained, with a shell thickness of ca. 5 nm composed by nanoclusters of sodium tungstate, and a core composed mainly of rutile TiO{sub 2} phase.

  12. Nepheline: Structure of Three Samples from the Bancroft Area, Ontario, Obtained using Synchrotron High-Resolution Powder X-Ray Diffraction

    SciTech Connect

    Antao, Sytle M.; Hassan, Ishmael

    2010-05-25

    The crystal structure of three samples of nepheline (ideally, K{sub 2}Na{sub 6}[Al{sub 8}Si{sub 8}O{sub 32}]) from the Bancroft area of Ontario (1a, b: Egan Chute, 2: Nephton, and 3: Davis Hill), each with different types of superstructure reflections, has been studied using synchrotron high-resolution powder X-ray diffraction (HRPXRD) data and Rietveld structure refinement. The samples have different origins. The structure was refined in space group P6{sub 3}. The R{sub F}{sup 2} index, number of unique observed reflections, pseudohexagonal subcell parameters, and site-occupancy factor (sof) for the K site are as follows: Sample 1b: R{sub F}{sup 2} = 0.0433, N{sub obs} = 1399, a = 9.99567(1), c = 8.37777(1) {angstrom}, V = 724.907(2) {angstrom}{sub 3}, and K (sof) = 0.716(1). Sample 2: R{sub F}{sup 2} = 0.0669, N{sub obs} = 1589, a = 10.00215(1), c = 8.38742(1) {angstrom}, V = 726.684(1) {angstrom}{sub 3}, and K (sof) = 0.920(1). Sample 3: R{sub F}{sup 2} = 0.0804, N{sub obs} = 1615, a = 9.99567(1), c = 8.37873(1) {angstrom}, V = 724.991(1) {angstrom}{sub 3}, and K (sof) = 0.778(2). Sample 2 has the largest sof for K and the largest volume. The satellite reflections in the three nepheline samples were observed in the HRPXRD traces and give rise to different incommensurate superstructures. The Al and Si atoms in the T{sub 3} and T{sub 4} sites are ordered differently in the three samples, which may indicate the presence of a domain structure based on Al-Si order. The positions for the Al and Si atoms were interchanged in two samples because of the resulting distances. The slight excess of Si over Al atoms, characteristically encountered in well-analyzed samples of nepheline, is reflected in the distances.

  13. Computed tomography dosimetry with high-resolution detectors commonly used in radiotherapy - an energy dependence study.

    PubMed

    Liebmann, Mario; Poppe, Bjoern; von Boetticher, Heiner

    2015-09-08

    New methods of dosimetry in computed tomography (CT) X-ray fields require the use of high-resolution detectors instead of pencil-type ionization chambers typically used for CT dose index (CTDI) measurements. This paper presents a study on the suitability of a wide range of ionization chambers, diodes, and a two-dimensional detector array, used primarily in radiation therapy, for CT and cone-beam CT dosimetry. Specifically, the energy dependence of these detectors from 50 kVp up to 125 kVp is reported. All measurements were performed in reference to a calibrated diode for use in this energy region. The radiation quality correction factors provided by the manufacturer were used, depending on the measured half-value layer (HVL) for the particular X-ray beam. Our study demonstrated the general usability of thimble ionization chambers. These thimble ionization chambers showed a maximum variation in energy response of 5%. Ionization chambers with even smaller sensitive volume, and which exhibit similar variation in energy dependence, can be used if higher spatial resolution is required. Furthermore, the investigated detectors are better suited for dosimetry at CT and CBCT units than conventional large volume or flat detectors, due to their rotational symmetry. Nevertheless, a flat detector can be used for certain measurement tasks, such as the acquisition of percent depth-dose curves or beam profiles for nonrotating beams, which are important for beam characterization.

  14. A computer controlled television detector for light, X-rays and particles

    NASA Technical Reports Server (NTRS)

    Kalata, K.

    1981-01-01

    A versatile, high resolution, software configurable, two-dimensional intensified vidicon quantum detector system has been developed for multiple research applications. A thin phosphor convertor allows the detection of X-rays below 20 keV and non-relativistic particles in addition to visible light, and a thicker scintillator can be used to detect X-rays up to 100 keV and relativistic particles. Faceplates may be changed to allow any active area from 1 to 40 mm square, and active areas up to 200 mm square are possible. The image is integrated in a digital memory on any software specified array size up to 4000 x 4000. The array size is selected to match the spatial resolution, which ranges from 10 to 100 microns depending on the operating mode, the active area, and the photon or particle energy. All scan and data acquisition parameters are under software control to allow optimal data collection for each application.

  15. Optimization of X-ray tomography through a cooperative computing system in grid

    SciTech Connect

    Hasan, Moin Goraya, Major Singh

    2015-08-28

    Cooperative Computing implemented as Cooperative Computing System (CCS) in grid has been proved a considerably reliable technique to execute the tasks with real time constraints in a grid environment. This technique can be applied in many high performance distributed computing applications. HPC has a large number of applications in various fields of physics. One such application in radiation physics is X-ray tomography. X-Ray tomography contains numerous applications in various fields of science, technology and research. As the technology is changing from analog to digital in almost all the scenarios, this paper presents an idea towards the attachment of X-ray tomography assembly to HPC environment so as to obtain the highly reliable optimization.

  16. Wolter X-Ray Microscope Computed Tomography Ray-Trace Model with Preliminary Simulation Results

    SciTech Connect

    Jackson, J A

    2006-02-27

    It is proposed to build a Wolter X-ray Microscope Computed Tomography System in order to characterize objects to sub-micrometer resolution. Wolter Optics Systems use hyperbolic, elliptical, and/or parabolic mirrors to reflect x-rays in order to focus or magnify an image. Wolter Optics have been used as telescopes and as microscopes. As microscopes they have been used for a number of purposes such as measuring emission x-rays and x-ray fluoresce of thin biological samples. Standard Computed Tomography (CT) Systems use 2D radiographic images, from a series of rotational angles, acquired by passing x-rays through an object to reconstruct a 3D image of the object. The x-ray paths in a Wolter X-ray Microscope will be considerably different than those of a standard CT system. There is little information about the 2D radiographic images that can be expected from such a system. There are questions about the quality, resolution and focusing range of an image created with such a system. It is not known whether characterization information can be obtained from these images and whether these 2D images can be reconstructed to 3D images of the object. A code has been developed to model the 2D radiographic image created by an object in a Wolter X-ray Microscope. This code simply follows the x-ray through the object and optics. There is no modeling at this point of other effects, such as scattering, reflection losses etc. Any object, of appropriate size, can be used in the model code. A series of simulations using a number of different objects was run to study the effects of the optics. The next step will be to use this model to reconstruct an object from the simulated data. Funding for the project ended before this goal could be accomplished. The following documentation includes: (1) background information on current X-ray imaging systems, (2) background on Wolter Optics, (3) description of the Wolter System being used, (4) purpose, limitations and development of the modeling

  17. Building a Unified Computational Model for the Resonant X-Ray Scattering of Strongly Correlated Materials

    SciTech Connect

    Bansil, Arun

    2016-12-01

    Basic-Energy Sciences of the Department of Energy (BES/DOE) has made large investments in x-ray sources in the U.S. (NSLS-II, LCLS, NGLS, ALS, APS) as powerful enabling tools for opening up unprecedented new opportunities for exploring properties of matter at various length and time scales. The coming online of the pulsed photon source, literally allows us to see and follow the dynamics of processes in materials at their natural timescales. There is an urgent need therefore to develop theoretical methodologies and computational models for understanding how x-rays interact with matter and the related spectroscopies of materials. The present project addressed aspects of this grand challenge of X-ray science. In particular, our Collaborative Research Team (CRT) focused on understanding and modeling of elastic and inelastic resonant X-ray scattering processes. We worked to unify the three different computational approaches currently used for modeling X-ray scattering—density functional theory, dynamical mean-field theory, and small-cluster exact diagonalization—to achieve a more realistic material-specific picture of the interaction between X-rays and complex matter. To achieve a convergence in the interpretation and to maximize complementary aspects of different theoretical methods, we concentrated on the cuprates, where most experiments have been performed. Our team included both US and international researchers and it fostered new collaborations between researchers currently working with different approaches. In addition, we developed close relationships with experimental groups working in the area at various synchrotron facilities in the US. Our CRT thus helped toward enabling the US to assume a leadership role in the theoretical development of the field, and to create a global network and community of scholars dedicated to X-ray scattering research.

  18. Measuring the efficacy of a root biobarrier with x-ray computed tomography

    SciTech Connect

    Tollner, E.W.; Murphy, C.E. Jr. . Dept. of Agricultural Engineering)

    1990-08-16

    X-ray computed tomography is a useful tool for investigating soil physical properties nondestructively. There is a need to develop proper calibration relationships between soil properties and the x-ray absorption coefficient. The objective of the work was to evaluate soil factors affecting the x-ray absorption coefficient. Based on a theoretical analysis, experimental data from five soils and on results of several other investigators, it was concluded that for many applications, one calibration relationship is applicable to a wide range of soils. The montmorillinitic clay used in the study required special handling due to the extreme shrinkage of this soil upon drying. Knowledge of chemical composition enables approximations but not exact predictions of the x-ray absorption coefficient. The results suggested some reasonable alternative to exhaustive calibration for each anticipated soil condition. Quantification of root activity in terms of root growth and indirectly through water uptake is necessary for understanding plant growth dynamics. X-ray computed tomography (CT) enables qualitative as well as two quantitative outputs, one of which can lead to conclusions regarding root activity. A greenhouse study involving soil columns (Lakeland sand, bulk density 1.4 Mg/m{sup 3}) planted to soybean, Bahiagras, and control (no vegetation) was conducted in 1989. A treflan based on chemical barrier was placed in half of the soil column of each species. The mean x-ray absorption correlated to water content. Results suggested that root presence can also be indirectly inferred based on water content drawn down during planned stress events. It was concluded that x-ray CT may have a niche in soil-water-plant relation studies, particularly when plant species have large roots. 35 refs., 13 figs., 8 tabs.

  19. 3D chemical imaging in the laboratory by hyperspectral X-ray computed tomography

    PubMed Central

    Egan, C. K.; Jacques, S. D. M.; Wilson, M. D.; Veale, M. C.; Seller, P.; Beale, A. M.; Pattrick, R. A. D.; Withers, P. J.; Cernik, R. J.

    2015-01-01

    We report the development of laboratory based hyperspectral X-ray computed tomography which allows the internal elemental chemistry of an object to be reconstructed and visualised in three dimensions. The method employs a spectroscopic X-ray imaging detector with sufficient energy resolution to distinguish individual elemental absorption edges. Elemental distributions can then be made by K-edge subtraction, or alternatively by voxel-wise spectral fitting to give relative atomic concentrations. We demonstrate its application to two material systems: studying the distribution of catalyst material on porous substrates for industrial scale chemical processing; and mapping of minerals and inclusion phases inside a mineralised ore sample. The method makes use of a standard laboratory X-ray source with measurement times similar to that required for conventional computed tomography. PMID:26514938

  20. 3D chemical imaging in the laboratory by hyperspectral X-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Egan, C. K.; Jacques, S. D. M.; Wilson, M. D.; Veale, M. C.; Seller, P.; Beale, A. M.; Pattrick, R. A. D.; Withers, P. J.; Cernik, R. J.

    2015-10-01

    We report the development of laboratory based hyperspectral X-ray computed tomography which allows the internal elemental chemistry of an object to be reconstructed and visualised in three dimensions. The method employs a spectroscopic X-ray imaging detector with sufficient energy resolution to distinguish individual elemental absorption edges. Elemental distributions can then be made by K-edge subtraction, or alternatively by voxel-wise spectral fitting to give relative atomic concentrations. We demonstrate its application to two material systems: studying the distribution of catalyst material on porous substrates for industrial scale chemical processing; and mapping of minerals and inclusion phases inside a mineralised ore sample. The method makes use of a standard laboratory X-ray source with measurement times similar to that required for conventional computed tomography.

  1. Noise properties of grating-based x-ray phase contrast computed tomography

    SciTech Connect

    Koehler, Thomas; Juergen Engel, Klaus; Roessl, Ewald

    2011-05-15

    Purpose: To investigate the properties of tomographic grating-based phase contrast imaging with respect to its noise power spectrum and the energy dependence of the achievable contrast to noise ratio. Methods: Tomographic simulations of an object with 11 cm diameter constituted of materials of biological interest were conducted at different energies ranging from 25 to 85 keV by using a wave propagation approach. Using a Monte Carlo simulation of the x-ray attenuation within the object, it is verified that the simulated measurement deposits the same dose within the object at each energy. Results: The noise in reconstructed phase contrast computed tomography images shows a maximum at low spatial frequencies. The contrast to noise ratio reaches a maximum around 45 keV for the simulated object. The general dependence of the contrast to noise on the energy appears to be independent of the material. Compared with reconstructed absorption contrast images, the reconstructed phase contrast images show sometimes better, sometimes worse, and sometimes similar contrast to noise, depending on the material and the energy. Conclusions: Phase contrast images provide additional information to the conventional absorption contrast images and might thus be useful for medical applications. However, the observed noise power spectrum in reconstructed phase contrast images implies that the usual trade-off between noise and resolution is less efficient for phase contrast imaging compared with absorption contrast imaging. Therefore, high-resolution imaging is a strength of phase contrast imaging, but low-resolution imaging is not. This might hamper the clinical application of the method, in cases where a low spatial resolution is sufficient for diagnosis.

  2. X-ray fluorescence computed tomography (XFCT) imaging of gold nanoparticle-loaded objects using 110 kVp x-rays.

    PubMed

    Cheong, Seong-Kyun; Jones, Bernard L; Siddiqi, Arsalan K; Liu, Fang; Manohar, Nivedh; Cho, Sang Hyun

    2010-02-07

    A conventional x-ray fluorescence computed tomography (XFCT) technique requires monochromatic synchrotron x-rays to simultaneously determine the spatial distribution and concentration of various elements such as metals in a sample. However, the synchrotron-based XFCT technique appears to be unsuitable for in vivo imaging under a typical laboratory setting. In this study we demonstrated, for the first time to our knowledge, the possibility of performing XFCT imaging of a small animal-sized object containing gold nanoparticles (GNPs) at relatively low concentrations using polychromatic diagnostic energy range x-rays. Specifically, we created a phantom made of polymethyl methacrylate plastic containing two cylindrical columns filled with saline solution at 1 and 2 wt% GNPs, respectively, mimicking tumors/organs within a small animal. XFCT scanning of the phantom was then performed using microfocus 110 kVp x-ray beam and cadmium telluride (CdTe) x-ray detector under a pencil beam geometry after proper filtering of the x-ray beam and collimation of the detector. The reconstructed images clearly identified the locations of the two GNP-filled columns with different contrast levels directly proportional to gold concentration levels. On the other hand, the current pencil-beam implementation of XFCT is not yet practical for routine in vivo imaging tasks with GNPs, especially in terms of scanning time. Nevertheless, with the use of multiple detectors and a limited number of projections, it may still be used to image some objects smaller than the current phantom size. The current investigation suggests several modification strategies of the current XFCT setup, such as the adoption of the quasi-monochromatic cone/fan x-ray beam and XFCT-specific spatial filters or pinhole detector collimators, in order to establish the ultimate feasibility of a bench-top XFCT system for GNP-based preclinical molecular imaging applications.

  3. SAXES, a high resolution spectrometer for resonant x-ray emission in the 400-1600 eV energy range

    SciTech Connect

    Ghiringhelli, G.; Piazzalunga, A.; Dallera, C.; Trezzi, G.; Braicovich, L.; Schmitt, T.; Strocov, V. N.; Betemps, R.; Patthey, L.; Wang, X.; Grioni, M.

    2006-11-15

    We present a 5 m long spectrometer for soft x rays to be used at a synchrotron radiation beamline for resonant x-ray emission spectroscopy and resonant inelastic x-ray scattering in the 400-1600 eV energy range. It is based on a variable line spacing spherical grating (average groove density of 3200 mm{sup -1}, R=58.55 m) and a charge coupled device two dimensional detector. With an x-ray spot on the sample of 10 {mu}m, the targeted resolving power is higher than 10 000 at all energies below 1100 eV and better than 7000 at 1500 eV. The off-line tests made with Al and Mg K{alpha}{sub 1,2} fluorescence emissions indicate that the spectrometer can actually work at 12 000 and 17 000 resolving power at the L{sub 3} edges of Cu (930 eV) and of Ti (470 eV), respectively. SAXES (superadvanced x-ray emission spectrometer) is mounted on a rotating platform allowing to vary the scattering angle from 25 degree sign to 130 degree sign . The spectrometer will be operational at the ADRESS (advanced resonant spectroscopies) beamline of the Swiss Light Source from 2007.

  4. X-ray computed tomography for casting development

    NASA Astrophysics Data System (ADS)

    Georgeson, Gary E.; Crews, Alan R.; Bossi, Richard H.

    1992-09-01

    Computed tomography (CT) has been used to evaluate specific sand casting product examples for technical and economic benefits. The representative results are applicable to other casting technologies as well. CT has been shown to be cost effective in the development of new castings. The areas which would benefit include internal dimensional measurements (eliminating destructive sectioning), specific region inspections, flaw characterization in critical regions (to allow passing or informed repair of castings), and geometric acquisition for CAD/CAM. The quantitative capability of CT allows an engineering evaluation of castings based upon a correlation with performance. This quantitative measurement capability has also been used to measure the benefit of hot isostatic pressing in casting production. CT is also cost effective for engineering design and analysis by providing rapid geometry acquisition for input to computer aided design systems. This is particularly beneficial for components that do not have existing drawings or cannot be adequately defined until they are made for any reason. Presently CT can serve as an engineering aid to casting manufacturing. In order for CT evaluation to become routine in foundry applications, however, casting designers need to call it out as a measurement technique in the original casting design drawings, specifications on the application of CT must be written, contracts must include CT evaluation as a means for accepting casting quality, and lower cost CT systems must be available.

  5. Quantitative strain analysis in analogue modelling experiments: insights from X-ray computed tomography and tomographic image correlation

    NASA Astrophysics Data System (ADS)

    Adam, J.; Klinkmueller, M.; Schreurs, G.; Wieneke, B.

    2009-04-01

    The combination of scaled analogue modelling experiments, advanced research in analogue material mechanics (Lohrmann et al. 2003, Panien et al. 2006), X-ray computed tomography and new high-resolution deformation monitoring techniques (2D/3D Digital Image Correlation) is a new powerful tool not only to examine the evolution and interaction of faulting in analogue models, but also to evaluate relevant controlling factors such as mechanics, sedimentation, erosion and climate. This is of particular interest for applied problems in the energy sector (e.g., structurally complex reservoirs, LG & CO2 underground storage) because the results are essential for geological and seismic interpretation as well as for more realistically constrained fault/fracture simulations and reservoir characterisation. X-ray computed tomography (CT) analysis has been successfully applied to analogue models since the late 1980s. This technique permits visualisation of the interior of an analogue model without destroying it. Technological improvements have resulted in more powerful X-ray CT scanners that allow periodic acquisition of volumetric data sets thus making it possible to follow the 3-D evolution of the model structures with time (e.g. Schreurs et al., 2002, 2003). Optical strain monitoring (Digital Image Correlation, DIC) in analogue experiments (Adam et al., 2005) represents an important advance in quantitative physical modelling and in helping to understand non-linear rock deformation processes. Optical non-intrusive 2D/3D strain and surface flow analysis by DIC is a new methodology in physical modelling that enables the complete quantification of localised and distributed model deformation. The increase in spatial/temporal strain data resolution of several orders of magnitude makes physical modelling - used for decades to visualize the kinematic processes of geological deformation processes - a unique research tool to determine what fundamental physical processes control tectonic

  6. Medical diagnosis and treatment using high-resolution manometry with computer-aided system

    NASA Astrophysics Data System (ADS)

    Pedowski, Tomasz; Wasiewicz, Piotr; Maciejewski, Ryszard; Wallner, Grzegorz

    2010-09-01

    Nowadays computers analyze medical data almost in every diagnosis and treatment steps. We develop new technology which gives us better and more precise diagnosis. We chose esophageal high resolution manometry with impedance (HRMI) which has been considered as a "gold standard" test for esophageal motility. HRMI is the next generation of manometry explanation which is more sensitive and accurate to EFT. Examination allows physicians to ger information about esophageal peristalsis, amplitude and duration of the esophageal contraction and liquid/viscous bolus transit time from mouth through stomach. In 2008 we examined 80 patients using "old" EFT manometry and 80 patients in 2009 using high resolution manometry (HRMI). Everybody got manometry, endoscopy and x-ray examination. We asked about symptoms which we correlate and connect with data from EFT and HRMI. We tried to find a good algorithm for this purpose in order to do a simple and helpful tool for physician to make righta diagnosis and treatment decision. Connection between data and symptoms seems to be right and clear, but finding a good algorithm for given data is the main problem.

  7. In situ and real-time characterization of metal-organic chemical vapor deposition growth by high resolution x-ray diffraction

    SciTech Connect

    Kharchenko, A.; Lischka, K.; Schmidegg, K.; Sitter, H.; Bethke, J.; Woitok, J.

    2005-03-01

    We present an x-ray diffractometer for the analysis of epitaxial layers during (in situ) metal-organic chemical vapor deposition (MOCVD). Our diffractometer has a conventional x-ray source, does not need a goniometer stage, and is not sensitive to precise adjustment of the samples before measurement. It allows us to perform measurements within a few seconds even from rotating and wobbling samples. The first results of laboratory tests performed with our x-ray diffraction system show that it is well suited for in situ and real-time monitoring of the MOCVD growth process. We were able to measure the growth rate of a cubic GaN layer and the intensity and peak position of Bragg reflections of the growing layer in less than 20 s only.

  8. High-resolution water window X-ray imaging of in vivo cells and their products using LiF crystal detectors.

    PubMed

    Bonfigli, Francesca; Faenov, Anatoly; Flora, Francesco; Francucci, Massimo; Gaudio, Pasqualino; Lai, Antonia; Martellucci, Sergio; Montereali, Rosa Maria; Pikuz, Tania; Reale, Lucia; Richetta, Maria; Vincenti, Maria Aurora; Baldacchini, Giuseppe

    2008-01-01

    High contrast imaging of in vivo Chlorella sorokiniana cells with submicron spatial resolution was obtained with a contact water window X-ray microscopy technique using a point-like, laser-plasma produced, water-window X-ray radiation source, and LiF crystals as detectors. This novel type of X-ray imaging detectors is based on photoluminescence of stable electronic point defects, characterized by high intrinsic resolution. The fluorescence images obtained on LiF crystals exposed in single-shot experiments demonstrate the high sensitivity and dynamic range of this new detector. The powerful performances of LiF crystals allowed us to detect the exudates of Chlorella cells in their living medium and their spatial distribution in situ, without any special sample preparation.

  9. WE-G-204-04: Focal Spot Deblurring For High Resolution Amorphous Selenium (aSe) Complementary Metal Oxide Semiconductor (CMOS) X-Ray Detector

    SciTech Connect

    Nagesh, S Setlur; Rana, R; Russ, M; Ionita, C; Bednarek, D; Rudin, S

    2015-06-15

    Purpose: CMOS-based aSe detectors compared to CsI-TFT-based flat panels have the advantages of higher spatial sampling due to smaller pixel size and decreased blurring characteristic of direct rather than indirect detection. For systems with such detectors, the limiting factor degrading image resolution then becomes the focal-spot geometric unsharpness. This effect can seriously limit the use of such detectors in areas such as cone beam computed tomography, clinical fluoroscopy and angiography. In this work a technique to remove the effect of focal-spot blur is presented for a simulated aSe detector. Method: To simulate images from an aSe detector affected with focal-spot blur, first a set of high-resolution images of a stent (FRED from Microvention, Inc.) were acquired using a 75µm pixel size Dexela-Perkin-Elmer detector and averaged to reduce quantum noise. Then the averaged image was blurred with a known Gaussian blur at two different magnifications to simulate an idealized focal spot. The blurred images were then deconvolved with a set of different Gaussian blurs to remove the effect of focal-spot blurring using a threshold-based, inverse-filtering method. Results: The blur was removed by deconvolving the images using a set of Gaussian functions for both magnifications. Selecting the correct function resulted in an image close to the original; however, selection of too wide a function would cause severe artifacts. Conclusion: Experimentally, focal-spot blur at different magnifications can be measured using a pin hole with a high resolution detector. This spread function can be used to deblur the input images that are acquired at corresponding magnifications to correct for the focal spot blur. For CBCT applications, the magnification of specific objects can be obtained using initial reconstructions then corrected for focal-spot blurring to improve resolution. Similarly, if object magnification can be determined such correction may be applied in fluoroscopy and

  10. Image segmentation of nanoscale Zernike phase contrast X-ray computed tomography images

    SciTech Connect

    Kumar, Arjun S.; Mandal, Pratiti; Zhang, Yongjie; Litster, Shawn

    2015-05-14

    Zernike phase contrast is a useful technique for nanoscale X-ray computed tomography (CT) imaging of materials with a low X-ray absorption coefficient. It enhances the image contrast by phase shifting X-ray waves to create changes in amplitude. However, it creates artifacts that hinder the use of traditional image segmentation techniques. We propose an image restoration method that models the X-ray phase contrast optics and the three-dimensional image reconstruction method. We generate artifact-free images through an optimization problem that inverts this model. Though similar approaches have been used for Zernike phase contrast in visible light microscopy, this optimization employs an effective edge detection method tailored to handle Zernike phase contrast artifacts. We characterize this optics-based restoration method by removing the artifacts in and thresholding multiple Zernike phase contrast X-ray CT images to produce segmented results that are consistent with the physical specimens. We quantitatively evaluate and compare our method to other segmentation techniques to demonstrate its high accuracy.

  11. High cone-angle x-ray computed micro-tomography with 186 GigaVoxel datasets

    NASA Astrophysics Data System (ADS)

    Myers, Glenn R.; Latham, Shane J.; Kingston, Andrew M.; Kolomazník, Jan; Krajíček, Václav; Krupka, TomáÅ.¡; Varslot, Trond K.; Sheppard, Adrian P.

    2016-10-01

    X-ray computed micro-tomography systems are able to collect data with sub-micron resolution. This high- resolution imaging has many applications but is particularly important in the study of porous materials, where the sub-micron structure can dictate large-scale physical properties (e.g. carbonates, shales, or human bone). Sample preparation and mounting become diffiult for these materials below 2mm diameter: consequently, a typical ultra-micro-CT reconstruction volume (with sub-micron resolution) will be around 3k x 3k x 10k voxels, with some reconstructions becoming much larger. In this paper, we discuss the hardware (MPI-parallel CPU/GPU) and software (python/C++/CUDA) tools used at the ANU CTlab to reconstruct 186 GigaVoxel datasets.

  12. Synchrotron-based X-ray computed tomography during compression loading of cellular materials

    SciTech Connect

    Cordes, Nikolaus L.; Henderson, Kevin; Stannard, Tyler; Williams, Jason J.; Xiao, Xianghui; Robinson, Mathew W. C.; Schaedler, Tobias A.; Chawla, Nikhilesh; Patterson, Brian M.

    2015-04-29

    Three-dimensional X-ray computed tomography (CT) of in situ dynamic processes provides internal snapshot images as a function of time. Tomograms are mathematically reconstructed from a series of radiographs taken in rapid succession as the specimen is rotated in small angular increments. In addition to spatial resolution, temporal resolution is important. Thus temporal resolution indicates how close together in time two distinct tomograms can be acquired. Tomograms taken in rapid succession allow detailed analyses of internal processes that cannot be obtained by other means. This article describes the state-of-the-art for such measurements acquired using synchrotron radiation as the X-ray source.

  13. Synchrotron-based X-ray computed tomography during compression loading of cellular materials

    DOE PAGES

    Cordes, Nikolaus L.; Henderson, Kevin; Stannard, Tyler; ...

    2015-04-29

    Three-dimensional X-ray computed tomography (CT) of in situ dynamic processes provides internal snapshot images as a function of time. Tomograms are mathematically reconstructed from a series of radiographs taken in rapid succession as the specimen is rotated in small angular increments. In addition to spatial resolution, temporal resolution is important. Thus temporal resolution indicates how close together in time two distinct tomograms can be acquired. Tomograms taken in rapid succession allow detailed analyses of internal processes that cannot be obtained by other means. This article describes the state-of-the-art for such measurements acquired using synchrotron radiation as the X-ray source.

  14. Observations on the Performance of X-Ray Computed Tomography for Dimensional Metrology

    NASA Astrophysics Data System (ADS)

    Corcoran, H. C.; Brown, S. B.; Robson, S.; Speller, R. D.; McCarthy, M. B.

    2016-06-01

    X-ray computed tomography (XCT) is a rising technology within many industries and sectors with a demand for dimensional metrology, defect, void analysis and reverse engineering. There are many variables that can affect the dimensional metrology of objects imaged using XCT, this paper focusses on the effects of beam hardening due to the orientation of the workpiece, in this case a holeplate, and the volume of material the X-rays travel through. Measurements discussed include unidirectional and bidirectional dimensions, radii of cylinders, fit point deviations of the fitted shapes and cylindricity. Results indicate that accuracy and precision of these dimensional measurements are affected in varying amounts, both by the amount of material the X-rays have travelled through and the orientation of the object.

  15. Metal artifact removal (MAR) analysis for the security inspections using the X-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Cho, Hyo Sung; Woo, Tae Ho; Park, Chul Kyu

    2016-10-01

    Using the metal artifact property, it is analyzed for the X-ray computed tomography (CT) in the aspect of the security on the examined places like airport and surveillance areas. Since the importance of terror prevention strategy has been increased, the security application of X-ray CT has the significant remark. One shot X-ray image has the limitation to find out the exact shape to property in the closed box, which could be solved by the CT scanning without the tearing off the box in this work. Cleaner images can be obtained by the advanced technology if the CT scanning is utilized in the security purposes on the secured areas. A metal sample is treated by the metal artifact removal (MAR) method for the enhanced image. The mimicked explosive is experimented for the imaging processing application where the cleaner one is obtained. The procedure is explained and the further study is discussed.

  16. Computer simulations of the X-ray diffraction patterns of imperfect Al/Nb superlattices

    NASA Astrophysics Data System (ADS)

    Baumann, J. R.; Liebemann, E.; Simon, M.; Bucher, E.

    In order to obtain more structural details from X-ray diffraction (XRD) patterns of metallic multilayers we developed a simulation program for XRD patterns of Al/Nb multilayers. We followed the theory of an imperfect one-dimensional superlattice described by Z. Mitura and P. Mikolajczak. Computer simulated patterns are compared with experimentally obtained XRD spectra.

  17. AXIS: A Computer’s Eye View of an X-Ray

    DTIC Science & Technology

    1981-01-01

    accomplish this, the process of film reading is being automated. X-ray radiographs of actual shell are being analyzed and from this analysis computer ... algorithms are being developed to characterize both the digital image of the shell and anomalous points on the shell image. The system will be installed

  18. High-resolution computed tomography of the normal larynx

    SciTech Connect

    Silverman, P.M.; Korobkin, M.

    1983-05-01

    Computed tomography (CT) provides a unique method of evaluating abnormalities of the larynx by virture of its cross-sectional images. Several reports have demonstrated its utility in staging laryngeal carcinoma and defining the extent of injury in cases of laryngeal trauma. In order to appreciate subtle abnormalities of the larynx, a thorough understanding of the normal structures in this small anatomic area is crucial. Although previous studies have defined the normal CT anatomy of the larynx, many of the CT-anatomic correlations of the normal larynx used earlier-generation CT scanners with relatively poor resolution or were limited to transaxial images. High-resolution transaxial, coronal, and sagittal CT in vivo images are correlated with line drawings displaying normal laryngeal anatomy. The exquisite anatomic detail apparent in these images provides a sound basis for understanding subtle abnormalities in pathologic cases. (JMT)

  19. X-ray microtomography of porous media at BNL

    SciTech Connect

    Dowd, B.

    1997-02-01

    This session is comprised of pertinent information about the historical aspects, current status of research, technical achievements, and future plans in X-ray computed microtomography at Brookhaven National Laboratories. An explanation with specifications and diagrams of X-ray instrumentation is provided. Several high resolution 3-D color images of reservoir rock drill cores and other materials are included.

  20. Computational analysis of high resolution unsteady airloads for rotor aeroacoustics

    NASA Technical Reports Server (NTRS)

    Quackenbush, Todd R.; Lam, C.-M. Gordon; Wachspress, Daniel A.; Bliss, Donald B.

    1994-01-01

    The study of helicopter aerodynamic loading for acoustics applications requires the application of efficient yet accurate simulations of the velocity field induced by the rotor's vortex wake. This report summarizes work to date on the development of such an analysis, which builds on the Constant Vorticity Contour (CVC) free wake model, previously implemented for the study of vibratory loading in the RotorCRAFT computer code. The present effort has focused on implementation of an airload reconstruction approach that computes high resolution airload solutions of rotor/rotor-wake interactions required for acoustics computations. Supplementary efforts on the development of improved vortex core modeling, unsteady aerodynamic effects, higher spatial resolution of rotor loading, and fast vortex wake implementations have substantially enhanced the capabilities of the resulting software, denoted RotorCRAFT/AA (AeroAcoustics). Results of validation calculations using recently acquired model rotor data show that by employing airload reconstruction it is possible to apply the CVC wake analysis with temporal and spatial resolution suitable for acoustics applications while reducing the computation time required by one to two orders of magnitude relative to that required by direct calculations. Promising correlation with this body of airload and noise data has been obtained for a variety of rotor configurations and operating conditions.