Science.gov

Sample records for high-sensitivity fluorescence hybridization

  1. Cytogenetic analysis using quantitative, high-sensitivity, fluorescence hybridization.

    PubMed Central

    Pinkel, D; Straume, T; Gray, J W

    1986-01-01

    This report describes the use of fluorescence in situ hybridization for chromosome classification and detection of chromosome aberrations. Biotin-labeled DNA was hybridized to target chromosomes and subsequently rendered fluorescent by successive treatments with fluorescein-labeled avidin and biotinylated anti-avidin antibody. Human chromosomes in human-hamster hybrid cell lines were intensely and uniformly stained in metaphase spreads and interphase nuclei when human genomic DNA was used as a probe. Interspecies translocations were detected easily at metaphase. The human-specific fluorescence intensity from cell nuclei and chromosomes was proportional to the amount of target human DNA. Human Y chromosomes were fluorescently stained in metaphase and interphase nuclei by using a 0.8-kilobase DNA probe specific for the Y chromosome. Cells from males were 40 times brighter than those from females. Both Y chromosomal domains were visible in most interphase nuclei of XYY amniocytes. Human 28S ribosomal RNA genes on metaphase chromosomes were distinctly stained by using a 1.5-kilobase DNA probe. Images PMID:3458254

  2. Hybridization chain reaction amplification for highly sensitive fluorescence detection of DNA with dextran coated microarrays.

    PubMed

    Chao, Jie; Li, Zhenhua; Li, Jing; Peng, Hongzhen; Su, Shao; Li, Qian; Zhu, Changfeng; Zuo, Xiaolei; Song, Shiping; Wang, Lianhui; Wang, Lihua

    2016-07-15

    Microarrays of biomolecules hold great promise in the fields of genomics, proteomics, and clinical assays on account of their remarkably parallel and high-throughput assay capability. However, the fluorescence detection used in most conventional DNA microarrays is still limited by sensitivity. In this study, we have demonstrated a novel universal and highly sensitive platform for fluorescent detection of sequence specific DNA at the femtomolar level by combining dextran-coated microarrays with hybridization chain reaction (HCR) signal amplification. Three-dimensional dextran matrix was covalently coated on glass surface as the scaffold to immobilize DNA recognition probes to increase the surface binding capacity and accessibility. DNA nanowire tentacles were formed on the matrix surface for efficient signal amplification by capturing multiple fluorescent molecules in a highly ordered way. By quantifying microscopic fluorescent signals, the synergetic effects of dextran and HCR greatly improved sensitivity of DNA microarrays, with a detection limit of 10fM (1×10(5) molecules). This detection assay could recognize one-base mismatch with fluorescence signals dropped down to ~20%. This cost-effective microarray platform also worked well with samples in serum and thus shows great potential for clinical diagnosis.

  3. Hybridization chain reaction amplification for highly sensitive fluorescence detection of DNA with dextran coated microarrays.

    PubMed

    Chao, Jie; Li, Zhenhua; Li, Jing; Peng, Hongzhen; Su, Shao; Li, Qian; Zhu, Changfeng; Zuo, Xiaolei; Song, Shiping; Wang, Lianhui; Wang, Lihua

    2016-07-15

    Microarrays of biomolecules hold great promise in the fields of genomics, proteomics, and clinical assays on account of their remarkably parallel and high-throughput assay capability. However, the fluorescence detection used in most conventional DNA microarrays is still limited by sensitivity. In this study, we have demonstrated a novel universal and highly sensitive platform for fluorescent detection of sequence specific DNA at the femtomolar level by combining dextran-coated microarrays with hybridization chain reaction (HCR) signal amplification. Three-dimensional dextran matrix was covalently coated on glass surface as the scaffold to immobilize DNA recognition probes to increase the surface binding capacity and accessibility. DNA nanowire tentacles were formed on the matrix surface for efficient signal amplification by capturing multiple fluorescent molecules in a highly ordered way. By quantifying microscopic fluorescent signals, the synergetic effects of dextran and HCR greatly improved sensitivity of DNA microarrays, with a detection limit of 10fM (1×10(5) molecules). This detection assay could recognize one-base mismatch with fluorescence signals dropped down to ~20%. This cost-effective microarray platform also worked well with samples in serum and thus shows great potential for clinical diagnosis. PMID:26922047

  4. A highly sensitive aptasensor for OTA detection based on hybridization chain reaction and fluorescent perylene probe.

    PubMed

    Wang, Bin; Wu, Yuanya; Chen, Yanfen; Weng, Bo; Xu, Liqun; Li, Changming

    2016-07-15

    An optical aptasensor was developed for ultrasensitive detection of ochratoxin A (OTA) based on hybridization chain reaction (HCR) amplification strategy and fluorescent perylene probe (PAPDI)/DNA composites. Dendritic DNA concatamers were synthesized by HCR strategy and modified on magnetic nanoparticles through aptamer as medium. A large amount of PAPDI probe aggregated under the induction of DNA concatamers and caused fluorescence quenching. In the presence of OTA, the PAPDI/DNA composites were released from magnetic nanoparticles due to the strong affinity between aptamer and OTA. In ethanol, PAPDI monomers disaggregated and produced strong fluorescence. The present method displays excellent sensitivity and selectivity towards OTA.

  5. Enzyme-free and label-free fluorescence aptasensing strategy for highly sensitive detection of protein based on target-triggered hybridization chain reaction amplification.

    PubMed

    Wang, Xiuzhong; Jiang, Aiwen; Hou, Ting; Li, Haiyin; Li, Feng

    2015-08-15

    Proteins are of great importance in medical and biological fields. In this paper, a novel fluorescent aptasensing strategy for protein assay has been developed based on target-triggered hybridization chain reaction (HCR) and graphene oxide (GO)-based selective fluorescence quenching. Three DNA probes, a helper DNA probe (HP), hairpin probe 1 (H1) and hairpin probe 2 (H2) are ingeniously designed. In the presence of the target, the aptamer sequences in HP recognize the target to form a target-aptamer complex, which causes the HP conformation change, and then triggers the chain-like assembly of H1 and H2 through the hybridization chain reaction, generating a long chain of HP leading complex of H1 and H2. At last the fluorescence indicator SYBR Green I (SG) binds with the long double strands of the HCR product through both intercalation and minor groove binding. When GO was added into the solutions after HCR, the free H1, H2 and SG would be closely adsorbed onto GO surface via π-π stacking. However, the HCR product cannot be adsorbed on GO surface, thereby the SG bound to HCR product gives a strong fluorescence signal dependent on the concentration of the target. With the use of platelet-derived growth factor BB (PDGF-BB) as the model analyte, this newly designed protocol provides a highly sensitive fluorescence detection of PDGF-BB with a limit of detection down to 1.25 pM, and also exhibit good selectivity and applicability in complex matrixes. Therefore, the proposed aptasensing strategy based on target-triggered hybridization chain reaction amplification should have wide applications in the diagnosis of genetic diseases due to its simplicity, low cost, and high sensitivity at extremely low target concentrations.

  6. Hexagonal cobalt oxyhydroxide-carbon dots hybridized surface: high sensitive fluorescence turn-on probe for monitoring of ascorbic acid in rat brain following brain ischemia.

    PubMed

    Li, Linbo; Wang, Chao; Liu, Kangyu; Wang, Yuhan; Liu, Kun; Lin, Yuqing

    2015-03-17

    In this study, we report a novel and efficient fluorescence probe synthesized by Tris(hydroxymethyl)aminomethane-derived carbon dots (CDs)-modified hexagonal cobalt oxyhydroxide(CoOOH) nanoflakes (Tris-derived CDs-CoOOH) for monitoring of cerebral ascorbic acid (AA) in brain microdialysate. The as-prepared Tris-derived CDs with the fluorescence quantum yield of 7.3% are prepared by a one-step pyrolysis strategy of the sole precursor and used as the signal output. After being hybridized with CoOOH nanoflakes to form Tris-derived CDs-CoOOH, the luminescence of the Tris-derived CDs can be efficiently quenched by CoOOH via fluorescence resonance energy transfer (FRET). Due to the specific redox reaction between the enediol group of AA and hexagonal CoOOH nanoflakes, AA can reduce the hexagonal CoOOH nanoflakes in the Tris-derived CDs-CoOOH and lead to collapse of the hybrized structure, then the release of Tris-derived CDs, and thus finally the fluorescence recovery. Moreover, cobalt ions (II), generated by CoOOH nanoflakes oxidizing AA, almost have no obvious interference on the fluorescence probe, i.e., Tris-derived CDs, which could be ascribed to the surface of Tris-derived CDs containing a few strong chelation groups such as amino/carboxyl/thiol groups, instead of plenty of -OH groups with weak chelation with Co(2+). On the basis of this feature, the Tris-derived CDs-CoOOH fluorescent probe demonstrates a linear range from 100 nM to 20 μM with the detection limit of ∼50 nM, i.e., with an improved sensitivity toward AA detection. Compared with other turn-on fluorescent methods using convenient fluorophore-nitroxide fluorescent probes for detection of AA, the method demonstrated here possesses a facial synthesis route, lower limit of detection, and wider linear range, which validates sensing of AA in the cerebral systems during the calm/ischemia process. This study provides a fluorescence assay for the simple yet facial detection of AA in the cerebral systems and

  7. Highly sensitive gold nanoparticles-based optical sensing of DNA hybridization using bis(8-hydroxyquinoline-5-solphonate)cerium(III) chloride as a novel fluorescence probe.

    PubMed

    Shamsipur, Mojtaba; Memari, Zahra; Ganjali, Mohammad Reza; Norouzi, Parviz; Faridbod, Farnoush

    2016-01-25

    A simple and sensitive method for the detection of DNA hybridization in a homogeneous format was developed, using bis(8-hydroxyquinoline-5-solphonate)cerium(III) chloride (Ce(QS)2Cl) as a novel fluorescent probe. The method is based on fluorescence quenching by gold nanoparticles used as both nanoscafolds for the immobilization of the probe DNA sequence, which is related to Alicyclobacillus acidophilus strain TA-67 16S ribosomal RNA, and nanoquenchers of the Ce(QS)2Cl probe. The probe DNA-functionalized GNPs were synthesized by derivatizing the colloidal gold nanoparticles solution with 3-thiolated 16-base oligonucleotides. Addition of sequence-specific target DNAs (16 bases) into the mixture containing probe DNA-functionalized GNPs and fluorescent probe lead to the quenching of Ce(QS)2Cl fluorescence at 360 nm (λex=270 nm), due to DNA hybridization, the resulting quenched intensity being proportional to the concentration of target DNA. Under optimal conditions of pH 7.4 and Ce(QS)2Cl concentration of 1.0 × 10(-7) M, the linear dynamic range found to be 1.0 × 10(-10)-3.0 × 10(-8) M DNA, with a limit of detection of 7.0 × 10(-11) M. The interaction mechanism for the binding of Ce(QS)2Cl to DNA was studied in detail, and results proved that the interaction mode between Ce(QS)2Cl and DNA is groove binding, with a binding constant of 1.0 × 10(5) M(-1).

  8. A CMOS In-Pixel CTIA High Sensitivity Fluorescence Imager

    PubMed Central

    Murari, Kartikeya; Etienne-Cummings, Ralph; Thakor, Nitish; Cauwenberghs, Gert

    2012-01-01

    Traditionally, charge coupled device (CCD) based image sensors have held sway over the field of biomedical imaging. Complementary metal oxide semiconductor (CMOS) based imagers so far lack sensitivity leading to poor low-light imaging. Certain applications including our work on animal-mountable systems for imaging in awake and unrestrained rodents require the high sensitivity and image quality of CCDs and the low power consumption, flexibility and compactness of CMOS imagers. We present a 132×124 high sensitivity imager array with a 20.1 μm pixel pitch fabricated in a standard 0.5 μ CMOS process. The chip incorporates n-well/p-sub photodiodes, capacitive transimpedance amplifier (CTIA) based in-pixel amplification, pixel scanners and delta differencing circuits. The 5-transistor all-nMOS pixel interfaces with peripheral pMOS transistors for column-parallel CTIA. At 70 fps, the array has a minimum detectable signal of 4 nW/cm2 at a wavelength of 450 nm while consuming 718 μA from a 3.3 V supply. Peak signal to noise ratio (SNR) was 44 dB at an incident intensity of 1 μW/cm2. Implementing 4×4 binning allowed the frame rate to be increased to 675 fps. Alternately, sensitivity could be increased to detect about 0.8 nW/cm2 while maintaining 70 fps. The chip was used to image single cell fluorescence at 28 fps with an average SNR of 32 dB. For comparison, a cooled CCD camera imaged the same cell at 20 fps with an average SNR of 33.2 dB under the same illumination while consuming over a watt. PMID:23136624

  9. Plasmon-controlled fluorescence towards high-sensitivity optical sensing.

    PubMed

    Ray, K; Chowdhury, M H; Zhang, J; Fu, Y; Szmacinski, H; Nowaczyk, K; Lakowicz, J R

    2009-01-01

    Fluorescence spectroscopy is widely used in chemical and biological research. Until recently most of the fluorescence experiments have been performed in the far-field regime. By far-field we imply at least several wavelengths from the fluorescent probe molecule. In recent years there has been growing interest in the interactions of fluorophores with metallic surfaces or particles. Near-field interactions are those occurring within a wavelength distance of an excited fluorophore. The spectral properties of fluorophores can dramatically be altered by near-field interactions with the electron clouds present in metals. These interactions modify the emission in ways not seen in classical fluorescence experiments. Fluorophores in the excited state can create plasmons that radiate into the far-field and fluorophores in the ground state can interact with and be excited by surface plasmons. These reciprocal interactions suggest that the novel optical absorption and scattering properties of metallic nanostructures can be used to control the decay rates, location, and direction of fluorophore emission. We refer to these phenomena as plasmon-controlled fluorescence (PCF). An overview of the recent work on metal-fluorophore interactions is presented. Recent research combining plasmonics and fluorescence suggest that PCF could lead to new classes of experimental procedures, novel probes, bioassays, and devices.

  10. Highly sensitive detection of human papillomavirus type 16 DNA using time-resolved fluorescence microscopy and long lifetime probes

    NASA Astrophysics Data System (ADS)

    Wang, Xue F.; Periasamy, Ammasi; Wodnicki, Pawel; Siadat-Pajouh, M.; Herman, Brian

    1995-04-01

    We have been interested in the role of Human Papillomavirus (HPV) in cervical cancer and its diagnosis; to that end we have been developing microscopic imaging and fluorescent in situ hybridization (FISH) techniques to genotype and quantitate the amount of HPV present at a single cell level in cervical PAP smears. However, we have found that low levels of HPV DNA are difficult to detect accurately because theoretically obtainable sensitivity is never achieved due to nonspecific autofluorescence, fixative induced fluorescence of cells and tissues, and autofluorescence of the optical components in the microscopic system. In addition, the absorption stains used for PAP smears are intensely autofluorescent. Autofluorescence is a rapidly decaying process with lifetimes in the range of 1-100 nsec, whereas phosphorescence and delayed fluorescence have lifetimes in the range of 1 microsecond(s) ec-10 msec. The ability to discriminate between specific fluorescence and autofluorescence in the time-domain has improved the sensitivity of diagnostic test such that they perform comparably to, or even more sensitive than radioisotopic assays. We have developed a novel time-resolved fluorescence microscope to improve the sensitivity of detection of specific molecules of interest in slide based specimens. This time-resolved fluorescence microscope is based on our recently developed fluorescence lifetime imaging microscopy (FILM) in conjunction with the use of long lifetime fluorescent labels. By using fluorescence in situ hybridization and the long lifetime probe (europium), we have demonstrated the utility of this technique for detection of HPV DNA in cervicovaginal cells. Our results indicate that the use of time-resolved fluorescence microscopy and long lifetime probes increases the sensitivity of detection by removing autofluorescence and will thus lead to improved early diagnosis of cervical cancer. Since the highly sensitive detection of DNA in clinical samples using

  11. High Sensitivity Stress Sensor Based on Hybrid Materials

    NASA Technical Reports Server (NTRS)

    Cao, Xian-An (Inventor)

    2014-01-01

    A sensing device is used to detect the spatial distributions of stresses applied by physical contact with the surface of the sensor or induced by pressure, temperature gradients, and surface absorption. The sensor comprises a hybrid active layer that includes luminophores doped in a polymeric or organic host, altogether embedded in a matrix. Under an electrical bias, the sensor simultaneously converts stresses into electrical and optical signals. Among many applications, the device may be used for tactile sensing and biometric imaging.

  12. Aptamer-Functionalized Fluorescent Silica Nanoparticles for Highly Sensitive Detection of Leukemia Cells

    NASA Astrophysics Data System (ADS)

    Tan, Juntao; Yang, Nuo; Hu, Zixi; Su, Jing; Zhong, Jianhong; Yang, Yang; Yu, Yating; Zhu, Jianmeng; Xue, Dabin; Huang, Yingying; Lai, Zongqiang; Huang, Yong; Lu, Xiaoling; Zhao, Yongxiang

    2016-06-01

    A simple, highly sensitive method to detect leukemia cells has been developed based on aptamer-modified fluorescent silica nanoparticles (FSNPs). In this strategy, the amine-labeled Sgc8 aptamer was conjugated to carboxyl-modified FSNPs via amide coupling between amino and carboxyl groups. Sensitivity and specificity of Sgc8-FSNPs were assessed using flow cytometry and fluorescence microscopy. These results showed that Sgc8-FSNPs detected leukemia cells with high sensitivity and specificity. Aptamer-modified FSNPs hold promise for sensitive and specific detection of leukemia cells. Changing the aptamer may allow the FSNPs to detect other types of cancer cells.

  13. Aptamer-Functionalized Fluorescent Silica Nanoparticles for Highly Sensitive Detection of Leukemia Cells.

    PubMed

    Tan, Juntao; Yang, Nuo; Hu, Zixi; Su, Jing; Zhong, Jianhong; Yang, Yang; Yu, Yating; Zhu, Jianmeng; Xue, Dabin; Huang, Yingying; Lai, Zongqiang; Huang, Yong; Lu, Xiaoling; Zhao, Yongxiang

    2016-12-01

    A simple, highly sensitive method to detect leukemia cells has been developed based on aptamer-modified fluorescent silica nanoparticles (FSNPs). In this strategy, the amine-labeled Sgc8 aptamer was conjugated to carboxyl-modified FSNPs via amide coupling between amino and carboxyl groups. Sensitivity and specificity of Sgc8-FSNPs were assessed using flow cytometry and fluorescence microscopy. These results showed that Sgc8-FSNPs detected leukemia cells with high sensitivity and specificity. Aptamer-modified FSNPs hold promise for sensitive and specific detection of leukemia cells. Changing the aptamer may allow the FSNPs to detect other types of cancer cells. PMID:27299653

  14. Highly sensitive fluorescence quantitative detection of specific DNA sequences with molecular beacons and nucleic acid dye SYBR Green I.

    PubMed

    Xiang, Dongshan; Zhai, Kun; Xiang, Wenjun; Wang, Lianzhi

    2014-11-01

    A highly sensitive fluorescence method of quantitative detection for specific DNA sequence is developed based on molecular beacon (MB) and nucleic acid dye SYBR Green I by synchronous fluorescence analysis. It is demonstrated by an oligonucleotide sequence of wild-type HBV (target DNA) as a model system. In this strategy, the fluorophore of MB is designed to be 6-carboxyfluorescein group (FAM), and the maximum excitation wavelength and maximum emission wavelength are both very close to that of SYBR Green I. In the presence of targets DNA, the MBs hybridize with the targets DNA and form double-strand DNA (dsDNA), the fluorophore FAM is separated from the quencher BHQ-1, thus the fluorophore emit fluorescence. At the same time, SYBR Green I binds to dsDNA, the fluorescence intensity of SYBR Green I is significantly enhanced. When targets DNA are detected by synchronous fluorescence analysis, the fluorescence peaks of FAM and SYBR Green I overlap completely, so the fluorescence signal of system will be significantly enhanced. Thus, highly sensitive fluorescence quantitative detection for DNA can be realized. Under the optimum conditions, the total fluorescence intensity of FAM and SYBR Green I exhibits good linear dependence on concentration of targets DNA in the range from 2×10(-11) to 2.5×10(-9)M. The detection limit of target DNA is estimated to be 9×10(-12)M (3σ). Compared with previously reported methods of detection DNA with MB, the proposed method can significantly enhance the detection sensitivity.

  15. Mesoporous structured MIPs@CDs fluorescence sensor for highly sensitive detection of TNT.

    PubMed

    Xu, Shoufang; Lu, Hongzhi

    2016-11-15

    A facile strategy was developed to prepare mesoporous structured molecularly imprinted polymers capped carbon dots (M-MIPs@CDs) fluorescence sensor for highly sensitive and selective determination of TNT. The strategy using amino-CDs directly as "functional monomer" for imprinting simplify the imprinting process and provide well recognition sites accessibility. The as-prepared M-MIPs@CDs sensor, using periodic mesoporous silica as imprinting matrix, and amino-CDs directly as "functional monomer", exhibited excellent selectivity and sensitivity toward TNT with detection limit of 17nM. The recycling process was sustainable for 10 times without obvious efficiency decrease. The feasibility of the developed method in real samples was successfully evaluated through the analysis of TNT in soil and water samples with satisfactory recoveries of 88.6-95.7%. The method proposed in this work was proved to be a convenient and practical way to prepare high sensitive and selective fluorescence MIPs@CDs sensors. PMID:27315521

  16. A virus-MIPs fluorescent sensor based on FRET for highly sensitive detection of JEV.

    PubMed

    Liang, Caishuang; Wang, Huan; He, Kui; Chen, Chunyan; Chen, Xiaoming; Gong, Hang; Cai, Changqun

    2016-11-01

    Major stumbling blocks in the recognition and detection of virus are the unstable biological recognition element or the complex detection means. Here a fluorescent sensor based on virus-molecular imprinted polymers (virus-MIPs) was designed for specific recognition and highly sensitive detection of Japanese encephalitis virus (JEV). The virus-MIPs were anchored on the surface of silica microspheres modified by fluorescent dye, pyrene-1-carboxaldehyde (PC). The fluorescence intensity of PC can be enhanced by the principle of fluorescence resonance energy transfer (FRET), where virus acted as energy donor and PC acted as energy acceptor. The enhanced fluorescence intensity was proportional to the concentration of virus in the range of 24-960pM, with a limit of detection (LOD, 3σ) of 9.6pM, and the relative standard deviation was 1.99%. In additional, the specificity study confirmed the resultant MIPs has high-selectivity for JEV. This sensor would become a new key for the detection of virus because of its high sensitive, simple operation, high stability and low cost. PMID:27591625

  17. A novel high-sensitive miniaturized optical system for fluorescence detection

    NASA Astrophysics Data System (ADS)

    Yao, Mingjin; Fang, Ji

    2011-03-01

    This paper presents a novel, high sensitive and miniaturized fluorescence detection system which integrated a LED light source, all necessary optical components and a photodiode with preamplifier into one package about 2 cm x 2 cm x 2 cm especially for the applications of lab-on-a-chip, portable bio-detection system and point-of-care diagnostic system. The prototype has been tested using the fluorescence dye 5-Carboxyfluorescein (5-FAM) dissolved into solvent DMSO (Dimethyl Sulfoxide) and diluted with DI water as the testing solution samples. Resolution approximation method is accepted to evaluate the sensitivity. The testing results prove a remarkable sensitivity at pico-scale molar, around 1.08 pM/L, which should meet the most of bio-detection requirements. This cost-effective detection system can be widely integrated to the portable device and system for fluorescent detection in biological, chemical, medical, point-of-care applications.

  18. A Hybrid LPG/CFBG for Highly Sensitive Refractive Index Measurements

    PubMed Central

    Sun, An; Wu, Zhishen

    2012-01-01

    A simple and high sensitive method employing a hybrid long period grating (LPG)/chirped fiber Bragg grating (CFBG) for refractive index (RI) measurements is proposed and investigated experimentally. The wide wavelength range of backward cladding modes are excited through the coupling and recoupling between LPG and CFBG. Experimental results indicate that the recoupled cladding modes between LPG and CFBG and core mode are modulated by the surrounding RI and highly sensitive RI measurements can be achieved by simply measuring the reflected intensity changes of the recoupled cladding modes and core mode. PMID:22969347

  19. Highly sensitive and simple SERS substrate based on photochemically generated carbon nanotubes-gold nanorods hybrids.

    PubMed

    Caires, A J; Vaz, R P; Fantini, C; Ladeira, L O

    2015-10-01

    We report a simple and easy formation of hybrids between multi-wall carbon nanotubes and gold nanorods by one-pot in situ photochemical synthesis. Measurements of surface-enhanced Raman scattering (SERS) through the effect "coffee ring" in visible and near infrared (NIR) show high sensitivity with detection of nanomolar concentrations of aromatic dyes. The formation of nanocomposites between carbon nanotubes and gold nanorods without chemical binders simplifies the preparation. Photochemical synthesis is an advance over the techniques previously published.

  20. A highly sensitive ratiometric fluorescent probe for the detection of cytoplasmic and nuclear hydrogen peroxide.

    PubMed

    Wen, Ying; Liu, Keyin; Yang, Huiran; Li, Yi; Lan, Haichuang; Liu, Yi; Zhang, Xinyu; Yi, Tao

    2014-10-01

    As a marker for oxidative stress and a second messenger in signal transduction, hydrogen peroxide (H2O2) plays an important role in living systems. It is thus critical to monitor the changes in H2O2 in cells and tissues. Here, we developed a highly sensitive and versatile ratiometric H2O2 fluorescent probe (NP1) based on 1,8-naphthalimide and boric acid ester. In response to H2O2, the ratio of its fluorescent intensities at 555 and 403 nm changed 1020-fold within 200 min. The detecting limit of NP1 toward H2O2 is estimated as 0.17 μM. It was capable of imaging endogenous H2O2 generated in live RAW 264.7 macrophages as a cellular inflammation response, and especially, it was able to detect H2O2 produced as a signaling molecule in A431 human epidermoid carcinoma cells through stimulation by epidermal growth factor. This probe contains an azide group and thus has the potential to be linked to various molecules via the click reaction. After binding to a Nuclear Localization Signal peptide, the peptide-based combination probe (pep-NP1) was successfully targeted to nuclei and was capable of ratiometrically detecting nuclear H2O2 in living cells. These results indicated that NP1 was a highly sensitive ratiometric H2O2 dye with promising biological applications.

  1. A Highly Sensitive ESIPT-Based Ratiometric Fluorescence Sensor for Selective Detection of Al(3.).

    PubMed

    Sinha, Sanghamitra; Chowdhury, Bijit; Ghosh, Pradyut

    2016-09-19

    An excited-state intramolecular proton transfer (ESIPT)-based highly sensitive ratiometric fluorescence sensor, 1H was developed for selective detection of aluminum (Al(3+)) in acetonitrile as well as in 90% aqueous system. Single-crystal X-ray diffraction analysis reveals almost planar and conjugated structure of 1H. Photophysical properties of the sensor as well as its selectivity toward Al(3+) are explored using UV-visible, steady-state, and time-resolved fluorescence spectroscopic studies. The bright cyan (λem = 445 nm) fluorescence of 1H in acetonitrile turns into deep blue (λem = 412 nm) with ∼2.3-fold enhancement in emission intensity, in the presence of parts per billion level Al(3+) (detection limit = 0.5 nM). Interestingly, the probe 1H exhibits increased selectivity toward Al(3+) in H2O/acetonitrile (9:1 v/v) solvent system with a change in fluorescence color from pale green to deep blue associated with ca. sixfold enhancement in emission intensity. Density functional theoretical (DFT) calculations provide the ground- and excited-state energy optimized structures and properties of the proposed aluminum complex [Al(1) (OH)]2(2+), which is in harmony with the solution-state experimental findings and also supports the occurrence of ESIPT process in 1H. The ESIPT mechanism was also ascertained by comparing the basic photophysical properties of 1H with a similar O-methylated analogue, 1'Me. PMID:27571218

  2. High-sensitivity DNA detection with a laser-excited confocal fluorescence gel scanner.

    PubMed

    Quesada, M A; Rye, H S; Gingrich, J C; Glazer, A N; Mathies, R A

    1991-05-01

    A high-sensitivity, laser-excited confocal fluorescence gel scanner has been developed and applied to the detection of fluorescently labeled DNA. An argon ion laser (1-10 mW at 488 nm) is focused in the gel with a high-numerical aperture microscope objective. The laser-excited fluorescence is gathered by the objective and focused on a confocal spatial filter, followed by a spectral filter and photodetector. The gel is placed on a computer-controlled scan stage, and the scanned image of the gel fluorescence is stored and analyzed in a computer. This scanner has been used to detect DNA separated on sequencing gels, agarose mapping gels and pulsed field gels. Sanger sequencing gels were run on M13mp18 DNA using a fluoresceinated primer. The 400-microns-thick gels, loaded with 30 fmol of DNA fragments in 3-mm lanes, were scanned at 78-microns resolution. The high resolution of our scanner coupled with image processing allows us to read up to approximately 300 bases in four adjacent sequencing lanes. The minimum band size that could be detected and read was approximately 200 microns. This instrument has a limiting detection sensitivity of approximately 10 amol of fluorescein-labeled DNA in a 1 x 3-mm band. In applications to agarose mapping gels, we have exploited the fact that DNA can be prestained with ethidium homodimer, followed by electrophoresis and fluorescence detection to achieve picogram sensitivity. We have also developed methods using both ethidium homodimer and thiazole orange staining which permit two-color detection of DNA in one lane.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Highly sensitive fluorescence detection of target DNA by coupling exonuclease-assisted cascade target recycling and DNAzyme amplification.

    PubMed

    Liu, Shufeng; Cheng, Chuanbin; Liu, Tao; Wang, Li; Gong, Hongwei; Li, Feng

    2015-01-15

    Because of the intrinsic importance of nucleic acid as bio-targets, the simple and sensitive detection of nucleic acid is very essential for biological studies and medical diagnostics. Herein, a simple, isothermal and highly sensitive fluorescence detection of target DNA was developed with the combination of exonuclease III (Exo III)-assisted cascade target recycling and DNAzyme amplification. A hairpin DNA probe was designed, which contained the 3'-protruding DNA fragment as target recognition unit, the caged DNA fragment in the stem region as target analogue, and the caged 8-17 DNAzyme sequence in the loop region as signal response unit. Upon sensing of target DNA, the 3'-strand of hairpin DNA probe could be stepwise removed by Exo III, accompanied by the releasing of target DNA and autonomous generation of new target analogues for the successive hybridization and cleavage process. Simultaneously, the 8-17 DNAzyme unit could be exponentially released from this hairpin DNA probe and activated for the cyclic cleavage toward the ribonucleotide-containing molecular beacon substrate, inducing a remarkable fluorescence signal amplification for target detection. A low detection limit of 20 fM with an excellent selectivity toward target DNA could be achieved. The developed cascade amplification strategy may be further extended for the detection of a wide spectrum of analytes including protein and biological small molecules by combining DNA aptamer technology.

  4. Highly sensitive immunoassay of protein molecules based on single nanoparticle fluorescence detection in a nanowell

    NASA Astrophysics Data System (ADS)

    Han, Jin-Hee; Kim, Hee-Joo; Lakshmana, Sudheendra; Gee, Shirley J.; Hammock, Bruce D.; Kennedy, Ian M.

    2011-03-01

    A nanoarray based-single molecule detection system was developed for detecting proteins with extremely high sensitivity. The nanoarray was able to effectively trap nanoparticles conjugated with biological sample into nanowells by integrating with an electrophoretic particle entrapment system (EPES). The nanoarray/EPES is superior to other biosensor using immunoassays in terms of saving the amounts of biological solution and enhancing kinetics of antibody binding due to reduced steric hindrance from the neighboring biological molecules. The nanoarray patterned onto a layer of PMMA and LOL on conductive and transparent indium tin oxide (ITO)-glass slide by using e-beam lithography. The suspension of 500 nm-fluorescent (green emission)-carboxylated polystyrene (PS) particles coated with protein-A followed by BDE 47 polyclonal antibody was added to the chip that was connected to the positive voltage. The droplet was covered by another ITO-coated-glass slide and connected to a ground terminal. After trapping the particles into the nanowells, the solution of different concentrations of anti-rabbit- IgG labeled with Alexa 532 was added for an immunoassay. A single molecule detection system could quantify the anti-rabbit IgG down to atto-mole level by counting photons emitted from the fluorescent dye bound to a single nanoparticle in a nanowell.

  5. Wavelength dispersive X-ray fluorescence imaging using a high-sensitivity imaging sensor

    NASA Astrophysics Data System (ADS)

    Ohmori, Takashi; Kato, Shuichi; Doi, Makoto; Shoji, Takashi; Tsuji, Kouichi

    2013-05-01

    A new wavelength-dispersive X-ray fluorescence (WD-XRF) imaging spectrometer equipped with a high-sensitivity imaging sensor was developed in our laboratory. In this instrument, a straight polycapillary optic was applied instead of a Soller slit as well as a 2D imaging X-ray detector instead of X-ray counters, which are used in conventional WD-XRF spectrometers. Therefore, images of elemental distribution were available after a short exposure time. Ni Kα images and Cu Kα images were clearly obtained at corresponding diffraction angles for a short exposure time of 10 s. By optimizing the spectrometer, the time required for imaging is reduced, leading to XRF image movies. It is difficult to distinguish two peaks (Ti Kα (4.508 keV) and Ba Lα (4.465 keV)) due to the poor energy resolution of EDXRS. However, Ti and Ba images could be successfully observed by the WD-XRF imaging spectrometer. The energy resolution of the developed spectrometer was 25 eV at the Ti Kα peak.

  6. Highly Sensitive Ultraviolet Photodetectors Fabricated from ZnO Quantum Dots/Carbon Nanodots Hybrid Films

    PubMed Central

    Guo, Deng-Yang; Shan, Chong-Xin; Qu, Song-Nan; Shen, De-Zhen

    2014-01-01

    Ultraviolet photodetectors have been fabricated from ZnO quantum dots/carbon nanodots hybrid films, and the introduction of carbon nanodots improves the performance of the photodetectors greatly. The photodetectors can be used to detect very weak ultraviolet signals (as low as 12 nW/cm2). The detectivity and noise equivalent power of the photodetector can reach 3.1 × 1017 cmHz1/2/W and 7.8 × 10−20 W, respectively, both of which are the best values ever reported for ZnO-based photodetectors. The mechanism for the high sensitivity of the photodetectors has been attributed to the enhanced carrier-separation at the ZnO/C interface. PMID:25502422

  7. Mineral-organic hybrid nanotubes as highly sensitive solid state optical chemical sensors.

    PubMed

    Monguzzi, Angelo; Lesci, Isidoro Giorgio; Capitani, Gian Carlo; Santo, Nadia; Roveri, Norberto; Campione, Marcello

    2014-02-14

    Hybrid materials represent one of the strategies of materials science for accomplishing complex functionalities hardly encompassed by single-component systems. The critical step in this approach is the mixing and/or bonding between the two different components, which must preserve the original characteristics of the materials or give rise to new functionalities originating from a proper and controlled interaction between the two components. Here, we demonstrate the use of the ionic self-assembly approach for fabricating functional nanomaterials comprising an inorganic matrix constituted by synthetic geomimetic chrysotile nanotubes and an organic superficial layer of a free-base porphyrin. The resulting hybrid nanomaterial can be processed as colloidal solution and as thin solid film. In both phases, the hybrid shows a bright red fluorescence under UV-blue excitation at ca. 400 nm. This fluorescence exhibits decreasing intensity with decreasing pH, as a result of the porphyrin J-type aggregation strongly catalyzed by the mineral surface. Simultaneously, the aggregation induces a neat color change from red to green, serving as a fast direct visual test of pH variations. These results open the route for the utilization of bio-compatible and inert mineral nanomaterials with strong adsorbing properties as efficient and cost-effective solid state vectors for functional molecules. PMID:24356186

  8. Aptamer-MIP hybrid receptor for highly sensitive electrochemical detection of prostate specific antigen.

    PubMed

    Jolly, Pawan; Tamboli, Vibha; Harniman, Robert L; Estrela, Pedro; Allender, Chris J; Bowen, Jenna L

    2016-01-15

    This study reports the design and evaluation of a new synthetic receptor sensor based on the amalgamation of biomolecular recognition elements and molecular imprinting to overcome some of the challenges faced by conventional protein imprinting. A thiolated DNA aptamer with established affinity for prostate specific antigen (PSA) was complexed with PSA prior to being immobilised on the surface of a gold electrode. Controlled electropolymerisation of dopamine around the complex served to both entrap the complex, holding the aptamer in, or near to, it's binding conformation, and to localise the PSA binding sites at the sensor surface. Following removal of PSA, it was proposed that the molecularly imprinted polymer (MIP) cavity would act synergistically with the embedded aptamer to form a hybrid receptor (apta-MIP), displaying recognition properties superior to that of aptamer alone. Electrochemical impedance spectroscopy (EIS) was used to evaluate subsequent rebinding of PSA to the apta-MIP surface. The apta-MIP sensor showed high sensitivity with a linear response from 100pg/ml to 100ng/ml of PSA and a limit of detection of 1pg/ml, which was three-fold higher than aptamer alone sensor for PSA. Furthermore, the sensor demonstrated low cross-reactivity with a homologous protein (human Kallikrein 2) and low response to human serum albumin (HSA), suggesting possible resilience to the non-specific binding of serum proteins.

  9. Red-Green-Blue Trichromophoric Nanoparticles with Dual Fluorescence Resonance Energy Transfer: Highly Sensitive Fluorogenic Response Toward Polyanions.

    PubMed

    Xu, Jinjia; Takai, Atsuro; Takeuchi, Masayuki

    2016-09-01

    A red-green-blue (RGB) trichromophoric fluorescent organic nanoparticle exhibiting multi-colour emission was constructed; the blue-emitting cationic oligofluorene nanoparticle acted as an energy-donor scaffold to undergo fluorescence resonance energy transfer (FRET) to a red-emitting dye embedded in the nanoparticle (interior FRET) and to a green-emitting dye adsorbed on the surface through electrostatic interactions (exterior FRET). Each FRET event occurs independently and is free from sequential FRET, thus the resultant dual-FRET system exhibits multi-colour emission, including white, in aqueous solution and film state. A characteristic white-emissive nanoparticle showed visible responses upon perturbation of the exterior FRET efficiency by acceptor displacement, leading to highly sensitive responses toward polyanions in a ratiometric manner. Specifically, our system exhibits high sensitivity toward heparin with an extremely low detection limit.

  10. Red-Green-Blue Trichromophoric Nanoparticles with Dual Fluorescence Resonance Energy Transfer: Highly Sensitive Fluorogenic Response Toward Polyanions.

    PubMed

    Xu, Jinjia; Takai, Atsuro; Takeuchi, Masayuki

    2016-09-01

    A red-green-blue (RGB) trichromophoric fluorescent organic nanoparticle exhibiting multi-colour emission was constructed; the blue-emitting cationic oligofluorene nanoparticle acted as an energy-donor scaffold to undergo fluorescence resonance energy transfer (FRET) to a red-emitting dye embedded in the nanoparticle (interior FRET) and to a green-emitting dye adsorbed on the surface through electrostatic interactions (exterior FRET). Each FRET event occurs independently and is free from sequential FRET, thus the resultant dual-FRET system exhibits multi-colour emission, including white, in aqueous solution and film state. A characteristic white-emissive nanoparticle showed visible responses upon perturbation of the exterior FRET efficiency by acceptor displacement, leading to highly sensitive responses toward polyanions in a ratiometric manner. Specifically, our system exhibits high sensitivity toward heparin with an extremely low detection limit. PMID:27487175

  11. A Highly Sensitive Fluorescent Sensor for Palladium and Direct Imaging of Its Ecotoxicity in Living Model Organisms.

    PubMed

    Liu, Fei; Du, Juan; Xu, Meiying; Sun, Guoping

    2016-01-01

    Rhodamine is an ideal platform for fluorescence probes owing to its spiro-lactam framework and excellent photochemical properties. Herein, a novel rhodamine-based palladium fluorescent chemosensor, Rd-Eb, showing a fast response time (3 min), high sensitivity for palladium species over other ions, and a low detection limit (1.91×10(-7)  m), was synthesized. It can act as an obvious colorimetric as well as a fluorescent "off/on" sensor for Pd(2+) . In addition, it is also an excellent sensor for in vivo imaging of Pd(2+) in zebra fish and Daphnia magna, illuminating the impact of palladium on organisms at different growth stages with respect to biological toxicology.

  12. High sensitivity fluorescent single particle and single molecule detection apparatus and method

    DOEpatents

    Mathies, Richard A.; Peck, Konan; Stryer, Lubert

    1990-01-01

    Apparatus is described for ultrasensitive detection of single fluorescent particles down to the single fluorescent molecule limit in a fluid or on a substrate comprising means for illuminating a predetermined volume of the fluid or area of the substrate whereby to emit light including background light from the fluid and burst of photons from particles residing in the area. The photon burst is detected in real time to generate output representative signal. The signal is received and the burst of energy from the fluorescent particles is distinguished from the background energy to provide an indication of the number, location or concentration of the particles or molecules.

  13. Fluorescent-conjugated polymer superquenching facilitates highly sensitive detection of proteases.

    PubMed

    Kumaraswamy, Sriram; Bergstedt, Troy; Shi, Xiaobo; Rininsland, Frauke; Kushon, Stuart; Xia, Wensheng; Ley, Kevin; Achyuthan, Komandoor; McBranch, Duncan; Whitten, David

    2004-05-18

    Sensor formats have been developed for detecting the activity of proteolytic enzymes based on fluorescent conjugated polymer superquenching. These sensors employ a reactive peptide sequence within a tether linking a quencher to a biotin. The peptide binds to sensors containing colocated biotin-binding protein and fluorescent polymer by means of biotin-biotin binding protein interactions, resulting in a strong quenching of polymer fluorescence. Enzyme-mediated cleavage of the peptide results in a reversal of the fluorescence quenching. These assays for protease activity are simple, sensitive, fast, and have the specificity required for screening chemical libraries for novel protease inhibitors in a high-throughput screening assay environment. These assays have been demonstrated for enterokinase, caspase-3/7, and beta-secretase.

  14. Fluorescent-conjugated polymer superquenching facilitates highly sensitive detection of proteases

    PubMed Central

    Kumaraswamy, Sriram; Bergstedt, Troy; Shi, Xiaobo; Rininsland, Frauke; Kushon, Stuart; Xia, Wensheng; Ley, Kevin; Achyuthan, Komandoor; McBranch, Duncan; Whitten, David

    2004-01-01

    Sensor formats have been developed for detecting the activity of proteolytic enzymes based on fluorescent conjugated polymer superquenching. These sensors employ a reactive peptide sequence within a tether linking a quencher to a biotin. The peptide binds to sensors containing colocated biotin-binding protein and fluorescent polymer by means of biotin–biotin binding protein interactions, resulting in a strong quenching of polymer fluorescence. Enzyme-mediated cleavage of the peptide results in a reversal of the fluorescence quenching. These assays for protease activity are simple, sensitive, fast, and have the specificity required for screening chemical libraries for novel protease inhibitors in a high-throughput screening assay environment. These assays have been demonstrated for enterokinase, caspase-3/7, and β-secretase. PMID:15136731

  15. Fluorescent Protein Nanowire-Mediated Protein Microarrays for Multiplexed and Highly Sensitive Pathogen Detection.

    PubMed

    Men, Dong; Zhou, Juan; Li, Wei; Leng, Yan; Chen, Xinwen; Tao, Shengce; Zhang, Xian-En

    2016-07-13

    Protein microarrays are powerful tools for high-throughput and simultaneous detection of different target molecules in complex biological samples. However, the sensitivity of conventional fluorescence-labeling protein detection methods is limited by the availability of signal molecules for binding to the target molecule. Here, we built a multifunctional fluorescent protein nanowire (FNw) by harnessing self-assembly of yeast amyloid protein. The FNw integrated a large number of fluorescent molecules, thereby enhancing the fluorescent signal output in target detection. The FNw was then combined with protein microarray technology to detect proteins derived from two pathogens, including influenza virus (hemagglutinin 1, HA1) and human immunodeficiency virus (p24 and gp120). The resulting detection sensitivity achieved a 100-fold improvement over a commercially available detection reagent. PMID:27315221

  16. Highly sensitive and selective fluorescent assay for guanine based on the Cu2 +/eosin Y system

    NASA Astrophysics Data System (ADS)

    Shi, Huimin; Cui, Yi; Gong, Yijun; Feng, Suling

    2016-05-01

    A fluorescent probe has been developed for the determination of guanine based on the quenched fluorescence signal of Cu2 +/eosin Y. Cu2 + interacted with eosin Y, resulting in fluorescence quenching. Subsequently, with the addition of guanine to the Cu2 +/eosin Y system, guanine reacted with Cu2 + to form 1:1 chelate cation, which further combined with eosin Y to form a 1:1 ternary ion-association complex by electrostatic attraction and hydrophobic interaction, resulting in significant decrease of the fluorescence. Hence, a fluorescent system was constructed for rapid, sensitive and selective detection of guanine with a detection limit as low as 1.5 nmol L- 1 and a linear range of 3.3-116 nmol L- 1. The method has been applied satisfactorily to the determination of guanine in DNA and urine samples with the recoveries from 98.7% to 105%. This study significantly expands the realm of application of ternary ion-association complex in fluorescence probe.

  17. A fluorescent graphitic carbon nitride nanosheet biosensor for highly sensitive, label-free detection of alkaline phosphatase

    NASA Astrophysics Data System (ADS)

    Xiang, Mei-Hao; Liu, Jin-Wen; Li, Na; Tang, Hao; Yu, Ru-Qin; Jiang, Jian-Hui

    2016-02-01

    Graphitic C3N4 (g-C3N4) nanosheets provide an attractive option for bioprobes and bioimaging applications. Utilizing highly fluorescent and water-dispersible ultrathin g-C3N4 nanosheets, a highly sensitive, selective and label-free biosensor has been developed for ALP detection for the first time. The developed approach utilizes a natural substrate of ALP in biological systems and thus affords very high catalytic efficiency. This novel biosensor is demonstrated to enable quantitative analysis of ALP in a wide range from 0.1 to 1000 U L-1 with a low detection limit of 0.08 U L-1, which is among the most sensitive assays for ALP. It is expected that the developed method may provide a low-cost, convenient, rapid and highly sensitive platform for ALP-based clinical diagnostics and biomedical applications.Graphitic C3N4 (g-C3N4) nanosheets provide an attractive option for bioprobes and bioimaging applications. Utilizing highly fluorescent and water-dispersible ultrathin g-C3N4 nanosheets, a highly sensitive, selective and label-free biosensor has been developed for ALP detection for the first time. The developed approach utilizes a natural substrate of ALP in biological systems and thus affords very high catalytic efficiency. This novel biosensor is demonstrated to enable quantitative analysis of ALP in a wide range from 0.1 to 1000 U L-1 with a low detection limit of 0.08 U L-1, which is among the most sensitive assays for ALP. It is expected that the developed method may provide a low-cost, convenient, rapid and highly sensitive platform for ALP-based clinical diagnostics and biomedical applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08278a

  18. A highly sensitive fluorescence probe for metallothioneins based on tiron-copper complex

    NASA Astrophysics Data System (ADS)

    Xiao, Xilin; Xue, Jinhua; Liao, Lifu; Huang, Mingyang; Zhou, Bin; He, Bo

    2015-06-01

    The fabrication of tiron-copper complex as a novel fluorescence probe for the sensitive directly detection of metallothioneins at nanomolar levels was demonstrated. In Britton-Robinson (B-R) buffer (pH 7.50), the interaction of bis(tiron)copper(II) complex cation [Cu(tiron)2]2+ and metallothioneins enhanced the fluorescence intensity of the system. The fluorescence enhancement at 347 nm was proportional to the concentration of metallothioneins. The mechanism was studied and discussed in terms of the fluorescence spectra. Under the optimal experimental conditions, at 347 nm, there was a linear relationship between the fluorescence intensity and the concentration of the metallothioneins in the range of 8.80 × 10-9-7.70 × 10-7 mol L-1, with a correlation coefficient of r = 0.995 and detection limit 2.60 × 10-9 mol L-1. The relative standard deviation was 0.77% (n = 11), and the average recovery 94.4%. The method proposed was successfully reliable, selective and sensitive in determining of trace metallothioneins in fish visceral organ samples with the results in good agreement with those obtained by HPLC.

  19. Polydopamine Nanotubes as an Effective Fluorescent Quencher for Highly Sensitive and Selective Detection of Biomolecules Assisted with Exonuclease III Amplification.

    PubMed

    Fan, Daoqing; Zhu, Xiaoqing; Zhai, Qingfeng; Wang, Erkang; Dong, Shaojun

    2016-09-20

    In this work, the effective fluorescence quenching ability of polydopamine nanotubes (PDANTs) toward various fluorescent dyes was studied and further applied to fluorescent biosensing for the first time. The PDANTs could quench the fluorophores with different emission frequencies, aminomethylcoumarin acetate (AMCA), 6-carboxyfluorescein (FAM), 6-carboxytetramethylrhodamine (TAMRA), and Cy5. All the quenching efficiencies reached to more than 97%. Taking advantage of PDANTs' different affinities toward ssDNA and dsDNA and utilizing the complex of FAM-labeled ssDNA and PDANTs as a sensing platform, we achieved highly sensitive and selective detection of human immunodeficiency virus (HIV) DNA and adenosine triphosphate (ATP) assisted with Exonuclease III amplification. The limits of detection (LODs) of HIV DNA and ATP reached to 3.5 pM and 150 nM, respectively, which were all lower than that of previous nanoquenchers with Exo III amplification, and the platform also presented good applicability in biological samples. Fluorescent sensing applications of this nanotube enlightened other targets detection based upon it and enriched the building blocks of fluorescent sensing platforms. This polydopamine nanotube also possesses excellent biocompatibility and biodegradability, which is suitable for future drug delivery, cell imaging, and other biological applications.

  20. BODIPY fluorescent chemosensor for Cu2+ detection and its applications in living cells: fast response and high sensitivity.

    PubMed

    Quan, Li; Sun, Tingting; Lin, Wenhai; Guan, Xingang; Zheng, Min; Xie, Zhigang; Jing, Xiabin

    2014-05-01

    Copper is an essential trace element for the proper functioning of organ and metabolic process in humans. However, both its excess and deficiency in the body can result in adverse health effects. A BODIPY containing 2,2'-bipyridyl group was synthesized and used as a fluorescent chemodosimeter for selective Cu2+ detection in mild condition. This BODIPY shows fast response (~1 min) and high sensitivity for Cu2+ in aqueous solution due to the photoinduced electron transfer from the excited state of fluorophore to the bipyridyl unit complexed to Cu2+. The fluorescence quenching mechanism revealed by MALDI-TOF Mass spectra showed one Cu2+ could coordinate with two BODIPY molecules, and this coordination is reversible. This simple BODIPY dyes also could be used for sensing the Cu2+ in living cell. This work contributes to extend the potential applications of BODIPY to the biological and environmental areas. PMID:24522344

  1. Chemically attached gold nanoparticle-carbon nanotube hybrids for highly sensitive SERS substrate

    NASA Astrophysics Data System (ADS)

    Beqa, Lule; Singh, Anant Kumar; Fan, Zheng; Senapati, Dulal; Ray, Paresh Chandra

    2011-08-01

    Surface-enhanced Raman spectroscopy (SERS) has been shown as one of the most powerful analytical tool with high sensitivity. In this manuscript, we report the chemical design of SERS substrate, based on gold nanoparticles of different shapes-decorated with carbon nanotube with an enhancement factor of 7.5 × 1010. Shape dependent result shows that popcorn shape gold nanoparticle decorated SWCNT is the best choice for SERS substrate due to the existence of 'lightning rod effect' through several sharp edges or corners. Our results provide a good approach to develop highly sensitive SERS substrates and can help to improve the fundamental understanding of SERS phenomena.

  2. High Sensitivity Low Fluorescence Detection for Beryllium Particulates SBIR Phase I Final Report ER84587

    SciTech Connect

    Anoop Agrawal; Juan Carlos Lopez Tonazzi; John Cronin

    2007-04-17

    Abstract: The technical objective in Phase I was to enhance the detection limit of beryllium using fluorescence system by a minimum factor of 10. This was to be achieved by modifying the chemistry and instrumentation. Both of these were completed independently. In each case we were able to lower the detection limit as desired. The objectives in Phase II are to adapt these changes for commercial activity (chemicals and instrument changes including automation).

  3. A gold nanoparticle-based fluorescence sensor for high sensitive and selective detection of thiols in living cells.

    PubMed

    Xu, Jian; Yu, Hui; Hu, Yue; Chen, Mingzhong; Shao, Shijun

    2016-01-15

    A novel gold nanoparticle (AuNP)-based sensor for detecting thiols in aqueous solution has been developed. Due to the weak N···Au interactions, meso-(4-pyridinyl)-substituted BODIPY (4,4-difluoro-4-bora-3a,4a-diaza-s-indacene) dyes were coordinated to AuNP surfaces, which effectively quenched the fluorescence of organic/inorganic hybrid systems. The fluorescent quenching mechanism was mainly ascribed to the highly efficient fluorescent resonance energy transfer (FRET) and the inner filter effect. In the presence of thiols, meso-(4-pyridinyl)-substituted BODIPY chromophore were displaced and released from the AuNP surfaces and thus restored the fluorescence of BODIPY chromophore. The modulation of the fluorescence quenching efficiency of BODIPY–AuNPs in the presence of thiols can achieve a large turn-on fluorescence enhancement (40-fold) in aqueous solution. The new AuNP-based fluorescence sensor displayed desired properties such as high specificity, relatively low detection limit (30 nM for Cys), appreciable water solubility and rapid response time (within 2 min for Cys/Hcy). Moreover, the sensor has been successfully applied for monitoring and imaging of intracellular thiols within living HeLa cells. PMID:26278044

  4. Toehold-mediated strand displacement reaction triggered isothermal DNA amplification for highly sensitive and selective fluorescent detection of single-base mutation.

    PubMed

    Zhu, Jing; Ding, Yongshun; Liu, Xingti; Wang, Lei; Jiang, Wei

    2014-09-15

    Highly sensitive and selective detection strategy for single-base mutations is essential for risk assessment of malignancy and disease prognosis. In this work, a fluorescent detection method for single-base mutation was proposed based on high selectivity of toehold-mediated strand displacement reaction (TSDR) and powerful signal amplification capability of isothermal DNA amplification. A discrimination probe was specially designed with a stem-loop structure and an overhanging toehold domain. Hybridization between the toehold domain and the perfect matched target initiated the TSDR along with the unfolding of the discrimination probe. Subsequently, the target sequence acted as a primer to initiate the polymerization and nicking reactions, which released a great abundant of short sequences. Finally, the released strands were annealed with the reporter probe, launching another polymerization and nicking reaction to produce lots of G-quadruplex DNA, which could bind the N-methyl mesoporphyrin IX to yield an enhanced fluorescence response. However, when there was even a single base mismatch in the target DNA, the TSDR was suppressed and so subsequent isothermal DNA amplification and fluorescence response process could not occur. The proposed approach has been successfully implemented for the identification of the single-base mutant sequences in the human KRAS gene with a detection limit of 1.8 pM. Furthermore, a recovery of 90% was obtained when detecting the target sequence in spiked HeLa cells lysate, demonstrating the feasibility of this detection strategy for single-base mutations in biological samples.

  5. Improved Diffuse Fluorescence Flow Cytometer Prototype for High Sensitivity Detection of Rare Circulating Cells In Vivo

    NASA Astrophysics Data System (ADS)

    Pestana, Noah Benjamin

    Accurate quantification of circulating cell populations is important in many areas of pre-clinical and clinical biomedical research, for example, in the study of cancer metastasis or the immune response following tissue and organ transplants. Normally this is done "ex-vivo" by drawing and purifying a small volume of blood and then analyzing it with flow cytometry, hemocytometry or microfludic devices, but the sensitivity of these techniques are poor and the process of handling samples has been shown to affect cell viability and behavior. More recently "in vivo flow cytometry" (IVFC) techniques have been developed where fluorescently-labeled cells flowing in a small blood vessel in the ear or retina are analyzed, but the sensitivity is generally poor due to the small sampling volume. To address this, our group recently developed a method known as "Diffuse Fluorescence Flow Cytometry" (DFFC) that allows detection and counting of rare circulating cells with diffuse photons, offering extremely high single cell counting sensitivity. In this thesis, an improved DFFC prototype was designed and validated. The chief improvements were three-fold, i) improved optical collection efficiency, ii) improved detection electronics, and iii) development of a method to mitigate motion artifacts during in vivo measurements. In combination, these improvements yielded an overall instrument detection sensitivity better than 1 cell/mL in vivo, which is the most sensitive IVFC system reported to date. Second, development and validation of a low-cost microfluidic device reader for analysis of ocular fluids is described. We demonstrate that this device has equivalent or better sensitivity and accuracy compared a fluorescence microscope, but at an order-of-magnitude reduced cost with simplified operation. Future improvements to both instruments are also discussed.

  6. Highly sensitive rapid fluorescence detection of protein residues on surgical instruments

    NASA Astrophysics Data System (ADS)

    Kovalev, Valeri I.; Bartona, James S.; Richardson, Patricia R.; Jones, Anita C.

    2006-07-01

    There is a risk of contamination of surgical instruments by infectious protein residues, in particular, prions which are the agents for Creutzfeldt-Jakob Disease in humans. They are exceptionally resistant to conventional sterilization, therefore it is important to detect their presence as contaminants so that alternative cleaning procedures can be applied. We describe the development of an optimized detection system for fluorescently labelled protein, suitable for in-hospital use. We show that under optimum conditions the technique can detect ~10 attomole/cm2 with a scan speed of ~3-10 cm2/s of the test instrument's surface. A theoretical analysis and experimental measurements will be discussed.

  7. A convenient and label-free fluorescence "turn off-on" nanosensor with high sensitivity and selectivity for acid phosphatase.

    PubMed

    Liu, Ziping; Lin, Zihan; Liu, Linlin; Su, Xingguang

    2015-05-30

    In this study, we reported a convenient label-free fluorescence nanosensor for rapid detection of acid phosphatase on the basis of aggregation-caused quenching (ACQ) and enzymolysis approach. The selectivity nanosensor was based on the fluorescence "turn off-on" mode, which possessed high sensitivity features. The original strong fluorescence intensity of CuInS2 QDs was quenched by sodium hexametaphosphate (NaPO3)6. The high efficiency of the quenching was caused by the non-covalent binding of positively charged CuInS2 QDs to the negatively charged (NaPO3)6 through electrostatic interactions, aggregating to form a CuInS2 QDs/(NaPO3)6 complex. Adding acid phosphatase caused intense fluorescence of CuInS2 QDs/(NaPO3)6 to be recovered, and this was because of enzymolysis. (NaPO3)6 was hydrolyzed into small fragments and the high negative charge density decreased, which would weaken the strong electrostatic interactions. As a result, the quenched fluorescence "turned on". Under the optimum conditions, there was a good linear relationship between I/I0 (I and I0 were the fluorescence intensity of CuInS2 QDs/(NaPO3)6 system in the presence and absence of acid phosphatase, respectively) and acid phosphatase concentration in the range of 75-1500 nU mL(-1) with the detection limit of 9.02 nU mL(-1). The proposed nanosensor had been utilized to detect and accurately quantify acid phosphatase in human serum samples with satisfactory results.

  8. Highly sensitive rapid fluorescence detection of protein residues on surgical instruments

    NASA Astrophysics Data System (ADS)

    Kovalev, Valeri I.; Barton, James S.; Richardson, Patricia R.; Jones, Anita C.

    2006-02-01

    There is a risk of contamination of surgical instruments by nfectious protein residues, in particular, prions which are the agents for Creutzfeldt-Jakob Disease in humans. They are exceptionally resistant to conventional sterilization, therefore it is important to detect their presence as contaminants so that alternative cleaning procedures can be applied. We describe the development of an optimized detection system for fluorescently labelled protein, suitable for in-hospital use. We show that under optimum conditions the technique can detect ~100 zeptomoles/mm2 with an area scan speed of ~20 cm2/s and for using the system to detect other agents of biomedical interest. A theoretical analysis and experimental measurements will be discussed.

  9. Ratiometric fluorescent ion detection in water with high sensitivity via aggregation-mediated fluorescence resonance energy transfer using a conjugated polyelectrolyte as an optical platform.

    PubMed

    Le, Van Sang; Kim, Boram; Lee, Wonho; Jeong, Ji-Eun; Yang, Renqiang; Woo, Han Young

    2013-05-14

    A cationic conjugated polyelectrolyte was designed and synthesized based on poly(fluorene-co-phenylene) containing 5 mol% benzothiadiazole (BT) as a low energy trap and 15-crown-5 as a recognizing group for potassium ions. A potassium ion can form a sandwich-type 2:1 Lewis acid-based complex with 15-crown-5, to cause the intermolecular aggregation of polymers. This facilitates inter-chain fluorescence resonance energy transfer (FRET) to a low-energy BT segment, resulting in fluorescent signal amplification, even at dilute analyte concentrations. Highly sensitive and selective detection of K(+) ions was demonstrated in water. The linear response of ratiometric fluorescent signal as a function of [K(+) ] allows K(+) quantification in a range of nanomolar concentrations with a detection limit of ≈0.7 × 10(-9) M. PMID:23417971

  10. Highly sensitive quantification of pyrethroid insecticide etofenprox in vegetables with high-performance liquid chromatography and fluorescence detection.

    PubMed

    Watanabe, Eiki; Baba, Koji

    2015-03-13

    This paper describes a highly sensitive analytical method using high-performance liquid chromatography and fluorescence detection (HPLC-FLD) capable of quantifying trace amounts of synthetic pyrethroid insecticide etofenprox residue in six vegetable samples: bell pepper, cucumber, eggplant, Japanese mustard spinach, spinach, and tomato. After extraction with acetonitrile, the crude sample extract was cleaned up with a solid-phase extraction cartridge. The matrix interference derived from the tested vegetable samples was evaluated. Quantification was conducted using external calibrators prepared in pure acetonitrile. The limits of quantification for etofenprox in each sample were 1.87-3.87 ng/g. Recoveries obtained by application of the proposed analytical method of vegetable samples spiked at the considerably low levels (5-100 ng/g) were 85-111% with relative standard deviations of less than 12%. The proposed method using the HPLC-FLD was applied for trace analysis of the insecticide residue in vegetable samples.

  11. Highly sensitive and selective detection of Al(III) ions in aqueous buffered solution with fluorescent peptide-based sensor.

    PubMed

    In, Byunggyu; Hwang, Gi Won; Lee, Keun-Hyeung

    2016-09-15

    A fluorescent sensor based on a tripeptide (SerGluGlu) with a dansyl fluorophore detected selectively Al(III) among 16 metal ions in aqueous buffered solutions without any organic cosolvent. The peptide-based sensor showed a highly sensitive turn on response to aluminium ion with high binding affinity (1.84×10(4)M(-1)) in aqueous buffered solutions. The detection limit (230nM, 5.98ppb) of the peptide-based sensor was much lower than the maximum allowable level (7.41μM) of aluminium ions in drinking water demanded by EPA. The binding mode of the peptide sensor with aluminium ions was characterized using ESI mass spectrometry, NMR titration, and pH titration experiments. PMID:27503680

  12. Highly sensitive quantification of pyrethroid insecticide etofenprox in vegetables with high-performance liquid chromatography and fluorescence detection.

    PubMed

    Watanabe, Eiki; Baba, Koji

    2015-03-13

    This paper describes a highly sensitive analytical method using high-performance liquid chromatography and fluorescence detection (HPLC-FLD) capable of quantifying trace amounts of synthetic pyrethroid insecticide etofenprox residue in six vegetable samples: bell pepper, cucumber, eggplant, Japanese mustard spinach, spinach, and tomato. After extraction with acetonitrile, the crude sample extract was cleaned up with a solid-phase extraction cartridge. The matrix interference derived from the tested vegetable samples was evaluated. Quantification was conducted using external calibrators prepared in pure acetonitrile. The limits of quantification for etofenprox in each sample were 1.87-3.87 ng/g. Recoveries obtained by application of the proposed analytical method of vegetable samples spiked at the considerably low levels (5-100 ng/g) were 85-111% with relative standard deviations of less than 12%. The proposed method using the HPLC-FLD was applied for trace analysis of the insecticide residue in vegetable samples. PMID:25662063

  13. Highly sensitive and rapid bacteria detection using molecular beacon-Au nanoparticles hybrid nanoprobes.

    PubMed

    Cao, Jing; Feng, Chao; Liu, Yan; Wang, Shouyu; Liu, Fei

    2014-07-15

    Since many diseases are caused by pathogenic bacterial infections, accurate and rapid detection of pathogenic bacteria is in urgent need to timely apply appropriate treatments and to reduce economic costs. To end this, we designed molecular beacon-Au nanoparticle hybrid nanoprobes to improve the bacterial detection efficiency and sensitivity. Here, we show that the designed molecular beacon modified Au nanoparticles could specifically recognize synthetic DNAs targets and can readily detect targets in clinical samples. Moreover, the hybrid nanoprobes can recognize Escherichia coli within an hour at a concentration of 10(2) cfu/ml, which is 1000-folds sensitive than using molecular beacon directly. Our results show that the molecular beacon-Au nanoparticle hybrid nanoprobes have great potential in medical and biological applications.

  14. M-DNA/Transition Metal Dichalcogenide Hybrid Structure-based Bio-FET sensor with Ultra-high Sensitivity

    PubMed Central

    Park, Hyung-Youl; Dugasani, Sreekantha Reddy; Kang, Dong-Ho; Yoo, Gwangwe; Kim, Jinok; Gnapareddy, Bramaramba; Jeon, Jaeho; Kim, Minwoo; Song, Young Jae; Lee, Sungjoo; Heo, Jonggon; Jeon, Young Jin; Park, Sung Ha; Park, Jin-Hong

    2016-01-01

    Here, we report a high performance biosensor based on (i) a Cu2+-DNA/MoS2 hybrid structure and (ii) a field effect transistor, which we refer to as a bio-FET, presenting a high sensitivity of 1.7 × 103 A/A. This high sensitivity was achieved by using a DNA nanostructure with copper ions (Cu2+) that induced a positive polarity in the DNA (receptor). This strategy improved the detecting ability for doxorubicin-like molecules (target) that have a negative polarity. Very short distance between the biomolecules and the sensor surface was obtained without using a dielectric layer, contributing to the high sensitivity. We first investigated the effect of doxorubicin on DNA/MoS2 and Cu2+-DNA/MoS2 nanostructures using Raman spectroscopy and Kelvin force probe microscopy. Then, we analyzed the sensing mechanism and performance in DNA/MoS2- and Cu2+-DNA/MoS2-based bio-FETs by electrical measurements (ID-VG at various VD) for various concentrations of doxorubicin. Finally, successful operation of the Cu2+-DNA/MoS2 bio-FET was demonstrated for six cycles (each cycle consisted of four steps: 2 preparation steps, a sensing step, and an erasing step) with different doxorubicin concentrations. The bio-FET showed excellent reusability, which has not been achieved previously in 2D biosensors. PMID:27775004

  15. High-sensitivity determination of Zn(II) and Cu(II) in vitro by fluorescence polarization

    NASA Astrophysics Data System (ADS)

    Thompson, Richard B.; Maliwal, Badri P.; Feliccia, Vincent; Fierke, Carol A.

    1998-04-01

    Recent work has suggested that free Cu(II) may play a role in syndromes such as Crohn's and Wilson's diseases, as well as being a pollutant toxic at low levels to shellfish and sheep. Similarly, Zn(II) has been implicated in some neural damage in the brain resulting from epilepsy and ischemia. Several high sensitivity methods exist for determining these ions in solution, including GFAAS, ICP-MS, ICP-ES, and electrochemical techniques. However, these techniques are generally slow and costly, require pretreatment of the sample, require complex instruments and skilled personnel, and are incapable of imaging at the cellular and subcellular level. To address these shortcomings we developed fluorescence polarization (anisotropy) biosensing methods for these ions which are very sensitivity, highly selective, require simple instrumentation and little pretreatment, and are inexpensive. Thus free Cu(II) or Zn(II) can be determined at picomolar levels by changes in fluorescence polarization, lifetime, or wavelength ratio using these methods; these techniques may be adapted to microscopy.

  16. Highly sensitive analysis of flavonoids by zwitterionic microemulsion electrokinetic chromatography coupled with light-emitting diode-induced fluorescence detection.

    PubMed

    Cao, Wan; Hu, Shuai-Shuai; Li, Xing-Ying; Pang, Xiao-Qing; Cao, Jun; Ye, Li-Hong; Dai, Han-Bin; Liu, Xiao-Juan; Da, Jian-Hua; Chu, Chu

    2014-09-01

    A rapid zwitterionic microemulsion electrokinetic chromatography (ZI-MEEKC) approach coupled with light-emitting-diode-induced fluorescence (LED-IF, 480nm) detection was proposed for the analysis of flavonoids. In the optimization process, we systematically investigated the separation conditions, including the surfactants, cosurfactants, pH, buffers and fluorescence parameters. It was found that the baseline separation of the seven flavonoids was obtained in less than 5min with a running buffer consisting of 92.9% (v/v) 5mM sodium borate, 0.6% (w/v) ZI surfactant, 0.5% (w/v) ethyl acetate and 6.0% (w/v) 1-butanol. High sensitivity was obtained by the application of LED-IF detection. The limits of detection for seven flavonoids were in the range of 3.30×10(-8) to 2.15×10(-6)molL(-1) without derivatization. Ultimately, the detection method was successfully applied to the analysis of flavonoids in hawthorn plant and food products with satisfactory results. PMID:25047822

  17. Highly sensitive detection of DNA hybridization on commercialized graphene-coated surface plasmon resonance interfaces.

    PubMed

    Zagorodko, Oleksandr; Spadavecchia, Jolanda; Serrano, Aritz Yanguas; Larroulet, Iban; Pesquera, Amaia; Zurutuza, Amaia; Boukherroub, Rabah; Szunerits, Sabine

    2014-11-18

    Strategies employed to interface biomolecules with nanomaterials have considerably advanced in recent years and found practical applications in many different research fields. The construction of nucleic acid modified interfaces together with the label-free detection of hybridization events has been one of the major research focuses in science and technology. In this paper, we demonstrate the high interest of graphene-on-metal surface plasmon resonance (SPR) interfaces for the detection of DNA hybridization events in the attomolar concentration range. The strategy consists on the noncovalent functionalization of graphene-coated SPR interfaces with gold nanostars carrying single-stranded DNA (ssDNA). Upon hybridization with its complementary DNA, desorption of the nanostructures takes place and thus enables the sensitive detection of the DNA hybridization event. The DNA sensor exhibits a detection limit of ≈500 aM for complementary DNA with a linear dynamic range up to 10(-8) M. This label-free DNA detection platform should spur off new interest toward the use of commercially available graphene-coated SPR interfaces. PMID:25341125

  18. A practical and highly sensitive C3N4-TYR fluorescent probe for convenient detection of dopamine

    NASA Astrophysics Data System (ADS)

    Li, Hao; Yang, Manman; Liu, Juan; Zhang, Yalin; Yang, Yanmei; Huang, Hui; Liu, Yang; Kang, Zhenhui

    2015-07-01

    The C3N4-tyrosinase (TYR) hybrid is a highly accurate, sensitive and simple fluorescent probe for the detection of dopamine (DOPA). Under optimized conditions, the relative fluorescence intensity of C3N4-TYR is proportional to the DOPA concentration in the range from 1 × 10-3 to 3 × 10-8 mol L-1 with a correlation coefficient of 0.995. In the present system, the detection limit achieved is as low as 3 × 10-8 mol L-1. Notably, these quantitative detection results for clinical samples are comparable to those of high performance liquid chromatography. Moreover, the enzyme-encapsulated C3N4 sensing arrays on both glass slide and test paper were evaluated, which revealed sensitive detection and excellent stability. The results reported here provide a new approach for the design of a multifunctional nanosensor for the detection of bio-molecules.The C3N4-tyrosinase (TYR) hybrid is a highly accurate, sensitive and simple fluorescent probe for the detection of dopamine (DOPA). Under optimized conditions, the relative fluorescence intensity of C3N4-TYR is proportional to the DOPA concentration in the range from 1 × 10-3 to 3 × 10-8 mol L-1 with a correlation coefficient of 0.995. In the present system, the detection limit achieved is as low as 3 × 10-8 mol L-1. Notably, these quantitative detection results for clinical samples are comparable to those of high performance liquid chromatography. Moreover, the enzyme-encapsulated C3N4 sensing arrays on both glass slide and test paper were evaluated, which revealed sensitive detection and excellent stability. The results reported here provide a new approach for the design of a multifunctional nanosensor for the detection of bio-molecules. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03316k

  19. Highly sensitive DNA detection using cascade amplification strategy based on hybridization chain reaction and enzyme-induced metallization.

    PubMed

    Yu, Xu; Zhang, Zhi-Ling; Zheng, Si-Yang

    2015-04-15

    A novel highly sensitive colorimetric assay for DNA detection using cascade amplification strategy based on hybridization chain reaction and enzyme-induced metallization was established. The DNA modified superparamagnetic beads were demonstrated to capture and enrich the target DNA in the hybridization buffer or human plasma. The hybridization chain reaction and enzyme-induced silver metallization on the gold nanoparticles were used as cascade signal amplification for the detection of target DNA. The metalization of silver on the gold nanoparticles induced a significant color change from red to yellow until black depending on the concentration of the target DNA, which could be recognized by naked eyes. This method showed a good specificity for the target DNA detection, with the capabilty to discriminate single-base-pair mismatched DNA mutation (single nucleotide polymorphism). Meanwhile, this approach exhibited an excellent anti-interference capability with the convenience of the magentic seperation and washing, which enabled its usage in complex biological systems such as human blood plasma. As an added benefit, the utilization of hybridization chain reaction and enzyme-induced metallization improved detection sensitivity down to 10pM, which is about 100-fold lower than that of traditional unamplified homogeneous assays.

  20. Highly sensitive fluorescence assay of DNA methyltransferase activity via methylation-sensitive cleavage coupled with nicking enzyme-assisted signal amplification.

    PubMed

    Zhao, Yongxi; Chen, Feng; Wu, Yayan; Dong, Yanhua; Fan, Chunhai

    2013-04-15

    Herein, using DNA adenine methylation (Dam) methyltransferase (MTase) as a model analyte, a simple, rapid, and highly sensitive fluorescence sensing platform for monitoring the activity and inhibition of DNA MTase was developed on the basis of methylation-sensitive cleavage and nicking enzyme-assisted signal amplification. In the presence of Dam MTase, an elaborately designed hairpin probe was methylated. With the help of methylation-sensitive restriction endonuclease DpnI, the methylated hairpin probe could be cleaved to release a single-stranded DNA (ssDNA). Subsequently, this released ssDNA would hybridize with the molecular beacon (MB) to open its hairpin structure, resulting in the restoration of fluorescence signal as well as formation of the double-stranded recognition site for nicking enzyme Nt.BbvCI. Eventually, an amplified fluorescence signal was observed through the enzymatic recycling cleavage of MBs. Based on this unique strategy, a very low detection limit down to 0.06 U/mL was achieved within a short assay time (60 min) in one step, which is superior to those of most existing approaches. Owing to the specific site recognition of MTase toward its substrate, the proposed sensing system was able to readily discriminate Dam MTase from other MTase such as M.SssI and even detect the target in complex biological matrix. Furthermore, the application of the proposed sensing strategy for screening Dam MTase inhibitors was also demonstrated with satisfactory results. This novel method not only provides a promising platform for monitoring activity and inhibition of DNA MTases, but also shows great potentials in biological process researches, drugs discovery and clinical diagnostics.

  1. Tungsten disulfide nanosheet and exonuclease III co-assisted amplification strategy for highly sensitive fluorescence polarization detection of DNA glycosylase activity.

    PubMed

    Zhao, Jingjin; Ma, Yefei; Kong, Rongmei; Zhang, Liangliang; Yang, Wen; Zhao, Shulin

    2015-08-01

    Herein, we introduced a tungsten disulfide (WS2) nanosheet and exonuclease III (Exo III) co-assisted signal amplification strategy for highly sensitive fluorescent polarization (FP) assay of DNA glycosylase activity. Two DNA glycosylases, uracil-DNA glycosylase (UDG) and human 8-oxoG DNA glycosylase 1 (hOGG1), were tested. A hairpin-structured probe (HP) which contained damaged bases in the stem was used as the substrate. The removal of damaged bases from substrate by DNA glycosylase would lower the melting temperature of HP. The HP was then opened and hybridized with a FAM dye-labeled single strand DNA (DP), generating a duplex with a recessed 3'-terminal of DP. This design facilitated the Exo III-assisted amplification by repeating the hybridization and digestion of DP, liberating numerous FAM fluorophores which could not be adsorbed on WS2 nanosheet. Thus, the final system exhibited a small FP signal. However, in the absence of DNA glycosylases, no hybridization between DP and HP was occurred, hampering the hydrolysis of DP by Exo III. The intact DP was then adsorbed on the surface of WS2 nanosheet that greatly amplified the mass of the labeled-FAM fluorophore, resulting in a large FP value. With the co-assisted amplification strategy, the sensitivity was substantially improved. In addition, this method was applied to detect UDG activity in cell extracts. The study of the inhibition of UDG was also performed. Furthermore, this method is simple in design, easy in implementation, and selective, which holds potential applications in the DNA glycosylase related mechanism research and molecular diagnostics.

  2. Tunable design strategy for fluorescence probes based on 4-substituted BODIPY chromophore: improvement of highly sensitive fluorescence probe for nitric oxide.

    PubMed

    Gabe, Yu; Ueno, Tasuku; Urano, Yasuteru; Kojima, Hirotatsu; Nagano, Tetsuo

    2006-10-01

    4,4-Difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) is a well-known fluorophore, with a high molar extinction coefficient and high fluorescence quantum efficiency (Phi(fl)). Furthermore, its structure can be modified to change its excitation and emission wavelengths. However, little work has been done on the structural modification of fluorines at the B-4 position with other functional groups. We synthesized 4-methoxy-substituted BODIPY derivatives in satisfactory yields, and found that they exhibited improved solubility in aqueous solution. Moreover, their oxidation and reduction potentials were greatly decreased without any change in their absorbance and fluorescence properties. These features of 4-substituted BODIPYs may be useful for developing novel fluorescence probes based on the intramolecular photoinduced electron transfer (PeT) mechanism, because it is possible to optimize the PeT process precisely by modulating the electrochemical properties of the fluorophore. The value of this approach is exemplified by its application to the development of a highly sensitive and pH-independent fluorescence probe for nitric oxide.

  3. Highly sensitive detection of lipopolysaccharides using an aptasensor based on hybridization chain reaction

    PubMed Central

    Xie, Peiyan; Zhu, Longjiao; Shao, Xiangli; Huang, Kunlun; Tian, Jingjing; Xu, Wentao

    2016-01-01

    Lipopolysaccharides (LPS), integral components of the outer membrane of all gram-negative bacteria, are closely associated with foodborne diseases such as fever, diarrhea and hypotension, and thus, the early and sensitive detection of LPS is necessary. In this study, an aptasensor assay based on hybridization chain reaction (HCR) was developed to detect LPS. Briefly, two complementary stable species of biotinylated DNA hairpins coexisted in solution until the introduction of a detection probe triggered a hybridization chain reaction cascade. The DNA conjugates specifically reacted with the LPS, which were captured by the ethanolamine aptamer attached to the reaction well surface. After optimizing the key reaction conditions, such as the reaction time of HCR, the amount of the capture probe and detection probes, the increase in the LPS concentration was readily measured by the optical density value, and a relatively low detection limit (1.73 ng/mL) was obtained, with a linear response range of 1–105 ng/mL. The approach presented herein introduced the use of an aptasensor for LPS discrimination and HCR for signal amplification, offering a promising option for detecting LPS. PMID:27404735

  4. Highly sensitive detection of lipopolysaccharides using an aptasensor based on hybridization chain reaction.

    PubMed

    Xie, Peiyan; Zhu, Longjiao; Shao, Xiangli; Huang, Kunlun; Tian, Jingjing; Xu, Wentao

    2016-01-01

    Lipopolysaccharides (LPS), integral components of the outer membrane of all gram-negative bacteria, are closely associated with foodborne diseases such as fever, diarrhea and hypotension, and thus, the early and sensitive detection of LPS is necessary. In this study, an aptasensor assay based on hybridization chain reaction (HCR) was developed to detect LPS. Briefly, two complementary stable species of biotinylated DNA hairpins coexisted in solution until the introduction of a detection probe triggered a hybridization chain reaction cascade. The DNA conjugates specifically reacted with the LPS, which were captured by the ethanolamine aptamer attached to the reaction well surface. After optimizing the key reaction conditions, such as the reaction time of HCR, the amount of the capture probe and detection probes, the increase in the LPS concentration was readily measured by the optical density value, and a relatively low detection limit (1.73 ng/mL) was obtained, with a linear response range of 1-10(5 )ng/mL. The approach presented herein introduced the use of an aptasensor for LPS discrimination and HCR for signal amplification, offering a promising option for detecting LPS.

  5. Highly sensitive fluorescence assay of T4 polynucleotide kinase activity and inhibition via enzyme-assisted signal amplification.

    PubMed

    Tao, Mangjuan; Zhang, Jing; Jin, Yan; Li, Baoxin

    2014-11-01

    DNA phosphorylation catalyzed by polynucleotide kinase (PNK) is an indispensable process in the repair, replication, and recombination of nucleic acids. Here, an enzyme-assisted amplification strategy was developed for the ultrasensitive monitoring activity and inhibition of T4 PNK. A hairpin oligonucleotide (hpDNA) was designed as a probe whose stem can be degraded from the 5' to 3' direction by lambda exonuclease (λ exo) when its 5' end is phosphorylated by PNK. So, the 3' stem and loop part of hpDNA was released as an initiator strand to open a molecular beacon (MB) that was designed as a fluorescence reporter, leading to a fluorescence restoration. Then, the initiator strand was released again by the nicking endonuclease (Nt.BbvCI) to hybridize with another MB, resulting in a cyclic reaction and accumulation of fluorescence signal. Based on enzyme-assisted amplification, PNK activity can be sensitively and rapidly detected with a detection limit of 1.0×10(-4)U/ml, which is superior to those of most existing approaches. Furthermore, the application of the proposed strategy for screening PNK inhibitors also demonstrated satisfactory results. Therefore, it provided a promising platform for monitoring activity and inhibition of PNK as well as for studying the activity of other nucleases.

  6. Highly sensitive and selective detection of biothiols using graphene oxide-based "molecular beacon"-like fluorescent probe.

    PubMed

    Gao, Yuan; Li, Yan; Zou, Xin; Huang, Hui; Su, Xingguang

    2012-06-20

    A fluorometric method for quantity analysis of biothiols was developed using a graphene oxide (GO)-based "molecular beacon"-like probe, which consisted of FITC labeled thymine (T)-rich single-stranded DNA (ssDNA), GO and Hg(2+) ions. The labeled ssDNA containing T-T mismatches would self-hybridize to duplex in the presence of Hg(2+), which can avoid its adsorption on GO and the fluorescence of this GO-based probe was recovered. The fluorescence of the probe quenched after the addition of biothiols such as glutathione (GSH) and cysteine (Cys) owing to thiol groups can selectively competitive ligation of Hg(2+) ions with T-T mismatches. In the present work, the GO-based probe was used for the determination of GSH and Cys. Under the optimal conditions, a linear correlation was established between fluorescence intensity ratio I(0)/I and the concentration of GSH in the range of 2.0×10(-9)-5.0×10(-7) mol L(-1) with a detection limit of 1.0×10(-9) mol L(-1). The linear range for Cys is from 5.0×10(-9) to 4.5×10(-7) mol L(-1) with a detection limit of 2.0×10(-9) mol L(-1). The proposed method was applied to the determination of GSH in human serum and cell extract samples with satisfactory results.

  7. Highly sensitive electrochemical biosensor based on nonlinear hybridization chain reaction for DNA detection.

    PubMed

    Jia, Liping; Shi, Shanshan; Ma, Rongna; Jia, Wenli; Wang, Huaisheng

    2016-06-15

    In the present work we demonstrated an ultrasensitive detection platform for specific DNA based on nonlinear hybridization chain reaction (HCR) by triggering chain-branching growth of DNA dendrimers. HCR was initiated by target DNA (tDNA) and finally formed dendritic structure by self-assembly. The electrochemical signal was drastically enhanced by capturing multiple catalytic peroxidase with high-ordered growth. Electrochemical signals were obtained by measuring the reduction current of oxidized 3, 3', 5, 5'-tetramethylbenzidine sulfate (TMB), which was generated by HRP in the presence of H2O2. This method exhibited ultrahigh sensitivity to tDNA with detection limit of 0.4 fM. Furthermore, the biosensor was also capable of discriminating single-nucleotide difference among concomitant DNA sequences.

  8. Ultrasensitive hybridization analysis using fluorescence correlation spectroscopy.

    PubMed

    Kinjo, M; Rigler, R

    1995-05-25

    The hybridization of fluorescently tagged 18mer deoxyribonucleotides with complementary DNA templates was analysed by fluorescence correlation spectroscopy (FCS) in a droplet under an epi-illuminated fluorescence microscope at the level of single molecules. The interaction can be monitored by the change in the translational diffusion time of the smaller (18mer) primer when binding to the bigger (7.5 kb) DNA containing the complementary sequence. The hybridization process in the presence of template M13mp18 ssDNA was monitored in a small volume (2 x 10(-16)I) at various temperatures. The Arrhenius plot of the association rate constant shows that the activation energy was 38.8 kcal/mol, but the hybridization process may involve several components. The titration experiment suggested that approximately 2 primers can be associated with one template DNA at 40 degrees C. Results of a simple homology search for the sequences complementary to the primer indicate the existence of additional sites of lower specificity.

  9. Highly sensitive fluorescent probe for clenbuterol hydrochloride detection based on its catalytic oxidation of eosine Y by NaIO4.

    PubMed

    Liu, Jiaming; Liu, Zhen-bo; Huang, Qitong; Lin, Chang-Qing; Lin, Xiaofeng

    2014-09-01

    A highly sensitive fluorescent probe for clenbuterol hydrochloride (CLB) detection has been first designed based on its catalytic effect on NaIO4 oxidating eosine Y (R). And this environment-friendly, simple, rapid, selective and sensitive fluorescent probe has been utilized to detect CLB in the practical samples with the results consisting with those obtained by GC/MS. The structures of R and CLB were characterized by infrared spectra. The mechanism of the proposed assay for the detection of CLB was also discussed.

  10. A ratiometric fluorescent nanoprobe based on terbium functionalized carbon dots for highly sensitive detection of an anthrax biomarker.

    PubMed

    Chen, Hao; Xie, Yujie; Kirillov, Alexander M; Liu, Liangliang; Yu, Minghui; Liu, Weisheng; Tang, Yu

    2015-03-25

    A ratiometric fluorescent nanoprobe based on terbium functionalized carbon dots (CDs) was designed to detect dipicolinic acid (DPA) as an anthrax biomarker with high selectivity and sensitivity. CDs were generated by one-step synthesis using an ethylenediaminetetraacetic acid precursor, and served as a scaffold for coordination with Tb(3+) and a fluorescence reference.

  11. Molecular cytogenetics using fluorescence in situ hybridization

    SciTech Connect

    Gray, J.W.; Kuo, Wen-Lin; Lucas, J.; Pinkel, D.; Weier, H-U.; Yu, Loh-Chung.

    1990-12-07

    Fluorescence in situ hybridization (FISH) with chromosome-specific probes enables several new areas of cytogenetic investigation by allowing visual determination of the presence and normality of specific genetic sequences in single metaphase or interphase cells. in this approach, termed molecular cytogenetics, the genetic loci to be analyzed are made microscopically visible in single cells using in situ hybridization with nucleic acid probes specific to these loci. To accomplish this, the DNA in the target cells is made single stranded by thermal denaturation and incubated with single-stranded, chemically modified probe under conditions where the probe will anneal only with DNA sequences to which it has high DNA sequence homology. The bound probe is then made visible by treatment with a fluorescent reagent such as fluorescein that binds to the chemical modification carried by the probe. The DNA to which the probe does not bind is made visible by staining with a dye such as propidium iodide that fluoresces at a wavelength different from that of the reagent used for probe visualization. We show in this report that probes are now available that make this technique useful for biological dosimetry, prenatal diagnosis and cancer biology. 31 refs., 3 figs.

  12. A reusable DNA single-walled carbon-nanotube-based fluorescent sensor for highly sensitive and selective detection of Ag+ and cysteine in aqueous solutions.

    PubMed

    Zhao, Chao; Qu, Konggang; Song, Yujun; Xu, Can; Ren, Jinsong; Qu, Xiaogang

    2010-07-19

    Here we report a reusable DNA single-walled carbon nanotube (SWNT)-based fluorescent sensor for highly sensitive and selective detection of Ag(+) and cysteine (Cys) in aqueous solution. SWNTs can effectively quench the fluorescence of dye-labeled single-stranded DNA due to their strong pi-pi stacking interactions. However, upon incubation with Ag(+), Ag(+) can induce stable duplex formation mediated by C-Ag(+)-C (C=cytosine) coordination chemistry, which has been further confirmed by DNA melting studies. This weakens the interactions between DNA and SWNTs, and thus activates the sensor fluorescence. On the other hand, because Cys is a strong Ag(+) binder, it can remove Ag(+) from C-Ag(+)-C base pairs and deactivates the sensor fluorescence by rewrapping the dye-labeled oligonucleotides around the SWNT. In this way, the fluorescence signal-on and signal-off of a DNA/SWNT sensor can be used to detect aqueous Ag(+) and Cys, respectively. This sensing platform exhibits high sensitivity and selectivity toward Ag(+) and Cys versus other metal ions and the other 19 natural amino acids, with a limit of detection of 1 nM for Ag(+) and 9.5 nM for Cys. Based on these results, we have constructed a reusable fluorescent sensor by using the covalent-linked SWNT-DNA conjugates according to the same sensing mechanism. There is no report on the use of SWNT-DNA assays for the detection of Ag(+) and Cys. This assay is simple, effective, and reusable, and can in principle be used to detect other metal ions by substituting C-C base pairs with other native or artificial bases that selectively bind to other metal ions. PMID:20512822

  13. Fluorescent magnetic hybrid nanoprobe for multimodal bioimaging

    PubMed Central

    Bright, Vanessa

    2011-01-01

    A fluorescent magnetic hybrid imaging nanoprobe (HINP) was fabricated by conjugation of superparamagnetic Fe3O4 nanoparticles and visible light-emitting (~600 nm) fluorescent CdTe/CdS quantum dots (QDs). The assembly strategy used the covalent linking of the oxidized dextran shell of magnetic particles to the glutathione ligands of QDs. Synthesized HINP formed stable water-soluble colloidal dispersions. The structure and properties of the particles were characterized by transmission electron and atomic force microscopy, energy dispersive X-ray analysis and inductively coupled plasma optical emission spectroscopy, dynamic light scattering analysis, optical absorption and photoluminescence spectroscopy, and fluorescent imaging. The luminescence imaging region of the nanoprobe was extended to the near-infrared (NIR) (~800 nm) by conjugation of superparamagnetic nanoparticles with synthesized CdHgTe/CdS QDs. Cadmium, mercury based QDs in HINP can be easily replaced by novel water soluble glutathione stabilized AgInS2/ZnS QDs to present a new class of cadmium-free multimodal imaging agents. Observed NIR photoluminescence of fluorescent magnetic nanocomposites supports their use for bioimaging. The developed HINP provides dual-imaging channels for simultaneous optical and magnetic resonance imaging. PMID:21597146

  14. Fluorescent in situ hybridization to ascidian chromosomes.

    PubMed

    Shoguchi, Eiichi; Ikuta, Tetsuro; Yoshizaki, Fumiko; Satou, Yutaka; Satoh, Nori; Asano, Katsutoshi; Saiga, Hidetoshi; Nishikata, Takahito

    2004-02-01

    The draft genome of the ascidian Ciona intestinalis has been sequenced. Mapping of the genome sequence to the Ciona 14 haploid chromosomes is essential for future studies of the genome-wide control of gene expression in this basal chordate. Here we describe an efficient protocol for fluorescent in situ hybridization for mapping genes to the Ciona chromosomes. We demonstrate how the locations of two BAC clones can be mapped relative to each other. We also show that this method is efficient for coupling two so-far independent scaffolds into one longer scaffold when two BAC clones represent sequences located at either end of the two scaffolds.

  15. A reduced graphene oxide-based fluorescence resonance energy transfer sensor for highly sensitive detection of matrix metalloproteinase 2.

    PubMed

    Xi, Gaina; Wang, Xiaoping; Chen, Tongsheng

    2016-01-01

    A novel fluorescence nanoprobe (reduced nano-graphene oxide [nrGO]/fluorescein isothiocyanate-labeled peptide [Pep-FITC]) for ultrasensitive detection of matrix metalloproteinase 2 (MMP2) has been developed by engineering the Pep-FITC comprising the specific MMP2 substrate domain (PLGVR) onto the surface of nrGO particles through non-covalent linkage. The nrGO was obtained by water bathing nano-graphene oxide under 90°C for 4 hours. After mixing the nrGO and Pep-FITC for 30 seconds, the fluorescence from Pep-FITC was almost completely quenched due to the fluorescence resonance energy transfer between fluorescein isothiocyanate (FITC) and nrGO. Upon cleavage of the amide bond between Leu and Gly in the Pep-FITC by protease-MMP2, the FITC bound to nrGO was separated from nrGO surface, disrupting the fluorescence resonance energy transfer process and resulting in fluorescence recovery of FITC. Under optimal conditions, the fluorescence recovery of nrGO/Pep-FITC was found to be directly proportional to the concentration of MMP2 within 0.02-0.1 nM. The detection limit of the nrGO/Pep-FITC was determined to be 3 pM, which is approximately tenfold lower than that of the unreduced carboxylated nano-graphene oxide/Pep-FITC probe.

  16. A reduced graphene oxide-based fluorescence resonance energy transfer sensor for highly sensitive detection of matrix metalloproteinase 2

    PubMed Central

    Xi, Gaina; Wang, Xiaoping; Chen, Tongsheng

    2016-01-01

    A novel fluorescence nanoprobe (reduced nano-graphene oxide [nrGO]/fluorescein isothiocyanate-labeled peptide [Pep-FITC]) for ultrasensitive detection of matrix metalloproteinase 2 (MMP2) has been developed by engineering the Pep-FITC comprising the specific MMP2 substrate domain (PLGVR) onto the surface of nrGO particles through non-covalent linkage. The nrGO was obtained by water bathing nano-graphene oxide under 90°C for 4 hours. After mixing the nrGO and Pep-FITC for 30 seconds, the fluorescence from Pep-FITC was almost completely quenched due to the fluorescence resonance energy transfer between fluorescein isothiocyanate (FITC) and nrGO. Upon cleavage of the amide bond between Leu and Gly in the Pep-FITC by protease-MMP2, the FITC bound to nrGO was separated from nrGO surface, disrupting the fluorescence resonance energy transfer process and resulting in fluorescence recovery of FITC. Under optimal conditions, the fluorescence recovery of nrGO/Pep-FITC was found to be directly proportional to the concentration of MMP2 within 0.02–0.1 nM. The detection limit of the nrGO/Pep-FITC was determined to be 3 pM, which is approximately tenfold lower than that of the unreduced carboxylated nano-graphene oxide/Pep-FITC probe. PMID:27143876

  17. Reutilization of previously hybridized slides for fluorescence in situ hybridization

    SciTech Connect

    Epstein, L.; DeVries, S.; Waldman, F.M.

    1995-12-01

    Application of fluorescence in situ hybridization (FISH) to clinical material is sometimes limited by sample size. In addition, heterogeneity among slides prepared from a single sample may lead to variation in FISH analyses. Reutilization of material for repeated FISH analyses would help to alleviate these problems. We have developed a simple procedure for repeated FISH analyses with directly conjugated probes. Previously hybridized probes are removed by incubation in denaturing solution, and slides can then be rehybridized without residual signals remaining. Several cycles of this procedure allow a full complement of chromosomal loci to be analyzed on the same population of cells. Advantages of this protocol include gaining more cytogenetic information from small samples and eliminating the problem of intratumorvariability. 5 refs., 4 figs.

  18. Rhodamine 6G hydrazone bearing thiophene unit: A highly sensitive and selective off-on fluorescent chemosensor for Al3+

    NASA Astrophysics Data System (ADS)

    Wu, Wei-Na; Mao, Pan-Dong; Wang, Yuan; Zhao, Xiao-Lei; Jia, Lei; Xu, Zhou-Qing

    2016-10-01

    A rhodamine derivative (R1) has been synthesized by a hydrazone formation of rhodamine 6G hydrazide with 3-methylthiophene-2-carbaldehyde, which exhibits high selectivity and sensitivity as an "off-on" fluorescent sensor toward Al3+ in water containing media. The binding process was confirmed by UV-vis absorption, fluorescence measurements, mass spectroscopy and DFT calculation. The probe functions by Al3+ induced hydrolytic cleavage of the imine-bond to produce an intense rhodamine-based emission. To test the practical use of the probe, the determination of Al3+ in real water samples was also evaluated.

  19. A highly sensitive and selective fluorescent chemosensor for detection of Zn2+ based on a Schiff base.

    PubMed

    Roy, Nayan; Pramanik, Harun A R; Paul, Pradip C; Singh, T Sanjoy

    2015-04-01

    A Schiff-base fluorescent probe - 2-((E)-(quinolin-8-ylimino)methyl)quinolin-8-ol (H7L) was synthesized and evaluated as a chemoselective Zn2+ sensor. Upon treatment with Zn2+, the complexation of H7L with Zn2+ resulted in a red shift with a pronounced enhancement in the fluorescence emission intensity in ethanol solution. Moreover, other common alkali, alkaline earth and transition metal ions failed to induce response or minimal spectral changes. Notably, this chemosensor could distinguish clearly Zn2+ from Cd2+. Fluorescence studies on H7L and H7L-Zn2+ complex reveal that the quantum yield strongly increases upon coordination. The stoichiometric ratio and association constant were evaluated using Benesi-Hildebrand relation giving 1:1 stoichiometry. This further corroborated 1:1 complex formation based on Job's plot analyses. This chemosensor exhibits a very good fluorescence sensing ability to Zn2+ over a wide range of pH.

  20. A colorimetric and near-infrared fluorescent probe with high sensitivity and selectivity for acid phosphatase and inhibitor screening.

    PubMed

    Xu, Yongqian; Li, Benhao; Xiao, Liangliang; Ouyang, Jia; Sun, Shiguo; Pang, Yi

    2014-08-14

    A dual-channel including a colorimetric and fluorescent probe based on the aggregation-caused quenching (ACQ) and enzymolysis approach has been presented to screen acid phosphatase (ACP) and its inhibitor. Moreover, the ACP activity was determined by real time assay. PMID:24957006

  1. A highly sensitive and selective fluorescent chemosensor for detection of Zn2+ based on a Schiff base

    NASA Astrophysics Data System (ADS)

    Roy, Nayan; Pramanik, Harun A. R.; Paul, Pradip C.; Singh, T. Sanjoy

    2015-04-01

    A Schiff-base fluorescent probe - 2-((E)-(quinolin-8-ylimino)methyl)quinolin-8-ol (H7L) was synthesized and evaluated as a chemoselective Zn2+ sensor. Upon treatment with Zn2+, the complexation of H7L with Zn2+ resulted in a red shift with a pronounced enhancement in the fluorescence emission intensity in ethanol solution. Moreover, other common alkali, alkaline earth and transition metal ions failed to induce response or minimal spectral changes. Notably, this chemosensor could distinguish clearly Zn2+ from Cd2+. Fluorescence studies on H7L and H7L-Zn2+ complex reveal that the quantum yield strongly increases upon coordination. The stoichiometric ratio and association constant were evaluated using Benesi-Hildebrand relation giving 1:1 stoichiometry. This further corroborated 1:1 complex formation based on Job's plot analyses. This chemosensor exhibits a very good fluorescence sensing ability to Zn2+ over a wide range of pH.

  2. Volume labeling with Alexa Fluor dyes and surface functionalization of highly sensitive fluorescent silica (SiO2) nanoparticles

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Nallathamby, Prakash D.; Foster, Carmen M.; Morrell-Falvey, Jennifer L.; Mortensen, Ninell P.; Doktycz, Mitchel J.; Gu, Baohua; Retterer, Scott T.

    2013-10-01

    A new synthesis approach is described that allows the direct incorporation of fluorescent labels into the volume or body of SiO2 nanoparticles. In this process, fluorescent Alexa Fluor dyes with different emission wavelengths were covalently incorporated into the SiO2 nanoparticles during their formation by the hydrolysis of tetraethoxysilane. The dye molecules were homogeneously distributed throughout the SiO2 nanoparticles. The quantum yields of the Alexa Fluor volume-labeled SiO2 nanoparticles were much higher than nanoparticles labeled using conventional organic dyes. The size of the resulting nanoparticles was controlled using microemulsion reaction media with sizes in the range of 20-100 nm and a polydispersity of <15%. In comparison with conventional surface tagged particles created by post-synthesis modification, this process maintains the physical and surface chemical properties that have the most pronounced effect on colloidal stability and interactions with their surroundings. These volume-labeled nanoparticles have proven to be extremely robust, showing excellent signal strength, negligible photobleaching, and minimal loss of functional organic components. The native or ``free'' surface of the volume-labeled particles can be altered to achieve a specific surface functionality without altering fluorescence. Their utility was demonstrated for visualizing the association of surface-modified fluorescent particles with cultured macrophages. Differences in particle agglomeration and cell association were clearly associated with differences in observed nanoparticle toxicity. The capacity to maintain particle fluorescence while making significant changes to surface chemistry makes these particles extremely versatile and useful for studies of particle agglomeration, uptake, and transport in environmental and biological systems.A new synthesis approach is described that allows the direct incorporation of fluorescent labels into the volume or body of SiO2

  3. Volume Labeling with Alexa-Fluor Dyes and Surface Functionalization of Highly Sensitive Fluorescent SiO2 Nanoparticles

    SciTech Connect

    Wang, Wei; Foster, Carmen M; Morrell-Falvey, Jennifer L; Nallathamby, Prakash D; Mortensen, Ninell P; Doktycz, Mitchel John; Gu, Baohua; Retterer, Scott T; Gu, Baohua

    2013-01-01

    A new synthesis approach is described that allows the direct incorporation of fluorescent labels into the volume or body of SiO2 nanoparticles. In this process, fluorescent Alexa Fluor dyes with different emission wavelengths were covalently incorporated into the SiO2 nanoparticles during their formation by the hydrolysis of tetraethoxysilane. The dye molecules were homogeneously distributed throughout the SiO2 nanoparticles. The quantum yields of the Alexa Fluor volume-labeled SiO2 nanoparticles were much higher than nanoparticles labeled using conventional organic dyes. The size of the resulting nanoparticles was controlled using microemulsion reaction media with sizes in the range of 20-100 nm and a polydispersity of <15%. In comparison with conventional surface tagged particles created by post-synthesis modification, this process maintains the physical and surface chemical properties that have the most pronounced effect on colloidal stability and interactions with their surroundings. These volume-labeled nanoparticles have proven to be extremely robust, showing excellent signal strength, negligible photobleaching, and minimal loss of functional organic components. The native or free surface of the volume-labeled particles can be altered to achieve a specific surface functionality without altering fluorescence. Their utility was demonstrated for visualizing the association of surface modified fluorescent particles with cultured macrophages. Differences in particle agglomeration and cell association were clearly associated with differences in observed nanoparticle toxicity. The capacity to maintain particle fluorescence while making significant changes to surface chemistry makes these particles extremely versatile and useful for studies of particle agglomeration, uptake, and transport in environmental and biological systems.

  4. Volume labeling with Alexa Fluor dyes and surface functionalization of highly sensitive fluorescent silica (SiO2) nanoparticles.

    PubMed

    Wang, Wei; Nallathamby, Prakash D; Foster, Carmen M; Morrell-Falvey, Jennifer L; Mortensen, Ninell P; Doktycz, Mitchel J; Gu, Baohua; Retterer, Scott T

    2013-11-01

    A new synthesis approach is described that allows the direct incorporation of fluorescent labels into the volume or body of SiO2 nanoparticles. In this process, fluorescent Alexa Fluor dyes with different emission wavelengths were covalently incorporated into the SiO2 nanoparticles during their formation by the hydrolysis of tetraethoxysilane. The dye molecules were homogeneously distributed throughout the SiO2 nanoparticles. The quantum yields of the Alexa Fluor volume-labeled SiO2 nanoparticles were much higher than nanoparticles labeled using conventional organic dyes. The size of the resulting nanoparticles was controlled using microemulsion reaction media with sizes in the range of 20-100 nm and a polydispersity of <15%. In comparison with conventional surface tagged particles created by post-synthesis modification, this process maintains the physical and surface chemical properties that have the most pronounced effect on colloidal stability and interactions with their surroundings. These volume-labeled nanoparticles have proven to be extremely robust, showing excellent signal strength, negligible photobleaching, and minimal loss of functional organic components. The native or "free" surface of the volume-labeled particles can be altered to achieve a specific surface functionality without altering fluorescence. Their utility was demonstrated for visualizing the association of surface-modified fluorescent particles with cultured macrophages. Differences in particle agglomeration and cell association were clearly associated with differences in observed nanoparticle toxicity. The capacity to maintain particle fluorescence while making significant changes to surface chemistry makes these particles extremely versatile and useful for studies of particle agglomeration, uptake, and transport in environmental and biological systems.

  5. A highly sensitive and selective fluorescent sensor for detection of Al(3+) using a europium(III) quinolinecarboxylate.

    PubMed

    Xu, Wentao; Zhou, Youfu; Huang, Decai; Su, Mingyi; Wang, Kun; Hong, Maochun

    2014-07-01

    Eu2PQC6 has been developed to detect Al(3+) by monitoring the quenching of the europium-based emission, with the lowest detection limit of ∼32 pM and the quantitative detection range to 150 μM. Eu2PQC6 is the first ever example that the europium(III) complex serves as an Al(3+) fluorescent sensor based on "competition-displacement" mode.

  6. A high-sensitive and fast-fabricated glucose biosensor based on Prussian blue/topological insulator Bi2Se3 hybrid film.

    PubMed

    Wu, Shouguo; Liu, Gang; Li, Ping; Liu, Hao; Xu, Haihong

    2012-01-01

    A novel and fast-fabricated Prussian blue (PB)/topological insulator Bi(2)Se(3) hybrid film has been prepared by coelectrodeposition technique. Taking advantages of topological insulator in possessing exotic metallic surface states with bulk insulating gap, Prussian blue nanoparticles in the hybrid film have smaller size as well as more compact structure, showing excellent pH stability even in the alkalescent solution of pH 8.0. Based on the Laviron theory, the electron transfer rate constant of PB/Bi(2)Se(3) hybrid film modified electrode was calculated to be 4.05 ± 0.49 s(-1), a relatively big value which may be in favor of establishing a high-sensitive biosensor. An amperometric glucose biosensor was then fabricated by immobilizing glucose oxidase (GOD) on the hybrid film. Under the optimal conditions, a wide linear range extending over 3 orders of magnitude of glucose concentrations (1.0 × 10(-5)-1.1 × 10(-2)M) was obtained with a high sensitivity of 24.55 μA mM(-1) cm(-2). The detection limit was estimated for 3.8 μM defined from a signal/noise of 3. Furthermore, the resulting biosensor was applied to detect the blood sugar in human serum samples without any pretreatment, and the results were comparatively in agreement with the clinical assay.

  7. High-sensitivity capillary electrophoresis of double-stranded DNA fragments using monomeric and dimeric fluorescent intercalating dyes

    SciTech Connect

    Zhu, H.; Clark, S.M.; Benson, S.C.; Rye, H.S.; Glazer, A.N.; Mathies, R.A. )

    1994-07-01

    Fluorescence-detected capillary electrophoresis separations of [phi]X174/HaeIII DNA restriction fragments have been performed using monomeric and dimeric intercalating dyes. Replaceable hydroxyethyl cellulose solutions were used as the separation medium. Confocal fluorescence detection was performed following 488-nm laser excitation. The limits of DNA detection for on-column staining with monomeric dyes (ethidium bromide, two propidium dye derivatives, oxazole yellow, thiazole orange, and a polycationic thiazole orange derivative) were determined. The thiazole orange dyes provide the most sensitive detection with limiting sensitivities of 2-4 amol of DNA base pairs per band, and detection of the 603-bp fragment was successful, injecting from [phi]X174/HaeIII samples containing only 1-2 fg of this fragment per microliter. Separations of preformed DNA-dimeric dye complexes were also performed. The breadth of the bands observed in separations of preformed DNA-dimeric dye complexes is due to the presence of DNA fragments with different numbers of bound dye molecules that can be resolved as closely spaced subbands in many of our separations. The quality of these DNA-dye complex separations can be dramatically improved by performing the electrophoresis with 9-aminoacridine (9AA) in the column and running buffers. 43 refs., 10 figs., 1 tab.

  8. Side-entry laser-beam zigzag irradiation of multiple channels in a microchip for simultaneous and highly sensitive detection of fluorescent analytes.

    PubMed

    Anazawa, Takashi; Yokoi, Takahide; Uchiho, Yuichi

    2015-09-01

    A simple and highly sensitive technique for laser-induced fluorescence detection on multiple channels in a plastic microchip was developed, and its effectiveness was demonstrated by laser-beam ray-trace simulations and experiments. In the microchip, with refractive index nC, A channels and B channels are arrayed alternately and respectively filled with materials with refractive indexes nA for electrophoresis analysis and nB for laser-beam control. It was shown that a laser beam entering from the side of the channel array traveled straight and irradiated all A channels simultaneously and effectively because the refractive actions by the A and B channels were counterbalanced according to the condition nA < nC < nB. This technique is thus called "side-entry laser-beam zigzag irradiation". As a demonstration of the technique, when nC = 1.53, nA = 1.41, nB = 1.66, and the cross sections of both eight A channels and seven B channels were the same isosceles trapezoids with 97° base angle, laser-beam irradiation efficiency on the eight A channels by the simulations was 89% on average and coefficient of variation was 4.4%. These results are far superior to those achieved by other conventional methods such as laser-beam expansion and scanning. Furthermore, fluorescence intensity on the eight A channels determined by the experiments agreed well with that determined by the simulations. Therefore, highly sensitive and uniform fluorescence detection on eight A channels was achieved. It is also possible to fabricate the microchips at low cost by plastic-injection molding and to make a simple and compact detection system, thereby promoting actual use of the proposed side-entry laser-beam zigzag irradiation in various fields. PMID:26296140

  9. Highly sensitive and selective fluorescence sensor based on functional SBA-15 for detection of Hg2+ in aqueous media.

    PubMed

    Song, Chunxia; Zhang, Xiaolin; Jia, Cuiying; Zhou, Peng; Quan, Xie; Duan, Chunying

    2010-04-15

    A new Rhodamine-based chemosensor RBSN designed for the selective detection of Hg(2+) in aqueous media is synthesized and structural characterized. It features brightness blue emission in the presence of Hg(2+) with the fluorescent detection limit for Hg(2+) in aqueous media being ppb levels and exhibits excellent Hg(2+)-specific luminescence enhancement over various competitive cations, including alkali and alkaliearth, the first-row transition metals and heavy metals. By immobilizing RBSN to the mesoporous SBA-15, a highly selective and sensitive chemosensor toward mercury cations in aqueous solution was achieved. RBSN/SBA-15 could quantitatively determinate mercury cations at ppb level in the practical environmental media, suggesting the possibility for real-time quantitative detection of Hg(2+) and the convenience for potential application in toxicological and environmental science.

  10. Highly Sensitive and Selective Colorimetric and Off-On Fluorescent Reversible Chemosensors for Al3+ Based on the Rhodamine Fluorophore

    PubMed Central

    Mergu, Naveen; Singh, Ashok Kumar; Gupta, Vinod Kumar

    2015-01-01

    A series of rhodamine derivatives L1–L3 have been prepared and characterized by IR, 1H-NMR, 13C-NMR and ESI-MS. These compounds exhibited selective and sensitive “turn-on” fluorescent and colorimetric responses to Al3+ in methanol. Upon the addition of Al(III), the spiro ring was opened and a metal-probe complex was formed in a 1:1 stoichiometry, as was further confirmed by ESI-MS spectroscopy. The chemo-dosimeters L1–L3 exhibited good binding constants and low detection limits towards Al(III). We also successfully demonstrate the reversibility of the metal to ligand complexation (opened ring to spirolactam ring). PMID:25897498

  11. A label-free fluorescence biosensor for highly sensitive detection of lectin based on carboxymethyl chitosan-quantum dots and gold nanoparticles.

    PubMed

    Liu, Ziping; Liu, Hua; Wang, Lei; Su, Xingguang

    2016-08-17

    In this work, we report a novel label-free fluorescence "turn off-on" biosensor for lectin detection. The highly sensitive and selective sensing system is based on the integration of carboxymethyl chitosan (CM-CHIT), CuInS2 quantum dots (QDs) and Au nanoparticles (NPs). Firstly, CuInS2 QDs featuring carboxyl groups were directly synthesized via a hydrothermal synthesis method. Then, the carboxyl groups on the CuInS2 QDs surface were interacted with the amino groups (NH2), carboxyl groups (COOH) and hydroxyl groups (OH) within CM-CHIT polymeric chains via electrostatic interactions and hydrogen bonding to form CM-CHIT-QDs assemblies. Introduction of Au NPs could quench the fluorescence of CM-CHIT-QDs through electron and energy transfer. In the presence of lectin, lectin could bind exclusively with CM-CHIT-QDs by means of specific multivalent carbohydrate-protein interaction. Thus, the electron and energy transfer process between CM-CHIT-QDs and Au NPs was inhibited, and as a result, the fluorescence of CM-CHIT-QDs was effectively "turned on". Under the optimum conditions, there was a good linear relationship between the fluorescence intensity ratio I/I0 (I and I0 were the fluorescence intensity of CM-CHIT-QDs-Au NPs in the presence and absence of lectin, respectively) and lectin concentration in the range of 0.2-192.5 nmol L(-1), And the detection limit could be down to 0.08 nmol L(-1). Furthermore, the proposed biosensor was employed for the determination of lectin in fetal bovine serum samples with satisfactory results. PMID:27286773

  12. Highly Sensitive Fluorescence Methods for the Determination of Alfuzosin, Doxazosin, Terazosin and Prazosin in Pharmaceutical Formulations, Plasma and Urine.

    PubMed

    Guo, Xiaozhen; Wu, Hao; Guo, Shiwen; Shi, Yating; DU, Juanli; Zhu, Panpan; DU, Liming

    2016-01-01

    Polymeric ionic liquid-coated magnetic nanoparticles have been successfully prepared as adsorbents for the magnetic solid-phase extraction of four drugs, namely alfuzosin, doxazosin, terazosin and prazosin, from pharmaceutical preparations, urine samples and plasma samples. The four drugs were detected by fluorescence spectrophotometer. Several extraction parameters, including the pH of the solution; the type, ratio and volume of the desorbing reagent; the amount of adsorbent; the time of the extraction and desorption processes; and the addition of NaCl, were investigated and optimized. Linear responses were determined for the four drugs in the concentration range of 0.5 - 45 ng mL(-1). The limit of detection values for alfuzosin, doxazosin, terazosin and prazosin, which were defined as three times the standard deviation of a blank sample, were determined to be 0.035, 0.034, 0.027 and 0.028 ng mL(-1) (n = 11), respectively. Furthermore, this new method gave preconcentration factors of 114.5, 111.3, 111.1 and 108.5 for these four drugs. PMID:27396658

  13. Peroxyoxalate chemiluminescence detection for the highly sensitive determination of fluorescence-labeled chlorpheniramine with Suzuki coupling reaction.

    PubMed

    Adutwum, Lawrence Asamoah; Kishikawa, Naoya; Ohyama, Kaname; Harada, Shiro; Nakashima, Kenichiro; Kuroda, Naotaka

    2010-09-01

    A sensitive and selective high performance liquid chromatography-peroxyoxalate chemiluminescence (PO-CL) method has been developed for the simultaneous determination of chlorpheniramine (CPA) and monodesmethyl chlorpheniramine (MDCPA) in human serum. The method combines fluorescent labeling with 4-(4,5-diphenyl-1H-imidazole-2-yl)phenyl boronic acid using Suzuki coupling reaction with PO-CL detection. CPA and MDCPA were extracted from human serum by liquid-liquid extraction with n-hexane. Excess labeling reagent, which interfered with trace level determination of analytes, was removed by solid-phase extraction using a C18 cartridge. Separation of derivatives of both analytes was achieved isocratically on a silica column with a mixture of acetonitrile and 60 mM imidazole-HNO(3) buffer (pH 7.2; 85:15, v/v) containing 0.015% triethylamine. The proposed method exhibited a good linearity with a correlation coefficient of 0.999 for CPA and MDCPA within the concentration range of 0.5-100 ng/mL. The limits of detection (S/N = 3) were 0.14 and 0.16 ng/mL for CPA and MDCPA, respectively. Using the proposed method, CPA could be selectively determined in human serum after oral administration.

  14. Highly Sensitive Fluorescence Methods for the Determination of Alfuzosin, Doxazosin, Terazosin and Prazosin in Pharmaceutical Formulations, Plasma and Urine.

    PubMed

    Guo, Xiaozhen; Wu, Hao; Guo, Shiwen; Shi, Yating; DU, Juanli; Zhu, Panpan; DU, Liming

    2016-01-01

    Polymeric ionic liquid-coated magnetic nanoparticles have been successfully prepared as adsorbents for the magnetic solid-phase extraction of four drugs, namely alfuzosin, doxazosin, terazosin and prazosin, from pharmaceutical preparations, urine samples and plasma samples. The four drugs were detected by fluorescence spectrophotometer. Several extraction parameters, including the pH of the solution; the type, ratio and volume of the desorbing reagent; the amount of adsorbent; the time of the extraction and desorption processes; and the addition of NaCl, were investigated and optimized. Linear responses were determined for the four drugs in the concentration range of 0.5 - 45 ng mL(-1). The limit of detection values for alfuzosin, doxazosin, terazosin and prazosin, which were defined as three times the standard deviation of a blank sample, were determined to be 0.035, 0.034, 0.027 and 0.028 ng mL(-1) (n = 11), respectively. Furthermore, this new method gave preconcentration factors of 114.5, 111.3, 111.1 and 108.5 for these four drugs.

  15. Fluorescence confocal mosaicing microscopy of basal cell carcinomas ex vivo: demonstration of rapid surgical pathology with high sensitivity and specificity

    NASA Astrophysics Data System (ADS)

    Gareau, Daniel S.; Karen, Julie K.; Dusza, Stephen W.; Tudisco, Marie; Nehal, Kishwer S.; Rajadhyaksha, Milind

    2009-02-01

    Mohs surgery, for the precise removal of basal cell carcinomas (BCCs), consists of a series of excisions guided by the surgeon's examination of the frozen histology of the previous excision. The histology reveals atypical nuclear morphology, identifying cancer. The preparation of frozen histology is accurate but labor-intensive and slow. Nuclear pathology can be achieved by staining with acridine orange (1 mM, 20 s) BCCs in Mohs surgical skin excisions within 5-9 minutes, compared to 20-45 for frozen histology. For clinical utility, images must have high contrast and high resolution. We report tumor contrast of 10-100 fold over the background dermis and submicron (diffraction limited) resolution over a cm field of view. BCCs were detected with an overall sensitivity of 96.6%, specificity of 89.2%, positive predictive value of 93.0% and negative predictive value of 94.7%. The technique was therefore accurate for normal tissue as well as tumor. We conclude that fluorescence confocal mosaicing serves as a sensitive and rapid pathological tool. Beyond Mohs surgery, this technology may be extended to suit other pathological needs with the development of new contrast agents. The technique reported here accurately detects all subtypes of BCC in skin excisions, including the large nodular, small micronodular, and tiny sclerodermaform tumors. However, this technique may be applicable to imaging tissue that is larger, more irregular and of various mechanical compliances with further engineering of the tissue mounting and staging mechanisms.

  16. Facile synthesis of N, S-codoped fluorescent carbon nanodots for fluorescent resonance energy transfer recognition of methotrexate with high sensitivity and selectivity.

    PubMed

    Wang, Weiping; Lu, Ya-Chun; Huang, Hong; Wang, Ai-Jun; Chen, Jian-Rong; Feng, Jiu-Ju

    2015-02-15

    In this report, N, S-codoped fluorescent carbon nanodots (NSCDs) were prepared by a facile, simple, low-cost, and green thermal treatment of ammonium persulfate, glucose, and ethylenediamine. The as-prepared NSCDs displayed bright blue emission with a relatively high fluorescent quantum yield of 21.6%, good water solubility, uniform morphology, and excellent chemical stability, compared to pure CDs. The fluorescence of NSCDs can be significantly quenched by methotrexate (MTX) via fluorescence resonance energy transfer (FRET) between NSCDs and MTX, which was used for highly selective and sensitive detection of MTX with a wide linear range up to 50.0 μM and a low detection limit of 0.33 nM (S/N = 3). Moreover, this method was explored for practical detection of MTX in human serum with satisfied results. PMID:25310482

  17. A new fluorescent probe for gasotransmitter H₂S: high sensitivity, excellent selectivity, and a significant fluorescence off-on response.

    PubMed

    Zhang, Jingyu; Guo, Wei

    2014-04-25

    A fluorescent off-on probe for H2S was exploited by coupling the azide-based strategy with the excited-state intramolecular proton transfer (ESIPT) sensing mechanism, which exhibits a considerably high fluorescence enhancement (1150-fold), an extremely low detection limit (0.78 nM), and a relatively fast response time (3-10 min) as well as excellent selectivity.

  18. Fluorescence biosensing strategy based on mercury ion-mediated DNA conformational switch and nicking enzyme-assisted cycling amplification for highly sensitive detection of carbamate pesticide.

    PubMed

    Wang, Xiuzhong; Hou, Ting; Dong, Shanshan; Liu, Xiaojuan; Li, Feng

    2016-03-15

    Pesticides are of great importance in agricultural and biological fields, but pesticide residues may harm the environment and human health. A highly sensitive fluorescent biosensor for the detection of carbamate pesticide has been developed based on acetylcholinesterase (AChE)-catalyzed hydrolysis product triggered Hg(2+) release coupled with subsequent nicking enzyme-induced cleavage of a duplex DNA for cycling amplification. In this protocol, two DNA probes, an unmodified single-stranded helper DNA probe 1 (HP1) and a quencher-fluorophore probe (QFP) are ingeniously designed. HP1 can be folded into hairpin configuration through T-Hg(2+)-T base pair formation. QFP, labeled with FAM and BHQ1 at its two terminals, contains the recognition sequence and the cleavage site of the nicking enzyme. In the presence of carbamate pesticide, the activity of AChE is inhibited, and the amount of the product containing the thiol group generated by the hydrolysis reaction of acetylthiocholine chloride (ACh) decreases, resulting in the release of a low concentration of Hg(2+). The number of HP1 that can be selectively unfolded would be reduced and the subsequent nicking enzyme-assisted cleavage processes would be affected, resulting in decreased fluorescence signals. The fluorescence intensity further decreases with the increase of the pesticide concentration. Therefore, the pesticide content can be easily obtained by monitoring the fluorescence signal change, which is inversely proportional to the logarithm of the pesticide concentration. The detection limit of aldicarb, the model analyte, is 3.3 μgL(-1), which is much lower than the Chinese National Standards or those previously reported. The as-proposed method has also been applied to detect carbamate pesticide residues in fresh ginger and artificial lake water samples with satisfactory results, which demonstrates that the method has great potential for practical application in biological or food safety field.

  19. Fluorescent transgenic zebrafish Tg(nkx2.2a:mEGFP) provides a highly sensitive monitoring tool for neurotoxins.

    PubMed

    Zhang, Xiaoyan; Gong, Zhiyuan

    2013-01-01

    Previously a standard toxicological test termed as DarT (Danio rerio Teratogenic assay) using wild type zebrafish embryos has been established and it is widely applied in toxicological and chemical screenings. As an increasing number of fluorescent transgenic zebrafish lines with specific fluorescent protein expression specifically expressed in different organs and tissues, we envision that the fluorescent markers may provide more sensitive endpoints for monitoring chemical induced phenotypical changes. Here we employed Tg(nkx2.2a:mEGFP) transgenic zebrafish which have GFP expression in the central nervous system to investigate its potential for screening neurotoxic chemicals. Five potential neurotoxins (acetaminophen, atenolol, atrazine, ethanol and lindane) and one neuroprotectant (mefenamic acid) were tested. We found that the GFP-labeled ventral axons from trunk motoneurons, which were easily observed in live fry and measured for quantification, were a highly sensitive to all of the five neurotoxins and the length of axons was significantly reduced in fry which looked normal based on DarT endpoints at low concentrations of neurotoxins. Compared to the most sensitive endpoints of DarT, ventral axon marker could improve the detection limit of these neurotoxins by about 10 fold. In contrast, there was no improvement for detection of the mefenamic acid compared to all DarT endpoints. Thus, ventral axon lengths provide a convenient and measureable marker specifically for neurotoxins. Our study may open a new avenue to use other fluorescent transgenic zebrafish embryos/fry to develop sensitive and specific toxicological tests for different categories of chemicals.

  20. Polydimethylsiloxane-Paper Hybrid Lateral Flow Assay for Highly Sensitive Point-of-Care Nucleic Acid Testing.

    PubMed

    Choi, Jane Ru; Liu, Zhi; Hu, Jie; Tang, Ruihua; Gong, Yan; Feng, Shangsheng; Ren, Hui; Wen, Ting; Yang, Hui; Qu, Zhiguo; Pingguan-Murphy, Belinda; Xu, Feng

    2016-06-21

    In nucleic acid testing (NAT), gold nanoparticle (AuNP)-based lateral flow assays (LFAs) have received significant attention due to their cost-effectiveness, rapidity, and the ability to produce a simple colorimetric readout. However, the poor sensitivity of AuNP-based LFAs limits its widespread applications. Even though various efforts have been made to improve the assay sensitivity, most methods are inappropriate for integration into LFA for sample-to-answer NAT at the point-of-care (POC), usually due to the complicated fabrication processes or incompatible chemicals used. To address this, we propose a novel strategy of integrating a simple fluidic control strategy into LFA. The strategy involves incorporating a piece of paper-based shunt and a polydimethylsiloxane (PDMS) barrier to the strip to achieve optimum fluidic delays for LFA signal enhancement, resulting in 10-fold signal enhancement over unmodified LFA. The phenomena of fluidic delay were also evaluated by mathematical simulation, through which we found the movement of fluid throughout the shunt and the tortuosity effects in the presence of PDMS barrier, which significantly affect the detection sensitivity. To demonstrate the potential of integrating this strategy into a LFA with sample-in-answer-out capability, we further applied this strategy into our prototype sample-to-answer LFA to sensitively detect the Hepatitis B virus (HBV) in clinical blood samples. The proposed strategy offers great potential for highly sensitive detection of various targets for wide application in the near future. PMID:27012657

  1. High-sensitivity two-color detection of double-stranded DNA with a confocal fluorescence gel scanner using ethidium homodimer and thiazole orange.

    PubMed

    Rye, H S; Quesada, M A; Peck, K; Mathies, R A; Glazer, A N

    1991-01-25

    Ethidium homodimer (EthD; lambda Fmax 620 nm) at EthD:DNA ratios up to 1 dye:4-5 bp forms stable fluorescent complexes with double-stranded DNA (dsDNA) which can be detected with high sensitivity using a confocal fluorescence gel scanner (Glazer, A.N., Peck, K. & Mathies, R.A. (1990) Proc. Natl. Acad. Sci. U.S.A. 87, 3851-3855). However, on incubation with unlabeled DNA partial migration of EthD takes place from its complex with dsDNA to the unlabeled DNA. It is shown here that this migration is dependent on the fractional occupancy of intercalating sites in the original dsDNA-EthD complex and that there is no detectable transfer from dsDNA-EthD complexes formed at 50 bp: 1 dye. The monointercalator thiazole orange (TO; lambda Fmax 530 nm) forms readily dissociable complexes with dsDNA with a large fluorescence enhancement on binding (Lee, L.G., Chen, C. & Liu, L.A. (1986) Cytometry 7, 508-517). However, a large molar excess of TO does not displace EthD from its complex with dsDNA. When TO and EthD are bound to the same dsDNA molecule, excitation of TO leads to efficient energy transfer from TO to EthD. This observation shows the practicability of 'sensitizing' EthD fluorescence with a second intercalating dye having a very high absorption coefficient and efficient energy transfer characteristics. Electrophoresis on agarose gels, with TO in the buffer, of preformed linearized M13mp18 DNA-EthD complex together with unlabeled linearized pBR322 permits sensitive fluorescence detection in the same lane of pBR322 DNA-TO complex at 530 nm and of M13mp18 DNA-EthD complex at 620 nm. These observations lay the groundwork for the use of stable DNA-dye intercalation complexes carrying hundreds of chromophores in two-color applications such as the physical mapping of chromosomes.

  2. Photophysical properties of some fluorescent materials containing 3-methoxy-7H-benzo[de]anthracen-7-one embedded in sol-gel silica hybrids

    NASA Astrophysics Data System (ADS)

    Raditoiu, Alina; Raditoiu, Valentin; Culita, Daniela Cristina; Baran, Adriana; Anghel, Dan Florin; Spataru, Catalin Ilie; Amariutei, Viorica; Nicolae, Cristian Andi; Wagner, Luminita Eugenia

    2015-07-01

    Several fluorescent materials were prepared by embedding 3-methoxy-7H-benzo[de]anthracen-7-one in transparent sol-gel silica hybrids, in acid catalysis and at room temperature. The photophysical properties of the materials are studied in relationship with the structure and based on interactions established between the fluorophore, which display high sensitivity to minor changes in the local environments, and hybrid silica networks. Colored materials show marked differences in absorption and fluorescence spectra due to the environments around the dyestuff molecules created in the host matrices by grafting different organic moieties onto silica surface. The fluorescence emission spectrum of the obtained materials reveals a positive solvatochromism due to the intramolecular charge transfer character of the excited states and changes in the fluorophore dipole moment. Variations recorded in the fluorescence parameters of the hybrid materials confirm that some interactions are established between the fluorescent dyestuff and hybrid silica network.

  3. Highly sensitive piezo-resistive graphite nanoplatelet-carbon nanotube hybrids/polydimethylsilicone composites with improved conductive network construction.

    PubMed

    Zhao, Hang; Bai, Jinbo

    2015-05-13

    The constructions of internal conductive network are dependent on microstructures of conductive fillers, determining various electrical performances of composites. Here, we present the advanced graphite nanoplatelet-carbon nanotube hybrids/polydimethylsilicone (GCHs/PDMS) composites with high piezo-resistive performance. GCH particles were synthesized by the catalyst chemical vapor deposition approach. The synthesized GCHs can be well dispersed in the matrix through the mechanical blending process. Due to the exfoliated GNP and aligned CNTs coupling structure, the flexible composite shows an ultralow percolation threshold (0.64 vol %) and high piezo-resistive sensitivity (gauge factor ∼ 10(3) and pressure sensitivity ∼ 0.6 kPa(-1)). Slight motions of finger can be detected and distinguished accurately using the composite film as a typical wearable sensor. These results indicate that designing the internal conductive network could be a reasonable strategy to improve the piezo-resistive performance of composites.

  4. Highly sensitive piezo-resistive graphite nanoplatelet-carbon nanotube hybrids/polydimethylsilicone composites with improved conductive network construction.

    PubMed

    Zhao, Hang; Bai, Jinbo

    2015-05-13

    The constructions of internal conductive network are dependent on microstructures of conductive fillers, determining various electrical performances of composites. Here, we present the advanced graphite nanoplatelet-carbon nanotube hybrids/polydimethylsilicone (GCHs/PDMS) composites with high piezo-resistive performance. GCH particles were synthesized by the catalyst chemical vapor deposition approach. The synthesized GCHs can be well dispersed in the matrix through the mechanical blending process. Due to the exfoliated GNP and aligned CNTs coupling structure, the flexible composite shows an ultralow percolation threshold (0.64 vol %) and high piezo-resistive sensitivity (gauge factor ∼ 10(3) and pressure sensitivity ∼ 0.6 kPa(-1)). Slight motions of finger can be detected and distinguished accurately using the composite film as a typical wearable sensor. These results indicate that designing the internal conductive network could be a reasonable strategy to improve the piezo-resistive performance of composites. PMID:25898271

  5. A highly sensitive hydrogen sensor with gas selectivity using a PMMA membrane-coated Pd nanoparticle/single-layer graphene hybrid.

    PubMed

    Hong, Juree; Lee, Sanggeun; Seo, Jungmok; Pyo, Soonjae; Kim, Jongbaeg; Lee, Taeyoon

    2015-02-18

    A polymer membrane-coated palladium (Pd) nanoparticle (NP)/single-layer graphene (SLG) hybrid sensor was fabricated for highly sensitive hydrogen gas (H2) sensing with gas selectivity. Pd NPs were deposited on SLG via the galvanic displacement reaction between graphene-buffered copper (Cu) and Pd ion. During the galvanic displacement reaction, graphene was used as a buffer layer, which transports electrons from Cu for Pd to nucleate on the SLG surface. The deposited Pd NPs on the SLG surface were well-distributed with high uniformity and low defects. The Pd NP/SLG hybrid was then coated with polymer membrane layer for the selective filtration of H2. Because of the selective H2 filtration effect of the polymer membrane layer, the sensor had no responses to methane, carbon monoxide, or nitrogen dioxide gas. On the contrary, the PMMA/Pd NP/SLG hybrid sensor exhibited a good response to exposure to 2% H2: on average, 66.37% response within 1.81 min and recovery within 5.52 min. In addition, reliable and repeatable sensing behaviors were obtained when the sensor was exposed to different H2 concentrations ranging from 0.025 to 2%.

  6. A fluorescent immunosensor for high-sensitivity cardiac troponin I using a spatially-controlled polymeric, nano-scale tracer to prevent quenching.

    PubMed

    Seo, Sung-Min; Kim, Seung-Wan; Park, Ji-Na; Cho, Jung-Hwan; Kim, Hee-Soo; Paek, Se-Hwan

    2016-09-15

    For detection of high-sensitivity cardiac troponin I (hs-cTnI<0.01ng/mL), signal amplification was attained using a rapid immunosensor with a fluorescently-labeled, polymeric detection antibody. As fluorescent molecules tend to quench when they are less than 10nm apart, a synthetic scheme for the labeled antibody was devised to control the molecular distance and so minimize the quenching effect in a single conjugate unit. To this end, we first performed novel polymerization of fluorophore-coupled streptavidin (FL-SA) with biotinylated detection antibody (b-Ab) in a stepwise manner by adding FL-SA to b-Ab five times sequentially. Relative spatial positions of the fluorophore molecules in the polymer were then distally fixed using di-biotinylated oligonucleotides and passed through a 0.45µm filter to obtain a polymer of uniform size (i.e., ~400nm in diameter). We produced polymeric tracers using two different inexpensive fluorophores, Dylight 650 and Alexa 647, and applied it to the detection of hs-cTnI spiked in human serum using a two-dimensional chromatography-based immunosensor. The tracers showed a limit of detection of 0.002ng/mL for Dylight 650 and 0.007ng/mL for Alexa 647. The standard curves linearized via log-logit transformation exhibited regression lines with correlation coefficients (R(2))>0.97. The total coefficient of variation for the overall standard curve was 3.4±3.3% for the Dylight fluorophore and 5.9±1.5% for the Alexa dye. Such performances were comparable to those of the reference systems employing sophisticated technologies, Pathfast (Mitsubishi, Japan) and i-STAT (Abbott, US), with a strong correlation (R(2)>0.91) for the concentration range <100pg/mL. PMID:27093486

  7. Hybrid silver nanoparticle/conjugated polyelectrolyte nanocomposites exhibiting controllable metal-enhanced fluorescence

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoyu; He, Fang; Zhu, Xi; Tang, Fu; Li, Lidong

    2014-03-01

    Metal-enhanced fluorescence of conjugated polyelectrolytes (CPs) is realized using a simple, green hybrid Ag nanocomposite film. Ag nanoparticles (Ag NPs) are pre-prepared by sodium citrate reduction and incorporated into agarose by mixing to form an Ag-containing agarose film (Ag@agarose). Through variation of the amount of Ag NPs in the Ag@agarose film as well as the thickness of the interlayer between CPs and the Ag@agarose film prepared of layer-by-layer assembly of chitosan and sodium alginate, a maximum 8.5-fold increase in the fluorescence of CPs is obtained. After introducing tyrosinase, this system also can be used to detect phenolic compounds with high sensitivity and good visualization under ultraviolet light.

  8. Hybrid silver nanoparticle/conjugated polyelectrolyte nanocomposites exhibiting controllable metal-enhanced fluorescence

    PubMed Central

    Wang, Xiaoyu; He, Fang; Zhu, Xi; Tang, Fu; Li, Lidong

    2014-01-01

    Metal-enhanced fluorescence of conjugated polyelectrolytes (CPs) is realized using a simple, green hybrid Ag nanocomposite film. Ag nanoparticles (Ag NPs) are pre-prepared by sodium citrate reduction and incorporated into agarose by mixing to form an Ag-containing agarose film (Ag@agarose). Through variation of the amount of Ag NPs in the Ag@agarose film as well as the thickness of the interlayer between CPs and the Ag@agarose film prepared of layer-by-layer assembly of chitosan and sodium alginate, a maximum 8.5-fold increase in the fluorescence of CPs is obtained. After introducing tyrosinase, this system also can be used to detect phenolic compounds with high sensitivity and good visualization under ultraviolet light. PMID:24638208

  9. Automated hybridization/imaging device for fluorescent multiplex DNA sequencing

    DOEpatents

    Weiss, Robert B.; Kimball, Alvin W.; Gesteland, Raymond F.; Ferguson, F. Mark; Dunn, Diane M.; Di Sera, Leonard J.; Cherry, Joshua L.

    1995-01-01

    A method is disclosed for automated multiplex sequencing of DNA with an integrated automated imaging hybridization chamber system. This system comprises an hybridization chamber device for mounting a membrane containing size-fractionated multiplex sequencing reaction products, apparatus for fluid delivery to the chamber device, imaging apparatus for light delivery to the membrane and image recording of fluorescence emanating from the membrane while in the chamber device, and programmable controller apparatus for controlling operation of the system. The multiplex reaction products are hybridized with a probe, then an enzyme (such as alkaline phosphatase) is bound to a binding moiety on the probe, and a fluorogenic substrate (such as a benzothiazole derivative) is introduced into the chamber device by the fluid delivery apparatus. The enzyme converts the fluorogenic substrate into a fluorescent product which, when illuminated in the chamber device with a beam of light from the imaging apparatus, excites fluorescence of the fluorescent product to produce a pattern of hybridization. The pattern of hybridization is imaged by a CCD camera component of the imaging apparatus to obtain a series of digital signals. These signals are converted by the controller apparatus into a string of nucleotides corresponding to the nucleotide sequence an automated sequence reader. The method and apparatus are also applicable to other membrane-based applications such as colony and plaque hybridization and Southern, Northern, and Western blots.

  10. Automated hybridization/imaging device for fluorescent multiplex DNA sequencing

    DOEpatents

    Weiss, R.B.; Kimball, A.W.; Gesteland, R.F.; Ferguson, F.M.; Dunn, D.M.; Di Sera, L.J.; Cherry, J.L.

    1995-11-28

    A method is disclosed for automated multiplex sequencing of DNA with an integrated automated imaging hybridization chamber system. This system comprises an hybridization chamber device for mounting a membrane containing size-fractionated multiplex sequencing reaction products, apparatus for fluid delivery to the chamber device, imaging apparatus for light delivery to the membrane and image recording of fluorescence emanating from the membrane while in the chamber device, and programmable controller apparatus for controlling operation of the system. The multiplex reaction products are hybridized with a probe, the enzyme (such as alkaline phosphatase) is bound to a binding moiety on the probe, and a fluorogenic substrate (such as a benzothiazole derivative) is introduced into the chamber device by the fluid delivery apparatus. The enzyme converts the fluorogenic substrate into a fluorescent product which, when illuminated in the chamber device with a beam of light from the imaging apparatus, excites fluorescence of the fluorescent product to produce a pattern of hybridization. The pattern of hybridization is imaged by a CCD camera component of the imaging apparatus to obtain a series of digital signals. These signals are converted by the controller apparatus into a string of nucleotides corresponding to the nucleotide sequence an automated sequence reader. The method and apparatus are also applicable to other membrane-based applications such as colony and plaque hybridization and Southern, Northern, and Western blots. 9 figs.

  11. Fluorescent In Situ Hybridization in Suspension by Imaging Flow Cytometry.

    PubMed

    Maguire, Orla; Wallace, Paul K; Minderman, Hans

    2016-01-01

    The emergence of imaging flow cytometry (IFC) has brought novel applications exploiting its advantages over conventional flow cytometry and microscopy. One of the new applications is fluorescence in situ hybridization in suspension (FISH-IS). Conventional FISH is a slide-based approach in which the spotlike imagery resulting from hybridization with fluorescently tagged probes is evaluated by fluorescence microscopy. The FISH-IS approach evaluated by IFC enables the evaluation of tens to hundreds of thousands of cells in suspension and the analysis can be automated and standardized diminishing operator bias from the analysis. The high cell number throughput of FISH-IS improves the detection of rare events compared to conventional FISH. The applicability of FISH-IS is currently limited to detection of abnormal quantitative differences of hybridization targets such as occur in numerical chromosome abnormalities, deletions and amplifications.Here, we describe a protocol for FISH-IS using chromosome enumeration probes as an example. PMID:27460240

  12. ZnO nanorod/porous silicon nanowire hybrid structures as highly-sensitive NO2 gas sensors at room temperature.

    PubMed

    Liao, Jiecui; Li, Zhengcao; Wang, Guojing; Chen, Chienhua; Lv, Shasha; Li, Mingyang

    2016-02-14

    ZnO nanorod/porous silicon nanowire (ZnO/PSiNW) hybrids with three different structures as highly sensitive NO2 gas sensors were obtained. PSiNWs were first synthesized by metal-assisted chemical etching, and then seeded in three different ways. After that ZnO nanorods were grown on the seeded surface of PSiNWs using a hydrothermal procedure. ZnO/PSiNW hybrids showed excellent gas sensing performance for various NO2 concentrations (5-50 ppm) at room temperature, and the electrical resistance change rate reached as high as 35.1% when responding to 50 ppm NO2. The distinct enhancement was mainly attributed to the faster carrier transportation after combination, the increase in gas sensing areas and the oxygen vacancy (VO) concentration. Moreover, the p-type gas sensing behavior was explained by the gas sensing mechanism and the effect of VO concentration on gas sensing properties was also discussed concerning the photoluminescence (PL) spectra performance.

  13. ZnO nanorod/porous silicon nanowire hybrid structures as highly-sensitive NO2 gas sensors at room temperature.

    PubMed

    Liao, Jiecui; Li, Zhengcao; Wang, Guojing; Chen, Chienhua; Lv, Shasha; Li, Mingyang

    2016-02-14

    ZnO nanorod/porous silicon nanowire (ZnO/PSiNW) hybrids with three different structures as highly sensitive NO2 gas sensors were obtained. PSiNWs were first synthesized by metal-assisted chemical etching, and then seeded in three different ways. After that ZnO nanorods were grown on the seeded surface of PSiNWs using a hydrothermal procedure. ZnO/PSiNW hybrids showed excellent gas sensing performance for various NO2 concentrations (5-50 ppm) at room temperature, and the electrical resistance change rate reached as high as 35.1% when responding to 50 ppm NO2. The distinct enhancement was mainly attributed to the faster carrier transportation after combination, the increase in gas sensing areas and the oxygen vacancy (VO) concentration. Moreover, the p-type gas sensing behavior was explained by the gas sensing mechanism and the effect of VO concentration on gas sensing properties was also discussed concerning the photoluminescence (PL) spectra performance. PMID:26804157

  14. A "signal on" protection-displacement-hybridization-based electrochemical hepatitis B virus gene sequence sensor with high sensitivity and peculiar adjustable specificity.

    PubMed

    Li, Fengqin; Xu, Yanmei; Yu, Xiang; Yu, Zhigang; He, Xunjun; Ji, Hongrui; Dong, Jinghao; Song, Yongbin; Yan, Hong; Zhang, Guiling

    2016-08-15

    One "signal on" electrochemical sensing strategy was constructed for the detection of a specific hepatitis B virus (HBV) gene sequence based on the protection-displacement-hybridization-based (PDHB) signaling mechanism. This sensing system is composed of three probes, one capturing probe (CP) and one assistant probe (AP) which are co-immobilized on the Au electrode surface, and one 3-methylene blue (MB) modified signaling probe (SP) free in the detection solution. One duplex are formed between AP and SP with the target, a specific HBV gene sequence, hybridizing with CP. This structure can drive the MB labels close to the electrode surface, thereby producing a large detection current. Two electrochemical testing techniques, alternating current voltammetry (ACV) and cyclic voltammetry (CV), were used for characterizing the sensor. Under the optimized conditions, the proposed sensor exhibits a high sensitivity with the detection limit of ∼5fM for the target. When used for the discrimination of point mutation, the sensor also features an outstanding ability and its peculiar high adjustability. PMID:27085953

  15. Coherent fluorescence emission by using hybrid photonic–plasmonic crystals

    PubMed Central

    Shi, Lei; Yuan, Xiaowen; Zhang, Yafeng; Hakala, Tommi; Yin, Shaoyu; Han, Dezhuan; Zhu, Xiaolong; Zhang, Bo; Liu, Xiaohan; Törmä, Päivi; Lu, Wei; Zi, Jian

    2014-01-01

    The spatial and temporal coherence of the fluorescence emission controlled by a quasi-two-dimensional hybrid photonic–plasmonic crystal structure covered with a thin fluorescent-molecular-doped dielectric film is investigated experimentally. A simple theoretical model to describe how a confined quasi-two-dimensional optical mode may induce coherent fluorescence emission is also presented. Concerning the spatial coherence, it is experimentally observed that the coherence area in the plane of the light source is in excess of 49 μm2, which results in enhanced directional fluorescence emission. Concerning temporal coherence, the obtained coherence time is 4 times longer than that of the normal fluorescence emission in vacuum. Moreover, a Young's double-slit interference experiment is performed to directly confirm the spatially coherent emission. This smoking gun proof of spatial coherence is reported here for the first time for the optical-mode-modified emission. PMID:25793015

  16. Highly sensitive detection of cancer-related genes based on complete fluorescence restoration of a molecular beacon with a functional overhang.

    PubMed

    Li, Feng; Zhou, Ying-Ying; Peng, Ting; Xu, Huo; Zhang, Rong-Bo; Zhao, Hui; Wang, Zheng-Yong; Lv, Jian-Xin; Wu, Zai-Sheng; Shen, Zhi-Fa

    2016-07-21

    The accurate detection of cancer-related genes is of great significance for early diagnosis and targeted therapy of cancer. In this contribution, an automatically cycling operation of a functional overhang-containing molecular beacon (OMB)-based sensing system was proposed to perform amplification detection of the p53 gene. Contrary to the common molecular beacon (MB), a target DNA is designated to hybridize with a label-free recognition probe (RP) with a hairpin structure rather than OMB. In the presence of a target DNA of interest, the locked primer in RP opens and triggers the subsequent amplification procedures. The newly-developed OMB is not only capable of accomplishing cyclical nucleic acid strand-displacement polymerization (CNDP) with the help of polymerase and nicking endonuclease, but is also cleaved by restriction endonucleases, removing the quencher away from the fluorophore. Thus, the target DNA at an extremely low concentration is expected to generate a considerable amount of double-stranded and cleaved OMBs, and the quenched fluorescence is completely restored, leading to a dramatic increase in fluorescence intensity. Utilizing this sensing platform, the target gene can be detected down to 8.2 pM in a homogeneous way, and a linear response range of 0.01 to 150 nM could be obtained. More strikingly, the mutant genes can be easily distinguished from the wild-type ones. The proof-of-concept demonstrations reported herein are expected to promote the development of DNA biosensing systems, showing great potential in basic research and clinical diagnosis. PMID:27221763

  17. Highly sensitive detection of cancer-related genes based on complete fluorescence restoration of a molecular beacon with a functional overhang.

    PubMed

    Li, Feng; Zhou, Ying-Ying; Peng, Ting; Xu, Huo; Zhang, Rong-Bo; Zhao, Hui; Wang, Zheng-Yong; Lv, Jian-Xin; Wu, Zai-Sheng; Shen, Zhi-Fa

    2016-07-21

    The accurate detection of cancer-related genes is of great significance for early diagnosis and targeted therapy of cancer. In this contribution, an automatically cycling operation of a functional overhang-containing molecular beacon (OMB)-based sensing system was proposed to perform amplification detection of the p53 gene. Contrary to the common molecular beacon (MB), a target DNA is designated to hybridize with a label-free recognition probe (RP) with a hairpin structure rather than OMB. In the presence of a target DNA of interest, the locked primer in RP opens and triggers the subsequent amplification procedures. The newly-developed OMB is not only capable of accomplishing cyclical nucleic acid strand-displacement polymerization (CNDP) with the help of polymerase and nicking endonuclease, but is also cleaved by restriction endonucleases, removing the quencher away from the fluorophore. Thus, the target DNA at an extremely low concentration is expected to generate a considerable amount of double-stranded and cleaved OMBs, and the quenched fluorescence is completely restored, leading to a dramatic increase in fluorescence intensity. Utilizing this sensing platform, the target gene can be detected down to 8.2 pM in a homogeneous way, and a linear response range of 0.01 to 150 nM could be obtained. More strikingly, the mutant genes can be easily distinguished from the wild-type ones. The proof-of-concept demonstrations reported herein are expected to promote the development of DNA biosensing systems, showing great potential in basic research and clinical diagnosis.

  18. FISH-ing for Genes: Modeling Fluorescence "in situ" Hybridization

    ERIC Educational Resources Information Center

    Baker, William P.; Jones, Carleton Buck

    2006-01-01

    Teaching methods of genetic analysis such as fluorescence in situ hybridization (FISH) can be an important part of instructional units in biology, microbiology, and biotechnology. Experience, however, indicates that these topics are difficult for many students. The authors of this article describe how they created an activity that effectively…

  19. Fluorescence labeling of carbon nanotubes and visualization of a nanotube-protein hybrid under fluorescence microscope.

    PubMed

    Yoshimura, Shige H; Khan, Shahbaz; Maruyama, Hiroyuki; Nakayama, Yoshikazu; Takeyasu, Kunio

    2011-04-11

    Biological applications of carbon nanotubes have been hampered by the inability to visualize them using conventional optical microscope, which is the most common tool for the observation and measurement of biological processes. Recently, a number of fluorescence labeling methods for biomolecules and various fluorescence probes have been developed and widely utilized in biological fields. Therefore, labeling carbon nanotubes with such fluorophores under physiological conditions will be highly useful in their biological applications. In this Article, we present a method to fluorescently label nanotubes by combining a detergent and a fluorophore commonly used in biological experiments. Fluorophores carrying an amino group (Texas Red hydrazide or BODIPY FL-hydrazide) were covalently attached to the hydroxyl groups of Tween 20 using carbonyldiimidazole. Fluorescence microscopy demonstrated that nanotubes were efficiently solubilized and labeled by this fluorescently labeled detergent. By using this technique, we also demonstrated multicolor fluorescence imaging of a nanotube-protein hybrid.

  20. Hybridization assay based on evanescent fluorescence excitation and collection

    NASA Astrophysics Data System (ADS)

    Sumner, James J.; Mmerole, Robert U.; Stratis-Cullum, Dimitra N.; Yi, Hyunmin; Bentley, William E.; Gillespie, James B.

    2003-08-01

    There is a great need for high throughput and sensitive sensors for genetic analysis. These sensors can be used for varied purposes from monitoring gene expression in organims to speciation of possible pathogens. Consequently, an instrument capable of these tasks would be a great benefit for food and water safety, medical diagnostics and defense of military and civilian populations from biological threats. This work examines the development of a hybridization-based biosensor using a novel tapered fiber optic rpobe. The immobilization of single-stranded, synthetic ologinucleotides utilizing aminoproplytriethoxysilane and glutaraldehyde was implemented on the fiber optic sensor. Hybridization takes place with a complementary analyte sequence followed by a fluorescent, labeled signaling probe to form a sandwich assay. Following hybridization, the fiber is interrogated with a diode laser source and the resulting fluorescence signal is detected using a miniature spectrometer.

  1. A highly sensitive photoelectrochemical detection of perfluorooctanic acid with molecularly imprined polymer-functionalized nanoarchitectured hybrid of AgI-BiOI composite.

    PubMed

    Gong, Jingming; Fang, Tian; Peng, Dinghua; Li, Aimin; Zhang, Lizhi

    2015-11-15

    A rapid and ultrasensitive signal-off photoelectrochemical sensor has been developed under visible-light irradiation, for the detection of perfluorooctanoic acid (PFOA), especially low level PFOA present in environment, whereby a novel nanostructured probe made of molecularly imprinted polymer (MIP) modified AgI nanoparticles-BiOI nanoflake arrays (AgI-BiOINFs) is designed as the photoactive electrode (denoted as MIP@AgI-BiOINFs). Here, the unique nanoarchitectured hybrid of AgI-BiOINFs was first in situ synthesized via a facile successive ionic layer adsorption and reaction (SILAR) approach and then employed as a matrix to graft the recognition element of MIP. Such a newly designed PEC sensor exhibits high sensitivity and selectivity for the determination of PFOA. The PEC analysis is highly linear over the PFOA concentration ranging from 0.02 to 1000.0 ppb with a detection limit of 0.01 ppb (S/N=3). This value obtained by using the facile PEC sensor is comparable to the results obtained by using well-established liquid chromatography-tandem mass spectrometry (LC-MS/MS). Toward practical applications, this low-cost and sensitive assay was successfully applied to measure PFOA in real water samples. PMID:26092130

  2. Functionalized magnetic-fluorescent hybrid nanoparticles for cell labelling.

    PubMed

    Lou, Lei; Yu, Ke; Zhang, Zhengli; Li, Bo; Zhu, Jianzhong; Wang, Yiting; Huang, Rong; Zhu, Ziqiang

    2011-05-01

    A facile method of synthesizing 60 nm magnetic-fluorescent core-shell bifunctional nanocomposites with the ability to label cells is presented. Hydrophobic trioctylphosphine oxide (TOPO)-capped CdSe@ZnS quantum dots (QDs) were assembled on polyethyleneimine (PEI)-coated Fe(3)O(4) nanoparticles (MNP). Polyethyleneimine was utilized for the realization of multifunction, including attaching 4 nm TOPO capped CdSe@ZnS quantum dots onto magnetite particles, altering the surface properties of quantum dots from hydrophobic to hydrophilic as well as preventing the formation of large aggregates. Results show that these water-soluble hybrid nanocomposites exhibit good colloidal stability and retain good magnetic and fluorescent properties. Because TOPO-capped QDs are assembled instead of their water-soluble equivalents, the nanocomposites are still highly luminescent with no shift in the PL peak position and present long-term fluorescence stability. Moreover, TAT peptide (GRKKRRQRRRPQ) functionalized hybrid nanoparticles were also studied due to their combined magnetic enrichment and optical detection for cell separation and rapid cell labelling. A cell viability assay revealed good biocompatibility of these hybrid nanoparticles. The potential application of the new magnetic-fluorescent nanocomposites in biological and medicine is demonstrated. PMID:21503355

  3. Highly sensitive detection of neodymium ion in small amount of spent nuclear fuel samples using novel fluorescent macrocyclic hexadentate polyaminocarboxylate probe in capillary electrophoresis-laser-induced fluorescence detection.

    PubMed

    Saito, Shingo; Sato, Yoshiyuki; Haraga, Tomoko; Nakano, Yuta; Asai, Shiho; Kameo, Yutaka; Takahashi, Kuniaki; Shibukawa, Masami

    2012-04-01

    A rapid and high-sensitive detection method for the total concentration of Nd ion (total Nd) in a small amount of a spent nuclear fuel sample is urgently required since the precise quantification of total Nd ion makes it possible for burnup (degree of fuel consumption) to be determined. In this work, a capillary electrophoresis-laser-induced fluorescent detection method (CE-LIF) is proposed for the analysis of total Nd in a spent fuel sample solution, with the use of a newly synthesized metal fluorescent probe which has a fluorescein and a macrocylic hexadentate chelating group, FTC-ABNOTA, for lanthanide (Ln) ions. Ln ions were derivatized to form a strongly fluorescent complex with the probe to suppress the quenching of the ligand-centered emission. The detection of Ln complexes in the CE-LIF indicated that the interaction between Ln ions and the FTC-ABNOTA was strong enough not to dissociate during migration. The mutual separation among the Ln-FTC-ABNOTA complexes in CE-LIF was achieved by pH control providing a dynamic ternary complexation (DTC) with hydroxide ions. Using the DTC separation mode, a high resolution of Nd from other Ln ions with high resolution of 1.3-1.9 and a theoretical plate number of 68,000, and a very low detection limit of 22 pM (3.2 ppt, 0.11 attomole amount basis) were successfully obtained. A simulated spent fuel sample containing various metal ions was examined in this method with a good quantification result of 102.1% recovery obtained even with a large excess of U.

  4. Differentiation of melanoma and benign nevi by fluorescence in-situ hybridization.

    PubMed

    Hossain, Deloar; Qian, Junqi; Adupe, Joy; Drewnowska, Krystyna; Bostwick, David G

    2011-10-01

    Malignant melanoma is sometimes difficult to distinguish from benign nevus, and ancillary confirmatory studies would be of value in selected cases. To accurately differentiate melanoma from benign nevus, we investigated the utility of chromosomal anomalies in skin biopsy specimens using multitargeted fluorescence in-situ hybridization (FISH). Skin biopsy specimens were retrospectively collected from 63 patients diagnosed with benign compound nevus (n=32) or malignant melanoma (n=31); each diagnosis was independently confirmed before study by a second dermatopathologist. Unstained tissue sections were hybridized for 30 min using fluorescence-labeled oligo-DNA probes for chromosomes 6, 7, 11, and 20. Fluorescent signals for each chromosome were enumerated in 30 cells per case. Numeric chromosomal anomalies were found in 0% (0 of 32) of normal epidermis, 6% (two of 32) of compound nevi, and 94% (29 of 31) of melanomas (nevus vs. melanoma, P<0.0001). The mean number of cells with chromosomal changes was 23 in melanoma specimens, significantly higher than that in compound nevi (P<0.0001). The most frequent chromosomal anomaly in melanoma was gain of chromosome 11, followed consecutively by gains of chromosomes 7, 20, and 6. Chromosomal anomalies detected by FISH had an overall sensitivity of 94% and specificity of 94% in the separation of nevus and melanoma. With the use of oligo-DNA probes, multitargeted FISH directed against chromosomes 6, 7, 11, and 20 is highly sensitive and specific for separation of nevus and melanoma. Unlike other traditional FISH probes, oligo-DNA probes required shorter hybridization time, allowing faster diagnostic evaluation. PMID:21900793

  5. Liquid Hybridization and Solid Phase Detection: A Highly Sensitive and Accurate Strategy for MicroRNA Detection in Plants and Animals.

    PubMed

    Li, Fosheng; Mei, Lanju; Zhan, Cheng; Mao, Qiang; Yao, Min; Wang, Shenghua; Tang, Lin; Chen, Fang

    2016-01-01

    MicroRNAs (miRNAs) play important roles in nearly every aspect of biology, including physiological, biochemical, developmental and pathological processes. Therefore, a highly sensitive and accurate method of detection of miRNAs has great potential in research on theory and application, such as the clinical approach to medicine, animal and plant production, as well as stress response. Here, we report a strategic method to detect miRNAs from multicellular organisms, which mainly includes liquid hybridization and solid phase detection (LHSPD); it has been verified in various species and is much more sensitive than traditional biotin-labeled Northern blots. By using this strategy and chemiluminescent detection with digoxigenin (DIG)-labeled or biotin-labeled oligonucleotide probes, as low as 0.01-0.25 fmol [for DIG-CDP Star (disodium2-chloro-5-(4-methoxyspiro{1,2-dioxetane-3,2'-(5'-chloro)tricyclo[3.3.1.13,7]decan}-4-yl)phenyl phosphate) system], 0.005-0.1 fmol (for biotin-CDP Star system), or 0.05-0.5 fmol (for biotin-luminol system) of miRNA can be detected and one-base difference can be distinguished between miRNA sequences. Moreover, LHSPD performed very well in the quantitative analysis of miRNAs, and the whole process can be completed within about 9 h. The strategy of LHSPD provides an effective solution for rapid, accurate, and sensitive detection and quantitative analysis of miRNAs in plants and animals. PMID:27598139

  6. Liquid Hybridization and Solid Phase Detection: A Highly Sensitive and Accurate Strategy for MicroRNA Detection in Plants and Animals

    PubMed Central

    Li, Fosheng; Mei, Lanju; Zhan, Cheng; Mao, Qiang; Yao, Min; Wang, Shenghua; Tang, Lin; Chen, Fang

    2016-01-01

    MicroRNAs (miRNAs) play important roles in nearly every aspect of biology, including physiological, biochemical, developmental and pathological processes. Therefore, a highly sensitive and accurate method of detection of miRNAs has great potential in research on theory and application, such as the clinical approach to medicine, animal and plant production, as well as stress response. Here, we report a strategic method to detect miRNAs from multicellular organisms, which mainly includes liquid hybridization and solid phase detection (LHSPD); it has been verified in various species and is much more sensitive than traditional biotin-labeled Northern blots. By using this strategy and chemiluminescent detection with digoxigenin (DIG)-labeled or biotin-labeled oligonucleotide probes, as low as 0.01–0.25 fmol [for DIG-CDP Star (disodium2-chloro-5-(4-methoxyspiro{1,2-dioxetane-3,2′-(5′-chloro)tricyclo[3.3.1.13,7]decan}-4-yl)phenyl phosphate) system], 0.005–0.1 fmol (for biotin-CDP Star system), or 0.05–0.5 fmol (for biotin-luminol system) of miRNA can be detected and one-base difference can be distinguished between miRNA sequences. Moreover, LHSPD performed very well in the quantitative analysis of miRNAs, and the whole process can be completed within about 9 h. The strategy of LHSPD provides an effective solution for rapid, accurate, and sensitive detection and quantitative analysis of miRNAs in plants and animals. PMID:27598139

  7. Ratiometric fluorescent paper sensor utilizing hybrid carbon dots-quantum dots for the visual determination of copper ions

    NASA Astrophysics Data System (ADS)

    Wang, Yahui; Zhang, Cheng; Chen, Xiaochun; Yang, Bo; Yang, Liang; Jiang, Changlong; Zhang, Zhongping

    2016-03-01

    A simple and effective ratiometric fluorescence nanosensor for the selective detection of Cu2+ has been developed by covalently connecting the carboxyl-modified red fluorescent cadmium telluride (CdTe) quantum dots (QDs) to the amino-functionalized blue fluorescent carbon nanodots (CDs). The sensor exhibits the dual-emissions peaked at 437 and 654 nm, under a single excitation wavelength of 340 nm. The red fluorescence can be selectively quenched by Cu2+, while the blue fluorescence is a internal reference, resulting in a distinguishable fluorescence color change from pink to blue under a UV lamp. The detection limit of this highly sensitive ratiometric probe is as low as 0.36 nM, which is lower than the U.S. Environmental Protection Agency (EPA) defined limit (20 μM). Moreover, a paper-based sensor has been prepared by printing the hybrid carbon dots-quantum dots probe on a microporous membrane, which provides a convenient and simple approach for the visual detection of Cu2+. Therefore, the as-synthesized probe shows great potential application for the determination of Cu2+ in real samples.A simple and effective ratiometric fluorescence nanosensor for the selective detection of Cu2+ has been developed by covalently connecting the carboxyl-modified red fluorescent cadmium telluride (CdTe) quantum dots (QDs) to the amino-functionalized blue fluorescent carbon nanodots (CDs). The sensor exhibits the dual-emissions peaked at 437 and 654 nm, under a single excitation wavelength of 340 nm. The red fluorescence can be selectively quenched by Cu2+, while the blue fluorescence is a internal reference, resulting in a distinguishable fluorescence color change from pink to blue under a UV lamp. The detection limit of this highly sensitive ratiometric probe is as low as 0.36 nM, which is lower than the U.S. Environmental Protection Agency (EPA) defined limit (20 μM). Moreover, a paper-based sensor has been prepared by printing the hybrid carbon dots-quantum dots probe on a

  8. Fluorescence in situ hybridization of bacterial cell suspensions.

    PubMed

    Parsley, Larissa C; Newman, Molli M; Liles, Mark R

    2010-09-01

    The use of fluorescence in situ hybridization (FISH) to identify and enumerate specific bacteria within a mixed culture or environmental sample has become a powerful tool in combining microscopy with molecular phylogenetic discrimination. However, processing a large number of samples in parallel can be difficult because the bacterial cells are typically fixed and hybridized on microscope slides rather than processed in solution. In addition, gram-positive cells and certain environmental samples present a unique challenge to achievement of adequate cell fixation and uniform hybridization for optimal FISH analysis. Here, we describe a protocol for FISH in solution that can be performed entirely in suspension, in a microcentrifuge tube format, prior to microscopy. This protocol can be applied to both gram-positive and -negative cells, as well as complex microbial assemblages. The method employs a rapid technique for performing multiple hybridizations simultaneously, which may be used to qualitatively assess the presence of specific phylogenetic groups in bacterial cultures or environmental samples, and/or directly quantify fluorescence by fluorometry or flow cytometry.

  9. Novel fluorescent probe for highly sensitive bioassay using sequential enzyme-linked immunosorbent assay-capillary isoelectric focusing (ELISA-cIEF).

    PubMed

    Henares, Terence G; Uenoyama, Yuta; Nogawa, Yuto; Ikegami, Ken; Citterio, Daniel; Suzuki, Koji; Funano, Shun-ichi; Sueyoshi, Kenji; Endo, Tatsuro; Hisamoto, Hideaki

    2013-06-01

    This paper presents a novel rhodamine diphosphate molecule that allows highly sensitive detection of proteins by employing sequential enzyme-linked immunosorbent assay and capillary isoelectric focusing (ELISA-cIEF). Seven-fold improvement in the immunoassay sensitivity and a 1-2 order of magnitude lower detection limit has been demonstrated by taking advantage of the combination of the enzyme-based signal amplification of ELISA and the concentration of enzyme reaction products by cIEF.

  10. Fluorescence In situ Hybridization: Cell-Based Genetic Diagnostic and Research Applications

    PubMed Central

    Cui, Chenghua; Shu, Wei; Li, Peining

    2016-01-01

    Fluorescence in situ hybridization (FISH) is a macromolecule recognition technology based on the complementary nature of DNA or DNA/RNA double strands. Selected DNA strands incorporated with fluorophore-coupled nucleotides can be used as probes to hybridize onto the complementary sequences in tested cells and tissues and then visualized through a fluorescence microscope or an imaging system. This technology was initially developed as a physical mapping tool to delineate genes within chromosomes. Its high analytical resolution to a single gene level and high sensitivity and specificity enabled an immediate application for genetic diagnosis of constitutional common aneuploidies, microdeletion/microduplication syndromes, and subtelomeric rearrangements. FISH tests using panels of gene-specific probes for somatic recurrent losses, gains, and translocations have been routinely applied for hematologic and solid tumors and are one of the fastest-growing areas in cancer diagnosis. FISH has also been used to detect infectious microbias and parasites like malaria in human blood cells. Recent advances in FISH technology involve various methods for improving probe labeling efficiency and the use of super resolution imaging systems for direct visualization of intra-nuclear chromosomal organization and profiling of RNA transcription in single cells. Cas9-mediated FISH (CASFISH) allowed in situ labeling of repetitive sequences and single-copy sequences without the disruption of nuclear genomic organization in fixed or living cells. Using oligopaint-FISH and super-resolution imaging enabled in situ visualization of chromosome haplotypes from differentially specified single-nucleotide polymorphism loci. Single molecule RNA FISH (smRNA-FISH) using combinatorial labeling or sequential barcoding by multiple round of hybridization were applied to measure mRNA expression of multiple genes within single cells. Research applications of these single molecule single cells DNA and RNA FISH

  11. Fluorescence In situ Hybridization: Cell-Based Genetic Diagnostic and Research Applications.

    PubMed

    Cui, Chenghua; Shu, Wei; Li, Peining

    2016-01-01

    Fluorescence in situ hybridization (FISH) is a macromolecule recognition technology based on the complementary nature of DNA or DNA/RNA double strands. Selected DNA strands incorporated with fluorophore-coupled nucleotides can be used as probes to hybridize onto the complementary sequences in tested cells and tissues and then visualized through a fluorescence microscope or an imaging system. This technology was initially developed as a physical mapping tool to delineate genes within chromosomes. Its high analytical resolution to a single gene level and high sensitivity and specificity enabled an immediate application for genetic diagnosis of constitutional common aneuploidies, microdeletion/microduplication syndromes, and subtelomeric rearrangements. FISH tests using panels of gene-specific probes for somatic recurrent losses, gains, and translocations have been routinely applied for hematologic and solid tumors and are one of the fastest-growing areas in cancer diagnosis. FISH has also been used to detect infectious microbias and parasites like malaria in human blood cells. Recent advances in FISH technology involve various methods for improving probe labeling efficiency and the use of super resolution imaging systems for direct visualization of intra-nuclear chromosomal organization and profiling of RNA transcription in single cells. Cas9-mediated FISH (CASFISH) allowed in situ labeling of repetitive sequences and single-copy sequences without the disruption of nuclear genomic organization in fixed or living cells. Using oligopaint-FISH and super-resolution imaging enabled in situ visualization of chromosome haplotypes from differentially specified single-nucleotide polymorphism loci. Single molecule RNA FISH (smRNA-FISH) using combinatorial labeling or sequential barcoding by multiple round of hybridization were applied to measure mRNA expression of multiple genes within single cells. Research applications of these single molecule single cells DNA and RNA FISH

  12. Fluorescence In situ Hybridization: Cell-Based Genetic Diagnostic and Research Applications

    PubMed Central

    Cui, Chenghua; Shu, Wei; Li, Peining

    2016-01-01

    Fluorescence in situ hybridization (FISH) is a macromolecule recognition technology based on the complementary nature of DNA or DNA/RNA double strands. Selected DNA strands incorporated with fluorophore-coupled nucleotides can be used as probes to hybridize onto the complementary sequences in tested cells and tissues and then visualized through a fluorescence microscope or an imaging system. This technology was initially developed as a physical mapping tool to delineate genes within chromosomes. Its high analytical resolution to a single gene level and high sensitivity and specificity enabled an immediate application for genetic diagnosis of constitutional common aneuploidies, microdeletion/microduplication syndromes, and subtelomeric rearrangements. FISH tests using panels of gene-specific probes for somatic recurrent losses, gains, and translocations have been routinely applied for hematologic and solid tumors and are one of the fastest-growing areas in cancer diagnosis. FISH has also been used to detect infectious microbias and parasites like malaria in human blood cells. Recent advances in FISH technology involve various methods for improving probe labeling efficiency and the use of super resolution imaging systems for direct visualization of intra-nuclear chromosomal organization and profiling of RNA transcription in single cells. Cas9-mediated FISH (CASFISH) allowed in situ labeling of repetitive sequences and single-copy sequences without the disruption of nuclear genomic organization in fixed or living cells. Using oligopaint-FISH and super-resolution imaging enabled in situ visualization of chromosome haplotypes from differentially specified single-nucleotide polymorphism loci. Single molecule RNA FISH (smRNA-FISH) using combinatorial labeling or sequential barcoding by multiple round of hybridization were applied to measure mRNA expression of multiple genes within single cells. Research applications of these single molecule single cells DNA and RNA FISH

  13. RNA Imaging with Multiplexed Error Robust Fluorescence in situ Hybridization

    PubMed Central

    Moffitt, Jeffrey R.; Zhuang, Xiaowei

    2016-01-01

    Quantitative measurements of both the copy number and spatial distribution of large fractions of the transcriptome in single-cells could revolutionize our understanding of a variety of cellular and tissue behaviors in both healthy and diseased states. Single-molecule Fluorescence In Situ Hybridization (smFISH)—an approach where individual RNAs are labeled with fluorescent probes and imaged in their native cellular and tissue context—provides both the copy number and spatial context of RNAs but has been limited in the number of RNA species that can be measured simultaneously. Here we describe Multiplexed Error Robust Fluorescence In Situ Hybridization (MERFISH), a massively parallelized form of smFISH that can image and identify hundreds to thousands of different RNA species simultaneously with high accuracy in individual cells in their native spatial context. We provide detailed protocols on all aspects of MERFISH, including probe design, data collection, and data analysis to allow interested laboratories to perform MERFISH measurements themselves. PMID:27241748

  14. A label-free aptasensor for highly sensitive detection of ATP and thrombin based on metal-enhanced PicoGreen fluorescence.

    PubMed

    Wang, Kaiyu; Liao, Jian; Yang, Xiangyue; Zhao, Meng; Chen, Min; Yao, Weirong; Tan, Weihong; Lan, Xiaopeng

    2015-01-15

    A label-free fluorescence aptasensor for highly selective and sensitive detection of ATP and thrombin was developed by using PicoGreen (PG) as signal molecule and surface-bound metal-enhanced fluorescence (MEF) substrates (silver island films, SIFs) as signal enhancers. On binding with ATP or thrombin, aptamers undergo structure switching, leading to a reduction of fluorescence intensity of PG. Chang of fluorescence intensity can be magnified by SIFs. The limit of detection for ATP and thrombin is 1.3 nM and 0.073 nM, respectively. The fluorescence quenching efficiency is linear in the logarithmic scale with ATP concentration range from 10 nM to 100 μM (R(2)=0.995) and thrombin concentration range from 0.1 nM to 100 nM (R(2)=0.997). The coefficients of variation of the intra-assay reproducibility and inter-assay reproducibility for ATP (10 μM) assay are 3.8% and 5.2%, respectively. In addition, the aptasensor is stable and can be reliably used for ATP measurement in biological samples. Overall, the aptasensor can be a useful and cost effective tool for the specific detection of ATP, thrombin and potentially other biomolecules in biological samples. PMID:25086329

  15. Detection of prokaryotic cells with fluorescence in situ hybridization.

    PubMed

    Zwirglmaier, Katrin

    2010-01-01

    Fluorescence in situ hybridization with rRNA targeted oligonucleotide probes is nowadays one of the core techniques in microbial ecology, allowing the identification and quantification of microbial cells in environmental samples in situ. Next to the classic FISH protocol, which uses fluorescently monolabelled probes, the more sensitive CARD-FISH (also known as TSA-FISH), which involves an enzyme catalyzed signal amplification step, is becoming increasingly popular. This chapter describes protocols for both methods. While classic FISH has the advantage of being relatively cheap and easy to do on morphologically diverse samples, CARD-FISH offers a significantly higher sensitivity, allowing the detection of slow growing or metabolically inactive cells, which are below the detection limit of classic FISH. The drawback here is the considerably higher price for the probes and advanced cell fixation and permeabilization requirements that have to be optimized for different target cells.

  16. Ratiometric fluorescent paper sensor utilizing hybrid carbon dots-quantum dots for the visual determination of copper ions.

    PubMed

    Wang, Yahui; Zhang, Cheng; Chen, Xiaochun; Yang, Bo; Yang, Liang; Jiang, Changlong; Zhang, Zhongping

    2016-03-21

    A simple and effective ratiometric fluorescence nanosensor for the selective detection of Cu(2+) has been developed by covalently connecting the carboxyl-modified red fluorescent cadmium telluride (CdTe) quantum dots (QDs) to the amino-functionalized blue fluorescent carbon nanodots (CDs). The sensor exhibits the dual-emissions peaked at 437 and 654 nm, under a single excitation wavelength of 340 nm. The red fluorescence can be selectively quenched by Cu(2+), while the blue fluorescence is a internal reference, resulting in a distinguishable fluorescence color change from pink to blue under a UV lamp. The detection limit of this highly sensitive ratiometric probe is as low as 0.36 nM, which is lower than the U.S. Environmental Protection Agency (EPA) defined limit (20 μM). Moreover, a paper-based sensor has been prepared by printing the hybrid carbon dots-quantum dots probe on a microporous membrane, which provides a convenient and simple approach for the visual detection of Cu(2+). Therefore, the as-synthesized probe shows great potential application for the determination of Cu(2+) in real samples. PMID:26928045

  17. Excessive Labeling Technique Provides a Highly Sensitive Fluorescent Probe for Real-time Monitoring of Biodegradation of Biopolymer Pharmaceuticals in vivo

    PubMed Central

    Terekhov, S. S.; Smirnov, I. V.; Shamborant, O. G.; Zenkova, M. A.; Chernolovskaya, E. L.; Gladkikh, D. V.; Murashev, A. N.; Dyachenko, I. A.; Knorre, V. D.; Belogurov, A. A.; Ponomarenko, N. A.; Deyev, S. M.; Vlasov, V. V.; Gabibov, A. G.

    2014-01-01

    Recombinant proteins represent a large sector of the biopharma market. Determination of the main elimination pathways raises the opportunities to significantly increase their half-lives in vivo. However, evaluation of biodegradation of pharmaceutical biopolymers performed in the course of pre-clinical studies is frequently complicated. Noninvasive pharmacokinetic and biodistribution studies in living organism are possible using proteins conjugated with near-infrared dyes. In the present study we designed a highly efficient probe based on fluorescent dye self-quenching for monitoring of in vivo biodegradation of recombinant human butyrylcholinesterase. The maximum enhancement of integral fluorescence in response to degradation of an intravenously administered enzyme was observed 6 h after injection. Importantly, excessive butyrylcholinesterase labeling with fluorescent dye results in significant changes in the pharmacokinetic properties of the obtained conjugate. This fact must be taken into consideration during future pharmacokinetic studies using in vivo bioimaging. PMID:25558395

  18. High-sensitivity detection of breast tumors in vivo by use of a pH-sensitive near-infrared fluorescence probe

    NASA Astrophysics Data System (ADS)

    Mathejczyk, Julia Eva; Pauli, Jutta; Dullin, Christian; Resch-Genger, Ute; Alves, Frauke; Napp, Joanna

    2012-07-01

    We investigated the potential of the pH-sensitive dye, CypHer5E, conjugated to Herceptin (pH-Her) for the sensitive detection of breast tumors in mice using noninvasive time-domain near-infrared fluorescence imaging and different methods of data analysis. First, the fluorescence properties of pH-Her were analyzed as function of pH and/or dye-to-protein ratio, and binding specificity was confirmed in cell-based assays. Subsequently, the performance of pH-Her in nude mice bearing orthotopic HER2-positive (KPL-4) and HER2-negative (MDA-MB-231) breast carcinoma xenografts was compared to that of an always-on fluorescent conjugate Alexa Fluor 647-Herceptin (Alexa-Her). Subtraction of autofluorescence and lifetime (LT)-gated image analyses were performed for background fluorescence suppression. In mice bearing HER2-positive tumors, autofluorescence subtraction together with the selective fluorescence enhancement of pH-Her solely in the tumor's acidic environment provided high contrast-to-noise ratios (CNRs). This led to an improved sensitivity of tumor detection compared to Alexa-Her. In contrast, LT-gated imaging using LTs determined in model systems did not improve tumor-detection sensitivity in vivo for either probe. In conclusion, pH-Her is suitable for sensitive in vivo monitoring of HER2-expressing breast tumors with imaging in the intensity domain and represents a promising tool for detection of weak fluorescent signals deriving from small tumors or metastases.

  19. 10p Duplication characterized by fluorescence in situ hybridization

    SciTech Connect

    Wiktor, A.; Feldman, G.L.; Van Dyke, D.L.; Kratkoczki, P.; Ditmars, D.M. Jr.

    1994-09-01

    We describe a patient with severe failure to thrive, mild-moderate developmental delay, cleft lip and palate, and other anomalies. Routine cytogenetic analysis documented a de novo chromosome rearrangement involving chromosome 4, but the origin of the derived material was unknown. Using chromosome specific painting probes, the karyotype was defined as 46,XY,der(4)t(4;10)(q35;p11.23). Characterization of the dup(10p) by fluorescence in situ hybridization (FISH) analysis provides another example of the usefulness of this technology in identifying small deletions, duplications, or supernumerary marker chromosomes. 19 refs., 4 figs.

  20. Microwave assisted one-pot synthesis of graphene quantum dots as highly sensitive fluorescent probes for detection of iron ions and pH value.

    PubMed

    Zhang, Chunfang; Cui, Yanyan; Song, Li; Liu, Xiangfeng; Hu, Zhongbo

    2016-04-01

    Recently, carbon nanomaterials have received considerable attention as fluorescent probes owing to their low toxicity, water solubility and stable photochemical properties. However, the development of graphene quantum dots (GQDs) is still on its early stage. In this work, GQDs were successfully synthesized by one-step microwave assisted pyrolysis of aspartic acid (Asp) and NH4HCO3 mixture. The as-prepared GQDs exhibited strongly blue fluorescence with high quantum yield up to 14%. Strong fluorescence quenching effect of Fe(3+) on GQDs can be used for its high selectivity detection among of general metal ions. The probe exhibited a wide linear response concentration range (0-50 μM) to Fe(3+) and the limit of detection (LOD) was calculated to be 0.26 μM. In addition, GQDs are also sensitive to the pH value in the range from 2 to 12 indicating a great potential as optical pH sensors. More importantly, the GQDs possess lower cellular toxicity and high photostability and can be directly used as fluorescent probes for cell imaging.

  1. A rapid microwave synthesis of nitrogen-sulfur co-doped carbon nanodots as highly sensitive and selective fluorescence probes for ascorbic acid.

    PubMed

    Duan, Junxia; Yu, Jie; Feng, Suling; Su, Li

    2016-06-01

    A ultrafast one-step microwave-assisted method was developed for the synthesis of nitrogen-sulfur co-doped carbon nanodots (N,S-CDs) by using ethylenediamine as the carbon source and sulfamic acid as the surface passivation reagent. The morphology and the properties of N,S-CDs were explored by a series of techniques, such as high-resolution transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, UV-vis absorption and fluorescence spectroscopy. The prepared N,S-CDs exhibit bright blue photoluminescence with a high fluorescence quantum yield (FLQY) up to 28%, and high stability and excellent water solubility. A N,S-CDs-based fluorescent probe was developed for sensitive detection ascorbic acid (AA) in the presence of Cu(2+), based on the mechanism that AA reduces Cu(2+) to Cu(+), then Cu(+) quenches the fluorescence of N,S-CDs through electron or energy transfer due to the interaction between Cu(+) and thiol ligand on the N,S-CDs surface. The observed linear response concentration range was from 0.057 to 4.0μM to AA with a detection limit as low as 18nM. The probe exhibited a highly selective response toward AA even in the presence of possible interfering substances, such as uric acid and citric acid. Moreover, these promising features made the sensing system used for the analysis of human serum and urine samples. PMID:27130124

  2. Facile Synthesis of Enhanced Fluorescent Gold-Silver Bimetallic Nanocluster and Its Application for Highly Sensitive Detection of Inorganic Pyrophosphatase Activity.

    PubMed

    Zhou, Qian; Lin, Youxiu; Xu, Mingdi; Gao, Zhuangqiang; Yang, Huanghao; Tang, Dianping

    2016-09-01

    Herein, gold-silver bimetallic nanoclusters (Au-Ag NCs) with the high fluorescent intensity were first synthesized successfully and utilized for the fabrication of sensitive and specific sensing probes toward inorganic pyrophosphatase (PPase) activity with the help of copper ion (Cu(2+)) and inorganic pyrophosphate ion (PPi). Cu(2+) was used as the quencher of fluorescent Au-Ag NC, while PPi was employed as the hydrolytic substrate of PPase. The system consisted of PPi, Cu(2+) ion, and bovine serum albumin (BSA)-stabilized Au-Ag NC. The detection was carried out by enzyme-induced hydrolysis of PPi to liberate copper ion from the Cu(2+)-PPi complex. In the absence of target PPase, free copper ions were initially chelated with inorganic pyrophosphate ions to form the Cu(2+)-PPi complexes via the coordination chemistry, thus preserving the natural fluorescent intensity of the Au-Ag NCs. Upon addition of target PPase into the detection system, the analyte hydrolyzed PPi into phosphate ions and released Cu(2+) ion from the Cu(2+)-PPi complex. The dissociated copper ions readily quenched the fluorescent signal of Au-Ag NCs, thereby resulting in the decrease of fluorescent intensity. Under optimal conditions, the detectable fluorescent intensity of the as-prepared Au-Ag NCs was linearly dependent on the activity of PPase within a dynamic linear range of 0.1-30 mU/mL and allowed the detection at a concentration as low as 0.03 mU/mL at the 3sblank criterion. Good reproducibility (CV < 8.5% for the intra-assay and interassay), high specificity, and long-term stability (90.1% of the initial signal after a storage period of 48 days) were also received by using our system toward target PPase activity. In addition, good results with the inhibition efficiency of sodium fluoride were obtained in the inhibitor screening research of pyrophosphatase. Importantly, this system based on highly enhanced fluorescent Au-Ag NCs offer promise for simple and cost-effective screening of target

  3. Facile Synthesis of Enhanced Fluorescent Gold-Silver Bimetallic Nanocluster and Its Application for Highly Sensitive Detection of Inorganic Pyrophosphatase Activity.

    PubMed

    Zhou, Qian; Lin, Youxiu; Xu, Mingdi; Gao, Zhuangqiang; Yang, Huanghao; Tang, Dianping

    2016-09-01

    Herein, gold-silver bimetallic nanoclusters (Au-Ag NCs) with the high fluorescent intensity were first synthesized successfully and utilized for the fabrication of sensitive and specific sensing probes toward inorganic pyrophosphatase (PPase) activity with the help of copper ion (Cu(2+)) and inorganic pyrophosphate ion (PPi). Cu(2+) was used as the quencher of fluorescent Au-Ag NC, while PPi was employed as the hydrolytic substrate of PPase. The system consisted of PPi, Cu(2+) ion, and bovine serum albumin (BSA)-stabilized Au-Ag NC. The detection was carried out by enzyme-induced hydrolysis of PPi to liberate copper ion from the Cu(2+)-PPi complex. In the absence of target PPase, free copper ions were initially chelated with inorganic pyrophosphate ions to form the Cu(2+)-PPi complexes via the coordination chemistry, thus preserving the natural fluorescent intensity of the Au-Ag NCs. Upon addition of target PPase into the detection system, the analyte hydrolyzed PPi into phosphate ions and released Cu(2+) ion from the Cu(2+)-PPi complex. The dissociated copper ions readily quenched the fluorescent signal of Au-Ag NCs, thereby resulting in the decrease of fluorescent intensity. Under optimal conditions, the detectable fluorescent intensity of the as-prepared Au-Ag NCs was linearly dependent on the activity of PPase within a dynamic linear range of 0.1-30 mU/mL and allowed the detection at a concentration as low as 0.03 mU/mL at the 3sblank criterion. Good reproducibility (CV < 8.5% for the intra-assay and interassay), high specificity, and long-term stability (90.1% of the initial signal after a storage period of 48 days) were also received by using our system toward target PPase activity. In addition, good results with the inhibition efficiency of sodium fluoride were obtained in the inhibitor screening research of pyrophosphatase. Importantly, this system based on highly enhanced fluorescent Au-Ag NCs offer promise for simple and cost-effective screening of target

  4. Glutamine-containing “turn-on” fluorescence sensor for the highly sensitive and selective detection of chromium (III) ion in water

    NASA Astrophysics Data System (ADS)

    Zhao, Meili; Ma, Liguo; Zhang, Min; Cao, Weiguang; Yang, Liting; Ma, Li-Jun

    2013-12-01

    In this study, we reported a new fluorescence sensor for chromium (III) ion, dansyl-L-glutamine (1). The sensor displayed a unique selective fluorescence “turn-on” response to Cr3+ over other common metal ions in water. Notably, 1 still showed a ratiometric response to Cr3+ in UV-vis absorption spectra. The binding mechanism of 1 to Cr3+ was further clarified by using NMR and ESI-MS spectra. The experiment results indicated that the dual-responses of 1 to Cr3+ should attribute to the coordination of deprotonated sulfonamide group with Cr3+ and the protonation of the dimethylamino group due to the coordination of Cr3+ for 1. In addition, two chloride ions also coordinated to the complex of sensor-chromium (III) ion, which further strengthened the conformation of 1-Cr3+.

  5. Paper-based fluorescent sensor for rapid naked-eye detection of acetylcholinesterase activity and organophosphorus pesticides with high sensitivity and selectivity.

    PubMed

    Chang, Jiafu; Li, Haiyin; Hou, Ting; Li, Feng

    2016-12-15

    Various strategies have been proposed for the sensing of acetylcholinesterase (AChE) activity and organophosphorus pesticides (OPs). However, the practical application of most methods is restricted by their intrinsic drawbacks such as complexity, long analysis time, and high cost. Thus, it is highly desirable to develop simple, fast and sensitive approaches for AChE activity and OPs detection. Herein, we reported a simple paper-based fluorescent sensor (PFS) based on the aggregation induced emission (AIE) effect of tetraphenylethylene (TPE) and the addition reaction capability of maleimide, which has been used as a powerful tool for rapid naked-eye detection of AChE activity and OPs. The introduction of TPE provides the probe with unique fluorescence property in solid state and is of great importance for improving the sensitivity of PFS. The hydrolysis product of acetylthiocholine catalyzed by AChE induced the maleimide ring destruction and activated the fluorescence performance of TPE. Given that AChE activity can be specifically inhibited by OPs, the as-proposed PFS can also be utilized for sensitive detection of OPs. Meanwhile, the variation of fluorescence signal can be readily detected by naked eyes, and low detection limits of 2.5mUmL(-1) and 0.5ngmL(-1) for AChE activity and OPs are obtained, respectively. Moreover, it has been successfully applied for AChE activity and OPs detection in diluted human serum samples, showing its great potential to be applied in real samples. Thus, this strategy possesses considerable advantages of simplicity, rapid detection, portability, cost efficiency and visualization. PMID:27498323

  6. Paper-based fluorescent sensor for rapid naked-eye detection of acetylcholinesterase activity and organophosphorus pesticides with high sensitivity and selectivity.

    PubMed

    Chang, Jiafu; Li, Haiyin; Hou, Ting; Li, Feng

    2016-12-15

    Various strategies have been proposed for the sensing of acetylcholinesterase (AChE) activity and organophosphorus pesticides (OPs). However, the practical application of most methods is restricted by their intrinsic drawbacks such as complexity, long analysis time, and high cost. Thus, it is highly desirable to develop simple, fast and sensitive approaches for AChE activity and OPs detection. Herein, we reported a simple paper-based fluorescent sensor (PFS) based on the aggregation induced emission (AIE) effect of tetraphenylethylene (TPE) and the addition reaction capability of maleimide, which has been used as a powerful tool for rapid naked-eye detection of AChE activity and OPs. The introduction of TPE provides the probe with unique fluorescence property in solid state and is of great importance for improving the sensitivity of PFS. The hydrolysis product of acetylthiocholine catalyzed by AChE induced the maleimide ring destruction and activated the fluorescence performance of TPE. Given that AChE activity can be specifically inhibited by OPs, the as-proposed PFS can also be utilized for sensitive detection of OPs. Meanwhile, the variation of fluorescence signal can be readily detected by naked eyes, and low detection limits of 2.5mUmL(-1) and 0.5ngmL(-1) for AChE activity and OPs are obtained, respectively. Moreover, it has been successfully applied for AChE activity and OPs detection in diluted human serum samples, showing its great potential to be applied in real samples. Thus, this strategy possesses considerable advantages of simplicity, rapid detection, portability, cost efficiency and visualization.

  7. Fluorescence Resonance Energy Transfer-based Biosensor Composed of Nitrogen-doped Carbon Dots and Gold Nanoparticles for the Highly Sensitive Detection of Organophosphorus Pesticides.

    PubMed

    Gong, Nian Chun; Li, Yan Le; Jiang, Xi; Zheng, Xiao Fang; Wang, Ya Ya; Huan, Shuang Yan

    2016-01-01

    The present article reports a novel biosensor for organophosphorus pesticides based on fluorescence resonance energy transfer (FRET) between nitrogen-doped carbon dots (NC-dots) and gold nanoparticles (AuNPs). The effective NC-dots/AuNPs assembly through the Au-N interaction results in good fluorescence quenching. Active acetylcholinesterase (AChE) catalyzes the hydrolysis of acetylthiocholine into -SH containing thiocholine to replace the NC-dots and trigger the aggregation of AuNPs. In the presence of paraoxon, the activity of AChE is inhibited, and thus preventing the generation of thiocholine, causing fewer NC-dots to be replaced. As a consequence, the fluorescence intensity gradually decreases with increasing amount of paraoxon. This biosensor does not require any complex synthesis or modification, and the results show a wide detection range of from 10(-4) to 10(-9) g/L with a detection limit of 1.0 × 10(-9) g/L (3.6 × 10(-12) mol/L). Two linear response regions have been reported with a turning point at about 10(-6) g/L and three different factors that would influence the response behavior. These phenomena discussed in detail so as to explain the special response mechanism. PMID:27682399

  8. Efficient ensemble system based on the copper binding motif for highly sensitive and selective detection of cyanide ions in 100% aqueous solutions by fluorescent and colorimetric changes.

    PubMed

    Jung, Kwan Ho; Lee, Keun-Hyeung

    2015-09-15

    A peptide-based ensemble for the detection of cyanide ions in 100% aqueous solutions was designed on the basis of the copper binding motif. 7-Nitro-2,1,3-benzoxadiazole-labeled tripeptide (NBD-SSH, NBD-SerSerHis) formed the ensemble with Cu(2+), leading to a change in the color of the solution from yellow to orange and a complete decrease of fluorescence emission. The ensemble (NBD-SSH-Cu(2+)) sensitively and selectively detected a low concentration of cyanide ions in 100% aqueous solutions by a colorimetric change as well as a fluorescent change. The addition of cyanide ions instantly removed Cu(2+) from the ensemble (NBD-SSH-Cu(2+)) in 100% aqueous solutions, resulting in a color change of the solution from orange to yellow and a "turn-on" fluorescent response. The detection limits for cyanide ions were lower than the maximum allowable level of cyanide ions in drinking water set by the World Health Organization. The peptide-based ensemble system is expected to be a potential and practical way for the detection of submicromolar concentrations of cyanide ions in 100% aqueous solutions.

  9. Engineering cell-fluorescent ion track hybrid detectors

    PubMed Central

    2013-01-01

    Background The lack of sensitive biocompatible particle track detectors has so far limited parallel detection of physical energy deposition and biological response. Fluorescent nuclear track detectors (FNTDs) based on Al2O3:C,Mg single crystals combined with confocal laser scanning microscopy (CLSM) provide 3D information on ion tracks with a resolution limited by light diffraction. Here we report the development of next generation cell-fluorescent ion track hybrid detectors (Cell-Fit-HD). Methods The biocompatibility of FNTDs was tested using six different cell lines, i.e. human non-small cell lung carcinoma (A549), glioblastoma (U87), androgen independent prostate cancer (PC3), epidermoid cancer (A431) and murine (VmDk) glioma SMA-560. To evaluate cell adherence, viability and conformal coverage of the crystals different seeding densities and alternative coating with extracellular matrix (fibronectin) was tested. Carbon irradiation was performed in Bragg peak (initial 270.55 MeV u−1). A series of cell compartment specific fluorescence stains including nuclear (HOECHST), membrane (Glut-1), cytoplasm (Calcein AM, CM-DiI) were tested on Cell-Fit-HDs and a single CLSM was employed to co-detect the physical (crystal) as well as the biological (cell layer) information. Results The FNTD provides a biocompatible surface. Among the cells tested, A549 cells formed the most uniform, viable, tightly packed epithelial like monolayer. The ion track information was not compromised in Cell-Fit-HD as compared to the FNTD alone. Neither cell coating and culturing, nor additional staining procedures affected the properties of the FNTD surface to detect ion tracks. Standard immunofluorescence and live staining procedures could be employed to co-register cell biology and ion track information. Conclusions The Cell-Fit-Hybrid Detector system is a promising platform for a multitude of studies linking biological response to energy deposition at high level of optical microscopy

  10. High-Sensitivity Spectrophotometry.

    ERIC Educational Resources Information Center

    Harris, T. D.

    1982-01-01

    Selected high-sensitivity spectrophotometric methods are examined, and comparisons are made of their relative strengths and weaknesses and the circumstances for which each can best be applied. Methods include long path cells, noise reduction, laser intracavity absorption, thermocouple calorimetry, photoacoustic methods, and thermo-optical methods.…

  11. Highly sensitive determination and validation of gabapentin in pharmaceutical preparations by HPLC with 4-fluoro-7-nitrobenzofurazan derivatization and fluorescence detection.

    PubMed

    Ulu, Sevgi Tatar; Kel, Elif

    2011-01-01

    A sensitive HPLC method with pre-column fluorescence derivatization using 4-Fluoro-7-Nitrobenzofurazan (NBD-F) has been developed for the determination of gabapentin in pharmaceutical preparations. The method is based on the derivatization of gabapentin with (NBD-F) in borate buffer of pH 9.5 to yield a yellow, fluorescent product. The HPLC separation was achieved on a Inertsil C(18) column (250 mm × 4.6 mm) using a mobile phase of methanol water (80:20, v/v) solvent system at 1.2 mL/min flow rate. Mexiletine was used as the internal standard. The fluorometric detector was operated at 458 nm (excitation) and 521 nm (emission). The assay was linear over the concentration range of 5 50 ng/mL. The method was validated for specificity, linearity, limit of detection, limit of quantification, precision, accuracy, robustness. Moreover, the method was found to be sensitive with a low limit of detection (0.85 ng/mL) and limit of quantitation (2.55 ng/mL). The results of the developed procedure for gabapentin content in capsules were compared with those by the official method (USP 32). Statistical analysis by t- and F-tests, showed no significant difference at 95 confidence level between the two proposed methods. PMID:21682989

  12. Nitrogen and Phosphorus Co-Doped Carbon Nanodots as a Novel Fluorescent Probe for Highly Sensitive Detection of Fe(3+) in Human Serum and Living Cells.

    PubMed

    Shi, Bingfang; Su, Yubin; Zhang, Liangliang; Huang, Mengjiao; Liu, Rongjun; Zhao, Shulin

    2016-05-01

    Chemical doping with heteroatoms can effectively modulate physicochemical and photochemical properties of carbon dots (CDs). However, the development of multi heteroatoms codoped carbon nanodots is still in its early stage. In this work, a facile hydrothermal synthesis strategy was applied to synthesize multi heteroatoms (nitrogen and phosphorus) codoped carbon nanodots (N,P-CDs) using glucose as carbon source, and ammonia, phosphoric acid as dopant, respectively. Compared with CDs, the multi heteroatoms doped CDs resulted in dramatic improvement in the electronic characteristics and surface chemical activities. Therefore, the N,P-CDs prepared as described above exhibited a strong blue emission and a sensitive response to Fe(3+). The N,P-CDs based fluorescent sensor was then applied to sensitively determine Fe(3+) with a detection limit of 1.8 nM. Notably, the prepared N,P-CDs possessed negligible cytotoxicity, excellent biocompatibility, and high photostability. It was also applied for label-free detection of Fe(3+) in complex biological samples and the fluorescence imaging of intracellular Fe(3+), which indicated its potential applications in clinical diagnosis and other biologically related study. PMID:27014959

  13. eGFP-pHsens as a highly sensitive fluorophore for cellular pH determination by fluorescence lifetime imaging microscopy (FLIM).

    PubMed

    Schmitt, Franz-Josef; Thaa, Bastian; Junghans, Cornelia; Vitali, Marco; Veit, Michael; Friedrich, Thomas

    2014-09-01

    The determination of pH in the cell cytoplasm or in intracellular organelles is of high relevance in cell biology. Also in plant cells, organelle-specific pH monitoring with high spatial precision is an important issue, since e.g. ΔpH across thylakoid membranes is the driving force for ATP synthesis critically regulating photoprotective mechanisms like non-photochemical quenching (NPQ) of chlorophyll (Chl) fluorescence or the xanthophyll cycle. In animal cells, pH determination can serve to monitor proton permeation across membranes and, therefore, to assay the efficiency of drugs against proton-selective transporters or ion channels. In this work, we demonstrate the applicability of the pH-sensitive GFP derivative (eGFP-pHsens, originally termed deGFP4 by Hanson et al. [1]) for pH measurements using fluorescence lifetime imaging microscopy (FLIM) with excellent precision. eGFP-pHsens was either expressed in the cytoplasm or targeted to the mitochondria of Chinese hamster ovary (CHO-K1) cells and applied here for monitoring activity of the M2 proton channel from influenza A virus. It is shown that the M2 protein confers high proton permeability of the plasma membrane upon expression in CHO-K1 cells resulting in rapid and strong changes of the intracellular pH upon pH changes of the extracellular medium. These pH changes are abolished in the presence of amantadine, a specific blocker of the M2 proton channel. These results were obtained using a novel multi-parameter FLIM setup that permits the simultaneous imaging of the fluorescence amplitude ratios and lifetimes of eGFP-pHsens enabling the quick and accurate pH determination with spatial resolution of 500 nm in two color channels with time resolution of below 100 ps. With FLIM, we also demonstrate the simultaneous determination of pH in the cytoplasm and mitochondria showing that the pH in the mitochondrial matrix is slightly higher (around 7.8) than that in the cytoplasm (about 7.0). The results obtained for CHO

  14. Cleavable DNA-protein hybrid molecular beacon: A novel efficient signal translator for sensitive fluorescence anisotropy bioassay.

    PubMed

    Hu, Pan; Yang, Bin

    2016-01-15

    Due to its unique features such as high sensitivity, homogeneous format, and independence on fluorescent intensity, fluorescence anisotropy (FA) assay has become a hotspot of study in oligonucleotide-based bioassays. However, until now most FA probes require carefully customized structure designs, and thus are neither generalizable for different sensing systems nor effective to obtain sufficient signal response. To address this issue, a cleavable DNA-protein hybrid molecular beacon was successfully engineered for signal amplified FA bioassay, via combining the unique stable structure of molecular beacon and the large molecular mass of streptavidin. Compared with single DNA strand probe or conventional molecular beacon, the DNA-protein hybrid molecular beacon exhibited a much higher FA value, which was potential to obtain high signal-background ratio in sensing process. As proof-of-principle, this novel DNA-protein hybrid molecular beacon was further applied for FA bioassay using DNAzyme-Pb(2+) as a model sensing system. This FA assay approach could selectively detect as low as 0.5nM Pb(2+) in buffer solution, and also be successful for real samples analysis with good recovery values. Compatible with most of oligonucleotide probes' designs and enzyme-based signal amplification strategies, the molecular beacon can serve as a novel signal translator to expand the application prospect of FA technology in various bioassays. PMID:26592607

  15. Cleavable DNA-protein hybrid molecular beacon: A novel efficient signal translator for sensitive fluorescence anisotropy bioassay.

    PubMed

    Hu, Pan; Yang, Bin

    2016-01-15

    Due to its unique features such as high sensitivity, homogeneous format, and independence on fluorescent intensity, fluorescence anisotropy (FA) assay has become a hotspot of study in oligonucleotide-based bioassays. However, until now most FA probes require carefully customized structure designs, and thus are neither generalizable for different sensing systems nor effective to obtain sufficient signal response. To address this issue, a cleavable DNA-protein hybrid molecular beacon was successfully engineered for signal amplified FA bioassay, via combining the unique stable structure of molecular beacon and the large molecular mass of streptavidin. Compared with single DNA strand probe or conventional molecular beacon, the DNA-protein hybrid molecular beacon exhibited a much higher FA value, which was potential to obtain high signal-background ratio in sensing process. As proof-of-principle, this novel DNA-protein hybrid molecular beacon was further applied for FA bioassay using DNAzyme-Pb(2+) as a model sensing system. This FA assay approach could selectively detect as low as 0.5nM Pb(2+) in buffer solution, and also be successful for real samples analysis with good recovery values. Compatible with most of oligonucleotide probes' designs and enzyme-based signal amplification strategies, the molecular beacon can serve as a novel signal translator to expand the application prospect of FA technology in various bioassays.

  16. Human cDNA mapping using fluorescence in situ hybridization

    SciTech Connect

    Korenberg, J.R.

    1993-03-04

    Genetic mapping is approached using the techniques of high resolution fluorescence in situ hybridization (FISH). This technology and the results of its application are designed to rapidly generate whole genome as tool box of expressed sequence to speed the identification of human disease genes. The results of this study are intended to dovetail with and to link the results of existing technologies for creating backbone YAC and genetic maps. In the first eight months, this approach generated 60--80% of the expressed sequence map, the remainder expected to be derived through more long-term, labor-intensive, regional chromosomal gene searches or sequencing. The laboratory has made significant progress in the set-up phase, in mapping fetal and adult brain and other cDNAs, in testing a model system for directly linking genetic and physical maps using FISH with small fragments, in setting up a database, and in establishing the validity and throughput of the system.

  17. Fluorescent in situ hybridization on comets: FISH comet.

    PubMed

    Shaposhnikov, Sergey; El Yamani, Naouale; Collins, Andrew R

    2015-01-01

    The DNA in eukaryotic cells is organized into loop domains that represent basic structural and functional units of chromatin packaging. The comet assay, a sensitive method for monitoring DNA damage and repair, involves electrophoresis of nucleoids comprising supercoiled DNA attached to the nuclear matrix. Breaks in the DNA relax the supercoiling and allow DNA loops to expand, and on electrophoresis to move towards the anode, giving the appearance of a comet tail. We use fluorescent in situ hybridization (FISH) to investigate the structure of the chromatin within comet preparations and to study specific DNA sequences within comets. In this chapter we describe our FISH comets protocols, deal with some technical questions and outline the theory. FISH with comets should be useful to researchers interested in the structural organization of DNA and chromatin, the localization of DNA damage, and the kinetics of repair of damage. PMID:25827891

  18. Highly sensitive and simple fluorescence staining of proteins in sodium dodecyl sulfate-polyacrylamide-based gels by using hydrophobic tail-mediated enhancement of fluorescein luminescence.

    PubMed

    Kang, Chulhun; Kim, Hyun Jung; Kang, Donghoon; Jung, Duk Young; Suh, Myungkoo

    2003-10-01

    Fluorescein has an extremely low luminescence intensity in acidic aqueous media. However, when it was bound to proteins, subsequent increase of luminescence intensity took place. Furthermore, when a hydrophobic tail, such as aliphatic hydrocarbons, was introduced to fluorescein, more dramatic increase of luminescence intensity was observed upon binding to proteins. In the present study, by utilizing this luminescence enhancement, three hydrophobic fluorescein dyes (5-dodecanoyl amino fluorescein, 5-hexadecanoyl amino fluorescein, and 5-octadecanoyl amino fluorescein) were examined as noncovalent fluorescent stains of protein bands in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Effective incorporation of the dyes to proteins in gels was accomplished either simply by adding dyes at the protein fixation step, or by treating gels with a staining solution after the fixation. The sensitivity of this staining method using the fluorescein derivatives was approximately 1 ng/band for most proteins. For some cases, protein bands containing as low as 0.1 ng were successfully visualized. In addition, the detection sensitivity showed much less protein-to-protein variation than silver staining. This new staining method was also successfully applied to two-dimensional electrophoresis of rat brain proteins. Its overall sensitivity was comparable to that of silver staining.

  19. High-Sensitivity High-Speed X-ray Fluorescence Scanning Cadmium Telluride Detector for Deep-Portion Cancer Diagnosis Utilizing Tungsten-Kα-Excited Gadolinium Mapping

    NASA Astrophysics Data System (ADS)

    Yanbe, Yutaka; Sato, Eiichi; Chiba, Hiraku; Maeda, Tomoko; Matsushita, Ryo; Oda, Yasuyuki; Hagiwara, Osahiko; Matsukiyo, Hiroshi; Osawa, Akihiro; Enomoto, Toshiyuki; Watanabe, Manabu; Kusachi, Shinya; Sato, Shigehiro; Ogawa, Akira

    2013-09-01

    X-ray fluorescence (XRF) analysis is useful for mapping various atoms in objects. Bremsstrahlung X-rays with energies beyond tantalum (Ta) K-edge energy 67.4 keV are absorbed effectively using a 100-µm-thick Ta filter, and the filtered X-rays including tungsten (W) Kα rays are absorbed by gadolinium (Gd) atoms in objects. The Gd XRF is then produced from Gd atoms in the objects and is counted by a cadmium telluride (CdTe) detector. Gd Kα photons with a maximum count rate of 1 kilo counts per second are dispersed using a multichannel analyzer, and the number of photons is counted by a counter card. The distance between the CdTe detector and the object is minimized to 40 mm to increase the count rate. The object is scanned using an x-y stage with a velocity of 5.0 mm/s, and Gd mapping are shown on a computer monitor. The scan steps of the x- and y-axes were both 2.5 mm, and the photon-counting time per mapping point was 0.5 s. We obtained Gd XRF images at high contrast, and Gd Kα photons were easily detected from cancerous regions in a nude mouse placed behind a 20-mm-thick poly(methyl methacrylate) plate.

  20. Development of a nanobody-alkaline phosphatase fusion protein and its application in a highly sensitive direct competitive fluorescence enzyme immunoassay for detection of ochratoxin A in cereal.

    PubMed

    Liu, Xing; Xu, Yang; Wan, De-bin; Xiong, Yong-hua; He, Zhen-yun; Wang, Xian-xian; Gee, Shirley J; Ryu, Dojin; Hammock, Bruce D

    2015-01-20

    A rapid and sensitive direct competitive fluorescence enzyme immunoassay (dc-FEIA) for ochratoxin A (OTA) based on a nanobody (Nb)-alkaline phosphatase (AP) fusion protein was developed. The VHH (variable domain of heavy chain antibody) gene of Nb28 was subcloned into the expression vector pecan45 containing the AP double-mutant gene. The Nb28-AP construct was transformed into Escherichia coli BL21(DE3)plysS, and soluble expression in bacteria was confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blot. Both the Nb properties and AP enzymatic activity were validated by colorimetric and fluorometric analysis. The 50% inhibitory concentration and the detection limit of the dc-FEIA were 0.13 and 0.04 ng/mL, respectively, with a linear range of 0.06-0.43 ng/mL. This assay was compared with LC-MS/MS, and the results indicated the reliability of Nb-AP fusion protein-based dc-FEIA for monitoring OTA contamination in cereal.

  1. Highly sensitive and simple fluorescence staining of proteins in sodium dodecyl sulfate-polyacrylamide-based gels by using hydrophobic tail-mediated enhancement of fluorescein luminescence.

    PubMed

    Kang, Chulhun; Kim, Hyun Jung; Kang, Donghoon; Jung, Duk Young; Suh, Myungkoo

    2003-10-01

    Fluorescein has an extremely low luminescence intensity in acidic aqueous media. However, when it was bound to proteins, subsequent increase of luminescence intensity took place. Furthermore, when a hydrophobic tail, such as aliphatic hydrocarbons, was introduced to fluorescein, more dramatic increase of luminescence intensity was observed upon binding to proteins. In the present study, by utilizing this luminescence enhancement, three hydrophobic fluorescein dyes (5-dodecanoyl amino fluorescein, 5-hexadecanoyl amino fluorescein, and 5-octadecanoyl amino fluorescein) were examined as noncovalent fluorescent stains of protein bands in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Effective incorporation of the dyes to proteins in gels was accomplished either simply by adding dyes at the protein fixation step, or by treating gels with a staining solution after the fixation. The sensitivity of this staining method using the fluorescein derivatives was approximately 1 ng/band for most proteins. For some cases, protein bands containing as low as 0.1 ng were successfully visualized. In addition, the detection sensitivity showed much less protein-to-protein variation than silver staining. This new staining method was also successfully applied to two-dimensional electrophoresis of rat brain proteins. Its overall sensitivity was comparable to that of silver staining. PMID:14595675

  2. Fluorescence in situ hybridization (FISH) in diagnostic and investigative neuropathology.

    PubMed

    Fuller, Christine E; Perry, Arie

    2002-01-01

    Over the last decade, fluorescence in situ hybridization (FISH) has emerged as a powerful clinical and research tool for the assessment of target DNA dosages within interphase nuclei. Detectable alterations include aneusomies, deletions, gene amplifications, and translocations, with primary advantages to the pathologist including its basis in morphology, its applicability to archival, formalin-fixed paraffin-embedded (FFPE) material, and its similarities to immunohistochemistry. Recent technical advances such as improved hybridization protocols, markedly expanded probe availability resulting from the human genome sequencing initiative, and the advent of high-throughput assays such as gene chip and tissue microarrays have greatly enhanced the applicability of FISH. In our lab, we currently utilize only a limited battery of DNA probes for routine diagnostic purposes, with determination of chromosome 1p and 19q dosage in oligodendroglial neoplasms representing the most common application. However, research applications are numerous and will likely translate into a growing list of clinically useful markers in the near future. In this review, we highlight the advantages and disadvantages of FISH and familiarize the reader with current applications in diagnostic and investigative neuropathology.

  3. Single-pair fluorescence resonance energy transfer analysis of mRNA transcripts for highly sensitive gene expression profiling in near real time.

    PubMed

    Peng, Zhiyong; Young, Brandon; Baird, Alison E; Soper, Steven A

    2013-08-20

    Expression analysis of mRNAs transcribed from certain genes can be used as important sources of biomarkers for in vitro diagnostics. While the use of reverse transcription quantitative PCR (RT-qPCR) can provide excellent analytical sensitivity for monitoring transcript numbers, more sensitive approaches for expression analysis that can report results in near real-time are needed for many critical applications. We report a novel assay that can provide exquisite limits-of-quantitation and consists of reverse transcription (RT) followed by a ligase detection reaction (LDR) with single-pair fluorescence resonance energy transfer (spFRET) to provide digital readout through molecular counting. For this assay, no PCR was employed, which enabled short assay turnaround times. To facilitate implementation of the assay, a cyclic olefin copolymer (COC) microchip, which was fabricated using hot embossing, was employed to carry out the LDR in a continuous flow format with online single-molecule detection following the LDR. As demonstrators of the assay's utility, MMP-7 mRNA was expression profiled from several colorectal cancer cell lines. It was found that the RT-LDR/spFRET assay produced highly linear calibration plots even in the low copy number regime. Comparison to RT-qPCR indicated a better linearity over the low copy number range investigated (10-10,000 copies) with an R(2) = 0.9995 for RT-LDR/spFRET and R(2) = 0.98 for RT-qPCR. In addition, differentiating between copy numbers of 10 and 50 could be performed with higher confidence using RT-LDR/spFRET. To demonstrate the short assay turnaround times obtainable using the RT-LDR/spFRET assay, a two thermal cycle LDR was carried out on amphiphysin gene transcripts that can serve as important diagnostic markers for ischemic stroke. The ability to supply diagnostic information on possible stroke events in short turnaround times using RT-LDR/spFRET will enable clinicians to treat patients effectively with appropriate time

  4. ELISA-PLA: A novel hybrid platform for the rapid, highly sensitive and specific quantification of proteins and post-translational modifications.

    PubMed

    Tong, Qing-He; Tao, Tao; Xie, Li-Qi; Lu, Hao-Jie

    2016-06-15

    Detection of low-abundance proteins and their post-translational modifications (PTMs) remains a great challenge. A conventional enzyme-linked immunosorbent assay (ELISA) is not sensitive enough to detect low-abundance PTMs and suffers from nonspecific detection. Herein, a rapid, highly sensitive and specific platform integrating ELISA with a proximity ligation assay (PLA), termed ELISA-PLA, was developed. Using ELISA-PLA, the specificity was improved by the simultaneous and proximate recognition of targets through multiple probes, and the sensitivity was significantly improved by rolling circle amplification (RCA). For GFP, the limit of detection (LOD) was decreased by two orders of magnitude compared to that of ELISA. Using site-specific phospho-antibody and pan-specific phospho-antibody, ELISA-PLA was successfully applied to quantify the phosphorylation dynamics of ERK1/2 and the overall tyrosine phosphorylation level of ERK1/2, respectively. ELISA-PLA was also used to quantify the O-GlcNAcylation of AKT, c-Fos, CREB and STAT3, which is faster and more sensitive than the conventional immunoprecipitation and western blotting (IP-WB) method. As a result, the sample consumption of ELISA-PLA was reduced 40-fold compared to IP-WB. Therefore, ELISA-PLA could be a promising platform for the rapid, sensitive and specific detection of proteins and PTMs.

  5. Towards a cellular multi-parameter analysis platform: fluorescence in situ hybridization (FISH) on microhole-array chips.

    PubMed

    Kurz, Christian M; Moosdijk, Stefan V D; Thielecke, Hagen; Velten, Thomas

    2011-01-01

    Highly-sensitive analysis systems based on cellular multi-parameter are needed in the diagnostics. Therefore we improved our previously developed chip platform for another additional analysis method, the fluorescence in situ hybridization. Fluorescence in situ hybridization (FISH) is a technique used in the diagnostics to determine the localization and the presence or absence of specific DNA sequence. To improve this labor- and cost-intensive method, we reduced the assay consumption by a factor of 5 compared to the standard protocol. Microhole chips were used for making the cells well addressable. The chips were fabricated by semiconductor technology on the basis of a Silicon wafer with a thin deposited silicon nitride layer (Si(3)N(4)). Human retina pigment epithelia (ARPE-19) cells were arrayed on 5-μm holes of a 35 × 35 microhole-array by a gently negative differential pressure of around 5 mbar. After 3 hours of incubation the cells were attached to the chip and the FISH protocol was applied to the positioned cells. A LabView software was developed to simplify the analysis. The software automatically counts the number of dots (positive labeled chromosome regions) as well as the distance between adjacent dots. Our developed platform reduces the assay consumption and the labor time. Furthermore, during the 3 hours of incubation non-invasive or minimal-invasive methods like Raman- and impedance-spectroscopy can be applied. PMID:22256298

  6. Pallister-Killian syndrome detected by fluorescence in situ hybridization

    SciTech Connect

    Butler, M.G.; Dev, V.G.

    1995-07-03

    The Pallister-Killian syndrome is a rare cytogenetic condition first described in 1977 by Pallister et al. in 3 adults; the first affected child was reported in 1981. This syndrome (also known as Pallister mosaic aneuploidy syndrome or isochromosome 12p mosaicism) is characterized by postnatal growth retardation, seizures, hypotonia, deafness, profound mental retardation, minimal speech development, and a distinctive facial appearance (high prominent forehead, ocular hypertelorism, sparse anterior scalp hair, prominent lower lip, large ears with thick protruding lobules, cupid-bow shaped upper lip, and a long philtrum). A chromosome 12 abnormality (tetrasomy 12p) has been reported in skin biopsies from these patients but this chromosome anomaly is usually not found (or in only a small proportion, e.g., <0.5%, of blood cells) in peripheral blood. We report on an additional patient with Pallister-Killian syndrome confirmed with fluorescence in situ hybridization (FISH) using an alpha satellite DNA probe for chromosome 12. This report further illustrates the application of FISH in identifying the source of chromosomal markers of unknown origin in infants with multiple congenital anomalies specifically before the natural history of a condition allows for definitive diagnosis based on clinical findings. 9 refs., 2 figs.

  7. Fluorescence from a quantum dot and metallic nanosphere hybrid system

    SciTech Connect

    Schindel, Daniel G.; Singh, Mahi R.

    2014-03-31

    We present energy absorption and interference in a quantum dot-metallic nanosphere system embedded on a dielectric substrate. A control field is applied to induce dipole moments in the nanosphere and the quantum dot, and a probe field is applied to monitor absorption. Dipole moments in the quantum dot or the metal nanosphere are induced, both by the external fields and by each other's dipole fields. Thus, in addition to direct polarization, the metal nanosphere and the quantum dot will sense one another via the dipole-dipole interaction. The density matrix method was used to show that the absorption spectrum can be split from one peak to two peaks by the control field, and this can also be done by placing the metal sphere close to the quantum dot. When the two are extremely close together, a self-interaction in the quantum dot produces an asymmetry in the absorption peaks. In addition, the fluorescence efficiency can be quenched by the addition of a metal nanosphere. This hybrid system could be used to create ultra-fast switching and sensing nanodevices.

  8. Fluorescence from a quantum dot and metallic nanosphere hybrid system

    NASA Astrophysics Data System (ADS)

    Schindel, Daniel G.; Singh, Mahi R.

    2014-03-01

    We present energy absorption and interference in a quantum dot-metallic nanosphere system embedded on a dielectric substrate. A control field is applied to induce dipole moments in the nanosphere and the quantum dot, and a probe field is applied to monitor absorption. Dipole moments in the quantum dot or the metal nanosphere are induced, both by the external fields and by each other's dipole fields. Thus, in addition to direct polarization, the metal nanosphere and the quantum dot will sense one another via the dipole-dipole interaction. The density matrix method was used to show that the absorption spectrum can be split from one peak to two peaks by the control field, and this can also be done by placing the metal sphere close to the quantum dot. When the two are extremely close together, a self-interaction in the quantum dot produces an asymmetry in the absorption peaks. In addition, the fluorescence efficiency can be quenched by the addition of a metal nanosphere. This hybrid system could be used to create ultra-fast switching and sensing nanodevices.

  9. Enzyme-triggered tyramine-enzyme repeats on prussian blue-gold hybrid nanostructures for highly sensitive electrochemical immunoassay of tissue polypeptide antigen.

    PubMed

    Xu, Tisen; Zhang, Haiying; Li, Xuegui; Xie, Zhaohui; Li, Xiangyong

    2015-11-15

    A novel sandwich-type electrochemical immunoassay with sensitivity enhancement was developed for quantitative detection of tissue polypeptide antigen (TPA) by coupling with target-induced tyramine signal amplification on prussian blue-gold hybrid nanostructures. The immunosensor was prepared through immobilizing anti-TPA capture antibody on a cleaned screen-printed carbon electrode (SPCE). Prussian blue-gold hybrid nanostructures (PBGNS) labeled with horseradish peroxidase (HRP) and detection antibody were utilized as the signal-transduction tags. Upon target TPA introduction, the sandwiched immunocomplex was formed between capture antibody and detection antibody on the electrode. The carried HRP could trigger the formation of tyramine-HRP repeats on the PBGNS in the presence of H2O2. Using the doped prussian blue as the electron mediator, the conjugated HRP could catalyze the reduction of H2O2. Under the optimal conditions, the catalytic currents increased with the increasing target TPA in the dynamic range from 1.0 pg mL(-1) to 100 ng mL(-1) with a detection limit of 0.3 pg mL(-1). The reproducibility and specificity of the electrochemical immunoassay were acceptable. In addition, the contents of target TPA in nine human serum specimens were evaluated by using the developed electrochemical immunosensor, and the obtained results correlated well with those from commercially enzyme-linked immunosorbent assay (ELISA) method with a correlation coefficient of 0.9975.

  10. New multifunctional porous materials based on inorganic-organic hybrid single-walled carbon nanotubes: gas storage and high-sensitive detection of pesticides.

    PubMed

    Wang, Feng; Zhao, Jinbo; Gong, Jingming; Wen, Lili; Zhou, Li; Li, Dongfeng

    2012-09-10

    Single-walled carbon nanotubes (SWNTs) that are covalently functionalized with benzoic acid (SWNT-PhCOOH) can be integrated with transition-metal ions to form 3D porous inorganic-organic hybrid frameworks (SWNT-Zn). In particular, N(2)-adsorption analysis shows that the BET surface area increases notably from 645.3 to 1209.9 m(2)  g(-1) for SWNTs and SWNT-Zn, respectively. This remarkable enhancement in the surface area of SWNT-Zn is presumably due to the microporous motifs from benzoates coordinated to intercalated zinc ions between the functionalized SWNTs; this assignment was also corroborated by NLDFT pore-size distributions. In addition, the excess-H(2)-uptake maximum of SWNT-Zn reaches about 3.1 wt. % (12 bar, 77 K), which is almost three times that of the original SWNTs (1.2 wt. % at 12 bar, 77 K). Owing to its inherent conductivity and pore structure, as well as good dispersibility, SWNT-Zn is an effective candidate as a sensitive electrochemical stripping voltammetric sensor for organophosphate pesticides (OPs): By using solid-phase extraction (SPE) with SWNT-Zn-modified glassy carbon electrode, the detection limit of methyl parathion (MP) is 2.3 ng mL(-1).

  11. Rapid human chromosome aberration analysis using fluorescence in situ hybridization.

    PubMed

    Lucas, J N; Tenjin, T; Straume, T; Pinkel, D; Moore, D; Litt, M; Gray, J W

    1989-07-01

    We have used in situ hybridization of repeat-sequence DNA probes, specific to the paracentromric locus 1q12 and the telomeric locus 1p36, to fluorescently stain regions that flank human chromosome 1p. This procedure was used for fast detection of structural aberrations involving human chromosome 1p in two separate experiments. In one, human lymphocytes were irradiated with 0, 0.8, 1.6, 2.4 and 3.2 Gy of 137Cs gamma-rays. In the other, human lymphocytes were irradiated with 0, 0.09, 0.18, 2.0, 3.1 and 4.1 Gy of 60Co gamma-rays. The frequencies (per cell) of translocations and dicentrics with one breakpoint in 1p and one elsewhere in the genome were determined for cells irradiated at each dose point. These frequencies both increased with dose, D, in a linear-quadratic manner. The delta, alpha, and beta coefficients resulting from a fit of the equation f(D)=delta + alphaD + betaD2 to the translocation frequency dose-response data were 0.0025, 0.0027 and 0.0037 for 137Cs gamma-rays, and 0.0010, 0.0041, and 0.0057 for 60Co gamma-rays. The delta, alpha, and beta coefficients resulting from a fit to the dicentric frequency dose-response data were 0.0005, 0.0010 and 0.0028 for 137Cs gamma-rays and 0.0001, 0.0002 and 0.0035, for 60Co gamma-rays. Approximately 32,000 metaphase spreads were scored in this study. The average analysis rate was over two metaphase spreads per minute. However, an experienced analyst was able to find and score one metaphase spread every 10s. The importance of this new cytogenetic analysis technique for biological dosimetry and in vivo risk assessment is discussed.

  12. Characterization of circulating tumor cells by fluorescence in situ hybridization.

    PubMed

    Swennenhuis, Joost F; Tibbe, Arjan G J; Levink, Rianne; Sipkema, Ronald C J; Terstappen, Leon W M M

    2009-06-01

    Tumor cells in blood of patients with metastatic carcinomas have been associated with poor survival prospects. Further characterization of these cells may provide further insights into the metastatic process. Circulating Tumor Cells (CTC) were enumerated in 7.5 mL of blood with the CellSearch system. After enumeration of Cytokeratin+, CD45-, nucleated cells, the cells are fixed in the cartridge while maintaining their original position. Cartridges were hybridized with FISH probes against the centromeric regions of chromosome 1, 7, 8, and 17. Next fluorescence images of the FISH probes of the previous identified CTC were acquired. Leukocytes surrounding the CTC were used as internal controls. The number of copies of chromosome 1, 7, 8, and 17 could be determined in 118 CTC containing blood samples from 59 metastatic prostate cancer patients. The samples contained a total of 21,751 CTC (mean 184, median 16, SD 650). Chromosome counts were obtained in 61% of the relocated CTC. On an average, these CTC contained 2.8 copies of chromosome 1, 2.7 copies of chromosome 7, 3.1 copies of chromosome 8, and 2.3 copies of chromosome 17. CTC in which no chromosome count was obtained most likely underwent apoptosis indicated by the expression of M30. In 6/59 patients only diploid CTC were detected these samples, however, only contained 1-5 CTC. Heterogeneity in the chromosomal abnormalities was observed between CTC of different patients as well as among CTC of the same patient. Cytogenetic composition of CTC can be reliably assessed after they have been identified by the CellSearch system. The majority of CTC in hormone refractory prostate cancer are aneuploid confirming that they indeed are cancer cells. An extensive heterogeneity in the copy number of each of the chromosomes was observed.

  13. Inorganic-organic hybrid nanoparticles with biocompatible calcium phosphate thin shells for fluorescence enhancement.

    PubMed

    Bastakoti, Bishnu Prasad; Hsu, Yin-Chu; Liao, Shih-Hsiang; Wu, Kevin C-W; Inoue, Masamichi; Yusa, Shin-ichi; Nakashima, Kenichi; Yamauchi, Yusuke

    2013-06-01

    Polymeric micelles consisting of asymmetric triblock copolymers were successfully used for fabrication of robust hybrid nanoparticles with highly biocompatible calcium phosphate shells. The hydrophobic polystyrene core encapsulates hydrophobic fluorescent dyes such as Nile red. The anionic polyacrylic acid provides the site for the mineralization reaction of calcium phosphate. The polyethylene glycol corona stabilizes the hybrid nanoparticles. Fluorescent dyes can be used as imaging agents for determining the location of the nanoparticles and to give an observable indication of drug delivery, while the calcium phosphate shell can enhance the fluorescence of the encapsulated dye.

  14. Direct fluorescence analysis of genetic polymorphisms by hybridization with oligonucleotide arrays on glass supports.

    PubMed Central

    Guo, Z; Guilfoyle, R A; Thiel, A J; Wang, R; Smith, L M

    1994-01-01

    A simple and rapid method for the analysis of genetic polymorphisms has been developed using allele-specific oligonucleotide arrays bound to glass supports. Allele-specific oligonucleotides are covalently immobilized on glass slides in arrays of 3 mm spots. Genomic DNA is amplified by PCR using one fluorescently tagged primer oligonucleotide and one biotinylated primer oligonucleotide. The two complementary DNA strands are separated, the fluorescently tagged strand is hybridized to the support-bound oligonucleotide array, and the hybridization pattern is detected by fluorescence scanning. Multiple polymorphisms present in the PCR product may be detected in parallel. The effect of spacer length, surface density and hybridization conditions were evaluated, as was the relative efficacy of hybridization with single or double-stranded PCR products. The utility of the method was demonstrated in the parallel analysis of 5 point mutations from exon 4 of the human tyrosinase gene. Images PMID:7816638

  15. A PDMS-based cylindrical hybrid lens for enhanced fluorescence detection in microfluidic systems.

    PubMed

    Lin, Bor-Shyh; Yang, Yu-Ching; Ho, Chong-Yi; Yang, Han-Yu; Wang, Hsiang-Yu

    2014-02-13

    Microfluidic systems based on fluorescence detection have been developed and applied for many biological and chemical applications. Because of the tiny amount of sample in the system; the induced fluorescence can be weak. Therefore, most microfluidic systems deploy multiple optical components or sophisticated equipment to enhance the efficiency of fluorescence detection. However, these strategies encounter common issues of complex manufacturing processes and high costs. In this study; a miniature, cylindrical and hybrid lens made of polydimethylsiloxane (PDMS) to improve the fluorescence detection in microfluidic systems is proposed. The hybrid lens integrates a laser focusing lens and a fluorescence collecting lens to achieve dual functions and simplify optical setup. Moreover, PDMS has advantages of low-cost and straightforward fabrication compared with conventional optical components. The performance of the proposed lens is first examined with two fluorescent dyes and the results show that the lens provides satisfactory enhancement for fluorescence detection of Rhodamine 6G and Nile Red. The overall increments in collected fluorescence signal and detection sensitivity are more than 220% of those without lens, and the detection limits of Rhodamine 6G and Nile red are lowered to 0.01 μg/mL and 0.05 μg/mL, respectively. The hybrid lens is further applied to the detection of Nile red-labeled Chlorella vulgaris cells and it increases both signal intensity and detection sensitivity by more than 520%. The proposed hybrid lens also dramatically reduces the variation in detected signal caused by the deviation in incident angle of excitation light.

  16. Mapping pachytene chromosomes of coffee using a modified protocol for fluorescence in situ hybridization

    PubMed Central

    Iacia, Ana Amélia Sanchez; Pinto-Maglio, Cecília A. F.

    2013-01-01

    Fluorescence in situ hybridization (FISH) is the most direct method for physically mapping DNA sequences on chromosomes. Fluorescence in situ hybridization mapping of meiotic chromosomes during the pachytene stage is an important tool in plant cytogenetics, because it provides high-resolution measurements of physical distances. Fluorescence in situ hybridization mapping of coffee pachytene chromosomes offers significant advantages compared with FISH mapping of somatic chromosomes, because pachytene chromosomes are 30 times longer and provide additional cytological markers. However, the application of this technique to pachytene chromosomes has been complicated by problems in making preparations of meiotic chromosomes and by difficulties in the application of standard FISH protocols. We have been able to overcome most of these obstacles in applying the FISH technique to the pachytene chromosomes of coffee plants. Digesting the external callose layer surrounding the pollen mother cells (PMCs) in conjunction with other procedures permitted suitable pachytene chromosomes to be obtained by increasing cell permeability, which allowed the probe sequences to enter the cells. For the first time, hybridization signals were registered on coffee pachytene chromosomes using the FISH technique with a repetitive sequence as a probe. We obtained slides on which 80 % of the PMCs had hybridization signals, resulting in FISH labelling with high efficiency. The procedure does not seem to be dependent on the genotype, because hybridization signals were detected in genetically different coffee plants. These findings enhance the possibilities for high-resolution physical mapping of coffee chromosomes. PMID:24244840

  17. Hybrid microtubes of polyoxometalate and fluorescence dye with tunable photoluminescence.

    PubMed

    Zhang, Huanqiu; Peng, Jun; Shen, Yan; Yu, Xia; Zhang, Fang; Mei, Jilan; Li, Bin; Zhang, Liming

    2012-05-11

    Fluorescent microtubes based on α-Keggin tungstosilicate and fluorescein (SiW(12)-F) have been obtained by using a simple method, which present tunable photoluminescence from sky blue to green to red by variation of excitation light. The SiW(12) component can inhibit photobleaching of fluorescein.

  18. Fluorescent In Situ Hybridization of Nuclear Bodies in Drosophila melanogaster Ovaries.

    PubMed

    Nizami, Zehra F; Liu, Ji-Long; Gall, Joseph G

    2015-01-01

    Fluorescent in situ hybridization (FISH) is a technique for determining the cytological localization of RNA or DNA molecules. There are many approaches available for generating in situ hybridization probes and conducting the subsequent hybridization steps. Here, we describe a simple and reliable FISH method to label small RNAs (200-500 nucleotides in length) that are enriched in nuclear bodies in Drosophila melanogaster ovaries, such as Cajal bodies (CBs) and histone locus bodies (HLBs). This technique can also be applied to other Drosophila tissues, and to abundant mRNAs such as histone transcripts. PMID:26324435

  19. Thiazole Orange Dimers in DNA: Fluorescent Base Substitutions with Hybridization Readout.

    PubMed

    Berndl, Sina; Dimitrov, Stoichko D; Menacher, Florian; Fiebig, Torsten; Wagenknecht, Hans-Achim

    2016-02-12

    By using (S)-2-amino-1,3-propanediol as a linker, thiazole orange (TO) was incorporated in a dimeric form into DNA. The green fluorescence (λ=530 nm) of the intrastrand TO dimer is quenched, whereas the interstrand TO dimer shows a characteristic redshifted orange emission (λ=585 nm). Steady-state optical spectroscopic methods reveal that the TO dimer fluorescence is independent of the sequential base contexts. Time-resolved pump-probe measurements and excitation spectra reveal the coexistence of conformations, including mainly stacked TO dimers and partially unstacked ones, which yield exciton and excimer contributions to the fluorescence, respectively. The helicity of the DNA framework distorts the excitonic coupling. In particular, the interstrand TO dimer could be regarded as an excitonically interacting base pair with fluorescence readout for DNA hybridization. Finally, the use of this fluorescent readout was representatively demonstrated in molecular beacons.

  20. De Novo nonreciprocal translocation 1;8 confirmed by fluorescent in situ hybridization

    SciTech Connect

    Wiley, J.E.; Stout, C.; Palmer, S.M.

    1995-07-17

    Constitutional nonreciprocal translocations are extremely rare, and even their existence is controversial. We report on a newborn infant with a de novo nonreciprocal translocation between chromosomes 1 and 8 resulting in 1q42.3 deletion syndrome. Fluorescent in situ hybridization with whole chromosome paints confirmed the conventional cytogenetic diagnosis. 3 refs., 2 figs., 1 tab.

  1. Fluorescence in situ hybridization for identification of microorganisms in acute chorioamnionitis.

    PubMed

    Schmiedel, D; Kikhney, J; Masseck, J; Rojas Mencias, P D; Schulze, J; Petrich, A; Thomas, A; Henrich, W; Moter, A

    2014-09-01

    The relevance of microorganisms in preterm birth is still under discussion. Using a diagnostic fluorescence in situ hybridization probe panel, we visualized Staphylococcus aureus and Streptococcus mitis group in two cases of acute chorioamnionitis. This technique provides spatial resolution and quantity of bacteria, clarifying the epidemiology and pathogenic pathways of acute chorioamnionitis.

  2. Evolution of Chromosome 6 of Solanum Species Revealed by Comparative Fluorescence in Situ Hybridization Mapping

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Comparative genome mapping is an important tool in evolutionary research. Here we demonstrate a comparative fluorescent in situ hybridization (FISH) mapping strategy. A set of 13 bacterial artificial chromosome (BAC) clones derived from potato chromosome 6 was used for FISH mapping in seven differen...

  3. 21 CFR 866.4700 - Automated fluorescence in situ hybridization (FISH) enumeration systems.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Automated fluorescence in situ hybridization (FISH) enumeration systems. 866.4700 Section 866.4700 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES...

  4. 21 CFR 866.4700 - Automated fluorescence in situ hybridization (FISH) enumeration systems.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Automated fluorescence in situ hybridization (FISH) enumeration systems. 866.4700 Section 866.4700 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES...

  5. 21 CFR 866.4700 - Automated fluorescence in situ hybridization (FISH) enumeration systems.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Automated fluorescence in situ hybridization (FISH) enumeration systems. 866.4700 Section 866.4700 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES...

  6. 21 CFR 866.4700 - Automated fluorescence in situ hybridization (FISH) enumeration systems.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Automated fluorescence in situ hybridization (FISH) enumeration systems. 866.4700 Section 866.4700 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES...

  7. 21 CFR 866.4700 - Automated fluorescence in situ hybridization (FISH) enumeration systems.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Automated fluorescence in situ hybridization (FISH) enumeration systems. 866.4700 Section 866.4700 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES...

  8. QUANTITATIVE IMAGING AND STATISTICAL ANALYSIS OF FLUORESCENCE IN SITU HYBRIDIZATION (FISH) OF AUREOBASIDIUM PULLULANS. (R823845)

    EPA Science Inventory

    Abstract

    Image and multifactorial statistical analyses were used to evaluate the intensity of fluorescence signal from cells of three strains of A. pullulans and one strain of Rhodosporidium toruloides, as an outgroup, hybridized with either a universal o...

  9. Self-assembly of novel fluorescent quantum dot-cerasome hybrid for bioelectrochemistry.

    PubMed

    Liu, Daliang; Zhuang, Qian; Zhang, Ling; Zhang, Hui; Wu, Shuyao; Kikuchi, Jun-Ichi; Han, Zhengbo; Zhang, Qian; Song, Xi-Ming

    2016-07-01

    A novel fluorescent nanohybrid was fabricated via the self-assembly of semiconductive quantum dots (QDs) on biocompatible cerasomes. The nanohybrid (denoted as QDs-cerasome) was used as an electrode material for visible protein immobilization and bioelectrochemistry. The morphology and surface properties of the QDs-cerasome hybrid were characterized by transmission electron microscopies, atomic force microscopies and zeta potential measurements. Because the QDs-cerasome hybrid possessed a positive charge in aqueous solution, it could be used as a matrix to immobilize negatively charged hemoglobin (Hb) via electrostatic interaction. Ultraviolet-visible spectroscopy demonstrated that Hb was immobilized on the hybrid matrix without denaturation. The fluorescence of the QDs-cerasome was quenched as Hb was immobilized, indicating that the protein immobilization process could be visibly detected. Compared with protein electrodes constructed using a single-component material, including Hb-QDs/GC and Hb-cerasome/GC electrodes, the Hb-QDs-cerasome/GC electrode not only realized enhanced direct electrochemistry, but also displayed higher sensitivity and a wider linear range toward the detection of hydrogen peroxide because of the synergistic effect of the QDs and cerasomes. The experimental results demonstrate that this fluorescent multicomponent hybrid material provides a novel and effective platform to immobilize a redox protein to realize direct electrochemistry. As such, this hybrid shows promise for application in third-generation electrochemical biosensors.

  10. Self-assembly of novel fluorescent quantum dot-cerasome hybrid for bioelectrochemistry.

    PubMed

    Liu, Daliang; Zhuang, Qian; Zhang, Ling; Zhang, Hui; Wu, Shuyao; Kikuchi, Jun-Ichi; Han, Zhengbo; Zhang, Qian; Song, Xi-Ming

    2016-07-01

    A novel fluorescent nanohybrid was fabricated via the self-assembly of semiconductive quantum dots (QDs) on biocompatible cerasomes. The nanohybrid (denoted as QDs-cerasome) was used as an electrode material for visible protein immobilization and bioelectrochemistry. The morphology and surface properties of the QDs-cerasome hybrid were characterized by transmission electron microscopies, atomic force microscopies and zeta potential measurements. Because the QDs-cerasome hybrid possessed a positive charge in aqueous solution, it could be used as a matrix to immobilize negatively charged hemoglobin (Hb) via electrostatic interaction. Ultraviolet-visible spectroscopy demonstrated that Hb was immobilized on the hybrid matrix without denaturation. The fluorescence of the QDs-cerasome was quenched as Hb was immobilized, indicating that the protein immobilization process could be visibly detected. Compared with protein electrodes constructed using a single-component material, including Hb-QDs/GC and Hb-cerasome/GC electrodes, the Hb-QDs-cerasome/GC electrode not only realized enhanced direct electrochemistry, but also displayed higher sensitivity and a wider linear range toward the detection of hydrogen peroxide because of the synergistic effect of the QDs and cerasomes. The experimental results demonstrate that this fluorescent multicomponent hybrid material provides a novel and effective platform to immobilize a redox protein to realize direct electrochemistry. As such, this hybrid shows promise for application in third-generation electrochemical biosensors. PMID:27154645

  11. Hybrid magnetic nanoparticle/nanogold clusters and their distance-dependent metal-enhanced fluorescence effect via DNA hybridization

    NASA Astrophysics Data System (ADS)

    GuThese Authors Contributed Equally To This Study., Xuefan; Wu, Youshen; Zhang, Lingze; Liu, Yongchun; Li, Yan; Yan, Yongli; Wu, Daocheng

    2014-07-01

    To improve the metal-enhanced fluorescence (MEF) effect of nanogolds (AuNPs) and accurately detect specific DNA sequences via DNA hybridization, novel hybrid magnetic nanoparticles/nanogold clusters (HMNCs) were designed based on finite-difference time-domain simulation results and prepared by using Fe3O4 and nanogolds. The nanogolds outside the HMNC were then conjugated with thiol-terminated DNA molecules, thus DNA modified-HMNCs (DNA-HMNCs) were obtained. The size distributions of these nanostructures were measured by a Malvern size analyzer, and their morphology was observed via transmission electron microscopy (TEM). The ultraviolet (UV)-visible (vis) absorption spectra of the samples were recorded with a UV-2600 spectrophotometer. Fluorescence spectra and the MEF effect were recorded using a spectrophotofluorometer, and lifetimes were determined using a time-correlated single photon counting apparatus. The prepared HMNCs were stable in aqueous solutions and had an average diameter of 87 +/- 3.2 nm, with six to eight AuNPs around a single Fe3O4 nanoparticle. Fluorescein isothiocyanate (FITC) tagged DNA-HMNC conjugates exhibited a significant MEF effect and could accurately detect specific DNA sequences after DNA hybridization. This result indicates their various potential applications in sensors and biomedical fields.To improve the metal-enhanced fluorescence (MEF) effect of nanogolds (AuNPs) and accurately detect specific DNA sequences via DNA hybridization, novel hybrid magnetic nanoparticles/nanogold clusters (HMNCs) were designed based on finite-difference time-domain simulation results and prepared by using Fe3O4 and nanogolds. The nanogolds outside the HMNC were then conjugated with thiol-terminated DNA molecules, thus DNA modified-HMNCs (DNA-HMNCs) were obtained. The size distributions of these nanostructures were measured by a Malvern size analyzer, and their morphology was observed via transmission electron microscopy (TEM). The ultraviolet (UV

  12. Synthesis and hybridization of dodecadeoxyribonucleotides containing a fluorescent pyridopyrimidine deoxynucleoside.

    PubMed

    Inoue, H; Imura, A; Ohtsuka, E

    1985-10-11

    Partially self-complementary dodecadeoxyribonucleotides containing a fluorescent nucleoside, 3-beta-D-2'-deoxyribofuranosyl-2, 7-dioxopyrido[2, 3-d]pyrimidine (pyridopyrimidine deoxynucleoside, dF) were synthesized by the phosphotriester solidphase method. A dodecanucleotide d(GGGAAFGTTCCC) pairing the analog and guanine at the centre of the chain showed a higher melting temperature than the corresponding G-C paired duplex. A similar comparison between A-T and A-F suggested that weaker hydrogen bonds exist when adenine and pyridopyrimidine residues are paired.

  13. Fluorescent in situ hybridization of mitochondrial DNA and RNA.

    PubMed

    Alán, Lukáš; Zelenka, Jaroslav; Ježek, Jan; Dlasková, Andrea; Ježek, Petr

    2010-01-01

    To reveal nucleic acid localization in mitochondria, we designed molecular beacon fluorescent probes against: i) the light strand complementary to ND5 mitochondrial DNA (mtDNA) gene (annealing also to corresponding mRNA); ii) displacement (D) loop 7S DNA (annealing also to parallel heavy strand mtDNA and corresponding light strand transcript); iii) the proximal D-loop heavy strand displaced by the light strand promoter minor RNA. Confocal microscopy demonstrated ND5 probe spreading (less for other probes) in mitochondrial reticulum tubules but upon RNase A treatment all probes contoured mtDNA nucleoid localization. DNase I spread the signal over mitochondrial tubules. Future applications are discussed.

  14. A DNA--silver nanocluster probe that fluoresces upon hybridization.

    PubMed

    Yeh, Hsin-Chih; Sharma, Jaswinder; Han, Jason J; Martinez, Jennifer S; Werner, James H

    2010-08-11

    DNA-templated silver nanoclusters (DNA/Ag NCs) are an emerging set of fluorophores that are smaller than semiconductor quantum dots and can have better photostability and brightness than commonly used organic dyes. Here we find the red fluorescence of DNA/Ag NCs can be enhanced 500-fold when placed in proximity to guanine-rich DNA sequences. On the basis of this new phenomenon, we have designed a DNA detection probe (NanoCluster Beacon, NCB) that "lights up" upon target binding. Since NCBs do not rely on Forster energy transfer for quenching, they can easily reach high (>100) signal-to-background ratios (S/B ratios) upon target binding. Here, in a separation-free assay, we demonstrate NCB detection of an influenza target with a S/B ratio of 175, a factor of 5 better than a conventional molecular beacon probe. Since the observed fluorescence enhancement is caused by intrinsic nucleobases, our detection technique is simple, inexpensive, and compatible with commercial DNA synthesizers.

  15. Painting of parental chromatin in Beta hybrids by multi-colour fluorescent in situ hybridization.

    PubMed

    Desel, Christine; Jansen, Rita; Dedong, Gue; Schmidt, Thomas

    2002-02-01

    Sugar beet (Beta vulgaris L.) is a relatively young crop and has a narrow gene pool. In order to introduce genetic variability into the crop, interspecific hybrids, selected from crosses with wild beets of the sections Corollinae and Procumbentes, have been generated. The introgressed B. procumbens chromatin carries resistance genes to beet cyst nematode Heterodera schachtii Schm. These lines are important for breeding of nematode-resistant sugar beet, while Corollinae species are potential donors of tolerance to biotic and abiotic stresses such as drought or saline soils. We have used in situ hybridization of genomic DNA to discriminate the parental chromosomes in these interspecific hybrids. Suppression of cross-hybridization by blocking DNA was not necessary indicating that the investigated Beta genomes contain sufficient species-specific DNA enabling the unequivocal determination of the genomic composition of the hybrids. Interspecific hybrid lines with an additional chromosome (2n = 18 + 1), chromosome fragment (2n = 18 + fragment) or translocation of B. procumbens (2n = 18) were analysed by genomic in situ hybridization (GISH) at mitosis and meiosis. Species-specific satellites and ribosomal genes used in combination with genomic DNA or in rehybridization experiments served as landmark probes for chromosome identification in hybrid genomes. The detection of a B. procumbens translocation of approx. I Mbp demonstrated the sensitivity and resolution of GISH and showed that this approach is a powerful method in genome analysis projects of the genus Beta.

  16. Identification of two Skeletonema costatum-like diatoms by fluorescence in situ hybridization

    NASA Astrophysics Data System (ADS)

    Zhang, Baoyu; Chen, Guofu; Wang, Guangce; Lu, Douding

    2010-03-01

    A harmful algae bloom (HAB) is a dense aggregation of algae in a marine or aquatic environment that can result in significant environmental problems. To forecast the occurrence of HAB, development of a rapid and precise detection method is urgently required. In this study, two Skeletonema costatum-like diatoms (SK-1 and SK-2), were identified morphologically under a light microscope, and detected using fluorescent in situ hybridization (FISH). Strain SK-1 was isolated from a frequently HAB affected area of the East China Sea, and strain SK-2 from an aquatic farm in Qingdao, China. Fluorescent DNA probes were designed that were complementary to the ITS sequence (including 5.8S rDNA) of strain SK-1. After hybridization, strong green fluorescence was observed in cells of strain SK-1 under an epifluorescence microscope; however, no such fluorescence was observed with strain SK-2, which indicates that probes hybridized only the DNA of the target strain, SK-1, in species-specific manner, and that the two strains do not belong to a same species. This finding was confirmed by ITS sequence analysis. The FISH technique used in this study was sensitive, simple, and rapid, and is a promising tool for detecting target HAB species in natural environments.

  17. Hybrid magnetic nanoparticle/nanogold clusters and their distance-dependent metal-enhanced fluorescence effect via DNA hybridization.

    PubMed

    Gu, Xuefan; Wu, Youshen; Zhang, Lingze; Liu, Yongchun; Li, Yan; Yan, Yongli; Wu, Daocheng

    2014-08-01

    To improve the metal-enhanced fluorescence (MEF) effect of nanogolds (AuNPs) and accurately detect specific DNA sequences via DNA hybridization, novel hybrid magnetic nanoparticles/nanogold clusters (HMNCs) were designed based on finite-difference time-domain simulation results and prepared by using Fe3O4 and nanogolds. The nanogolds outside the HMNC were then conjugated with thiol-terminated DNA molecules, thus DNA modified-HMNCs (DNA-HMNCs) were obtained. The size distributions of these nanostructures were measured by a Malvern size analyzer, and their morphology was observed via transmission electron microscopy (TEM). The ultraviolet (UV)-visible (vis) absorption spectra of the samples were recorded with a UV-2600 spectrophotometer. Fluorescence spectra and the MEF effect were recorded using a spectrophotofluorometer, and lifetimes were determined using a time-correlated single photon counting apparatus. The prepared HMNCs were stable in aqueous solutions and had an average diameter of 87 ± 3.2 nm, with six to eight AuNPs around a single Fe3O4 nanoparticle. Fluorescein isothiocyanate (FITC) tagged DNA-HMNC conjugates exhibited a significant MEF effect and could accurately detect specific DNA sequences after DNA hybridization. This result indicates their various potential applications in sensors and biomedical fields.

  18. Designed thiazole orange nucleotides for the synthesis of single labelled oligonucleotides that fluoresce upon matched hybridization.

    PubMed

    Bethge, Lucas; Singh, Ishwar; Seitz, Oliver

    2010-05-21

    Probe molecules that enable the detection of specific DNA sequences are used in diagnostic and basic research. Most methods rely on the specificity of hybridization reactions, which complicates the detection of single base mutations at low temperature. Significant efforts have been devoted to the development of oligonucleotides that allow discrimination of single base mutations at temperatures where both the match and the mismatch probe-target complexes coexist. Oligonucleotides that contain environmentally sensitive fluorescence dyes such as thiazole orange (TO) provide single nucleotide specific fluorescence. However, most previously reported dye-DNA conjugates showed only little if any difference between the fluorescence of the single and the double stranded state. Here, we introduce a TO-containing acyclic nucleotide, which is coupled during automated oligonucleotide synthesis and provides for the desired fluorescence-up properties. The study reveals the conjugation mode as the most important issue. We show a design that leads to low fluorescence of the unbound probe (background) yet permits TO to adopt fluorescent binding modes after the probe-target complex has formed. In these probes, TO replaces a canonical nucleobase. Of note, the fluorescence of the "TO-base" remains low when a base mismatch is positioned in immediate vicinity.

  19. Absorption Reconstruction Improves Biodistribution Assessment of Fluorescent Nanoprobes Using Hybrid Fluorescence-mediated Tomography

    PubMed Central

    Gremse, Felix; Theek, Benjamin; Kunjachan, Sijumon; Lederle, Wiltrud; Pardo, Alessa; Barth, Stefan; Lammers, Twan; Naumann, Uwe; Kiessling, Fabian

    2014-01-01

    Aim: Fluorescence-mediated tomography (FMT) holds potential for accelerating diagnostic and theranostic drug development. However, for proper quantitative fluorescence reconstruction, knowledge on optical scattering and absorption, which are highly heterogeneous in different (mouse) tissues, is required. We here describe methods to assess these parameters using co-registered micro Computed Tomography (µCT) data and nonlinear whole-animal absorption reconstruction, and evaluate their importance for assessment of the biodistribution and target site accumulation of fluorophore-labeled drug delivery systems. Methods: Besides phantoms with varying degrees of absorption, mice bearing A431 tumors were imaged 15 min and 48 h after i.v. injection of a fluorophore-labeled polymeric drug carrier (pHPMA-Dy750) using µCT-FMT. The outer shape of mice and a scattering map were derived using automated segmentation of the µCT data. Furthermore, a 3D absorption map was reconstructed from the trans-illumination data. We determined the absorption of five interactively segmented regions (heart, liver, kidney, muscle, tumor). Since blood is the main near-infrared absorber in vivo, the absorption was also estimated from the relative blood volume (rBV), determined by contrast-enhanced µCT. We compared the reconstructed absorption with the rBV-based values and analyzed the effect of using the absorption map on the fluorescence reconstruction. Results: Phantom experiments demonstrated that absorption reconstruction is possible and necessary for quantitative fluorescence reconstruction. In vivo, the reconstructed absorption showed high values in strongly blood-perfused organs such as the heart, liver and kidney. The absorption values correlated strongly with the rBV-based absorption values, confirming the accuracy of the absorption reconstruction. Usage of homogenous absorption instead of the reconstructed absorption map resulted in reduced values in the heart, liver and kidney, by

  20. Assessment of asthmatic inflammation using hybrid fluorescence molecular tomography-x-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Ma, Xiaopeng; Prakash, Jaya; Ruscitti, Francesca; Glasl, Sarah; Stellari, Fabio Franco; Villetti, Gino; Ntziachristos, Vasilis

    2016-01-01

    Nuclear imaging plays a critical role in asthma research but is limited in its readings of biology due to the short-lived signals of radio-isotopes. We employed hybrid fluorescence molecular tomography (FMT) and x-ray computed tomography (XCT) for the assessment of asthmatic inflammation based on resolving cathepsin activity and matrix metalloproteinase activity in dust mite, ragweed, and Aspergillus species-challenged mice. The reconstructed multimodal fluorescence distribution showed good correspondence with ex vivo cryosection images and histological images, confirming FMT-XCT as an interesting alternative for asthma research.

  1. Identification of mosaicism in Prader-Willi syndrome using fluorescent in situ hybridization

    SciTech Connect

    Mowery-Rushton, P.A.; Surti, U.; Hanchett, J.M.

    1996-12-30

    We report on our findings of 4 patients with mosaicism for a deletion of chromosome 15, most commonly associated with Prader-Willi syndrome (PWS). We examined a series of typical and atypical PWS patients in order to identify cytogenetically undetected deletions, using fluorescence in situ hybridization. In 4 of the patients analyzed we detected a deletion in 14-60% of peripheral blood leukocytes, using four commercially available probes. Our results indicate that mosaicism may play a role in the etiology of some PWS cases. These findings may be especially useful in patients who display discrepancies between clinical phenotype and established diagnostic criteria. Methylation and microsatellite polymorphism analyses of 2 patients with low-level mosaicism failed to identify the deletion. We propose that fluorescence in situ hybridization is the most effective method for detecting somatic mosaicism, since a large number of cells can be individually examined for the presence or absence of a specific deletion. 47 refs., 5 figs., 3 tabs.

  2. Cytodiagnosis of Extraskeletal Ewing's Sarcoma and its Confirmation by Fluorescence in situ Hybridization.

    PubMed

    Dey, Biswajit; Singh, Ashish Ranjan; Barwad, Adarsh; Dange, Prasad; Siddaraju, Neelaiah

    2016-08-01

    Extraskeletal Ewing's sarcoma is an aggressive malignant small round cell tumour usually occuring in children and adolescents. It needs to be differentiated from other malignant small round cell tumours and immunohistochemistry plays a pivotal role in establishing the diagnosis. Fluorescence in situ hybridization or real time-polymerase chain reaction helps in confirming the diagnosis by demonstration of EWS-FLI1 translocation, which is found in approximately 85% of the cases. We report a case of extraskeletal Ewing's sarcoma in a10-year-old male, who presented with a right gluteal region mass. Fine needle aspiration and cell block preparation followed by a panel of immunohistochemical markers were performed. Immunohistochemistry for CD99 and FLI1 was positive. EWS-FLI1 translocation was confirmed by fluorescence in situ hybridization. PMID:27656453

  3. Colorimetric and ratiometric fluorescent detection of bisulfite by a new HBT-hemicyanine hybrid.

    PubMed

    Zhang, Haiyan; Huang, Zijun; Feng, Guoqiang

    2016-05-12

    A novel HBT-hemicyanine hybrid was prepared. This hybrid not only displays a large red-shifted (Δλ = 125 nm) emission compared to the well known ESIPT dye HBT, but also can be used as a new probe for rapid, colorimetric and ratiometric fluorescent detection of bisulfite with high selectivity and sensitivity in aqueous solution. The detection limit of this probe for HSO3(-) was calculated to be about 56 nM with a linear range of 0-25 μM. The potential application of this probe was exampled by detection of bisulfite in real food samples and living cells. Overall, this work not only provided a new ratiometric sensing platform, but also provided a new promising colorimetric and ratiometric fluorescent probe for bisulfite. PMID:27114225

  4. Tyramide Signal Amplification: Fluorescence In Situ Hybridization for Identifying Homoeologous Chromosomes.

    PubMed

    Fominaya, Araceli; Loarce, Yolanda; González, Juan M; Ferrer, Esther

    2016-01-01

    Tyramide signal amplification (TSA) fluorescence in situ hybridization (FISH) has been shown as a valuable molecular tool for visualizing specific amplified DNA sequences in chromosome preparations. This chapter describes how to perform TSA-FISH, paying special interest to its two critical steps: probe generation and metaphase plate generation. The potential of physically mapping 12S-globulin sequences by TSA-FISH as a means of identifying homeology among chromosome regions of Avena species was tested and is discussed. PMID:27511165

  5. Preparation of graphene quantum dots based core-satellite hybrid spheres and their use as the ratiometric fluorescence probe for visual determination of mercury(II) ions.

    PubMed

    Hua, Mengjuan; Wang, Chengquan; Qian, Jing; Wang, Kan; Yang, Zhenting; Liu, Qian; Mao, Hanping; Wang, Kun

    2015-08-12

    We herein proposed a simple and effective strategy for preparing graphene quantum dots (GQDs)-based core-satellite hybrid spheres and further explored the feasibility of using such spheres as the ratiometric fluorescence probe for the visual determination of Hg(2+). The red-emitting CdTe QDs were firstly entrapped in the silica nanosphere to reduce their toxicity and improve their photo and chemical stabilities, thus providing a built-in correction for environmental effects, while the GQDs possessing good biocompatibility and low toxicity were electrostatic self-assembly on the silica surface acting as reaction sites. Upon exposure to the increasing contents of Hg(2+), the blue fluorescence of GQDs can be gradually quenched presumably due to facilitating nonradiative electron/hole recombination annihilation. With the embedded CdTe QDs as the internal standard, the variations of the tested solution display continuous fluorescence color changes from blue to red, which can be easily observed by the naked eye without any sophisticated instrumentations and specially equipped laboratories. This sensor exhibits high sensitivity and selectivity toward Hg(2+) in a broad linear range of 10 nM-22 μM with a low detection limit of 3.3 nM (S/N = 3), much lower than the allowable Hg(2+) contents in drinking water set by U.S. Environmental Protection Agency. This prototype ratiometric probe is of good simplicity, low toxicity, excellent stabilities, and thus potentially attractive for Hg(2+) quantification related biological systems. PMID:26320973

  6. Detection and quantification of Epstein-Barr virus EBER1 in EBV-infected cells by fluorescent in situ hybridization and flow cytometry

    NASA Technical Reports Server (NTRS)

    Stowe, R. P.; Cubbage, M. L.; Sams, C. F.; Pierson, D. L.; Barrett, A. D.

    1998-01-01

    A rapid and highly sensitive fluorescent in situ hybridization (FISH) assay was developed to detect Epstein Barr virus (EBV)-infected cells in peripheral blood. Multiple fluorescein-labeled antisense oligonucleotide probes were designed to hybridize to the EBER1 transcript, which is highly expressed in latently infected cells. After a rapid (30 min) hybridization, the cells were analyzed by flow cytometry. EBER1 was detected in several positive control cell lines that have variable numbers of EBV genome copies. No EBER1 was detected in two known EBV-negative cell lines. Northern blot analyses confirmed the presence and quantity of EBER1 transcripts in each cell line. This method was used to quantify the number of EBV-infected cells in peripheral blood from a patient with chronic mononucleosis. These results indicate that EBV-infected cells can be detected at the single cell level, and that this assay can be used to quantify the number of EBV-infected cells in clinical samples.

  7. Polarization control of metal-enhanced fluorescence in hybrid assemblies of photosynthetic complexes and gold nanorods.

    PubMed

    Bujak, Ł; Olejnik, M; Brotosudarmo, T H P; Schmidt, M K; Czechowski, N; Piatkowski, D; Aizpurua, J; Cogdell, R J; Heiss, W; Mackowski, S

    2014-05-21

    Fluorescence imaging of hybrid nanostructures composed of a bacterial light-harvesting complex LH2 and Au nanorods with controlled coupling strength is employed to study the spectral dependence of the plasmon-induced fluorescence enhancement. Perfect matching of the plasmon resonances in the nanorods with the absorption bands of the LH2 complexes facilitates a direct comparison of the enhancement factors for longitudinal and transverse plasmon frequencies of the nanorods. We find that the fluorescence enhancement due to excitation of longitudinal resonance can be up to five-fold stronger than for the transverse one. We attribute this result, which is important for designing plasmonic functional systems, to a very different distribution of the enhancement of the electric field due to the excitation of the two characteristic plasmon modes in nanorods.

  8. Bioinspired synthesis of fluorescent calcium carbonate/carbon dot hybrid composites.

    PubMed

    Guo, Shanshan; Yang, Miao; Chen, Min; Zhang, Juan; Liu, Kang; Ye, Ling; Gu, Wei

    2015-05-01

    Herein, we report a novel method to synthesise fluorescent calcium carbonate/carbon dots (CaCO3/CDs) by simply mixing CaCl2 and Na2CO3 solutions in the presence of CDs. There are two roles of CDs in this easy and cost-effective biomimetic strategy, that is as the template to direct the formation and assembly of calcite nanocrystals into hierarchical spheres with diameters in the range of 200-300 nm and simultaneously as the phosphor to enable the CaCO3 to emit blue fluorescence under UV (365 nm) irradiation with a quantum yield of 56.2%. The CaCO3/CD hybrid composites possessing unique fluorescence properties are potentially useful in various applications.

  9. Synthesis and fluorescence properties of six fluorescein-nitroxide radical hybrid-compounds.

    PubMed

    Sato, Shingo; Endo, Susumu; Kurokawa, Yusuke; Yamaguchi, Masaki; Nagai, Akio; Ito, Tomohiro; Ogata, Tateaki

    2016-12-01

    Six fluorescein-nitroxide radical hybrid-compounds (2ab, 3ab, 4, and 5) were synthesized by the condensation of 5- or 6-carboxy-fluorescein and 4-amino-TEMPO (2ab), 5- or 6-aminofluorescein and 4-carboxy-TEMPO (3ab), and fluorescein and 4-carboxy-TEMPO (4), or by reaction of the 3-hydroxyl group of fluorescein with DPROXYL-3-ylmethyl methanesulfonate (5). Fluorescence intensities (around 520nm) after reduction of the radical increased to 1.43-, 1.38-, and 1.61-folds for 2a, 2b and 3b respectively; 3a alone exhibited a decrease in intensity on reduction. Since 4 was readily solvolyzed in PBS or even methanol to afford fluorescein and 4-carboxy-TEMPO, its fluorescence change could not be measured. Hybrid compound 5 containing an ether-linkage between the fluorescein phenol and 3-hydroxymethyl-DPROXYL hydroxyl centers, was stable and on reduction, showed a maximum increase (3.21-fold) in relative fluorescence intensity in PBS (pH5.0), despite its remarkably low absolute fluorescence intensity.

  10. Single-mRNA counting using fluorescent in situ hybridization in budding yeast

    PubMed Central

    Trcek, Tatjana; Chao, Jeffrey A; Larson, Daniel R; Park, Hye Yoon; Zenklusen, Daniel; Shenoy, Shailesh M; Singer, Robert H

    2014-01-01

    Fluorescent in situ hybridization (FISH) allows the quantification of single mRNAs in budding yeast using fluorescently labeled single-stranded DNA probes, a wide-field epifluorescence microscope and a spot-detection algorithm. Fixed yeast cells are attached to coverslips and hybridized with a mixture of FISH probes, each conjugated to several fluorescent dyes. Images of cells are acquired in 3D and maximally projected for single-molecule analysis. Diffraction-limited labeled mRNAs are observed as bright fluorescent spots and can be quantified using a spot-detection algorithm. FISH preserves the spatial distribution of cellular RNA distribution within the cell and the stochastic fluctuations in individual cells that can lead to phenotypic differences within a clonal population. This information, however, is lost if the RNA content is measured on a population of cells by using reverse transcriptase PCR, microarrays or high-throughput sequencing. The FISH procedure and image acquisition described here can be completed in 3 d. PMID:22301778

  11. Fluorescent in situ hybridization with arbitrarily amplified DNA fragments differentiates carrot (Daucus carota L.) chromosomes.

    PubMed

    Nowicka, Anna; Grzebelus, Ewa; Grzebelus, Dariusz

    2012-03-01

    Carrot (Daucus carota L.) chromosomes are small and poorly differentiated in size and morphology. Here we demonstrate that fluorescent in situ hybridization (FISH) signals derived from arbitrary PCR probes can be used for chromosome identification in carrot. To prepare probes, we searched for nonpolymorphic products abundantly amplified with arbitrary decamer primers in a group of accessions representing carrot genetic diversity. As a result, 13 fragments ranging in size from 517 to 1758 bp were selected, sequenced, and used as probes for fluorescent in situ hybridization. Four of these probes produced clear and reproducible hybridization signals. The sequences showed similarity to a number of carrot BAC-end sequences, indicating their repetitive character. Three of them were similar to internal portions of gypsy and copia LTR retrotransposons previously identified in plants. Hybridization signals for the four probes were observed as dotted tracks on chromosomes, differing in distribution and intensity. Generally, they were present in pericentromeric and (or) interstitial localizations on chromosome arms. The use of the four probes allowed discrimination of chromosome pairs and construction of more detailed karyotypes and idiograms of carrot.

  12. Fluorescence in situ hybridization analysis of formalin fixed paraffin embedded tissues, including tissue microarrays.

    PubMed

    Summersgill, Brenda M; Shipley, Janet M

    2010-01-01

    Formalin fixed paraffin embedded (FFPE) material is frequently the most convenient readily available source of diseased tissue, including tumors. Multiple cores of FFPE material are being used increasingly to construct tissue microarrays (TMAs) that enable simultaneous analyses of many archival samples. Fluorescence in situ hybridization (FISH) is an important approach to analyze FFPE material for specific genetic aberrations that may be associated with tumor types or subtypes, cellular morphology, and disease prognosis. Annealing, or hybridization of labeled nucleic acid sequences, or probes, to detect and locate one or more complementary nucleic acid sequences within fixed tissue sections allows the detection of structural (translocation/inversion) and numerical (deletion/gain) aberrations and their localization within tissues. The robust protocols described include probe preparation, hybridization, and detection and take 2-3 days to complete. A protocol is also described for the stripping of probes for repeat FISH in order to maximize the use of scarce tissue resources.

  13. Detection of viral RNA by fluorescence in situ hybridization (FISH).

    PubMed

    Vyboh, Kishanda; Ajamian, Lara; Mouland, Andrew J

    2012-01-01

    localization using a method like this, abundant information has been gained on both viral and cellular RNA trafficking events. For instance, HIV-1 produces RNA in the nucleus of infected cells but the RNA is only translated in the cytoplasm. When one key viral protein is missing (Rev), FISH of the viral RNA has revealed that the block to viral replication is due to the retention of the HIV-1 genomic RNA in the nucleus. Here, we present the method for visual analysis of viral genomic RNA in situ. The method makes use of a labelled RNA probe. This probe is designed to be complementary to the viral genomic RNA. During the in vitro synthesis of the antisense RNA probe, the ribonucleotide that is modified with digoxigenin (DIG) is included in an in vitro transcription reaction. Once the probe has hybridized to the target mRNA in cells, subsequent antibody labelling steps (Figure 1) will reveal the localization of the mRNA as well as proteins of interest when performing FISH/IF. PMID:22588480

  14. Molecular beacons: trial of a fluorescence-based solution hybridization technique for ecological studies with ruminal bacteria.

    PubMed Central

    Schofield, P; Pell, A N; Krause, D O

    1997-01-01

    Molecular beacons are fluorescent probes developed for solution rather than membrane hybridization. We have investigated the utility of these probes to study rumen microbial ecology. Two cellulolytic species, Ruminococcus albus and Fibrobacter succinogenes, were tested. Membrane and solution hybridizations gave similar results in competition experiments with cocultures of R. albus 8 and F. succinogenes S85. PMID:9055429

  15. Highly Fluorescent dye-nanoclay Hybrid Materials Made from Different Dye Classes.

    PubMed

    Grabolle, Markus; Starke, Marian; Resch-Genger, Ute

    2016-04-12

    Nanoclays like laponites, which are commercially avaible in large quantities for a very moderate price, provide a facile solubilization strategy for hydrophobic dyes without the need for chemical functionalization and can act as a carrier for a high number of dye molecules. This does not require reactive dyes, amplifies fluorescence signals from individual emitters due to the high number of dyes molecules per laponite disk, and renders hydrophobic emitters applicable in aqueous environments. Aiming at the rational design of bright dye-loaded nanoclays as a new class of fluorescent reporters for bioanalysis and material sciences and the identification of dye structure-property relationships, we screened a series of commercial fluorescent dyes, differing in dye class, charge, and character of the optical transitions involved, and studied the changes of their optical properties caused by clay adsorption at different dye loading concentrations. Upon the basis of our dye loading density-dependent absorption and fluorescence measurements with S2105 and Lumogen F Yellow 083, we could identify two promising dye-nanoclay hybrid materials that reveal high fluorescence quantum yields of the nanoclay-adsorbed dyes of at least 0.20 and low dye self-quenching even at high dye-loading densities of up to 50 dye molecules per laponite platelet. PMID:27007448

  16. Rapid detection of chromosome aneuploidies in uncultured amniocytes by using fluorescence in situ hybridization (FISH)

    PubMed Central

    Klinger, Katherine; Landes, Greg; Shook, Donna; Harvey, Robert; Lopez, Linda; Locke, Pat; Lerner, Terry; Osathanondh, Rapin; Leverone, Benjamin; Houseal, Timothy; Pavelka, Karen; Dackowski, William

    1992-01-01

    Herein we report the results of the first major prospective study directly comparing aneuploidy detection by fluorescence in situ hybridization of interphase nuclei with the results obtained by cytogenetic analysis. We constructed probes derived from specific subregions of human chromosomes 21, 18, 13, X, and Y that give a single copy–like signal when used in conjunction with suppression hybridization. A total of 526 independent amniotic fluid samples were analyzed in a blind fashion. All five probes were analyzed on 117 samples, while subsets of these five probes were used on the remaining samples (because of insufficient sample size), for a total of over 900 autosomal hybridization reactions and over 400 sex chromosome hybridization reactions. In this blind series, 21 of 21 abnormal samples were correctly identified. The remaining samples were correctly classified as disomic for these five chromosomes. The combination of chromosome-specific probe sets composed primarily of cosmid contigs and optimized hybridization/detection allowed accurate chromosome enumeration in uncultured human amniotic fluid cells, consistent with the results obtained by traditional cytogenetic analysis. Imagesp[60]-aFigure 1 PMID:1609805

  17. Self-Assembly of Fluorescent Hybrid Core-Shell Nanoparticles and Their Application.

    PubMed

    Wang, Chun; Tang, Fu; Wang, Xiaoyu; Li, Lidong

    2015-06-24

    In this work, a fluorescent hybrid core-shell nanoparticle was prepared by coating a functional polymer shell onto silver nanoparticles via a facile one-pot method. The biomolecule poly-L-lysine (PLL) was chosen as the polymer shell and assembled onto the silver core via the amine-reactive cross-linker, 3,3'-dithiobis(sulfosuccinimidylpropionate). The fluorescent anticancer drug, doxorubicin, was incorporated into the PLL shell through the same linkage. As the cross-linker possesses a thiol-cleavable disulfide bond, disassembly of the PLL shell was observed in the presence of glutathione, leading to controllable doxorubicin release. The silver core there provided an easily modified surface to facilitate the shell coating and ensures the efficient separation of as-prepared nanoparticles from their reaction mixture through centrifugation. Cell assays show that the prepared hybrid fluorescent nanoparticles can internalize into cells possessing excellent biocompatibility prior to the release of doxorubicin, terminating cancer cells efficiently as the doxorubicin is released at the intracellular glutathione level. Such properties are important for designing smart containers for target drug delivery and cellular imaging.

  18. Mismatch discrimination in fluorescent in situ hybridization using different types of nucleic acids.

    PubMed

    Fontenete, Silvia; Silvia, Fontenete; Barros, Joana; Joana, Barros; Madureira, Pedro; Pedro, Madureira; Figueiredo, Céu; Céu, Figueiredo; Wengel, Jesper; Jesper, Wengel; Azevedo, Nuno Filipe; Filipe, Azevedo Nuno

    2015-05-01

    In the past few years, several researchers have focused their attention on nucleic acid mimics due to the increasing necessity of developing a more robust recognition of DNA or RNA sequences. Fluorescence in situ hybridization (FISH) is an example of a method where the use of these novel nucleic acid monomers might be crucial to the success of the analysis. To achieve the expected accuracy in detection, FISH probes should have high binding affinity towards their complementary strands and discriminate effectively the noncomplementary strands. In this study, we investigate the effect of different chemical modifications in fluorescent probes on their ability to successfully detect the complementary target and discriminate the mismatched base pairs by FISH. To our knowledge, this paper presents the first study where this analysis is performed with different types of FISH probes directly in biological targets, Helicobacter pylori and Helicobacter acinonychis. This is also the first study where unlocked nucleic acids (UNA) were used as chemistry modification in oligonucleotides for FISH methodologies. The effectiveness in detecting the specific target and in mismatch discrimination appears to be improved using locked nucleic acids (LNA)/2'-O-methyl RNA (2'OMe) or peptide nucleic acid (PNA) in comparison to LNA/DNA, LNA/UNA, or DNA probes. Further, the use of LNA modifications together with 2'OMe monomers allowed the use of shorter fluorescent probes and increased the range of hybridization temperatures at which FISH would work.

  19. A quick and simple FISH protocol with hybridization-sensitive fluorescent linear oligodeoxynucleotide probes.

    PubMed

    Wang, Dan Ohtan; Matsuno, Hitomi; Ikeda, Shuji; Nakamura, Akiko; Yanagisawa, Hiroyuki; Hayashi, Yasunori; Okamoto, Akimitsu

    2012-01-01

    Fluorescence in situ hybridization (FISH) is a powerful tool used in karyotyping, cytogenotyping, cancer diagnosis, species specification, and gene-expression analysis. Although widely used, conventional FISH protocols are cumbersome and time consuming. We have now developed a FISH method using exciton-controlled hybridization-sensitive fluorescent oligodeoxynucleotide (ECHO) probes. ECHO-FISH uses a 25-min protocol from fixation to mounting that includes no stringency washing steps. We use ECHO-FISH to detect both specific DNA and RNA sequences with multicolor probes. ECHO-FISH is highly reproducible, stringent, and compatible with other fluorescent cellular labeling techniques. The resolution allows detection of intranuclear speckles of poly(A) RNA in HeLa cells and dissociated hippocampal primary cultures, and mRNAs in the distal dendrites of hippocampal neurons. We also demonstrate detection of telomeric and centromeric DNA on metaphase mouse chromosomes. The simplicity of the ECHO-FISH method will likely accelerate cytogenetic and gene-expression analysis with high resolution.

  20. Apoferritin fibers: a new template for 1D fluorescent hybrid nanostructures.

    PubMed

    Jurado, Rocío; Castello, Fabio; Bondia, Patricia; Casado, Santiago; Flors, Cristina; Cuesta, Rafael; Domínguez-Vera, José M; Orte, Angel; Gálvez, Natividad

    2016-05-01

    Recently, research in the field of protein amyloid fibers has gained great attention due to the use of these materials as nanoscale templates for the construction of functional hybrid materials. The formation of apoferritin amyloid-like protein fibers is demonstrated herein for the first time. The morphology, size and stiffness of these one-dimensional structures are comparable to the fibers formed by β-lactoglobulin, a protein frequently used as a model in the study of amyloid-like fibrillar proteins. Nanometer-sized globular apoferritin is capable of self-assembling to form 1D micrometer-sized structures after being subjected to a heating process. Depending on the experimental conditions, fibers with different morphologies and sizes are obtained. The wire-like protein structure is rich in functional groups and allows chemical functionalization with diverse quantum dots (QD), as well as with different Alexa Fluor (AF) dyes, leading to hybrid fluorescent fibers with variable emission wavelengths, from green to near infrared, depending on the QD and AFs coupled. For fibers containing the pair AF488 and AF647, efficient fluorescence energy transfer from the covalently coupled donor (AF488) to acceptor tags (AF647) takes place. Apoferritin fibers are proposed here as a new promising template for obtaining hybrid functional materials. PMID:27103107

  1. Detection of sex chromosome aneuploidy in dog spermatozoa by triple color fluorescence in situ hybridization.

    PubMed

    Komaki, Haruna; Oi, Maya; Suzuki, Hiroshi

    2014-09-01

    With the development of a direct visualization of sex chromosome in a single sperm by fluorescence in situ hybridization (FISH) technique, the frequency of aberration (aneuploidy) in spermatozoa in several mammals has been investigated. However, there is no report in the incidence of X-Y aneuploidy in the sperm population of dogs. Therefore, in this study, the aneuploidy in dog spermatozoa was examined by multicolor FISH using specific molecular probes for canine sex chromosomes and autosome. Semen from eight male Labrador retrievers was used as specimen. For decondensation of sperm nuclei, the specimen was treated with 1 M NaOH for 4 minutes at room temperature. Probes for chromosomes X, Y, and 1, labeled with SpectrumGreen, Cy3 and Cy5, respectively, were hybridized with decondensed spermatozoa. Fluorescence in situ hybridization signals in sperm heads were clearly detected in each specimen, regardless of the sperm donor. The FISH signal of at least one of the three probes was detected in all sperm heads examined. There was no significant difference between the theoretical ratio (50:50) and the observed ratio of X and Y chromosomes in spermatozoa of all the eight dogs. Mean percentage of sex chromosome aneuploidy was 0.127% (ranged between 0% and 0.316%). This percentage of canine sex chromosome aneuploidy was lower than the one reported in cattle, horses, river buffalo, and goats sperm, but higher than that observed in mice and sheep.

  2. PCR-derived ssDNA probes for fluorescent in situ hybridization to HIV-1 RNA.

    PubMed

    Knuchel, M C; Graf, B; Schlaepfer, E; Kuster, H; Fischer, M; Weber, R; Cone, R W

    2000-02-01

    We developed a simple and rapid technique to synthesize single-stranded DNA (ssDNA) probes for fluorescent in situ hybridization (ISH) to human immunodeficiency virus 1 (HIV-1) RNA. The target HIV-1 regions were amplified by the polymerase chain reaction (PCR) and were simultaneously labeled with dUTP. This product served as template for an optimized asymmetric PCR (one-primer PCR) that incorporated digoxigenin (dig)-labeled dUTP. The input DNA was subsequently digested by uracil DNA glycosylase, leaving intact, single-stranded, digoxigenin-labeled DNA probe. A cocktail of ssDNA probes representing 55% of the HIV-1 genome was hybridized to HIV-1-infected 8E5 T-cells and uninfected H9 T-cells. For comparison, parallel hybridizations were done with a plasmid-derived RNA probe mix covering 85% of the genome and a PCR-derived RNA probe mix covering 63% of the genome. All three probe types produced bright signals, but the best signal-to-noise ratios and the highest sensitivities were obtained with the ssDNA probe. In addition, the ssDNA probe syntheses generated large amounts of probe (0.5 to 1 microg ssDNA probe per synthesis) and were easier to perform than the RNA probe syntheses. These results suggest that ssDNA probes may be preferable to RNA probes for fluorescent ISH. (J Histochem Cytochem 48:285-293, 2000)

  3. Exploring the origin of the D genome of oat by fluorescence in situ hybridization.

    PubMed

    Luo, Xiaomei; Zhang, Haiqin; Kang, Houyang; Fan, Xing; Wang, Yi; Sha, Lina; Zhou, Yonghong

    2014-09-01

    Further understanding of the origin of cultivated oat would accelerate its genetic improvement. In particular, it would be useful to clarify which diploid progenitor contributed the D genome of this allohexaploid species. In this study, we demonstrate that the landmarks produced by fluorescence in situ hybridization (FISH) of species of Avena using probes derived from Avena sativa can be used to explore the origin of the D genome. Selected sets of probes were hybridized in several sequential experiments performed on exactly the same chromosome spreads, with multiple probes of cytological preparations. Probes pITS and A3-19 showed there might be a similar distribution of pITS between the Ac and D genomes. These results indicated that the Ac genome is closely related to the D genome, and that Avena canariensis (AcAc) could be the D-genome donor of cultivated oat.

  4. PNA-based fluorescence in situ hybridization for identification of bacteria in clinical samples.

    PubMed

    Fazli, Mustafa; Bjarnsholt, Thomas; Høiby, Niels; Givskov, Michael; Tolker-Nielsen, Tim

    2014-01-01

    Fluorescence in situ hybridization with PNA probes (PNA-FISH) that target specific bacterial ribosomal RNA sequences is a powerful and rapid tool for identification of bacteria in clinical samples. PNA can diffuse readily through the bacterial cell wall due to its uncharged backbone, and PNA-FISH can be performed with high specificity due to the extraordinary thermal stability of RNA-PNA hybrid complexes. We describe a PNA-FISH procedure and provide examples of the application of PNA-FISH for the identification of bacteria in chronic wounds, cystic fibrosis lungs, and soft tissue fillers. In all these cases, bacteria can be identified in biofilm aggregates, which may explain their recalcitrance to antibiotic treatment.

  5. Multiplexed miRNA Fluorescence In Situ Hybridization for Formalin-Fixed Paraffin-Embedded Tissues

    PubMed Central

    Renwick, Neil; Cekan, Pavol; Bognanni, Claudia; Tuschl, Thomas

    2015-01-01

    Multiplexed miRNA fluorescence in situ hybridization (miRNA FISH) is an advanced method for visualizing differentially expressed miRNAs, together with other reference RNAs, in archival tissues. Some miRNAs are excellent disease biomarkers due to their abundance and cell-type specificity. However, these short RNA molecules are difficult to visualize due to loss by diffusion, probe mishybridization, and signal detection and signal amplification issues. Here, we describe a reliable and adjustable method for visualizing and normalizing miRNA signals in formalin-fixed paraffin-embedded (FFPE) tissue sections. PMID:25218385

  6. Catalyzed reported deposition-fluorescence in situ hybridization protocol to evaluate phagotrophy in mixotrophic protists.

    PubMed

    Medina-Sánchez, Juan M; Felip, Marisol; Casamayor, Emilio O

    2005-11-01

    We describe a catalyzed reported deposition-fluorescence in situ hybridization (CARD-FISH) protocol particularly suited to assess the phagotrophy of mixotrophic protists on prokaryotes, since it maintains cell and plastid integrity, avoids cell loss and egestion of prey, and allows visualization of labeled prey against plastid autofluorescence. This protocol, which includes steps such as Lugol's-formaldehyde-thiosulfate fixation, agarose cell attachment, cell wall permeabilization with lysozyme plus achromopeptidase, and signal amplification with Alexa-Fluor 488, allowed us to detect almost 100% of planktonic prokaryotes (Bacteria and Archaea) and, for the first time, to show archaeal cells ingested by mixotrophic protists.

  7. A novel fluorescence in situ hybridization test for rapid pathogen identification in positive blood cultures.

    PubMed

    Makristathis, A; Riss, S; Hirschl, A M

    2014-10-01

    A novel molecular beacon-based fluorescence in situ hybridization (FISH) test allowing for the identification of a wide range of bacterial pathogens directly in positive blood cultures (BCs) was evaluated with positive BCs of 152 patients. Depending on the Gram stain, either a Gram-negative or a Gram-positive panel was used. The time to result was 30 min, and the hands-on time was only 10 min. Seven per cent of the cultured microorganisms were not included in the FISH panels; the identification rate of those included was 95.2%. Overall, the FISH test enabled accurate pathogen identification in 88.2% of all cases analysed.

  8. Fluorescent in situ hybridization analyses of human oocytes in trisomy 18 and 21

    SciTech Connect

    Cheng, E.Y.; Chen, Y.J.; Gartler, S.M.

    1994-09-01

    The commonly accepted view of synapsis is that only 2 homologues can synapse at any one site and that this restriction applies to polyploids as well. However, triple synapsis has been observed is some triploid plants and in triploid chicken. In humans, triple synapsis of the long arm of chromosome 21 was detected in sperm of a trisomic 21 individual. More recently, studies of oocytes from trisomic 21 and 18 fetuses also indicated extensive triple synapsis along the entire length of the chromosomes. To further investigate this question, we undertook an evaluation of trivalent synapsis in fetal oocytes from 2 trisomic 21 and 2 trisomic 18 fetuses using fluorescent in situ hybridization (FISH) with whole chromosome probes. Oocytes were hybridized with whole chromosome probes obtained from ONCOR, Inc. after fixation with methanol and acetic acid. Slides were scored for the distribution of prophase stages, hybridization efficiency, and hybridization characteristics of chromosomes 18 and 21 in the trisomic 18 and 21 fetuses respectively. Fifty-eight per cent (379/650) of pachytenes analyzed for chromosome 18 contained a conspicous trivalent and 319 (48%) of these nuclei contained a single, thick, continuous fluorescent signal consistent with complete triple synapsis along the entire length of all 3 chromosomes. Sixteen per cent (104/650) of pachytene contained 2 signals consistent with a bivalent and a univalent, and 9 cells contained 3 thin signals consistent with asynapsis of all 3 chromosomes. The remaining 158 pachytenes had unusual pairing configurations that we could not classify, but they most likely represent trivalents with partial pairing between different homologues. In the 2 trisomic 21 fetuses, the majority (143/232) of pachytenes also contained one signal while only 52 cells contained a bivalent and univalent. Five cells contained 3 separate signals. These results confirm the existence of triple synapsis in human meiosis.

  9. Apoferritin fibers: a new template for 1D fluorescent hybrid nanostructures

    NASA Astrophysics Data System (ADS)

    Jurado, Rocío; Castello, Fabio; Bondia, Patricia; Casado, Santiago; Flors, Cristina; Cuesta, Rafael; Domínguez-Vera, José M.; Orte, Angel; Gálvez, Natividad

    2016-05-01

    Recently, research in the field of protein amyloid fibers has gained great attention due to the use of these materials as nanoscale templates for the construction of functional hybrid materials. The formation of apoferritin amyloid-like protein fibers is demonstrated herein for the first time. The morphology, size and stiffness of these one-dimensional structures are comparable to the fibers formed by β-lactoglobulin, a protein frequently used as a model in the study of amyloid-like fibrillar proteins. Nanometer-sized globular apoferritin is capable of self-assembling to form 1D micrometer-sized structures after being subjected to a heating process. Depending on the experimental conditions, fibers with different morphologies and sizes are obtained. The wire-like protein structure is rich in functional groups and allows chemical functionalization with diverse quantum dots (QD), as well as with different Alexa Fluor (AF) dyes, leading to hybrid fluorescent fibers with variable emission wavelengths, from green to near infrared, depending on the QD and AFs coupled. For fibers containing the pair AF488 and AF647, efficient fluorescence energy transfer from the covalently coupled donor (AF488) to acceptor tags (AF647) takes place. Apoferritin fibers are proposed here as a new promising template for obtaining hybrid functional materials.Recently, research in the field of protein amyloid fibers has gained great attention due to the use of these materials as nanoscale templates for the construction of functional hybrid materials. The formation of apoferritin amyloid-like protein fibers is demonstrated herein for the first time. The morphology, size and stiffness of these one-dimensional structures are comparable to the fibers formed by β-lactoglobulin, a protein frequently used as a model in the study of amyloid-like fibrillar proteins. Nanometer-sized globular apoferritin is capable of self-assembling to form 1D micrometer-sized structures after being subjected to a

  10. Detection of Helicobacter pylori in raw bovine milk by fluorescence in situ hybridization (FISH).

    PubMed

    Angelidis, Apostolos S; Tirodimos, Ilias; Bobos, Mattheos; Kalamaki, Mary S; Papageorgiou, Demetrios K; Arvanitidou, Malamatenia

    2011-12-01

    The transmission pathways of Helicobacter pylori in humans have not been fully elucidated. Research in the last decade has proposed that foodborne transmission, among others, may be a plausible route of human infection. Owing to the organism's fastidious growth characteristics and its ability to convert to viable, yet unculturable states upon exposure to stress conditions, the detection of H. pylori in foods via culture-dependent methods has been proven to be laborious, difficult and in most cases unsuccessful. Hence, nucleic acid-based methods have been proposed as alternative methods but, to date, only PCR-based methods have been reported in the literature. In the current study, fluorescence in situ hybridization (FISH) was used for the detection of H. pylori in raw, bulk-tank bovine milk. After repeated milk centrifugation and washing steps, the bacterial flora of raw milk was subjected to fixation and permeabilization and H. pylori detection was conducted by FISH after hybridization with an H. pylori-specific 16S rRNA-directed fluorescent oligonucleotide probe. Using this protocol, H. pylori was detected in four out of the twenty (20%) raw milk samples examined. The data presented in this manuscript indicate that FISH can serve as an alternative molecular method for screening raw bovine milk for the presence of H. pylori.

  11. Confocal Raman microscopy and fluorescent in situ hybridization - A complementary approach for biofilm analysis.

    PubMed

    Kniggendorf, Ann-Kathrin; Nogueira, Regina; Kelb, Christian; Schadzek, Patrik; Meinhardt-Wollweber, Merve; Ngezahayo, Anaclet; Roth, Bernhard

    2016-10-01

    We combine confocal Raman microscopy (CRM) of wet samples with subsequent Fluorescent in situ hybridization (FISH) without significant limitations to either technique for analyzing the same sample of a microbial community on a cell-to-cell basis. This combination of techniques allows a much deeper, more complete understanding of complex environmental samples than provided by either technique alone. The minimalistic approach is based on laboratory glassware with micro-engravings for reproducible localization of the sample at cell scale combined with a fixation and de- and rehydration protocol for the respective techniques. As proof of concept, we analyzed a floc of nitrifying activated sludge, demonstrating that the sample can be tracked with cell-scale precision over different measurements and instruments. The collected information includes the microbial content, spatial shape, variant chemical compositions of the floc matrix and the mineral microparticles embedded within. In addition, the direct comparison of CRM and FISH revealed a difference in reported cell size due to the different cell components targeted by the respective technique. To the best of our knowledge, this is the first report of a direct cell-to-cell comparison of confocal Raman microscopy and Fluorescent in situ hybridization analysis performed on the same sample. An adaptation of the method to include native samples as a starting point is planned for the near future. The micro-engraving approach itself also opens up the possibility of combining other, functionally incompatible techniques as required for further in-depth investigations of low-volume samples. PMID:27423128

  12. Detection of a complex translocation using fluorescent in situ hybridization (FISH)

    SciTech Connect

    Rosen, B.A.; Abuelo, D.N.; Mark, H.F.

    1994-09-01

    The use of fluorescent in situ hybridization (FISH) allowed the detection of a complex 3-way translocation in a patient with multiple congenital malformations and mental retardation. The patient was a 10-year-old girl with mental retardation, seizures, repaired cleft palate, esotropia, epicanthal folds, broad nasal bridge, upward slanting palpebral fissures, single transverse palmar crease, brachydactyly, hypoplastic nails, ectrodactyly between the third and fourth right toes, and hypoplasia of the left third toe. Chromosome analysis performed at birth was reported as normal. We performed high resolution banding analysis which revealed an apparently balanced translocation between chromosomes 2 and 9. However, because of her multiple abnormalities, further studies were ordered. Fluorescent in situ hybridization (FISH) using chromosome painting probes revealed a karyotype of 46,XX,t(2;8;9) (2pter{yields}q31::8q21.2{yields}8qter; 8pter{yields}q21.2::2q31{yields}q34::9q34{yields}qter; 9pter{yields}q34::2q34{yields}qter). The 3-way translocation appears to be de novo, as neither parent is a translocation carrier. This case illustrates the importance of using FISH to further investigate cases of apparently balanced translocations in the presence of phenotypic abnormalities and/or mental retardation.

  13. Fluorescence in situ hybridization evaluation of chromosome deletion patterns in prostate cancer.

    PubMed Central

    Huang, S. F.; Xiao, S.; Renshaw, A. A.; Loughlin, K. R.; Hudson, T. J.; Fletcher, J. A.

    1996-01-01

    Various nonrandom chromosomal aberrations have been identified in prostate carcinoma. These aberrations include deletions of several chromosome regions, particularly the chromosome 8 short arm. Large-scale numerical aberrations, reflected in aberrant DNA ploidy, are also found in a minority of cases. However, it is unclear whether prostate carcinomas contain aberrations of certain chromosome regions that are deleted frequently in other common types of cancer. In this study, we performed dual-color fluorescence in situ hybridization on intact nuclei from touch preparations of 16 prostate cancers. Chromosome copy number was determined using pericentromeric probes, whereas potential chromosome arm deletions were evaluated using yeast artificial chromosome (YAC) and P1 probes. Two YAC probes targeted chromosome 8 short arm regions known to be deleted frequently in prostate cancer. Other YACs and P1s were for chromosome regions, including 1p22, 3p14, 6q21, 9p21, and 22q12, that are deletion targets in a variety of cancers although not extensively studied in prostate cancer. Hybridization efficiencies and signal intensities were excellent for both repeat sequence (alpha-satellite) and single, copy (YAC and P1) fluorescence in situ hybridization probes. Of 16 prostate cancers, 11 had clonal aberrations of 1 or more of the 13 chromosome regions evaluated, and 10 cases (62.5%) had 8p deletions, including 4 cases with 8p deletion in virtually all cells and aneuploidy in only a subset of those deleted cells. Deletions at 3p14, 6q21, and 22q12 were identified in 2, 1, and 1 case, respectively, and each of those cases had a similarly sized cell population with 8p deletion. These studies confirm 8p deletion in the majority of prostate carcinomas. 8p deletions appear to be early events in prostate tumorigenesis, often antedating aneuploidy. Fluorescence in situ hybridization strategies incorporating pericentromeric and single-copy regional chromosome probes offer a powerful and

  14. Gold nanoparticles for microfluidics-based biosensing of PCR products by hybridization-induced fluorescence quenching.

    PubMed

    Li, Yu-Ting; Liu, Hsiao-Sheng; Lin, Hong-Ping; Chen, Shu-Hui

    2005-12-01

    Colloidal gold nanoparticles were used to develop a simple microfluidics-based bioassay that is able to recognize and detect specific DNA sequences via conformational change-induced fluorescence quenching. In this method, a self-assembled monolayer of gold nanoparticles was fabricated on the channel wall of a microfluidic chip, and DNA probes were bonded to the monolayer via thiol groups at one end and a fluorophore dye was attached to the other end of the probe. The created construct is spontaneously assembled into a constrained arch-like conformation on the particle surface and, under which, the fluorescence of fluorophores is quenched by gold nanoparticles. Hybridization of target DNAs results in a conformational change of the construct and then restores the fluorescence, which serves as a sensing method for the target genes. The nanocomposite constructed on the glass surface was characterized by UV absorbance measurement and the quenching efficiency for different fluorophores was evaluated by Stern-Volmer studies. The applicability of proposed assay was first demonstrated by the use of a pair of synthesized complementary and noncomplementary DNA sequences. The method was further applied for the detection of the PCR product of dengue virus with the use of enterovirus as the negative control, and results indicate that the assay is specific for the target gene. Moreover, using this approach, dehybridization, hybridization, and detection of the target genes can be performed in situ on the same microfluidic channel. Thus, this method could be regarded as one-pot reaction and it holds great promises for clinical diagnostics.

  15. Fluorescent and Magnetic Mesoporous Hybrid Material: A Chemical and Biological Nanosensor for Hg2+ Ions

    NASA Astrophysics Data System (ADS)

    Suresh, Moorthy; Anand, Chokkalingam; Frith, Jessica E.; Dhawale, Dattatray S.; Subramaniam, Vishnu P.; Strounina, Ekaterina; Sathish, Clastinrusselraj I.; Yamaura, Kazunari; Cooper-White, Justin J.; Vinu, Ajayan

    2016-02-01

    We introduce “sense, track and separate” approach for the removal of Hg2+ ion from aqueous media using highly ordered and magnetic mesoporous ferrosilicate nanocages functionalised with rhodamine fluorophore derivative. These functionalised materials offer both fluorescent and magnetic properties in a single system which help not only to selectively sense the Hg2+ ions with a high precision but also adsorb and separate a significant amount of Hg2+ ion in aqueous media. We demonstrate that the magnetic affinity of these materials, generated from the ultrafine γ-Fe2O3 nanoparticles present inside the nanochannels of the support, can efficiently be used as a fluorescent tag to sense the Hg2+ ions present in NIH3T3 fibroblasts live cells and to track the movement of the cells by external magnetic field monitored using confocal fluorescence microscopy. This simple approach of introducing multiple functions in the magnetic mesoporous materials raise the prospect of creating new advanced functional materials by fusing organic, inorganic and biomolecules to create advanced hybrid nanoporous materials which have a potential use not only for sensing and the separation of toxic metal ions but also for cell tracking in bio-separation and the drug delivery.

  16. Fluorescent and Magnetic Mesoporous Hybrid Material: A Chemical and Biological Nanosensor for Hg(2+) Ions.

    PubMed

    Suresh, Moorthy; Anand, Chokkalingam; Frith, Jessica E; Dhawale, Dattatray S; Subramaniam, Vishnu P; Strounina, Ekaterina; Sathish, Clastinrusselraj I; Yamaura, Kazunari; Cooper-White, Justin J; Vinu, Ajayan

    2016-01-01

    We introduce "sense, track and separate" approach for the removal of Hg(2+) ion from aqueous media using highly ordered and magnetic mesoporous ferrosilicate nanocages functionalised with rhodamine fluorophore derivative. These functionalised materials offer both fluorescent and magnetic properties in a single system which help not only to selectively sense the Hg(2+) ions with a high precision but also adsorb and separate a significant amount of Hg(2+) ion in aqueous media. We demonstrate that the magnetic affinity of these materials, generated from the ultrafine γ-Fe2O3 nanoparticles present inside the nanochannels of the support, can efficiently be used as a fluorescent tag to sense the Hg(2+) ions present in NIH3T3 fibroblasts live cells and to track the movement of the cells by external magnetic field monitored using confocal fluorescence microscopy. This simple approach of introducing multiple functions in the magnetic mesoporous materials raise the prospect of creating new advanced functional materials by fusing organic, inorganic and biomolecules to create advanced hybrid nanoporous materials which have a potential use not only for sensing and the separation of toxic metal ions but also for cell tracking in bio-separation and the drug delivery. PMID:26911660

  17. The design of a microscopic system for typical fluorescent in-situ hybridization applications

    NASA Astrophysics Data System (ADS)

    Yi, Dingrong; Xie, Shaochuan

    2013-12-01

    Fluorescence in situ hybridization (FISH) is a modern molecular biology technique used for the detection of genetic abnormalities in terms of the number and structure of chromosomes and genes. The FISH technique is typically employed for prenatal diagnosis of congenital dementia in the Obstetrics and Genecology department. It is also routinely used to pick up qualifying breast cancer patients that are known to be highly curable by the prescription of Her2 targeted therapy. During the microscopic observation phase, the technician needs to count typically green probe dots and red probe dots contained in a single nucleus and calculate their ratio. This procedure need to be done to over hundreds of nuclei. Successful implementation of FISH tests critically depends on a suitable fluorescent microscope which is primarily imported from overseas due to the complexity of such a system beyond the maturity of the domestic optoelectrical industry. In this paper, the typical requirements of a fluorescent microscope that is suitable for FISH applications are first reviewed. The focus of this paper is on the system design and computational methods of an automatic florescent microscopy with high magnification APO objectives, a fast spinning automatic filter wheel, an automatic shutter, a cooled CCD camera used as a photo-detector, and a software platform for image acquisition, registration, pseudo-color generation, multi-channel fusing and multi-focus fusion. Preliminary results from FISH experiments indicate that this system satisfies routine FISH microscopic observation tasks.

  18. Fluorescent and Magnetic Mesoporous Hybrid Material: A Chemical and Biological Nanosensor for Hg2+ Ions

    PubMed Central

    Suresh, Moorthy; Anand, Chokkalingam; Frith, Jessica E.; Dhawale, Dattatray S.; Subramaniam, Vishnu P.; Strounina, Ekaterina; Sathish, Clastinrusselraj I.; Yamaura, Kazunari; Cooper-White, Justin J.; Vinu, Ajayan

    2016-01-01

    We introduce “sense, track and separate” approach for the removal of Hg2+ ion from aqueous media using highly ordered and magnetic mesoporous ferrosilicate nanocages functionalised with rhodamine fluorophore derivative. These functionalised materials offer both fluorescent and magnetic properties in a single system which help not only to selectively sense the Hg2+ ions with a high precision but also adsorb and separate a significant amount of Hg2+ ion in aqueous media. We demonstrate that the magnetic affinity of these materials, generated from the ultrafine γ-Fe2O3 nanoparticles present inside the nanochannels of the support, can efficiently be used as a fluorescent tag to sense the Hg2+ ions present in NIH3T3 fibroblasts live cells and to track the movement of the cells by external magnetic field monitored using confocal fluorescence microscopy. This simple approach of introducing multiple functions in the magnetic mesoporous materials raise the prospect of creating new advanced functional materials by fusing organic, inorganic and biomolecules to create advanced hybrid nanoporous materials which have a potential use not only for sensing and the separation of toxic metal ions but also for cell tracking in bio-separation and the drug delivery. PMID:26911660

  19. Molecular rotor-based fluorescent probe for selective recognition of hybrid G-quadruplex and as a K+ sensor.

    PubMed

    Liu, Lingling; Shao, Yong; Peng, Jian; Huang, Chaobiao; Liu, Hua; Zhang, Lihua

    2014-02-01

    This work demonstrates the significant fluorescence enhancement of thioflavin T (ThT) when binding to G-quadruplexes possessing hybrid structures by using UV-vis absorption spectra, fluorescence spectra, and Tm experiments to confirm the binding events. ThT binding does not disturb native G-quadruplex structures preformed in Na(+) and K(+) solutions. The fluorescence enhancement is caused by the rotation restriction of benzothiazole (BZT) and dimethylaminobenzene (DMAB) rings in the ThT excited state upon its G-quadruplex binding. This molecular rotor mechanism as a means of fluorescence enhancement is confirmed using a nonrotor analogue of ThT. Hydroxylation and electrolyte experiments demonstrate that ThT stacks on the tetrad of the hybrid G-quadruplexes, whereas electrostatic forces contribute more to ThT binding for other G-quadruplex structures. By stacking on the tetrad, the ThT binding favors selective identification of DNA hybrid G-quadruplex structures with enhanced fluorescence and can serve as a conformation probe to monitor G-quadruplex structure conversion between hybrid and other structures. Using these properties, we developed a selective and label-free fluorescent K(+) sensor with a detection limit of 1 mM for K(+) in the presence of 100 mM Na(+). The coexistence of other metal ions produces a fluorescence response comparable to K(+) alone. We believe that ThT can potentially provide structure identification of hybrid G-quadruplexes and aid in the construction of G-quadruplex-based sensors.

  20. [Quantitative use of fluorescence in situ hybridization to detect syntrophic acetogenic bacteria in anaerobic environmental samples].

    PubMed

    Li, Yan-Na; Xu, Ke-Wei; Du, Guo-Cheng; Chen, Jian; Liu, He

    2007-12-01

    Syntrophic acetogenic bacteria, an important functional one in anaerobic habitats, were detected and counted by fluorescence in situ hybridization (FISH) technology by using 16S rRNA-based oligonucleotide probes. For enumeration and quantification of the targeted bacteria, an attempt was made to optimize the hybridization conditions. The optimum conditions are as follows: a fixation time of 19h, a dehydrated time of 5 min, and a formamide concentration of 55% in hybridized solution. The abundance of syntrophic acetogenic bacteria of different environmental samples were quantified by FISH and the results showed that Upflow Anaerobic Sludge Reactor (UASB) treating STHZ high-concentration organic wastewater and the digestive tract of some animals were the main habitats of syntrophic acetogenic bacteria. The numbers of syntrophic acetogenic bacteria in UASB and cattle manure were 1.70 x 10(9) cells/mL sample and 6.50 x 10(8) cells/mL sample, respectively. Meanwhile, the sediments of rivers and lakes existed less of the bacteria and the contents of them were just about 1.20 x 10(8) cells/mL sample in Taihu lake.

  1. [Fluorescence in situ hybridization with DNA probes derived from individual chromosomes and chromosome regions].

    PubMed

    Bogomolov, A G; Karamysheva, T V; Rubtsov, N B

    2014-01-01

    A significant part of the eukaryotic genomes consists of repetitive DNA, which can form large clusters or distributed along euchromatic chromosome regions. Repeats located in chromosomal regions make a problem in analysis and identification of the chromosomal material with fluorescence in situ hybridization (FISH). In most cases, the identification of chromosome regions using FISH requires detection of the signal produced with unique sequences. The feasibility, advantages and disadvantages of traditional methods of suppression of repetitive DNA hybridization, methods of repeats-free probe construction and methods of chromosome-specific DNA sequences visualization using image processing of multicolor FISH results are considered in the paper. The efficiency of different techniques for DNA probe generation, different FISH protocols, and image processing of obtained microscopic images depends on the genomic size and structure of analyzing species. This problem was discussed and different approaches were considered for the analysis of the species with very large genome, rare species and species which specimens are too small in size to obtain the amount of genomic and Cot-1 DNA required for suppression of repetitive DNA hybridization.

  2. Detection of water buffalo sex chromosomes in spermatozoa by fluorescence in situ hybridization.

    PubMed

    Révay, T; Kovács, A; Presicce, G A; Rens, W; Gustavsson, I

    2003-10-01

    In order to identify X- and Y-bearing spermatozoa in water buffalo by fluorescence in situ hybridization (FISH), some available probes of closely related species were examined. An X- and Y-specific probe set, made from flow sorted yak chromosomes, labelled in somatic metaphases of water buffalo the whole X and Y, respectively, except their centromere regions. A cattle Y-chromosome repeat sequence (BC1.2) showed strong signal on the telomere region of the buffalo Y-chromosome, demonstrating the evolutionary conservation of this locus in water buffalo. In hybridization experiments with spermatozoa from five buffaloes, the yak X-Y paint set demonstrated clear signals in more than 92% (46.8% X and 45.8% Y) of the cells. Using the cattle Y-chromosome specific BC1.2 probe, clear hybridization signal was detected in more than 48% of the cells. Statistical analysis showed that there was no significant difference between bulls or from the expected 50 : 50 ratio of X- and Y-bearing cells. The probes presented here are reliable to assess separation of X- and Y-bearing spermatozoa.

  3. Characterization of honeybee (Apis mellifera L.) chromosomes using repetitive DNA probes and fluorescence in situ hybridization.

    PubMed

    Beye, M; Moritz, R F

    1995-01-01

    Two different repetitive DNA probes of Apis mellifera and ribosomal DNA from Drosophila melanogaster were used to characterize the chromosomal set of the honeybee (n = 16). The probes were hybridized to chromosome preparations of haploid testis tissue from drone larvae using fluorescence in situ hybridization (FISH). The honeybee probes hybridized to the telomeric (Alu I family) and centromeric region (Ava I family) of most chromosomes. The rDNA probe labeled two chromosomes only. Combination of the three probes yielded labeled patterns allowing us to identify each chromosome of the honeybee individually. This is the first report of an unambiguous identification of the chromosomal set of the honeybee, since classical banding techniques failed to yield clear patterns for identification. The consensus sequence of the centromeric reiterated probe (Ava I family) has a length of about 550 nucleotides and shows no homology to other known sequences. However, the structural organization of a 130-nucleotides long motif forming the unusually homogeneous 550 nucleotides repeat is similar to those found in mammals' repetitive DNAs.

  4. Additive transgene expression and genetic introgression in multiple green-fluorescent protein transgenic crop x weed hybrid generations.

    PubMed

    Halfhill, M D; Millwood, R J; Weissinger, A K; Warwick, S I; Stewart, C N

    2003-11-01

    The level of transgene expression in crop x weed hybrids and the degree to which crop-specific genes are integrated into hybrid populations are important factors in assessing the potential ecological and agricultural risks of gene flow associated with genetic engineering. The average transgene zygosity and genetic structure of transgenic hybrid populations change with the progression of generations, and the green fluorescent protein (GFP) transgene is an ideal marker to quantify transgene expression in advancing populations. The homozygous T(1) single-locus insert GFP/ Bacillus thuringiensis (Bt) transgenic canola ( Brassica napus, cv Westar) with two copies of the transgene fluoresced twice as much as hemizygous individuals with only one copy of the transgene. These data indicate that the expression of the GFP gene was additive, and fluorescence could be used to determine zygosity status. Several hybrid generations (BC(1)F(1), BC(2)F(1)) were produced by backcrossing various GFP/Bt transgenic canola ( B. napus, cv Westar) and birdseed rape ( Brassica rapa) hybrid generations onto B. rapa. Intercrossed generations (BC(2)F(2) Bulk) were generated by crossing BC(2)F(1) individuals in the presence of a pollinating insect ( Musca domestica L.). The ploidy of plants in the BC(2)F(2) Bulk hybrid generation was identical to the weedy parental species, B. rapa. AFLP analysis was used to quantify the degree of B. napus introgression into multiple backcross hybrid generations with B. rapa. The F(1) hybrid generations contained 95-97% of the B. napus-specific AFLP markers, and each successive backcross generation demonstrated a reduction of markers resulting in the 15-29% presence in the BC(2)F(2) Bulk population. Average fluorescence of each successive hybrid generation was analyzed, and homozygous canola lines and hybrid populations that contained individuals homozygous for GFP (BC(2)F(2) Bulk) demonstrated significantly higher fluorescence than hemizygous hybrid

  5. Additive transgene expression and genetic introgression in multiple green-fluorescent protein transgenic crop x weed hybrid generations.

    PubMed

    Halfhill, M D; Millwood, R J; Weissinger, A K; Warwick, S I; Stewart, C N

    2003-11-01

    The level of transgene expression in crop x weed hybrids and the degree to which crop-specific genes are integrated into hybrid populations are important factors in assessing the potential ecological and agricultural risks of gene flow associated with genetic engineering. The average transgene zygosity and genetic structure of transgenic hybrid populations change with the progression of generations, and the green fluorescent protein (GFP) transgene is an ideal marker to quantify transgene expression in advancing populations. The homozygous T(1) single-locus insert GFP/ Bacillus thuringiensis (Bt) transgenic canola ( Brassica napus, cv Westar) with two copies of the transgene fluoresced twice as much as hemizygous individuals with only one copy of the transgene. These data indicate that the expression of the GFP gene was additive, and fluorescence could be used to determine zygosity status. Several hybrid generations (BC(1)F(1), BC(2)F(1)) were produced by backcrossing various GFP/Bt transgenic canola ( B. napus, cv Westar) and birdseed rape ( Brassica rapa) hybrid generations onto B. rapa. Intercrossed generations (BC(2)F(2) Bulk) were generated by crossing BC(2)F(1) individuals in the presence of a pollinating insect ( Musca domestica L.). The ploidy of plants in the BC(2)F(2) Bulk hybrid generation was identical to the weedy parental species, B. rapa. AFLP analysis was used to quantify the degree of B. napus introgression into multiple backcross hybrid generations with B. rapa. The F(1) hybrid generations contained 95-97% of the B. napus-specific AFLP markers, and each successive backcross generation demonstrated a reduction of markers resulting in the 15-29% presence in the BC(2)F(2) Bulk population. Average fluorescence of each successive hybrid generation was analyzed, and homozygous canola lines and hybrid populations that contained individuals homozygous for GFP (BC(2)F(2) Bulk) demonstrated significantly higher fluorescence than hemizygous hybrid

  6. Hybridization-sensitive on-off DNA probe: application of the exciton coupling effect to effective fluorescence quenching.

    PubMed

    Ikeda, Shuji; Okamoto, Akimitsu

    2008-06-01

    The design of dyes that emit fluorescence only when they recognize the target molecule, that is, chemistry for the effective quenching of free dyes, must play a significant role in the development of the next generation of functional fluorescent dyes. On the basis of this concept, we designed a doubly fluorescence-labeled nucleoside. Two thiazole orange dyes were covalently linked to a single nucleotide in a DNA probe. An absorption band at approximately 480 nm appeared strongly when the probe was in a single-stranded state, whereas an absorption band at approximately 510 nm became predominant when the probe was hybridized with the complementary strand. The shift in the absorption bands shows the existence of an excitonic interaction caused by the formation of an H aggregate between dyes, and as a result, emission from the probe before hybridization was suppressed. Dissociation of aggregates by hybridization with the complementary strand resulted in the disruption of the excitonic interaction and strong emission from the hybrid. This clear change in fluorescence intensity that is dependent on hybridization is useful for visible gene analysis.

  7. A hydrophobic dye-encapsulated nano-hybrid as an efficient fluorescent probe for living cell imaging.

    PubMed

    Chang, Shu; Wu, Xumeng; Li, Yongsheng; Niu, Dechao; Ma, Zhi; Zhao, Wenru; Gu, Jinlou; Dong, Wenjie; Ding, Feng; Zhu, Weihong; Shi, Jianlin

    2012-07-01

    Water-soluble hydrophobic-dye@nano-hybrids (DPN@NHs) with extraordinarily enhanced fluorescent performance were fabricated by encapsulating the hydrophobic dye molecules into the core of the hybrid nanospheres based on the self-assembly of amphiphilic block copolymers followed by shell cross-linking using 3-mercaptopropyltrimethoxy-silane. The DPN@NHs are 50 nm in size, are monodispersed in aqueous solution and have a quantum yield enhanced by 30 times.

  8. Highly sensitive electrochemical biosensor for bisphenol A detection based on a diazonium-functionalized boron-doped diamond electrode modified with a multi-walled carbon nanotube-tyrosinase hybrid film.

    PubMed

    Zehani, Nedjla; Fortgang, Philippe; Saddek Lachgar, Mohamed; Baraket, Abdoullatif; Arab, Madjid; Dzyadevych, Sergei V; Kherrat, Rochdi; Jaffrezic-Renault, Nicole

    2015-12-15

    A highly sensitive electrochemical biosensor for the detection of Bisphenol A (BPA) in water has been developed by immobilizing tyrosinase onto a diazonium-functionalized boron doped diamond electrode (BDD) modified with multi-walled carbon nanotubes (MWCNTs). The fabricated biosensor exhibits excellent electroactivity towards o-quinone, a product of this enzymatic reaction of BPA oxidation catalyzed by tyrosinase. The developed BPA biosensor displays a large linear range from 0.01 nM to 100 nM, with a detection limit (LOD) of 10 pM. The feasibility of the proposed biosensor has been demonstrated on BPA spiked water river samples. Therefore, it could be a promising and reliable analytical tool for on-site monitoring of BPA in waste water.

  9. Development of a PNA Probe for Fluorescence In Situ Hybridization Detection of Prorocentrum donghaiense

    PubMed Central

    Chen, Guofu; Zhang, Chunyu; Zhang, Baoyu; Wang, Guangce; Lu, Douding; Xu, Zhong; Yan, Peishen

    2011-01-01

    Prorocentrum donghaiense is a common but dominant harmful algal bloom (HAB) species, which is widely distributed along the China Sea coast. Development of methods for rapid and precise identification and quantification is prerequisite for early-stage warning and monitoring of blooms due to P. donghaiense. In this study, sequences representing the partial large subunit rDNA (D1–D2), small subunit rDNA and internal transcribed spacer region (ITS-1, 5.8S rDNA and ITS-2) of P. donghaiense were firstly obtained, and then seven candidate DNA probes were designed for performing fluorescence in situ hybridization (FISH) tests on P. donghaiense. Based on the fluorescent intensity of P. donghaiense cells labeled by the DNA probes, the probe DP0443A displayed the best hybridization performance. Therefore, a PNA probe (PP0443A) analogous to DP0443A was used in the further study. The cells labeled with the PNA probe displayed more intensive green fluorescence than that labeled with its DNA analog. The PNA probe was used to hybridize with thirteen microalgae belonging to five families, i.e., Dinophyceae, Prymnesiophyceae, Raphidophyceae, Chlorophyceae and Bacillariophyceae, and showed no visible cross-reaction. Finally, FISH with the probes PP0443A and DP0443A and light microscopy (LM) analysis aiming at enumerating P. donghaiense cells were performed on the field samples. Statistical comparisons of the cell densities (cells/L) of P. donghaiense in the natural samples determined by FISH and LM were performed using one-way ANOVA and Duncan's multiple comparisons of the means. The P. donghaiense cell densities determined by LM and the PNA probe are remarkably higher than (p<0.05) that determined by the DNA probe, while no significant difference is observed between LM and the PNA probe. All results suggest that the PNA probe is more sensitive that its DNA analog, and therefore is promising for the monitoring of harmful algal blooms of P. donghaiense in the future. PMID:22022408

  10. Non-Covalent Fluorescent Labeling of Hairpin DNA Probe Coupled with Hybridization Chain Reaction for Sensitive DNA Detection.

    PubMed

    Song, Luna; Zhang, Yonghua; Li, Junling; Gao, Qiang; Qi, Honglan; Zhang, Chengxiao

    2016-04-01

    An enzyme-free signal amplification-based assay for DNA detection was developed using fluorescent hairpin DNA probes coupled with hybridization chain reaction (HCR). The hairpin DNAs were designed to contain abasic sites in the stem moiety. Non-covalent labeling of the hairpin DNAs was achieved when a fluorescent ligand was bound to the abasic sites through hydrogen bonding with the orphan cytosine present on the complementary strand, accompanied by quench of ligand fluorescence. As a result, the resultant probes, the complex formed between the hairpin DNA and ligand, showed almost no fluorescence. Upon hybridization with target DNA, the probe underwent a dehybridization of the stem moiety containing an abasic site. The release of ligand from the abasic site to the solution resulted in an effective fluorescent enhancement, which can be used as a signal. Compared with a sensing system without HCR, a 20-fold increase in the sensitivity was achieved using the sensing system with HCR. The fluorescent intensity of the sensing system increased with the increase in target DNA concentration from 0.5 nM to 100 nM. A single mismatched target ss-DNA could be effectively discriminated from complementary target DNA. Genotyping of a G/C single-nucleotide polymorphism of polymerase chain reaction (PCR) products was successfully demonstrated with the sensing system. Therefore, integrating HCR strategy with non-covalent labeling of fluorescent hairpin DNA probes provides a sensitive and cost-effective DNA assay.

  11. Enumeration of methanogens with a focus on fluorescence in situ hybridization.

    PubMed

    Kumar, Sanjay; Dagar, Sumit Singh; Mohanty, Ashok Kumar; Sirohi, Sunil Kumar; Puniya, Monica; Kuhad, Ramesh C; Sangu, K P S; Griffith, Gareth Wyn; Puniya, Anil Kumar

    2011-06-01

    Methanogens, the members of domain Archaea are potent contributors in global warming. Being confined to the strict anaerobic environment, their direct cultivation as pure culture is quite difficult. Therefore, a range of culture-independent methods have been developed to investigate their numbers, substrate uptake patterns, and identification in complex microbial communities. Unlike other approaches, fluorescence in situ hybridization (FISH) is not only used for faster quantification and accurate identification but also to reveal the physiological properties and spatiotemporal dynamics of methanogens in their natural environment. Aside from the methodological aspects and application of FISH, this review also focuses on culture-dependent and -independent techniques employed in enumerating methanogens along with associated problems. In addition, the combination of FISH with micro-autoradiography that could also be an important tool in investigating the activities of methanogens is also discussed.

  12. Determination of the ruminant origin of bone particles using fluorescence in situ hybridization (FISH)

    PubMed Central

    Lecrenier, M. C.; Ledoux, Q.; Berben, G.; Fumière, O.; Saegerman, C.; Baeten, V.; Veys, P.

    2014-01-01

    Molecular biology techniques such as PCR constitute powerful tools for the determination of the taxonomic origin of bones. DNA degradation and contamination by exogenous DNA, however, jeopardise bone identification. Despite the vast array of techniques used to decontaminate bone fragments, the isolation and determination of bone DNA content are still problematic. Within the framework of the eradication of transmissible spongiform encephalopathies (including BSE, commonly known as “mad cow disease”), a fluorescence in situ hybridization (FISH) protocol was developed. Results from the described study showed that this method can be applied directly to bones without a demineralisation step and that it allows the identification of bovine and ruminant bones even after severe processing. The results also showed that the method is independent of exogenous contamination and that it is therefore entirely appropriate for this application. PMID:25034259

  13. Chromosomal loci of 50 human keratinocyte cDNAs assigned by fluorescence in situ hybridization

    SciTech Connect

    Morishima, Yohich; Ariyama, Takeshi; Yamanishi, Kiyofumi

    1995-07-20

    The chromosomal loci of expressed genes provide useful information for a candidate gene approach to the genes responsible for genetic diseases. A large set of randomly isolated cDNAs catalogued by partial sequencing can serve as a resource for accessing and isolating these disease genes. Using fluorescence in situ hybridization, we examined the chromosomal loci of 217 human keratinocyte-derived cDNAs, with independent novel sequence tags at the 3{prime} end region. Among them, we determined the loci of 50 cDNAs. Single-pass sequencing of these from the 5{prime} ends indicated that 39 cDNAs still can be produced for new genes. These cDNAs with identified chromosomal loci are powerful tools that can be used to help elucidate the genes responsible for hereditary skin disorders. 42 refs., 3 figs., 2 tabs.

  14. Chromosome translocations measured by fluorescence in-situ hybridization: A promising biomarker

    SciTech Connect

    Lucas, J.N.; Straume, T.

    1995-10-01

    A biomarker for exposure and risk assessment would be most useful if it employs an endpoint that is highly quantitative, is stable with time, and is relevant to human risk. Recent advances in chromosome staining using fluorescence in situ hybridization (FISH) facilitate fast and reliable measurement of reciprocal translocations, a kind of DNA damage linked to both prior exposure and risk. In contrast to other biomarkers available, the frequency of reciprocal translocations in individuals exposed to whole-body radiation is stable with time post exposure, has a rather small inter-individual variability, and can be measured accurately at the low levels. Here, the authors discuss results from their studies demonstrating that chromosome painting can be used to reconstruct radiation dose for workers exposed within the dose limits, for individuals exposed a long time ago, and even for those who have been diagnosed with leukemia but not yet undergone therapy.

  15. Partial trisomy 13q identified by sequential fluorescence in situ hybridization

    SciTech Connect

    Gopal Rao, V.V.N.; Carpenter, N.J.; Gucsavas, M.

    1995-07-31

    We report on a 19-month-old boy with partial trisomy 13q resulting from a probable balanced translocation involving chromosomes 1 and 13. The infant presented with omphalocele, malrotation, microcephaly with overriding skull bones, micrognathia, apparently low-set ears, rocker-bottom feet, and congenital heart disease, findings suggestive of trisomy 13. Karyotypic studies from peripheral blood lymphocytes documented an unbalanced karyotype 46,XY,-1,+der. The mother`s chromosomes were normal, and the father was not available. Conventional cytogenetic techniques were unable to identify the extra material on the terminal 1q. Using fluorescence in situ hybridization (FISH) on the GTL-banded metaphases, the extra material on 1q was identified as the terminal long arm of 13, thus resulting in partial trisomy 13 (q32-qter). 8 refs., 2 figs., 1 tab.

  16. Identification of supernumerary ring chromosome 1 mosaicism using fluorescence in situ hybridization

    SciTech Connect

    Chen, H.; Tuck-Muller, C.M.; Wertelecki, W.

    1995-03-27

    We report on a 15-year-old black boy with severe mental retardation, multiple congenital anomalies, and a supernumerary ring chromosome mosaicism. Fluorescence in situ hybridization with a chromosome 1 painting probe (pBS1) identified the ring as derived from chromosome 1. The karyotype was 46,XY/47,XY,+r(1)(p13q23). A review showed 8 reports of ring chromosome 1. In 5 cases, the patients had a non-supernumerary ring chromosome 1 resulting in partial monosomies of the short and/or long arm of chromosome 1. In 3 cases, the presence of a supernumerary ring resulted in partial trisomy of different segments of chromosome 1. In one of these cases of the supernumerary ring was composed primarily of the centromere and the heterochromatic region of chromosome 1, resulting in normal phenotype. Our patient represents the third report of a supernumerary ring chromosome 1 resulting in abnormal phenotype. 28 refs., 5 figs., 1 tab.

  17. DNA breakage detection-fluorescence in situ hybridization in buccal cells

    PubMed Central

    Cortés-Gutiérrez, E.I.; Dávila-Rodríguez, M.I.; Fernández, J.L.; López-Fernández, C.; Gosálvez, J.

    2012-01-01

    DNA breakage detection-fluorescence in situ hybridization (DBD-FISH) is a recently developed technique that allows cell-by-cell detection and quantification of DNA breakage in the whole genome or within specific DNA sequences. The present investigation was conducted to adapt the methodology of DBD-FISH to the visualization and evaluation of DNA damage in buccal epithelial cells. DBD-FISH revealed that DNA damage increased significantly according to H2O2 concentration (r2=0.91). In conclusion, the DBD-FISH technique is easy to apply in buccal cells and provides prompt results that are easy to interpret. Future studies are needed to investigate the potential applicability of a buccal cell DBD-FISH model to human biomonitoring and nutritional work. PMID:23361245

  18. Determination of the ruminant origin of bone particles using fluorescence in situ hybridization (FISH).

    PubMed

    Lecrenier, M C; Ledoux, Q; Berben, G; Fumière, O; Saegerman, C; Baeten, V; Veys, P

    2014-01-01

    Molecular biology techniques such as PCR constitute powerful tools for the determination of the taxonomic origin of bones. DNA degradation and contamination by exogenous DNA, however, jeopardise bone identification. Despite the vast array of techniques used to decontaminate bone fragments, the isolation and determination of bone DNA content are still problematic. Within the framework of the eradication of transmissible spongiform encephalopathies (including BSE, commonly known as "mad cow disease"), a fluorescence in situ hybridization (FISH) protocol was developed. Results from the described study showed that this method can be applied directly to bones without a demineralisation step and that it allows the identification of bovine and ruminant bones even after severe processing. The results also showed that the method is independent of exogenous contamination and that it is therefore entirely appropriate for this application. PMID:25034259

  19. Enumeration of methanogens with a focus on fluorescence in situ hybridization

    NASA Astrophysics Data System (ADS)

    Kumar, Sanjay; Dagar, Sumit Singh; Mohanty, Ashok Kumar; Sirohi, Sunil Kumar; Puniya, Monica; Kuhad, Ramesh C.; Sangu, K. P. S.; Griffith, Gareth Wyn; Puniya, Anil Kumar

    2011-06-01

    Methanogens, the members of domain Archaea are potent contributors in global warming. Being confined to the strict anaerobic environment, their direct cultivation as pure culture is quite difficult. Therefore, a range of culture-independent methods have been developed to investigate their numbers, substrate uptake patterns, and identification in complex microbial communities. Unlike other approaches, fluorescence in situ hybridization (FISH) is not only used for faster quantification and accurate identification but also to reveal the physiological properties and spatiotemporal dynamics of methanogens in their natural environment. Aside from the methodological aspects and application of FISH, this review also focuses on culture-dependent and -independent techniques employed in enumerating methanogens along with associated problems. In addition, the combination of FISH with micro-autoradiography that could also be an important tool in investigating the activities of methanogens is also discussed.

  20. Determination of the ruminant origin of bone particles using fluorescence in situ hybridization (FISH).

    PubMed

    Lecrenier, M C; Ledoux, Q; Berben, G; Fumière, O; Saegerman, C; Baeten, V; Veys, P

    2014-07-17

    Molecular biology techniques such as PCR constitute powerful tools for the determination of the taxonomic origin of bones. DNA degradation and contamination by exogenous DNA, however, jeopardise bone identification. Despite the vast array of techniques used to decontaminate bone fragments, the isolation and determination of bone DNA content are still problematic. Within the framework of the eradication of transmissible spongiform encephalopathies (including BSE, commonly known as "mad cow disease"), a fluorescence in situ hybridization (FISH) protocol was developed. Results from the described study showed that this method can be applied directly to bones without a demineralisation step and that it allows the identification of bovine and ruminant bones even after severe processing. The results also showed that the method is independent of exogenous contamination and that it is therefore entirely appropriate for this application.

  1. FOXP1 status in splenic marginal zone lymphoma: a fluorescence in situ hybridization and immunohistochemistry approach.

    PubMed

    Baró, Cristina; Espinet, Blanca; Salido, Marta; Colomo, Lluís; Luño, Elisa; Florensa, Lourdes; Ferrer, Ana; Salar, Antonio; Campo, Elias; Serrano, Sergi; Solé, Francesc

    2009-11-01

    Splenic marginal zone lymphoma (SMZL) is a well-recognized entity in which chromosomal aberrations seem to be potential markers in diagnosis, prognosis and disease monitoring. FOXP1 is a transcriptional regulator of B lymphopoiesis that is deregulated in some types of NHL. Translocation t(3;14)(p14;q32) has been described in marginal zone lymphomas but few series have studied FOXP1 involvement in SMZL. We performed cytogenetic, fluorescence in situ hybridization (FISH) and immunohistochemical (IHC) studies in a series of 36 patients in order to study the status of FOXP1 in this entity. According to our results, FOXP1 is not rearranged in SMZL, although we were able to demonstrate gains of FOXP1 gene due to trisomy 3/3p by FISH. FOXP1 protein expression seemed to be not related to any aberration and IHC studies are not conclusive.

  2. Chromosomal instability detected by fluorescence in situ hybridization in Japanese breast cancer patients.

    PubMed

    Takami, S; Kawasome, C; Kinoshita, M; Koyama, H; Noguchi, S

    2001-06-01

    The relationship between chromosomal instability (CIN) and prognostic factors was investigated in 31 breast cancers and 5 benign breast lesions (three fibroadenomas and two papillomas). Using fluorescence in situ hybridization (FISH) with chromosome-specific DNA probes of chromosomes 1, 2, 6, 7, 10, 11, 17 and 18, CIN for each case was determined. CIN varied from 8.1% to 59.3% among the breast cancer patients tested, and was significantly higher than that observed in the benign breast lesions (p<0.01). Moreover, CIN showed a significant correlation with lymph node metastases (p<0.05) and estrogen receptor negativity (p<0.01). These findings suggest that CIN might be useful in the prediction of the biological aggressiveness of breast cancers. PMID:11412824

  3. Fluorescence in situ hybridization on 3D cultures of tumor cells.

    PubMed

    Meaburn, Karen J

    2010-01-01

    Genomes are spatially highly organized within interphase nuclei. Spatial genome organization is increasingly linked to genome function. Fluorescence in situ hybridization (FISH) allows the visualization of specific regions of the genome for spatial mapping. While most gene localization studies have been performed on cultured cells, genome organization is likely to be different in the context of tissues. Three-dimensional (3D) culture model systems provide a powerful tool to study the contribution of tissue organization to gene expression and organization. However, FISH on 3D cultures is technically more challenging than on monocultures. Here, we describe an optimized protocol for interphase DNA FISH on 3D cultures of the breast epithelial cell line MCF-10A.B2, which forms breast acini and can be used as a model for early breast cancer. PMID:20809324

  4. Fluorescence in situ hybridization (FISH) mapping of single copy genes on Trichomonas vaginalis chromosomes.

    PubMed

    Zubáčová, Zuzana; Krylov, Vladimír; Tachezy, Jan

    2011-04-01

    The highly repetitive nature of the Trichomonas vaginalis genome and massive expansion of various gene families has caused difficulties in genome assembly and has hampered genome mapping. Here, we adapted fluorescence in situ hybridization (FISH) for T. vaginalis, which is sensitive enough to detect single copy genes on metaphase chromosomes. Sensitivity of conventional FISH, which did not allow single copy gene detection in T. vaginalis, was increased by means of tyramide signal amplification. Two selected single copy genes, coding for serine palmitoyltransferase and tryptophanase, were mapped to chromosome I and II, respectively, and thus could be used as chromosome markers. This established protocol provides an amenable tool for the physical mapping of the T. vaginalis genome and other essential applications, such as development of genetic markers for T. vaginalis genotyping. PMID:21195113

  5. Development of single-cell array for large-scale DNA fluorescence in situ hybridization

    PubMed Central

    Liu, Yingru; Kirkland, Brett; Shirley, James; Wang, Zhibin; Zhang, Peipei; Stembridge, Jacquelyn; Wong, Wilson; Takebayashi, Shin-ichiro; Gilbert, David M.; Lenhert, Steven

    2013-01-01

    DNA fluorescence in situ hybridization (FISH) is a powerful cytogenetic assay, but conventional sample-preparation methods for FISH do not support large-scale high-throughput data acquisition and analysis, which are potentially useful for several biomedical applications. To address this limitation, we have developed a novel FISH sample-preparation method based on generating a centimetre-sized cell array, in which all cells are precisely positioned and separated from their neighbours. This method is simple and easy and capable of patterning nonadherent human cells. We have successfully performed DNA FISH on the single-cell arrays, which facilitate analysis of FISH results with the FISH-FINDER computer program. PMID:23370691

  6. Chromosome-Specific DNA Repeats: Rapid Identification in Silico and Validation Using Fluorescence in Situ Hybridization

    PubMed Central

    Hsu, Joanne H.; Zeng, Hui; Lemke, Kalistyn H.; Polyzos, Aris A.; Weier, Jingly F.; Wang, Mei; Lawin-O’Brien, Anna R.; Weier, Heinz-Ulrich G.; O’Brien, Benjamin

    2013-01-01

    Chromosome enumeration in interphase and metaphase cells using fluorescence in situ hybridization (FISH) is an established procedure for the rapid and accurate cytogenetic analysis of cell nuclei and polar bodies, the unambiguous gender determination, as well as the definition of tumor-specific signatures. Present bottlenecks in the procedure are a limited number of commercial, non-isotopically labeled probes that can be combined in multiplex FISH assays and the relatively high price and effort to develop additional probes. We describe a streamlined approach for rapid probe definition, synthesis and validation, which is based on the analysis of publicly available DNA sequence information, also known as “database mining”. Examples of probe preparation for the human gonosomes and chromosome 16 as a selected autosome outline the probe selection strategy, define a timeline for expedited probe production and compare this novel selection strategy to more conventional probe cloning protocols. PMID:23344021

  7. Frequent TMPRSS2-ERG rearrangement in prostatic small cell carcinoma detected by fluorescence in situ hybridization: the superiority of fluorescence in situ hybridization over ERG immunohistochemistry.

    PubMed

    Schelling, Lindsay A; Williamson, Sean R; Zhang, Shaobo; Yao, Jorge L; Wang, Mingsheng; Huang, Jiaoti; Montironi, Rodolfo; Lopez-Beltran, Antonio; Emerson, Robert E; Idrees, Muhammad T; Osunkoya, Adeboye O; Man, Yan-Gao; Maclennan, Gregory T; Baldridge, Lee Ann; Compérat, Eva; Cheng, Liang

    2013-10-01

    Small cell carcinoma of the prostate is both morphologically and immunohistochemically similar to small cell carcinoma of other organs such as the urinary bladder or lung. TMPRSS2-ERG gene fusion appears to be a highly specific alteration in prostatic carcinoma that is frequently shared by small cell carcinoma. In adenocarcinoma, immunohistochemistry for the ERG protein product has been reported to correlate well with the presence of the gene fusion, although in prostatic small cell carcinoma, this relationship is not completely understood. We evaluated 54 cases of small cell carcinoma of the prostate and compared TMPRSS2-ERG gene fusion status by fluorescence in situ hybridization (FISH) to immunohistochemical staining with antibody to ERG. Of 54 cases of prostatic small cell carcinoma, 26 (48%) were positive for TMPRSS2-ERG gene fusion by FISH and 12 (22%) showed overexpression of ERG protein by immunohistochemistry. Of the 26 cases positive by FISH, 11 were also positive for ERG protein by immunohistochemistry. One tumor was positive by immunohistochemistry but negative by FISH. Urinary bladder small cell carcinoma (n = 25) showed negative results by both methods; however, 2 of 14 small cell carcinomas of other organs (lung, head, and neck) showed positive immunohistochemistry but negative FISH. Positive staining for ERG by immunohistochemistry is present in a subset of prostatic small cell carcinomas and correlates with the presence of TMPRSS2-ERG gene fusion. Therefore, it may be useful in confirming prostatic origin when molecular testing is not accessible. However, sensitivity and specificity of ERG immunohistochemistry in small cell carcinoma are decreased compared to FISH.

  8. An improved protocol for quantification of freshwater Actinobacteria by fluorescence in situ hybridization.

    PubMed

    Sekar, Raju; Pernthaler, Annelie; Pernthaler, Jakob; Warnecke, Falk; Posch, Thomas; Amann, Rudolf

    2003-05-01

    We tested a previously described protocol for fluorescence in situ hybridization of marine bacterioplankton with horseradish peroxidase-labeled rRNA-targeted oligonucleotide probes and catalyzed reporter deposition (CARD-FISH) in plankton samples from different lakes. The fraction of Bacteria detected by CARD-FISH was significantly lower than after FISH with fluorescently monolabeled probes. In particular, the abundances of aquatic Actinobacteria were significantly underestimated. We thus developed a combined fixation and permeabilization protocol for CARD-FISH of freshwater samples. Enzymatic pretreatment of fixed cells was optimized for the controlled digestion of gram-positive cell walls without causing overall cell loss. Incubations with high concentrations of lysozyme (10 mg ml(-1)) followed by achromopeptidase (60 U ml(-1)) successfully permeabilized cell walls of Actinobacteria for subsequent CARD-FISH both in enrichment cultures and environmental samples. Between 72 and >99% (mean, 86%) of all Bacteria could be visualized with the improved assay in surface waters of four lakes. For freshwater samples, our method is thus superior to the CARD-FISH protocol for marine Bacteria (mean, 55%) and to FISH with directly fluorochrome labeled probes (mean, 67%). Actinobacterial abundances in the studied systems, as detected by the optimized protocol, ranged from 32 to >55% (mean, 45%). Our findings confirm that members of this lineage are among the numerically most important Bacteria of freshwater picoplankton.

  9. Fluorescent In situ hybridization allows rapid identification of microorganisms in blood cultures.

    PubMed

    Kempf, V A; Trebesius, K; Autenrieth, I B

    2000-02-01

    Using fluorescent in situ hybridization (FISH) with rRNA-targeted fluorescently labelled oligonucleotide probes, pathogens were rapidly detected and identified in positive blood culture bottles without cultivation and biotyping. In this study, 115 blood cultures with a positive growth index as determined by a continuous-reading automated blood culture system were examined by both conventional laboratory methods and FISH. For this purpose, oligonucleotide probes that allowed identification of approximately 95% of those pathogens typically associated with bacteremia were produced. The sensitivity and specificity of these probes were 100%. From all 115 blood cultures, microorganisms were grown after 1 day and identification to the family, genus, or species level was achieved after 1 to 3 days while 111 samples (96.5%) were similarly identified by FISH within 2.5 h. Staphylococci were identified in 62 of 62 samples, streptococci and enterococci were identified in 19 of 20 samples, gram-negative rods were identified in 28 of 30 samples, and fungi were identified in two of two samples. Thus, FISH is an appropriate method for identification of pathogens grown in blood cultures from septicemic patients.

  10. Correlation of Particle Traversals with Clonogenic Survival Using Cell-Fluorescent Ion Track Hybrid Detector.

    PubMed

    Dokic, Ivana; Niklas, Martin; Zimmermann, Ferdinand; Mairani, Andrea; Seidel, Philipp; Krunic, Damir; Jäkel, Oliver; Debus, Jürgen; Greilich, Steffen; Abdollahi, Amir

    2015-01-01

    Development of novel approaches linking the physical characteristics of particles with biological responses are of high relevance for the field of particle therapy. In radiobiology, the clonogenic survival of cells is considered the gold standard assay for the assessment of cellular sensitivity to ionizing radiation. Toward further development of next generation biodosimeters in particle therapy, cell-fluorescent ion track hybrid detector (Cell-FIT-HD) was recently engineered by our group and successfully employed to study physical particle track information in correlation with irradiation-induced DNA damage in cell nuclei. In this work, we investigated the feasibility of Cell-FIT-HD as a tool to study the effects of clinical beams on cellular clonogenic survival. Tumor cells were grown on the fluorescent nuclear track detector as cell culture, mimicking the standard procedures for clonogenic assay. Cell-FIT-HD was used to detect the spatial distribution of particle tracks within colony-initiating cells. The physical data were associated with radiation-induced foci as surrogates for DNA double-strand breaks, the hallmark of radiation-induced cell lethality. Long-term cell fate was monitored to determine the ability of cells to form colonies. We report the first successful detection of particle traversal within colony-initiating cells at subcellular resolution using Cell-FIT-HD.

  11. Fluorescent In Situ Hybridization Allows Rapid Identification of Microorganisms in Blood Cultures

    PubMed Central

    Kempf, Volkhard A. J.; Trebesius, Karlheinz; Autenrieth, Ingo B.

    2000-01-01

    Using fluorescent in situ hybridization (FISH) with rRNA-targeted fluorescently labelled oligonucleotide probes, pathogens were rapidly detected and identified in positive blood culture bottles without cultivation and biotyping. In this study, 115 blood cultures with a positive growth index as determined by a continuous-reading automated blood culture system were examined by both conventional laboratory methods and FISH. For this purpose, oligonucleotide probes that allowed identification of approximately 95% of those pathogens typically associated with bacteremia were produced. The sensitivity and specificity of these probes were 100%. From all 115 blood cultures, microorganisms were grown after 1 day and identification to the family, genus, or species level was achieved after 1 to 3 days while 111 samples (96.5%) were similarly identified by FISH within 2.5 h. Staphylococci were identified in 62 of 62 samples, streptococci and enterococci were identified in 19 of 20 samples, gram-negative rods were identified in 28 of 30 samples, and fungi were identified in two of two samples. Thus, FISH is an appropriate method for identification of pathogens grown in blood cultures from septicemic patients. PMID:10655393

  12. Fluorescence in situ hybridization rapidly detects three different pathogenic bacteria in urinary tract infection samples.

    PubMed

    Wu, Qing; Li, Yan; Wang, Ming; Pan, Xiao P; Tang, Yong F

    2010-11-01

    The detection of pathogenic bacteria in urine is an important criterion for diagnosing urinary tract infections (UTIs). By using fluorescence in situ hybridization (FISH) with rRNA-targeted, fluorescently labeled oligonucleotide probes, bacterial pathogens present in urine samples were identified within 3-4 h. In this study, three probes that are specific for Escherichia coli, Enterococcus faecalis and Staphylococcus aureus were designed based on the conserved 16S RNA sequences, whereas probe Eub338 broadly recognizes all bacteria. We collected a total of 1000 urine samples, and 325 of these samples tested positive for a UTI via traditional culturing techniques; additionally, all 325 of these samples tested positive with the Eub338 probe in FISH analysis. FISH analyses with species-specific probes were performed in parallel to the test the ability to differentiate among several pathogenic bacteria. The samples for these experiments included 76 E. coli infected samples, 32 E. faecalis infected samples and 9 S. aureus infected samples. Compared to conventional methods of bacterial identification, the FISH method produced positive results for >90% of the samples tested. FISH has the potential to become an extremely useful diagnostic tool for UTIs because it has a quick turnaround time and high accuracy.

  13. Calibration of interphase fluorescence in situ hybridization cutoff by mathematical models.

    PubMed

    Du, Qinghua; Li, Qingshan; Sun, Daochun; Chen, Xiaoyan; Yu, Bizhen; Ying, Yi

    2016-03-01

    Fluorescence in situ hybridization (FISH) continues to play an important role in clinical investigations. Laboratories may create their own cutoff, a percentage of positive nuclei to determine whether a specimen is positive or negative, to eliminate false positives that are created by signal overlap in most cases. In some cases, it is difficult to determine the cutoff value because of differences in both the area of nuclei and the number of signals. To address these problems, we established two mathematical models using probability theory. To verify these two models, normal disomy cells from healthy individuals were used to simulate cells with different numbers of signals by hybridization with different probes. We used an X/Y probe to obtain the average distance between two signals and the probability of signal overlap in different nuclei area. Frequencies of all signal patterns were scored and compared with theoretical frequencies, and models were assessed using a goodness of fit test. We used five BCR/ABL1-positive samples, 20 BCR/ABL1-negative samples and two samples with ambiguous results to verify the cutoff calibrated by these two models. The models were in agreement with experimental results. The dynamic cutoff can classify cases in routine analysis correctly, and it can also correct for influences from nuclei area and the number of signals in some ambiguous cases. The probability models can be used to assess the effect of signal overlap and calibrate the cutoff. PMID:26580488

  14. X chromosome aneuploidy in infertile women: Analysis by interphase fluorescent in situ hybridization

    SciTech Connect

    Morris, M.A.; Moix, I.; Mermillod, B.

    1994-09-01

    Up to 1 in 3 couples have a problem of infertility at some time in their lives. Sex chromosome anomalies are found in 5-10% of couples, with mosaic aneuploidy being a common finding in primary infertility. Recurrent spontaneous abortion (RSA), in contrast, is frequently associated with autosomal structural anomalies. We hypothesized that low-level mosaic X chromosome aneuploidy was associated with primary infertility but not with RSA. Three groups were studied: women from couples with primary infertillity (n=26); women with three or more spontaneous abortions (n=22); and age-matched normally fertile women (at least two pregnancies; n=28). Interphase fluorescent in situ hybridization (FISH) was used to determine X chromosome ploidy in 100 nuclei per patient, using a contig of three cosmids from MAO locus (kindly donated by W. Berger, Nijmegen). A control probe (chr. 15 centromere) was simultaneously hybridized, and only nuclei containing two control signals were scored for the X chromosome. The mean numbers of nuclei with two X chromosome signals were the same in all groups (Welch equality of means test: p>0.97). However, there is a significant difference between the variances of the primary infertile and RSA groups (Levene`s test: p=0.025 after Bonferrone correction for multiple testing). This provides preliminary support for the hypothesis of an association between primary infertility and low-level mosaic X chromosome aneuploidy.

  15. Gene numerical imbalances in cytological specimens based on fluorescence/chromogenic in situ hybridization analysis.

    PubMed

    Tsiambas, E; Karameris, A; Lygeros, M; Athanasiou, A E; Salemis, N S; Gourgiotis, S; Ragkos, V; Metaxas, G E; Vilaras, G; Patsouris, E

    2012-01-01

    Design and development of novel targeted therapeutic strategies is an innovation in handling patients with solid malignancies including breast, colon, lung, head & neck or even pancreatic and hepatocellular carcinoma. For a long time, immunohistocytochemistry (IHC/ICC) has been performed as a routine method in almost all labs for evaluating protein expression. Modern molecular approaches show that identification of specific structural and numerical imbalances regarding genes involved in signal transduction pathways provide important data to the oncologists. Alterations in molecules such as epidermal growth factor receptor (EGFR), HER2/neu, PTEN or Topoisomerase IIa affect the response rates to specific chemotherapeutic agents modifying also patients' prognostic rates. In situ hybridization (ISH) techniques based on fluorescence and chromogenic variants (FISH/CISH) or silver in situ hybridization (SISH) are applicable in both tissue and cell substrates. Concerning cytological specimens, FISH/CISH analysis appears to be a fast and very accurate method in estimating gene/chromosome ratios. In this paper, we sought to evaluate the usefulness of FISH/ CISH analysis in cytological specimens, describing also the advantages and disadvantages of these methods from the technical point of view. PMID:23033306

  16. Conjugated Polymer Nanoparticle-Triplet Emitter Hybrids in Aqueous Dispersion: Fabrication and Fluorescence Quenching Behavior.

    PubMed

    Bandyopadhyay, Sujoy; Métivier, Rémi; Pallavi, Pragyan; Preis, Eduard; Nakatani, Keitaro; Landfester, Katharina; Patra, Abhijit; Scherf, Ullrich

    2016-02-01

    Conjugated polymer nanoparticles based on poly[9,9-bis(2-ethylhexyl)fluorene] and poly[N-(2,4,6-trimethylphenyl)-N,N-diphenylamine)-4,4'-diyl] are fabricated using anionic surfactant sodium dodecylsulphate in water by miniemulsion technique. Average diameters of polyfluorene and polytriarylamine nanoparticles range from 70 to 100 and 100 to 140 nm, respectively. The surface of the nanoparticles is decorated with triplet emitting dye, tris(2,2'-bipyridyl)ruthenium(II) chloride. Intriguing photophysics of aqueous dispersions of these hybrid nanoparticles is investigated. Nearly 50% quenching of fluorescence is observed in the case of dye-coated polyfluorene nanoparticles; excitation energy transfer is found to be the dominant quenching mechanism. On the other hand, nearly complete quenching of emission is noticed in polytriarylamine nanoparticle-dye hybrids. It is proposed that the excited state electron transfer from the electron-rich polytriarylamine donor polymer to Ru complex leads to the complete quenching of emission of polytriarylamine nanoparticles. The current study offers promising avenues for developing aqueous solution processed-electroluminescent devices involving a conjugated polymer nanoparticle host and Ru or Ir-based triplet emitting dye as the guest.

  17. Method for multiplex cellular detection of mRNAs using quantum dot fluorescent in situ hybridization.

    PubMed

    Chan, PokMan; Yuen, Tony; Ruf, Frederique; Gonzalez-Maeso, Javier; Sealfon, Stuart C

    2005-10-13

    The photostability and narrow emission spectra of non-organic quantum dot fluorophores (QDs) make them desirable candidates for fluorescent in situ hybridization (FISH) to study the expression of specific mRNA transcripts. We developed a novel method for direct QD labeling of modified oligonucleotide probes through streptavidin and biotin interactions, as well as protocols for their use in multiple-label FISH. We validated this technique in mouse brainstem sections. The subcellular localization of the vesicular monoamine transporter (Vmat2) mRNA corresponds when using probes labeled with two different QDs in the same hybridization. We developed protocols for combined direct QD FISH and QD immunohistochemical labeling within the same neurons as well as for simultaneous study of the subcellular distribution of multiple mRNA targets. We demonstrated increased sensitivity of FISH using QDs in comparison with organic fluorophores. These techniques gave excellent histological results both for multiplex FISH and combined FISH and immunohistochemistry. This approach can facilitate the ultrasensitive simultaneous study of multiple mRNA and protein markers in tissue culture and histological section.

  18. MiL-FISH: Multilabeled Oligonucleotides for Fluorescence In Situ Hybridization Improve Visualization of Bacterial Cells

    PubMed Central

    Kleiner, Manuel; Wetzel, Silke; Liebeke, Manuel; Dubilier, Nicole

    2015-01-01

    Fluorescence in situ hybridization (FISH) has become a vital tool for environmental and medical microbiology and is commonly used for the identification, localization, and isolation of defined microbial taxa. However, fluorescence signal strength is often a limiting factor for targeting all members in a microbial community. Here, we present the application of a multilabeled FISH approach (MiL-FISH) that (i) enables the simultaneous targeting of up to seven microbial groups using combinatorial labeling of a single oligonucleotide probe, (ii) is applicable for the isolation of unfixed environmental microorganisms via fluorescence-activated cell sorting (FACS), and (iii) improves signal and imaging quality of tissue sections in acrylic resin for precise localization of individual microbial cells. We show the ability of MiL-FISH to distinguish between seven microbial groups using a mock community of marine organisms and its applicability for the localization of bacteria associated with animal tissue and their isolation from host tissues using FACS. To further increase the number of potential target organisms, a streamlined combinatorial labeling and spectral imaging-FISH (CLASI-FISH) concept with MiL-FISH probes is presented here. Through the combination of increased probe signal, the possibility of targeting hard-to-detect taxa and isolating these from an environmental sample, the identification and precise localization of microbiota in host tissues, and the simultaneous multilabeling of up to seven microbial groups, we show here that MiL-FISH is a multifaceted alternative to standard monolabeled FISH that can be used for a wide range of biological and medical applications. PMID:26475101

  19. Effect of Triplet Harvesting on the Lifetime Based on Fluorescence and Phosphorescence in Hybrid White Organic Light Emitting Diodes.

    PubMed

    Lee, Eun; Lee, Ho Won; Yang, Hyung Jin; Sun, Yong; Lee, Jae Woo; Hwang, Kyo Min; Kim, Woo Young; Kim, Young Kwan

    2016-03-01

    We investigated efficient hybrid white organic light emitting diodes (WOLEDs) apply to triplet harvesting (TH) concept based on three complementary colors by mixing containing blue fluorescent emitter with phosphorescent emitters. The TH is to transfer these triplet excitons from a fluorescence to a phosphorescence, where they can decay radiatively. We fabricated several hybrid WOLEDs, having various emitting layer structures with blue fluorescent emitter and red, green phosphorescent emitter. The WOLED exhibited maximum luminous efficiency of 9.02 cd/A, and a maximum external quantum efficiency of 4.17%. The WOLED showed a highly color-stable white emission with the Commission International de L'Éclairage chromaticity of (0.38, 0.36) at 1,000 cd/m2. PMID:27455693

  20. Effect of Triplet Harvesting on the Lifetime Based on Fluorescence and Phosphorescence in Hybrid White Organic Light Emitting Diodes.

    PubMed

    Lee, Eun; Lee, Ho Won; Yang, Hyung Jin; Sun, Yong; Lee, Jae Woo; Hwang, Kyo Min; Kim, Woo Young; Kim, Young Kwan

    2016-03-01

    We investigated efficient hybrid white organic light emitting diodes (WOLEDs) apply to triplet harvesting (TH) concept based on three complementary colors by mixing containing blue fluorescent emitter with phosphorescent emitters. The TH is to transfer these triplet excitons from a fluorescence to a phosphorescence, where they can decay radiatively. We fabricated several hybrid WOLEDs, having various emitting layer structures with blue fluorescent emitter and red, green phosphorescent emitter. The WOLED exhibited maximum luminous efficiency of 9.02 cd/A, and a maximum external quantum efficiency of 4.17%. The WOLED showed a highly color-stable white emission with the Commission International de L'Éclairage chromaticity of (0.38, 0.36) at 1,000 cd/m2.

  1. Enzyme-free fluorescent biosensor for the detection of DNA based on core-shell Fe3O4 polydopamine nanoparticles and hybridization chain reaction amplification.

    PubMed

    Li, Na; Hao, Xia; Kang, Bei Hua; Xu, Zhen; Shi, Yan; Li, Nian Bing; Luo, Hong Qun

    2016-03-15

    A novel, highly sensitive assay for quantitative determination of DNA is developed based on hybridization chain reaction (HCR) amplification and the separation via core-shell Fe3O4 polydopamine nanoparticles (Fe3O4@PDA NPs). In this assay, two hairpin probes are designed, one of which is labeled with a 6-carboxyfluorescein (FAM). Without target DNA, auxiliary hairpin probes are stable in solution. However, when target DNA is present, the HCR between the two hairpins is triggered. The HCR products have sticky ends of 24 nt, which are much longer than the length of sticky ends of auxiliary hairpins (6 nt) and make the adsorption much easier by Fe3O4@PDA NPs. With the addition of Fe3O4@PDA NPs, HCR products could be adsorbed because of the strong interaction between their sticky ends and Fe3O4@PDA NPs. As a result, supernatant of the solution with target DNA emits weak fluorescence after separation by magnet, which is much lower than that of the blank solution. The detection limit of the proposed method is as low as 0.05 nM. And the sensing method exhibits high selectivity for the determination between perfectly complementary sequence and target with single base-pair mismatch. Importantly, the application of the sensor for DNA detection in human serum shows that the proposed method works well for biological samples.

  2. "Fastening" porphyrin in highly cross-linked polyphosphazene hybrid nanoparticles: powerful red fluorescent probe for detecting mercury ion.

    PubMed

    Hu, Ying; Meng, Lingjie; Lu, Qinghua

    2014-04-22

    It is a significant issue to overcome the concentration-quenching effect of the small fluorescent probes and maintain the high fluorescent efficiency at high concentration for sensitive and selective fluorescent mark or detection. We developed a new strategy to "isolate" and "fasten" porphyrin moieties in a highly cross-linked poly(tetraphenylporphyrin-co-cyclotriphosphazene) (TPP-PZS) by the polycondensation of hexachlorocyclotriphosphazene (HCCP) and 5,10,15,20-tetrakis(4-hydroxyphenyl)porphyrin (TPP-(OH)4) in a suitable solvent. The resulting TPP-PZS particles were characterized with transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier transform infrared (FTIR), (31)P nuclear magnetic resonance (NMR), and ultraviolet and visible (UV-vis) absorption spectra. Remarkably, TPP-PZS particles obtained in acetone emitted a bright red fluorescence both in powder state and in solution because the aggregation of porphyrin moieties in "H-type" (face-to-face) and "J-type" (edge-to-edge) was effectively blocked. The fluorescent TPP-PZS particles also showed superior resistance to photobleaching, and had a high sensitivity and selectivity for the detection of Hg(2+) ions. The TPP-PZS particles were therefore used as an ideal material for preparing test strips to quickly detect/monitor the Hg(2+) ions in a facile way.

  3. Magnified fluorescence detection of silver(I) ion in aqueous solutions by using nano-graphite-DNA hybrid and DNase I.

    PubMed

    Wei, Yin; Li, Bianmiao; Wang, Xu; Duan, Yixiang

    2014-08-15

    This paper describes a novel approach utilizing nano-graphite-DNA hybrid and DNase I for the amplified detection of silver(I) ion in aqueous solutions for the first time. Nano-graphite can effectively quench the fluorescence of dye-labeled cytosine-rich single-stranded DNA due to its strong π-π stacking interactions; however, in the presence of Ag(+), C-Ag(+)-C coordination induces the probe to fold into a hairpin structure, which does not adsorb on the surface of nano-graphite and thus retains the dye fluorescence. Meanwhile, the hairpin structure can be cleaved by DNase I, and in such case Ag(+) is delivered from the complex. The released Ag(+) then binds other dye-labeled single-stranded DNA on the nano-graphite surface, and touches off another target recycling, resulting in the successive release of dye-labeled single-stranded DNA from the nano-graphite, which leads to significant amplification of the signal. The present magnification sensing system exhibits high sensitivity toward Ag(+) with a limit of detection of 0.3nM (S/N=3), which is much lower than the standard for Ag(+) in drinking water recommended by the Environmental Protection Agency (EPA). The selectivity of the sensor for Ag(+) against other biologically and environmentally related metal ions is outstanding due to the high specificity of C-Ag(+)-C formation. Moreover, the sensing system is used for the determination of Ag(+) in river water samples with satisfying results. The proposed assay is simple, cost-effective, and might open the door for the development of new assays for other metal ions or biomolecules.

  4. Detection of a variable number of ribosomal DNA loci by fluorescent in situ hybridization in Populus species.

    PubMed

    Prado, E A; Faivre-Rampant, P; Schneider, C; Darmency, M A

    1996-10-01

    Fluorescent in situ hybridization (FISH) was applied to related Populus species (2n = 19) in order to detect rDNA loci. An interspecific variability in the number of hybridization sites was revealed using as probe an homologous 25S clone from Populus deltoides. The application of image analysis methods to measure fluorescence intensity of the hybridization signals has enabled us to characterize major and minor loci in the 18S-5.8S-25S rDNA. We identified one pair of such rDNA clusters in Populus alba; two pairs, one major and one minor, in both Populus nigra and P. deltoides; and three pairs in Populus balsamifera, (two major and one minor) and Populus euroamericana (one major and two minor). FISH results are in agreement with those based on RFLP analysis. The pBG13 probe containing 5S sequence from flax detected two separate clusters corresponding to the two size classes of units that coexist within 5S rDNA of most Populus species. Key words : Populus spp., fluorescent in situ hybridization, FISH, rDNA variability, image analysis.

  5. Dynamics of hybrid amoeba proteus containing zoochlorellae studied using fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, C.-H.; Fong, B. A.; Alfano, S. A., Jr.; Rakhlin, I.; Wang, W. B.; Ni, X. H.; Yang, Y. L.; Zhou, F.; Zuzolo, R. C.; Alfano, R. R.

    2011-03-01

    The microinjection of organelles, plants, particles or chemical solutions into Amoeba proteus coupled with spectroscopic analysis and observed for a period of time provides a unique new model for cancer treatment and studies. The amoeba is a eukaryote having many similar features of mammalian cells. The amoeba biochemical functions monitored spectroscopically can provide time sequence in vivo information about many metabolic transitions and metabolic exchanges between cellar organelles and substances microinjected into the amoeba. It is possible to microinject algae, plant mitochondria, drugs or carcinogenic solutions followed by recording the native fluorescence spectra of these composites. This model can be used to spectroscopically monitor the pre-metabolic transitions in developing diseased cells such as a cancer. Knowing specific metabolic transitions could offer solutions to inhibit cancer or reverse it as well as many other diseases. In the present study a simple experiment was designed to test the feasibility of this unique new model by injecting algae and chloroplasts into amoeba. The nonradiative dynamics found from these composites are evidence in terms of the emission ratios between the intensities at 337nm and 419nm; and 684nm bands. There were reductions in the metabolic and photosynthetic processes in amoebae that were microinjected with chloroplasts and zoochlorellae as well of those amoebae that ingested the algae and chloroplasts. The changes in the intensity of the emissions of the peaks indicate that the zoochlorellae lived in the amoebae for ten days. Spectral changes in intensity under the UV and 633nm wavelength excitation are from the energy transfer of DNA and RNA, protein-bound chromophores and chlorophylls present in zoochlorellae undergoing photosynthesis. The fluorescence spectroscopic probes established the biochemical interplay between the cell organelles and the algae present in the cell cytoplasm. This hybrid state is indicative

  6. Fluorescence in situ hybridization (CARD-FISH) of microorganisms in hydrocarbon contaminated aquifer sediment samples.

    PubMed

    Tischer, Karolin; Zeder, Michael; Klug, Rebecca; Pernthaler, Jakob; Schattenhofer, Martha; Harms, Hauke; Wendeberg, Annelie

    2012-12-01

    Groundwater ecosystems are the most important sources of drinking water worldwide but they are threatened by contamination and overexploitation. Petroleum spills account for the most common source of contamination and the high carbon load results in anoxia and steep geochemical gradients. Microbes play a major role in the transformation of petroleum hydrocarbons into less toxic substances. To investigate microbial populations at the single cell level, fluorescence in situ hybridization (FISH) is now a well-established technique. Recently, however, catalyzed reporter deposition (CARD)-FISH has been introduced for the detection of microbes from oligotrophic environments. Nevertheless, petroleum contaminated aquifers present a worst case scenario for FISH techniques due to the combination of high background fluorescence of hydrocarbons and the presence of small microbial cells caused by the low turnover rates characteristic of groundwater ecosystems. It is therefore not surprising that studies of microorganisms from such sites are mostly based on cultivation techniques, fingerprinting, and amplicon sequencing. However, to reveal the population dynamics and interspecies relationships of the key participants of contaminant degradation, FISH is an indispensable tool. In this study, a protocol for FISH was developed in combination with cell quantification using an automated counting microscope. The protocol includes the separation and purification of microbial cells from sediment particles, cell permeabilization and, finally, CARD-FISH in a microwave oven. As a proof of principle, the distribution of Archaea and Bacteria was shown in 60 sediment samples taken across the contaminant plume of an aquifer (Leuna, Germany), which has been heavily contaminated with several ten-thousand tonnes of petroleum hydrocarbons since World War II. PMID:22425347

  7. Fluorescence in situ hybridization (CARD-FISH) of microorganisms in hydrocarbon contaminated aquifer sediment samples.

    PubMed

    Tischer, Karolin; Zeder, Michael; Klug, Rebecca; Pernthaler, Jakob; Schattenhofer, Martha; Harms, Hauke; Wendeberg, Annelie

    2012-12-01

    Groundwater ecosystems are the most important sources of drinking water worldwide but they are threatened by contamination and overexploitation. Petroleum spills account for the most common source of contamination and the high carbon load results in anoxia and steep geochemical gradients. Microbes play a major role in the transformation of petroleum hydrocarbons into less toxic substances. To investigate microbial populations at the single cell level, fluorescence in situ hybridization (FISH) is now a well-established technique. Recently, however, catalyzed reporter deposition (CARD)-FISH has been introduced for the detection of microbes from oligotrophic environments. Nevertheless, petroleum contaminated aquifers present a worst case scenario for FISH techniques due to the combination of high background fluorescence of hydrocarbons and the presence of small microbial cells caused by the low turnover rates characteristic of groundwater ecosystems. It is therefore not surprising that studies of microorganisms from such sites are mostly based on cultivation techniques, fingerprinting, and amplicon sequencing. However, to reveal the population dynamics and interspecies relationships of the key participants of contaminant degradation, FISH is an indispensable tool. In this study, a protocol for FISH was developed in combination with cell quantification using an automated counting microscope. The protocol includes the separation and purification of microbial cells from sediment particles, cell permeabilization and, finally, CARD-FISH in a microwave oven. As a proof of principle, the distribution of Archaea and Bacteria was shown in 60 sediment samples taken across the contaminant plume of an aquifer (Leuna, Germany), which has been heavily contaminated with several ten-thousand tonnes of petroleum hydrocarbons since World War II.

  8. Camera-based ratiometric fluorescence transduction of nucleic acid hybridization with reagentless signal amplification on a paper-based platform using immobilized quantum dots as donors.

    PubMed

    Noor, M Omair; Krull, Ulrich J

    2014-10-21

    Paper-based diagnostic assays are gaining increasing popularity for their potential application in resource-limited settings and for point-of-care screening. Achievement of high sensitivity with precision and accuracy can be challenging when using paper substrates. Herein, we implement the red-green-blue color palette of a digital camera for quantitative ratiometric transduction of nucleic acid hybridization on a paper-based platform using immobilized quantum dots (QDs) as donors in fluorescence resonance energy transfer (FRET). A nonenzymatic and reagentless means of signal enhancement for QD-FRET assays on paper substrates is based on the use of dry paper substrates for data acquisition. This approach offered at least a 10-fold higher assay sensitivity and at least a 10-fold lower limit of detection (LOD) as compared to hydrated paper substrates. The surface of paper was modified with imidazole groups to assemble a transduction interface that consisted of immobilized QD-probe oligonucleotide conjugates. Green-emitting QDs (gQDs) served as donors with Cy3 as an acceptor. A hybridization event that brought the Cy3 acceptor dye in close proximity to the surface of immobilized gQDs was responsible for a FRET-sensitized emission from the acceptor dye, which served as an analytical signal. A hand-held UV lamp was used as an excitation source and ratiometric analysis using an iPad camera was possible by a relative intensity analysis of the red (Cy3 photoluminescence (PL)) and green (gQD PL) color channels of the digital camera. For digital imaging using an iPad camera, the LOD of the assay in a sandwich format was 450 fmol with a dynamic range spanning 2 orders of magnitude, while an epifluorescence microscope detection platform offered a LOD of 30 fmol and a dynamic range spanning 3 orders of magnitude. The selectivity of the hybridization assay was demonstrated by detection of a single nucleotide polymorphism at a contrast ratio of 60:1. This work provides an

  9. Comparative cytogenetic characterization of primary canine melanocytic lesions using array CGH and fluorescence in situ hybridization.

    PubMed

    Poorman, Kelsey; Borst, Luke; Moroff, Scott; Roy, Siddharth; Labelle, Philippe; Motsinger-Reif, Alison; Breen, Matthew

    2015-06-01

    Melanocytic lesions originating from the oral mucosa or cutaneous epithelium are common in the general dog population, with up to 100,000 diagnoses each year in the USA. Oral melanoma is the most frequent canine neoplasm of the oral cavity, exhibiting a highly aggressive course. Cutaneous melanocytomas occur frequently, but rarely develop into a malignant form. Despite the differential prognosis, it has been assumed that subtypes of melanocytic lesions represent the same disease. To address the relative paucity of information about their genomic status, molecular cytogenetic analysis was performed on the three recognized subtypes of canine melanocytic lesions. Using array comparative genomic hybridization (aCGH) analysis, highly aberrant distinct copy number status across the tumor genome for both of the malignant melanoma subtypes was revealed. The most frequent aberrations included gain of dog chromosome (CFA) 13 and 17 and loss of CFA 22. Melanocytomas possessed fewer genome wide aberrations, yet showed a recurrent gain of CFA 20q15.3-17. A distinctive copy number profile, evident only in oral melanomas, displayed a sigmoidal pattern of copy number loss followed immediately by a gain, around CFA 30q14. Moreover, when assessed by fluorescence in situ hybridization (FISH), copy number aberrations of targeted genes, such as gain of c-MYC (80 % of cases) and loss of CDKN2A (68 % of cases), were observed. This study suggests that in concordance with what is known for human melanomas, canine melanomas of the oral mucosa and cutaneous epithelium are discrete and initiated by different molecular pathways. PMID:25511566

  10. Fluorescent in situ hybridization (FISH) assessment of chromosome copy number in sperm

    SciTech Connect

    Sheu, M.; Sigman, M.; Mark, H.F.L.

    1994-09-01

    Approximately 15% of all recognized pregnancies end in spontaneous abortions. The overall frequency of chromosome abnormalities in spontaneous abortions is approximately 50%. Thus aneuploidy is a significant cause of fetal wastage. In addition, structural and numerical abnormalities of chromosomes can also lead to birth defects, developmental delay, mental retardation and infertility. Conventional cytogenetic analysis via GTG- and other banding techniques is a powerful tool in the elucidation of the nature of chromosomal abnormalities. Fluorescent in situ hybridization (FISH) enables detection of numerical chromosomal abnormalities, especially trisomies, in intact cells. Using FISH and commercially available biotin-labeled probes, we have initiated a prospective study to assess specific chromosome copy number of preparations of unstained smears from men referred for a male infertility evaluation as well as smears from normal control males chosen randomly from the sample of sperm donors. A total of approximately 19,000 sperm nuclei have been examined thus far. Of those suitable for analysis, 7382 (38.75%) were normal possessing one copy of chromosome 8, 155 (0.81%) were disomic, and 15 (0.079%) had more than two copies of chromosome 8. Comparisons with data available in the literature will be discussed. Work is ongoing to increase the efficiency of hybridization using both reported and previously untried pretreatment and fixation protocols. We have also initiated studies using multicolor FISH with various chromosome enumeration probes. The assay described here is a potentially powerful tool for detecting rare events such as spontaneous germ cell aneuploidy, aneuploidy detected in semen from men with carcinoma in situ of the testis and aneuploidy induced by potential environmental genotoxicants. It can also be utilized for segregation analysis and for correlating chromosome copy number with germ cell morphology.

  11. Microfluidic fluorescence in situ hybridization and flow cytometry (µFlowFISH)

    PubMed Central

    Liu, Peng; Meagher, Robert J.; Light, Yooli Kim; Yilmaz, Suzan; Chakraborty, Romy; Arkin, Adam P.; Hazen, Terry C.; Singh, Anup K.

    2011-01-01

    We describe an integrated microfluidic device (µFlowFISH) capable of performing 16S rRNA fluorescence in situ hybridization (FISH) followed by flow cytometric detection for identifying bacteria in natural microbial communities. The device was used for detection of species involved in bioremediation of Cr(VI) and other metals in groundwater samples from a highly-contaminated environmental site (Hanford, WA, USA). The µFlowFISH seamlessly integrates two components: a hybridization chamber formed between two photopolymerized membranes, where cells and probes are electrophoretically loaded, incubated and washed; and a downstream cross structure for electrokinetically focusing cells into a single-file flow for flow cytometry analysis. The device is capable of analyzing a wide variety of bacteria including aerobic, facultative and anaerobic bacteria and was initially tested and validated using cultured microbes, including Escherichia coli, as well as two strains isolated from Hanford site: Desulfovibrio vulgaris strain RCH1, and Pseudomonas sp. strain RCH2 that are involved in Cr(VI) reduction and immobilization. Combined labeling and detection efficiencies of 74–97% were observed in experiments with simple mixtures of cultured cells confirmed specific labeling. Results obtained were in excellent agreement with those obtained by conventional flow cytometry confirming the accuracy of µFlowFISH. Finally, the device was used for analyzing water samples collected on different dates from the Hanford Site. We were able to monitor the numbers of Pseudomonas sp. with only 100–200 cells loaded into the microchip. The µFlowFISH approach provides an automated platform for quantitative detection of microbial cells from complex samples, and is ideally suited for analysis of precious samples with low cell numbers such as those found at extreme environmental niches, bioremediation sites, and the human microbiome. PMID:21755095

  12. A Metal-Organic Framework/DNA Hybrid System as a Novel Fluorescent Biosensor for Mercury(II) Ion Detection.

    PubMed

    Wu, Lan-Lan; Wang, Zhuo; Zhao, Shu-Na; Meng, Xing; Song, Xue-Zhi; Feng, Jing; Song, Shu-Yan; Zhang, Hong-Jie

    2016-01-11

    Mercury(II) ions have emerged as a widespread environmental hazard in recent decades. Despite different kinds of detection methods reported to sense Hg(2+) , it still remains a challenging task to develop new sensing molecules to replenish the fluorescence-based apparatus for Hg(2+) detection. This communication demonstrates a novel fluorescent sensor using UiO-66-NH2 and a T-rich FAM-labeled ssDNA as a hybrid system to detect Hg(2+) sensitively and selectively. To the best of our knowledge, it has rarely been reported that a MOF is utilized as the biosensing platform for Hg(2+) assay. PMID:26555340

  13. Rapid sex determination on buccal smears using DNA probes and fluorescence in situ hybridization

    SciTech Connect

    Giraldez, R.A.; Harris, C.

    1994-09-01

    Hybridization of dual-labeled DNA probes for the repetitive sequences on the X and Y chromosomes allows a fast, non-invasive, more reliable method for sex determination that current cytogenetic Barr body and Y chromatin assays. Scrapes of squamous epithelial cells were collected from the oral cavity of 14 subjects (5{male}, 9{female}) and smeared onto silanized slides. The smears were allowed to air dry. Samples were blinded and then fixed in 50% methanol/50% glacial acetic acid for 10 minutes, and allowed to dry. The slides were incubated in a pretreatment solution containing 30% sodium bisulfite at 45{degrees}C for 10 minutes. They were rinsed in 2XSSC pH 7.0 and then dehydrated through a series of 70%, 85%, and 100% ethanols at room temperature and allowed to air dry. A probe mixture (30 {mu}L containing 10 ng/{mu}L biotin-labeled DXZ1 and digoxigenin-labeled DYZ1/DYZ3 in 70% Formamide/2XSSC) was aliquoted onto each slide, coverslipped, and sealed with rubber cement. Probe and target DNA were simultaneously denatured at 72{degrees}C on a slide warmer for 6 minutes. Probe was allowed to hybridize overnight in a humidified chamber at 37{degrees}C. Slides were postwashed at 72{degrees}C in 0.5xSSC pH 7.0 for 5 minutes, then soaked at room temperature 1XPBD for 2 minutes, and detected with rhodamine/anti-digoxigenin-FITC/avidin for 15 minutes at 37{degrees}C. Slides were soaked 3X in 1XPBD and then counterstained with 15 {mu}L 0.05 {mu}g/mL DAP1/Antifade. 200 nuclei were scored for the presence of one green (X), two green (XX), one green and one red (XY), or a single red (Y) signal, using a fluorescent microscope equipped with a triple band pass filter. Greater than 90% of the hybridized nuclei from each of the 14 cases studied conformed to the sex chromosome pattern. The modal number in 9 cases showed two green signals (XX), and a green and a red signal (XY) in the other 5 cases; this was in complete agreement with the cytogenetic results.

  14. Automated evaluation of Her-2/neu status in breast tissue from fluorescent in situ hybridization images.

    PubMed

    Raimondo, Francesco; Gavrielides, Marios A; Karayannopoulou, Georgia; Lyroudia, Kleoniki; Pitas, Ioannis; Kostopoulos, Ioannis

    2005-09-01

    The evaluation of fluorescent in situ hybridization (FISH) images is one of the most widely used methods to determine Her-2/neu status of breast samples, a valuable prognostic indicator. Conventional evaluation is a difficult task since it involves manual counting of dots in multiple images. In this paper, we present a multistage algorithm for the automated classification of FISH images from breast carcinomas. The algorithm focuses not only on the detection of FISH dots per image, but also on combining results from multiple images taken from a slice for overall case classification. The algorithm includes mainly two stages for nuclei and dot detection respectively. The dot segmentation consists of a top-hat filtering stage followed by template matching to separate real signals from noise. Nuclei segmentation includes a nonlinearity correction step, global thresholding to identify candidate regions, and a geometric rule to distinguish between holes within a nucleus and holes between nuclei. Finally, the marked watershed transform is used to segment cell nuclei with markers detected as regional maxima of the distance transform. Combining the two stages allows the measurement of FISH signals ratio per cell nucleus and the collective classification of cases as positive or negative. The system was evaluated with receiver operating characteristic analysis and the results were encouraging for the further development of this method. PMID:16190465

  15. Fifty probands with extra structurally abnormal chromosomes characterized by fluorescence in situ hybridization

    SciTech Connect

    Blennow, E.; Telenius, H.; Nordenskjoeld, M.

    1995-01-02

    Extra structurally abnormal chromosomes (ESACs) are small supernumerary chromosomes often associated with developmental abnormalities and malformations. We present 50 probands with ESACs characterized by fluorescence in situ hybridization using centromere-specific probes and chromosome-specific libraries. ESAC-specific libraries were constructed by flow sorting and subsequent amplification by DOP-PCR. Using such ESAC-specific libraries we were able to outline the chromosome regions involved. Twenty-three of the 50 ESACs were inverted duplications of chromosome 15 (inv dup(15)), including patients with normal phenotypes and others with similar clinical symptoms. These 2 groups differed in size and shape of the inv dup(15). Patients with a large inv dup(15), which included the Prader-Willi region, had a high risk of abnormality, whereas patients with a small inv dup(15), not including the Prader-Willi region, were normal. ESACs derived from chromosomes 13 or 21 appeared to have a low risk of abnormality, while one out of 3 patients with an ESAC derived from chromosome 14 had discrete symptoms. One out of 3 patients with an ESAC derived from chromosome 22 had severe anomalies, corresponding to some of the manifestations of the cat eye syndrome. Small extra ring chromosomes of autosomal origin and ESACs identified as i(12p) or i(18p) were all associated with a high risk of abnormality. 42 refs., 2 figs., 2 tabs.

  16. Potential clinical impact of three-dimensional visualization for fluorescent in situ hybridization image analysis

    NASA Astrophysics Data System (ADS)

    Li, Zheng; Li, Shibo; Bin, Zheng; Zhang, Roy; Li, Yuhua; Tian, Huimin; Chen, Wei; Liu, Hong

    2012-05-01

    Chromosomal translocation is strong indication of cancers. Fluorescent in situ hybridization (FISH) can effectively detect this translocation and achieve high accuracy in disease diagnosis and prognosis assessment. For this purpose, whole chromosome paint probes are utilized to image the configuration of DNA fragments. Although two-dimensional (2-D) microscopic images are typically used in FISH signal analysis, we present a case where the translocation occurs in the depth direction where two probed FISH signals are overlapped in the projected image plane. Thus, the translocation cannot be identified. However, when imaging the whole specimen with a confocal microscope at 27 focal planes with 0.5-μm step interval, the translocation can be clearly identified due to the free rotation capability by the three-dimensional (3-D) visualization. Such a translocation detection error of using 2-D images might be critical in detecting and diagnosing early or subtle disease cases where detecting a small number of abnormal cells can make diagnostic difference. Hence, the underlying implication of this report suggests that utilizing 3-D visualization may improve the overall accuracy of FISH analysis for some clinical cases. However, the clinical efficiency and cost of using 3-D versus 2-D imaging methods are also to be assessed carefully.

  17. Analysis of human invasive cytotrophoblasts using multicolor fluorescence in situ hybridization.

    PubMed

    Weier, Jingly F; Hartshorne, Christy; Nguyen, Ha Nam; Baumgartner, Adolf; Polyzos, Aris A; Lemke, Kalistyn H; Zeng, Hui; Weier, Heinz-Ulrich G

    2013-12-01

    Multicolor fluorescence in situ hybridization, or FISH, is a widely used method to assess fixed tissues or isolated cells for numerical and structural chromosome aberrations. Unlike other screening procedures which provide average chromosome numbers for heterogeneous samples, FISH is a sensitive cell-by-cell method to analyze the distribution of abnormal cells in complex tissues. Here, we applied FISH to characterize chromosomal composition of a rare, but very important class of human cells that stabilize the fetal-maternal interface connecting the placenta to the uterine wall during early pregnancy, called invasive cytotrophoblasts (iCTBs). Combining differently-labeled, chromosome-specific DNA probes, we were able to unambiguously determine the number of up to six different autosomes and gonosomes in individual cell nuclei from iCTBs selected on the basis of their invasive behavior. In this manuscript, we describe a method for generation of iCTBs from placental villi, and provide the complete workflow of our FISH experiments including a detailed description of reagents and a trouble-shooting guide. We also include an in-depth discussion of the various types and sources of DNA probes which have evolved considerably in the last two decades. Thus, this communication represents both a complete guide as well as a valuable resource, intended to allow an average laboratory to reproduce the experiments and minimize the amount of specialized, and often costly, equipment.

  18. Fluorescence in situ hybridization to improve the diagnosis of endocarditis: a pilot study.

    PubMed

    Mallmann, C; Siemoneit, S; Schmiedel, D; Petrich, A; Gescher, D M; Halle, E; Musci, M; Hetzer, R; Göbel, U B; Moter, A

    2010-06-01

    Infective endocarditis is a rare but life-threatening disease associated with high mortality. Early diagnosis of the causative microorganism is critical to patient outcome. However, conventional diagnostic methods are often unsatisfactory in achieving this goal. As a proof of concept, we applied fluorescence in situ hybridization (FISH) for detection and identification of bacteria in histological sections of heart valves. Biopsy specimens from 54 suspected endocarditis patients were obtained during valve surgery and analysed via FISH. Specimens were screened with a probe panel that identifies the most common bacteria implicated in endocarditis. Results were compared with those of culture-based diagnostics and clinical data. Discrepant results were subjected to comparative sequence analysis of PCR-amplified 16S rRNA genes. FISH detected bacteria in 26 of the 54 heart valves. FISH allowed successful diagnosis of infective endocarditis in five of 13 blood culture-negative cases and in 11 of 37 valve culture-negative cases, showing the bacteria within their histological context. This technique allows the simultaneous detection and identification of microorganisms at the species or genus level directly from heart valves and might be a valuable tool for diagnosis of endocarditis.

  19. A novel three-color, clone-specific fluorescence in situ hybridization procedure for monoclonal gammopathies.

    PubMed

    Ahmann, G J; Jalal, S M; Juneau, A L; Christensen, E R; Hanson, C A; Dewald, G W; Greipp, P R

    1998-02-01

    We have developed a three-color cytoplasmic immunoglobulin (cIg) and fluorescence in situ hybridization (FISH) technique to detect plasma cell chromosomal aneuploidy in patients with multiple myeloma (MM), monoclonal gammopathy of undetermined significance (MGUS), smoldering multiple myeloma (SMM), and amyloidosis (AL). Immunofluorescent-labeled antibodies to detect light chain expression and six directly labeled alpha-satellite chromosome specific enumeration probes (CEP) were used simultaneously to detect aneuploidy of the plasma cells. The six probes were specific for chromosomes 7, 9, 11, 15, 18, and X. The technique was tested in 12 consecutive patient samples (5 MM, 2 MGUS, 3 SMM, and 2 AL). Based on the alpha-satellite signals, we found trisomic clones for CEP 7 (4 of 12), CEP 11 (4 of 12), CEP X (1 of 12), CEP 9 (8 of 12), CEP 15 (7 of 12), and CEP 18 (5 of 12). Trisomic clones of at least one of the six chromosomes were present in 9 of 12 patients. We believe that this technique efficiently identifies monotypic plasma cells and permits simultaneous analysis of numeric chromosome anomalies by FISH in emerging neoplastic cells. We are in the process of applying this technique to a series of about 100 newly diagnosed monoclonal gammopathy patients. PMID:9460493

  20. Does polyomavirus infection interfere with bladder cancer fluorescence in situ hybridization?

    PubMed

    Hossain, Deloar; Hull, David; Kalantarpour, Fatemeh; Maitlen, Rebecca; Qian, Junqi; Bostwick, David G

    2014-03-01

    Urine cytology is a proven and widely used screening tool for the detection of urothelial carcinoma. However, morphologic features of polyomavirus infected cells, characterized by nuclear inclusions (decoy cells) are a known source of diagnostic confusion with malignancy. Fluorescence in situ hybridization (FISH) is now routinely used to support the cytological diagnosis of urothelial carcinoma and monitor for recurrence. We sought to determine whether polyomavirus infection could result in positive FISH results (aneuploidy). This study deals with retrospective study of 100 polyomavirus-infected urine samples from patients with no history of urothelial carcinoma or organ transplantation. All cases were stained with Papanicolaou and acid hematoxylin stain. One slide from each sample was de-stained and FISH was performed using chromosome enumeration probes 3, 7, 17, and locus-specific probe 9p21. Adequate cells for FISH analysis (25 cells) were present in 81 cases; 19 cases were insufficient due to loss of cells during de-staining and FISH preparation process. All polyomavirus-infected cells (decoy cells) exhibited a normal chromosome pattern. Four cases were FISH positive, but there were no positive decoy cells. Decoy cells did not exhibit aneuploidy by FISH. The presence of decoy cells does not exclude the possibility of concurrent urothelial carcinoma. Acid hematoxylin stain appeared to supplement the Papanicolou stain in identifying and confirming the presence of polyomavirus infection. PMID:24006232

  1. Fluorescence In Situ Hybridization (FISH) Assays for Diagnosing Malaria in Endemic Areas

    PubMed Central

    Shah, Jyotsna; Mark, Olivia; Weltman, Helena; Barcelo, Nicolas; Lo, Wai; Wronska, Danuta; Kakkilaya, Srinivas; Rao, Aravinda; Bhat, Shalia T.; Sinha, Ruchi; Omar, Sabah; Moro, Manuel; Gilman, Robert H.; Harris, Nick

    2015-01-01

    Malaria is a responsible for approximately 600 thousand deaths worldwide every year. Appropriate and timely treatment of malaria can prevent deaths but is dependent on accurate and rapid diagnosis of the infection. Currently, microscopic examination of the Giemsa stained blood smears is the method of choice for diagnosing malaria. Although it has limited sensitivity and specificity in field conditions, it still remains the gold standard for the diagnosis of malaria. Here, we report the development of a fluorescence in situ hybridization (FISH) based method for detecting malaria infection in blood smears and describe the use of an LED light source that makes the method suitable for use in resource-limited malaria endemic countries. The Plasmodium Genus (P-Genus) FISH assay has a Plasmodium genus specific probe that detects all five species of Plasmodium known to cause the disease in humans. The P. falciparum (PF) FISH assay and P. vivax (PV) FISH assay detect and differentiate between P. falciparum and P. vivax respectively from other Plasmodium species. The FISH assays are more sensitive than Giemsa. The sensitivities of P-Genus, PF and PV FISH assays were found to be 98.2%, 94.5% and 98.3%, respectively compared to 89.9%, 83.3% and 87.9% for the detection of Plasmodium, P. falciparum and P. vivax by Giemsa staining respectively. PMID:26333092

  2. Visualization of episomal and integrated Epstein-Barr virus DNA by fiber fluorescence in situ hybridization.

    PubMed

    Reisinger, Jürgen; Rumpler, Silvia; Lion, Thomas; Ambros, Peter F

    2006-04-01

    For many Epstein-Barr virus (EBV)-associated malignancies, it is still a matter of controversy whether infected cells harbor episomal or chromosomally integrated EBV genomes or both. It is well established that the expression of EBV genes per se carries oncogenic potential, but the discrimination between episomal and integrated forms is of great relevance because integration events can contribute to the oncogenic properties of EBV, whereas host cells that exclusively harbor viral episomes may not carry the risks mediated by chromosomal integration. This notion prompted us to establish a reliable technique that not only allows to unequivocally discriminate episomal from integrated EBV DNA, but also provides detailed insights into the genomic organization of the virus. Here, we show that dynamic molecular combing of host cell DNA combined with fluorescence in situ hybridization (FISH) using EBV-specific DNA probes facilitate unambiguous discrimination of episomal from integrated viral DNA. Furthermore, the detection of highly elongated internal repeat 1 (IR1) sequences provides evidence that this method permits detection of major genomic alterations within the EBV genome. Thus, fiber FISH may also provide valuable insights into the genomic organization of viral genomes other than EBV. PMID:16217752

  3. Improved quantification of Dehalococcoides species by fluorescence in situ hybridization and catalyzed reporter deposition.

    PubMed

    Fazi, Stefano; Aulenta, Federico; Majone, Mauro; Rossetti, Simona

    2008-03-01

    Chlorinated ethenes contamination of soil and groundwater is a widespread problem in most industrialized countries. To date, there is a general consensus in the literature that members of the genus Dehalococcoides are required for complete dechlorination of these compounds. The availability of specific identification tools to track their distribution in the field is therefore a topic of particular relevance in environmental studies. These microorganisms have been successfully visualized by fluorescence in situ hybridization (FISH) in highly active dechlorinating cultures. However, FISH detection of Dehalococcoides under low activity conditions can be strongly hampered by their small cell size and low ribosome content. In this study, catalyzed reporter deposition (CARD)-FISH was employed as an alternative detection method. In a trichloroethene (TCE) dechlorinating enrichment culture, CARD-FISH, using proteinase K as a permeabilization pre-treatment, was found to be significantly superior to conventional FISH in terms of both microscopic visualization and quantification efficiency (about 30%). An application of this method on contaminated aquifer samples is also presented and discussed.

  4. An upconversion fluorescent resonant energy transfer biosensor for hepatitis B virus (HBV) DNA hybridization detection.

    PubMed

    Zhu, Hao; Lu, Feng; Wu, Xing-Cai; Zhu, Jun-Jie

    2015-11-21

    A novel fluorescent resonant energy transfer (FRET) biosensor was fabricated for the detection of hepatitis B virus (HBV) DNA using poly(ethylenimine) (PEI) modified upconversion nanoparticles (NH2-UCNPs) as energy donor and gold nanoparticles (Au NPs) as acceptor. The PEI modified upconversion nanoparticles were prepared directly with a simple one-pot hydrothermal method, which provides high quality amino-group functionalized UCNPs with uniform morphology and strong upconversion luminescence. Two single-stranded DNA strands, which were partially complementary to each other, were then conjugated with NH2-UCNPs and Au NPs. When DNA conjugated NH2-UCNPs and Au NPs are mixed together, the hybridization between complementary DNA sequences on UCNPs and Au NPs will lead to the quenching of the upconversion luminescence due to the FRET process. Meanwhile, upon the addition of target DNA, Au NPs will leave the surface of the UCNPs and the upconversion luminescence can be restored because of the formation of the more stable double-stranded DNA on the UCNPs. The sensor we fabricated here for target DNA detection shows good sensitivity and high selectivity, which has the potential for clinical applications in the analysis of HBV and other DNA sequences. PMID:26421323

  5. Discrimination of bacteriophage infected cells using locked nucleic acid fluorescent in situ hybridization (LNA-FISH).

    PubMed

    Vilas Boas, Diana; Almeida, Carina; Sillankorva, Sanna; Nicolau, Ana; Azeredo, Joana; Azevedo, Nuno F

    2016-01-01

    Bacteriophage-host interaction studies in biofilm structures are still challenging due to the technical limitations of traditional methods. The aim of this study was to provide a direct fluorescence in situ hybridization (FISH) method based on locked nucleic acid (LNA) probes, which targets the phage replication phase, allowing the study of population dynamics during infection. Bacteriophages specific for two biofilm-forming bacteria, Pseudomonas aeruginosa and Acinetobacter, were selected. Four LNA probes were designed and optimized for phage-specific detection and for bacterial counterstaining. To validate the method, LNA-FISH counts were compared with the traditional plaque forming unit (PFU) technique. To visualize the progression of phage infection within a biofilm, colony-biofilms were formed and infected with bacteriophages. A good correlation (r = 0.707) was observed between LNA-FISH and PFU techniques. In biofilm structures, LNA-FISH provided a good discrimination of the infected cells and also allowed the assessment of the spatial distribution of infected and non-infected populations. PMID:26813295

  6. Diagnosis of bacterial vaginosis by a new multiplex peptide nucleic acid fluorescence in situ hybridization method.

    PubMed

    Machado, António; Castro, Joana; Cereija, Tatiana; Almeida, Carina; Cerca, Nuno

    2015-01-01

    Bacterial vaginosis (BV) is one of most common vaginal infections. However, its diagnosis by classical methods reveals low specificity. Our goal was to evaluate the accuracy diagnosis of 150 vaginal samples with research gold standard methods and our Peptide Nucleic Acid (PNA) probes by Fluorescence in situ Hybridization (FISH) methodology. Also, we described the first PNA-FISH methodology for BV diagnosis, which provides results in approximately 3 h. The results showed a sensitivity of 84.6% (95% confidence interval (CI), from 64.3 to 95.0%) and a specificity of 97.6% (95% CI [92.6-99.4%]), demonstrating the higher specificity of the PNA-FISH method and showing false positive results in BV diagnosis commonly obtained by the classical methods. This methodology combines the specificity of PNA probes for Lactobacillus species and G. vaginalis visualization and the calculation of the microscopic field by Nugent score, allowing a trustful evaluation of the bacteria present in vaginal microflora and avoiding the occurrence of misleading diagnostics. Therefore, the PNA-FISH methodology represents a valuable alternative for BV diagnosis. PMID:25737820

  7. Does polyomavirus infection interfere with bladder cancer fluorescence in situ hybridization?

    PubMed

    Hossain, Deloar; Hull, David; Kalantarpour, Fatemeh; Maitlen, Rebecca; Qian, Junqi; Bostwick, David G

    2014-03-01

    Urine cytology is a proven and widely used screening tool for the detection of urothelial carcinoma. However, morphologic features of polyomavirus infected cells, characterized by nuclear inclusions (decoy cells) are a known source of diagnostic confusion with malignancy. Fluorescence in situ hybridization (FISH) is now routinely used to support the cytological diagnosis of urothelial carcinoma and monitor for recurrence. We sought to determine whether polyomavirus infection could result in positive FISH results (aneuploidy). This study deals with retrospective study of 100 polyomavirus-infected urine samples from patients with no history of urothelial carcinoma or organ transplantation. All cases were stained with Papanicolaou and acid hematoxylin stain. One slide from each sample was de-stained and FISH was performed using chromosome enumeration probes 3, 7, 17, and locus-specific probe 9p21. Adequate cells for FISH analysis (25 cells) were present in 81 cases; 19 cases were insufficient due to loss of cells during de-staining and FISH preparation process. All polyomavirus-infected cells (decoy cells) exhibited a normal chromosome pattern. Four cases were FISH positive, but there were no positive decoy cells. Decoy cells did not exhibit aneuploidy by FISH. The presence of decoy cells does not exclude the possibility of concurrent urothelial carcinoma. Acid hematoxylin stain appeared to supplement the Papanicolou stain in identifying and confirming the presence of polyomavirus infection.

  8. Fluorescence in situ hybridization for the identification of Treponema pallidum in tissue sections.

    PubMed

    Petrich, Annett; Rojas, Pablo; Schulze, Julia; Loddenkemper, Christoph; Giacani, Lorenzo; Schneider, Thomas; Hertel, Moritz; Kikhney, Judith; Moter, Annette

    2015-10-01

    Syphilis is often called the great imitator because of its frequent atypical clinical manifestations that make the disease difficult to recognize. Because Treponema pallidum subsp. pallidum, the infectious agent of syphilis, is yet uncultivated in vitro, diagnosis is usually made using serology; however, in cases where serology is inconclusive or in patients with immunosuppression where these tests may be difficult to interpret, the availability of a molecular tool for direct diagnosis may be of pivotal importance. Here we present a fluorescence in situ hybridization (FISH) assay that simultaneously identifies and analyzes spatial distribution of T. pallidum in histological tissue sections. For this assay the species-specific FISH probe TPALL targeting the 16S rRNA of T. pallidum was designed in silico and evaluated using T. pallidum infected rabbit testicular tissue and a panel of non-syphilis spirochetes as positive and negative controls, respectively, before application to samples from four syphilis-patients. In a HIV positive patient, FISH showed the presence of T. pallidum in inguinal lymph node tissue. In a patient not suspected to suffer from syphilis but underwent surgery for phimosis, numerous T. pallidum cells were found in preputial tissue. In two cases with oral involvement, FISH was able to differentiate T. pallidum from oral treponemes and showed infection of the oral mucosa and tonsils, respectively. The TPALL FISH probe is now readily available for in situ identification of T. pallidum in selected clinical samples as well as T. pallidum research applications and animal models. PMID:26365167

  9. Diagnosis of bacterial vaginosis by a new multiplex peptide nucleic acid fluorescence in situ hybridization method

    PubMed Central

    Machado, António; Castro, Joana; Cereija, Tatiana; Almeida, Carina

    2015-01-01

    Bacterial vaginosis (BV) is one of most common vaginal infections. However, its diagnosis by classical methods reveals low specificity. Our goal was to evaluate the accuracy diagnosis of 150 vaginal samples with research gold standard methods and our Peptide Nucleic Acid (PNA) probes by Fluorescence in situ Hybridization (FISH) methodology. Also, we described the first PNA-FISH methodology for BV diagnosis, which provides results in approximately 3 h. The results showed a sensitivity of 84.6% (95% confidence interval (CI), from 64.3 to 95.0%) and a specificity of 97.6% (95% CI [92.6–99.4%]), demonstrating the higher specificity of the PNA-FISH method and showing false positive results in BV diagnosis commonly obtained by the classical methods. This methodology combines the specificity of PNA probes for Lactobacillus species and G. vaginalis visualization and the calculation of the microscopic field by Nugent score, allowing a trustful evaluation of the bacteria present in vaginal microflora and avoiding the occurrence of misleading diagnostics. Therefore, the PNA-FISH methodology represents a valuable alternative for BV diagnosis. PMID:25737820

  10. Visualizing the Spatial Relationship of the Genome with the Nuclear Envelope Using Fluorescence In Situ Hybridization.

    PubMed

    Clements, Craig S; Bikkul, Ural; Ahmed, Mai Hassan; Foster, Helen A; Godwin, Lauren S; Bridger, Joanna M

    2016-01-01

    The genome has a special relationship with the nuclear envelope in cells. Much of the genome is anchored at the nuclear periphery, tethered by chromatin binding proteins such nuclear lamins and other integral membrane proteins. Even though there are global assays such as DAM-ID or ChIP to assess what parts of the genome are associated with the nuclear envelope, it is also essential to be able to visualize regions of the genome in order to reveal their individual relationships with nuclear structures in single cells. This is executed by fluorescence in situ hybridization (FISH) in 2-dimensional flattened nuclei (2D-FISH) or 3-dimensionally preserved cells (3D-FISH) in combination with indirect immunofluorescence to reveal structural proteins. This chapter explains the protocols for 2D- and 3D-FISH in combination with indirect immunofluorescence and discusses options for image capture and analysis. Due to the nuclear envelope proteins being part of the non-extractable nucleoskeleton, we also describe how to prepare DNA halos through salt extraction and how they can be used to study genome behavior and association when combined with 2D-FISH. PMID:27147055

  11. Development of a fluorescent in situ hybridization (FISH) technique for visualizing CGMMV in plant tissues.

    PubMed

    Shargil, D; Zemach, H; Belausov, E; Lachman, O; Kamenetsky, R; Dombrovsky, A

    2015-10-01

    Cucumber green mottle mosaic virus (CGMMV), which belongs to the genus Tobamovirus, is a major pathogen of cucurbit crops grown indoors and in open fields. Currently, immunology (e.g., ELISA) and molecular amplification techniques (e.g., RT-PCR) are employed extensively for virus detection in plant tissues and commercial seed lots diagnostics. In this study, a fluorescent in situ hybridization (FISH) technique, using oligonucleotides whose 5'-terminals were labeled with red cyanine 3 (Cy3) or green fluorescein isothiocyanate (FITC), was developed for the visualization of the pathogen in situ. This simple and reliable method allows detection and localization of CGMMV in the vegetative and reproductive tissues of cucumber and melon. When this technique was applied in male flowers, anther tissues were found to be infected; whereas the pollen grains were found to be virus-free. These results have meaningful epidemiological implications for the management of CGMMV, particularly with regard to virus transfer via seed and the role of insects as CGMMV vectors.

  12. Visualizing the Spatial Relationship of the Genome with the Nuclear Envelope Using Fluorescence In Situ Hybridization.

    PubMed

    Clements, Craig S; Bikkul, Ural; Ahmed, Mai Hassan; Foster, Helen A; Godwin, Lauren S; Bridger, Joanna M

    2016-01-01

    The genome has a special relationship with the nuclear envelope in cells. Much of the genome is anchored at the nuclear periphery, tethered by chromatin binding proteins such nuclear lamins and other integral membrane proteins. Even though there are global assays such as DAM-ID or ChIP to assess what parts of the genome are associated with the nuclear envelope, it is also essential to be able to visualize regions of the genome in order to reveal their individual relationships with nuclear structures in single cells. This is executed by fluorescence in situ hybridization (FISH) in 2-dimensional flattened nuclei (2D-FISH) or 3-dimensionally preserved cells (3D-FISH) in combination with indirect immunofluorescence to reveal structural proteins. This chapter explains the protocols for 2D- and 3D-FISH in combination with indirect immunofluorescence and discusses options for image capture and analysis. Due to the nuclear envelope proteins being part of the non-extractable nucleoskeleton, we also describe how to prepare DNA halos through salt extraction and how they can be used to study genome behavior and association when combined with 2D-FISH.

  13. Discrimination of bacteriophage infected cells using locked nucleic acid fluorescent in situ hybridization (LNA-FISH).

    PubMed

    Vilas Boas, Diana; Almeida, Carina; Sillankorva, Sanna; Nicolau, Ana; Azeredo, Joana; Azevedo, Nuno F

    2016-01-01

    Bacteriophage-host interaction studies in biofilm structures are still challenging due to the technical limitations of traditional methods. The aim of this study was to provide a direct fluorescence in situ hybridization (FISH) method based on locked nucleic acid (LNA) probes, which targets the phage replication phase, allowing the study of population dynamics during infection. Bacteriophages specific for two biofilm-forming bacteria, Pseudomonas aeruginosa and Acinetobacter, were selected. Four LNA probes were designed and optimized for phage-specific detection and for bacterial counterstaining. To validate the method, LNA-FISH counts were compared with the traditional plaque forming unit (PFU) technique. To visualize the progression of phage infection within a biofilm, colony-biofilms were formed and infected with bacteriophages. A good correlation (r = 0.707) was observed between LNA-FISH and PFU techniques. In biofilm structures, LNA-FISH provided a good discrimination of the infected cells and also allowed the assessment of the spatial distribution of infected and non-infected populations.

  14. Profiling T cell activation using single-molecule fluorescence in situ hybridization and flow cytometry.

    PubMed

    Bushkin, Yuri; Radford, Felix; Pine, Richard; Lardizabal, Alfred; Mangura, Bonita T; Gennaro, Maria Laura; Tyagi, Sanjay

    2015-01-15

    Flow cytometric characterization of Ag-specific T cells typically relies on detection of protein analytes. Shifting the analysis to detection of RNA would provide several significant advantages, which we illustrate by developing a new host immunity-based platform for detection of infections. Cytokine mRNAs synthesized in response to ex vivo stimulation with pathogen-specific Ags are detected in T cells with single-molecule fluorescence in situ hybridization followed by flow cytometry. Background from pre-existing in vivo analytes is lower for RNAs than for proteins, allowing greater sensitivity for detection of low-frequency cells. Moreover, mRNA analysis reveals kinetic differences in cytokine expression that are not apparent at the protein level but provide novel insights into gene expression programs expected to define different T cell subsets. The utility of probing immunological memory of infections is demonstrated by detecting T cells that recognize mycobacterial and viral Ags in donors exposed to the respective pathogens. PMID:25505292

  15. Directly incorporating fluorochromes into DNA probes by PCR increases the efficience of fluorescence in situ hybridization

    SciTech Connect

    Dittmer, Joy

    1996-05-01

    The object of this study was to produce a directly labeled whole chromosome probe in a Degenerative Oligonucleotide Primed-Polymerase Chain Reaction (DOP-PCR) that will identify chromosome breaks, deletions, inversions and translocations caused by radiation damage. In this study we amplified flow sorted chromosome 19 using DOP-PCR. The product was then subjected to a secondary DOP PCR amplification, After the secondary amplification the DOP-PCR product was directly labeled in a tertiary PCR reaction with rhodamine conjugated with dUTP (FluoroRed) to produce a DNA fluorescent probe. The probe was then hybridized to human metaphase lymphocytes on slides, washed and counterstained with 4{prime},6-diamino-2-phenylindole (DAPI). The signal of the FluoroRed probe was then compared to a signal of a probe labeled with biotin and stained with avidin fluorescein isothio cynate (FITC) and anti-avidin FITC. The results show that the probe labeled with FluoroRed gave signals as bright as the probe with biotin labeling. The FluoroRed probe had less noise than the biotin labeled probe. Therefore, a directly labeled probe has been successfully produced in a DOP-PCR reaction. In future a probe labeled with FluoroRed will be produced instead of a probe labeled with biotin to increase efficiency.

  16. Identification of pathogens in mastitis milk samples with fluorescent in situ hybridization.

    PubMed

    Gey, Annerose; Werckenthin, Christiane; Poppert, Sven; Straubinger, Reinhard K

    2013-05-01

    Traditionally, the bacteriological examination of mastitis milk samples is performed by culture followed by biochemical tests on the cultured bacteria to allow identification of the causative pathogen. Depending on the species involved, this classic identification is time-consuming compared to other techniques such as fluorescent in situ hybridization (FISH), a culture-independent method that utilizes oligonucleotides (labeled with a fluorophore) that are specific to a string of target DNA/RNA. In the current study, the applicability of FISH was evaluated for the detection of mastitis pathogens directly in milk samples. To remove interfering lipids and proteins from mastitis milk samples prior to FISH, a previously published enzymatic treatment with savinase was evaluated. FISH was performed using oligonucleotides specific for Staphylococcus aureus, Streptococcus agalactiae, Streptococcus uberis, Enterococcus faecalis, Enterococcus faecium, Escherichia coli, and Trueperella (Arcanobacterium) pyogenes. The enzymatic pretreatment and the sensitivity of FISH were evaluated using spiked whole milk samples and mastitis milk samples with bacterial loads of less than 10(3) up to 10(8) colony-forming units (CFU)/ml. Bacteria were reliably detected in milk samples with bacterial numbers of 10(6) CFU/ml or higher. However, bacteria present in numbers below 10(6) CFU/ml were not detectable in all cases. The ability of FISH to identify mastitis-causing pathogens directly in milk samples, and therefore earlier than classical culture methods, can supplement the classic diagnostic procedures for mastitis milk samples. PMID:23632662

  17. Sudan Black B treatment reduces autofluorescence and improves resolution of in situ hybridization specific fluorescent signals of brain sections.

    PubMed

    Oliveira, V C; Carrara, R C V; Simoes, D L C; Saggioro, F P; Carlotti, C G; Covas, D T; Neder, L

    2010-08-01

    Interference by autofluorescence is one of the major concerns of immunofluorescence analysis of in situ hybridization-based diagnostic assays. We present a useful technique that reduces autofluorescent background without affecting the tissue integrity or direct immunofluorescence signals in brain sections. Using six different protocols, such as ammonia/ethanol, Sudan Black B (SBB) in 70% ethanol, photobleaching with UV light and different combinations of them in both formalin-fixed paraffin-embedded and frozen human brain tissue sections, we have found that tissue treatment of SBB in a concentration of 0.1% in 70% ethanol is the best approach to reduce/eliminate tissue autofluorescence and background, while preserving the specific fluorescence hybridization signals. This strategy is a feasible, non-time consuming method that provides a reasonable compromise between total reduction of the tissue autofluorescence and maintenance of specific fluorescent labels.

  18. Myofibrillogenesis in live neonatal cardiomyocytes observed with hybrid two-photon excitation fluorescence-second harmonic generation microscopy

    PubMed Central

    Liu, Honghai; Qin, Wan; Shao, Yonghong; Ma, Zhen; Ye, Tong; Borg, Tom; Gao, Bruce Z.

    2011-01-01

    We developed a hybrid two-photon excitation fluorescence-second harmonic generation (TPEF-SHG) imaging system with an on-stage incubator for long-term live-cell imaging. Using the imaging system, we observed the addition of new sarcomeres during myofibrillogenesis while a cardiomyocyte was spreading on the substrate. The results suggest that the TPEF-SHG imaging system with an on-stage incubator is an effective tool for investigation of dynamic myofibrillogenesis. PMID:22191929

  19. Hybrid nanocomposites of gold single-crystal platelets and amyloid fibrils with tunable fluorescence, conductivity, and sensing properties.

    PubMed

    Li, Chaoxu; Bolisetty, Sreenath; Mezzenga, Raffaele

    2013-07-19

    Gold single-crystal platelets with high aspect ratio are combined with amyloid fibrils to design a new class of hybrid nanocomposites. The films gather physical properties from both constituents, for example, plasmon resonance, fluorescence, and water-dependent conductivities ranging from insulating to metallic levels, yet mirroring gold within a broad range of composition, and can serve multiple purposes such as sensors, diagnostic, printed electronics, micromechanical, and biological devices.

  20. Localization of the human OB gene (OBS) to chromosome 7q32 by fluorescence in situ hybridization

    SciTech Connect

    Geffroy, S.; Duban, B.; Martinville, B. de

    1995-08-10

    An important gene involved in the pathogenesis of obesity is the product of the human homologue of the murine obese gene (gene symbol OBS). Using fluorescence in situ hybridization (FISH), we have localized the human OB gene to human chromosome 7, specifically to region 7q32.1. The FISH data of human OBS provide a gene-associated marker for genetic mapping. 8 refs., 1 fig.

  1. Evaluation of the environmental specificity of Fluorescence In Situ Hybridization (FISH) using Fluorescence-Activated Cell Sorting (FACS) of probe (PSE1284)-positive cells extracted from rhizosphere soil.

    PubMed

    Gougoulias, Christos; Shaw, Liz J

    2012-12-01

    We explicitly tested for the first time the 'environmental specificity' of traditional 16S rRNA-targeted Fluorescence In Situ Hybridization (FISH) through comparison of the bacterial diversity actually targeted in the environment with the diversity that should be exactly targeted (i.e. without mismatches) according to in silico analysis. To do this, we exploited advances in modern Flow Cytometry that enabled improved detection and therefore sorting of sub-micron-sized particles and used probe PSE1284 (designed to target Pseudomonads) applied to Lolium perenne rhizosphere soil as our test system. The 6-carboxyfluorescein (6-FAM)-PSE1284-hybridized population, defined as displaying enhanced green fluorescence in Flow Cytometry, represented 3.51±1.28% of the total detected population when corrected using a nonsense (NON-EUB338) probe control. Analysis of 16S rRNA gene libraries constructed from Fluorescence Activated Cell Sorted-recovered fluorescent populations (n=3), revealed that 98.5% (Pseudomonas spp. comprised 68.7% and Burkholderia spp. 29.8%) of the total sorted population was specifically targeted as evidenced by the homology of the 16S rRNA sequences to the probe sequence. In silico evaluation of probe PSE1284 with the use of RDP-10 probeMatch justified the existence of Burkholderia spp. among the sorted cells. The lack of novelty in Pseudomonas spp. sequences uncovered was notable, probably reflecting the well-studied nature of this functionally important genus. To judge the diversity recorded within the FACS-sorted population, rarefaction and DGGE analysis were used to evaluate, respectively, the proportion of Pseudomonas diversity uncovered by the sequencing effort and the representativeness of the Nycodenz(®) method for the extraction of bacterial cells from soil.

  2. A and C genome distinction and chromosome identification in brassica napus by sequential fluorescence in situ hybridization and genomic in situ hybridization.

    PubMed

    Howell, Elaine C; Kearsey, Michael J; Jones, Gareth H; King, Graham J; Armstrong, Susan J

    2008-12-01

    The two genomes (A and C) of the allopolyploid Brassica napus have been clearly distinguished using genomic in situ hybridization (GISH) despite the fact that the two extant diploids, B. rapa (A, n = 10) and B. oleracea (C, n = 9), representing the progenitor genomes, are closely related. Using DNA from B. oleracea as the probe, with B. rapa DNA and the intergenic spacer of the B. oleracea 45S rDNA as the block, hybridization occurred on 9 of the 19 chromosome pairs along the majority of their length. The pattern of hybridization confirms that the two genomes have remained distinct in B. napus line DH12075, with no significant genome homogenization and no large-scale translocations between the genomes. Fluorescence in situ hybridization (FISH)-with 45S rDNA and a BAC that hybridizes to the pericentromeric heterochromatin of several chromosomes-followed by GISH allowed identification of six chromosomes and also three chromosome groups. Our procedure was used on the B. napus cultivar Westar, which has an interstitial reciprocal translocation. Two translocated segments were detected in pollen mother cells at the pachytene stage of meiosis. Using B. oleracea chromosome-specific BACs as FISH probes followed by GISH, the chromosomes involved were confirmed to be A7 and C6.

  3. A novel fluorescence detection method for in situ hybridization, based on the alkaline phosphatase-fast red reaction.

    PubMed

    Speel, E J; Schutte, B; Wiegant, J; Ramaekers, F C; Hopman, A H

    1992-09-01

    We have used naphthol-ASMX-phosphate and Fast Red TR in combination with alkaline phosphatase (APase) to produce fluorescent precipitated reaction products in a non-radioactive in situ hybridization (ISH) method. To obtain optimal and discrete localization of the strongly red fluorescent ISH signals, the enzyme precipitation procedure was optimized. The optimal reaction time and the concentrations of substrate and capture agent were determined. Furthermore, polyvinyl alcohol (PVA) was used to increase the viscosity of the reaction mixture and thus to reduce diffusion of the reaction product. Our results show that the APase-Fast Red detection method has at least the same sensitivity as currently observed in other immunofluorescent detection systems. A single copy DNA sequence of 15.8 KB could be localized with high efficiency in metaphase spreads and in interphase nuclei. Double labeling procedures, in which the FITC- and azo-dye fluorescence are combined, are also feasible. The red fluorescent ISH signals showed hardly any fading as compared with FITC fluorescence on exposure to either light from the mercury-arc lamp or laser light. Therefore, these red fluorescent signals with a virtually permanent character allow a better analysis and three-dimensional localization of such cytochemically detected genomic fractions by means of confocal scanning laser microscopy as compared with the use of FITC, TRITC, or Texas Red as label. PMID:1506667

  4. Super-resolution Localization and Defocused Fluorescence Microscopy on Resonantly Coupled Single-Molecule, Single-Nanorod Hybrids.

    PubMed

    Su, Liang; Yuan, Haifeng; Lu, Gang; Rocha, Susana; Orrit, Michel; Hofkens, Johan; Uji-i, Hiroshi

    2016-02-23

    Optical antennas made of metallic nanostructures dramatically enhance single-molecule fluorescence to boost the detection sensitivity. Moreover, emission properties detected at the optical far field are dictated by the antenna. Here we study the emission from molecule-antenna hybrids by means of super-resolution localization and defocused imaging. Whereas gold nanorods make single-crystal violet molecules in the tip's vicinity visible in fluorescence, super-resolution localization on the enhanced molecular fluorescence reveals geometrical centers of the nanorod antenna instead. Furthermore, emission angular distributions of dyes linked to the nanorod surface resemble that of nanorods in defocused imaging. The experimental observations are consistent with numerical calculations using the finite-difference time-domain method.

  5. Super-resolution Localization and Defocused Fluorescence Microscopy on Resonantly Coupled Single-Molecule, Single-Nanorod Hybrids

    PubMed Central

    2016-01-01

    Optical antennas made of metallic nanostructures dramatically enhance single-molecule fluorescence to boost the detection sensitivity. Moreover, emission properties detected at the optical far field are dictated by the antenna. Here we study the emission from molecule–antenna hybrids by means of super-resolution localization and defocused imaging. Whereas gold nanorods make single-crystal violet molecules in the tip’s vicinity visible in fluorescence, super-resolution localization on the enhanced molecular fluorescence reveals geometrical centers of the nanorod antenna instead. Furthermore, emission angular distributions of dyes linked to the nanorod surface resemble that of nanorods in defocused imaging. The experimental observations are consistent with numerical calculations using the finite-difference time-domain method. PMID:26815168

  6. A nucleic acid probe labeled with desmethyl thiazole orange: a new type of hybridization-sensitive fluorescent oligonucleotide for live-cell RNA imaging.

    PubMed

    Okamoto, Akimitsu; Sugizaki, Kaori; Yuki, Mizue; Yanagisawa, Hiroyuki; Ikeda, Shuji; Sueoka, Takuma; Hayashi, Gosuke; Wang, Dan Ohtan

    2013-01-14

    A new fluorescent nucleotide with desmethyl thiazole orange dyes, D'(505), has been developed for expansion of the function of fluorescent probes for live-cell RNA imaging. The nucleoside unit of D'(505) for DNA autosynthesis was soluble in organic solvents, which made the preparation of nucleoside units and the reactions in the cycles of DNA synthesis more efficient. The dyes of D'(505)-containing oligodeoxynucleotide were protonated below pH 7 and the oligodeoxynucleotide exhibited hybridization-sensitive fluorescence emission through the control of excitonic interactions of the dyes of D'(505). The simplified procedure and effective hybridization-sensitive fluorescence emission produced multicolored hybridization-sensitive fluorescent probes, which were useful for live-cell RNA imaging. The acceptor-bleaching method gave us information on RNA in a specific cell among many living cells.

  7. Fluorescence in situ hybridization investigation of potentially pathogenic bacteria involved in neonatal porcine diarrhea

    PubMed Central

    2014-01-01

    Background Neonatal diarrhea is a multifactorial condition commonly present on pig farms and leads to economic losses due to increased morbidity and mortality of piglets. Immature immune system and lack of fully established microbiota at birth predispose neonatal piglets to infection with enteric pathogens. The microorganisms that for decades have been associated with enteritis and diarrhea in suckling piglets are: rotavirus A, coronavirus, enterotoxigenic Escherichia coli (ETEC), Clostridium perfringens type C, Cryptosporidium spp., Giardia spp., Cystoisospora suis and Strongyloides ransomi. However, in recent years, the pig industry has experienced an increased number of neonatal diarrhea cases in which the above mentioned pathogens are no longer detected. Potentially pathogenic bacteria have recently received focus in the research on the possible etiology of neonatal diarrhea not caused by common pathogens. The primary aim of this study was to investigate the role of E. coli, Enterococcus spp., C. perfringens and C. difficile in the pathogenesis of neonatal porcine diarrhea with no established casual agents. Fluorescence in situ hybridization with oligonucleotide probes was applied on the fixed intestinal tissue samples from 51 diarrheic and 50 non-diarrheic piglets collected from four Danish farms during outbreaks of neonatal diarrhea not caused by well-known enteric pathogens. Furthermore, an association between the presence of these bacteria and histological lesions was evaluated. Results The prevalence of fluorescence signals specific for E. coli, C. perfringens and C. difficile was similar in both groups of piglets. However, Enterococcus spp. was primarily detected in the diarrheic piglets. Furthermore, adherent bacteria were detected in 37 % diarrheic and 14 % non-diarrheic piglets. These bacteria were identified as E. coli and Enterococcus spp. and their presence in the intestinal mucosa was associated with histopathological changes. Conclusions The

  8. High Sensitivity deflection detection of nanowires

    SciTech Connect

    Sanii, Babak; Ashby, Paul

    2009-10-28

    A critical limitation of nanoelectromechanical systems (NEMS) is the lack of a high-sensitivity position detection mechanism. We introduce a noninterferometric optical approach to determine the position of nanowires with a high sensitivity and bandwidth. Its physical origins and limitations are determined by Mie scattering analysis. This enables a dramatic miniaturization of detectable cantilevers, with attendant reductions to the fundamental minimum force noise in highly damping environments. We measure the force noise of an 81{+-}9??nm radius Ag{sub 2}Ga nanowire cantilever in water at 6{+-}3??fN/{radical}Hz.

  9. Conjugated Polymer-Based Hybrid Nanoparticles with Two-Photon Excitation and Near-Infrared Emission Features for Fluorescence Bioimaging within the Biological Window.

    PubMed

    Lv, Yanlin; Liu, Peng; Ding, Hui; Wu, Yishi; Yan, Yongli; Liu, Heng; Wang, Xuefei; Huang, Fei; Zhao, Yongsheng; Tian, Zhiyuan

    2015-09-23

    Hybrid fluorescent nanoparticles (NPs) capable of fluorescing near-infrared (NIR) light (centered ∼730 nm) upon excitation of 800 nm laser light were constructed. A new type of conjugated polymer with two-photon excited fluorescence (TPEF) feature, P-F8-DPSB, was used as the NIR-light harvesting component and the energy donor while a NIR fluorescent dye, DPA-PR-PDI, was used as the energy acceptor and the NIR-light emitting component for the construction of the fluorescent NPs. The hybrid NPs possess δ value up to 2.3 × 10(6) GM per particle upon excitation of 800 nm pulse laser. The excellent two-photon absorption (TPA) property of the conjugated polymer component, together with its high fluorescence quantum yield (ϕ) up to 45% and the efficient energy transfer from the conjugated polymer to NIR-emitting fluorophore with efficiency up to 90%, imparted the hybrid NPs with TPEF-based NIR-input-NIR-output fluorescence imaging ability with penetration depth up to 1200 μm. The practicability of the hybrid NPs for fluorescence imaging in Hela cells was validated. PMID:26340609

  10. Fluorescence In Situ Hybridization and Optical Mapping to Correct Scaffold Arrangement in the Tomato Genome

    PubMed Central

    Shearer, Lindsay A.; Anderson, Lorinda K.; de Jong, Hans; Smit, Sandra; Goicoechea, José Luis; Roe, Bruce A.; Hua, Axin; Giovannoni, James J.; Stack, Stephen M.

    2014-01-01

    The order and orientation (arrangement) of all 91 sequenced scaffolds in the 12 pseudomolecules of the recently published tomato (Solanum lycopersicum, 2n = 2x = 24) genome sequence were positioned based on marker order in a high-density linkage map. Here, we report the arrangement of these scaffolds determined by two independent physical methods, bacterial artificial chromosome–fluorescence in situ hybridization (BAC-FISH) and optical mapping. By localizing BACs at the ends of scaffolds to spreads of tomato synaptonemal complexes (pachytene chromosomes), we showed that 45 scaffolds, representing one-third of the tomato genome, were arranged differently than predicted by the linkage map. These scaffolds occur mostly in pericentric heterochromatin where 77% of the tomato genome is located and where linkage mapping is less accurate due to reduced crossing over. Although useful for only part of the genome, optical mapping results were in complete agreement with scaffold arrangement by FISH but often disagreed with scaffold arrangement based on the linkage map. The scaffold arrangement based on FISH and optical mapping changes the positions of hundreds of markers in the linkage map, especially in heterochromatin. These results suggest that similar errors exist in pseudomolecules from other large genomes that have been assembled using only linkage maps to predict scaffold arrangement, and these errors can be corrected using FISH and/or optical mapping. Of note, BAC-FISH also permits estimates of the sizes of gaps between scaffolds, and unanchored BACs are often visualized by FISH in gaps between scaffolds and thus represent starting points for filling these gaps. PMID:24879607

  11. Identification of tissue contamination by polymorphic deletion probe fluorescence in situ hybridization.

    PubMed

    Chiang, Sarah; Yip, Stephen; Betensky, Rebecca A; Batten, Julie M; Misdraji, Joseph; John Iafrate, A

    2012-10-01

    Potential sources of error in surgical pathology include specimen misidentification, unidentified tissue, and tissue contamination of paraffin blocks and slides. Current molecular approaches to characterize unidentified or misidentified tissue include fluorescence in situ hybridization identification of sex chromosomes (XY FISH) and microsatellite analysis. Polymorphic deletion probe (PDP) FISH, a novel FISH assay based on copy number variants, can distinguish between cells and tissues from 2 individuals in situ, independent of gender. Using a panel of 3 PDPs, we compared the genotypes of potential tissue contaminants (n=19) and unidentified tissues (n=6) with patient tissues to determine the utility of PDP FISH in resolving specimen identity. XY FISH was added to increase the informative potential of the assay, and microsatellite analysis was used as a gold standard to confirm PDP FISH results. PDP FISH distinguished between putative contaminants and patient tissues in 13 of 14 cases and indicated a high likelihood of 2 tissues originating from the same source in 11 of 11 cases. The assay has a sensitivity and specificity of 86% [6/7, exact 95% confidence interval (CI): 42%, 97%] and 100% (9/9, exact 1-sided 97.5% CI: 68%, 100%), respectively, and a positive predictive value and negative predictive value of 100% (6/6, exact 1-sided 97.5% CI: 54%, 100%) and 90% (9/10, exact 95% CI: 55%, 98%), respectively. PDP FISH is an accurate and practical molecular assay for the genetic characterization of potential tissue contaminants and unidentified tissues, especially in the setting of small sample size, and permits concomitant assessment of morphology.

  12. Fluorescence in situ hybridization and optical mapping to correct scaffold arrangement in the tomato genome.

    PubMed

    Shearer, Lindsay A; Anderson, Lorinda K; de Jong, Hans; Smit, Sandra; Goicoechea, José Luis; Roe, Bruce A; Hua, Axin; Giovannoni, James J; Stack, Stephen M

    2014-08-01

    The order and orientation (arrangement) of all 91 sequenced scaffolds in the 12 pseudomolecules of the recently published tomato (Solanum lycopersicum, 2n = 2x = 24) genome sequence were positioned based on marker order in a high-density linkage map. Here, we report the arrangement of these scaffolds determined by two independent physical methods, bacterial artificial chromosome-fluorescence in situ hybridization (BAC-FISH) and optical mapping. By localizing BACs at the ends of scaffolds to spreads of tomato synaptonemal complexes (pachytene chromosomes), we showed that 45 scaffolds, representing one-third of the tomato genome, were arranged differently than predicted by the linkage map. These scaffolds occur mostly in pericentric heterochromatin where 77% of the tomato genome is located and where linkage mapping is less accurate due to reduced crossing over. Although useful for only part of the genome, optical mapping results were in complete agreement with scaffold arrangement by FISH but often disagreed with scaffold arrangement based on the linkage map. The scaffold arrangement based on FISH and optical mapping changes the positions of hundreds of markers in the linkage map, especially in heterochromatin. These results suggest that similar errors exist in pseudomolecules from other large genomes that have been assembled using only linkage maps to predict scaffold arrangement, and these errors can be corrected using FISH and/or optical mapping. Of note, BAC-FISH also permits estimates of the sizes of gaps between scaffolds, and unanchored BACs are often visualized by FISH in gaps between scaffolds and thus represent starting points for filling these gaps.

  13. Fluorescence in situ hybridization and optical mapping to correct scaffold arrangement in the tomato genome.

    PubMed

    Shearer, Lindsay A; Anderson, Lorinda K; de Jong, Hans; Smit, Sandra; Goicoechea, José Luis; Roe, Bruce A; Hua, Axin; Giovannoni, James J; Stack, Stephen M

    2014-08-01

    The order and orientation (arrangement) of all 91 sequenced scaffolds in the 12 pseudomolecules of the recently published tomato (Solanum lycopersicum, 2n = 2x = 24) genome sequence were positioned based on marker order in a high-density linkage map. Here, we report the arrangement of these scaffolds determined by two independent physical methods, bacterial artificial chromosome-fluorescence in situ hybridization (BAC-FISH) and optical mapping. By localizing BACs at the ends of scaffolds to spreads of tomato synaptonemal complexes (pachytene chromosomes), we showed that 45 scaffolds, representing one-third of the tomato genome, were arranged differently than predicted by the linkage map. These scaffolds occur mostly in pericentric heterochromatin where 77% of the tomato genome is located and where linkage mapping is less accurate due to reduced crossing over. Although useful for only part of the genome, optical mapping results were in complete agreement with scaffold arrangement by FISH but often disagreed with scaffold arrangement based on the linkage map. The scaffold arrangement based on FISH and optical mapping changes the positions of hundreds of markers in the linkage map, especially in heterochromatin. These results suggest that similar errors exist in pseudomolecules from other large genomes that have been assembled using only linkage maps to predict scaffold arrangement, and these errors can be corrected using FISH and/or optical mapping. Of note, BAC-FISH also permits estimates of the sizes of gaps between scaffolds, and unanchored BACs are often visualized by FISH in gaps between scaffolds and thus represent starting points for filling these gaps. PMID:24879607

  14. ERBB2 amplification in breast cancer analyzed by fluorescence in situ hybridization.

    PubMed Central

    Kallioniemi, O P; Kallioniemi, A; Kurisu, W; Thor, A; Chen, L C; Smith, H S; Waldman, F M; Pinkel, D; Gray, J W

    1992-01-01

    We illustrate the use of fluorescence in situ hybridization (FISH) for analysis of ERBB2 oncogene copy number, the level of amplification (here defined as the ratio of ERBB2 copy number to copy number of chromosome 17 centromeres), and the distribution of amplified genes in breast cancer cell lines and uncultured primary breast carcinomas. The relative ERBB2 copy number determined by FISH in 10 breast cancer cell lines correlated strongly with Southern blot results (r = 0.98) when probes for an identical reference locus were used in the two methods. Metaphase analysis of cell lines showed that amplified ERBB2 copies always occurred in intrachromosomal clusters but that the number and chromosomal location of these clusters varied among the cell lines. In interphase nuclei of primary tumors showing ERBB2 amplification (10/44), ERBB2 copies were seen as one to four clusters, also suggesting intrachromosomal localization. Regardless of the average level of amplification, all these tumors contained highly amplified cell subpopulations with at least 25, and sometimes more than 100, ERBB2 copies per cell. Tumors that did not show amplification by FISH (34/44) had an average of one to five ERBB2 copies scattered randomly in the nuclei and completely lacked cells with high copy levels. FISH results on primary tumors were concordant with slot blot results on amplification and with immunohistochemical detection of overexpression. Quantitative analysis of ERBB2 amplification by FISH may improve prognostic assessments based on the pattern of amplification and detection of heavily amplified tumor cell subpopulations. Images PMID:1351679

  15. Fluorescence In Situ Hybridization for Melanoma Diagnosis: A Review and a Reappraisal.

    PubMed

    Ferrara, Gerardo; De Vanna, Anna Chiara

    2016-04-01

    Although conventional histopathological examination is the undisputable mainstay for the diagnosis of melanocytic skin neoplasms, fluorescence in situ hybridization (FISH) has the potential to provide important information to morphologically challenging cases. The standard melanoma FISH test targeting RREB1 (6p25), MYB (6q23), CCND1 (11q13), and centromere 6 is an effective compromise between cost, technical complexity, and sensitivity. The authors use the standard FISH-positivity as a tie-breaker for challenging melanocytic neoplasms mainly in a non-Spitzoid morphologic context because the currently available test leaves several unresolved issues: namely, a relatively low diagnostic accuracy in morphologically ambiguous melanocytic neoplasms; a relatively low sensitivity and specificity in Spitzoid neoplasms; and the occurrence of false positives due to tetraploidy in Spitz nevi and in nevi with an atypical epithelioid component. Under investigation is currently a new melanoma probe cocktail targeting RREB1 (6p25), C-MYC (8q24), CDKN2A (9p21), and CCND1 (11q13). However, CDKN2A is a significant parameter only if lost in homozygosis, and this complicates the interpretation of the results. Furthermore, the new melanoma probe cocktail has been tested on cases of atypical Spitzoid proliferations with fatal outcomes which at present are too few to allow definite conclusions. The authors propose the implementation of a FISH algorithm (standard 4-probe test followed by either C-MYC or CDKN2A/centromere 9) to assist the histopathological diagnosis and minimize the technical problems. Nevertheless, because the diagnostic accuracy of the FISH technique is far from being absolute, the overall clinicopathological context must always guide the decision-making process about the management of morphobiologically ambiguous melanocytic proliferations. PMID:26999337

  16. Identification of triclosan-degrading bacteria using stable isotope probing, fluorescence in situ hybridization and microautoradiography.

    PubMed

    Lolas, Ihab Bishara; Chen, Xijuan; Bester, Kai; Nielsen, Jeppe Lund

    2012-11-01

    Triclosan is considered a ubiquitous pollutant and can be detected in a wide range of environmental samples. Triclosan removal by wastewater treatment plants has been largely attributed to biodegradation processes; however, very little is known about the micro-organisms involved. In this study, DNA-based stable isotope probing (DNA-SIP) combined with microautoradiography-fluorescence in situ hybridization (MAR-FISH) was applied to identify active triclosan degraders in an enrichment culture inoculated with activated sludge. Clone library sequences of 16S rRNA genes derived from the heavy DNA fractions of enrichment culture incubated with (13)C-labelled triclosan showed a predominant enrichment of a single bacterial clade most closely related to the betaproteobacterial genus Methylobacillus. To verify that members of the genus Methylobacillus were actively utilizing triclosan, a specific probe targeting the Methylobacillus group was designed and applied to the enrichment culture incubated with (14)C-labelled triclosan for MAR-FISH. The MAR-FISH results confirmed a positive uptake of carbon from (14)C-labelled triclosan by the Methylobacillus. The high representation of Methylobacillus in the (13)C-labelled DNA clone library and its observed utilization of (14)C-labelled triclosan by MAR-FISH reveal that these micro-organisms are the primary consumers of triclosan in the enrichment culture. The results from this study show that the combination of SIP and MAR-FISH can shed light on the networks of uncultured micro-organisms involved in degradation of organic micro-pollutants.

  17. Quantification of Enterococcus italicus in traditional Italian cheeses by fluorescence whole-cell hybridization.

    PubMed

    Fornasari, Maria Emanuela; Rossetti, Lia; Remagni, Chiara; Giraffa, Giorgio

    2008-08-01

    The objective of this work was to investigate the spread of Enterococcus italicus in cheese. For this purpose, a fluorescence whole-cell hybridization protocol (FWCH) with a 16S rRNA probe was optimized to evaluate the presence and abundance of this organism in artisanal Italian cheeses. The FWCH method avoided the quantification problems using classical plate count techniques related to the well-known difficulties to cultivate E. italicus in selective enterococci media. After probe and FWCH optimization, 10 commercially available Italian semi-hard cheeses made with raw ewe or cow milk without starter addition were analyzed. All of them were subjected to FWCH experiments and six of them gave positive results with the probe, i.e. the E. italicus content was >4 log cells/g according to the detection limit of FWCH. Counts showed that E. italicus was present at levels ranging from 5.91+/-0.17 to 7.34+/-0.14 log cells/g; such levels were similar to, or even higher than, the total enterococci counted from the corresponding cheeses using kanamycin aesculin azide agar. The overall reliability of the FWCH method was tested by species-specific PCR. The positive amplification of the expected 323 bp fragment from both a cheese matrix and cell bulks of cheese samples containing high loads of this organism (as determined by FWCH counts) and the successful isolation of E. italicus strains from the above cheeses provided definitive proof of both probe specificity and the presence of this organism in cheeses. Although there is very little available quantitative data on the incidence of E. italicus in cheese, or its role in product quality, this study showed a wide diffusion of this organism in artisanal cheeses, where secondary non-starter lactic acid bacterial microflora, which enterococci belong to, may become dominant during ripening. PMID:18562146

  18. The role of fluorescence in situ hybridization and gene expression profiling in myeloma risk stratification.

    PubMed

    Hose, Dirk; Seckinger, Anja; Jauch, Anna; Rème, Thierry; Moreaux, Jérôme; Bertsch, Uta; Neben, Kai; Klein, Bernard; Goldschmidt, Hartmut

    2011-12-01

    Multiple myeloma patients' survival under treatment varies from a few months to more than 15 years. Clinical prognostic factors, especially beta2-microglobulin (B2M) and the international staging system (ISS), allow risk assessment to a certain extent, but do not identify patients at very high risk. As malignant plasma cells are characterized by a variety of chromosomal aberrations and changes in gene expression, a molecular characterization ofCD138-purified myeloma cells by interphase fluorescence in situ hybridization (iFISH) and gene expression profiling (GEP) can be used for improved risk assessment, iFISH allows a risk stratification with presence of a translocation t(4;14) and/or deletion of 17p13 being the best documented adverse prognostic factors. A deletion of 13q14 is no longer considered to define adverse risk. Patients harbouring a t(4;14) seems to benefit from a bortezomib- or lenalidomide containing regimen, whereas patients with deletion 17p13 seem only to benefit from a high dose therapy approach using long term bortezomib (in induction and maintenance) and autologous tandem-transplantation as used in the GMMG-HD4 trial, or the total therapy 3 concept. Gene expression profiling allows the assessment of high risk scores (IFM, UAMS), remaining prognostic despite treatment with novel agents, and prognostic surrogates of biological factors (e.g. proliferation) and (prognostic) target gene expression (e.g. Aurora-kinase A). Thus, assessment of B2M and ISS-stage, iFISH, and GEP is considered extended routine diagnostics in therapy requiring multiple myeloma patients for risk assessment and, even now, to a certain extent selection of treatment.

  19. Evaluation of fluorescence in situ hybridization for the detection of bacteria in feline inflammatory liver disease.

    PubMed

    Twedt, David C; Cullen, John; McCord, Kelly; Janeczko, Stephanie; Dudak, Julie; Simpson, Kenny

    2014-02-01

    The etiopathogenesis of feline inflammatory liver disease (ILD) is unclear. Therefore, we sought to determine the presence and distribution of bacteria within the livers of cats with ILD using eubacterial fluorescence in situ hybridization (FISH). Histopathology from 39 cats with ILD and 19 with histologically normal livers (C) were classified using World Small Animal Veterinary Association guidelines. Hepatic sections were examined by 16 and 23S ribosomal RNA FISH. Antibodies against cytokeratins and factor VIIIa were used to distinguish bile ducts and vascular structures. Histopathologic findings included non-specific reactive hepatitis (12), neutrophilic cholangitis (NC; 12), lymphocytic cholangitis (seven), cholestasis/obstruction (three), probable lymphoma (three) and acute hepatitis (two). Bacteria were observed in 21/39 ILD and 3/19 C (P = 0.0054). In 8/39 ILD and 2/19 C bacteria were restricted to the outer liver capsule (P = 0.29) and may represent contaminants. The prevalence of intrahepatic bacteria was higher (P = 0.008) in ILD (13/31) than C (1/17). Bacteria in ILD were more frequently (P <0.0001) localized to portal vessels, venous sinusoids and parenchyma (12/13) than bile duct (1/13). Bacterial colonization was highest in Escherichia coli-positive NC cats. Concurrent non-hepatic disease, predominantly pancreatic and intestinal (8/10 cats biopsied), was present in all 13 cats with intrahepatic bacteria. Bacterial culture was positive (predominantly E coli and Enterococcus species) in 11/23 (48%) samples, and concurred with FISH in 15/23 cases. The presence of intrahepatic bacteria in 13/31 (41%) cats with ILD suggests a role in etiopathogenesis. The distribution of bacteria within the liver supports the possibility of colonization via either enteric translocation or hematogenous seeding.

  20. Fluorescence In Situ Hybridization Analysis of Atypical Melanocytic Proliferations and Melanoma in Young Patients

    PubMed Central

    DeMarchis, Emilia H; Swetter, Susan M; Jennings, Charay D; Kim, Jinah

    2014-01-01

    Morphologic heterogeneity among melanocytic proliferations is a common challenge in the diagnosis of melanoma. In particular, atypical melanocytic lesions in children, adolescents, and young adults may be difficult to classify because of significant morphologic overlap with melanoma. Recently a four-probe fluorescence in situ hybridization (FISH) protocol to detect chromosomal abnormalities in chromosomes 6 and 11 has shown promise for improving the classification of melanocytic lesions. We sought to determine the correlation between FISH results, morphology, and clinical outcomes in a series of challenging melanocytic proliferations in young patients. We retrospectively performed the standard four-probe FISH analysis on 21 melanocytic neoplasms from 21 patients younger than 25 years of age (range 5–25 years, mean 14.6 years) from Stanford University Medical Center who were prospectively followed for a median of 51 months (range 1–136 months). The study cohort included patients with 5 confirmed melanomas, 2 melanocytic tumors of uncertain malignant potential (MelTUMPs), 10 morphologically challenging atypical Spitz tumors (ASTs), and 4 typical Spitz nevi. FISH detected chromosomal aberrations in all five melanomas and in one MelTUMP, in which the patient developed subsequent lymph node and distant metastasis. All 10 ASTs, 4 Spitz nevi, and 1 of 2 MelTUMPs were negative for significant gains or losses in chromosomes 6 and 11q. Our findings demonstrated a strong correlation between positive FISH results and the histomorphologic impression of melanoma. This finding was also true for the MelTUMP with poor clinical outcome. Therefore FISH may serve as a helpful adjunct in the classification of controversial melanocytic tumors in young patients. PMID:24924836

  1. A pre-breeding screening program for transgenic boars based on fluorescence in situ hybridization assay.

    PubMed

    Bou, Gerelchimeg; Sun, Mingju; Lv, Ming; Zhu, Jiang; Li, Hui; Wang, Juan; Li, Lu; Liu, Zhongfeng; Zheng, Zhong; He, Wenteng; Kong, Qingran; Liu, Zhonghua

    2014-08-01

    For efficient transgenic herd expansion, only the transgenic animals that possess the ability to transmit transgene into next generation are considered for breeding. However, for transgenic pig, practically lacking a pre-breeding screening program, time, labor and money is always wasted to maintain non-transgenic pigs, low or null transgenic transmission pigs and the related fruitless gestations. Developing a pre-breeding screening program would make the transgenic herd expansion more economical and efficient. In this technical report, we proposed a three-step pre-breeding screening program for transgenic boars simply through combining the fluorescence in situ hybridization (FISH) assay with the common pre-breeding screening workflow. In the first step of screening, combined with general transgenic phenotype analysis, FISH is used to identify transgenic boars. In the second step of screening, combined with conventional semen test, FISH is used to detect transgenic sperm, thus to identify the individuals producing high quality semen and transgenic sperm. In the third step of screening, FISH is used to assess the in vitro fertilization embryos, thus finally to identify the individuals with the ability to produce transgenic embryos. By this three-step screening, the non-transgenic boars and boars with no ability to produce transgenic sperm or transgenic embryos would be eliminated; therefore only those boars could produce transgenic offspring are maintained and used for breeding and herd expansion. It is the first time a systematic pre-breeding screening program is proposed for transgenic pigs. This program might also be applied in other transgenic large animals, and provide an economical and efficient strategy for herd expansion.

  2. Fluorescent in situ hybridization assessment of chromosome 8 copy number in breast cancer.

    PubMed

    Afify, A; Bland, K I; Mark, H F

    1996-01-01

    Conventional cytogenetics of breast and other solid tumors has been hampered by a number of factors. An analysis of breast tumor tissues was therefore undertaken using fluorescent in situ hybridization (FISH). A total of 34 specimens were analyzed using a chromosome 8-specific alpha-satellite probe. Various approaches were tested and compared. Among 30 informative samples, 11 infiltrating ductal carcinomas, not otherwise specified (NOS), 5 ductal carcinomas in situ, 5 lobular carcinomas, 3 papillary carcinomas, and 6 benign lesions were studied. Of the 11 cases of infiltrating ductal carcinomas (NOS) analyzed, four cases showed 3 signals, one case showed 4 signals, and the rest showed 2 signals. Of the 5 cases of ductal carcinoma in situ samples, 1 showed 3 signals and the other 4 cases showed 2 signals. All cases of lobular carcinomas, papillary carcinomas, and benign lesions showed 2 signals. We inferred from these data that 36% of the infiltrating ductal carcinomas (NOS) were trisomic and 9% were tetrasomic, whereas 20% of the ductal carcinomas in situ were trisomic. All samples from lobular carcinomas, papillary carcinomas, and the benign lesions were disomic. From our preliminary data, it can further be concluded that a subset of breast cancer is characterized by chromosome 8 trisomy. These data are consistent with an ever-increasing database on the association of chromosomal 8 trisomy with other cancers such as leukemia, lymphoma, prostate cancer, ovarian carcinoma, salivary gland tumor, malignant melanoma, desmoid tumors, and recently gestational trophoblastic disease. It is also noted that the ability to analyze formalin-fixed, paraffin-embedded archival material will enable a more comprehensive cytogenetic study of breast cancer than is currently available.

  3. Establishment of a human malignant fibrous histiocytoma cell line, COMA. Characterization By conventional cytogenetics, comparative genomic hybridization, and multiplex fluorescence In situ hybridization.

    PubMed

    Mairal, A; Chibon, F; Rousselet, A; Couturier, J; Terrier, P; Aurias, A

    2000-09-01

    The human COMA cell line has been established from a storiform pleomorphic malignant fibrous histiocytoma (MFH). As expected for this tumor type, a very complex karyotype was observed after R-banding analysis. An extensive analysis by 24-color painting, comparative genomic hybridization (CGH), and fluorescence in situ hybridization (FISH) was performed. Twelve complex marker chromosomes recurrently observed were clearly identified; among them, three were systematically present in all analyzed metaphases. Amplifications detected by CGH were refined by FISH with probes specific for various candidate loci. A significant aneuploidy and numerous micronuclei were observed, which could be related to the anomalies of centriole numbers detected in a proportion of cells. Such an analysis, performed on a series of MFH cell lines, would allow the delineation of the genomic alterations specific for the oncogenesis or progression of this complex tumor type or both. PMID:11063793

  4. Use of Hybridization Chain Reaction-Fluorescent In Situ Hybridization To Track Gene Expression by Both Partners during Initiation of Symbiosis

    PubMed Central

    Nikolakakis, K.; Lehnert, E.

    2015-01-01

    The establishment of a productive symbiosis between Euprymna scolopes, the Hawaiian bobtail squid, and its luminous bacterial symbiont, Vibrio fischeri, is mediated by transcriptional changes in both partners. A key challenge to unraveling the steps required to successfully initiate this and many other symbiotic associations is characterization of the timing and location of these changes. We report on the adaptation of hybridization chain reaction-fluorescent in situ hybridization (HCR-FISH) to simultaneously probe the spatiotemporal regulation of targeted genes in both E. scolopes and V. fischeri. This method revealed localized, transcriptionally coregulated epithelial cells within the light organ that responded directly to the presence of bacterial cells while, at the same time, provided a sensitive means to directly show regulated gene expression within the symbiont population. Thus, HCR-FISH provides a new approach for characterizing habitat transition in bacteria and for discovering host tissue responses to colonization. PMID:25956763

  5. Specific sorting of single bacterial cells with microfabricated fluorescence-activated cell sorting and tyramide signal amplification fluorescence in situ hybridization.

    PubMed

    Chen, Chun H; Cho, Sung H; Chiang, Hsin-I; Tsai, Frank; Zhang, Kun; Lo, Yu-Hwa

    2011-10-01

    When attempting to probe the genetic makeup of diverse bacterial communities that elude cell culturing, researchers face two primary challenges: isolation of rare bacteria from microbial samples and removal of contaminating cell-free DNA. We report a compact, low-cost, and high-performance microfabricated fluorescence-activated cell sorting (μFACS) technology in combination with a tyramide signal amplification fluorescence in situ hybridization (TSA-FISH) to address these two challenges. The TSA-FISH protocol that was adapted for flow cytometry yields a 10-30-fold enhancement in fluorescence intensity over standard FISH methods. The μFACS technology, capable of enhancing its sensitivity by ~18 dB through signal processing, was able to enrich TSA-FISH-labeled E. coli cells by 223-fold. The μFACS technology was also used to remove contaminating cell-free DNA. After two rounds of sorting on E. coli mixed with λ-phage DNA (10 ng/μL), we demonstrated over 100,000-fold reduction in λ-DNA concentration. The integrated μFACS and TSA-FISH technologies provide a highly effective and low-cost solution for research on the genomic complexity of bacteria as well as single-cell genomic analysis of other sample types. PMID:21809842

  6. Radical generating coordination complexes as tools for rapid and effective fragmentation and fluorescent labeling of nucleic acids for microchip hybridization.

    SciTech Connect

    Kelly, J. J.; Chernov, B. N.; Mirzabekov, A. D.; Bavykin, S. G.; Biochip Technology Center; Northwestern Univ.; Engelhardt Inst. of Molecular Biology

    2002-01-01

    DNA microchip technology is a rapid, high-throughput method for nucleic acid hybridization reactions. This technology requires random fragmentation and fluorescent labeling of target nucleic acids prior to hybridization. Radical-generating coordination complexes, such as 1,10-phenanthroline-Cu(II) (OP-Cu) and Fe(II)-EDTA (Fe-EDTA), have been commonly used as sequence nonspecific 'chemical nucleases' to introduce single-strand breaks in nucleic acids. Here we describe a new method based on these radical-generating complexes for random fragmentation and labeling of both single- and double-stranded forms of RNA and DNA. Nucleic acids labeled with the OP-Cu and the Fe-EDTA protocols revealed high hybridization specificity in hybridization with DNA microchips containing oligonucleotide probes selected for identification of 16S rRNA sequences of the Bacillus group microorganisms.We also demonstrated cDNA- and cRNA-labeling and fragmentation with this method. Both the OP-Cu and Fe-EDTA fragmentation and labeling procedures are quick and inexpensive compared to other commonly used methods. A column-based version of the described method does not require centrifugation and therefore is promising for the automation of sample preparations in DNA microchip technology as well as in other nucleic acid hybridization studies.

  7. In prostate cancer needle biopsies, detections of PTEN loss by fluorescence in situ hybridization (FISH) and by immunohistochemistry (IHC) are concordant and show consistent association with upgrading.

    PubMed

    Picanço-Albuquerque, C G; Morais, C L; Carvalho, F L F; Peskoe, S B; Hicks, J L; Ludkovski, O; Vidotto, T; Fedor, H; Humphreys, E; Han, M; Platz, E A; De Marzo, A M; Berman, D M; Lotan, T L; Squire, J A

    2016-05-01

    The prognostic value of phosphatase and tensin homolog (PTEN) loss in prostate cancer has primarily been evaluated by either fluorescence in situ hybridization (FISH) or immunohistochemistry (IHC). Previously, we found that PTEN loss by IHC was associated with increased risk of upgrading from biopsy (Gleason 3 + 3) to prostatectomy (Gleason 7+). Now, using an evaluable subset of 111 patients with adjacent biopsy sections, we analyzed the association between PTEN deletion in cancer and the odds of upgrading by a highly sensitive and specific four-color FISH assay. We also compared the concordance of PTEN loss by IHC and PTEN deletion by FISH. PTEN deletion was found in 27 % (12/45) of upgraded cases compared with 11 % (7/66) of controls (P = 0.03). Cancers with PTEN deletions were more likely to be upgraded than those without deletions (adjusting for age odds ratio = 3.40, 95 % confidence interval 1.14-10.11). With respect to concordance, of 93 biopsies with PTEN protein detected by IHC, 89 (96 %) had no PTEN deletion by FISH, and of 18 biopsies without PTEN protein by IHC, 15 had homozygous or hemizygous PTEN deletion by FISH. Only 4 biopsies of the 93 (4 %) with PTEN protein intact had PTEN deletion by FISH. When the regions of uncertainty in these biopsies were systematically studied by FISH, intra-tumoral variation of PTEN deletion was found, which could account for variation in immunoreactivity. Thus, FISH provides a different approach to determining PTEN loss when IHC is uncertain. Both FISH and IHC are concordant, showing consistent positive associations between PTEN loss and upgrading.

  8. Detection of Escherichia coli O157 by Peptide Nucleic Acid Fluorescence In Situ Hybridization (PNA-FISH) and Comparison to a Standard Culture Method

    PubMed Central

    Almeida, C.; Sousa, J. M.; Rocha, R.; Cerqueira, L.; Fanning, S.; Azevedo, N. F.

    2013-01-01

    Despite the emergence of non-O157 Shiga toxin-producing Escherichia coli (STEC) infections, E. coli serotype O157 is still the most commonly identified STEC in the world. It causes high morbidity and mortality and has been responsible for a number of outbreaks in many parts of the world. Various methods have been developed to detect this particular serotype, but standard bacteriological methods remain the gold standard. Here, we propose a new peptide nucleic acid fluorescence in situ hybridization (PNA-FISH) method for the rapid detection of E. coli O157. Testing on 54 representative strains showed that the PNA probe is highly sensitive and specific to E. coli O157. The method then was optimized for detection in food samples. Ground beef and unpasteurized milk samples were artificially contaminated with E. coli O157 concentrations ranging from 1 × 10−2 to 1 × 102 CFU per 25 g or ml of food. Samples were then preenriched and analyzed by both the traditional bacteriological method (ISO 16654:2001) and PNA-FISH. The PNA-FISH method performed well in both types of food matrices with a detection limit of 1 CFU/25 g or ml of food samples. Tests on 60 food samples have shown a specificity value of 100% (95% confidence interval [CI], 82.83 to 100), a sensitivity of 97.22% (95% CI, 83.79 to 99.85%), and an accuracy of 98.33% (CI 95%, 83.41 to 99.91%). Results indicate that PNA-FISH performed as well as the traditional culture methods and can reduce the diagnosis time to 1 day. PMID:23934486

  9. Observation and Quantification of Telomere and Repetitive Sequences Using Fluorescence In Situ Hybridization (FISH) with PNA Probes in Caenorhabditis elegans.

    PubMed

    Seo, Beomseok; Lee, Junho

    2016-01-01

    Telomere is a ribonucleoprotein structure that protects chromosomal ends from aberrant fusion and degradation. Telomere length is maintained by telomerase or an alternative pathway, known as alternative lengthening of telomeres (ALT)(1). Recently, C. elegans has emerged as a multicellular model organism for the study of telomere and ALT(2). Visualization of repetitive sequences in the genome is critical in understanding the biology of telomeres. While telomere length can be measured by telomere restriction fragment assay or quantitative PCR, these methods only provide the averaged telomere length. On the contrary, fluorescence in situ hybridization (FISH) can provide the information of the individual telomeres in cells. Here, we provide protocols and representative results of the method to determine telomere length of C. elegans by fluorescent in situ hybridization. This method provides a simple, but powerful, in situ procedure that does not cause noticeable damage to morphology. By using fluorescently labeled peptide nucleic acid (PNA) and digoxigenin-dUTP-labeled probe, we were able to visualize two different repetitive sequences: telomere repeats and template of ALT (TALT) in C. elegans embryos and gonads. PMID:27583462

  10. High-throughput single-cell gene-expression profiling with multiplexed error-robust fluorescence in situ hybridization

    PubMed Central

    Moffitt, Jeffrey R.; Hao, Junjie; Wang, Guiping; Chen, Kok Hao

    2016-01-01

    Image-based approaches to single-cell transcriptomics, in which RNA species are identified and counted in situ via imaging, have emerged as a powerful complement to single-cell methods based on RNA sequencing of dissociated cells. These image-based approaches naturally preserve the native spatial context of RNAs within a cell and the organization of cells within tissue, which are important for addressing many biological questions. However, the throughput of these image-based approaches is relatively low. Here we report advances that lead to a drastic increase in the measurement throughput of multiplexed error-robust fluorescence in situ hybridization (MERFISH), an image-based approach to single-cell transcriptomics. In MERFISH, RNAs are identified via a combinatorial labeling approach that encodes RNA species with error-robust barcodes followed by sequential rounds of single-molecule fluorescence in situ hybridization (smFISH) to read out these barcodes. Here we increase the throughput of MERFISH by two orders of magnitude through a combination of improvements, including using chemical cleavage instead of photobleaching to remove fluorescent signals between consecutive rounds of smFISH imaging, increasing the imaging field of view, and using multicolor imaging. With these improvements, we performed RNA profiling in more than 100,000 human cells, with as many as 40,000 cells measured in a single 18-h measurement. This throughput should substantially extend the range of biological questions that can be addressed by MERFISH. PMID:27625426

  11. Efficient ratiometric fluorescence probe based on dual-emission quantum dots hybrid for on-site determination of copper ions.

    PubMed

    Yao, Jianlei; Zhang, Kui; Zhu, Houjuan; Ma, Fang; Sun, Mingtai; Yu, Huan; Sun, Jian; Wang, Suhua

    2013-07-01

    Of various chemosensory protocols, the color change observed by the naked eye is considered to be a conceivable and on-site way to indicate the presence of an analyte. We herein designed a ratiometric fluorescence probe by hybridizing dual-emission quantum dots (QDs) and demonstrated its efficiency for on-site visual determination of copper ions. The hybrid probe comprises two sizes of cadmium telluride QDs emitting red and green fluorescence, respectively, in which the red-emitting ones are embedded in silica nanoparticles and the green-emitting ones are covalently linked onto the surface. The fluorescence of the embedded QDs is insensitive to the analyte, whereas the green emissive QDs are functionalized to be selectively quenched by the analyte. Upon exposure to different amounts of copper ions, the variations of the dual emission intensity ratios display continuous color changes from green to red, which can be clearly observed by the naked eye. The limit of detection for copper is estimated to be 1.1 nM, much lower than the allowable level of copper (~20 μM) in drinking water set by U.S. Environmental Protection Agency. The probe is demonstrated for the determination of copper ions in lake water and mineral water samples, especially for visually monitoring copper residues on herb leaves. This prototype ratiometric probe is simple, fully self-contained, and thus potentially attractive for visual identification without the need for elaborate equipment.

  12. Efficiency of fluorescence in situ hybridization for bacterial cell identification in temporary river sediments with contrasting water content.

    PubMed

    Fazi, Stefano; Amalfitano, Stefano; Pizzetti, Ilaria; Pernthaler, Jakob

    2007-09-01

    We studied the efficiency of two hybridization techniques for the analysis of benthic bacterial community composition under varying sediment water content. Microcosms were set up with sediments from four European temporary rivers. Wet sediments were dried, and dry sediments were artificially rewetted. The percentage of bacterial cells detected by fluorescence in situ hybridization with fluorescently monolabeled probes (FISH) significantly increased from dry to wet sediments, showing a positive correlation with the community activity measured via incorporation of (3)H leucine. FISH and signal amplification by catalyzed reporter deposition (CARD-FISH) could significantly better detect cells with low activity in dried sediments. Through the application of an optimized cell permeabilization protocol, the percentage of hybridized cells by CARD-FISH showed comparable values in dry and wet conditions. This approach was unrelated to (3)H leucine incorporation rates. Moreover, the optimized protocol allowed a significantly better visualization of Gram-positive Actinobacteria in the studied samples. CARD-FISH is, therefore, proposed as an effective technique to compare bacterial communities residing in sediments with contrasting water content, irrespective of differences in the activity state of target cells. Considering the increasing frequencies of flood and drought cycles in European temporary rivers, our approach may help to better understand the dynamics of microbial communities in such systems.

  13. Subcellular localization of low-abundance human immunodeficiency virus nucleic acid sequences visualized by fluorescence in situ hybridization

    SciTech Connect

    Lawrence, J.B.; Marselle, L.M.; Byron, K.S.; Johnson, C.V.; Sullivan, J.L.; Singer, R.H. )

    1990-07-01

    Detection and subcellular localization of human immunodeficiency virus (HIV) were investigated using sensitive high-resolution in situ hybridization methodology. Lymphocytes infected with HIV in vitro or in vivo were detected by fluorescence after hybridization with either biotin or digoxigenin-labeled probes. At 12 hr after infection in vitro, a single intense signal appeared in the nuclei of individual cells. Later in infection, when cytoplasmic fluorescence became intense, multiple nuclear foci frequently appeared. The nuclear focus consisted of newly synthesized HIV RNA as shown by hybridization in the absence of denaturation and by susceptibility to RNase and actinomycin D. Virus was detected in patient lymphocytes and it was shown that a singular nuclear focus also characterizes cells infected in vivo. The cell line 8E5/LAV containing one defective integrated provirus revealed a similar focus of nuclear RNA, and the single integrated HIV genome was unequivocally visualized on a D-group chromosome. This demonstrates an extremely sensitive single-cell assay for the presence of a single site of HIV transcription in vitro and in vivo and suggests that it derives from one (or very few) viral genomes per cell. In contrast, productive Epstein-Barr virus infection exhibited many foci of nuclear RNA per cell.

  14. A new probe using hybrid virus-dye nanoparticles for near-infrared fluorescence tomography

    NASA Astrophysics Data System (ADS)

    Wu, Changfeng; Barnhill, Hannah; Liang, Xiaoping; Wang, Qian; Jiang, Huabei

    2005-11-01

    A fluorescent probe based on bionanoparticle cowpea mosaic virus has been developed for near-infrared fluorescence tomography. A unique advantage of this probe is that over 30 dye molecules can be loaded onto each viral nanoparticle with an average diameter of 30 nm, making high local dye concentration (∼1.8 mM) possible without significant fluorescence quenching. This ability of high loading of local dye concentration would increase the signal-to-noise ratio considerably, thus sensitivity for detection. We demonstrate successful tomographic fluorescence imaging of a target containing the virus-dye nanoparticles embedded in a tissue-like phantom. Tomographic fluorescence data were obtained through a multi-channel frequency-domain system and the spatial maps of fluorescence quantum yield were recovered with a finite-element-based reconstruction algorithm.

  15. Cytogenetic abnormality in patients with multiple myeloma analyzed by fluorescent in situ hybridization

    PubMed Central

    Hu, Ying; Chen, Wenming; Chen, Shilun; Huang, Zhongxia

    2016-01-01

    Objective To analyze the fluorescent in situ hybridization (FISH) data and the association with clinical characteristics, therapy response, and survival time in patients with multiple myeloma. Method We performed a retrospective review of patients with multiple myeloma from November 2010 to April 2014. Results Cytogenetic abnormalities by FISH were detectable in 66% of patients. One cytogenetic abnormality, two cytogenetic abnormalities, and complex abnormalities were detectable in 21.2%, 51.5%, and 27.3% of cases, respectively. 1q21 amplification, t(4p16.3/14q32), and 17p deletion were observed in 69.7%, 30.3%, and 21.2% of cases, respectively. Total response rates (complete response [CR] + near CR + partial response) were 93.8% and 82.1%, respectively, in cytogenetic normality group and abnormality group. CR rates were 50% and 32.1%, respectively. Median overall survival (OS) time was 51 months and 24 months, respectively, in cytogenetic normality group and abnormality group (P<0.05). Median OS time was not significantly different between 1q21 amplification group and no 1q21 amplification group in patients with FISH abnormalities (P>0.05). Median OS time was not significantly different between t(4;14) group and no t(4;14) group in patients with FISH abnormalities (P>0.05). Seven patients of 17p deletion died in 2 years. Conclusion Multiple myeloma is characterized by a high occurrence of chromosomal aberrations. 1q21 amplification and t(4;14) are the most common abnormalities. Multiple cytogenetic abnormalities are frequently observed in the same one patient. The total response rate, CR rate, and OS time are worse in cytogenetic abnormal patients compared with cytogenetic normal patients. Patients with 17p deletion have a very poor prognosis. Future goals of therapy will be to achieve minimal residual disease, biomarkers, and genomic data, which might provide a better estimate of the depth of response to therapy and OS. PMID:27042105

  16. High sensitivity knitted fabric strain sensors

    NASA Astrophysics Data System (ADS)

    Xie, Juan; Long, Hairu; Miao, Menghe

    2016-10-01

    Wearable sensors are increasingly used in smart garments for detecting and transferring vital signals and body posture, movement and respiration. Existing fabric strain sensors made from metallized yarns have low sensitivity, poor comfort and low durability to washing. Here we report a knitted fabric strain sensor made from a cotton/stainless steel (SS) fibre blended yarn which shows much higher sensitivity than sensors knitted from metallized yarns. The fabric feels softer than pure cotton textiles owing to the ultrafine stainless steel fibres and does not lose its electrical property after washing. The reason for the high sensitivity of the cotton/SS knitted fabric sensor was explored by comparing its sensing mechanism with the knitted fabric sensor made from metallized yarns. The results show that the cotton/SS yarn-to-yarn contact resistance is highly sensitive to strain applied to hooked yarn loops.

  17. High sensitivity cymbal-based accelerometer

    SciTech Connect

    Sun Chengliang; Lam, K.H.; Choy, S.H.; Chan, H.L. W.; Zhao, X.-Z.; Choy, C.L.

    2006-03-15

    A high sensitivity piezoelectric accelerometer has been developed by replacing the conventional piezoelectric rings with a cymbal transducer. The sensitivity of the cymbal-based accelerometers containing cymbal transducers with different endcap thicknesses and different seismic masses has been measured as a function of driving frequency. Due to the high d{sub 33}{sup '} coefficient of the cymbal transducers, the cymbal-based accelerometers have a high sensitivity of {approx}97 pC/ms{sup -2} with the amplitude rise of 2.85% (<1 dB) at one-third of the mounted resonance frequency (3.38 kHz). The effect of the seismic mass, the resonance frequency, and d{sub 33}{sup '} coefficient of the cymbal transducers on the sensitivity and the frequency range of the cymbal-based accelerometers are reported.

  18. [Clinical interpretation of high sensitivity troponin T].

    PubMed

    Alquézar Arbé, Aitor; Santaló Bel, Miguel; Sionis, Alessandro

    2015-09-21

    Determination of cardiac troponin (cTn) is necessary for the diagnosis of acute myocardial infarction without ST segment elevation. However Tnc can be released in other clinical situations. The development of high-sensitive cTn T assays (hs-cTnT) improves the management of patients with suspected acute coronary syndrome. Here, we provide an overview of the diverse causes of hs-cTnT elevation and recommend strategies for the clinical interpretation of the test result.

  19. DNAzyme-based biosensor for Cu(2+) ion by combining hybridization chain reaction with fluorescence resonance energy transfer technique.

    PubMed

    Chen, Ying; Chen, Ling; Ou, Yidian; Wang, Zhenhua; Fu, Fengfu; Guo, Liangqia

    2016-08-01

    A novel signal amplification strategy based on Cu(2+)-dependent DNAzyme was developed for sensing Cu(2+) ion by combining hybridization chain reaction (HCR) with fluorescence resonance energy transfer (FRET) technique. In the presence of Cu(2+) ion, the substrate strands of Cu(2+)-dependent DNAzyme immobilized on magnetic beads were specifically cleaved and released. The released strands initiated the HCR process of hairpin H1 and H2 labeled with FAM as the donor and TAMRA as the acceptor, respectively. Long nicked dsDNA structures were self-assembled to bring the donor and the acceptor in close proximity, resulting in a FRET process. The relative ratio of fluorescent intensities of the acceptor and donor was used to quantitatively detect Cu(2+) ion with a limit of detection of 0.5nmolL(-1). This proposed biosensor was applied to detect Cu(2+) ion in tap water with satisfactory results.

  20. Rapid prenatal diagnosis of chromosomal aneuploidies by fluorescence in situ hybridization: clinical experience with 4,500 specimens.

    PubMed Central

    Ward, B E; Gersen, S L; Carelli, M P; McGuire, N M; Dackowski, W R; Weinstein, M; Sandlin, C; Warren, R; Klinger, K W

    1993-01-01

    Detection of chromosome aneuploidies in uncultured amniocytes is possible using fluorescence in situ hybridization (FISH). We herein describe the results of the first clinical program which utilized FISH for the rapid detection of chromosome aneuploidies in uncultured amniocytes. FISH was performed on physician request, as an adjunct to cytogenetics in 4,500 patients. Region-specific DNA probes to chromosomes 13, 18, 21, X, and Y were used to determine ploidy by analysis of signal number in hybridized nuclei. A sample was considered to be euploid when all autosomal probes generated two hybridization signals and when a normal sex chromosome pattern was observed in greater than or equal to 80% of hybridized nuclei. A sample was considered to be aneuploid when greater than or equal to 70% of hybridized nuclei displayed the same abnormal hybridization pattern for a specific probe. Of the attempted analyses, 90.2% met these criteria and were reported as informative to referring physicians within 2 d of receipt. Based on these reporting parameters, the overall detection rate for aneuploidies was 73.3% (107/146), with an accuracy of informative results for aneuploidies of 93.9% (107/114). Compared to cytogenetics, the accuracy of all informative FISH results, euploid and aneuploid, was 99.8%, and the specificity was 99.9%. In those pregnancies where fetal abnormalities had been observed by ultrasound, referring physicians requested FISH plus cytogenetics at a significantly higher rate than they requested cytogenetics alone. The current prenatal FISH protocol is not designed to detect all chromosome abnormalities and should only be utilized as an adjunctive test to cytogenetics. This experience demonstrates that FISH can provide a rapid and accurate clinical method for prenatal identification of chromosome aneuploidies. PMID:8488836

  1. Rapid prenatal diagnosis of chromosomal aneuploidies by fluorescence in situ hybridization: Clinical experience with 4,500 specimens

    SciTech Connect

    Ward, B.E.; Gersen, S.L.; Carelli, M.P.; McGuire, N.M.; Dackowski, W.R.; Klinger, K.W. ); Weinstein, M. ); Sandlin, C. ); Klinger, K.W. )

    1993-05-01

    Detection of chromosome aneuploidies in uncultured amniocytes is possible using fluorescence in situ hybridization (FISH). The authors herein describe the results of the first clinical program which utilized FISH for the rapid detection of chromosome aneuploidies in uncultured amniocytes. FISH was performed on physician request, as an adjunct to cytogenetics in 4,500 patients. Region-specific DNA probes to chromosomes 13, 18, 21, X, and Y were used to determine ploidy by analysis of signal number in hybridized nuclei. A sample was considered to be euploid when all autosomal probes generated two hybridization signals and when a normal sex chromosome pattern was observed in greater than or equal to 80% of hybridized nuclei. A sample was considered to be aneuploid when greater than or equal to 70% of hybridized nuclei displayed the same abnormal hybridization pattern for a specific probe. Of the attempted analyses, 90.2% met these criteria and were reported as informative to referring physicians within 2 d of receipt. Based on these reporting parameters, the overall detection rate for aneuploidies was 73.3% (107/146), with an accuracy of informative results for aneuploidies of 93.9% (107/114). Compared to cytogenetics, the accuracy of all informative FISH results, euploid and aneuploid, was 99.8%, and the specificity was 99.9%. In those pregnancies where fetal abnormalities had been observed by ultrasound, referring physicians requested FISH plus cytogenetics at a significantly higher rate than they requested cytogenetics alone. The current prenatal FISH protocol is not designed to detect all chromosome abnormalities and should only be utilized as an adjunctive test to cytogenetics. This experience demonstrates that FISH can provide a rapid and accurate clinical method for prenatal identification of chromosome aneuploidies. 40 refs., 1 fig., 5 tabs.,

  2. Multiplex fluorescence in situ hybridization (M-FISH) and confocal laser scanning microscopy (CLSM) to analyze multispecies oral biofilms.

    PubMed

    Karygianni, Lamprini; Hellwig, Elmar; Al-Ahmad, Ali

    2014-01-01

    Multiplex fluorescence in situ hybridization (M-FISH) constitutes a favorable microbiological method for the analysis of spatial distribution of highly variable phenotypes found in multispecies oral biofilms. The combined use of confocal laser scanning microscopy (CLSM) produces high-resolution three-dimensional (3D) images of individual bacteria in their natural environment. Here, we describe the application of M-FISH on early (Streptococcus spp., Actinomyces naeslundii) and late colonizers (Fusobacterium nucleatum, Veillonella spp.) of in situ-formed oral biofilms, the acquisition of CLSM images, as well as the qualitative and quantitative analysis of these digitally obtained and processed images.

  3. [A Case of Xp.11.2 Traslocational Renal Cell Carcinoma Diagnosed by Fluorescence in Situ Hybridization (FISH)].

    PubMed

    Iinuma, Koji; Kojima, Keitaro; Okamoto, Kiyohisa; Yuhara, Kazuya

    2016-08-01

    A 72-year-old woman was referred to our hospital with complaints of macro-hematuria. The radiographic evaluation including computed tomography (CT) and magnetic resonance imaging (MRI) suggested it to be renal cell carcinoma (RCC) in her right kidney. She underwent laparoscopic nephrectomy. We diagnosed her with renal cell carcinoma associated with Xp11.2 translocation/TFE3 gene fusion, based on pathological findings and break apart of transcription factor E3 (TFE3)by fluorescence in situ hybridization. She was free of recurrence at 8 months postoperatively. PMID:27624107

  4. Spreading and fluorescence in situ hybridization of male and female meiocyte chromosomes from Arabidopsis thaliana for cytogenetical analysis.

    PubMed

    Armstrong, Susan

    2013-01-01

    Advances in molecular biology and in the genetics of Arabidopsis thaliana have led to it becoming an important model for the analysis of meiosis in plants. Cytogenetic investigations are pivotal to meiotic studies and a number of technological improvements for Arabidopsis cytology have provided a range of tools to investigate chromosome behavior during meiosis. This chapter contains a detailed description of cytological techniques currently used in our laboratory for the basic preparation of meiotic chromosomes for investigation of the female and male meiotic pathway and fluorescence in situ hybridization (FISH) analysis for the frequency and distribution of crossovers (chiasmata) at metaphase I.

  5. Fluorescence in situ hybridizations (FISH) for the localization of viruses and endosymbiotic bacteria in plant and insect tissues.

    PubMed

    Kliot, Adi; Kontsedalov, Svetlana; Lebedev, Galina; Brumin, Marina; Cathrin, Pakkianathan Britto; Marubayashi, Julio Massaharu; Skaljac, Marisa; Belausov, Eduard; Czosnek, Henryk; Ghanim, Murad

    2014-02-24

    Fluorescence in situ hybridization (FISH) is a name given to a variety of techniques commonly used for visualizing gene transcripts in eukaryotic cells and can be further modified to visualize other components in the cell such as infection with viruses and bacteria. Spatial localization and visualization of viruses and bacteria during the infection process is an essential step that complements expression profiling experiments such as microarrays and RNAseq in response to different stimuli. Understanding the spatiotemporal infections with these agents complements biological experiments aimed at understanding their interaction with cellular components. Several techniques for visualizing viruses and bacteria such as reporter gene systems or immunohistochemical methods are time-consuming, and some are limited to work with model organisms and involve complex methodologies. FISH that targets RNA or DNA species in the cell is a relatively easy and fast method for studying spatiotemporal localization of genes and for diagnostic purposes. This method can be robust and relatively easy to implement when the protocols employ short hybridizing, commercially-purchased probes, which are not expensive. This is particularly robust when sample preparation, fixation, hybridization, and microscopic visualization do not involve complex steps. Here we describe a protocol for localization of bacteria and viruses in insect and plant tissues. The method is based on simple preparation, fixation, and hybridization of insect whole mounts and dissected organs or hand-made plant sections, with 20 base pairs short DNA probes conjugated to fluorescent dyes on their 5' or 3' ends. This protocol has been successfully applied to a number of insect and plant tissues, and can be used to analyze expression of mRNAs or other RNA or DNA species in the cell.

  6. Identification of peanut (Arachis hypogaea) chromosomes using a fluorescence in situ hybridization system reveals multiple hybridization events during tetraploid peanut formation.

    PubMed

    Zhang, Laining; Yang, Xiaoyu; Tian, Li; Chen, Lei; Yu, Weichang

    2016-09-01

    The cultivated peanut Arachis hypogaea (AABB) is thought to have originated from the hybridization of Arachis duranensis (AA) and Arachis ipaënsis (BB) followed by spontaneous chromosome doubling. In this study, we cloned and analyzed chromosome markers from cultivated peanut and its wild relatives. A fluorescence in situ hybridization (FISH)-based karyotyping cocktail was developed with which to study the karyotypes and chromosome evolution of peanut and its wild relatives. Karyotypes were constructed in cultivated peanut and its two putative progenitors using our FISH-based karyotyping system. Comparative karyotyping analysis revealed that chromosome organization was highly conserved in cultivated peanut and its two putative progenitors, especially in the B genome chromosomes. However, variations existed between A. duranensis and the A genome chromosomes in cultivated peanut, especially for the distribution of the interstitial telomere repeats (ITRs). A search of additional A. duranensis varieties from different geographic regions revealed both numeric and positional variations of ITRs, which were similar to the variations in tetraploid peanut varieties. The results provide evidence for the origin of cultivated peanut from the two diploid ancestors, and also suggest that multiple hybridization events of A. ipaënsis with different varieties of A. duranensis may have occurred during the origination of peanut.

  7. Above 20% external quantum efficiency in novel hybrid white organic light-emitting diodes having green thermally activated delayed fluorescent emitter

    NASA Astrophysics Data System (ADS)

    Kim, Bo Seong; Yook, Kyoung Soo; Lee, Jun Yeob

    2014-08-01

    High efficiency hybrid type white organic light-emitting diodes (WOLEDs) combining a green thermally activated delayed fluorescent (TADF) emitting material with red/blue phosphorescent emitting materials were developed by manipulating the device architecture of WOLEDs. Energy transfer between a blue phosphorescent emitting material and a green TADF emitter was efficient and could be managed by controlling the doping concentration of emitters. A high quantum efficiency above 20% was achieved in the hybrid WOLEDs by optimizing the device structure of the hybrid type WOLEDs for the first time and the device performances of the hybrid WOLEDs were comparable to those of all phosphorescent WOLEDs.

  8. Vidas UP-enzyme-linked fluorescent immunoassay based on recombinant phage protein and fluorescence in situ hybridization as alternative methods for detection of Salmonella enterica serovars in meat.

    PubMed

    Zadernowska, Anna; Chajęcka-Wierzchowska, Wioleta; Kłębukowska, Lucyna

    2014-09-01

    Several methods for the rapid and specific detection of Salmonella spp. in meat have been described. This study was conducted to evaluate the capability of the VIDAS(®) UP (SPT [Salmonella Phage Technology]), an enzyme-linked fluorescent immunoassay method, and fluorescence in situ hybridization (FISH) to complement the International Organization for Standardization Method 6579 (ISO) in detecting Salmonella spp. from beef, pork, and poultry meat samples. The meat was inoculated with a mixture of Salmonella spp. on three levels of contamination. It was also checked that the tests did not produce cross-reactions with other Enterobacteriaceae rods. On the basis of the results, the relative specificity, relative accordance, and relative sensitivity of the method were determined. In meat samples, Vidas UP and FISH detection results were in substantial agreement with ISO, with relative specificity, accordance, and sensitivity rates of 90%, 96.3%, and 100%, respectively, for Vidas UP and 100%, 100%, and 99.4%, respectively, for FISH. This is the first report on the evaluation of both Vidas UP and FISH compared to ISO for the rapid detection of Salmonella enterica serovars in meat.

  9. Determination of catecholamine in human serum by a fluorescent quenching method based on a water-soluble fluorescent conjugated polymer-enzyme hybrid system.

    PubMed

    Huang, Hui; Gao, Yuan; Shi, Fanping; Wang, Guannan; Shah, Syed Mazhar; Su, Xingguang

    2012-03-21

    In this paper, a sensitive water-soluble fluorescent conjugated polymer biosensor for catecholamine (dopamine DA, adrenaline AD and norepinephrine NE) was developed. In the presence of horse radish peroxidase (HRP) and H(2)O(2), catecholamine could be oxidized and the oxidation product of catecholamine could quench the photoluminescence (PL) intensity of poly(2,5-bis(3-sulfonatopropoxy)-1,4-phenylethynylenealt-1,4-poly(phenylene ethynylene)) (PPESO(3)). The quenching PL intensity of PPESO(3) (I(0)/I) was proportional to the concentration of DA, AD and NE in the concentration ranges of 5.0 × 10(-7) to 1.4 × 10(-4), 5.0 × 10(-6) to 5.0 × 10(-4), and 5.0 × 10(-6) to 5.0 × 10(-4) mol L(-1), respectively. The detection limit for DA, AD and NE was 1.4 × 10(-7) mol L(-1), 1.0 × 10(-6) and 1.0 × 10(-6) mol L(-1), respectively. The PPESO(3)-enzyme hybrid system based on the fluorescence quenching method was successfully applied for the determination of catecholamine in human serum samples with good accuracy and satisfactory recovery. The results were in good agreement with those provided by the HPLC-MS method. PMID:22314795

  10. Application of a direct fluorescence-based live/dead staining combined with fluorescence in situ hybridization for assessment of survival rate of Bacteroides spp. in drinking water.

    PubMed

    Savichtcheva, Olga; Okayama, Noriko; Ito, Tsukasa; Okabe, Satoshi

    2005-11-01

    To evaluate the viability and survival ability of fecal Bacteroides spp. in environmental waters, a fluorescence-based live/dead staining method using ViaGram Red+ Bacterial gram stain and viability kit was combined with fluorescent in situ hybridization (FISH) with 16S rRNA-targeted oligonucleotide probe (referred as LDS-FISH). The proposed LDS-FISH was a direct and reliable method to detect fecal Bacteroides cells and their viability at single-cell level in complex microbial communities. The pure culture of Bacteroides fragilis and whole human feces were dispersed in aerobic drinking water and incubated at different water temperatures (4 degrees C, 13 degrees C, 18 degrees C, and 24 degrees C), and then the viability of B. fragilis and fecal Bacteroides spp. were determined by applying the LDS-FISH. The results revealed that temperature and the presence of oxygen have significant effects on the survival ability. Increasing the temperature resulted in a rapid decrease in the viability of both pure cultured B. fragilis cells and fecal Bacteroides spp. The live pure cultured B. fragilis cells could be found at the level of detection in drinking water for 48 h of incubation at 24 degrees C, whereas live fecal Bacteroides spp. could be detected for only 4 h of incubation at 24 degrees C. The proposed LDS-FISH method should provide useful quantitative information on the presence and viability of Bacteroides spp., a potential alternative fecal indicator, in environmental waters.

  11. Fluorescence detection of KRAS2 mRNA hybridization in lung cancer cells with PNA-peptides containing an internal thiazole orange.

    PubMed

    Sonar, Mahesh V; Wampole, Matthew E; Jin, Yuan-Yuan; Chen, Chang-Po; Thakur, Mathew L; Wickstrom, Eric

    2014-09-17

    We previously developed reporter-peptide nucleic acid (PNA)-peptides for sequence-specific radioimaging and fluorescence imaging of particular mRNAs in cells and tumors. However, a direct test for PNA-peptide hybridization with RNA in the cytoplasm would be desirable. Thiazole orange (TO) dye at the 5' end of a hybridization agent shows a strong increase in fluorescence quantum yield when stacked upon a 5' terminal base pair, in solution and in cells. We hypothesized that hybridization agents with an internal TO could distinguish a single base mutation in RNA. Thus, we designed KRAS2 PNA-IGF1 tetrapeptide agents with an internal TO adjacent to the middle base of the 12th codon, a frequent site of cancer-initiating mutations. Our molecular dynamics calculations predicted a disordered bulge with weaker hybridization resulting from a single RNA mismatch. We observed that single-stranded PNA-IGF1 tetrapeptide agents with an internal TO showed low fluorescence, but fluorescence escalated 5-6-fold upon hybridization with KRAS2 RNA. Circular dichroism melting curves showed ∼10 °C higher Tm for fully complementary vs single base mismatch TO-PNA-peptide agent duplexes with KRAS2 RNA. Fluorescence measurements of treated human lung cancer cells similarly showed elevated cytoplasmic fluorescence intensity with fully complementary vs single base mismatch agents. Sequence-specific elevation of internal TO fluorescence is consistent with our hypothesis of detecting cytoplasmic PNA-peptide:RNA hybridization if a mutant agent encounters the corresponding mutant mRNA.

  12. Fluorescence Detection of KRAS2 mRNA Hybridization in Lung Cancer Cells with PNA-Peptides Containing an Internal Thiazole Orange

    PubMed Central

    2015-01-01

    We previously developed reporter-peptide nucleic acid (PNA)-peptides for sequence-specific radioimaging and fluorescence imaging of particular mRNAs in cells and tumors. However, a direct test for PNA-peptide hybridization with RNA in the cytoplasm would be desirable. Thiazole orange (TO) dye at the 5′ end of a hybridization agent shows a strong increase in fluorescence quantum yield when stacked upon a 5′ terminal base pair, in solution and in cells. We hypothesized that hybridization agents with an internal TO could distinguish a single base mutation in RNA. Thus, we designed KRAS2 PNA-IGF1 tetrapeptide agents with an internal TO adjacent to the middle base of the 12th codon, a frequent site of cancer-initiating mutations. Our molecular dynamics calculations predicted a disordered bulge with weaker hybridization resulting from a single RNA mismatch. We observed that single-stranded PNA-IGF1 tetrapeptide agents with an internal TO showed low fluorescence, but fluorescence escalated 5–6-fold upon hybridization with KRAS2 RNA. Circular dichroism melting curves showed ∼10 °C higher Tm for fully complementary vs single base mismatch TO-PNA-peptide agent duplexes with KRAS2 RNA. Fluorescence measurements of treated human lung cancer cells similarly showed elevated cytoplasmic fluorescence intensity with fully complementary vs single base mismatch agents. Sequence-specific elevation of internal TO fluorescence is consistent with our hypothesis of detecting cytoplasmic PNA-peptide:RNA hybridization if a mutant agent encounters the corresponding mutant mRNA. PMID:25180641

  13. Luminescent Lanthanide Reporters for High-Sensitivity Novel Bioassays.

    SciTech Connect

    Anstey, Mitchell R.; Fruetel, Julia A.; Foster, Michael E.; Hayden, Carl C.; Buckley, Heather L.; Arnold, John

    2013-09-01

    Biological imaging and assay technologies rely on fluorescent organic dyes as reporters for a number of interesting targets and processes. However, limitations of organic dyes such as small Stokes shifts, spectral overlap of emission signals with native biological fluorescence background, and photobleaching have all inhibited the development of highly sensitive assays. To overcome the limitations of organic dyes for bioassays, we propose to develop lanthanide-based luminescent dyes and demonstrate them for molecular reporting applications. This relatively new family of dyes was selected for their attractive spectral and chemical properties. Luminescence is imparted by the lanthanide atom and allows for relatively simple chemical structures that can be tailored to the application. The photophysical properties offer unique features such as narrow and non-overlapping emission bands, long luminescent lifetimes, and long wavelength emission, which enable significant sensitivity improvements over organic dyes through spectral and temporal gating of the luminescent signal.Growth in this field has been hindered due to the necessary advanced synthetic chemistry techniques and access to experts in biological assay development. Our strategy for the development of a new lanthanide-based fluorescent reporter system is based on chelation of the lanthanide metal center using absorbing chromophores. Our first strategy involves "Click" chemistry to develop 3-fold symmetric chelators and the other involves use of a new class of tetrapyrrole ligands called corroles. This two-pronged approach is geared towards the optimization of chromophores to enhance light output.

  14. Portable evanescent wave fiber biosensor for highly sensitive detection of Shigella.

    PubMed

    Xiao, Rui; Rong, Zhen; Long, Feng; Liu, Qiqi

    2014-11-11

    A portable evanescent wave fiber biosensor was developed to achieve the rapid and highly sensitive detection of Shigella. In this study, a DNA probe was covalently immobilized onto fiber-optic biosensors that can hybridize with a fluorescently labeled complementary DNA. The sensitivity of detection for synthesized oligonucleotides can reach 10(-10) M. The surface of the sensor can be regenerated with 0.5% sodium dodecyl sulfate solution (pH 1.9) for over 30 times without significant deterioration of performance. The total analysis time for a single sample, including the time for measurement and surface regeneration, was less than 6 min. We employed real-time polymerase chain reaction (PCR) and compared the results of both methods to investigate the actual Shigella DNA detection capability of the fiber-optic biosensor. The fiber-optic biosensor could detect as low as 10(2) colony-forming unit/mL Shigella. This finding was comparable with that by real-time PCR, which suggests that this method is a potential alternative to existing detection methods.

  15. Highly sensitive detection of leukemia cells based on aptamer and quantum dots.

    PubMed

    Yu, Yating; Duan, Siliang; He, Jian; Liang, Wei; Su, Jing; Zhu, Jianmeng; Hu, Nan; Zhao, Yongxiang; Lu, Xiaoling

    2016-08-01

    Detection of leukemia at the early stage with high sensitivity is a significant clinical challenge for clinicians. In the present study, we developed a sensitive detector consisting of the product of oligonucleotides hybridized with semiconductor quantum dots (QDs) to generate a stronger fluorescent signal so that leukemic cells can be captured. In the present study, a biotin-modified Sgc8 aptamer was used to identify CCRF-CEM cells, and then biotin-appended QDs were labeled with the aptamer via streptavidin and biotin amplification interactions. We described the complex as QDs-bsb-apt. CEM and Ramos cells were used to assess the specificity and sensitivity of the novel complex. These results revealed that the complex could be more effective in diagnosing leukemia at the early stage. In conclusion, an innovative structure based on aptamer and QDs for leukemia diagnosis was provided. It has the potential to image tumor cells in vitro or in vivo and to realize the early diagnosis of disease. Furthermore, it may be used to provide guidance for clinicians to implement individualized patient therapy. PMID:27375197

  16. Portable evanescent wave fiber biosensor for highly sensitive detection of Shigella

    NASA Astrophysics Data System (ADS)

    Xiao, Rui; Rong, Zhen; Long, Feng; Liu, Qiqi

    2014-11-01

    A portable evanescent wave fiber biosensor was developed to achieve the rapid and highly sensitive detection of Shigella. In this study, a DNA probe was covalently immobilized onto fiber-optic biosensors that can hybridize with a fluorescently labeled complementary DNA. The sensitivity of detection for synthesized oligonucleotides can reach 10-10 M. The surface of the sensor can be regenerated with 0.5% sodium dodecyl sulfate solution (pH 1.9) for over 30 times without significant deterioration of performance. The total analysis time for a single sample, including the time for measurement and surface regeneration, was less than 6 min. We employed real-time polymerase chain reaction (PCR) and compared the results of both methods to investigate the actual Shigella DNA detection capability of the fiber-optic biosensor. The fiber-optic biosensor could detect as low as 102 colony-forming unit/mL Shigella. This finding was comparable with that by real-time PCR, which suggests that this method is a potential alternative to existing detection methods.

  17. Fluorescence Probe Based on Hybrid Mesoporous Silica/Quantum Dot/Molecularly Imprinted Polymer for Detection of Tetracycline.

    PubMed

    Zhang, Liang; Chen, Ligang

    2016-06-29

    A newly designed fluorescence probe made from a hybrid quantum dot/mesoporous silica/molecularly imprinted polymer (QD/MS/MIP) was successfully created, and the probe was used for the detection of tetracycline (TC) in serum sample. QD/MS/MIP was characterized by transmission electron microscope, Fourier transform infrared spectroscopy, UV spectroscopy, X-ray powder diffraction, nitrogen adsorption-desorption experiment and fluorescence spectroscopy. Tetracycline, which is a type of broad-spectrum antibiotic, was selected as the template. The monomer and the template were combined by covalent bonds. After the template was removed to form a binding site, a hydrogen bonding interaction formed between the hole and the target molecule. Moreover, when rebinding TC, a new complex was produced between the amino group of QD/MS/MIP and the hydroxyl group of TC. After that, the energy of the QDs could transfer to the complex, which explains the fluorescence quenching phenomenon. The fluorescent intensity of QD/MS/MIP decreased in 10 min, and an excellent linearity from 50 to 1000 ng mL(-1) was correspondingly obtained. This composite material has a high selectivity with an imprinting factor of 6.71. In addition, the confirmed probe strategy was successfully applied to serum sample analyses, and the recoveries were 90.2%-97.2% with relative standard deviations of 2.2%-5.7%. This current work offers a novel and suitable method to synthesize QD/MS/MIP with a highly selective recognition ability. This composite material will be valuable for use in fluorescence probe applications. PMID:27280785

  18. Detection of aneuploidy in sperm of an ataxia telangiectasia patient using three-chromosome fluorescence in situ hybridization

    SciTech Connect

    Lowe, X.R.; Baulch, J.E.; Arnheim, N.

    1994-09-01

    Ataxia telangiectasia (A-T) is an inherited, recessive, cancer-prone disorder. Fluorescence in situ hybridization (FISH) with DNA probes specific for three chromosomes was applied to sperm of an A-T patient to determine if there may be an increased germinal risk for aneuploidy. Air-dried sperm smears were treated with proteinase K and were decondensed with DTT and LIS. The slides were then hybridized with fluorescently labeled repetitive DNA probes specific for chromosomes X, Y and 8, and a total of 11,825 sperm cells were scored. The ratio of sperm bearing X-8 and Y-8 was 1:1, as predicted. The frequencies of hyperhaploidy were 3.9, 1.0, 17.6 and 7.8 per 10,000 cells for categories X-X-8, Y-Y-8, X-Y-8 and 8-8-(X or Y), respectively, In addition, the frequency of diploidy (X-Y-8-8) was 18.6 and auto-diploidies (X-X-8-8 and Y-Y-8-8) were 1.0 and 2.0, respectively. These frequencies were not significantly different when compared with levels in healthy men (p > 0.1). Our finding suggests that chromosome X, Y and 8 aneuploidies are not elevated in the sperm of A-T patients, but studies with additional patients and chromosomes are needed.

  19. [Clinical interpretation of high sensitivity troponin T].

    PubMed

    Alquézar Arbé, Aitor; Santaló Bel, Miguel; Sionis, Alessandro

    2015-09-21

    Determination of cardiac troponin (cTn) is necessary for the diagnosis of acute myocardial infarction without ST segment elevation. However Tnc can be released in other clinical situations. The development of high-sensitive cTn T assays (hs-cTnT) improves the management of patients with suspected acute coronary syndrome. Here, we provide an overview of the diverse causes of hs-cTnT elevation and recommend strategies for the clinical interpretation of the test result. PMID:25620025

  20. A strategy for antimicrobial regulation based on fluorescent conjugated oligomer-DNA hybrid hydrogels.

    PubMed

    Cao, Ali; Tang, Yanli; Liu, Yue; Yuan, Huanxiang; Liu, Libing

    2013-06-21

    New fluorescent oligo(phenylene ethynylene)-DNA hydrogels have been prepared and used for the controllable biocidal activity driven by DNase. This study opens a new way of controllable drug release and antimicrobial regulation.

  1. Hybrid silica-gold core-shell nanoparticles for fluorescence enhancement

    NASA Astrophysics Data System (ADS)

    Grzelak, J.; Krajewska, A.; Krajnik, B.; Jamiola, D.; Choma, J.; Jankiewicz, B.; Piątkowski, D.; Nyga, P.; Mackowski, S.

    2016-06-01

    We demonstrate that SiO2 nanoparticles coated with a gold island film (GIF) provide an efficient plasmonic platform for enhancing fluorescence intensity of chlorophyll-containing photosynthetic complexes. Fluorescence images obtained for single SiO2-Au coreshell nanoparticles mixed with photosynthetic complexes reveal very uniform emission patterns of a circular shape, similarly as observed for bare SiO2 nanoparticles. The fluorescence enhancement of chlorophyll emission for SiO2-Au nanostructures is up to four-fold compared to bare SiO2 nanoparticles and shortening of fluorescence decay indicates its plasmonic origin. For doublets or triplets of core-shell SiO2-Au nanoparticles, the intensity of emission is further increased as a result of hot-spot formation at the interfaces of such assemblies.

  2. Nucleic acid in-situ hybridization detection of infectious agents

    NASA Astrophysics Data System (ADS)

    Thompson, Curtis T.

    2000-04-01

    Limitations of traditional culture methods and newer polymerase chain reaction (PCR)-based methods for detection and speciation of infectious agents demonstrate the need for more rapid and better diagnostics. Nucleic acid hybridization is a detection technology that has gained wide acceptance in cancer and prenatal cytogenetics. Using a modification of the nucleic acid hybridization technique known as fluorescence in-situ hybridization, infectious agents can be detected in a variety of specimens with high sensitivity and specificity. The specimens derive from all types of human and animal sources including body fluids, tissue aspirates and biopsy material. Nucleic acid hybridization can be performed in less than one hour. The result can be interpreted either using traditional fluorescence microscopy or automated platforms such as micro arrays. This paper demonstrates proof of concept for nucleic acid hybridization detection of different infectious agents. Interpretation within a cytologic and histologic context is possible with fluorescence microscopic analysis, thereby providing confirmatory evidence of hybridization. With careful probe selection, nucleic acid hybridization promises to be a highly sensitive and specific practical diagnostic alternative to culture, traditional staining methods, immunohistochemistry and complicated nucleic acid amplification tests.

  3. Fluorescence In Vivo Hybridization (FIVH) for Detection of Helicobacter pylori Infection in a C57BL/6 Mouse Model

    PubMed Central

    Fontenete, Sílvia; Leite, Marina; Cappoen, Davie; Santos, Rita; Ginneken, Chris Van; Figueiredo, Céu; Wengel, Jesper; Cos, Paul; Azevedo, Nuno Filipe

    2016-01-01

    Introduction In this study, we applied fluorescence in vivo hybridization (FIVH) using locked nucleic acid (LNA) probes targeting the bacterial rRNA gene for in vivo detection of H. pylori infecting the C57BL/6 mouse model. A previously designed Cy3_HP_LNA/2OMe_PS probe, complementary to a sequence of the H. pylori 16S rRNA gene, was used. First, the potential cytotoxicity and genotoxicity of the probe was assessed by commercial assays. Further, the performance of the probe for detecting H. pylori at different pH conditions was tested in vitro, using fluorescence in situ hybridization (FISH). Finally, the efficiency of FIVH to detect H. pylori SS1 strain in C57BL/6 infected mice was evaluated ex vivo in mucus samples, in cryosections and paraffin-embedded sections by epifluorescence and confocal microscopy. Results H. pylori SS1 strain infecting C57BL/6 mice was successfully detected by the Cy3_HP_LNA/2OMe_PS probe in the mucus, attached to gastric epithelial cells and colonizing the gastric pits. The specificity of the probe for H. pylori was confirmed by microscopy. Conclusions In the future this methodology can be used in combination with a confocal laser endomicroscope for in vivo diagnosis of H. pylori infection using fluorescent LNA probes, which would be helpful to obtain an immediate diagnosis. Our results proved for the first time that FIVH method is applicable inside the body of a higher-order animal. PMID:26848853

  4. Sets of RNA Repeated Tags and Hybridization-Sensitive Fluorescent Probes for Distinct Images of RNA in a Living Cell

    PubMed Central

    Kubota, Takeshi; Ikeda, Shuji; Yanagisawa, Hiroyuki; Yuki, Mizue; Okamoto, Akimitsu

    2010-01-01

    Background Imaging the behavior of RNA in a living cell is a powerful means for understanding RNA functions and acquiring spatiotemporal information in a single cell. For more distinct RNA imaging in a living cell, a more effective chemical method to fluorescently label RNA is now required. In addition, development of the technology labeling with different colors for different RNA would make it easier to analyze plural RNA strands expressing in a cell. Methodology/Principal Findings Tag technology for RNA imaging in a living cell has been developed based on the unique chemical functions of exciton-controlled hybridization-sensitive oligonucleotide (ECHO) probes. Repetitions of selected 18-nucleotide RNA tags were incorporated into the mRNA 3′-UTR. Pairs with complementary ECHO probes exhibited hybridization-sensitive fluorescence emission for the mRNA expressed in a living cell. The mRNA in a nucleus was detected clearly as fluorescent puncta, and the images of the expression of two mRNAs were obtained independently and simultaneously with two orthogonal tag–probe pairs. Conclusions/Significance A compact and repeated label has been developed for RNA imaging in a living cell, based on the photochemistry of ECHO probes. The pairs of an 18-nt RNA tag and the complementary ECHO probes are highly thermostable, sequence-specifically emissive, and orthogonal to each other. The nucleotide length necessary for one tag sequence is much shorter compared with conventional tag technologies, resulting in easy preparation of the tag sequences with a larger number of repeats for more distinct RNA imaging. PMID:20885944

  5. Successful kidney transplantation in highly sensitized patients.

    PubMed

    Zhang, Weijie; Chen, Dong; Chen, Zhishui; Zeng, Fanjun; Ming, Changsheng; Lin, Zhengbin; Zhou, Ping; Chen, Gang; Chen, Xiaoping

    2011-03-01

    Highly sensitized patients experience an increased number of rejection episodes and have poorer graft survival rates; hence, sensitization is a significant barrier to both access to and the success of organ transplantation. This study reports our experience in kidney transplantation in highly sensitized patients. Fourteen patients with sensitization or high levels of panelreactive antibodies (PRA) were studied. All patients were desensitized with pre-transplant intravenous immunoglobulin (IVIG)/plasmapheresis (PP) with or without rituximab and thymoglobulin induction therapy, combined with a Prograf/MMF/Pred immunosuppressive regimen. Of 14 patients, 10 showed good graft functions without acute rejection (AR) episodes. Acute cellular rejection in two patients was reversed by methylprednisolone. Two patients underwent antibody-mediated rejection; one was treated with PP/IVIG successfully, whereas the other lost graft functions due to the de novo production of donor-specific antibodies (DSA). Graft functions were stable, and there were no AR episodes in other patients. Conclusively, desensitization using PP/IVIG with or without rituximab increases the likelihood of successful live-donor kidney transplantation in sensitized recipients. PMID:21681679

  6. Highly sensitive catalytic spectrophotometric determination of ruthenium

    NASA Astrophysics Data System (ADS)

    Naik, Radhey M.; Srivastava, Abhishek; Prasad, Surendra

    2008-01-01

    A new and highly sensitive catalytic kinetic method (CKM) for the determination of ruthenium(III) has been established based on its catalytic effect on the oxidation of L-phenylalanine ( L-Pheala) by KMnO 4 in highly alkaline medium. The reaction has been followed spectrophotometrically by measuring the decrease in the absorbance at 526 nm. The proposed CKM is based on the fixed time procedure under optimum reaction conditions. It relies on the linear relationship where the change in the absorbance (Δ At) versus added Ru(III) amounts in the range of 0.101-2.526 ng ml -1 is plotted. Under the optimum conditions, the sensitivity of the proposed method, i.e. the limit of detection corresponding to 5 min is 0.08 ng ml -1, and decreases with increased time of analysis. The method is featured with good accuracy and reproducibility for ruthenium(III) determination. The ruthenium(III) has also been determined in presence of several interfering and non-interfering cations, anions and polyaminocarboxylates. No foreign ions interfered in the determination ruthenium(III) up to 20-fold higher concentration of foreign ions. In addition to standard solutions analysis, this method was successfully applied for the quantitative determination of ruthenium(III) in drinking water samples. The method is highly sensitive, selective and very stable. A review of recently published catalytic spectrophotometric methods for the determination of ruthenium(III) has also been presented for comparison.

  7. Fluorescence in situ hybridization techniques (FISH) to detect changes in CYP19a gene expression of Japanese medaka (Oryzias latipes)

    SciTech Connect

    Park, June-Woo; Tompsett, Amber; Zhang, Xiaowei; Newsted, John L.; Jones, Paul D.; Au, Doris; Kong, Richard; Wu, Rudolf S.S.; Giesy, John P. Hecker, Markus

    2008-10-15

    The aim of this study was to develop a sensitive in situ hybridization methodology using fluorescence-labeled riboprobes (FISH) that allows for the evaluation of gene expression profiles simultaneously in multiple target tissues of whole fish sections of Japanese medaka (Oryzias latipes). To date FISH methods have been limited in their application due to autofluorescence of tissues, fixatives or other components of the hybridization procedure. An optimized FISH method, based on confocal fluorescence microscopy was developed to reduce the autofluorescence signal. Because of its tissue- and gender-specific expression and relevance in studies of endocrine disruption, gonadal aromatase (CYP19a) was used as a model gene. The in situ hybridization (ISH) system was validated in a test exposure with the aromatase inhibitor fadrozole. The optimized FISH method revealed tissue-specific expression of the CYP19a gene. Furthermore, the assay could differentiate the abundance of CYP19a mRNA among cell types. Expression of CYP19a was primarily associated with early stage oocytes, and expression gradually decreased with increasing maturation. No expression of CYP19a mRNA was observed in other tissues such as brain, liver, or testes. Fadrozole (100 {mu}g/L) caused up-regulation of CYP19a expression, a trend that was confirmed by RT-PCR analysis on excised tissues. In a combination approach with gonad histology, it could be shown that the increase in CYP19a expression as measured by RT-PCR on a whole tissue basis was due to a combination of both increases in numbers of CYP19a-containing cells and an increase in the amount of CYP19a mRNA present in the cells.

  8. A compact frequency-domain photon migration system for integration into commercial hybrid small animal imaging scanners for fluorescence tomography

    NASA Astrophysics Data System (ADS)

    Darne, Chinmay D.; Lu, Yujie; Tan, I.-Chih; Zhu, Banghe; Rasmussen, John C.; Smith, Anne M.; Yan, Shikui; Sevick-Muraca, Eva M.

    2012-12-01

    The work presented herein describes the system design and performance evaluation of a miniaturized near-infrared fluorescence (NIRF) frequency-domain photon migration (FDPM) system with non-contact excitation and homodyne detection capability for small animal fluorescence tomography. The FDPM system was developed specifically for incorporation into a Siemens micro positron emission tomography/computed tomography (microPET/CT) commercial scanner for hybrid small animal imaging, but could be adapted to other systems. Operating at 100 MHz, the system noise was minimized and the associated amplitude and phase errors were characterized to be ±0.7% and ±0.3°, respectively. To demonstrate the tomographic ability, a commercial mouse-shaped phantom with 50 µM IRDye800CW and 68Ga containing inclusion was used to associate PET and NIRF tomography. Three-dimensional mesh generation and anatomical referencing was accomplished through CT. A third-order simplified spherical harmonics approximation (SP3) algorithm, for efficient prediction of light propagation in small animals, was tailored to incorporate the FDPM approach. Finally, the PET-NIRF target co-localization accuracy was analyzed in vivo with a dual-labeled imaging agent targeting orthotopic growth of human prostate cancer. The obtained results validate the integration of time-dependent fluorescence tomography system within a commercial microPET/CT scanner for multimodality small animal imaging.

  9. Imaging performance of a hybrid x-ray computed tomography-fluorescence molecular tomography system using priors

    SciTech Connect

    Ale, Angelique; Schulz, Ralf B.; Sarantopoulos, Athanasios; Ntziachristos, Vasilis

    2010-05-15

    Purpose: The performance is studied of two newly introduced and previously suggested methods that incorporate priors into inversion schemes associated with data from a recently developed hybrid x-ray computed tomography and fluorescence molecular tomography system, the latter based on CCD camera photon detection. The unique data set studied attains accurately registered data of high spatially sampled photon fields propagating through tissue along 360 deg. projections. Methods: Approaches that incorporate structural prior information were included in the inverse problem by adding a penalty term to the minimization function utilized for image reconstructions. Results were compared as to their performance with simulated and experimental data from a lung inflammation animal model and against the inversions achieved when not using priors. Results: The importance of using priors over stand-alone inversions is also showcased with high spatial sampling simulated and experimental data. The approach of optimal performance in resolving fluorescent biodistribution in small animals is also discussed. Conclusions: Inclusion of prior information from x-ray CT data in the reconstruction of the fluorescence biodistribution leads to improved agreement between the reconstruction and validation images for both simulated and experimental data.

  10. Technical Note: Determination of the metabolically active fraction of benthic foraminifera by means of Fluorescent In Situ Hybridization (FISH)

    NASA Astrophysics Data System (ADS)

    Borrelli, C.; Sabbatini, A.; Luna, G. M.; Nardelli, M. P.; Sbaffi, T.; Morigi, C.; Danovaro, R.; Negri, A.

    2011-08-01

    Benthic foraminifera are an important component of the marine biota, but protocols for investigating their viability and metabolism are still extremely limited. Classical studies on benthic foraminifera have been based on direct counting under light microscopy. Typically, these organisms are stained with Rose Bengal, which binds proteins and other macromolecules, but does not allow discrimination between viable and recently dead organisms. The fluorescent in situ hybridization technique (FISH) represents a new and useful approach to identify living cells possessing an active metabolism. Our work is the first test of the suitability of the FISH technique, based on fluorescent probes targeting the 18S rRNA, to detect live benthic foraminifera. The protocol was applied on Ammonia group and Miliolids, as well as on agglutinated polythalamous (i.e., Leptohalysis scottii and Eggerella scabra) and soft-shelled monothalamous (i.e., Psammophaga sp. and saccamminid morphotypes) taxa. The results from FISH analyses were compared with those obtained, on the same specimens assayed with FISH, from microscopic analysis of the cytoplasm colour, presence of pigments and pseudopodial activity. Our results indicate that FISH targets only metabolically active foraminifera, and allows discerning from low to high cellular activity, validating the hypothesis that the intensity of the fluorescent signal emitted by the probe is dependent upon the physiological status of cells. These findings support the usefulness of this molecular approach as a key tool for obtaining information on the physiology of living foraminifera, both in field and experimental settings.

  11. A compact frequency-domain photon migration system for integration into commercial hybrid small animal imaging scanners for fluorescence tomography.

    PubMed

    Darne, Chinmay D; Lu, Yujie; Tan, I-Chih; Zhu, Banghe; Rasmussen, John C; Smith, Anne M; Yan, Shikui; Sevick-Muraca, Eva M

    2012-12-21

    The work presented herein describes the system design and performance evaluation of a miniaturized near-infrared fluorescence (NIRF) frequency-domain photon migration (FDPM) system with non-contact excitation and homodyne detection capability for small animal fluorescence tomography. The FDPM system was developed specifically for incorporation into a Siemens micro positron emission tomography/computed tomography (microPET/CT) commercial scanner for hybrid small animal imaging, but could be adapted to other systems. Operating at 100 MHz, the system noise was minimized and the associated amplitude and phase errors were characterized to be ±0.7% and ±0.3°, respectively. To demonstrate the tomographic ability, a commercial mouse-shaped phantom with 50 µM IRDye800CW and ⁶⁸Ga containing inclusion was used to associate PET and NIRF tomography. Three-dimensional mesh generation and anatomical referencing was accomplished through CT. A third-order simplified spherical harmonics approximation (SP₃) algorithm, for efficient prediction of light propagation in small animals, was tailored to incorporate the FDPM approach. Finally, the PET-NIRF target co-localization accuracy was analyzed in vivo with a dual-labeled imaging agent targeting orthotopic growth of human prostate cancer. The obtained results validate the integration of time-dependent fluorescence tomography system within a commercial microPET/CT scanner for multimodality small animal imaging.

  12. Towards Fluorescence In Vivo Hybridization (FIVH) Detection of H. pylori in Gastric Mucosa Using Advanced LNA Probes

    PubMed Central

    Fontenete, Sílvia; Leite, Marina; Guimarães, Nuno; Madureira, Pedro; Ferreira, Rui Manuel; Figueiredo, Céu; Wengel, Jesper; Azevedo, Nuno Filipe

    2015-01-01

    In recent years, there have been several attempts to improve the diagnosis of infection caused by Helicobacter pylori. Fluorescence in situ hybridization (FISH) is a commonly used technique to detect H. pylori infection but it requires biopsies from the stomach. Thus, the development of an in vivo FISH-based method (FIVH) that directly detects and allows the visualization of the bacterium within the human body would significantly reduce the time of analysis, allowing the diagnosis to be performed during endoscopy. In a previous study we designed and synthesized a phosphorothioate locked nucleic acid (LNA)/ 2’ O-methyl RNA (2’OMe) probe using standard phosphoramidite chemistry and FISH hybridization was then successfully performed both on adhered and suspended bacteria at 37°C. In this work we simplified, shortened and adapted FISH to work at gastric pH values, meaning that the hybridization step now takes only 30 minutes and, in addition to the buffer, uses only urea and probe at non-toxic concentrations. Importantly, the sensitivity and specificity of the FISH method was maintained in the range of conditions tested, even at low stringency conditions (e.g., low pH). In conclusion, this methodology is a promising approach that might be used in vivo in the future in combination with a confocal laser endomicroscope for H. pylori visualization. PMID:25915865

  13. Identification and characterization of marker chromosomes, de novo rearrangements and microdeletions in 100 cases with fluorescence in situ hybridization (FISH)

    SciTech Connect

    Anderson, S.M.; Liu, Y.; Papenhausen, P.R.

    1994-09-01

    Results of molecular cytogenetic analysis are presented for 100 cases in which fluorescence in situ hybridization (FISH) was used as an adjunct to standard cytogenetics. Commercially available centromeric, telomeric, chromosome painting and unique sequence probes were used. Cases were from a 12-month period (June 1993-May 1994) and included examples of sex chromosome abnormalities (8), duplications (5), de novo translocations (6), satellited (12) and non-satellited (7) markers, and microdeletion syndromes (62). Satellited marker chromosomes were evaluated using a combination of DAPI/Distamycin A staining, hybridization with a classical satellite probe for chromosome 15 and hybridization with alpha-satellite probes for chromosomes 13, 14, 21 and 22. Markers positive for the chromosome 15 probe were further evaluated using unique sequence probes for the Prader-Willi/Angelman region. Microdeletion analysis was performed for Prader-Willi/Angelman (49) and DiGeorge/VCF (13) syndromes. Seven cases evaluated for Prader-Willi/Angelman syndrome demonstrated evidence of a deletion within this region. Uniparental disomy analysis was available in cases where a deletion was not detected by FISH, yet follow-up was clinically indicated. Two cases evaluated for DiGeorge/VCF syndrome demonstrated molecular evidence of a deletion. Included in our analysis is an example of familial DiGeorge syndrome.

  14. Nucleic Acid Sandwich Hybridization Assay with Quantum Dot-Induced Fluorescence Resonance Energy Transfer for Pathogen Detection

    PubMed Central

    Chou, Cheng-Chung; Huang, Yi-Han

    2012-01-01

    This paper reports a nucleic acid sandwich hybridization assay with a quantum dot (QD)-induced fluorescence resonance energy transfer (FRET) reporter system. Two label-free hemagglutinin H5 sequences (60-mer DNA and 630-nt cDNA fragment) of avian influenza viruses were used as the targets in this work. Two oligonucleotides (16 mers and 18 mers) that specifically recognize two separate but neighboring regions of the H5 sequences were served as the capturing and reporter probes, respectively. The capturing probe was conjugated to QD655 (donor) in a molar ratio of 10:1 (probe-to-QD), and the reporter probe was labeled with Alexa Fluor 660 dye (acceptor) during synthesis. The sandwich hybridization assay was done in a 20 μL transparent, adhesive frame-confined microchamber on a disposable, temperature-adjustable indium tin oxide (ITO) glass slide. The FRET signal in response to the sandwich hybridization was monitored by a homemade optical sensor comprising a single 400 nm UV light-emitting diode (LED), optical fibers, and a miniature 16-bit spectrophotometer. The target with a concentration ranging from 0.5 nM to 1 μM was successfully correlated with both QD emission decrease at 653 nm and dye emission increase at 690 nm. To sum up, this work is beneficial for developing a portable QD-based nucleic acid sensor for on-site pathogen detection. PMID:23211753

  15. Detection of sex chromosomal aneuploidies X-X, Y-Y, and X-Y in human sperm using two-chromosome fluorescence in situ hybridization

    SciTech Connect

    Wyrobek, A.J.; Robbins, W.A. |; Pinkel, D.; Weier, H.U.; Mehraein, Y. |

    1994-10-15

    Sex chromosome aneuploidy is the most common numerical chromosomal abnormality in humans at birth and a substantial portion of these abnormalities involve paternal chromosomes. An efficient method is presented for using air-dried smears of human semen to detect the number of X and Y chromosomes in sperm chromatin using two-chromosome fluorescence in situ hybridization. Air-dried semen smears were pre-treated with dithiothreitol and 3,4-diiodosalicylate salt to decondense the sperm chromatin and then were hybridized with repetitive sequence DNA probes that had been generated by PCR and differentially labeled. Hybridizations with X and Y specific probes showed the expected ratio of 50%X:50%Y bearing sperm. Sperm carrying extra fluorescence domains representing disomy for the X or Y chromosomes occurred at frequencies of {approximately} 4 per 10,000 sperm each. Cells carrying both X and Y fluorescence domains occurred at a frequency of {approximately} 6/10,000. Thus, the overall frequency of sperm that carried an extra sex chromosome was 1.4/1,000. The frequencies of sperm carrying sex chromosome aneuploidies determined by hybridization did not differ statistically from those reported from the same laboratory using the human-sperm/hamster-egg cytogenetic technique. Multi-chromosome fluorescence in situ hybridization to sperm is a promising method for assessing sex-ratio alterations in human semen and for determining the fraction of sperm carrying sex or other chromosome aneuploidies which may be transmissible to offspring. 44 refs., 1 fig., 3 tabs.

  16. Remanagement of Singlet and Triplet Excitons in Single-Emissive-Layer Hybrid White Organic Light-Emitting Devices Using Thermally Activated Delayed Fluorescent Blue Exciplex.

    PubMed

    Liu, Xiao-Ke; Chen, Zhan; Qing, Jian; Zhang, Wen-Jun; Wu, Bo; Tam, Hoi Lam; Zhu, Furong; Zhang, Xiao-Hong; Lee, Chun-Sing

    2015-11-25

    A high-performance hybrid white organic light-emitting device (WOLED) is demonstrated based on an efficient novel thermally activated delayed fluorescence (TADF) blue exciplex system. This device shows a low turn-on voltage of 2.5 V and maximum forward-viewing external quantum efficiency of 25.5%, which opens a new avenue for achieving high-performance hybrid WOLEDs with simple structures.

  17. Resolution of sex chromosome constitution by genomic in situ hybridization and fluorescence in situ hybridization with (TTAGG)( n ) telomeric probe in some species of Lepidoptera.

    PubMed

    Yoshido, Atsuo; Marec, Frantisek; Sahara, Ken

    2005-08-01

    We have developed a simple method to resolve the sex chromosome constitution in females of Lepidoptera by using a combination of genomic in situ hybridization (GISH) and fluorescence in situ hybridization with (TTAGG)( n ) telomeric probe (telomere-FISH). In pachytene configurations of sex chromosomes, GISH differentiated W heterochromatin and telomere-FISH detected the chromosome ends. With this method we showed that Antheraea yamamai has a standard system with a fully differentiated W-Z sex chromosome pair. In Orgyia antiqua, we confirmed the presence of neo-W and neo-Z chromosomes, which most probably originated by fusion of the ancestral W and Z with an autosome pair. In contrast to earlier data, Orgyia thyellina females displayed a neo-ZW(1)W(2) sex chromosome constitution. A neo-WZ(1)Z(2) trivalent was found in females of Samia cynthia subsp. indet., originating from a population in Nagano, Japan. Whereas another subspecies collected in Sapporo, Japan, and determined as S. cynthia walkeri, showed a neo-W/neo-Z bivalent similar to O. antiqua, and the subspecies S. cynthia ricini showed a Z univalent (a Z/ZZ system). The combination of GISH and telomere-FISH enabled us to acquire not only reliable information about sex chromosome constitution but also an insight into sex chromosome evolution in Lepidoptera.

  18. Photochemical properties in flag leaves of a super-high-yielding hybrid rice and a traditional hybrid rice (Oryza sativa L.) probed by chlorophyll a fluorescence transient.

    PubMed

    Zhang, Meiping; Shan, YongJie; Kochian, Leon; Strasser, Reto J; Chen, GuoXiang

    2015-12-01

    Chlorophyll a fluorescence of flag leaves in a super-high-yielding hybrid rice (Oryza sativa L.) LYPJ, and a traditional hybrid rice SY63 cultivar with lower grain yield, which were grown in the field, were investigated from emergence through senescence of flag leaves. As the flag leaf matured, there was an increasing trend in photosynthetic parameters such as quantum efficiency of primary photochemistry ([Formula: see text] Po) and efficiency of electron transport from PS II to PS I (Ψ Eo). The overall photosynthetic performance index (PIABS) was significantly higher in the high-yielding LYPJ compared to SY63 during the entire reproductive stage of the plant, the same to MDA content. However, [Formula: see text] Po(=F V/F M), an indicator of the primary photochemistry of the flag leaf, did not display significant changes with leaf age and was not significantly different between the two cultivars, suggesting that PIABS is a more sensitive parameter than [Formula: see text] Po (=F V/F M) during leaf age for distinguishing between cultivars differing in yield.

  19. Fluorescent resonance energy transfer based detection of biological contaminants through hybrid quantum dot-quencher interactions.

    PubMed

    Ramadurai, D; Norton, E; Hale, J; Garland, J W; Stephenson, L D; Stroscio, M A; Sivananthan, S; Kumar, A

    2008-06-01

    A nanoscale sensor employing fluorescent resonance energy transfer interactions between fluorescent quantum dots (QDs) and organic quencher molecules can be used for the multiplexed detection of biological antigens in solution. Detection occurs when the antigens to be detected displace quencher-labelled inactivated (or dead) antigens of the same type attached to QD-antibody complexes through equilibrium reactions. This unquenches the QDs, allowing detection to take place through the observation of photoluminescence in solution or through the fluorescence imaging of unquenched QD complexes trapped on filter surfaces. Multiplexing can be accomplished by using several different sizes of QDs, with each size QD labelled with an antibody for a different antigen, providing the ability to detect several types of antigens or biological contaminants simultaneously in near real-time with high specificity and sensitivity.

  20. Determination of the metabolically active fraction of benthic foraminifera by means of Fluorescent in situ Hybridization (FISH)

    NASA Astrophysics Data System (ADS)

    Borrelli, C.; Sabbatini, A.; Luna, G. M.; Morigi, C.; Danovaro, R.; Negri, A.

    2010-10-01

    Benthic foraminifera are an important component of the marine living biota, but protocols for investigating their viability and metabolism are still extremely limited. Classical studies on benthic foraminifera have been based on direct counting under light microscopy. Typically these organisms are stained with Rose Bengal, which binds proteins and other macromolecules, but this approach does not allow discriminating between viable and recently dead organisms. The fluorescent in situ hybridization technique (FISH) represents a potentially useful approach identifying living cells with active metabolism cells. In this work, we tested for the first time the suitability of the FISH technique based on fluorescent probes targeting the 18S rRNA, to detect these live benthic protists. The protocol was applied on the genus Ammonia, on the Miliolidae group and an attempt was made also with agglutinated species (i.e., Leptohalysis scottii and Eggerella scabra). In addition microscopic analysis of the cytoplasm colour, presence of pigments and, sometimes, those of pseudopodial activity where conducted. The results of the present study indicate that FISH targeted only live and metabolically active foraminifera. These results allowed to identify as "live", cells improperly classified as "dead" by means of the classical technique (Type I error) and vice versa to identify as dead the foraminifera without rRNA, but stained using Rose Bengal (Type II error). In addition, the comparative FISH analysis of starved and actively growing cells demonstrated that individuals with active metabolism were stained more intensively than starved cells. This finding supports the hypothesis that the physiological status of cells can be directly related with the intensity of the fluorescent signal emitted by the fluorescent probe. We conclude that the use of molecular approaches could represent a key tool for acquiring crucial information on living foraminifera specimens and for investigating their

  1. Optimization of a peptide nucleic acid fluorescence in situ hybridization (PNA-FISH) method for the detection of bacteria and disclosure of a formamide effect.

    PubMed

    Santos, Rita S; Guimarães, Nuno; Madureira, Pedro; Azevedo, Nuno F

    2014-10-10

    Despite the fact that fluorescence in situ hybridization (FISH) is a well-established technique to identify microorganisms, there is a lack of understanding concerning the interaction of the different factors affecting the obtained fluorescence. In here, we used flow cytometry to study the influence of three essential factors in hybridization - temperature, time and formamide concentration - in an effort to optimize the performance of a Peptide Nucleic Acid (PNA) probe targeting bacteria (EUB338). The PNA-FISH optimization was performed with bacteria representing different families employing response surface methodology. Surprisingly, the optimum concentration of formamide varied according to the bacterium tested. While hybridization on the bacteria possessing the thickest peptidoglycan was more successful at nearly 50% (v/v) formamide, hybridization on all other microorganisms appeared to improve with much lower formamide concentrations. Gram staining and transmission electron microscopy allowed us to confirm that the overall effect of formamide concentration on the fluorescence intensity is a balance between a harmful effect on the bacterial cell envelope, affecting cellular integrity, and the beneficial denaturant effect in the hybridization process. We also conclude that microorganisms belonging to different families will require different hybridization parameters for the same FISH probe, meaning that an optimum universal PNA-FISH procedure is non-existent for these situations.

  2. A high sensitive roll angle interferometer

    NASA Astrophysics Data System (ADS)

    Le, Yanfen; Hou, Wenmei; Hu, Kai; Ju, Aisong

    2013-01-01

    A roll angle interferometer with high sensitivity is designed in this paper. Two sets of centrosymmetric beams are used to travel through the measurement and reference arms of the roll angle interferometer which contains two specific optical devices: wedge prism assembly and wedge mirror assembly. The optical path change in both arms caused by roll is converted into phase shift which can be measured by interferometer. Because of the adoption of the centrosymmetric measurement structure, the straightness errors, yaw error and pitch error can be avoided and the dead path is minimized, so that the stability and the accuracy of the measurement can be greatly enhanced. The resolution for the roll measurement is about 0.006″ with the measurement range of ±1°.

  3. Highly sensitive silicon microreactor for catalyst testing

    SciTech Connect

    Henriksen, Toke R.; Hansen, Ole; Olsen, Jakob L.; Vesborg, Peter; Chorkendorff, Ib

    2009-12-15

    A novel microfabricated chemical reactor for highly sensitive measurements of catalytic activity and surface kinetics is presented. The reactor is fabricated in a silicon chip and is intended for gas-phase reactions at pressures ranging from 0.1 to 5.0 bar. A high sensitivity is obtained by directing the entire gas flow through the catalyst bed to a mass spectrometer, thus ensuring that nearly all reaction products are present in the analyzed gas flow. Although the device can be employed for testing a wide range of catalysts, the primary aim of the design is to allow characterization of model catalysts which can only be obtained in small quantities. Such measurements are of significant fundamental interest but are challenging because of the low surface areas involved. The relationship between the reaction zone gas flow and the pressure in the reaction zone is investigated experimentally. A corresponding theoretical model is presented, and the gas flow through an on-chip flow-limiting capillary is predicted to be in the intermediate regime. The experimental data for the gas flow are found to be in good agreement with the theoretical model. At typical experimental conditions, the total gas flow through the reaction zone is around 3x10{sup 14} molecules s{sup -1}, corresponding to a gas residence time in the reaction zone of about 11 s. To demonstrate the operation of the microreactor, CO oxidation on low-area platinum thin film circles is employed as a test reaction. Using temperature ramping, it is found that platinum catalysts with areas as small as 15 {mu}m{sup 2} are conveniently characterized with the device.

  4. Visualization and quantification of archaeal and bacterial metabolically active cells in soil using fluorescence in situ hybridization method

    NASA Astrophysics Data System (ADS)

    Semenov, Mikhail; Manucharova, Natalia; Stepanov, Alexey

    2015-04-01

    The method of in situ hybridization using fluorescent labeled 16S rRNA-targeted oligonucleotide probes (FISH - fluorescence in situ hybridization) combines identification and quantification of groups of microorganisms at different phylogenetic levels, from domain to species. The FISH method enables to study the soil microbial community in situ, avoiding plating on nutrient media, and allows to identify and quantify living, metabolically active cells of Bacteria and Archaea. The full procedure consists of the following steps: desorption of the cells from the soil particles, fixation of cells, coating a fixed sample on the glass slide, hybridization with the specific probes and, finally, microscopic observation and cell counting. For the FISH analysis of Bacteria and Archaea, the paraformaldehyde-fixed samples were hybridized with Cy3-labeled Archaea-specific probe(Arc915) and 6-carboxyfluorescein (FAM)-labeled Bacteria-specific probe(EUB338). When a molecular probe is incorporated into a cell, it can hybridize solely with a complementary rRNA sequence. The hybridization can be visualized under the fluorescent microscope and counted. The application of FISH will be demonstrated by the abundance of metabolically active cells of Archaea and Bacteria depending on soil properties, depth and land use. The research was carried out at field and natural ecosystems of European part of Russia. Samples were collected within the soil profiles (3-6 horizons) of Chernozem and Kastanozem with distinct land use. Quantification of metabolically active cells in virgin and arable Chernozem revealed that the abundance of Archaea in topsoil of virgin Chernozem was doubled as compared with arable soil, but it leveled off in the deeper horizons. Plowing of Chernozem decreased an amount of archaeal and bacterial active cells simultaneously, however, Bacteria were more resistant to agrogenic impact than Archaea. In Kastanozem, a significant change in the abundance of metabolically active

  5. Distribution characteristics of ammonia-oxidizing bacteria in the Typha latifolia constructed wetlands using fluorescent in situ hybridization (FISH).

    PubMed

    Yan, Li; Inamori, Ryuhei; Gui, Ping; Xu, Kai-qin; Kong, Hai-nan; Matsumura, Masatoshi; Inamori, Yuhei

    2005-01-01

    A molecular biology method, fluorescent in situ hybridization (FISH), in which the pre-treatment was improved in allusion to the media of the constructed wetlands (CW), e.g. the soil and the grit, was used to investigate the vertical distribution characteristics of ammonia-oxidizing bacteria (AOB) quantity and the relation with oxidation-reduction potential (ORP) in the Typha latifolia constructed wetlands under three different loadings in summer from May to September. Results showed that the quantity of the AOB decreased in the Typha latifolia CW with the increase of vertical depth. However, the AOB quantity was 2-4 times the quantity of the control in the root area. Additionally, ORP in the rhizosphere was found to be higher than other areas, which showed that Typha latifolia CW was in an aerobic state in summer when using simulated non-point sewage at the rural area of Taihu Lake in China and small town combined sewage.

  6. Human cDNA mapping using fluorescence in situ hybridization. Progress report, April 1, 1992--December 31, 1992

    SciTech Connect

    Korenberg, J.R.

    1993-03-04

    Genetic mapping is approached using the techniques of high resolution fluorescence in situ hybridization (FISH). This technology and the results of its application are designed to rapidly generate whole genome as tool box of expressed sequence to speed the identification of human disease genes. The results of this study are intended to dovetail with and to link the results of existing technologies for creating backbone YAC and genetic maps. In the first eight months, this approach generated 60--80% of the expressed sequence map, the remainder expected to be derived through more long-term, labor-intensive, regional chromosomal gene searches or sequencing. The laboratory has made significant progress in the set-up phase, in mapping fetal and adult brain and other cDNAs, in testing a model system for directly linking genetic and physical maps using FISH with small fragments, in setting up a database, and in establishing the validity and throughput of the system.

  7. Microfluidic extraction and stretching of chromosomal DNA from single cell nuclei for DNA fluorescence in situ hybridization

    PubMed Central

    Wang, Xiaozhu; Takebayashi, Shin-ichiro; Bernardin, Evans; Gilbert, David M.; Chella, Ravindran

    2012-01-01

    We have developed a novel method for genetic characterization of single cells by integrating microfluidic stretching of chromosomal DNA and fiber fluorescence in situ hybridization (FISH). In this method, individually isolated cell nuclei were immobilized in a microchannel. Chromosomal DNA was released from the nuclei and stretched by a pressure-driven flow. We analyzed and optimized flow conditions to generate a millimeter-long band of stretched DNA from each nucleus. Telomere fiber FISH was successfully performed on the stretched chromosomal DNA. Individual telomere fiber FISH signals from single cells could be resolved and their lengths measured, demonstrating the ability of the method to quantify genetic features at the level of single cells. PMID:22231286

  8. Diagnostics of common microdeletion syndromes using fluorescence in situ hybridization: Single center experience in a developing country

    PubMed Central

    Kurtovic-Kozaric, Amina; Mehinovic, Lejla; Stomornjak-Vukadin, Meliha; Kurtovic-Basic, Ilvana; Catibusic, Feriha; Kozaric, Mirza; Dinarevic, Senka Mesihovic; Hasanhodzic, Mensuda; Sumanovic-Glamuzina, Darinka

    2016-01-01

    Microdeletion syndromes are caused by chromosomal deletions of less than 5 megabases which can be detected by fluorescence in situ hybridization (FISH). We evaluated the most commonly detected microdeletions for the period from June 01, 2008 to June 01, 2015 in the Federation of Bosnia and Herzegovina, including DiGeorge, Prader-Willi/Angelman, Wolf-Hirschhorn, and Williams syndromes. We report 4 patients with DiGeorge syndromes, 4 patients with Prader-Willi/Angelman, 4 patients with Wolf-Hirschhorn syndrome, and 3 patients with Williams syndrome in the analyzed 7 year period. Based on the positive FISH results for each syndrome, the incidence was calculated for the Federation of Bosnia and Herzegovina. These are the first reported frequencies of the microdeletion syndromes in the Federation of Bosnia and Herzegovina. PMID:26937776

  9. Coumarin-based fluorescence hybrid silica material used for selective detection and absorption of Hg2+ in aqueous media

    NASA Astrophysics Data System (ADS)

    Meng, Qingtao; Jia, Hongmin; Wang, Cuiping; Zhao, Hongbin; Lu, Gonghao; Hu, Zhizhi; Zhang, Zhiqiang; Duan, Chunying

    2014-11-01

    An inorganic-organic hybrid fluorescence material (C-SBA-15) was prepared by covalent immobilization of a coumarin derivative within the channels of SBA-15. The characterization results of XRD, TEM micrographs, FT-IR and UV-vis demonstrate that coumarin is successfully grafted onto the inner surface of SBA-15 and its organized structure is preserved. C-SBA-15 can detect Hg2+ with high selectivity to Pb2+, Zn2+, Cu2+, Mn2+, Cd2+, Co2+, Ag+, Fe3+, Ni2+, K+, Na+, Ca2+, Mg2+ and Li+ in water. Furthermore, the fluorogenical response is reversible by treating with EDTA and do not vary over a broad pH range (5.0-10.5). C-SBA-15 features more outstanding absorbing capacity for Hg2+ among other HTM ions in water.

  10. Diagnostics of common microdeletion syndromes using fluorescence in situ hybridization: single center experience in a developing country.

    PubMed

    Kurtovic-Kozaric, Amina; Mehinovic, Lejla; Stomornjak-Vukadin, Meliha; Kurtovic-Basic, Ilvana; Catibusic, Feriha; Kozaric, Mirza; Mesihovic-Dinarevic, Senka; Hasanhodzic, Mensuda; Glamuzina, Darinka

    2016-01-01

    Microdeletion syndromes are caused by chromosomal deletions of less than 5 megabases which can be detected by fluorescence in situ hybridization (FISH). We evaluated the most commonly detected microdeletions for the period from June 01, 2008 to June 01, 2015 in the Federation of Bosnia and Herzegovina, including DiGeorge, Prader-Willi/Angelman, Wolf-Hirschhorn, and Williams syndromes. We report 4 patients with DiGeorge syndromes, 4 patients with Prader-Willi/Angelman, 4 patients with Wolf-Hirschhorn syndrome, and 3 patients with Williams syndrome in the analyzed 7 year period. Based on the positive FISH results for each syndrome, the incidence was calculated for the Federation of Bosnia and Herzegovina. These are the first reported frequencies of the microdeletion syndromes in the Federation of Bosnia and Herzegovina. PMID:26937776

  11. [Diagnostics of phytopathogen fungi Septoria tritici and Stagonospora nodorum by fluorescent amplification-based specific hybridization (FLASH) PCR].

    PubMed

    Abramova, S L; Riazantsev, D Iu; Voinova, T M; Zavriev, S K

    2008-01-01

    A PCR system in the fluorescent amplification-based specific hybridization (FLASH) format was developed for the detection and identification of two important wheat pathogenic fungi Septoria tritici (teleomorph of Mycosphaerella graminicola and Stagonospora nodorum (teleomorph of Phaeosphaeria nodorum), which cause spots on leaves and glumes, respectively. The pathogen detection system is based on the amplification of a genome fragment in the internal transcribed spacer 1 (ITS 1) region and a site encoding the 5.8S ribosomal RNA. The forward primers to ITS1 and a universal reverse primer and a Beacon type probe to the 5.8S ribosomal RNA region were chosen to provide the detection of the products in the FLASH format. This system was tested on different isolates of the pathogens, and on infected soil, leaf, and seed samples.

  12. Specific Detection of Arcobacter and Campylobacter Strains in Water and Sewage by PCR and Fluorescent In Situ Hybridization

    PubMed Central

    Moreno, Yolanda; Botella, Salut; Alonso, José Luis; Ferrús, María A.; Hernández, Manuel; Hernández, Javier

    2003-01-01

    The aim of this study was to evaluate PCR and fluorescent in situ hybridization (FISH) techniques for detecting Arcobacter and Campylobacter strains in river water and wastewater samples. Both 16S and 23S rRNA sequence data were used to design specific primers and oligonucleotide probes for PCR and FISH analyses, respectively. In order to assess the suitability of the methods, the assays were performed on naturally and artificially contaminated samples and compared with the isolation of cells on selective media. The detection range of PCR and FISH assays varied between 1 cell/ml (after enrichment) to 103 cells/ml (without enrichment). According to our results, both rRNA-based techniques have the potential to be used as quick and sensitive methods for detection of campylobacters in environmental samples. PMID:12571045

  13. Visualization and enumeration of marine planktonic archaea and bacteria by using polyribonucleotide probes and fluorescent in situ hybridization.

    PubMed

    DeLong, E F; Taylor, L T; Marsh, T L; Preston, C M

    1999-12-01

    Fluorescent in situ hybridization (FISH) using rRNA-specific oligonucleotide probes has emerged as a popular technique for identifying individual microbial cells. In natural samples, however, the signal derived from fluor-labeled oligonucleotide probes often is undetectable above background fluorescence in many cells. To circumvent this difficulty, we applied fluorochrome-labeled polyribonucleotide probes to identify and enumerate marine planktonic archaea and bacteria. The approach greatly enhanced the sensitivity and applicability of FISH with seawater samples, allowing confident identification and enumeration of planktonic cells to ocean depths of 3,400 m. Quantitative whole-cell hybridization experiments using these probes accounted for 90 to 100% of the total 4',6-diamidino-2-phenylindole (DAPI)-stained cells in most samples. As predicted in a previous study (R. Massana, A. E. Murray, C. M. Preston, and E. F. DeLong, Appl. Environ. Microbiol. 63:50-56, 1997), group I and II marine archaea predominate in different zones in the water column, with maximal cell densities of 10(5)/ml. The high cell densities of archaea, extending from surface waters to abyssal depths, suggest that they represent a large and significant fraction of the total picoplankton biomass in coastal ocean waters. The data also show that the vast majority of planktonic prokaryotes contain significant numbers of ribosomes, rendering them easily detectable with polyribonucleotide probes. These results imply that the majority of planktonic cells visualized by DAPI do not represent lysed cells or "ghosts," as was suggested in a previous report. PMID:10584017

  14. Reliability of aneuploidy estimates in human sperm: Results of fluorescence in situ hybridization studies using two different scoring criteria

    SciTech Connect

    Martin, R.H. |; Rademaker, A.

    1994-09-01

    Aneuploidy estimates for individual chromosomes in human sperm have varied more than 10-fold in different laboratories using fluorescence in situ hybridization (FISH). These laboratories use different scoring criteria in the assessment of a disomic sperm. In order to determine reliable estimates of aneuploidy, we have investigated whether scoring criteria affect the aneuploidy frequency in human sperm. Aneuploidy estimates for chromosomes 1(pUC1.77), 12(pBR12), X(XC) and Y(DYZ3Z) were obtained in human sperm from five donors using multicolor FISH analysis to provide an internal control to differentiate between nullisomy and lack of hybridization and between disomy and diploidy. Disomy frequencies were obtained by scoring a minimum of 10,000 sperm for each chromosome probe per donor. This analysis was replicated for two scoring criteria: one scoring criterion used one-half a signal domain as the minimum distance between two signals to be counted as two and thus disomic; the other scoring criterion set one signal domain as the minimum distance between two signals. A total of 120,870 sperm were assessed using one half domain as the scoring criterion and 113,478 were scored using one domain as the criterion. The mean percent disomy for chromosomes 1, 12, X, Y and XY was .18, .16, .15, .19, .25 respectively using the one-half domain criterion and .08, .17, .07, .12, .16 respectively using the one domain criterion. The percent disomy decreased significantly with use of one domain as the minimum distance for signal separation for all chromosomes except chromosome number 12. These lower disomy frequencies correlated well with frequencies derived from human sperm karyotypes analyzed in our laboratory. This suggests that the fluorescent signals for chromosomes 1, X and Y split into more than one domain in decondensed interphase sperm and use of the one-half domain criterion leads to an overestimate of aneuploidy frequencies.

  15. Midkine gene (MDK), a gene for prenatal differentiation and neuroregulation, maps to band 11p11. 2 by fluorescence in situ hybridization

    SciTech Connect

    Kaname, Tadashi; Uehara, Kazuyoshi; Muramatsu, Taskashi ); Kuwano, Akira; Murano, Ichiro; Kajii, Tadashi )

    1993-08-01

    Midkine (MDK) is a retinoic acid-responsive gene concerned with prenatal development and neurite growth. The authors mapped the gene to band p11.2 of chromosome 11 through fluorescence in situ hybridization analysis and using a 4.5-kb fragment of its human genomic DNA. 11 refs., 1 fig.

  16. Assignment of the human FKBP12-rapamycin-associated protein (FRAP) gene to chromosome 1p36 by fluorescence in situ hybridization

    SciTech Connect

    Moore, P.A.; Rosen, C.A.; Carter, K.C.

    1996-04-15

    This report describes the localization of the human FKBP12-rapamycin-associated protein (FRAP) gene to human chromosome 1p36 using fluorescence in situ hybridization. This protein is the binding site for rapamycin and FK506, two potent immunosuppressive drugs. 12 refs., 1 fig.

  17. Cytogenetic follow-up by karyotyping and fluorescence in situ hybridization: implications for monitoring patients with myelodysplastic syndrome and deletion 5q treated with lenalidomide

    PubMed Central

    Göhring, Gudrun; Giagounidis, Aristoteles; Büsche, Guntram; Hofmann, Winfried; Kreipe, Hans Heinrich; Fenaux, Pierre; Hellström-Lindberg, Eva; Schlegelberger, Brigitte

    2011-01-01

    In patients with low and intermediate risk myelodysplastic syndrome and deletion 5q (del(5q)) treated with lenalidomide, monitoring of cytogenetic response is mandatory, since patients without cytogenetic response have a significantly increased risk of progression. Therefore, we have reviewed cytogenetic data of 302 patients. Patients were analyzed by karyotyping and fluorescence in situ hybridization. In 85 patients, del(5q) was only detected by karyotyping. In 8 patients undergoing karyotypic evolution, the del(5q) and additional chromosomal aberrations were only detected by karyotyping. In 3 patients, del(5q) was only detected by fluorescence in situ hybridization, but not by karyotyping due to a low number of metaphases. Karyotyping was significantly more sensitive than fluorescence in situ hybridization in detecting the del(5q) clone. In conclusion, to optimize therapy control of myelodysplastic syndrome patients with del(5q) treated with lenalidomide and to identify cytogenetic non-response or progression as early as possible, fluorescence in situ hybridization alone is inadequate for evaluation. Karyotyping must be performed to optimally evaluate response. (clinicaltrials.gov identifier: NCT01099267 and NCT00179621) PMID:21109690

  18. Assignment of the gastric inhibitory polypeptide receptor gene (GIPR) to chromosome bands 19q13.2-q13.3 by fluorescence in situ hybridization

    SciTech Connect

    Stoffel, M.; Fernald, A.A.; Bell, G.I.; Le Beau, M.M.

    1995-08-10

    The gastric inhibitory polypeptide receptor gene (GIPR) was localized, using fluorescence in situ hybridization (FISH), to human chromosome bands 19q13.2-q13.3. Gastric inhibitory polypeptide (GIP) is a potent stimulator of insulin secretion and mutations in the GIPR gene may be related to non-insulin-dependent diabetes mellitus (NIDDM). 13 refs., 1 fig.

  19. Chromosomal localization of the human natural killer cell class I receptor family genes to 19q13.4 by fluorescence in situ hybridization

    SciTech Connect

    Suto, Yumiko; Maenaka, Katsumi; yabe, Toshio

    1996-07-01

    This report describes the localization of the human natural killer cell I receptor family genes to human chromosome 19q13.4 using fluorescence in situ hybridization. These genes mediate the inhibition of the cytotoxicity of subsets of natural killer cells. 8 refs., 1 fig.

  20. Detection of aneuploid human sperm by fluorescence in situ hybridization: Evidence for a donor difference in frequency of sperm disomic for chromosomes 1 and Y

    SciTech Connect

    Robbins, W.A. Lawrence Livermore National Lab., CA ); Segraves, R.; Pinkel, D. ); Wyrobek, A.J. )

    1993-04-01

    Fluorescence in situ hybridization with repetitive-sequence DNA probes was used to detect human sperm disomic for chromosomes 1 and Y in three healthy men. Data on these same men had been obtained previously, using the human-sperm/hamster-egg cytogenetic technique, providing a cytogenetic reference for validating sperm hybridization measurements. Air-dried smears were prepared from semen samples and treated with DTT and lithium diiodosalicylate to expand sperm chromatin. Hybridization with fluorescently tagged DNA probes for chromosomes 1 (pUC177) or Y (pY3.4) yielded average frequencies of sperm with two fluorescent domains of 14.2[+-]2.4/10,000 and 5.6[+-]1.6/10,000 sperm, respectively. These frequencies did not differ statistically from frequencies of hyperploidy observed for these chromosomes with the hamster technique. In addition, frequencies of disomic sperm from one donor were elevated [approximately]2.5-fold above those of other donors, for both chromosomes 1 (P = .045) and Y (P = .01), consistent with a trend found with the hamster technique. The authors conclude that fluorescence in situ hybridization to sperm chromosomes provides a valid and promising measure of the frequency of disomic human sperm. 43 refs., 1 fig., 4 tabs.

  1. Localization of the DCTN1 gene encoding p150{sup Glued} to human chromosome 2p13 by fluorescence in situ hybridization

    SciTech Connect

    Holzbaur, E.L.F.; Tokito, M.K.

    1996-02-01

    This report discusses the genetic mapping of the DCTN1 gene to human chromosome 2p13 using fluorescence in situ hybridization. This gene encodes the largest polypeptide of the dynactin complex, which is one of two microtubule-based biological motor protein complexes. 12 refs., 1 fig.

  2. Assessment of impact of peptide nucleic acid fluorescence in situ hybridization for rapid identification of coagulase-negative staphylococci in the absence of antimicrobial stewardship intervention.

    PubMed

    Holtzman, Carol; Whitney, Dana; Barlam, Tamar; Miller, Nancy S

    2011-04-01

    Peptide nucleic acid fluorescence in situ hybridization (PNA FISH) was instituted at Boston Medical Center for the rapid identification of coagulase-negative staphylococci (CoNS). Without active notification or antimicrobial stewardship intervention, a pre- and postimpact analysis showed no benefit of this assay with respect to the length of hospital stay or vancomycin use.

  3. Demonstration of high sensitivity laser ranging system

    NASA Technical Reports Server (NTRS)

    Millar, Pamela S.; Christian, Kent D.; Field, Christopher T.

    1994-01-01

    We report on a high sensitivity semiconductor laser ranging system developed for the Gravity and Magnetic Earth Surveyor (GAMES) for measuring variations in the planet's gravity field. The GAMES laser ranging instrument (LRI) consists of a pair of co-orbiting satellites, one which contains the laser transmitter and receiver and one with a passive retro-reflector mounted in an drag-stabilized housing. The LRI will range up to 200 km in space to the retro-reflector satellite. As the spacecraft pair pass over the spatial variations in the gravity field, they experience along-track accelerations which change their relative velocity. These time displaced velocity changes are sensed by the LRI with a resolution of 20-50 microns/sec. In addition, the pair may at any given time be drifting together or apart at a rate of up to 1 m/sec, introducing a Doppler shift into the ranging signals. An AlGaAs laser transmitter intensity modulated at 2 GHz and 10 MHz is used as fine and medium ranging channels. Range is measured by comparing phase difference between the transmit and received signals at each frequency. A separate laser modulated with a digital code, not reported in this paper, will be used for coarse ranging to unambiguously determine the distance up to 200 km.

  4. Highly sensitive beam steering with plasmonic antenna

    PubMed Central

    Rui, Guanghao; Zhan, Qiwen

    2014-01-01

    In this work, we design and study a highly sensitive beam steering device that integrates a spiral plasmonic antenna with a subwavelength metallic waveguide. The short effective wavelength of the surface plasmon polaritons (SPPs) mode supported by the metallic waveguide is exploited to dramatically miniaturize the device and improve the sensitivity of the beam steering. Through introducing a tiny displacement of feed point with respect to the geometrical center of the spiral plasmonic antenna, the direction of the radiation can be steered at considerably high angles. Simulation results show that steering angles of 8°, 17° and 34° are obtainable for a displacement of 50 nm, 100 nm and 200 nm, respectively. Benefiting from the reduced device size and the shorter SPP wavelength, the beam steering sensitivity of the beam steering is improved by 10-fold compared with the case reported previously. This miniature plasmonic beam steering device may find many potential applications in quantum optical information processing and integrated photonic circuits. PMID:25091405

  5. Face Transplantation in a Highly Sensitized Recipient.

    PubMed

    Chandraker, Anil; Arscott, Ramon; Murphy, George; Lian, Christine; Bueno, Ericka; Marty, Francisco; Rennke, Helmut; Milford, Edgar; Tullius, Stefan; Pomahac, Bodhan

    2016-05-01

    Face transplantation was performed in a highly sensitized recipient with positive preoperative crossmatch and subsequent antibody-mediated rejection. The recipient was a 45-year-old female with extensive conventional reconstructions after chemical burns over the majority of the body. Residual quality of life and facial functions were poor. Levels of circulating anti-human leukocyte antigen (HLA) antibodies were high, and panel reactive antibody score was 98%. A potential donor was identified; however, with positive T and B cell flow crossmatches. The transplant team proceeded with face transplantation from this donor, under tailored immune suppression and with available salvage options. The operation was successful. Plasmapheresis and induction immune suppression (i.e., thymoglobulin followed by mycophenolate mofetil, tacrolimus, and steroids) were provided. Five days later, there was significant facial swelling, rising anti-HLA antibody titers, and unprecedented evidence of C4d deposits on skin. High doses of steroids and thymoglobulin were provided; however, rejection increased such that by day 19 it was diagnosed grade III in the BANFF scale. After stopping thymoglobulin because of serum sickness, combination therapy of plasmapheresis, eculizumab, bortezomib, and alemtuzumab was provided. HLA antibody levels decreased while swelling and redness improved. At 3 months, there were no longer signs of rejection on biopsy. PMID:27168576

  6. Transportable high sensitivity small sample radiometric calorimeter

    SciTech Connect

    Wetzel, J.R.; Biddle, R.S.; Cordova, B.S.; Sampson, T.E.; Dye, H.R.; McDow, J.G.

    1998-12-31

    A new small-sample, high-sensitivity transportable radiometric calorimeter, which can be operated in different modes, contains an electrical calibration method, and can be used to develop secondary standards, will be described in this presentation. The data taken from preliminary tests will be presented to indicate the precision and accuracy of the instrument. The calorimeter and temperature-controlled bath, at present, require only a 30-in. by 20-in. tabletop area. The calorimeter is operated from a laptop computer system using unique measurement module capable of monitoring all necessary calorimeter signals. The calorimeter can be operated in the normal calorimeter equilibration mode, as a comparison instrument, using twin chambers and an external electrical calibration method. The sample chamber is 0.75 in (1.9 cm) in diameter by 2.5 in. (6.35 cm) long. This size will accommodate most {sup 238}Pu heat standards manufactured in the past. The power range runs from 0.001 W to <20 W. The high end is only limited by sample size.

  7. Peptide nucleic acid fluorescence in situ hybridization for identification of Listeria genus, Listeria monocytogenes and Listeria ivanovii.

    PubMed

    Zhang, Xiaofeng; Wu, Shan; Li, Ke; Shuai, Jiangbing; Dong, Qiang; Fang, Weihuan

    2012-07-01

    A fluorescent in situ hybridization (FISH) method in conjunction with fluorescin-labeled peptide nucleic acid (PNA) probes (PNA-FISH) for detection of Listeria species was developed. In silico analysis showed that three PNA probes Lis-16S-1, Lm-16S-2 and Liv-16S-5 were suitable for specific identification of Listeria genus, Listeria monocytogenes and Listeria ivanovii, respectively. These probes were experimentally verified by their reactivity against 19 strains of six Listeria species (excluding newly described species Listeria marthii and Listeria rocourtiae) and eight other bacterial species. The PNA-FISH method was optimized as 30 min of hybridization with 0.2% Triton X-100 in the solution and used to identify 85 Listeria strains from individual putative Listeria colonies on PALCAM agar plates streaked from selectively enriched cultures of 780 food or food-related samples. Of the 85 Listeria strains, thirty-seven were identified as L. monocytogenes with the probe Lm-16S-2 and two as L. ivanovii with the probe Liv-16S-5 which was in agreement with the results obtained by the API LISTERIA method. Thus, the PNA-FISH protocol has the potential for identification of pathogenic Listeria spp. from food or food-related samples.

  8. Chromosomal mapping of tandem repeats in the Yesso Scallop, Patinopecten yessoensis (Jay, 1857), utilizing fluorescence in situ hybridization

    PubMed Central

    Li, Xuan; Yang, Zujing; Liao, Huan; Zhang, Zhengrui; Huang, Xiaoting; Bao, Zhenmin

    2016-01-01

    Abstract Construction of cytogenetic maps can provide important information for chromosome identification, chromosome evolution and genomic research. However, it hasn’t been conducted in many scallop species yet. In the present study, we attempted to map 12 fosmid clones containing tandem repeats by fluorescence in situ hybridization (FISH) in the Yesso scallop Patinopecten yessoensis (Jay, 1857). The results showed 6 fosmid clones were successfully mapped and distributed in 6 different pairs of chromosomes. Three clones were respectively assigned to a pair of metacentric chromosomes, a pair of submetacentric chromosomes and a pair of telocentric chromosomes and the remaining 3 clones showed their loci on three different pairs of subtelocentric chromosomes by co-hybridization. In summary, totally 8 pairs of chromosomes of the Yesso scallop were identified by 6 fosmid clones and two rDNA probes. Furthermore, 6 tandem repeats of 5 clones were sequenced and could be developed as chromosome specific markers for the Yesso scallop. The successful localization of fosmid clones will undoubtedly facilitate the integration of linkage groups with cytogenetic map and genomic research for the Yesso scallop. PMID:27186345

  9. Direct fluorescence in situ hybridization (FISH) in Escherichia coli with a target-specific quantum dot-based molecular beacon.

    PubMed

    Wu, Sheng-Mei; Tian, Zhi-Quan; Zhang, Zhi-Ling; Huang, Bi-Hai; Jiang, Peng; Xie, Zhi-Xiong; Pang, Dai-Wen

    2010-10-15

    Quantum dots (QDs) are inorganic fluorescent nanocrystals with excellent properties such as tunable emission spectra and photo-bleaching resistance compared with organic dyes, which make them appropriate for applications in molecular beacons. In this work, quantum dot-based molecular beacons (QD-based MBs) were fabricated to specifically detect β-lactamase genes located in pUC18 which were responsible for antibiotic resistance in bacteria Escherichia coli (E. coli) DH5α. QD-based MBs were constructed by conjugating mercaptoacetic acid-quantum dots (MAA-QDs) with black hole quencher 2 (BHQ2) labeled thiol DNA vial metal-thiol bonds. Two types of molecular beacons, double-strands beacons and hairpin beacons, were observed in product characterization by gel electrophoresis. Using QD-based MBs, one-step FISH in tiny bacteria DH5α was realized for the first time. QD-based MBs retained their bioactivity when hybridizing with complementary target DNA, which showed excellent advantages of eliminating background noise caused by adsorption of non-specific bioprobes and achieving clearer focus of genes in plasmids pUC18, and capability of bacterial cell penetration and signal specificity in one-step in situ hybridization.

  10. In Situ Detection of Freshwater Fungi in an Alpine Stream by New Taxon-Specific Fluorescence In Situ Hybridization Probes▿

    PubMed Central

    Baschien, Christiane; Manz, Werner; Neu, Thomas R.; Marvanová, Ludmila; Szewzyk, Ulrich

    2008-01-01

    New rRNA-targeting oligonucleotide probes permitted the fluorescence in situ hybridization (FISH) identification of freshwater fungi in an Austrian second-order alpine stream. Based on computer-assisted comparative sequence analysis, nine taxon-specific probes were designed and evaluated by whole-fungus hybridizations. Oligonucleotide probe MY1574, specific for a wide range of Eumycota, and the genus (Tetracladium)-specific probe TCLAD1395, as well as the species-specific probes ALacumi1698 (Alatospora acuminata), TRIang322 (Tricladium angulatum), and Alongi340 (Anguillospora longissima), are targeted against 18S rRNA, whereas probes TmarchB10, TmarchC1_1, TmarchC1_2, and AlongiB16 are targeted against the 28S rRNA of Tetracladium marchalianum and Anguillospora longissima, respectively. After 2 weeks and 3 months of exposure of polyethylene slides in the stream, attached germinating conidia and growing hyphae of freshwater fungi were accessible for FISH. Growing hyphae and germinating conidia on leaves and in membrane cages were also visualized by the new FISH probes. PMID:18776035

  11. Development of a flow-fluorescence in situ hybridization protocol for the analysis of microbial communities in anaerobic fermentation liquor

    PubMed Central

    2013-01-01

    Background The production of bio-methane from renewable raw material is of high interest because of the increasing scarcity of fossil fuels. The process of biomethanation is based on the inter- and intraspecific metabolic activity of a highly diverse and dynamic microbial community. The community structure of the microbial biocenosis varies between different biogas reactors and the knowledge about these microbial communities is still fragmentary. However, up to now no approaches are available allowing a fast and reliable access to the microbial community structure. Hence, the aim of this study was to originate a Flow-FISH protocol, namely a combination of flow cytometry and fluorescence in situ hybridization, for the analysis of the metabolically active microorganisms in biogas reactor samples. With respect to the heterogenic texture of biogas reactor samples and to collect all cells including those of cell aggregates and biofilms the development of a preceding purification procedure was indispensable. Results Six different purification procedures with in total 29 modifications were tested. The optimized purification procedure combines the use of the detergent sodium hexametaphosphate with ultrasonic treatment and a final filtration step. By this treatment, the detachment of microbial cells from particles as well as the disbandment of cell aggregates was obtained at minimized cell loss. A Flow-FISH protocol was developed avoiding dehydration and minimizing centrifugation steps. In the exemplary application of this protocol on pure cultures as well as biogas reactor samples high hybridization rates were achieved for commonly established domain specific oligonucleotide probes enabling the specific detection of metabolically active bacteria and archaea. Cross hybridization and autofluorescence effects could be excluded by the use of a nonsense probe and negative controls, respectively. Conclusions The approach described in this study enables for the first time the

  12. Aneuploidy detection for chromosomes 1, X and Y by fluorescence in situ hybridization in human sperm from oligoasthenoteratozoospermic patients

    SciTech Connect

    Pang, M.G.; Zackowski, J.L.; Acosta, A.A.

    1994-09-01

    Oligoasthenoteratozoospermic males (n=15) were investigated for infertility as compared with proven fertile donors. The oligoasthenoteratozoospermic population showed a mean sperm concentration of 9.7 x 10{sup 6}/ml (Range 4.2-19.7), mean motility of 38.5% (Range 10.6-76.8) and morphology (measured by the percentage of normal forms evaluated by strict criteria) with a mean of 3.49% (Range 1.5-5.0). Fluorescence in situ hybridization (FISH) using satellite DNA probes specific for chromosomes 1 (puc 1.77), X (alpha satellite), and Y (satellite-III at Yqh) was performed on human interphase sperm nuclei. DNA probes were either directly labelled with rhodamine-dUTP, FITC-dUTP, or biotinylated by nick translation. Hybridization and signal detection were done by routine laboratory protocols. Microscopic analysis was performed using a cooled CCD camera attached to an epi-fluorescent microscope. After hybridization, fertile donors yielded a frequency of 0.96% (n=12) nullisomic, 98.5% (n=1231) monosomic and 0.96% (n=12) disomic for chromosome 1, whereas oligoasthenoteratozoospermic males yielded a frequency of 16% (n=600) nullisomic, 74.5% (n=2792) monosomic and 9.9% (n=370) disomic. In addition, fertile donors yielded a frequency of 45.7% (n=633) monosomic and 0.7% (n=11) disomic for chromosome X, whereas oligoasthenoteratozoospermic males yielded a frequency of 38.7% (n=760) monosomic and 0.8% (n=13) disomic. Chromosome Y frequencies for fertile donors showed 44.6% (n=614) monosomic and 0.6% (n=2) disomic, whereas oligoasthenoteratozoospermic males yielded a frequency of 33.2% (n=701) monosomic and 0.8% (n=15) disomic. This suggests that the frequency of nullisomy for chromosome 1 is significantly higher (p<0.001) in sperm from oligoasthenoteratozoospermic makes versus sperm from our fertile donors. We conclude that FISH is a powerful tool to determine the frequency of aneuploidy in sperm from oligoasthenoteratozoospermic patients.

  13. Combination of Adhesive-tape-based Sampling and Fluorescence in situ Hybridization for Rapid Detection of Salmonella on Fresh Produce

    PubMed Central

    Bisha, Bledar; Brehm-Stecher, Byron F.

    2010-01-01

    This protocol describes a simple approach for adhesive-tape-based sampling of tomato and other fresh produce surfaces, followed by on-tape fluorescence in situ hybridization (FISH) for rapid culture-independent detection of Salmonella spp. Cell-charged tapes can also be placed face-down on selective agar for solid-phase enrichment prior to detection. Alternatively, low-volume liquid enrichments (liquid surface miniculture) can be performed on the surface of the tape in non-selective broth, followed by FISH and analysis via flow cytometry. To begin, sterile adhesive tape is brought into contact with fresh produce, gentle pressure is applied, and the tape is removed, physically extracting microbes present on these surfaces. Tapes are mounted sticky-side up onto glass microscope slides and the sampled cells are fixed with 10% formalin (30 min) and dehydrated using a graded ethanol series (50, 80, and 95%; 3 min each concentration). Next, cell-charged tapes are spotted with buffer containing a Salmonella-targeted DNA probe cocktail and hybridized for 15 - 30 min at 55°C, followed by a brief rinse in a washing buffer to remove unbound probe. Adherent, FISH-labeled cells are then counterstained with the DNA dye 4',6-diamidino-2-phenylindole (DAPI) and results are viewed using fluorescence microscopy. For solid-phase enrichment, cell-charged tapes are placed face-down on a suitable selective agar surface and incubated to allow in situ growth of Salmonella microcolonies, followed by FISH and microscopy as described above. For liquid surface miniculture, cell-charged tapes are placed sticky side up and a silicone perfusion chamber is applied so that the tape and microscope slide form the bottom of a water-tight chamber into which a small volume (≤ 500 μL) of Trypticase Soy Broth (TSB) is introduced. The inlet ports are sealed and the chambers are incubated at 35 - 37°C, allowing growth-based amplification of tape-extracted microbes. Following incubation, inlet ports

  14. Photofunctional hybrids of lanthanide functionalized bio-MOF-1 for fluorescence tuning and sensing.

    PubMed

    Shen, Xiang; Yan, Bing

    2015-08-01

    A series of luminescent Ln(3+)@bio-MOF-1 (Ln=Eu, Tb, bio-MOF-1=Zn8(ad)4(BPDC)6O⋅2Me2NH2 (ad=adeninate, BPDC=biphenyldicarboxylate)) are synthesized via postsynthetic cation exchange by encapsulating lanthanide ions into an anionic metal-organic framework (MOF), and their photophysical properties are studied. After loading 2-thenoyltrifluroacetone (TTA) as sensitized ligand by a gas diffusion ("ship-in-bottle") method, it is found that the luminescent intensity of Eu(3+) is enhanced. Especially, when loading two different lanthanide cations into bio-MOF-1, the luminescent color can be tuned to close white (light pink) light output. Additionally, bio-MOF-1 and Eu(3+)@bio-MOF-1 are selected as representative samples for sensing metal ions. When bio-MOF-1 is immersed in the aqueous solutions of different metal ions, it shows highly sensitive sensing for Fe(3+) as well as Eu(3+)@bio-MOF-1 immersed in the DMF solutions of different metal ion. The results are benefit for the further application of functionalized bio-MOFs in practical fields.

  15. Multi-functional core-shell hybrid nanogels for pH-dependent magnetic manipulation, fluorescent pH-sensing, and drug delivery.

    PubMed

    Wu, Weitai; Shen, Jing; Gai, Zheng; Hong, Kunlun; Banerjee, Probal; Zhou, Shuiqin

    2011-12-01

    Remotely optical sensing and drug delivery using an environmentally-guided magnetically-driven hybrid nanogel particle could allow for medical diagnostics and treatment. Such multifunctional hybrid nanogels (<200 nm) were prepared through the first synthesis of magnetic Ni NPs, followed by a moderate growth of fluorescent metallic Ag on the surface of Ni NPs, and then a coverage of a pH-responsive copolymer gel shell of poly(ethylene glycol-co-methacrylic acid) [p(EG-MAA)] onto the Ni-Ag bimetallic NP cores (18 ± 5 nm). The introduction of the pH-responsive p(EG-MAA) gel shell onto the magnetic and fluorescent Ni-Ag NPs makes the polymer-bound Ni-Ag NPs responsive to pH over the physiologically important range 5.0-7.4. The hybrid nanogels can adapt to surrounding pH and regulate the sensitivity in response to external magnetic field (such as a small magnet of 0.1 T), resulting in the accumulation of the hybrid nanogels within the duration from hours to a few seconds as the pH value decreases from 7.4 to 5.0. The pH-dependent magnetic response characteristic of the hybrid nanogels were further integrated with the pH change to fluorescent signal transduction and pH-regulated anticancer drug (a model drug 5-fluorouracil) delivery functions. The hybrid nanogels can overcome cellular barriers to enter the intracellular region and light up the mouse melanoma B16F10 cells. The multiple responsive hybrid nanogel that can be manipulated in tandem endogenous and exogenous activation should enhance our ability to address the complexity of biological systems. PMID:21944827

  16. Conducting polymer nanofibers for high sensitivity detection of chemical analytes.

    NASA Astrophysics Data System (ADS)

    Kumar, Abhishek; Leshchiner, Ignaty; Nagarajan, Subhalakshmi; Nagarajan, Ramaswamy; Kumar, Jayant

    2008-03-01

    Possessing large surface area materials is vital for high sensitivity detection of analyte. We report a novel, inexpensive and simple technique to make high surface area sensing interfaces using electrospinning. Conducting polymers (CP) nanotubes were made by electrospinning a solution of a catalyst (ferric tosylate) along with poly (lactic acid), which is an environment friendly biodegradable polymer. Further vapor deposition polymerization of the monomer ethylenedioxy thiophene (EDOT) on the nanofiber surface yielded poly (EDOT) covered fibers. X-ray photo electron spectroscopy (XPS) study reveals the presence of PEDOT predominantly on the surface of nanofibers. Conducting nanotubes had been received by dissolving the polymer in the fiber core. By a similar technique we had covalently incorporated fluorescent dyes on the nanofiber surface. The materials obtained show promise as efficient sensing elements. UV-Vis characterization confirms the formation of PEDOT nanotubes and incorporation of chromophores on the fiber surface. The morphological characterization was carried out using scanning electron microscopy (SEM) and transmission electron microscopy (TEM).

  17. The human tissue transglutaminase gene maps on chromosome 20q12 by in situ fluorescence hybridization

    SciTech Connect

    Gentile, V.; Davies, P.J.A. ); Baldini, A. )

    1994-03-15

    A cDNA encoding for the human tissue transglutaminase gene has been used to identify the chromosomal localization of the corresponding structural gene. The precise chromosomal and subregional localizations have been established by using in situ fluorescence mapping with a recombinant [lambda]-Zap phage containing the full cDNA coding sequence. The study showed that the human tissue transglutaminase gene is localized on chromosome 20 and, more precisely, within the band 20q12. To date, this is the third member of the transglutaminase gene family to be mapped. Human factor XIIIa (plasma transglutaminase), human keratinocyte transglutaminase (type I), and human tissue transglutaminase (type II) genes, although codifying for homologous enzymes, are localized on three different chromosomes. 16 refs., 1 fig.

  18. Hybrid aptamer-antibody linked fluorescence resonance energy transfer based detection of trinitrotoluene.

    PubMed

    Sabherwal, Priyanka; Shorie, Munish; Pathania, Preeti; Chaudhary, Shilpa; Bhasin, K K; Bhalla, Vijayender; Suri, C Raman

    2014-08-01

    Combining synthetic macromolecules and biomolecular recognition units are promising in developing novel diagnostic and analysis techniques for detecting environmental and/or clinically important substances. Fluorescence resonance energy transfer (FRET) apta-immunosensor for explosive detection is reported using 2,4,6-trinitrotoluene (TNT) specific aptamer and antibodies tagged with respective FRET pair dyes in a sandwich immunoassay format. FITC-labeled aptamer was used as a binder molecule in the newly developed apta-immunoassay format where the recognition element was specific anti-TNT antibody labeled with rhodamine isothiocyanate. The newly developed sensing platform showed excellent sensitivity with a detection limit of the order of 0.4 nM presenting a promising candidate for routine screening of TNT in samples.

  19. Aptamer-based exonuclease protection and enzymatic recycling cleavage amplification homogeneous assay for the highly sensitive detection of thrombin.

    PubMed

    Xue, Qingwang; Zhang, Ge; Wang, Lei; Jiang, Wei

    2014-06-21

    Critical challenges in homogeneous solution-based biomolecular detection are the separation and sensitivity compared to biomolecular detection in heterogeneous solutions. In this work, a novel, separation-free and sensitive homogeneous protein detection assay based on combining aptameric exonuclease protection with nicking enzyme assisted fluorescence signal amplification (NEFSA) is developed for highly sensitive protein detection. We applied a special oligonucleotide probe containing a protein aptamer sequence at the 3'-terminus, which has the capacity to recognize the protein target with high affinity and specificity. Specifically, the aptamer probe is protected from exonuclease-catalyzed digestion upon binding to the protein target. The protected aptamer probe hybridizes with the molecular beacon (MB) probe, a reporter signal oligo-DNA. Consequently, the NEFSA process is triggered in the presence of a nicking enzyme, resulting in the continuous enzyme cleavage of many MBs, providing a fluorescent cascadic amplification detection signal for the target. Thrombin was used as the model analyte in the current proof-of-concept experiments. This method permits the detection of human thrombin specifically with a detection limit as low as 1.0 pM without using washes or separations. Our method exhibits excellent sensitivity. In addition, this new method is simple and avoids the specific conformational design of an aptasensor probe for the elimination of washing and separation steps. The mechanism, moreover, may be generalized and used for other forms of protein analysis by changing the corresponding aptamer without changing the other conditions. So our new strategy may provide a homogeneous fluorescence detection platform for many proteins.

  20. Random Terpolymer Designed with Tunable Fluorescence Lifetime for Efficient Organic/Inorganic Hybrid Solar Cells.

    PubMed

    Li, Qinghua; Jin, Xiao; Song, Yinglin; Zhang, Qin; Xu, Zhongyuan; Chen, Zihan; Cheng, Yuanyuan; Luo, Xubiao

    2015-08-12

    The long photoluminescence lifetime of the organic semiconductor materials is of great importance in assuring the photoexcited extion to have enough time to achieve successful separation at the interface and improving the performances of organic/inorganic hybrid solar cells. Unfortunately, many efforts have been devoted to the bandgap or molecular energy level control, whereas this viewpoint is rarely referred. Herein, we prepare a random D-A terpolymers based on PZT and BDT cores in conjugation with electron withdrawing BT unit and explore their applications in HSCs. Except for the energy level and the bandgap, the role that monomers ratio plays in photoluminescence lifetime is particularly involved. As a result, the average PL lifetimes of the terpolymer are significantly tuned. The optimized terpolymer exhibits a longer PL lifetime and prominent charge transfer ability, thus leading to a notable enhancement of PCE when compared with its counterparts, although their bandgaps and molecular energy levels are almost the same. PMID:26196279

  1. Ultrasensitive fluorescence detection of DNA sequencing gels

    SciTech Connect

    Mathies, R.A.

    1991-01-01

    During the three years of this grant we have: (1) Developed and applied a new theory for optimizing high-sensitivity fluorescence detection. (2) Developed and patented a new high-sensitivity confocal-fluorescence laser-excited gel-scanner. (3) Applied this scanner to the development of a new class of versatile and sensitive fluorescent dyes for DNA detection. (4) Developed methods for the detection of single fluorescent molecules by fluorescence burst detection. 11 refs., 10 figs.

  2. Fluorescent in situ hybridization with specific DNA probes offers adequate detection of Enterococcus faecalis and Enterococcus faecium in clinical samples.

    PubMed

    Waar, Karola; Degener, John E; van Luyn, Marja J; Harmsen, Hermie J M

    2005-10-01

    Enterococcus faecalis and Enterococcus faecium are among the leading causes of hospital-acquired infections. Reliable and quick identification of E. faecalis and E. faecium is important for accurate treatment and understanding their role in the pathogenesis of infections. Fluorescent in situ hybridization (FISH) of whole bacterial cells with oligonucleotides targeted at the 16S rRNA molecule leads to a reduced time to identification. In clinical practice, FISH therefore can be used in situations in which quick identification is necessary for optimal treatment of the patient. Furthermore, the abundance, spatial distribution and bacterial cell morphology can be observed in situ. This report describes the design of two fluorescent-labelled oligonucleotides that, respectively, detect the 16S rRNA of E. faecalis and the 16S rRNA of E. faecium, Enterococcus hirae, Enterococcus mundtii, Enterococcus villorum and Enterococcus saccharolyticus. Different protocols for the application of these oligonucleotides with FISH in different clinical samples such as faeces or blood cultures are given. Enterococci in a biofilm attached to a biomaterial were also visualized. Embedding of the biomaterial preserved the morphology and therefore the architecture of the biofilm could be observed. The usefulness of other studies describing FISH for detection of enterococci is generally hampered by the fact that they have only focused on one material and one protocol to detect the enterococci. However, the results of this study show that the probes can be used both in the routine laboratory to detect and determine the enterococcal species in different clinical samples and in a research setting to enumerate and detect the enterococci in their physical environment.

  3. Application of rRNA probes and fluorescence in situ hybridization for rapid detection of the toxic dinoflagellate Alexandrium minutum

    NASA Astrophysics Data System (ADS)

    Tang, Xianghai; Yu, Rencheng; Zhou, Mingjiang; Yu, Zhigang

    2012-03-01

    The dinoflagellate Alexandrium minutum is often associated with harmful algal blooms (HABs). This species consists of many strains that differ in their ability to produce toxins but have similar morphology, making identification difficult. In this study, species-specific rRNA probes were designed for whole-cell fluorescence in situ hybridization (FISH) to distinguish A. minutum from two phylogenetic clades. We acquired the complete SSU to LSU rDNA sequences (GenBank accession numbers JF906989-JF906999) of 11 Alexandrium strains and used these to design rRNA targeted oligonucleotide probes. Three ribotype-specific probes, M-GC-1, M-PC-2, and M-PC-3, were designed. The former is specific for the GC clade ("Global clade") of A. minutum, the majority of which have been found non-toxic, and the latter two are specific for the PSP (paralytic shellfish poisoning)-producing PC clade ("Pacific clade"). The specificity of these three probes was confirmed by FISH. All cells in observed fields of view were fluorescently labeled when probes and target species were incubated under optimized FISH conditions. However, the accessibility of rRNA molecules in ribosomes varied among the probe binding positions. Thus, there was variation in the distribution of positive signals in labeled cells within nucleolus and cytosol (M-GC-1, M-PC-3), or just nucleolus (M-PC-2). Our results provide a methodological basis for studying the biogeography and population dynamics of A. minutum, and providing an early warning of toxic HABs.

  4. DNA damage and repair measured in different genomic regions using the comet assay with fluorescent in situ hybridization.

    PubMed

    Horváthová, Eva; Dusinská, Mária; Shaposhnikov, Sergey; Collins, Andrew R

    2004-07-01

    The comet assay is a sensitive method for measuring DNA strand breaks in eukaryotic cells. After embedding in agarose, cells are lysed and electrophoresed at high pH. DNA loops containing breaks (in which supercoiling is relaxed) escape from the nucleoid comet head to form a tail. Oligonucleotide probes were designed for 5' and 3' regions of the genes for dihydrofolate reductase (DHFR) and O6-methylguanine DNA methyltransferase (MGMT), both from the Chinese hamster, and the human tumour suppressor p53 gene. Alternate ends were labelled with either biotin or fluorescein. These probes were hybridized to the DNA of comets from Chinese hamster ovary (CHO) cells or human lymphocytes treated with H2O2 or photosensitizer plus light to induce oxidative damage. Amplification with Texas red- and fluorescein-tagged antibodies led, in the case of p53 in human cells, to red and green signals located in the comet tail (as well as in the head), indicating the presence of breaks in the vicinity of the gene. However, only one end of the MGMT gene appeared in the tail and almost no signals from the DHFR gene, either red or green, were in the tail of comets from CHO cells. Restriction on movement from the head to tail may result from the presence of a 'matrix-associated region' in the gene. The kinetics of repair of oxidative damage were followed; strand breaks in the p53 gene were repaired more rapidly than total DNA. Thus, fluorescent in situ hybridization in combination with the comet assay provides a powerful method for studying repair of specific genes in relation to chromatin structure. PMID:15215325

  5. Automation of ALK gene rearrangement testing with fluorescence in situ hybridization (FISH): a feasibility study.

    PubMed

    Zwaenepoel, Karen; Merkle, Dennis; Cabillic, Florian; Berg, Erica; Belaud-Rotureau, Marc-Antoine; Grazioli, Vittorio; Herelle, Olga; Hummel, Michael; Le Calve, Michele; Lenze, Dido; Mende, Stefanie; Pauwels, Patrick; Quilichini, Benoit; Repetti, Elena

    2015-02-01

    In the past several years we have observed a significant increase in our understanding of molecular mechanisms that drive lung cancer. Specifically in the non-small cell lung cancer sub-types, ALK gene rearrangements represent a sub-group of tumors that are targetable by the tyrosine kinase inhibitor Crizotinib, resulting in significant reductions in tumor burden. Phase II and III clinical trials were performed using an ALK break-apart FISH probe kit, making FISH the gold standard for identifying ALK rearrangements in patients. FISH is often considered a labor and cost intensive molecular technique, and in this study we aimed to demonstrate feasibility for automation of ALK FISH testing, to improve laboratory workflow and ease of testing. This involved automation of the pre-treatment steps of the ALK assay using various protocols on the VP 2000 instrument, and facilitating automated scanning of the fluorescent FISH specimens for simplified enumeration on various backend scanning and analysis systems. The results indicated that ALK FISH can be automated. Significantly, both the Ikoniscope and BioView system of automated FISH scanning and analysis systems provided a robust analysis algorithm to define ALK rearrangements. In addition, the BioView system facilitated consultation of difficult cases via the internet.

  6. Microbial populations identified by fluorescence in situ hybridization in a constructed wetland treating acid coal mine drainage

    SciTech Connect

    Nicomrat, D.; Dick, W.A.; Tuovinen, O.H.

    2006-07-15

    Microorganisms are an integral part of the biogeochemical processes in wetlands, yet microbial communities in sediments within constructed wetlands receiving acid mine drainage (AMD) are only poorly understood. The purpose of this study was to characterize the microbial diversity and abundance in a wetland receiving AMD using fluorescence in situ hybridization (FISH) analysis. Seasonal samples of oxic surface sediments, comprised of Fe(III) precipitates, were collected from two treatment cells of the constructed wetland system. The pH of the bulk samples ranged between pH 2.1 and 3.9. Viable counts of acidophilic Fe and S oxidizers and heterotrophs were determined with a most probable number (MPN) method. The MPN counts were only a fraction of the corresponding FISH counts. The sediment samples contained microorganisms in the Bacteria (including the subgroups of acidophilic Fe- and S-oxidizing bacteria and Acidiphilium spp.) and Eukarya domains. Archaea were present in the sediment surface samples at < 0.01% of the total microbial community. The most numerous bacterial species in this wetland system was Acidithiobacillus ferrooxidans, comprising up to 37% of the bacterial population. Acidithiobacillus thiooxidans was also abundant.

  7. [Rapid enrichment and cultivation of denitrifying phosphate-removal bacteria and its identification by fluorescence in situ hybridization technology].

    PubMed

    Liu, Li; Tang, Bing; Huang, Shao-Song; Fu, Feng-Lian; Zhang, Qi-Qin; Li, Jian-Bin; Luo, Jian-Zhong

    2013-07-01

    The present work focused on a rapid enrichment and cultivation of denitrifying phosphate-removal bacteria (DPB) in a membrane bio-reactor(MBR) by using A2/O anaerobic sludge from a wastewater treatment plant as seed, as well as providing an identification method. In the experiments, sodium acetate was used as the carbon source and a certain amount of nitrate was added to the MBR in the anoxic stage. Results showed that, with the efficient trap of the hollow-fiber membrane module, the proportion of DPB in all the phosphate-accumulating organisms (PAOs) increased from 24% to 93% within 35 days after two-stage's cultivation including anaerobic/aerobic and anaerobic/anoxic, during which the removal efficiency of nitrogen and phosphorus reached more than 90%. The activated sludge was identified by combining a regular method and the fluorescence in situ hybridization (FISH) technique, which demonstrated that Pseudomonas sp. and Rhodocyclus sp. were the dominant bacteria in the used bioreactor.

  8. Comparative cytogenetics of six Indo-Pacific moray eels (Anguilliformes: Muraenidae) by chromosomal banding and fluorescence in situ hybridization.

    PubMed

    Coluccia, E; Deidda, F; Cannas, R; Lobina, C; Cuccu, D; Deiana, A M; Salvadori, S

    2015-09-01

    A comparative cytogenetic analysis, using both conventional staining techniques and fluorescence in situ hybridization, of six Indo-Pacific moray eels from three different genera (Gymnothorax fimbriatus, Gymnothorax flavimarginatus, Gymnothorax javanicus, Gymnothorax undulatus, Echidna nebulosa and Gymnomuraena zebra), was carried out to investigate the chromosomal differentiation in the family Muraenidae. Four species displayed a diploid chromosome number 2n = 42, which is common among the Muraenidae. Two other species, G. javanicus and G. flavimarginatus, were characterized by different chromosome numbers (2n = 40 and 2n = 36). For most species, a large amount of constitutive heterochromatin was detected in the chromosomes, with species-specific C-banding patterns that enabled pairing of the homologous chromosomes. In all species, the major ribosomal genes were localized in the guanine-cytosine-rich region of one chromosome pair, but in different chromosomal locations. The (TTAGGG)n telomeric sequences were mapped onto chromosomal ends in all muraenid species studied. The comparison of the results derived from this study with those available in the literature confirms a substantial conservation of the diploid chromosome number in the Muraenidae and supports the hypothesis that rearrangements have occurred that have diversified their karyotypes. Furthermore, the finding of two species with different diploid chromosome numbers suggests that additional chromosomal rearrangements, such as Robertsonian fusions, have occurred in the karyotype evolution of the Muraenidae.

  9. Validation of break-apart and fusion MYC probes using a digital fluorescence in situ hybridization capture and imaging system

    PubMed Central

    Liew, Michael; Rowe, Leslie; Clement, Parker W.; Miles, Rodney R.; Salama, Mohamed E.

    2016-01-01

    Introduction: Detection of MYC translocations using fluorescence in situ hybridization (FISH) is important in the evaluation of lymphomas, in particular, Burkitt lymphoma and diffuse large B-cell lymphoma. Our aim was to validate a digital FISH capture and imaging system for the detection of MYC 8q24 translocations using LSI-MYC (a break-apart probe) and MYC 8;14 translocation using IGH-MYC (a fusion probe). Materials and Methods: LSI-MYC probe was evaluated using tissue sections from 35 patients. IGH-MYC probe was evaluated using tissue sections from forty patients. Sections were processed for FISH and analyzed using traditional methods. FISH slides were then analyzed using the GenASIs capture and analysis system. Results: Results for LSI-MYC had a high degree of correlation between traditional method of FISH analysis and digital FISH analysis. Results for IGH-MYC had a 100% concordance between traditional method of FISH analysis and digital FISH analysis. Conclusion: Annotated whole slide images of H and E and FISH sections can be digitally aligned, so that areas of tumor within a section can be matched and evaluated with a greater degree of accuracy. Images can be archived permanently, providing a means for examining the results retrospectively. Digital FISH imaging of the MYC translocations provides a better diagnostic tool compared to traditional methods for evaluating lymphomas. PMID:27217970

  10. Cryptic Subtelomeric Rearrangements and X Chromosome Mosaicism: A Study of 565 Apparently Normal Individuals with Fluorescent In Situ Hybridization

    PubMed Central

    Wise, Jasen L.; Crout, Richard J.; McNeil, Daniel W.; Weyant, Robert J.; Marazita, Mary L.; Wenger, Sharon L.

    2009-01-01

    Five percent of patients with unexplained mental retardation have been attributed to cryptic unbalanced subtelomeric rearrangements. Half of these affected individuals have inherited the rearrangement from a parent who is a carrier for a balanced translocation. However, the frequency of carriers for cryptic balanced translocations is unknown. To determine this frequency, 565 phenotypically normal unrelated individuals were examined for balanced subtelomeric rearrangements using Fluorescent In Situ hybridization (FISH) probes for all subtelomere regions. While no balanced subtelomeric rearrangements were identified, three females in this study were determined to be mosaic for the X chromosome. Mosaicism for XXX cell lines were observed in the lymphocyte cultures of 3 in 379 women (0.8%), which is a higher frequency than the 1 in 1000 (0.1%) reported for sex chromosome aneuploidies. Our findings suggest that numerical abnormalities of the X chromosome are more common in females than previously reported. Based on a review of the literature, the incidence of cryptic translocation carriers is estimated to be approximately 1/8,000, more than ten-fold higher than the frequency of visible reciprocal translocations. PMID:19516895

  11. Interphase fluorescence in situ hybridization and reverse transcription polymerase chain reaction as a diagnostic aid for synovial sarcoma.

    PubMed Central

    Shipley, J.; Crew, J.; Birdsall, S.; Gill, S.; Clark, J.; Fisher, C.; Kelsey, A.; Nojima, T.; Sonobe, H.; Cooper, C.; Gusterson, B.

    1996-01-01

    Identification of the t(X;18)(p11.2;q11.2) that is associated with a high proportion of synovial sarcoma can be a useful diagnostic aid. The translocation results in fusion of the SYT gene on chromosome 18 to either the SSX1 or the SSX2 gene, two homologous genes within Xp11.2. Two-color interphase fluorescence in situ hybridization and reverse transcription polymerase chain reaction were assessed as approaches to identify the rearrangement in well characterized cases. The presence of the translocation, and the specific chromosome X gene disrupted, were inferred from the configuration of signals from chromosome-specific centromere probes, paints, and markers flanking each gene in preparations of interphase nuclei. Rearrangement was found in two cell lines and eight of nine tumor samples, including analysis of five touch imprints. This was consistent with cytogenetic data in four cases and reverse transcription polymerase chain reaction analysis using primers known to amplify both SYT-SSX1 and SYT-SSX2 transcripts. The transcripts were distinguished by restriction with LspI and SmaI. Contrary to previous suggestions, there was no obvious correlation between histological subtype and involvement of the SSX1 or SSX2 gene. These approaches could also be applied to the identification of tumor-free margins and metastatic disease. Images Figure 1 Figure 3 PMID:8579118

  12. Rapid identification of Acinetobacter spp. by fluorescence in situ hybridization (FISH) from colony and blood culture material

    PubMed Central

    Essig, A.; Hagen, R. M.; Riecker, M.; Jerke, K.; Ellison, D.; Poppert, S.

    2011-01-01

    Multi-drug-resistant strains of the Acinetobacter baumannii complex cause nosocomial infections. Rapid identification of Acinetobacter spp. is desirable in order to facilitate therapeutic or hygiene decisions. We evaluated a newly designed DNA probe that can be used under standard conditions in both a microwave oven and a slide chamber for the rapid identification of Acinetobacter spp. by fluorescence in situ hybridization (FISH). Using FISH, the new probe correctly identified 81/81 Acinetobacter spp. isolates and excluded 109/109 tested non-target organisms from agar culture. Furthermore, the new probe correctly identified 7/7 Acinetobacter spp. in 214 blood cultures determined to contain Gram-negative bacteria by Gram staining. Using either the microwave oven or slide chamber technique, the new probe was able to identify Acinetobacter spp. in 100% of the samples tested. FISH used in conjunction with our newly designed probe provides an easy, cheap, precise, and rapid method for the preliminary identification of Acinetobacter spp., especially in laboratories where more sophisticated methods like matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) are not available. PMID:24516735

  13. Fluorescent in situ hybridization (FISH) and high resolution karyotype analysis reveal a novel inversion duplication of 10q

    SciTech Connect

    Czarnecki, P.; Dyke, D.L. Van; Dowling, P.K.

    1994-09-01

    A white male born with dysmorphic features, including upslanting palpebral fissures, bilateral simian creases, posteriorly rotated ears, bitemporal narrowing, frontal bossing, camptodactyly and head circumference and weight less than the 5th percentile was found to have a de novo add(10)(q26.1). High resolution karyotype analysis revealed a novel chromosomal abnormality: 46,XY,inv dup(10)(q26.3-q25.1). Fluorescent in situ hybridization using a chromosome 10-specific painting probe (Oncor, Inc.) confirmed that the extra material was derived from chromosome 10. Duplication of 10q24 or 10q25 is associated with characteristic craniofacial malformations, minor malformations of the hands and feet, major malformations of the heart, skeleton, and kidneys and severe mental retardation. Our patient, currently 7 months old, has many of the skeletal and craniofacial manifestations of other patients, but is developmentally normal at this early age. This is the first FISH confirmation of a 10q duplication and demonstrates the utility of this technology in addition to karyotype analysis. Molecular studies to determine the parental origin and extent of the duplication are in progress, since the apparent lack of developmental delay was unexpected. Identification of the origin of duplicated material will help assist in genetic counseling by further delineating new genetic syndromes.

  14. Monitoring of chimerism using fluorescence in situ hybridization in a child with severe combined immune deficiency following bone marrow transplant

    SciTech Connect

    Wenger, S.L.; Chen, X.O.; Katz, A.J. |

    1994-09-01

    A boy with severe combined immunodeficiency received a bone marrow transplant from his sister when he was approximately 3 years of age. His peripheral blood karyotype at age 3 and 4 years was 46,XX (20 cells analyzed). Because of a decline in antibody production at 19 years of age, the patient`s peripheral blood was analyzed again for suspected chimerism. His karyotype in phytohemagglutinin (PHA)-stimulated culture was 46,XX in 49 cells and 46,XY in one cell. Both metaphase and interphase cells were examined for sex chromosome constitution using X and Y dual-color alpha-satellite probes for fluorescence in situ hybridization (FISH). FISH results for metaphase cells showed 1/50 XY cells, but 38% of interphase cells showed the presence of both X and Y centromere. Pokeweed mitogen (PWM)-stimulated cultures grew poorly and were therefore analyzed using FISH only: 81% of interphase cells were 46,XX. The discrepancy between metaphase and interphase in the PHA-stimulated cultures most likely represents a failure of this boy`s own XY T-cells to be stimulated.

  15. The Dohner fluorescence in situ hybridization prognostic classification of chronic lymphocytic leukaemia (CLL): the CLL Research Consortium experience.

    PubMed

    Van Dyke, Daniel L; Werner, Lillian; Rassenti, Laura Z; Neuberg, Donna; Ghia, Emanuella; Heerema, Nyla A; Dal Cin, Paola; Dell Aquila, Marie; Sreekantaiah, Chandrika; Greaves, Andrew W; Kipps, Thomas J; Kay, Neil E

    2016-04-01

    This study revisited the Dohner prognostic hierarchy in a cohort of 1585 well-documented patients with chronic lymphocytic leukaemia. The duration of both time to first treatment (TTFT) and overall survival (OS) were significantly longer than observed previously, and this is at least partly due to improved therapeutic options. Deletion 13q remains the most favourable prognostic group with median TTFT and OS from fluorescence in situ hybridization (FISH) testing of 72 months and >12 years, respectively. Deletion 11q had the poorest median TTFT (22 months) and 17p deletion the poorest median OS (5 years). The percentages of abnormal nuclei were significantly associated with differential TTFT for the trisomy 12, 13q and 17p deletion cohorts but not for the 11q deletion cohort. From the date of the first FISH study, patients with >85% 13q deletion nuclei had a notably shorter TTFT (24 months). Patients with ≤20% 17p deletion nuclei had longer median TTFT and OS from the date of the first FISH study (44 months and 11 years), and were more likely to be IGHV mutated.

  16. Feasibility of using fluorescence in situ hybridization (FISH) to detect early gene changes in sputum cells from uranium miners

    SciTech Connect

    Neft, R.E.; Rogers, J.L.; Belinsky, S.A.

    1995-12-01

    Epidemiological studies have shown that combined exposure to radon progeny and tobacco smoke produce a greater than additive or synergistic increase in lung cancer risk. Lung cancer results from multiple genetic changes over a long period of time. An early change that occurs in lung cancer is trisomy 7 which is found in 50% of non-small cell lung cancer and in the far margins of resected lung tumors. The 80% mortality associated with lung cancer is in part related to the high proportion of patients who present with an advanced, unresectable tumor. Therefore, early detection of patients at risk for tumor development is critical to improve treatment of this disease. Currently, it is difficult to detect lung cancer early while it is still amendable by surgery. Saccomanno, G. has shown that premalignant cytologic changes in sputum cells collected from uranium miners can be detected by a skilled, highly trained cytopathologist. A more objective alternative for identifying premalignant cells in sputum may be to determine whether an early genetic change such as trisomy 7 is present in these cells. Fluorescence in situ hybridization (FISH) can be used to identify cells with trisomy 7. The results of this investigation indicate that FISH may prove to be an accurate, efficient method to test at-risk individuals for genetic alterations in bronchial epithelial cells from sputum.

  17. Detection by fluorescence in situ hybridization of microdeletions at 1p36 in lymphomas, unidentified on cytogenetic analysis.

    PubMed

    Rajgopal, Achuthan; Carr, Ian M; Leek, Jack P; Hodge, Donald; Bell, Sandra M; Roberts, Paul; Horgan, Kieran; Bonthron, David T; Selby, Peter J; Markham, Alexander F; MacLennan, Kenneth A

    2003-04-01

    The chromosomal band 1p36 exhibits frequent loss of heterozygosity in a variety of human malignancies, suggesting the presence of an as yet unidentified tumor suppressor gene. The faint terminal subbands often make cytogenetic analysis of 1p36 particularly difficult. Small deletions at this locus may therefore escape detection on analysis by conventional cytogenetics, a hypothesis that we have explored using fluorescence in situ hybridization (FISH) in malignant lymphoma. The study cohort consisted of 20 cases of lymphoma of various subtypes without any 1p abnormality on G-banded karyotyping. FISH was performed using a human chromosome 1 paint and a bacterial artificial chromosome probe RP4-755G5 localizing to 1p36.33, the most telomeric subband of 1p36. Tumors demonstrating 1p36.33 deletions were additionally analyzed by FISH using a second probe from the proximal 1p36.1 subband, to further define the breakpoint. Eight cases of follicular lymphoma (FL), 5 diffuse large B-cell lymphomas (DLBCL), 2 Hodgkin disease, 2 B-cell small lymphocytic lymphomas, 2 T-cell lymphomas, and 1 marginal zone lymphoma were analyzed. FISH identified deletions at 1p36.33 in 5 of the 20 cases: 3 DLBCL and 2 FL. FISH is considerably more sensitive for identifying lymphoma genetic alterations than conventional cytogenetics. Deletion of the distal part of the 1p36 may be a much more common aberration than previously recognized in lymphoma.

  18. Human cDNA mapping using fluorescence in situ hybridization. Progress report, April 1--December 31, 1992

    SciTech Connect

    Korenberg, J.R.

    1993-12-31

    The ultimate goal of this proposal is to create a cDNA map of the human genome. Mapping is approached using the techniques of high resolution fluorescence in situ hybridization (FISH). This technology and the results of its application are designed to rapidly generate whole genome as tool box of expressed sequence to speed the identification of human disease genes. The results of this study are intended to dovetail with and to link the results of existing technologies for creating backbone YAC and genetic maps. In the first eight months, this approach will generate 60--80% of the expressed sequence map, the remainder expected to be derived through more long-term, labor-intensive, regional chromosomal gene searches or sequencing. The laboratory has made significant progress in the set-up phase, in mapping fetal and adult brain and other cDNAs, in testing a model system for directly linking genetic and physical maps using FISH with small fragments, in setting up a database, and in establishing the validity and throughput of the system.

  19. Paternal-age effects on sperm aneuploidy investigated in mice and humans by three-chromosome fluorescence in situ hybridization

    SciTech Connect

    Wyrobek, A.J.; Lowe, X.; Holland, N.T.

    1994-09-01

    We conducted a cross-species comparison of the effects of paternal age on sperm aneuploidy in mice and humans. A new murine assay was developed to detect sperm hyperhaploidy and polyploidy for chromosomes X, Y, and 8 using fluorescence in situ hybridization with chromosome-specific DNA probes, to serve as a direct corollate to the three-chromosome method developed early for human sperm. Sperm aneuploidy was evaluated in eight male B6C3F1 male mice (aged 22.5-30.5 mo) and compared to young controls (2.4 mo). The aged group showed significant ({approximately}2.0-fold) increases in hyperhaploidies involving chromosomes X, Y and 8, with the greatest effects seen in the oldest animals. Sperm aneuploidy was also evaluated in two groups of healthy men who differed in mean age [46.8{plus_minus}3.1 (n=4) vs. 28.5{plus_minus}5.0 (n=10) yrs], using the three-chromosome method. The older group showed a statistically significant increase in hyperhaploid sperm for both sex chromosomes. Additional controlled human studies are planned. Taken together, the murine and human data are consistent with a positive effect of paternal age on sperm aneuploidy. In both species, the strongest age effect was observed for hyperhaploidies of chromosome Y. Future studies are needed to investigate the shape of the age-effect curve and to evaluate chromosomal differences, especially for humans in their late reproductive years.

  20. Comparative cytogenetics of six Indo-Pacific moray eels (Anguilliformes: Muraenidae) by chromosomal banding and fluorescence in situ hybridization.

    PubMed

    Coluccia, E; Deidda, F; Cannas, R; Lobina, C; Cuccu, D; Deiana, A M; Salvadori, S

    2015-09-01

    A comparative cytogenetic analysis, using both conventional staining techniques and fluorescence in situ hybridization, of six Indo-Pacific moray eels from three different genera (Gymnothorax fimbriatus, Gymnothorax flavimarginatus, Gymnothorax javanicus, Gymnothorax undulatus, Echidna nebulosa and Gymnomuraena zebra), was carried out to investigate the chromosomal differentiation in the family Muraenidae. Four species displayed a diploid chromosome number 2n = 42, which is common among the Muraenidae. Two other species, G. javanicus and G. flavimarginatus, were characterized by different chromosome numbers (2n = 40 and 2n = 36). For most species, a large amount of constitutive heterochromatin was detected in the chromosomes, with species-specific C-banding patterns that enabled pairing of the homologous chromosomes. In all species, the major ribosomal genes were localized in the guanine-cytosine-rich region of one chromosome pair, but in different chromosomal locations. The (TTAGGG)n telomeric sequences were mapped onto chromosomal ends in all muraenid species studied. The comparison of the results derived from this study with those available in the literature confirms a substantial conservation of the diploid chromosome number in the Muraenidae and supports the hypothesis that rearrangements have occurred that have diversified their karyotypes. Furthermore, the finding of two species with different diploid chromosome numbers suggests that additional chromosomal rearrangements, such as Robertsonian fusions, have occurred in the karyotype evolution of the Muraenidae. PMID:26242690

  1. Detection and identification of specific bacteria in wound biofilms using peptide nucleic acid fluorescent in situ hybridization (PNA FISH).

    PubMed

    Malic, Sladjana; Hill, Katja E; Hayes, Anthony; Percival, Steven L; Thomas, David W; Williams, David W

    2009-08-01

    Biofilms provide a reservoir of potentially infectious micro-organisms that are resistant to antimicrobial agents, and their importance in the failure of medical devices and chronic inflammatory conditions is increasingly being recognized. Particular research interest exists in the association of biofilms with wound infection and non-healing, i.e. chronic wounds. In this study, fluorescent in situ hybridization (FISH) was used in combination with confocal laser scanning microscopy (CLSM) to detect and characterize the spatial distribution of biofilm-forming bacteria which predominate within human chronic skin wounds (Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus sp. and Micrococcus sp.). In vitro biofilms were prepared using a constant-depth film fermenter and a reconstituted human epidermis model. In vivo biofilms were also studied using biopsy samples from non-infected chronic venous leg ulcers. The specificity of peptide nucleic acid (PNA) probes for the target organisms was confirmed using mixed preparations of planktonic bacteria and multiplex PNA probing. Identification and location of individual bacterial species within multi-species biofilms demonstrated that P. aeruginosa was predominant. CLSM revealed clustering of individual species within mixed-species biofilms. FISH analysis of archive chronic wound biopsy sections showed bacterial presence and allowed bacterial load to be determined. The application of this standardized procedure makes available an assay for identification of single- or multi-species bacterial populations in tissue biopsies. The technique provides a reliable tool to study bacterial biofilm formation and offers an approach to assess targeted biofilm disruption strategies in vivo. PMID:19477903

  2. Complex structural rearrangement of chromosomes 13, 19 and 20 detected cytogenetically and by fluorescence in situ hybridization (FISH)

    SciTech Connect

    Al-Nassar, K.E.; Murthy, S.K.; Verghese, L.

    1994-09-01

    Complex chromosomal rearrangements (CCRs) are rare. To date, 72 CCRs have been reported. We report here a case of CCR in a 10 year old boy and his mother involving chromosomes 13, 19 and 20, detected by G-,C- and Ag-NOR banding and by fluorescence in situ hybridization (FISH) technique. Father and other sibs were found to be chromosomally normal. The patient presented with clinical features having obesity, micropenis, slow learning and IQ=70. Mother was clinically normal. Karyotype of the patient and mother showed apparently balanced chromosomal rearrangements involving chromosomes 13, 19 and 20. The karyotypes were interpreted as: 45,XY,-19,der(13),der(20),t(13;19)(13p11.2)::(19q13.2{r_arrow}19pter),t(19;20)(19q13.3{r_arrow}19qter::20qter) in the patient and 45,XX,-19,t(13;19),t(19;20) involving the same breakpoints in the mother. C-banding showed dicentric der(13). FISH using alpha-satellite DNA probes for 13/21 showed the presence of centromeric region of 13 in the der(13). Deletion of 13p11.2{r_arrow}pter was confirmed by negative Ag-NOR staining in der(13).

  3. Liquid-phase hybridization and capture of hepatitis B virus DNA with magnetic beads and fluorescence detection of PCR product.

    PubMed

    Heermann, K H; Hagos, Y; Thomssen, R

    1994-12-01

    The polymerase chain reaction (PCR) exceeds all hitherto known detection limits. This sensitivity could lead to false positive results. Every manipulation increases the risk of contamination via, for example, aerosols. Most protocols for the extraction of template nucleic acids are complicated and possible centrifugation steps do not reduce the risk of aerosols. In addition, most of the methods for analysis are time-consuming and cannot be applied to different template materials. An alternative extraction method has been developed. The fast chemical denaturation of template by guanidine thiocyanate was followed by liquid hybridization to biotinylated oligonucleotides. The template nucleic acid could be washed after binding to streptavidin-coated paramagnetic beads to reduce influence on the enzymatic amplification steps. PCR of hepatitis B virus deoxyribonucleic acid was used to demonstrate how easy, versatile, and time-saving this method is without centrifugation. The level of extracted nucleic acids was quantitated and the properties for sensitive extraction were evaluated. After PCR an additional step was developed which used fluorescent staining to detect positive amplifications. This is useful to identify positive results in predominantly negative samples. PMID:7714058

  4. Fluorescence "in situ" hybridization for the detection of biofilm in the middle ear and upper respiratory tract mucosa.

    PubMed

    Nistico, Laura; Gieseke, Armin; Stoodley, Paul; Hall-Stoodley, Luanne; Kerschner, Joseph E; Ehrlich, Garth D

    2009-01-01

    Most chronic bacterial infections are associated with biofilm formation wherein the bacteria attach to mucosal surfaces, wound tissue, or medical device surfaces in the human body via the formation of an extracellular matrix. Biofilms assume complex three-dimensional structures dependent on the species, the strain, and the prevailing environmental conditions and are composed of both the bacteria and the extracellular slime-like matrices, which surround the bacteria. Bacteria deep in the biofilm live under anaerobic conditions and must use alternatives to O(2) as a terminal electron acceptor. Thus, the metabolic rates of these deep bacteria are greatly reduced, which renders them extremely resistant to antibiotic treatment, and for reasons not clearly understood, it is often very difficult to culture biofilm bacteria using traditional microbiologic techniques. To directly identify and visualize biofilm bacteria in a species-specific manner, we developed a confocal laser scanning microscopy (CLSM)-based 16S rRNA fluorescence in situ hybridization (FISH) protocol, to find biofilm bacteria in middle ear and upper respiratory tract mucosa, which preserves the three-dimensional structure of the biofilm and avoids the use of traditional culture techniques.

  5. Detection and identification of specific bacteria in wound biofilms using peptide nucleic acid fluorescent in situ hybridization (PNA FISH).

    PubMed

    Malic, Sladjana; Hill, Katja E; Hayes, Anthony; Percival, Steven L; Thomas, David W; Williams, David W

    2009-08-01

    Biofilms provide a reservoir of potentially infectious micro-organisms that are resistant to antimicrobial agents, and their importance in the failure of medical devices and chronic inflammatory conditions is increasingly being recognized. Particular research interest exists in the association of biofilms with wound infection and non-healing, i.e. chronic wounds. In this study, fluorescent in situ hybridization (FISH) was used in combination with confocal laser scanning microscopy (CLSM) to detect and characterize the spatial distribution of biofilm-forming bacteria which predominate within human chronic skin wounds (Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus sp. and Micrococcus sp.). In vitro biofilms were prepared using a constant-depth film fermenter and a reconstituted human epidermis model. In vivo biofilms were also studied using biopsy samples from non-infected chronic venous leg ulcers. The specificity of peptide nucleic acid (PNA) probes for the target organisms was confirmed using mixed preparations of planktonic bacteria and multiplex PNA probing. Identification and location of individual bacterial species within multi-species biofilms demonstrated that P. aeruginosa was predominant. CLSM revealed clustering of individual species within mixed-species biofilms. FISH analysis of archive chronic wound biopsy sections showed bacterial presence and allowed bacterial load to be determined. The application of this standardized procedure makes available an assay for identification of single- or multi-species bacterial populations in tissue biopsies. The technique provides a reliable tool to study bacterial biofilm formation and offers an approach to assess targeted biofilm disruption strategies in vivo.

  6. Comprehensive measurement of chromosomal instability in cancer cells: combination of fluorescence in situ hybridization and cytokinesis-block micronucleus assay.

    PubMed

    Camps, Jordi; Ponsa, Immaculada; Ribas, Maria; Prat, Esther; Egozcue, Josep; Peinado, Miguel A; Miró, Rosa

    2005-05-01

    Most tumors show abnormal karyotypes involving either chromosome rearrangements and/or aneuploidies. The aim of our study is to measure the rate of both structural and numerical chromosome instability in two colorectal cancer cell lines: HCT116, and SW480 and its single subclones. To determine structural instability, we measured the nonclonal chromosome alterations of the last cell division by means of multicolor-fluorescence in situ hybridization (FISH). To quantify numerical instability, we used centromere-specific DNA probes to simultaneously detect chromosome loss and nondisjunctional events in binucleated cells obtained by cytokinesis-block micronucleus assay (CBMN). After clonal episodes, the structural chromosome instability rate increased significantly, confirming the large contribution of structural rearrangements to the heterogeneity of cancer cells. On the other hand, the aneuploidy rate was high and conserved in both the parental SW480 cell line and its subclones. The ability to differentiate chromosome loss and nondisjunction by the CBMN assay allowed us to conclude that no significant differences were detected among these events. Analysis of nucleoplasmic bridges, micronuclei, and nuclear blebs also demonstrated the differences among the structural instability rates of the parental cell line and its subclones. Overall, our results demonstrate the prevalence of structural over numerical chromosome instability in the subclones when comparing them with their parental cell line, confirming the contribution of ongoing chromosomal reorganizations in the generation of tumor cell heterogeneity.

  7. Rapid molecular cytogenetic analysis of X-chromosomal microdeletions: Fluorescence in situ hybridization (FISH) for complex glycerol kinase deficiency

    SciTech Connect

    Worley, K.C.; Lindsay, E.A.; McCabe, E.R.B.

    1995-07-17

    Diagnosis of X-chromosomal microdeletions has relied upon the traditional methods of Southern blotting and DNA amplification, with carrier identification requiring time-consuming and unreliable dosage calculations. In this report, we describe rapid molecular cytogenetic identification of deleted DNA in affected males with the Xp21 contiguous gene syndrome (complex glycerol kinase deficiency, CGKD) and female carriers for this disorder. CGKD deletions involve the genes for glycerol kinase, Duchenne muscular dystrophy, and/or adrenal hypoplasia congenita. We report an improved method for diagnosis of deletions in individuals with CGKD and for identification of female carriers within their families using fluorescence in situ hybridization (FISH) with a cosmid marker (cosmid 35) within the glycerol kinase gene. When used in combination with an Xq control probe, affected males demonstrate a single signal from the control probe, while female carriers demonstrate a normal chromosome with two signals, as well as a deleted chromosome with a single signal from the control probe. FISH analysis for CGKD provides the advantages of speed and accuracy for evaluation of submicroscopic X-chromosome deletions, particularly in identification of female carriers. In addition to improving carrier evaluation, FISH will make prenatal diagnosis of CGKD more readily available. 17 refs., 2 figs.

  8. TERT and AURKA gene copy number gains enhance the detection of acral lentiginous melanomas by fluorescence in situ hybridization.

    PubMed

    Diaz, Alba; Puig-Butillé, Joan Anton; Valera, Alexandra; Muñoz, Concha; Costa, Dolors; Garcia-Herrera, Adriana; Carrera, Cristina; Sole, Francesc; Malvehy, Josep; Puig, Susana; Alos, Llucia

    2014-03-01

    The study of specific chromosomal loci through fluorescence in situ hybridization (FISH) is useful in differential diagnosis of melanocytic tumors. However, sensitivity rates vary, probably because of molecular heterogeneity. Acral lentiginous melanomas are characterized by copy number gains of small genomic regions, including CCND1, TERT, and AURKA. In a series of 58 acral melanocytic lesions, we explored the value of a four-color FISH probe, used in addition to determining MYC gene status, and assessed the potential diagnostic usefulness of newly developed probes targeting TERT and AURKA. Moreover, we tested CCND1, TERT, and AURKA protein expression by immunohistochemistry. The four-color FISH probe detected 85.3% of melanomas and 29.4% of TERT and AURKA copy number gains. Sensitivity was 97% (confidence interval 95%, 82.9% to 99.8%) for the combined results of all probes. No MYC copy number gains were detected. No nevi showed aberrations. Immunohistochemistry revealed a higher percentage of cells positive for CCND1, TERT, and AURKA protein in melanomas than in nevi (P ≤ 0.001). A significant correlation between gene copy number gain and protein expression was found for CCND1 (P = 0.015). Our results indicate that addition of specific FISH probes to the current probe could improve sensitivity for the diagnosis of acral melanomas. Further studies in larger numbers of cases are needed to validate these results.

  9. Fluorescence in situ hybridization of TP53 for the detection of chromosome 17 abnormalities in myelodysplastic syndromes.

    PubMed

    Sánchez-Castro, Judit; Marco-Betés, Víctor; Gómez-Arbonés, Xavier; García-Cerecedo, Tomás; López, Ricard; Talavera, Elisabeth; Fernández-Ruiz, Sara; Ademà, Vera; Marugan, Isabel; Luño, Elisa; Sanzo, Carmen; Vallespí, Teresa; Arenillas, Leonor; Marco Buades, Josefa; Batlle, Ana; Buño, Ismael; Martín Ramos, María Luisa; Blázquez Rios, Beatriz; Collado Nieto, Rosa; Vargas, Ma Teresa; González Martínez, Teresa; Sanz, Guillermo; Solé, Francesc

    2015-01-01

    Conventional G-banding cytogenetics (CC) detects chromosome 17 (chr17) abnormalities in 2% of patients with de novo myelodysplastic syndromes (MDS). We used CC and fluorescence in situ hybridization (FISH) (LSI p53/17p13.1) to assess deletion of 17p in 531 patients with de novo MDS from the Spanish Group of Hematological Cytogenetics. FISH detected - 17 or 17p abnormalities in 13 cases (2.6%) in whom no 17p abnormalities were revealed by CC: 0.9% of patients with a normal karyotype, 0% in non-informative cytogenetics, 50% of patients with a chr17 abnormality without loss of 17p and 4.7% of cases with an abnormal karyotype not involving chr17. Our results suggest that applying FISH of 17p13 to identify the number of copies of the TP53 gene could be beneficial in patients with a complex karyotype. We recommend using FISH of 17p13 in young patients with a normal karyotype or non-informative cytogenetics, and always in isolated del(17p). PMID:25754580

  10. Chromosome analysis of nuclear power plant workers using fluorescence in situ hybridization and Giemsa assay.

    PubMed

    Hristova, Rositsa; Hadjidekova, Valeria; Grigorova, Mira; Nikolova, Teodora; Bulanova, Minka; Popova, Ljubomira; Staynova, Albena; Benova, Donka

    2013-09-01

    The aim of this study was to evaluate the genotoxic effects of ionizing radiation in vivo in exposed Bulgarian nuclear power plant workers by using classical cytogenetic and molecular cytogenetic analyses of peripheral lymphocytes. Chromosome analysis using fluorescence in situ hybrydization (FISH) and Giemsa techniques was undertaken on 63 workers and 45 administrative staff controls from the Bulgarian Nuclear Power Plant. Using the Giemsa method, the frequencies of cells studied with chromosome aberrations, dicentrics plus rings and chromosome fragments in the radiation workers were significantly higher compared with the control group (P = 0.044, P = 0.014, and P = 0.033, respectively). A significant association between frequencies of dicentrics plus rings and accumulated doses was registered (P < 0.01). In the present study, a FISH cocktail of whole chromosome paints for chromosomes 1, 4 and 11 was used. A significant association between frequency of translocations and accumulated doses was also observed (P < 0.001). Within the control group, a correlation was found between age and the spontaneous frequency of translocations. No correlation was found between smoking status and frequency of translocations. When compared with the control group, workers with accumulated doses up to 100 mSv showed no increase in genome translocation frequency, whereas workers with accumulated doses from 101 to 200 mSv showed a statistically significant doubling of genome translocation frequency (P = 0.009). Thus, in cases of chronic exposure and for purposes of retrospective dosimetry, the genome frequency of translocations is a more useful marker for evaluation of genotoxic effects than dicentric frequency.

  11. Multicenter evaluation of a new shortened peptide nucleic acid fluorescence in situ hybridization procedure for species identification of select Gram-negative bacilli from blood cultures.

    PubMed

    Morgan, Margie; Marlowe, Elizabeth; Della-Latta, Phyllis; Salimnia, Hossein; Novak-Weekley, Susan; Wu, Fann; Crystal, Benjamin S

    2010-06-01

    A shortened protocol for two peptide nucleic acid fluorescence in situ hybridization (PNA FISH) assays for the detection of Gram-negative bacilli from positive blood cultures was evaluated in a multicenter trial. There was 100% concordance between the two protocols for each assay (368 of 368 and 370 of 370 results) and 99.7% (367 of 368 and 369 of 370 results) agreement with routine laboratory techniques.

  12. Sky-Blue Organic Light Emitting Diode with 37% External Quantum Efficiency Using Thermally Activated Delayed Fluorescence from Spiroacridine-Triazine Hybrid.

    PubMed

    Lin, Ting-An; Chatterjee, Tanmay; Tsai, Wei-Lung; Lee, Wei-Kai; Wu, Meng-Jung; Jiao, Min; Pan, Kuan-Chung; Yi, Chih-Lung; Chung, Chin-Lung; Wong, Ken-Tsung; Wu, Chung-Chih

    2016-08-01

    Extremely efficient sky-blue organic electroluminescence with external quantum efficiency of ≈37% is achieved in a conventional planar device structure, using a highly efficient thermally activated delayed fluorescence emitter based on the spiroacridine-triazine hybrid and simultaneously possessing nearly unitary (100%) photoluminescence quantum yield, excellent thermal stability, and strongly horizontally oriented emitting dipoles (with a horizontal dipole ratio of 83%). PMID:27271917

  13. Development of a fluorescence in situ hybridization protocol for the identification of micro-organisms associated with wastewater particles and flocs.

    PubMed

    Ormeci, Banu; Linden, Karl G

    2008-11-01

    Fluorescence in situ hybridization (FISH) provides a unique tool to study micro-organisms associated with particles and flocs. FISH enables visual examination of micro-organisms while they are structurally intact and associated with particles. However, application of FISH to wastewater and sludge samples presents a specific set of problems. Wastewater samples generate high background fluorescence due to their organic and inorganic content making it difficult to differentiate a probe-conferred signal from naturally fluorescing particles with reasonable certainty. Furthermore, some of the FISH steps involve harsh treatment of samples, and are likely to disrupt the floc structure. This study developed a FISH protocol for studying micro-organisms that are associated with particles and flocs. The results indicate that choice of a proper fluorochrome and labeling technique is a key step in reducing the background fluorescence and non-specific binding, and increasing the intensity of the probe signal. Compared to other fluorochromes tested, CY3 worked very well and enabled the observation of particles and debris in red and probe signal from microbes in yellow. Fixation, hybridization, and washing steps disturbed the floc structure and particle-microbe association. Modifications to these steps were necessary, and were achieved by replacing centrifugation with filtration and employment of nylon filters. Microscope slides generated excellent quality images, but polycarbonate membrane filters performed better in preserving the floc structure.

  14. Responsive polymer-fluorescent carbon nanoparticle hybrid nanogels for optical temperature sensing, near-infrared light-responsive drug release, and tumor cell imaging.

    PubMed

    Wang, Hui; Ke, Fuyou; Mararenko, Anton; Wei, Zengyan; Banerjee, Probal; Zhou, Shuiqin

    2014-07-01

    Fluorescent carbon nanoparticles (FCNPs) have been successfully immobilized into poly(N-isopropylacrylamide-co-acrylamide) [poly(NIPAM-AAm)] nanogels based on one-pot precipitation copolymerization of NIPAM monomers with hydrogen bonded FCNP-AAm complex monomers in water. The resultant poly(NIPAM-AAm)-FCNP hybrid nanogels can combine functions from each building block for fluorescent temperature sensing, cell imaging, and near-infrared (NIR) light responsive drug delivery. The FCNPs in the hybrid nanogels not only emit bright and stable photoluminescence (PL) and exhibit up-conversion PL properties, but also increase the loading capacity of the nanogels for curcumin drug molecules. The reversible thermo-responsive swelling/shrinking transition of the poly(NIPAM-AAm) nanogel can not only modify the physicochemical environment of the FCNPs to manipulate the PL intensity for sensing the environmental temperature change, but also regulate the releasing rate of the loaded anticancer drug. In addition, the FCNPs embedded in the nanogels can convert the NIR light to heat, thus an exogenous NIR irradiation can further accelerate the drug release and enhance the therapeutic efficacy. The hybrid nanogels can overcome cellular barriers to enter the intracellular region and light up the mouse melanoma B16F10 cells upon laser excitation. The demonstrated hybrid nanogels with nontoxic and optically active FCNPs immobilized in responsive polymer nanogels are promising for the development of a new generation of multifunctional materials for biomedical applications.

  15. Responsive polymer-fluorescent carbon nanoparticle hybrid nanogels for optical temperature sensing, near-infrared light-responsive drug release, and tumor cell imaging.

    PubMed

    Wang, Hui; Ke, Fuyou; Mararenko, Anton; Wei, Zengyan; Banerjee, Probal; Zhou, Shuiqin

    2014-07-01

    Fluorescent carbon nanoparticles (FCNPs) have been successfully immobilized into poly(N-isopropylacrylamide-co-acrylamide) [poly(NIPAM-AAm)] nanogels based on one-pot precipitation copolymerization of NIPAM monomers with hydrogen bonded FCNP-AAm complex monomers in water. The resultant poly(NIPAM-AAm)-FCNP hybrid nanogels can combine functions from each building block for fluorescent temperature sensing, cell imaging, and near-infrared (NIR) light responsive drug delivery. The FCNPs in the hybrid nanogels not only emit bright and stable photoluminescence (PL) and exhibit up-conversion PL properties, but also increase the loading capacity of the nanogels for curcumin drug molecules. The reversible thermo-responsive swelling/shrinking transition of the poly(NIPAM-AAm) nanogel can not only modify the physicochemical environment of the FCNPs to manipulate the PL intensity for sensing the environmental temperature change, but also regulate the releasing rate of the loaded anticancer drug. In addition, the FCNPs embedded in the nanogels can convert the NIR light to heat, thus an exogenous NIR irradiation can further accelerate the drug release and enhance the therapeutic efficacy. The hybrid nanogels can overcome cellular barriers to enter the intracellular region and light up the mouse melanoma B16F10 cells upon laser excitation. The demonstrated hybrid nanogels with nontoxic and optically active FCNPs immobilized in responsive polymer nanogels are promising for the development of a new generation of multifunctional materials for biomedical applications. PMID:24881520

  16. Oral biofilm analysis of palatal expanders by fluorescence in-situ hybridization and confocal laser scanning microscopy.

    PubMed

    Klug, Barbara; Rodler, Claudia; Koller, Martin; Wimmer, Gernot; Kessler, Harald H; Grube, Martin; Santigli, Elisabeth

    2011-10-20

    Confocal laser scanning microscopy (CLSM) of natural heterogeneous biofilm is today facilitated by a comprehensive range of staining techniques, one of them being fluorescence in situ hybridization (FISH). We performed a pilot study in which oral biofilm samples collected from fixed orthodontic appliances (palatal expanders) were stained by FISH, the objective being to assess the three-dimensional organization of natural biofilm and plaque accumulation. FISH creates an opportunity to stain cells in their native biofilm environment by the use of fluorescently labeled 16S rRNA-targeting probes. Compared to alternative techniques like immunofluorescent labeling, this is an inexpensive, precise and straightforward labeling technique to investigate different bacterial groups in mixed biofilm consortia. General probes were used that bind to Eubacteria (EUB338 + EUB338II + EUB338III; hereafter EUBmix), Firmicutes (LGC354 A-C; hereafter LGCmix), and Bacteroidetes (Bac303). In addition, specific probes binding to Streptococcus mutans (MUT590) and Porphyromonas gingivalis (POGI) were used. The extreme hardness of the surface materials involved (stainless steel and acrylic resin) compelled us to find new ways of preparing the biofilm. As these surface materials could not be readily cut with a cryotome, various sampling methods were explored to obtain intact oral biofilm. The most workable of these approaches is presented in this communication. Small flakes of the biofilm-carrying acrylic resin were scraped off with a sterile scalpel, taking care not to damage the biofilm structure. Forceps were used to collect biofilm from the steel surfaces. Once collected, the samples were fixed and placed directly on polysine coated glass slides. FISH was performed directly on these slides with the probes mentioned above. Various FISH protocols were combined and modified to create a new protocol that was easy to handle. Subsequently the samples were analyzed by confocal laser scanning

  17. Oral biofilm analysis of palatal expanders by fluorescence in-situ hybridization and confocal laser scanning microscopy.

    PubMed

    Klug, Barbara; Rodler, Claudia; Koller, Martin; Wimmer, Gernot; Kessler, Harald H; Grube, Martin; Santigli, Elisabeth

    2011-01-01

    Confocal laser scanning microscopy (CLSM) of natural heterogeneous biofilm is today facilitated by a comprehensive range of staining techniques, one of them being fluorescence in situ hybridization (FISH). We performed a pilot study in which oral biofilm samples collected from fixed orthodontic appliances (palatal expanders) were stained by FISH, the objective being to assess the three-dimensional organization of natural biofilm and plaque accumulation. FISH creates an opportunity to stain cells in their native biofilm environment by the use of fluorescently labeled 16S rRNA-targeting probes. Compared to alternative techniques like immunofluorescent labeling, this is an inexpensive, precise and straightforward labeling technique to investigate different bacterial groups in mixed biofilm consortia. General probes were used that bind to Eubacteria (EUB338 + EUB338II + EUB338III; hereafter EUBmix), Firmicutes (LGC354 A-C; hereafter LGCmix), and Bacteroidetes (Bac303). In addition, specific probes binding to Streptococcus mutans (MUT590) and Porphyromonas gingivalis (POGI) were used. The extreme hardness of the surface materials involved (stainless steel and acrylic resin) compelled us to find new ways of preparing the biofilm. As these surface materials could not be readily cut with a cryotome, various sampling methods were explored to obtain intact oral biofilm. The most workable of these approaches is presented in this communication. Small flakes of the biofilm-carrying acrylic resin were scraped off with a sterile scalpel, taking care not to damage the biofilm structure. Forceps were used to collect biofilm from the steel surfaces. Once collected, the samples were fixed and placed directly on polysine coated glass slides. FISH was performed directly on these slides with the probes mentioned above. Various FISH protocols were combined and modified to create a new protocol that was easy to handle. Subsequently the samples were analyzed by confocal laser scanning

  18. An easy-to-use excimer fluorescence derivatization reagent, 2-chloro-4-methoxy-6-(4-(pyren-4-yl)butoxy)-1,3,5-triazine, for use in the highly sensitive and selective liquid chromatography analysis of histamine in Japanese soy sauces.

    PubMed

    Nakano, Tatsuki; Todoroki, Kenichiro; Ishii, Yasuhiro; Miyauchi, Chiemi; Palee, Arpaporn; Min, Jun Zhe; Inoue, Koichi; Suzuki, Kuniaki; Toyo'oka, Toshimasa

    2015-06-23

    In this study, a novel pre-column excimer fluorescence derivatization reagent, 2-chloro-4-methoxy-6-(4-(pyren-4-yl)butoxy)-1,3,5-triazine (CMPT), was developed for polyamines, specifically histamine. By CMPT derivatization, the polyamines, histamine and tyramine were converted to polypyrene derivatives, and emitted intra-molecular excimer fluorescence at 475nm. This could clearly be distinguished from the normal fluorescence emitted from reagent blanks at 375 nm. Unlike conventional excimer fluorescence derivatization reagents, CMPT is chemically stable and its reactivity sustained over at least 36 days even in solution state. We successfully applied this reagent to the sensitive and selective analysis of histamine in different kinds of Japanese commercial soy sauces. The detection and quantification limits of histamine were 15 and 50 μg L(-1), respectively, equating to 1.35 pmol and 4.5 pmol for a 6 μL injection. This sensitivity helped the direct analysis of soy sauce samples only treated by one-step liquid-liquid extraction without concentration. The histamine levels of commercial soy sauce samples (koikuchi, usukuchi and saishikomi) investigated were 1.24-768.5 mg L(-1).

  19. Fluorescence in situ Hybridization method using Peptide Nucleic Acid probes for rapid detection of Lactobacillus and Gardnerella spp.

    PubMed Central

    2013-01-01

    Background Bacterial vaginosis (BV) is a common vaginal infection occurring in women of reproductive age. It is widely accepted that the microbial switch from normal microflora to BV is characterized by a decrease in vaginal colonization by Lactobacillus species together with an increase of Gardnerella vaginalis and other anaerobes. Our goal was to develop and optimize a novel Peptide Nucleic Acid (PNA) Fluorescence in situ Hybridization assay (PNA FISH) for the detection of Lactobacillus spp. and G. vaginalis in mixed samples. Results Therefore, we evaluated and validated two specific PNA probes by using 36 representative Lactobacillus strains, 22 representative G. vaginalis strains and 27 other taxonomically related or pathogenic bacterial strains commonly found in vaginal samples. The probes were also tested at different concentrations of G. vaginalis and Lactobacillus species in vitro, in the presence of a HeLa cell line. Specificity and sensitivity of the PNA probes were found to be 98.0% (95% confidence interval (CI), from 87.8 to 99.9%) and 100% (95% CI, from 88.0 to 100.0%), for Lactobacillus spp.; and 100% (95% CI, from 92.8 to 100%) and 100% (95% CI, from 81.5 to 100.0%) for G. vaginalis. Moreover, the probes were evaluated in mixed samples mimicking women with BV or normal vaginal microflora, demonstrating efficiency and applicability of our PNA FISH. Conclusions This quick method accurately detects Lactobacillus spp. and G. vaginalis species in mixed samples, thus enabling efficient evaluation of the two bacterial groups, most frequently encountered in the vagina. PMID:23586331

  20. A high-resolution karyotype of Brassica rapa ssp. pekinensis revealed by pachytene analysis and multicolor fluorescence in situ hybridization.

    PubMed

    Koo, Dal-Hoe; Plaha, Prikshit; Lim, Yong Pyo; Hur, Yoonkang; Bang, Jae-Wook

    2004-11-01

    A molecular cytogenetic map of Chinese cabbage (Brassica rapa ssp. pekinensis, 2 n=20) was constructed based on the 4'-6-diamino-2-phenylindole dihydrochloride-stained mitotic metaphase and pachytene chromosomes and multicolor fluorescence in situ hybridization (McFISH), using three repetitive DNA sequences, 5S rDNA, 45S rDNA, and C11-350H. The lengths of mitotic metaphase chromosomes ranged from 1.46 microm to 3.30 microm. Five 45S and three 5S rDNA loci identified were assigned to different chromosomes. The C11-350H loci were located on all the mitotic metaphase chromosomes, except chromosomes 2 and 4. The pachytene karyotype consisted of two metacentric (chromosomes 1 and 6), five submetacentric (chromosomes 3, 4, 5, 9 and 10), two subtelocentric (chromosomes 7 and 8), and one acrocentric (chromosome 2) chromosome(s). The mean lengths of ten pachytene chromosomes ranged from 23.7 microm to 51.3 microm, with a total of 385.3 microm, which is 17.5-fold longer than that of the mitotic metaphase chromosomes. In the proposed pachytene karyotype, all the chromosomes of B. rapa ssp. pekinensis can be identified on the basis of chromosome length, centromere position, heterochromatin pattern, and the location of the three repetitive sequences. Moreover, the precise locations of the earlier reported loci of 5S rDNA, 45S rDNA, and Chinese cabbage tandem DNA repeat C11-350H were established using McFISH analysis. We also identified a 5S rDNA locus on the long arm of pachytene bivalent 7, which could not be detected in the mitotic metaphase chromosomes in the present and earlier studies. The deduced karyotype will be useful for structural and functional genomic studies in B. rapa.

  1. Assessment of chromosomal abnormalities in sperm of infertile men using sperm karyotyping and multicolour fluorescence in situ hybridization (FISH)

    SciTech Connect

    Moosani, N.; Martin, R.H.

    1994-09-01

    Individuals with male factor infertility resulting from idiopathic oligo-, astheno- or teratozoospermia are frequently offered IVF in an attempt to increase their chances of having a child. A concern remains whether these infertile males have an elevated risk of transmitting chromosomal abnormalities to their offspring. Sperm chromosomal complements from these men were assayed using the human sperm/hamster oocyte fusion system and fluorescence in situ hybridization (FISH) on sperm nuclei. For each of 5 infertile patients, 100 sperm karyotypes were analyzed and multicolour FISH analysis was performed on a minimum of 10,000 sperm nuclei for each chromosome-specific DNA probe for chromosomes 1 (pUC1.77), 12 (D12Z3), X (XC) and Y (DYZ3). As a group, the infertile patients showed increased frequencies of both numerical ({chi}{sup 2}=17.26, {proportional_to} <0.001) and total abnormalities ({chi}{sup 2}=7.78, {proportional_to} <0.01) relative to control donors when assessed by sperm karyotypes. Analysis of sperm nuclei by FISH indicated a significant increase in the frequency of disomy for chromosome 1 in three of the five patients as compared to control donors ({chi}{sup 2}>8.35, {proportional_to} <0.005). In addition, the frequency of XY disomy was significantly higher in four of the five patients studied by FISH ({chi}{sup 2}>10.58, {proportional_to}<0.005), suggesting that mis-segregation caused by the failure of the XY bivalent to pair may play a role in idiopathic male infertility.

  2. Rapid differentiation of Francisella species and subspecies by fluorescent in situ hybridization targeting the 23S rRNA

    PubMed Central

    2010-01-01

    Background Francisella (F.) tularensis is the causative agent of tularemia. Due to its low infectious dose, ease of dissemination and high case fatality rate, F. tularensis was the subject in diverse biological weapons programs and is among the top six agents with high potential if misused in bioterrorism. Microbiological diagnosis is cumbersome and time-consuming. Methods for the direct detection of the pathogen (immunofluorescence, PCR) have been developed but are restricted to reference laboratories. Results The complete 23S rRNA genes of representative strains of F. philomiragia and all subspecies of F. tularensis were sequenced. Single nucleotide polymorphisms on species and subspecies level were confirmed by partial amplification and sequencing of 24 additional strains. Fluorescent In Situ Hybridization (FISH) assays were established using species- and subspecies-specific probes. Different FISH protocols allowed the positive identification of all 4 F. philomiragia strains, and more than 40 F. tularensis strains tested. By combination of different probes, it was possible to differentiate the F. tularensis subspecies holarctica, tularensis, mediasiatica and novicida. No cross reactivity with strains of 71 clinically relevant bacterial species was observed. FISH was also successfully applied to detect different F. tularensis strains in infected cells or tissue samples. In blood culture systems spiked with F. tularensis, bacterial cells of different subspecies could be separated within single samples. Conclusion We could show that FISH targeting the 23S rRNA gene is a rapid and versatile method for the identification and differentiation of F. tularensis isolates from both laboratory cultures and clinical samples. PMID:20205957

  3. Development of rRNA-Targeted PCR and In Situ Hybridization with Fluorescently Labelled Oligonucleotides for Detection of Yersinia Species

    PubMed Central

    Trebesius, Karlheinz; Harmsen, Dag; Rakin, Alexander; Schmelz, Jochen; Heesemann, Jürgen

    1998-01-01

    In this report, we present details of two rapid molecular detection techniques based on 16S and 23S rRNA sequence data to identify and differentiate Yersinia species from clinical and environmental sources. Near-full-length 16S rRNA gene (rDNA) sequences for three different Yersinia species and partial 23S rDNA sequences for three Y. pestis and three Y. pseudotuberculosis strains were determined. While 16S rDNA sequences of Y. pestis and Y. pseudotuberculosis were found to be identical, one base difference was identified within a highly variable region of 23S rDNA. The rDNA sequences were used to develop primers and fluorescently tagged oligonucleotide probes suitable for differential detection of Yersinia species by PCR and in situ hybridization, respectively. As few as 102 Yersinia cells per ml could be detected by PCR with a seminested approach. Amplification with a subgenus-specific primer pair followed by a second PCR allowed differentiation of Y. enterocolitica biogroup 1B from biogroups 2 to 5 or from other pathogenic Yersinia species. Moreover, a set of oligonucleotide probes suitable for rapid (3-h) in situ detection and differentiation of the three pathogenic Yersinia species (in particular Y. pestis and Y. pseudotuberculosis) was developed. The applicability of this technique was demonstrated by detection of Y. pestis and Y. pseudotuberculosis in spiked throat and stool samples, respectively. These probes were also capable of identifying Y. enterocolitica within cryosections of experimentally infected mouse tissue by the use of confocal laser scanning microscopy. PMID:9705392

  4. Aberrations of chromosomes 9 and 22 in acute lymphoblastic leukemia cases detected by ES-fluorescence in situ hybridization.

    PubMed

    Cetin, Zafer; Yakut, Sezin; Karadogan, Ihsan; Kupesiz, Alphan; Timuragaoglu, Aysen; Salim, Ozan; Tezcan, Gulsun; Alanoglu, Guchan; Ozbalci, Demircan; Hazar, Volkan; Yesilipek, Mehmet Akif; Undar, Levent; Luleci, Guven; Berker, Sibel

    2012-05-01

    A reciprocal translocation between chromosomes 9 and 22 creates oncogenic BCR/ABL fusion in the breakpoint region of the derivative chromosome 22. The aim of this study was to evaluate the importance of atypical fluorescence in situ hybridization (FISH) signal patterns in pediatric and adult acute lymphoblastic leukemia (ALL) cases. We evaluated t(9;22) translocation in 208 cases with ALL (294 tests), including 139 childhood and 69 adult cases by FISH technique using BCR/ABL extra signal (ES) probe. FISH signal patterns observed in pediatric ALL cases were as follows; Major-BCR/ABL (M-BCR/ABL) (1.4%), minor-BCR/ABL (m-BCR/ABL) (3.6%), trisomy 9 (4.3%), trisomy 22 (4.3%), trisomy or tetrasomy of both chromosomes 9 and 22 (2.9%), monosomy 9 (1.4%), monosomy 22 (0.7%), ABL gene amplification (1.4%), derivative chromosome 9 deletion (1.4%), and extra copies of the Philadelphia chromosome (1.4%). FISH signal patterns observed in adult ALL cases were as follows; M-BCR/ABL (5.8%), m-BCR/ABL (11.6%), two different cell clones with major and minor BCR/ABL signal pattern (2.9%), extra copies of Philadelphia chromosome (4.3%), derivative chromosome 9 deletion (1.4%), trisomy 9 (2.9%), tetraploidy (1.4%), monosomy 9 (1.4%), trisomy 22 (1.4%), and coexistence of both trisomy 22 and monosomy 9 (1.4%). Trisomy 9, trisomy 22, and polyploidy of chromosomes 9 and 22 were specific atypical FISH signal patterns for childhood B cell acute lymphoblastic leukemia (B-ALL) patients. However, monosomy 9 and ABL gene amplification were highly specific for childhood T cell acute lymphoblastic leukemia (T-ALL) patients. Our report presents the correlation between atypical FISH signal patterns and clinical findings of a large group of ALL cases. PMID:22360868

  5. Correlation of modified Shimada classification with MYCN and 1p36 status detected by fluorescence in situ hybridization in neuroblastoma.

    PubMed

    Altungoz, Oguz; Aygun, Nevim; Tumer, Sait; Ozer, Erdener; Olgun, Nur; Sakizli, Meral

    2007-01-15

    Neuroblastoma (NB) is a childhood cancer derived from neural crest cells, with a highly variable clinical course and biologic behavior. NB cells harbor complex genetic changes. Also, MYCN amplification is a well-known molecular marker for aggressive progression, and deletion of the short arm of chromosome 1 is frequently observed in NB. The aim of this study was to investigate the correlation between genetic markers and prognostic morphological parameters to address the biology and underlying the clinical complexity of NB. Therefore, we performed fluorescence in situ hybridization analyses of chromosome band 1p36 and MYCN in a series of tumors from 43 cases classified according to the recommendation of International Neuroblastoma Pathology Committee (modification of Shimada classification). The correlations of MYCN amplification status and two distinct types of 1p36 alterations (deletion and imbalance) with Shimada classification and histologic prognostic factors were statistically analyzed. Amplification of MYCN and 1p36 deletion was present in 14 (32.6%) and 18 (41.9%) cases, respectively. Sixteen cases (37.2%) displayed a favorable histology, while 27 (62.8%) had an unfavorable histology. The 1p36 deletion was found to be an independent predictor of unfavorable histology by multivariate analysis (logistic regression test, P = 0.03), but the 1p36 imbalance did not show any significance. Both 1p36 deletion and MYCN amplification showed significant correlation with undifferentiated tumors (chi-square test, P = 0.002 and 0.03, respectively). Highly significant correlation was found between the higher mitotic karyorrhectic index (MKI) and MYCN amplification (chi-square test, P < 0.001), whereas neither 1p36 deletion nor 1p36 imbalance significantly correlated with a higher MKI (chi-square test, P > 0.05). We conclude that 1p36 deletion may be a reliable parameter in determining unfavorable histology and predicting prognosis in NB. Further studies with prognostic data

  6. SU-E-T-20: A Novel Hybrid CBCT, Bioluminescence and Fluorescence Tomography System for Preclinical Radiation Research

    SciTech Connect

    Zhang, B; Eslami, S; Iordachita, I; Yang, Y; Patterson, M; Wong, J; Wang, K

    2014-06-01

    Purpose: A novel standalone bioluminescence and fluorescence tomography (BLT and FT) system equipped with high resolution CBCT has been built in our group. In this work, we present the system calibration method and validate our system in both phantom and in vivo environment. Methods: The CBCT is acquired by rotating the animal stage while keeping the x-ray source and detector panel static. The optical signal is reflected by the 3-mirror system to a multispectral filter set and then delivered to the CCD camera with f/1.4 lens mounted. Nine fibers passing through the stage and in contact with the mouse skin serve as the light sources for diffuse optical tomography (DOT) and FT. The anatomical information and optical properties acquired from the CBCT and DOT, respectively, are used as the priori information to improve the BLT/FT reconstruction accuracy. Flat field correction for the optical system was acquired at multiple wavelengths. A home-built phantom is used to register the optical and CBCT coordinates. An absolute calibration relating the CCD photon counts rate to the light fluence rate emitted at animal surface was developed to quantify the bioluminescence power or fluorophore concentration. Results: An optical inhomogeneous phantom with 2 light sources (3mm separation) imbedded is used to test the system. The optical signal is mapped onto the mesh generated from CBCT for optical reconstruction. Our preliminary results show that the center of mass can be reconstructed within 2.8mm accuracy. A live mouse with the light source imbedded is also used to validate our system. Liver or lung metastatic luminescence tumor model will be used for further testing. Conclusion: This hybrid system transforms preclinical research to a level that even sub-palpable volume of cells can be imaged rapidly and non-invasively, which largely extends the scope of radiobiological research. The research is supported by the NCI grant R01CA158100-01.

  7. Trisomy 10p resulting from an inv dup of 10p defined by fluorescence in situ hybridization

    SciTech Connect

    Clement, S.J.; Easterling, T.R.; Leppig, K.A.

    1994-09-01

    De novo cases of trisomy for the entire short arm of chromosome 10 are infrequently reported and are most commonly the result of translocation of 10p to an acrocentric chromosome. Most reported cases of trisomy 10p are not trisomy for the complete short arm of chromosome 10, but are duplication, deficiency syndromes that result from either inheritance of an unbalanced translocation from a parent possessing a balanced reciprocal translocation, or from a recombinant chromosome derived from a parental pericentric inversion of chromosome 10. Here, we report a case of a de novo trisomy 10p that resulted from an inverted duplication of the entire short arm of chromosome 10. A 42 year old G7,P5,SAB1 woman was referred for amniocentesis because of advanced maternal age. Ultrasound examination at 17 weeks demonstrated a fetus of normal size with no apparent anatomic abnormalities. Cytogenetic evaluation demonstrated one homologue of chromosome 10 had a tandem inverted duplication of the short arm. The fetal karyotype was interpreted to be 46,XX,inv dup (10) (peter-cen::cen-p15::q11-pter). Parental karyotype are normal. Fluorescence in situ hybridization (FISH) using a chromosome 10 paint, chromosome 10 centromere, and all telomere probe, confirmed the inverted duplication involved the entire short arm of chromosome 10. Termination of pregnancy was performed at 20 weeks gestation. Autopsy revealed multiple anomalies including low-set posteriorly rotated ears, cleft of the soft palate, ocular hypertelorism, small upturned nose, agenesis of the gallbladder, sacral hemivertebrae, and abnormal flexion of the thumbs. The fetal karyotype was confirmed by cytogenetic analysis in lung and kidney. This is the second reported case of a de novo tandem duplication of 10p of which we are aware, and the first using FISH technology to characterize the abnormality.

  8. Preparations of Meiotic Pachytene Chromosomes and Extended DNA Fibers from Cotton Suitable for Fluorescence In Situ Hybridization

    PubMed Central

    Liu, Fang; Ling, Jian; Wang, Chunying; Li, Shaohui; Zhang, Xiangdi; Wang, Yuhong; Wang, Kunbo

    2012-01-01

    Fluorescence in situ hybridization (FISH) has become one of the most important techniques applied in plant molecular cytogenetics. However, the application of this technique in cotton has lagged behind because of difficulties in chromosome preparation. The focus of this article was FISH performed not only on cotton pachytene chromosomes, but also on cotton extended DNA fibers. The cotton pollen mother cells (PMCs) instead of buds or anthers were directly digested in enzyme to completely breakdown the cell wall. Before the routine acetic acid treatment, PMCs were incubated in acetic acid and enzyme mixture to remove the cytoplasm and clear the background. The method of ice-cold Carnoy's solution spreading chromosome was adopted instead of nitrogen removed method to avoid chromosomes losing and fully stretch chromosome. With the above-improved steps, the high-quality well-differentiated pachytene chromosomes with clear background were obtained. FISH results demonstrated that a mature protocol of cotton pachytene chromosomes preparation was presented. Intact and no debris cotton nuclei were obtained by chopping from etiolation cotyledons instead of the conventional liquid nitrogen grinding method. After incubating the nuclei with nucleus lysis buffer on slide, the parallel and clear background DNA fibers were acquired along the slide. This method overcomes the twist, accumulation and fracture of DNA fibers compared with other methods. The entire process of DNA fibers preparation requires only 30 min, in contrast, it takes 3 h with routine nitrogen grinding method. The poisonous mercaptoethanol in nucleus lysis buffer is replaced by nonpoisonous dithiothreitol. PVP40 in nucleus isolation buffer is used to prevent oxidation. The probability of success in isolating nuclei for DNA fiber preparation is almost 100% tested with this method in cotton. So a rapid, safe, and efficient method for the preparation of cotton extended DNA fibers suitable for FISH was established

  9. Identification of intracellular bacteria in adenoid and tonsil tissue specimens: the efficiency of culture versus fluorescent in situ hybridization (FISH).

    PubMed

    Stępińska, M; Olszewska-Sosińska, O; Lau-Dworak, M; Zielnik-Jurkiewicz, B; Trafny, E A

    2014-01-01

    Monocyte/macrophage cells from human nasopharyngeal lymphoid tissue can be a source of bacteria responsible for human chronic and recurrent upper respiratory tract infection. Detection and characterization of pathogens surviving intracellularly could be a key element in bacteriological diagnosis of the infections as well as in the study on interactions between bacteria and their host. The present study was undertaken to assess the possibility of isolation of viable bacteria from the cells expressing monocyte/macrophage marker CD14 in nasopharyngeal lymphoid tissue. Overall, 74 adenotonsillectomy specimens (adenoids and tonsils) from 37 children with adenoid hypertrophy and recurrent infections as well as 15 specimens from nine children with adenoid hypertrophy, which do not suffer from upper respiratory tract infections (the control group), were studied. The suitability of immunomagnetic separation for extraction of CD14(+) cells from lymphoid tissue and for further isolation of the intracellular pathogens has been shown. The coexistence of living pathogens including Haemophilus influenzae, Staphylococcus aureus, and Streptococcus pyogenes with the bacteria representing normal nasopharyngeal microbiota inside CD14(+) cells was demonstrated. Twenty-four strains of these pathogens from 32.4 % of the lysates of CD14(+) cells were isolated. Concurrently, the fluorescent in situ hybridization (FISH) with a universal EUB388, and the species-specific probes demonstrated twice more often the persistence of these bacterial species in the lysates of CD14(+) cells than conventional culture. Although the FISH technique appears to be more sensitive than traditional culture in the intracellular bacteria identification, the doubts on whether the bacteria are alive, and therefore, pathogenic would still exist without the strain cultivation.

  10. MYC gene rearrangements detected by interphase fluorescence in situ hybridization in diffuse large B-cell lymphomas.

    PubMed

    Misharina, J A; Sitko, V V; Klymenko, S V; Minchenko, J A; Kurchenko, A I; Silaev, Y O; Lyashenko, L O; Polyanska, V M; Bebeshko, V G

    2014-09-01

    Diffuse large B-cell lymphoma (DLBCL) is the most common type of lymphoma, including approximately 30-40% of all B-cell non-Hodgkin lymphomas (B-NHL). Chromosomal translocations are the hallmark of genetic aberrations in B-lymphoma and are often associated with a specific subtype of B-NHL. MYC gene dysregulation due to chromosomal translocations is characteristic for the most cases of Burkitt's lymphoma. Objective. The goal of this study was to improve the diagnostic accuracy of DLBCL. Identification of chromosome 8 and 14 abnormalities including the translocation of MYC gene t(8; 14)(q24; q32) in substrate cells of lymph nodes was applied using the method of tri-color interphase fluorescence in situ hybridization (I-FISH). Materials and methods. Lymph node biopsy specimens of 17 patients with diffuse large B-cell lymphoma and three patients with Burkitt's lymphoma (including one participant of liquidation of consequences of the catastrophe at the Chornobyl NPP) were studied. The age of patients ranged from 10 to 66 years old (41.3 ± 3.7 average). Biopsy specimens fixed in paraffin. I-FISH-analysis was performed using the commercial test Vysis IGH/MYC, CEP 8 tri-color, dual fusion translocation probe (Abbott Molecular, USA). Results and conclusions. MYC gene and immunoglobulin heavy chain (IGH) gene translocations were found in four out of twenty persons. Consequently the I-FISH method allows identification of of MYC and IGH gene rearrangements in tissue cells substrate of lymphoma fixed in paraffin. Using this method the molecular-cytogenetic abnormalities were found in eight of twenty patients with B-cell lymphoma providing verification of the lymphoma diagnosis, prediction of their clinical course and advance in management i.e increase the effectiveness of therapy, in refractory lymphoma cases among others.

  11. Self-locked aptamer probe mediated cascade amplification strategy for highly sensitive and selective detection of protein and small molecule.

    PubMed

    Li, Wei; Jiang, Wei; Wang, Lei

    2016-10-12

    In this work, a novel self-locked aptamer probe mediated cascade amplification strategy has been constructed for highly sensitive and specific detection of protein. First, the self-locked aptamer probe was designed with three functions: one was specific molecular recognition attributed to the aptamer sequence, the second was signal transduction owing to the transduction sequence, and the third was self-locking through the hybridization of the transduction sequence and part of the aptamer sequence. Then, the aptamer sequence specific recognized the target and folded into a three-way helix junction, leading to the release of the transduction sequence. Next, the 3'-end of this three-way junction acted as primer to trigger the strand displacement amplification (SDA), yielding a large amount of primers. Finally, the primers initiated the dual-exponential rolling circle amplification (DE-RCA) and generated numerous G-quadruples sequences. By inserting the fluorescent dye N-methyl mesoporphyrin IX (NMM), enhanced fluorescence signal was achieved. In this strategy, the self-locked aptamer probe was more stable to reduce the interference signals generated by the uncontrollable folding in unbounded state. Through the cascade amplification of SDA and DE-RCA, the sensitivity was further improved with a detection limit of 3.8 × 10(-16) mol/L for protein detection. Furthermore, by changing the aptamer sequence of the probe, sensitive and selective detection of adenosine has been also achieved, suggesting that the proposed strategy has good versatility and can be widely used in sensitive and selective detection of biomolecules.

  12. Self-locked aptamer probe mediated cascade amplification strategy for highly sensitive and selective detection of protein and small molecule.

    PubMed

    Li, Wei; Jiang, Wei; Wang, Lei

    2016-10-12

    In this work, a novel self-locked aptamer probe mediated cascade amplification strategy has been constructed for highly sensitive and specific detection of protein. First, the self-locked aptamer probe was designed with three functions: one was specific molecular recognition attributed to the aptamer sequence, the second was signal transduction owing to the transduction sequence, and the third was self-locking through the hybridization of the transduction sequence and part of the aptamer sequence. Then, the aptamer sequence specific recognized the target and folded into a three-way helix junction, leading to the release of the transduction sequence. Next, the 3'-end of this three-way junction acted as primer to trigger the strand displacement amplification (SDA), yielding a large amount of primers. Finally, the primers initiated the dual-exponential rolling circle amplification (DE-RCA) and generated numerous G-quadruples sequences. By inserting the fluorescent dye N-methyl mesoporphyrin IX (NMM), enhanced fluorescence signal was achieved. In this strategy, the self-locked aptamer probe was more stable to reduce the interference signals generated by the uncontrollable folding in unbounded state. Through the cascade amplification of SDA and DE-RCA, the sensitivity was further improved with a detection limit of 3.8 × 10(-16) mol/L for protein detection. Furthermore, by changing the aptamer sequence of the probe, sensitive and selective detection of adenosine has been also achieved, suggesting that the proposed strategy has good versatility and can be widely used in sensitive and selective detection of biomolecules. PMID:27662754

  13. A highly sensitive assay of IRE1 activity using the small luciferase NanoLuc: Evaluation of ALS-related genetic and pathological factors.

    PubMed

    Hikiji, Takahiro; Norisada, Junpei; Hirata, Yoko; Okuda, Kensuke; Nagasawa, Hideko; Ishigaki, Shinsuke; Sobue, Gen; Kiuchi, Kazutoshi; Oh-hashi, Kentaro

    2015-08-01

    Activation of inositol-requiring enzyme 1 (IRE1) due to abnormal conditions of the endoplasmic reticulum (ER) is responsible for the cleavage of an unspliced form of X-box binding protein 1 (uXBP1), producing its spliced form (sXBP1). To estimate IRE1 activation, several analytical procedures using green fluorescence protein and firefly luciferase have been developed and applied to clarify the roles of IRE1-XBP1 signaling pathways during development and disease progression. In this study, we established a highly sensitive assay of IRE1 activity using a small luciferase, NanoLuc, which has approximately 100-fold higher activity than firefly luciferase. The NanoLuc reporter, which contained a portion of the spliced region of XBP1 upstream of NanoLuc, was highly sensitive and compatible with several types of cell lines. We found that NanoLuc was secreted into the extracellular space independent of the ER-Golgi pathway. The NanoLuc activity of an aliquot of culture medium from the neuroblastoma-spinal neuron hybrid cell line NSC-34 reflected the toxic stimuli-induced elevation of intracellular activity well. Using this technique, we evaluated the effects of several genetic and pathological factors associated with the onset and progression of amyotrophic lateral sclerosis (ALS) on NanoLuc reporter activity. Under our experimental conditions, inhibition of ER-Golgi transport by the overexpression of mutant Sar1 activated luciferase activity, whereas the co-expression of mutant SOD1 or the C-terminal fragment of TDP-43 (TDP-25) did not. The addition of homocysteine elevated the reporter activity; however, we did not observe any synergistic effect due to the overexpression of the mutant genes described above. Taken together, these data show that our analytical procedure is highly sensitive and convenient for screening useful compounds that modulate IRE1-XBP1 signaling pathways as well as for estimating IRE1 activation in several pathophysiological diseases.

  14. Fast 3D visualization of endogenous brain signals with high-sensitivity laser scanning photothermal microscopy

    PubMed Central

    Miyazaki, Jun; Iida, Tadatsune; Tanaka, Shinji; Hayashi-Takagi, Akiko; Kasai, Haruo; Okabe, Shigeo; Kobayashi, Takayoshi

    2016-01-01

    A fast, high-sensitivity photothermal microscope was developed by implementing a spatially segmented balanced detection scheme into a laser scanning microscope. We confirmed a 4.9 times improvement in signal-to-noise ratio in the spatially segmented balanced detection compared with that of conventional detection. The system demonstrated simultaneous bi-modal photothermal and confocal fluorescence imaging of transgenic mouse brain tissue with a pixel dwell time of 20 μs. The fluorescence image visualized neurons expressing yellow fluorescence proteins, while the photothermal signal detected endogenous chromophores in the mouse brain, allowing 3D visualization of the distribution of various features such as blood cells and fine structures probably due to lipids. This imaging modality was constructed using compact and cost-effective laser diodes, and will thus be widely useful in the life and medical sciences. PMID:27231615

  15. Primitive Genepools of Asian Pears and Their Complex Hybrid Origins Inferred from Fluorescent Sequence-Specific Amplification Polymorphism (SSAP) Markers Based on LTR Retrotransposons

    PubMed Central

    Jiang, Shuang; Zheng, Xiaoyan; Yu, Peiyuan; Yue, Xiaoyan; Ahmed, Maqsood; Cai, Danying; Teng, Yuanwen

    2016-01-01

    Recent evidence indicated that interspecific hybridization was the major mode of evolution in Pyrus. The genetic relationships and origins of the Asian pear are still unclear because of frequent hybrid events, fast radial evolution, and lack of informative data. Here, we developed fluorescent sequence-specific amplification polymorphism (SSAP) markers with lots of informative sites and high polymorphism to analyze the population structure among 93 pear accessions, including nearly all species native to Asia. Results of a population structure analysis indicated that nearly all Asian pear species experienced hybridization, and originated from five primitive genepools. Four genepools corresponded to four primary Asian species: P. betulaefolia, P. pashia, P. pyrifolia, and P. ussuriensis. However, cultivars of P. ussuriensis were not monophyletic and introgression occurred from P. pyrifolia. The specific genepool detected in putative hybrids between occidental and oriental pears might be from occidental pears. The remaining species, including P. calleryana, P. xerophila, P. sinkiangensis, P. phaeocarpa, P. hondoensis, and P. hopeiensis in Asia, were inferred to be of hybrid origins and their possible genepools were identified. This study will be of great help for understanding the origin and evolution of Asian pears. PMID:26871452

  16. Fluorescence in situ hybridization probes targeting members of the phylum Candidatus Saccharibacteria falsely target Eikelboom type 1851 filaments and other Chloroflexi members.

    PubMed

    Nittami, Tadashi; Speirs, Lachlan B M; Fukuda, Junji; Watanabe, Masatoshi; Seviour, Robert J

    2014-12-01

    The FISH probe TM7-305 is thought to target the filamentous Eikelboom morphotype 0041 as a member of the Candidatus ‘Saccharibacteria’ (formerly TM7) phylum. However, with activated sludge samples in both Japan and Australia, this probe hybridized consistently with filamentous bacteria fitting the description of the morphotype 1851, which also responded positively to the CHL1851 FISH probe designed to target Chloroflexi members of this morphotype. 16S rRNA clone libraries from samples containing type 1851 TM7-305-positive filaments yielded Chloroflexi clones with high sequence similarity to Kouleothrix aurantiaca. These contained a variant TM7-305 probe target site possessing weakly destabilizing mismatches insufficient to prevent probe hybridization. Furthermore, the TM7-905 FISH probe, designed to target members of the entire Candidatus ‘Saccharibacteria’ phylum, also hybridized with the filament morphotypes 0041/0675, which responded also to the phylum level Chloroflexi probes. Many Chloroflexi sequences have only a single base mismatch to the TM7-905 probe target sequence. When competitor probes for both the TM7-305 and TM7-905 Chloroflexi non-target sites were applied, no fluorescent signal was seen in any of the filamentous organisms also hybridizing with the aforementioned Chloroflexi probes. These data indicate that these competitor probes must be included in hybridizations when both the TM7-905 and TM7-305 FISH probes are applied, to minimize potential false positive FISH results.

  17. Radical-generating coordination complexes as tools for rapid and effective fragmentation and fluorescent labeling of nucleic acids for microchip hybridization.

    SciTech Connect

    Kelly, J. J.; Chernov, B. K.; Tovstanovsky, I.; Mirzabekov, A. D.; Bavykin, S. G.; Biochip Technology Center; Northwestern Univ.; Engelhardt Inst. of Molecular Biology

    2002-12-15

    DNA microchip technology is a rapid, high-throughput method for nucleic acid hybridization reactions. This technology requires random fragmentation and fluorescent labeling of target nucleic acids prior to hybridization. Radical-generating coordination complexes, such as 1,10-phenanthroline-Cu(II) (OP-Cu) and Fe(II)-EDTA (Fe-EDTA), have been commonly used as sequence nonspecific 'chemical nucleases' to introduce single-strand breaks in nucleic acids. Here we describe a new method based on these radical-generating complexes for random fragmentation and labeling of both single- and double-stranded forms of RNA and DNA. Nucleic acids labeled with the OP-Cu and the Fe-EDTA protocols revealed high hybridization specificity in hybridization with DNA microchips containing oligonucleotide probes selected for identification of 16S rRNA sequences of the Bacillus group microorganisms.We also demonstrated cDNA- and cRNA-labeling and fragmentation with this method. Both the OP-Cu and Fe-EDTA frag