Sample records for high-sensitivity array observations

  1. Arrays of membrane isolated yttrium-barium-copper-oxide kinetic inductance bolometers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindeman, M. A., E-mail: mark.a.lindeman@jpl.nasa.gov; Bonetti, J. A.; Bumble, B.

    We are developing of arrays of membrane isolated resonator-bolometers, each with a kinetic inductance device (KID) to measure the temperature of the membrane. The KIDs are fabricated out of the high temperature superconductor YBCO to allow operation at relatively high temperatures. The bolometers are designed to offer higher sensitivity than sensors operating at 300 K, but they require less expensive and lighter weight cooling than even more sensitive conventional superconducting detectors operating at lower temperatures. The bolometer arrays are applicable as focal planes in infrared imaging spectrometers, such as for planetary science missions or earth observing satellites. We describe the devicesmore » and present measurements of their sensitivity.« less

  2. Force sensitive carbon nanotube arrays for biologically inspired airflow sensing

    NASA Astrophysics Data System (ADS)

    Maschmann, Matthew R.; Dickinson, Ben; Ehlert, Gregory J.; Baur, Jeffery W.

    2012-09-01

    The compressive electromechanical response of aligned carbon nanotube (CNT) arrays is evaluated for use as an artificial hair sensor (AHS) transduction element. CNT arrays with heights of 12, 75, and 225 µm are examined. The quasi-static and dynamic sensitivity to force, response time, and signal drift are examined within the range of applied stresses predicted by a mechanical model applicable to the conceptual CNT array-based AHS (0-1 kPa). Each array is highly sensitive to compressive loading, with a maximum observed gauge factor of 114. The arrays demonstrate a repeatable response to dynamic cycling after a break-in period of approximately 50 cycles. Utilizing a four-wire measurement electrode configuration, the change in contact resistance between the array and the electrodes is observed to dominate the electromechanical response of the arrays. The response time of the CNT arrays is of the order of 10 ms. When the arrays are subjected to constant stress, mechanical creep is observed that results in a signal drift that generally diminishes the responsiveness of the arrays, particularly at stress approaching 1 kPa. The results of this study serve as a preliminary proof of concept for utilizing CNT arrays as a transduction mechanism for a proposed artificial hair sensor. Such a low profile and light-weight flow sensor is expected to have application in a number of applications including navigation and state awareness of small air vehicles, similar in function to natural hair cell receptors utilized by insects and bats.

  3. The Atacama Cosmology Telescope: The Polarization-Sensitive ACTPol Instrument

    NASA Technical Reports Server (NTRS)

    Thornton, R. J.; Ade, P. A. R.; Aiola, S.; Angile, F. E.; Amiri, M.; Beall, J. A.; Becker, D. T.; Cho, H.-M.; Choi, S. K.; Corlies, P.; hide

    2016-01-01

    The Atacama Cosmology Telescope (ACT) makes high angular resolution measurements of anisotropies in the Cosmic Microwave Background (CMB) at millimeter wavelengths. We describe ACTPol, an upgraded receiver for ACT, which uses feedhorn-coupled, polarization-sensitive detector arrays, a 3deg field of view, 100 mK cryogenics with continuous cooling, and meta material antireflection coatings. ACTPol comprises three arrays with separate cryogenic optics: two arrays at a central frequency of 148 GHz and one array operating simultaneously at both 97 GHz and 148 GHz. The combined instrument sensitivity, angular resolution, and sky coverage are optimized for measuring angular power spectra, clusters via the thermal Sunyaev-Zel'dovich (SZ) and kinetic SZ signals, and CMB lensing due to large-scale structure. The receiver was commissioned with its first 148 GHz array in 2013, observed with both 148 GHz arrays in 2014, and has recently completed its first full season of operations with the full suite of three arrays. This paper provides an overview of the design and initial performance of the receiver and related systems.

  4. The Atacama Cosmology Telescope: The Polarization-sensitive ACTPol Instrument

    NASA Astrophysics Data System (ADS)

    Thornton, R. J.; Ade, P. A. R.; Aiola, S.; Angilè, F. E.; Amiri, M.; Beall, J. A.; Becker, D. T.; Cho, H.-M.; Choi, S. K.; Corlies, P.; Coughlin, K. P.; Datta, R.; Devlin, M. J.; Dicker, S. R.; Dünner, R.; Fowler, J. W.; Fox, A. E.; Gallardo, P. A.; Gao, J.; Grace, E.; Halpern, M.; Hasselfield, M.; Henderson, S. W.; Hilton, G. C.; Hincks, A. D.; Ho, S. P.; Hubmayr, J.; Irwin, K. D.; Klein, J.; Koopman, B.; Li, Dale; Louis, T.; Lungu, M.; Maurin, L.; McMahon, J.; Munson, C. D.; Naess, S.; Nati, F.; Newburgh, L.; Nibarger, J.; Niemack, M. D.; Niraula, P.; Nolta, M. R.; Page, L. A.; Pappas, C. G.; Schillaci, A.; Schmitt, B. L.; Sehgal, N.; Sievers, J. L.; Simon, S. M.; Staggs, S. T.; Tucker, C.; Uehara, M.; van Lanen, J.; Ward, J. T.; Wollack, E. J.

    2016-12-01

    The Atacama Cosmology Telescope (ACT) makes high angular resolution measurements of anisotropies in the Cosmic Microwave Background (CMB) at millimeter wavelengths. We describe ACTPol, an upgraded receiver for ACT, which uses feedhorn-coupled, polarization-sensitive detector arrays, a 3° field of view, 100 mK cryogenics with continuous cooling, and meta material antireflection coatings. ACTPol comprises three arrays with separate cryogenic optics: two arrays at a central frequency of 148 GHz and one array operating simultaneously at both 97 GHz and 148 GHz. The combined instrument sensitivity, angular resolution, and sky coverage are optimized for measuring angular power spectra, clusters via the thermal Sunyaev–Zel’dovich (SZ) and kinetic SZ signals, and CMB lensing due to large-scale structure. The receiver was commissioned with its first 148 GHz array in 2013, observed with both 148 GHz arrays in 2014, and has recently completed its first full season of operations with the full suite of three arrays. This paper provides an overview of the design and initial performance of the receiver and related systems.

  5. The effects of correlated noise in phased-array observations of radio sources

    NASA Technical Reports Server (NTRS)

    Dewey, Rachel J.

    1994-01-01

    Arrays of radio telescopes are now routinely used to provide increased signal-to-noise when observing faint point sources. However, calculation of the achievable sensitivity is complicated if there are sources in the field of view other than the target source. These additional sources not only increase the system temperatures of the individual antennas, but may also contribute significant 'correlated noise' to the effective system temperature of the array. This problem has been of particular interest in the context of tracking spacecraft in the vicinity of radio-bright planets (e.g., Galileo at Jupiter), but it has broader astronomical relevance as well. This paper presents a general formulation of the problem, for the case of a point-like target source in the presence of an additional radio source of arbitrary brightness distribution. We re-derive the well known result that, in the absence of any background sources, a phased array of N indentical antennas is a factor of N more sensitive than a single antenna. We also show that an unphased array of N identical antennas is, on average, no more sensitive than a single antenna if the signals from the individual antennas are combined prior to detection. In the case where a background source is present we show that the effects of correlated noise are highly geometry dependent, and for some astronomical observations may cause significant fluctuations in the array's effective system temperature.

  6. Novel Multiplex Oligonucleotide-Conjugated Bead Suspension Array for Rapid Identification of Enterovirus 71 Subgenogroups▿ §

    PubMed Central

    Wu, Y.; Tan, E. L.; Yeo, A.; Chan, K. P.; Nishimura, H.; Cardosa, M. J.; Poh, C. L.; Quak, S. H.; Chow, Vincent T.

    2011-01-01

    A high-throughput multiplex bead suspension array was developed for the rapid subgenogrouping of EV71 strains, based on single nucleotide polymorphisms observed within the VP1 region with a high sensitivity as low as 1 PFU. Of 33 viral isolates and 55 clinical samples, all EV71 strains were successfully detected and correctly subgenogrouped. PMID:21084510

  7. The Atacama Cosmology Telescope: The Polarization-Sensitive ACTPol Instrument

    DOE PAGES

    Thornton, R. J.; Ade, P. A. R.; Aiola, S.; ...

    2016-12-09

    The Atacama Cosmology Telescope (ACT) makes high angular resolution measurements of anisotropies in the Cosmic Microwave Background (CMB) at millimeter wavelengths. We describe ACTPol, an upgraded receiver for ACT, which uses feedhorn-coupled, polarization-sensitive detector arrays, a 3° field of view, 100 mK cryogenics with continuous cooling, and meta material antireflection coatings. ACTPol comprises three arrays with separate cryogenic optics: two arrays at a central frequency of 148 GHz and one array operating simultaneously at both 97 GHz and 148 GHz. The combined instrument sensitivity, angular resolution, and sky coverage are optimized for measuring angular power spectra, clusters via the thermalmore » Sunyaev–Zel'dovich (SZ) and kinetic SZ signals, and CMB lensing due to large-scale structure. The receiver was commissioned with its first 148 GHz array in 2013, observed with both 148 GHz arrays in 2014, and has recently completed its first full season of operations with the full suite of three arrays. This paper provides an overview of the design and initial performance of the receiver and related systems.« less

  8. THE ATACAMA COSMOLOGY TELESCOPE: THE POLARIZATION-SENSITIVE ACTPol INSTRUMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thornton, R. J.; Ade, P. A. R.; Aiola, S.

    The Atacama Cosmology Telescope (ACT) makes high angular resolution measurements of anisotropies in the Cosmic Microwave Background (CMB) at millimeter wavelengths. We describe ACTPol, an upgraded receiver for ACT, which uses feedhorn-coupled, polarization-sensitive detector arrays, a 3° field of view, 100 mK cryogenics with continuous cooling, and meta material antireflection coatings. ACTPol comprises three arrays with separate cryogenic optics: two arrays at a central frequency of 148 GHz and one array operating simultaneously at both 97 GHz and 148 GHz. The combined instrument sensitivity, angular resolution, and sky coverage are optimized for measuring angular power spectra, clusters via the thermalmore » Sunyaev–Zel’dovich (SZ) and kinetic SZ signals, and CMB lensing due to large-scale structure. The receiver was commissioned with its first 148 GHz array in 2013, observed with both 148 GHz arrays in 2014, and has recently completed its first full season of operations with the full suite of three arrays. This paper provides an overview of the design and initial performance of the receiver and related systems.« less

  9. The Atacama Cosmology Telescope: The Polarization-Sensitive ACTPol Instrument

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thornton, R. J.; Ade, P. A. R.; Aiola, S.

    The Atacama Cosmology Telescope (ACT) makes high angular resolution measurements of anisotropies in the Cosmic Microwave Background (CMB) at millimeter wavelengths. We describe ACTPol, an upgraded receiver for ACT, which uses feedhorn-coupled, polarization-sensitive detector arrays, a 3° field of view, 100 mK cryogenics with continuous cooling, and meta material antireflection coatings. ACTPol comprises three arrays with separate cryogenic optics: two arrays at a central frequency of 148 GHz and one array operating simultaneously at both 97 GHz and 148 GHz. The combined instrument sensitivity, angular resolution, and sky coverage are optimized for measuring angular power spectra, clusters via the thermalmore » Sunyaev–Zel'dovich (SZ) and kinetic SZ signals, and CMB lensing due to large-scale structure. The receiver was commissioned with its first 148 GHz array in 2013, observed with both 148 GHz arrays in 2014, and has recently completed its first full season of operations with the full suite of three arrays. This paper provides an overview of the design and initial performance of the receiver and related systems.« less

  10. Instrument Performance of GISMO, a 2 Millimeter TES Bolometer Camera used at the IRAM 30 m Telescope

    NASA Technical Reports Server (NTRS)

    Staguhn, Johannes

    2008-01-01

    In November of 2007 we demonstrated a monolithic Backshort-Under-Grid (BUG) 8x16 array in the field using our 2 mm wavelength imager GISMO (Goddard IRAM Superconducting 2 Millimeter Observer) at the IRAM 30 m telescope in Spain for astronomical observations. The 2 mm spectral range provides a unique terrestrial window enabling ground-based observations of the earliest active dusty galaxies in the universe and thereby allowing a better constraint on the star formation rate in these objects. The optical design incorporates a 100 mm diameter silicon lens cooled to 4 K, which provides the required fast beam yielding 0.9 lambda/D pixels. With this spatial sampling, GISMO will be very efficient at detecting sources serendipitously in large sky surveys, while the capability for diffraction limited imaging is preserved. The camera provides significantly greater detection sensitivity and mapping speed at this wavelength than has previously been possible. The instrument will fill in the spectral energy distribution of high redshift galaxies at the Rayleigh-Jeans part of the dust emission spectrum, even at the highest redshifts. Here1 will we present early results from our observing run with the first fielded BUG bolometer array. We have developed key technologies to enable highly versatile, kilopixel, infrared through millimeter wavelength bolometer arrays. The Backshort-Under-Grid (BUG) array consists of three components: 1) a transition-edge-sensor (TES) based bolometer array with background-limited sensitivity and high filling factor, 2) a quarter-wave reflective backshort grid providing high optical efficiency, and 3) a superconducting bump-bonded large format Superconducting Quantum Interference Device (SQUID) multiplexer readout. The array is described in more detail elsewhere (Allen et al., this conference). In November of 2007 we demonstrated a monolithic 8x 16 array with 2 mm-pitch detectors in the field using our 2 mm wavelength imager GISMO (Goddard IRAM Superconducting 2 Millimeter Observer) at the IRAM 30 m telescope in Spain for astronomical observations. The 2 mm spectral range provides a unique terrestrial window enabling ground-based observations of the earliest active dusty galaxies in the universe and thereby allowing a better constraint on the star formation rate in these objects. The optical design incorporates a 100 mm diameter silicon lens cooled to 4 K, which provides the required fast beam yielding 0.9 lambda1D pixels. With this spatial sampling, GISMO will be very efficient at detecting sources serendipitously in large sky surveys, while the capability for diffraction limited imaging is preserved. The camera provides significantly greater detection sensitivity and mapping speed at this wavelength than has previously been possible. The instrument will fill in the spectral energy distribution of high redshift galaxies at the Rayleigh-Jeans part of the dust emission spectrum, even at the highest redshifts. Here I will we present early results from our observing run with the first fielded BUG bolometer array.

  11. NIFTE: The Near Infrared Faint-Object Telescope Experiment

    NASA Technical Reports Server (NTRS)

    Bock, James J.; Lange, Andrew E.; Matsumoto, T.; Eisenhardt, Peter B.; Hacking, Perry B.; Schember, Helene R.

    1994-01-01

    The high sensitivity of large format InSb arrays can be used to obtain deep images of the sky at 3-5 micrometers. In this spectral range cool or highly redshifted objects (e.g. brown dwarfs and protogalaxies) which are not visible at shorter wavelengths may be observed. Sensitivity at these wavelengths in ground-based observations is severly limited by the thermal flux from the telescope and from the earth's atmosphere. The Near Infrared Faint-Object Telescope Experiment (NIFTE), a 50 cm cooled rocket-borne telescope combined with large format, high performance InSb arrays, can reach a limiting flux less than 1 micro-Jy(1-sigma) over a large field-of-view in a single flight. In comparison, the Infrared Space Observatory (ISO) will require days of observation to reach a sensitivity more than one order of magnitude worse over a similar area of the sky. The deep 3-5 micrometer images obtained by the rocket-borne telescope will assist in determining the nature of faint red objects detected by ground-based telescopes at 2 micrometers, and by ISO at wavelengths longer than 5 micrometers.

  12. High Frequency High Spectral Resolution Focal Plane Arrays for AtLAST

    NASA Astrophysics Data System (ADS)

    Baryshev, Andrey

    2018-01-01

    Large collecting area single dish telescope such as ATLAST will be especially effective for medium (R 1000) and high (R 50000) spectral resolution observations. Large focal plane array is a natural solution to increase mapping speed. For medium resolution direct detectors with filter banks (KIDs) and or heterodyne technology can be employed. We will analyze performance limits of comparable KID and SIS focal plane array taking into account quantum limit and high background condition of terrestrial observing site. For large heterodyne focal plane arrays, a high current density AlN junctions open possibility of large instantaneous bandwidth >40%. This and possible multi frequency band FPSs presents a practical challenge for spatial sampling and scanning strategies. We will discuss phase array feeds as a possible solution, including a modular back-end system, which can be shared between KID and SIS based FPA. Finally we will discuss achievable sensitivities and pixel co unts for a high frequency (>500 GHz) FPAs and address main technical challenges: LO distribution, wire counts, bias line multiplexing, and monolithic vs. discrete mixer component integration.

  13. Photometric and spectroscopic gamma-ray observations of solar transient phenomena using long duration balloons

    NASA Technical Reports Server (NTRS)

    Pelling, M. R.; Duttweiler, F.; Lin, R. F.; Levedahl, W. K.; Primbach, H.; Curtis, D. W.; Burley, K. C.

    1985-01-01

    A program currently in progress to conduct extended duration spectroscopic and photometric observation of solar X-ray phenomena from balloons is described. High photometric sensitivity to weak hard X-ray bursts is attained using a 600 sq cm array of phoswich scintillators. High spectral resolution for stronger bursts is available from an array of planar germanium detectors. These instruments are carried in a novel balloon gondola dssigned for the 15 to 20 day float durations available through using conventional zero pressure balloons in the radiation controlled (RACOON) mode.

  14. Photometric and spectroscopic gamma-ray observations of solar transient phenomena using long duration balloons

    NASA Astrophysics Data System (ADS)

    Pelling, M. R.; Duttweiler, F.; Lin, R. F.; Levedahl, W. K.; Primbach, H.; Curtis, D. W.; Burley, K. C.

    1985-08-01

    A program currently in progress to conduct extended duration spectroscopic and photometric observation of solar X-ray phenomena from balloons is described. High photometric sensitivity to weak hard X-ray bursts is attained using a 600 sq cm array of phoswich scintillators. High spectral resolution for stronger bursts is available from an array of planar germanium detectors. These instruments are carried in a novel balloon gondola dssigned for the 15 to 20 day float durations available through using conventional zero pressure balloons in the radiation controlled (RACOON) mode.

  15. Science highlights from high-sensitivity pulsar observations with the MWA

    NASA Astrophysics Data System (ADS)

    McSweeney, Samuel; Bhat, Ramesh; Tremblay, Steven; Ord, Stephen

    2016-01-01

    Pulsars are exquisite probes of the turbulent interstellar medium (ISM), capable of resolving structures down to tens of thousands of kilometres. Understanding the ISM is important for many areas of astrophysics, such as galactic dynamics, the chemical evolution of the galaxy, and the identification of timing noise in the search for gravitational waves using pulsar timing arrays. Low frequency observations of pulsars are key, because the strength of propagation effects scales strongly with frequency.We present the Murchison Widefield Array (MWA) as a key science tool for making high quality observations of pulsars at low frequencies (~80-300 MHz). Recently commissioned software for making tied-array beams and the MWA's high time resolution voltage capture system (VCS) allow an order of magnitude increase in sensitivity, vital for pulsar and other time-domain science. A pipeline has now been developed for observing the scintillation patterns of important pulsars at low frequencies, including a new computational technique for measuring the curvature of parabolic arcs in noisy secondary spectra. A program of MWA observations is being undertaken to sample a large number of millisecond pulsars. We present recent highlights including PSR J0437-4715, which yielded a new measurement of scattering screen distance of ~120 pc from Earth, consistent with a Parkes observation at ~730 MHz, and matching the predicted perimeter of the Local Bubble.

  16. The ALPACA Project

    NASA Astrophysics Data System (ADS)

    Takita, Masato

    2017-06-01

    We have started up the ALPACA (Andes Large area PArticle detector for Cosmic ray physics and Astronomy) project. The ALPACA experiment is composed of an 83,000 m2 air shower array and a 5,400 m2 underground muon detector array to make wide field-of-view high-sensitivity observations of high-energy cosmic rays/cosmic gamma rays on the Cerro Estuqueria highland, 4,740 m above sea level around Mount Chacaltaya, Bolivia. We briefly report on the design concept of the new project and its physics targets.

  17. Telescope Array UHECR composition measurement via stereoscopic fluorescence observation

    NASA Astrophysics Data System (ADS)

    Stroman, Thomas; Bergman, Douglas; Telescope Array Collaboration

    2016-03-01

    When entering Earth's atmosphere at ultra-high energies, cosmic rays (UHECRs) produce extensive air showers whose longitudinal development is influenced by the incident primary particle's mass. Each longitudinal shower profile reaches its maximum particle count at an atmospheric slant depth Xmax, and the distributions of observed Xmax values can be compared to those predicted by detailed simulations of the air-shower physics and the detector; accurately simulated compositions that most closely resemble that found in nature will produce the best agreement between predicted and observed Xmax distributions. This is the basis of composition measurement at the Telescope Array experiment, the largest and most sensitive UHECR detector in the northern hemisphere. At the perimeter of a large surface-detector array are three fluorescence telescope stations, whose overlapping apertures enable high-precision reconstruction of Xmax from stereoscopic observation of air-shower longitudinal profiles. We present the distribution of Xmax observed during eight years of operation, and from comparisons with several simulated combinations of composition and high-energy hadronic physics, we show that a low primary mass is favored at E >10 18 . 2 eV.

  18. Experimental evidence for the sensitivity of the air-shower radio signal to the longitudinal shower development

    NASA Astrophysics Data System (ADS)

    Apel, W. D.; Arteaga, J. C.; Bähren, L.; Bekk, K.; Bertaina, M.; Biermann, P. L.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Buchholz, P.; Cantoni, E.; Chiavassa, A.; Daumiller, K.; de Souza, V.; Di Pierro, F.; Doll, P.; Engel, R.; Falcke, H.; Finger, M.; Fuchs, B.; Fuhrmann, D.; Gemmeke, H.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Horneffer, A.; Huber, D.; Huege, T.; Isar, P. G.; Kampert, K.-H.; Kang, D.; Krömer, O.; Kuijpers, J.; Link, K.; Łuczak, P.; Ludwig, M.; Mathes, H. J.; Melissas, M.; Morello, C.; Oehlschläger, J.; Palmieri, N.; Pierog, T.; Rautenberg, J.; Rebel, H.; Roth, M.; Rühle, C.; Saftoiu, A.; Schieler, H.; Schmidt, A.; Schröder, F. G.; Sima, O.; Toma, G.; Trinchero, G. C.; Weindl, A.; Wochele, J.; Wommer, M.; Zabierowski, J.; Zensus, J. A.

    2012-04-01

    We observe a correlation between the slope of radio lateral distributions and the mean muon pseudorapidity of 59 individual cosmic-ray-air-shower events. The radio lateral distributions are measured with LOPES, a digital radio interferometer colocated with the multidetector-air-shower array KASCADE-Grande, which includes a muon-tracking detector. The result proves experimentally that radio measurements are sensitive to the longitudinal development of cosmic-ray air showers. This is one of the main prerequisites for using radio arrays for ultra-high-energy particle physics and astrophysics.

  19. Interfacing of differential-capacitive biomimetic hair flow-sensors for optimal sensitivity

    NASA Astrophysics Data System (ADS)

    Dagamseh, A. M. K.; Bruinink, C. M.; Wiegerink, R. J.; Lammerink, T. S. J.; Droogendijk, H.; Krijnen, G. J. M.

    2013-03-01

    Biologically inspired sensor-designs are investigated as a possible path to surpass the performance of more traditionally engineered designs. Inspired by crickets, artificial hair sensors have shown the ability to detect minute flow signals. This paper addresses developments in the design, fabrication, interfacing and characterization of biomimetic hair flow-sensors towards sensitive high-density arrays. Improvement of the electrode design of the hair sensors has resulted in a reduction of the smallest hair movements that can be measured. In comparison to the arrayed hairs-sensor design, the detection-limit was arguably improved at least twelve-fold, down to 1 mm s-1 airflow amplitude at 250 Hz as measured in a bandwidth of 3 kHz. The directivity pattern closely resembles a figure-of-eight. These sensitive hair-sensors open possibilities for high-resolution spatio-temporal flow pattern observations.

  20. Sensitive observations with the Spacelab 2 infrared telescope

    NASA Technical Reports Server (NTRS)

    Young, E. T.; Rieke, G. H.; Gautier, T. N.; Hoffmann, W. F.; Low, F. J.; Poteet, W.; Fazio, G. G.; Koch, D.; Traub, W. A.; Urban, E. W.

    1983-01-01

    The small helium-cooled infrared telescope (Spacelab IRT) is a multiband instrument capable of highly sensitive observations from space. The experiment consists of a cryogenically cooled, very well baffled telescope with a ten channel focal plane array. During the Spacelab 2 flight of the Space Shuttle, this instrument will make observations between 5 and 120 micron wavelength that will be background limited by the expected zodiacal emission. Design considerations necessitated by this level of performance are discussed in this paper. In particular, the operation of a very sensitive focal plane array in the space environment is described. The Spacelab IRT will be used to map the extended, low-surface brightness celestial emission. During the seven day length of the mission better than 70 percent sky coverage is expected. The instrument will also be used to measure the infrared contamination environment of the Space Shuttle. This information will be important in the development of the next generation of infrared astronomical instruments. The performance of the Spacelab IRT, in particular its sensitivity to the contamination environment is detailed.

  1. Observation of Multi-TeV Gamma Rays from the Crab Nebula using the Tibet Air Shower Array.

    PubMed

    Amenomori; Ayabe; Cao; Danzengluobu; Ding; Feng; Fu; Guo; He; Hibino; Hotta; Huang; Huo; Izu; Jia; Kajino; Kasahara; Katayose; Labaciren; Li; Lu; Lu; Luo; Meng; Mizutani; Mu; Nanjo; Nishizawa; Ohnishi; Ohta; Ouchi; Ren; Saito; Sakata; Sasaki; Shi; Shibata; Shiomi; Shirai; Sugimoto; Taira; Tan; Tateyama; Torii; Utsugi; Wang; Wang; Xu; Yamamoto; Yu; Yuan; Yuda; Zhang; Zhang; Zhang; Zhang; Zhang; Zhaxisangzhu; Zhaxiciren; Zhou; Collaboration)

    1999-11-10

    The Tibet experiment, operating at Yangbajing (4300 m above sea level), is the lowest energy air shower array, and the new high-density array constructed in 1996 is sensitive to gamma-ray air showers at energies as low as 3 TeV. With this new array, the Crab Nebula was observed in multi-TeV gamma-rays and a signal was detected at the 5.5 sigma level. We also obtained the energy spectrum of gamma-rays in the energy region above 3 TeV which partially overlaps those observed with imaging atmospheric Cerenkov telescopes. The Crab spectrum observed in this energy region can be represented by the power-law fit dJ&parl0;E&parr0;&solm0;dE=&parl0;4.61+/-0.90&parr0;x10-12&parl0;E&solm0;3 TeV&parr0;-2.62+/-0.17 cm-2 s-1 TeV-1. This is the first observation of gamma-ray signals from point sources with a conventional air shower array using scintillation detectors.

  2. The First Multichroic Polarimeter Array on the Atacama Cosmology Telescope: Characterization and Performance

    NASA Technical Reports Server (NTRS)

    Ho, S. P.; Pappas, C. G.; Austermann, J.; Beall, J. A.; Becker, D.; Choi, S. K.; Datta, R.; Duff, S. M.; Gallardo, P. A.; Grace, E.; hide

    2016-01-01

    The Atacama Cosmology Telescope Polarimeter (ACTPol) is a polarization sensitive receiver for the 6-meter Atacama Cosmology Telescope (ACT) and measures the small angular scale polarization anisotropies in the cosmic microwave background (CMB). The full focal plane is composed of three detector arrays, containing over 3000 transition edge sensors (TES detectors) in total. The first two detector arrays, observing at 146 gigahertz, were deployed in 2013 and 2014, respectively. The third and final array is composed of multichroic pixels sensitive to both 90 and 146 gigahertz and saw first light in February 2015. Fabricated at NIST, this dichroic array consists of 255 pixels, with a total of 1020 polarization sensitive bolometers and is coupled to the telescope with a monolithic array of broad-band silicon feedhorns. The detectors are read out using time-division SQUID multiplexing and cooled by a dilution refrigerator at 110 meter Kelvins. We present an overview of the assembly and characterization of this multichroic array in the lab, and the initial detector performance in Chile. The detector array has a TES detector electrical yield of 85 percent, a total array sensitivity of less than 10 microns Kelvin root mean square speed, and detector time constants and saturation powers suitable for ACT CMB observations.

  3. The First Multichroic Polarimeter Array on the Atacama Cosmology Telescope: Characterization and Performance

    NASA Astrophysics Data System (ADS)

    Ho, S. P.; Pappas, C. G.; Austermann, J.; Beall, J. A.; Becker, D.; Choi, S. K.; Datta, R.; Duff, S. M.; Gallardo, P. A.; Grace, E.; Hasselfield, M.; Henderson, S. W.; Hilton, G. C.; Hubmayr, J.; Koopman, B. J.; Lanen, J. V.; Li, D.; McMahon, J.; Nati, F.; Niemack, M. D.; Niraula, P.; Salatino, M.; Schillaci, A.; Schmitt, B. L.; Simon, S. M.; Staggs, S. T.; Stevens, J. R.; Ward, J. T.; Wollack, E. J.; Vavagiakis, E. M.

    2016-08-01

    The Atacama Cosmology Telescope Polarimeter (ACTPol) is a polarization sensitive receiver for the 6-m Atacama Cosmology Telescope (ACT) and measures the small angular scale polarization anisotropies in the cosmic microwave background (CMB). The full focal plane is composed of three detector arrays, containing over 3000 transition edge sensors (TES detectors) in total. The first two detector arrays, observing at 146 GHz, were deployed in 2013 and 2014, respectively. The third and final array is composed of multichroic pixels sensitive to both 90 and 146 GHz and saw first light in February 2015. Fabricated at NIST, this dichroic array consists of 255 pixels, with a total of 1020 polarization sensitive bolometers and is coupled to the telescope with a monolithic array of broad-band silicon feedhorns. The detectors are read out using time-division SQUID multiplexing and cooled by a dilution refrigerator at 110 mK. We present an overview of the assembly and characterization of this multichroic array in the lab, and the initial detector performance in Chile. The detector array has a TES detector electrical yield of 85 %, a total array sensitivity of less than 10 \\upmu K√{ {s}}, and detector time constants and saturation powers suitable for ACT CMB observations.

  4. A Census of Southern Pulsars at 185 MHz

    NASA Astrophysics Data System (ADS)

    Xue, Mengyao; Bhat, N. D. R.; Tremblay, S. E.; Ord, S. M.; Sobey, C.; Swainston, N. A.; Kaplan, D. L.; Johnston, Simon; Meyers, B. W.; McSweeney, S. J.

    2017-12-01

    The Murchison Widefield Array, and its recently developed Voltage Capture System, facilitates extending the low-frequency range of pulsar observations at high-time and -frequency resolution in the Southern Hemisphere, providing further information about pulsars and the ISM. We present the results of an initial time-resolved census of known pulsars using the Murchison Widefield Array. To significantly reduce the processing load, we incoherently sum the detected powers from the 128 Murchison Widefield Array tiles, which yields 10% of the attainable sensitivity of the coherent sum. This preserves the large field-of-view ( 450 deg2 at 185 MHz), allowing multiple pulsars to be observed simultaneously. We developed a WIde-field Pulsar Pipeline that processes the data from each observation and automatically folds every known pulsar located within the beam. We have detected 50 pulsars to date, 6 of which are millisecond pulsars. This is consistent with our expectation, given the telescope sensitivity and the sky coverage of the processed data ( 17 000 deg2). For 10 pulsars, we present the lowest frequency detections published. For a subset of the pulsars, we present multi-frequency pulse profiles by combining our data with published profiles from other telescopes. Since the Murchison Widefield Array is a low-frequency precursor to the Square Kilometre Array, we use our census results to forecast that a survey using the low-frequency component of the Square Kilometre Array Phase 1 can potentially detect around 9 400 pulsars.

  5. Infrared sensors for Earth observation missions

    NASA Astrophysics Data System (ADS)

    Ashcroft, P.; Thorne, P.; Weller, H.; Baker, I.

    2007-10-01

    SELEX S&AS is developing a family of infrared sensors for earth observation missions. The spectral bands cover shortwave infrared (SWIR) channels from around 1μm to long-wave infrared (LWIR) channels up to 15μm. Our mercury cadmium telluride (MCT) technology has enabled a sensor array design that can satisfy the requirements of all of the SWIR and medium-wave infrared (MWIR) bands with near-identical arrays. This is made possible by the combination of a set of existing technologies that together enable a high degree of flexibility in the pixel geometry, sensitivity, and photocurrent integration capacity. The solution employs a photodiode array under the control of a readout integrated circuit (ROIC). The ROIC allows flexible geometries and in-pixel redundancy to maximise operability and reliability, by combining the photocurrent from a number of photodiodes into a single pixel. Defective or inoperable diodes (or "sub-pixels") can be deselected with tolerable impact on the overall pixel performance. The arrays will be fabricated using the "loophole" process in MCT grown by liquid-phase epitaxy (LPE). These arrays are inherently robust, offer high quantum efficiencies and have been used in previous space programs. The use of loophole arrays also offers access to SELEX's avalanche photodiode (APD) technology, allowing low-noise, highly uniform gain at the pixel level where photon flux is very low.

  6. Progress Towards High-Sensitivity Arrays of Detectors of Sub-mm Radiation using Superconducting Tunnel Junctions with Radio-Frequency Single-Electron Transistors

    NASA Technical Reports Server (NTRS)

    Stevenson, T. R.; Hsieh, W.-T.; Li, M. J.; Stahle, C. M.; Wollack, E. J.; Schoelkopf, R. J.; Krebs, Carolyn (Technical Monitor)

    2002-01-01

    The science drivers for the SPIRIT/SPECS missions demand sensitive, fast, compact, low-power, large-format detector arrays for high resolution imaging and spectroscopy in the far infrared and submillimeter. Detector arrays with 10,000 pixels and sensitivity less than 10(exp 20)-20 W/Hz(exp 20)0.5 are needed. Antenna-coupled superconducting tunnel junction detectors with integrated rf single-electron transistor readout amplifiers have the potential for achieving this high level of sensitivity, and can take advantage of an rf multiplexing technique when forming arrays. The device consists of an antenna structure to couple radiation into a small superconducting volume and cause quasiparticle excitations, and a single-electron transistor to measure currents through tunnel junction contacts to the absorber volume. We will describe optimization of device parameters, and recent results on fabrication techniques for producing devices with high yield for detector arrays. We will also present modeling of expected saturation power levels, antenna coupling, and rf multiplexing schemes.

  7. Discrimination of complex mixtures by a colorimetric sensor array: coffee aromas.

    PubMed

    Suslick, Benjamin A; Feng, Liang; Suslick, Kenneth S

    2010-03-01

    The analysis of complex mixtures presents a difficult challenge even for modern analytical techniques, and the ability to discriminate among closely similar such mixtures often remains problematic. Coffee provides a readily available archetype of such highly multicomponent systems. The use of a low-cost, sensitive colorimetric sensor array for the detection and identification of coffee aromas is reported. The color changes of the sensor array were used as a digital representation of the array response and analyzed with standard statistical methods, including principal component analysis (PCA) and hierarchical clustering analysis (HCA). PCA revealed that the sensor array has exceptionally high dimensionality with 18 dimensions required to define 90% of the total variance. In quintuplicate runs of 10 commercial coffees and controls, no confusions or errors in classification by HCA were observed in 55 trials. In addition, the effects of temperature and time in the roasting of green coffee beans were readily observed and distinguishable with a resolution better than 10 degrees C and 5 min, respectively. Colorimetric sensor arrays demonstrate excellent potential for complex systems analysis in real-world applications and provide a novel method for discrimination among closely similar complex mixtures.

  8. Discrimination of Complex Mixtures by a Colorimetric Sensor Array: Coffee Aromas

    PubMed Central

    Suslick, Benjamin A.; Feng, Liang; Suslick, Kenneth S.

    2010-01-01

    The analysis of complex mixtures presents a difficult challenge even for modern analytical techniques, and the ability to discriminate among closely similar such mixtures often remains problematic. Coffee provides a readily available archetype of such highly multicomponent systems. The use of a low-cost, sensitive colorimetric sensor array for the detection and identification of coffee aromas is reported. The color changes of the sensor array were used as a digital representation of the array response and analyzed with standard statistical methods, including principal component analysis (PCA) and hierarchical clustering analysis (HCA). PCA revealed that the sensor array has exceptionally high dimensionality with 18 dimensions required to define 90% of the total variance. In quintuplicate runs of 10 commercial coffees and controls, no confusions or errors in classification by HCA were observed in 55 trials. In addition, the effects of temperature and time in the roasting of green coffee beans were readily observed and distinguishable with a resolution better than 10 °C and 5 min, respectively. Colorimetric sensor arrays demonstrate excellent potential for complex systems analysis in real-world applications and provide a novel method for discrimination among closely similar complex mixtures. PMID:20143838

  9. Observations of Cygnus X-3 above 10(15) eV from 1979 - 1984

    NASA Technical Reports Server (NTRS)

    Lambert, A.; Lloyd-Evans, J.; Perrett, J. C.; Reid, R. J. O.; Watson, A. A.; West, A. A.

    1985-01-01

    The ultra high energy gamma-ray source, cygnus X-3, has been observed more or less continuously with an array sensitive to 10 to the 15th power ev primaries between 1 Jan. 1979 and 31 Dec. 1984. There is evidence for time variability in the phase of gamma-ray emission over this period.

  10. Science with the ASTRI mini-array for the Cherenkov Telescope Array: blazars and fundamental physics

    NASA Astrophysics Data System (ADS)

    Bonnoli, Giacomo; Tavecchio, Fabrizio; Giuliani, Andrea; Bigongiari, Ciro; Di Pierro, Federico; Stamerra, Antonio; Pareschi, Giovanni; Vercellone, Stefano; ASTRI Collaboration; CTA Consortium

    2016-05-01

    ASTRI (“Astronomia a Specchi con Tecnologia Replicante Italiana”) is a flagship project of the Italian Ministry of Research (MIUR), devoted to the realization, operation and scientific validation of an end-to-end prototype for the Small Size Telescope (SST) envisaged to become part of the Cherenkov Telescope Array (CTA). The ASTRI SST-2M telescope prototype is characterized by a dual mirror, Schwarzschild-Couder optical design and a compact camera based on silicon photo-multipliers. It will be sensitive to multi-TeV very high energy (VHE) gamma rays up to 100 TeV, with a PSF ~ 6’ and a wide (9.6°) unaberrated optical field of view. Right after validation of the design in single-dish observations at the Serra La Nave site (Sicily, Italy) during 2015, the ASTRI collaboration will be able to start deployment, at the final CTA southern site, of the ASTRI mini-array, proposed to constitute the very first CTA precursor. Counting 9 ASTRI SST-2M telescopes, the ASTRI mini-array will overtake current IACT systems in differential sensitivity above 5 TeV, thus allowing unprecedented observations of known and predicted bright TeV emitters in this band, including some extragalactic sources such as extreme high-peaked BL Lacs with hard spectra. We exploited the ASTRI scientific simulator ASTRIsim in order to understand the feasibility of observations tackling blazar and cosmic ray physics, including discrimination of hadronic and leptonic scenarios for the VHE emission from BL Lac relativistic jets and indirect measurements of the intergalactic magnetic field and of the extragalactic background light. We selected favorable targets, outlining observation modes, exposure times, multi-wavelength coverage needed and the results expected. Moreover, the perspectives for observation of effects due to the existence of axion-like particles or to Lorentz invariance violations have been investigated.

  11. Dust devil signatures in infrasound records of the International Monitoring System

    NASA Astrophysics Data System (ADS)

    Lorenz, Ralph D.; Christie, Douglas

    2015-03-01

    We explore whether dust devils have a recognizable signature in infrasound array records, since several Comprehensive Nuclear-Test-Ban Treaty verification stations conducting continuous measurements with microbarometers are in desert areas which see dust devils. The passage of dust devils (and other boundary layer vortices, whether dust laden or not) causes a local temporary drop in pressure: the high-pass time domain filtering in microbarometers results in a "heartbeat" signature, which we observe at the Warramunga station in Australia. We also observe a ~50 min pseudoperiodicity in the occurrence of these signatures and some higher-frequency infrasound. Dust devils do not significantly degrade the treaty verification capability. The pipe arrays for spatial averaging used in infrasound monitoring degrade the detection efficiency of small devils, but the long observation time may allow a useful census of large vortices, and thus, the high-sensitivity infrasonic array data from the monitoring network can be useful in studying columnar vortices in the lower atmosphere.

  12. Surface plasmon resonance imaging system with Mach-Zehnder phase-shift interferometry for DNA micro-array hybridization

    NASA Astrophysics Data System (ADS)

    Hsiu, Feng-Ming; Chen, Shean-Jen; Tsai, Chien-Hung; Tsou, Chia-Yuan; Su, Y.-D.; Lin, G.-Y.; Huang, K.-T.; Chyou, Jin-Jung; Ku, Wei-Chih; Chiu, S.-K.; Tzeng, C.-M.

    2002-09-01

    Surface plasmon resonance (SPR) imaging system is presented as a novel technique based on modified Mach-Zehnder phase-shifting interferometry (PSI) for biomolecular interaction analysis (BIA), which measures the spatial phase variation of a resonantly reflected light in biomolecular interaction. In this technique, the micro-array SPR biosensors with over a thousand probe NDA spots can be detected simultaneously. Owing to the feasible and swift measurements, the micro-array SPR biosensors can be extensively applied to the nonspecific adsorption of protein, the membrane/protein interactions, and DNA hybridization. The detection sensitivity of the SPR PSI imaging system is improved to about 1 pg/mm2 for each spot over the conventional SPR imaging systems. The SPR PSI imaging system and its SPR sensors have been successfully used to observe slightly index change in consequence of argon gas flow through the nitrogen in real time, with high sensitivity, and at high-throughout screening rates.

  13. Sensitivity of the Cherenkov Telescope Array to the Detection of Intergalactic Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Meyer, Manuel; Conrad, Jan; Dickinson, Hugh

    2016-08-01

    Very high energy (VHE; energy E ≳ 100 GeV) γ-rays originating from extragalactic sources undergo pair production with low-energy photons of background radiation fields. These pairs can inverse-Compton-scatter background photons, initiating an electromagnetic cascade. The spatial and temporal structure of this secondary γ-ray signal is altered as the {e}+{e}- pairs are deflected in an intergalactic magnetic field (IGMF). We investigate how VHE observations with the future Cherenkov Telescope Array, with its high angular resolution and broad energy range, can potentially probe the IGMF. We identify promising sources and simulate γ-ray spectra over a wide range of values of the IGMF strength and coherence length using the publicly available ELMAG Monte Carlo code. Combining simulated observations in a joint likelihood approach, we find that current limits on the IGMF can be significantly improved. The projected sensitivity depends strongly on the time a source has been γ-ray active and on the emitted maximum γ-ray energy.

  14. Rapid Characterization of Bacterial Electrogenicity Using a Single-Sheet Paper-Based Electrofluidic Array

    PubMed Central

    Gao, Yang; Hassett, Daniel J.; Choi, Seokheun

    2017-01-01

    Electrogenicity, or bacterial electron transfer capacity, is an important application which offers environmentally sustainable advances in the fields of biofuels, wastewater treatment, bioremediation, desalination, and biosensing. Significant boosts in this technology can be achieved with the growth of synthetic biology that manipulates microbial electron transfer pathways, thereby potentially significantly improving their electrogenic potential. There is currently a need for a high-throughput, rapid, and highly sensitive test array to evaluate the electrogenic properties of newly discovered and/or genetically engineered bacterial species. In this work, we report a single-sheet, paper-based electrofluidic (incorporating both electronic and fluidic structure) screening platform for rapid, sensitive, and potentially high-throughput characterization of bacterial electrogenicity. This novel screening array uses (i) a commercially available wax printer for hydrophobic wax patterning on a single sheet of paper and (ii) water-dispersed electrically conducting polymer mixture, poly(3,4-ethylenedioxythiophene):polystyrene sulfonate, for full integration of electronic and fluidic components into the paper substrate. The engineered 3-D, microporous, hydrophilic, and conductive paper structure provides a large surface area for efficient electron transfer. This results in rapid and sensitive power assessment of electrogenic bacteria from a microliter sample volume. We validated the effectiveness of the sensor array using hypothesis-driven genetically modified Pseudomonas aeruginosa mutant strains. Within 20 min, we observed that the sensor platform successfully measured the electricity-generating capacities of five isogenic mutants of P. aeruginosa while distinguishing their differences from genetically unmodified bacteria. PMID:28798914

  15. Next-generation Event Horizon Telescope developments: new stations for enhanced imaging

    NASA Astrophysics Data System (ADS)

    Palumbo, Daniel; Johnson, Michael; Doeleman, Sheperd; Chael, Andrew; Bouman, Katherine

    2018-01-01

    The Event Horizon Telescope (EHT) is a multinational Very Long Baseline Interferometry (VLBI) network of dishes joined to resolve general relativistic behavior near a supermassive black hole. The imaging quality of the EHT is largely dependent upon the sensitivity and spatial frequency coverage of the many baselines between its constituent telescopes. The EHT already contains many highly sensitive dishes, including the crucial Atacama Large Millimeter/Submillimeter Array (ALMA), making it viable to add smaller, cheaper telescopes to the array, greatly improving future capabilities of the EHT. We develop tools for optimizing the positions of new dishes in planned arrays. We also explore the feasibility of adding small orbiting dishes to the EHT, and develop orbital optimization tools for space-based VLBI imaging. Unlike the Millimetron mission planned to be at L2, we specifically treat near-earth orbiters, and find rapid filling of spatial frequency coverage across a large range of baseline lengths. Finally, we demonstrate significant improvement in image quality when adding small dishes to planned arrays in simulated observations.

  16. Evaluation of the shear force of single cancer cells by vertically aligned carbon nanotubes suitable for metastasis diagnosis.

    PubMed

    Abdolahad, M; Mohajerzadeh, S; Janmaleki, M; Taghinejad, H; Taghinejad, M

    2013-03-01

    Vertically aligned carbon nanotube (VACNT) arrays have been demonstrated as probes for rapid quantifying of cancer cell deformability with high resolution. Through entrapment of various cancer cells on CNT arrays, the deflections of the nanotubes during cell deformation were used to derive the lateral cell shear force using a large deflection mode method. It is observed that VACNT beams act as sensitive and flexible agents, which transfer the shear force of cells trapped on them by an observable deflection. The metastatic cancer cells have significant deformable structures leading to a further cell traction force (CTF) than primary cancerous one on CNT arrays. The elasticity of different cells could be compared by their CTF measurement on CNT arrays. This study presents a nanotube-based methodology for quantifying the single cell mechanical behavior, which could be useful for understanding the metastatic behavior of cells.

  17. Microstructured graphene arrays for highly sensitive flexible tactile sensors.

    PubMed

    Zhu, Bowen; Niu, Zhiqiang; Wang, Hong; Leow, Wan Ru; Wang, Hua; Li, Yuangang; Zheng, Liyan; Wei, Jun; Huo, Fengwei; Chen, Xiaodong

    2014-09-24

    A highly sensitive tactile sensor is devised by applying microstructured graphene arrays as sensitive layers. The combination of graphene and anisotropic microstructures endows this sensor with an ultra-high sensitivity of -5.53 kPa(-1) , an ultra-fast response time of only 0.2 ms, as well as good reliability, rendering it promising for the application of tactile sensing in artificial skin and human-machine interface. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. A novel lab-on-chip platform with integrated solid phase PCR and Supercritical Angle Fluorescence (SAF) microlens array for highly sensitive and multiplexed pathogen detection.

    PubMed

    Hung, Tran Quang; Chin, Wai Hoe; Sun, Yi; Wolff, Anders; Bang, Dang Duong

    2017-04-15

    Solid-phase PCR (SP-PCR) has become increasingly popular for molecular diagnosis and there have been a few attempts to incorporate SP-PCR into lab-on-a-chip (LOC) devices. However, their applicability for on-line diagnosis is hindered by the lack of sensitive and portable on-chip optical detection technology. In this paper, we addressed this challenge by combining the SP-PCR with super critical angle fluorescence (SAF) microlens array embedded in a microchip. We fabricated miniaturized SAF microlens array as part of a microfluidic chamber in thermoplastic material and performed multiplexed SP-PCR directly on top of the SAF microlens array. Attribute to the high fluorescence collection efficiency of the SAF microlens array, the SP-PCR assay on the LOC platform demonstrated a high sensitivity of 1.6 copies/µL, comparable to off-chip detection using conventional laser scanner. The combination of SP-PCR and SAF microlens array allows for on-chip highly sensitive and multiplexed pathogen detection with low-cost and compact optical components. The LOC platform would be widely used as a high-throughput biosensor to analyze food, clinical and environmental samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Interferometric observations of large biologically interesting interstellar and cometary molecules

    PubMed Central

    Snyder, Lewis E.

    2006-01-01

    Interferometric observations of high-mass regions in interstellar molecular clouds have revealed hot molecular cores that have substantial column densities of large, partly hydrogen-saturated molecules. Many of these molecules are of interest to biology and thus are labeled “biomolecules.” Because the clouds containing these molecules provide the material for star formation, they may provide insight into presolar nebular chemistry, and the biomolecules may provide information about the potential of the associated interstellar chemistry for seeding newly formed planets with prebiotic organic chemistry. In this overview, events are outlined that led to the current interferometric array observations. Clues that connect this interstellar hot core chemistry to the solar system can be found in the cometary detection of methyl formate and the interferometric maps of cometary methanol. Major obstacles to understanding hot core chemistry remain because chemical models are not well developed and interferometric observations have not been very sensitive. Differentiation in the molecular isomers glycolaldehdye, methyl formate, and acetic acid has been observed, but not explained. The extended source structure for certain sugars, aldehydes, and alcohols may require nonthermal formation mechanisms such as shock heating of grains. Major advances in understanding the formation chemistry of hot core species can come from observations with the next generation of sensitive, high-resolution arrays. PMID:16894168

  20. Maturity of lumped element kinetic inductance detectors for space-borne instruments in the range between 80 and 180 GHz

    NASA Astrophysics Data System (ADS)

    Catalano, A.; Benoit, A.; Bourrion, O.; Calvo, M.; Coiffard, G.; D'Addabbo, A.; Goupy, J.; Le Sueur, H.; Macías-Pérez, J.; Monfardini, A.

    2016-07-01

    This work intends to give the state-of-the-art of our knowledge of the performance of lumped element kinetic inductance detectors (LEKIDs) at millimetre wavelengths (from 80 to 180 GHz). We evaluate their optical sensitivity under typical background conditions that are representative of a space environment and their interaction with ionising particles. Two LEKID arrays, originally designed for ground-based applications and composed of a few hundred pixels each, operate at a central frequency of 100 and 150 GHz (Δν/ν about 0.3). Their sensitivities were characterised in the laboratory using a dedicated closed-cycle 100 mK dilution cryostat and a sky simulator, allowing for the reproduction of realistic, space-like observation conditions. The impact of cosmic rays was evaluated by exposing the LEKID arrays to alpha particles (241Am) and X sources (109Cd), with a read-out sampling frequency similar to those used for Planck HFI (about 200 Hz), and also with a high resolution sampling level (up to 2 MHz) to better characterise and interpret the observed glitches. In parallel, we developed an analytical model to rescale the results to what would be observed by such a LEKID array at the second Lagrangian point. We show that LEKID arrays behave adequately in space-like conditions with a measured noise equivalent power close to the cosmic microwave background photon noise and an impact of cosmic rays smaller with respect to those observed with Planck satellite detectors.

  1. Feedhorn-Coupled Transition-Edge Superconducting Bolometer Arrays for Cosmic Microwave Background Polarimetry

    NASA Technical Reports Server (NTRS)

    Hubmayr, J.; Austermann, J.; Beall, J.; Becker, D.; Cho, H.-M.; Datta, R.; Duff, S. M.; Grace, E.; Halverson, N.; Henderson, S. W.; hide

    2015-01-01

    NIST produces large-format, dual-polarization-sensitive detector arrays for a broad range of frequencies (30-1400 GHz). Such arrays enable a host of astrophysical measurements. Detectors optimized for cosmic microwave background observations are monolithic, polarization-sensitive arrays based on feedhorn and planar Nb antenna-coupled transition-edge superconducting (TES) bolometers. Recent designs achieve multiband, polarimetric sensing within each spatial pixel. In this proceeding, we describe our multichroic, feedhorn-coupled design; demonstrate performance at 70-380 GHz; and comment on current developments for implementation of these detector arrays in the advanced Atacama Cosmology Telescope receiver

  2. Discriminating different type waves from pressure and ground motion observation in the seafloor by DONET cabled observation network.

    NASA Astrophysics Data System (ADS)

    Araki, E.; Kawaguchi, K.; Kaneda, Y.

    2011-12-01

    We developed and deployed seafloor cabled observatory called "Dense Ocean-floor Network for Earthquake and Tsunamis (DONET)" in the Nankai Trough, south of Japan. The main purpose of the DONET network is to observe large earthquake such as Tonankai earthquake in the deployed seafloor and associate Tsunamis in real-time to help disaster mitigation, and as well to monitor inter-seismic crustal activities such as micro earthquakes, very low frequency earthquakes, and slower crustal deformation. In each DONET seafloor observatory, high-sensitive broadband set of instruments for seismic and seafloor pressure monitoring, consisted from Guralp CMG3T broadband seismometer, Metrozet TSA100S accelerometer, Paroscientific 8B7000-2 pressure gauge, a deep-sea differential pressure gauge, a hydrophone, and a seawater thermometer, are installed. The density of seafloor observatories are 20 observatories distributed in 15-30 km interval which is optimized for monitoring of events in the plate boundary beneath the network. DONET may be regarded as a large-scale, high sensitive high density seismic array for monitoring teleseismic events in the Philippine Sea and the Pacific Ocean. The DONET seafloor observatories are situated in wide range of seafloor depth between 1800m and 4500m, from the seafloor basin about 50 km off Japanese Island through the slope of accerecionary prism to the deep trench axis 150 km off the coast, that may also regarded as a vertical array in the 4.5km thick ocean. This variation of depths helps identify T-phases from the array record. In data analysis, it is necessary to identify propagation mode of each observed wave which may often be mixed together. In our design of DONET observation system, we took care to help identification of seismic phase by obtaining both ground motion and seafloor pressure in the same location. This is simply achieved by combining seafloor pressure gauges and seismometer in a single observatory package, but care was taken to observe both in the similar level of sensitivity and dynamic range in wide frequencies from near DC to over 100 Hz. In the case of DONET, the broadband seismometer and the differential pressure gauge have similar level of sensitivity in 0.005 - 10 Hz, and similarly the accelerometer and the hydrophone cover between 1-100Hz, in total covering most frequencies of our interest, 0.005 Hz to 100 Hz. With both ground motion and seafloor pressure measurement, we may distinguish types of waves relatively easily, and it is also possible to filter particular types of waves from the array dataset to help our data analysis. For example, it has been commonly practiced to distinguish up-going and down-going seismic phases from pressure and ground motion, but this is relatively difficult only with sparse seismometer array. This technique may also be applied to correct teleseismic record with sea surface reflection in receiver function analysis for exploring deep crustal structure.

  3. The detection of improvised nonmilitary peroxide based explosives using a titania nanotube array sensor.

    PubMed

    Banerjee, Subarna; Mohapatra, Susanta K; Misra, Mano; Mishra, Indu B

    2009-02-18

    There is a critical need to develop an efficient, reliable and highly selective sensor for the detection of improvised nonmilitary explosives. This paper describes the utilization of functionalized titania nanotube arrays for sensing improvised organic peroxide explosives such as triacetone triperoxide (TATP). TATP forms complexes with titania nanotube arrays (prepared by anodization and sensitized with zinc ions) and thus affects the electron state of the nanosensing device, which is signaled as a change in current of the overall nanotube material. The response is rapid and a signal of five to eight orders of magnitude is observed. These nanotube array sensors can be used as hand-held miniaturized devices as well as large scale portable units for military and homeland security applications.

  4. Search for Indirect Signals of Dark Matter with The High Altitude Water Cherenkov (HAWC) Observatory

    NASA Astrophysics Data System (ADS)

    Baughman, Brian; Harding, Patrick; HAWC Collaboration

    2015-04-01

    The High Altitude Water Cherenkov (HAWC) observatory is a wide field-of-view observatory sensitive to 100 GeV-100 TeV gamma rays and cosmic rays. Located at an elevation of 4100 m on the Sierra Negra volcano in Mexico, HAWC observes extensive air showers from gamma rays via their production of Cherenkov light within an array of water tanks. With a wide field-of-view observing 2/3 of the sky each day and a sensitivity of greater than 1 Crab per day, HAWC has the ability to probe a large fraction of the sky for the signals of TeV-mass dark matter. HAWC's sensitivity to dark matter for several astrophysical sources and some early limits from the built detector will be presented.

  5. Technology Development for AGIS (Advanced Gamma-ray Imaging System).

    NASA Astrophysics Data System (ADS)

    Krennrich, Frank

    2008-04-01

    Next-generation arrays of atmospheric Cherenkov telescopes are at the conceptual planning stage and each could consist of on the order of 100 telescopes. The two currently-discussed projects AGIS in the US and CTA in Europe, have the potential to achieve an order of magnitude better sensitivity for Very High Energy (VHE) gamma-ray observations over state-to-the-art observatories. These projects require a substantial increase in scale from existing 4-telescope arrays such as VERITAS and HESS. The optimization of a large array requires exploring cost reduction and research and development for the individual elements while maximizing their performance as an array. In this context, the technology development program for AGIS will be discussed. This includes developing new optical designs, evaluating new types of photodetectors, developing fast trigger systems, integrating fast digitizers into highly-pixilated cameras, and reliability engineering of the individual components.

  6. Sensitivity of the Hydrogen Epoch of Reionization Array and its build-out stages to one-point statistics from redshifted 21 cm observations

    NASA Astrophysics Data System (ADS)

    Kittiwisit, Piyanat; Bowman, Judd D.; Jacobs, Daniel C.; Beardsley, Adam P.; Thyagarajan, Nithyanandan

    2018-03-01

    We present a baseline sensitivity analysis of the Hydrogen Epoch of Reionization Array (HERA) and its build-out stages to one-point statistics (variance, skewness, and kurtosis) of redshifted 21 cm intensity fluctuation from the Epoch of Reionization (EoR) based on realistic mock observations. By developing a full-sky 21 cm light-cone model, taking into account the proper field of view and frequency bandwidth, utilizing a realistic measurement scheme, and assuming perfect foreground removal, we show that HERA will be able to recover statistics of the sky model with high sensitivity by averaging over measurements from multiple fields. All build-out stages will be able to detect variance, while skewness and kurtosis should be detectable for HERA128 and larger. We identify sample variance as the limiting constraint of the measurements at the end of reionization. The sensitivity can also be further improved by performing frequency windowing. In addition, we find that strong sample variance fluctuation in the kurtosis measured from an individual field of observation indicates the presence of outlying cold or hot regions in the underlying fluctuations, a feature that can potentially be used as an EoR bubble indicator.

  7. Enhancement of High-Speed Infrared Array Electronics (Center Director's Discretionary Fund)

    NASA Technical Reports Server (NTRS)

    Sutherland, W. T.

    1996-01-01

    A state-of-the-art infrared detector was to be used as the sensor in a new spectrometer-camera for astronomical observations. The sensitivity of the detector required the use of low-noise, high-speed electronics in the system design. The key component in the electronic system was the pre-amplifier that amplified the low voltage signal coming from the detector. The system was designed based on the selection of the amplifier and that was driven by the maximum noise level, which would yield the desired sensitivity for the telescope system.

  8. Limits on Arcminute Scale Cosmic Microwave Background Anisotropy with the BIMA Array

    NASA Technical Reports Server (NTRS)

    Holzapfel, W. L.; Carlstrom, J. E.; Grego, L.; Holder, G. P.; Joy, M. K.; Reese, E. D.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    We have used the Berkeley-Illinois-Maryland-Association (BIMA) millimeter array outfitted with sensitive cm-wave receivers to search for Cosmic Microwave Background (CMB) anisotropies on arcminute scales. The interferometer was placed in a compact configuration which produces high brightness sensitivity, while providing discrimination against point sources. Operating at a frequency of 28.5 GHz, the FWHM primary beam of the instrument is 6.6 arcminutes. We have made sensitive images of seven fields, five of which where chosen specifically to have low IR dust contrast and be free of bright radio sources. Additional observations with the Owens Valley Radio Observatory (OVRO) millimeter array were used to assist in the location and removal of radio point sources. Applying a Bayesian analysis to the raw visibility data, we place limits on CMB anisotropy flat-band power Q_flat = 5.6 (+3.0, -5.6) uK and Q_flat < 14.1 uK at 68% and 95% confidence. The sensitivity of this experiment to flat band power peaks at a multipole of l = 5470, which corresponds to an angular scale of approximately 2 arcminutes The most likely value of Q_flat is similar to the level of the expected secondary anisotropies.

  9. Signal Processing for a Lunar Array: Minimizing Power Consumption

    NASA Technical Reports Server (NTRS)

    D'Addario, Larry; Simmons, Samuel

    2011-01-01

    Motivation for the study is: (1) Lunar Radio Array for low frequency, high redshift Dark Ages/Epoch of Reionization observations (z =6-50, f=30-200 MHz) (2) High precision cosmological measurements of 21 cm H I line fluctuations (3) Probe universe before first star formation and provide information about the Intergalactic Medium and evolution of large scale structures (5) Does the current cosmological model accurately describe the Universe before reionization? Lunar Radio Array is for (1) Radio interferometer based on the far side of the moon (1a) Necessary for precision measurements, (1b) Shielding from earth-based and solar RFI (12) No permanent ionosphere, (2) Minimum collecting area of approximately 1 square km and brightness sensitivity 10 mK (3)Several technologies must be developed before deployment The power needed to process signals from a large array of nonsteerable elements is not prohibitive, even for the Moon, and even in current technology. Two different concepts have been proposed: (1) Dark Ages Radio Interferometer (DALI) (2)( Lunar Array for Radio Cosmology (LARC)

  10. Improving the Sensitivity of Mass Spectrometry by Using a New Sheath Flow Electrospray Emitter Array at Subambient Pressures

    DOE PAGES

    Cox, Jonathan T.; Marginean, Ioan; Kelly, Ryan T.; ...

    2014-03-28

    Arrays of chemically etched emitters with individualized sheath gas capillaries have been developed to enhance electrospray ionization (ESI) at subambient pressures. By including an emitter array in a subambient pressure ionization with nanoelectrospray (SPIN) source, ionization and transmission efficiency can be maximized allowing for increased sensitivity in mass spectrometric analyses. The SPIN source eliminates the major ion losses at conventional ESI-mass spectrometry (MS) interface by placing the emitter in the first vacuum region of the instrument. To facilitate stable electrospray currents in such conditions we have developed an improved emitter array with individualized sheath gas around each emitter. The utilitymore » of the new emitter arrays for generating stable multi-electrosprays at subambient pressures was probed by coupling the emitter array/SPIN source with a time of flight (TOF) mass spectrometer. The instrument sensitivity was compared between single emitter/SPIN-MS and multi-emitter/SPIN-MS configurations using an equimolar solution of 9 peptides. An increase in sensitivity correlative to the number of emitters in the array was observed.« less

  11. Improving the Sensitivity of Mass Spectrometry by Using a New Sheath Flow Electrospray Emitter Array at Subambient Pressures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cox, Jonathan T.; Marginean, Ioan; Kelly, Ryan T.

    Arrays of chemically etched emitters with individualized sheath gas capillaries have been developed to enhance electrospray ionization (ESI) at subambient pressures. By including an emitter array in a subambient pressure ionization with nanoelectrospray (SPIN) source, ionization and transmission efficiency can be maximized allowing for increased sensitivity in mass spectrometric analyses. The SPIN source eliminates the major ion losses at conventional ESI-mass spectrometry (MS) interface by placing the emitter in the first vacuum region of the instrument. To facilitate stable electrospray currents in such conditions we have developed an improved emitter array with individualized sheath gas around each emitter. The utilitymore » of the new emitter arrays for generating stable multi-electrosprays at subambient pressures was probed by coupling the emitter array/SPIN source with a time of flight (TOF) mass spectrometer. The instrument sensitivity was compared between single emitter/SPIN-MS and multi-emitter/SPIN-MS configurations using an equimolar solution of 9 peptides. An increase in sensitivity correlative to the number of emitters in the array was observed.« less

  12. A Preliminary Detection of Arcminute Scale Cosmic Microwave Background Anisotropy with the BIMA Array

    NASA Technical Reports Server (NTRS)

    Dawson, K. S.; Holzapfel, W. L.; Carlstrom, J. E.; Joy, M.; LaRoque, S. J.; Reese, E. D.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    We have used the Berkeley-Illinois-Maryland-Association (BIMA) array outfitted with sensitive cm-wave receivers to expand our search for minute scale anisotropy of the Cosmic Microwave Background (CMB). The interferometer was placed in a compact configuration to obtain high brightness sensitivity on arcminute scales over its 6.6' FWHM field of view. The sensitivity of this experiment to flat band power peaks at a multipole of 1 = 5530 which corresponds to an angular scale of -2'. We present the analysis of a total of 470 hours of on-source integration time on eleven independent fields which were selected based on their low IR contrast and lack of bright radio sources. Applying a Bayesian analysis to the visibility data, we find CMB anisotropy flat band power Q_flat = 6.1(+2.8/-4.8) microKelvin at 68% confidence. The confidence of a nonzero signal is 76% and we find an upper limit of Q_flat < 12.4 microKelvin at 95% confidence. We have supplemented our BIMA observations with concurrent observations at 4.8 GHz with the VLA to search for and remove point sources. We find the point sources make an insignificant contribution to the observed anisotropy.

  13. Charge-injection-device 2 x 64 element infrared array performance

    NASA Technical Reports Server (NTRS)

    Mckelvey, M. E.; Mccreight, C. R.; Goebel, J. H.; Reeves, A. A.

    1985-01-01

    Three 2 x 64 element Si:Bi accumulation-mode charge-injection-device (CID) arrays were tested at low and moderate background to evaluate their usefulness for space-based astronomical observations. Testing was conducted both in the laboratory and in ground-based telescope IR observations. The devices showed an average readout noise level below 200 equivalent electrons, a peak responsivity of 4 A/W, and a noise equivalent power of 3 x 10 to the -17th W/sq rt Hz. This sensitivity compares well with that of nonintegrating discrete extrinsic silicon photoconductors. The array well capacity was significantly smaller than predicted. The measured sensitivity makes extrinsic silicon CID arrays useful for certain astronomical applications. However, their readout efficiency and frequency response represent serious limitations in low-background applications.

  14. UHECR mass composition measurement at Telescope Array via stereoscopic observation

    NASA Astrophysics Data System (ADS)

    Stroman, Thomas; Telescope Array Collaboration

    2015-04-01

    The masses of primary ultra-high-energy cosmic-ray (UHECR) nuclei cannot be measured directly on an individual basis, but constraints on the chemical composition can be inferred from the distributions of observable properties. The atmospheric slant depth at which a UHECR-induced extensive air shower reaches its maximum number of particles, Xmax, is particularly sensitive to the mass of the incident nucleus, occurring earlier in the shower's longitudinal development for heavier nuclei at a given energy. The Telescope Array in west-central Utah, the northern hemisphere's largest UHECR detector, is equipped for accurate Xmax and energy measurements via stereoscopic fluorescence observation. Using data from seven years of operation, we will present Xmax distributions at several energies E >10 18 . 2eV , and compare them to distributions predicted by detailed detector simulations under an assortment of assumed UHECR compositions and high-energy hadronic interaction models.

  15. Large Format Si:As IBC Array Performance for NGST and Future IR Space Telescope Applications

    NASA Technical Reports Server (NTRS)

    Ennico, Kimberly; Johnson, Roy; Love, Peter; Lum, Nancy; McKelvey, Mark; McCreight, Craig; McMurray, Robert, Jr.; DeVincenzi, D. (Technical Monitor)

    2002-01-01

    A mid-IR (5-30micrometer) instrument aboard a cryogenic space telescope can have an enormous impact in resolving key questions in astronomy and cosmology. A space platform's greatly reduced thermal backgrounds (compared to airborne or ground-based platforms), allow for more sensitive observations of dusty young galaxies at high redshifts, star formation of solar-type stars in the local universe, and formation and evolution of planetary disks and systems. The previous generation's largest, in sensitive IR detectors at these wavelengths are 256x256 pixel Si:As Impurity Band Conduction (IBC) devices built by Raytheon Infrared Operations (RIO) for the Space Infrared Telescope Facility/Infrared Array Camera (SIRTF)/(IRAC) instrument. RIO has successfully enhanced these devices, increasing the pixel count by a factor of 16 while matching or exceeding SIRTF/IRAC device performance. NASA-ARC in collaboration with RIO has tested the first high performance large format (1024x 1024) Si:As IBC arrays for low background applications, such as for the middle instrument on Next Generation Space Telescope (NGST) and future IR Explorer missions. These hybrid devices consist of radiation hard SIRTF/IRAC-type Si:As IBC material mated to a readout multiplexer that has been specially processed for operation at low cryogenic temperatures (below 10K), yielding high device sensitivity over a wavelength range of 5-28 micrometers. We present laboratory testing results from these benchmark, devices. Continued development in this technology is essential for conducting large-area surveys of the local and early universe through observation and for complementing future missions such as NGST, Terrestrial Planet Finder (TPF), and Focal Plane Instruments and Requirement Science Team (FIRST).

  16. Tracking interstellar space weather toward timing-array millisecond pulsars

    NASA Astrophysics Data System (ADS)

    Bhat, N. D. R.; Ord, S. M.; Tremblay, S. E.; Shannon, R. M.; van Straten, W.; Kaplan, D. L.; Macquart, J.-P.; Kirsten, F.

    2016-07-01

    Recent LIGO detection of milli-Hertz gravitational wave (GW) signals from a black-hole merger event has further reinforced the important role of Pulsar timing array (PTA) experiments in the GW astronomy. PTAs exploit the clock-like stability of fast-spinning millisecond pulsars (MSPs) to make a direct detection of ultra-low frequency (nano-Hertz) gravitational waves. The science enabled by PTAs is thus highly complementary to that possible by LIGO-like detectors. PTAs are also a key science objective for the SKA. PTA efforts over the past few years suggest that interstellar propagation effects on pulsar signals may ultimately limit the detection sensitivity of PTAs unless they are accurately measured and corrected for in timing measurements. Interstellar medium (ISM) effects are much stronger at lower radio frequencies and therefore the MWA presents an exciting and unique opportunity to calibrate interstellar propagation delays. This will potentially lead to enhanced sensitivity and scientific impact of PTA projects. Since our first demonstration of ability to form a coherent (tied-array) beam by reprocessing the recorded VCS data (Bhat et al. 2016), we have successfully ported the full processing chain to the Galaxy cluster of Pawsey and demonstrated the value of high-sensitivity multi-band pulsar observations that are now possible with the MWA. Here we propose further observations of two most promising PTA pulsars that will be nightly objects in the 2016B period. Our main science driver is to characterise the nature of the turbulent ISM through high-quality scintillation and dispersion studies including the investigation of chromatic (frequency-dependent) DMs. Success of these efforts will define the breadth and scope of a more ambitious program in the future, bringing in a new science niche for the MWA and SKA-low.

  17. Imaging optical sensor arrays.

    PubMed

    Walt, David R

    2002-10-01

    Imaging optical fibres have been etched to prepare microwell arrays. These microwells have been loaded with sensing materials such as bead-based sensors and living cells to create high-density sensor arrays. The extremely small sizes and volumes of the wells enable high sensitivity and high information content sensing capabilities.

  18. Numerical study on refractive index sensor based on hybrid-plasmonic mode

    NASA Astrophysics Data System (ADS)

    Yun, Jeong-Geun; Kim, Joonsoo; Lee, Kyookeun; Lee, Yohan; Lee, Byoungho

    2017-04-01

    We propose a highly sensitive hybrid-plasmonic sensor based on thin-gold nanoslit arrays. The transmission characteristics of gold nanoslit arrays are analyzed as changing the thickness of gold layer. The surface plasmon polariton mode excited on the sensing medium, which is sensitive to refractive index change of the sensing medium, is strengthened by reducing the thickness of the gold layer. A design rule is suggested that steeper dispersion curve of the surface plasmon polariton mode leads to higher sensitivity. For the dispersion engineering, hybrid-plasmonic structure, which consists of thin-gold nanoslit arrays, sensing region and high refractive index dielectric space is introduced. The proposed sensor structure with period of 700 nm shows the improved sensitivity up to 1080 nm/RIU (refractive index unit), and the surface sensitivity is extremely enhanced.

  19. Progress Towards High-Sensitivity Arrays of Detectors of Sub-mm Radiation Using Superconducting Tunnel Junctions with Integrated Radio Frequency Single-Electron Transistors

    NASA Technical Reports Server (NTRS)

    Stevenson, T. R.; Hsieh, W.-T.; Li, M. J.; Prober, D. E.; Rhee, K. W.; Schoelkopf, R. J.; Stahle, C. M.; Teufel, J.; Wollack, E. J.

    2004-01-01

    For high resolution imaging and spectroscopy in the FIR and submillimeter, space observatories will demand sensitive, fast, compact, low-power detector arrays with 104 pixels and sensitivity less than 10(exp -20) W/Hz(sup 0.5). Antenna-coupled superconducting tunnel junctions with integrated rf single-electron transistor readout amplifiers have the potential for achieving this high level of sensitivity, and can take advantage of an rf multiplexing technique. The device consists of an antenna to couple radiation into a small superconducting volume and cause quasiparticle excitations, and a single-electron transistor to measure current through junctions contacting the absorber. We describe optimization of device parameters, and results on fabrication techniques for producing devices with high yield for detector arrays. We also present modeling of expected saturation power levels, antenna coupling, and rf multiplexing schemes.

  20. High Sensitivity Absorption Spectroscopy on Ti II VUV Resonance Lines of Astrophysical Interest

    NASA Astrophysics Data System (ADS)

    Wiese, Lm; Fedchak, Ja; Lawler, Je

    2000-06-01

    The neutral hydrogen regions of the Interstellar Medium (ISM) of our Galaxy and distant galaxies produce simple absorption spectra because most metals are singly ionized and in their ground fine structure level. Elemental abundance measurements and other studies of the ISM rely on accurate atomic oscillator strengths (f-values) for a few key lines in the second spectra of Ti and other metals. The Ti II VUV resonance lines at 1910.6 and 1910.9 Åare important in absorption line systems in which quasars provide the continuum and the ISM of intervening galaxies is observed. Some of these absorption line systems are redshifted to the visible and observed with ground based telescopes. We report the first laboratory measurement of these Ti II VUV resonance lines. Using High Sensitivity Absorption Spectroscopy, we determined f-values for the 1910 Ålines relative to well-known Ti II resonance lines at 3067 and 3384 ÅContinuum radiation from an Aladdin Storage Ring bending magnet at the Synchrotron Radiation Center (SRC) is passed through a discharge plasma containing Ti^+. The transmitted light is analyzed by our 3m vacuum echelle spectrometer equipped with VUV sensitive CCD array. The resolving power of our spectrometer/detector array is 300,000. F-values are determined to within 10%.

  1. Two-dimensional array of cold-electron bolometers for high-sensitivity polarization measurements

    NASA Astrophysics Data System (ADS)

    Kuzmin, L. S.

    2012-01-01

    A new concept of a two-dimensional array of cold-electron bolometers with distributed dipole antennas in the focal plane for high-sensitivity polarization measurements is proposed. The concept gives a unique combination of high polarization resolution due to a large uniforms array of cold-electron bolometers and optimal matching with junction field effect transistor (JFET) amplifiers because of flexibility in direct-current connections. The noise characteristics are improved due to arriving-signal power distribution among numerous cold-electron bolometers and an increase in their response. This should lead to a significant increase in the sensitivity and dynamic range compared with competing alternative bolometer technologies. The reliability of the twodimensional array significantly increases due to a series-parallel connection of a large number of cold-electron bolometers. High polarization resolution should be ensured due to uniform covering of a substrate by a two-dimensional array over a large area and the absence of the beam compression to small lumped elements. The fundamental sensitivity limit of the cold-electron bolometer array is smaller than photon noise which is considered to be the ultimate level restricted by the background radiation. Estimates of noise of bolometers with the JFET reading system show the possibility of realizing the ultimate sensitivity below the photon-noise level 5 ・10-17 W/Hz1/2 at a frequency of 350 GHz for an optical load with a power of 5 pW. These parameters correspond to the requirements to the receiving system of a BOOMERanG balloon telescope.

  2. A titania nanotube-array room-temperature sensor for selective detection of hydrogen at low concentrations.

    PubMed

    Varghese, Oomman K; Mor, Gopal K; Grimes, Craig A; Paulose, Maggie; Mukherjee, Niloy

    2004-09-01

    A tremendous variation in electrical resistance, from the semiconductor to metallic range, has been observed in titania nanotube arrays at room temperature, approximately 25 degrees C, in the presence of < or = 1000 ppm hydrogen gas. The nanotube arrays are fabricated by anodizing titanium foil in an aqueous electrolyte solution containing hydrofluoric acid and acetic acid. Subsequently, the arrays are coated with a 10 nm layer of palladium by evaporation. Electrical contacts are made by sputtering a 2 mm diameter platinum disk atop the Pd-coated nanotube array. These sensors exhibit a resistance variation of the order of 10(4) in the presence of 100 ppm hydrogen at 25 degrees C. The sensors demonstrate complete reversibility, repeatability, high selectivity, negligible drift and wide dynamic range. The nanoscale geometry of the nanotubes, in particular the points of tube-to-tube contact, is believed to be responsible for the outstanding hydrogen gas sensitivities.

  3. Quantitative Comparison of Protein Adsorption and Conformational Changes on Dielectric-Coated Nanoplasmonic Sensing Arrays.

    PubMed

    Ferhan, Abdul Rahim; Jackman, Joshua A; Sut, Tun Naw; Cho, Nam-Joon

    2018-04-22

    Nanoplasmonic sensors are a popular, surface-sensitive measurement tool to investigate biomacromolecular interactions at solid-liquid interfaces, opening the door to a wide range of applications. In addition to high surface sensitivity, nanoplasmonic sensors have versatile surface chemistry options as plasmonic metal nanoparticles can be coated with thin dielectric layers. Within this scope, nanoplasmonic sensors have demonstrated promise for tracking protein adsorption and substrate-induced conformational changes on oxide film-coated arrays, although existing studies have been limited to single substrates. Herein, we investigated human serum albumin (HSA) adsorption onto silica- and titania-coated arrays of plasmonic gold nanodisks by localized surface plasmon resonance (LSPR) measurements and established an analytical framework to compare responses across multiple substrates with different sensitivities. While similar responses were recorded on the two substrates for HSA adsorption under physiologically-relevant ionic strength conditions, distinct substrate-specific behavior was observed at lower ionic strength conditions. With decreasing ionic strength, larger measurement responses occurred for HSA adsorption onto silica surfaces, whereas HSA adsorption onto titania surfaces occurred independently of ionic strength condition. Complementary quartz crystal microbalance-dissipation (QCM-D) measurements were also performed, and the trend in adsorption behavior was similar. Of note, the magnitudes of the ionic strength-dependent LSPR and QCM-D measurement responses varied, and are discussed with respect to the measurement principle and surface sensitivity of each technique. Taken together, our findings demonstrate how the high surface sensitivity of nanoplasmonic sensors can be applied to quantitatively characterize protein adsorption across multiple surfaces, and outline broadly-applicable measurement strategies for biointerfacial science applications.

  4. New Optimizations of Microcalorimeter Arrays for High-Resolution Imaging X-ray Spectroscopy

    NASA Astrophysics Data System (ADS)

    Kilbourne, Caroline

    We propose to continue our successful research program in developing arrays of superconducting transition-edge sensors (TES) for x-ray astrophysics. Our standard 0.3 mm TES pixel achieves better than 2.5-eV resolution, and we now make 32x32 arrays of such pixels. We have also achieved better than 1-eV resolution in smaller pixels, and promising performance in a range of position-sensitive designs. We propose to continue to advance the designs of both the single-pixel and position-sensitive microcalorimeters so that we can produce arrays suitable for several x-ray spectroscopy observatories presently in formulation. We will also investigate various array and pixel optimizations such as would be needed for large arrays for surveys, large- pixel arrays for diffuse soft x-ray measurements, or sub-arrays of fast pixels optimized for neutron-star burst spectroscopy. In addition, we will develop fabrication processes for integrating sub-arrays with very different pixel designs into a monolithic focal-plane array to simplify the design of the focal-plane assembly and make feasible new detector configurations such as the one currently baselined for AXSIO. Through a series of measurements on test devices, we have improved our understanding of the weak-link physics governing the observed resistive transitions in TES detectors. We propose to build on that work and ultimately use the results to improve the immunity of the detector to environmental magnetic fields, as well as its fundamental performance, in each of the targeted optimizations we are developing.

  5. The Giant Radio Array for Neutrino Detection

    NASA Astrophysics Data System (ADS)

    Martineau-Huynh, Olivier; Bustamante, Mauricio; Carvalho, Washington; Charrier, Didier; De Jong, Sijbrand; de Vries, Krijn D.; Fang, Ke; Feng, Zhaoyang; Finley, Chad; Gou, Quanbu; Gu, Junhua; Hu, Hongbo; Kotera, Kumiko; Le Coz, Sandra; Medina, Clementina; Murase, Kohta; Niess, Valentin; Oikonomou, Foteini; Timmermans, Charles; Wang, Zhen; Wu, Xiangping; Zhang, Yi

    2017-03-01

    The Giant Radio Array for Neutrino Detection (GRAND) is a planned array of 2·105 radio antennas deployed over 200 000 km2 in a mountainous site. It aims primarly at detecting high-energy neutrinos via the observation of extensive air showers induced by the decay in the atmosphere of taus produced by the interaction of cosmic neutrinos under the Earth surface. GRAND aims at reaching a neutrino sensitivity of 5 · 10-11 E-2 GeV-1 cm-2 s-1 sr-1 above 3 · 1016 eV. This ensures the detection of cosmogenic neutrinos in the most pessimistic source models, and 50 events per year are expected for the standard models. The instrument will also detect UHECRs and possibly FRBs. Here we show how our preliminary design should enable us to reach our sensitivity goals, and discuss the steps to be taken to achieve GRAND, while the compelling science case for GRAND is discussed in more details in [1].

  6. From nature to MEMS: towards the detection-limit of crickets' hair sensors

    NASA Astrophysics Data System (ADS)

    Dagamseh, A. M. K.

    2013-05-01

    Crickets use highly sensitive mechanoreceptor hairs to detect approaching spiders. The high sensitivity of these hairs enables perceiving tiny air-movements which are only just distinguishable from noise. This forms our source of inspiration to design sensitive arrays made of artificial hair sensors for flow pattern observation i.e. Flow camera. The realization of such high-sensitive hair sensor requires designs with low thermo-mechanical noise to match the detection-limit of crickets' hairs. Here we investigate the damping factor in our artificial hair-sensor using different models as it is the source of the thermo-mechanical noise in MEMS structures. The results show that the damping factor estimated in air is in the range of 10-12 N.m/rad.s-1 which translates into a 52 μm/s threshold flow velocity.

  7. The Importance of High Frequency Observations for the SKA

    NASA Astrophysics Data System (ADS)

    Welch, William J.

    2007-12-01

    The plan for the Square Kilometer Array (SKA) is one or more very large arrays operating in two or more contiguous frequency bands: roughly 15 - 90 MHz, 120 - 500 MHz, and 500 MHz - 25 GHz. The last band may be further divided into roughly 500 MHz - 1.5 GHz and 1.5 - 25 GHz. Construction costs may delay or forgo one or more of these bands. We argue that the entire high frequency band is of special importance for astronomy both in the local universe and at great distances and early times. One of the Key Science Projects, the Cradle of Life, requires high sensitivity and resolution at frequencies up to 20 GHz for the study of forming disks around new stars with disk opacities too great for millimeter wave observations. The larger issue of star formation, a poorly understood area, will also benefit from high sensitivity observations at short cm wavelengths. Magnetic field measurements through the Zeeman effect in the densest star forming gas are best done using tracers such as CCS at frequencies of 11 and 22 GHz. The wide frequency range of the SKA permits the observation of multiple rotational transitions of long chain molecules, providing accurate measures of both gas densities and temperatures. The wide field of view will permit large scale surveys of entire star forming clouds revealing, at high resolution, the formation of clusters of pre-protostellar stars and class 0-2 protostars in line radiation. The continuum cm wave radiation will reveal the growth of grains in disks. On the larger scale, observations of CO at high redshifts will trace the evolution of star formation and the formation of metals back to the Epic of Reionization.

  8. Epoch of Reionisation

    NASA Astrophysics Data System (ADS)

    Barry, N.; Beardsley, A.; Bowman, J.; Briggs, F.; Byrne, R.; Carroll, P.; Hazelton, B.; Jacobs, D.; Jordan, C.; Kittiwisit, P.; Lanman, A.; Lenc, E.; Li, W.; Line, J.; McKinley, B.; Mitchell, D.; Morales, M.; Murray, S.; Paul, S.; Pindor, B.; Pober, J.; Rahimi, M.; Riding, J.; Sethi, S.; Shankar, U.; Subrahmanyan, R.; Sullivan, I.; Takahashi, K.; Thyagarajan, N.; Tingay, S.; Trott, C.; Wayth, R.; Webster, R.; Wyithe, S.

    2017-01-01

    The Murchison Widefield Array is designed to measure the fluctuations in the 21cm emission from neutral hydrogen during the Epoch of Reionisation. The new hex configuration is explicitly designed to test the predicted increase in sensitivity of redundant baselines. However the challenge of the new array is to understand calibration with the new configuration. We have developed two new pipelines to reduce the hex data, and will compare the results with previous datasets from the Phase 1 array. We have now processed 80 hours of data refining the data analysis through our two established Phase 1 pipelines. This proposal requests as much observing time as possible in semester 2017-A to (1) obtain a comparable hex dataset to test the sensitivity and systematic limits with redundant arrays, (2) establish the optimal observing strategy for an EoR detection, and (3) continue to explore observational strategies in the three EoR fields to advise the design of SKA-low experiments. Due to the proposed changes in the array during the upcoming semester, we have not requested a specific number of hours, but will optimise our observing program as availability of the telescope becomes clear. We note that this observing proposal implements the key scientific program that can benefit from the new hex configuration.

  9. A Planar Two-Dimensional Superconducting Bolometer Array for the Green Bank Telescope

    NASA Technical Reports Server (NTRS)

    Benford, Dominic; Staguhn, Johannes G.; Chervenak, James A.; Chen, Tina C.; Moseley, S. Harvey; Wollack, Edward J.; Devlin, Mark J.; Dicker, Simon R.; Supanich, Mark

    2004-01-01

    In order to provide high sensitivity rapid imaging at 3.3mm (90GHz) for the Green Bank Telescope - the world's largest steerable aperture - a camera is being built by the University of Pennsylvania, NASA/GSFC, and NRAO. The heart of this camera is an 8x8 close-packed, Nyquist-sampled detector array. We have designed and are fabricating a functional superconducting bolometer array system using a monolithic planar architecture. Read out by SQUID multiplexers, the superconducting transition edge sensors will provide fast, linear, sensitive response for high performance imaging. This will provide the first ever superconducting bolometer array on a facility instrument.

  10. High Sensitive Scintillation Observations At Very Low Frequencies

    NASA Astrophysics Data System (ADS)

    Konovalenko, A. A.; Falkovich, I. S.; Kalinichenko, N. N.; Olyak, M. R.; Lecacheux, A.; Rosolen, C.; Bougeret, J.-L.; Rucker, H. O.; Tokarev, Yu.

    The observation of interplanetary scintillations of compact radio sources is powerful method of solar wind diagnostics. This method is developed mainly at decimeter- meter wavelengths. New possibilities are opened at extremely low frequencies (decameter waves) especially at large elongations. Now this approach is being actively developed using high effective decameter antennas UTR-2, URAN and Nancay Decameter Array. New class of back-end facility like high dynamic range, high resolution digital spectral processors, as well as dynamic spectra determination ideology give us new opportunities for distinguishing of the ionospheric and interplanetary scintillations and for observations of large number of radio sources, whith different angular sizes and elongations, even for the cases of rather weak objects.

  11. Transverse slot antennas for high field MRI

    PubMed Central

    Lattanzi, Riccardo; Lakshmanan, Karthik; Brown, Ryan; Deniz, Cem M.; Sodickson, Daniel K.; Collins, Christopher M.

    2018-01-01

    Purpose Introduce a novel coil design using an electrically long transversely oriented slot in a conductive sheet. Theory and Methods Theoretical considerations, numerical simulations, and experimental measurements are presented for transverse slot antennas as compared with electric dipole antennas. Results Simulations show improved central and average transmit and receive efficiency, as well as larger coverage in the transverse plane, for a single slot as compared to a single dipole element. Experiments on a body phantom confirm the simulation results for a slot antenna relative to a dipole, demonstrating a large region of relatively high sensitivity and homogeneity. Images in a human subject also show a large imaging volume for a single slot and six slot antenna array. High central transmit efficiency was observed for slot arrays relative to dipole arrays. Conclusion Transverse slots can exhibit improved sensitivity and larger field of view compared with traditional conductive dipoles. Simulations and experiments indicate high potential for slot antennas in high field MRI. Magn Reson Med 80:1233–1242, 2018. © 2018 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. PMID:29388250

  12. Toroidal sensor arrays for real-time photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Bychkov, Anton S.; Cherepetskaya, Elena B.; Karabutov, Alexander A.; Makarov, Vladimir A.

    2017-07-01

    This article addresses theoretical and numerical investigation of image formation in photoacoustic (PA) imaging with complex-shaped concave sensor arrays. The spatial resolution and the size of sensitivity region of PA and laser ultrasonic (LU) imaging systems are assessed using sensitivity maps and spatial resolution maps in the image plane. This paper also discusses the relationship between the size of high-sensitivity regions and the spatial resolution of real-time imaging systems utilizing toroidal arrays. It is shown that the use of arrays with toroidal geometry significantly improves the diagnostic capabilities of PA and LU imaging to investigate biological objects, rocks, and composite materials.

  13. Simultaneous operation and control of about 100 telescopes for the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Wegner, P.; Colomé, J.; Hoffmann, D.; Houles, J.; Köppel, H.; Lamanna, G.; Le Flour, T.; Lopatin, A.; Lyard, E.; Melkumyan, D.; Oya, I.; Panazol, L.-I.; Punch, M.; Schlenstedt, S.; Schmidt, T.; Stegmann, C.; Schwanke, U.; Walter, R.; Consortium, CTA

    2012-12-01

    The Cherenkov Telescope Array (CTA) project is an initiative to build the next generation ground-based very high energy (VHE) gamma-ray instrument. Compared to current imaging atmospheric Cherenkov telescope experiments CTA will extend the energy range and improve the angular resolution while increasing the sensitivity up to a factor of 10. With about 100 separate telescopes it will be operated as an observatory open to a wide astrophysics and particle physics community, providing a deep insight into the non-thermal high-energy universe. The CTA Array Control system (ACTL) is responsible for several essential control tasks supporting the evaluation and selection of proposals, as well as the preparation, scheduling, and finally the execution of observations with the array. A possible basic distributed software framework for ACTL being considered is the ALMA Common Software (ACS). The ACS framework follows a container component model and contains a high level abstraction layer to integrate different types of device. To achieve a low-level consolidation of connecting control hardware, OPC UA (OPen Connectivity-Unified Architecture) client functionality is integrated directly into ACS, thus allowing interaction with other OPC UA capable hardware. The CTA Data Acquisition System comprises the data readout of all cameras and the transfer of the data to a camera server farm, thereby using standard hardware and software technologies. CTA array control is also covering conceptions for a possible array trigger system and the corresponding clock distribution. The design of the CTA observations scheduler is introducing new algorithmic technologies to achieve the required flexibility.

  14. High-Frequency Ultrasonic Imaging of the Anterior Segment Using an Annular Array Transducer

    PubMed Central

    Silverman, Ronald H.; Ketterling, Jeffrey A.; Coleman, D. Jackson

    2006-01-01

    Objective Very-high-frequency (>35 MHz) ultrasound (VHFU) allows imaging of anterior segment structures of the eye with a resolution of less than 40-μm. The low focal ratio of VHFU transducers, however, results in a depth-of-field (DOF) of less than 1-mm. Our aim was to develop a high-frequency annular array transducer for ocular imaging with improved DOF, sensitivity and resolution compared to conventional transducers. Design Experimental Study Participants Cadaver eyes, ex vivo cow eyes, in vivo rabbit eyes. Methods A spherically curved annular array ultrasound transducer was fabricated. The array consisted of five concentric rings of equal area, had an overall aperture of 6 mm and a geometric focus of 12 mm. The nominal center frequency of all array elements was 40 MHz. An experimental system was designed in which a single array element was pulsed and echo data recorded from all elements. By sequentially pulsing each element, echo data were acquired for all 25 transmit/receive annuli combinations. The echo data were then synthetically focused and composite images produced. Transducer operation was tested by scanning a test object consisting of a series of 25-μm diameter wires spaced at increasing range from the transducer. Imaging capabilities of the annular array were demonstrated in ex vivo bovine, in vivo rabbit and human cadaver eyes. Main Outcome Measures Depth of field, resolution and sensitivity. Results The wire scans verified the operation of the array and demonstrated a 6.0 mm DOF compared to the 1.0 mm DOF of a conventional single-element transducer of comparable frequency, aperture and focal length. B-mode images of ex vivo bovine, in vivo rabbit and cadaver eyes showed that while the single-element transducer had high sensitivity and resolution within 1–2 mm of its focus, the array with synthetic focusing maintained this quality over a 6 mm DOF. Conclusion An annular array for high-resolution ocular imaging has been demonstrated. This technology offers improved depth-of-field, sensitivity and lateral resolution compared to single-element fixed focus transducers currently used for VHFU imaging of the eye. PMID:17141314

  15. High-frequency ultrasonic imaging of the anterior segment using an annular array transducer.

    PubMed

    Silverman, Ronald H; Ketterling, Jeffrey A; Coleman, D Jackson

    2007-04-01

    Very high-frequency ultrasound (VHFU; >35 megahertz [MHz]) allows imaging of anterior segment structures of the eye with a resolution of less than 40 microm. The low focal ratio of VHFU transducers, however, results in a depth of field (DOF) of less than 1 mm. The aim was to develop a high-frequency annular array transducer for ocular imaging with improved DOF, sensitivity, and resolution compared with conventional transducers. Experimental study. Cadaver eyes, ex vivo cow eyes, in vivo rabbit eyes. A spherically curved annular array ultrasound transducer was fabricated. The array consisted of 5 concentric rings of equal area, had an overall aperture of 6 mm, and a geometric focus of 12 mm. The nominal center frequency of all array elements was 40 MHz. An experimental system was designed in which a single array element was pulsed and echo data were recorded from all elements. By sequentially pulsing each element, echo data were acquired for all 25 transmit-and-receive annuli combinations. The echo data then were focused synthetically and composite images were produced. Transducer operation was tested by scanning a test object consisting of a series of 25-microm diameter wires spaced at increasing range from the transducer. Imaging capabilities of the annular array were demonstrated in ex vivo bovine, in vivo rabbit, and human cadaver eyes. Depth of field, resolution, and sensitivity. The wire scans verified the operation of the array and demonstrated a 6.0-mm DOF, compared with the 1.0-mm DOF of a conventional single-element transducer of comparable frequency, aperture, and focal length. B-mode images of ex vivo bovine, in vivo rabbit, and cadaver eyes showed that although the single-element transducer had high sensitivity and resolution within 1 to 2 mm of its focus, the array with synthetic focusing maintained this quality over a 6-mm DOF. An annular array for high-resolution ocular imaging has been demonstrated. This technology offers improved DOF, sensitivity, and lateral resolution compared with single-element fixed focus transducers currently used for VHFU imaging of the eye.

  16. LOFAR facet callibration

    DOE PAGES

    Weeren, R. J. van; Williams, W. L.; Hardcastle, M. J.; ...

    2016-03-07

    LOFAR, the Low-Frequency Array, is a powerful new radio telescope operating between 10 and 240 MHz. LOFAR allows detailed sensitive high-resolution studies of the low-frequency radio sky. At the same time LOFAR also provides excellent short baseline coverage to map di use extended emission. However, producing high-quality deep images is challenging due to the presence of direction dependent calibration errors, caused by imperfect knowledge of the station beam shapes and the ionosphere. Furthermore, the large data volume and presence of station clock errors present additional di culties. In this paper we present a new calibration scheme, which we name facetmore » calibration, to obtain deep high-resolution LOFAR High Band Antenna images using the Dutch part of the array. This scheme solves and corrects the direction dependent errors in a number of facets that cover the observed eld of view. Facet calibration provides close to thermal noise limited images for a typical 8 hr observing run at ~5'' resolution, meeting the speci cations of the LOFAR Tier-1 northern survey.« less

  17. Morphology-controlled cactus-like branched anatase TiO2 arrays with high light-harvesting efficiency for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Wu, Wu-Qiang; Rao, Hua-Shang; Feng, Hao-Lin; Guo, Xin-Dong; Su, Cheng-Yong; Kuang, Dai-Bin

    2014-08-01

    The present work establishes a facile process for one-step hydrothermal growth of vertically aligned anatase cactus-like branched TiO2 (CBT) arrays on a transparent conducting oxide (TCO) substrate. Various CBT morphologies are obtained by adjusting the potassium titanium oxide oxalate (PTO) reactant concentration (from 0.05 M to 0.15 M) and this yields a morphologically-controllable branched TiO2 arrays geometry. The CBT arrays consist of a vertically oriented nanowire (NW) or nanosheet (NS) stem and a host of short nanorod (NR) branches. The hierarchical CBT arrays demonstrate their excellent candidatures as photoanodes, which are capable of exhibiting high light-harvesting efficiency in dye-sensitized solar cells (DSSCs). Consequently, DSSCs based on 7 μm long optimized CBT arrays (0.05 M PTO), which are assembled with high density and high aspect-ratio NR branches, exhibit an impressive power conversion efficiency of 6.43% under AM 1.5G one sun illumination. The high performance can be attributed to the prominent light-harvesting efficiency, resulting from larger surface area and superior light-scattering capability.

  18. Unlocking Sensitivity for Visibility-based Estimators of the 21 cm Reionization Power Spectrum

    NASA Astrophysics Data System (ADS)

    Zhang, Yunfan Gerry; Liu, Adrian; Parsons, Aaron R.

    2018-01-01

    Radio interferometers designed to measure the cosmological 21 cm power spectrum require high sensitivity. Several modern low-frequency interferometers feature drift-scan antennas placed on a regular grid to maximize the number of instantaneously coherent (redundant) measurements. However, even for such maximum-redundancy arrays, significant sensitivity comes through partial coherence between baselines. Current visibility-based power-spectrum pipelines, though shown to ease control of systematics, lack the ability to make use of this partial redundancy. We introduce a method to leverage partial redundancy in such power-spectrum pipelines for drift-scan arrays. Our method cross-multiplies baseline pairs at a time lag and quantifies the sensitivity contributions of each pair of baselines. Using the configurations and beams of the 128-element Donald C. Backer Precision Array for Probing the Epoch of Reionization (PAPER-128) and staged deployments of the Hydrogen Epoch of Reionization Array, we illustrate how our method applies to different arrays and predict the sensitivity improvements associated with pairing partially coherent baselines. As the number of antennas increases, we find partial redundancy to be of increasing importance in unlocking the full sensitivity of upcoming arrays.

  19. Surface plasmon aided high sensitive non-enzymatic glucose sensor using Au/NiAu multilayered nanowire arrays.

    PubMed

    Wang, Lanfang; Zhu, Weiqi; Lu, Wenbo; Qin, Xiufang; Xu, Xiaohong

    2018-07-15

    A novel plasmon aided non-enzymatic glucose sensor was first constructed based on the unique half-rough Au/NiAu multilayered nanowire arrays. These multilayered and half-rough nanowires provide high chemical activity and large surface area for glucose oxidation in an alkaline solution. Under visible light irradiation, the surface plasmons originated from Au part enhance the electron transfer in the vertically aligned nanowires, leading to high sensitivity and wide detection range. The resulting sensor exhibits a wide glucose detection concentration range, low detection limit, and high sensitivity for plasmon aided non-enzymatic glucose sensor. Moreover, the detection sensitivity is enhanced by almost 2 folds compared to that in the dark, which significantly enhanced the performance of Au/NiAu multilayered nanowire arrays sensor. An excellent selectivity and acceptable stability were also achieved. These results indicate that surface plasmon aided nanostructures are promising new platforms for the construction of non-enzymatic glucose sensors. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. The Gould's Belt very large array survey. III. The Orion region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kounkel, Marina; Hartmann, Lee; Loinard, Laurent

    2014-07-20

    We present results from a high-sensitivity (60 μJy), large-scale (2.26 deg{sup 2}) survey obtained with the Karl G. Jansky Very Large Array as part of the Gould's Belt Survey program. We detected 374 and 354 sources at 4.5 and 7.5 GHz, respectively. Of these, 148 are associated with previously known young stellar objects (YSOs). Another 86 sources previously unclassified at either optical or infrared wavelengths exhibit radio properties that are consistent with those of young stars. The overall properties of our sources at radio wavelengths such as their variability and radio to X-ray luminosity relation are consistent with previous resultsmore » from the Gould's Belt Survey. Our detections provide target lists for follow-up Very Long Baseline Array radio observations to determine their distances as YSOs are located in regions of high nebulosity and extinction, making it difficult to measure optical parallaxes.« less

  1. Simultaneous multi-patch-clamp and extracellular-array recordings: Single neuron reflects network activity

    NASA Astrophysics Data System (ADS)

    Vardi, Roni; Goldental, Amir; Sardi, Shira; Sheinin, Anton; Kanter, Ido

    2016-11-01

    The increasing number of recording electrodes enhances the capability of capturing the network’s cooperative activity, however, using too many monitors might alter the properties of the measured neural network and induce noise. Using a technique that merges simultaneous multi-patch-clamp and multi-electrode array recordings of neural networks in-vitro, we show that the membrane potential of a single neuron is a reliable and super-sensitive probe for monitoring such cooperative activities and their detailed rhythms. Specifically, the membrane potential and the spiking activity of a single neuron are either highly correlated or highly anti-correlated with the time-dependent macroscopic activity of the entire network. This surprising observation also sheds light on the cooperative origin of neuronal burst in cultured networks. Our findings present an alternative flexible approach to the technique based on a massive tiling of networks by large-scale arrays of electrodes to monitor their activity.

  2. Simultaneous multi-patch-clamp and extracellular-array recordings: Single neuron reflects network activity.

    PubMed

    Vardi, Roni; Goldental, Amir; Sardi, Shira; Sheinin, Anton; Kanter, Ido

    2016-11-08

    The increasing number of recording electrodes enhances the capability of capturing the network's cooperative activity, however, using too many monitors might alter the properties of the measured neural network and induce noise. Using a technique that merges simultaneous multi-patch-clamp and multi-electrode array recordings of neural networks in-vitro, we show that the membrane potential of a single neuron is a reliable and super-sensitive probe for monitoring such cooperative activities and their detailed rhythms. Specifically, the membrane potential and the spiking activity of a single neuron are either highly correlated or highly anti-correlated with the time-dependent macroscopic activity of the entire network. This surprising observation also sheds light on the cooperative origin of neuronal burst in cultured networks. Our findings present an alternative flexible approach to the technique based on a massive tiling of networks by large-scale arrays of electrodes to monitor their activity.

  3. Simultaneous multi-patch-clamp and extracellular-array recordings: Single neuron reflects network activity

    PubMed Central

    Vardi, Roni; Goldental, Amir; Sardi, Shira; Sheinin, Anton; Kanter, Ido

    2016-01-01

    The increasing number of recording electrodes enhances the capability of capturing the network’s cooperative activity, however, using too many monitors might alter the properties of the measured neural network and induce noise. Using a technique that merges simultaneous multi-patch-clamp and multi-electrode array recordings of neural networks in-vitro, we show that the membrane potential of a single neuron is a reliable and super-sensitive probe for monitoring such cooperative activities and their detailed rhythms. Specifically, the membrane potential and the spiking activity of a single neuron are either highly correlated or highly anti-correlated with the time-dependent macroscopic activity of the entire network. This surprising observation also sheds light on the cooperative origin of neuronal burst in cultured networks. Our findings present an alternative flexible approach to the technique based on a massive tiling of networks by large-scale arrays of electrodes to monitor their activity. PMID:27824075

  4. The Gould's Belt Very Large Array Survey. III. The Orion Region

    NASA Astrophysics Data System (ADS)

    Kounkel, Marina; Hartmann, Lee; Loinard, Laurent; Mioduszewski, Amy J.; Dzib, Sergio A.; Ortiz-León, Gisela N.; Rodríguez, Luis F.; Pech, Gerardo; Rivera, Juana L.; Torres, Rosa M.; Boden, Andrew F.; Evans, Neal J., II; Briceño, Cesar; Tobin, John

    2014-07-01

    We present results from a high-sensitivity (60 μJy), large-scale (2.26 deg2) survey obtained with the Karl G. Jansky Very Large Array as part of the Gould's Belt Survey program. We detected 374 and 354 sources at 4.5 and 7.5 GHz, respectively. Of these, 148 are associated with previously known young stellar objects (YSOs). Another 86 sources previously unclassified at either optical or infrared wavelengths exhibit radio properties that are consistent with those of young stars. The overall properties of our sources at radio wavelengths such as their variability and radio to X-ray luminosity relation are consistent with previous results from the Gould's Belt Survey. Our detections provide target lists for follow-up Very Long Baseline Array radio observations to determine their distances as YSOs are located in regions of high nebulosity and extinction, making it difficult to measure optical parallaxes.

  5. Milagro Contributions to XXVI International Cosmic Ray Conference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffman, C.M.; Haines, T.J.; Sinnis, G.

    1999-08-01

    Milagrito, a prototype for the Milagro detector, operated for 15 months in 1997--8 and collected 8.9 x 10{sup 9} events. It was the first extensive air shower (EAS) array sensitive to showers initiated by primaries with energy below 1 TeV. The shadows of the sun and moon observed with cosmic rays can be used to study systematic pointing shifts and measure the angular resolution of EAS arrays. Below a few TeV, the paths of cosmic rays coming toward the earth are bent by the helio- and geo-magnetic fields. This is expected to distort and displace the shadows of the sunmore » and the moon. The moon shadow, offset from the nominal (unreflected) position, has been observed with high statistical significance in Milagrito. This can be used to establish energy calibrations, as well as to search for the anti-matter content of the VHE cosmic ray flux. The shadow of the sun has also been observed with high significance.« less

  6. 5,120 Superconducting Bolometers for the PIPER Balloon-Borne CMB Polarization Experiment

    NASA Technical Reports Server (NTRS)

    Benford, Dominic J.; Chuss, David T.; Hilton, Gene C.; Irwin, Kent D.; Jethava, Nikhil; Jhabvala, Christine A.; Kogut, Alan J.; Miller, Timothy M.; Moseley, S. Harvey; Rostem, Karwan; hide

    2010-01-01

    We are constructing the Primordial Inflation Polarization Explorer (PIPER) to measure the polarization of the cosmic microwave background (CMB) and search for the imprint of gravity waves produced during an inflationary epoch in the early universe. The signal is faint and lies behind confusing foregrounds, both astrophysical and cosmological, and so many detectors are required to complete the measurement in a limited time. We will use four of our matured 1,280 pixel, high-filling-factor backshort-under-grid bolometer arrays for efficient operation at the PIPER CMB wavelengths. All four arrays observe at a common wavelength set by passband filters in the optical path. PIPER will fly four times to observe at wavelengths of 1500, 1100, 850, and 500 microns in order to separate CMB from foreground emission. The arrays employ leg-isolated superconducting transition edge sensor bolometers operated at 145 mK; tuned resonant backshorts for efficient optical coupling; and a second-generation superconducting quantum interference device multiplexer readout. We describe the design, development, and performance of PIPER bolometer array technology to achieve background-limited sensitivity for a cryogenic balloon-borne telescope.

  7. 5,120 Superconducting Bolometers for the PIPER Balloon-Borne CMB Polarization Experiment

    NASA Technical Reports Server (NTRS)

    Benford, Dominic J.; Chuss, David T.; Hilton, Gene C.; Irwin, Kent D.; Jethava, Nikhil S.; Jhabvala, Christine A.; Kogut, Alan J.; Miller, Timothy M.; Mirel, Paul; Moseley, S. Harvey; hide

    2010-01-01

    We are constructing the Primordial Inflation Polarization Explorer (PIPER) to measure the polarization o[ the cosmic microwave background (CMB) and search for the imprint of gravity waves produced during an inflationary epoch in the early universe. The signal is faint and lies behind confusing foregrounds, both astrophysical and cosmological, and so many detectors are required to complete the measurement in a limited time. We will use four of our matured 1,280 pixel, high-filling-factor backshort-under-grid bolometer arrays for efficient operation at the PIPER CMB wavelengths. All four arrays observe at a common wavelength set by passband filters in the optical path. PIPER will fly four times to observe at wavelengths of 1500, 1100, 850, and 500 microns in order to separate CMB from foreground emission. The arrays employ leg-isolated superconducting transition edge sensor bolometers operated at 128mK; tuned resonant backshorts for efficient optical coupling; and a second-generation superconducting quantum interference device (SQUID) multiplexer readout. We describe the design, development, and performance of PIPER bo|ometer array technology to achieve background-limited sensitivity for a cryogenic balloon-borne telescope.

  8. Highly sensitive surface enhanced Raman scattering substrates based on Ag decorated Si nanocone arrays and their application in trace dimethyl phthalate detection

    NASA Astrophysics Data System (ADS)

    Zuo, Zewen; Zhu, Kai; Ning, Lixin; Cui, Guanglei; Qu, Jun; Cheng, Ying; Wang, Junzhuan; Shi, Yi; Xu, Dongsheng; Xin, Yu

    2015-01-01

    Wafer-scale three-dimensional (3D) surface enhancement Raman scattering (SERS) substrates were prepared using the plasma etching and ion sputtering methods that are completely compatible with well-established silicon device technologies. The substrates are highly sensitive with excellent uniformity and reproducibility, exhibiting an enhancement factor up to 1012 with a very low relative standard deviation (RSD) around 5%. These are attributed mainly to the uniform-distributed, multiple-type high-density hot spots originating from the structural characteristics of Ag nanoparticles (NPs) decorated Si nanocone (NC) arrays. We demonstrate that the trace dimethyl phthalate (DMP) at a concentration of 10-7 M can be well detected using this SERS substrate, showing that the AgNPs-decorated SiNC arrays can serve as efficient SERS substrates for phthalate acid esters (PAEs) detection with high sensitivity.

  9. Millimeter and submillimeter observations from the Atacama plateau and high altitude balloons

    NASA Astrophysics Data System (ADS)

    Devlin, Mark

    2002-05-01

    A new generation of ground-based and sub-orbital platforms will be operational in the next few years. These telescopes will operate from high sites in Chile and Antarctica, and airborne platforms where the atmosphere is transparent enough to allow sensitive measurements in the millimeter and submillimeter bands. The telescopes will employ state-of-the-art instrumentation including large format bolometer arrays and spectrometers. I will discuss the results of our observations in the Atacama region of Chile (MAT/TOCO), our future observations on the Balloon-borne Large Aperture Submillimeter Telescope (BLAST) now under construction, and our proposed Atacama Cosmology Telescope (ACT). .

  10. Fiber-optic microsphere-based arrays for multiplexed biological warfare agent detection.

    PubMed

    Song, Linan; Ahn, Soohyoun; Walt, David R

    2006-02-15

    We report a multiplexed high-density DNA array capable of rapid, sensitive, and reliable identification of potential biological warfare agents. An optical fiber bundle containing 6000 individual 3.1-mum-diameter fibers was chemically etched to yield microwells and used as the substrate for the array. Eighteen different 50-mer single-stranded DNA probes were covalently attached to 3.1-mum microspheres. Probe sequences were designed for Bacillus anthracis, Yersinia pestis, Francisella tularensis, Brucella melitensis, Clostridium botulinum, Vaccinia virus, and one biological warfare agent (BWA) simulant, Bacillus thuringiensis kurstaki. The microspheres were distributed into the microwells to form a randomized multiplexed high-density DNA array. A detection limit of 10 fM in a 50-microL sample volume was achieved within 30 min of hybridization for B. anthracis, Y. pestis, Vaccinia virus, and B. thuringiensis kurstaki. We used both specific responses of probes upon hybridization to complementary targets as well as response patterns of the multiplexed array to identify BWAs with high accuracy. We demonstrated the application of this multiplexed high-density DNA array for parallel identification of target BWAs in spiked sewage samples after PCR amplification. The array's miniaturized feature size, fabrication flexibility, reusability, and high reproducibility may enable this array platform to be integrated into a highly sensitive, specific, and reliable portable instrument for in situ BWA detection.

  11. Monte Carlo performance studies for the site selection of the Cherenkov Telescope Array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hassan, T.; Arrabito, L.; Bernlöhr, K.

    The Cherenkov Telescope Array (CTA) represents the next generation of ground-based instruments for very-high-energy (VHE) gamma-ray astronomy, aimed at improving on the sensitivity of current-generation experiments by an order of magnitude and providing coverage over four decades of energy. The current CTA design consists of two arrays of tens of imaging atmospheric Cherenkov Telescopes, comprising Small, Medium and Large-Sized Telescopes, with one array located in each of the Northern and Southern Hemispheres. To study the effect of the site choice on the overall CTA performance and support the site evaluation process, detailed Monte Carlo simulations have been performed. These resultsmore » show the impact of different site-related attributes such as altitude, night-sky background and local geomagnetic field on CTA performance for the observation of VHE gamma rays.« less

  12. Monte Carlo performance studies for the site selection of the Cherenkov Telescope Array

    DOE PAGES

    Hassan, T.; Arrabito, L.; Bernlöhr, K.; ...

    2017-05-03

    The Cherenkov Telescope Array (CTA) represents the next generation of ground-based instruments for very-high-energy (VHE) gamma-ray astronomy, aimed at improving on the sensitivity of current-generation experiments by an order of magnitude and providing coverage over four decades of energy. The current CTA design consists of two arrays of tens of imaging atmospheric Cherenkov Telescopes, comprising Small, Medium and Large-Sized Telescopes, with one array located in each of the Northern and Southern Hemispheres. To study the effect of the site choice on the overall CTA performance and support the site evaluation process, detailed Monte Carlo simulations have been performed. These resultsmore » show the impact of different site-related attributes such as altitude, night-sky background and local geomagnetic field on CTA performance for the observation of VHE gamma rays.« less

  13. Ultra-High Aggregate Bandwidth Two-Dimensional Multiple-Wavelength Diode Laser Arrays

    DTIC Science & Technology

    1993-12-09

    during the growth of the cavity spacer region using the fact that the molecular beam epitaxy growth of GaAs is highly sensitive to the substrate... molecular beam epitaxy (MBE) crystal growth, the GaAs growth rate is highly sensitive to the substrate temperature above 650"C (2], a GaAs/AIGaAs... epitaxial growth technique to make reproducible and repeatable multi-wavelength VCSEL arrays. Our approach to fabricate the spatially graded layer

  14. Carbon Nanotube Nanoelectrode Array for Ultrasensitive DNA Detection

    NASA Technical Reports Server (NTRS)

    Li, Jun; Koehne, Jessica; Chen, Hua; Cassell, Alan; Ng, Hou Tee; Fan, Wendy; Ye, Qi; Han, Jie; Meyyappan, M.

    2003-01-01

    A reliable nanoelectrode array based on vertically aligned multi-walled carbon nanotubes (MWNTs) embedded in SiO2 is used for ultrasensitive DNA detection. Characteristic nanoelectrode behavior is observed using low-density MWNT arrays for measuring both bulk and surface immobilized redox species such as K4Fe(CN)6. The open-end of MWNTs present similar properties as graphite edge-plane electrodes with wide potential window, flexible chemical functionalities, and good biocompatibility. Oligonucleotide probes are selectively functionalized at the open ends cf the nanotube array and specifically hybridized with oligonucleotide targets. The guanine groups are employed as the signal moieties in the electrochemical measurements. Ru(bpy)3(2+) mediator is used to further amplify the guanine oxidation signal. The hybridization of subattomoles of PCR amplified DNA targets is detected electrochemically by combining the MWNT nanoelectrode array with the Ru(bpy)32' amplification mechanism. This system provides a general platform of molecular diagnostics for applications requiring ultrahigh sensitivity, high-degree of miniaturization, and simple sample preparations.

  15. Graphene-enhanced plasmonic nanohole arrays for environmental sensing in aqueous samples

    PubMed Central

    Genslein, Christa; Hausler, Peter; Kirchner, Eva-Maria; Bierl, Rudolf; Baeumner, Antje J

    2016-01-01

    The label-free nature of surface plasmon resonance techniques (SPR) enables a fast, specific, and sensitive analysis of molecular interactions. However, detection of highly diluted concentrations and small molecules is still challenging. It is shown here that in contrast to continuous gold films, gold nanohole arrays can significantly improve the performance of SPR devices in angle-dependent measurement mode, as a signal amplification arises from localized surface plasmons at the nanostructures. This leads consequently to an increased sensing capability of molecules bound to the nanohole array surface. Furthermore, a reduced graphene oxide (rGO) sensor surface was layered over the nanohole array. Reduced graphene oxide is a 2D nanomaterial consisting of sp2-hybridized carbon atoms and is an attractive receptor surface for SPR as it omits any bulk phase and therefore allows fast response times. In fact, it was found that nanohole arrays demonstrated a higher shift in the resonance angle of 250–380% compared to a continuous gold film. At the same time the nanohole array structure as characterized by its diameter-to-periodicity ratio had minimal influence on the binding capacity of the sensor surface. As a simple and environmentally highly relevant model, binding of the plasticizer diethyl phthalate (DEP) via π-stacking was monitored on the rGO gold nanohole array realizing a limit of detection of as low as 20 nM. The concentration-dependent signal change was studied with the best performing rGO-modified nanohole arrays. Compared to continuous gold films a diameter-to-periodicity ratio (D/P) of 0.43 lead to a 12-fold signal enhancement. Finally, the effect of environmental waters on the sensor was evaluated using samples from sea, lake and river waters spiked with analytically relevant amounts of DEP during which significant changes in the SPR signal are observed. It is expected that this concept can be successfully transferred to enhance the sensitivity in SPR sensors. PMID:28144507

  16. Real-Time Label-Free Surface Plasmon Resonance Biosensing with Gold Nanohole Arrays Fabricated by Nanoimprint Lithography

    PubMed Central

    Martinez-Perdiguero, Josu; Retolaza, Aritz; Otaduy, Deitze; Juarros, Aritz; Merino, Santos

    2013-01-01

    In this work we present a surface plasmon resonance sensor based on enhanced optical transmission through sub-wavelength nanohole arrays. This technique is extremely sensitive to changes in the refractive index of the surrounding medium which result in a modulation of the transmitted light. The periodic gold nanohole array sensors were fabricated by high-throughput thermal nanoimprint lithography. Square periodic arrays with sub-wavelength hole diameters were obtained and characterized. Using solutions with known refractive index, the array sensitivities were obtained. Finally, protein absorption was monitored in real-time demonstrating the label-free biosensing capabilities of the fabricated devices. PMID:24135989

  17. Infrared charge-injection-device array performance at low background

    NASA Technical Reports Server (NTRS)

    Mccreight, C. R.; Goebel, J. H.

    1981-01-01

    Low-background tests of a 1 x 32 Si:Bi charge-injection-device (CID) IR detector are carried out to evaluate its feasibility for space-based astronomical observations. Optimum performance is obtained at a temperature of 11 K. The sensitivity is found to compare well with that of discrete extrinsic silicon photoconductors. The measured sensitivity and the apparent absence of anomalous effects make extrinsic silicon CID arrays very promising for astronomical applications.

  18. Silicon on-chip bandpass filters for the multiplexing of high sensitivity photonic crystal microcavity biosensors

    PubMed Central

    Chakravarty, Swapnajit; Yang, Chun-Ju; Wang, Zheng; Tang, Naimei; Fan, Donglei; Chen, Ray T.

    2015-01-01

    A method for the dense integration of high sensitivity photonic crystal (PC) waveguide based biosensors is proposed and experimentally demonstrated on a silicon platform. By connecting an additional PC waveguide filter to a PC microcavity sensor in series, a transmission passband is created, containing the resonances of the PC microcavity for sensing purpose. With proper engineering of the passband, multiple high sensitivity PC microcavity sensors can be integrated into microarrays and be interrogated simultaneously between a single input and a single output port. The concept was demonstrated with a 2-channel L55 PC biosensor array containing PC waveguide filters. The experiment showed that the sensors on both channels can be monitored simultaneously from a single output spectrum. Less than 3 dB extra loss for the additional PC waveguide filter is observed. PMID:25829549

  19. Ultrasensitive Label-free Electronic Chip for DNA Analysis Using Carbon Nanotube Nanoelectrode Arrays

    NASA Technical Reports Server (NTRS)

    Li, Jun; Koehne, Jessica; Chen, Hua; Cassell, Alan; Ng, Hou Tee; Ye, Qi; Han, Jie; Meyyappan, M.

    2004-01-01

    There is a strong need for faster, cheaper, and simpler methods for nucleic acid analysis in today s clinical tests. Nanotechnologies can potentially provide solutions to these requirements by integrating nanomaterials with biofunctionalities. Dramatic improvement in the sensitivity and multiplexing can be achieved through the high-degree miniaturization. Here, we present our study in the development of an ultrasensitive label-free electronic chip for DNA/RNA analysis based on carbon nanotube nanoelectrode arrays. A reliable nanoelectrode array based on vertically aligned multi-walled carbon nanotubes (MWNTs) embedded in a SiO2 matrix is fabricated using a bottom-up approach. Characteristic nanoelectrode behavior is observed with a low-density MWNT nanoelectrode array in measuring both the bulk and surface immobilized redox species. The open-end of MWNTs are found to present similar properties as graphite edge-plane electrodes, with a wide potential window, flexible chemical functionalities, and good biocompatibility. A BRCA1 related oligonucleotide probe with 18 bases is covalently functionalized at the open ends of the MWNTs and specifically hybridized with an oligonucleotide target as well as a PCR amplicon. The guanine bases in the target molecules are employed as the signal moieties for the electrochemical measurements. Ru(bpy)3(2+) mediator is used to further amplify the guanine oxidation signal. This technique has been employed for direct electrochemical detection of label-free PCR amplicon through specific hybridization with the BRCAl probe. The detection limit is estimated to be less than approximately 1000 DNA molecules, approaching the limit of the sensitivity by laser-based fluorescence techniques in DNA microarray. This system provides a general electronic platform for rapid molecular diagnostics in applications requiring ultrahigh sensitivity, high-degree of miniaturization, simple sample preparation, and low- cost operation.

  20. Improvement in the light sensitivity of the ultrahigh-speed high-sensitivity CCD with a microlens array

    NASA Astrophysics Data System (ADS)

    Hayashida, T.,; Yonai, J.; Kitamura, K.; Arai, T.; Kurita, T.; Tanioka, K.; Maruyama, H.; Etoh, T. Goji; Kitagawa, S.; Hatade, K.; Yamaguchi, T.; Takeuchi, H.; Iida, K.

    2008-02-01

    We are advancing the development of ultrahigh-speed, high-sensitivity CCDs for broadcast use that are capable of capturing smooth slow-motion videos in vivid colors even where lighting is limited, such as at professional baseball games played at night. We have already developed a 300,000 pixel, ultrahigh-speed CCD, and a single CCD color camera that has been used for sports broadcasts and science programs using this CCD. However, there are cases where even higher sensitivity is required, such as when using a telephoto lens during a baseball broadcast or a high-magnification microscope during science programs. This paper provides a summary of our experimental development aimed at further increasing the sensitivity of CCDs using the light-collecting effects of a microlens array.

  1. Electropolymerization of Uniform Polyaniline Nanorod Arrays on Conducting Oxides as Counter Electrodes in Dye-Sensitized Solar Cells.

    PubMed

    He, Ziming; Liu, Jing; Khoo, Si Yun; Tan, Timothy Thatt Yang

    2016-01-01

    Conventional techniques for the synthesis of oriented polyaniline (PANI) nanostructures are often complex or time consuming. Through an innovative reduced graphene oxide (rGO) modified FTO and a low-potential electropolymerization strategy, the rapid and template-free growth of a highly ordered PANI nanorod array on the FTO substrate is realized. The highly ordered nanostructure of the PANI array leads to a high electrocatalytic activity and chemical stability. The importance of the polymerization potential and rGO surface modification to achieve this nanostructure is revealed. Compared to platinum, the PANI nanorod array exhibits an enhanced performance and stability as counter electrodes in dye-sensitized solar cells, with a 17.6 % enhancement in power conversion efficiency. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. The search of the anisotropy of the primary cosmic radiation by the difference method

    NASA Astrophysics Data System (ADS)

    Pavlyuchenko, Victor; Martirosov, Romen; Nikolskaya, Natalia; Erlykin, Anatoly

    2017-06-01

    On the basis of experimental data obtained in the knee energy region with the GAMMA array an anomaly has been found in the mass composition of primary cosmic rays coming from the region of the VELA cluster. We used an original difference method which has high sensitivity, stability against accidental experimental errors and the possibility to separate anomalies connected with the laboratory coordinate system from anomalies observed in the celestial coordinates. The multiple scattering of the charged particles in the galactic magnetic fields makes it possible to study regions of the sky outside the direct visibility of the array.

  3. Comparison of pelvic phased-array versus endorectal coil magnetic resonance imaging at 3 Tesla for local staging of prostate cancer.

    PubMed

    Kim, Bum Soo; Kim, Tae-Hwan; Kwon, Tae Gyun; Yoo, Eun Sang

    2012-05-01

    Several studies have demonstrated the superiority of endorectal coil magnetic resonance imaging (MRI) over pelvic phased-array coil MRI at 1.5 Tesla for local staging of prostate cancer. However, few have studied which evaluation is more accurate at 3 Tesla MRI. In this study, we compared the accuracy of local staging of prostate cancer using pelvic phased-array coil or endorectal coil MRI at 3 Tesla. Between January 2005 and May 2010, 151 patients underwent radical prostatectomy. All patients were evaluated with either pelvic phased-array coil or endorectal coil prostate MRI prior to surgery (63 endorectal coils and 88 pelvic phased-array coils). Tumor stage based on MRI was compared with pathologic stage. We calculated the specificity, sensitivity and accuracy of each group in the evaluation of extracapsular extension and seminal vesicle invasion. Both endorectal coil and pelvic phased-array coil MRI achieved high specificity, low sensitivity and moderate accuracy for the detection of extracapsular extension and seminal vesicle invasion. There were statistically no differences in specificity, sensitivity and accuracy between the two groups. Overall staging accuracy, sensitivity and specificity were not significantly different between endorectal coil and pelvic phased-array coil MRI.

  4. Colorization-Based RGB-White Color Interpolation using Color Filter Array with Randomly Sampled Pattern

    PubMed Central

    Oh, Paul; Lee, Sukho; Kang, Moon Gi

    2017-01-01

    Recently, several RGB-White (RGBW) color filter arrays (CFAs) have been proposed, which have extra white (W) pixels in the filter array that are highly sensitive. Due to the high sensitivity, the W pixels have better SNR (Signal to Noise Ratio) characteristics than other color pixels in the filter array, especially, in low light conditions. However, most of the RGBW CFAs are designed so that the acquired RGBW pattern image can be converted into the conventional Bayer pattern image, which is then again converted into the final color image by using conventional demosaicing methods, i.e., color interpolation techniques. In this paper, we propose a new RGBW color filter array based on a totally different color interpolation technique, the colorization algorithm. The colorization algorithm was initially proposed for colorizing a gray image into a color image using a small number of color seeds. Here, we adopt this algorithm as a color interpolation technique, so that the RGBW color filter array can be designed with a very large number of W pixels to make the most of the highly sensitive characteristics of the W channel. The resulting RGBW color filter array has a pattern with a large proportion of W pixels, while the small-numbered RGB pixels are randomly distributed over the array. The colorization algorithm makes it possible to reconstruct the colors from such a small number of RGB values. Due to the large proportion of W pixels, the reconstructed color image has a high SNR value, especially higher than those of conventional CFAs in low light condition. Experimental results show that many important information which are not perceived in color images reconstructed with conventional CFAs are perceived in the images reconstructed with the proposed method. PMID:28657602

  5. Colorization-Based RGB-White Color Interpolation using Color Filter Array with Randomly Sampled Pattern.

    PubMed

    Oh, Paul; Lee, Sukho; Kang, Moon Gi

    2017-06-28

    Recently, several RGB-White (RGBW) color filter arrays (CFAs) have been proposed, which have extra white (W) pixels in the filter array that are highly sensitive. Due to the high sensitivity, the W pixels have better SNR (Signal to Noise Ratio) characteristics than other color pixels in the filter array, especially, in low light conditions. However, most of the RGBW CFAs are designed so that the acquired RGBW pattern image can be converted into the conventional Bayer pattern image, which is then again converted into the final color image by using conventional demosaicing methods, i.e., color interpolation techniques. In this paper, we propose a new RGBW color filter array based on a totally different color interpolation technique, the colorization algorithm. The colorization algorithm was initially proposed for colorizing a gray image into a color image using a small number of color seeds. Here, we adopt this algorithm as a color interpolation technique, so that the RGBW color filter array can be designed with a very large number of W pixels to make the most of the highly sensitive characteristics of the W channel. The resulting RGBW color filter array has a pattern with a large proportion of W pixels, while the small-numbered RGB pixels are randomly distributed over the array. The colorization algorithm makes it possible to reconstruct the colors from such a small number of RGB values. Due to the large proportion of W pixels, the reconstructed color image has a high SNR value, especially higher than those of conventional CFAs in low light condition. Experimental results show that many important information which are not perceived in color images reconstructed with conventional CFAs are perceived in the images reconstructed with the proposed method.

  6. An Outflow-shaped Magnetic Field Toward the Class 0 Protostellar Source Serpens SMM1

    NASA Astrophysics Data System (ADS)

    Hull, Charles; Girart, Josep M.; Tychoniec, Lukasz; Rao, Ramprasad; Cortés, Paulo; Pokhrel, Riwaj; Zhang, Qizhou; Houde, Martin; Dunham, Michael; Kristensen, Lars; Lai, Shih-Ping; Li, Zhi-Yun; Plambeck, Richard

    2018-01-01

    The results from the polarization system at the Atacama Large Millimeter/submillimeter Array (ALMA) have begun both to expand and to confound our understanding of the role of the magnetic field in low-mass star formation. Here we show the highest resolution and highest sensitivity polarization images made to date toward the very young, intermediate-mass Class 0 protostellar source Serpens SMM1, the brightest source in the Serpens Main star-forming region. These ALMA observations achieve ~140 AU resolution, allowing us to probe dust polarization—and thus magnetic field orientation—in the innermost regions surrounding the protostar. By complementing these observations with polarization observations from the Submillimeter Array (SMA) and archival data from the Combined Array for Research in Millimeter-wave Astronomy (CARMA) and the James Clerk Maxwell Telescopes (JCMT), we can compare the magnetic field orientations at different spatial scales. We find major changes in the magnetic field orientation between large (~0.1 pc) scales—where the magnetic field is oriented E–W, perpendicular to the major axis of the dusty filament where SMM1 is embedded—and the intermediate and small scales probed by CARMA (~1000 au resolution), the SMA (~350 au resolution), and ALMA. The ALMA maps reveal that the redshifted lobe of the bipolar outflow is clearly shaping the magnetic field in SMM1 on the southeast side of the source. High-spatial-resolution continuum and spectral-line observations also reveal a tight (~130 au) protobinary system in SMM1-b, the eastern component of which is launching an extremely high-velocity, one-sided jet visible in both CO(2-1) and SiO(5-4); however, that jet does not appear to be shaping the magnetic field. These observations show that with the sensitivity and resolution of ALMA, we can now begin to understand the role that feedback (e.g., from protostellar outflows) plays in shaping the magnetic field in very young, star-forming sources like SMM1.

  7. Preparation of high-aspect-ratio ZnO nanorod arrays for the detection of several organic solvents at room working temperature

    NASA Astrophysics Data System (ADS)

    Lee, Yi-Mu; Zheng, Min-Ren

    2013-11-01

    Chemical sensors based on ZnO nanorod arrays were prepared using chemical bath deposition (CBD) to investigate the sensing performance for the detection of several organic solvents with low concentrations (0.1%, 0.5%, 1%, v/v) at room temperature. High quality and high aspect-ratio (value ˜28) ZnO nanorods have a diameter of about 74 nm and average length of 2.1 μm. Nyquist plots and Bode plots of the ZnO sensors under different organic solvents were obtained by electrical impedance spectroscopy (EIS). The sensing properties such as charge-transfer resistance, double-layer capacitance and dielectric parameters were determined from the impedance spectra to explore the charge transport in low-concentration aqueous solutions. The decreasing trend of the charge-transfer resistance (Rct) as decreasing solvent concentrations is observed, and a straight line at low frequency regime indicates adsorption of water molecules on the oxide surface. The sensitivity of the ZnO sensors was calculated from the resistance variation in target solvents and in deionized water. We demonstrated the use of ZnO nanorod arrays as a chemical sensor capable of generating a different response upon exposure to methanol, ethanol, isopropyl alcohol, acetone and water, wherein the methanol sensing exhibited highest sensitivity. In addition, the ZnO sensor also demonstrates good stability and reproducibility for detection of methanol and ethanol.

  8. Inkjet-assisted layer-by-layer printing of quantum dot/enzyme microarrays for highly sensitive detection of organophosphorous pesticides.

    PubMed

    Luan, Enxiao; Zheng, Zhaozhu; Li, Xinyu; Gu, Hongxi; Liu, Shaoqin

    2016-04-15

    We present a facile fabrication of layer-by-layer (LbL) microarrays of quantum dots (QDs) and acetylcholinesterase enzyme (AChE). The resulting arrays had several unique properties, such as low cost, high integration and excellent flexibility and time-saving. The presence of organophosphorous pesticides (OPs) can inhibit the AChE activity and thus changes the fluorescent intensity of QDs/AChE microscopic dot arrays. Therefore, the QDs/AChE microscopic dot arrays were used for the sensitive visual detection of OPs. Linear calibration for parathion and paraoxon was obtained in the range of 5-100 μg L(-1) under the optimized conditions with the limit of detection (LOD) of 10 μg L(-1). The arrays have been successfully used for detection of OPs in fruits and water real samples. The new array was validated by comparison with conventional high performance liquid chromatography-mass spectrometry (HPLC-MS). Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Tag Array gene chip rapid diagnosis anti-tuberculosis drug resistance in pulmonary tuberculosis -a feasibility study.

    PubMed

    Wu, Wenjie; Cheng, Peng; Lyu, Jingtong; Zhang, Zehua; Xu, Jianzhong

    2018-05-01

    We developed a Tag Array chip for detecting first- and second-line anti tuberculosis drug resistance in pulmonary tuberculosis and compared the analytical performance of the gene chip to that of phenotypic drug susceptibility testing (DST). From November 2011 to April 2016.234 consecutive culture-confirmed, clinically and imaging diagnosed patients with pulmonary tuberculosis from Southwest Hospital, Chongqing were enrolled into the study. Specimens collected during sputum or bronchoalveolar lavage fluid from the pulmonary tuberculosis patients were subjected to M. tuberculosis species identification and drug-resistance detection by the Tag Array gene chip, and evaluate the sensitivity and specificity of chip. A total of 186 patients was diagnosed drug-resistant tuberculosis. The detection of rifampicin (RFP), isoniazid (INH), fluoroquinolones (FQS), streptomycin (SM) resistance genes was highly sensitive and specific: however, for detection of amikacin (AMK), capreomycin (CPM), Kanamycin (KM), specificity was higher, but sensitivity was lower. Sensitivity for the detection of a mutation in the eis promoter region could be improved. The detection sensitivity of the EMB resistance gene was low, therefore it is easy to miss a diagnosis of EMB drug resistance, but its specificity was high. Tag Array chip can achieve rapid, accurate and high-throughput detection of tuberculosis resistance in pulmonary tuberculosis, which has important clinical significance and feasibility. Copyright © 2018. Published by Elsevier Ltd.

  10. 3D Dewetting for Crystal Patterning: Toward Regular Single-Crystalline Belt Arrays and Their Functionality.

    PubMed

    Wu, Yuchen; Feng, Jiangang; Su, Bin; Jiang, Lei

    2016-03-16

    Arrays of unidirectional dewetting behaviors can be generated by using 3D-wettability-difference micropillars, yielding highly ordered organic single-crystalline belt arrays. These patterned organic belts show an improved mobility record and can be used as flexible pressure sensors with high sensitivity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Estimating Noise in the Hydrogen Epoch of Reionization Array

    NASA Astrophysics Data System (ADS)

    Englund Mathieu, Philip; HERA Team

    2017-01-01

    The Hydrogen Epoch of Reionization Array (HERA) is a radio telescope dedicated to observing large scale structure during and prior to the epoch of reionization. Once completed, HERA will have unprecedented sensitivity to the 21-cm signal from hydrogen reionization. This poster will present time- and frequency-subtraction methods and results from a preliminary analysis of the noise characteristics of the nineteen-element pathfinder array.

  12. ALMA Observations of Dust Polarization and Molecular Line Emission from the Class 0 Protostellar Source Serpens SMM1

    NASA Astrophysics Data System (ADS)

    Hull, Charles L. H.; Girart, Josep M.; Tychoniec, Łukasz; Rao, Ramprasad; Cortés, Paulo C.; Pokhrel, Riwaj; Zhang, Qizhou; Houde, Martin; Dunham, Michael M.; Kristensen, Lars E.; Lai, Shih-Ping; Li, Zhi-Yun; Plambeck, Richard L.

    2017-10-01

    We present high angular resolution dust polarization and molecular line observations carried out with the Atacama Large Millimeter/submillimeter Array (ALMA) toward the Class 0 protostar Serpens SMM1. By complementing these observations with new polarization observations from the Submillimeter Array (SMA) and archival data from the Combined Array for Research in Millimeter-wave Astronomy (CARMA) and the James Clerk Maxwell Telescopes (JCMT), we can compare the magnetic field orientations at different spatial scales. We find major changes in the magnetic field orientation between large (˜0.1 pc) scales—where the magnetic field is oriented E-W, perpendicular to the major axis of the dusty filament where SMM1 is embedded—and the intermediate and small scales probed by CARMA (˜1000 au resolution), the SMA (˜350 au resolution), and ALMA (˜140 au resolution). The ALMA maps reveal that the redshifted lobe of the bipolar outflow is shaping the magnetic field in SMM1 on the southeast side of the source; however, on the northwestern side and elsewhere in the source, low-velocity shocks may be causing the observed chaotic magnetic field pattern. High-spatial-resolution continuum and spectral-line observations also reveal a tight (˜130 au) protobinary system in SMM1-b, the eastern component of which is launching an extremely high-velocity, one-sided jet visible in both {CO}(J=2\\to 1) and {SiO}(J=5\\to 4); however, that jet does not appear to be shaping the magnetic field. These observations show that with the sensitivity and resolution of ALMA, we can now begin to understand the role that feedback (e.g., from protostellar outflows) plays in shaping the magnetic field in very young, star-forming sources like SMM1.

  13. Sampling and position effects in the Electronically Steered Thinned Array Radiometer (ESTAR)

    NASA Technical Reports Server (NTRS)

    Katzberg, Stephen J.

    1993-01-01

    A simple engineering level model of the Electronically Steered Thinned Array Radiometer (ESTAR) is developed that allows an identification of the major effects of the sampling process involved with this technique. It is shown that the ESTAR approach is sensitive to aliasing and has a highly non-uniform sensitivity profile. It is further shown that the ESTAR approach is strongly sensitive to position displacements of the low-density sampling antenna elements.

  14. Constraints on radial anisotropy in the central Pacific upper mantle from the NoMelt OBS array

    NASA Astrophysics Data System (ADS)

    Russell, J. B.; Gaherty, J. B.; Lin, P. P.; Zebker, M.

    2016-12-01

    Observations of seismic anisotropy in ocean basins are important for constraining deformation and melting processes in the upper mantle. The NoMelt OBS array was deployed on relatively pristine, 70-Ma seafloor in the central Pacific with the aim of constraining upper-mantle circulation and the evolution of the lithosphere-asthenosphere system. Azimuthal variations in Rayleigh-wave velocity suggest strong anisotropic fabric both in the lithosphere and deep in the asthenosphere, and we aim to evaluate whether radial anisotropy shows a similar pattern. We use a combination of Love waves from earthquakes (20-100 s) as well as high-frequency ambient noise (5-10 s) to estimate VSH in the upper 300 km beneath the NoMelt array. Waveform fitting of the ambient-noise cross spectra provide phase-velocity estimates that are sensitive to the upper 50 km of the mantle. To constrain structure beneath the lid, we employ an array-based approach to measure Love-wave phase velocities across the array using seven shallow-focus events (< 25 km) with high signal-to-noise ratio and diverse azimuthal coverage. The Love wave phase-velocity measurements suggest strong interference of the first overtone for intermediate periods (20-50 s), while longer periods (>60 s) are mostly dominated by fundamental mode energy. Through forward modeling of Love wave Fréchet kernels, we find an extremely strong nonlinearity in individual mode-branch sensitivity that is dependent on the relative velocity difference between the low-velocity zone (LVZ) and the overlying Pacific lid. For the fundamental mode in the presence of a strong LVZ, intermediate periods (20-50 s) have little sensitivity within the lithospheric mantle with peak sensitivity pushed to the base of the low-velocity zone. This peak sensitivity migrates to much shallower depth as the lid/LVZ contrast is reduced. Therefore, we use a Monte Carlo approach to systematically explore the model space and identify the most robust model features required to minimize phase-velocity misfit of the full multimode Love wave arrivals. The resulting VSH model is combined with the NoMelt VSV model to obtain estimates of radial anisotropy for the top 300km of the central Pacific upper-mantle.

  15. Nanoband array electrode as a platform for high sensitivity enzyme-based glucose biosensing.

    PubMed

    Falk, Magnus; Sultana, Reshma; Swann, Marcus J; Mount, Andrew R; Freeman, Neville J

    2016-12-01

    We describe a novel glucose biosensor based on a nanoband array electrode design, manufactured using standard semiconductor processing techniques, and bio-modified with glucose oxidase immobilized at the nanoband electrode surface. The nanoband array architecture allows for efficient diffusion of glucose and oxygen to the electrode, resulting in a thousand-fold improvement in sensitivity and wide linear range compared to a conventional electrode. The electrode constitutes a robust and manufacturable sensing platform. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Cosmology from CMB Polarization with POLARBEAR and the Simons Array

    NASA Astrophysics Data System (ADS)

    Barron, Darcy; POLARBEAR Collaboration

    2018-01-01

    POLARBEAR is a cosmic microwave background (CMB) polarization experiment located in the Atacama desert in Chile. The science goals of the POLARBEAR project are to do a deep search for CMB B-mode polarization created by inflationary gravitational waves, as well as characterize the CMB B-mode signal from gravitational lensing. POLARBEAR-1 started observations in 2012, and the POLARBEAR team has published a series of results from its first season of observations, including the first measurement of a non-zero B-mode polarization angular power spectrum, measured at sub-degree scales where the dominant signal is gravitational lensing of the CMB. Recently, we released an improved measurement of the B-mode polarization power spectrum, improving our band-power uncertainties by a factor of two, by adding new data from our second observing season and re-analyzing the combined data set.To further improve on these measurements, POLARBEAR is expanding to include an additional two telescopes with multi-chroic receivers observing at 95, 150, 220, and 270 GHz, known as the Simons Array. With high sensitivity and large sky coverage, the Simons Array will create a detailed survey of B-mode polarization, and its spectral information will be used to extract the CMB signal from astrophysical foregrounds. We will present the latest POLARBEAR results, as well as the status of development of the Simons Array and its expected capabilities.

  17. Mini gamma camera, camera system and method of use

    DOEpatents

    Majewski, Stanislaw; Weisenberger, Andrew G.; Wojcik, Randolph F.

    2001-01-01

    A gamma camera comprising essentially and in order from the front outer or gamma ray impinging surface: 1) a collimator, 2) a scintillator layer, 3) a light guide, 4) an array of position sensitive, high resolution photomultiplier tubes, and 5) printed circuitry for receipt of the output of the photomultipliers. There is also described, a system wherein the output supplied by the high resolution, position sensitive photomultipiler tubes is communicated to: a) a digitizer and b) a computer where it is processed using advanced image processing techniques and a specific algorithm to calculate the center of gravity of any abnormality observed during imaging, and c) optional image display and telecommunications ports.

  18. Heterostructured TiO2/NiTiO3 Nanorod Arrays for Inorganic Sensitized Solar Cells with Significantly Enhanced Photovoltaic Performance and Stability.

    PubMed

    Li, Yue-Ying; Wang, Jian-Gan; Sun, Huan-Huan; Wei, Bingqing

    2018-04-11

    Organic dyes used in the conventional dye-sensitized solar cells (DSSCs) suffer from poor light stability and high cost. In this work, we demonstrate a new inorganic sensitized solar cell based on ordered one-dimensional semiconductor nanorod arrays of TiO 2 /NiTiO 3 (NTO) heterostructures prepared via a facile two-step hydrothermal approach. The semiconductor heterostructure arrays are highly desirable and promising for DSSCs because of their direct charge transport capability and slow charge recombination rate. The low-cost NTO inorganic semiconductor possesses an appropriate band gap that matches well with TiO 2 , which behaves like a "dye" to enable efficient light harvesting and fast electron-hole separation. The solar cells constructed by the ordered TiO 2 /NTO heterostructure photoanodes show a significantly improved power conversion efficiency, high fill factor, and more promising, outstanding life stability. The present work will open up an avenue to design heterostructured inorganics for high-performance solar cells.

  19. The silicon drift detector for the IXO high-time resolution spectrometer

    NASA Astrophysics Data System (ADS)

    Lechner, Peter; Amoros, Carine; Barret, Didier; Bodin, Pierre; Boutelier, Martin; Eckhardt, Rouven; Fiorini, Carlo; Kendziorra, Eckhard; Lacombe, Karine; Niculae, Adrian; Pouilloux, Benjamin; Pons, Roger; Rambaud, Damien; Ravera, Laurent; Schmid, Christian; Soltau, Heike; Strüder, Lothar; Tenzer, Christoph; Wilms, Jörn

    2010-07-01

    The High Time Resolution Spectrometer (HTRS) is one of six scientific payload instruments of the International X-ray Observatory (IXO). HTRS is dedicated to the physics of matter at extreme density and gravity and will observe the X-rays generated in the inner accretion flows around the most compact massive objects, i.e. black holes and neutron stars. The study of their timing signature and in addition the simultaneous spectroscopy of the gravitationally shifted and broadened iron line allows for probing general relativity in the strong field regime and understanding the inner structure of neutron stars. As the sources to be observed by HTRS are the brightest in the X-ray sky and the studies require good photon statistics the instrument design is driven by the capability to operate at extremely high count rates. The HTRS instrument is based on a monolithic array of Silicon Drift Detectors (SDDs) with 31 cells in a circular envelope and a sensitive volume of 4.5 cm2 × 450 μm. The SDD principle uses fast signal charge collection on an integrated amplifier by a focusing internal electrical field. It combines a large sensitive area and a small capacitance, thus facilitating good energy resolution and high count rate capability. The HTRS is specified to provide energy spectra with a resolution of 150 eV (FWHM at 6 keV) at high time resolution of 10 μsec and with high count rate capability up to a goal of 2.106 counts per second, corresponding to a 12 Crab equivalent source. As the HTRS is a non-imaging instrument and will target only point sources it is placed on axis but out of focus so that the spot is spread over the array of 31 SDD cells. The SDD array is logically organized in four independent 'quadrants', a dedicated 8-channel quadrant readout chip is in development.

  20. Method and apparatus for detection of charge on ions and particles

    DOEpatents

    Fuerstenau, Stephen Douglas; Soli, George Arthur

    2002-01-01

    The present invention provides a tessellated array detector with charge collecting plate (or cup) electrode pixels and amplifying circuitry integrated into each pixel making it sensitive to external electrostatic charge; a micro collector/amplifier pixel design possessing a small capacitance to ensure a high charge to voltage signal conversion for low noise/high sensitivity operation; a micro-fabricated array of such pixels to create a useful macroscopic target area for ion and charged particle collection.

  1. Projection-based estimation and nonuniformity correction of sensitivity profiles in phased-array surface coils.

    PubMed

    Yun, Sungdae; Kyriakos, Walid E; Chung, Jun-Young; Han, Yeji; Yoo, Seung-Schik; Park, Hyunwook

    2007-03-01

    To develop a novel approach for calculating the accurate sensitivity profiles of phased-array coils, resulting in correction of nonuniform intensity in parallel MRI. The proposed intensity-correction method estimates the accurate sensitivity profile of each channel of the phased-array coil. The sensitivity profile is estimated by fitting a nonlinear curve to every projection view through the imaged object. The nonlinear curve-fitting efficiently obtains the low-frequency sensitivity profile by eliminating the high-frequency image contents. Filtered back-projection (FBP) is then used to compute the estimates of the sensitivity profile of each channel. The method was applied to both phantom and brain images acquired from the phased-array coil. Intensity-corrected images from the proposed method had more uniform intensity than those obtained by the commonly used sum-of-squares (SOS) approach. With the use of the proposed correction method, the intensity variation was reduced to 6.1% from 13.1% of the SOS. When the proposed approach was applied to the computation of the sensitivity maps during sensitivity encoding (SENSE) reconstruction, it outperformed the SOS approach in terms of the reconstructed image uniformity. The proposed method is more effective at correcting the intensity nonuniformity of phased-array surface-coil images than the conventional SOS method. In addition, the method was shown to be resilient to noise and was successfully applied for image reconstruction in parallel imaging.

  2. Comparison of photoemission characteristics between square and circular wire array GaAs photocathodes.

    PubMed

    Deng, Wenjuan; Peng, Xincun; Zou, Jijun; Wang, Weilu; Liu, Yun; Zhang, Tao; Zhang, Yijun; Zhang, Daoli

    2017-11-10

    Two types of negative electron affinity gallium arsenide (GaAs) wire array photocathodes were fabricated by reactive ion etching and inductively coupled plasma etching of bulk GaAs material. High density GaAs wire arrays with high periodicity and good morphology were verified using scanning electron microscopy, and photoluminescence spectra confirmed the wire arrays had good crystalline quality. Reflection spectra showed that circular GaAs wire arrays had superior light trapping compared with square ones. However, after Cs/O activation, the square GaAs wire array photocathodes showed enhanced spectral response. The integral sensitivity of the square wire array photocathodes was approximately 2.8 times that of the circular arrays.

  3. THE BARYON ACOUSTIC OSCILLATION BROADBAND AND BROAD-BEAM ARRAY: DESIGN OVERVIEW AND SENSITIVITY FORECASTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pober, Jonathan C.; Parsons, Aaron R.; McQuinn, Matthew

    2013-03-15

    This work describes a new instrument optimized for a detection of the neutral hydrogen 21 cm power spectrum between redshifts of 0.5 and 1.5: the Baryon Acoustic Oscillation Broadband and Broad-beam (BAOBAB) array. BAOBAB will build on the efforts of a first generation of 21 cm experiments that are targeting a detection of the signal from the Epoch of Reionization at z {approx} 10. At z {approx} 1, the emission from neutral hydrogen in self-shielded overdense halos also presents an accessible signal, since the dominant, synchrotron foreground emission is considerably fainter than at redshift 10. The principle science driver formore » these observations are baryon acoustic oscillations in the matter power spectrum which have the potential to act as a standard ruler and constrain the nature of dark energy. BAOBAB will fully correlate dual-polarization antenna tiles over the 600-900 MHz band with a frequency resolution of 300 kHz and a system temperature of 50 K. The number of antennas will grow in staged deployments, and reconfigurations of the array will allow for both traditional imaging and high power spectrum sensitivity operations. We present calculations of the power spectrum sensitivity for various array sizes, with a 35 element array measuring the cosmic neutral hydrogen fraction as a function of redshift, and a 132 element system detecting the BAO features in the power spectrum, yielding a 1.8% error on the z {approx} 1 distance scale, and, in turn, significant improvements to constraints on the dark energy equation of state over an unprecedented range of redshifts from {approx}0.5 to 1.5.« less

  4. Silicon on-chip bandpass filters for the multiplexing of high sensitivity photonic crystal microcavity biosensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Hai, E-mail: hai.yan@utexas.edu; Zou, Yi; Yang, Chun-Ju

    A method for the dense integration of high sensitivity photonic crystal (PC) waveguide based biosensors is proposed and experimentally demonstrated on a silicon platform. By connecting an additional PC waveguide filter to a PC microcavity sensor in series, a transmission passband is created, containing the resonances of the PC microcavity for sensing purpose. With proper engineering of the passband, multiple high sensitivity PC microcavity sensors can be integrated into microarrays and be interrogated simultaneously between a single input and a single output port. The concept was demonstrated with a 2-channel L55 PC biosensor array containing PC waveguide filters. The experimentmore » showed that the sensors on both channels can be monitored simultaneously from a single output spectrum. Less than 3 dB extra loss for the additional PC waveguide filter is observed.« less

  5. A 400 KHz line rate 2048 pixel modular SWIR linear array for earth observation applications

    NASA Astrophysics Data System (ADS)

    Anchlia, Ankur; Vinella, Rosa M.; Wouters, Kristof; Gielen, Daphne; Hooylaerts, Peter; Deroo, Pieter; Ruythooren, Wouter; van der Zanden, Koen; Vermeiren, Jan; Merken, Patrick

    2015-10-01

    In this paper, we report about a family of linear imaging FPAs sensitive in the [0.9 - 1.7um] band, developed for high speed applications such as LIDAR, wavelength references and OCT analyzers and also for earth observation applications. Fast linear FPAs can also be used in a wide variety of terrestrial applications, including high speed sorting, electro- and photo-luminesce and medical applications. The arrays are based on a modular ROIC design concept: modules of 512 pixels are stitched during fabrication to achieve 512, 1024 and 2048 pixel arrays. In principle, this concept can be extended to any multiple of 512 pixels, the limiting factor being the pixel yield of long InGaAs arrays and the CTE differences in the hybrid setup. Each 512-pixel module has its own on-chip digital sequencer, analog readout chain and 4 output buffers. This modular concept enables a long-linear array to run at a high line rate of 400 KHz irrespective of the array length, which limits the line rate in a traditional linear array. The pixel has a pitch of 12.5um. The detector frontend is based on CTIA (Capacitor Trans-impedance Amplifier), having 5 selectable integration capacitors giving full well from 62x103e- (gain0) to 40x106e- (gain4). An auto-zero circuit limits the detector bias non-uniformity to 5-10mV across broad intensity levels, limiting the input referred dark signal noise to 20e-rms for Tint=3ms at room temperature. An on-chip CDS that follows the CTIA facilitates removal of Reset/KTC noise, CTIA offsets and most of the 1/f noise. The measured noise of the ROIC is 35e-rms in gain0. At a master clock rate of 60MHz and a minimum integration time of 1.4us, the FPAs reach the highest line rate of 400 KHz.

  6. Evidence for Highly Inhomogeneous mm-Wave Sources During the Impulsive Flare of May 9, 1991

    NASA Technical Reports Server (NTRS)

    Hermann, R.; Magun, A.; Kaufmann, P.; Correia, E.; Costa, J. E. R.; Machado, M. E.; Fishman, G.

    1997-01-01

    In this paper multiwavelength observations of an impulsive flare of May 9, 1991 are presented. This event was observed with the 48 GHz multibeam focal array used at the Itapetinga radio telescope, the microwave patrol telescopes at Bem and the BATSE high time resolution hard X-ray spectrometer on board CGRO. While spatially unresolved low sensitivity observations show two major impulsive peaks, the mm-wave observations with the ability of spatially high resolved tracking of the emission centroids suggest a primarily bipolar source configuration. For the first time two mm-wave sources with a spacing below the HPBW could be separated with the multibeam technique. The general features of the observations are explained as emission of partially trapped electrons. Furthermore we present evidence for highly inhomogeneous substructures within one of the two mm-wave sources for which the positional scatter of the emission center, within 2s, is less than 2".

  7. Large-Area Subwavelength Aperture Arrays Fabricated Using Nanoimprint Lithography

    DOE PAGES

    Skinner, J. L.; Hunter, L. L.; Talin, A. A.; ...

    2008-07-29

    In this paper, we report on the fabrication and characterization of large-area 2-D square arrays of subwavelength holes in Ag and Al films. Fabrication is based on thermal nanoimprint lithography and metal evaporation, without the need for etching, and is compatible with low-cost, large-scale production. Reflectance spectra for these arrays display an intensity minimum whose amplitude, center wavelength, and line width depend on the geometry of the array and the reflectivity of the metal film. By placing various fluids in contact with the subwavelength aperture arrays, we observe that the center wavelength of the reflectance minimum varies linearly with themore » refractive index of the fluid with a sensitivity of over 500 nm per refractive index unit. Lastly, the surface plasmon theory is used to predict sensitivities to refractive index change with accuracies better than 0.5%.« less

  8. Performance of charge-injection-device infrared detector arrays at low and moderate backgrounds

    NASA Technical Reports Server (NTRS)

    Mckelvey, M. E.; Mccreight, C. R.; Goebel, J. H.; Reeves, A. A.

    1985-01-01

    Three 2 x 64 element charge injection device infrared detector arrays were tested at low and moderate background to evaluate their usefulness for space based astronomical observations. Testing was conducted both in the laboratory and in ground based telescope observations. The devices showed an average readout noise level below 200 equivalent electrons, a peak responsivity of 4 A/W, and a noise equivalent power of 3x10 sq root of W/Hz. Array well capacity was measured to be significantly smaller than predicted. The measured sensitivity, which compares well with that of nonintegrating discrete extrinsic silicon photoconductors, shows these arrays to be useful for certain astronomical observations. However, the measured readout efficiency and frequency response represent serious limitations in low background applications.

  9. Design and performance of dual-polarization lumped-element kinetic inductance detectors for millimeter-wave polarimetry

    NASA Astrophysics Data System (ADS)

    McCarrick, H.; Jones, G.; Johnson, B. R.; Abitbol, M. H.; Ade, P. A. R.; Bryan, S.; Day, P.; Essinger-Hileman, T.; Flanigan, D.; Leduc, H. G.; Limon, M.; Mauskopf, P.; Miller, A.; Tucker, C.

    2018-02-01

    Aims: Lumped-element kinetic inductance detectors (LEKIDs) are an attractive technology for millimeter-wave observations that require large arrays of extremely low-noise detectors. We designed, fabricated and characterized 64-element (128 LEKID) arrays of horn-coupled, dual-polarization LEKIDs optimized for ground-based CMB polarimetry. Our devices are sensitive to two orthogonal polarizations in a single spectral band centered on 150 GHz with Δν/ν = 0.2. The 65 × 65 mm square arrays are designed to be tiled into the focal plane of an optical system. We demonstrate the viability of these dual-polarization LEKIDs with laboratory measurements. Methods: The LEKID modules are tested with an FPGA-based readout system in a sub-kelvin cryostat that uses a two-stage adiabatic demagnetization refrigerator. The devices are characterized using a blackbody and a millimeter-wave source. The polarization properties are measured with a cryogenic stepped half-wave plate. We measure the resonator parameters and the detector sensitivity, noise spectrum, dynamic range, and polarization response. Results: The resonators have internal quality factors approaching 1 × 106. The detectors have uniform response between orthogonal polarizations and a large dynamic range. The detectors are photon-noise limited above 1 pW of absorbed power. The noise-equivalent temperatures under a 3.4 K blackbody load are <100 μK √s. The polarization fractions of detectors sensitive to orthogonal polarizations are >80%. The entire array is multiplexed on a single readout line, demonstrating a multiplexing factor of 128. The array and readout meet the requirements for 4 arrays to be read out simultaneously for a multiplexing factor of 512. Conclusions: This laboratory study demonstrates the first dual-polarization LEKID array optimized specifically for CMB polarimetry and shows the readiness of the detectors for on-sky observations.

  10. Hierarchical Phased Array Antenna Focal Plane for Cosmic Microwave Background Polarization and Sub-mm Observations

    NASA Astrophysics Data System (ADS)

    Lee, Adrian

    We propose to develop planar-antenna-coupled superconducting bolometer arrays for observations at sub-millimeter to millimeter wavelengths. Our pixel architecture features a dual-polarization, log-periodic antenna with a 5:1 bandwidth ratio, followed by a filter bank that divides the total bandwidth into several broad photometric bands. We propose to develop an hierarchical phased array of our basic pixel type that gives optimal mapping speed (sensitivity) over a much broader range of frequencies. The advantage of this combination of an intrinsically broadband pixel with hierarchical phase arraying include a combination of greatly reduced focal-plane mass, higher array sensitivity, and a larger number of spectral bands compared to focal-plane designs using conventional single-color pixels. These advantages have the potential to greatly reduce cost and/or increase performance of NASA missions in the sub-millimeter to millimeter bands. For CMB polarization, a wide frequency range of about 30 to 400 GHz is required to subtract galactic foregrounds. As an example, the multichroic architecture we propose could reduce the focal plane mass of the EPIC-IM CMB polarization mission study concept by a factor of 4, with great savings in required cryocooler performance and therefore cost. We have demonstrated the lens-coupled antenna concept in the POLARBEAR groundbased CMB polarization experiment which is now operating in Chile. That experiment uses a single-band planar antenna that gives excellent beam properties and optical efficiency. POLARBEAR recently succeeded in detecting gravitational lensing B-modes in the CMB polarization. In the laboratory, we have measured two octaves of total bandwidth in the log-periodic sinuous antenna. We have built filter banks of 2, 3, and 7 bands with 4, 6, and 14 bolometers per pixel for two linear polarizations. Pixels of this type are slated to be deployed on the ground in POLARBEAR and SPT-3G and proposed to be used on a balloon by EBEX-IDS and in space on the LiteBIRD CMB polarization mission. The deliverables for the proposed work include: *Fabrication and test of a sinuous-antenna-based pixel with a 5:1 total bandwidth. Separate pixels will be built that are sensitive down to 30 GHz and others that are sensitive up to 400 GHz to cover the full range required for CMB measurements and to push into the sub-mm wavelength range. The efficiency of these pixels will be maximized by introducing a low loss silicon nitride insulator layer in all of the transmission lines. *Hierarchical phased arrays that use up to five levels of arraying will be fabricated and tested. The hierarchical phased array approaches the optimal mapping speed (sensitivity) at all frequencies by adjusting the beam size of the array with frequency. *We will develop 3 and 5 layer anti-reflection coatings using a new ``thermal spray" technique that we have developed which heats ceramics and plastics to melting temperature an then sprays them on optical surfaces with excellent uniformity and thickness control. The dielectric constant of each layer can be adjusted by choosing mixing ratios of high and low dielectric constant materials. Prioritization committees including the Astro2010 decadal, Quarks to Cosmos, and Weiss Committee have strongly advocated for prioritizing Cosmic Microwave Background polarization measurements and other science goals in the mm and sub-mm wavelength regime. The technology we propose to develop has the potential to greatly increase the cost effectiveness of potential missions in this frequency range. We have assembled an experienced team that includes expertise in antenna design, RF superconducting circuits, microfabrication, and CMB observations. Our team includes detector and/or CMB observation experts Bill Holzapfel, Adrian Lee, Akito Kusaka, and Aritoki Suzuki.

  11. Ultrasensitive Biosensors Using Enhanced Fano Resonances in Capped Gold Nanoslit Arrays

    PubMed Central

    Lee, Kuang-Li; Huang, Jhih-Bin; Chang, Jhih-Wei; Wu, Shu-Han; Wei, Pei-Kuen

    2015-01-01

    Nanostructure-based sensors are capable of sensitive and label-free detection for biomedical applications. However, plasmonic sensors capable of highly sensitive detection with high-throughput and low-cost fabrication techniques are desirable. We show that capped gold nanoslit arrays made by thermal-embossing nanoimprint method on a polymer film can produce extremely sharp asymmetric resonances for a transverse magnetic-polarized wave. An ultrasmall linewidth is formed due to the enhanced Fano coupling between the cavity resonance mode in nanoslits and surface plasmon resonance mode on periodic metallic surface. With an optimal slit length and width, the full width at half-maximum bandwidth of the Fano mode is only 3.68 nm. The wavelength sensitivity is 926 nm/RIU for 60-nm-width and 1,000-nm-period nanoslits. The figure of merit is up to 252. The obtained value is higher than the theoretically estimated upper limits of the prism-coupling SPR sensors and the previously reported record high figure-of-merit in array sensors. In addition, the structure has an ultrahigh intensity sensitivity up to 48,117%/RIU. PMID:25708955

  12. Comparison of Pelvic Phased-Array versus Endorectal Coil Magnetic Resonance Imaging at 3 Tesla for Local Staging of Prostate Cancer

    PubMed Central

    Kim, Bum Soo; Kim, Tae-Hwan; Kwon, Tae Gyun

    2012-01-01

    Purpose Several studies have demonstrated the superiority of endorectal coil magnetic resonance imaging (MRI) over pelvic phased-array coil MRI at 1.5 Tesla for local staging of prostate cancer. However, few have studied which evaluation is more accurate at 3 Tesla MRI. In this study, we compared the accuracy of local staging of prostate cancer using pelvic phased-array coil or endorectal coil MRI at 3 Tesla. Materials and Methods Between January 2005 and May 2010, 151 patients underwent radical prostatectomy. All patients were evaluated with either pelvic phased-array coil or endorectal coil prostate MRI prior to surgery (63 endorectal coils and 88 pelvic phased-array coils). Tumor stage based on MRI was compared with pathologic stage. We calculated the specificity, sensitivity and accuracy of each group in the evaluation of extracapsular extension and seminal vesicle invasion. Results Both endorectal coil and pelvic phased-array coil MRI achieved high specificity, low sensitivity and moderate accuracy for the detection of extracapsular extension and seminal vesicle invasion. There were statistically no differences in specificity, sensitivity and accuracy between the two groups. Conclusion Overall staging accuracy, sensitivity and specificity were not significantly different between endorectal coil and pelvic phased-array coil MRI. PMID:22476999

  13. Parametric amplification in a resonant sensing array

    NASA Astrophysics Data System (ADS)

    Yie, Zi; Miller, Nicholas J.; Shaw, Steven W.; Turner, Kimberly L.

    2012-03-01

    We demonstrate parametric amplification of a multidegree of freedom resonant mass sensing array via an applied base motion containing the appropriate frequency content and phases. Applying parametric forcing in this manner is simple and aligns naturally with the vibrational properties of the sensing structure. Using this technique, we observe an increase in the quality factors of the coupled array resonances, which provides an effective means of improving device sensitivity.

  14. Star Scheduling Mode—A New Observing Strategy for Monitoring Weak Southern Radio Sources with the AuScope VLBI Array

    NASA Astrophysics Data System (ADS)

    McCallum, Lucia; Mayer, David; Le Bail, Karine; Schartner, Matthias; McCallum, Jamie; Lovell, Jim; Titov, Oleg; Shu, Fengchun; Gulyaev, Sergei

    2017-11-01

    The International Celestial Reference Frame suffers from significantly less observations in the southern hemisphere compared to the northern one. One reason for this is the historically low number of very long baseline interferometry radio telescopes in the south. The AuScope very long baseline interferometry array with three new telescopes on the Australian continent and an identical antenna in New Zealand were built to address this issue. While the overall number of observations in the south has greatly improved since then, a closer look reveals that this improvement is only true for strong radio sources (source flux densities >0.6 Jy). The new array of small very long baseline interferometry antennas has a relatively low baseline sensitivity so that only strong sources can be observed within a short integration time. A new observing strategy, the star scheduling mode, was developed to enable efficient observations of weak sources during geodetic sessions, through the addition of a single more sensitive antenna to the network. This scheduling mode was implemented in the Vienna very long baseline interferometry Software and applied in four 24-h sessions in 2016. These observations provide updated positions and source flux densities for 42 weak southern radio sources and significantly reduce the formal uncertainties for these sources. The star scheduling mode now allows the AuScope very long baseline interferometry array to undertake greater responsibility in monitoring sources in the southern sky, without significantly weakening the session for geodetic purposes.

  15. Development of Ultra-Low Noise, High Sensitivity Planar Metal Grating Coupled AlGaAs/GaAs Multiquantum Well IR Detectors for Focal Plane Array Staring IR Sensor Systems

    DTIC Science & Technology

    1992-05-01

    Development of Ultra-Low Noise , High Sensitivity Planar Metal Grating Coupled AlGaAs/GaAs Multiquantum Well IR Detectors for Focal Plane Array...February 1 - April 30, 1992 Project Title: Development of low- noise high-detectivity planar metal grating coupled III-V multiquantum-well/superlattice...low- noise and high-detectivity planar metal grating coupled bound-to- miniband (BTM) GaAs/AlGaAs and step-bound-to-miniband (SBTM) InGaAs/AlGaAs /GaAs

  16. Optimization of light polarization sensitivity in QWIP detectors

    NASA Astrophysics Data System (ADS)

    Berurier, Arnaud; Nedelcu, Alexandru

    2013-07-01

    The current development of QWIPs (Quantum Well Infrared Photodetectors) at III-V Lab led to the production of 20 μm pitch, mid-format and full TV-format LWIR starring arrays with excellent performances, uniformity and stability. At the present time III-V Lab, together with TOL (Thales Optronics Ltd.) and SOFRADIR (Société Française de Détecteurs Infrarouges), work on the demonstration of a 20 μm pitch, 640 × 512 LWIR focal plane array (FPA) which detects the incident IR light polarization. Manufactured objects present a strong linear polarization signature in thermal emission. It is of high interest to achieve a detector able to measure precisely the degree of linear polarization, in order to distinguish artificial and natural objects in the observed scene. In this paper, we present a theoretical investigation of the optical coupling in polarization sensitive pixels. The QWIP modeling is performed by the Finite Difference Time Domain (FDTD) method. The aim is to optimize the sensitivity to light polarization as well as the performance of the detector.

  17. Gamma-ray burster counterparts - Radio

    NASA Technical Reports Server (NTRS)

    Schaefer, Bradley E.; Cline, Thomas L.; Desai, U. D.; Teegarden, B. J.; Atteia, J.-L.; Barat, C.; Estulin, I. V.; Evans, W. D.; Fenimore, E. E.; Hurley, K.

    1989-01-01

    Many observers and theorists have suggested that gamma-ray bursters (GRBs) are related to highly magnetized rotating, neutron stars, in which case an analogy with pulsars implies that GRBs would be prodigious emitters of polarized radio emission during quiescence. The paper reports on a survey conducted with the Very Large Array radio telescope of 10 small GRB error regions for quiescent radio emission at wavelengths of 2, 6, and 20 cm. The sensitivity of the survey varied from 0.1 to 0.8 mJy. The observations did indeed reveal four radio sources inside the GRB error regions.

  18. Bolometers for millimeter-wave Cosmology

    NASA Astrophysics Data System (ADS)

    Bock, James J.

    2002-05-01

    Bolometers offer high sensitivity for observations of the cosmic microwave background, Sunyaev-Zel'Dovich effect in clusters, and far-infrared galaxies. Near background-limited performance may be realized even under the low background conditions available from a space-borne platform. We discuss the achieved performance of silicon nitride micromesh (`spider web') bolometers readout by NTD Ge thermistors. We are developing arrays of such bolometers coupled to single-mode feedhorns. CMB polarization may be studies using a new absorber geometry allowing simultaneous detection of both linear polarizations in a single feedhorn with two individual detectors. Finally we discuss a new bolometer architecture consisting of an array of slot antennae coupled to filters and bolometers via superconducting microstrip. .

  19. The Impact of Array Detectors on Raman Spectroscopy

    ERIC Educational Resources Information Center

    Denson, Stephen C.; Pommier, Carolyn J. S.; Denton, M. Bonner

    2007-01-01

    The impact of array detectors in the field of Raman spectroscopy and all low-light-level spectroscopic techniques is examined. The high sensitivity of array detectors has allowed Raman spectroscopy to be used to detect compounds at part per million concentrations and to perform Raman analyses at advantageous wavelengths.

  20. A polychromator-type near-infrared spectrometer with a high-sensitivity and high-resolution photodiode array detector for pharmaceutical process monitoring on the millisecond time scale.

    PubMed

    Murayama, Kodai; Genkawa, Takuma; Ishikawa, Daitaro; Komiyama, Makoto; Ozaki, Yukihiro

    2013-02-01

    In the fine chemicals industry, particularly in the pharmaceutical industry, advanced sensing technologies have recently begun being incorporated into the process line in order to improve safety and quality in accordance with process analytical technology. For estimating the quality of powders without preparation during drug formulation, near-infrared (NIR) spectroscopy has been considered the most promising sensing approach. In this study, we have developed a compact polychromator-type NIR spectrometer equipped with a photodiode (PD) array detector. This detector is consisting of 640 InGaAs-PD elements with 20-μm pitch. Some high-specification spectrometers, which use InGaAs-PD with 512 elements, have a wavelength resolution of about 1.56 nm when covering 900-1700 nm range. On the other hand, the newly developed detector, having the PD with one of the world's highest density, enables wavelength resolution of below 1.25 nm. Moreover, thanks to the combination with a highly integrated charge amplifier array circuit, measurement speed of the detector is higher by two orders than that of existing PD array detectors. The developed spectrometer is small (120 mm × 220 mm × 200 mm) and light (6 kg), and it contains various key devices including the high-density and high-sensitivity PD array detector, NIR technology, and spectroscopy technology for a spectroscopic analyzer that has the required detection mechanism and high sensitivity for powder measurement, as well as a high-speed measuring function for blenders. Moreover, we have evaluated the characteristics of the developed NIR spectrometer, and the measurement of powder samples confirmed that it has high functionality.

  1. Towards a flexible array control and operation framework for CTA

    NASA Astrophysics Data System (ADS)

    Birsin, E.; Colomé, J.; Hoffmann, D.; Koeppel, H.; Lamanna, G.; Le Flour, T.; Lopatin, A.; Lyard, E.; Melkumyan, D.; Oya, I.; Panazol, J.-L.; Schlenstedt, S.; Schmidt, T.; Schwanke, U.; Stegmann, C.; Walter, R.; Wegner, P.; CTA Consortium

    2012-12-01

    The Cherenkov Telescope Array (CTA) [1] will be the successor to current Imaging Atmospheric Cherenkov Telescopes (IACT) like H.E.S.S., MAGIC and VERITAS. CTA will improve in sensitivity by about an order of magnitude compared to the current generation of IACTs. The energy range will extend from well below 100 GeV to above 100 TeV. To accomplish these goals, CTA will consist of two arrays, one in each hemisphere, consisting of 50-80 telescopes and composed of three different telescope types with different mirror sizes. It will be the first open observatory for very high energy γ-ray astronomy. The Array Control working group of CTA is currently evaluating existing technologies which are best suited for a project like CTA. The considered solutions comprise the ALMA Common Software (ACS), the OPC Unified Architecture (OPC UA) and the Data Distribution Service (DDS) for bulk data transfer. The first applications, like an automatic observation scheduler and the control software for some prototype instrumentation have been developed.

  2. The ARIANNA Hexagonal Radio Array - performance and prospects

    NASA Astrophysics Data System (ADS)

    Hallgren, Allan

    2016-04-01

    The origin of the highest energy cosmic rays at ˜1020 eV is still unknown. Ultra-high energy neutrinos from the GZK process should provide information on the sources and their properties. A promising and cost effective method for observing GZK-neutrinos is based on detection of Askaryan radio pulses with antennas installed in ice. The ARIANNA project aims at instrumenting a 36*36 km2 large area on the Ross Ice Shelf with an array of radio detection stations. The deployment of a test system for ARIANNA, the Hexagonal Radio Array (HRA), was completed in December 2014. The three first stations were installed in 2012. Solar panels are used to drive the < 10 W stations. The system hibernated at sunset in April and all stations returned to operation in September. The site is essentially free of anthropogenic noise. Simple cuts eliminate background and provides for efficient selection of neutrino events. Prospects for the sensitivity of the full ARIANNA array to the flux of GZK neutrinos are shown.

  3. Primary mass discrimination of high energy cosmic rays using PNN and k-NN methods

    NASA Astrophysics Data System (ADS)

    Rastegarzadeh, G.; Nemati, M.

    2018-02-01

    Probabilistic neural network (PNN) and k-Nearest Neighbors (k-NN) methods are widely used data classification techniques. In this paper, these two methods have been used to classify the Extensive Air Shower (EAS) data sets which were simulated using the CORSIKA code for three primary cosmic rays. The primaries are proton, oxygen and iron nuclei at energies of 100 TeV-10 PeV. This study is performed in the following of the investigations into the primary cosmic ray mass sensitive observables. We propose a new approach for measuring the mass sensitive observables of EAS in order to improve the primary mass separation. In this work, the EAS observables measurement has performed locally instead of total measurements. Also the relationships between the included number of observables in the classification methods and the prediction accuracy have been investigated. We have shown that the local measurements and inclusion of more mass sensitive observables in the classification processes can improve the classifying quality and also we have shown that muons and electrons energy density can be considered as primary mass sensitive observables in primary mass classification. Also it must be noted that this study is performed for Tehran observation level without considering the details of any certain EAS detection array.

  4. Practical Considerations for Optimizing Position Sensitivity in Arrays of Position-sensitive TES's

    NASA Technical Reports Server (NTRS)

    Smith, Stephen J.; Bandler, Simon R.; Figueroa-Feliciano, Encetali; Iyomoto, Naoko; Kelley, Richard L.; Kilbourne, Caroline A.; Porder, Frederick S.; Sadleir, John E.

    2007-01-01

    We are developing Position-Sensitive Transitions-Edge Sensors (PoST's) for future X-ray astronomy missions such as NASA's Constellation-X. The PoST consists of one or more Transitions Edge Sensors (TES's) thermally connected to a large X-ray absorber, which through heat diffusion, gives rise to position dependence. The development of PoST's is motivated by the desire to achieve the largest the focal-plan coverage with the fewest number of readout channels. In order to develop a practical array, consisting of an inner pixellated core with an outer array of large absorber PoST's, we must be able to simultaneously read out all (-1800) channels in the array. This is achievable using time division multiplexing (TDM), but does set stringent slew rate requirements on the array. Typically, we must damp the pulses to reduce the slew rate of the input signal to the TDM. This is achieved by applying a low-pass analog filter with large inductance to the signal. This attenuates the high frequency components of the signal, essential for position discrimination in PoST's, relative to the white noise of the readout chain and degrades the position sensitivity. Using numerically simulated data, we investigate the position sensing ability of typical PoST designs under such high inductance conditions. We investigate signal-processing techniques for optimal determination of the event position and discuss the practical considerations for real-time implementation.

  5. Coherent Detector Arrays for Continuum and Spectral Line Applications

    NASA Technical Reports Server (NTRS)

    Gaier, Todd C.

    2006-01-01

    This viewgraph presentation reviews the requirements for improved coherent detector arrays for use in continuum and spectral line applications. With detectors approaching fundamental limits, large arrays offer the only path to sensitivity improvement. Monolithic Microwave Integrated Circuit (MMIC) technology offers a straightforward path to massive focal plane millimeter wave arrays: The technology will readily support continuum imagers, polarimeters and spectral line receivers from 30-110 GHz. Science programs, particularly large field blind surveys will benefit from simultaneous observations of hundreds or thousands of pixels 1000 element array is competitive with a cost less than $2M.

  6. The search for TeV-scale dark matter with the HAWC observatory

    DOE PAGES

    Harding, J. Patrick

    2015-01-01

    The High Altitude Water Cherenkov (HAWC) observatory is a wide field-of-view detector sensitive to 100 GeV - 100 TeV gamma rays and cosmic rays. Located at an elevation of 4100 m on the Sierra Negra mountain in Mexico, HAWC observes extensive air showers from gamma and cosmic rays with an array of water tanks which produce Cherenkov light in the presence of air showers. With a field-of-view capable of observing 2/3 of the sky each day, and a sensitivity of 1 Crab/day, HAWC will be able to map out the sky in gamma and cosmic rays in detail. In thismore » paper, we discuss the capabilities of HAWC to map out the directions and spectra of TeV gamma rays and cosmic rays coming from sources of dark matter annihilation. We discuss the HAWC sensitivity to multiple extended sources of dark matter annihilation and the possibility of HAWC observations of annihilations in nearby dark matter subhalos.« less

  7. A Highly Sensitive Two-Dimensional Inclinometer Based on Two Etched Chirped-Fiber-Grating Arrays †

    PubMed Central

    Chang, Hung-Ying; Chang, Yu-Chung; Liu, Wen-Fung

    2017-01-01

    We present a novel two-dimensional fiber-optic inclinometer with high sensitivity by crisscrossing two etched chirped fiber Bragg gratings (CFBG) arrays. Each array is composed of two symmetrically-arranged CFBGs. By etching away most of the claddings of the CFBGs to expose the evanescent wave, the reflection spectra are highly sensitive to the surrounding index change. When we immerse only part of the CFBG in liquid, the effective index difference induces a superposition peak in the refection spectrum. By interrogating the peak wavelengths of the CFBGs, we can deduce the tilt angle and direction simultaneously. The inclinometer has a resolution of 0.003° in tilt angle measurement and 0.00187 rad in tilt direction measurement. Due to the unique sensing mechanism, the sensor is temperature insensitive. This sensor can be useful in long term continuous monitoring of inclination or in real-time feedback control of tilt angles, especially in harsh environments with violent temperature variation. PMID:29244770

  8. The Event Horizon Telescope: Future Polarimetric Capabilities

    NASA Astrophysics Data System (ADS)

    Fish, Vincent L.; Doeleman, S. S.; EHT Collaboration

    2010-01-01

    The Event Horizon Telescope (EHT) is a (sub)mm wavelength VLBI network that will achieve angular resolutions sufficient to resolve and image the Event Horizons of the nearest supermassive black holes. Recent millimeter observations with the initial three stations of the EHT (located in Hawaii, Arizona, and California) have constrained the size of the emitting region of Sgr A*, the Galactic Center radio/infrared/X-ray source associated with a supermassive black hole, to be no more than a few Schwarzschild radii. While EHT observations have heretofore focused on detecting Sgr A* in total intensity, theoretical models predict large polarization signatures well in excess of the few percent linear polarization detected by low resolution arrays (e.g., SMA). Here, we generalize our previous total intensity simulations of future EHT observations to include full polarimetric quantities. Ratios of polarimetric visibilities provide baseline-based observables that are robust against most calibration errors. We find that the shortest VLBI baselines track the integrated polarization fraction and position angle, as presently observed by connected-element arrays, while longer VLBI baselines are sensitive to highly-polarized substructures that are beam-diluted at lower angular resolution. Ratios of polarized visibilities may be even more sensitive to detecting periodic structural changes, as might be expected from a hot spot near the innermost stable circular orbit of the black hole, than closure quantities obtained from total intensity quantities. These results suggest that high priority should be given to upgrading telescopes in the EHT collaboration in order to allow full polarimetric observations of Sgr A* and other supermassive black hole sources. This research is made possible thanks to funding provided by the National Science Foundation.

  9. In vivo sensitivity estimation and imaging acceleration with rotating RF coil arrays at 7 Tesla.

    PubMed

    Li, Mingyan; Jin, Jin; Zuo, Zhentao; Liu, Feng; Trakic, Adnan; Weber, Ewald; Zhuo, Yan; Xue, Rong; Crozier, Stuart

    2015-03-01

    Using a new rotating SENSitivity Encoding (rotating-SENSE) algorithm, we have successfully demonstrated that the rotating radiofrequency coil array (RRFCA) was capable of achieving a significant reduction in scan time and a uniform image reconstruction for a homogeneous phantom at 7 Tesla. However, at 7 Tesla the in vivo sensitivity profiles (B1(-)) become distinct at various angular positions. Therefore, sensitivity maps at other angular positions cannot be obtained by numerically rotating the acquired ones. In this work, a novel sensitivity estimation method for the RRFCA was developed and validated with human brain imaging. This method employed a library database and registration techniques to estimate coil sensitivity at an arbitrary angular position. The estimated sensitivity maps were then compared to the acquired sensitivity maps. The results indicate that the proposed method is capable of accurately estimating both magnitude and phase of sensitivity at an arbitrary angular position, which enables us to employ the rotating-SENSE algorithm to accelerate acquisition and reconstruct image. Compared to a stationary coil array with the same number of coil elements, the RRFCA was able to reconstruct images with better quality at a high reduction factor. It is hoped that the proposed rotation-dependent sensitivity estimation algorithm and the acceleration ability of the RRFCA will be particularly useful for ultra high field MRI. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. In vivo sensitivity estimation and imaging acceleration with rotating RF coil arrays at 7 Tesla

    NASA Astrophysics Data System (ADS)

    Li, Mingyan; Jin, Jin; Zuo, Zhentao; Liu, Feng; Trakic, Adnan; Weber, Ewald; Zhuo, Yan; Xue, Rong; Crozier, Stuart

    2015-03-01

    Using a new rotating SENSitivity Encoding (rotating-SENSE) algorithm, we have successfully demonstrated that the rotating radiofrequency coil array (RRFCA) was capable of achieving a significant reduction in scan time and a uniform image reconstruction for a homogeneous phantom at 7 Tesla. However, at 7 Tesla the in vivo sensitivity profiles (B1-) become distinct at various angular positions. Therefore, sensitivity maps at other angular positions cannot be obtained by numerically rotating the acquired ones. In this work, a novel sensitivity estimation method for the RRFCA was developed and validated with human brain imaging. This method employed a library database and registration techniques to estimate coil sensitivity at an arbitrary angular position. The estimated sensitivity maps were then compared to the acquired sensitivity maps. The results indicate that the proposed method is capable of accurately estimating both magnitude and phase of sensitivity at an arbitrary angular position, which enables us to employ the rotating-SENSE algorithm to accelerate acquisition and reconstruct image. Compared to a stationary coil array with the same number of coil elements, the RRFCA was able to reconstruct images with better quality at a high reduction factor. It is hoped that the proposed rotation-dependent sensitivity estimation algorithm and the acceleration ability of the RRFCA will be particularly useful for ultra high field MRI.

  11. Prospects for PWNe and SNRs science with the ASTRI mini-array of pre-production small-sized telescopes of the Cherenkov telescope array

    NASA Astrophysics Data System (ADS)

    Burtovoi, A.; Zampieri, L.; Giuliani, A.; Bigongiari, C.; Di Pierro, F.; Stamerra, A.

    2017-01-01

    The development and construction of the Cherenkov Telescope Array (CTA) opens up new opportunities for the study of very high energy (VHE, E > 100 GeV) sources. As a part of CTA, the ASTRI project, led by INAF, has one of the main goals to develop one of the mini-arrays of CTA pre-production telescopes, proposed to be installed at the CTA southern site. Thanks to the innovative dual-mirror optical design of its small-sized telescopes, the ASTRI mini-array will be characterized by a large field of view, an excellent angular resolution and a good sensitivity up to energies of several tens of TeV. Pulsar wind nebulae, along with Supernova Remnants, are among the most abundant sources that will be identified and investigated, with the ultimate goal to move significantly closer to an understanding of the origin of cosmic rays (CR). As part of the ongoing effort to investigate the scientific capabilities for both CTA as a whole and the ASTRI mini-array, we performed simulations of the Vela X region. We simulated its extended VHE γ-ray emission using the results of the detailed H.E.S.S. analysis of this source. We estimated the resolving capabilities of the diffuse emission and the detection significance of the pulsar with both CTA as a whole and the ASTRI mini-array. Moreover with these instruments it will be possible to observe the high-energy end of SNRs spectrum, searching for particles with energies near the cosmic-rays "knee" (E ˜ 1015 eV). We simulated a set of ASTRI mini-array observations for one young and an evolved SNRs in order to test the capabilities of this instrument to discover and study PeVatrons on the Galactic plane.

  12. Development of a versatile intra-articular pressure sensing array.

    PubMed

    Welcher, J B; Popovich, J M; Hedman, T P

    2011-10-01

    A new sensor array intended to accurately and directly measure spatial and time-dependent pressures within a highly curved biological intra-articular joint was developed and tested. To evaluate performance of the new sensor array for application within intra-articular joints generally, and specifically to fit within the relatively restrictive space of the lumbar spine facet joint, geometric constraints of length, width, thickness and sensor spatial resolution were evaluated. Additionally, the effects of sensor array curvature, frequency response, linearity, drift, hysteresis, repeatability, and total system cost were assessed. The new sensor array was approximately 0.6mm in thickness, scalable to below the nominal 12 mm wide by 15 high lumbar spine facet joint size, offered no inherent limitations on the number or spacing of the sensors with less than 1.7% cross talk with sensor immediately adjacent to one another. No difference was observed in sensor performance down to a radius of curvature of 7 mm and a 0.66±0.97% change in sensor sensitivity was observed at a radius of 5.5mm. The sensor array had less than 0.07 dB signal loss up to 5.5 Hz, linearity was 0.58±0.13% full scale (FS), drift was less than 0.2% FS at 250 s and less than 0.6% FS at 700 s, hysteresis was 0.78±0.18%. Repeatability was excellent with a coefficient of variation less than 2% at pressures between 0 and 1.000 MPa. Total system cost was relatively small as standard commercially available data acquisition systems could be utilized, with no specialized software, and individual sensors within an array can be replaced as needed. The new sensor array had small and scalable geometry and very acceptable intrinsic performance including minimal to no alteration in performance at physiologically relevant ranges of joint curvature. Copyright © 2011 IPEM. Published by Elsevier Ltd. All rights reserved.

  13. Small aperture seismic arrays for studying planetary interiors and seismicity

    NASA Astrophysics Data System (ADS)

    Schmerr, N. C.; Lekic, V.; Fouch, M. J.; Panning, M. P.; Siegler, M.; Weber, R. C.

    2017-12-01

    Seismic arrays are a powerful tool for understanding the interior structure and seismicity across objects in the Solar System. Given the operational constraints of ground-based lander investigations, a small aperture seismic array can provide many of the benefits of a larger-scale network, but does not necessitate a global deployment of instrumentation. Here we define a small aperture array as a deployment of multiple seismometers, with a separation between instruments of 1-1000 meters. For example, small aperture seismic arrays have been deployed on the Moon during the Apollo program, the Active Seismic Experiments of Apollo 14 and 16, and the Lunar Seismic Profiling Experiment deployed by the Apollo 17 astronauts. Both were high frequency geophone arrays with spacing of 50 meters that provided information on the layering and velocity structure of the uppermost kilometer of the lunar crust. Ideally such arrays would consist of instruments that are 3-axis short period or broadband seismometers. The instruments must have a sampling rate and frequency range sensitivity capable of distinguishing between waves arriving at each station in the array. Both terrestrial analogs and the data retrieved from the Apollo arrays demonstrate the efficacy of this approach. Future opportunities exist for deployment of seismic arrays on Europa, asteroids, and other objects throughout the Solar System. Here we will present both observational data and 3-D synthetic modeling results that reveal the sensing requirements and the primary advantages of a small aperture seismic array over single station approach. For example, at the smallest apertures of < 1 m, we constrain that sampling rates must exceed 500 Hz and instrument sensitivity must extend to 100 Hz or greater. Such advantages include the improved ability to resolve the location of the sources near the array through detection of backazimuth and differential timing between stations, determination of the small-scale structure (layering, scattering bodies, density and velocity variations) in the vicinity of the array, as well as the ability to improve the signal to noise ratio of distant body waves by additive methods such as stacking and velocity-slowness analysis. These results will inform future missions on the surfaces of objects throughout the Solar System.

  14. Wafer-Scale Hierarchical Nanopillar Arrays Based on Au Masks and Reactive Ion Etching for Effective 3D SERS Substrate.

    PubMed

    Men, Dandan; Wu, Yingyi; Wang, Chu; Xiang, Junhuai; Yang, Ganlan; Wan, Changjun; Zhang, Honghua

    2018-02-04

    Two-dimensional (2D) periodic micro/nanostructured arrays as SERS substrates have attracted intense attention due to their excellent uniformity and good stability. In this work, periodic hierarchical SiO₂ nanopillar arrays decorated with Ag nanoparticles (NPs) with clean surface were prepared on a wafer-scale using monolayer Au NP arrays as masks, followed by reactive ion etching (RIE), depositing Ag layer and annealing. For the prepared SiO₂ nanopillar arrays decorated with Ag NPs, the size of Ag NPs was tuned from ca. 24 to 126 nanometers by controlling the deposition thickness of Ag film. Importantly, the SiO₂ nanopillar arrays decorated with Ag NPs could be used as highly sensitive SERS substrate for the detection of 4-aminothiophenol (4-ATP) and rhodamine 6G (R6G) due to the high loading of Ag NPs and a very uniform morphology. With a deposition thickness of Ag layer of 30 nm, the SiO₂ nanopillar arrays decorated with Ag NPs exhibited the best sensitive SERS activity. The excellent SERS performance of this substrate is mainly attributed to high-density "hotspots" derived from nanogaps between Ag NPs. Furthermore, this strategy might be extended to synthesize other nanostructured arrays with a large area, which are difficult to be prepared only via conventional wet-chemical or physical methods.

  15. Long vertically aligned titania nanotubes on transparent conducting oxide for highly efficient solar cells.

    PubMed

    Varghese, Oomman K; Paulose, Maggie; Grimes, Craig A

    2009-09-01

    Dye-sensitized solar cells consist of a random network of titania nanoparticles that serve both as a high-surface-area support for dye molecules and as an electron-transporting medium. Despite achieving high power conversion efficiencies, their performance is limited by electron trapping in the nanoparticle film. Electron diffusion lengths can be increased by transporting charge through highly ordered nanostructures such as titania nanotube arrays. Although titania nanotube array films have been shown to enhance the efficiencies of both charge collection and light harvesting, it has not been possible to grow them on transparent conducting oxide glass with the lengths needed for high-efficiency device applications (tens of micrometres). Here, we report the fabrication of transparent titania nanotube array films on transparent conducting oxide glass with lengths between 0.3 and 33.0 microm using a novel electrochemistry approach. Dye-sensitized solar cells containing these arrays yielded a power conversion efficiency of 6.9%. The incident photon-to-current conversion efficiency ranged from 70 to 80% for wavelengths between 450 and 650 nm.

  16. Maskless Lithography Using Surface Plasmon Enhanced Illumination

    DTIC Science & Technology

    2007-04-30

    Dale Larson Figure 1. Nanohole array probes exhibiting extraordinary optical transmission of light with a high degree of collimation. Left: a bull’s...Technol. B 22, 3552-3556 (2004). 2. Stark, P., Halleck, A. E. & Larson, D. N. Short order nanohole arrays in metals for highly sensitive probing of local

  17. High-Density Dielectrophoretic Microwell Array for Detection, Capture, and Single-Cell Analysis of Rare Tumor Cells in Peripheral Blood.

    PubMed

    Morimoto, Atsushi; Mogami, Toshifumi; Watanabe, Masaru; Iijima, Kazuki; Akiyama, Yasuyuki; Katayama, Koji; Futami, Toru; Yamamoto, Nobuyuki; Sawada, Takeshi; Koizumi, Fumiaki; Koh, Yasuhiro

    2015-01-01

    Development of a reliable platform and workflow to detect and capture a small number of mutation-bearing circulating tumor cells (CTCs) from a blood sample is necessary for the development of noninvasive cancer diagnosis. In this preclinical study, we aimed to develop a capture system for molecular characterization of single CTCs based on high-density dielectrophoretic microwell array technology. Spike-in experiments using lung cancer cell lines were conducted. The microwell array was used to capture spiked cancer cells, and captured single cells were subjected to whole genome amplification followed by sequencing. A high detection rate (70.2%-90.0%) and excellent linear performance (R2 = 0.8189-0.9999) were noted between the observed and expected numbers of tumor cells. The detection rate was markedly higher than that obtained using the CellSearch system in a blinded manner, suggesting the superior sensitivity of our system in detecting EpCAM- tumor cells. Isolation of single captured tumor cells, followed by detection of EGFR mutations, was achieved using Sanger sequencing. Using a microwell array, we established an efficient and convenient platform for the capture and characterization of single CTCs. The results of a proof-of-principle preclinical study indicated that this platform has potential for the molecular characterization of captured CTCs from patients.

  18. Simulated observations of young gravitationally unstable protoplanetary discs

    NASA Astrophysics Data System (ADS)

    Douglas, T. A.; Caselli, P.; Ilee, J. D.; Boley, A. C.; Hartquist, T. W.; Durisen, R. H.; Rawlings, J. M. C.

    2013-08-01

    The formation and earliest stages of protoplanetary discs remain poorly constrained by observations. Atacama Large Millimetre/sub-millimetre Array (ALMA) will soon revolutionise this field. Therefore, it is important to provide predictions which will be valuable for the interpretation of future high sensitivity and high angular resolution observations. Here, we present simulated ALMA observations based on radiative transfer modelling of a relatively massive (0.39 M⊙) self-gravitating disc embedded in a 10 M⊙ dense core, with structure similar to the pre-stellar core L1544. We focus on simple species and conclude that C17O 3→2, HCO+ 3→2, OCS 26→25 and H2CO 404→303 lines can be used to probe the disc structure and kinematics at all scales.

  19. Beam steering via resonance detuning in coherently coupled vertical cavity laser arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Matthew T., E-mail: matthew.johnson.9@us.af.mil; Siriani, Dominic F.; Peun Tan, Meng

    2013-11-11

    Coherently coupled vertical-cavity surface-emitting laser arrays offer unique advantages for nonmechanical beam steering applications. We have applied dynamic coupled mode theory to show that the observed temporal phase shift between vertical-cavity surface-emitting array elements is caused by the detuning of their resonant wavelengths. Hence, a complete theoretical connection between the differential current injection into array elements and the beam steering direction has been established. It is found to be a fundamentally unique beam-steering mechanism with distinct advantages in efficiency, compactness, speed, and phase-sensitivity to current.

  20. Pulse-encoded ultrasound imaging of the vitreous with an annular array.

    PubMed

    Silverman, Ronald H; Ketterling, Jeffrey A; Mamou, Jonathan; Lloyd, Harriet O; Filoux, Erwan; Coleman, D Jackson

    2012-01-01

    The vitreous body is nearly transparent both optically and ultrasonically. Conventional 10- to 12-MHz diagnostic ultrasound can detect vitreous inhomogeneities at high gain settings, but has limited resolution and sensitivity, especially outside the fixed focal zone near the retina. To improve visualization of faint intravitreal fluid/gel interfaces, the authors fabricated a spherically curved 20-MHz five-element annular array ultrasound transducer, implemented a synthetic-focusing algorithm to extend the depth-of-field, and used a pulse-encoding strategy to increase sensitivity. The authors evaluated a human subject with a recent posterior vitreous detachment and compared the annular array with conventional 10-MHz ultrasound and spectral-domain optical coherence tomography. With synthetic focusing and chirp pulse-encoding, the array allowed visualization of the formed and fluid components of the vitreous with improved sensitivity and resolution compared with the conventional B-scan. Although optical coherence tomography allowed assessment of the posterior vitreoretinal interface, the ultrasound array allowed evaluation of the entire vitreous body. Copyright 2012, SLACK Incorporated.

  1. Characterization of Large-Area SiPM Array for PET Applications

    NASA Astrophysics Data System (ADS)

    Du, Junwei; Yang, Yongfeng; Bai, Xiaowei; Judenhofer, Martin S.; Berg, Eric; Di, Kun; Buckley, Steve; Jackson, Carl; Cherry, Simon R.

    2016-02-01

    The performance of an 8 ×8 array of 6.0 ×6.0 mm2 (active area) SiPMs was evaluated for PET applications using crystal arrays with different pitch sizes (3.4, 1.5, 1.35, and 1.2 mm) and custom designed five-channel front-end readout electronics (four channels for position information and one channel for timing information). The total area of this SiPM array is 57.4 ×57.4 mm2, and the pitch size is 7.2 mm. It was fabricated using enhanced blue sensitivity SiPMs (MicroFB-60035-SMT) with peak spectral sensitivity at 420 nm. The performance of the SiPM array was characterized by measuring flood histogram decoding quality, energy resolution, timing resolution and saturation at several bias voltages (from 25.0 to 30.0 V in 0.5 V intervals) and two different temperatures ( 5° C and 20°C). Results show that the best flood histogram was obtained at a bias voltage of 28.0 V and 5°C and an array of polished LSO crystals with a pitch as small as 1.2 mm can be resolved. No saturation was observed up to a bias voltage of 29.5 V during the experiments, due to adequate light sharing between SiPMs. Energy resolution and timing resolution at 5°C ranged from 12.7 ±0.8% to 14.6 ±1.4% and 1.58 ±0.13 ns to 2.50 ±0.44 ns, for crystal array pitch sizes of 3.4 and 1.2 mm, respectively. Superior flood histogram quality, energy resolution and timing resolution were obtained with larger crystal array pitch sizes and at lower temperature. Based on our findings, we conclude that this large-area SiPM array can serve as a suitable photodetector for high-resolution small-animal PET or dedicated human brain PET scanners.

  2. Fill-factor improvement of Si CMOS single-photon avalanche diode detector arrays by integration of diffractive microlens arrays.

    PubMed

    Intermite, Giuseppe; McCarthy, Aongus; Warburton, Ryan E; Ren, Ximing; Villa, Federica; Lussana, Rudi; Waddie, Andrew J; Taghizadeh, Mohammad R; Tosi, Alberto; Zappa, Franco; Buller, Gerald S

    2015-12-28

    Single-photon avalanche diode (SPAD) detector arrays generally suffer from having a low fill-factor, in which the photo-sensitive area of each pixel is small compared to the overall area of the pixel. This paper describes the integration of different configurations of high efficiency diffractive optical microlens arrays onto a 32 × 32 SPAD array, fabricated using a 0.35 µm CMOS technology process. The characterization of SPAD arrays with integrated microlens arrays is reported over the spectral range of 500-900 nm, and a range of f-numbers from f/2 to f/22. We report an average concentration factor of 15 measured for the entire SPAD array with integrated microlens array. The integrated SPAD and microlens array demonstrated a very high uniformity in overall efficiency.

  3. WEAK AND COMPACT RADIO EMISSION IN EARLY HIGH-MASS STAR-FORMING REGIONS. I. VLA OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosero, V.; Hofner, P.; Claussen, M.

    2016-12-01

    We present a high-sensitivity radio continuum survey at 6 and 1.3 cm using the Karl G. Jansky Very Large Array toward a sample of 58 high-mass star-forming regions. Our sample was chosen from dust clumps within infrared dark clouds with and without IR sources (CMC–IRs and CMCs, respectively), and hot molecular cores (HMCs), with no previous, or relatively weak radio continuum detection at the 1 mJy level. Due to the improvement in the continuum sensitivity of the Very Large Array, this survey achieved map rms levels of ∼3–10  μ Jy beam{sup −1} at sub-arcsecond angular resolution. We extracted 70 continuum sourcesmore » associated with 1.2 mm dust clumps. Most sources are weak, compact, and prime candidates for high-mass protostars. Detection rates of radio sources associated with the millimeter dust clumps for CMCs, CMC–IRs, and HMCs are 6%, 53%, and 100%, respectively. This result is consistent with increasing high-mass star formation activity from CMCs to HMCs. The radio sources located within HMCs and CMC–IRs occur close to the dust clump centers, with a median offset from it of 12,000 au and 4000 au, respectively. We calculated 5–25 GHz spectral indices using power-law fits and obtained a median value of 0.5 (i.e., flux increasing with frequency), suggestive of thermal emission from ionized jets. In this paper we describe the sample, observations, and detections. The analysis and discussion will be presented in Paper II.« less

  4. INTERFEROMETRIC UPPER LIMITS ON MILLIMETER POLARIZATION OF THE DISKS AROUND DG Tau, GM Aur, AND MWC 480

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, A. Meredith; Hull, Charles L. H.; Plambeck, Richard L.

    2013-04-15

    Millimeter-wavelength polarization measurements offer a promising method for probing the geometry of magnetic fields in circumstellar disks. Single dish observations and theoretical work have hinted that magnetic field geometries might be predominantly toroidal, and that disks should exhibit millimeter polarization fractions of 2%-3%. While subsequent work has not confirmed these high polarization fractions, either the wavelength of observation or the target sources differed from the original observations. Here we present new polarimetric observations of three nearby circumstellar disks at 2'' resolution with the Submillimeter Array and the Combined Array for Research in Millimeter Astronomy. We reobserve GM Aur and DGmore » Tau, the systems in which millimeter polarization detections have been claimed. Despite higher resolution and sensitivity at wavelengths similar to the previous observations, the new observations do not show significant polarization. We also add observations of a new HAeBe system, MWC 480. These observations demonstrate that a very low ({approx}<0.5%) polarization fraction is probably common at large ({approx}>100 AU) scales in bright circumstellar disks. We suggest that high-resolution observations may be worthwhile to probe magnetic field structure on linear distances smaller than the disk scale height, as well as in regions closer to the star that may have larger MRI-induced magnetic field strengths.« less

  5. Studies of Avalanche Photodiodes (APDS) as Readout Devices for Scintillating Fibers for High Energy Gamma-Ray Astronomy Telescopes

    NASA Technical Reports Server (NTRS)

    Vasile, Stefan; Shera, Suzanne; Shamo, Denis

    1998-01-01

    New gamma ray and charged particle telescope designs based on scintillating fiber arrays could provide low cost, high resolution, lightweight, very large area and multi radiation length instrumentation for planned NASA space exploration. The scintillating fibers low visible light output requires readout sensors with single photon detection sensitivity and low noise. The sensitivity of silicon Avalanche Photodiodes (APDS) matches well the spectral output of the scintillating fibers. Moreover, APDs have demonstrated single photon capability. The global aim of our work is to make available to NASA a novel optical detector concept to be used as scintillating fiber readouts and meeting the requirements of the new generations of space-borne gamma ray telescopes. We proposed to evaluate the feasibility of using RMD's small area APDs ((mu)APD) as scintillating fiber readouts and to study possible alternative (mu)APD array configurations for space borne readout scintillating fiber systems, requiring several hundred thousand to one million channels. The evaluation has been conducted in accordance with the task description and technical specifications detailed in the NASA solicitation "Studies of Avalanche Photodiodes (APD as readout devices for scintillating fibers for High Energy Gamma-Ray Astronomy Telescopes" (#8-W-7-ES-13672NAIS) posted on October 23, 1997. The feasibility study we propose builds on recent developments of silicon APD arrays and light concentrators advances at RMD, Inc. and on more than 5 years of expertise in scintillating fiber detectors. In a previous program we carried out the initial research to develop a high resolution, small pixel, solid-state, silicon APD array which exhibited very high sensitivity in the UV-VIS spectrum. This (mu)APD array is operated in Geiger mode and results in high gain (greater than 10(exp 8)), extremely low noise, single photon detection capability, low quiescent power (less than 10 (mu)W/pixel for 30 micrometers sensitive area diameter) and output in the 1-5 volt range. If successful, this feasibility study will make possible the development of a scintillating fiber detector with unsurpassed sensitivity, extremely low power usage, a crucial factor of merit for space based sensors and telescopes.

  6. Next generation miniature simultaneous multi-hyperspectral imaging systems

    NASA Astrophysics Data System (ADS)

    Hinnrichs, Michele; Gupta, Neelam

    2014-03-01

    The concept for a hyperspectral imaging system using a Fabry-Perot tunable filter (FPTF) array that is fabricated using "miniature optical electrical mechanical system" (MOEMS) technology. [1] Using an array of FPTF as an approach to hyperspectral imaging relaxes wavelength tuning requirements considerably because of the reduced portion of the spectrum that is covered by each element in the array. In this paper, Pacific Advanced Technology and ARL present the results of a concept design and performed analysis of a MOEMS based tunable Fabry-Perot array (FPTF) to perform simultaneous multispectral and hyperspectral imaging with relatively high spatial resolution. The concept design was developed with support of an Army SBIR Phase I program The Fabry-Perot tunable MOEMS filter array was combined with a miniature optics array and a focal plane array of 1024 x 1024 pixels to produce 16 colors every frame of the camera. Each color image has a spatial resolution of 256 x 256 pixels with an IFOV of 1.7 mrads and FOV of 25 degrees. The spectral images are collected simultaneously allowing high resolution spectral-spatial-temporal information in each frame of the camera, thus enabling the implementation of spectral-temporal-spatial algorithms in real-time to provide high sensitivity for the detection of weak signals in a high clutter background environment with low sensitivity to camera motion. The challenge in the design was the independent actuation of each Fabry Perot element in the array allowing for individual tuning. An additional challenge was the need to maximize the fill factor to improve the spatial coverage with minimal dead space. This paper will only address the concept design and analysis of the Fabry-Perot tunable filter array. A previous paper presented at SPIE DSS in 2012 explained the design of the optical array.

  7. Micro-array versus nano-array platforms: a comparative study for ODN detection based on SPR enhanced ellipsometry

    NASA Astrophysics Data System (ADS)

    Celen, Burcu; Demirel, Gökhan; Piskin, Erhan

    2011-04-01

    The rapid and sensitive detection of DNA has recently attracted worldwide attention for a variety of disease diagnoses and detection of harmful bacteria in food and drink. In this paper, we carried out a comparative study based on surface plasmon resonance enhanced ellipsometry (SPREE) for the detection of oligodeoxynucleotides (ODNs) using micro- and nano-array platforms. The micro-arrayed surfaces were fabricated by a photolithography approach using different types of mask having varying size and shape. Well-ordered arrays of high aspect ratio polymeric nanotubes were also obtained using high molecular weight polystyrene (PS) and anodic aluminum oxide (AAO) membranes having 200 nm pore diameters. The SPREE sensors were then prepared by direct coupling of thiolated probe-ODNs, which contain suitable spacer arms, on gold-coated micro- and nano-arrayed surfaces. We experimentally demonstrated that, for the first time, gold-coated free standing polymeric nano-arrayed platforms can easily be produced and lead to a significant sensor sensitivity gain compared to that of the conventional SPREE surfaces of about four times. We believe that such an enhancement in sensor response could be useful for next generation sensor systems.

  8. Ultrahigh Detective Heterogeneous Photosensor Arrays with In-Pixel Signal Boosting Capability for Large-Area and Skin-Compatible Electronics.

    PubMed

    Kim, Jaehyun; Kim, Jaekyun; Jo, Sangho; Kang, Jingu; Jo, Jeong-Wan; Lee, Myungwon; Moon, Juhyuk; Yang, Lin; Kim, Myung-Gil; Kim, Yong-Hoon; Park, Sung Kyu

    2016-04-01

    An ultra-thin and large-area skin-compatible heterogeneous organic/metal-oxide photosensor array is demonstrated which is capable of sensing and boosting signals with high detectivity and signal-to-noise ratio. For the realization of ultra-flexible and high-sensitive heterogeneous photosensor arrays on a polyimide substrate having organic sensor arrays and metal-oxide boosting circuitry, solution-processing and room-temperature alternating photochemical conversion routes are applied. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Telescope Array measurement of UHECR composition from stereoscopic fluorescence detection

    NASA Astrophysics Data System (ADS)

    Stroman, Thomas; Bergman, Douglas; Abu Zayyad, Tareq

    2014-03-01

    The chemical composition of ultra-high-energy cosmic rays (UHECRs) is an important constraint on models of UHECR production and propagation, and must be determined experimentally. A UHECR-induced extensive air shower's longitudinal development is dictated by the energy per nucleon of the primary particle. The observed distribution of atmospheric slant depths (Xmax) is therefore sensitive to the composition, facilitating measurement of the relative abundances of ``light'' (proton-like) and ``heavy'' (iron-like) primary UHECR particles. The Telescope Array (TA) experiment, the northern hemisphere's largest UHECR detector, includes three fluorescence detector (FD) stations that record the longitudinal development of the extensive air showers produced by UHECR arrivals. ``Stereo'' observation of individual showers by multiple FDs tightly constrains the trajectory reconstruction, allowing a precise measurement of Xmax as well as energy. We will present the stereo TA data from six years of operation and progress toward a measurement of chemical composition.

  10. The Hydrogen Epoch of Reionization Array Dish. I. Beam Pattern Measurements and Science Implications

    NASA Astrophysics Data System (ADS)

    Neben, Abraham R.; Bradley, Richard F.; Hewitt, Jacqueline N.; DeBoer, David R.; Parsons, Aaron R.; Aguirre, James E.; Ali, Zaki S.; Cheng, Carina; Ewall-Wice, Aaron; Patra, Nipanjana; Thyagarajan, Nithyanandan; Bowman, Judd; Dickenson, Roger; Dillon, Joshua S.; Doolittle, Phillip; Egan, Dennis; Hedrick, Mike; Jacobs, Daniel C.; Kohn, Saul A.; Klima, Patricia J.; Moodley, Kavilan; Saliwanchik, Benjamin R. B.; Schaffner, Patrick; Shelton, John; Taylor, H. A.; Taylor, Rusty; Tegmark, Max; Wirt, Butch; Zheng, Haoxuan

    2016-08-01

    The Hydrogen Epoch of Reionization Array (HERA) is a radio interferometer aiming to detect the power spectrum of 21 cm fluctuations from neutral hydrogen from the epoch of reionization (EOR). Drawing on lessons from the Murchison Widefield Array and the Precision Array for Probing the EOR, HERA is a hexagonal array of large (14 m diameter) dishes with suspended dipole feeds. The dish not only determines overall sensitivity, but also affects the observed frequency structure of foregrounds in the interferometer. This is the first of a series of four papers characterizing the frequency and angular response of the dish with simulations and measurements. In this paper, we focus on the angular response (I.e., power pattern), which sets the relative weighting between sky regions of high and low delay and thus apparent source frequency structure. We measure the angular response at 137 MHz using the ORBCOMM beam mapping system of Neben et al. We measure a collecting area of 93 m2 in the optimal dish/feed configuration, implying that HERA-320 should detect the EOR power spectrum at z ˜ 9 with a signal-to-noise ratio of 12.7 using a foreground avoidance approach with a single season of observations and 74.3 using a foreground subtraction approach. Finally, we study the impact of these beam measurements on the distribution of foregrounds in Fourier space.

  11. THE HYDROGEN EPOCH OF REIONIZATION ARRAY DISH. I. BEAM PATTERN MEASUREMENTS AND SCIENCE IMPLICATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neben, Abraham R.; Hewitt, Jacqueline N.; Ewall-Wice, Aaron

    2016-08-01

    The Hydrogen Epoch of Reionization Array (HERA) is a radio interferometer aiming to detect the power spectrum of 21 cm fluctuations from neutral hydrogen from the epoch of reionization (EOR). Drawing on lessons from the Murchison Widefield Array and the Precision Array for Probing the EOR, HERA is a hexagonal array of large (14 m diameter) dishes with suspended dipole feeds. The dish not only determines overall sensitivity, but also affects the observed frequency structure of foregrounds in the interferometer. This is the first of a series of four papers characterizing the frequency and angular response of the dish withmore » simulations and measurements. In this paper, we focus on the angular response (i.e., power pattern), which sets the relative weighting between sky regions of high and low delay and thus apparent source frequency structure. We measure the angular response at 137 MHz using the ORBCOMM beam mapping system of Neben et al. We measure a collecting area of 93 m{sup 2} in the optimal dish/feed configuration, implying that HERA-320 should detect the EOR power spectrum at z ∼ 9 with a signal-to-noise ratio of 12.7 using a foreground avoidance approach with a single season of observations and 74.3 using a foreground subtraction approach. Finally, we study the impact of these beam measurements on the distribution of foregrounds in Fourier space.« less

  12. Uncooled infrared focal plane array imaging in China

    NASA Astrophysics Data System (ADS)

    Lei, Shuyu

    2015-06-01

    This article reviews the development of uncooled infrared focal plane array (UIFPA) imaging in China in the past decade. Sensors based on optical or electrical read-out mechanism were developed but the latter dominates the market. In resistive bolometers, VOx and amorphous silicon are still the two major thermal-sensing materials. The specifications of the IRFPA made by different manufactures were collected and compared. Currently more than five Chinese companies and institutions design and fabricate uncooled infrared focal plane array. Some devices have sensitivity as high as 30 mK; the largest array for commercial products is 640×512 and the smallest pixel size is 17 μm. Emphasis is given on the pixel MEMS design, ROIC design, fabrication, and packaging of the IRFPA manufactured by GWIC, especially on design for high sensitivities, low noise, better uniformity and linearity, better stabilization for whole working temperature range, full-digital design, etc.

  13. Multidirectional flexible force sensors based on confined, self-adjusting carbon nanotube arrays

    NASA Astrophysics Data System (ADS)

    Lee, J.-I.; Pyo, Soonjae; Kim, Min-Ook; Kim, Jongbaeg

    2018-02-01

    We demonstrate a highly sensitive force sensor based on self-adjusting carbon nanotube (CNT) arrays. Aligned CNT arrays are directly synthesized on silicon microstructures by a space-confined growth technique which enables a facile self-adjusting contact. To afford flexibility and softness, the patterned microstructures with the integrated CNTs are embedded in polydimethylsiloxane structures. The sensing mechanism is based on variations in the contact resistance between the facing CNT arrays under the applied force. By finite element analysis, proper dimensions and positions for each component are determined. Further, high sensitivities up to 15.05%/mN of the proposed sensors were confirmed experimentally. Multidirectional sensing capability could also be achieved by designing multiple sets of sensing elements in a single sensor. The sensors show long-term operational stability, owing to the unique properties of the constituent CNTs, such as outstanding mechanical durability and elasticity.

  14. Phase sensitive distributed vibration sensing based on ultraweak fiber Bragg grating array using double-pulse

    NASA Astrophysics Data System (ADS)

    Liu, Tao; Wang, Feng; Zhang, Xuping; Zhang, Lin; Yuan, Quan; Liu, Yu; Yan, Zhijun

    2017-08-01

    A distributed vibration sensing technique using double-optical-pulse based on phase-sensitive optical time-domain reflectometry (ϕ-OTDR) and an ultraweak fiber Bragg grating (UWFBG) array is proposed for the first time. The single-mode sensing fiber is integrated with the UWFBG array that has uniform spatial interval and ultraweak reflectivity. The relatively high reflectivity of the UWFBG, compared with the Rayleigh scattering, gains a high signal-to-noise ratio for the signal, which can make the system achieve the maximum detectable frequency limited by the round-trip time of the probe pulse in fiber. A corresponding experimental ϕ-OTDR system with a 4.5 km sensing fiber integrated with the UWFBG array was setup for the evaluation of the system performance. Distributed vibration sensing is successfully realized with spatial resolution of 50 m. The sensing range of the vibration frequency can cover from 3 Hz to 9 kHz.

  15. Development of Camera Electronics for the Advanced Gamma-ray Imaging System (AGIS)

    NASA Astrophysics Data System (ADS)

    Tajima, Hiroyasu

    2009-05-01

    AGIS, a next generation of atmospheric Cherenkov telescope arrays, aims to achieve a sensitivity level of a milliCrab for gamma-ray observations in in the energy band of 40 GeV to 100 TeV. Such improvement requires cost reduction of individual components with high reliability in order to equip the order of 100 telescopes necessary to achieve the sensitivity goal. We are exploring several design concepts to reduce the cost of camera electronics while improving their performance. We have developed test systems for some of these concepts and are testing their performance. Here we present test results of the test systems.

  16. Signal detectability in diffusive media using phased arrays in conjunction with detector arrays.

    PubMed

    Kang, Dongyel; Kupinski, Matthew A

    2011-06-20

    We investigate Hotelling observer performance (i.e., signal detectability) of a phased array system for tasks of detecting small inhomogeneities and distinguishing adjacent abnormalities in uniform diffusive media. Unlike conventional phased array systems where a single detector is located on the interface between two sources, we consider a detector array, such as a CCD, on a phantom exit surface for calculating the Hotelling observer detectability. The signal detectability for adjacent small abnormalities (2 mm displacement) for the CCD-based phased array is related to the resolution of reconstructed images. Simulations show that acquiring high-dimensional data from a detector array in a phased array system dramatically improves the detectability for both tasks when compared to conventional single detector measurements, especially at low modulation frequencies. It is also observed in all studied cases that there exists the modulation frequency optimizing CCD-based phased array systems, where detectability for both tasks is consistently high. These results imply that the CCD-based phased array has the potential to achieve high resolution and signal detectability in tomographic diffusive imaging while operating at a very low modulation frequency. The effect of other configuration parameters, such as a detector pixel size, on the observer performance is also discussed.

  17. Large-N correlator systems for low frequency radio astronomy

    NASA Astrophysics Data System (ADS)

    Foster, Griffin

    Low frequency radio astronomy has entered a second golden age driven by the development of a new class of large-N interferometric arrays. The low frequency array (LOFAR) and a number of redshifted HI Epoch of Reionization (EoR) arrays are currently undergoing commission and regularly observing. Future arrays of unprecedented sensitivity and resolutions at low frequencies, such as the square kilometer array (SKA) and the hydrogen epoch of reionization array (HERA), are in development. The combination of advancements in specialized field programmable gate array (FPGA) hardware for signal processing, computing and graphics processing unit (GPU) resources, and new imaging and calibration algorithms has opened up the oft underused radio band below 300 MHz. These interferometric arrays require efficient implementation of digital signal processing (DSP) hardware to compute the baseline correlations. FPGA technology provides an optimal platform to develop new correlators. The significant growth in data rates from these systems requires automated software to reduce the correlations in real time before storing the data products to disk. Low frequency, widefield observations introduce a number of unique calibration and imaging challenges. The efficient implementation of FX correlators using FPGA hardware is presented. Two correlators have been developed, one for the 32 element BEST-2 array at Medicina Observatory and the other for the 96 element LOFAR station at Chilbolton Observatory. In addition, calibration and imaging software has been developed for each system which makes use of the radio interferometry measurement equation (RIME) to derive calibrations. A process for generating sky maps from widefield LOFAR station observations is presented. Shapelets, a method of modelling extended structures such as resolved sources and beam patterns has been adapted for radio astronomy use to further improve system calibration. Scaling of computing technology allows for the development of larger correlator systems, which in turn allows for improvements in sensitivity and resolution. This requires new calibration techniques which account for a broad range of systematic effects.

  18. Antenna-coupled Superconducting Bolometers for Observations of the Cosmic Microwave Background Polarization

    NASA Astrophysics Data System (ADS)

    Myers, Michael James

    We describe the development of a novel millimeter-wave cryogenic detector. The device integrates a planar antenna, superconducting transmission line, bandpass filter, and bolometer onto a single silicon wafer. The bolometer uses a superconducting Transition-Edge Sensor (TES) thermistor, which provides substantial advantages over conventional semiconductor bolometers. The detector chip is fabricated using standard micro-fabrication techniques. This highly-integrated detector architecture is particularly well-suited for use in the de- velopment of polarization-sensitive cryogenic receivers with thousands of pixels. Such receivers are needed to meet the sensitivity requirements of next-generation cosmic microwave background polarization experiments. The design, fabrication, and testing of prototype array pixels are described. Preliminary considerations for a full array design are also discussed. A set of on-chip millimeter-wave test structures were developed to help understand the performance of our millimeter-wave microstrip circuits. These test structures produce a calibrated transmission measurement for an arbitrary two-port circuit using optical techniques, rather than a network analyzer. Some results of fabricated test structures are presented.

  19. Development of Ultra-Low Noise, High Sensitivity Planar Metal Grating Coupled AlGaAs/GaAs Multiquantum Well IR Detectors for Focal Plane Array Staring IR Sensor Systems

    DTIC Science & Technology

    1992-02-01

    Development of Ultra-Low Noise , High Sensitivity Planar Metal Grating Coupled AlGaAs/GaAs Multiquantum Well IR Detectors for Focal Plane Array Staring IR...dark current at 77 K was 10 times lower than the conventional QWIP reported in the literature. anid the BTM QWIP showed a largely enhanced intersubband...bias voltage in the BTM and SBTM1 QWIPs . The results reveal thiat therinionic emission is dominant current conduction mechianismn at higher temp

  20. Large 21-cm signals from AGN-dominated reionization

    NASA Astrophysics Data System (ADS)

    Kulkarni, Girish; Choudhury, Tirthankar Roy; Puchwein, Ewald; Haehnelt, Martin G.

    2017-08-01

    We present predictions for the spatial distribution of 21-cm brightness temperature fluctuations from high-dynamic-range simulations for active galactic nucleus (AGN)-dominated reionization histories that have been tested against available Lyα and cosmic microwave background (CMB) data. We model AGNs by extrapolating the observed Mbh - σ relation to high redshifts and assign them ionizing emissivities consistent with recent UV luminosity function measurements. We assess the observability of the predicted spatial 21-cm fluctuations in the late stages of reionization in the limit in which the hydrogen 21-cm spin temperature is significantly larger than the CMB temperature. Our AGN-dominated reionization histories increase the variance of the 21-cm emission by a factor of up to 10 compared to similar reionization histories dominated by faint galaxies, to values close to 100 mK2 at scales accessible to experiments (k ≲ 1 cMpc-1 h). This is lower than the sensitivity reached by ongoing experiments only by a factor of about 2 or less. When reionization is dominated by AGNs, the 21-cm power spectrum is enhanced on all scales due to the enhanced bias of the clustering of the more massive haloes and the peak in the large scale 21-cm power is strongly enhanced and moved to larger scales due to bigger characteristic bubble sizes. AGN-dominated reionization should be easily detectable by Low Frequency Array (and later Hydrogen Epoch of Reionization Array and Phase 1 of the Square Kilometre Array) at their design sensitivity, assuming successful foreground subtraction and instrument calibration. Conversely, these could become the first non-trivial reionization scenarios to be ruled out by 21-cm experiments, thereby constraining the contribution of AGNs to reionization.

  1. Seafloor Pressure Array Studies at Ultra-Low Frequencies

    DTIC Science & Technology

    1991-01-01

    broadband instrument design and deployment. In order to measure broadband noise routinely, a low frequency pressure gauge designed for deep ocean...below the microseism band (Moore et al, 1981). A differential pressure gauge , developed for low frequency recordings by Cox et al (1984) and sensitive to...design differential pressure gauge (Cox et al, 1984) with a sensitivity -3- ULF Seafloor Pressure Array Studies range of 0.01-5 Hz. The high

  2. Mining the Sky for Explosive Optical Transients with Both Eyes Open

    NASA Astrophysics Data System (ADS)

    Vestrand, W. T.; Borozdin, K.; Casperson, D. J.; Davidoff, S.; Davis, H.; Fenimore, E.; Galassi, M.; McGowan, K.; Starr, D.; White, R. R.; Wozniak, P.; Wren, J.

    2004-09-01

    While it has been known for centuries that the optical sky is variable, monitoring the sky for optical transients with durations as short as a minute is an area of astronomical research that remains largely unexplored. Prompt follow-up observations of Gamma Ray Bursts have shown that bright, explosive, optical transients exist. However, there are many reasons to suspect the existence of explosive optical transients that cannot be located through sky monitoring by high-energy satellites. The RAPTOR sky monitoring system is an autonomous system of telescope arrays at Los Alamos National Laboratory that identifies fast optical transients as short as a minute and makes follow-up observations in real time. The core of the RAPTOR system is composed of two arrays of telescopes, separated by 38 kilometers, that stereoscopically monitor a field of about 1300 square degrees for transients down to about 12.5th magnitude in 30 seconds. Both arrays are coupled to real-time data analysis pipelines that are designed to identify transients on timescales of seconds. Each telescope array also contains a more sensitive higher resolution ``fovea'' telescope, capable of both measuring the light curve at a faster cadence and providing color information. In a manner analogous to human vision, each array is mounted on a rapidly slewing mount so that the ``fovea'' of the array can be rapidly directed for real-time follow-up observations of any interesting transient identified by the wide-field system. We discuss the first results from RAPTOR and show that stereoscopic imaging and the absence of measurable parallax is a powerful tool for distinguishing real celestial transients in the ``forest'' of false positives.

  3. Mining the Sky for Explosive Optical Transients with Both Eyes Open

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vestrand, W.T.; Casperson, D.J.; Davis, H.

    2004-09-28

    While it has been known for centuries that the optical sky is variable, monitoring the sky for optical transients with durations as short as a minute is an area of astronomical research that remains largely unexplored. Prompt follow-up observations of Gamma Ray Bursts have shown that bright, explosive, optical transients exist. However, there are many reasons to suspect the existence of explosive optical transients that cannot be located through sky monitoring by high-energy satellites. The RAPTOR sky monitoring system is an autonomous system of telescope arrays at Los Alamos National Laboratory that identifies fast optical transients as short as amore » minute and makes follow-up observations in real time. The core of the RAPTOR system is composed of two arrays of telescopes, separated by 38 kilometers, that stereoscopically monitor a field of about 1300 square degrees for transients down to about 12.5th magnitude in 30 seconds. Both arrays are coupled to real-time data analysis pipelines that are designed to identify transients on timescales of seconds. Each telescope array also contains a more sensitive higher resolution 'fovea' telescope, capable of both measuring the light curve at a faster cadence and providing color information. In a manner analogous to human vision, each array is mounted on a rapidly slewing mount so that the 'fovea' of the array can be rapidly directed for real-time follow-up observations of any interesting transient identified by the wide-field system. We discuss the first results from RAPTOR and show that stereoscopic imaging and the absence of measurable parallax is a powerful tool for distinguishing real celestial transients in the 'forest' of false positives.« less

  4. Measurements of the CMB Polarization with POLARBEAR and the Optical Performance of the Simons Array

    NASA Astrophysics Data System (ADS)

    Takayuki Matsuda, Frederick; POLARBEAR Collaboration

    2017-06-01

    POLARBEAR is a ground-based polarization sensitive Cosmic Microwave Background (CMB) experiment installed on the 2.5 m aperture Gregorian-Dragone type Huan Tran Telescope located in the Atacama desert in Chile. POLARBEAR is designed to conduct broad surveys at 150 GHz to measure the CMB B-mode polarization signal from inflationary gravitational waves at large angular scales and from gravitational lensing at small angular scales. POLARBEAR started observations in 2012. First season results on gravitational lensing B-mode measurements were published in 2014, and the data analysis of further seasons is in progress. In order to further increase measurement sensitivity, in 2018 the experiment will be upgraded to the Simons Array comprising of three telescopes, each with improved receiver optics using alumina lenses. In order to further expand the observational range, the second and third receiver optics designs were further modified for improved optical performance across the frequencies of 95, 150, 220, and 280 GHz. The diffraction limited field of view was increased especially for the higher frequencies to span a full 4.5 degrees diameter field of view of the telescope. The Simons Array will have a total of 22,764 detectors within this field of view. The Simons Array is projected to put strong constraints on both the measurements of the tensor-to-scalar ratio for inflationary cosmology and the sum of the neutrino masses. I will report on the status of current observations and analysis of the first two observation seasons of POLARBEAR as well as the optics design development of the Simons Array receivers.

  5. The SOFIA/SAFIRE Far-Infrared Spectrometer: Highlighting Submillimeter Astrophysics and Technology

    NASA Technical Reports Server (NTRS)

    Benford, Dominic J.

    2009-01-01

    The Submillimeter and Far-InfraRed Experiment (SAFIRE) on the SOFIA airborne observatory is an imaging spectrometer for wavelengths between 28 microns and 440 microns. Our design is a dual-band long-slit grating spectrometer, which provides broadband (approx. 4000 km/s) observations in two lines simultaneously over a field of view roughly 10" wide by 320" long. The low backgrounds in spectroscopy require very sensitive detectors with noise equivalent powers of order 10(exp -18) W/square root of Hz. We are developing a kilopixel, filled detector array for SAFIRE in a 32 x 40 format. The detector consists of a transition edge sensor (TES) bolometer array, a per-pixel broadband absorbing backshort array, and a NIST SQUID multiplexer readout array. This general type of array has been used successfully in the GISMO instrument, so we extrapolate to the sensitivity needed for airborne spectroscopy. Much of the cryogenic, electronics, and software infrastructure for SAFIRE have been developed. I provide here an overview of the progress on SAFIRE.

  6. Enhanced performance of core-shell structured polyaniline at helical carbon nanotube hybrids for ammonia gas sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Xin; Wang, Qiang; Chen, Xiangnan

    2014-11-17

    A core-shell structured hybrid of polyaniline at helical carbon nanotubes was synthesized using in situ polymerization, which the helical carbon nanotubes were uniformly surrounded by a layer of polyaniline nanorods array. More interestingly, repeatable responses were experimentally observed that the sensitivity to ammonia gas of the as-prepared helical shaped core-shell hybrid displays an enhancement of more than two times compared to those of only polyaniline or helical carbon nanotubes sensors because of the peculiar structures with high surface area. This kind of hybrid comprising nanorod arrays of conductive polymers covering carbon nanotubes and related structures provide a potential in sensorsmore » of trace gas detection for environmental monitoring and safety forecasting.« less

  7. A High-Sensitivity Flexible Eddy Current Array Sensor for Crack Monitoring of Welded Structures under Varying Environment.

    PubMed

    Chen, Tao; He, Yuting; Du, Jinqiang

    2018-06-01

    This paper develops a high-sensitivity flexible eddy current array (HS-FECA) sensor for crack monitoring of welded structures under varying environment. Firstly, effects of stress, temperature and crack on output signals of the traditional flexible eddy current array (FECA) sensor were investigated by experiments that show both stress and temperature have great influences on the crack monitoring performance of the sensor. A 3-D finite element model was established using Comsol AC/DC module to analyze the perturbation effects of crack on eddy currents and output signals of the sensor, which showed perturbation effect of cracks on eddy currents is reduced by the current loop when crack propagates. Then, the HS-FECA sensor was proposed to boost the sensitivity to cracks. Simulation results show that perturbation effect of cracks on eddy currents excited by the HS-FECA sensor gradually grows stronger when the crack propagates, resulting in much higher sensitivity to cracks. Experimental result further shows that the sensitivity of the new sensor is at least 19 times that of the original one. In addition, both stress and temperature variations have little effect on signals of the new sensor.

  8. Limits on Arcminute-Scale Cosmic Microwave Background Anisotropy at 28.5 GHz

    NASA Technical Reports Server (NTRS)

    Holzapfel, W. L.; Carlstrom, J. E.; Grego, L.; Holder, G.; Joy, M.; Reese, E. D.

    2000-01-01

    We have used the Berkeley-Illinois-Maryland Association (BIMA) millimeter array outfitted with sensitive centimeter-wave receivers to search for cosmic microwave background (CMB) anisotropies on arcminute scales. The interferometer was placed in a compact configuration that produces high brightness sensitivity, while providing discrimination against point sources. Operating at a frequency of 28.5 GHz, the FWHM primary beam of the instrument is approximately 6'.6. We have made sensitive images of seven fields, four of which where chosen specifically to have low infrared dust contrast and to be free of bright radio sources. Additional observations with the Owens Valley Radio Observatory (OVRO) millimeter array were used to assist in the location and removal of radio point sources. Applying a Bayesian analysis to the raw visibility data, we place limits on CMB anisotropy flat-band power of Q(sub flat) = 5.6(sub -5.6)(exp 3.0) microK and Q(sub flat) < 14.1 microK at 68% and 95% confidence, respectively. The sensitivity of this experiment to flat-band power peaks at a multipole of I = 5470, which corresponds to an angular scale of approximately 2'. The most likely value of Q(sub flat) is similar to the level of the expected secondary anisotropies.

  9. UV-enhanced CO sensing using Ga 2O 3-based nanorod arrays at elevated temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Hui-Jan; Gao, Haiyong; Gao, Pu-Xian

    Monitoring and control of gaseous combustion process are critically important in advanced energy systems such as power plants, gas turbines, and automotive engines. However, very limited gas sensing solutions are available in the market for such application due to the inherent high temperature of combustion gaseous atmosphere. In this study, we fabricated and demonstrated high-performance metal oxide based nanorod array sensors assisted with ultra-violet (UV) illumination for in situ and real-time high-temperature gas detection. Without UV-illumination, it was found surface decoration of either 5 nm LSFO or 1 nm Pt nanoparticles can enhance the sensitivity over CO at 500 °Cmore » by an order of magnitude. Under the 254 nm UV illumination, CO gas-sensing performance of Ga 2O 3-based nanorod array sensors was further enhanced with the sensitivity boosted by 125 %, and the response time reduced by 30 % for La 0.8Sr 0.2FeO 3(LSFO)-decorated sample. The UV-enhanced detecting of CO might be due to the increased population of photo-induced electron-hole pairs. While for LSFO-decorated nanorod array sensor under UV illumination, the enhancement is through a combination of sensitizing effect and photocurrent effect.« less

  10. UV-enhanced CO sensing using Ga 2O 3-based nanorod arrays at elevated temperature

    DOE PAGES

    Lin, Hui-Jan; Gao, Haiyong; Gao, Pu-Xian

    2017-01-23

    Monitoring and control of gaseous combustion process are critically important in advanced energy systems such as power plants, gas turbines, and automotive engines. However, very limited gas sensing solutions are available in the market for such application due to the inherent high temperature of combustion gaseous atmosphere. In this study, we fabricated and demonstrated high-performance metal oxide based nanorod array sensors assisted with ultra-violet (UV) illumination for in situ and real-time high-temperature gas detection. Without UV-illumination, it was found surface decoration of either 5 nm LSFO or 1 nm Pt nanoparticles can enhance the sensitivity over CO at 500 °Cmore » by an order of magnitude. Under the 254 nm UV illumination, CO gas-sensing performance of Ga 2O 3-based nanorod array sensors was further enhanced with the sensitivity boosted by 125 %, and the response time reduced by 30 % for La 0.8Sr 0.2FeO 3(LSFO)-decorated sample. The UV-enhanced detecting of CO might be due to the increased population of photo-induced electron-hole pairs. While for LSFO-decorated nanorod array sensor under UV illumination, the enhancement is through a combination of sensitizing effect and photocurrent effect.« less

  11. UV-enhanced CO sensing using Ga2O3-based nanorod arrays at elevated temperature

    NASA Astrophysics Data System (ADS)

    Lin, Hui-Jan; Gao, Haiyong; Gao, Pu-Xian

    2017-01-01

    Monitoring and control of the gaseous combustion process are critically important in advanced energy systems such as power plants, gas turbines, and automotive engines. However, very limited gas sensing solutions are available in the market for such applications due to the inherent high temperature of the combustion gaseous atmosphere. In this study, we fabricated and demonstrated high-performance metal oxide based nanorod array sensors assisted with ultra-violet (UV) illumination for in situ and real-time high-temperature gas detection. Without UV-illumination, it was found that surface decoration of either 5 nm LSFO or 1 nm Pt nanoparticles can enhance the sensitivity over CO at 500 °C by an order of magnitude. Under the 254 nm UV illumination, the CO gas-sensing performance of Ga2O3-based nanorod array sensors was further enhanced with the sensitivity boosted by 125% and the response time reduced by 30% for the La0.8Sr0.2FeO3(LSFO)-decorated sample. The UV-enhanced detection of CO might be due to the increased population of photo-induced electron-hole pairs, whereas for LSFO-decorated nanorod array sensor under UV illumination, the enhancement is through a combination of the sensitizing effect and photocurrent effect.

  12. Science with the wideband Submillimeter Array: A Strategy for the Decade 2017-2027

    NASA Astrophysics Data System (ADS)

    Wilner, D.; Keto, E.; Bower, G.; Ching, T. C.; Gurwell, M.; Hirano, N.; Keating, G.; Lai, S. P.; Patel, N.; Petitpas, G.; Qi, C.; Sridharan, T. K.; Urata, Y.; Young, K.; Zhang, Q.; Zhao, J.-H.

    2017-01-01

    The Submillimeter Array (SMA) comprises eight movable 6-meter diameter antennas sited on Maunakea, Hawaii, designed for high spatial and spectral resolution observations at submillimeter wavelengths. Pioneering observations with the SMA have provided new insights into a wide variety of astrophysical phenomena, including the formation and evolution of galaxies, stars and planets, and the nature of the supermassive black hole at the center of the Milky Way. Following careful deliberation, the SMA project is embarking on an ambitious, staged, strategic upgrade that will increase its instantaneous bandwidth and dramatically improve its observational sensitivity and speed. The unique capabilities of this ultra-wideband SMA - the "wSMA" promise to spark a new era of forefront discoveries. In brief, the wSMA upgrade will provide a core receiver set providing dual-polarization observing bands covering the 345 GHz and 230 GHz atmospheric windows, each with 32 GHz of spectral coverage. Together with upgrades of the signal transport system and digital correlator, this brings a factor of 16 increase in instantaneous bandwidth from the original SMA capability. For continuum observations, speed increases linearly with bandwidth to a given level of sensitivity, enabling more observations to the same depth in the same amount of time. Or, for a given amount of time, the sensitivity increases as the square root of bandwidth, enabling deeper observations. For line observations, spectral coverage increases linearly with bandwidth, enabling observations of many lines simultaneously, all at high spectral resolution. In effect, every wSMA observation of an astronomical source is an imaging spectral line survey, and an enormous amount of information can be extracted from such data in conjunction with physical, chemical and dynamical models. This whitepaper elaborates on illustrative examples in key scientific areas, including the evolutionary state of protostellar sources, the chemistry of evolved star envelopes, the constituents of planetary atmospheres, starburst galaxies in the local Universe and at high redshifts, and even low-mass galaxies at high redshifts through the technique of intensity mapping. The wSMA speeds up observations to allow systematic, comparative studies of large numbers of spectral surveys for the first time. The wSMA also will be ideally suited for the study of sources in the time domain. Illustrative examples include the variability of the accretion flow onto the SgrA* black hole, capturing emission from gamma ray bursts from massive star deaths in the early universe and the mergers of compact objects that produce gravitational waves, and resolved spectroscopy of the pristine material that escapes from comets as they traverse the inner Solar System. The wSMA will be complementary to the larger international Atacama Large Millimeter/ submillimeter Array (ALMA) in Chile, which followed the SMA into submillimeter interferometry in 2011. The immense time pressure on ALMA from its many constituencies only creates an increasing need for the wSMA, notably for the large class of observations that do not require ALMA's full sensitivity or angular resolution, as well as for unique submillimeter access to the northern sky. The wSMA will play a leading role in select science areas in the ALMA era, including those requiring long-term programs to build large samples, or rapid response based on flexible scheduling, as well as for high risk seed studies specifically designed for subsequent ALMA follow-up. In addition, the wSMA will be a critical station for submillimeter VLBI observations of supermassive black holes in the global Event Horizon Telescope, which will be bolstered by the inclusion of ALMA in 2017. Finally, the wSMA design explicitly incorporates open space for additional instrumentation to pursue new and compelling science goals and technical innovations, continuing its role as a pathfinder for submillimeter astronomy.

  13. Performance evaluation of a novel high performance pinhole array detector module using NEMA NU-4 image quality phantom for four head SPECT Imaging

    NASA Astrophysics Data System (ADS)

    Rahman, Tasneem; Tahtali, Murat; Pickering, Mark R.

    2015-03-01

    Radiolabeled tracer distribution imaging of gamma rays using pinhole collimation is considered promising for small animal imaging. The recent availability of various radiolabeled tracers has enhanced the field of diagnostic study and is simultaneously creating demand for high resolution imaging devices. This paper presents analyses to represent the optimized parameters of a high performance pinhole array detector module using two different characteristics phantoms. Monte Carlo simulations using the Geant4 application for tomographic emission (GATE) were executed to assess the performance of a four head SPECT system incorporated with pinhole array collimators. The system is based on a pixelated array of NaI(Tl) crystals coupled to an array of position sensitive photomultiplier tubes (PSPMTs). The detector module was simulated to have 48 mm by 48 mm active area along with different pinhole apertures on a tungsten plate. The performance of this system has been evaluated using a uniform shape cylindrical water phantom along with NEMA NU-4 image quality (IQ) phantom filled with 99mTc labeled radiotracers. SPECT images were reconstructed where activity distribution is expected to be well visualized. This system offers the combination of an excellent intrinsic spatial resolution, good sensitivity and signal-to-noise ratio along with high detection efficiency over an energy range between 20-160 keV. Increasing number of heads in a stationary system configuration offers increased sensitivity at a spatial resolution similar to that obtained with the current SPECT system design with four heads.

  14. Observations of Seafloor Ambient Noise with an Ocean Bottom Seismometer Array

    DTIC Science & Technology

    1989-12-01

    April and May of 1987. The array was situated near Deep Sea Drilling Project (DSDP) Hole 469 at a depth of 3.8 km (Figure 2.1). The area is a 400 m...any array processing method can be gauged by its resolution, bias 34 and stability. These quantities are sensitive to errors such as uncertain...Spectral Ocean Wave Model, Bull. Amer. Meteor. Soc, 67,498-512,1986. Cox, C. S., T. Deaton, and S. C. Webb, A deep-sea differential pressure gauge

  15. A high performance cost-effective digital complex correlator for an X-band polarimetry survey.

    PubMed

    Bergano, Miguel; Rocha, Armando; Cupido, Luís; Barbosa, Domingos; Villela, Thyrso; Boas, José Vilas; Rocha, Graça; Smoot, George F

    2016-01-01

    The detailed knowledge of the Milky Way radio emission is important to characterize galactic foregrounds masking extragalactic and cosmological signals. The update of the global sky models describing radio emissions over a very large spectral band requires high sensitivity experiments capable of observing large sky areas with long integration times. Here, we present the design of a new 10 GHz (X-band) polarimeter digital back-end to map the polarization components of the galactic synchrotron radiation field of the Northern Hemisphere sky. The design follows the digital processing trends in radio astronomy and implements a large bandwidth (1 GHz) digital complex cross-correlator to extract the Stokes parameters of the incoming synchrotron radiation field. The hardware constraints cover the implemented VLSI hardware description language code and the preliminary results. The implementation is based on the simultaneous digitized acquisition of the Cartesian components of the two linear receiver polarization channels. The design strategy involves a double data rate acquisition of the ADC interleaved parallel bus, and field programmable gate array device programming at the register transfer mode. The digital core of the back-end is capable of processing 32 Gbps and is built around an Altera field programmable gate array clocked at 250 MHz, 1 GSps analog to digital converters and a clock generator. The control of the field programmable gate array internal signal delays and a convenient use of its phase locked loops provide the timing requirements to achieve the target bandwidths and sensitivity. This solution is convenient for radio astronomy experiments requiring large bandwidth, high functionality, high volume availability and low cost. Of particular interest, this correlator was developed for the Galactic Emission Mapping project and is suitable for large sky area polarization continuum surveys. The solutions may also be adapted to be used at signal processing subsystem levels for large projects like the square kilometer array testbeds.

  16. Parallel, confocal, and complete spectrum imager for fluorescent detection of high-density microarray

    NASA Astrophysics Data System (ADS)

    Bogdanov, Valery L.; Boyce-Jacino, Michael

    1999-05-01

    Confined arrays of biochemical probes deposited on a solid support surface (analytical microarray or 'chip') provide an opportunity to analysis multiple reactions simultaneously. Microarrays are increasingly used in genetics, medicine and environment scanning as research and analytical instruments. A power of microarray technology comes from its parallelism which grows with array miniaturization, minimization of reagent volume per reaction site and reaction multiplexing. An optical detector of microarray signals should combine high sensitivity, spatial and spectral resolution. Additionally, low-cost and a high processing rate are needed to transfer microarray technology into biomedical practice. We designed an imager that provides confocal and complete spectrum detection of entire fluorescently-labeled microarray in parallel. Imager uses microlens array, non-slit spectral decomposer, and high- sensitive detector (cooled CCD). Two imaging channels provide a simultaneous detection of localization, integrated and spectral intensities for each reaction site in microarray. A dimensional matching between microarray and imager's optics eliminates all in moving parts in instrumentation, enabling highly informative, fast and low-cost microarray detection. We report theory of confocal hyperspectral imaging with microlenses array and experimental data for implementation of developed imager to detect fluorescently labeled microarray with a density approximately 103 sites per cm2.

  17. Invited Article: Terahertz microfluidic chips sensitivity-enhanced with a few arrays of meta-atoms

    NASA Astrophysics Data System (ADS)

    Serita, Kazunori; Matsuda, Eiki; Okada, Kosuke; Murakami, Hironaru; Kawayama, Iwao; Tonouchi, Masayoshi

    2018-05-01

    We present a nonlinear optical crystal (NLOC)-based terahertz (THz) microfluidic chip with a few arrays of split ring resonators (SRRs) for ultra-trace and quantitative measurements of liquid solutions. The proposed chip operates on the basis of near-field coupling between the SRRs and a local emission of point like THz source that is generated in the process of optical rectification in NLOCs on a sub-wavelength scale. The liquid solutions flowing inside the microchannel modify the resonance frequency and peak attenuation in the THz transmission spectra. In contrast to conventional bio-sensing with far/near-field THz waves, our technique can be expected to compactify the chip design as well as realize high sensitive near-field measurement of liquid solutions without any high-power optical/THz source, near-field probes, and prisms. Using this chip, we have succeeded in observing the 31.8 fmol of ion concentration in actual amount of 318 pl water solutions from the shift of the resonance frequency. The technique opens the door to microanalysis of biological samples with THz waves and accelerates development of THz lab-on-chip devices.

  18. CMOS Amperometric ADC With High Sensitivity, Dynamic Range and Power Efficiency for Air Quality Monitoring.

    PubMed

    Li, Haitao; Boling, C Sam; Mason, Andrew J

    2016-08-01

    Airborne pollutants are a leading cause of illness and mortality globally. Electrochemical gas sensors show great promise for personal air quality monitoring to address this worldwide health crisis. However, implementing miniaturized arrays of such sensors demands high performance instrumentation circuits that simultaneously meet challenging power, area, sensitivity, noise and dynamic range goals. This paper presents a new multi-channel CMOS amperometric ADC featuring pixel-level architecture for gas sensor arrays. The circuit combines digital modulation of input currents and an incremental Σ∆ ADC to achieve wide dynamic range and high sensitivity with very high power efficiency and compact size. Fabricated in 0.5 [Formula: see text] CMOS, the circuit was measured to have 164 dB cross-scale dynamic range, 100 fA sensitivity while consuming only 241 [Formula: see text] and 0.157 [Formula: see text] active area per channel. Electrochemical experiments with liquid and gas targets demonstrate the circuit's real-time response to a wide range of analyte concentrations.

  19. Freely suspended nanocomposite membranes as highly sensitive sensors

    NASA Astrophysics Data System (ADS)

    Jiang, Chaoyang; Markutsya, Sergiy; Pikus, Yuri; Tsukruk, Vladimir V.

    2004-10-01

    Highly sensitive sensor arrays are in high demand for prospective applications in remote sensing and imaging. Measuring microscopic deflections of compliant micromembranes and cantilevers is developing into one of the most versatile approaches for thermal, acoustic and chemical sensing. Here, we report on an innovative fabrication of compliant nanocomposite membranes with nanoscale thickness showing extraordinary sensitivity and dynamic range, which makes them candidates for a new generation of membrane-based sensor arrays. These nanomembranes with a thickness of 25-70 nm, which can be freely suspended over large (hundred micrometres) openings are fabricated with molecular precision by time-efficient, spin-assisted layer-by-layer assembly. They are designed as multilayered molecular composites made of a combination of polymeric monolayers and a metal nanoparticle intralayer. We demonstrate that these nanocomposite membranes possess unparalleled sensitivity and a unique autorecovering ability. The membrane nanostructure that is responsible for these outstanding properties combines multilayered polymer/nanoparticle organization, high polymer-chain orientation, and a pre-stretched state.

  20. Engineering a Large Scale Indium Nanodot Array for Refractive Index Sensing.

    PubMed

    Xu, Xiaoqing; Hu, Xiaolin; Chen, Xiaoshu; Kang, Yangsen; Zhang, Zhiping; B Parizi, Kokab; Wong, H-S Philip

    2016-11-23

    In this work, we developed a simple method to fabricate 12 × 4 mm 2 large scale nanostructure arrays and investigated the feasibility of indium nanodot (ND) array with different diameters and periods for refractive index sensing. Absorption resonances at multiple wavelengths from the visible to the near-infrared range were observed for various incident angles in a variety of media. Engineering the ND array with a centered square lattice, we successfully enhanced the sensitivity by 60% and improved the figure of merit (FOM) by 190%. The evolution of the resonance dips in the reflection spectra, of square lattice and centered square lattice, from air to water, matches well with the results of Lumerical FDTD simulation. The improvement of sensitivity is due to the enhancement of local electromagnetic field (E-field) near the NDs with centered square lattice, as revealed by E-field simulation at resonance wavelengths. The E-field is enhanced due to coupling between the two square ND arrays with [Formula: see text]x period at phase matching. This work illustrates an effective way to engineer and fabricate a refractive index sensor at a large scale. This is the first experimental demonstration of poor-metal (indium) nanostructure array for refractive index sensing. It also demonstrates a centered square lattice for higher sensitivity and as a better basic platform for more complex sensor designs.

  1. A cute and highly contrast-sensitive superposition eye - the diurnal owlfly Libelloides macaronius.

    PubMed

    Belušič, Gregor; Pirih, Primož; Stavenga, Doekele G

    2013-06-01

    The owlfly Libelloides macaronius (Insecta: Neuroptera) has large bipartite eyes of the superposition type. The spatial resolution and sensitivity of the photoreceptor array in the dorsofrontal eye part was studied with optical and electrophysiological methods. Using structured illumination microscopy, the interommatidial angle in the central part of the dorsofrontal eye was determined to be Δϕ=1.1 deg. Eye shine measurements with an epi-illumination microscope yielded an effective superposition pupil size of about 300 facets. Intracellular recordings confirmed that all photoreceptors were UV-receptors (λmax=350 nm). The average photoreceptor acceptance angle was 1.8 deg, with a minimum of 1.4 deg. The receptor dynamic range was two log units, and the Hill coefficient of the intensity-response function was n=1.2. The signal-to-noise ratio of the receptor potential was remarkably high and constant across the whole dynamic range (root mean square r.m.s. noise=0.5% Vmax). Quantum bumps could not be observed at any light intensity, indicating low voltage gain. Presumably, the combination of large aperture superposition optics feeding an achromatic array of relatively insensitive receptors with a steep intensity-response function creates a low-noise, high spatial acuity instrument. The sensitivity shift to the UV range reduces the clutter created by clouds within the sky image. These properties of the visual system are optimal for detecting small insect prey as contrasting spots against both clear and cloudy skies.

  2. Efficacy of the FilmArray blood culture identification panel for direct molecular diagnosis of infectious diseases from samples other than blood.

    PubMed

    Micó, Miquel; Navarro, Ferran; de Miniac, Daniela; González, Yésica; Brell, Albert; López, Cristina; Sánchez-Reus, Ferran; Mirelis, Beatriz; Coll, Pere

    2015-12-01

    Molecular-based techniques reduce the delay in diagnosing infectious diseases and therefore contribute to better patient outcomes. We assessed the FilmArray blood culture identification (BCID) panel (Biofire Diagnostics/bioMérieux) directly on clinical specimens other than blood: cerebrospinal, joint, pleural and ascitic fluids, bronchoscopy samples and abscesses. We compared the results from 88 samples obtained by culture-based techniques. The percentage of agreement between the two methods was 75 % with a Cohen κ value of 0.51. Global sensitivity and specificity using the FilmArray BCID panel were 71 and 97 %, respectively. Sensitivity was poorer in samples with a low bacterial load, such as ascitic and pleural fluids (25 %), whereas the sensitivity for abscess samples was high (89 %). These findings suggest that the FilmArray BCID panel could be useful to perform microbiological diagnosis directly from samples other than positive blood cultures, as it offers acceptable sensitivity and moderate agreement with conventional microbiological methods. Nevertheless, cost-benefit studies should be performed before introducing this method into algorithms for microbiological diagnostics.

  3. Novel Gas Sensor Arrays Based on High-Q SAM-Modified Piezotransduced Single-Crystal Silicon Bulk Acoustic Resonators

    PubMed Central

    Zhao, Yuan; Yang, Qingrui; Chang, Ye; Pang, Wei; Zhang, Hao; Duan, Xuexin

    2017-01-01

    This paper demonstrates a novel micro-size (120 μm × 200 μm) piezoelectric gas sensor based on a piezotransduced single-crystal silicon bulk acoustic resonator (PSBAR). The PSBARs operate at 102 MHz and possess high Q values (about 2000), ensuring the stability of the measurement. A corresponding gas sensor array is fabricated by integrating three different self-assembled monolayers (SAMs) modified PSBARs. The limit of detection (LOD) for ethanol vapor is demonstrated to be as low as 25 ppm with a sensitivity of about 1.5 Hz/ppm. Two sets of identification code bars based on the sensitivities and the adsorption energy constants are utilized to successfully discriminate isopropanol (IPA), ethanol, hexane and heptane vapors at low and high gas partial pressures, respectively. The proposed sensor array shows the potential to form a portable electronic nose system for volatile organic compound (VOC) differentiation. PMID:28672852

  4. Novel Gas Sensor Arrays Based on High-Q SAM-Modified Piezotransduced Single-Crystal Silicon Bulk Acoustic Resonators.

    PubMed

    Zhao, Yuan; Yang, Qingrui; Chang, Ye; Pang, Wei; Zhang, Hao; Duan, Xuexin

    2017-06-26

    This paper demonstrates a novel micro-size (120 μm × 200 μm) piezoelectric gas sensor based on a piezotransduced single-crystal silicon bulk acoustic resonator (PSBAR). The PSBARs operate at 102 MHz and possess high Q values (about 2000), ensuring the stability of the measurement. A corresponding gas sensor array is fabricated by integrating three different self-assembled monolayers (SAMs) modified PSBARs. The limit of detection (LOD) for ethanol vapor is demonstrated to be as low as 25 ppm with a sensitivity of about 1.5 Hz/ppm. Two sets of identification code bars based on the sensitivities and the adsorption energy constants are utilized to successfully discriminate isopropanol (IPA), ethanol, hexane and heptane vapors at low and high gas partial pressures, respectively. The proposed sensor array shows the potential to form a portable electronic nose system for volatile organic compound (VOC) differentiation.

  5. Searching for Extraterrestrial Intelligence with the Square Kilometre Array

    NASA Astrophysics Data System (ADS)

    Siemion, A.; Benford, J.; Cheng-Jin, J.; Chennamangalam, J.; Cordes, J. M.; Falcke, H. D. E.; Garrington, S. T.; Garrett, M. A.; Gurvits, L.; Hoare, M.; Korpela, E.; Lazio, J.; Messerschmitt, D.; Morrison, I.; O'Brien, T.; Paragi, Z.; Penny, A.; Spitler, L.; Tarter, J.; Werthimer, D.

    2015-04-01

    The vast collecting area of the Square Kilometre Array (SKA), harnessed by sensitive receivers, flexible digital electronics and increased computational capacity, could permit the most sensitive and exhaustive search for technologically-produced radio emission from advanced extraterrestrial intelligence (SETI) ever performed. For example, SKA1-MID will be capable of detecting a source roughly analogous to terrestrial high-power radars (e.g. air route surveillance or ballistic missile warning radars, EIRP (EIRP = equivalent isotropic radiated power, ~10^17 erg sec^-1) at 10 pc in less than 15 minutes, and with a modest four beam SETI observing system could, in one minute, search every star in the primary beam out to ~100 pc for radio emission comparable to that emitted by the Arecibo Planetary Radar (EIRP ~2 x 10^20 erg sec^-1). The flexibility of the signal detection systems used for SETI searches with the SKA will allow new algorithms to be employed that will provide sensitivity to a much wider variety of signal types than previously searched for. Here we discuss the astrobiological and astrophysical motivations for radio SETI and describe how the technical capabilities of the SKA will explore the radio SETI parameter space. We detail several conceivable SETI experimental programs on all components of SKA1, including commensal, primary-user, targeted and survey programs and project the enhancements to them possible with SKA2. We also discuss target selection criteria for these programs, and in the case of commensal observing, how the varied use cases of other primary observers can be used to full advantage for SETI.

  6. Fabrication of flexible MoS2 thin-film transistor arrays for practical gas-sensing applications.

    PubMed

    He, Qiyuan; Zeng, Zhiyuan; Yin, Zongyou; Li, Hai; Wu, Shixin; Huang, Xiao; Zhang, Hua

    2012-10-08

    By combining two kinds of solution-processable two-dimensional materials, a flexible transistor array is fabricated in which MoS(2) thin film is used as the active channel and reduced graphene oxide (rGO) film is used as the drain and source electrodes. The simple device configuration and the 1.5 mm-long MoS(2) channel ensure highly reproducible device fabrication and operation. This flexible transistor array can be used as a highly sensitive gas sensor with excellent reproducibility. Compared to using rGO thin film as the active channel, this new gas sensor exhibits much higher sensitivity. Moreover, functionalization of the MoS(2) thin film with Pt nanoparticles further increases the sensitivity by up to ∼3 times. The successful incorporation of a MoS(2) thin-film into the electronic sensor promises its potential application in various electronic devices. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Polarization-selective optical resonance with extremely narrow linewidth in Si dimers array for application in ultra-sensitive refractive sensing

    NASA Astrophysics Data System (ADS)

    Fu, Dong; Zhang, Zuyin; Li, Jian; Wu, Haoyue; Wang, Wenbo; Wei, Xin

    2017-05-01

    By exploiting the radiative coupling between the electromagnetic field scattered by individual Si dimer and the collective wave diffracted (Rayleigh Anomalies) in the plane of Si dimers array, optical resonance with extremely narrow linewidth is achieved, accompanied with dramatic enhancement of electric field in the gap of the dimer. We analyze the optical properties of Si dimers array by decomposing it into three fundamental sub-systems. Theoretical investigation employing the coupled dipole approximation is complemented with numerical simulations. The result shows that polarization angle has significant influence on the orientation of the field scattered by individual Si dimer, which determines the efficiency of radiative coupling and further impacts on the electric field enhancement. Moreover, we explore the feasibility of application in refractive sensing. It is shown that the figure of merit value for the proposed system of Si dimers array is as high as 306. The Si dimers array that takes advantage of multiple coupling creates new possibility to implement field-enhanced spectroscopy and refractive sensing with ultra-high sensitivity.

  8. Current Status of The Low Frequency All Sky Monitor

    NASA Astrophysics Data System (ADS)

    Dartez, Louis; Creighton, Teviet; Jenet, Fredrick; Dolch, Timothy; Boehler, Keith; Bres, Luis; Cole, Brent; Luo, Jing; Miller, Rossina; Murray, James; Reyes, Alex; Rivera, Jesse

    2018-01-01

    The Low Frequency All Sky Monitor (LoFASM) is a distributed array of cross-dipole antennas that are sensitive to radio frequencies from 10 to 88 MHz. LoFASM consists of antennas and front end electronics that were originally developed for the Long Wavelength Array by the U.S. Naval Research Lab, the University of New Mexico, Virginia Tech, and the Jet Propulsion Laboratory. LoFASM, funded by the U.S. Department of Defense, will initially consist of 4 stations, each consisting of 12 dual- polarization dipole antenna stands. The primary science goals of LoFASM will be the detection and study of low-frequency radio transients, a high priority science goal as deemed by the National Research Council’s ASTRO2010 decadal survey. The data acquisition system for the LoFASM antenna array uses Field Programmable Gate Array (FPGA) technology to implement a real time full Stokes spectrometer and data recorder. This poster presents an overview of the LoFASM Radio Telescope as well as the status of data analysis of initial commissioning observations.

  9. Integration of a highly ordered gold nanowires array with glucose oxidase for ultra-sensitive glucose detection.

    PubMed

    Cui, Jiewu; Adeloju, Samuel B; Wu, Yucheng

    2014-01-27

    A highly sensitive amperometric nanobiosensor has been developed by integration of glucose oxidase (GO(x)) with a gold nanowires array (AuNWA) by cross-linking with a mixture of glutaraldehyde (GLA) and bovine serum albumin (BSA). An initial investigation of the morphology of the synthesized AuNWA by field emission scanning electron microscopy (FESEM) and field emission transmission electron microscopy (FETEM) revealed that the nanowires array was highly ordered with rough surface, and the electrochemical features of the AuNWA with/without modification were also investigated. The integrated AuNWA-BSA-GLA-GO(x) nanobiosensor with Nafion membrane gave a very high sensitivity of 298.2 μA cm(-2) mM(-1) for amperometric detection of glucose, while also achieving a low detection limit of 0.1 μM, and a wide linear range of 5-6000 μM. Furthermore, the nanobiosensor exhibited excellent anti-interference ability towards uric acid (UA) and ascorbic acid (AA) with the aid of Nafion membrane, and the results obtained for the analysis of human blood serum indicated that the device is capable of glucose detection in real samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Flexible nanopillar-based electrochemical sensors for genetic detection of foodborne pathogens

    NASA Astrophysics Data System (ADS)

    Park, Yoo Min; Lim, Sun Young; Jeong, Soon Woo; Song, Younseong; Bae, Nam Ho; Hong, Seok Bok; Choi, Bong Gill; Lee, Seok Jae; Lee, Kyoung G.

    2018-06-01

    Flexible and highly ordered nanopillar arrayed electrodes have brought great interest for many electrochemical applications, especially to the biosensors, because of its unique mechanical and topological properties. Herein, we report an advanced method to fabricate highly ordered nanopillar electrodes produced by soft-/photo-lithography and metal evaporation. The highly ordered nanopillar array exhibited the superior electrochemical and mechanical properties in regard with the wide space to response with electrolytes, enabling the sensitive analysis. As-prepared gold and silver electrodes on nanopillar arrays exhibit great and stable electrochemical performance to detect the amplified gene from foodborne pathogen of Escherichia coli O157:H7. Additionally, lightweight, flexible, and USB-connectable nanopillar-based electrochemical sensor platform improves the connectivity, portability, and sensitivity. Moreover, we successfully confirm the performance of genetic analysis using real food, specially designed intercalator, and amplified gene from foodborne pathogens with high reproducibility (6% standard deviation) and sensitivity (10 × 1.01 CFU) within 25 s based on the square wave voltammetry principle. This study confirmed excellent mechanical and chemical characteristics of nanopillar electrodes have a great and considerable electrochemical activity to apply as genetic biosensor platform in the fields of point-of-care testing (POCT).

  11. Vitronectin (Vn) glycosylation patterned by lectin affinity assays-A potent glycoproteomic tool to discriminate plasma Vn from cancer ascites Vn.

    PubMed

    Benachour, H; Leroy-Dudal, J; Agniel, R; Wilson, J; Briand, M; Carreiras, F; Gallet, O

    2018-05-01

    Changes in glycosylation have been associated with human cancer, but their complexity poses an analytical challenge. Ovarian cancer is a major cause of death in women because of an often late diagnosis. At least one-third of patients presents ascites fluid at diagnosis, and almost all have ascites at recurrence. Vitronectin (Vn) is a multifunctional glycoprotein that is suggested to be implicated in ovarian cancer metastasis and is found within ascites. The present study evaluated the potential of using lectin affinity for characterizing the glycosylation pattern of Vn. Human Vn was purified from 1 sample of ovarian cancer ascites or a pool of plasma samples. Consistent findings were observed with both dot blot and lectin array assays. Based on a panel of 40 lectins, the lectin array revealed discriminant patterns of lectin binding to Vn glycans. Interestingly, almost all the highlighted interactions were found to be higher with Vn from ascites relative to the plasma counterpart. Also, the lectin array was able to discriminate profiles of lectin interactions (ConA, SNA-I, PHA-E, PHA-L) between Vn samples that were not evident using dot blot, indicating its high sensitivity. The model of ConA binding during thermal unfolding of Vn confirmed the higher accessibility of mannosylated glycans in Vn from ascites as monitored by turbidimetry. Thus, this study demonstrated the usefulness of lectins and the lectin array as a glycoproteomic tool for high throughput and sensitive analysis of glycosylation patterns. Our data provide novel insights concerning Vn glycosylation patterns in clinical specimens, paving the way for further investigations regarding their functional impact and clinical interest. Copyright © 2017 John Wiley & Sons, Ltd.

  12. Plasmonic detection of possible defects in multilayer nanohole array consisting of essential materials in simplified STT-RAM cell

    NASA Astrophysics Data System (ADS)

    Sadri-Moshkenani, Parinaz; Khan, Mohammad Wahiduzzaman; Zhao, Qiancheng; Krivorotov, Ilya; Nilsson, Mikael; Bagherzadeh, Nader; Boyraz, Ozdal

    2017-08-01

    Plasmonic nanostructures are highly used for sensing purposes since they support plasmonic modes which make them highly sensitive to the refractive index change of their surrounding medium. Therefore, they can also be used to detect changes in optical properties of ultrathin layer films in a multilayer plasmonic structure. Here, we investigate the changes in optical properties of ultrathin films of macro structures consisting of STT-RAM layers. Among the highest sensitive plasmonic structures, nanohole array has attracted many research interest because of its ease of fabrication, small footprint, and simplified optical alignment. Hence it is more suitable for defect detection in STT-RAM geometries. Moreover, the periodic nanohole pattern in the nanohole array structure makes it possible to couple the light to the surface plasmon polariton (SPP) mode supported by the structure. To assess the radiation damages and defects in STT-RAM cells we have designed a multilayer nanohole array based on the layers used in STT-RAM structure, consisting 4nm- Ta/1.5nm-CoFeB/2nm-MgO/1.5nm-CoFeB/4nm-Ta layers, all on a 300nm silver layer on top of a PEC boundary. The nanoholes go through all the layers and become closed by the PEC boundary on one side. The dimensions of the designed nanoholes are 313nm depth, 350nm diameter, and 700nm period. Here, we consider the normal incidence of light and investigate zeroth-order reflection coefficient to observe the resonance. Our simulation results show that a 10% change in refractive index of the 2nm-thick MgO layer leads to about 122GHz shift in SPP resonance in reflection pattern.

  13. Observations of High-Redshift X-Ray Selected Clusters with the Sunyaev-Zel'dovich Array

    NASA Technical Reports Server (NTRS)

    Muchovej, Stephen; Carlstrom, John E.; Cartwright, John; Greer, Christopher; Hawkins, David; Hennessey, Ryan; Joy, Marshall; Lamb, James; Leitch, Erik M.; Loh, Michael; hide

    2006-01-01

    We report measurements of the Sunyaev-Zel'dovich (SZ) effect in three high redshift (0.89 less than or equal to z less than or equal to 1.03), X-ray selected galaxy clusters. The observations were obtained at 30 GHz during the commissioning period of a new, eight-element interferometer - the Sunyaev-Zel'dovich Array (SZA) - built for dedicated SZ effect observations. The SZA observations are sensitive to angular scales larger than those subtended by the virial radii of the clusters. Assuming isothermality and hydrostatic equilibrium for the intracluster medium, and gas-mass fractions consistent with those for clusters at moderate redshift, we calculate electron temperatures, gas masses, and total cluster masses from the SZ data. The SZ-derived masses, integrated approximately to the virial radii, are 1.9 (sup +0.5)(sub -0.4) x 10(exp 14) solar mass for Cl J1415.1+3612, 3.4 (sup +0.6)(sub -0.5) x 10(exp 14) solar mass for Cl J1429.0+4241 and 7.2 (sup +1.3)(sub -0.9) x 10(exp 14) solar mass for Cl J1226.9+3332. The SZ-derived quantities are in good agreement with the cluster properties derived from X-ray measurements.

  14. Cross-reactions vs co-sensitization evaluated by in silico motifs and in vitro IgE microarray testing.

    PubMed

    Pfiffner, P; Stadler, B M; Rasi, C; Scala, E; Mari, A

    2012-02-01

    Using an in silico allergen clustering method, we have recently shown that allergen extracts are highly cross-reactive. Here we used serological data from a multi-array IgE test based on recombinant or highly purified natural allergens to evaluate whether co-reactions are true cross-reactions or co-sensitizations by allergens with the same motifs. The serum database consisted of 3142 samples, each tested against 103 highly purified natural or recombinant allergens. Cross-reactivity was predicted by an iterative motif-finding algorithm through sequence motifs identified in 2708 known allergens. Allergen proteins containing the same motifs cross-reacted as predicted. However, proteins with identical motifs revealed a hierarchy in the degree of cross-reaction: The more frequent an allergen was positive in the allergic population, the less frequently it was cross-reacting and vice versa. Co-sensitization was analyzed by splitting the dataset into patient groups that were most likely sensitized through geographical occurrence of allergens. Interestingly, most co-reactions are cross-reactions but not co-sensitizations. The observed hierarchy of cross-reactivity may play an important role for the future management of allergic diseases. © 2011 John Wiley & Sons A/S.

  15. New design concept of monopole antenna array for UHF 7T MRI.

    PubMed

    Hong, Suk-Min; Park, Joshua Haekyun; Woo, Myung-Kyun; Kim, Young-Bo; Cho, Zang-Hee

    2014-05-01

    We have developed and evaluated a monopole antenna array that can increase sensitivity at the center of the brain for 7T MRI applications. We have developed a monopole antenna array that has half the length of a conventional dipole antenna with eight channels for brain imaging with a 7T MRI. The eight-channel monopole antenna array and conventional eight-channel transceiver surface coil array were evaluated and compared in terms of transmit properties, specific absorption ratio (SAR), and sensitivity. The sensitivity maps were generated by dividing the SNR map by the flip angle distribution. A single surface coil provides asymmetric sensitivity resulting in reduced sensitivity at the center of the brain. In contrast, a single monopole antenna provides higher sensitivity at the center of the brain. Moreover, the monopole antenna array provides uniform sensitivity over the entire brain, and the sensitivity gain was 1.5 times higher at the center of the brain compared with the surface coil array. The monopole antenna array is a promising candidate for MRI applications, especially for brain imaging in a 7T MRI because it provides increased sensitivity at the center of the brain. Copyright © 2013 Wiley Periodicals, Inc.

  16. Computational and Mathematical Modeling of Coupled Superconducting Quantum Interference Devices

    NASA Astrophysics Data System (ADS)

    Berggren, Susan Anne Elizabeth

    This research focuses on conducting an extensive computational investigation and mathematical analysis into the average voltage response of arrays of Superconducting Quantum Interference Devices (SQUIDs). These arrays will serve as the basis for the development of a sensitive, low noise, significantly lower Size, Weight and Power (SWaP) antenna integrated with Low-Noise Amplifier (LNA) using the SQUID technology. The goal for this antenna is to be capable of meeting all requirements for Guided Missile Destroyers (DDG) 1000 class ships for Information Operations/Signals Intelligence (IO/SIGINT) applications in Very High Frequency/Ultra High Frequency (V/UHF) bands. The device will increase the listening capability of receivers by moving technology into a new regime of energy detection allowing wider band, smaller size, more sensitive, stealthier systems. The smaller size and greater sensitivity will allow for ships to be “de-cluttered” of their current large dishes and devices, replacing everything with fewer and smaller SQUID antenna devices. The fewer devices present on the deck of a ship, the more invisible the ship will be to enemy forces. We invent new arrays of SQUIDs, optimized for signal detection with very high dynamic range and excellent spur-free dynamic range, while maintaining extreme small size (and low radar cross section), wide bandwidth, and environmentally noise limited sensitivity, effectively shifting the bottle neck of receiver systems forever away from the antenna itself deeper into the receiver chain. To accomplish these goals we develop and validate mathematical models for different designs of SQUID arrays and use them to invent a new device and systems design. This design is capable of significantly exceeding, per size weight and power, state-of-the-art receiver system measures of performance, such as bandwidth, sensitivity, dynamic range, and spurious-free dynamic range.

  17. Highly selective gas sensor arrays based on thermally reduced graphene oxide.

    PubMed

    Lipatov, Alexey; Varezhnikov, Alexey; Wilson, Peter; Sysoev, Victor; Kolmakov, Andrei; Sinitskii, Alexander

    2013-06-21

    The electrical properties of reduced graphene oxide (rGO) have been previously shown to be very sensitive to surface adsorbates, thus making rGO a very promising platform for highly sensitive gas sensors. However, poor selectivity of rGO-based gas sensors remains a major problem for their practical use. In this paper, we address the selectivity problem by employing an array of rGO-based integrated sensors instead of focusing on the performance of a single sensing element. Each rGO-based device in such an array has a unique sensor response due to the irregular structure of rGO films at different levels of organization, ranging from nanoscale to macroscale. The resulting rGO-based gas sensing system could reliably recognize analytes of nearly the same chemical nature. In our experiments rGO-based sensor arrays demonstrated a high selectivity that was sufficient to discriminate between different alcohols, such as methanol, ethanol and isopropanol, at a 100% success rate. We also discuss a possible sensing mechanism that provides the basis for analyte differentiation.

  18. Enhanced sensitivity of surface acoustic wave-based rate sensors incorporating metallic dot arrays.

    PubMed

    Wang, Wen; Shao, Xiuting; Liu, Xinlu; Liu, Jiuling; He, Shitang

    2014-02-26

    A new surface acoustic wave (SAW)-based rate sensor pattern incorporating metallic dot arrays was developed in this paper. Two parallel SAW delay lines with a reverse direction and an operation frequency of 80 MHz on a same X-112°Y LiTaO3 wafer are fabricated as the feedback of two SAW oscillators, and mixed oscillation frequency was used to characterize the external rotation. To enhance the Coriolis force effect acting on the SAW propagation, a copper (Cu) dot array was deposited along the SAW propagation path of the SAW devices. The approach of partial-wave analysis in layered media was referred to analyze the response mechanisms of the SAW based rate sensor, resulting in determination of the optimal design parameters. To improve the frequency stability of the oscillator, the single phase unidirectional transducers (SPUDTs) and combed transducer were used to form the SAW device to minimize the insertion loss and accomplish the single mode selection, respectively. Excellent long-term (measured in hours) frequency stability of 0.1 ppm/h was obtained. Using the rate table with high precision, the performance of the developed SAW rate sensor was evaluated experimentally; satisfactory detection sensitivity (16.7 Hz∙deg∙s(-1)) and good linearity were observed.

  19. Enhanced Sensitivity of Surface Acoustic Wave-Based Rate Sensors Incorporating Metallic Dot Arrays

    PubMed Central

    Wang, Wen; Shao, Xiuting; Liu, Xinlu; Liu, Jiuling; He, Shitang

    2014-01-01

    A new surface acoustic wave (SAW)-based rate sensor pattern incorporating metallic dot arrays was developed in this paper. Two parallel SAW delay lines with a reverse direction and an operation frequency of 80 MHz on a same X-112°Y LiTaO3 wafer are fabricated as the feedback of two SAW oscillators, and mixed oscillation frequency was used to characterize the external rotation. To enhance the Coriolis force effect acting on the SAW propagation, a copper (Cu) dot array was deposited along the SAW propagation path of the SAW devices. The approach of partial-wave analysis in layered media was referred to analyze the response mechanisms of the SAW based rate sensor, resulting in determination of the optimal design parameters. To improve the frequency stability of the oscillator, the single phase unidirectional transducers (SPUDTs) and combed transducer were used to form the SAW device to minimize the insertion loss and accomplish the single mode selection, respectively. Excellent long-term (measured in hours) frequency stability of 0.1 ppm/h was obtained. Using the rate table with high precision, the performance of the developed SAW rate sensor was evaluated experimentally; satisfactory detection sensitivity (16.7 Hz·deg·s−1) and good linearity were observed. PMID:24577520

  20. Replica amplification of nucleic acid arrays

    DOEpatents

    Church, George M.; Mitra, Robi D.

    2010-08-31

    Disclosed are improved methods of making and using immobilized arrays of nucleic acids, particularly methods for producing replicas of such arrays. Included are methods for producing high density arrays of nucleic acids and replicas of such arrays, as well as methods for preserving the resolution of arrays through rounds of replication. Also included are methods which take advantage of the availability of replicas of arrays for increased sensitivity in detection of sequences on arrays. Improved methods of sequencing nucleic acids immobilized on arrays utilizing single copies of arrays and methods taking further advantage of the availability of replicas of arrays are disclosed. The improvements lead to higher fidelity and longer read lengths of sequences immobilized on arrays. Methods are also disclosed which improve the efficiency of multiplex PCR using arrays of immobilized nucleic acids.

  1. Suspension arrays based on nanoparticle-encoded microspheres for high-throughput multiplexed detection

    PubMed Central

    Leng, Yuankui

    2017-01-01

    Spectrometrically or optically encoded microsphere based suspension array technology (SAT) is applicable to the high-throughput, simultaneous detection of multiple analytes within a small, single sample volume. Thanks to the rapid development of nanotechnology, tremendous progress has been made in the multiplexed detecting capability, sensitivity, and photostability of suspension arrays. In this review, we first focus on the current stock of nanoparticle-based barcodes as well as the manufacturing technologies required for their production. We then move on to discuss all existing barcode-based bioanalysis patterns, including the various labels used in suspension arrays, label-free platforms, signal amplification methods, and fluorescence resonance energy transfer (FRET)-based platforms. We then introduce automatic platforms for suspension arrays that use superparamagnetic nanoparticle-based microspheres. Finally, we summarize the current challenges and their proposed solutions, which are centered on improving encoding capacities, alternative probe possibilities, nonspecificity suppression, directional immobilization, and “point of care” platforms. Throughout this review, we aim to provide a comprehensive guide for the design of suspension arrays, with the goal of improving their performance in areas such as multiplexing capacity, throughput, sensitivity, and cost effectiveness. We hope that our summary on the state-of-the-art development of these arrays, our commentary on future challenges, and some proposed avenues for further advances will help drive the development of suspension array technology and its related fields. PMID:26021602

  2. Technique for Radiometer and Antenna Array Calibration - TRAAC

    NASA Technical Reports Server (NTRS)

    Meyer, Paul; Sims, William; Varnavas, Kosta; McCracken, Jeff; Srinivasan, Karthik; Limaye, Ashutosh; Laymon, Charles; Richeson. James

    2012-01-01

    Highly sensitive receivers are used to detect minute amounts of emitted electromagnetic energy. Calibration of these receivers is vital to the accuracy of the measurements. Traditional calibration techniques depend on calibration reference internal to the receivers as reference for the calibration of the observed electromagnetic energy. Such methods can only calibrate errors in measurement introduced by the receiver only. The disadvantage of these existing methods is that they cannot account for errors introduced by devices, such as antennas, used for capturing electromagnetic radiation. This severely limits the types of antennas that can be used to make measurements with a high degree of accuracy. Complex antenna systems, such as electronically steerable antennas (also known as phased arrays), while offering potentially significant advantages, suffer from a lack of a reliable and accurate calibration technique. The proximity of antenna elements in an array results in interaction between the electromagnetic fields radiated (or received) by the individual elements. This phenomenon is called mutual coupling. The new calibration method uses a known noise source as a calibration load to determine the instantaneous characteristics of the antenna. The noise source is emitted from one element of the antenna array and received by all the other elements due to mutual coupling. This received noise is used as a calibration standard to monitor the stability of the antenna electronics.

  3. Graphical user interface for a dual-module EMCCD x-ray detector array

    NASA Astrophysics Data System (ADS)

    Wang, Weiyuan; Ionita, Ciprian; Kuhls-Gilcrist, Andrew; Huang, Ying; Qu, Bin; Gupta, Sandesh K.; Bednarek, Daniel R.; Rudin, Stephen

    2011-03-01

    A new Graphical User Interface (GUI) was developed using Laboratory Virtual Instrumentation Engineering Workbench (LabVIEW) for a high-resolution, high-sensitivity Solid State X-ray Image Intensifier (SSXII), which is a new x-ray detector for radiographic and fluoroscopic imaging, consisting of an array of Electron-Multiplying CCDs (EMCCDs) each having a variable on-chip electron-multiplication gain of up to 2000x to reduce the effect of readout noise. To enlarge the field-of-view (FOV), each EMCCD sensor is coupled to an x-ray phosphor through a fiberoptic taper. Two EMCCD camera modules are used in our prototype to form a computer-controlled array; however, larger arrays are under development. The new GUI provides patient registration, EMCCD module control, image acquisition, and patient image review. Images from the array are stitched into a 2kx1k pixel image that can be acquired and saved at a rate of 17 Hz (faster with pixel binning). When reviewing the patient's data, the operator can select images from the patient's directory tree listed by the GUI and cycle through the images using a slider bar. Commonly used camera parameters including exposure time, trigger mode, and individual EMCCD gain can be easily adjusted using the GUI. The GUI is designed to accommodate expansion of the EMCCD array to even larger FOVs with more modules. The high-resolution, high-sensitivity EMCCD modular-array SSXII imager with the new user-friendly GUI should enable angiographers and interventionalists to visualize smaller vessels and endovascular devices, helping them to make more accurate diagnoses and to perform more precise image-guided interventions.

  4. The Science and Design of the AGIS Observatory

    NASA Astrophysics Data System (ADS)

    Schroedter, Martin

    2010-02-01

    The AGIS observatory is a next-generation array of imaging atmospheric Cherenkov telescopes (IACTs) for gamma-ray astronomy between 100 GeV and 100 TeV. The AGIS observatory is the next logical step in high energy gamma-ray astronomy, offering improved angular resolution and sensitivity compared to FERMI, and overlapping the high energy end of FERMI's sensitivity band. The baseline AGIS observatory will employ an array of 36 Schwarzschild-Couder IACTs in combination with a highly pixelated (0.05^o diameter) camera. The instrument is designed to provide millicrab sensitivity over a wide (8^o diameter) field of view, allowing both deep studies of faint point sources as well as efficient mapping of the Galactic plane and extended sources. I will describe science drivers behind the AGIS observatory and the design and status of the project. )

  5. The Science and Design of the AGIS Observatory

    NASA Astrophysics Data System (ADS)

    Falcone, Abraham; Aliu, E.; Arlen, T.; Benbow, W.; Buckley, J.; Bugaev, S.; Byrum, K.; Ciupik, L.; Coppi, P.; Digel, S.; Drake, G.; Finley, J.; Fortson, L.; Franco, J.; Funk, S.; Guarino, V.; Gyuk, G.; Hanna, D.; Hiriart, D.; Humensky, B.; Holder, J.; Kaaret, P.; Karlsson, N.; Kieda, D.; Konopelko, A.; Krawczynski, H.; Krennrich, F.; LeBohec, S.; Maier, G.; Mukherjee, R.; Ong, R.; Otte, N.; Pareschi, G.; Pohl, M.; Quinn, J.; Ramsey, B.; Romani, R.; Rovero, A. C.; Schroedter, M.; Sinnis, C.; Slane, P.; Smith, A.; Swordy, S.; Tajima, H.; Vassiliev, V.; Wagner, R.; Wakely, S. P.; Weekes, T. C.; Weinstein, A.; Williams, D.

    2010-01-01

    The AGIS observatory is a next-generation array of imaging atmospheric Cherenkov telescopes (IACTs) for gamma-ray astronomy between 100GeV and 100 TeV. The AGIS observatory is the next logical step in high energy gamma-ray astronomy, offering improved angular resolution and sensitivity compared to FERMI, and overlapping the high energy end of FERMI's sensitivity band. The baseline AGIS observatory will employ an array of 36 Schwarzschild-Couder IACTs in combination with a highly pixelated (0.05 degree/pixel) camera. The instrument is designed to provide millicrab sensitivity over a wide (8 degree diameter) field of view, allowing both deep studies of faint point sources as well as efficient mapping of the Galactic plane and extended sources. This presentation will include a description of science drivers behind the AGIS observatory and the design and status of the project.

  6. Compensation of relector antenna surface distortion using an array feed

    NASA Technical Reports Server (NTRS)

    Cherrette, A. R.; Acosta, R. J.; Lam, P. T.; Lee, S. W.

    1988-01-01

    The dimensional stability of the surface of a large reflector antenna is important when high gain or low sidelobe performance is desired. If the surface is distorted due to thermal or structural reasons, antenna performance can be improved through the use of an array feed. The design of the array feed and its relation to the surface distortion are examined. The sensitivity of antenna performance to changing surface parameters for fixed feed array geometries is also studied. This allows determination of the limits of usefulness for feed array compensation.

  7. High-angular-resolution NIR astronomy with large arrays (SHARP I and SHARP II)

    NASA Astrophysics Data System (ADS)

    Hofmann, Reiner; Brandl, Bernhard; Eckart, Andreas; Eisenhauer, Frank; Tacconi-Garman, Lowell E.

    1995-06-01

    SHARP I and SHARP II are near infrared cameras for high-angular-resolution imaging. Both cameras are built around a 256 X 256 pixel NICMOS 3 HgCdTe array from Rockwell which is sensitive in the 1 - 2.5 micrometers range. With a 0.05'/pixel scale, they can produce diffraction limited K-band images at 4-m-class telescopes. For a 256 X 256 array, this pixel scale results in a field of view of 12.8' X 12.8' which is well suited for the observation of galactic and extragalactic near-infrared sources. Photometric and low resolution spectroscopic capabilities are added by photometric band filters (J, H, K), narrow band filters ((lambda) /(Delta) (lambda) approximately equals 100) for selected spectral lines, and a CVF ((lambda) /(Delta) (lambda) approximately equals 70). A cold shutter permits short exposure times down to about 10 ms. The data acquisition electronics permanently accepts the maximum frame rate of 8 Hz which is defined by the detector time constants (data rate 1 Mbyte/s). SHARP I has been especially designed for speckle observations at ESO's 3.5 m New Technology Telescope and is in operation since 1991. SHARP II is used at ESO's 3.6 m telescope together with the adaptive optics system COME-ON + since 1993. A new version of SHARP II is presently under test, which incorporates exchangeable camera optics for observations with scales of 0.035, 0.05, and 0.1'/pixel. The first scale extends diffraction limited observations down to the J-band, while the last one provides a larger field of view. To demonstrate the power of the cameras, images of the galactic center obtained with SHARP I, and images of the R136 region in 30 Doradus observed with SHARP II are presented.

  8. Carbon nanotubes based methanol sensor for fuel cells application.

    PubMed

    Kim, D W; Lee, J S; Lee, G S; Overzet, L; Kozlov, M; Aliev, A E; Park, Y W; Yang, D J

    2006-11-01

    An electrochemical sensor is built using vertically grown multi-walled carbon nanotubes (MWNTs) micro-array to detect methanol concentration in water. This study is done for the potential use of the array as methanol sensor for portable units of direct methanol fuel cells (DMFCs). Platinum (Pt) nanoparticles electro-deposited CNTs (Pt/CNTs) electrode shows high sensitivity in the measurement of methanol concentration in water with cyclic voltammetry (CV) measurement at room temperature. Further investigation has also been undertaken to measure the concentration by changing the amount of the mixture of methanol and formic acid in water. We compared the performance of our micro array sensor built with Pt/CNTs electrodes versus that of Pt wire electrode using CV measurement. We found that our Pt/CNTs array sensor shows high sensitivity and detects methanol concentrations in the range of 0.04 M to 0.10 M. In addition, we found that co-use of formic acid as electrolyte enables us to measure up to 1.0 M methanol concentration.

  9. Integrated arrays of air-dielectric graphene transistors as transparent active-matrix pressure sensors for wide pressure ranges.

    PubMed

    Shin, Sung-Ho; Ji, Sangyoon; Choi, Seiho; Pyo, Kyoung-Hee; Wan An, Byeong; Park, Jihun; Kim, Joohee; Kim, Ju-Young; Lee, Ki-Suk; Kwon, Soon-Yong; Heo, Jaeyeong; Park, Byong-Guk; Park, Jang-Ung

    2017-03-31

    Integrated electronic circuitries with pressure sensors have been extensively researched as a key component for emerging electronics applications such as electronic skins and health-monitoring devices. Although existing pressure sensors display high sensitivities, they can only be used for specific purposes due to the narrow range of detectable pressure (under tens of kPa) and the difficulty of forming highly integrated arrays. However, it is essential to develop tactile pressure sensors with a wide pressure range in order to use them for diverse application areas including medical diagnosis, robotics or automotive electronics. Here we report an unconventional approach for fabricating fully integrated active-matrix arrays of pressure-sensitive graphene transistors with air-dielectric layers simply formed by folding two opposing panels. Furthermore, this realizes a wide tactile pressure sensing range from 250 Pa to ∼3 MPa. Additionally, fabrication of pressure sensor arrays and transparent pressure sensors are demonstrated, suggesting their substantial promise as next-generation electronics.

  10. Integrated arrays of air-dielectric graphene transistors as transparent active-matrix pressure sensors for wide pressure ranges

    NASA Astrophysics Data System (ADS)

    Shin, Sung-Ho; Ji, Sangyoon; Choi, Seiho; Pyo, Kyoung-Hee; Wan An, Byeong; Park, Jihun; Kim, Joohee; Kim, Ju-Young; Lee, Ki-Suk; Kwon, Soon-Yong; Heo, Jaeyeong; Park, Byong-Guk; Park, Jang-Ung

    2017-03-01

    Integrated electronic circuitries with pressure sensors have been extensively researched as a key component for emerging electronics applications such as electronic skins and health-monitoring devices. Although existing pressure sensors display high sensitivities, they can only be used for specific purposes due to the narrow range of detectable pressure (under tens of kPa) and the difficulty of forming highly integrated arrays. However, it is essential to develop tactile pressure sensors with a wide pressure range in order to use them for diverse application areas including medical diagnosis, robotics or automotive electronics. Here we report an unconventional approach for fabricating fully integrated active-matrix arrays of pressure-sensitive graphene transistors with air-dielectric layers simply formed by folding two opposing panels. Furthermore, this realizes a wide tactile pressure sensing range from 250 Pa to ~3 MPa. Additionally, fabrication of pressure sensor arrays and transparent pressure sensors are demonstrated, suggesting their substantial promise as next-generation electronics.

  11. Integrated arrays of air-dielectric graphene transistors as transparent active-matrix pressure sensors for wide pressure ranges

    PubMed Central

    Shin, Sung-Ho; Ji, Sangyoon; Choi, Seiho; Pyo, Kyoung-Hee; Wan An, Byeong; Park, Jihun; Kim, Joohee; Kim, Ju-Young; Lee, Ki-Suk; Kwon, Soon-Yong; Heo, Jaeyeong; Park, Byong-Guk; Park, Jang-Ung

    2017-01-01

    Integrated electronic circuitries with pressure sensors have been extensively researched as a key component for emerging electronics applications such as electronic skins and health-monitoring devices. Although existing pressure sensors display high sensitivities, they can only be used for specific purposes due to the narrow range of detectable pressure (under tens of kPa) and the difficulty of forming highly integrated arrays. However, it is essential to develop tactile pressure sensors with a wide pressure range in order to use them for diverse application areas including medical diagnosis, robotics or automotive electronics. Here we report an unconventional approach for fabricating fully integrated active-matrix arrays of pressure-sensitive graphene transistors with air-dielectric layers simply formed by folding two opposing panels. Furthermore, this realizes a wide tactile pressure sensing range from 250 Pa to ∼3 MPa. Additionally, fabrication of pressure sensor arrays and transparent pressure sensors are demonstrated, suggesting their substantial promise as next-generation electronics. PMID:28361867

  12. Large Format Arrays for Far Infrared and Millimeter Astronomy

    NASA Technical Reports Server (NTRS)

    Moseley, Harvey

    2004-01-01

    Some of the most compelling questions in modem astronomy are best addressed with submillimeter and millimeter observations. The question of the role of inflation in the early evolution of the universe is best addressed with large sensitive arrays of millimeter polarimeters. The study of the first generations of galaxies requires sensitive submillimeter imaging, which can help us to understand the history of energy release and nucleosynthesis in the universe. Our ability to address these questions is dramatically increasing, driven by dramatic steps in the sensitivity and size of available detector arrays. While the MIPS instrument on the SIRTF mission will revolutionize far infrared astronomy with its 1024 element array of photoconductors, thermal detectors remain the dominant technology for submillimeter and millimeter imaging and polarimetry. The last decade has seen the deployment of increasingly large arrays of bolometers, ranging from the 48 element arrays deployed on the KAO in the late 198Os, to the SHARC and SCUBA arrays in the 1990s. The past years have seen the deployment of a new generation of larger detector arrays in SHARC II (384 channels) and Bolocam (144 channels). These detectors are in operation and are beginning to make significant impacts on the field. Arrays of sensitive submillimeter bolometers on the SPIRE instrument on Herschel will allow the first large areas surveys of the sky, providing important insight into the evolution of galaxies. The next generation of detectors, led by SCUBA II, will increase the focal scale of these instruments by an order of magnitude. Two major missions are being planned by NASA for which further development of long wavelength detectors is essential, The SAFlR mission, a 10-m class telescope with large arrays of background limited detectors, will extend our reach into the epoch of initial galaxy formation. A major goal of modem cosmology is to test the inflationary paradigm in the early evolution of the universe. To this end, a mission is planned to detect the imprint of inflation on the CMB by precision measurement of its polarization. This work requires very large arrays of sensitive detectors which can provide unprecedented control of a wide range of systematic errors, given the small amplitude of the signal of interest. We will describe the current state of large format detector arrays, the performance requirements set by the new missions, and the different approaches being developed in the community to meet these requirements. We are confident that within a decade, these developments will lead to dramatic advances in our understanding of the evolution of the universe.

  13. Performance of Gas Scintillation Proportional Counter Array for High-Energy X-Ray Observatory

    NASA Technical Reports Server (NTRS)

    Gubarev, Mikhail; Ramsey, Brian; Apple, Jeffery

    2004-01-01

    A focal plane array of high-pressure gas scintillation proportional counters (GSPC) for a High Energy X-Ray Observatory (HERO) is developed at the Marshall Space Flight Center. The array is consisted from eight GSPCs and is a part of balloon born payload scheduled to flight in May 2004. These detectors have an active area of approximately 20 square centimeters, and are filled with a high pressure (10(exp 6) Pa) xenon-helium mixture. Imaging is via crossed-grid position-sensitive phototubes sensitive in the UV region. The performance of the GSPC is well matched to that of the telescopes x-ray optics which have response to 75 keV and a focal spot size of approximately 500 microns. The detector's energy resolution, 4% FWHM at 60 keV, is adequate for resolving the broad spectral lines of astrophysical importance and for accurate continuum measurements. Results of the on-earth detector calibration will be presented and in-flight detector performance will be provided, as available.

  14. Signal Attenuation Curve for Different Surface Detector Arrays

    NASA Astrophysics Data System (ADS)

    Vicha, J.; Travnicek, P.; Nosek, D.; Ebr, J.

    2014-06-01

    Modern cosmic ray experiments consisting of large array of particle detectors measure the signals of electromagnetic or muon components or their combination. The correction for an amount of atmosphere passed is applied to the surface detector signal before its conversion to the shower energy. Either Monte Carlo based approach assuming certain composition of primaries or indirect estimation using real data and assuming isotropy of arrival directions can be used. Toy surface arrays of different sensitivities to electromagnetic and muon components are assumed in MC simulations to study effects imposed on attenuation curves for varying composition or possible high energy anisotropy. The possible sensitivity of the attenuation curve to the mass composition is also tested for different array types focusing on a future apparatus that can separate muon and electromagnetic component signals.

  15. 7 Tesla 22-channel wrap-around coil array for cervical spinal cord and brainstem imaging.

    PubMed

    Zhang, Bei; Seifert, Alan C; Kim, Joo-Won; Borrello, Joseph; Xu, Junqian

    2017-10-01

    Increased signal-to-noise ratio and blood oxygenation level-dependent sensitivity at 7 Tesla (T) have the potential to enable high-resolution imaging of the human cervical spinal cord and brainstem. We propose a new two-panel radiofrequency coil design for these regions to fully exploit the advantages of ultra-high field. A two-panel array, containing four transmit/receive and 18 receive-only elements fully encircling the head and neck, was constructed following simulations demonstrating the B1+ and specific absorption rate (SAR) benefits of two-panel over one-panel arrays. This array was compared with a previously reported posterior-only array and tested for safety using a phantom. Its anatomical, functional, and diffusion MRI performance was demonstrated in vivo. The two-panel array produced more uniform B1+ across the brainstem and cervical spinal cord without compromising SAR, and achieved 70% greater receive sensitivity than the posterior-only array. The two-panel design enabled acceleration of R = 2 × 2 in two dimensions or R = 3 in a single dimension. High quality in vivo anatomical, functional, and diffusion images of the human cervical spinal cord and brainstem were acquired. We have designed and constructed a wrap-around coil array with excellent performance for cervical spinal cord and brainstem MRI at 7T, which enables simultaneous human cervical spinal cord and brainstem functional MRI. Magn Reson Med 78:1623-1634, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  16. High-performance optical projection controllable ZnO nanorod arrays for microweighing sensors.

    PubMed

    Wang, Hongbo; Jiang, Shulan; Zhang, Lei; Yu, Bingjun; Chen, Duoli; Yang, Weiqing; Qian, Linmao

    2018-03-08

    Optical microweighing sensors are an essential component of micro-force measurements in physical, chemical, and biological detection fields, although, their limited detection range (less than 15°) severely hinders their wide application. Such a limitation is mainly attributed to the essential restrictions of traditional light reflection and optical waveguide modes. Here, we report a high-performance optical microweighing sensor based on the synergistic effects of both a new optical projection mode and a ZnO nanorod array sensor. Ascribed to the unique configuration design of this sensing method, this optical microweighing sensor has a wide detection range (more than 80°) and a high sensitivity of 90 nA deg -1 , which is much larger than that of conventional microcantilever-based optical microweighing sensors. Furthermore, the location of the UV light source can be adjusted within a few millimeters, meaning that the microweighing sensor does not need repetitive optical calibration. More importantly, for low height and small incident angles of the UV light source, we can obtain highly sensitive microweighing properties on account of the highly sensitive ZnO nanorod array-based UV sensor. Therefore, this kind of large detection range, non-contact, and non-destructive microweighing sensor has potential applications in air quality monitoring and chemical and biological detection.

  17. Systematic development of input-quantum-limited fluoroscopic imagers based on active-matrix flat-panel technology

    NASA Astrophysics Data System (ADS)

    Antonuk, Larry E.; Zhao, Qihua; Su, Zhong; Yamamoto, Jin; El-Mohri, Youcef; Li, Yixin; Wang, Yi; Sawant, Amit R.

    2004-05-01

    The development of fluoroscopic imagers exhibiting performance that is primarily limited by the noise of the incident x-ray quanta, even at very low exposures, remains a highly desirable objective for active matrix flat-panel technology. Previous theoretical and empirical studies have indicated that promising strategies to acheiving this goal include the development of array designs incorporating improved optical collection fill factors, pixel-level amplifiers, or very high-gain photoconductors. Our group is pursuing all three strategies and this paper describes progress toward the systematic development of array designs involving the last approach. The research involved the iterative fabrication and evaluation of a series of prototype imagers incorporating a promising high-gain photoconductive material, mercuric iodide (HgI2). Over many cycles of photoconductor deposition and array evaluation, improvements ina variety of properties have been observed and remaining fundamental challenges have become apparent. For example, process compatibility between the deposited HgI2 and the arrays have been greatly improved, while preserving efficient, prompt signal extraction. As a result, x-ray sensitivities within a factor of two of the nominal limit associated with the single-crystal form of HgI2 have been observed at relatively low electric fields (~0.1 to 0.6 V/μm), for some iterations. In addition, for a number of iterations, performance targets for dark current stability and range of linearity have been met or exceeded. However, spotting of the array, due to localized chemical reactions, is still a concern. Moreover, the dark current, uniformity of pixel response, and degree of charge trapping, though markedly improved for some iterations, require further optimization. Furthermore, achieving the desired performance for all properties simultaneously remains an important goal. In this paper, a broad overview of the progress of the research will be presented, remaining challenges in the development of this photoconductive material will be outlined, and prospects for further improvement will be discussed.

  18. Versatile, high-sensitivity faraday cup array for ion implanters

    DOEpatents

    Musket, Ronald G.; Patterson, Robert G.

    2003-01-01

    An improved Faraday cup array for determining the dose of ions delivered to a substrate during ion implantation and for monitoring the uniformity of the dose delivered to the substrate. The improved Faraday cup array incorporates a variable size ion beam aperture by changing only an insertable plate that defines the aperture without changing the position of the Faraday cups which are positioned for the operation of the largest ion beam aperture. The design enables the dose sensitivity range, typically 10.sup.11 -10.sup.18 ions/cm.sup.2 to be extended to below 10.sup.6 ions/cm.sup.2. The insertable plate/aperture arrangement is structurally simple and enables scaling to aperture areas between <1 cm.sup.2 and >750 cm.sup.2, and enables ultra-high vacuum (UHV) applications by incorporation of UHV-compatible materials.

  19. Status and Integrated Focal Plane Characterization of Simons Array - Cosmic Microwave Background Polarimetry Experiment

    NASA Astrophysics Data System (ADS)

    Roberts, Hayley; POLARBEAR

    2018-06-01

    Simons Array is a cosmic microwave background (CMB) polarization experiment located at 5,200 meter altitude site in the Atacama desert in Chile. The science goals of the Simons Array are to characterize the CMB B-mode signal from gravitational lensing, and search for B-mode polarization generated from inflationary gravitational waves.In 2012, POLARBEAR-1 (PB-1) began observations and the POLARBEAR team has published the first measurements of non-zero polarization B-mode polarization angular power spectrum where gravitational lensing of CMB is the dominant signal.POLARBEAR-2A (PB-2A), the first of three receivers of Simons Array, will have 7,588 polarization sensitive Transition Edge Sensor (TES) bolometers with frequencies 90 GHz and 150 GHz. This represents a factor of 6 increase in detector count compared to PB-1. Once Simons Array is fully deployed, the focal plane array will consist 22,764 TES bolometers across 90 GHz, 150 GHz, 220 GHz, and 270 GHz with a projected instantaneous sensitivity of 2.5 µK√s. Here we present the status of PB-2A and characterization of the integrated focal plane to be deployed summer of 2018.

  20. Characterization and Performance of a Kilo-TES Sub-Array for ACTPol

    NASA Technical Reports Server (NTRS)

    Grace, E. A.; Beall, J.; Cho, H. M.; Devlin, M. J.; Fox, A.; Hilton, G.; Hubmayr, J.; Irwin, K.; Klein, J.; Li, D.; hide

    2014-01-01

    ACTPol is a polarization-sensitive receiver upgrade to the Atacama CosmologyTelescope (ACT) which will make millimeterwavelength measurements of the small-scale polarization anisotropies of the cosmic microwave background to investigate the properties of inflation, dark energy, dark matter, and neutrinos in the early Universe. ACTPol will employ three arrays of transition edge sensor (TES) bolometer detectors. The detectors, with a target transition temperature of 150 mK, will be operated at a bath temperature of 100 mK provided by a dilution refrigerator. One array operating at a central frequency of 150 GHz and consisting of 1024 TESes achieved first light at the ACT site in July 2013. We anticipate fielding the remainder of the focal plane, consisting of a second 150 GHz array and a multi-chroic array sensitive to 90 and 150 GHz, at the end of the 2013 observing season. In these proceedings, we present characterization of key detector parameters from measurements performed on the first array both in the lab and during initial field testing. We comment on the design goals, measurements, and uniformity of the detector transition temperatures, saturation powers, and thermal conductivities while detailing measurement methods and results for the detector optical efficiencies and time constants.

  1. LUNASKA experiments using the Australia Telescope Compact Array to search for ultrahigh energy neutrinos and develop technology for the lunar Cherenkov technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James, C. W.; Protheroe, R. J.; Ekers, R. D.

    2010-02-15

    We describe the design, performance, sensitivity and results of our recent experiments using the Australia Telescope Compact Array (ATCA) for lunar Cherenkov observations with a very wide (600 MHz) bandwidth and nanosecond timing, including a limit on an isotropic neutrino flux. We also make a first estimate of the effects of small-scale surface roughness on the effective experimental aperture, finding that contrary to expectations, such roughness will act to increase the detectability of near-surface events over the neutrino energy-range at which our experiment is most sensitive (though distortions to the time-domain pulse profile may make identification more difficult). The aimmore » of our 'Lunar UHE Neutrino Astrophysics using the Square Kilometre Array' (LUNASKA) project is to develop the lunar Cherenkov technique of using terrestrial radio telescope arrays for ultrahigh energy (UHE) cosmic ray (CR) and neutrino detection, and, in particular, to prepare for using the Square Kilometre Array (SKA) and its path-finders such as the Australian SKA Pathfinder (ASKAP) and the Low Frequency Array (LOFAR) for lunar Cherenkov experiments.« less

  2. Highly accelerated acquisition and homogeneous image reconstruction with rotating RF coil array at 7T-A phantom based study.

    PubMed

    Li, Mingyan; Zuo, Zhentao; Jin, Jin; Xue, Rong; Trakic, Adnan; Weber, Ewald; Liu, Feng; Crozier, Stuart

    2014-03-01

    Parallel imaging (PI) is widely used for imaging acceleration by means of coil spatial sensitivities associated with phased array coils (PACs). By employing a time-division multiplexing technique, a single-channel rotating radiofrequency coil (RRFC) provides an alternative method to reduce scan time. Strategically combining these two concepts could provide enhanced acceleration and efficiency. In this work, the imaging acceleration ability and homogeneous image reconstruction strategy of 4-element rotating radiofrequency coil array (RRFCA) was numerically investigated and experimental validated at 7T with a homogeneous phantom. Each coil of RRFCA was capable of acquiring a large number of sensitivity profiles, leading to a better acceleration performance illustrated by the improved geometry-maps that have lower maximum values and more uniform distributions compared to 4- and 8-element stationary arrays. A reconstruction algorithm, rotating SENSitivity Encoding (rotating SENSE), was proposed to provide image reconstruction. Additionally, by optimally choosing the angular sampling positions and transmit profiles under the rotating scheme, phantom images could be faithfully reconstructed. The results indicate that, the proposed technique is able to provide homogeneous reconstructions with overall higher and more uniform signal-to-noise ratio (SNR) distributions at high reduction factors. It is hoped that, by employing the high imaging acceleration and homogeneous imaging reconstruction ability of RRFCA, the proposed method will facilitate human imaging for ultra high field MRI. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Sensitive determination of nitrophenol isomers by reverse-phase high-performance liquid chromatography in conjunction with liquid-liquid extraction

    USDA-ARS?s Scientific Manuscript database

    A method for the highly sensitive determination of 2-, 3- and 4- nitrophenols was developed using reverse-phase high-performance liquid chromatography (RP-HPLC) with a UV photodiode array detector. Using a reverse-phase column and 40% aqueous acetonitrile as an eluent (i.e. isocratic elution), the i...

  4. Highly Uniform 150 mm Diameter Multichroic Polarimeter Array Deployed for CMB Detection

    NASA Technical Reports Server (NTRS)

    Ho, Shuay-Pwu Patty; Austermann, Jason; Beall, James A.; Choi, Steve K.; Cothard, Nicholas F.; Crowley, Kevin; Datta, Rahul; Devlin, Mark J.; Duff, Shannon M.; Wollack, Edward J.

    2016-01-01

    The Advanced Atacama Cosmology Telescope Polarimeter is an upgraded receiver for the Atacama Cosmology Telescope, which has begun making measurements of the small angular scale polarization anisotropies in the Cosmic Microwave Background using the first of four new multichroic superconducting detector arrays. Here, we review all details of the optimization and characterization of this first array, which features 2012 AlMn transition edge sensor bolometers operating at 150 and 230 GHz. We present critical temperatures, thermal conductivities,saturation powers, time constants, and sensitivities for the array. The results show high uniformity across the 150 mm wafer and good performance in the field.

  5. Diazonium Chemistry for the Bio-Functionalization of Glassy Nanostring Resonator Arrays

    PubMed Central

    Zheng, Wei; Du, Rongbing; Cao, Yong; Mohammad, Mohammad A.; Dew, Steven K.; McDermott, Mark T.; Evoy, Stephane

    2015-01-01

    Resonant glassy nanostrings have been employed for the detection of biomolecules. These devices offer high sensitivity and amenability to large array integration and multiplexed assays. Such a concept has however been impaired by the lack of stable and biocompatible linker chemistries. Diazonium salt reduction-induced aryl grafting is an aqueous-based process providing strong chemical adhesion. In this work, diazonium-based linker chemistry was performed for the first time on glassy nanostrings, which enabled the bio-functionalization of such devices. Large arrays of nanostrings with ultra-narrow widths down to 10 nm were fabricated employing electron beam lithography. Diazonium modification was first developed on SiCN surfaces and validated by X-ray photoelectron spectroscopy. Similarly modified nanostrings were then covalently functionalized with anti-rabbit IgG as a molecular probe. Specific enumeration of rabbit IgG was successfully performed through observation of downshifts of resonant frequencies. The specificity of this enumeration was confirmed through proper negative control experiments. Helium ion microscopy further verified the successful functionalization of nanostrings. PMID:26263989

  6. Diazonium Chemistry for the Bio-Functionalization of Glassy Nanostring Resonator Arrays.

    PubMed

    Zheng, Wei; Du, Rongbing; Cao, Yong; Mohammad, Mohammad A; Dew, Steven K; McDermott, Mark T; Evoy, Stephane

    2015-07-30

    Resonant glassy nanostrings have been employed for the detection of biomolecules. These devices offer high sensitivity and amenability to large array integration and multiplexed assays. Such a concept has however been impaired by the lack of stable and biocompatible linker chemistries. Diazonium salt reduction-induced aryl grafting is an aqueous-based process providing strong chemical adhesion. In this work, diazonium-based linker chemistry was performed for the first time on glassy nanostrings, which enabled the bio-functionalization of such devices. Large arrays of nanostrings with ultra-narrow widths down to 10 nm were fabricated employing electron beam lithography. Diazonium modification was first developed on SiCN surfaces and validated by X-ray photoelectron spectroscopy. Similarly modified nanostrings were then covalently functionalized with anti-rabbit IgG as a molecular probe. Specific enumeration of rabbit IgG was successfully performed through observation of downshifts of resonant frequencies. The specificity of this enumeration was confirmed through proper negative control experiments. Helium ion microscopy further verified the successful functionalization of nanostrings.

  7. VERY LARGE ARRAY OBSERVATIONS OF DG TAU'S RADIO JET: A HIGHLY COLLIMATED THERMAL OUTFLOW

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lynch, C.; Mutel, R. L.; Gayley, K. G.

    2013-03-20

    The active young protostar DG Tau has an extended jet that has been well studied at radio, optical, and X-ray wavelengths. We report sensitive new Very Large Array (VLA) full-polarization observations of the core and jet between 5 GHz and 8 GHz. Our high angular resolution observation at 8 GHz clearly shows an unpolarized inner jet with a size of 42 AU (0.''35) extending along a position angle similar to the optical-X ray outer jet. Using our nearly coeval 2012 VLA observations, we find a spectral index {alpha} = +0.46 {+-} 0.05, which combined with the lack of polarization ismore » consistent with bremsstrahlung (free-free) emission, with no evidence for a non-thermal coronal component. By identifying the end of the radio jet as the optical depth unity surface, and calculating the resulting emission measure, we find that our radio results are in agreement with previous optical line studies of electron density and consequent mass-loss rate. We also detect a weak radio knot at 5 GHz located 7'' from the base of the jet, coincident with the inner radio knot detected by Rodriguez et al. in 2009 but at lower surface brightness. We interpret this as due to expansion of post-shock ionized gas in the three years between observations.« less

  8. Sensitivity of the Cherenkov Telescope Array to the detection of a dark matter signal in comparison to direct detection and collider experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balazs, Csaba; Conrad, Jan; Farmer, Ben

    Imaging atmospheric Cherenkov telescopes (IACTs) that are sensitive to potential γ-ray signals from dark matter (DM) annihilation above ~50 GeV will soon be superseded by the Cherenkov Telescope Array (CTA). CTA will have a point source sensitivity an order of magnitude better than currently operating IACTs and will cover a broad energy range between 20 GeV and 300 TeV. Using effective field theory and simplified models to calculate γ-ray spectra resulting from DM annihilation, we compare the prospects to constrain such models with CTA observations of the Galactic center with current and near-future measurements at the Large Hadron Collider (LHC)more » and direct detection experiments. Here, for DM annihilations via vector or pseudoscalar couplings, CTA observations will be able to probe DM models out of reach of the LHC, and, if DM is coupled to standard fermions by a pseudoscalar particle, beyond the limits of current direct detection experiments.« less

  9. Sensitivity of the Cherenkov Telescope Array to the detection of a dark matter signal in comparison to direct detection and collider experiments

    DOE PAGES

    Balazs, Csaba; Conrad, Jan; Farmer, Ben; ...

    2017-10-04

    Imaging atmospheric Cherenkov telescopes (IACTs) that are sensitive to potential γ-ray signals from dark matter (DM) annihilation above ~50 GeV will soon be superseded by the Cherenkov Telescope Array (CTA). CTA will have a point source sensitivity an order of magnitude better than currently operating IACTs and will cover a broad energy range between 20 GeV and 300 TeV. Using effective field theory and simplified models to calculate γ-ray spectra resulting from DM annihilation, we compare the prospects to constrain such models with CTA observations of the Galactic center with current and near-future measurements at the Large Hadron Collider (LHC)more » and direct detection experiments. Here, for DM annihilations via vector or pseudoscalar couplings, CTA observations will be able to probe DM models out of reach of the LHC, and, if DM is coupled to standard fermions by a pseudoscalar particle, beyond the limits of current direct detection experiments.« less

  10. High resolution hard X-ray spectra of solar and cosmic sources. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Schwartz, R. A.

    1984-01-01

    High resolution hard X-ray observations of a large solar flare and the Crab Nebula were obtained during balloon flights using an array of cooled germanium planar detectors. In addition, high time resolution high sensitivity measurements were obtained with a 300 square cm NaI/CsI phoswich scintillator. The Crab spectrum from both flights was searched without finding evidence of line emission below 200 keV. In particular, for the 73 keV line previously reported a 3 sigma upper limit for a narrow (1 keV FWHM) line .0019 and .0014 ph square cm/sec for the 1979 and 1980 flights, respectively was obtained.

  11. CdS/CdSe quantum dot shell decorated vertical ZnO nanowire arrays by spin-coating-based SILAR for photoelectrochemical cells and quantum-dot-sensitized solar cells.

    PubMed

    Zhang, Ran; Luo, Qiu-Ping; Chen, Hong-Yan; Yu, Xiao-Yun; Kuang, Dai-Bin; Su, Cheng-Yong

    2012-04-23

    A CdS/CdSe composite shell is assembled onto the surface of ZnO nanowire arrays with a simple spin-coating-based successive ionic layer adsorption and reaction method. The as-prepared photoelectrode exhibit a high photocurrent density in photoelectrochemical cells and also generates good power conversion efficiency in quantum-dot-sensitized solar cells. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. [INVITED] Highly sensitive LSPR based photonic crystal fiber sensor with embodiment of nanospheres in different material domain

    NASA Astrophysics Data System (ADS)

    Paul, D.; Biswas, R.

    2018-05-01

    We report a highly sensitive Localized surface plasmon resonance (LSPR) based photonic crystal fiber (PCF) sensor by embedding an array of gold nanospheres into the first layer of air-holes of PCF. We present a comprehensive analysis on the basis of progressive variation of refractive indices of analytes as well as sizes of the nanospheres. In the proposed sensing scheme, refractive indices of the analytes have been changed from 1 to 1.41(RIU), accompanied by alteration of the sizes of nanospheres ranging 40-70 nm. The entire study has been executed in the context of different material based PCFs (viz. phosphate and crown) and the corresponding results have been analyzed and compared. We observe a declining trend in modal loss in each set of PCFs with increment of RI of the analyte. Lower loss has been observed in case of crown based PCF. The sensor shows highest sensitivity ∼27,000 nm/RIU for crown based PCF for nanosphere of 70 nm with average wavelength interrogation sensitivity ∼5333.53 nm/RIU. In case of phosphate based PCF, highest sensitivity is found to be ∼18,000 nm/RIU with an average interrogation sensitivity ∼4555.56 nm/RIU for 40 nm of Au nanosphere. Moreover, the additional sensing parameters have been observed to highlight the better design of the modelled LSPR based photonic crystal fiber sensor. As such, the resolution (R), limit of detection (LOD) and sensitivity (S) of the proposed sensor in each case (viz. phosphate and crown PCF) have been discussed by using wavelength interrogation technique. The proposed study provides a basis for detailed investigation of LSPR phenomenon for PCF utilizing noble metal nanospheres (AuNPs).

  13. Small pixel pitch MCT IR-modules

    NASA Astrophysics Data System (ADS)

    Lutz, H.; Breiter, R.; Eich, D.; Figgemeier, H.; Fries, P.; Rutzinger, S.; Wendler, J.

    2016-05-01

    It is only some years ago, since VGA format detectors in 15μm pitch, manufactured with AIM's MCT n-on-p LPE standard technology, have been introduced to replace TV/4 format detector arrays as a system upgrade. In recent years a rapid increase in the demand for higher resolution, while preserving high thermal resolution, compactness and low power budget is observed. To satisfy these needs AIM has realized first prototypes of MWIR XGA format (1024x768) detector arrays in 10μm pitch. They fit in the same compact dewar as 640x512, 15μm pitch detector arrays. Therefore, they are best suited for system upgrade purposes to benefit from higher spatial resolution and keep cost on system level low. By combining pitch size reduction with recent development progress in the fields of miniature cryocoolers, short dewars and high operating temperatures the way ahead to ultra-compact high performance MWIR-modules is prepared. For cost reduction MBE grown MCT on commercially available GaAs substrates is introduced at AIM. Recently, 640x512, 15μm pitch FPAs, grown with MBE have successfully passed long-term high temperature storage tests as a crucial step towards serial production readiness level for use in future products. Pitch size reduction is not limited to arrays sensitive in the MWIR, but is of great interest for high performance LWIR or 3rd Gen solutions. Some applications such as rotorcraft pilotage require superior spatial resolution in a compact design to master severe weather conditions or degraded visual environment such as brown-out. For these applications AIM is developing both LWIR as well as dual band detector arrays in HD-format (1280x720) with 12μm pitch. This paper will present latest results in the development of detector arrays with small pitch sizes of 10μm and 12μm at AIM, together with their usage to realize compact cooled IR-modules.

  14. Boundary-layer transition on cones at angle of attack in a Mach-6 Quiet Tunnel

    NASA Astrophysics Data System (ADS)

    Swanson, Erick O.

    It is desirable for the boundary layer on a re-entry vehicle (RV) to be laminar during as much of its flight as possible, since a turbulent boundary layer causes several problems, such as high heat flux to the vehicle and larger drag forces. Nosetip roughness can cause the boundary layer to transition downstream on the cone. Surface roughness and nosetip bluntness may cause windside-forward transition on maneuvering RVs. The crossflow instability may also influence transition on yawed RVs. The mechanisms through which these phenomena induce transition are poorly understood. Several experiments have been conducted to study these phenomena. The temperature-sensitive-paint (TSP) and oil-flow techniques were used to observe transition and crossflow vortices on cones at angle of attack in the Purdue Boeing/AFOSR Mach-6 Quiet Tunnel. The high-Reynolds number capability of the tunnel was developed to facilitate these experiments. Improvements were made in the use of the temperature-sensitive-paint technique in the Purdue Mach-6 Quiet Tunnel. The measured heat transfer to cones with sharp and spherically-blunt nosetips at 0° angle-of-attack was within 60% of the values from Navier-Stokes computations. Transition was observed on sharp and spherically-blunt cones at 6° angle-of-attack in noisy flow. Crossflow vortices were observed with both TSP and oil flow under noisy conditions in the turbulent boundary layer on a sharp cone. The vortex angles were about 50% of the surface-streamline angles observed using oil dots. TSP was also used to observe crossflow vortices in quiet flow. The vortices were similar to those seen in noisy flow. An array of roughness elements at x = 2 inches (axially) with a spacing of 9° on a yawed sharp cone in noisy flow influenced transition that was apparently induced by the crossflow instability. No influence of the roughness array was observed in quiet flow.

  15. Portable SERS sensor for malachite green and other small dye molecules

    NASA Astrophysics Data System (ADS)

    Qiu, Suyan; Zhao, Fusheng; Li, Jingting; Shih, Wei-Chuan

    2017-02-01

    Sensitive detection of specific chemicals on site can be extremely powerful in many fields. Owing to its molecular fingerprinting capability, surface-enhanced Raman scattering has been one of the technological contenders. In this paper, we describe the novel use of DNA topological nanostructure on nanoporous gold nanoparticle (NPG-NP) array chip for chemical sensing. NPG-NP features large surface area and high-density plasmonic field enhancement known as "hotspots". Hence, NPG-NP array chip has found many applications in nanoplasmonic sensor development. This technique can provide novel label-free molecular sensing capability and enables high sensitivity and specificity detection using a portable Raman spectrometer.

  16. Cobalt selenide hollow nanorods array with exceptionally high electrocatalytic activity for high-efficiency quasi-solid-state dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Jin, Zhitong; Zhang, Meirong; Wang, Min; Feng, Chuanqi; Wang, Zhong-Sheng

    2018-02-01

    In quasi-solid-state dye-sensitized solar cells (QSDSSCs), electron transport through a random network of catalyst in the counter electrode (CE) and electrolyte diffusion therein are limited by the grain boundaries of catalyst particles, thus diminishing the electrocatalytic performance of CE and the corresponding photovoltaic performance of QSDSSCs. We demonstrate herein an ordered Co0.85Se hollow nanorods array film as the Pt-free CE of QSDSSCs. The Co0.85Se hollow nanorods array displays excellent electrocatalytic activity for the reduction of I3- in the quasi-solid-state electrolyte with extremely low charge transfer resistance at the CE/electrolyte interface, and the diffusion of redox species within the Co0.85Se hollow nanorods array CE is pretty fast. The QSDSSC device with the Co0.85Se hollow nanorods array CE produces much higher photovoltaic conversion efficiency (8.35%) than that (4.94%) with the Co0.85Se randomly packed nanorods CE, against the control device with the Pt CE (7.75%). Moreover, the QSDSSC device based on the Co0.85Se hollow nanorods array CE presents good long-term stability with only 4% drop of power conversion efficiency after 1086 h one-sun soaking.

  17. BI-ground microstrip array coil vs. conventional microstrip array coil for mouse imaging at 7 tesla

    NASA Astrophysics Data System (ADS)

    Hernández, Ricardo; Terrones, M. A. López; Jakob, P. M.

    2012-10-01

    At high field strengths, the need for more efficient high frequency coils has grown. Since the radiation losses and the interaction between coil and sample increase proportionally to field strength, the quality factor (Q) and the sensitivity of the coil decrease as consequence of these negative effects. Since Zhang et al proposed in 2001 a new surface coil based on the microstrip transmission line for high frequency, different Tx-Rx phased arrays based on this concept have been already introduced in animal and whole body systems at high field strengths, each of them with different modifications in order to get better field homogeneity, SNR or isolation between coil elements in the array. All these arrays for animals systems have been built for rat imaging. One of these modifications is called BI-Ground Microstrip Array Coil (BIGMAC). The implementation of a smaller two-channel BIGMAC design for mouse imaging is studied and its performance compared to a two-channel conventional Microstrip array at 7 Tesla, the higher isolation by using BIGMAC elements in comparison with conventional Microstrip elements is shown in this work.

  18. Highly antireflective AlGaN/GaN ultraviolet photodetectors using ZnO nanorod arrays on inverted pyramidal surfaces

    NASA Astrophysics Data System (ADS)

    So, Hongyun; Lim, Jongwoo; Suria, Ateeq J.; Senesky, Debbie G.

    2017-07-01

    Highly antireflective heterostructured aluminum gallium nitride (AlGaN)/GaN ultraviolet (UV) photodetectors were demonstrated using a combination of inverted pyramidal surfaces and zinc oxide nanorod arrays (i.e., antireflective surface modification) to enhance the optical sensitivity. The microfabricated hierarchical surfaces significantly reduced the average surface reflectance to less than 0.3% in the UV region and less than 1% in the visible light region, allowing near-perfect absorption of incident light regardless of the angle of incidence (5-80°). As a result, the photodetectors fabricated on highly antireflective AlGaN/GaN surfaces showed higher sensitivity and responsivity over a broad range of incidence angles compared to photodetectors on planar AlGaN/GaN surfaces, supporting the use of a hierarchically modified sensing surface for omnidirectional UV monitoring with higher sensitivity.

  19. Multi-resonant plasmonic nanodome arrays for label-free biosensing applications

    NASA Astrophysics Data System (ADS)

    Choi, Charles J.; Semancik, Steve

    2013-08-01

    The characteristics and utility of plasmonic nanodome arrays capable of supporting multiple resonance modes are described. A low-cost, large-area replica molding process is used to produce, on flexible plastic substrates, two-dimensional periodic arrays of cylinders that are subsequently coated with SiO2 and Ag thin films to form dome-shaped structures, with 14 nm spacing between the features, in a precise and reproducible fashion. Three distinct optical resonance modes, a grating diffraction mode and two localized surface plasmon resonance (LSPR) modes, are observed experimentally and confirmed by finite-difference-time-domain (FDTD) modeling which is used to calculate the electromagnetic field distribution of each resonance around the nanodome array structure. Each optical mode is characterized by measuring sensitivity to bulk refractive index changes and to surface effects, which are examined using stacked polyelectrolyte layers. The utility of the plasmonic nanodome array as a functional interface for biosensing applications is demonstrated by performing a bioassay to measure the binding affinity constant between protein A and human immunoglobulin G (IgG) as a model system. The nanoreplica molding process presented in this work allows for simple, inexpensive, high-throughput fabrication of nanoscale plasmonic structures over a large surface area (120 × 120 mm2) without the requirement for high resolution lithography or additional processes such as etching or liftoff. The availability of multiple resonant modes, each with different optical properties, allows the nanodome array surface to address a wide range of biosensing problems with various target analytes of different sizes and configurations.

  20. Increasing sensitivity and angle-of-view of mid-wave infrared detectors by integration with dielectric microspheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, Kenneth W., E-mail: kenneth.allen@gtri.gatech.edu; Astratov, Vasily N., E-mail: astratov@uncc.edu; Air Force Research Laboratory, Sensors Directorate, Wright Patterson AFB, Ohio 45433

    2016-06-13

    We observed up to 100 times enhancement of sensitivity of mid-wave infrared photodetectors in the 2–5 μm range by using photonic jets produced by sapphire, polystyrene, and soda-lime glass microspheres with diameters in the 90–300 μm range. By finite-difference time-domain (FDTD) method for modeling, we gain insight into the role of the microspheres refractive index, size, and alignment with respect to the detector mesa. A combination of enhanced sensitivity with angle-of-view (AOV) up to 20° is demonstrated for individual photodetectors. It is proposed that integration with microspheres can be scaled up for large focal plane arrays, which should provide maximal light collectionmore » efficiencies with wide AOVs, a combination of properties highly attractive for imaging applications.« less

  1. Expression profiling analysis: Uncoupling protein 2 deficiency improves hepatic glucose, lipid profiles and insulin sensitivity in high-fat diet-fed mice by modulating expression of genes in peroxisome proliferator-activated receptor signaling pathway.

    PubMed

    Zhou, Mei-Cen; Yu, Ping; Sun, Qi; Li, Yu-Xiu

    2016-03-01

    Uncoupling protein 2 (UCP2), which was an important mitochondrial inner membrane protein associated with glucose and lipid metabolism, widely expresses in all kinds of tissues including hepatocytes. The present study aimed to explore the impact of UCP2 deficiency on glucose and lipid metabolism, insulin sensitivity and its effect on the liver-associated signaling pathway by expression profiling analysis. Four-week-old male UCP2-/- mice and UCP2+/+ mice were randomly assigned to four groups: UCP2-/- on a high-fat diet, UCP2-/- on a normal chow diet, UCP2+/+ on a high-fat diet and UCP2+/+ on a normal chow diet. The differentially expressed genes in the four groups on the 16th week were identified by Affymetrix gene array. The results of intraperitoneal glucose tolerance test and insulin tolerance showed that blood glucose and β-cell function were improved in the UCP2-/- group on high-fat diet. Enhanced insulin sensitivity was observed in the UCP2-/- group. The differentially expressed genes were mapped to 23 pathways (P < 0.05). We concentrated on the 'peroxisome proliferator-activated receptor (PPAR) signaling pathway' (P = 3.19 × 10(-11)), because it is closely associated with the regulation of glucose and lipid profiles. In the PPAR signaling pathway, seven genes (PPARγ, Dbi, Acsl3, Lpl, Me1, Scd1, Fads2) in the UCP2-/- mice were significantly upregulated. The present study used gene arrays to show that activity of the PPAR signaling pathway involved in the improvement of glucose and lipid metabolism in the liver of UCP2-deficient mice on a long-term high-fat diet. The upregulation of genes in the PPAR signaling pathway could explain our finding that UCP2 deficiency ameliorated insulin sensitivity. The manipulation of UCP2 protein expression could represent a new strategy for the prevention and treatment of diabetes.

  2. Highly sensitive label-free dual sensor array for rapid detection of wound bacteria.

    PubMed

    Sheybani, Roya; Shukla, Anita

    2017-06-15

    Wound infections are a critical healthcare concern worldwide. Rapid and effective antibiotic treatments that can mitigate infection severity and prevent the spread of antibiotic resistance are contingent upon timely infection detection. In this work, dual electrochemical pH and cell-attachment sensor arrays were developed for the real-time spatial and temporal monitoring of potential wound infections. Biocompatible polymeric device coatings were integrated to stabilize the sensors and promote bacteria attachment while preventing non-specific cell and protein fouling. High sensitivity (bacteria concentration of 10 2 colony forming units (CFU)/mL and -88.1±6.3mV/pH over a pH range of 1-13) and stability over 14 days were achieved without the addition of biological recognition elements. The dual sensor array was demonstrated to successfully monitor the growth of both gram-positive (Staphylococcus aureus and Streptococcus pyogenes) and gram-negative bacteria (Pseudomonas aeruginosa and Escherichia coli) over time through lag and log growth phases and following antibiotic administration and in simulated shallow wounds conditions. The versatile fabrication methods utilized in sensor development, superior sensitivity, prolonged stability, and lack of non-specific sensor fouling may enable long-term in situ sensor array operation in low resource settings. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Increasing Electrochemiluminescence Intensity of a Wireless Electrode Array Chip by Thousands of Times Using a Diode for Sensitive Visual Detection by a Digital Camera.

    PubMed

    Qi, Liming; Xia, Yong; Qi, Wenjing; Gao, Wenyue; Wu, Fengxia; Xu, Guobao

    2016-01-19

    Both a wireless electrochemiluminescence (ECL) electrode microarray chip and the dramatic increase in ECL by embedding a diode in an electromagnetic receiver coil have been first reported. The newly designed device consists of a chip and a transmitter. The chip has an electromagnetic receiver coil, a mini-diode, and a gold electrode array. The mini-diode can rectify alternating current into direct current and thus enhance ECL intensities by 18 thousand times, enabling a sensitive visual detection using common cameras or smart phones as low cost detectors. The detection limit of hydrogen peroxide using a digital camera is comparable to that using photomultiplier tube (PMT)-based detectors. Coupled with a PMT-based detector, the device can detect luminol with higher sensitivity with linear ranges from 10 nM to 1 mM. Because of the advantages including high sensitivity, high throughput, low cost, high portability, and simplicity, it is promising in point of care testing, drug screening, and high throughput analysis.

  4. Uncooled emissive infrared imagers for CubeSats

    NASA Astrophysics Data System (ADS)

    Puschell, Jeffery J.; Masini, Paolo

    2014-09-01

    Raytheon's fourth generation uncooled microbolometer array technology with digital output, High Definition (HD) 1920 × 1200 format and 12 μm cell size enables uncooled thermal infrared (TIR) multispectral imagers with the sensitivity and spatial sampling needed for a variety of Earth observation missions in LEO, GEO and HEO. A powerful combination of small detector cell size, fast optics and high sensitivity achieved without cryogenic cooling leads to instruments that are much smaller than current TIR systems, while still offering the capability to meet challenging measurement requirements for Earth observation missions. To consider how this technology could be implemented for Earth observation missions, we extend our previous studies with visible wavelength CubeSat imagers for environmental observations from LEO and examine whether small thermal infrared imagers based on fourth generation uncooled technology could be made small enough to fit onboard a 3U CubeSat and still meet challenging requirements for legacy missions. We found that moderate spatial resolution (~200 m) high sensitivity cloud and surface temperature observations meeting legacy MODIS/VIIRS requirements could be collected successfully with CubeSat-sized imagers but that multiple imagers are needed to cover the full swath for these missions. Higher spatial resolution land imagers are more challenging to fit into the CubeSat form factor, but it may be possible to do so for systems that require roughly 100 m spatial resolution. Regardless of whether it can fit into a CubeSat or not, uncooled land imagers meeting candidate TIR requirements can be implemented with a much smaller instrument than previous imagers. Even though this technology appears to be very promising, more work is needed to qualify this newly available uncooled infrared technology for use in space. If these new devices prove to be as space worthy as the first generation arrays that Raytheon qualified and built into the THEMIS imager still operating successfully onboard Mars Odyssey 2001, new classes of low cost, uncooled TIR Earth instruments will be enabled that are suitable for use as primary and hosted payloads in LEO, GEO and HEO or in constellations of small satellites as small as CubeSats to support Earth science measurement objectives in weather forecasting, land imaging and climate variability and change.

  5. The Latest Results from the Focal L-Band Array for the Green Bank Telescope (FLAG), the World's (Current) Most Sensitive Phased Array Feed

    NASA Astrophysics Data System (ADS)

    Pingel, Nickolas; Pisano, D. J.

    2018-01-01

    Phased Array Feeds (PAFs) represent the next revolution in radio astronomy instrumentation. I will present results from the latest commissioning run from the Focal L-Band Array for the Green Bank telescope (FLAG), which holds the current world record for PAF sensitivity. Since we are able to operate at system temperatures comparable with the traditional GBT single pixel L-Band feed, the increase in the field-of-view provided by the beamforming capabilities of PAFs results in a dramatic (a factor of 5) increase in survey speeds. In particular, FLAG can probe similar neutral hydrogen column density regimes over a 4 sq. deg region in 24.6 minutes as opposed to 4.1 hours in an equivalent single pixel map (excluding observing overhead). In addition to comparisons between data taken with FLAG and the single-pixel L-Band feed, I will also discuss the technical aspects of the observing procedure, data reduction, and the transition path for FLAG from an instrument that is principle-investigator run to one that is general use. These FLAG results provide a very encouraging outlook on how the GBT will continue to compete with current and planned radio telescope facilities.

  6. Graphical User Interface for a Dual-Module EMCCD X-ray Detector Array.

    PubMed

    Wang, Weiyuan; Ionita, Ciprian; Kuhls-Gilcrist, Andrew; Huang, Ying; Qu, Bin; Gupta, Sandesh K; Bednarek, Daniel R; Rudin, Stephen

    2011-03-16

    A new Graphical User Interface (GUI) was developed using Laboratory Virtual Instrumentation Engineering Workbench (LabVIEW) for a high-resolution, high-sensitivity Solid State X-ray Image Intensifier (SSXII), which is a new x-ray detector for radiographic and fluoroscopic imaging, consisting of an array of Electron-Multiplying CCDs (EMCCDs) each having a variable on-chip electron-multiplication gain of up to 2000× to reduce the effect of readout noise. To enlarge the field-of-view (FOV), each EMCCD sensor is coupled to an x-ray phosphor through a fiberoptic taper. Two EMCCD camera modules are used in our prototype to form a computer-controlled array; however, larger arrays are under development. The new GUI provides patient registration, EMCCD module control, image acquisition, and patient image review. Images from the array are stitched into a 2k×1k pixel image that can be acquired and saved at a rate of 17 Hz (faster with pixel binning). When reviewing the patient's data, the operator can select images from the patient's directory tree listed by the GUI and cycle through the images using a slider bar. Commonly used camera parameters including exposure time, trigger mode, and individual EMCCD gain can be easily adjusted using the GUI. The GUI is designed to accommodate expansion of the EMCCD array to even larger FOVs with more modules. The high-resolution, high-sensitivity EMCCD modular-array SSXII imager with the new user-friendly GUI should enable angiographers and interventionalists to visualize smaller vessels and endovascular devices, helping them to make more accurate diagnoses and to perform more precise image-guided interventions.

  7. Optimization of processing parameters on the controlled growth of ZnO nanorod arrays for the performance improvement of solid-state dye-sensitized solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Yi-Mu, E-mail: ymlee@nuu.edu.t; Yang, Hsi-Wen

    2011-03-15

    High-transparency and high quality ZnO nanorod arrays were grown on the ITO substrates by a two-step chemical bath deposition (CBD) method. The effects of processing parameters including reaction temperature (25-95 {sup o}C) and solution concentration (0.01-0.1 M) on the crystal growth, alignment, optical and electrical properties were systematically investigated. It has been found that these process parameters are critical for the growth, orientation and aspect ratio of the nanorod arrays, showing different structural and optical properties. Experimental results reveal that the hexagonal ZnO nanorod arrays prepared under reaction temperature of 95 {sup o}C and solution concentration of 0.03 M possessmore » highest aspect ratio of {approx}21, and show the well-aligned orientation and optimum optical properties. Moreover the ZnO nanorod arrays based heterojunction electrodes and the solid-state dye-sensitized solar cells (SS-DSSCs) were fabricated with an improved optoelectrical performance. -- Graphical abstract: The ZnO nanorod arrays demonstrate well-alignment, high aspect ratio (L/D{approx}21) and excellent optical transmittance by low-temperature chemical bath deposition (CBD). Display Omitted Research highlights: > Investigate the processing parameters of CBD on the growth of ZnO nanorod arrays. > Optimization of CBD process parameters: 0.03 M solution concentration and reaction temperature of 95 {sup o}C. > The prepared ZnO samples possess well-alignment and high aspect ratio (L/D{approx}21). > An n-ZnO/p-NiO heterojunction: great rectifying behavior and low leakage current. > SS-DSSC has J{sub SC} of 0.31 mA/cm{sup 2} and V{sub OC} of 590 mV, and an improved {eta} of 0.059%.« less

  8. Enhanced electrochemical nanoring electrode for analysis of cytosol in single cells.

    PubMed

    Zhuang, Lihong; Zuo, Huanzhen; Wu, Zengqiang; Wang, Yu; Fang, Danjun; Jiang, Dechen

    2014-12-02

    A microelectrode array has been applied for single cell analysis with relatively high throughput; however, the cells were typically cultured on the microelectrodes under cell-size microwell traps leading to the difficulty in the functionalization of an electrode surface for higher detection sensitivity. Here, nanoring electrodes embedded under the microwell traps were fabricated to achieve the isolation of the electrode surface and the cell support, and thus, the electrode surface can be modified to obtain enhanced electrochemical sensitivity for single cell analysis. Moreover, the nanometer-sized electrode permitted a faster diffusion of analyte to the surface for additional improvement in the sensitivity, which was evidenced by the electrochemical characterization and the simulation. To demonstrate the concept of the functionalized nanoring electrode for single cell analysis, the electrode surface was deposited with prussian blue to detect intracellular hydrogen peroxide at a single cell. Hundreds of picoamperes were observed on our functionalized nanoring electrode exhibiting the enhanced electrochemical sensitivity. The success in the achievement of a functionalized nanoring electrode will benefit the development of high throughput single cell electrochemical analysis.

  9. Monte Carlo studies of medium-size telescope designs for the Cherenkov Telescope Array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, M. D.; Jogler, T.; Dumm, J.

    In this paper, we present studies for optimizing the next generation of ground-based imaging atmospheric Cherenkov telescopes (IACTs). Results focus on mid-sized telescopes (MSTs) for CTA, detecting very high energy gamma rays in the energy range from a few hundred GeV to a few tens of TeV. We describe a novel, flexible detector Monte Carlo package, FAST (FAst Simulation for imaging air cherenkov Telescopes), that we use to simulate different array and telescope designs. The simulation is somewhat simplified to allow for efficient exploration over a large telescope design parameter space. We investigate a wide range of telescope performance parametersmore » including optical resolution, camera pixel size, and light collection area. In order to ensure a comparison of the arrays at their maximum sensitivity, we analyze the simulations with the most sensitive techniques used in the field, such as maximum likelihood template reconstruction and boosted decision trees for background rejection. Choosing telescope design parameters representative of the proposed Davies–Cotton (DC) and Schwarzchild–Couder (SC) MST designs, we compare the performance of the arrays by examining the gamma-ray angular resolution and differential point-source sensitivity. We further investigate the array performance under a wide range of conditions, determining the impact of the number of telescopes, telescope separation, night sky background, and geomagnetic field. We find a 30–40% improvement in the gamma-ray angular resolution at all energies when comparing arrays with an equal number of SC and DC telescopes, significantly enhancing point-source sensitivity in the MST energy range. Finally, we attribute the increase in point-source sensitivity to the improved optical point-spread function and smaller pixel size of the SC telescope design.« less

  10. Monte Carlo studies of medium-size telescope designs for the Cherenkov Telescope Array

    DOE PAGES

    Wood, M. D.; Jogler, T.; Dumm, J.; ...

    2015-06-07

    In this paper, we present studies for optimizing the next generation of ground-based imaging atmospheric Cherenkov telescopes (IACTs). Results focus on mid-sized telescopes (MSTs) for CTA, detecting very high energy gamma rays in the energy range from a few hundred GeV to a few tens of TeV. We describe a novel, flexible detector Monte Carlo package, FAST (FAst Simulation for imaging air cherenkov Telescopes), that we use to simulate different array and telescope designs. The simulation is somewhat simplified to allow for efficient exploration over a large telescope design parameter space. We investigate a wide range of telescope performance parametersmore » including optical resolution, camera pixel size, and light collection area. In order to ensure a comparison of the arrays at their maximum sensitivity, we analyze the simulations with the most sensitive techniques used in the field, such as maximum likelihood template reconstruction and boosted decision trees for background rejection. Choosing telescope design parameters representative of the proposed Davies–Cotton (DC) and Schwarzchild–Couder (SC) MST designs, we compare the performance of the arrays by examining the gamma-ray angular resolution and differential point-source sensitivity. We further investigate the array performance under a wide range of conditions, determining the impact of the number of telescopes, telescope separation, night sky background, and geomagnetic field. We find a 30–40% improvement in the gamma-ray angular resolution at all energies when comparing arrays with an equal number of SC and DC telescopes, significantly enhancing point-source sensitivity in the MST energy range. Finally, we attribute the increase in point-source sensitivity to the improved optical point-spread function and smaller pixel size of the SC telescope design.« less

  11. A Novel High-Throughput Method for Molecular Detection of Human Pathogenic Viruses Using a Nanofluidic Real-Time PCR System

    PubMed Central

    Coudray-Meunier, Coralie; Fraisse, Audrey; Martin-Latil, Sandra; Delannoy, Sabine; Fach, Patrick; Perelle, Sylvie

    2016-01-01

    Human enteric viruses are recognized as the main causes of food- and waterborne diseases worldwide. Sensitive and quantitative detection of human enteric viruses is typically achieved through quantitative RT-PCR (RT-qPCR). A nanofluidic real-time PCR system was used to develop novel high-throughput methods for qualitative molecular detection (RT-qPCR array) and quantification of human pathogenic viruses by digital RT-PCR (RT-dPCR). The performance of high-throughput PCR methods was investigated for detecting 19 human pathogenic viruses and two main process controls used in food virology. The conventional real-time PCR system was compared to the RT-dPCR and RT-qPCR array. Based on the number of genome copies calculated by spectrophotometry, sensitivity was found to be slightly better with RT-qPCR than with RT-dPCR for 14 viruses by a factor range of from 0.3 to 1.6 log10. Conversely, sensitivity was better with RT-dPCR than with RT-qPCR for seven viruses by a factor range of from 0.10 to 1.40 log10. Interestingly, the number of genome copies determined by RT-dPCR was always from 1 to 2 log10 lower than the expected copy number calculated by RT-qPCR standard curve. The sensitivity of the RT-qPCR and RT-qPCR array assays was found to be similar for two viruses, and better with RT-qPCR than with RT-qPCR array for eighteen viruses by a factor range of from 0.7 to 3.0 log10. Conversely, sensitivity was only 0.30 log10 better with the RT-qPCR array than with conventional RT-qPCR assays for norovirus GIV detection. Finally, the RT-qPCR array and RT-dPCR assays were successfully used together to screen clinical samples and quantify pathogenic viruses. Additionally, this method made it possible to identify co-infection in clinical samples. In conclusion, given the rapidity and potential for large numbers of viral targets, this nanofluidic RT-qPCR assay should have a major impact on human pathogenic virus surveillance and outbreak investigations and is likely to be of benefit to public health. PMID:26824897

  12. Inexpensive Implementation of Many Strain Gauges

    NASA Technical Reports Server (NTRS)

    Berkun, Andrew C.

    2010-01-01

    It has been proposed to develop arrays of strain gauges as arrays of ordinary metal film resistors and associated electronic readout circuitry on printed circuit boards or other suitable substrates. This proposal is a by-product of a development of instrumentation utilizing metal film resistors on printed-circuit boards to measure temperatures at multiple locations. In the course of that development, it was observed that in addition to being sensitive to temperature, the metal film resistors were also sensitive to strains in the printed-circuit boards to which they were attached. Because of the low cost of ordinary metal film resistors (typically <$0.01 apiece at 2007 prices), the proposal could enable inexpensive implementation of arrays of many (e.g., 100 or more) strain gauges, possibly concentrated in small areas. For example, such an array could be designed for use as a computer keyboard with no moving parts, as a device for sensing the shape of an object resting on a surface, or as a device for measuring strains at many points on a mirror, a fuel tank, an airplane wing, or other large object. Ordinarily, the effect of strain on resistance would be regarded as a nuisance in a temperature-measuring application, and the effect of temperature on resistance would be regarded as a nuisance in a strain-measuring application. The strain-induced changes in resistance of the metal film resistors in question are less than those of films in traditional strain gauges. The main novel aspect of present proposal lies in the use of circuitry affording sufficient sensitivity to measure strain plus means for compensating for the effect of temperature. For an array of metal film resistors used as proposed, the readout circuits would include a high-accuracy analog-to-digital converter fed by a low noise current source, amplifier chain, and an analog multiplexer chain. Corrections would be provided by use of high-accuracy calibration resistors and a temperature sensor. By use of such readout circuitry, it would be possible to read the resistances of as many as 100 fixed resistors in a time interval of 1 second at a resolution much greater than 16 bits. The readout data would be processed, along with temperature calibration data, to deduce the strain on the printed-circuit board or other substrate in the areas around the resistors. It should also be possible to also deduce the temperature from the readings.

  13. Piezo-thermal Probe Array for High Throughput Applications

    PubMed Central

    Gaitas, Angelo; French, Paddy

    2012-01-01

    Microcantilevers are used in a number of applications including atomic-force microscopy (AFM). In this work, deflection-sensing elements along with heating elements are integrated onto micromachined cantilever arrays to increase sensitivity, and reduce complexity and cost. An array of probes with 5–10 nm gold ultrathin film sensors on silicon substrates for high throughput scanning probe microscopy is developed. The deflection sensitivity is 0.2 ppm/nm. Plots of the change in resistance of the sensing element with displacement are used to calibrate the probes and determine probe contact with the substrate. Topographical scans demonstrate high throughput and nanometer resolution. The heating elements are calibrated and the thermal coefficient of resistance (TCR) is 655 ppm/K. The melting temperature of a material is measured by locally heating the material with the heating element of the cantilever while monitoring the bending with the deflection sensing element. The melting point value measured with this method is in close agreement with the reported value in literature. PMID:23641125

  14. BODIPY-based fluorometric sensor array for the highly sensitive identification of heavy-metal ions.

    PubMed

    Niu, Li-Ya; Li, Hui; Feng, Liang; Guan, Ying-Shi; Chen, Yu-Zhe; Duan, Chun-Feng; Wu, Li-Zhu; Guan, Ya-Feng; Tung, Chen-Ho; Yang, Qing-Zheng

    2013-05-02

    A BODIPY(4,4-difluoro-4-bora-3a,4a-diaza-s-indacene)-based fluorometric sensor array has been developed for the highly sensitive detection of eight heavy-metal ions at micromolar concentration. The di-2-picolyamine (DPA) derivatives combine high affinities for a variety of heavy-metal ions with the capacity to perturb the fluorescence properties of BODIPY, making them perfectly suitable for the design of fluorometric sensor arrays for heavy-metal ions. 12 cross-reactive BODIPY fluorescent indicators provide facile identification of the heavy-metal ions using a standard chemometric approach (hierarchical clustering analysis); no misclassifications were found over 45 trials. Clear differentiation among heavy-metal ions as a function of concentration was also achieved, even down to 10(-7)M. A semi-quantitative interpolation of the heavy-metal concentration is obtained by comparing the total Euclidean distance of the measurement with a set of known concentrations in the library. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Indium antimonide large-format detector arrays

    NASA Astrophysics Data System (ADS)

    Davis, Mike; Greiner, Mark

    2011-06-01

    Large format infrared imaging sensors are required to achieve simultaneously high resolution and wide field of view image data. Infrared sensors are generally required to be cooled from room temperature to cryogenic temperatures in less than 10 min thousands of times during their lifetime. The challenge is to remove mechanical stress, which is due to different materials with different coefficients of expansion, over a very wide temperature range and at the same time, provide a high sensitivity and high resolution image data. These challenges are met by developing a hybrid where the indium antimonide detector elements (pixels) are unconnected islands that essentially float on a silicon substrate and form a near perfect match to the silicon read-out circuit. Since the pixels are unconnected and isolated from each other, the array is reticulated. This paper shows that the front side illuminated and reticulated element indium antimonide focal plane developed at L-3 Cincinnati Electronics are robust, approach background limited sensitivity limit, and provide the resolution expected of the reticulated pixel array.

  16. AXTAR: Mission Design Concept

    NASA Technical Reports Server (NTRS)

    Ray, Paul S.; Chakrabarty, Deepto; Wilson-Hodge, Colleen A.; Philips, Bernard F.; Remillard, Ronald A.; Levine, Alan M.; Wood, Kent S.; Wolff, Michael T.; Gwon, Chul S.; Strohmayer, Tod E.; hide

    2010-01-01

    The Advanced X-ray Timing Array (AXTAR) is a mission concept for X-ray timing of compact objects that combines very large collecting area, broadband spectral coverage, high time resolution, highly flexible scheduling, and an ability to respond promptly to time-critical targets of opportunity. It is optimized for sub-millisecond timing of bright Galactic X-ray sources in order to study phenomena at the natural time scales of neutron star surfaces and black hole event horizons, thus probing the physics of ultra-dense matter, strongly curved spacetimes, and intense magnetic fields. AXTAR s main instrument, the Large Area Timing Array (LATA) is a collimated instrument with 2 50 keV coverage and over 3 square meters effective area. The LATA is made up of an array of super-modules that house 2-mm thick silicon pixel detectors. AXTAR will provide a significant improvement in effective area (a factor of 7 at 4 keV and a factor of 36 at 30 keV) over the RXTE PCA. AXTAR will also carry a sensitive Sky Monitor (SM) that acts as a trigger for pointed observations of X-ray transients in addition to providing high duty cycle monitoring of the X-ray sky. We review the science goals and technical concept for AXTAR and present results from a preliminary mission design study

  17. The Physics of Superconducting Microwave Resonators

    NASA Astrophysics Data System (ADS)

    Gao, Jiansong

    Over the past decade, low temperature detectors have brought astronomers revolutionary new observational capabilities and led to many great discoveries. Although a single low temperature detector has very impressive sensitivity, a large detector array would be much more powerful and are highly demanded for the study of more difficult and fundamental problems in astronomy. However, current detector technologies, such as transition edge sensors and superconducting tunnel junction detectors, are difficult to integrate into a large array. The microwave kinetic inductance detector (MKID) is a promising new detector technology invented at Caltech and JPL which provides both high sensitivity and an easy solution to the detector integration. It senses the change in the surface impedance of a superconductor as incoming photons break Cooper pairs, by using high-Q superconducting microwave resonators capacitively coupled to a common feedline. This architecture allows thousands of detectors to be easily integrated through passive frequency domain multiplexing. In this thesis, we explore the rich and interesting physics behind these superconducting microwave resonators. The first part of the thesis discusses the surface impedance of a superconductor, the kinetic inductance of a superconducting coplanar waveguide, and the circuit response of a resonator. These topics are related with the responsivity of MKIDs. The second part presents the study of the excess frequency noise that is universally observed in these resonators. The properties of the excess noise, including power, temperature, material, and geometry dependence, have been quantified. The noise source has been identified to be the two-level systems in the dielectric material on the surface of the resonator. A semi-empirical noise model has been developed to explain the power and geometry dependence of the noise, which is useful to predict the noise for a specified resonator geometry. The detailed physical noise mechanism, however, is still not clear. With the theoretical results of the responsivity and the semi-empirical noise model established in this thesis, a prediction of the detector sensitivity (noise equivalent power) and an optimization of the detector design are now possible.

  18. The Polarbear-2 and the Simons Array experiments

    DOE PAGES

    Suzuki, A.; Ade, P.; Akiba, Y.; ...

    2016-01-06

    Here, we present an overview of the design and status of the POLARBEAR-2 and the Simons Array experiments. POLARBEAR- 2 is a Cosmic Microwave Background polarimetry experiment which aims to characterize the arc-minute angular scale B-mode signal from weak gravitational lensing and search for the degree angular scale B-mode signal from inflationary gravitational waves. The receiver has a 365 mm diameter focal plane cooled to 270 milli-Kelvin. The focal plane is filled with 7,588 dichroic lenslet-antenna coupled polarization sensitive Transition Edge Sensor (TES) bolometric pixels that are sensitive to 95 GHz and 150 GHz bands simultaneously. The TES bolometers aremore » read-out by SQUIDs with 40 channel frequency domain multiplexing. Refractive optical elements are made with high purity alumina to achieve high optical throughput. The receiver is designed to achieve noise equivalent temperature of 5.8 µK CMB√s in each frequency band. POLARBEAR-2 will deploy in 2016 in the Atacama desert in Chile. The Simons Array is a project to further increase sensitivity by deploying three POLARBEAR-2 type receivers. The Simons Array will cover 95 GHz, 150 GHz and 220 GHz frequency bands for foreground control. The Simons Array will be able to constrain tensor-to-scalar ratio and sum of neutrino masses to σ(r) = 6×10 $-$3 at r = 0.1 and Σm ν(σ = 1) to 40 meV.« less

  19. Performance of a Highly Sensitive, 19-element, Dual-polarization, Cryogenic L-band Phased-array Feed on the Green Bank Telescope

    NASA Astrophysics Data System (ADS)

    Roshi, D. Anish; Shillue, W.; Simon, B.; Warnick, K. F.; Jeffs, B.; Pisano, D. J.; Prestage, R.; White, S.; Fisher, J. R.; Morgan, M.; Black, R.; Burnett, M.; Diao, J.; Ruzindana, M.; van Tonder, V.; Hawkins, L.; Marganian, P.; Chamberlin, T.; Ray, J.; Pingel, N. M.; Rajwade, K.; Lorimer, D. R.; Rane, A.; Castro, J.; Groves, W.; Jensen, L.; Nelson, J. D.; Boyd, T.; Beasley, A. J.

    2018-05-01

    A new 1.4 GHz, 19-element, dual-polarization, cryogenic phased-array feed (PAF) radio astronomy receiver has been developed for the Robert C. Byrd Green Bank Telescope (GBT) as part of the Focal L-band Array for the GBT (FLAG) project. Commissioning observations of calibrator radio sources show that this receiver has the lowest reported beam-formed system temperature (T sys) normalized by aperture efficiency (η) of any phased-array receiver to date. The measured T sys/η is 25.4 ± 2.5 K near 1350 MHz for the boresight beam, which is comparable to the performance of the current 1.4 GHz cryogenic single-feed receiver on the GBT. The degradation in T sys/η at ∼4‧ (required for Nyquist sampling) and ∼8‧ offsets from the boresight is, respectively, ∼1% and ∼20% of the boresight value. The survey speed of the PAF with seven formed beams is larger by a factor between 2.1 and 7 compared to a single-beam system, depending on the observing application. The measured performance, both in frequency and offset from the boresight, qualitatively agrees with predictions from a rigorous electromagnetic model of the PAF. The astronomical utility of the receiver is demonstrated by observations of the pulsar B0329+54 and an extended H II region, the Rosette Nebula. The enhanced survey speed with the new PAF receiver will enable the GBT to carry out exciting new science, such as more efficient observations of diffuse, extended neutral hydrogen emission from galactic inflows and searches for fast radio bursts.

  20. An implanted 8-channel array coil for high-resolution macaque MRI at 3T

    PubMed Central

    Janssens, T.; Keil, B.; Farivar, R.; McNab, J.A.; Polimeni, J. R.; Gerits, A.; Arsenault, J.T.; Wald, L. L.; Vanduffel, W.

    2012-01-01

    An 8-channel receive coil array was constructed and implanted adjacent to the skull in a male rhesus monkey in order to improve the sensitivity of (functional) brain imaging. The permanent implant was part of an acrylic headpost assembly and only the coil element loop wires were implanted. The tuning, matching, and preamplifier circuitry was connected via a removable external assembly. Signal-to-noise ratio (SNR) and noise amplification for parallel imaging were compared to a single-, 4-, and 8-channel external receive-only coil routinely used for macaque fMRI. In vivo measurements showed significantly improved SNR within the brain for the implanted versus the external coils. Within a region-of-interest covering the cerebral cortex, we observed a 5.4-, 3.6-fold, and 3.4-fold increase in SNR compared to the external single-, 4-, and 8-channel coil, respectively. In the center of the brain, the implanted array maintained a 2.4×, 2.5×, and 2.1× higher SNR, respectively compared to the external coils. The array performance was evaluated for anatomical, diffusion tensor and functional brain imaging. This study suggests that a stable implanted phased-array coil can be used in macaque MRI to substantially increase the spatial resolution for anatomical, diffusion tensor, and functional imaging. PMID:22609793

  1. Nanoscale electrode arrays produced with microscale lithographic techniques for use in biomedical sensing applications.

    PubMed

    Terry, Jonathan G; Schmüser, Ilka; Underwood, Ian; Corrigan, Damion K; Freeman, Neville J; Bunting, Andrew S; Mount, Andrew R; Walton, Anthony J

    2013-12-01

    A novel technique for the production of nanoscale electrode arrays that uses standard microfabrication processes and micron-scale photolithography is reported here in detail. These microsquare nanoband edge electrode (MNEE) arrays have been fabricated with highly reproducible control of the key array dimensions, including the size and pitch of the individual elements and, most importantly, the width of the nanoband electrodes. The definition of lateral features to nanoscale dimensions typically requires expensive patterning techniques that are complex and low-throughput. However, the fabrication methodology used here relies on the fact that vertical dimensions (i.e. layer thicknesses) have long been manufacturable at the nanoscale using thin film deposition techniques that are well established in mainstream microelectronics. The authors report for the first time two aspects that highlight the particular suitability of these MNEE array systems for probe monolayer biosensing. The first is simulation, which shows the enhanced sensitivity to the redox reaction of the solution redox couple. The second is the enhancement of probe film functionalisation observed for the probe film model molecule, 6-mercapto-1-hexanol compared with microsquare electrodes. Such surface modification for specific probe layer biosensing and detection is of significance for a wide range of biomedical and other sensing and analytical applications.

  2. Tungsten trioxide nanoplate array supported platinum as a highly efficient counter electrode for dye-sensitized solar cells.

    PubMed

    Song, Dandan; Cui, Peng; Zhao, Xing; Li, Meicheng; Chu, Lihua; Wang, Tianyue; Jiang, Bing

    2015-03-19

    A tungsten trioxide (WO₃) nanoplate array is fabricated directly on the FTO/glass substrate and used as a platinum (Pt) nanoscale supporter for a highly efficient and low Pt-consumption counter electrode (CE) in dye-sensitized solar cells (DSCs). A Pt/WO₃ composite structure, with Pt nanoparticles having a diameter of 2-3 nm, increases the electrochemical catalytic activity in catalyzing the reduction of triiodide. Accordingly, the power conversion efficiency is increased from less than 1% for WO₃ CE and 8.1% for Pt CE, respectively, to 8.9% for Pt/WO₃ CE. Moreover, the use of Pt/WO₃ CE can dramatically reduce the consumption of scarce Pt material, with a relatively low Pt-loading of ∼2 μg cm(-2), while maintaining a much better performance. The excellent performance of Pt/WO₃ CE is attributed to the efficient electron injection and transport via WO₃ supporters, as well as the nanostructure array morphology of WO₃ for deposition of fine Pt nanoparticles. This work provides an approach for developing highly catalytic and low-cost Pt based CEs, which also has implications for the development of Pt/WO₃ nanoplate arrays for other applications.

  3. Observation of Cosmic-Ray Anisotropy with the IceTop Air Shower Array

    NASA Astrophysics Data System (ADS)

    Aartsen, M. G.; Abbasi, R.; Abdou, Y.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Altmann, D.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Baum, V.; Bay, R.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker Tjus, J.; Becker, K.-H.; Bell, M.; Benabderrahmane, M. L.; BenZvi, S.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohaichuk, S.; Bohm, C.; Bose, D.; Böser, S.; Botner, O.; Brayeur, L.; Brown, A. M.; Bruijn, R.; Brunner, J.; Carson, M.; Casey, J.; Casier, M.; Chirkin, D.; Christy, B.; Clark, K.; Clevermann, F.; Cohen, S.; Cowen, D. F.; Cruz Silva, A. H.; Danninger, M.; Daughhetee, J.; Davis, J. C.; De Clercq, C.; De Ridder, S.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; DeYoung, T.; Díaz-Vélez, J. C.; Dreyer, J.; Dumm, J. P.; Dunkman, M.; Eagan, R.; Eisch, J.; Ellsworth, R. W.; Engdegård, O.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Fedynitch, A.; Feintzeig, J.; Feusels, T.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Flis, S.; Franckowiak, A.; Franke, R.; Frantzen, K.; Fuchs, T.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Golup, G.; Goodman, J. A.; Góra, D.; Grant, D.; Gross, A.; Grullon, S.; Gurtner, M.; Ha, C.; Haj Ismail, A.; Hallgren, A.; Halzen, F.; Hanson, K.; Heereman, D.; Heimann, P.; Heinen, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Homeier, A.; Hoshina, K.; Huelsnitz, W.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Ishihara, A.; Jacobi, E.; Jacobsen, J.; Japaridze, G. S.; Jlelati, O.; Kappes, A.; Karg, T.; Karle, A.; Kiryluk, J.; Kislat, F.; Kläs, J.; Klein, S. R.; Köhne, J.-H.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krasberg, M.; Kroll, G.; Kunnen, J.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Landsman, H.; Larson, M. J.; Lauer, R.; Lesiak-Bzdak, M.; Lünemann, J.; Madsen, J.; Maruyama, R.; Mase, K.; Matis, H. S.; McNally, F.; Meagher, K.; Merck, M.; Mészáros, P.; Meures, T.; Miarecki, S.; Middell, E.; Milke, N.; Miller, J.; Mohrmann, L.; Montaruli, T.; Morse, R.; Nahnhauer, R.; Naumann, U.; Nowicki, S. C.; Nygren, D. R.; Obertacke, A.; Odrowski, S.; Olivas, A.; Olivo, M.; O'Murchadha, A.; Panknin, S.; Paul, L.; Pepper, J. A.; Pérez de los Heros, C.; Pieloth, D.; Pirk, N.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Rädel, L.; Rawlins, K.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Richman, M.; Riedel, B.; Rodrigues, J. P.; Rothmaier, F.; Rott, C.; Ruhe, T.; Ruzybayev, B.; Ryckbosch, D.; Saba, S. M.; Salameh, T.; Sander, H.-G.; Santander, M.; Sarkar, S.; Schatto, K.; Scheel, M.; Scheriau, F.; Schmidt, T.; Schmitz, M.; Schoenen, S.; Schöneberg, S.; Schönherr, L.; Schönwald, A.; Schukraft, A.; Schulte, L.; Schulz, O.; Seckel, D.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Sheremata, C.; Smith, M. W. E.; Soiron, M.; Soldin, D.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stasik, A.; Stezelberger, T.; Stokstad, R. G.; Stössl, A.; Strahler, E. A.; Ström, R.; Sullivan, G. W.; Taavola, H.; Taboada, I.; Tamburro, A.; Ter-Antonyan, S.; Tilav, S.; Toale, P. A.; Toscano, S.; Usner, M.; van der Drift, D.; van Eijndhoven, N.; Van Overloop, A.; van Santen, J.; Vehring, M.; Voge, M.; Vraeghe, M.; Walck, C.; Waldenmaier, T.; Wallraff, M.; Walter, M.; Wasserman, R.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Williams, D. R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, C.; Xu, D. L.; Xu, X. W.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; Ziemann, J.; Zierke, S.; Zilles, A.; Zoll, M.; IceCube Collaboration

    2013-03-01

    We report on the observation of anisotropy in the arrival direction distribution of cosmic rays at PeV energies. The analysis is based on data taken between 2009 and 2012 with the IceTop air shower array at the south pole. IceTop, an integral part of the IceCube detector, is sensitive to cosmic rays between 100 TeV and 1 EeV. With the current size of the IceTop data set, searches for anisotropy at the 10-3 level can, for the first time, be extended to PeV energies. We divide the data set into two parts with median energies of 400 TeV and 2 PeV, respectively. In the low energy band, we observe a strong deficit with an angular size of about 30° and an amplitude of (- 1.58 ± 0.46stat ± 0.52sys) × 10-3 at a location consistent with previous observations of cosmic rays with the IceCube neutrino detector. The study of the high energy band shows that the anisotropy persists to PeV energies and increases in amplitude to (- 3.11 ± 0.38stat ± 0.96sys) × 10-3.

  4. Phased array feed design technology for Large Aperture Microwave Radiometer (LAMR) Earth observations

    NASA Technical Reports Server (NTRS)

    Schuman, H. K.

    1992-01-01

    An assessment of the potential and limitations of phased array antennas in space-based geophysical precision radiometry is described. Mathematical models exhibiting the dependence of system and scene temperatures and system sensitivity on phased array antenna parameters and components such as phase shifters and low noise amplifiers (LNA) are developed. Emphasis is given to minimum noise temperature designs wherein the LNA's are located at the array level, one per element or subarray. Two types of combiners are considered: array lenses (space feeds) and corporate networks. The result of a survey of suitable components and devices is described. The data obtained from that survey are used in conjunction with the mathematical models to yield an assessment of effective array antenna noise temperature for representative geostationary and low Earth orbit systems. Practical methods of calibrating a space-based, phased array radiometer are briefly addressed as well.

  5. High-efficiency UV/optical/NIR detectors for large aperture telescopes and UV explorer missions: development of and field observations with delta-doped arrays

    NASA Astrophysics Data System (ADS)

    Nikzad, Shouleh; Jewell, April D.; Hoenk, Michael E.; Jones, Todd J.; Hennessy, John; Goodsall, Tim; Carver, Alexander G.; Shapiro, Charles; Cheng, Samuel R.; Hamden, Erika T.; Kyne, Gillian; Martin, D. Christopher; Schiminovich, David; Scowen, Paul; France, Kevin; McCandliss, Stephan; Lupu, Roxana E.

    2017-07-01

    Exciting concepts are under development for flagship, probe class, explorer class, and suborbital class NASA missions in the ultraviolet/optical spectral range. These missions will depend on high-performance silicon detector arrays being delivered affordably and in high numbers. To that end, we have advanced delta-doping technology to high-throughput and high-yield wafer-scale processing, encompassing a multitude of state-of-the-art silicon-based detector formats and designs. We have embarked on a number of field observations, instrument integrations, and independent evaluations of delta-doped arrays. We present recent data and innovations from JPL's Advanced Detectors and Systems Program, including two-dimensional doping technology, JPL's end-to-end postfabrication processing of high-performance UV/optical/NIR arrays and advanced coatings for detectors. While this paper is primarily intended to provide an overview of past work, developments are identified and discussed throughout. Additionally, we present examples of past, in-progress, and planned observations and deployments of delta-doped arrays.

  6. Evaluating the Instructional Sensitivity of Four States' Student Achievement Tests

    ERIC Educational Resources Information Center

    Polikoff, Morgan S.

    2016-01-01

    As state tests of student achievement are used for an increasingly wide array of high- and low-stakes purposes, evaluating their instructional sensitivity is essential. This article uses data from the Bill and Melinda Gates Foundation's Measures of Effective Project to examine the instructional sensitivity of 4 states' mathematics and English…

  7. The development and test of ultra-large-format multi-anode microchannel array detector systems

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.

    1984-01-01

    The specific tasks that were accomplished with each of the key elements of the multi-anode microchannel array detector system are described. The modes of operation of position-sensitive electronic readout systems for use with high-gain microchannel plates are described and their performance characteristics compared and contrasted. Multi-anode microchannel array detector systems with formats as large as 256 x 1024 pixels are currently under evaluation. Preliminary performance data for sealed ultraviolet and visible-light detector tubes show that the detector systems have unique characteristics which make them complementary to photoconductive array detectors, such as CCDs, and superior to alternative pulse-counting detector systems employing high-gain MCPs.

  8. Ionosphere Profile Estimation Using Ionosonde & GPS Data in an Inverse Refraction Calculation

    NASA Astrophysics Data System (ADS)

    Psiaki, M. L.

    2014-12-01

    A method has been developed to assimilate ionosonde virtual heights and GPS slant TEC data to estimate the parameters of a local ionosphere model, including estimates of the topside and of latitude and longitude variations. This effort seeks to better assimilate a variety of remote sensing data in order to characterize local (and eventually regional and global) ionosphere electron density profiles. The core calculations involve a forward refractive ray-tracing solution and a nonlinear optimal estimation algorithm that inverts the forward model. The ray-tracing calculations solve a nonlinear two-point boundary value problem for the curved ionosonde or GPS ray path through a parameterized electron density profile. It implements a full 3D solution that can handle the case of a tilted ionosphere. These calculations use Hamiltonian equivalents of the Appleton-Hartree magneto-plasma refraction index model. The current ionosphere parameterization is a modified Booker profile. It has been augmented to include latitude and longitude dependencies. The forward ray-tracing solution yields a given signal's group delay and beat carrier phase observables. An auxiliary set of boundary value problem solutions determine the sensitivities of the ray paths and observables with respect to the parameters of the augmented Booker profile. The nonlinear estimation algorithm compares the measured ionosonde virtual-altitude observables and GPS slant-TEC observables to the corresponding values from the forward refraction model. It uses the parameter sensitivities of the model to iteratively improve its parameter estimates in a way the reduces the residual errors between the measurements and their modeled values. This method has been applied to data from HAARP in Gakona, AK and has produced good TEC and virtual height fits. It has been extended to characterize electron density perturbations caused by HAARP heating experiments through the use of GPS slant TEC data for an LOS through the heated zone. The next planned extension of the method is to estimate the parameters of a regional ionosphere profile. The input observables will be slant TEC from an array of GPS receivers and group delay and carrier phase observables from an array of high-frequency beacons. The beacon array will function as a sort of multi-static ionosonde.

  9. The Cryogenic AntiCoincidence detector for ATHENA X-IFU: a scientific assessment of the observational capabilities in the hard X-ray band

    NASA Astrophysics Data System (ADS)

    D'Andrea, M.; Lotti, S.; Macculi, C.; Piro, L.; Argan, A.; Gatti, F.

    2017-12-01

    ATHENA is a large X-ray observatory, planned to be launched by ESA in 2028 towards an L2 orbit. One of the two instruments of the payload is the X-IFU: a cryogenic spectrometer based on a large array of TES microcalorimeters, able to perform integral field spectrography in the 0.2-12 keV band (2.5 eV FWHM at 6 keV). The X-IFU sensitivity is highly degraded by the particle background expected in the L2 orbit, which is induced by primary protons of both galactic and solar origin, and mostly by secondary electrons. To reduce the particle background level and enable the mission science goals, the instrument incorporates a Cryogenic AntiCoincidence detector (CryoAC). It is a 4 pixel TES based detector, placed < 1 mm below the main array. In this paper we report a scientific assessment of the CryoAC observational capabilities in the hard X-ray band (E > 10 keV). The aim of the study has been to understand if the present detector design can be improved in order to enlarge the X-IFU scientific capability on an energy band wider than the TES array. This is beyond the CryoAC baseline, being this instrument aimed to operate as anticoincidence particle detector and not conceived to perform X-ray observations.

  10. The Cherenkov Telescope Array For Very High-Energy Astrophysics

    NASA Astrophysics Data System (ADS)

    Kaaret, Philip

    2015-08-01

    The field of very high energy (VHE) astrophysics had been revolutionized by the results from ground-based gamma-ray telescopes, including the current imaging atmospheric Cherenkov telescope (IACT) arrays: HESS, MAGIC and VERITAS. A worldwide consortium of scientists from 29 countries has formed to propose the Cherenkov Telescope Array (CTA) that will capitalize on the power of this technique to greatly expand the scientific reach of ground-based gamma-ray telescopes. CTA science will include key topics such as the origin of cosmic rays and cosmic particle acceleration, understanding extreme environments in regions close to neutron stars and black holes, and exploring physics frontiers through, e.g., the search for WIMP dark matter, axion-like particles and Lorentz invariance violation. CTA is envisioned to consist of two large arrays of Cherenkov telescopes, one in the southern hemisphere and one in the north. Each array will contain telescopes of different sizes to provide a balance between cost and array performance over an energy range from below 100 GeV to above 100 TeV. Compared to the existing IACT arrays, CTA will have substantially better angular resolution and energy resolution, will cover a much wider energy range, and will have up to an order of magnitude better sensitivity. CTA will also be operated as an open observatory and high-level CTA data will be placed into the public domain; these aspects will enable broad participation in CTA science from the worldwide scientific community to fully capitalize on CTA's potential. This talk will: 1) review the scientific motivation and capabilities of CTA, 2) provide an overview of the technical design and the status of prototype development, and 3) summarize the current status of the project in terms of its proposed organization and timeline. The plans for access to CTA data and opportunities to propose for CTA observing time will be highlighed.Presented on behalf of the CTA Consortium.

  11. High signal-to-noise-ratio electro-optical terahertz imaging system based on an optical demodulating detector array.

    PubMed

    Spickermann, Gunnar; Friederich, Fabian; Roskos, Hartmut G; Bolívar, Peter Haring

    2009-11-01

    We present a 64x48 pixel 2D electro-optical terahertz (THz) imaging system using a photonic mixing device time-of-flight camera as an optical demodulating detector array. The combination of electro-optic detection with a time-of-flight camera increases sensitivity drastically, enabling the use of a nonamplified laser source for high-resolution real-time THz electro-optic imaging.

  12. Nanomolar Trace Metal Analysis of Copper at Gold Microband Arrays

    NASA Astrophysics Data System (ADS)

    Wahl, A.; Dawson, K.; Sassiat, N.; Quinn, A. J.; O'Riordan, A.

    2011-08-01

    This paper describes the fabrication and electrochemical characterization of gold microband electrode arrays designated as a highly sensitive sensor for trace metal detection of copper in drinking water samples. Gold microband electrodes have been routinely fabricated by standard photolithographic methods. Electrochemical characterization were conducted in 0.1 M H2SO4 and found to display characteristic gold oxide formation and reduction peaks. The advantages of gold microband electrodes as trace metal sensors over currently used methods have been investigated by employing under potential deposition anodic stripping voltammetry (UPD-ASV) in Cu2+ nanomolar concentrations. Linear correlations were observed for increasing Cu2+ concentrations from which the concentration of an unknown sample of drinking water was estimated. The results obtained for the estimation of the unknown trace copper concentration in drinking was in good agreement with expected values.

  13. Redundant interferometric calibration as a complex optimization problem

    NASA Astrophysics Data System (ADS)

    Grobler, T. L.; Bernardi, G.; Kenyon, J. S.; Parsons, A. R.; Smirnov, O. M.

    2018-05-01

    Observations of the redshifted 21 cm line from the epoch of reionization have recently motivated the construction of low-frequency radio arrays with highly redundant configurations. These configurations provide an alternative calibration strategy - `redundant calibration' - and boost sensitivity on specific spatial scales. In this paper, we formulate calibration of redundant interferometric arrays as a complex optimization problem. We solve this optimization problem via the Levenberg-Marquardt algorithm. This calibration approach is more robust to initial conditions than current algorithms and, by leveraging an approximate matrix inversion, allows for further optimization and an efficient implementation (`redundant STEFCAL'). We also investigated using the preconditioned conjugate gradient method as an alternative to the approximate matrix inverse, but found that its computational performance is not competitive with respect to `redundant STEFCAL'. The efficient implementation of this new algorithm is made publicly available.

  14. The Challenges of Low-Frequency Radio Polarimetry: Lessons from the Murchison Widefield Array

    NASA Astrophysics Data System (ADS)

    Lenc, E.; Anderson, C. S.; Barry, N.; Bowman, J. D.; Cairns, I. H.; Farnes, J. S.; Gaensler, B. M.; Heald, G.; Johnston-Hollitt, M.; Kaplan, D. L.; Lynch, C. R.; McCauley, P. I.; Mitchell, D. A.; Morgan, J.; Morales, M. F.; Murphy, Tara; Offringa, A. R.; Ord, S. M.; Pindor, B.; Riseley, C.; Sadler, E. M.; Sobey, C.; Sokolowski, M.; Sullivan, I. S.; O'Sullivan, S. P.; Sun, X. H.; Tremblay, S. E.; Trott, C. M.; Wayth, R. B.

    2017-09-01

    We present techniques developed to calibrate and correct Murchison Widefield Array low-frequency (72-300 MHz) radio observations for polarimetry. The extremely wide field-of-view, excellent instantaneous (u, v)-coverage and sensitivity to degree-scale structure that the Murchison Widefield Array provides enable instrumental calibration, removal of instrumental artefacts, and correction for ionospheric Faraday rotation through imaging techniques. With the demonstrated polarimetric capabilities of the Murchison Widefield Array, we discuss future directions for polarimetric science at low frequencies to answer outstanding questions relating to polarised source counts, source depolarisation, pulsar science, low-mass stars, exoplanets, the nature of the interstellar and intergalactic media, and the solar environment.

  15. Development and test of photon-counting microchannel plate detector arrays for use on space telescopes

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.

    1976-01-01

    The full sensitivity, dynamic range, and photometric stability of microchannel array plates(MCP) are incorporated into a photon-counting detection system for space operations. Components of the system include feedback-free MCP's for high gain and saturated output pulse-height distribution with a stable response; multi-anode readout arrays mounted in proximity focus with the output face of the MCP; and multi-layer ceramic headers to provide electrical interface between the anode array in a sealed detector tube and the associated electronics.

  16. A simple procedure for γ- γ lifetime measurements using multi-element fast-timing arrays

    NASA Astrophysics Data System (ADS)

    Régis, J.-M.; Dannhoff, M.; Jolie, J.

    2018-07-01

    The lifetimes of nuclear excited states are important observables in nuclear physics. Their precise measurement is of key importance for developing and testing nuclear models as they are directly linked with the quantum nature of the nuclear system. The γ- γ timing technique represents a direct lifetime determination by means of time-difference measurements between the γ rays which directly feed and decay from a nuclear excited state. Using arrays of very-fast scintillator detectors, picosecond-sensitive time-difference measurements can be performed. We propose to construct a symmetric energy-energy-time cube as is usually done to perform γ- γ coincidence analyses and lifetime determination with high-resolution germanium detectors. By construction, a symmetric mean time-walk characteristics is obtained, that can be precisely determined and used as a single time correction for all the data independently of the detectors. We present the results of timing characteristics measurements of an array with six LaBr3(Ce) detectors, as obtained using a 152Eu point γ-ray source. Compared with a single detector pair, the time resolution of the symmetrised time-difference spectra of the array is nearly unaffected.

  17. DNA Array-Based Gene Profiling

    PubMed Central

    Mocellin, Simone; Provenzano, Maurizio; Rossi, Carlo Riccardo; Pilati, Pierluigi; Nitti, Donato; Lise, Mario

    2005-01-01

    Cancer is a heterogeneous disease in most respects, including its cellularity, different genetic alterations, and diverse clinical behaviors. Traditional molecular analyses are reductionist, assessing only 1 or a few genes at a time, thus working with a biologic model too specific and limited to confront a process whose clinical outcome is likely to be governed by the combined influence of many genes. The potential of functional genomics is enormous, because for each experiment, thousands of relevant observations can be made simultaneously. Accordingly, DNA array, like other high-throughput technologies, might catalyze and ultimately accelerate the development of knowledge in tumor cell biology. Although in its infancy, the implementation of DNA array technology in cancer research has already provided investigators with novel data and intriguing new hypotheses on the molecular cascade leading to carcinogenesis, tumor aggressiveness, and sensitivity to antiblastic agents. Given the revolutionary implications that the use of this technology might have in the clinical management of patients with cancer, principles of DNA array-based tumor gene profiling need to be clearly understood for the data to be correctly interpreted and appreciated. In the present work, we discuss the technical features characterizing this powerful laboratory tool and review the applications so far described in the field of oncology. PMID:15621987

  18. Formation of anodic TiO2 nanotube arrays in NaOH added fluoride-ethylene glycol electrolyte for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Nyein, Nyein; Tan, Wai Kian; Kawamura, Go; Matsuda, Atsunori; Lockman, Zainovia

    2017-07-01

    TiO2 nanotube (TNT) arrays were formed by anodizing titanium foil in fluoride-ethylene glycol (EG) electrolyte added to it either water (H2O) or sodium hydroxide (NaOH) as oxidant. In NaOH added fluoride-EG electrolyte, 10 µm long TNT arrays were formed compared to 5 μm long nanotubes in H2O added fluoride-EG electrolyte. When NaOH was added to EG, the electrolyte pH was 9. As the pH of the electrolyte was rather high, surface etching of the nanotubes was reduced resulting in tubes with longer length. Moreover, the addition of NaOH into fluoride-EG resulted in the crystallization of anatase in the as-made TNT arrays. Annealing obviously improved the crystallinity of the oxide. The TNT arrays were then used as a photoanode in a dye-sensitized solar cell (DSSC). A photoconversion efficiency of 2.4 % was recorded with photocurrent of 6.9 mA/cm2.

  19. GIGAS: A set of microwave sensor arrays to detect molecular bremsstrahlung radiation from extensive air shower

    NASA Astrophysics Data System (ADS)

    Gaïor, R.; Al Samarai, I.; Berat, C.; Blanco Otano, M.; David, J.; Deligny, O.; Lebbolo, H.; Lecoz, S.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Mariş, I. C.; Montanet, F.; Repain, P.; Salamida, F.; Settimo, M.; Stassi, P.; Stutz, A.

    2018-04-01

    We present the GIGAS (Gigahertz Identification of Giant Air Shower) microwave radio sensor arrays of the EASIER project (Extensive Air Shower Identification with Electron Radiometers), deployed at the site of the Pierre Auger cosmic ray observatory. The aim of these novel arrays is to probe the intensity of the molecular bremsstrahlung radiation expected from the development of the extensive air showers produced by the interaction of ultra high energy cosmic rays in the atmosphere. In the designed setup, the sensors are embedded within the surface detector array of the Pierre Auger observatory allowing us to use the particle signals at ground level to trigger the radio system. A series of seven, then 61 sensors have been deployed in the C-band, followed by a new series of 14 higher sensitivity ones in the C-band and the L-band. The design, the operation, the calibration and the sensitivity to extensive air showers of these arrays are described in this paper.

  20. Friction Stir Weld Inspection Through Conductivity Imaging Using Shaped Field MWM(Registered Trademark) - Arrays

    NASA Technical Reports Server (NTRS)

    Goldfine, Neil; Grundy, David; Zilberstein, Vladimir; Kinchen, David G.; McCool, Alex (Technical Monitor)

    2002-01-01

    Friction Stir Welds (FSW) of Al 2195-T8 and Al 2219-T8, provided by Lockheed Martin Michoud Operations, were inspected for lack-of-penetration (LOP) defects using a custom designed MWM-Array, a multi-element eddy-current sensor. MWM (registered trademark) electrical conductivity mapping demonstrated high sensitivity to LOP as small as 0.75 mm (0.03 in.), as confirmed by metallographic data that characterized the extent of LOP defects. High sensitivity and high spatial resolution was achieved via a 37-element custom designed MWM-Array allowing LOP detection using the normalized longitudinal component of the MWM measured conductivity. This permitted both LOP detection and correlation of MWM conductivity features with the LOP defect size, as changes in conductivity were apparently associated with metallurgical features within the near-surface layer of the LOP defect zone. MWM conductivity mapping reveals information similar to macro-etching as the MWM-Array is sensitive to small changes in conductivity due to changes in microstructure associated with material thermal processing, in this case welding. The electrical conductivity measured on the root side of FSWs varies across the weld due to microstructural differences introduced by the FSW process, as well as those caused by planar flaws. Weld metal, i.e., dynamically recrystallized zone (DXZ), thermomechanically affected zone (TMZ), heat-affected zone (HAZ), and parent metal (PM) are all evident in the conductivity maps. While prior efforts had met with limited success for NDE (Nondestructive Evaluation) of dissimilar alloy, Al2219 to Al2195 FSW, the new custom designed multi-element MWM-Array achieved detection of all LOP defects even in dissimilar metal welds.

  1. bicep2/KECK ARRAY. IV. OPTICAL CHARACTERIZATION AND PERFORMANCE OF THE bicep2 AND KECK ARRAY EXPERIMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ade, P. A. R.; Aikin, R. W.; Bock, J. J.

    2015-06-20

    bicep2 and the Keck Array are polarization-sensitive microwave telescopes that observe the cosmic microwave background (CMB) from the South Pole at degree angular scales in search of a signature of inflation imprinted as B-mode polarization in the CMB. bicep2 was deployed in late 2009, observed for three years until the end of 2012 at 150 GHz with 512 antenna-coupled transition edge sensor bolometers, and has reported a detection of B-mode polarization on degree angular scales. The Keck Array was first deployed in late 2010 and will observe through 2016 with five receivers at several frequencies (95, 150, and 220 GHz). bicep2 and the Keck Array sharemore » a common optical design and employ the field-proven bicep1 strategy of using small-aperture, cold, on-axis refractive optics, providing excellent control of systematics while maintaining a large field of view. This design allows for full characterization of far-field optical performance using microwave sources on the ground. Here we describe the optical design of both instruments and report a full characterization of the optical performance and beams of bicep2 and the Keck Array at 150 GHz.« less

  2. The System Design, Engineering Architecture, and Preliminary Results of a Lower-Cost High-Sensitivity High-Resolution Positron Emission Mammography Camera.

    PubMed

    Zhang, Yuxuan; Ramirez, Rocio A; Li, Hongdi; Liu, Shitao; An, Shaohui; Wang, Chao; Baghaei, Hossain; Wong, Wai-Hoi

    2010-02-01

    A lower-cost high-sensitivity high-resolution positron emission mammography (PEM) camera is developed. It consists of two detector modules with the planar detector bank of 20 × 12 cm(2). Each bank has 60 low-cost PMT-Quadrant-Sharing (PQS) LYSO blocks arranged in a 10 × 6 array with two types of geometries. One is the symmetric 19.36 × 19.36 mm(2) block made of 1.5 × 1.5 × 10 mm(3) crystals in a 12 × 12 array. The other is the 19.36 × 26.05 mm(2) asymmetric block made of 1.5 × 1.9 × 10 mm(3) crystals in 12 × 13 array. One row (10) of the elongated blocks are used along one side of the bank to reclaim the half empty PMT photocathode in the regular PQS design to reduce the dead area at the edge of the module. The bank has a high overall crystal packing fraction of 88%, which results in a very high sensitivity. Mechanical design and electronics have been developed for low-cost, compactness, and stability purposes. Each module has four Anger-HYPER decoding electronics that can handle a count-rate of 3 Mcps for single events. A simple two-module coincidence board with a hardware delay window for random coincidences has been developed with an adjustable window of 6 to 15 ns. Some of the performance parameters have been studied by preliminary tests and Monte Carlo simulations, including the crystal decoding map and the 17% energy resolution of the detectors, the point source sensitivity of 11.5% with 50 mm bank-to-bank distance, the 1.2 mm-spatial resolutions, 42 kcps peak Noise Equivalent Count Rate at 7.0-mCi total activity in human body, and the resolution phantom images. Those results show that the design goal of building a lower-cost, high-sensitivity, high-resolution PEM detector is achieved.

  3. Stretchable Array of Highly Sensitive Pressure Sensors Consisting of Polyaniline Nanofibers and Au-Coated Polydimethylsiloxane Micropillars.

    PubMed

    Park, Heun; Jeong, Yu Ra; Yun, Junyeong; Hong, Soo Yeong; Jin, Sangwoo; Lee, Seung-Jung; Zi, Goangseup; Ha, Jeong Sook

    2015-10-27

    We report on the facile fabrication of a stretchable array of highly sensitive pressure sensors. The proposed pressure sensor consists of the top layer of Au-deposited polydimethylsiloxane (PDMS) micropillars and the bottom layer of conductive polyaniline nanofibers on a polyethylene terephthalate substrate. The sensors are operated by the changes in contact resistance between Au-coated micropillars and polyaniline according to the varying pressure. The fabricated pressure sensor exhibits a sensitivity of 2.0 kPa(-1) in the pressure range below 0.22 kPa, a low detection limit of 15 Pa, a fast response time of 50 ms, and high stability over 10000 cycles of pressure loading/unloading with a low operating voltage of 1.0 V. The sensor is also capable of noninvasively detecting human-pulse waveforms from carotid and radial artery. A 5 × 5 array of the pressure sensors on the deformable substrate, which consists of PDMS islands for sensors and the mixed thin film of PDMS and Ecoflex with embedded liquid metal interconnections, shows stable sensing of pressure under biaxial stretching by 15%. The strain distribution obtained by the finite element method confirms that the maximum strain applied to the pressure sensor in the strain-suppressed region is less than 0.04% under a 15% biaxial strain of the unit module. This work demonstrates the potential application of our proposed stretchable pressure sensor array for wearable and artificial electronic skin devices.

  4. Dispersal kernel estimation: A comparison of empirical and modelled particle dispersion in a coastal marine system

    NASA Astrophysics Data System (ADS)

    Hrycik, Janelle M.; Chassé, Joël; Ruddick, Barry R.; Taggart, Christopher T.

    2013-11-01

    Early life-stage dispersal influences recruitment and is of significance in explaining the distribution and connectivity of marine species. Motivations for quantifying dispersal range from biodiversity conservation to the design of marine reserves and the mitigation of species invasions. Here we compare estimates of real particle dispersion in a coastal marine environment with similar estimates provided by hydrodynamic modelling. We do so by using a system of magnetically attractive particles (MAPs) and a magnetic-collector array that provides measures of Lagrangian dispersion based on the time-integration of MAPs dispersing through the array. MAPs released as a point source in a coastal marine location dispersed through the collector array over a 5-7 d period. A virtual release and observed (real-time) environmental conditions were used in a high-resolution three-dimensional hydrodynamic model to estimate the dispersal of virtual particles (VPs). The number of MAPs captured throughout the collector array and the number of VPs that passed through each corresponding model location were enumerated and compared. Although VP dispersal reflected several aspects of the observed MAP dispersal, the comparisons demonstrated model sensitivity to the small-scale (random-walk) particle diffusivity parameter (Kp). The one-dimensional dispersal kernel for the MAPs had an e-folding scale estimate in the range of 5.19-11.44 km, while those from the model simulations were comparable at 1.89-6.52 km, and also demonstrated sensitivity to Kp. Variations among comparisons are related to the value of Kp used in modelling and are postulated to be related to MAP losses from the water column and (or) shear dispersion acting on the MAPs; a process that is constrained in the model. Our demonstration indicates a promising new way of 1) quantitatively and empirically estimating the dispersal kernel in aquatic systems, and 2) quantitatively assessing and (or) improving regional hydrodynamic models.

  5. Comparison of high-performance liquid chromatography/tandem mass spectrometry and high-performance liquid chromatography/photo-diode array detection for the quantitation of carotenoids, retinyl esters, α-tocopherol and phylloquinone in chylomicron-rich fractions of human plasma.

    PubMed

    Kopec, Rachel E; Schweiggert, Ralf M; Riedl, Ken M; Carle, Reinhold; Schwartz, Steven J

    2013-06-30

    Bioavailability of essential lipophilic micronutrients and carotenoids is of utmost interest for human health, as the consumption of these compounds may help alleviate major nutritional deficiencies, cardiovascular disease, and cancer. High-performance liquid chromatography/photo-diode array detection (HPLC-PDA) and high-performance liquid chromatography/tandem mass spectrometry (HPLC/MS/MS) were compared for the quantitative analysis of α- and β-carotene, β-cryptoxanthin, lutein, lycopene, α-tocopherol, phylloquinone, and several retinyl esters from chylomicron-containing triglyceride rich lipoprotein (TRL) fractions of human plasma obtained from two clinical trials. After selecting an efficient extraction method for the analytes, both the HPLC/PDA and the HPLC/MS/MS methods were developed and several parameters validated using an HP 1200 series HPLC system interfaced with a HP 1200 series diode-array detector (Agilent Technologies, Santa Clara, CA, USA) and a QTRAP 5500 (AB Sciex, Foster City, CA, USA) via an atmospheric pressure chemical ionization (APCI) probe operated in positive ion mode. For lycopene, α- and β-carotene, HPLC/MS/MS was up to 37 times more sensitive than HPLC-PDA. PDA detection was shown to be up to 8 times more sensitive for lutein. MS/MS signals were enhanced by matrix components for lutein and β-cryptoxanthin, as determined by referencing to the matrix-independent PDA signal. In contrast, matrix suppression was observed for retinyl palmitate, α-carotene, and β-carotene. Both detectors showed similar suitability for α-tocopherol, lycopene and retinyl palmitate (representing ~73% of total retinyl esters). MS/MS exclusively allowed the quantitation of minor retinyl esters, phylloquinone, and (Z)-lycopene isomers. HPLC/MS/MS was more sensitive than HPLC-PDA for six of the eight analytes and represents a powerful tool for the analysis of chylomicron samples and potentially other biological samples of limited sample size. When internal standards are available for the target carotenoid, employing MS/MS detection may reduce the necessary blood sample volume, which is particularly advantageous for minimizing risk and discomfort to human subjects during clinical studies. Copyright © 2013 John Wiley & Sons, Ltd.

  6. Comparison of high-performance liquid chromatography/tandem mass spectrometry and high-performance liquid chromatography/photo-diode array detection for the quantitation of carotenoids, retinyl esters, α-tocopherol and phylloquinone in chylomicron-rich fractions of human plasma

    PubMed Central

    Kopec, Rachel E.; Schweiggert, Ralf M.; Riedl, Ken M.; Carle, Reinhold; Schwartz, Steven J.

    2013-01-01

    Rationale Bioavailability of essential lipophilic micronutrients and carotenoids is of utmost interest for human health, as the consumption of these compounds may help alleviate major nutritional deficiencies, cardiovascular disease, and cancer. High-performance liquid chromatography/photo-diode array detection (HPLC-PDA) and high-performance liquid chromatography/tandem mass spectrometry (HPLC/MS/MS) were compared for the quantitative analysis of α- and β-carotene, β-cryptoxanthin, lutein, lycopene, α-tocopherol, phylloquinone, and several retinyl esters from chylomicron-containing triglyceride rich lipoprotein (TRL) fractions of human plasma obtained from two clinical trials. Methods After selecting an efficient extraction method for the analytes, both the HPLC/PDA and the HPLC/MS/MS methods were developed and several parameters validated using an HP 1200 series HPLC system interfaced with a HP 1200 series diode-array detector (Agilent Technologies, Santa Clara, CA, USA) and a QTRAP 5500 (AB Sciex, Foster City, CA, USA) via an atmospheric pressure chemical ionization (APCI) probe operated in positive ion mode. Results For lycopene, α- and β-carotene, HPLC/MS/MS was up to 37 times more sensitive than HPLC-PDA. PDA detection was shown to be up to 8 times more sensitive for lutein. MS/MS signals were enhanced by matrix components for lutein and β-cryptoxanthin, as determined by referencing to the matrix-independent PDA signal. In contrast, matrix suppression was observed for retinyl palmitate, α-carotene, and β-carotene. Both detectors showed similar suitability for α-tocopherol, lycopene and retinyl palmitate (representing ~73% of total retinyl esters). MS/MS exclusively allowed the quantitation of minor retinyl esters, phylloquinone, and (Z)-lycopene isomers. Conclusions HPLC/MS/MS was more sensitive than HPLC-PDA for six of the eight analytes and represents a powerful tool for the analysis of chylomicron samples and potentially other biological samples of limited sample size. When internal standards are available for the target carotenoid, employing MS/MS detection may reduce the necessary blood sample volume, which is particularly advantageous for minimizing risk and discomfort to human subjects during clinical studies. PMID:23681818

  7. A Large Array of Small Antennas to Support Future NASA Missions

    NASA Astrophysics Data System (ADS)

    Jones, D. L.; Weinreb, S.; Preston, R. A.

    2001-01-01

    A team of engineers and scientists at JPL is currently working on the design of an array of small radio antennas with a total collecting area up to twenty times that of the largest existing (70 m) DSN antennas. An array of this size would provide obvious advantages for high data rate telemetry reception and for spacecraft navigation. Among these advantages are an order-of-magnitude increase in sensitivity for telemetry downlink, flexible sub-arraying to track multiple spacecraft simultaneously, increased reliability through the use of large numbers of identical array elements, very accurate real-time angular spacecraft tracking, and a dramatic reduction in cost per unit area. NASA missions in many disciplines, including planetary science, would benefit from this increased DSN capability. The science return from planned missions could be increased, and opportunities for less expensive or completely new kinds of missions would be created. The DSN array would also bean immensely valuable instrument for radio astronomy. Indeed, it would be by far the most sensitive radio telescope in the world. Additional information is contained in the original extended abstract.

  8. Very high frequency (beyond 100 MHz) PZT kerfless linear arrays.

    PubMed

    Wu, Da-Wei; Zhou, Qifa; Geng, Xuecang; Liu, Chang-Geng; Djuth, Frank; Shung, K Kirk

    2009-10-01

    This paper presents the design, fabrication, and measurements of very high frequency kerfless linear arrays prepared from PZT film and PZT bulk material. A 12-microm PZT thick film fabricated from PZT-5H powder/solution composite and a piece of 15-microm PZT-5H sheet were used to fabricate 32-element kerfless high-frequency linear arrays with photolithography. The PZT thick film was prepared by spin-coating of PZT sol-gel composite solution. The thin PZT-5H sheet sample was prepared by lapping a PZT-5H ceramic with a precision lapping machine. The measured results of the 2 arrays were compared. The PZT film array had a center frequency of 120 MHz, a bandwidth of 60% with a parylene matching layer, and an insertion loss of 41 dB. The PZT ceramic sheet array was found to have a center frequency of 128 MHz with a poorer bandwidth (40% with a parylene matching layer) but a better sensitivity (28 dB insertion loss).

  9. Very High Frequency (Beyond 100 MHz) PZT Kerfless Linear Arrays

    PubMed Central

    Wu, Da-Wei; Zhou, Qifa; Geng, Xuecang; Liu, Chang-Geng; Djuth, Frank; Shung, K. Kirk

    2010-01-01

    This paper presents the design, fabrication, and measurements of very high frequency kerfless linear arrays prepared from PZT film and PZT bulk material. A 12-µm PZT thick film fabricated from PZT-5H powder/solution composite and a piece of 15-µm PZT-5H sheet were used to fabricate 32-element kerfless high-frequency linear arrays with photolithography. The PZT thick film was prepared by spin-coating of PZT sol-gel composite solution. The thin PZT-5H sheet sample was prepared by lapping a PZT-5H ceramic with a precision lapping machine. The measured results of the 2 arrays were compared. The PZT film array had a center frequency of 120 MHz, a bandwidth of 60% with a parylene matching layer, and an insertion loss of 41 dB. The PZT ceramic sheet array was found to have a center frequency of 128 MHz with a poorer bandwidth (40% with a parylene matching layer) but a better sensitivity (28 dB insertion loss). PMID:19942516

  10. Thin-film sparse boundary array design for passive acoustic mapping during ultrasound therapy.

    PubMed

    Coviello, Christian M; Kozick, Richard J; Hurrell, Andrew; Smith, Penny Probert; Coussios, Constantin-C

    2012-10-01

    A new 2-D hydrophone array for ultrasound therapy monitoring is presented, along with a novel algorithm for passive acoustic mapping using a sparse weighted aperture. The array is constructed using existing polyvinylidene fluoride (PVDF) ultrasound sensor technology, and is utilized for its broadband characteristics and its high receive sensitivity. For most 2-D arrays, high-resolution imagery is desired, which requires a large aperture at the cost of a large number of elements. The proposed array's geometry is sparse, with elements only on the boundary of the rectangular aperture. The missing information from the interior is filled in using linear imaging techniques. After receiving acoustic emissions during ultrasound therapy, this algorithm applies an apodization to the sparse aperture to limit side lobes and then reconstructs acoustic activity with high spatiotemporal resolution. Experiments show verification of the theoretical point spread function, and cavitation maps in agar phantoms correspond closely to predicted areas, showing the validity of the array and methodology.

  11. Characterizing local variability in long‐period horizontal tilt noise

    USGS Publications Warehouse

    Rohde, M.D.; Ringler, Adam; Hutt, Charles R.; Wilson, David; Holland, Austin; Sandoval, L.D; Storm, Tyler

    2017-01-01

    Horizontal seismic data are dominated by atmospherically induced tilt noise at long periods (i.e., 30 s and greater). Tilt noise limits our ability to use horizontal data for sensitive seismological studies such as observing free earth modes. To better understand the local spatial variability of long‐period horizontal noise, we observe horizontal noise during quiet time periods in the Albuquerque Seismological Laboratory (ASL) underground vault using four small‐aperture array configurations. Each array comprises eight Streckeisen STS‐2 broadband seismometers. We analyze the spectral content of the data using power spectral density and magnitude‐squared coherence (γ2‐coherence). Our results show a high degree of spatial variability and frequency dependence in the long‐period horizontal wavefield. The variable nature of long‐period horizontal noise in the ASL vault suggests that it might be highly local in nature and not easily characterized by simple physical models when overall noise levels are low, making it difficult to identify locations in the vault with lower horizontal noise. This variability could be limiting our ability to apply coherence analysis for estimating horizontal sensor self‐noise and could also complicate various indirect methods for removing long‐period horizontal noise (e.g., collocated rotational sensor or microbarograph).

  12. Recent advances in very large area avalanche photodiodes

    NASA Astrophysics Data System (ADS)

    Squillante, Michael R.; Christian, James; Entine, Gerald; Farrell, Richard; Karger, Arieh M.; McClish, Mickel; Myers, Richard; Shah, Kanai S.; Taylor, David; Vanderpuye, Kofi; Waer, Peter; Woodring, Mitchell

    2003-09-01

    The Avalanche Photodiode (APD) is a unique device that combines the advantages of solid state photodetectors with those of high gain devices such as photomultiplier tubes (PMTs). APDs have internal gain that provides a high signal-to-noise ratio. APDs have high quantum efficiency, are fast, compact, and rugged. These properties make them suitable detectors for important applications such as LADAR, detection and identification toxic chemicals and bio-warfare agents, LIDAR fluorescence detection, stand-off laser induced breakdown spectroscopy (LIBS), and nuclear detectors and imagers. Recently there have been significant technical breakthroughs in fabricating very large APDs, APD arrays, and position sensitive APD arrays (PSAPD). Signal gain of over 10,000 has been achieved, single element APDs have been fabricated with active area greater than 40 cm2, monolithic pixelated arrays with up to 28 x 28 elements have been fabricated, and position sensitive APDs have been developed and tested. Additionally, significant progress has been made in improving the fabrication process to provide better uniformity and high yield, permitting cost effective manufacturing of APDs for reduced cost.

  13. The ALMA Phasing System: A Beamforming Capability for Ultra-high-resolution Science at (Sub)Millimeter Wavelengths

    NASA Astrophysics Data System (ADS)

    Matthews, L. D.; Crew, G. B.; Doeleman, S. S.; Lacasse, R.; Saez, A. F.; Alef, W.; Akiyama, K.; Amestica, R.; Anderson, J. M.; Barkats, D. A.; Baudry, A.; Broguière, D.; Escoffier, R.; Fish, V. L.; Greenberg, J.; Hecht, M. H.; Hiriart, R.; Hirota, A.; Honma, M.; Ho, P. T. P.; Impellizzeri, C. M. V.; Inoue, M.; Kohno, Y.; Lopez, B.; Martí-Vidal, I.; Messias, H.; Meyer-Zhao, Z.; Mora-Klein, M.; Nagar, N. M.; Nishioka, H.; Oyama, T.; Pankratius, V.; Perez, J.; Phillips, N.; Pradel, N.; Rottmann, H.; Roy, A. L.; Ruszczyk, C. A.; Shillue, B.; Suzuki, S.; Treacy, R.

    2018-01-01

    The Atacama Millimeter/submillimeter Array (ALMA) Phasing Project (APP) has developed and deployed the hardware and software necessary to coherently sum the signals of individual ALMA antennas and record the aggregate sum in Very Long Baseline Interferometry (VLBI) Data Exchange Format. These beamforming capabilities allow the ALMA array to collectively function as the equivalent of a single large aperture and participate in global VLBI arrays. The inclusion of phased ALMA in current VLBI networks operating at (sub)millimeter wavelengths provides an order of magnitude improvement in sensitivity, as well as enhancements in u–v coverage and north–south angular resolution. The availability of a phased ALMA enables a wide range of new ultra-high angular resolution science applications, including the resolution of supermassive black holes on event horizon scales and studies of the launch and collimation of astrophysical jets. It also provides a high-sensitivity aperture that may be used for investigations such as pulsar searches at high frequencies. This paper provides an overview of the ALMA Phasing System design, implementation, and performance characteristics.

  14. Seismicity of Central Asia as Observed on Three IMS Stations

    DTIC Science & Technology

    2008-09-01

    and BVAR are all high-quality seismic arrays . Noise levels at the stations are generally acceptable for the period reviewed, except during the...following conditions: (1) a 4.5-Hz intermittent noise source at MKAR, (2) periodic high-frequency bursts on portions of the SONM array , and (3) a...seismic events (including single station events) observable on three central Asian IMS seismic array stations: Makanchi, Kazakhstan (MKAR); Songino

  15. An Embedded 4-Channel Receive-Only RF Coil Array for fMRI Experiments of the Somatosensory Pathway in Conscious Awake Marmosets at 7T

    PubMed Central

    Papoti, Daniel; Yen, Cecil Chern-Chyi; Mackel, Julie B.; Merkle, Hellmut; Silva, Afonso C.

    2014-01-01

    Functional Magnetic Resonance Imaging (fMRI) has established itself as the main research tool in neuroscience and brain cognitive research. The common marmoset (Callithrix jacchus) is a non-human primate model of increasing interest in biomedical research. However, commercial MRI coils for marmosets are not generally available. The present work describes the design and construction of a 4-channel receive-only surface RF coil array with excellent signal-to-noise ratio (SNR) specifically optimized for fMRI experiments in awake marmosets in response to somatosensory stimulation. The array was designed as part of a helmet-based head restraint system used to prevent motion during the scans. High SNR was obtained by building the coil array using a thin and flexible substrate glued to the inner surface of the restraint helmet, so as to minimize the distance between the array elements and the somatosensory cortex. Decoupling between coil elements was achieved by partial geometrical overlapping and by connecting them to home-built low input impedance preamplifiers. In vivo images show excellent coverage of the brain cortical surface with high sensitivity near the somatosensory cortex. Embedding the coil elements within the restraint helmet allowed fMRI data in response to somatosensory stimulation to be collected with high sensitivity and reproducibility in conscious, awake marmosets. PMID:23696219

  16. Highly efficient and completely flexible fiber-shaped dye-sensitized solar cell based on TiO2 nanotube array.

    PubMed

    Lv, Zhibin; Yu, Jiefeng; Wu, Hongwei; Shang, Jian; Wang, Dan; Hou, Shaocong; Fu, Yongping; Wu, Kai; Zou, Dechun

    2012-02-21

    A type of highly efficient completely flexible fiber-shaped solar cell based on TiO(2) nanotube array is successfully prepared. Under air mass 1.5G (100 mW cm(-2)) illumination conditions, the photoelectric conversion efficiency of the solar cell approaches 7%, the highest among all fiber-shaped cells based on TiO(2) nanotube arrays and the first completely flexible fiber-shaped DSSC. The fiber-shaped solar cell demonstrates good flexibility, which makes it suitable for modularization using weaving technologies. This journal is © The Royal Society of Chemistry 2012

  17. Application of Adaptive Beamforming to Signal Observations at the Mt. Meron Array, Israel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, D. B.

    2010-06-07

    The Mt. Meron array consists of 16 stations spanning an aperture of 3-4 kilometers in northern Israel. The array is situated in a region of substantial topographic relief, and is surrounded by settlements at close range (Figure 1). Consequently the level of noise at the array is high, which requires efforts at mitigation if distant regional events of moderate magnitude are to be observed. This note describes an initial application of two classic adaptive beamforming algorithms to data from the array to observe P waves from 5 events east of the array ranging in distance from 1100- 2150 kilometers.

  18. Peptide Nucleic Acid Array for Detection of Point Mutations in Hepatitis B Virus Associated with Antiviral Resistance ▿ †

    PubMed Central

    Jang, Hyunjung; Kim, Jihyun; Choi, Jae-jin; Son, Yeojin; Park, Heekyung

    2010-01-01

    The detection of antiviral-resistant hepatitis B virus (HBV) mutations is important for monitoring the response to treatment and for effective treatment decisions. We have developed an array using peptide nucleic acid (PNA) probes to detect point mutations in HBV associated with antiviral resistance. PNA probes were designed to detect mutations associated with resistance to lamivudine, adefovir, and entecavir. The PNA array assay was sensitive enough to detect 102 copies/ml. The PNA array assay was able to detect mutants present in more than 5% of the virus population when the total HBV DNA concentration was greater than 104 copies/ml. We analyzed a total of 68 clinical samples by this assay and validated its usefulness by comparing results to those of the sequencing method. The PNA array correctly identified viral mutants and has high concordance (98.3%) with direct sequencing in detecting antiviral-resistant mutations. Our results showed that the PNA array is a rapid, sensitive, and easily applicable assay for the detection of antiviral-resistant mutation in HBV. Thus, the PNA array is a useful and powerful diagnostic tool for the detection of point mutations or polymorphisms. PMID:20573874

  19. Enhancing the spectral response of filled bolometer arrays for submillimeter astronomy.

    PubMed

    Revéret, Vincent; Rodriguez, Louis; Agnèse, Patrick

    2010-12-10

    Future missions for astrophysical studies in the submillimeter region will need detectors with very high sensitivity and large fields of view. Bolometer arrays can fulfill these requirements over a very broad band. We describe a technique that enables bolometer arrays that use quarter-wave cavities to have a high spectral response over most of the submillimeter band. This technique is based on the addition on the front of the array of an antireflecting dielectric layer. The optimum parameters (layer thickness and distance to the array) are determined by a 2D analytic code. This general principle is applied to the case of Herschel PACS bolometers (optimized for the 60 to 210 μm band). As an example, we demonstrate experimentally that a PACS array covered by a 138 μm thick silicon layer can improve the spectral response by a factor of 1.7 in the 450 μm band.

  20. InAlAs/InGaAs avalanche photodiode arrays for free space optical communication.

    PubMed

    Ferraro, Mike S; Clark, William R; Rabinovich, William S; Mahon, Rita; Murphy, James L; Goetz, Peter G; Thomas, Linda M; Burris, Harris R; Moore, Christopher I; Waters, William D; Vaccaro, Kenneth; Krejca, Brian D

    2015-11-01

    In free space optical communication, photodetectors serve not only as communications receivers but also as position sensitive detectors (PSDs) for pointing, tracking, and stabilization. Typically, two separate detectors are utilized to perform these tasks, but recent advances in the fabrication and development of large-area, low-noise avalanche photodiode (APD) arrays have enabled these devices to be used both as PSDs and as communications receivers. This combined functionality allows for more flexibility and simplicity in optical system design without sacrificing the sensitivity and bandwidth performance of smaller, single-element data receivers. This work presents the development of APD arrays rated for bandwidths beyond 1 GHz with measured carrier ionization ratios of approximately 0.2 at moderate APD gains. We discuss the fabrication and characterization of three types of APD arrays along with their performance as high-speed photodetectors.

  1. The Lemur Conjecture

    NASA Astrophysics Data System (ADS)

    Lanzagorta, Marco; Jitrik, Oliverio; Uhlmann, Jeffrey; Venegas-Andraca, Salvador E.

    2017-05-01

    In previous research we designed an interferometric quantum seismograph that uses entangled photon states to enhance sensitivity in an optomechanic device. However, a spatially-distributed array of such sensors, with each sensor measuring only nm-vibrations, may not provide sufficient sensitivity for the prediction of major earthquakes because it fails to exploit potentially critical phase information. We conjecture that relative phase information can explain the anecdotal observations that animals such as lemurs exhibit sensitivity to impending earthquakes earlier than can be done confidently with traditional seismic technology. More specifically, we propose that lemurs use their limbs as ground motion sensors and that relative phase differences are fused in the brain in a manner similar to a phased-array or synthetic-aperture radar. In this paper we will describe a lemur-inspired quantum sensor network for early warning of earthquakes. The system uses 4 interferometric quantum seismographs (e.g., analogous to a lemurs limbs) and then conducts phase and data fusion of the seismic information. Although we discuss a quantum-based technology, the principles described can also be applied to classical sensor arrays

  2. A nanofiber based artificial electronic skin with high pressure sensitivity and 3D conformability

    NASA Astrophysics Data System (ADS)

    Zhong, Weibin; Liu, Qiongzhen; Wu, Yongzhi; Wang, Yuedan; Qing, Xing; Li, Mufang; Liu, Ke; Wang, Wenwen; Wang, Dong

    2016-06-01

    Pressure sensors with 3D conformability are highly desirable components for artificial electronic skin or e-textiles that can mimic natural skin, especially for application in real-time monitoring of human physiological signals. Here, a nanofiber based electronic skin with ultra-high pressure sensitivity and 3D conformability is designed and built by interlocking two elastic patterned nanofibrous membranes. The patterned membrane is facilely prepared by casting conductive nanofiber ink into a silicon mould to form an array of semi-spheroid-like protuberances. The protuberances composed of intertwined elastic POE nanofibers and PPy@PVA-co-PE nanofibers afford a tunable effective elastic modulus that is capable of capturing varied strains and stresses, thereby contributing to a high sensitivity for pressure sensing. This electronic skin-like sensor demonstrates an ultra-high sensitivity (1.24 kPa-1) below 150 Pa with a detection limit as low as about 1.3 Pa. The pixelated sensor array and a RGB-LED light are then assembled into a circuit and show a feasibility for visual detection of spatial pressure. Furthermore, a nanofiber based proof-of-concept wireless pressure sensor with a bluetooth module as a signal transmitter is proposed and has demonstrated great promise for wireless monitoring of human physiological signals, indicating a potential for large scale wearable electronic devices or e-skin.Pressure sensors with 3D conformability are highly desirable components for artificial electronic skin or e-textiles that can mimic natural skin, especially for application in real-time monitoring of human physiological signals. Here, a nanofiber based electronic skin with ultra-high pressure sensitivity and 3D conformability is designed and built by interlocking two elastic patterned nanofibrous membranes. The patterned membrane is facilely prepared by casting conductive nanofiber ink into a silicon mould to form an array of semi-spheroid-like protuberances. The protuberances composed of intertwined elastic POE nanofibers and PPy@PVA-co-PE nanofibers afford a tunable effective elastic modulus that is capable of capturing varied strains and stresses, thereby contributing to a high sensitivity for pressure sensing. This electronic skin-like sensor demonstrates an ultra-high sensitivity (1.24 kPa-1) below 150 Pa with a detection limit as low as about 1.3 Pa. The pixelated sensor array and a RGB-LED light are then assembled into a circuit and show a feasibility for visual detection of spatial pressure. Furthermore, a nanofiber based proof-of-concept wireless pressure sensor with a bluetooth module as a signal transmitter is proposed and has demonstrated great promise for wireless monitoring of human physiological signals, indicating a potential for large scale wearable electronic devices or e-skin. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr02678h

  3. Radio Videos of Orion Protostars (with X-ray Colors!)

    NASA Astrophysics Data System (ADS)

    Forbrich, Jan; Wolk, Scott; Menten, Karl; Reid, Mark; Osten, Rachel

    2013-07-01

    High-energy processes in Young Stellar Objects (YSOs) can be observed both in X-rays and in the centimetric radio wavelength range. While the past decade has brought a lot of progress in the field of X-ray observations of YSOs, (proto)stellar centimetric radio astronomy has only recently begun to catch up with the advent of the newly expanded Karl G. Jansky Very Large Array (JVLA). The enhanced sensitivity is fundamentally improving our understanding of YSO radio properties by providing unprecedented sensitivity and thus spectral as well as temporal resolution. As a result, it is becoming easier to disentangle coronal-type nonthermal radio emission emanating from the immediate vicinity of YSOs from thermal emission on larger spatial scales, for example ionized material at the base of outflows. Of particular interest is the correlation of the by now relatively well-characterized X-ray flaring variability with the nonthermal radio variability. We present first results of multi-epoch simultaneous observations using Chandra and the JVLA, targeting the Orion Nebula Cluster and highlighting the capabilities of the JVLA for radio continuum observations of YSOs.

  4. The NASA - Arc 10/20 micron camera

    NASA Technical Reports Server (NTRS)

    Roellig, T. L.; Cooper, R.; Deutsch, L. K.; Mccreight, C.; Mckelvey, M.; Pendleton, Y. J.; Witteborn, F. C.; Yuen, L.; Mcmahon, T.; Werner, M. W.

    1994-01-01

    A new infrared camera (AIR Camera) has been developed at NASA - Ames Research Center for observations from ground-based telescopes. The heart of the camera is a Hughes 58 x 62 pixel Arsenic-doped Silicon detector array that has the spectral sensitivity range to allow observations in both the 10 and 20 micron atmospheric windows.

  5. Development of high sensitivity eight-element multiplexed fiber laser acoustic pressure hydrophone array and interrogation system

    NASA Astrophysics Data System (ADS)

    Li, Ming; Sun, Zhihui; Zhang, Xiaolei; Li, Shujuan; Song, Zhiqiang; Wang, Meng; Guo, Jian; Ni, Jiasheng; Wang, Chang; Peng, Gangding; Xu, Xiangang

    2017-09-01

    Fiber laser hydrophones have got widespread concerns due to the unique advantages and broad application prospects. In this paper, the research results of the eight-element multiplexed fiber laser acoustic pressure array and the interrogation system are introduced, containing low-noise distributed feedback fiber laser (DFB-FL) fabrication, sensitivity enhancement packaging, and interferometric signal demodulation. The frequency response range of the system is 10Hz-10kHz, the laser frequency acoustic pressure sensitivity reaches 115 dB re Hz/Pa, and the equivalent noise acoustic pressure is less than 60μPa/Hz1/2. The dynamic range of the system is greater than 120 dB.

  6. Ultra-sensitive and selective detection of mercury ion (Hg2+) using free-standing silicon nanowire sensors

    NASA Astrophysics Data System (ADS)

    Jin, Yan; Gao, Anran; Jin, Qinghui; Li, Tie; Wang, Yuelin; Zhao, Jianlong

    2018-04-01

    In this paper, ultra-sensitive and highly selective Hg2+ detection in aqueous solutions was studied by free-standing silicon nanowire (SiNW) sensors. The all-around surface of SiNW arrays was functionalized with (3-Mercaptopropyl)trimethoxysilane serving as Hg2+ sensitive layer. Due to effective electrostatic control provided by the free-standing structure, a detection limit as low as 1 ppt was obtained. A linear relationship (R 2 = 0.9838) between log(CHg2+ ) and a device current change from 1 ppt to 5 ppm was observed. Furthermore, the developed SiNW sensor exhibited great selectivity for Hg2+ over other heavy metal ions, including Cd2+. Given the extraordinary ability for real-time Hg2+ detection, the small size and low cost of the SiNW device, it is expected to be a potential candidate in field detection of environmentally toxic mercury.

  7. Hard X-ray astrophysics

    NASA Technical Reports Server (NTRS)

    Rothschild, R. E.

    1981-01-01

    Past hard X-ray and lower energy satellite instruments are reviewed and it is shown that observation above 20 keV and up to hundreds of keV can provide much valuable information on the astrophysics of cosmic sources. To calculate possible sensitivities of future arrays, the efficiencies of a one-atmosphere inch gas counter (the HEAO-1 A-2 xenon filled HED3) and a 3 mm phoswich scintillator (the HEAO-1 A-4 Na1 LED1) were compared. Above 15 keV, the scintillator was more efficient. In a similar comparison, the sensitivity of germanium detectors did not differ much from that of the scintillators, except at high energies where the sensitivity would remain flat and not rise with loss of efficiency. Questions to be addressed concerning the physics of active galaxies and the diffuse radiation background, black holes, radio pulsars, X-ray pulsars, and galactic clusters are examined.

  8. Effect of fibril shape on adhesive properties

    NASA Astrophysics Data System (ADS)

    Soto, Daniel; Hill, Ginel; Parness, Aaron; Esparza, Noé; Cutkosky, Mark; Kenny, Tom

    2010-08-01

    Research into the gecko's adhesive system revealed a unique architecture for adhesives using tiny hairs. By using a stiff material (β-keratin) to create a highly structured adhesive, the gecko's system demonstrates properties not seen in traditional pressure-sensitive adhesives which use a soft, unstructured planar layer. In contrast to pressure sensitive adhesives, the gecko adhesive displays frictional adhesion, in which increased shear force allows it to withstand higher normal loads. Synthetic fibrillar adhesives have been fabricated but not all demonstrate this frictional adhesion property. Here we report the dual-axis force testing of single silicone rubber pillars from synthetic adhesive arrays. We find that the shape of the adhesive pillar dictates whether frictional adhesion or pressure-sensitive behavior is observed. This work suggests that both types of behavior can be achieved with structures much larger than gecko terminal structures. It also indicates that subtle differences in the shape of these pillars can significantly influence their properties.

  9. Highly stretchable resistive pressure sensors using a conductive elastomeric composite on a micropyramid array.

    PubMed

    Choong, Chwee-Lin; Shim, Mun-Bo; Lee, Byoung-Sun; Jeon, Sanghun; Ko, Dong-Su; Kang, Tae-Hyung; Bae, Jihyun; Lee, Sung Hoon; Byun, Kyung-Eun; Im, Jungkyun; Jeong, Yong Jin; Park, Chan Eon; Park, Jong-Jin; Chung, U-In

    2014-06-04

    A stretchable resistive pressure sensor is achieved by coating a compressible substrate with a highly stretchable electrode. The substrate contains an array of microscale pyramidal features, and the electrode comprises a polymer composite. When the pressure-induced geometrical change experienced by the electrode is maximized at 40% elongation, a sensitivity of 10.3 kPa(-1) is achieved. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Three Dimensional High-Resolution Reconstruction of the Ionosphere Over the Very Large Array

    DTIC Science & Technology

    2010-12-15

    Watts Progress Report, Dec 10; 1 Final Report: Three Dimensional High-Resolution Reconstruction of the Ionosphere over the Very Large Array...proposed research is reconstruct the three-dimensional regional electron density profile of Earth’s ionosphere with spatial resolution of better than 10 km...10x better sensitivity to total electron content (TEC, or chord integrated density) in the ionosphere that does GPS. The proposal funds the

  11. The Brazilian decimetric array and space weather

    NASA Astrophysics Data System (ADS)

    Sawant, Hanumant S.; Gopalswamy, Natchimuthuk; Rosa, Reinaldo R.; Sych, Robert A.; Anfinogentov, Sergey A.; Fernandes, Francisco C. R.; Cecatto, José R.; Costa, Joaquim E. R.

    2011-07-01

    We report on the development and current status of the Brazilian Decimetric Array (BDA), which will play a vital role in filling the existing gaps in imaging the Sun at decimetric wavelengths. The BDA will operate in the following radio bands: 1.2-1.7, 2.8, and 5.6 GHz with high spatial and temporal resolutions. BDA can observe flares and coronal mass ejections (CMEs) in a spectral range poorly covered in the past, thus providing important information to space weather science. The smallest baseline of 9 m employed by the BDA combined with high sensitivity will readily identify large-scale structures such as coronal holes and provide information on wave flows from them. New methods are being developed to analyze the solar-disk data with high time resolution by using tomographic and spatial PWF techniques that can readily identify coronal holes in their initial stage. Efforts are also being made to analyze the BDA data in real time in conjunction with SOHO data for a better understanding of CMEs and coronal holes. This paper provides a brief description of the BDA, and the new techniques of data analysis.

  12. Light-Trap: a SiPM upgrade for VHE astronomy and beyond

    NASA Astrophysics Data System (ADS)

    Ward, J. E.; Cortina, J.; Guberman, D.

    2016-11-01

    Ground-based gamma-ray astronomy in the Very High Energy (VHE, E > 100 GeV) regime has fast become one of the most interesting and productive sub-fields of astrophysics today. Utilizing the Imaging Atmospheric Cherenkov Technique (IACT) to reconstruct the energy and direction of incoming gamma-ray photons from the universe, several source-classes have been revealed by previous and current generations of IACT telescopes (e.g. Whipple, MAGIC, HESS and VERITAS). The next generation pointing IACT experiment, the Cherenkov Telescope Array (CTA), will provide increased sensitivity across a wider energy range and with better angular resolution. With the development of CTA, the future of IACT pointing arrays is being directed towards having more and more telescopes (and hence cameras), and therefore the need to develop low-cost pixels with acceptable light-collection efficiency is clear. One of the primary paths to the above goal is to replace Photomultiplier Tubes (PMTs) with Silicon-PMs (SiPMs) as the pixels in IACT telescope cameras. However SiPMs are not yet mature enough to replace PMTs for several reasons: sensitivity to unwanted longer wavelengths while lacking sensitivity at short wavelengths, small physical area, high cost, optical cross-talk and dark rates. Here we propose a novel method to build relatively low-cost SiPM-based pixels utilising a disk of wavelength-shifting material, which overcomes some of these drawbacks by collecting light over a larger area than standard SiPMs and improving sensitivity to shorter wavelengths while reducing background. We aim to optimise the design of such pixels, integrating them into an actual 7-pixel cluster which will be inserted into a MAGIC camera and tested during real observations. Results of simulations, laboratory measurements and the current status of the cluster design and development will be presented.

  13. GMR biosensor arrays: a system perspective.

    PubMed

    Hall, D A; Gaster, R S; Lin, T; Osterfeld, S J; Han, S; Murmann, B; Wang, S X

    2010-05-15

    Giant magnetoresistive biosensors are becoming more prevalent for sensitive, quantifiable biomolecular detection. However, in order for magnetic biosensing to become competitive with current optical protein microarray technology, there is a need to increase the number of sensors while maintaining the high sensitivity and fast readout time characteristic of smaller arrays (1-8 sensors). In this paper, we present a circuit architecture scalable for larger sensor arrays (64 individually addressable sensors) while maintaining a high readout rate (scanning the entire array in less than 4s). The system utilizes both time domain multiplexing and frequency domain multiplexing in order to achieve this scan rate. For the implementation, we propose a new circuit architecture that does not use a classical Wheatstone bridge to measure the small change in resistance of the sensor. Instead, an architecture designed around a transimpedance amplifier is employed. A detailed analysis of this architecture including the noise, distortion, and potential sources of errors is presented, followed by a global optimization strategy for the entire system comprising the magnetic tags, sensors, and interface electronics. To demonstrate the sensitivity, quantifiable detection of two blindly spiked samples of unknown concentrations has been performed at concentrations below the limit of detection for the enzyme-linked immunosorbent assay. Lastly, the multiplexing capability and reproducibility of the system was demonstrated by simultaneously monitoring sensors functionalized with three unique proteins at different concentrations in real-time. 2010 Elsevier B.V. All rights reserved.

  14. GMR Biosensor Arrays: A System Perspective

    PubMed Central

    Hall, D. A.; Gaster, R. S.; Lin, T.; Osterfeld, S. J.; Han, S.; Murmann, B.; Wang, S. X.

    2010-01-01

    Giant magnetoresistive biosensors are becoming more prevalent for sensitive, quantifiable biomolecular detection. However, in order for magnetic biosensing to become competitive with current optical protein microarray technology, there is a need to increase the number of sensors while maintaining the high sensitivity and fast readout time characteristic of smaller arrays (1 – 8 sensors). In this paper, we present a circuit architecture scalable for larger sensor arrays (64 individually addressable sensors) while maintaining a high readout rate (scanning the entire array in less than 4 seconds). The system utilizes both time domain multiplexing and frequency domain multiplexing in order to achieve this scan rate. For the implementation, we propose a new circuit architecture that does not use a classical Wheatstone bridge to measure the small change in resistance of the sensor. Instead, an architecture designed around a transimpedance amplifier is employed. A detailed analysis of this architecture including the noise, distortion, and potential sources of errors is presented, followed by a global optimization strategy for the entire system comprising the magnetic tags, sensors, and interface electronics. To demonstrate the sensitivity, quantifiable detection of two blindly spiked samples of unknown concentrations has been performed at concentrations below the limit of detection for the enzyme-linked immunosorbent assay. Lastly, the multipexability and reproducibility of the system was demonstrated by simultaneously monitoring sensors functionalized with three unique proteins at different concentrations in real-time. PMID:20207130

  15. A Future Large-Aperture UVOIR Space Observatory: Key Technologies and Capabilities

    NASA Technical Reports Server (NTRS)

    Bolcar, Matthew Ryan; Stahle, Carl M.; Balasubramaniam, Kunjithapatham; Clampin, Mark; Feinberg, Lee D.; Mosier, Gary E.; Quijada, Manuel A.; Rauscher, Bernard J.; Redding, David C.; Rioux, Norman M.; hide

    2015-01-01

    We present the key technologies and capabilities that will enable a future, large-aperture ultravioletopticalinfrared (UVOIR) space observatory. These include starlight suppression systems, vibration isolation and control systems, lightweight mirror segments, detector systems, and mirror coatings. These capabilities will provide major advances over current and near-future observatories for sensitivity, angular resolution, and starlight suppression. The goals adopted in our study for the starlight suppression system are 10-10 contrast with an inner working angle of 20 milliarcsec and broad bandpass. We estimate that a vibration and isolation control system that achieves a total system vibration isolation of 140 dB for a vibration-isolated mass of 5000 kg is required to achieve the high wavefront error stability needed for exoplanet coronagraphy. Technology challenges for lightweight mirror segments include diffraction-limited optical quality and high wavefront error stability as well as low cost, low mass, and rapid fabrication. Key challenges for the detector systems include visible-blind, high quantum efficiency UV arrays, photon counting visible and NIR arrays for coronagraphic spectroscopy and starlight wavefront sensing and control, and detectors with deep full wells with low persistence and radiation tolerance to enable transit imaging and spectroscopy at all wavelengths. Finally, mirror coatings with high reflectivity ( 90), high uniformity ( 1) and low polarization ( 1) that are scalable to large diameter mirror substrates will be essential for ensuring that both high throughput UV observations and high contrast observations can be performed by the same observatory.

  16. The Advanced Technology Large-Aperture Space Telescope (ATLAST) Technology Roadmap

    NASA Technical Reports Server (NTRS)

    Stahle, Carl; Balasubramanian, K.; Bolcar, M.; Clampin, M.; Feinberg, L.; Hartman, K.; Mosier, C.; Quijada, M.; Rauscher, B.; Redding, D.; hide

    2014-01-01

    We present the key technologies and capabilities that will enable a future, large-aperture ultravioletopticalinfrared (UVOIR) space observatory. These include starlight suppression systems, vibration isolation and control systems, lightweight mirror segments, detector systems, and mirror coatings. These capabilities will provide major advances over current and near-future observatories for sensitivity, angular resolution, and starlight suppression. The goals adopted in our study for the starlight suppression system are 10-10 contrast with an inner working angle of 40 milliarcsec and broad bandpass. We estimate that a vibration and isolation control system that achieves a total system vibration isolation of 140 dB for a vibration-isolated mass of 5000 kg is required to achieve the high wavefront error stability needed for exoplanet coronagraphy. Technology challenges for lightweight mirror segments include diffraction-limited optical quality and high wavefront error stability as well as low cost, low mass, and rapid fabrication. Key challenges for the detector systems include visible-blind, high quantum efficiency UV arrays, photon counting visible and NIR arrays for coronagraphic spectroscopy and starlight wavefront sensing and control, and detectors with deep full wells with low persistence and radiation tolerance to enable transit imaging and spectroscopy at all wavelengths. Finally, mirror coatings with high reflectivity ( 90), high uniformity ( 1) and low polarization ( 1) that are scalable to large diameter mirror substrates will be essential for ensuring that both high throughput UV observations and high contrast observations can be performed by the same observatory.

  17. A Nested Phosphorus and Proton Coil Array for Brain Magnetic Resonance Imaging and Spectroscopy

    PubMed Central

    Brown, Ryan; Lakshmanan, Karthik; Madelin, Guillaume; Parasoglou, Prodromos

    2015-01-01

    A dual-nuclei radiofrequency coil array was constructed for phosphorus and proton magnetic resonance imaging and spectroscopy of the human brain at 7 Tesla. An eight-channel transceive degenerate birdcage phosphorus module was implemented to provide whole-brain coverage and significant sensitivity improvement over a standard dual-tuned loop coil. A nested eight-channel proton module provided adequate sensitivity for anatomical localization without substantially sacrificing performance on the phosphorus module. The developed array enabled phosphorus spectroscopy, a saturation transfer technique to calculate the global creatine kinase forward reaction rate, and single-metabolite whole-brain imaging with 1.4 cm nominal isotropic resolution in 15 min (2.3 cm actual resolution), while additionally enabling 1 mm isotropic proton imaging. This study demonstrates that a multi-channel array can be utilized for phosphorus and proton applications with improved coverage and/or sensitivity over traditional single-channel coils. The efficient multi-channel coil array, time-efficient pulse sequences, and the enhanced signal strength available at ultra-high fields can be combined to allow volumetric assessment of the brain and could provide new insights into the underlying energy metabolism impairment in several neurodegenerative conditions, such as Alzheimer’s and Parkinson’s diseases, as well as mental disorders such as schizophrenia. PMID:26375209

  18. A nested phosphorus and proton coil array for brain magnetic resonance imaging and spectroscopy.

    PubMed

    Brown, Ryan; Lakshmanan, Karthik; Madelin, Guillaume; Parasoglou, Prodromos

    2016-01-01

    A dual-nuclei radiofrequency coil array was constructed for phosphorus and proton magnetic resonance imaging and spectroscopy of the human brain at 7T. An eight-channel transceive degenerate birdcage phosphorus module was implemented to provide whole-brain coverage and significant sensitivity improvement over a standard dual-tuned loop coil. A nested eight-channel proton module provided adequate sensitivity for anatomical localization without substantially sacrificing performance on the phosphorus module. The developed array enabled phosphorus spectroscopy, a saturation transfer technique to calculate the global creatine kinase forward reaction rate, and single-metabolite whole-brain imaging with 1.4cm nominal isotropic resolution in 15min (2.3cm actual resolution), while additionally enabling 1mm isotropic proton imaging. This study demonstrates that a multi-channel array can be utilized for phosphorus and proton applications with improved coverage and/or sensitivity over traditional single-channel coils. The efficient multi-channel coil array, time-efficient pulse sequences, and the enhanced signal strength available at ultra-high fields can be combined to allow volumetric assessment of the brain and could provide new insights into the underlying energy metabolism impairment in several neurodegenerative conditions, such as Alzheimer's and Parkinson's diseases, as well as mental disorders such as schizophrenia. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Fatigue Crack Length Sizing Using a Novel Flexible Eddy Current Sensor Array.

    PubMed

    Xie, Ruifang; Chen, Dixiang; Pan, Mengchun; Tian, Wugang; Wu, Xuezhong; Zhou, Weihong; Tang, Ying

    2015-12-21

    The eddy current probe, which is flexible, array typed, highly sensitive and capable of quantitative inspection is one practical requirement in nondestructive testing and also a research hotspot. A novel flexible planar eddy current sensor array for the inspection of microcrack presentation in critical parts of airplanes is developed in this paper. Both exciting and sensing coils are etched on polyimide films using a flexible printed circuit board technique, thus conforming the sensor to complex geometric structures. In order to serve the needs of condition-based maintenance (CBM), the proposed sensor array is comprised of 64 elements. Its spatial resolution is only 0.8 mm, and it is not only sensitive to shallow microcracks, but also capable of sizing the length of fatigue cracks. The details and advantages of our sensor design are introduced. The working principal and the crack responses are analyzed by finite element simulation, with which a crack length sizing algorithm is proposed. Experiments based on standard specimens are implemented to verify the validity of our simulation and the efficiency of the crack length sizing algorithm. Experimental results show that the sensor array is sensitive to microcracks, and is capable of crack length sizing with an accuracy within ±0.2 mm.

  20. Fatigue Crack Length Sizing Using a Novel Flexible Eddy Current Sensor Array

    PubMed Central

    Xie, Ruifang; Chen, Dixiang; Pan, Mengchun; Tian, Wugang; Wu, Xuezhong; Zhou, Weihong; Tang, Ying

    2015-01-01

    The eddy current probe, which is flexible, array typed, highly sensitive and capable of quantitative inspection is one practical requirement in nondestructive testing and also a research hotspot. A novel flexible planar eddy current sensor array for the inspection of microcrack presentation in critical parts of airplanes is developed in this paper. Both exciting and sensing coils are etched on polyimide films using a flexible printed circuit board technique, thus conforming the sensor to complex geometric structures. In order to serve the needs of condition-based maintenance (CBM), the proposed sensor array is comprised of 64 elements. Its spatial resolution is only 0.8 mm, and it is not only sensitive to shallow microcracks, but also capable of sizing the length of fatigue cracks. The details and advantages of our sensor design are introduced. The working principal and the crack responses are analyzed by finite element simulation, with which a crack length sizing algorithm is proposed. Experiments based on standard specimens are implemented to verify the validity of our simulation and the efficiency of the crack length sizing algorithm. Experimental results show that the sensor array is sensitive to microcracks, and is capable of crack length sizing with an accuracy within ±0.2 mm. PMID:26703608

  1. Application of Array Comparative Genomic Hybridization in Newborns with Multiple Congenital Anomalies.

    PubMed

    Szczałuba, Krzysztof; Nowakowska, Beata; Sobecka, Katarzyna; Smyk, Marta; Castaneda, Jennifer; Klapecki, Jakub; Kutkowska-Kaźmierczak, Anna; Śmigiel, Robert; Bocian, Ewa; Radkowski, Marek; Demkow, Urszula

    2016-01-01

    Major congenital anomalies are detectable in 2-3 % of the newborn population. Some of their genetic causes are attributable to copy number variations identified by array comparative genomic hybridization (aCGH). The value of aCGH screening as a first-tier test in children with multiple congenital anomalies has been studied and consensus adopted. However, array resolution has not been agreed upon, specifically in the newborn or infant population. Moreover, most array studies have been focused on mixed populations of intellectual disability/developmental delay with or without multiple congenital anomalies, making it difficult to assess the value of microarrays in newborns. The aim of the study was to determine the optimal quality and clinical sensitivity of high-resolution array comparative genomic hybridization in neonates with multiple congenital anomalies. We investigated a group of 54 newborns with multiple congenital anomalies defined as two or more birth defects from more than one organ system. Cytogenetic studies were performed using OGT CytoSure 8 × 60 K microarray. We found ten rearrangements in ten newborns. Of these, one recurrent syndromic microduplication was observed, whereas all other changes were unique. Six rearrangements were definitely pathogenic, including one submicroscopic and five that could be seen on routine karyotype analysis. Four other copy number variants were likely pathogenic. The candidate genes that may explain the phenotype were discussed. In conclusion, high-resolution array comparative hybridization can be applied successfully in newborns with multiple congenital anomalies as the method detects a significant number of pathogenic changes, resulting in early diagnoses. We hypothesize that small changes previously considered benign or even inherited rearrangements should be classified as potentially pathogenic at least until a subsequent clinical assessment would exclude a developmental delay or dysmorphism.

  2. Astrocytic autoantibody of neuromyelitis optica (NMO-IgG) binds to aquaporin-4 extracellular loops, monomers, tetramers and high order arrays

    PubMed Central

    Iorio, Raffaele; Fryer, James P.; Hinson, Shannon R.; Fallier-Becker, Petra; Wolburg, Hartwig; Pittock, Sean J.; Lennon, Vanda A.

    2012-01-01

    The principal central nervous system (CNS) water channel, aquaporin-4 (AQP4), is confined to astrocytic and ependymal membranes and is the target of a pathogenic autoantibody, neuromyelitis optica (NMO)-IgG. This disease-specific autoantibody unifies a spectrum of relapsing CNS autoimmune inflammatory disorders of which NMO exemplifies the classic phenotype. Multiple sclerosis and other immune-mediated demyelinating disorders of the CNS lack a distinctive biomarker. Two AQP4 isoforms, M1 and M23, exist as homotetrameric and heterotetrameric intramembranous particles (IMPs). Orthogonal arrays of predominantly M23 particles (OAPs) are an ultrastructural characteristic of astrocytic membranes. We used high-titered serum from 32 AQP4-IgG-seropositive patients and 85 controls to investigate the nature and molecular location of AQP4 epitopes that bind NMO-IgG, and the influence of supramolecular structure. NMO-IgG bound to denatured AQP4 monomers (68% of cases), to native tetramers and high order arrays (90% of cases), and to AQP4 in live cell membranes (100% of cases). Disease-specific epitopes reside in extracellular loop C more than in loops A or E. IgG binding to intracellular epitopes lacks disease specificity. These observations predict greater disease specificity and sensitivity for tissue-based and cell-based serological assays employing “native” AQP4 than assays employing denatured AQP4 and fragments. NMO-IgG binds most avidly to plasma membrane surface AQP4 epitopes formed by loop interactions within tetramers and by intermolecular interactions within high order structures. The relative abundance and localization of AQP4 high order arrays in distinct CNS regions may explain the variability in clinical phenotype of NMO spectrum disorders. PMID:22906356

  3. Terahertz Array Receivers with Integrated Antennas

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Goutam; Llombart, Nuria; Lee, Choonsup; Jung, Cecile; Lin, Robert; Cooper, Ken B.; Reck, Theodore; Siles, Jose; Schlecht, Erich; Peralta, Alessandro; hide

    2011-01-01

    Highly sensitive terahertz heterodyne receivers have been mostly single-pixel. However, now there is a real need of multi-pixel array receivers at these frequencies driven by the science and instrument requirements. In this paper we explore various receiver font-end and antenna architectures for use in multi-pixel integrated arrays at terahertz frequencies. Development of wafer-level integrated terahertz receiver front-end by using advanced semiconductor fabrication technologies has progressed very well over the past few years. Novel stacking of micro-machined silicon wafers which allows for the 3-dimensional integration of various terahertz receiver components in extremely small packages has made it possible to design multi-pixel heterodyne arrays. One of the critical technologies to achieve fully integrated system is the antenna arrays compatible with the receiver array architecture. In this paper we explore different receiver and antenna architectures for multi-pixel heterodyne and direct detector arrays for various applications such as multi-pixel high resolution spectrometer and imaging radar at terahertz frequencies.

  4. PMN-PT Single-Crystal High-Frequency Kerfless Phased Array

    PubMed Central

    Chen, Ruimin; Cabrera-Munoz, Nestor E.; Lam, Kwok Ho; Hsu, Hsiu-sheng; Zheng, Fan; Zhou, Qifa; Shung, K. Kirk

    2015-01-01

    This paper reports the design, fabrication, and characterization of a miniature high-frequency kerfless phased array prepared from a PMN-PT single crystal for forward-looking intravascular or endoscopic imaging applications. After lapping down to around 40 μm, the PMN-PT material was utilized to fabricate 32-element kerfless phased arrays using micromachining techniques. The aperture size of the active area was only 1.0 × 1.0 mm. The measured results showed that the array had a center frequency of 40 MHz, a bandwidth of 34% at −6 dB with a polymer matching layer, and an insertion loss of 20 dB at the center frequency. Phantom images were acquired and compared with simulated images. The results suggest that the feasibility of developing a phased array mounted at the tip of a forward-looking intravascular catheter or endoscope. The fabricated array exhibits much higher sensitivity than PZT ceramic-based arrays and demonstrates that PMN-PT is well suited for this application. PMID:24859667

  5. Periodic silver nanocluster arrays over large-area silica nanosphere template as highly sensitive SERS substrate

    NASA Astrophysics Data System (ADS)

    Hou, Xu; Wang, Qi; Mao, Guoming; Liu, Hao; Yu, Rongdi; Ren, Xiaomin

    2018-04-01

    Periodic Ag nanocluster arrays for surface enhanced Raman spectroscopy (SERS) were fabricated through magnetron sputtering Ag over a large-area monolayer template which is based on silica (SiO2) nanospheres. High-density nanogaps between the adjacent Ag nanoclusters acted as "hot-spots", making a dominant contribution to the high-performance SERS detection. Moreover, the nanospheres and Ag nanoclusters effectively increased the surface roughness and also enlarged the surface area of as-obtained SERS substrate, which resulted in a further enhancement in Raman signals. As-prepared SERS substrates showed very high sensitivity with the enhancement factor (EF) value of 4.1 × 1012 for Rhodamine 6G (R6G), allowing the corresponding detection limit as low as 10-16 M. Additionally, SERS signal of melamine was still strong even though its concentration was lowered to 10-7 M. Our results show that preparing highly sensitive SERS substrate with periodic Ag nanoclusters over SiO2 nanosphere template is a convenient and promising pathway for chemical and biologic sensing.

  6. Optimizing fixed observational assets in a coastal observatory

    NASA Astrophysics Data System (ADS)

    Frolov, Sergey; Baptista, António; Wilkin, Michael

    2008-11-01

    Proliferation of coastal observatories necessitates an objective approach to managing of observational assets. In this article, we used our experience in the coastal observatory for the Columbia River estuary and plume to identify and address common problems in managing of fixed observational assets, such as salinity, temperature, and water level sensors attached to pilings and moorings. Specifically, we addressed the following problems: assessing the quality of an existing array, adding stations to an existing array, removing stations from an existing array, validating an array design, and targeting of an array toward data assimilation or monitoring. Our analysis was based on a combination of methods from oceanographic and statistical literature, mainly on the statistical machinery of the best linear unbiased estimator. The key information required for our analysis was the covariance structure for a field of interest, which was computed from the output of assimilated and non-assimilated models of the Columbia River estuary and plume. The network optimization experiments in the Columbia River estuary and plume proved to be successful, largely withstanding the scrutiny of sensitivity and validation studies, and hence providing valuable insight into optimization and operation of the existing observational network. Our success in the Columbia River estuary and plume suggest that algorithms for optimal placement of sensors are reaching maturity and are likely to play a significant role in the design of emerging ocean observatories, such as the United State's ocean observation initiative (OOI) and integrated ocean observing system (IOOS) observatories, and smaller regional observatories.

  7. The QUIET Instrument

    NASA Technical Reports Server (NTRS)

    Gaier, T.; Kangaslahti, P.; Lawrence, C. R.; Leitch, E. M.; Wollack, E. J.

    2012-01-01

    The Q/U Imaging ExperimenT (QUIET) is designed to measure polarization in the Cosmic Microwave Background, targeting the imprint of inflationary gravitational waves at large angular scales ( approx 1 deg.) . Between 2008 October and 2010 December, two independent receiver arrays were deployed sequentially on a 1.4 m side-fed Dragonian telescope. The polarimeters which form the focal planes use a highly compact design based on High Electron Mobility Transistors (HEMTs) that provides simultaneous measurements of the Stokes parameters Q, U, and I in a single module. The 17-element Q-band polarimeter array, with a central frequency of 43.1 GHz, has the best sensitivity (69 micro Ks(exp 1/2)) and the lowest instrumental systematic errors ever achieved in this band, contributing to the tensor-to-scalar ratio at r < 0.1. The 84-element W-band polarimeter array has a sensitivity of 87 micro Ks(exp 1/2) at a central frequency of 94.5 GHz. It has the lowest systematic errors to date, contributing at r < 0.01 (QUIET Collaboration 2012) The two arrays together cover multipoles in the range l approximately equals 25-975 . These are the largest HEMT-ba.sed arrays deployed to date. This article describes the design, calibration, performance of, and sources of systematic error for the instrument,

  8. Improving timing sensitivity in the microhertz frequency regime: limits from PSR J1713+0747 on gravitational waves produced by supermassive black hole binaries

    NASA Astrophysics Data System (ADS)

    Perera, B. B. P.; Stappers, B. W.; Babak, S.; Keith, M. J.; Antoniadis, J.; Bassa, C. G.; Caballero, R. N.; Champion, D. J.; Cognard, I.; Desvignes, G.; Graikou, E.; Guillemot, L.; Janssen, G. H.; Karuppusamy, R.; Kramer, M.; Lazarus, P.; Lentati, L.; Liu, K.; Lyne, A. G.; McKee, J. W.; Osłowski, S.; Perrodin, D.; Sanidas, S. A.; Sesana, A.; Shaifullah, G.; Theureau, G.; Verbiest, J. P. W.; Taylor, S. R.

    2018-07-01

    We search for continuous gravitational waves (CGWs) produced by individual supermassive black hole binaries in circular orbits using high-cadence timing observations of PSR J1713+0747. We observe this millisecond pulsar using the telescopes in the European Pulsar Timing Array with an average cadence of approximately 1.6 d over the period between 2011 April and 2015 July, including an approximately daily average between 2013 February and 2014 April. The high-cadence observations are used to improve the pulsar timing sensitivity across the gravitational wave frequency range of 0.008-5μHz. We use two algorithms in the analysis, including a spectral fitting method and a Bayesian approach. For an independent comparison, we also use a previously published Bayesian algorithm. We find that the Bayesian approaches provide optimal results and the timing observations of the pulsar place a 95 per cent upper limit on the sky-averaged strain amplitude of CGWs to be ≲3.5 × 10-13 at a reference frequency of 1 μHz. We also find a 95 per cent upper limit on the sky-averaged strain amplitude of low-frequency CGWs to be ≲1.4 × 10-14 at a reference frequency of 20 nHz.

  9. Improving timing sensitivity in the microhertz frequency regime: limits from PSR J1713+0747 on gravitational waves produced by super-massive black-hole binaries

    NASA Astrophysics Data System (ADS)

    Perera, B. B. P.; Stappers, B. W.; Babak, S.; Keith, M. J.; Antoniadis, J.; Bassa, C. G.; Caballero, R. N.; Champion, D. J.; Cognard, I.; Desvignes, G.; Graikou, E.; Guillemot, L.; Janssen, G. H.; Karuppusamy, R.; Kramer, M.; Lazarus, P.; Lentati, L.; Liu, K.; Lyne, A. G.; McKee, J. W.; Osłowski, S.; Perrodin, D.; Sanidas, S. A.; Sesana, A.; Shaifullah, G.; Theureau, G.; Verbiest, J. P. W.; Taylor, S. R.

    2018-05-01

    We search for continuous gravitational waves (CGWs) produced by individual super-massive black-hole binaries (SMBHBs) in circular orbits using high-cadence timing observations of PSR J1713+0747. We observe this millisecond pulsar using the telescopes in the European Pulsar Timing Array (EPTA) with an average cadence of approximately 1.6 days over the period between April 2011 and July 2015, including an approximately daily average between February 2013 and April 2014. The high-cadence observations are used to improve the pulsar timing sensitivity across the GW frequency range of 0.008 - 5 μHz. We use two algorithms in the analysis, including a spectral fitting method and a Bayesian approach. For an independent comparison, we also use a previously published Bayesian algorithm. We find that the Bayesian approaches provide optimal results and the timing observations of the pulsar place a 95 per cent upper limit on the sky-averaged strain amplitude of CGWs to be ≲ 3.5 × 10-13 at a reference frequency of 1 μHz. We also find a 95 per cent upper limit on the sky-averaged strain amplitude of low-frequency CGWs to be ≲ 1.4 × 10-14 at a reference frequency of 20 nHz.

  10. Improved sensing characteristics of dual-gate transistor sensor using silicon nanowire arrays defined by nanoimprint lithography.

    PubMed

    Lim, Cheol-Min; Lee, In-Kyu; Lee, Ki Joong; Oh, Young Kyoung; Shin, Yong-Beom; Cho, Won-Ju

    2017-01-01

    This work describes the construction of a sensitive, stable, and label-free sensor based on a dual-gate field-effect transistor (DG FET), in which uniformly distributed and size-controlled silicon nanowire (SiNW) arrays by nanoimprint lithography act as conductor channels. Compared to previous DG FETs with a planar-type silicon channel layer, the constructed SiNW DG FETs exhibited superior electrical properties including a higher capacitive-coupling ratio of 18.0 and a lower off-state leakage current under high-temperature stress. In addition, while the conventional planar single-gate (SG) FET- and planar DG FET-based pH sensors showed the sensitivities of 56.7 mV/pH and 439.3 mV/pH, respectively, the SiNW DG FET-based pH sensors showed not only a higher sensitivity of 984.1 mV/pH, but also a lower drift rate of 0.8% for pH-sensitivity. This demonstrates that the SiNW DG FETs simultaneously achieve high sensitivity and stability, with significant potential for future biosensing applications.

  11. Improved sensing characteristics of dual-gate transistor sensor using silicon nanowire arrays defined by nanoimprint lithography

    NASA Astrophysics Data System (ADS)

    Lim, Cheol-Min; Lee, In-Kyu; Lee, Ki Joong; Oh, Young Kyoung; Shin, Yong-Beom; Cho, Won-Ju

    2017-12-01

    This work describes the construction of a sensitive, stable, and label-free sensor based on a dual-gate field-effect transistor (DG FET), in which uniformly distributed and size-controlled silicon nanowire (SiNW) arrays by nanoimprint lithography act as conductor channels. Compared to previous DG FETs with a planar-type silicon channel layer, the constructed SiNW DG FETs exhibited superior electrical properties including a higher capacitive-coupling ratio of 18.0 and a lower off-state leakage current under high-temperature stress. In addition, while the conventional planar single-gate (SG) FET- and planar DG FET-based pH sensors showed the sensitivities of 56.7 mV/pH and 439.3 mV/pH, respectively, the SiNW DG FET-based pH sensors showed not only a higher sensitivity of 984.1 mV/pH, but also a lower drift rate of 0.8% for pH-sensitivity. This demonstrates that the SiNW DG FETs simultaneously achieve high sensitivity and stability, with significant potential for future biosensing applications.

  12. The HEXITEC Hard X-Ray Pixelated CdTe Imager for Fast Solar Observations

    NASA Technical Reports Server (NTRS)

    Baumgartner, Wayne H.; Christe, Steven D.; Ryan, Daniel; Inglis, Andrew R.; Shih, Albert Y.; Gregory, Kyle; Wilson, Matt; Seller, Paul; Gaskin, Jessica; Wilson-Hodge, Colleen

    2016-01-01

    There is an increasing demand in solar and astrophysics for high resolution X-ray spectroscopic imaging. Such observations would present ground breaking opportunities to study the poorly understood high energy processes in our solar system and beyond, such as solar flares, X-ray binaries, and active galactic nuclei. However, such observations require a new breed of solid state detectors sensitive to high energy X-rays with fine independent pixels to sub-sample the point spread function (PSF) of the X-ray optics. For solar observations in particular, they must also be capable of handling very high count rates as photon fluxes from solar flares often cause pile up and saturation in present generation detectors. The Rutherford Appleton Laboratory (RAL) has recently developed a new cadmium telluride (CdTe) detector system, called HEXITEC (High Energy X-ray Imaging Technology). It is an 80 x 80 array of 250 micron independent pixels sensitive in the 2-200 keV band and capable of a high full frame read out rate of 10 kHz. HEXITEC provides the smallest independently read out CdTe pixels currently available, and are well matched to the few arcsecond PSF produced by current and next generation hard X-ray focusing optics. NASA's Goddard and Marshall Space Flight Centers are collaborating with RAL to develop these detectors for use on future space borne hard X-ray focusing telescopes. We show the latest results on HEXITEC's imaging capability, energy resolution, high read out rate, and reveal it to be ideal for such future instruments.

  13. Studies of Muons in Extensive Air Showers from Ultra-High Energy Cosmic Rays Observed with the Telescope Array Surface Detector

    NASA Astrophysics Data System (ADS)

    Takeishi, R.; Sagawa, H.; Fukushima, M.; Takeda, M.; Nonaka, T.; Kawata, K.; Kido, E.; Sakurai, N.; Okuda, T.; Ogio, S.; Matthews, J. N.; Stokes, B.

    The number of muons in the air shower induced by ultra-high energy cosmic rays (UHECRs) has been measured with surface detector (SD) arrays of various experiments. Monte Carlo (MC) prediction of the number of muons in air showers depends on hadronic interaction models and the primary cosmic ray composition. By comparing the measured number of muons with the MC prediction, hadronic interaction models can be tested. The Pierre Auger Observatory reported that the number of muons measured by water Cherenkov type SD is about 1.8 times larger than the MC prediction for proton with QGSJET II-03 model. The number of muons in the Auger data is also larger than the MC prediction for iron. The Telescope Array experiment adopts plastic scintillator type SD, which is sensitive to the electromagnetic component that is the major part of secondary particles in the air shower. To search for the high muon purity condition in air showers observed by the TA, we divided air shower events into subsets by the zenith angle θ, the azimuth angle ϕ relative to the shower arrival direction projected onto the ground, and the distance R from shower axis. As a result, we found subsets with the high muon purity 65%, and compared the charge density between observed data and MC. The typical ratios of the charge density of the data to that of the MC are 1.71 ± 0.10 at 1870 m < R < 2150 m and 3.24 ± 0.40 at 2850 m < R < 3280 m. The difference in the charge density between the data and the MC is larger at the higher muon purity. These results imply that the excess of the charge density in the data is partly explained by the muon excess.

  14. Analysis of the moments of the sensitivity function for resistivity over a homogeneous half-space: Rules of thumb for pseudoposition, offline sensitivity and resolution

    NASA Astrophysics Data System (ADS)

    Butler, S. L.

    2017-08-01

    It is instructive to consider the sensitivity function for a homogeneous half space for resistivity since it has a simple mathematical formula and it does not require a priori knowledge of the resistivity of the ground. Past analyses of this function have allowed visualization of the regions that contribute most to apparent resistivity measurements with given array configurations. The horizontally integrated form of this equation gives the sensitivity function for an infinitesimally thick horizontal slab with a small resistivity contrast and analysis of this function has admitted estimates of the depth of investigation for a given electrode array. Recently, it has been shown that the average of the vertical coordinate over this function yields a simple formula that can be used to estimate the depth of investigation. The sensitivity function for a vertical inline slab has also been previously calculated. In this contribution, I show that the sensitivity function for a homogeneous half-space can also be integrated so as to give sensitivity functions to semi-infinite vertical slabs that are perpendicular to the array axis. These horizontal sensitivity functions can, in turn, be integrated over the spatial coordinates to give the mean horizontal positions of the sensitivity functions. The mean horizontal positions give estimates for the centres of the regions that affect apparent resistivity measurements for arbitrary array configuration and can be used as horizontal positions when plotting pseudosections even for non-collinear arrays. The mean of the horizontal coordinate that is perpendicular to a collinear array also gives a simple formula for estimating the distance over which offline resistivity anomalies will have a significant effect. The root mean square (rms) widths of the sensitivity functions are also calculated in each of the coordinate directions as an estimate of the inverse of the resolution of a given array. For depth and in the direction perpendicular to the array, the rms thickness is shown to be very similar to the mean distance. For the direction parallel to the array, the rms thickness is shown to be proportional to the array length and similar to the array length divided by 2 for many arrays. I expect that these formulas will provide useful rules of thumb for estimating the centres and extents of regions influencing apparent resistivity measurements for survey planning and for education.

  15. UHE Cosmic Ray Observations Using the Cygnus Water - Array

    NASA Astrophysics Data System (ADS)

    Dion, Cynthia L.

    1995-01-01

    The CYGNUS water-Cerenkov array, consisting of five surface water-Cerenkov detectors, was built in the CYGNUS extensive air shower array at Los Alamos, New Mexico (latitude 36^circ N, longitude 107^circ W, altitude 2310 meters) to search for point sources of ultra-high energy particles (>1014 eV per particle) with the CYGNUS extensive air shower array. The water-Cerenkov detectors are used to improve the angular resolution of the extensive air shower array. This experiment searches for point sources of UHE gamma-radiation that may be of galactic or extra-galactic origin. The data set from December 1991 to January 1994 consists of data from both the water-Cerenkov array and the CYGNUS extensive air shower array. These data are combined, and the angular resolution of this combined data set is measured to be 0.34^circ+0.03 ^circ-0.04^circ. The measurement is made by observing the cosmic-ray shadowing of the Sun and the Moon. Using a subset of these data, three potential sources of UHE emission are studied: the Crab Pulsar, and the active galactic nuclei Markarian 421 and Markarian 501. A search is conducted for continuous emission from these three sources, and emission over shorter time scales. This experiment is particularly sensitive to emission over these shorter time scales. There is no evidence of UHE emission from these three sources over any time scales studied, and upper bounds to the flux of gamma radiation are determined. The flux upper limit for continuous emission from the Crab Pulsar is found to be 1.2times10^ {-13}/rm cm^2/s above 70 TeV. The flux upper limit for continuous emission from Markarian 421 is found to be 1.3times10^ {-13}/rm cm^2/s above 50 TeV. The flux upper limit for continuous emission from Markarian 501 is found to be 3.8times10^ {-13}/rm cm^2/s above 50 TeV.

  16. Searching for cluster magnetic fields in the cooling flows of 0745-191, A2029, and A4059

    NASA Technical Reports Server (NTRS)

    Taylor, Gregory B.; Barton, Elizabeth J.; Ge, Jingping

    1994-01-01

    We have performed sensitive polarimetric radio observations with the Very Large Array (VLA) of three galaxies: PKS 0745-191, PKS 1508+059, and PKS 2354-350, embedded in x-ray cooling flow clusters. High sensitivity, multifrequency maps of all three, along with spectral index and Faraday rotation measure (RM) maps of PKS 1508+059 and PKS 2354-350 are presented. For PKS 1508+059 and PKS 2354-350 models of the electron density of the intracluster medium (ICM) have been used to set lower limits of 0.1 and 2.7 microG, respectively, on the magnetic field in the ICM based on the observed RMs. In an x-ray selected sample of cooling flow clusters with an associated radio source, 57% (8/14) are found to have absolute RMs in excess of 800 radians/sq m. This sample includes the three sources of this study and all the other high RM sources found to date at zeta less than 0.4. These facts are consistent with the high RM phenomenon being produced by magnetic fields associated with the relatively dense, hot x-ray gas in cooling flow clusters.

  17. Construction of MoS2/Si nanowire array heterojunction for ultrahigh-sensitivity gas sensor

    NASA Astrophysics Data System (ADS)

    Wu, Di; Lou, Zhenhua; Wang, Yuange; Xu, Tingting; Shi, Zhifeng; Xu, Junmin; Tian, Yongtao; Li, Xinjian

    2017-10-01

    Few-layer MoS2 thin films were synthesized by a two-step thermal decomposition process. In addition, MoS2/Si nanowire array (SiNWA) heterojunctions exhibiting excellent gas sensing properties were constructed and investigated. Further analysis reveals that such MoS2/SiNWA heterojunction devices are highly sensitive to nitric oxide (NO) gas under reverse voltages at room temperature (RT). The gas sensor demonstrated a minimum detection limit of 10 ppb, which represents the lowest value obtained for MoS2-based sensors, as well as an ultrahigh response of 3518% (50 ppm NO, ˜50% RH), with good repeatability and selectivity of the MoS2/SiNWA heterojunction. The sensing mechanisms were also discussed. The performance of the MoS2/SiNWA heterojunction gas sensors is superior to previous results, revealing that they have great potential in applications relating to highly sensitive gas sensors.

  18. Construction of MoS2/Si nanowire array heterojunction for ultrahigh-sensitivity gas sensor.

    PubMed

    Wu, Di; Lou, Zhenhua; Wang, Yuange; Xu, Tingting; Shi, Zhifeng; Xu, Junmin; Tian, Yongtao; Li, Xinjian

    2017-10-27

    Few-layer MoS 2 thin films were synthesized by a two-step thermal decomposition process. In addition, MoS 2 /Si nanowire array (SiNWA) heterojunctions exhibiting excellent gas sensing properties were constructed and investigated. Further analysis reveals that such MoS 2 /SiNWA heterojunction devices are highly sensitive to nitric oxide (NO) gas under reverse voltages at room temperature (RT). The gas sensor demonstrated a minimum detection limit of 10 ppb, which represents the lowest value obtained for MoS 2 -based sensors, as well as an ultrahigh response of 3518% (50 ppm NO, ∼50% RH), with good repeatability and selectivity of the MoS 2 /SiNWA heterojunction. The sensing mechanisms were also discussed. The performance of the MoS 2 /SiNWA heterojunction gas sensors is superior to previous results, revealing that they have great potential in applications relating to highly sensitive gas sensors.

  19. In Situ Localized Growth of Ordered Metal Oxide Hollow Sphere Array on Microheater Platform for Sensitive, Ultra-Fast Gas Sensing.

    PubMed

    Rao, Ameya; Long, Hu; Harley-Trochimczyk, Anna; Pham, Thang; Zettl, Alex; Carraro, Carlo; Maboudian, Roya

    2017-01-25

    A simple and versatile strategy is presented for the localized on-chip synthesis of an ordered metal oxide hollow sphere array directly on a low power microheater platform to form a closely integrated miniaturized gas sensor. Selective microheater surface modification through fluorinated monolayer self-assembly and its subsequent microheater-induced thermal decomposition enables the position-controlled deposition of an ordered two-dimensional colloidal sphere array, which serves as a sacrificial template for metal oxide growth via homogeneous chemical precipitation; this strategy ensures control in both the morphology and placement of the sensing material on only the active heated area of the microheater platform, providing a major advantage over other methods of presynthesized nanomaterial integration via suspension coating or printing. A fabricated tin oxide hollow sphere-based sensor shows high sensitivity (6.5 ppb detection limit) and selectivity toward formaldehyde, and extremely fast response (1.8 s) and recovery (5.4 s) times. This flexible and scalable method can be used to fabricate high performance miniaturized gas sensors with a variety of hollow nanostructured metal oxides for a range of applications, including combining multiple metal oxides for superior sensitivity and tunable selectivity.

  20. Performance Assessment of the CapitalBio Mycobacterium Identification Array System for Identification of Mycobacteria

    PubMed Central

    Liu, Jingbo; Yan, Zihe; Han, Min; Han, Zhijun; Jin, Lingjie; Zhao, Yanlin

    2012-01-01

    The CapitalBio Mycobacterium identification microarray system is a rapid system for the detection of Mycobacterium tuberculosis. The performance of this system was assessed with 24 reference strains, 486 Mycobacterium tuberculosis clinical isolates, and 40 clinical samples and then compared to the “gold standard” of DNA sequencing. The CapitalBio Mycobacterium identification microarray system showed highly concordant identification results of 100% and 98.4% for Mycobacterium tuberculosis complex (MTC) and nontuberculous mycobacteria (NTM), respectively. The sensitivity and specificity of the CapitalBio Mycobacterium identification array for identification of Mycobacterium tuberculosis isolates were 99.6% and 100%, respectively, for direct detection and identification of clinical samples, and the overall sensitivity was 52.5%. It was 100% for sputum, 16.7% for pleural fluid, and 10% for bronchoalveolar lavage fluid, respectively. The total assay was completed in 6 h, including DNA extraction, PCR, and hybridization. The results of this study confirm the utility of this system for the rapid identification of mycobacteria and suggest that the CapitalBio Mycobacterium identification array is a molecular diagnostic technique with high sensitivity and specificity that has the capacity to quickly identify most mycobacteria. PMID:22090408

  1. An All Silicon Feedhorn-Coupled Focal Plane for Cosmic Microwave Background Polarimetry

    NASA Technical Reports Server (NTRS)

    Hubmayr, J.; Appel, J. W.; Austermann, J. E.; Beall, J. A.; Becker, D.; Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Cho, H. M.; hide

    2011-01-01

    Upcoming experiments aim to produce high fidelity polarization maps of the cosmic microwave background. To achieve the required sensitivity, we are developing monolithic, feedhorn-coupled transition edge sensor polarimeter arrays operating at 150 GHz. We describe this focal plane architecture and the current status of this technology, focusing on single-pixel polarimeters being deployed on the Atacama B-mode Search (ABS) and an 84-pixel demonstration feedhorn array backed by four 10-pixel polarimeter arrays. The feedhorn array exhibits symmetric beams, cross-polar response less than -23 dB and excellent uniformity across the array. Monolithic polarimeter arrays, including arrays of silicon feedhorns, will be used in the Atacama Cosmology Telescope Polarimeter (ACTPol) and the South Pole Telescope Polarimeter (SPTpol) and have been proposed for upcoming balloon-borne instruments.

  2. REDUNDANT ARRAY CONFIGURATIONS FOR 21 cm COSMOLOGY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dillon, Joshua S.; Parsons, Aaron R., E-mail: jsdillon@berkeley.edu

    Realizing the potential of 21 cm tomography to statistically probe the intergalactic medium before and during the Epoch of Reionization requires large telescopes and precise control of systematics. Next-generation telescopes are now being designed and built to meet these challenges, drawing lessons from first-generation experiments that showed the benefits of densely packed, highly redundant arrays—in which the same mode on the sky is sampled by many antenna pairs—for achieving high sensitivity, precise calibration, and robust foreground mitigation. In this work, we focus on the Hydrogen Epoch of Reionization Array (HERA) as an interferometer with a dense, redundant core designed followingmore » these lessons to be optimized for 21 cm cosmology. We show how modestly supplementing or modifying a compact design like HERA’s can still deliver high sensitivity while enhancing strategies for calibration and foreground mitigation. In particular, we compare the imaging capability of several array configurations, both instantaneously (to address instrumental and ionospheric effects) and with rotation synthesis (for foreground removal). We also examine the effects that configuration has on calibratability using instantaneous redundancy. We find that improved imaging with sub-aperture sampling via “off-grid” antennas and increased angular resolution via far-flung “outrigger” antennas is possible with a redundantly calibratable array configuration.« less

  3. Redundant Array Configurations for 21 cm Cosmology

    NASA Astrophysics Data System (ADS)

    Dillon, Joshua S.; Parsons, Aaron R.

    2016-08-01

    Realizing the potential of 21 cm tomography to statistically probe the intergalactic medium before and during the Epoch of Reionization requires large telescopes and precise control of systematics. Next-generation telescopes are now being designed and built to meet these challenges, drawing lessons from first-generation experiments that showed the benefits of densely packed, highly redundant arrays—in which the same mode on the sky is sampled by many antenna pairs—for achieving high sensitivity, precise calibration, and robust foreground mitigation. In this work, we focus on the Hydrogen Epoch of Reionization Array (HERA) as an interferometer with a dense, redundant core designed following these lessons to be optimized for 21 cm cosmology. We show how modestly supplementing or modifying a compact design like HERA’s can still deliver high sensitivity while enhancing strategies for calibration and foreground mitigation. In particular, we compare the imaging capability of several array configurations, both instantaneously (to address instrumental and ionospheric effects) and with rotation synthesis (for foreground removal). We also examine the effects that configuration has on calibratability using instantaneous redundancy. We find that improved imaging with sub-aperture sampling via “off-grid” antennas and increased angular resolution via far-flung “outrigger” antennas is possible with a redundantly calibratable array configuration.

  4. Jammed-array wideband sawtooth filter.

    PubMed

    Tan, Zhongwei; Wang, Chao; Goda, Keisuke; Malik, Omer; Jalali, Bahram

    2011-11-21

    We present an all-optical passive low-cost spectral filter that exhibits a high-resolution periodic sawtooth spectral pattern without the need for active optoelectronic components. The principle of the filter is the partial masking of a phased array of virtual light sources with multiply jammed diffraction orders. We utilize the filter's periodic linear map between frequency and intensity to demonstrate fast sensitive interrogation of fiber Bragg grating sensor arrays and ultrahigh-frequency electrical sawtooth waveform generation. © 2011 Optical Society of America

  5. Optimization of the Orbiting Wide-Angle Light Collectors (OWL) Mission for Charged-Particle and Neutrino Astronomy

    NASA Technical Reports Server (NTRS)

    Krizmanic, John F.; Mitchell, John W.; Streitmatter, Robert E.

    2013-01-01

    OWL [1] uses the Earth's atmosphere as a vast calorimeter to fully enable the emerging field of charged-particle astronomy with high-statistics measurements of ultra-high-energy cosmic rays (UHECR) and a search for sources of UHE neutrinos and photons. Confirmation of the Greisen-Zatsepin-Kuzmin (GZK) suppression above approx. 4 x 10(exp 19) eV suggests that most UHECR originate in astrophysical objects. Higher energy particles must come from sources within about 100 Mpc and are deflected by approx. 1 degree by predicted intergalactic/galactic magnetic fields. The Pierre Auger Array, Telescope Array and the future JEM-EUSO ISS mission will open charged-particle astronomy, but much greater exposure will be required to fully identify and measure the spectra of individual sources. OWL uses two large telescopes with 3 m optical apertures and 45 degree FOV in near-equatorial orbits. Simulations of a five-year OWL mission indicate approx. 10(exp 6) sq km/ sr/ yr of exposure with full aperture at approx. 6 x 10(exp 19) eV. Observations at different altitudes and spacecraft separations optimize sensitivity to UHECRs and neutrinos. OWL's stereo event reconstruction is nearly independent of track inclination and very tolerant of atmospheric conditions. An optional monocular mode gives increased reliability and can increase the instantaneous aperture. OWL can fully reconstruct horizontal and upward-moving showers and so has high sensitivity to UHE neutrinos. New capabilities in inflatable structures optics and silicon photomultipliers can greatly increase photon sensitivity, reducing the energy threshold for n detection or increasing viewed area using a higher orbit. Design trades between the original and optimized OWL missions and the enhanced science capabilities are described.

  6. VizieR Online Data Catalog: UV counterparts in HI clouds using ALFA surveys (Donovan+, 2015)

    NASA Astrophysics Data System (ADS)

    Donovan Meyer, J.; Peek, J. E. G.; Putman, M.; Grcevich, J.

    2017-10-01

    GALFA-HI is a survey of Galactic HI conducted with the ALFA seven-beam feed array on the 305 m Arecibo antenna. The survey has both high spatial (FWHM~4') and velocity (0.18 km/s) resolution over 13000 (7520 in DR1) degrees2 of sky between -650 and 650 km/s. Details of the observations and data reduction can be found in Peek et al. (2011ApJS..194...20P). The ALFALFA HI-line survey, now 40% complete, also uses the Arecibo Observatory and its seven-beam feed array to detect potential dwarf galaxies in the vicinity of the Milky Way. The survey, which covers over 7000 (2800 in α.40) deg2 of sky out to 18000 km/s, has the sensitivity to detect 105 Mȯ clouds with 20 km/s linewidths at a distance of 1 Mpc. (2 data files).

  7. The Australia Telescope search for cosmic microwave background anisotropy

    NASA Astrophysics Data System (ADS)

    Subrahmanyan, Ravi; Kesteven, Michael J.; Ekers, Ronald D.; Sinclair, Malcolm; Silk, Joseph

    1998-08-01

    In an attempt to detect cosmic microwave background (CMB) anisotropy on arcmin scales, we have made an 8.7-GHz image of a sky region with a resolution of 2 arcmin and high surface brightness sensitivity using the Australia Telescope Compact Array (ATCA) in an ultracompact configuration. The foreground discrete-source confusion was estimated from observations with higher resolution at the same frequency and in a scaled array at a lower frequency. Following the subtraction of the foreground confusion, the field shows no features in excess of the instrument noise. This limits the CMB anisotropy flat-band power to Q_flat<23.6muK with 95 per cent confidence; the ATCA filter function (which is available at the website www.atnf.csiro.au/Research/cmbr/cmbr_atca.html) F_l in multipole l-space peaks at l_eff=4700 and has half-maximum values at l=3350 and 6050.

  8. Photoelectrochemical CdSe/TiO2 nanotube array microsensor for high-resolution in-situ detection of dopamine.

    PubMed

    Qin, Caidie; Bai, Xue; Zhang, Yue; Gao, Kai

    2018-05-03

    A photoelectrochemical wire microelectrode was constructed based on the use of a TiO 2 nanotube array with electrochemically deposited CdSe semiconductor. A strongly amplified photocurrent is generated on the sensor surface. The microsensor has a response in the 0.05-20 μM dopamine (DA) concentration range and a 16.7 μM detection limit at a signal-to-noise ratio of 3. Sensitivity, recovery and reproducibility of the sensor were validated by detecting DA in spiked human urine, and satisfactory results were obtained. Graphical abstract Schematic of a sensitive photoelectrochemical microsensor based on CdSe modified TiO 2 nanotube array. The photoelectrochemical microsensor was successfully applied to the determination of dopamine in urine samples.

  9. Sonography of the chest using linear-array versus sector transducers: Correlation with auscultation, chest radiography, and computed tomography.

    PubMed

    Tasci, Ozlem; Hatipoglu, Osman Nuri; Cagli, Bekir; Ermis, Veli

    2016-07-08

    The primary purpose of our study was to compare the efficacies of two sonographic (US) probes, a high-frequency linear-array probe and a lower-frequency phased-array sector probe in the diagnosis of basic thoracic pathologies. The secondary purpose was to compare the diagnostic performance of thoracic US with auscultation and chest radiography (CXR) using thoracic CT as a gold standard. In total, 55 consecutive patients scheduled for thoracic CT were enrolled in this prospective study. Four pathologic entities were evaluated: pneumothorax, pleural effusion, consolidation, and interstitial syndrome. A portable US scanner was used with a 5-10-MHz linear-array probe and a 1-5-MHz phased-array sector probe. The first probe used was chosen randomly. US, CXR, and auscultation results were compared with the CT results. The linear-array probe had the highest performance in the identification of pneumothorax (83% sensitivity, 100% specificity, and 99% diagnostic accuracy) and pleural effusion (100% sensitivity, 97% specificity, and 98% diagnostic accuracy); the sector probe had the highest performance in the identification of consolidation (89% sensitivity, 100% specificity, and 95% diagnostic accuracy) and interstitial syndrome (94% sensitivity, 93% specificity, and 94% diagnostic accuracy). For all pathologies, the performance of US was superior to those of CXR and auscultation. The linear probe is superior to the sector probe for identifying pleural pathologies, whereas the sector probe is superior to the linear probe for identifying parenchymal pathologies. Thoracic US has better diagnostic performance than CXR and auscultation for the diagnosis of common pathologic conditions of the chest. © 2016 Wiley Periodicals, Inc. J Clin Ultrasound 44:383-389, 2016. © 2016 Wiley Periodicals, Inc.

  10. Millimetron and Earth-Space VLBI

    NASA Astrophysics Data System (ADS)

    Likhachev, S.

    2014-01-01

    The main scientific goal of the Millimetron mission operating in Space VLBI (SVLBI) mode will be the exploration of compact radio sources with extremely high angular resolution (better than one microsecond of arc). The space-ground interferometer Millimetron has an orbit around L2 point of the Earth - Sun system and allows operating with baselines up to a hundred Earth diameters. SVLBI observations will be accomplished by space and ground-based radio telescopes simultaneously. At the space telescope the received baseband signal is digitized and then transferred to the onboard memory storage (up to 100TB). The scientific and service data transfer to the ground tracking station is performed by means of both synchronization and communication radio links (1 GBps). Then the array of the scientific data is processed at the correlation center. Due to the (u,v) - plane coverage requirements for SVLBI imaging, it is necessary to propose observations at two different frequencies and two circular polarizations simultaneously with frequency switching. The total recording bandwidth (2x2x4 GHz) defines of the on-board memory size. The ground based support of the Millimetron mission in the VLBI-mode could be Atacama Large Millimeter Array (ALMA), Pico Valletta (Spain), Plateau de Bure interferometer (France), SMT telescope in the US (Arizona), LMT antenna (Mexico), SMA array, (Mauna Kea, USA), as well as the Green Bank and Effelsberg 100 m telescopes (for 22 GHz observations). We will present simulation results for Millimetron-ALMA interferometer. The sensitivity estimate of the space-ground interferometer will be compared to the requirements of the scientific goals of the mission. The possibility of multi-frequency synthesis (MFS) to obtain high quality images will also be considered.

  11. Sensitivity of fire behavior simulations to fuel model variations

    Treesearch

    Lucy A. Salazar

    1985-01-01

    Stylized fuel models, or numerical descriptions of fuel arrays, are used as inputs to fire behavior simulation models. These fuel models are often chosen on the basis of generalized fuel descriptions, which are related to field observations. Site-specific observations of fuels or fire behavior in the field are not readily available or necessary for most fire management...

  12. On-sky performance evaluation and calibration of a polarization-sensitive focal plane array

    NASA Astrophysics Data System (ADS)

    Vorobiev, Dmitry; Ninkov, Zoran; Brock, Neal; West, Ray

    2016-07-01

    The advent of pixelated micropolarizer arrays (MPAs) has facilitated the development of polarization-sensitive focal plane arrays (FPAs) based on charge-coupled devices (CCDs) and active pixel sensors (APSs), which are otherwise only able to measure the intensity of light. Polarization sensors based on MPAs are extremely compact, light-weight, mechanically robust devices with no moving parts, capable of measuring the degree and angle of polarization of light in a single snapshot. Furthermore, micropolarizer arrays based on wire grid polarizers (so called micro-grid polarizers) offer extremely broadband performance, across the optical and infrared regimes. These devices have potential for a wide array of commercial and research applications, where measurements of polarization can provide critical information, but where conventional polarimeters could be practically implemented. To date, the most successful commercial applications of these devices are 4D Technology's PhaseCam laser interferometers and PolarCam imaging polarimeters. Recently, MPA-based polarimeters have been identified as a potential solution for space-based telescopes, where the small size, snapshot capability and low power consumption (offered by these devices) are extremely desirable. In this work, we investigated the performance of MPA-based polarimeters designed for astronomical polarimetry using the Rochester Institute of Technology Polarization Imaging Camera (RITPIC). We deployed RITPIC on the 0.9 meter SMARTS telescope at the Cerro Tololo Inter-American Observatory and observed a variety of astronomical objects (calibration stars, variable stars, reflection nebulae and planetary nebulae). We use our observations to develop calibration procedures that are unique to these devices and provide an estimate for polarimetric precision that is achievable.

  13. Investigation of multichannel phased array performance for fetal MR imaging on 1.5T clinical MR system

    PubMed Central

    Li, Ye; Pang, Yong; Vigneron, Daniel; Glenn, Orit; Xu, Duan; Zhang, Xiaoliang

    2011-01-01

    Fetal MRI on 1.5T clinical scanner has been increasingly becoming a powerful imaging tool for studying fetal brain abnormalities in vivo. Due to limited availability of dedicated fetal phased arrays, commercial torso or cardiac phased arrays are routinely used for fetal scans, which are unable to provide optimized SNR and parallel imaging performance with a small number coil elements, and insufficient coverage and filling factor. This poses a demand for the investigation and development of dedicated and efficient radiofrequency (RF) hardware to improve fetal imaging. In this work, an investigational approach to simulate the performance of multichannel flexible phased arrays is proposed to find a better solution to fetal MR imaging. A 32 channel fetal array is presented to increase coil sensitivity, coverage and parallel imaging performance. The electromagnetic field distribution of each element of the fetal array is numerically simulated by using finite-difference time-domain (FDTD) method. The array performance, including B1 coverage, parallel reconstructed images and artifact power, is then theoretically calculated and compared with the torso array. Study results show that the proposed array is capable of increasing B1 field strength as well as sensitivity homogeneity in the entire area of uterus. This would ensure high quality imaging regardless of the location of the fetus in the uterus. In addition, the paralleling imaging performance of the proposed fetal array is validated by using artifact power comparison with torso array. These results demonstrate the feasibility of the 32 channel flexible array for fetal MR imaging at 1.5T. PMID:22408747

  14. Circuit design for the retina-like image sensor based on space-variant lens array

    NASA Astrophysics Data System (ADS)

    Gao, Hongxun; Hao, Qun; Jin, Xuefeng; Cao, Jie; Liu, Yue; Song, Yong; Fan, Fan

    2013-12-01

    Retina-like image sensor is based on the non-uniformity of the human eyes and the log-polar coordinate theory. It has advantages of high-quality data compression and redundant information elimination. However, retina-like image sensors based on the CMOS craft have drawbacks such as high cost, low sensitivity and signal outputting efficiency and updating inconvenience. Therefore, this paper proposes a retina-like image sensor based on space-variant lens array, focusing on the circuit design to provide circuit support to the whole system. The circuit includes the following parts: (1) A photo-detector array with a lens array to convert optical signals to electrical signals; (2) a strobe circuit for time-gating of the pixels and parallel paths for high-speed transmission of the data; (3) a high-precision digital potentiometer for the I-V conversion, ratio normalization and sensitivity adjustment, a programmable gain amplifier for automatic generation control(AGC), and a A/D converter for the A/D conversion in every path; (4) the digital data is displayed on LCD and stored temporarily in DDR2 SDRAM; (5) a USB port to transfer the data to PC; (6) the whole system is controlled by FPGA. This circuit has advantages as lower cost, larger pixels, updating convenience and higher signal outputting efficiency. Experiments have proved that the grayscale output of every pixel basically matches the target and a non-uniform image of the target is ideally achieved in real time. The circuit can provide adequate technical support to retina-like image sensors based on space-variant lens array.

  15. Ultra-fast microwave-assisted hydrothermal synthesis of long vertically aligned ZnO nanowires for dye-sensitized solar cell application.

    PubMed

    Mahpeykar, S M; Koohsorkhi, J; Ghafoori-Fard, H

    2012-04-27

    Long vertically aligned ZnO nanowire arrays were synthesized using an ultra-fast microwave-assisted hydrothermal process. Using this method, we were able to grow ZnO nanowire arrays at an average growth rate as high as 200 nm min(-1) for maximum microwave power level. This method does not suffer from the growth stoppage problem at long growth times that, according to our investigations, a normal microwave-assisted hydrothermal method suffers from. Longitudinal growth of the nanowire arrays was investigated as a function of microwave power level and growth time using cross-sectional FESEM images of the grown arrays. Effect of seed layer on the alignment of nanowires was also studied. X-ray diffraction analysis confirmed c-axis orientation and single-phase wurtzite structure of the nanowires. J-V curves of the fabricated ZnO nanowire-based mercurochrome-sensitized solar cells indicated that the short-circuit current density is increased with increasing the length of the nanowire array. According to the UV-vis spectra of the dyes detached from the cells, these increments were mainly attributed to the enlarged internal surface area and therefore dye loading enhancement in the lengthened nanowire arrays.

  16. Remote Sensing of Aircraft Contrails Using a Field Portable Digital Array Scanned Interferometer

    NASA Technical Reports Server (NTRS)

    Smith, William Hayden

    1997-01-01

    With a Digital Array Scanned Interferometer (DASI), we have obtained proof-of-concept observations with which we demonstrate DASI capabilities for the determination of contrail properties. These include the measurement of the cloud and soot microphysical parameters, as well, the abundances of specific pollutant species such as SO(sub x) or NO(sub x). From high quality hyperspectral data and using radiative transfer methods and atmospheric chemistry analysis in the data reduction and interpretation, powerful inferences concerning cloud formation, evolution and dissipation can be made. Under this sub-topic, we will integrate DASI with computer controlled scanning of the field-of-view to direct the sensor towards contrails and exhaust plumes for tracking the emitting vehicles. The optimum DASI wavelength sensitivity range for sensing contrails is 0.35 - 2.5 micron. DASI deploys on the ground or from aircraft to observe contrails in the vicinity. This enables rapid, accurate measurement of the temporal, spatial, and chemical evolution of contrails (or other plumes or exhaust sources) with a low cost, efficient sensor.

  17. Development of a 20-MHz wide-bandwidth PMN-PT single crystal phased-array ultrasound transducer.

    PubMed

    Wong, Chi-Man; Chen, Yan; Luo, Haosu; Dai, Jiyan; Lam, Kwok-Ho; Chan, Helen Lai-Wa

    2017-01-01

    In this study, a 20-MHz 64-element phased-array ultrasound transducer with a one-wavelength pitch is developed using a PMN-30%PT single crystal and double-matching layer scheme. High piezoelectric (d 33 >1000pC/N) and electromechanical coupling (k 33 >0.8) properties of the single crystal with an optimized fabrication process involving the photolithography technique have been demonstrated to be suitable for wide-bandwidth (⩾70%) and high-sensitivity (insertion loss ⩽30dB) phased-array transducer application. A -6dBbandwidth of 91% and an insertion loss of 29dBfor the 20-MHz 64-element phased-array transducer were achieved. This result shows that the bandwidth is improved comparing with the investigated high-frequency (⩾20MHz) ultrasound transducers using piezoelectric ceramic and single crystal materials. It shows that this phased-array transducer has potential to improve the resolution of biomedical imaging, theoretically. Based on the hypothesis of resolution improvement, this phased-array transducer is capable for small animal (i.e. mouse and zebrafish) studies. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Graphene quantum dots modified silicon nanowire array for ultrasensitive detection in the gas phase

    NASA Astrophysics Data System (ADS)

    Li, T. Y.; Duan, C. Y.; Zhu, Y. X.; Chen, Y. F.; Wang, Y.

    2017-03-01

    Si nanostructure-based gas detectors have attracted much attention due to their huge surface areas, relatively high carrier mobility, maneuverability for surface functionalization and compatibility to modern electronic industry. However, the unstable surface of Si, especially for the nanostructures in a corrosive atmosphere, hinders their sensitivity and reproducibility when used for detection in the gas phase. In this study, we proposed a novel strategy to fabricate a Si-based gas detector by using the vertically aligned Si nanowire (SiNW) array as a skeleton and platform, and decorated chemically inert graphene quantum dots (GQDs) to protect the SiNWs from oxidation and promote the carriers’ interaction with the analytes. The radial core-shell structures of the GQDs/SiNW array were then assembled into a resistor-based gas detection system and evaluated by using nitrogen dioxide (NO2) as the model analyte. Compared to the bare SiNW array, our novel sensor exhibited ultrahigh sensitivity for detecting trace amounts of NO2 with the concentration as low as 10 ppm in room temperature and an immensely reduced recovery time, which is of significant importance for their practical application. Meanwhile, strikingly, reproducibility and stability could also be achieved by showing no sensitivity decline after storing the GQDs/SiNW array in air for two weeks. Our results demonstrate that protecting the surface of the SiNW array with chemically inert GQDs is a feasible strategy to realize ultrasensitive detection in the gas phase.

  19. SCINTILLATION ARCS IN LOW-FREQUENCY OBSERVATIONS OF THE TIMING-ARRAY MILLISECOND PULSAR PSR J0437–4715

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhat, N. D. R.; Ord, S. M.; Tremblay, S. E.

    2016-02-10

    Low-frequency observations of pulsars provide a powerful means for probing the microstructure in the turbulent interstellar medium (ISM). Here we report on high-resolution dynamic spectral analysis of our observations of the timing-array millisecond pulsar PSR J0437–4715 with the Murchison Widefield Array (MWA), enabled by our recently commissioned tied-array beam processing pipeline for voltage data recorded from the high time resolution mode of the MWA. A secondary spectral analysis reveals faint parabolic arcs akin to those seen in high-frequency observations of pulsars with the Green Bank and Arecibo telescopes. Data from Parkes observations at a higher frequency of 732 MHz revealmore » a similar parabolic feature with a curvature that scales approximately as the square of the observing wavelength (λ{sup 2}) to the MWA's frequency of 192 MHz. Our analysis suggests that scattering toward PSR J0437–4715 predominantly arises from a compact region about 115 pc from the Earth, which matches well with the expected location of the edge of the Local Bubble that envelopes the local Solar neighborhood. As well as demonstrating new and improved pulsar science capabilities of the MWA, our analysis underscores the potential of low-frequency pulsar observations for gaining valuable insights into the local ISM and for characterizing the ISM toward timing-array pulsars.« less

  20. LIMITS ON THE EVENT RATES OF FAST RADIO TRANSIENTS FROM THE V-FASTR EXPERIMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wayth, Randall B.; Tingay, Steven J.; Deller, Adam T.

    2012-07-10

    We present the first results from the V-FASTR experiment, a commensal search for fast transient radio bursts using the Very Long Baseline Array (VLBA). V-FASTR is unique in that the widely spaced VLBA antennas provide a discriminant against non-astronomical signals and a mechanism for the localization and identification of events that is not possible with single dishes or short baseline interferometers. Thus, far V-FASTR has accumulated over 1300 hr of observation time with the VLBA, between 90 cm and 3 mm wavelength (327 MHz-86 GHz), providing the first limits on fast transient event rates at high radio frequencies (>1.4 GHz).more » V-FASTR has blindly detected bright individual pulses from seven known pulsars but has not detected any single-pulse events that would indicate high-redshift impulsive bursts of radio emission. At 1.4 GHz, V-FASTR puts limits on fast transient event rates comparable with the PALFA survey at the Arecibo telescope, but generally at lower sensitivities, and comparable to the 'fly's eye' survey at the Allen Telescope Array, but with less sky coverage. We also illustrate the likely performance of the Phase 1 SKA dish array for an incoherent fast transient search fashioned on V-FASTR.« less

  1. Simulation of a sensor array for multiparameter measurements at the prosthetic limb interface

    NASA Astrophysics Data System (ADS)

    Rowe, Gabriel I.; Mamishev, Alexander V.

    2004-07-01

    Sensitive skin is a highly desired device for biomechanical devices, wearable computing, human-computer interfaces, exoskeletons, and, most pertinent to this paper, for lower limb prosthetics. The measurement of shear stress is very important because shear effects are key factors in developing surface abrasions and pressure sores in paraplegics and users of prosthetic/orthotic devices. A single element of a sensitive skin is simulated and characterized in this paper. Conventional tactile sensors are designed for measurement of the normal stress only, which is inadequate for comprehensive assessment of surface contact conditions. The sensitive skin discussed here is a flexible array capable of sensing shear and normal forces, as well as humidity and temperature on each element.

  2. Plasma Turbulence Imaging via Beam Emission Spectroscopy in the Core of the DIII-D Tokamak

    NASA Astrophysics Data System (ADS)

    McKee, George R.; Fonck, Raymond J.; Gupta, Deepak K.; Schlossberg, David J.; Shafer, Morgan W.; Boivin, Réjean L.; Solomon, Wayne

    Beam Emission Spectroscopy (BES), a high-sensitivity, good spatial resolution imaging diagnostic system, has been deployed and recently upgraded and expanded at the DIII-D tokamak to better understand density fluctuations arising from plasma turbulence. The currently deployed system images density fluctuations over an approximately 5 × 7 cm region at the plasma mid-plane (radially scannable over 0.2 < r/a ≤ 1) with a 5 × 6 (radial × poloidal) grid of rectangular detection channels, with one microsecond time resolution. BES observes collisionally-induced, Doppler-shifted Dα fluorescence (λ = 652-655 nm) of injected deuterium neutral beam atoms. The diagnostic wavenumber sensitivity is approximately k⊥ < 2.5 cm-1, allowing measurement of longwavelength (k⊥ρI < 1) density fluctuations. The recent upgrade includes expanded fiber optics bundles, customdesigned high-transmission, sharp-edge interference filters, ultra fast collection optics, and enlarged photodiode detectors that together provide nearly an order of magnitude increase in sensitivity relative to an earlier generation BES system. The high sensitivity allows visualization of turbulence at normalized density fluctuation amplitudes of ‾n/n < 1%, typical of fluctuation levels in the core region. The imaging array allows for sampling over 2-3 turbulent eddy scale lengths, which captures the essential dynamics of eddy evolution, interaction and shearing.

  3. Genomic profiling of plasma cell disorders in a clinical setting: integration of microarray and FISH, after CD138 selection of bone marrow

    PubMed Central

    Berry, Nadine Kaye; Bain, Nicole L; Enjeti, Anoop K; Rowlings, Philip

    2014-01-01

    Aim To evaluate the role of whole genome comparative genomic hybridisation microarray (array-CGH) in detecting genomic imbalances as compared to conventional karyotype (GTG-analysis) or myeloma specific fluorescence in situ hybridisation (FISH) panel in a diagnostic setting for plasma cell dyscrasia (PCD). Methods A myeloma-specific interphase FISH (i-FISH) panel was carried out on CD138 PC-enriched bone marrow (BM) from 20 patients having BM biopsies for evaluation of PCD. Whole genome array-CGH was performed on reference (control) and neoplastic (test patient) genomic DNA extracted from CD138 PC-enriched BM and analysed. Results Comparison of techniques demonstrated a much higher detection rate of genomic imbalances using array-CGH. Genomic imbalances were detected in 1, 19 and 20 patients using GTG-analysis, i-FISH and array-CGH, respectively. Genomic rearrangements were detected in one patient using GTG-analysis and seven patients using i-FISH, while none were detected using array-CGH. I-FISH was the most sensitive method for detecting gene rearrangements and GTG-analysis was the least sensitive method overall. All copy number aberrations observed in GTG-analysis were detected using array-CGH and i-FISH. Conclusions We show that array-CGH performed on CD138-enriched PCs significantly improves the detection of clinically relevant and possibly novel genomic abnormalities in PCD, and thus could be considered as a standard diagnostic technique in combination with IGH rearrangement i-FISH. PMID:23969274

  4. Genomic profiling of plasma cell disorders in a clinical setting: integration of microarray and FISH, after CD138 selection of bone marrow.

    PubMed

    Berry, Nadine Kaye; Bain, Nicole L; Enjeti, Anoop K; Rowlings, Philip

    2014-01-01

    To evaluate the role of whole genome comparative genomic hybridisation microarray (array-CGH) in detecting genomic imbalances as compared to conventional karyotype (GTG-analysis) or myeloma specific fluorescence in situ hybridisation (FISH) panel in a diagnostic setting for plasma cell dyscrasia (PCD). A myeloma-specific interphase FISH (i-FISH) panel was carried out on CD138 PC-enriched bone marrow (BM) from 20 patients having BM biopsies for evaluation of PCD. Whole genome array-CGH was performed on reference (control) and neoplastic (test patient) genomic DNA extracted from CD138 PC-enriched BM and analysed. Comparison of techniques demonstrated a much higher detection rate of genomic imbalances using array-CGH. Genomic imbalances were detected in 1, 19 and 20 patients using GTG-analysis, i-FISH and array-CGH, respectively. Genomic rearrangements were detected in one patient using GTG-analysis and seven patients using i-FISH, while none were detected using array-CGH. I-FISH was the most sensitive method for detecting gene rearrangements and GTG-analysis was the least sensitive method overall. All copy number aberrations observed in GTG-analysis were detected using array-CGH and i-FISH. We show that array-CGH performed on CD138-enriched PCs significantly improves the detection of clinically relevant and possibly novel genomic abnormalities in PCD, and thus could be considered as a standard diagnostic technique in combination with IGH rearrangement i-FISH.

  5. Exploiting Cross-sensitivity by Bayesian Decoding of Mixed Potential Sensor Arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kreller, Cortney

    LANL mixed-potential electrochemical sensor (MPES) device arrays were coupled with advanced Bayesian inference treatment of the physical model of relevant sensor-analyte interactions. We demonstrated that our approach could be used to uniquely discriminate the composition of ternary gas sensors with three discreet MPES sensors with an average error of less than 2%. We also observed that the MPES exhibited excellent stability over a year of operation at elevated temperatures in the presence of test gases.

  6. Assembly, characterization, and operation of large-scale TES detector arrays for ACTPol

    NASA Astrophysics Data System (ADS)

    Pappas, Christine Goodwin

    2016-01-01

    The Polarization-sensitive Receiver for the Atacama Cosmology Telescope (ACTPol) is designed to measure the Cosmic Microwave Background (CMB) temperature and polarization anisotropies on small angular scales. Measurements of the CMB temperature and polarization anisotropies have produced arguably the most important cosmological data to date, establishing the LambdaCDM model and providing the best constraints on most of its parameters. To detect the very small fluctuations in the CMB signal across the sky, ACTPol uses feedhorn-coupled Transition-Edge Sensor (TES) detectors. A TES is a superconducting thin film operated in the transition region between the superconducting and normal states, where it functions as a highly sensitive resistive thermometer. In this thesis, aspects of the assembly, characterization, and in-field operation of the ACTPol TES detector arrays are discussed. First, a novel microfabrication process for producing high-density superconducting aluminum/polyimide flexible circuitry (flex) designed to connect large-scale detector arrays to the first stage of readout is presented. The flex is used in parts of the third ACTPol array and is currently being produced for use in the AdvACT detector arrays, which will begin to replace the ACTPol arrays in 2016. Next, we describe methods and results for the in-lab and on-telescope characterization of the detectors in the third ACTPol array. Finally, we describe the ACTPol TES R(T,I) transition shapes and how they affect the detector calibration and operation. Methods for measuring the exact detector calibration and re-biasing functions, taking into account the R(T,I) transition shape, are presented.

  7. Very Long Baseline Array Imaging of Type-2 Seyferts with Double-peaked Narrow Emission Lines: Searches for Sub-kpc Dual AGNs and Jet-powered Outflows

    NASA Astrophysics Data System (ADS)

    Liu, Xin; Lazio, T. Joseph W.; Shen, Yue; Strauss, Michael A.

    2018-02-01

    This paper presents Very Long Baseline Array (VLBA) observations of 13 double-peaked [O III] emission-line type-2 active galactic nuclei (AGNs) at redshifts 0.06 < z < 0.41 (with a median redshift of z ∼ 0.15) identified in the Sloan Digital Sky Survey. Such double-peaked emission-line objects may result from jets or outflows from the central engine or from a dual AGN. The VLBA provides an angular resolution of ≲10 pc at the distance of many of these galaxies, sufficient to resolve the radio emission from extremely close dual AGNs and to contribute to understanding the origin of double-peaked [O III] emission lines. Of the 13 galaxies observed at 3.6 cm (8.4 GHz), we detect six at a 1σ sensitivity level of ∼0.15 mJy beam‑1, two of which show clear jet structures on scales ranging from a few milliarcseconds to tens of milliarcseconds (corresponding to a few pc to tens of pc at a median redshift of 0.15). We suggest that radio-loud, double-peaked emission-line type-2 AGNs may be indicative of jet produced structures, but a larger sample of double-peaked [O III] AGNs with high angular resolution radio observations will be required to confirm this suggestion. Based, in part, on observations made with the Very Long Baseline Array, obtained at the Long Baseline Observatory. The Long Baseline Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

  8. High-resolution dynamic pressure sensor array based on piezo-phototronic effect tuned photoluminescence imaging.

    PubMed

    Peng, Mingzeng; Li, Zhou; Liu, Caihong; Zheng, Qiang; Shi, Xieqing; Song, Ming; Zhang, Yang; Du, Shiyu; Zhai, Junyi; Wang, Zhong Lin

    2015-03-24

    A high-resolution dynamic tactile/pressure display is indispensable to the comprehensive perception of force/mechanical stimulations such as electronic skin, biomechanical imaging/analysis, or personalized signatures. Here, we present a dynamic pressure sensor array based on pressure/strain tuned photoluminescence imaging without the need for electricity. Each sensor is a nanopillar that consists of InGaN/GaN multiple quantum wells. Its photoluminescence intensity can be modulated dramatically and linearly by small strain (0-0.15%) owing to the piezo-phototronic effect. The sensor array has a high pixel density of 6350 dpi and exceptional small standard deviation of photoluminescence. High-quality tactile/pressure sensing distribution can be real-time recorded by parallel photoluminescence imaging without any cross-talk. The sensor array can be inexpensively fabricated over large areas by semiconductor product lines. The proposed dynamic all-optical pressure imaging with excellent resolution, high sensitivity, good uniformity, and ultrafast response time offers a suitable way for smart sensing, micro/nano-opto-electromechanical systems.

  9. Imprinting of molecular recognition sites combined with π-donor-acceptor interactions using bis-aniline-crosslinked Au-CdSe/ZnS nanoparticles array on electrodes: Development of electrochemiluminescence sensor for the ultrasensitive and selective detection of 2-methyl-4-chlorophenoxyacetic acid.

    PubMed

    Yang, Yukun; Fang, Guozhen; Wang, Xiaomin; Liu, Guiyang; Wang, Shuo

    2016-03-15

    A novel strategy is reported for the fabrication of bis-aniline-crosslinked Au nanoparticles (NPs)-CdSe/ZnS quantum dots (QDs) array composite by facil one-step co-electropolymerization of thioaniline-functionalized AuNPs and thioaniline-functionalized CdSe/ZnS QDs onto thioaniline-functionalized Au elctrodes (AuE). Stable and enhanced cathodic electrochemiluminescence (ECL) of CdSe/ZnS QDs is observed on the modified electrode in neutral solution, suggesting promising applications in ECL sensing. An advanced ECL sensor is explored for detection of 2-methyl-4-chlorophenoxyacetic acid (MCPA) which quenches the ECL signal through electron-transfer pathway. The sensitive determination of MCPA with limit of detection (LOD) of 2.2 nmolL(-1) (S/N=3) is achieved by π-donor-acceptor interactions between MCPA and the bis-aniline bridging units. Impressively, the imprinting of molecular recognition sites into the bis-aniline-crosslinked AuNPs-CdSe/ZnS QDs array yields a functionalized electrode with an extremely sensitive response to MCPA in a linear range of 10 pmolL(-1)-50 μmolL(-1) with a LOD of 4.3 pmolL(-1 ()S/N=3). The proposed ECL sensor with high sensitivity, good selectivity, reproducibility and stability has been successfully applied for the determination of MCPA in real samples with satisfactory recoveries. In this study, ECL sensor combined the merits of QDs-ECL and molecularly imprinting technology is reported for the first time. The developed ECL sensor holds great promise for the fabrication of QDs-based ECL sensors with improved sensitivity and furthermore opens the door to wide applications of QDs-based ECL in food safety and environmental monitoring. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Detector characterization, optimization, and operation for ACTPol

    NASA Astrophysics Data System (ADS)

    Grace, Emily Ann

    2016-01-01

    Measurements of the temperature anisotropies of the Cosmic Microwave Background (CMB) have provided the foundation for much of our current knowledge of cosmology. Observations of the polarization of the CMB have already begun to build on this foundation and promise to illuminate open cosmological questions regarding the first moments of the universe and the properties of dark energy. The primary CMB polarization signal contains the signature of early universe physics including the possible imprint of inflationary gravitational waves, while a secondary signal arises due to late-time interactions of CMB photons which encode information about the formation and evolution of structure in the universe. The Atacama Cosmology Telescope Polarimeter (ACTPol), located at an elevation of 5200 meters in Chile and currently in its third season of observing, is designed to probe these signals with measurements of the CMB in both temperature and polarization from arcminute to degree scales. To measure the faint CMB polarization signal, ACTPol employs large, kilo-pixel detector arrays of transition edge sensor (TES) bolometers, which are cooled to a 100 mK operating temperature with a dilution refrigerator. Three such arrays are currently deployed, two with sensitivity to 150 GHz radiation and one dichroic array with 90 GHz and 150 GHz sensitivity. The operation of these large, monolithic detector arrays presents a number of challenges for both assembly and characterization. This thesis describes the design and assembly of the ACTPol polarimeter arrays and outlines techniques for their rapid characterization. These methods are employed to optimize the design and operating conditions of the detectors, select wafers for deployment, and evaluate the baseline array performance. The results of the application of these techniques to wafers from all three ACTPol arrays is described, including discussion of the measured thermal properties and time constants. Finally, aspects of the characterization and calibration of the deployed detectors during field operations are discussed.

  11. Plasmonic nanorod arrays of a two-segment dimer and a coaxial cable with 1 nm gap for large field confinement and enhancement

    NASA Astrophysics Data System (ADS)

    Cheng, Zi-Qiang; Nan, Fan; Yang, Da-Jie; Zhong, Yu-Ting; Ma, Liang; Hao, Zhong-Hua; Zhou, Li; Wang, Qu-Quan

    2015-01-01

    Seeking plasmonic nanostructures with large field confinement and enhancement is significant for photonic and electronic nanodevices with high sensitivity, reproducibility, and tunability. Here, we report the synthesis of plasmonic arrays composed of two-segment dimer nanorods and coaxial cable nanorods with ~1 nm gap insulated by a self-assembled Raman molecule monolayer. The gap-induced plasmon coupling generates an intense field in the gap region of the dimer junction and the cable interlayer. As a result, the longitudinal plasmon resonance of nanorod arrays with high tunability is obviously enhanced. Most interestingly, the field enhancement of dimer nanorod arrays can be tuned by the length ratio L1/L2 of the two segments, and the maximal enhancement appears at L1/L2 = 1. In that case, the two-photon luminescence (TPL) of dimer nanorod arrays and the Raman intensity in the dimer junction is enhanced by 27 and 30 times, respectively, under resonant excitation. In the same way, the Raman intensity in the gap region is enhanced 16 times for the coaxial cable nanorod arrays. The plasmonic nanorod arrays synthesized by the facile method, having tunable plasmon properties and large field enhancement, indicate an attractive pathway to the photonic nanodevices.Seeking plasmonic nanostructures with large field confinement and enhancement is significant for photonic and electronic nanodevices with high sensitivity, reproducibility, and tunability. Here, we report the synthesis of plasmonic arrays composed of two-segment dimer nanorods and coaxial cable nanorods with ~1 nm gap insulated by a self-assembled Raman molecule monolayer. The gap-induced plasmon coupling generates an intense field in the gap region of the dimer junction and the cable interlayer. As a result, the longitudinal plasmon resonance of nanorod arrays with high tunability is obviously enhanced. Most interestingly, the field enhancement of dimer nanorod arrays can be tuned by the length ratio L1/L2 of the two segments, and the maximal enhancement appears at L1/L2 = 1. In that case, the two-photon luminescence (TPL) of dimer nanorod arrays and the Raman intensity in the dimer junction is enhanced by 27 and 30 times, respectively, under resonant excitation. In the same way, the Raman intensity in the gap region is enhanced 16 times for the coaxial cable nanorod arrays. The plasmonic nanorod arrays synthesized by the facile method, having tunable plasmon properties and large field enhancement, indicate an attractive pathway to the photonic nanodevices. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr05544f

  12. Highly Sensitive Detection of Urinary Cadmium to Assess Personal Exposure

    PubMed Central

    Argun, Avni A.; Banks, Ashley; Merlen, Gwendolynne; Tempelman, Linda A.; Becker, Michael F.; Schuelke, Thomas; Dweik, Badawi

    2013-01-01

    A series of Boron-Doped Diamond (BDD) ultramicroelectrode arrays were fabricated and investigated for their performance as electrochemical sensors to detect trace level metals such as cadmium. The steady-state diffusion behavior of these sensors was validated using cyclic voltammetry followed by electrochemical detection of cadmium in water and in human urine to demonstrate high sensitivity (>200 μA/ppb/cm2) and low background current (<4 nA). When an array of ultramicroelectrodes was positioned with optimal spacing, these BDD sensors showed a sigmoidal diffusion behavior. They also demonstrated high accuracy with linear dose dependence for quantification of cadmium in a certified reference river water sample from the National Institute of Standards and Technology (NIST) as well as in a human urine sample spiked with 0.25–1 ppb cadmium. PMID:23561905

  13. Observations of High-Redshift X-Ray Selected Clusters with the Sunyaev-Zel'dovich Array

    NASA Technical Reports Server (NTRS)

    Muchovej, Stephen; Carlstrom, John E.; Cartwright, John; Greer, Christopher; Hawkins, David; Hennessy, Ryan; Joy, Marshall; Lamb, James W.; Leitch, Erik M.; Loh, Michael; hide

    2006-01-01

    We report measurements of the Sunyaev-Zel'dovich (SZ) effect in three highredshift (0.89 less than or equal to z less than or equal to 1.03), X-ray selected galaxy clusters. The observations were obtained at 30 GHz during the commissioning period of a new, eight-element interferometer - the Sunyaev-Zel dovich Array (SZA) - built for dedicated SZ effect observations. The SZA observations are sensitive to angular scales larger than those subtended by the virial radii of the clusters. Assuming isothermality and hydrostatic equilibrium for the intracluster medium, and gas-mass fractions consistent with those for clusters at moderate redshift, we calculate electron temperatures, gas masses, and total cluster masses from the SZ data. The SZ-derived masses, integrated approximately to the virial radii, are 1.9(sup +0.5)(sub -0.4) x 10(sup 14) solar mass for ClJ1415.1+3612, 3.4 (sup +0.6)(sup -0.5) x 10(sup 14) solar mass for ClJ1429.0+4241 and 7.2(sup +1.3)(sub -0.9) x 10(sup 14) solar mass for ClJ1226.9+3332. The SZ-derived quantities are in good agreement with the cluster properties derived from X-ray measurements.

  14. Cosmic Extremes: Probing Energetic Transients with Radio Observations

    NASA Astrophysics Data System (ADS)

    Denham Alexander, Kate

    2018-01-01

    With the advent of sensitive facilities like the Karl G. Jansky Very Large Array (VLA) and planning well underway for vastly more powerful wide-field interferometers like the Square Kilometer Array, the study of radio astrophysical transients is poised for dramatic growth. Radio observations provide a unique window into a wide variety of transient events, from gamma-ray bursts (GRBs) to supernovae to tidal disruption events (TDEs) in which a star is torn apart by a supermassive black hole. In particular, GRBs and TDEs have emerged as valuable probes of some of the most extreme physics in the Universe. In these high-energy laboratories, the longer timescale of radio emission allows for extensive followup and characterization of the event energies and the densities of surrounding material. I will present high-cadence broadband radio studies of GRB afterglows and TDEs undertaken with the goal of learning more about their physical properties, the physics underlying the formation and growth of relativistic jets and outflows, and the environments in which these events occur. Our observations confirm that only a small fraction of TDEs produce relativistic jets but reveal low-luminosity, non-relativistic outflows in two nearby TDEs, allowing us to begin constraining the bulk of the TDE population. Our GRB radio observations reveal both intrinsic variability (reverse shocks) and extrinsic variability (interstellar scintillation). The insights derived from these studies will be invaluable for designing and interpreting the results from future radio transient surveys.

  15. Precise and selective sensing of DNA-DNA hybridization by graphene/Si-nanowires diode-type biosensors.

    PubMed

    Kim, Jungkil; Park, Shin-Young; Kim, Sung; Lee, Dae Hun; Kim, Ju Hwan; Kim, Jong Min; Kang, Hee; Han, Joong-Soo; Park, Jun Woo; Lee, Hosun; Choi, Suk-Ho

    2016-08-18

    Single-Si-nanowire (NW)-based DNA sensors have been recently developed, but their sensitivity is very limited because of high noise signals, originating from small source-drain current of the single Si NW. Here, we demonstrate that chemical-vapor-deposition-grown large-scale graphene/surface-modified vertical-Si-NW-arrays junctions can be utilized as diode-type biosensors for highly-sensitive and -selective detection of specific oligonucleotides. For this, a twenty-seven-base-long synthetic oligonucleotide, which is a fragment of human DENND2D promoter sequence, is first decorated as a probe on the surface of vertical Si-NW arrays, and then the complementary oligonucleotide is hybridized to the probe. This hybridization gives rise to a doping effect on the surface of Si NWs, resulting in the increase of the current in the biosensor. The current of the biosensor increases from 19 to 120% as the concentration of the target DNA varies from 0.1 to 500 nM. In contrast, such biosensing does not come into play by the use of the oligonucleotide with incompatible or mismatched sequences. Similar results are observed from photoluminescence microscopic images and spectra. The biosensors show very-uniform current changes with standard deviations ranging ~1 to ~10% by ten-times endurance tests. These results are very promising for their applications in accurate, selective, and stable biosensing.

  16. Palladium-directed self-assembly of multi-titanium(IV)-porphyrin arrays on the substrate surface as sensitive ultrathin films for hydrogen peroxide sensing, photocurrent generation, and photochromism of viologen

    NASA Astrophysics Data System (ADS)

    He, Wen-Li; Fang, Fang; Ma, Dong-Mei; Chen, Meng; Qian, Dong-Jin; Liu, Minghua

    2018-01-01

    Multiporphyrin arrays are large, π-conjugated chromophores with high absorption efficiency and strong chemical stability that play an important role in supramolecular and advanced material sciences. Palladium-directed self-assembly of multiporphyrin array ultrathin films was achieved on substrate surfaces using oxo[5,10,15,20-tetra(4-pyridyl)porphyrinato]titanium (IV) complex [TiO(TPyP)] as a linker and sodium tetrachloropalladate (Na2PdCl4) as a connector. The Pd-TiOTPyP films as prepared were characterized by using UV-vis absorption and X-ray photoelectron spectroscopy, as well as by atomic force and scanning electron microscopy. The Soret absorption band of TiOTPyP was observed to red shift by 6 nm when the Pd-TiOTPyP multilayer-modified quartz substrate was immersed in an aqueous solution containing hydrogen peroxide. This was attributed to the formation of a TiO2TPyP monoperoxo complex. This oxidation reaction could be accelerated in an acidic solution. Furthermore, the immobilized Pd-TiOTPyP multilayers could act as light-harvesting units for photocurrent generation and photochromism of viologens, with strong stability, reproducibility, and recyclability. The photocurrent density could be enhanced in electrolyte solutions containing electron donors such as triethanolamine, or electron acceptors such as viologens. Finally, photoinduced reduction (photochromism) of viologens was investigated using the Pd-TiOTPyP multilayers as light sensitizers and EDTA as the electron donors.

  17. Elevated gold ellipse nanoantenna dimers as sensitive and tunable surface enhanced Raman spectroscopy substrates

    DOE PAGES

    Jubb, A. M.; Jiao, Y.; Eres, Gyula; ...

    2016-02-15

    Here we demonstrate large area arrays of elevated gold ellipse dimers with precisely controlled gaps for use as sensitive and highly controllable surface enhanced Raman scattering (SERS) substrates. The significantly enhanced Raman signal observed with SERS arises from both localized and long range plasmonic effects. By controlling the geometry of a SERS substrate, in this case the size and aspect ratio of individual ellipses, the plasmon resonance can be tuned in a broad wavelength range, providing a method for designing the response of SERS substrates at different excitation wavelengths. Plasmon effects exhibited by the elevated gold ellipse dimer substrates aremore » also demonstrated and confirmed through finite difference time domain (FDTD) simulations. A plasmon resonance red shift with an increase of the ellipse aspect ratio is observed, allowing systematic control of the resulting SERS signal intensity. Optimized elevated ellipse dimer substrates with 10±2 nm gaps exhibit uniform SERS enhancement factors on the order of 10 9 for adsorbed p-mercaptoaniline molecules.« less

  18. The development and test of multi-anode microchannel array detector systems. 2: Soft X-ray detectors

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.

    1983-01-01

    The techniques and procedures for producing very-large-format pulse-counting array detector systems for use in forthcoming high-energy astrophysics facilities were defined, and the structures and performance characteristics of high-sensitivity photocathodes for use at soft X-ray wavelengths between 100 and 1 A were determined. The progress made to date in each of these areas are described and the tasks that will be undertaken when the program is continued are summarized.

  19. Characterization of Aluminum Magnesium Alloy Reverse Sensitized via Heat Treatment

    DTIC Science & Technology

    2016-09-01

    been on ships that had seen an unknown cycle of painting - stripping -repainting, so some variation was expected. 16 The exact age and range of...Figure 44. Effect of Temperature on Al-Mg Alloys. Adapted from [9]. d. Other heat treatment techniques – high power diode laser (HPDL) arrays Because...25] B. Baker et. al, "Use of High-Power diode Laser Arrays for Pre- and Post- Weld Heating During Friction Stir Welding of Steels," in Friction

  20. Tungsten trioxide nanoplate array supported platinum as a highly efficient counter electrode for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Song, Dandan; Cui, Peng; Zhao, Xing; Li, Meicheng; Chu, Lihua; Wang, Tianyue; Jiang, Bing

    2015-03-01

    A tungsten trioxide (WO3) nanoplate array is fabricated directly on the FTO/glass substrate and used as a platinum (Pt) nanoscale supporter for a highly efficient and low Pt-consumption counter electrode (CE) in dye-sensitized solar cells (DSCs). A Pt/WO3 composite structure, with Pt nanoparticles having a diameter of 2-3 nm, increases the electrochemical catalytic activity in catalyzing the reduction of triiodide. Accordingly, the power conversion efficiency is increased from less than 1% for WO3 CE and 8.1% for Pt CE, respectively, to 8.9% for Pt/WO3 CE. Moreover, the use of Pt/WO3 CE can dramatically reduce the consumption of scarce Pt material, with a relatively low Pt-loading of ~2 μg cm-2, while maintaining a much better performance. The excellent performance of Pt/WO3 CE is attributed to the efficient electron injection and transport via WO3 supporters, as well as the nanostructure array morphology of WO3 for deposition of fine Pt nanoparticles. This work provides an approach for developing highly catalytic and low-cost Pt based CEs, which also has implications for the development of Pt/WO3 nanoplate arrays for other applications.A tungsten trioxide (WO3) nanoplate array is fabricated directly on the FTO/glass substrate and used as a platinum (Pt) nanoscale supporter for a highly efficient and low Pt-consumption counter electrode (CE) in dye-sensitized solar cells (DSCs). A Pt/WO3 composite structure, with Pt nanoparticles having a diameter of 2-3 nm, increases the electrochemical catalytic activity in catalyzing the reduction of triiodide. Accordingly, the power conversion efficiency is increased from less than 1% for WO3 CE and 8.1% for Pt CE, respectively, to 8.9% for Pt/WO3 CE. Moreover, the use of Pt/WO3 CE can dramatically reduce the consumption of scarce Pt material, with a relatively low Pt-loading of ~2 μg cm-2, while maintaining a much better performance. The excellent performance of Pt/WO3 CE is attributed to the efficient electron injection and transport via WO3 supporters, as well as the nanostructure array morphology of WO3 for deposition of fine Pt nanoparticles. This work provides an approach for developing highly catalytic and low-cost Pt based CEs, which also has implications for the development of Pt/WO3 nanoplate arrays for other applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr06787h

  1. Pulsars Probe the Low-Frequency Gravitational Sky: Pulsar Timing Arrays Basics and Recent Results

    NASA Astrophysics Data System (ADS)

    Tiburzi, Caterina

    2018-03-01

    Pulsar Timing Array experiments exploit the clock-like behaviour of an array of millisecond pulsars, with the goal of detecting low-frequency gravitational waves. Pulsar Timing Array experiments have been in operation over the last decade, led by groups in Europe, Australia, and North America. These experiments use the most sensitive radio telescopes in the world, extremely precise pulsar timing models and sophisticated detection algorithms to increase the sensitivity of Pulsar Timing Arrays. No detection of gravitational waves has been made to date with this technique, but Pulsar Timing Array upper limits already contributed to rule out some models of galaxy formation. Moreover, a new generation of radio telescopes, such as the Five hundred metre Aperture Spherical Telescope and, in particular, the Square Kilometre Array, will offer a significant improvement to the Pulsar Timing Array sensitivity. In this article, we review the basic concepts of Pulsar Timing Array experiments, and discuss the latest results from the established Pulsar Timing Array collaborations.

  2. Multifunctional potentiometric gas sensor array with an integrated temperature control and temperature sensors

    DOEpatents

    Blackburn, Bryan M; Wachsman, Eric D

    2015-05-12

    Embodiments of the subject invention relate to a gas sensor and method for sensing one or more gases. An embodiment incorporates an array of sensing electrodes maintained at similar or different temperatures, such that the sensitivity and species selectivity of the device can be fine tuned between different pairs of sensing electrodes. A specific embodiment pertains to a gas sensor array for monitoring combustion exhausts and/or chemical reaction byproducts. An embodiment of the subject device related to this invention operates at high temperatures and can withstand harsh chemical environments. Embodiments of the device are made on a single substrate. The devices can also be made on individual substrates and monitored individually as if they were part of an array on a single substrate. The device can incorporate sensing electrodes in the same environment, which allows the electrodes to be coplanar and, thus, keep manufacturing costs low. Embodiments of the device can provide improvements to sensitivity, selectivity, and signal interference via surface temperature control.

  3. Crosstalk Reduction for High-Frequency Linear-Array Ultrasound Transducers Using 1–3 Piezocomposites With Pseudo-Random Pillars

    PubMed Central

    Yang, Hao-Chung; Cannata, Jonathan; Williams, Jay; Shung, K. Kirk

    2013-01-01

    The goal of this research was to develop a novel diced 1–3 piezocomposite geometry to reduce pulse–echo ring down and acoustic crosstalk between high-frequency ultrasonic array elements. Two PZT-5H-based 1–3 composites (10 and 15 MHz) of different pillar geometries [square (SQ), 45° triangle (TR), and pseudo-random (PR)] were fabricated and then made into single-element ultrasound transducers. The measured pulse–echo waveforms and their envelopes indicate that the PR composites had the shortest −20-dB pulse length and highest sensitivity among the composites evaluated. Using these composites, 15-MHz array subapertures with a 0.95λ pitch were fabricated to assess the acoustic crosstalk between array elements. The combined electrical and acoustical crosstalk between the nearest array elements of the PR array sub-apertures (−31.8 dB at 15 MHz) was 6.5 and 2.2 dB lower than those of the SQ and the TR array subapertures, respectively. These results demonstrate that the 1–3 piezocomposite with the pseudo-random pillars may be a better choice for fabricating enhanced high-frequency linear-array ultrasound transducers; especially when mechanical dicing is used. PMID:23143580

  4. Perovskite nanoparticle-sensitized Ga 2O 3 nanorod arrays for CO detection at high temperature

    DOE PAGES

    Lin, Hui -Jan; Baltrus, John P.; Gao, Haiyong; ...

    2016-04-04

    Here, noble metal nanoparticles are extensively used for sensitizing metal oxide chemical sensors through the catalytic spillover mechanism. However, due to earth-scarcity and high cost of noble metals, finding replacements presents a great economic benefit. Besides, high temperature and harsh environment sensor applications demand material stability under conditions approaching thermal and chemical stability limits of noble metals. In this study, we employed thermally stable perovskite-type La 0.8Sr 0.2FeO 3 (LSFO) nanoparticle surface decoration on Ga 2O 3 nanorod array gas sensors and discovered an order of magnitude enhanced sensitivity to carbon monoxide at 500 °C. The LSFO nanoparticle catalysts wasmore » of comparable performance to that achieved by Pt nanoparticles, with a much lower weight loading than Pt. Detailed electron microscopy and X-ray photoelectron spectroscopy studies suggested the LSFO nanoparticle sensitization effect is attributed to a spillover-like effect associated with the gas-LSFO-Ga 2O 3 triple-interfaces that spread the negatively charged surface oxygen ions from LSFO nanoparticles surfaces over to β-Ga 2O 3 nanorod surfaces with faster surface CO oxidation reactions.« less

  5. Perovskite Nanoparticle-Sensitized Ga2O3 Nanorod Arrays for CO Detection at High Temperature.

    PubMed

    Lin, Hui-Jan; Baltrus, John P; Gao, Haiyong; Ding, Yong; Nam, Chang-Yong; Ohodnicki, Paul; Gao, Pu-Xian

    2016-04-13

    Noble metal nanoparticles are extensively used for sensitizing metal oxide chemical sensors through the catalytic spillover mechanism. However, due to earth-scarcity and high cost of noble metals, finding replacements presents a great economic benefit. Besides, high temperature and harsh environment sensor applications demand material stability under conditions approaching thermal and chemical stability limits of noble metals. In this study, we employed thermally stable perovskite-type La(0.8)Sr(0.2)FeO3 (LSFO) nanoparticle surface decoration on Ga2O3 nanorod array gas sensors and discovered an order of magnitude enhanced sensitivity to carbon monoxide at 500 °C. The LSFO nanoparticle catalysts was of comparable performance to that achieved by Pt nanoparticles, with a much lower weight loading than Pt. Detailed electron microscopy and X-ray photoelectron spectroscopy studies suggested the LSFO nanoparticle sensitization effect is attributed to a spillover-like effect associated with the gas-LSFO-Ga2O3 triple-interfaces that spread the negatively charged surface oxygen ions from LSFO nanoparticles surfaces over to β-Ga2O3 nanorod surfaces with faster surface CO oxidation reactions.

  6. Simulation of the hybrid Tunka Advanced International Gamma-ray and Cosmic ray Astrophysics (TAIGA)

    NASA Astrophysics Data System (ADS)

    Kunnas, M.; Astapov, I.; Barbashina, N.; Beregnev, S.; Bogdanov, A.; Bogorodskii, D.; Boreyko, V.; Brückner, M.; Budnev, N.; Chiavassa, A.; Chvalaev, O.; Dyachok, A.; Epimakhov, S.; Eremin, T.; Gafarov, A.; Gorbunov, N.; Grebenyuk, V.; Gress, O.; Gress, T.; Grinyuk, A.; Grishin, O.; Horns, D.; Ivanova, A.; Karpov, N.; Kalmykov, N.; Kazarina, Y.; Kindin, V.; Kirichkov, N.; Kiryuhin, S.; Kokoulin, R.; Kompaniets, K.; Konstantinov, E.; Korobchenko, A.; Korosteleva, E.; Kozhin, V.; Kuzmichev, L.; Lenok, V.; Lubsandorzhiev, B.; Lubsandorzhiev, N.; Mirgazov, R.; Mirzoyan, R.; Monkhoev, R.; Nachtigall, R.; Pakhorukov, A.; Panasyuk, M.; Pankov, L.; Perevalov, A.; Petrukhin, A.; Platonov, V.; Poleschuk, V.; Popescu, M.; Popova, E.; Porelli, A.; Porokhovoy, S.; Prosin, V.; Ptuskin, V.; Romanov, V.; Rubtsov, G. I.; Müger; Rybov, E.; Samoliga, V.; Satunin, P.; Saunkin, A.; Savinov, V.; Semeney, Yu; Shaibonov (junior, B.; Silaev, A.; Silaev (junior, A.; Skurikhin, A.; Slunecka, M.; Spiering, C.; Sveshnikova, L.; Tabolenko, V.; Tkachenko, A.; Tkachev, L.; Tluczykont, M.; Veslopopov, A.; Veslopopova, E.; Voronov, D.; Wischnewski, R.; Yashin, I.; Yurin, K.; Zagorodnikov, A.; Zirakashvili, V.; Zurbanov, V.

    2015-08-01

    Up to several 10s of TeV, Imaging Air Cherenkov Telescopes (IACTs) have proven to be the instruments of choice for GeV/TeV gamma-ray astronomy due to their good reconstrucion quality and gamma-hadron separation power. However, sensitive observations at and above 100 TeV require very large effective areas (10 km2 and more), which is difficult and expensive to achieve. The alternative to IACTs are shower front sampling arrays (non-imaging technique or timing-arrays) with a large area and a wide field of view. Such experiments provide good core position, energy and angular resolution, but only poor gamma-hadron separation. Combining both experimental approaches, using the strengths of both techniques, could optimize the sensitivity to the highest energies. The TAIGA project plans to combine the non-imaging HiSCORE [8] array with small (∼10m2) imaging telescopes. This paper covers simulation results of this hybrid approach.

  7. Evaluation of resonating Si cantilevers sputter-deposited with AlN piezoelectric thin films for mass sensing applications

    NASA Astrophysics Data System (ADS)

    Sökmen, Ü.; Stranz, A.; Waag, A.; Ababneh, A.; Seidel, H.; Schmid, U.; Peiner, E.

    2010-06-01

    We report on a micro-machined resonator for mass sensing applications which is based on a silicon cantilever excited with a sputter-deposited piezoelectric aluminium nitride (AlN) thin film actuator. An inductively coupled plasma (ICP) cryogenic dry etching process was applied for the micro-machining of the silicon substrate. A shift in resonance frequency was observed, which was proportional to a mass deposited in an e-beam evaporation process on top. We had a mass sensing limit of 5.2 ng. The measurements from the cantilevers of the two arrays revealed a quality factor of 155-298 and a mass sensitivity of 120.34 ng Hz-1 for the first array, and a quality factor of 130-137 and a mass sensitivity of 104.38 ng Hz-1 for the second array. Furthermore, we managed to fabricate silicon cantilevers, which can be improved for the detection in the picogram range due to a reduction of the geometrical dimensions.

  8. Microfabricated ion trap array

    DOEpatents

    Blain, Matthew G [Albuquerque, NM; Fleming, James G [Albuquerque, NM

    2006-12-26

    A microfabricated ion trap array, comprising a plurality of ion traps having an inner radius of order one micron, can be fabricated using surface micromachining techniques and materials known to the integrated circuits manufacturing and microelectromechanical systems industries. Micromachining methods enable batch fabrication, reduced manufacturing costs, dimensional and positional precision, and monolithic integration of massive arrays of ion traps with microscale ion generation and detection devices. Massive arraying enables the microscale ion traps to retain the resolution, sensitivity, and mass range advantages necessary for high chemical selectivity. The reduced electrode voltage enables integration of the microfabricated ion trap array with on-chip circuit-based rf operation and detection electronics (i.e., cell phone electronics). Therefore, the full performance advantages of the microfabricated ion trap array can be realized in truly field portable, handheld microanalysis systems.

  9. Design and performance of single photon APD focal plane arrays for 3-D LADAR imaging

    NASA Astrophysics Data System (ADS)

    Itzler, Mark A.; Entwistle, Mark; Owens, Mark; Patel, Ketan; Jiang, Xudong; Slomkowski, Krystyna; Rangwala, Sabbir; Zalud, Peter F.; Senko, Tom; Tower, John; Ferraro, Joseph

    2010-08-01

    ×We describe the design, fabrication, and performance of focal plane arrays (FPAs) for use in 3-D LADAR imaging applications requiring single photon sensitivity. These 32 × 32 FPAs provide high-efficiency single photon sensitivity for three-dimensional LADAR imaging applications at 1064 nm. Our GmAPD arrays are designed using a planarpassivated avalanche photodiode device platform with buried p-n junctions that has demonstrated excellent performance uniformity, operational stability, and long-term reliability. The core of the FPA is a chip stack formed by hybridizing the GmAPD photodiode array to a custom CMOS read-out integrated circuit (ROIC) and attaching a precision-aligned GaP microlens array (MLA) to the back-illuminated detector array. Each ROIC pixel includes an active quenching circuit governing Geiger-mode operation of the corresponding avalanche photodiode pixel as well as a pseudo-random counter to capture per-pixel time-of-flight timestamps in each frame. The FPA has been designed to operate at frame rates as high as 186 kHz for 2 μs range gates. Effective single photon detection efficiencies as high as 40% (including all optical transmission and MLA losses) are achieved for dark count rates below 20 kHz. For these planar-geometry diffused-junction GmAPDs, isolation trenches are used to reduce crosstalk due to hot carrier luminescence effects during avalanche events, and we present details of the crosstalk performance for different operating conditions. Direct measurement of temporal probability distribution functions due to cumulative timing uncertainties of the GmAPDs and ROIC circuitry has demonstrated a FWHM timing jitter as low as 265 ps (standard deviation is ~100 ps).

  10. DETECTION OF FAST RADIO TRANSIENTS WITH MULTIPLE STATIONS: A CASE STUDY USING THE VERY LONG BASELINE ARRAY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, David R.; Wagstaff, Kiri L.; Majid, Walid A.

    2011-07-10

    Recent investigations reveal an important new class of transient radio phenomena that occur on submillisecond timescales. Often, transient surveys' data volumes are too large to archive exhaustively. Instead, an online automatic system must excise impulsive interference and detect candidate events in real time. This work presents a case study using data from multiple geographically distributed stations to perform simultaneous interference excision and transient detection. We present several algorithms that incorporate dedispersed data from multiple sites, and report experiments with a commensal real-time transient detection system on the Very Long Baseline Array. We test the system using observations of pulsar B0329+54.more » The multiple-station algorithms enhanced sensitivity for detection of individual pulses. These strategies could improve detection performance for a future generation of geographically distributed arrays such as the Australian Square Kilometre Array Pathfinder and the Square Kilometre Array.« less

  11. Quick and Selective Dual Mode Detection of H2S Gas by Mobile App Employing Silver Nanorods Array.

    PubMed

    Gahlaut, Shashank Kumar; Yadav, Kavita; Sharan, Chandrashekhar; Singh, Jitendra Pratap

    2017-12-19

    Hydrogen sulfide (H 2 S) is a hazardous gas, which not only harms living beings but also poses a significant risk to damage materials placed in culture and art museums, due to its corrosive nature. We demonstrate a novel approach for selective rapid detection of H 2 S gas using silver nanorods (AgNRs) arrays on glass substrates at ambient conditions. The arrays were prepared by glancing angle deposition method. The colorimetric and water wetting properties of as-fabricated arrays were found to be highly sensitive toward the sulfurization, in the presence of H 2 S gas with a minimal concentration in ppm range. The performance of AgNRs as H 2 S gas sensor is investigated by its sensing ability of 5 ppm of gas with an exposure time of only 30 s. We have developed an android-based mobile app to monitor real-time colorimetric detection of H 2 S. The wettability detection has been carried out by a mobile camera. A comparative analysis for different gases reveals the highest sensitivity and selectivity of the array AgNRs toward H 2 S. The rapid detection has also been demonstrated for H 2 S emission from aged wool fabric. Thus, high sensing ability of AgNRs toward H 2 S gas may have potential applications in health monitoring and art conservation.

  12. A Sensitive TLRH Targeted Imaging Technique for Ultrasonic Molecular Imaging

    PubMed Central

    Hu, Xiaowen; Zheng, Hairong; Kruse, Dustin E.; Sutcliffe, Patrick; Stephens, Douglas N.; Ferrara, Katherine W.

    2010-01-01

    The primary goals of ultrasound molecular imaging are the detection and imaging of ultrasound contrast agents (microbubbles), which are bound to specific vascular surface receptors. Imaging methods that can sensitively and selectively detect and distinguish bound microbubbles from freely circulating microbubbles (free microbubbles) and surrounding tissue are critically important for the practical application of ultrasound contrast molecular imaging. Microbubbles excited by low frequency acoustic pulses emit wide-band echoes with a bandwidth extending beyond 20 MHz; we refer to this technique as TLRH (transmission at a low frequency and reception at a high frequency). Using this wideband, transient echo, we have developed and implemented a targeted imaging technique incorporating a multi-frequency co-linear array and the Siemens Antares® imaging system. The multi-frequency co-linear array integrates a center 5.4 MHz array, used to receive echoes and produce radiation force, and two outer 1.5 MHz arrays used to transmit low frequency incident pulses. The targeted imaging technique makes use of an acoustic radiation force sub-sequence to enhance accumulation and a TLRH imaging sub-sequence to detect bound microbubbles. The radiofrequency (RF) data obtained from the TLRH imaging sub-sequence are processsed to separate echo signatures between tissue, free microbubbles, and bound microbubbles. By imaging biotin-coated microbubbles targeted to avidin-coated cellulose tubes, we demonstrate that the proposed method has a high contrast-to-tissue ratio (up to 34 dB) and a high sensitivity to bound microbubbles (with the ratio of echoes from bound microbubbles versus free microbubbles extending up to 23 dB). The effects of the imaging pulse acoustic pressure, the radiation force sub-sequence and the use of various slow-time filters on the targeted imaging quality are studied. The TLRH targeted imaging method is demonstrated in this study to provide sensitive and selective detection of bound microbubbles for ultrasound molecularly-targeted imaging. PMID:20178897

  13. Detection of Volatile Organic Compounds by Self-assembled Monolayer Coated Sensor Array with Concentration-independent Fingerprints

    PubMed Central

    Chang, Ye; Tang, Ning; Qu, Hemi; Liu, Jing; Zhang, Daihua; Zhang, Hao; Pang, Wei; Duan, Xuexin

    2016-01-01

    In this paper, we have modeled and analyzed affinities and kinetics of volatile organic compounds (VOCs) adsorption (and desorption) on various surface chemical groups using multiple self-assembled monolayers (SAMs) functionalized film bulk acoustic resonator (FBAR) array. The high-frequency and micro-scale resonator provides improved sensitivity in the detections of VOCs at trace levels. With the study of affinities and kinetics, three concentration-independent intrinsic parameters (monolayer adsorption capacity, adsorption energy constant and desorption rate) of gas-surface interactions are obtained to contribute to a multi-parameter fingerprint library of VOC analytes. Effects of functional group’s properties on gas-surface interactions are also discussed. The proposed sensor array with concentration-independent fingerprint library shows potential as a portable electronic nose (e-nose) system for VOCs discrimination and gas-sensitive materials selections. PMID:27045012

  14. Generation of miniaturized planar ecombinant antibody arrays using a microcantilever-based printer

    NASA Astrophysics Data System (ADS)

    Petersson, Linn; Berthet Duroure, Nathalie; Auger, Angèle; Dexlin-Mellby, Linda; Borrebaeck, Carl AK; Ait Ikhlef, Ali; Wingren, Christer

    2014-07-01

    Miniaturized (Ø 10 μm), multiplexed (>5-plex), and high-density (>100 000 spots cm-2) antibody arrays will play a key role in generating protein expression profiles in health and disease. However, producing such antibody arrays is challenging, and it is the type and range of available spotters which set the stage. This pilot study explored the use of a novel microspotting tool, BioplumeTM—consisting of an array of micromachined silicon cantilevers with integrated microfluidic channels—to produce miniaturized, multiplexed, and high-density planar recombinant antibody arrays for protein expression profiling which targets crude, directly labelled serum. The results demonstrated that 16-plex recombinant antibody arrays could be produced—based on miniaturized spot features (78.5 um2, Ø 10 μm) at a 7-125-times increased spot density (250 000 spots cm-2), interfaced with a fluorescent-based read-out. This prototype platform was found to display adequate reproducibility (spot-to-spot) and an assay sensitivity in the pM range. The feasibility of the array platform for serum protein profiling was outlined.

  15. A DUAL-BAND MILLIMETER-WAVE KINETIC INDUCTANCE CAMERA FOR THE IRAM 30 m TELESCOPE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monfardini, A.; Benoit, A.; Bideaud, A.

    The Neel IRAM KIDs Array (NIKA) is a fully integrated measurement system based on kinetic inductance detectors (KIDs) currently being developed for millimeter wave astronomy. The instrument includes dual-band optics allowing simultaneous imaging at 150 GHz and 220 GHz. The imaging sensors consist of two spatially separated arrays of KIDs. The first array, mounted on the 150 GHz branch, is composed of 144 lumped-element KIDs. The second array (220 GHz) consists of 256 antenna-coupled KIDs. Each of the arrays is sensitive to a single polarization; the band splitting is achieved by using a grid polarizer. The optics and sensors aremore » mounted in a custom dilution cryostat, with an operating temperature of {approx}70 mK. Electronic readout is realized using frequency multiplexing and a transmission line geometry consisting of a coaxial cable connected in series with the sensor array and a low-noise 4 K amplifier. The dual-band NIKA was successfully tested in 2010 October at the Institute for Millimetric Radio Astronomy (IRAM) 30 m telescope at Pico Veleta, Spain, performing in-line with laboratory predictions. An optical NEP was then calculated to be around 2 x 10{sup -16} W Hz{sup -1/2} (at 1 Hz) while under a background loading of approximately 4 pW pixel{sup -1}. This improvement in comparison with a preliminary run (2009) verifies that NIKA is approaching the target sensitivity for photon-noise limited ground-based detectors. Taking advantage of the larger arrays and increased sensitivity, a number of scientifically relevant faint and extended objects were then imaged including the Galactic Center SgrB2 (FIR1), the radio galaxy Cygnus A, and the NGC1068 Seyfert galaxy. These targets were all observed simultaneously in the 150 GHz and 220 GHz atmospheric windows.« less

  16. Coherent observations of gravitational radiation with LISA and gLISA

    NASA Astrophysics Data System (ADS)

    Tinto, Massimo; de Araujo, José C. N.

    2016-10-01

    The geosynchronous Laser Interferometer Space Antenna (gLISA) is a space-based gravitational wave (GW) mission that, for the past 5 years, has been under joint study at the Jet Propulsion Laboratory; Stanford University; the National Institute for Space Research (I.N.P.E., Brazil); and Space Systems Loral. If flown at the same time as the LISA mission, the two arrays will deliver a joint sensitivity that accounts for the best performance of both missions in their respective parts of the millihertz band. This simultaneous operation will result in an optimally combined sensitivity curve that is "white" from about 3 ×10-3 Hz to 1 Hz, making the two antennas capable of detecting, with high signal-to-noise ratios (SNRs), coalescing black-hole binaries (BHBs) with masses in the range (10 -1 08)M⊙ . Their ability of jointly tracking, with enhanced SNR, signals similar to that observed by the Advanced Laser Interferometer Gravitational Wave Observatory (aLIGO) on September 14, 2015 (the GW150914 event) will result in a larger number of observable small-mass binary black holes and an improved precision of the parameters characterizing these sources. Together, LISA, gLISA and aLIGO will cover, with good sensitivity, the (10-4-1 03) Hz frequency band.

  17. Electromagnetic Sensor Arrays for Nondestructive Evaluation and Robot Control.

    DTIC Science & Technology

    1985-10-31

    flux change for its sensitivity. Instead, it measures the magnetic field itself by using the magnetoresistive effect in a thin film of permalloy ( NiFe ...inductive sensor arrays. Besides devices employing high-permeability magnetic films, this survey also included those based on magneto- resistance and the...Survey.......................7 1. Thin-Film Magnetic Head.................7 2. Thin-Film Magnetoresistive Head ............. 10 3. Summary and

  18. Hyperbranched quasi-1D nanostructures for solid-state dye-sensitized solar cells.

    PubMed

    Passoni, Luca; Ghods, Farbod; Docampo, Pablo; Abrusci, Agnese; Martí-Rujas, Javier; Ghidelli, Matteo; Divitini, Giorgio; Ducati, Caterina; Binda, Maddalena; Guarnera, Simone; Li Bassi, Andrea; Casari, Carlo Spartaco; Snaith, Henry J; Petrozza, Annamaria; Di Fonzo, Fabio

    2013-11-26

    In this work we demonstrate hyperbranched nanostructures, grown by pulsed laser deposition, composed of one-dimensional anatase single crystals assembled in arrays of high aspect ratio hierarchical mesostructures. The proposed growth mechanism relies on a two-step process: self-assembly from the gas phase of amorphous TiO2 clusters in a forest of tree-shaped hierarchical mesostructures with high aspect ratio; oriented crystallization of the branches upon thermal treatment. Structural and morphological characteristics can be optimized to achieve both high specific surface area for optimal dye uptake and broadband light scattering thanks to the microscopic feature size. Solid-state dye sensitized solar cells fabricated with arrays of hyperbranched TiO2 nanostructures on FTO-glass sensitized with D102 dye showed a significant 66% increase in efficiency with respect to a reference mesoporous photoanode and reached a maximum efficiency of 3.96% (among the highest reported for this system). This result was achieved mainly thanks to an increase in photogenerated current directly resulting from improved light harvesting efficiency of the hierarchical photoanode. The proposed photoanode overcomes typical limitations of 1D TiO2 nanostructures applied to ss-DSC and emerges as a promising foundation for next-generation high-efficiency solid-state devices comprosed of dyes, polymers, or quantum dots as sensitizers.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christy, Brian; Anella, Ryan; Lommen, Andrea

    Pulsar timing arrays (PTAs) are a collection of precisely timed millisecond pulsars (MSPs) that can search for gravitational waves (GWs) in the nanohertz frequency range by observing characteristic signatures in the timing residuals. The sensitivity of a PTA depends on the direction of the propagating GW source, the timing accuracy of the pulsars, and the allocation of the available observing time. The goal of this paper is to determine the optimal time allocation strategy among the MSPs in the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) for a single source of GW under a particular set of assumptions. Wemore » consider both an isotropic distribution of sources across the sky and a specific source in the Virgo cluster. This work improves on previous efforts by modeling the effect of intrinsic spin noise for each pulsar. We find that, in general, the array is optimized by maximizing time spent on the best-timed pulsars, with sensitivity improvements typically ranging from a factor of 1.5 to 4.« less

  20. Mapping the fine structure of cortical activity with different micro-ECoG electrode array geometries

    NASA Astrophysics Data System (ADS)

    Wang, Xi; Gkogkidis, C. Alexis; Iljina, Olga; Fiederer, Lukas D. J.; Henle, Christian; Mader, Irina; Kaminsky, Jan; Stieglitz, Thomas; Gierthmuehlen, Mortimer; Ball, Tonio

    2017-10-01

    Objective. Innovations in micro-electrocorticography (µECoG) electrode array manufacturing now allow for intricate designs with smaller contact diameters and/or pitch (i.e. inter-contact distance) down to the sub-mm range. The aims of the present study were: (i) to investigate whether frequency ranges up to 400 Hz can be reproducibly observed in µECoG recordings and (ii) to examine how differences in topographical substructure between these frequency bands and electrode array geometries can be quantified. We also investigated, for the first time, the influence of blood vessels on signal properties and assessed the influence of cortical vasculature on topographic mapping. Approach. The present study employed two µECoG electrode arrays with different contact diameters and inter-contact distances, which were used to characterize neural activity from the somatosensory cortex of minipigs in a broad frequency range up to 400 Hz. The analysed neural data were recorded in acute experiments under anaesthesia during peripheral electrical stimulation. Main results. We observed that µECoG recordings reliably revealed multi-focal cortical somatosensory response patterns, in which response peaks were often less than 1 cm apart and would thus not have been resolvable with conventional ECoG. The response patterns differed by stimulation site and intensity, they were distinct for different frequency bands, and the results of functional mapping proved independent of cortical vascular. Our analysis of different frequency bands exhibited differences in the number of activation peaks in topographical substructures. Notably, signal strength and signal-to-noise ratios differed between the two electrode arrays, possibly due to their different sensitivity for variations in spatial patterns and signal strengths. Significance. Our findings that the geometry of µECoG electrode arrays can strongly influence their recording performance can help to make informed decisions that maybe important in number of clinical contexts, including high-resolution brain mapping, advanced epilepsy diagnostics or brain-machine interfacing.

  1. Sensitivity encoded silicon photomultiplier--a new sensor for high-resolution PET-MRI.

    PubMed

    Schulz, Volkmar; Berker, Yannick; Berneking, Arne; Omidvari, Negar; Kiessling, Fabian; Gola, Alberto; Piemonte, Claudio

    2013-07-21

    Detectors for simultaneous positron emission tomography and magnetic resonance imaging in particular with sub-mm spatial resolution are commonly composed of scintillator crystal arrays, readout via arrays of solid state sensors, such as avalanche photo diodes (APDs) or silicon photomultipliers (SiPMs). Usually a light guide between the crystals and the sensor is used to enable the identification of crystals which are smaller than the sensor elements. However, this complicates crystal identification at the gaps and edges of the sensor arrays. A solution is to use as many sensors as crystals with a direct coupling, which unfortunately increases the complexity and power consumption of the readout electronics. Since 1997, position-sensitive APDs have been successfully used to identify sub-mm crystals. Unfortunately, these devices show a limitation in their time resolution and a degradation of spatial resolution when placed in higher magnetic fields. To overcome these limitations, this paper presents a new sensor concept that extends conventional SiPMs by adding position information via the spatial encoding of the channel sensitivity. The concept allows a direct coupling of high-resolution crystal arrays to the sensor with a reduced amount of readout channels. The theory of sensitivity encoding is detailed and linked to compressed sensing to compute unique sparse solutions. Two devices have been designed using one- and two-dimensional linear sensitivity encoding with eight and four readout channels, respectively. Flood histograms of both devices show the capability to precisely identify all 4 × 4 LYSO crystals with dimensions of 0.93 × 0.93 × 10 mm(3). For these crystals, the energy and time resolution (MV ± SD) of the devices with one (two)-dimensional encoding have been measured to be 12.3 · (1 ± 0.047)% (13.7 · (1 ± 0.047)%) around 511 keV with a paired coincidence time resolution (full width at half maximum) of 462 · (1 ± 0.054) ps (452 · (1 ± 0.078) ps).

  2. Sensitivity encoded silicon photomultiplier—a new sensor for high-resolution PET-MRI

    NASA Astrophysics Data System (ADS)

    Schulz, Volkmar; Berker, Yannick; Berneking, Arne; Omidvari, Negar; Kiessling, Fabian; Gola, Alberto; Piemonte, Claudio

    2013-07-01

    Detectors for simultaneous positron emission tomography and magnetic resonance imaging in particular with sub-mm spatial resolution are commonly composed of scintillator crystal arrays, readout via arrays of solid state sensors, such as avalanche photo diodes (APDs) or silicon photomultipliers (SiPMs). Usually a light guide between the crystals and the sensor is used to enable the identification of crystals which are smaller than the sensor elements. However, this complicates crystal identification at the gaps and edges of the sensor arrays. A solution is to use as many sensors as crystals with a direct coupling, which unfortunately increases the complexity and power consumption of the readout electronics. Since 1997, position-sensitive APDs have been successfully used to identify sub-mm crystals. Unfortunately, these devices show a limitation in their time resolution and a degradation of spatial resolution when placed in higher magnetic fields. To overcome these limitations, this paper presents a new sensor concept that extends conventional SiPMs by adding position information via the spatial encoding of the channel sensitivity. The concept allows a direct coupling of high-resolution crystal arrays to the sensor with a reduced amount of readout channels. The theory of sensitivity encoding is detailed and linked to compressed sensing to compute unique sparse solutions. Two devices have been designed using one- and two-dimensional linear sensitivity encoding with eight and four readout channels, respectively. Flood histograms of both devices show the capability to precisely identify all 4 × 4 LYSO crystals with dimensions of 0.93 × 0.93 × 10 mm3. For these crystals, the energy and time resolution (MV ± SD) of the devices with one (two)-dimensional encoding have been measured to be 12.3 · (1 ± 0.047)% (13.7 · (1 ± 0.047)%) around 511 keV with a paired coincidence time resolution (full width at half maximum) of 462 · (1 ± 0.054) ps (452 · (1 ± 0.078) ps).

  3. Characterization of polarimetric and total intensity behaviour of a complete sample of PACO radio sources in the radio bands

    NASA Astrophysics Data System (ADS)

    Galluzzi, V.; Massardi, M.; Bonaldi, A.; Casasola, V.; Gregorini, L.; Trombetti, T.; Burigana, C.; Bonato, M.; De Zotti, G.; Ricci, R.; Stevens, J.; Ekers, R. D.; Bonavera, L.; di Serego Alighieri, S.; Liuzzo, E.; López-Caniego, M.; Paladino, R.; Toffolatti, L.; Tucci, M.; Callingham, J. R.

    2018-03-01

    We present high sensitivity (σP ≃ 0.6 mJy) polarimetric observations in seven bands, from 2.1 to 38 GHz, of a complete sample of 104 compact extragalactic radio sources brighter than 200 mJy at 20 GHz. Polarization measurements in six bands, in the range 5.5-38 GHz, for 53 of these objects were reported by Galluzzi et al. We have added new measurements in the same six bands for another 51 sources and measurements at 2.1 GHz for the full sample of 104 sources. Also, the previous measurements at 18, 24, 33, and 38 GHz were re-calibrated using the updated model for the flux density absolute calibrator, PKS1934-638, not available for the earlier analysis. The observations, carried out with the Australia Telescope Compact Array, achieved a 90 per cent detection rate (at 5σ) in polarization. 89 of our sources have a counterpart in the 72-231 MHz GLEAM (GaLactic and Extragalactic All-sky Murchison Widefield Array) survey, providing an unparalleled spectral coverage of 2.7 decades of frequency for these sources. While the total intensity data from 5.5 to 38 GHz could be interpreted in terms of single component emission, a joint analysis of more extended total intensity spectra presented here, and of the polarization spectra, reveals that over 90 per cent of our sources show clear indications of at least two emission components. We interpret this as an evidence of recurrent activity. Our high sensitivity polarimetry has allowed a 5σ detection of the weak circular polarization for ˜ 38 per cent of the data set, and a deeper estimate of 20 GHz polarization source counts than has been possible so far.

  4. Highly reproducible and sensitive silver nanorod array for the rapid detection of Allura Red in candy

    NASA Astrophysics Data System (ADS)

    Yao, Yue; Wang, Wen; Tian, Kangzhen; Ingram, Whitney Marvella; Cheng, Jie; Qu, Lulu; Li, Haitao; Han, Caiqin

    2018-04-01

    Allura Red (AR) is a highly stable synthetic red azo dye, which is widely used in the food industry to dye food and increase its attraction to consumers. However, the excessive consumption of AR can result in adverse health effects to humans. Therefore, a highly reproducible silver nanorod (AgNR) array was developed for surface enhanced Raman scattering (SERS) detection of AR in candy. The relative standard deviation (RSD) of AgNR substrate obtained from the same batch and different batches were 5.7% and 11.0%, respectively, demonstrating the high reproducibility. Using these highly reproducible AgNR arrays as the SERS substrates, AR was detected successfully, and its characteristic peaks were assigned by the density function theory (DFT) calculation. The limit of detection (LOD) of AR was determined to be 0.05 mg/L with a wide linear range of 0.8-100 mg/L. Furthermore, the AgNR SERS arrays can detect AR directly in different candy samples within 3 min without any complicated pretreatment. These results suggest the AgNR array can be used for rapid and qualitative SERS detection of AR, holding a great promise for expanding SERS application in food safety control field.

  5. Inkjet printing of nanoporous gold electrode arrays on cellulose membranes for high-sensitive paper-like electrochemical oxygen sensors using ionic liquid electrolytes.

    PubMed

    Hu, Chengguo; Bai, Xiaoyun; Wang, Yingkai; Jin, Wei; Zhang, Xuan; Hu, Shengshui

    2012-04-17

    A simple approach to the mass production of nanoporous gold electrode arrays on cellulose membranes for electrochemical sensing of oxygen using ionic liquid (IL) electrolytes was established. The approach, combining the inkjet printing of gold nanoparticle (GNP) patterns with the self-catalytic growth of these patterns into conducting layers, can fabricate hundreds of self-designed gold arrays on cellulose membranes within several hours using an inexpensive inkjet printer. The resulting paper-based gold electrode arrays (PGEAs) had several unique properties as thin-film sensor platforms, including good conductivity, excellent flexibility, high integration, and low cost. The porous nature of PGEAs also allowed the addition of electrolytes from the back cellulose membrane side and controllably produced large three-phase electrolyte/electrode/gas interfaces at the front electrode side. A novel paper-based solid-state electrochemical oxygen (O(2)) sensor was therefore developed using an IL electrolyte, 1-butyl-3-methylimidazolium hexafluorophosphate (BMIMPF(6)). The sensor looked like a piece of paper but possessed high sensitivity for O(2) in a linear range from 0.054 to 0.177 v/v %, along with a low detection limit of 0.0075% and a short response time of less than 10 s, foreseeing its promising applications in developing cost-effective and environment-friendly paper-based electrochemical gas sensors.

  6. Printing 2-dimentional droplet array for single-cell reverse transcription quantitative PCR assay with a microfluidic robot.

    PubMed

    Zhu, Ying; Zhang, Yun-Xia; Liu, Wen-Wen; Ma, Yan; Fang, Qun; Yao, Bo

    2015-04-01

    This paper describes a nanoliter droplet array-based single-cell reverse transcription quantitative PCR (RT-qPCR) assay method for quantifying gene expression in individual cells. By sequentially printing nanoliter-scale droplets on microchip using a microfluidic robot, all liquid-handling operations including cell encapsulation, lysis, reverse transcription, and quantitative PCR with real-time fluorescence detection, can be automatically achieved. The inhibition effect of cell suspension buffer on RT-PCR assay was comprehensively studied to achieve high-sensitivity gene quantification. The present system was applied in the quantitative measurement of expression level of mir-122 in single Huh-7 cells. A wide distribution of mir-122 expression in single cells from 3061 copies/cell to 79998 copies/cell was observed, showing a high level of cell heterogeneity. With the advantages of full-automation in liquid-handling, simple system structure, and flexibility in achieving multi-step operations, the present method provides a novel liquid-handling mode for single cell gene expression analysis, and has significant potentials in transcriptional identification and rare cell analysis.

  7. Printing 2-Dimentional Droplet Array for Single-Cell Reverse Transcription Quantitative PCR Assay with a Microfluidic Robot

    PubMed Central

    Zhu, Ying; Zhang, Yun-Xia; Liu, Wen-Wen; Ma, Yan; Fang, Qun; Yao, Bo

    2015-01-01

    This paper describes a nanoliter droplet array-based single-cell reverse transcription quantitative PCR (RT-qPCR) assay method for quantifying gene expression in individual cells. By sequentially printing nanoliter-scale droplets on microchip using a microfluidic robot, all liquid-handling operations including cell encapsulation, lysis, reverse transcription, and quantitative PCR with real-time fluorescence detection, can be automatically achieved. The inhibition effect of cell suspension buffer on RT-PCR assay was comprehensively studied to achieve high-sensitivity gene quantification. The present system was applied in the quantitative measurement of expression level of mir-122 in single Huh-7 cells. A wide distribution of mir-122 expression in single cells from 3061 copies/cell to 79998 copies/cell was observed, showing a high level of cell heterogeneity. With the advantages of full-automation in liquid-handling, simple system structure, and flexibility in achieving multi-step operations, the present method provides a novel liquid-handling mode for single cell gene expression analysis, and has significant potentials in transcriptional identification and rare cell analysis. PMID:25828383

  8. Low frequency radio synthesis imaging of the galactic center region

    NASA Astrophysics Data System (ADS)

    Nord, Michael Evans

    2005-11-01

    The Very Large Array radio interferometer has been equipped with new receivers to allow observations at 330 and 74 MHz, frequencies much lower than were previously possible with this instrument. Though the VLA dishes are not optimal for working at these frequencies, the system is successful and regular observations are now taken at these frequencies. However, new data analysis techniques are required to work at these frequencies. The technique of self- calibration, used to remove small atmospheric effects at higher frequencies, has been adapted to compensate for ionospheric turbulence in much the same way that adaptive optics is used in the optical regime. Faceted imaging techniques are required to compensate for the noncoplanar image distortion that affects the system due to the wide fields of view at these frequencies (~2.3° at 330 MHz and ~11° at 74 MHz). Furthermore, radio frequency interference is a much larger problem at these frequencies than in higher frequencies and novel approaches to its mitigation are required. These new techniques and new system are allowing for imaging of the radio sky at sensitivities and resolutions orders of magnitude higher than were possible with the low frequency systems of decades past. In this work I discuss the advancements in low frequency data techniques required to make high resolution, high sensitivity, large field of view measurements with the new Very Large Array low frequency system and then detail the results of turning this new system and techniques on the center of our Milky Way Galaxy. At 330 MHz I image the Galactic center region with roughly 10 inches resolution and 1.6 mJy beam -1 sensitivity. New Galactic center nonthermal filaments, new pulsar candidates, and the lowest frequency detection to date of the radio source associated with our Galaxy's central massive black hole result. At 74 MHz I image a region of the sky roughly 40° x 6° with, ~10 feet resolution. I use the high opacity of H II regions at 74 MHz to extract three-dimensional data on the distribution of Galactic cosmic ray emissivity, a measurement possible only at low radio frequencies.

  9. PCR/LDR/universal array platforms for the diagnosis of infectious disease.

    PubMed

    Pingle, Maneesh; Rundell, Mark; Das, Sanchita; Golightly, Linnie M; Barany, Francis

    2010-01-01

    Infectious diseases account for between 14 and 17 million deaths worldwide each year. Accurate and rapid diagnosis of bacterial, fungal, viral, and parasitic infections is therefore essential to reduce the morbidity and mortality associated with these diseases. Classical microbiological and serological methods have long served as the gold standard for diagnosis but are increasingly being replaced by molecular diagnostic methods that demonstrate increased sensitivity and specificity and provide an identification of the etiologic agent in a shorter period of time. PCR/LDR coupled with universal array detection provides a highly sensitive and specific platform for the detection and identification of bacterial and viral infections.

  10. PCR/LDR/Universal Array Platforms for the Diagnosis of Infectious Disease

    PubMed Central

    Pingle, Maneesh; Rundell, Mark; Das, Sanchita; Golightly, Linnie M.; Barany, Francis

    2015-01-01

    Infectious diseases account for between 14 and 17 million deaths worldwide each year. Accurate and rapid diagnosis of bacterial, fungal, viral, and parasitic infections is therefore essential to reduce the morbidity and mortality associated with these diseases. Classical microbiological and serological methods have long served as the gold standard for diagnosis but are increasingly being replaced by molecular diagnostic methods that demonstrate increased sensitivity and specificity and provide an identification of the etiologic agent in a shorter period of time. PCR/LDR coupled with universal array detection provides a highly sensitive and specific platform for the detection and identification of bacterial and viral infections. PMID:20217576

  11. Proposed Array-based Deep Space Network for NASA

    NASA Technical Reports Server (NTRS)

    Bagri, Durgadas S.; Statman, Joseph I.; Gatti, Mark S.

    2007-01-01

    The current assets of the Deep Space Network (DSN) of the National Aeronautics and Space Administration (NASA), especially the 70-m antennas, are aging and becoming less reliable. Furthermore, they are expensive to operate and difficult to upgrade for operation at Ka-band (321 GHz). Replacing them with comparable monolithic large antennas would be expensive. On the other hand, implementation of similar high-sensitivity assets can be achieved economically using an array-based architecture, where sensitivity is measured by G/T, the ratio of antenna gain to system temperature. An array-based architecture would also provide flexibility in operations and allow for easy addition of more G/T whenever required. Therefore, an array-based plan of the next-generation DSN for NASA has been proposed. The DSN array would provide more flexible downlink capability compared to the current DSN for robust telemetry, tracking and command services to the space missions of NASA and its international partners in a cost effective way. Instead of using the array as an element of the DSN and relying on the existing concept of operation, we explore a broader departure in establishing a more modern concept of operations to reduce the operations costs. This paper presents the array-based architecture for the next generation DSN. It includes system block diagram, operations philosophy, user's view of operations, operations management, and logistics like maintenance philosophy and anomaly analysis and reporting. To develop the various required technologies and understand the logistics of building the array-based lowcost system, a breadboard array of three antennas has been built. This paper briefly describes the breadboard array system and its performance.

  12. The First Focused Hard X-Ray Images of the Sun with NuSTAR

    NASA Technical Reports Server (NTRS)

    Grefenstette, Brian W.; Glesener, Lindsay; Kruckner, Sam; Hudson, Hugh; Hannah, Iain G.; Smith, David M.; Vogel, Julia K.; White, Stephen M.; Madsen, Kristin K.; Marsh, Andrew J.; hide

    2016-01-01

    We present results from the first campaign of dedicated solar observations undertaken by the Nuclear Spectroscopic Telescope ARray (NuSTAR) hard X-ray (HXR) telescope. Designed as an astrophysics mission, NuSTAR nonetheless has the capability of directly imaging the Sun at HXR energies (3 keV) with an increase in sensitivity of at least two magnitude compared to current non-focusing telescopes. In this paper we describe the scientific areas where NuSTAR will make major improvements on existing solar measurements. We report on the techniques used to observe the Sun with NuSTAR, their limitations and complications, and the procedures developed to optimize solar data quality derived from our experience with the initial solar observations. These first observations are briefly described, including the measurement of the Fe K-shell lines in a decaying X-class flare, HXR emission from high in the solar corona, and full-disk HXR images of the Sun.

  13. Remote observations with FLUOR and the CHARA Array

    NASA Astrophysics Data System (ADS)

    Merand, Antoine; Birlan, Mirel; Lelu de Brach, Remi; Coudé du Foresto, Vincent

    2004-10-01

    Two years ago, the FLUOR interferometric beam combiner moved from IOTA (Infrared Optical Telescopes Array, Mount Hopkins, AZ) to the Center for High Angular Resolution Astronomy (CHARA) Array (Mount Wilson, CA). Apart from offering the largest baselines in the northern hemisphere, this array can be fully operated remotely to allow observations from a distant place. We present here the automations added to the FLUOR hardware, as well as software modifications made in order to allow us to observe from Paris Observatory. We required the remote service to be as reactive as local observations, implying frequent communications between the instrument and the remote observer. We took particular attention to the available bandwidth and reactivity imposed by the secured connection (Virtual Private Network). The first tests are presented.

  14. Robotic radiosurgery system patient-specific QA for extracranial treatments using the planar ion chamber array and the cylindrical diode array.

    PubMed

    Lin, Mu-Han; Veltchev, Iavor; Koren, Sion; Ma, Charlie; Li, Jinsgeng

    2015-07-08

    Robotic radiosurgery system has been increasingly employed for extracranial treatments. This work is aimed to study the feasibility of a cylindrical diode array and a planar ion chamber array for patient-specific QA with this robotic radiosurgery system and compare their performance. Fiducial markers were implanted in both systems to enable image-based setup. An in-house program was developed to postprocess the movie file of the measurements and apply the beam-by-beam angular corrections for both systems. The impact of noncoplanar delivery was then assessed by evaluating the angles created by the incident beams with respect to the two detector arrangements and cross-comparing the planned dose distribution to the measured ones with/without the angular corrections. The sensitivity of detecting the translational (1-3 mm) and the rotational (1°-3°) delivery errors were also evaluated for both systems. Six extracranial patient plans (PTV 7-137 cm³) were measured with these two systems and compared with the calculated doses. The plan dose distributions were calculated with ray-tracing and the Monte Carlo (MC) method, respectively. With 0.8 by 0.8 mm² diodes, the output factors measured with the cylindrical diode array agree better with the commissioning data. The maximum angular correction for a given beam is 8.2% for the planar ion chamber array and 2.4% for the cylindrical diode array. The two systems demonstrate a comparable sensitivity of detecting the translational targeting errors, while the cylindrical diode array is more sensitive to the rotational targeting error. The MC method is necessary for dose calculations in the cylindrical diode array phantom because the ray-tracing algorithm fails to handle the high-Z diodes and the acrylic phantom. For all the patient plans, the cylindrical diode array/ planar ion chamber array demonstrate 100% / > 92% (3%/3 mm) and > 96% / ~ 80% (2%/2 mm) passing rates. The feasibility of using both systems for robotic radiosurgery system patient-specific QA has been demonstrated. For gamma evaluation, 2%/2 mm criteria for cylindrical diode array and 3%/3 mm criteria for planar ion chamber array are suggested. The customized angular correction is necessary as proven by the improved passing rate, especially with the planar ion chamber array system.

  15. ACTPol: Status and preliminary CMB polarization results from the Atacama Cosmology Telescope

    NASA Astrophysics Data System (ADS)

    Koopman, Brian

    2014-03-01

    The Atacama Cosmology Telescope Polarimeter (ACTPol) is a polarization sensitive upgrade for the Atacama Cosmology Telescope, located at an elevation of 5190 m on Cerro Toco in Chile. In summer 2013, ACTPol achieved first light with one third of the final detector configuration. The remaining two thirds of the detector array will be installed during spring 2014, enabling full sensitivity, high resolution, observations at both 90 GHz and 150 GHz. Using approximately 3,000 transition-edge sensor bolometers, ACTPol will enable measurements of small angular scale polarization anisotropies in the Cosmic Microwave Background (CMB). I will present a status update for the ACTPol receiver and some preliminary results. ACTPol measurements will allow us to probe the spectral index of inflation as well as to constrain early dark energy and the sum of neutrino masses.

  16. The Advanced Gamma-ray Imaging System (AGIS): Camera Electronics Designs

    NASA Astrophysics Data System (ADS)

    Tajima, H.; Buckley, J.; Byrum, K.; Drake, G.; Falcone, A.; Funk, S.; Holder, J.; Horan, D.; Krawczynski, H.; Ong, R.; Swordy, S.; Wagner, R.; Williams, D.

    2008-04-01

    AGIS, a next generation of atmospheric Cherenkov telescope arrays, aims to achieve a sensitivity level of a milliCrab for gamma-ray observations in the energy band of 40 GeV to 100 TeV. Such improvement requires cost reduction of individual components with high reliability in order to equip the order of 100 telescopes necessary to achieve the sensitivity goal. We are exploring several design concepts to reduce the cost of camera electronics while improving their performance. These design concepts include systems based on multi-channel waveform sampling ASIC optimized for AGIS, a system based on IIT (image intensifier tube) for large channel (order of 1 million channels) readout as well as a multiplexed FADC system based on the current VERITAS readout design. Here we present trade-off in the studies of these design concepts.

  17. The Advanced Gamma-ray Imaging System (AGIS): Camera Electronics Designs

    NASA Astrophysics Data System (ADS)

    Tajima, Hiroyasu; Buckley, J.; Byrum, K.; Drake, G.; Falcone, A.; Funk, S.; Holder, J.; Horan, D.; Krawczynski, H.; Ong, R.; Swordy, S.; Wagner, R.; Wakely, S.; Williams, D.; Camera Electronics Working Group; AGIS Collaboration

    2008-03-01

    AGIS, a next generation of atmospheric Cherenkov telescope arrays, aims to achieve a sensitivity level of a milliCrab for gamma-ray observations in in the energy band of 40 GeV to 100 TeV. Such improvement requires cost reduction of individual components with high reliability in order to equip the order of 100 telescopes necessary to achieve the sensitivity goal. We are exploring several design concepts to reduce the cost of camera electronics while improving their performance. These design concepts include systems based on multi-channel waveform sampling ASIC optimized for AGIS, a system based on IIT (image intensifier tube) for large channel (order of 1 million channels) readout as well as a multiplexed FADC system based on the current VERITAS readout design. Here we present trade-off studies of these design concepts.

  18. Fabrication and performance of pressure-sensing device consisting of electret film and organic semiconductor

    NASA Astrophysics Data System (ADS)

    Kodzasa, Takehito; Nobeshima, Daiki; Kuribara, Kazunori; Uemura, Sei; Yoshida, Manabu

    2017-04-01

    We propose a new concept of a pressure-sensitive device that consists of an organic electret film and an organic semiconductor. This device exhibits high sensitivity and selectivity against various types of pressure. The sensing mechanism of this device originates from a modulation of the electric conductivity of the organic semiconductor film induced by the interaction between the semiconductor film and the charged electret film placed face to face. It is expected that a complicated sensor array will be fabricated by using a roll-to-roll manufacturing system, because this device can be prepared by an all-printing and simple lamination process without high-level positional adjustment for printing processes. This also shows that this device with a simple structure is suitable for application to a highly flexible device array sheet for an Internet of Things (IoT) or wearable sensing system.

  19. Detector arrays for photometric measurements at soft X-ray, ultraviolet and visible wavelengths

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.; Mount, G. H.; Bybee, R. L.

    1979-01-01

    The construction and modes of operation of the Multi-Anode Microchannel Array (MAMA) detectors are described, and the designs of spectrometers utilizing them are outlined. MAMA consists of a curved microchannel array plate, an opaque photocathode (peak quantum efficiency of 19% at 1216 A), and a multi-anode (either discrete- or coincidence-anode) readout array. Designed for use in instruments on spaceborne telescopes, MAMA can be operated in a windowless configuration in extreme-ultraviolet and soft X-ray wavelengths, or in a sealed configuration at UV and visible wavelengths. Advantages of MAMA include low applied potential (less than 3.0 kV), high gain (greater than 10 to the 6th electrons/pulse), low sensitivity to high-energy charged particles, and immunity to external magnetic fields of less than 500 Gauss

  20. Infrared techniques for comet observations

    NASA Technical Reports Server (NTRS)

    Hanner, Martha S.; Tokunaga, Alan T.

    1991-01-01

    The infrared spectral region (1-1000 microns) is important for studies of both molecules and solid grains in comets. Infrared astronomy is in the midst of a technological revolution, with the development of sensitive 2D arrays leading to IR cameras and spectrometers with vastly improved sensitivity and resolution. The Halley campaign gave us tantalizing first glimpses of the comet science possible with this new technology, evidenced, for example, by the many new spectral features detected in the infrared. The techniques of photometry, imaging, and spectroscopy are reviewed in this chapter and their status at the time of the Halley observations is described.

  1. The detection of high charge cosmic ray nuclei. [by balloon-borne electronic particle telescope

    NASA Technical Reports Server (NTRS)

    Scarlett, W. R.; Freier, P. S.; Waddington, C. J.

    1975-01-01

    A large-area, light-weight electronic particle telescope was flown on a high altitude balloon in the summer of 1974 to study the heavy nuclei in the cosmic radiation. This telescope consisted of a double Cerenkov-double scintillator array composed of four 1.22 m diameter disk radiators mounted in light diffusion boxes, each looked at by multiple photomultipliers. The impact point of each particle on the scintillation radiators was determined by studying the relative signals observed by three equally spaced peripheral photomultipliers and one mounted at the center of the diffusion boxes. This telescope was flown in a configuration having a geometric factor of 0.45 sq m sr and observed some 5 x 10 to the 4 nuclei with Z exceeding 14 in a 11 hr exposure. The response and sensitivity of this telescope are discussed in detail.

  2. Imaging photomultiplier array with integrated amplifiers and high-speed USB interfacea)

    NASA Astrophysics Data System (ADS)

    Blacksell, M.; Wach, J.; Anderson, D.; Howard, J.; Collis, S. M.; Blackwell, B. D.; Andruczyk, D.; James, B. W.

    2008-10-01

    Multianode photomultiplier tube (PMT) arrays are finding application as convenient high-speed light sensitive devices for plasma imaging. This paper describes the development of a USB-based "plug-n-play" 16-channel PMT camera with 16bits simultaneous acquisition of 16 signal channels at rates up to 2MS/s per channel. The preamplifiers and digital hardware are packaged in a compact housing which incorporates magnetic shielding, on-board generation of the high-voltage PMT bias, an optical filter mount and slits, and F-mount lens adaptor. Triggering, timing, and acquisition are handled by four field-programmable gate arrays (FPGAs) under instruction from a master FPGA controlled by a computer with a LABVIEW interface. We present technical design details and specifications and illustrate performance with high-speed images obtained on the H-1 heliac at the ANU.

  3. Imaging photomultiplier array with integrated amplifiers and high-speed USB interface.

    PubMed

    Blacksell, M; Wach, J; Anderson, D; Howard, J; Collis, S M; Blackwell, B D; Andruczyk, D; James, B W

    2008-10-01

    Multianode photomultiplier tube (PMT) arrays are finding application as convenient high-speed light sensitive devices for plasma imaging. This paper describes the development of a USB-based "plug-n-play" 16-channel PMT camera with 16 bits simultaneous acquisition of 16 signal channels at rates up to 2 MSs per channel. The preamplifiers and digital hardware are packaged in a compact housing which incorporates magnetic shielding, on-board generation of the high-voltage PMT bias, an optical filter mount and slits, and F-mount lens adaptor. Triggering, timing, and acquisition are handled by four field-programmable gate arrays (FPGAs) under instruction from a master FPGA controlled by a computer with a LABVIEW interface. We present technical design details and specifications and illustrate performance with high-speed images obtained on the H-1 heliac at the ANU.

  4. Design of diffractive microlens array integration with focal plane arrays

    NASA Astrophysics Data System (ADS)

    Chen, Sihai; Yi, Xinjian; Li, Yi; He, Miao; Chen, Sixiang; Kong, Lingbin

    2000-10-01

    The IR spectrum from 3 to 5micrometers has numerous applications in both military and civil industries. High performance at high operating temperature is often important in these applications. Conventional Focal Plane Arrays (FPAs) without integration with concentrator such as microlens have poor sensitivity and low signal-to-noise ratio because of their lower fill factor. The binary optics microlens arrays reported in this paper are designed for integration with FPAs. Thus, the FPAs' fill factor, sensitivity, and signal- to-noise ratio can be improved while retaining a given image resolution and optical collection area. In the paper, we discussed the 256(Horizontal)x290(Vertical) microlens arrays designed for a center wavelength of 4micrometers , with 50micrometers (Horizontalx33micrometers (Vertical) quadrate pixel dimension and a speed (F number) of F/1.96. PtSi FPAs were fabricated on the front side of a 400-micrometers -thick Si substrate. The designed diffractive microlens arrays will be etched on the back side of the same wafer in a register fashion and it will be reported in other paper. Considering the diffraction efficiency, 8-phase-level approximation is enough. For the diffraction efficiency of 8-phase-level diffractive microlens reaches 95%. The process only need three mask-level, so we designed and fabricated three masks with the same dimension 4'x4'. Also, a set of fine verniers was designed and fabricated on each mask to allow accurate alignment during the fabrication process. Through a computer simulation, the microlens arrays are nearly diffraction limited, with the diffraction efficiency of 93%, a bit lower than the theoretical value of 95%. Introduction of microlens arrays has the ability to increase the FPAs' fill factor to 100%, while it is only about 21.6% without microlens. To our knowledge, this is the first trial of integration large area microlens arrays with FPAs at home.

  5. Highly sensitive detection of quantal dopamine secretion from pheochromocytoma cells using neural microelectrode array electrodeposited with polypyrrole graphene.

    PubMed

    Wang, Li; Xu, Huiren; Song, Yilin; Luo, Jinping; Wei, Wenjing; Xu, Shengwei; Cai, Xinxia

    2015-04-15

    For the measurement of events of dopamine (DA) release as well as the coordinating neurotransmission in the nerve system, a neural microelectrode array (nMEA) electrodeposited directionally with polypyrrole graphene (PG) nanocomposites was fabricated. The deposited graphene significantly increased the surface area of working electrode, which led to the nMEA (with diameter of 20 μm) with excellent selectivity and sensitivity to DA. Furthermore, PG film modification exhibited low detection limit (4 nM, S/N = 3.21), high sensitivity, and good linearity in the presence of ascorbic acid (e.g., 13933.12 μA mM(-1) cm(-2) in the range of 0.8-10 μM). In particular, the nMEA combined with the patch-clamp system was used to detect quantized DA release from pheochromocytoma cells under 100 mM K(+) stimulation. The nMEA that integrates 60 microelectrodes is novel for detecting a large number of samples simultaneously, which has potential for neural communication research.

  6. Do Changes in Current Flow as a Result of Arrays of Tidal Turbines Have an Effect on Benthic Communities?

    PubMed

    Kregting, Louise; Elsaesser, Bjoern; Kennedy, Robert; Smyth, David; O'Carroll, Jack; Savidge, Graham

    2016-01-01

    Arrays of tidal energy converters have the potential to provide clean renewable energy for future generations. Benthic communities may, however, be affected by changes in current speeds resulting from arrays of tidal converters located in areas characterised by strong currents. Current speed, together with bottom type and depth, strongly influence benthic community distributions; however the interaction of these factors in controlling benthic dynamics in high energy environments is poorly understood. The Strangford Lough Narrows, the location of SeaGen, the world's first single full-scale, grid-compliant tidal energy extractor, is characterised by spatially heterogenous high current flows. A hydrodynamic model was used to select a range of benthic community study sites that had median flow velocities between 1.5-2.4 m/s in a depth range of 25-30 m. 25 sites were sampled for macrobenthic community structure using drop down video survey to test the sensitivity of the distribution of benthic communities to changes in the flow field. A diverse range of species were recorded which were consistent with those for high current flow environments and corresponding to very tide-swept faunal communities in the EUNIS classification. However, over the velocity range investigated, no changes in benthic communities were observed. This suggested that the high physical disturbance associated with the high current flows in the Strangford Narrows reflected the opportunistic nature of the benthic species present with individuals being continuously and randomly affected by turbulent forces and physical damage. It is concluded that during operation, the removal of energy by marine tidal energy arrays in the far-field is unlikely to have a significant effect on benthic communities in high flow environments. The results are of major significance to developers and regulators in the tidal energy industry when considering the environmental impacts for site licences.

  7. Do Changes in Current Flow as a Result of Arrays of Tidal Turbines Have an Effect on Benthic Communities?

    PubMed Central

    Kregting, Louise; Elsaesser, Bjoern; Kennedy, Robert; Smyth, David; O’Carroll, Jack; Savidge, Graham

    2016-01-01

    Arrays of tidal energy converters have the potential to provide clean renewable energy for future generations. Benthic communities may, however, be affected by changes in current speeds resulting from arrays of tidal converters located in areas characterised by strong currents. Current speed, together with bottom type and depth, strongly influence benthic community distributions; however the interaction of these factors in controlling benthic dynamics in high energy environments is poorly understood. The Strangford Lough Narrows, the location of SeaGen, the world’s first single full-scale, grid-compliant tidal energy extractor, is characterised by spatially heterogenous high current flows. A hydrodynamic model was used to select a range of benthic community study sites that had median flow velocities between 1.5–2.4 m/s in a depth range of 25–30 m. 25 sites were sampled for macrobenthic community structure using drop down video survey to test the sensitivity of the distribution of benthic communities to changes in the flow field. A diverse range of species were recorded which were consistent with those for high current flow environments and corresponding to very tide-swept faunal communities in the EUNIS classification. However, over the velocity range investigated, no changes in benthic communities were observed. This suggested that the high physical disturbance associated with the high current flows in the Strangford Narrows reflected the opportunistic nature of the benthic species present with individuals being continuously and randomly affected by turbulent forces and physical damage. It is concluded that during operation, the removal of energy by marine tidal energy arrays in the far-field is unlikely to have a significant effect on benthic communities in high flow environments. The results are of major significance to developers and regulators in the tidal energy industry when considering the environmental impacts for site licences. PMID:27560657

  8. Low-Cost Photolithographic Fabrication of Nanowires and Microfilters for Advanced Bioassay Devices

    PubMed Central

    Doan, Nhi M.; Qiang, Liangliang; Li, Zhe; Vaddiraju, Santhisagar; Bishop, Gregory W.; Rusling, James F.; Papadimitrakopoulos, Fotios

    2015-01-01

    Integrated microfluidic devices with nanosized array electrodes and microfiltration capabilities can greatly increase sensitivity and enhance automation in immunoassay devices. In this contribution, we utilize the edge-patterning method of thin aluminum (Al) films in order to form nano- to micron-sized gaps. Evaporation of high work-function metals (i.e., Au, Ag, etc.) on these gaps, followed by Al lift-off, enables the formation of electrical uniform nanowires from low-cost, plastic-based, photomasks. By replacing Al with chromium (Cr), the formation of high resolution, custom-made photomasks that are ideal for low-cost fabrication of a plurality of array devices were realized. To demonstrate the feasibility of such Cr photomasks, SU-8 micro-pillar masters were formed and replicated into PDMS to produce micron-sized filters with 3–4 µm gaps and an aspect ratio of 3. These microfilters were capable of retaining 6 µm beads within a localized site, while allowing solvent flow. The combination of nanowire arrays and micro-pillar filtration opens new perspectives for rapid R&D screening of various microfluidic-based immunoassay geometries, where analyte pre-concentration and highly sensitive, electrochemical detection can be readily co-localized. PMID:25774709

  9. Highly Tunable Aptasensing Microarrays with Graphene Oxide Multilayers

    NASA Astrophysics Data System (ADS)

    Jung, Yun Kyung; Lee, Taemin; Shin, Eeseul; Kim, Byeong-Su

    2013-11-01

    A highly tunable layer-by-layer (LbL)-assembled graphene oxide (GO) array has been devised for high-throughput multiplex protein sensing. In this array, the fluorescence of different target-bound aptamers labeled with dye is efficiently quenched by GO through fluorescence resonance energy transfer (FRET), and simultaneous multiplex target detection is performed by recovering the quenched fluorescence caused by specific binding between an aptamer and a protein. Thin GO films consisting of 10 bilayers displayed a high quenching ability, yielding over 85% fluorescence quenching with the addition of a 2 μM dye-labeled aptamer. The limit for human thrombin detection in the 6- and 10-bilayered GO array is estimated to be 0.1 and 0.001 nM, respectively, indicating highly tunable nature of LbL assembled GO multilayers in controlling the sensitivity of graphene-based FRET aptasensor. Furthermore, the GO chip could be reused up to four times simply by cleaning it with distilled water.

  10. The Focal Plane Assembly for the Athena X-Ray Integral Field Unit Instrument

    NASA Technical Reports Server (NTRS)

    Jackson, B. D.; Van Weers, H.; van der Kuur, J.; den Hartog, R.; Akamatsu, H.; Argan, A.; Bandler, S. R.; Barbera, M.; Barret, D.; Bruijn, M. P.; hide

    2016-01-01

    This paper summarizes a preliminary design concept for the focal plane assembly of the X-ray Integral Field Unit on the Athena spacecraft, an imaging microcalorimeter that will enable high spectral resolution imaging and point-source spectroscopy. The instrument's sensor array will be a 3840-pixel transition edge sensor (TES) microcalorimeter array, with a frequency domain multiplexed SQUID readout system allowing this large-format sensor array to be operated within the thermal constraints of the instrument's cryogenic system. A second TES detector will be operated in close proximity to the sensor array to detect cosmic rays and secondary particles passing through the sensor array for off-line coincidence detection to identify and reject events caused by the in-orbit high-energy particle background. The detectors, operating at 55 mK, or less, will be thermally isolated from the instrument cryostat's 2 K stage, while shielding and filtering within the FPA will allow the instrument's sensitive sensor array to be operated in the expected environment during both on-ground testing and in-flight operation, including stray light from the cryostat environment, low-energy photons entering through the X-ray aperture, low-frequency magnetic fields, and high-frequency electric fields.

  11. Observations of Transient ISS Floating Potential Variations During High Voltage Solar Array Operations

    NASA Technical Reports Server (NTRS)

    Willis, Emily M.; Minow, Joseph I.; Parker, Linda N.; Pour, Maria Z. A.; Swenson, Charles; Nishikawa, Ken-ichi; Krause, Linda Habash

    2016-01-01

    The International Space Station (ISS) continues to be a world-class space research laboratory after over 15 years of operations, and it has proven to be a fantastic resource for observing spacecraft floating potential variations related to high voltage solar array operations in Low Earth Orbit (LEO). Measurements of the ionospheric electron density and temperature along the ISS orbit and variations in the ISS floating potential are obtained from the Floating Potential Measurement Unit (FPMU). In particular, rapid variations in ISS floating potential during solar array operations on time scales of tens of milliseconds can be recorded due to the 128 Hz sample rate of the Floating Potential Probe (FPP) pro- viding interesting insight into high voltage solar array interaction with the space plasma environment. Comparing the FPMU data with the ISS operations timeline and solar array data provides a means for correlating some of the more complex and interesting transient floating potential variations with mission operations. These complex variations are not reproduced by current models and require further study to understand the underlying physical processes. In this paper we present some of the floating potential transients observed over the past few years along with the relevant space environment parameters and solar array operations data.

  12. Corrections for the geometric distortion of the tube detectors on SANS instruments at ORNL

    DOE PAGES

    He, Lilin; Do, Changwoo; Qian, Shuo; ...

    2014-11-25

    Small-angle neutron scattering instruments at the Oak Ridge National Laboratory's High Flux Isotope Reactor were upgraded in area detectors from the large, single volume crossed-wire detectors originally installed to staggered arrays of linear position-sensitive detectors (LPSDs). The specific geometry of the LPSD array requires that approaches to data reduction traditionally employed be modified. Here, two methods for correcting the geometric distortion produced by the LPSD array are presented and compared. The first method applies a correction derived from a detector sensitivity measurement performed using the same configuration as the samples are measured. In the second method, a solid angle correctionmore » is derived that can be applied to data collected in any instrument configuration during the data reduction process in conjunction with a detector sensitivity measurement collected at a sufficiently long camera length where the geometric distortions are negligible. Furthermore, both methods produce consistent results and yield a maximum deviation of corrected data from isotropic scattering samples of less than 5% for scattering angles up to a maximum of 35°. The results are broadly applicable to any SANS instrument employing LPSD array detectors, which will be increasingly common as instruments having higher incident flux are constructed at various neutron scattering facilities around the world.« less

  13. Real-time terahertz digital holography with a quantum cascade laser

    PubMed Central

    Locatelli, Massimiliano; Ravaro, Marco; Bartalini, Saverio; Consolino, Luigi; Vitiello, Miriam S.; Cicchi, Riccardo; Pavone, Francesco; De Natale, Paolo

    2015-01-01

    Coherent imaging in the THz range promises to exploit the peculiar capabilities of these wavelengths to penetrate common materials like plastics, ceramics, paper or clothes with potential breakthroughs in non-destructive inspection and quality control, homeland security and biomedical applications. Up to now, however, THz coherent imaging has been limited by time-consuming raster scanning, point-like detection schemes and by the lack of adequate coherent sources. Here, we demonstrate real-time digital holography (DH) at THz frequencies exploiting the high spectral purity and the mW output power of a quantum cascade laser combined with the high sensitivity and resolution of a microbolometric array. We show that, in a one-shot exposure, phase and amplitude information of whole samples, either in reflection or in transmission, can be recorded. Furthermore, a 200 times reduced sensitivity to mechanical vibrations and a significantly enlarged field of view are observed, as compared to DH in the visible range. These properties of THz DH enable unprecedented holographic recording of real world dynamic scenes. PMID:26315647

  14. The Green Bank Telescope: Transformational Science for the Next Decade.

    NASA Astrophysics Data System (ADS)

    Wootten, Al; GBO Staff

    2018-01-01

    The Robert C Byrd Green Bank Telescope has met its design goal of providing high-quality observations at 115 GHz. The accurate small beam of the telescope at high frequencies is leveraged by deployment of multi beam receivers. An overview is presented. Observers now have access to the new, 16-pixel, 3-mm Argus receiver, which is providing high-dynamic range images over wide fields for the multitude of spectral lines between 85 and 115 GHz. The successful performance of Argus, and its modular design, demonstrates that receivers with many more pixels could be built for the GBT. A 12 x 12 array of the Argus design would have mapping speeds about nine times faster than Argus without suffering any degradation in performance for the outer pixels in the array. The Observatory plans to build the next-generation Argus instrument (Argus+) with 144-pixels, a footprint 5'x5', and 7" resolution at 110 GHz. The project will be a collaboration between the Green Bank Observatory and university groups, who will supply key components. The key science drivers for Argus+ are studies of molecular filaments in the Milky Way, studies of molecular clouds in nearby galaxies, and the observations of rapidly evolving solar system objects. Observers also have access to MUSTANG-2, a 223-feedhorn bolometer camera which was commissioned on the GBT in spring 2016, and was offered for observations on a shared risk basis, in collaboration with the instrument team, in the 2018A GBO proposal call. Several features distinguish it from its predecessor, MUSTANG: A new, microstrip-coupled detector design yields higher sensitivity and less susceptibility to environmental microphonics. Detectors are feedhorn coupled, with the sum of two linear polarizations measured by a single TES per feed. The instantaneous field of view is 4 arcminutes (vs 42 arcseconds for MUSTANG) The receiver design incorporates a tilted refrigerator and receiver rotator, resulting in much lower dependence of cooling performance on telescope elevation. The detector readout is the first astronomical use of microwave resonators to multiplex TES bolometers. MUSTANG-2 has been developed by a collaboration including the University of Pennsylvania, NIST, NRAO, the University of Michigan, and Cardiff University. A 7-pixel K-band Feed Array covering 18-28 GHz with Dual polarization feeds and a noise temperature < 40-50 K has been available for several years. The array offers an instantaneous bandwidth/beam of 1.8 GHz. Future upgrade concepts under study envision increasing the number of beams by an order of magnitude.

  15. The local surface plasmon resonance property and refractive index sensitivity of metal elliptical nano-ring arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Weihua, E-mail: linwh-whu@hotmail.com; Wang, Qian; Dong, Anhua

    2014-11-15

    In this paper, we systematically investigate the optical property and refractive index sensitivity (RIS) of metal elliptical nano-ring (MENR) arranged in rectangle lattice by finite-difference time-domain method. Eight kinds of considered MENRs are divided into three classes, namely fixed at the same outer size, at the same inner size, and at the same middle size. All MENR arrays show a bonding mode local surface plasmon resonance (LSPR) peak in the near-infrared region under longitudinal and transverse polarizations, and lattice diffraction enhanced LSPR peaks emerge, when the LSPR peak wavelength (LSPRPW) matches the effective lattice constant of the array. The LSPRPWmore » is determined by the charge moving path length, the parallel and cross interactions induced by the stable distributed charges, and the moving charges inter-attraction. High RIS can be achieved by small particle distance arrays composed of MENRs with big inner size and small ring-width. On the other hand, for a MENR array, the comprehensive RIS (including RIS and figure of merit) under transverse polarization is superior to that under longitudinal polarization. Furthermore, on condition that compared arrays are fixed at the same lattice constant, the phenomenon that the RIS of big ring-width MENR arrays may be higher than that of small ring-width MENR arrays only appears in the case of compared arrays with relatively small lattice constant and composed of MENRs fixed at the same inner size simultaneously. Meanwhile, the LSPRPW of the former MENR arrays is also larger than that of the latter MENR arrays. Our systematic results may help experimentalists work with this type of systems.« less

  16. Molecular identification of common Salmonella serovars using multiplex DNA sensor-based suspension array.

    PubMed

    Aydin, Muhsin; Carter-Conger, Jacqueline; Gao, Ning; Gilmore, David F; Ricke, Steven C; Ahn, Soohyoun

    2018-04-01

    Salmonella is one of major foodborne pathogens and the leading cause of foodborne illness-related hospitalizations and deaths. It is critical to develop a sensitive and rapid detection assay that can identify Salmonella to ensure food safety. In this study, a DNA sensor-based suspension array system of high multiplexing ability was developed to identify eight Salmonella serovars commonly associated with foodborne outbreaks to the serotype level. Each DNA sensor was prepared by activating pre-encoded microspheres with oligonucleotide probes that are targeting virulence genes and serovar-specific regions. The mixture of 12 different types of DNA sensors were loaded into a 96-well microplate and used as a 12-plex DNA sensor array platform. DNA isolated from Salmonella was amplified by multiplex polymerase chain reaction (mPCR), and the presence of Salmonella was determined by reading fluorescent signals from hybridization between probes on DNA sensors and fluorescently labeled target DNA using the Bio-Plex® system. The developed multiplex array was able to detect synthetic DNA at the concentration as low as 100 fM and various Salmonella serovars as low as 100 CFU/mL within 1 h post-PCR. Sensitivity of this assay was further improved to 1 CFU/mL with 6-h enrichment. The array system also correctly and specifically identified serotype of tested Salmonella strains without any cross-reactivity with other common foodborne pathogens. Our results indicate the developed DNA sensor suspension array can be a rapid and reliable high-throughput method for simultaneous detection and molecular identification of common Salmonella serotypes.

  17. A Complete Census of the ~7000 Milky Way HII Regions

    NASA Astrophysics Data System (ADS)

    Armentrout, William Paul; Anderson, Loren Dean; Wenger, Trey; Bania, Thomas; Balser, Dana; Dame, Thomas; Dickey, John M.; Dawson, Joanne; Jordan, Christopher H.; McClure-Griffiths, Naomi M.; Andersen, Morten

    2018-01-01

    HII regions are the archetypical tracers of high-mass star formation. Because of their high luminosities, they can be seen across the entire Galactic disk from mid-infrared to radio wavelengths. A uniformly sensitive survey of Galactic HII regions would allow us to constrain the properties of Galactic structure and star formation. We have cataloged over 8000 HII regions and candidates in the WISE Catalog of Galactic HII Regions (astro.phys.wvu.edu/wise), but only 2000 of these are confirmed HII regions to date.To bring us closer to a complete census of high-mass star formation regions in the Milky Way, we have several ongoing observational campaigns. These efforts include (1) Green Bank Telescope radio recombination line (RRL) observations as part of the HII Region Discovery Survey (HRDS); (2) Australia Telescope Compact Array observations of southern HII region candidates in the Southern HII Region Discovery Survey (SHRDS); (3) Green Bank and Gemini North Telescope observations of star formation regions thought to reside at the edge of the star forming disk in the Outer Scutum-Centaurus Arm (OSC); and (4) Very Large Array continuum observations of the faintest HII region candidates in the second and third Galactic quadrants.Together, these observations will detect the RRL emission from all Galactic HII regions with peak cm-wavelength flux densities > 60mJy, establish the outer edge of Galactic high-mass star formation, and determine the number of HII regions in the Galaxy. The HRDS and SHRDS surveys have more than doubled the known population of Galactic HII regions. We use the OSC observations to determine the properties of high-mass star formation in the extreme outer Galaxy and our VLA observations to determine how many of our faint candidates are indeed HII regions. We combine the completeness limits we obtain through these HII region surveys with an HII region population synthesis model to estimate the total number of Galactic HII regions. From this, we predict nearly 7000 HII regions in the Milky Way created by a central star of type B2 or earlier.

  18. Highly sensitive refractive index sensor based on a TiO2 nanowire array.

    PubMed

    Li, Qiu-Shun; Xiang, Dong; Chang, Zhi-Min; Shi, Jian-Guo; Ma, Yao-Hong; Cai, Lei; Feng, Dong; Dong, Wen-Fei

    2017-03-01

    We propose a novel, highly sensitive refractive index (RI) sensor by means of combining the Kretschmann prism with a TiO2 nanowire array and do not use a metallic layer in the Kretschmann configuration. Its RI sensing performance was investigated through measuring different concentrations of sodium chloride solution. Experimental results showed that, with increasing RI of liquid, the resonant wavelength in the reflectance spectrum redshifted gradually in the visible light range. There was a very good linear relationship between resonant wavelength and RI in the range of 1.3330 to 1.3546. More importantly, in contrast to the surface plasmon resonance (SPR) sensor, the interferometric sensors showed higher sensitivity to the external RI. In the case of the transverse magnetic mode, the RI sensitivity is up to 320,700.93 a.u./RIU (refractive index unit) by expression of light intensity, which is 9.55 times that of the SPR sensor. As for the transverse electric mode, it achieves 4371.76 nm/RIU by expression of the resonant wavelength, which is increased by a factor of 1.4 in comparison with the SPR sensor. Moreover, the experimental results have favorable repeatability. A TiO2 nanowire array sensor has also other advantages, such as easy manufacturing, low cost, and in situ determination, etc. To our knowledge, this fact is reported for the first time. It has great potential applications in the field of biological and chemical sensing.

  19. Gold ultra-microelectrode arrays: application to the steady-state voltammetry of hydroxide ion in aqueous solution.

    PubMed

    Ordeig, Olga; Banks, Craig E; Davies, Trevor J; del Campo, F Javier; Muñoz, Francesc Xavier; Compton, Richard G

    2006-05-01

    Gold ultra-microelectrode arrays are used to explore the electrochemical oxidation of hydroxide ions and are shown to be analytical useful. Two types of ultra-microelectrode arrays are used; the first consist of 256 individual electrodes of 5 microm in radius, 170 of which are electrochemically active in a cubic arrangement which are separated from their nearest neighbour by a distance of 100 microm. The second array compromises 2597 electrodes of 2.5 microm in radius and of which 1550 of which are electrochemically active in a hexagonal arrangement separated by the nearest neighbour by 55 microm. Well defined voltammetric waves are found with peak currents proportional to the concentration of hydroxide ions in the range 50 microM to 1 mM. Detection limits of 20 microM using the 170 ultra-microelectrode and 10 microM with the 1550 ultra-microelectrode array are shown to be possible but with a higher sensitivity of 4 mA M(-1) observed using the 1550 ultra-microelectrode array compared to 1.2 mA M(-1) with the 170 ultra-microelectrode array.

  20. Metallic Nanohole Arrays on Fluoropolymer Substrates as Small Label-Free Real-Time Bioprobes

    PubMed Central

    Yang, Jiun-Chan; Ji, Jin; Hogle, James M.; Larson, Dale N.

    2009-01-01

    We describe a nanoplasmonic probing platform that exploits small-dimension (≤ 20 μm2) ordered arrays of subwavelength holes for multiplexed, high spatial resolution, and real-time analysis on biorecognition events. Nanohole arrays are perforated on a super smooth gold surface (roughness RMS < 2.7 Å) attached on a fluoropolymer (FEP) substrate fabricated by a replica technique. The smooth surface of gold provides a superb environment for fabricating nanometer features and uniform immobilization of biomolecules. The refractive index matching between FEP and biological solutions contributes to ∼ 20% improvement on the sensing performance. Spectral studies on a series of small-dimension nanohole arrays from 1 μm2 to 20 μm2 indicate that the plasmonic sensing sensitivity improves as the gold-solution contact area increases. Our results also demonstrate that nanohole arrays with dimension as small as 1 μm2 can be used to effectively detect biomolecular binding events and analyze the binding kinetics. The future scientific opportunities opened by this nanohole platform include highly multiplexed analysis of ligand interactions with membrane proteins on high quality supported lipid bilayers. PMID:18710296

  1. A novel array of chemiluminescence sensors for sensitive, rapid and high-throughput detection of explosive triacetone triperoxide at the scene.

    PubMed

    Li, Xiaohua; Zhang, Zhujun; Tao, Liang

    2013-09-15

    Triacetone triperoxide (TATP) is relatively easy to make and has been used in various terrorist acts. Early but easy detection of TATP is highly desired. We designed a new type sensor array for H2O2. The unique CL sensor array was based on CeO2 nanoparticles' membranes, which have an excellent catalytic effect on the luminol-H2O2 CL reaction in alkaline medium. It exhibits a linear range for the detection of H2O2 from 1.0×10(-8) to 5.0×10(-5)M (R(2)=0.9991) with a 1s response time. The detection limit is 1.0×10(-9)M. Notably, the present approach allows the design of CL sensor array assays in a more simple, time-saving, long-lifetime, high-throughput, and economical approach when compared with conventional CL sensor. It is conceptually different from conventional CL sensor assays. The novel sensor array has been successfully applied for the detection of TATP at the scene. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Highly efficient and completely flexible fiber-shaped dye-sensitized solar cell based on TiO2 nanotube array

    NASA Astrophysics Data System (ADS)

    Lv, Zhibin; Yu, Jiefeng; Wu, Hongwei; Shang, Jian; Wang, Dan; Hou, Shaocong; Fu, Yongping; Wu, Kai; Zou, Dechun

    2012-02-01

    A type of highly efficient completely flexible fiber-shaped solar cell based on TiO2 nanotube array is successfully prepared. Under air mass 1.5G (100 mW cm-2) illumination conditions, the photoelectric conversion efficiency of the solar cell approaches 7%, the highest among all fiber-shaped cells based on TiO2 nanotube arrays and the first completely flexible fiber-shaped DSSC. The fiber-shaped solar cell demonstrates good flexibility, which makes it suitable for modularization using weaving technologies.A type of highly efficient completely flexible fiber-shaped solar cell based on TiO2 nanotube array is successfully prepared. Under air mass 1.5G (100 mW cm-2) illumination conditions, the photoelectric conversion efficiency of the solar cell approaches 7%, the highest among all fiber-shaped cells based on TiO2 nanotube arrays and the first completely flexible fiber-shaped DSSC. The fiber-shaped solar cell demonstrates good flexibility, which makes it suitable for modularization using weaving technologies. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr11532h

  3. Final Technical Report- Radiation Hard Tight Pitch GaInP SPAD Arrays for High Energy Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harmon, Eric S.

    The specialized photodetectors used in high energy physics experiments often need to remain extremely sensitive for years despite radiation induced damage caused by the constant bombardment of high energy particles. To solve this problem, LightSpin Technologies, Inc. in collaboration with Prof. Bradley Cox and the University of Virginia is developing radiation-hard GaInP photodetectors which are projected to be extraordinarily radiation hard, theoretically capable of withstanding a 100,000-fold higher radiation dose than silicon. In this Phase I SBIR project, LightSpin investigated the performance and radiation hardness of fifth generation GaInP SPAD arrays. These fifth generation devices used a new planar processingmore » approach that enables very tight pitch arrays to be produced. High performance devices with SPAD pitches of 11, 15, and 25 μm were successfully demonstrated, which greatly increased the dynamic range and maximum count rate of the devices. High maximum count rates are critical when considering radiation hardness, since radiation damage causes a proportional increase in the dark count rate, causing SPAD arrays with low maximum count rates (large SPAD pitches) to fail. These GaInP SPAD array Photomultiplier Chips™ were irradiated with protons, electrons, and neutrons. Initial irradiation results were disappointing, with the post-irradiation devices exhibiting excessively high dark currents. The degradation was traced to surface leakage currents that were largely eliminated through the use of trenches etched around the exterior of the Photomultiplier Chip™ (not between SPAD elements). A second round of irradiations on Photomultiplier Chips™ with trenches proved substantially more successful, with post-irradiation dark currents remaining relatively low, though dark count rates were observed to increase at the highest doses. Preliminary analysis of the post-irradiation devices is promising … many of the irradiated Photomultiplier Chips™ still exhibit good gain characteristics after 1E12/cm 2 – 1E13/cm 2 doses and have apparent dark count rates that are lower than the apparent dark count rates published for irradiation of silicon SPAD arrays (silicon photomultipliers or SiPMs). Some post-irradiation results are still pending because the samples will still too radioactive to be shipped back from the irradiation facility for post-irradiation testing.« less

  4. Design of a Nested Eight-Channel Sodium and Four-Channel Proton Coil for 7 Tesla Knee Imaging

    PubMed Central

    Brown, Ryan; Madelin, Guillaume; Lattanzi, Riccardo; Chang, Gregory; Regatte, Ravinder R.; Sodickson, Daniel K.; Wiggins, Graham C.

    2012-01-01

    The critical design aim for a dual-tuned sodium/proton coil is to maximize sodium sensitivity and transmit field (B1+) homogeneity while simultaneously providing adequate proton sensitivity and homogeneity. While most dual-frequency coils utilize lossy high-impedance trap circuits or PIN diodes to allow dual-resonance, we explored a nested-coil design for sodium/proton knee imaging at 7T. A stand-alone eight-channel sodium receive array was implemented without standard dual-resonance circuitry to provide improved sodium signal-to-noise ratio (SNR) over a volume coil. A detunable sodium birdcage was added for homogeneous sodium excitation and a four-channel proton transmit-receive array was added to provide anatomical reference imaging and B0 shimming capability. Both modules were implemented with minimal disturbance to the eight-channel sodium array by managing their respective resonances and geometrical arrangement. In vivo sodium SNR was 1.2 to 1.7 times greater in the developed eight-channel array than in a mono-nuclear sodium birdcage coil, while the developed four-channel proton array provided SNR similar to that of a commercial mono-nuclear proton birdcage coil. PMID:22887123

  5. Large-Format AlGaN PIN Photodiode Arrays for UV Images

    NASA Technical Reports Server (NTRS)

    Aslam, Shahid; Franz, David

    2010-01-01

    A large-format hybridized AlGaN photodiode array with an adjustable bandwidth features stray-light control, ultralow dark-current noise to reduce cooling requirements, and much higher radiation tolerance than previous technologies. This technology reduces the size, mass, power, and cost of future ultraviolet (UV) detection instruments by using lightweight, low-voltage AlGaN detectors in a hybrid detector/multiplexer configuration. The solar-blind feature eliminates the need for additional visible light rejection and reduces the sensitivity of the system to stray light that can contaminate observations.

  6. Carbon Nanotube Nanoelectrode Array as an Electronic Chip for Ultrasensitive Label-free DNA Detection

    NASA Technical Reports Server (NTRS)

    Li, Jun; Koehne, Jessica; Chen, Hua; Cassell, Alan; Ng, Hou Tee; Fan, Wendy; Ye, Qi; Han, Jie; Meyyappan, M.

    2003-01-01

    A reliable nanoelectrode array based on vertically aligned multi-walled carbon nanotubes (MWNTs) embedded in SiO2 is used for ultrasensitive DNA detection. Characteristic nanoelectrode behavior is observed using low-density MWNT arrays for measuring both bulk and surface immobilized redox species such as K4Fe(CN)6 and ferrocene derivatives. The open-end of MWNTs are found to present similar properties as graphite edge-plane electrodes with wide potential window, flexible chemical functionalities, and good biocompatibility. BRCA1 related oligonucleotide probes with 18 bp are selectively functionalized at the open ends of the nanotube array and specifically hybridized with oligonucleotide targets incorporated with a polyG tag. The guanine groups are employed as the signal moieties in the electrochemical measurements. R(bpy)(sup 2+, sub 3) mediator is used to further amplify the guanine oxidation signal. The hybridization of sub-attomoles of DNA targets is detected electrochemically by combining the MWNT nanoelectrode array with the R(bpy)(sup 2+, sub 3) amplification mechanism. This technique was employed for direct electrochemical detection of label-free PCR amplicon from a healthy donor through specific hybridization with the BRCA1 probe. The detection limit is estimated to be less than 1000 DNA molecules since abundant guanine bases in the PCR amplicon provides a large signal. This system provides a general platform for rapid molecular diagnostics in applications requiring ultrahigh sensitivity, high-degree of miniaturization, and simple sample preparation, and low-cost operation.

  7. Development of depth encoding small animal PET detectors using dual-ended readout of pixelated scintillator arrays with SiPMs.

    PubMed

    Kuang, Zhonghua; Sang, Ziru; Wang, Xiaohui; Fu, Xin; Ren, Ning; Zhang, Xianming; Zheng, Yunfei; Yang, Qian; Hu, Zhanli; Du, Junwei; Liang, Dong; Liu, Xin; Zheng, Hairong; Yang, Yongfeng

    2018-02-01

    The performance of current small animal PET scanners is mainly limited by the detector performance and depth encoding detectors are required to develop PET scanner to simultaneously achieve high spatial resolution and high sensitivity. Among all depth encoding PET detector approaches, dual-ended readout detector has the advantage to achieve the highest depth of interaction (DOI) resolution and spatial resolution. Silicon photomultiplier (SiPM) is believed to be the photodetector of the future for PET detector due to its excellent properties as compared to the traditional photodetectors such as photomultiplier tube (PMT) and avalanche photodiode (APD). The purpose of this work is to develop high resolution depth encoding small animal PET detector using dual-ended readout of finely pixelated scintillator arrays with SiPMs. Four lutetium-yttrium oxyorthosilicate (LYSO) arrays with 11 × 11 crystals and 11.6 × 11.6 × 20 mm 3 outside dimension were made using ESR, Toray and BaSO 4 reflectors. The LYSO arrays were read out with Hamamatsu 4 × 4 SiPM arrays from both ends. The SiPM array has a pixel size of 3 × 3 mm 2 , 0.2 mm gap in between the pixels and a total active area of 12.6 × 12.6 mm 2 . The flood histograms, DOI resolution, energy resolution and timing resolution of the four detector modules were measured and compared. All crystals can be clearly resolved from the measured flood histograms of all four arrays. The BaSO 4 arrays provide the best and the ESR array provides the worst flood histograms. The DOI resolution obtained from the DOI profiles of the individual crystals of the four array is from 2.1 to 2.35 mm for events with E > 350 keV. The DOI ratio variation among crystals is bigger for the BaSO 4 arrays as compared to both the ESR and Toray arrays. The BaSO 4 arrays provide worse detector based DOI resolution. The photopeak amplitude of the Toray array had the maximum change with depth, it provides the worst energy resolution of 21.3%. The photopeak amplitude of the BaSO 4 array with 80 μm reflector almost doesn't change with depth, it provides the best energy resolution of 12.9%. A maximum timing shift of 1.37 ns to 1.61 ns among the corner and the center crystals in the four arrays was obtained due to the use of resistor network readout. A crystal based timing resolution of 0.68 ns to 0.83 ns and a detector based timing resolution of 1.26 ns to 1.45 ns were obtained for the four detector modules. Four high resolution depth encoding small animal PET detectors were developed using dual-ended readout of pixelated scintillator arrays with SiPMs. The performance results show that those detectors can be used to build a small animal PET scanner to simultaneously achieve uniform high spatial resolution and high sensitivity. © 2017 American Association of Physicists in Medicine.

  8. High Resolution PET with 250 micrometer LSO Detectors and Adaptive Zoom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cherry, Simon R.; Qi, Jinyi

    2012-01-08

    There have been impressive improvements in the performance of small-animal positron emission tomography (PET) systems since their first development in the mid 1990s, both in terms of spatial resolution and sensitivity, which have directly contributed to the increasing adoption of this technology for a wide range of biomedical applications. Nonetheless, current systems still are largely dominated by the size of the scintillator elements used in the detector. Our research predicts that developing scintillator arrays with an element size of 250 {micro}m or smaller will lead to an image resolution of 500 {micro}m when using 18F- or 64Cu-labeled radiotracers, giving amore » factor of 4-8 improvement in volumetric resolution over the highest resolution research systems currently in existence. This proposal had two main objectives: (i) To develop and evaluate much higher resolution and efficiency scintillator arrays that can be used in the future as the basis for detectors in a small-animal PET scanner where the spatial resolution is dominated by decay and interaction physics rather than detector size. (ii) To optimize one such high resolution, high sensitivity detector and adaptively integrate it into the existing microPET II small animal PET scanner as a 'zoom-in' detector that provides higher spatial resolution and sensitivity in a limited region close to the detector face. The knowledge gained from this project will provide valuable information for building future PET systems with a complete ring of very high-resolution detector arrays and also lay the foundations for utilizing high-resolution detectors in combination with existing PET systems for localized high-resolution imaging.« less

  9. Information theory analysis of sensor-array imaging systems for computer vision

    NASA Technical Reports Server (NTRS)

    Huck, F. O.; Fales, C. L.; Park, S. K.; Samms, R. W.; Self, M. O.

    1983-01-01

    Information theory is used to assess the performance of sensor-array imaging systems, with emphasis on the performance obtained with image-plane signal processing. By electronically controlling the spatial response of the imaging system, as suggested by the mechanism of human vision, it is possible to trade-off edge enhancement for sensitivity, increase dynamic range, and reduce data transmission. Computational results show that: signal information density varies little with large variations in the statistical properties of random radiance fields; most information (generally about 85 to 95 percent) is contained in the signal intensity transitions rather than levels; and performance is optimized when the OTF of the imaging system is nearly limited to the sampling passband to minimize aliasing at the cost of blurring, and the SNR is very high to permit the retrieval of small spatial detail from the extensively blurred signal. Shading the lens aperture transmittance to increase depth of field and using a regular hexagonal sensor-array instead of square lattice to decrease sensitivity to edge orientation also improves the signal information density up to about 30 percent at high SNRs.

  10. Robust label-free biosensing using microdisk laser arrays with on-chip references.

    PubMed

    Wondimu, S F; Hippler, M; Hussal, C; Hofmann, A; Krämmer, S; Lahann, J; Kalt, H; Freude, W; Koos, C

    2018-02-05

    Whispering-gallery mode (WGM) microdisk lasers show great potential for highly sensitive label-free detection in large-scale sensor arrays. However, when used in practical applications under normal ambient conditions, these devices suffer from temperature fluctuations and photobleaching. Here we demonstrate that these challenges can be overcome by a novel referencing scheme that allows for simultaneous compensation of temperature drift and photobleaching. The technique relies on reference structures protected by locally dispensed passivation materials, and can be scaled to extended arrays of hundreds of devices. We prove the viability of the concept in a series of experiments, demonstrating robust and sensitive label-free detection over a wide range of constant or continuously varying temperatures. To the best of our knowledge, these measurements represent the first demonstration of biosensing in active WGM devices with simultaneous compensation of both photobleaching and temperature drift.

  11. Core-shell heterojunction of silicon nanowire arrays and carbon quantum dots for photovoltaic devices and self-driven photodetectors.

    PubMed

    Xie, Chao; Nie, Biao; Zeng, Longhui; Liang, Feng-Xia; Wang, Ming-Zheng; Luo, Linbao; Feng, Mei; Yu, Yongqiang; Wu, Chun-Yan; Wu, Yucheng; Yu, Shu-Hong

    2014-04-22

    Silicon nanostructure-based solar cells have lately intrigued intensive interest because of their promising potential in next-generation solar energy conversion devices. Herein, we report a silicon nanowire (SiNW) array/carbon quantum dot (CQD) core-shell heterojunction photovoltaic device by directly coating Ag-assisted chemical-etched SiNW arrays with CQDs. The heterojunction with a barrier height of 0.75 eV exhibited excellent rectifying behavior with a rectification ratio of 10(3) at ±0.8 V in the dark and power conversion efficiency (PCE) as high as 9.10% under AM 1.5G irradiation. It is believed that such a high PCE comes from the improved optical absorption as well as the optimized carrier transfer and collection capability. Furthermore, the heterojunction could function as a high-performance self-driven visible light photodetector operating in a wide switching wavelength with good stability, high sensitivity, and fast response speed. It is expected that the present SiNW array/CQD core-shell heterojunction device could find potential applications in future high-performance optoelectronic devices.

  12. Genome-Wide Mapping of Copy Number Variation in Humans: Comparative Analysis of High Resolution Array Platforms

    PubMed Central

    Haraksingh, Rajini R.; Abyzov, Alexej; Gerstein, Mark; Urban, Alexander E.; Snyder, Michael

    2011-01-01

    Accurate and efficient genome-wide detection of copy number variants (CNVs) is essential for understanding human genomic variation, genome-wide CNV association type studies, cytogenetics research and diagnostics, and independent validation of CNVs identified from sequencing based technologies. Numerous, array-based platforms for CNV detection exist utilizing array Comparative Genome Hybridization (aCGH), Single Nucleotide Polymorphism (SNP) genotyping or both. We have quantitatively assessed the abilities of twelve leading genome-wide CNV detection platforms to accurately detect Gold Standard sets of CNVs in the genome of HapMap CEU sample NA12878, and found significant differences in performance. The technologies analyzed were the NimbleGen 4.2 M, 2.1 M and 3×720 K Whole Genome and CNV focused arrays, the Agilent 1×1 M CGH and High Resolution and 2×400 K CNV and SNP+CGH arrays, the Illumina Human Omni1Quad array and the Affymetrix SNP 6.0 array. The Gold Standards used were a 1000 Genomes Project sequencing-based set of 3997 validated CNVs and an ultra high-resolution aCGH-based set of 756 validated CNVs. We found that sensitivity, total number, size range and breakpoint resolution of CNV calls were highest for CNV focused arrays. Our results are important for cost effective CNV detection and validation for both basic and clinical applications. PMID:22140474

  13. Variable deflection response of sensitive CNT-on-fiber artificial hair sensors from CNT synthesis in high aspect ratio microcavities

    NASA Astrophysics Data System (ADS)

    Slinker, Keith; Maschmann, Matthew R.; Kondash, Corey; Severin, Benjamin; Phillips, David; Dickinson, Benjamin T.; Reich, Gregory; Baur, Jeff

    2015-03-01

    Crickets, locusts, bats, and many other animals detect changes in their environment with distributed arrays of flow-sensitive hairs. Here we discuss the fabrication and characterization of a relatively new class of pore-based, artificial hair sensors that take advantage of the mechanical properties of structural microfibers and the electromechanical properties of self-aligned carbon nanotube arrays to rapidly transduce changes in low speed air flow. The radially aligned nanotubes are able to be synthesized along the length of the fibers inside the high aspect ratio cavity between the fiber surface and the wall of a microcapillary pore. The growth self-positions the fibers within the capillary and forms a conductive path between detection electrodes. As the hair is deflected, nanotubes are compressed to produce a typical resistance change of 1-5% per m/s of air speed which we believe are the highest sensitivities reported for air velocities less than 10 m/s. The quasi-static response of the sensors to point loads is compared to that from the distributed loads of air flow. A plane wave tube is used to measure their dynamic response when perturbed at acoustic frequencies. Correlation of the nanotube height profile inside the capillary to a diffusion transport model suggests that the nanotube arrays can be controllably tapered along the fiber. Like their biological counterparts, many applications can be envisioned for artificial hair sensors by tailoring their individual response and incorporating them into arrays for detecting spatio-temporal flow patterns over rigid surfaces such as aircraft.

  14. Development of a c-scan photoacoutsic imaging probe for prostate cancer detection

    NASA Astrophysics Data System (ADS)

    Valluru, Keerthi S.; Chinni, Bhargava K.; Rao, Navalgund A.; Bhatt, Shweta; Dogra, Vikram S.

    2011-03-01

    Prostate cancer is the second leading cause of death in American men after lung cancer. The current screening procedures include Digital Rectal Exam (DRE) and Prostate Specific Antigen (PSA) test, along with Transrectal Ultrasound (TRUS). All suffer from low sensitivity and specificity in detecting prostate cancer in early stages. There is a desperate need for a new imaging modality. We are developing a prototype transrectal photoacoustic imaging probe to detect prostate malignancies in vivo that promises high sensitivity and specificity. To generate photoacoustic (PA) signals, the probe utilizes a high energy 1064 nm laser that delivers light pulses onto the prostate at 10Hz with 10ns duration through a fiber optic cable. The designed system will generate focused C-scan planar images using acoustic lens technology. A 5 MHz custom fabricated ultrasound sensor array located in the image plane acquires the focused PA signals, eliminating the need for any synthetic aperture focusing. The lens and sensor array design was optimized towards this objective. For fast acquisition times, a custom built 16 channel simultaneous backend electronics PCB has been developed. It consists of a low-noise variable gain amplifier and a 16 channel ADC. Due to the unavailability of 2d ultrasound arrays, in the current implementation several B-scan (depth-resolved) data is first acquired by scanning a 1d array, which is then processed to reconstruct either 3d volumetric images or several C-scan planar images. Experimental results on excised tissue using a in-vitro prototype of this technology are presented to demonstrate the system capability in terms of resolution and sensitivity.

  15. High Sensitivity Long-Wavelength Infrared QWIP Focal Plane Array Based Instrument for Remote Sensing of Icy Satellites

    NASA Technical Reports Server (NTRS)

    Gunapala, S.; Bandara, S.; Ivanov, A.

    2003-01-01

    GaAs based Quantum Well Infrared Photodetector (QWIP) technology has shown remarkable success in advancing low cost, highly uniform, high-operability, large format multi-color focal plane arrays. QWIPs afford greater flexibility than the usual extrinsically doped semiconductor IR detectors. The wavelength of the peak response and cutoff can be continuously tailored over a range wide enough to enable light detection at any wavelength range between 6 and 20 micron. The spectral band-width of these detectors can be tuned from narrow (Deltalambda/lambda is approximately 10%) to wide (Deltalambda/lambda is approximately 40%) allowing various applications. Furthermore, QWIPs offer low cost per pixel and highly uniform large format focal plane arrays due to mature GaAs/AlGaAs growth and processing technologies. The other advantages of GaAs/AlGaAs based QWIPS are higher yield, lower l/f noise and radiation hardness (1.5 Mrad). In this presentation, we will discuss our recent demonstrations of 640x512 pixel narrow-band, broad-band, multi-band focal plane arrays, and the current status of the development of 1024x1024 pixel long-wavelength infrared QWIP focal plane arrays.

  16. Thin polymer etalon arrays for high-resolution photoacoustic imaging

    PubMed Central

    Hou, Yang; Huang, Sheng-Wen; Ashkenazi, Shai; Witte, Russell; O’Donnell, Matthew

    2009-01-01

    Thin polymer etalons are demonstrated as high-frequency ultrasound sensors for three-dimensional (3-D) high-resolution photoacoustic imaging. The etalon, a Fabry-Perot optical resonator, consists of a thin polymer slab sandwiched between two gold layers. It is probed with a scanning continuous-wave (CW) laser for ultrasound array detection. Detection bandwidth of a 20-μm-diam array element exceeds 50 MHz, and the ultrasound sensitivity is comparable to polyvinylidene fluoride (PVDF) equivalents of similar size. In a typical photoacoustic imaging setup, a pulsed laser beam illuminates the imaging target, where optical energy is absorbed and acoustic waves are generated through the thermoelastic effect. An ultrasound detection array is formed by scanning the probing laser beam on the etalon surface in either a 1-D or a 2-D configuration, which produces 2-D or 3-D images, respectively. Axial and lateral resolutions have been demonstrated to be better than 20 μm. Detailed characterizations of the optical and acoustical properties of the etalon, as well as photoacoustic imaging results, suggest that thin polymer etalon arrays can be used as ultrasound detectors for 3-D high-resolution photoacoustic imaging applications. PMID:19123679

  17. The Advanced Gamma-ray Imaging System (AGIS) - Camera Electronics Development

    NASA Astrophysics Data System (ADS)

    Tajima, Hiroyasu; Bechtol, K.; Buehler, R.; Buckley, J.; Byrum, K.; Drake, G.; Falcone, A.; Funk, S.; Hanna, D.; Horan, D.; Humensky, B.; Karlsson, N.; Kieda, D.; Konopelko, A.; Krawczynski, H.; Krennrich, F.; Mukherjee, R.; Ong, R.; Otte, N.; Quinn, J.; Schroedter, M.; Swordy, S.; Wagner, R.; Wakely, S.; Weinstein, A.; Williams, D.; Camera Working Group; AGIS Collaboration

    2010-03-01

    AGIS, a next-generation imaging atmospheric Cherenkov telescope (IACT) array, aims to achieve a sensitivity level of about one milliCrab for gamma-ray observations in the energy band of 50 GeV to 100 TeV. Achieving this level of performance will require on the order of 50 telescopes with perhaps as many as 1M total electronics channels. The larger scale of AGIS requires a very different approach from the currently operating IACTs, with lower-cost and lower-power electronics incorporated into camera modules designed for high reliability and easy maintenance. Here we present the concept and development status of the AGIS camera electronics.

  18. 384 hanging drop arrays give excellent Z-factors and allow versatile formation of co-culture spheroids.

    PubMed

    Hsiao, Amy Y; Tung, Yi-Chung; Qu, Xianggui; Patel, Lalit R; Pienta, Kenneth J; Takayama, Shuichi

    2012-05-01

    We previously reported the development of a simple, user-friendly, and versatile 384 hanging drop array plate for 3D spheroid culture and the importance of utilizing 3D cellular models in anti-cancer drug sensitivity testing. The 384 hanging drop array plate allows for high-throughput capabilities and offers significant improvements over existing 3D spheroid culture methods. To allow for practical 3D cell-based high-throughput screening and enable broader use of the plate, we characterize the robustness of the 384 hanging drop array plate in terms of assay performance and demonstrate the versatility of the plate. We find that the 384 hanging drop array plate performance is robust in fluorescence- and colorimetric-based assays through Z-factor calculations. Finally, we demonstrate different plate capabilities and applications, including: spheroid transfer and retrieval for Janus spheroid formation, sequential addition of cells for concentric layer patterning of different cell types, and culture of a wide variety of cell types. Copyright © 2011 Wiley Periodicals, Inc.

  19. 384 Hanging Drop Arrays Give Excellent Z-factors and Allow Versatile Formation of Co-culture Spheroids

    PubMed Central

    Hsiao, Amy Y.; Tung, Yi-Chung; Qu, Xianggui; Patel, Lalit R.; Pienta, Kenneth J.; Takayama, Shuichi

    2012-01-01

    We previously reported the development of a simple, user-friendly, and versatile 384 hanging drop array plate for 3D spheroid culture and the importance of utilizing 3D cellular models in anti-cancer drug sensitivity testing. The 384 hanging drop array plate allows for high-throughput capabilities and offers significant improvements over existing 3D spheroid culture methods. To allow for practical 3D cell-based high-throughput screening and enable broader use of the plate, we characterize the robustness of the 384 hanging drop array plate in terms of assay performance and demonstrate the versatility of the plate. We find that the 384 hanging drop array plate performance is robust in fluorescence- and colorimetric-based assays through z-factor calculations. Finally, we demonstrate different plate capabilities and applications, including: spheroid transfer and retrieval for Janus spheroid formation, sequential addition of cells for concentric layer patterning of different cell types, and culture of a wide variety of cell types. PMID:22161651

  20. The Next Generation of Airborne Polarimetric Doppler Weather Radar: NCAR/EOL Airborne Phased Array Radar (APAR) Development

    NASA Astrophysics Data System (ADS)

    Moore, James; Lee, Wen-Chau; Loew, Eric; Vivekanandan, Jothiram; Grubišić, Vanda; Tsai, Peisang; Dixon, Mike; Emmett, Jonathan; Lord, Mark; Lussier, Louis; Hwang, Kyuil; Ranson, James

    2017-04-01

    The National Center for Atmospheric Research (NCAR) Earth observing Laboratory (EOL) is entering the third year of preliminary system design studies, engineering prototype testing and project management plan preparation for the development of a novel Airborne Phased Array Radar (APAR). This system being designed by NCAR/EOL will be installed and operated on the NSF/NCAR C-130 aircraft. The APAR system will consist of four removable C-band Active Electronically Scanned Arrays (AESA) strategically placed on the fuselage of the aircraft. Each AESA measures approximately 1.5 x 1.9 m and is composed of 3000 active radiating elements arranged in an array of line replaceable units (LRU) to simplify maintenance. APAR will provide unprecedented observations, and in conjunction with the advanced radar data assimilation schema, will be able to address the key science questions to improve understanding and predictability of significant and high-impact weather APAR, operating at C-band, allows the measurement of 3-D kinematics of the more intense portions of storms (e.g. thunderstorm dynamics and tornadic development, tropical cyclone rainband structure and evolution) with less attenuation compared with current airborne Doppler radar systems. Polarimetric measurements are not available from current airborne tail Doppler radars. However, APAR, with dual-Doppler and dual polarization diversity at a lesser attenuating C-band wavelength, will further advance the understanding of the microphysical processes within a variety of precipitation systems. The radar is sensitive enough to provide high resolution measurements of winter storm dynamics and microphysics. The planned APAR development that would bring the system to operational readiness for research community use aboard the C-130 is expected to take 8 years once major funding support is realized. The authors will review the overall APAR design and provide new details of the system based on our Technical Requirements Document, airflow studies and antenna aperture simulations We will further outline the next steps needed to bring this exceptional tool into full operation.

  1. NHPP for FRBs, Version 1.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawrence, Earl; Wiel, Scott Vander

    This code implements the non-homogeneous poisson process model for estimating the rate of fast radio bursts. It includes modeling terms for the distribution of events in the Universe and the detection sensitivity of the radio telescopes and arrays used in observation. The model is described in LA-UR-16-26261.

  2. Bi-layer kinetic inductance detectors for space observations between 80-120 GHz

    NASA Astrophysics Data System (ADS)

    Catalano, A.; Goupy, J.; le Sueur, H.; Benoit, A.; Bourrion, O.; Calvo, M.; D'addabbo, A.; Dumoulin, L.; Levy-Bertrand, F.; Macías-Pérez, J.; Marnieros, S.; Ponthieu, N.; Monfardini, A.

    2015-08-01

    We have developed lumped element kinetic inductance detectors (LEKIDs) that are sensitive in the frequency band from 80 to 120 GHz. In this work, we take advantage of the so-called proximity effect to reduce the superconducting gap of aluminium (Al), otherwise strongly suppressing the LEKID response for frequencies smaller than 100 GHz. We designed, produced, and optically tested various fully multiplexed arrays based on multi-layer combinations of Al and titanium (Ti). Their sensitivities were measured using a dedicated closed-circle 100 mK dilution cryostat and a sky simulator, which allowed us to reproduce realistic observation conditions. The spectral response was characterised with a Martin-Puplett interferometer up to THz frequencies and had a resolution of 3 GHz. We demonstrate that Ti-Al LEKID can reach an optical sensitivity of about 1.4 × 10-17 W/Hz0.5 (best pixel), or 2.2 × 10-17 W/Hz0.5 when averaged over the whole array. The optical background was set to roughly 0.4 pW per pixel, which is typical for future space observatories in this particular band. The performance is close to a sensitivity of twice the CMB photon noise limit at 100 GHz, which drove the design of the Planck HFI instrument. This figure remains the baseline for the next generation of millimetre-wave space satellites.

  3. Alpha Background Discrimination in the MAJORANA DEMONSTRATOR

    NASA Astrophysics Data System (ADS)

    Gruszko, Julieta; Majorana Collaboration

    2017-09-01

    The Majorana Demonstrator (MJD) searches for neutrinoless double-beta decay of 76Ge using arrays of high-purity germanium detectors. If observed, this process would have implications for grand-unification and the predominance of matter over antimatter in the universe. A problematic background in such large granular detector arrays is posed by alpha particles. In MJD, potential background events that are consistent with energy-degraded alphas originating on the passivated detector surface have been observed. We have studied these events by scanning the passivated surface of a P-type point contact detector like those used in MJD with a collimated alpha source. We observe that surface alpha events exhibit high charge-trapping, with a significant fraction of the trapped charge being re-released slowly. This leads to both a reduced prompt signal and a measurable change in slope of the tail of a recorded pulse. In this contribution we discuss the characteristics of these events and the filter developed to identify the occurrence of this delayed charge recovery, allowing for the efficient rejection of passivated surface alpha events while retaining 99.8% of bulk events. We also discuss the impact of this filter on the sensitivity of MJD. This material is based upon work supported by the U.S. DOE, Office of Science, Office of Nuclear Phys., the Particle Astrophys. and Nuclear Phys. Programs of the NSF, and SURF. Additional support from the NSFGRFP under Grant No. 1256082.

  4. An innovative, highly sensitive receiver system for the Square Kilometre Array Mid Radio Telescope

    NASA Astrophysics Data System (ADS)

    Tan, Gie Han; Lehmensiek, Robert; Billade, Bhushan; Caputa, Krzysztof; Gauffre, Stéphane; Theron, Isak P.; Pantaleev, Miroslav; Ljusic, Zoran; Quertier, Benjamin; Peens-Hough, Adriaan

    2016-07-01

    The Square Kilometre Array (SKA) Project is a global science and engineering project realizing the next-generation radio telescopes operating in the metre and centimetre wavelengths regions. This paper addresses design concepts of the broadband, exceptionally sensitive receivers and reflector antennas deployed in the SKA1-Mid radio telescope to be located in South Africa. SKA1-Mid (350 MHz - 13.8 GHz with an option for an upper limit of 24 GHz) will consist of 133 reflector antennas using an unblocked aperture, offset Gregorian configuration with an effective diameter of 15 m. Details on the unblocked aperture Gregorian antennas, low noise front ends and advanced direct digitization receivers, are provided from a system design perspective. The unblocked aperture results in increased aperture efficiency and lower side-lobe levels compared to a traditional on-axis configuration. The low side-lobe level reduces the noise contribution due to ground pick-up but also makes the antenna less susceptible to ground-based RFI sources. The addition of extra shielding on the sub-reflector provides a further reduction of ground pick-up. The optical design of the SKA1-Mid reflector antenna has been tweaked using advanced EM simulation tools in combination with sophisticated models for sky, atmospheric and ground noise contributions. This optimal antenna design in combination with very low noise, partially cryogenic, receivers and wide instantaneous bandwidth provide excellent receiving sensitivity in combination with instrumental flexibility to accommodate a wide range of astronomical observation modes.

  5. Microchannel detector array for X-rays and UV

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.; Bybee, R. L.

    1976-01-01

    Device employs sensitive photoelectric electrodes and solid-state memory, can be used at visible UV and X ray wavelengths, includes nonmagnetic proximity focusing, and is immune to high energy charged-particle background.

  6. Photodiode array for position-sensitive detection using high X-ray flux provided by synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Jucha, A.; Bonin, D.; Dartyge, E.; Flank, A. M.; Fontaine, A.; Raoux, D.

    1984-09-01

    Synchrotron radiation provides a high intensity source over a large range of wavelengths. This is the prominent quality that has laid the foundations of the EXAFS development (Extended X-ray Absorption Fine Structure). EXAFS data can be collected in different ways. A full scan requires 5 to 10 min, compared to the one-day data collection of a conventional Bremsstrahlung X-ray tube. Recently, by using the new photodiode array (R 1024 SFX) manufactured by Reticon, it has been possible to reduce the data collection time to less than 100 ms. The key elements of this new EXAFS method are a dispersive optics combined with a position sensitive detector able to work under very high flux conditions. The total aperture of 2500 μm × 25 μm for each pixel is well suited to spectroscopic applications. Besides its high dynamic range (> 10 4) and its linearity, the rapidity of the readout allows a flux of 10 9-10 10 photons/s over the 1024 sensing elements.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, Yong Kyoung; Center for Biomicrosystems, Korea Institute of Science and Technology, Seoul 136-791; Lee, Sang-Myung

    Combining a highly sensitive sensor platform with highly selective recognition elements is essential for micro/nanotechnology-based electronic nose applications. Particularly, the regeneration sensor surface and its conditions are key issues for practical e-nose applications. We propose a highly sensitive piezoelectric-driven microcantilever array chip with highly selective peptide receptors. By utilizing the peptide receptor, which was discovered by a phase display screening process, we immobilized a dinitrotoluene (DNT) specific peptide as well as a DNT nonspecific peptide on the surface of the cantilever array. The delivery of DNT gas via pressure-driven flow led to a greater instant response of ∼30 Hz, compared tomore » diffusion only (∼15 Hz for 15 h). Using a simple pressure-driven air flow of ∼50 sccm, we confirmed that a ratio of ∼70% of the specific-bounded sites from DNT gas molecules could be regenerated, showing re-usability of the peptide receptor in on-site monitoring for electronic nose applications.« less

  8. Transient Events in Archival Very Large Array Observations of the Galactic Center

    NASA Astrophysics Data System (ADS)

    Chiti, Anirudh; Chatterjee, Shami; Wharton, Robert; Cordes, James; Lazio, T. Joseph W.; Kaplan, David L.; Bower, Geoffrey C.; Croft, Steve

    2016-12-01

    The Galactic center has some of the highest stellar densities in the Galaxy and a range of interstellar scattering properties, which may aid in the detection of new radio-selected transient events. Here, we describe a search for radio transients in the Galactic center, using over 200 hr of archival data from the Very Large Array at 5 and 8.4 GHz. Every observation of Sgr A* from 1985 to 2005 has been searched using an automated processing and detection pipeline sensitive to transients with timescales between 30 s and 5 minutes with a typical detection threshold of ˜100 mJy. Eight possible candidates pass tests to filter false-positives from radio-frequency interference, calibration errors, and imaging artifacts. Two events are identified as promising candidates based on the smoothness of their light curves. Despite the high quality of their light curves, these detections remain suspect due to evidence of incomplete subtraction of the complex structure in the Galactic center, and apparent contingency of one detection on reduction routines. Events of this intensity (˜100 mJy) and duration (˜100 s) are not obviously associated with known astrophysical sources, and no counterparts are found in data at other wavelengths. We consider potential sources, including Galactic center pulsars, dwarf stars, sources like GCRT J1745-3009, and bursts from X-ray binaries. None can fully explain the observed transients, suggesting either a new astrophysical source or a subtle imaging artifact. More sensitive multiwavelength studies are necessary to characterize these events, which, if real, occur with a rate of {14}-12+32 {{hr}}-1 {\\deg }-2 in the Galactic center.

  9. Multi-anode microchannel arrays. [for use in ground-based and spaceborne telescopes

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.; Mount, G. H.; Bybee, R. L.

    1979-01-01

    The Multi-Anode Microchannel Arrays (MAMA's) are a family of photoelectric, photon-counting array detectors being developed for use in instruments on both ground-based and space-borne telescopes. These detectors combine high sensitivity and photometric stability with a high-resolution imaging capability. MAMA detectors can be operated in a windowless configuration at extreme-ultraviolet and soft X-ray wavelengths or in a sealed configuration at ultraviolet and visible wavelengths. Prototype MAMA detectors with up to 512 x 512 pixels are now being tested in the laboratory and telescope operation of a simple (10 x 10)-pixel visible-light detector has been initiated. The construction and modes-of-operation of the MAMA detectors are briefly described and performance data are presented.

  10. Design considerations for high-altitude, long-endurance, microwave-powered aircraft. M.S. Thesis - George Washington Univ., Washington, D.C.

    NASA Technical Reports Server (NTRS)

    Nguyen, H. Q.

    1985-01-01

    The sizing and performance analyses have been conducted in the design of long-endurance, high-altitude airplanes. These airplanes receive power either continuously beamed from a phased array transmitter or intermittently beamed from a dish transmitter. Results are presented for the cases of flight in zero wind speed and nonzero wind speed. Sensitivity studies indicate that the vehicle size is relatively insensitive to changes in the transmitter size. Cost estimates were made using models that excluded the airplane cost. Using a reference payload, results obtained from array and dish configurations were compared. Comparisons showed savings in cost as well as smaller vehicle sizes when an array transmitter was used.

  11. Delta-Doped Back-Illuminated CMOS Imaging Arrays: Progress and Prospects

    NASA Technical Reports Server (NTRS)

    Hoenk, Michael E.; Jones, Todd J.; Dickie, Matthew R.; Greer, Frank; Cunningham, Thomas J.; Blazejewski, Edward; Nikzad, Shouleh

    2009-01-01

    In this paper, we report the latest results on our development of delta-doped, thinned, back-illuminated CMOS imaging arrays. As with charge-coupled devices, thinning and back-illumination are essential to the development of high performance CMOS imaging arrays. Problems with back surface passivation have emerged as critical to the prospects for incorporating CMOS imaging arrays into high performance scientific instruments, just as they did for CCDs over twenty years ago. In the early 1990's, JPL developed delta-doped CCDs, in which low temperature molecular beam epitaxy was used to form an ideal passivation layer on the silicon back surface. Comprising only a few nanometers of highly-doped epitaxial silicon, delta-doping achieves the stability and uniformity that are essential for high performance imaging and spectroscopy. Delta-doped CCDs were shown to have high, stable, and uniform quantum efficiency across the entire spectral range from the extreme ultraviolet through the near infrared. JPL has recently bump-bonded thinned, delta-doped CMOS imaging arrays to a CMOS readout, and demonstrated imaging. Delta-doped CMOS devices exhibit the high quantum efficiency that has become the standard for scientific-grade CCDs. Together with new circuit designs for low-noise readout currently under development, delta-doping expands the potential scientific applications of CMOS imaging arrays, and brings within reach important new capabilities, such as fast, high-sensitivity imaging with parallel readout and real-time signal processing. It remains to demonstrate manufacturability of delta-doped CMOS imaging arrays. To that end, JPL has acquired a new silicon MBE and ancillary equipment for delta-doping wafers up to 200mm in diameter, and is now developing processes for high-throughput, high yield delta-doping of fully-processed wafers with CCD and CMOS imaging devices.

  12. Miniaturized high throughput detection system for capillary array electrophoresis on chip with integrated light emitting diode array as addressed ring-shaped light source.

    PubMed

    Ren, Kangning; Liang, Qionglin; Mu, Xuan; Luo, Guoan; Wang, Yiming

    2009-03-07

    A novel miniaturized, portable fluorescence detection system for capillary array electrophoresis (CAE) on a microfluidic chip was developed, consisting of a scanning light-emitting diode (LED) light source and a single point photoelectric sensor. Without charge coupled detector (CCD), lens, fibers and moving parts, the system was extremely simplified. Pulsed driving of the LED significantly increased the sensitivity, and greatly reduced the power consumption and photobleaching effect. The highly integrated system was robust and easy to use. All the advantages realized the concept of a portable micro-total analysis system (micro-TAS), which could work on a single universal serial bus (USB) port. Compared with traditional CAE detecting systems, the current system could scan the radial capillary array with high scanning rate. An 8-channel CAE of fluorescein isothiocyanate (FITC) labeled arginine (Arg) on chip was demonstrated with this system, resulting in a limit of detection (LOD) of 640 amol.

  13. OBSERVATIONS OF ROTATING RADIO TRANSIENTS WITH THE FIRST STATION OF THE LONG WAVELENGTH ARRAY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, G. B.; Stovall, K.; McCrackan, M.

    2016-11-10

    Rotating radio transients (RRATs) are a subclass of pulsars first identified in 2006 that are detected only in searches for single pulses and not through their time averaged emission. Here, we present the results of observations of 19 RRATs using the first station of the Long Wavelength Array (LWA1) at frequencies between 30 and 88 MHz. The RRATs observed here were first detected in higher frequency pulsar surveys. Of the 19 RRATs observed, two sources were detected and their dispersion measures, periods, pulse profiles, and flux densities are reported and compared to previous higher frequency measurements. We find a lowmore » detection rate (11%), which could be a combination of the lower sensitivity of LWA1 compared to higher frequency telescopes, and the result of scattering by the interstellar medium or a spectral turnover.« less

  14. Magnetoencephalography with a Cs-based high-sensitivity compact atomic magnetometer

    NASA Astrophysics Data System (ADS)

    Sheng, Jingwei; Wan, Shuangai; Sun, Yifan; Dou, Rongshe; Guo, Yuhao; Wei, Kequan; He, Kaiyan; Qin, Jie; Gao, Jia-Hong

    2017-09-01

    In recent years, substantial progress has been made in developing a new generation of magnetoencephalography (MEG) with a spin-exchange relaxation free (SERF)-based atomic magnetometer (AM). An AM employs alkali atoms to detect weak magnetic fields. A compact AM array with high sensitivity is crucial to the design; however, most proposed compact AMs are potassium (K)- or rubidium (Rb)-based with single beam configurations. In the present study, a pump-probe two beam configuration with a Cesium (Cs)-based AM (Cs-AM) is introduced to detect human neuronal magnetic fields. The length of the vapor cell is 4 mm, which can fully satisfy the need of designing a compact sensor array. Compared with state-of-the-art compact AMs, our new Cs-AM has two advantages. First, it can be operated in a SERF regime, requiring much lower heating temperature, which benefits the sensor with a closer distance to scalp due to ease of thermal insulation and less electric heating noise interference. Second, the two-beam configuration in the design can achieve higher sensitivity. It is free of magnetic modulation, which is necessary in one-beam AMs; however, such modulation may cause other interference in multi-channel circumstances. In the frequency band between 10 Hz and 30 Hz, the noise level of the proposed Cs-AM is approximately 10 f T/Hz1/2, which is comparable with state-of-the-art K- or Rb-based compact AMs. The performance of the Cs-AM was verified by measuring human auditory evoked fields (AEFs) in reference to commercial superconducting quantum interference device (SQUID) channels. By using a Cs-AM, we observed a clear peak in AEFs around 100 ms (M100) with a much larger amplitude compared with that of a SQUID, and the temporal profiles of the two devices were in good agreement. The results indicate the possibility of using the compact Cs-AM for MEG recordings, and the current Cs-AM has the potential to be designed for multi-sensor arrays and gradiometers for future neuroscience studies.

  15. Ag-NP@Ge-nanotaper/Si-micropillar ordered arrays as ultrasensitive and uniform surface enhanced Raman scattering substrates

    NASA Astrophysics Data System (ADS)

    Liu, Jing; Meng, Guowen; Li, Zhongbo; Huang, Zhulin; Li, Xiangdong

    2015-10-01

    Surface-enhanced Raman scattering (SERS) is considered to be an excellent candidate for analytical detection schemes, because of its molecular specificity, rapid response and high sensitivity. Here, SERS-substrates of Ag-nanoparticle (Ag-NP) decorated Ge-nanotapers grafted on hexagonally ordered Si-micropillar (denoted as Ag-NP@Ge-nanotaper/Si-micropillar) arrays are fabricated via a combinatorial process of two-step etching to achieve hexagonal Si-micropillar arrays, chemical vapor deposition of flocky Ge-nanotapers on each Si-micropillar and decoration of Ag-NPs onto the Ge-nanotapers through galvanic displacement. With high density three-dimensional (3D) ``hot spots'' created from the large quantities of the neighboring Ag-NPs and large-scale uniform morphology, the hierarchical Ag-NP@Ge-nanotaper/Si-micropillar arrays exhibit strong and reproducible SERS activity. Using our hierarchical 3D SERS-substrates, both methyl parathion (a commonly used pesticide) and PCB-2 (one congener of highly toxic polychlorinated biphenyls) with concentrations down to 10-7 M and 10-5 M have been detected respectively, showing great potential in SERS-based rapid trace-level detection of toxic organic pollutants in the environment.Surface-enhanced Raman scattering (SERS) is considered to be an excellent candidate for analytical detection schemes, because of its molecular specificity, rapid response and high sensitivity. Here, SERS-substrates of Ag-nanoparticle (Ag-NP) decorated Ge-nanotapers grafted on hexagonally ordered Si-micropillar (denoted as Ag-NP@Ge-nanotaper/Si-micropillar) arrays are fabricated via a combinatorial process of two-step etching to achieve hexagonal Si-micropillar arrays, chemical vapor deposition of flocky Ge-nanotapers on each Si-micropillar and decoration of Ag-NPs onto the Ge-nanotapers through galvanic displacement. With high density three-dimensional (3D) ``hot spots'' created from the large quantities of the neighboring Ag-NPs and large-scale uniform morphology, the hierarchical Ag-NP@Ge-nanotaper/Si-micropillar arrays exhibit strong and reproducible SERS activity. Using our hierarchical 3D SERS-substrates, both methyl parathion (a commonly used pesticide) and PCB-2 (one congener of highly toxic polychlorinated biphenyls) with concentrations down to 10-7 M and 10-5 M have been detected respectively, showing great potential in SERS-based rapid trace-level detection of toxic organic pollutants in the environment. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06001j

  16. Structure and properties of nanostructured ZnO arrays and ZnO/Ag nanocomposites fabricated by pulsed electrodeposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kopach, V. R.; Klepikova, K. S.; Klochko, N. P., E-mail: klochko-np@mail.ru

    We investigate the structure, surface morphology, and optical properties of nanostructured ZnO arrays fabricated by pulsed electrodeposition, Ag nanoparticles precipitated from colloidal solutions, and a ZnO/Ag nanocomposite based on them. The electronic and electrical parameters of the ZnO arrays and ZnO/Ag nanocomposites are analyzed by studying the I–V and C–V characteristics. Optimal modes for fabricating the ZnO/Ag heterostructures with the high stability and sensitivity to ultraviolet radiation as promising materials for use in photodetectors, gas sensors, and photocatalysts are determined.

  17. A colorimetric sensor array for detection of triacetone triperoxide vapor.

    PubMed

    Lin, Hengwei; Suslick, Kenneth S

    2010-11-10

    Triacetone triperoxide (TATP), one of the most dangerous primary explosives, has emerged as an explosive of choice for terrorists in recent years. Owing to the lack of UV absorbance, fluorescence, or facile ionization, TATP is extremely difficult to detect directly. Techniques that are able to detect generally require expensive instrumentation, need extensive sample preparation, or cannot detect TATP in the gas phase. Here we report a simple and highly sensitive colorimetric sensor for the detection of TATP vapor with semiquantitative analysis from 50 ppb to 10 ppm. By using a solid acid catalyst to pretreat a gas stream, we have discovered that a colorimetric sensor array of redox sensitive dyes can detect even very low levels of TATP vapor from its acid decomposition products (e.g., H(2)O(2)) with limits of detection (LOD) below 2 ppb (i.e., <0.02% of its saturation vapor pressure). Common potential interferences (e.g., humidity, personal hygiene products, perfume, laundry supplies, volatile organic compounds, etc.) do not generate an array response, and the array can also differentiate TATP from other chemical oxidants (e.g., hydrogen peroxide, bleach, tert-butylhydroperoxide, peracetic acid).

  18. A swimming pool array for ultra high energy showers

    NASA Astrophysics Data System (ADS)

    Yodh, Gaurang B.; Shoup, Anthony; Barwick, Steve; Goodman, Jordan A.

    1992-11-01

    A very preliminary design concept for an array using water Cherenkov counters, built out of commercially available backyard swimming pools, to sample the electromagnetic and muonic components of ultra high energy showers at large lateral distances is presented. The expected performance of the pools is estimated using the observed lateral distributions by scintillator and water Cherenkov arrays at energies above 1019 eV and simulations.

  19. A comprehensive sensitivity analysis of microarray breast cancer classification under feature variability

    PubMed Central

    2009-01-01

    Background Large discrepancies in signature composition and outcome concordance have been observed between different microarray breast cancer expression profiling studies. This is often ascribed to differences in array platform as well as biological variability. We conjecture that other reasons for the observed discrepancies are the measurement error associated with each feature and the choice of preprocessing method. Microarray data are known to be subject to technical variation and the confidence intervals around individual point estimates of expression levels can be wide. Furthermore, the estimated expression values also vary depending on the selected preprocessing scheme. In microarray breast cancer classification studies, however, these two forms of feature variability are almost always ignored and hence their exact role is unclear. Results We have performed a comprehensive sensitivity analysis of microarray breast cancer classification under the two types of feature variability mentioned above. We used data from six state of the art preprocessing methods, using a compendium consisting of eight diferent datasets, involving 1131 hybridizations, containing data from both one and two-color array technology. For a wide range of classifiers, we performed a joint study on performance, concordance and stability. In the stability analysis we explicitly tested classifiers for their noise tolerance by using perturbed expression profiles that are based on uncertainty information directly related to the preprocessing methods. Our results indicate that signature composition is strongly influenced by feature variability, even if the array platform and the stratification of patient samples are identical. In addition, we show that there is often a high level of discordance between individual class assignments for signatures constructed on data coming from different preprocessing schemes, even if the actual signature composition is identical. Conclusion Feature variability can have a strong impact on breast cancer signature composition, as well as the classification of individual patient samples. We therefore strongly recommend that feature variability is considered in analyzing data from microarray breast cancer expression profiling experiments. PMID:19941644

  20. Acceleration of short and long DNA read mapping without loss of accuracy using suffix array.

    PubMed

    Tárraga, Joaquín; Arnau, Vicente; Martínez, Héctor; Moreno, Raul; Cazorla, Diego; Salavert-Torres, José; Blanquer-Espert, Ignacio; Dopazo, Joaquín; Medina, Ignacio

    2014-12-01

    HPG Aligner applies suffix arrays for DNA read mapping. This implementation produces a highly sensitive and extremely fast mapping of DNA reads that scales up almost linearly with read length. The approach presented here is faster (over 20× for long reads) and more sensitive (over 98% in a wide range of read lengths) than the current state-of-the-art mappers. HPG Aligner is not only an optimal alternative for current sequencers but also the only solution available to cope with longer reads and growing throughputs produced by forthcoming sequencing technologies. https://github.com/opencb/hpg-aligner. © The Author 2014. Published by Oxford University Press.

Top