Sample records for high-speed column parallel

  1. Design and Performance of a 1 ms High-Speed Vision Chip with 3D-Stacked 140 GOPS Column-Parallel PEs †.

    PubMed

    Nose, Atsushi; Yamazaki, Tomohiro; Katayama, Hironobu; Uehara, Shuji; Kobayashi, Masatsugu; Shida, Sayaka; Odahara, Masaki; Takamiya, Kenichi; Matsumoto, Shizunori; Miyashita, Leo; Watanabe, Yoshihiro; Izawa, Takashi; Muramatsu, Yoshinori; Nitta, Yoshikazu; Ishikawa, Masatoshi

    2018-04-24

    We have developed a high-speed vision chip using 3D stacking technology to address the increasing demand for high-speed vision chips in diverse applications. The chip comprises a 1/3.2-inch, 1.27 Mpixel, 500 fps (0.31 Mpixel, 1000 fps, 2 × 2 binning) vision chip with 3D-stacked column-parallel Analog-to-Digital Converters (ADCs) and 140 Giga Operation per Second (GOPS) programmable Single Instruction Multiple Data (SIMD) column-parallel PEs for new sensing applications. The 3D-stacked structure and column parallel processing architecture achieve high sensitivity, high resolution, and high-accuracy object positioning.

  2. High speed infrared imaging system and method

    DOEpatents

    Zehnder, Alan T.; Rosakis, Ares J.; Ravichandran, G.

    2001-01-01

    A system and method for radiation detection with an increased frame rate. A semi-parallel processing configuration is used to process a row or column of pixels in a focal-plane array in parallel to achieve a processing rate up to and greater than 1 million frames per second.

  3. Multiplexed Oversampling Digitizer in 65 nm CMOS for Column-Parallel CCD Readout

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grace, Carl; Walder, Jean-Pierre; von der Lippe, Henrik

    2012-04-10

    A digitizer designed to read out column-parallel charge-coupled devices (CCDs) used for high-speed X-ray imaging is presented. The digitizer is included as part of the High-Speed Image Preprocessor with Oversampling (HIPPO) integrated circuit. The digitizer module comprises a multiplexed, oversampling, 12-bit, 80 MS/s pipelined Analog-to-Digital Converter (ADC) and a bank of four fast-settling sample-and-hold amplifiers to instrument four analog channels. The ADC multiplexes and oversamples to reduce its area to allow integration that is pitch-matched to the columns of the CCD. Novel design techniques are used to enable oversampling and multiplexing with a reduced power penalty. The ADC exhibits 188more » ?V-rms noise which is less than 1 LSB at a 12-bit level. The prototype is implemented in a commercially available 65 nm CMOS process. The digitizer will lead to a proof-of-principle 2D 10 Gigapixel/s X-ray detector.« less

  4. Image sensor with high dynamic range linear output

    NASA Technical Reports Server (NTRS)

    Yadid-Pecht, Orly (Inventor); Fossum, Eric R. (Inventor)

    2007-01-01

    Designs and operational methods to increase the dynamic range of image sensors and APS devices in particular by achieving more than one integration times for each pixel thereof. An APS system with more than one column-parallel signal chains for readout are described for maintaining a high frame rate in readout. Each active pixel is sampled for multiple times during a single frame readout, thus resulting in multiple integration times. The operation methods can also be used to obtain multiple integration times for each pixel with an APS design having a single column-parallel signal chain for readout. Furthermore, analog-to-digital conversion of high speed and high resolution can be implemented.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Busbey, A.B.

    Seismic Processing Workshop, a program by Parallel Geosciences of Austin, TX, is discussed in this column. The program is a high-speed, interactive seismic processing and computer analysis system for the Apple Macintosh II family of computers. Also reviewed in this column are three products from Wilkerson Associates of Champaign, IL. SubSide is an interactive program for basin subsidence analysis; MacFault and MacThrustRamp are programs for modeling faults.

  6. A 12-bit high-speed column-parallel two-step single-slope analog-to-digital converter (ADC) for CMOS image sensors.

    PubMed

    Lyu, Tao; Yao, Suying; Nie, Kaiming; Xu, Jiangtao

    2014-11-17

    A 12-bit high-speed column-parallel two-step single-slope (SS) analog-to-digital converter (ADC) for CMOS image sensors is proposed. The proposed ADC employs a single ramp voltage and multiple reference voltages, and the conversion is divided into coarse phase and fine phase to improve the conversion rate. An error calibration scheme is proposed to correct errors caused by offsets among the reference voltages. The digital-to-analog converter (DAC) used for the ramp generator is based on the split-capacitor array with an attenuation capacitor. Analysis of the DAC's linearity performance versus capacitor mismatch and parasitic capacitance is presented. A prototype 1024 × 32 Time Delay Integration (TDI) CMOS image sensor with the proposed ADC architecture has been fabricated in a standard 0.18 μm CMOS process. The proposed ADC has average power consumption of 128 μW and a conventional rate 6 times higher than the conventional SS ADC. A high-quality image, captured at the line rate of 15.5 k lines/s, shows that the proposed ADC is suitable for high-speed CMOS image sensors.

  7. High-resolution, high-throughput imaging with a multibeam scanning electron microscope.

    PubMed

    Eberle, A L; Mikula, S; Schalek, R; Lichtman, J; Knothe Tate, M L; Zeidler, D

    2015-08-01

    Electron-electron interactions and detector bandwidth limit the maximal imaging speed of single-beam scanning electron microscopes. We use multiple electron beams in a single column and detect secondary electrons in parallel to increase the imaging speed by close to two orders of magnitude and demonstrate imaging for a variety of samples ranging from biological brain tissue to semiconductor wafers. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  8. A parallel-vector algorithm for rapid structural analysis on high-performance computers

    NASA Technical Reports Server (NTRS)

    Storaasli, Olaf O.; Nguyen, Duc T.; Agarwal, Tarun K.

    1990-01-01

    A fast, accurate Choleski method for the solution of symmetric systems of linear equations is presented. This direct method is based on a variable-band storage scheme and takes advantage of column heights to reduce the number of operations in the Choleski factorization. The method employs parallel computation in the outermost DO-loop and vector computation via the 'loop unrolling' technique in the innermost DO-loop. The method avoids computations with zeros outside the column heights, and as an option, zeros inside the band. The close relationship between Choleski and Gauss elimination methods is examined. The minor changes required to convert the Choleski code to a Gauss code to solve non-positive-definite symmetric systems of equations are identified. The results for two large-scale structural analyses performed on supercomputers, demonstrate the accuracy and speed of the method.

  9. A parallel-vector algorithm for rapid structural analysis on high-performance computers

    NASA Technical Reports Server (NTRS)

    Storaasli, Olaf O.; Nguyen, Duc T.; Agarwal, Tarun K.

    1990-01-01

    A fast, accurate Choleski method for the solution of symmetric systems of linear equations is presented. This direct method is based on a variable-band storage scheme and takes advantage of column heights to reduce the number of operations in the Choleski factorization. The method employs parallel computation in the outermost DO-loop and vector computation via the loop unrolling technique in the innermost DO-loop. The method avoids computations with zeros outside the column heights, and as an option, zeros inside the band. The close relationship between Choleski and Gauss elimination methods is examined. The minor changes required to convert the Choleski code to a Gauss code to solve non-positive-definite symmetric systems of equations are identified. The results for two large scale structural analyses performed on supercomputers, demonstrate the accuracy and speed of the method.

  10. Mapper: high throughput maskless lithography

    NASA Astrophysics Data System (ADS)

    Kuiper, V.; Kampherbeek, B. J.; Wieland, M. J.; de Boer, G.; ten Berge, G. F.; Boers, J.; Jager, R.; van de Peut, T.; Peijster, J. J. M.; Slot, E.; Steenbrink, S. W. H. K.; Teepen, T. F.; van Veen, A. H. V.

    2009-01-01

    Maskless electron beam lithography, or electron beam direct write, has been around for a long time in the semiconductor industry and was pioneered from the mid-1960s onwards. This technique has been used for mask writing applications as well as device engineering and in some cases chip manufacturing. However because of its relatively low throughput compared to optical lithography, electron beam lithography has never been the mainstream lithography technology. To extend optical lithography double patterning, as a bridging technology, and EUV lithography are currently explored. Irrespective of the technical viability of both approaches, one thing seems clear. They will be expensive [1]. MAPPER Lithography is developing a maskless lithography technology based on massively-parallel electron-beam writing with high speed optical data transport for switching the electron beams. In this way optical columns can be made with a throughput of 10-20 wafers per hour. By clustering several of these columns together high throughputs can be realized in a small footprint. This enables a highly cost-competitive alternative to double patterning and EUV alternatives. In 2007 MAPPER obtained its Proof of Lithography milestone by exposing in its Demonstrator 45 nm half pitch structures with 110 electron beams in parallel, where all the beams where individually switched on and off [2]. In 2008 MAPPER has taken a next step in its development by building several tools. A new platform has been designed and built which contains a 300 mm wafer stage, a wafer handler and an electron beam column with 110 parallel electron beams. This manuscript describes the first patterning results with this 300 mm platform.

  11. Development of radiation tolerant monolithic active pixel sensors with fast column parallel read-out

    NASA Astrophysics Data System (ADS)

    Koziel, M.; Dorokhov, A.; Fontaine, J.-C.; De Masi, R.; Winter, M.

    2010-12-01

    Monolithic active pixel sensors (MAPS) [1] (Turchetta et al., 2001) are being developed at IPHC—Strasbourg to equip the EUDET telescope [2] (Haas, 2006) and vertex detectors for future high energy physics experiments, including the STAR upgrade at RHIC [3] (T.S. Collaboration, 2005) and the CBM experiment at FAIR/GSI [4] (Heuser, 2006). High granularity, low material budget and high read-out speed are systematically required for most applications, complemented, for some of them, with high radiation tolerance. A specific column-parallel architecture, implemented in the MIMOSA-22 sensor, was developed to achieve fast read-out MAPS. Previous studies of the front-end architecture integrated in this sensor, which includes in-pixel amplification, have shown that the fixed pattern noise increase consecutive to ionizing radiation can be controlled by means of a negative feedback [5] (Hu-Guo et al., 2008). However, an unexpected rise of the temporal noise was observed. A second version of this chip (MIMOSA-22bis) was produced in order to search for possible improvements of the radiation tolerance, regarding this type of noise. In this prototype, the feedback transistor was tuned in order to mitigate the sensitivity of the pixel to ionizing radiation. The performances of the pixels after irradiation were investigated for two types of feedback transistors: enclosed layout transistor (ELT) [6] (Snoeys et al., 2000) and "standard" transistor with either large or small transconductance. The noise performance of all test structures was studied in various conditions (expected in future experiments) regarding temperature, integration time and ionizing radiation dose. Test results are presented in this paper. Based on these observations, ideas for further improvement of the radiation tolerance of column parallel MAPS are derived.

  12. A 4MP high-dynamic-range, low-noise CMOS image sensor

    NASA Astrophysics Data System (ADS)

    Ma, Cheng; Liu, Yang; Li, Jing; Zhou, Quan; Chang, Yuchun; Wang, Xinyang

    2015-03-01

    In this paper we present a 4 Megapixel high dynamic range, low dark noise and dark current CMOS image sensor, which is ideal for high-end scientific and surveillance applications. The pixel design is based on a 4-T PPD structure. During the readout of the pixel array, signals are first amplified, and then feed to a low- power column-parallel ADC array which is already presented in [1]. Measurement results show that the sensor achieves a dynamic range of 96dB, a dark noise of 1.47e- at 24fps speed. The dark current is 0.15e-/pixel/s at -20oC.

  13. Charge integration successive approximation analog-to-digital converter for focal plane applications using a single amplifier

    NASA Technical Reports Server (NTRS)

    Zhou, Zhimin (Inventor); Pain, Bedabrata (Inventor)

    1999-01-01

    An analog-to-digital converter for on-chip focal-plane image sensor applications. The analog-to-digital converter utilizes a single charge integrating amplifier in a charge balancing architecture to implement successive approximation analog-to-digital conversion. This design requires minimal chip area and has high speed and low power dissipation for operation in the 2-10 bit range. The invention is particularly well suited to CMOS on-chip applications requiring many analog-to-digital converters, such as column-parallel focal-plane architectures.

  14. Separation of natural product using columns packed with Fused-Core particles.

    PubMed

    Yang, Peilin; Litwinski, George R; Pursch, Matthias; McCabe, Terry; Kuppannan, Krishna

    2009-06-01

    Three HPLC columns packed with 3 microm, sub-2 microm, and 2.7 microm Fused-Core (superficially porous) particles were compared in separation performance using two natural product mixtures containing 15 structurally related components. The Ascentis Express C18 column packed with Fused-Core particles showed an 18% increase in column efficiency (theoretical plates), a 76% increase in plate number per meter, a 65% enhancement in separation speed and a 19% increase in back pressure compared to the Atlantis T3 C18 column packed with 3 microm particles. Column lot-to-lot variability for critical pairs in the natural product mixture was observed with both columns, with the Atlantis T3 column exhibiting a higher degree of variability. The Ascentis Express column was also compared with the Acquity BEH column packed with sub-2 microm particles. Although the peak efficiencies obtained by the Ascentis Express column were only about 74% of those obtained by the Acquity BEH column, the 50% lower back pressure and comparable separation speed allowed high-efficiency and high-speed separation to be performed using conventional HPLC instrumentation.

  15. Behavior of chemicals in the seawater column by shadowscopy

    NASA Astrophysics Data System (ADS)

    Fuhrer, Mélanie; Aprin, Laurent; Le Floch, Stéphane; Slangen, Pierre; Dusserre, Gilles

    2012-10-01

    Ninety percent of the Global Movement of Goods transit by ship. The transportation of HNS (Hazardous and Noxious Substances) in bulk highly increases with the tanker traffic. The huge volume capacities induce a major risk of accident involving chemicals. Among the latest accidents, many have led to vessels sinking (Ievoli Sun, 2000 - ECE, 2006). In case of floating substances, liquid release in depth entails an ascending two phase flow. The visualization of that flow is complex. Indeed, liquid chemicals have mostly a refractive index close to water, causing difficulties for the assessment of the two phase medium behavior. Several physics aspects are points of interest: droplets characterization (shape evolution and velocity), dissolution kinetics and hydrodynamic vortices. Previous works, presented in the 2010 Speckle conference in Brazil, employed Dynamic Speckle Interferometry to study Methyl Ethyl Ketone (MEK) dissolution in a 15 cm high and 1 cm thick water column. This paper deals with experiments achieved with the Cedre Experimental Column (CEC - 5 m high and 0.8 m in diameter). As the water thickness has been increased, Dynamic Speckle Interferometry results are improved by shadowscopic measurements. A laser diode is used to generate parallel light while high speed imaging records the products rising. Two measurements systems are placed at the bottom and the top of the CEC. The chemical class of pollutant like floaters, dissolvers (plume, trails or droplets) has been then identified. Physics of the two phase flow is presented and shows up the dependence on chemicals properties such as interfacial tension, viscosity and density. Furthermore, parallel light propagation through this disturbed medium has revealed trailing edges vortices for some substances (e.g. butanol) presenting low refractive index changes.

  16. A 1024×768-12μm Digital ROIC for uncooled microbolometer FPAs

    NASA Astrophysics Data System (ADS)

    Eminoglu, Selim

    2017-02-01

    This paper reports the development of a new digital microbolometer Readout Integrated Circuit (D-ROIC), called MT10212BD. It has a format of 1024 × 768 (XGA) and a pixel pitch of 12μm. MT10212BD is Mikro Tasarim's second 12μm pitch microbolometer ROIC, which is developed specifically for surface micro machined microbolometer detector arrays with small pixel pitch using high-TCR pixel materials, such as VOx and a Si. MT10212BD has an alldigital system on-chip architecture, which generates programmable timing and biasing, and performs 14-bit analog to digital conversion (ADC). The signal processing chain in the ROIC is composed of pixel bias circuitry, integrator based programmable gain amplifier followed by column parallel ADC circuitry. MT10212BD has a serial programming interface that can be used to configure the programmable ROIC features and to load the Non-Uniformity-Correction (NUC) date to the ROIC. MT10212BD has a total of 8 high-speed serial digital video outputs, which can be programmed to operate in the 2, 4, and 8-output modes and can support frames rates above 60 fps. The high-speed serial digital outputs supports data rates as high as 400 Mega-bits/s, when operated at 50 MHz system clock frequency. There is an on-chip phase-locked-loop (PLL) based timing circuitry to generate the high speed clocks used in the ROIC. The ROIC is designed to support pixel resistance values ranging from 30KΩ to 90kΩ, with a nominal value of 60KΩ. The ROIC has a globally programmable gain in the column readout, which can be adjusted based on the detector resistance value.

  17. Microfluidic integration of parallel solid-phase liquid chromatography.

    PubMed

    Huft, Jens; Haynes, Charles A; Hansen, Carl L

    2013-03-05

    We report the development of a fully integrated microfluidic chromatography system based on a recently developed column geometry that allows for robust packing of high-performance separation columns in poly(dimethylsiloxane) microfluidic devices having integrated valves made by multilayer soft lithography (MSL). The combination of parallel high-performance separation columns and on-chip plumbing was used to achieve a fully integrated system for on-chip chromatography, including all steps of automated sample loading, programmable gradient generation, separation, fluorescent detection, and sample recovery. We demonstrate this system in the separation of fluorescently labeled DNA and parallel purification of reverse transcription polymerase chain reaction (RT-PCR) amplified variable regions of mouse immunoglobulin genes using a strong anion exchange (AEX) resin. Parallel sample recovery in an immiscible oil stream offers the advantage of low sample dilution and high recovery rates. The ability to perform nucleic acid size selection and recovery on subnanogram samples of DNA holds promise for on-chip genomics applications including sequencing library preparation, cloning, and sample fractionation for diagnostics.

  18. A parallel architecture of interpolated timing recovery for high- speed data transfer rate and wide capture-range

    NASA Astrophysics Data System (ADS)

    Higashino, Satoru; Kobayashi, Shoei; Yamagami, Tamotsu

    2007-06-01

    High data transfer rate has been demanded for data storage devices along increasing the storage capacity. In order to increase the transfer rate, high-speed data processing techniques in read-channel devices are required. Generally, parallel architecture is utilized for the high-speed digital processing. We have developed a new architecture of Interpolated Timing Recovery (ITR) to achieve high-speed data transfer rate and wide capture-range in read-channel devices for the information storage channels. It facilitates the parallel implementation on large-scale-integration (LSI) devices.

  19. Online hyphenation of extraction, Sephadex LH-20 column chromatography, and high-speed countercurrent chromatography: A highly efficient strategy for the preparative separation of andrographolide from Andrographis paniculata in a single step.

    PubMed

    Zhang, Ying-Qi; Wang, Shan-Shan; Han, Chao; Xu, Jin-Fang; Luo, Jian-Guang; Kong, Ling-Yi

    2017-12-01

    A novel isolation strategy, online hyphenation of ultrasonic extraction, Sephadex LH-20 column chromatography combined with high-speed countercurrent chromatography, was developed for pure compounds extraction and purification. Andrographolide from Andrographis paniculata was achieved only in a single step purification protocol via the present strategy. The crude powder was ultrasonic extracted and extraction was pumped into Sephadex LH-20 column directly to cut the nontarget fractions followed by the second-dimensional high-speed countercurrent chromatography, hyphenated by a six-port valve equipped at the post-end of Sephadex LH-20 column, for the final purification. The results yielded andrographolide with the amount of 1.02 mg and a purity of 98.5% in a single step, indicating that the present method is effective to harvest target compound from medicinal plant. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. HIGH-SPEED GC/MS FOR AIR ANALYSIS

    EPA Science Inventory

    High speed or fast gas chromatography (FGC) consists of narrow bandwidth injection into a high-speed carrier gas stream passing through a short column leading to a fast detector. Many attempts have been made to demonstrate FGC, but until recently no practical method for routin...

  1. MAPPER: high-throughput maskless lithography

    NASA Astrophysics Data System (ADS)

    Wieland, M. J.; de Boer, G.; ten Berge, G. F.; Jager, R.; van de Peut, T.; Peijster, J. J. M.; Slot, E.; Steenbrink, S. W. H. K.; Teepen, T. F.; van Veen, A. H. V.; Kampherbeek, B. J.

    2009-03-01

    Maskless electron beam lithography, or electron beam direct write, has been around for a long time in the semiconductor industry and was pioneered from the mid-1960s onwards. This technique has been used for mask writing applications as well as device engineering and in some cases chip manufacturing. However because of its relatively low throughput compared to optical lithography, electron beam lithography has never been the mainstream lithography technology. To extend optical lithography double patterning, as a bridging technology, and EUV lithography are currently explored. Irrespective of the technical viability of both approaches, one thing seems clear. They will be expensive [1]. MAPPER Lithography is developing a maskless lithography technology based on massively-parallel electron-beam writing with high speed optical data transport for switching the electron beams. In this way optical columns can be made with a throughput of 10-20 wafers per hour. By clustering several of these columns together high throughputs can be realized in a small footprint. This enables a highly cost-competitive alternative to double patterning and EUV alternatives. In 2007 MAPPER obtained its Proof of Lithography milestone by exposing in its Demonstrator 45 nm half pitch structures with 110 electron beams in parallel, where all the beams where individually switched on and off [2]. In 2008 MAPPER has taken a next step in its development by building several tools. The objective of building these tools is to involve semiconductor companies to be able to verify tool performance in their own environment. To enable this, the tools will have a 300 mm wafer stage in addition to a 110-beam optics column. First exposures at 45 nm half pitch resolution have been performed and analyzed. On the same wafer it is observed that all beams print and based on analysis of 11 beams the CD for the different patterns is within 2.2 nm from target and the CD uniformity for the different patterns is better than 2.8 nm.

  2. Design and characterization of high precision in-pixel discriminators for rolling shutter CMOS pixel sensors with full CMOS capability

    NASA Astrophysics Data System (ADS)

    Fu, Y.; Hu-Guo, C.; Dorokhov, A.; Pham, H.; Hu, Y.

    2013-07-01

    In order to exploit the ability to integrate a charge collecting electrode with analog and digital processing circuitry down to the pixel level, a new type of CMOS pixel sensors with full CMOS capability is presented in this paper. The pixel array is read out based on a column-parallel read-out architecture, where each pixel incorporates a diode, a preamplifier with a double sampling circuitry and a discriminator to completely eliminate analog read-out bottlenecks. The sensor featuring a pixel array of 8 rows and 32 columns with a pixel pitch of 80 μm×16 μm was fabricated in a 0.18 μm CMOS process. The behavior of each pixel-level discriminator isolated from the diode and the preamplifier was studied. The experimental results indicate that all in-pixel discriminators which are fully operational can provide significant improvements in the read-out speed and the power consumption of CMOS pixel sensors.

  3. A Dynamic Range Enhanced Readout Technique with a Two-Step TDC for High Speed Linear CMOS Image Sensors.

    PubMed

    Gao, Zhiyuan; Yang, Congjie; Xu, Jiangtao; Nie, Kaiming

    2015-11-06

    This paper presents a dynamic range (DR) enhanced readout technique with a two-step time-to-digital converter (TDC) for high speed linear CMOS image sensors. A multi-capacitor and self-regulated capacitive trans-impedance amplifier (CTIA) structure is employed to extend the dynamic range. The gain of the CTIA is auto adjusted by switching different capacitors to the integration node asynchronously according to the output voltage. A column-parallel ADC based on a two-step TDC is utilized to improve the conversion rate. The conversion is divided into coarse phase and fine phase. An error calibration scheme is also proposed to correct quantization errors caused by propagation delay skew within -T(clk)~+T(clk). A linear CMOS image sensor pixel array is designed in the 0.13 μm CMOS process to verify this DR-enhanced high speed readout technique. The post simulation results indicate that the dynamic range of readout circuit is 99.02 dB and the ADC achieves 60.22 dB SNDR and 9.71 bit ENOB at a conversion rate of 2 MS/s after calibration, with 14.04 dB and 2.4 bit improvement, compared with SNDR and ENOB of that without calibration.

  4. Parallel Guessing: A Strategy for High-Speed Computation

    DTIC Science & Technology

    1984-09-19

    for using additional hardware to obtain higher processing speed). In this paper we argue that parallel guessing for image analysis is a useful...from a true solution, or the correctness of a guess, can be readily checked. We review image - analysis algorithms having a parallel guessing or

  5. Recent Progress in Monolithic Silica Columns for High-Speed and High-Selectivity Separations.

    PubMed

    Ikegami, Tohru; Tanaka, Nobuo

    2016-06-12

    Monolithic silica columns have greater (through-pore size)/(skeleton size) ratios than particulate columns and fixed support structures in a column for chemical modification, resulting in high-efficiency columns and stationary phases. This review looks at how the size range of monolithic silica columns has been expanded, how high-efficiency monolithic silica columns have been realized, and how various methods of silica surface functionalization, leading to selective stationary phases, have been developed on monolithic silica supports, and provides information on the current status of these columns. Also discussed are the practical aspects of monolithic silica columns, including how their versatility can be improved by the preparation of small-sized structural features (sub-micron) and columns (1 mm ID or smaller) and by optimizing reaction conditions for in situ chemical modification with various restrictions, with an emphasis on recent research results for both topics.

  6. Design of a dataway processor for a parallel image signal processing system

    NASA Astrophysics Data System (ADS)

    Nomura, Mitsuru; Fujii, Tetsuro; Ono, Sadayasu

    1995-04-01

    Recently, demands for high-speed signal processing have been increasing especially in the field of image data compression, computer graphics, and medical imaging. To achieve sufficient power for real-time image processing, we have been developing parallel signal-processing systems. This paper describes a communication processor called 'dataway processor' designed for a new scalable parallel signal-processing system. The processor has six high-speed communication links (Dataways), a data-packet routing controller, a RISC CORE, and a DMA controller. Each communication link operates at 8-bit parallel in a full duplex mode at 50 MHz. Moreover, data routing, DMA, and CORE operations are processed in parallel. Therefore, sufficient throughput is available for high-speed digital video signals. The processor is designed in a top- down fashion using a CAD system called 'PARTHENON.' The hardware is fabricated using 0.5-micrometers CMOS technology, and its hardware is about 200 K gates.

  7. Parallelized multi–graphics processing unit framework for high-speed Gabor-domain optical coherence microscopy

    PubMed Central

    Tankam, Patrice; Santhanam, Anand P.; Lee, Kye-Sung; Won, Jungeun; Canavesi, Cristina; Rolland, Jannick P.

    2014-01-01

    Abstract. Gabor-domain optical coherence microscopy (GD-OCM) is a volumetric high-resolution technique capable of acquiring three-dimensional (3-D) skin images with histological resolution. Real-time image processing is needed to enable GD-OCM imaging in a clinical setting. We present a parallelized and scalable multi-graphics processing unit (GPU) computing framework for real-time GD-OCM image processing. A parallelized control mechanism was developed to individually assign computation tasks to each of the GPUs. For each GPU, the optimal number of amplitude-scans (A-scans) to be processed in parallel was selected to maximize GPU memory usage and core throughput. We investigated five computing architectures for computational speed-up in processing 1000×1000 A-scans. The proposed parallelized multi-GPU computing framework enables processing at a computational speed faster than the GD-OCM image acquisition, thereby facilitating high-speed GD-OCM imaging in a clinical setting. Using two parallelized GPUs, the image processing of a 1×1×0.6  mm3 skin sample was performed in about 13 s, and the performance was benchmarked at 6.5 s with four GPUs. This work thus demonstrates that 3-D GD-OCM data may be displayed in real-time to the examiner using parallelized GPU processing. PMID:24695868

  8. Parallelized multi-graphics processing unit framework for high-speed Gabor-domain optical coherence microscopy.

    PubMed

    Tankam, Patrice; Santhanam, Anand P; Lee, Kye-Sung; Won, Jungeun; Canavesi, Cristina; Rolland, Jannick P

    2014-07-01

    Gabor-domain optical coherence microscopy (GD-OCM) is a volumetric high-resolution technique capable of acquiring three-dimensional (3-D) skin images with histological resolution. Real-time image processing is needed to enable GD-OCM imaging in a clinical setting. We present a parallelized and scalable multi-graphics processing unit (GPU) computing framework for real-time GD-OCM image processing. A parallelized control mechanism was developed to individually assign computation tasks to each of the GPUs. For each GPU, the optimal number of amplitude-scans (A-scans) to be processed in parallel was selected to maximize GPU memory usage and core throughput. We investigated five computing architectures for computational speed-up in processing 1000×1000 A-scans. The proposed parallelized multi-GPU computing framework enables processing at a computational speed faster than the GD-OCM image acquisition, thereby facilitating high-speed GD-OCM imaging in a clinical setting. Using two parallelized GPUs, the image processing of a 1×1×0.6  mm3 skin sample was performed in about 13 s, and the performance was benchmarked at 6.5 s with four GPUs. This work thus demonstrates that 3-D GD-OCM data may be displayed in real-time to the examiner using parallelized GPU processing.

  9. A novel stationary phase derivatized from hydrophilic gigaporous polystyrene-based microspheres for high-speed protein chromatography.

    PubMed

    Qu, Jian-Bo; Wan, Xing-Zhong; Zhai, Yan-Qin; Zhou, Wei-Qing; Su, Zhi-Guo; Ma, Guang-Hui

    2009-09-11

    Using agarose coated gigaporous polystyrene microspheres as a base support, a novel anion exchanger (DEAE-AP) has been developed after functionalization with diethylaminoethyl chloride. The gigaporous structure, static adsorption behavior, and chromatographic properties of DEAE-AP medium were characterized and compared with those of commercially available resin DEAE Sepharose Fast Flow (DEAE-FF). The results implied that there existed some through pores in DEAE-AP microspheres, which effectively reduced resistance to stagnant mobile phase mass transfer by inducing convective flow of mobile phase in the gigapores of medium. As a consequence, the column packed with DEAE-AP exhibited low column backpressure, high column efficiency, high dynamic binding capacity and high protein resolution at high flow velocity up to 2600cm/h. In conclusion, all the results suggested that the gigaporous absorbent is promising for high-speed protein chromatography.

  10. Parallel processing data network of master and slave transputers controlled by a serial control network

    DOEpatents

    Crosetto, D.B.

    1996-12-31

    The present device provides for a dynamically configurable communication network having a multi-processor parallel processing system having a serial communication network and a high speed parallel communication network. The serial communication network is used to disseminate commands from a master processor to a plurality of slave processors to effect communication protocol, to control transmission of high density data among nodes and to monitor each slave processor`s status. The high speed parallel processing network is used to effect the transmission of high density data among nodes in the parallel processing system. Each node comprises a transputer, a digital signal processor, a parallel transfer controller, and two three-port memory devices. A communication switch within each node connects it to a fast parallel hardware channel through which all high density data arrives or leaves the node. 6 figs.

  11. Parallel processing data network of master and slave transputers controlled by a serial control network

    DOEpatents

    Crosetto, Dario B.

    1996-01-01

    The present device provides for a dynamically configurable communication network having a multi-processor parallel processing system having a serial communication network and a high speed parallel communication network. The serial communication network is used to disseminate commands from a master processor (100) to a plurality of slave processors (200) to effect communication protocol, to control transmission of high density data among nodes and to monitor each slave processor's status. The high speed parallel processing network is used to effect the transmission of high density data among nodes in the parallel processing system. Each node comprises a transputer (104), a digital signal processor (114), a parallel transfer controller (106), and two three-port memory devices. A communication switch (108) within each node (100) connects it to a fast parallel hardware channel (70) through which all high density data arrives or leaves the node.

  12. Separation and purification of astaxanthin from Phaffia rhodozyma by preparative high-speed counter-current chromatography.

    PubMed

    Du, Xiping; Dong, Congcong; Wang, Kai; Jiang, Zedong; Chen, Yanhong; Yang, Yuanfan; Chen, Feng; Ni, Hui

    2016-09-01

    An effective high-speed counter-current chromatography (HSCCC) method was established for the preparative isolation and purification of astaxanthin from Phaffia rhodozyma. With a two-phase solvent system composed of n-hexane-acetone-ethanol-water (1:1:1:1, v/v/v/v), 100mg crude extract of P. rhodozyma was separated to yield 20.6mg of astaxanthin at 92.0% purity. By further one step silica gel column chromatography, the purity reached 99.0%. The chemical structure of astaxanthin was confirmed by thin layer chromatography (TLC), UV spectroscopy scanning, high performance liquid chromatography with a ZORBAX SB-C18 column and a Waters Nova-pak C18 column, and ESI/MS/MS. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Two-dimensional chromatographic analysis using three second-dimension columns for continuous comprehensive analysis of intact proteins.

    PubMed

    Zhu, Zaifang; Chen, Huang; Ren, Jiangtao; Lu, Juan J; Gu, Congying; Lynch, Kyle B; Wu, Si; Wang, Zhe; Cao, Chengxi; Liu, Shaorong

    2018-03-01

    We develop a new two-dimensional (2D) high performance liquid chromatography (HPLC) approach for intact protein analysis. Development of 2D HPLC has a bottleneck problem - limited second-dimension (second-D) separation speed. We solve this problem by incorporating multiple second-D columns to allow several second-D separations to be proceeded in parallel. To demonstrate the feasibility of using this approach for comprehensive protein analysis, we select ion-exchange chromatography as the first-dimension and reverse-phase chromatography as the second-D. We incorporate three second-D columns in an innovative way so that three reverse-phase separations can be performed simultaneously. We test this system for separating both standard proteins and E. coli lysates and achieve baseline resolutions for eleven standard proteins and obtain more than 500 peaks for E. coli lysates. This is an indication that the sample complexities are greatly reduced. We see less than 10 bands when each fraction of the second-D effluents are analyzed by sodium dodecyl sulfate - polyacrylamide gel electrophoresis (SDS-PAGE), compared to hundreds of SDS-PAGE bands as the original sample is analyzed. This approach could potentially be an excellent and general tool for protein analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Analog storage integrated circuit

    DOEpatents

    Walker, J. T.; Larsen, R. S.; Shapiro, S. L.

    1989-01-01

    A high speed data storage array is defined utilizing a unique cell design for high speed sampling of a rapidly changing signal. Each cell of the array includes two input gates between the signal input and a storage capacitor. The gates are controlled by a high speed row clock and low speed column clock so that the instantaneous analog value of the signal is only sampled and stored by each cell on coincidence of the two clocks.

  15. Analog storage integrated circuit

    DOEpatents

    Walker, J.T.; Larsen, R.S.; Shapiro, S.L.

    1989-03-07

    A high speed data storage array is defined utilizing a unique cell design for high speed sampling of a rapidly changing signal. Each cell of the array includes two input gates between the signal input and a storage capacitor. The gates are controlled by a high speed row clock and low speed column clock so that the instantaneous analog value of the signal is only sampled and stored by each cell on coincidence of the two clocks. 6 figs.

  16. Providing a parallel and distributed capability for JMASS using SPEEDES

    NASA Astrophysics Data System (ADS)

    Valinski, Maria; Driscoll, Jonathan; McGraw, Robert M.; Meyer, Bob

    2002-07-01

    The Joint Modeling And Simulation System (JMASS) is a Tri-Service simulation environment that supports engineering and engagement-level simulations. As JMASS is expanded to support other Tri-Service domains, the current set of modeling services must be expanded for High Performance Computing (HPC) applications by adding support for advanced time-management algorithms, parallel and distributed topologies, and high speed communications. By providing support for these services, JMASS can better address modeling domains requiring parallel computationally intense calculations such clutter, vulnerability and lethality calculations, and underwater-based scenarios. A risk reduction effort implementing some HPC services for JMASS using the SPEEDES (Synchronous Parallel Environment for Emulation and Discrete Event Simulation) Simulation Framework has recently concluded. As an artifact of the JMASS-SPEEDES integration, not only can HPC functionality be brought to the JMASS program through SPEEDES, but an additional HLA-based capability can be demonstrated that further addresses interoperability issues. The JMASS-SPEEDES integration provided a means of adding HLA capability to preexisting JMASS scenarios through an implementation of the standard JMASS port communication mechanism that allows players to communicate.

  17. Development of gallium arsenide high-speed, low-power serial parallel interface modules: Executive summary

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Final report to NASA LeRC on the development of gallium arsenide (GaAS) high-speed, low power serial/parallel interface modules. The report discusses the development and test of a family of 16, 32 and 64 bit parallel to serial and serial to parallel integrated circuits using a self aligned gate MESFET technology developed at the Honeywell Sensors and Signal Processing Laboratory. Lab testing demonstrated 1.3 GHz clock rates at a power of 300 mW. This work was accomplished under contract number NAS3-24676.

  18. Dynamic performance of high speed solenoid valve with parallel coils

    NASA Astrophysics Data System (ADS)

    Kong, Xiaowu; Li, Shizhen

    2014-07-01

    The methods of improving the dynamic performance of high speed on/off solenoid valve include increasing the magnetic force of armature and the slew rate of coil current, decreasing the mass and stroke of moving parts. The increase of magnetic force usually leads to the decrease of current slew rate, which could increase the delay time of the dynamic response of solenoid valve. Using a high voltage to drive coil can solve this contradiction, but a high driving voltage can also lead to more cost and a decrease of safety and reliability. In this paper, a new scheme of parallel coils is investigated, in which the single coil of solenoid is replaced by parallel coils with same ampere turns. Based on the mathematic model of high speed solenoid valve, the theoretical formula for the delay time of solenoid valve is deduced. Both the theoretical analysis and the dynamic simulation show that the effect of dividing a single coil into N parallel sub-coils is close to that of driving the single coil with N times of the original driving voltage as far as the delay time of solenoid valve is concerned. A specific test bench is designed to measure the dynamic performance of high speed on/off solenoid valve. The experimental results also prove that both the delay time and switching time of the solenoid valves can be decreased greatly by adopting the parallel coil scheme. This research presents a simple and practical method to improve the dynamic performance of high speed on/off solenoid valve.

  19. High speed Deans switch for low duty cycle comprehensive two-dimensional gas chromatography.

    PubMed

    Ghosh, Abhijit; Bates, Carly T; Seeley, Stacy K; Seeley, John V

    2013-05-24

    A new high-speed valve-based modulator has been designed and tested for use in comprehensive two-dimensional gas chromatography (GC×GC). The modulator is a Deans switch constructed from two micro-volume fittings and a solenoid valve. Modulator performance was characterized over a wide range of device settings including the magnitude of the switching flow, the gap between the tips of the primary and secondary column, the primary column flow rate, and the carrier gas identity. Under optimized conditions, the modulator was found to be capable of generating narrow pulses (<50ms) of primary effluent with a 2mL/min secondary column flow. This capability will ultimately allow the modulator to be used with GC×GC separations employing a wide range of detectors and secondary column geometries. The main disadvantage of this modulator is that it employs a low sampling duty cycle, and thus it produces separations with sensitivities that are lower than those produced with thermal modulators or differential flow modulators. The efficacy of the new high-speed Deans switch modulator was demonstrated through the GC×GC separation of a hydrocarbon standard and gasoline. Precise quantitation of individual components was possible provided the modulation ratio was kept greater than 2.0. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Digital intermediate frequency QAM modulator using parallel processing

    DOEpatents

    Pao, Hsueh-Yuan [Livermore, CA; Tran, Binh-Nien [San Ramon, CA

    2008-05-27

    The digital Intermediate Frequency (IF) modulator applies to various modulation types and offers a simple and low cost method to implement a high-speed digital IF modulator using field programmable gate arrays (FPGAs). The architecture eliminates multipliers and sequential processing by storing the pre-computed modulated cosine and sine carriers in ROM look-up-tables (LUTs). The high-speed input data stream is parallel processed using the corresponding LUTs, which reduces the main processing speed, allowing the use of low cost FPGAs.

  1. High speed parallel spectral-domain OCT using spectrally encoded line-field illumination

    NASA Astrophysics Data System (ADS)

    Lee, Kye-Sung; Hur, Hwan; Bae, Ji Yong; Kim, I. Jong; Kim, Dong Uk; Nam, Ki-Hwan; Kim, Geon-Hee; Chang, Ki Soo

    2018-01-01

    We report parallel spectral-domain optical coherence tomography (OCT) at 500 000 A-scan/s. This is the highest-speed spectral-domain (SD) OCT system using a single line camera. Spectrally encoded line-field scanning is proposed to increase the imaging speed in SD-OCT effectively, and the tradeoff between speed, depth range, and sensitivity is demonstrated. We show that three imaging modes of 125k, 250k, and 500k A-scan/s can be simply switched according to the sample to be imaged considering the depth range and sensitivity. To demonstrate the biological imaging performance of the high-speed imaging modes of the spectrally encoded line-field OCT system, human skin and a whole leaf were imaged at the speed of 250k and 500k A-scan/s, respectively. In addition, there is no sensitivity dependence in the B-scan direction, which is implicit in line-field parallel OCT using line focusing of a Gaussian beam with a cylindrical lens.

  2. Microfluidic Devices for Studying Biomolecular Interactions

    NASA Technical Reports Server (NTRS)

    Wilson, Wilbur W.; Garcia, Carlos d.; Henry, Charles S.

    2006-01-01

    Microfluidic devices for monitoring biomolecular interactions have been invented. These devices are basically highly miniaturized liquid-chromatography columns. They are intended to be prototypes of miniature analytical devices of the laboratory on a chip type that could be fabricated rapidly and inexpensively and that, because of their small sizes, would yield analytical results from very small amounts of expensive analytes (typically, proteins). Other advantages to be gained by this scaling down of liquid-chromatography columns may include increases in resolution and speed, decreases in the consumption of reagents, and the possibility of performing multiple simultaneous and highly integrated analyses by use of multiple devices of this type, each possibly containing multiple parallel analytical microchannels. The principle of operation is the same as that of a macroscopic liquid-chromatography column: The column is a channel packed with particles, upon which are immobilized molecules of the protein of interest (or one of the proteins of interest if there are more than one). Starting at a known time, a solution or suspension containing molecules of the protein or other substance of interest is pumped into the channel at its inlet. The liquid emerging from the outlet of the channel is monitored to detect the molecules of the dissolved or suspended substance(s). The time that it takes these molecules to flow from the inlet to the outlet is a measure of the degree of interaction between the immobilized and the dissolved or suspended molecules. Depending on the precise natures of the molecules, this measure can be used for diverse purposes: examples include screening for solution conditions that favor crystallization of proteins, screening for interactions between drugs and proteins, and determining the functions of biomolecules.

  3. An FPGA-based High Speed Parallel Signal Processing System for Adaptive Optics Testbed

    NASA Astrophysics Data System (ADS)

    Kim, H.; Choi, Y.; Yang, Y.

    In this paper a state-of-the-art FPGA (Field Programmable Gate Array) based high speed parallel signal processing system (SPS) for adaptive optics (AO) testbed with 1 kHz wavefront error (WFE) correction frequency is reported. The AO system consists of Shack-Hartmann sensor (SHS) and deformable mirror (DM), tip-tilt sensor (TTS), tip-tilt mirror (TTM) and an FPGA-based high performance SPS to correct wavefront aberrations. The SHS is composed of 400 subapertures and the DM 277 actuators with Fried geometry, requiring high speed parallel computing capability SPS. In this study, the target WFE correction speed is 1 kHz; therefore, it requires massive parallel computing capabilities as well as strict hard real time constraints on measurements from sensors, matrix computation latency for correction algorithms, and output of control signals for actuators. In order to meet them, an FPGA based real-time SPS with parallel computing capabilities is proposed. In particular, the SPS is made up of a National Instrument's (NI's) real time computer and five FPGA boards based on state-of-the-art Xilinx Kintex 7 FPGA. Programming is done with NI's LabView environment, providing flexibility when applying different algorithms for WFE correction. It also facilitates faster programming and debugging environment as compared to conventional ones. One of the five FPGA's is assigned to measure TTS and calculate control signals for TTM, while the rest four are used to receive SHS signal, calculate slops for each subaperture and correction signal for DM. With this parallel processing capabilities of the SPS the overall closed-loop WFE correction speed of 1 kHz has been achieved. System requirements, architecture and implementation issues are described; furthermore, experimental results are also given.

  4. Wind effects on coastal zone color scanner chlorophyll patterns in the U.S. Mid-Atlantic Bight during spring 1979

    NASA Technical Reports Server (NTRS)

    Eslinger, David L.; Iverson, Richard L.

    1986-01-01

    Coastal zone color scanner (CZCS) chlorophyll concentration increases in the Mid-Atlantic Bight were associated with high wind speeds in continental shelf waters during March and May 1979. Maximum spring CZCS chlorophyll concentrations occurred during April when the water column was not thermally stratified and were spatially and temporally associated with reductions in wind speed both in onshelf and in offshelf regions. Increased chlorophyll concentrations in offshelf waters were associated with high wind speeds during May when a deep chlorophyll maximum was present. Chlorophyll patchiness was observed on length scales typical of those controlled by biological processes during the April low-wind period but not during March or May when wind speeds were greater. The spring CZCS chlorophyll maximum in the southern portion of the Mid-Atlantic Bight occurred in response to a reduction in mixed layer depth caused by decreased wind speeds and not by increased water column stratification.

  5. Evaluation of the power consumption of a high-speed parallel robot

    NASA Astrophysics Data System (ADS)

    Han, Gang; Xie, Fugui; Liu, Xin-Jun

    2018-06-01

    An inverse dynamic model of a high-speed parallel robot is established based on the virtual work principle. With this dynamic model, a new evaluation method is proposed to measure the power consumption of the robot during pick-and-place tasks. The power vector is extended in this method and used to represent the collinear velocity and acceleration of the moving platform. Afterward, several dynamic performance indices, which are homogenous and possess obvious physical meanings, are proposed. These indices can evaluate the power input and output transmissibility of the robot in a workspace. The distributions of the power input and output transmissibility of the high-speed parallel robot are derived with these indices and clearly illustrated in atlases. Furtherly, a low-power-consumption workspace is selected for the robot.

  6. An Efficient Fuzzy Controller Design for Parallel Connected Induction Motor Drives

    NASA Astrophysics Data System (ADS)

    Usha, S.; Subramani, C.

    2018-04-01

    Generally, an induction motors are highly non-linear and has a complex time varying dynamics. This makes the speed control of an induction motor a challenging issue in the industries. But, due to the recent trends in the power electronic devices and intelligent controllers, the speed control of the induction motor is achieved by including non-linear characteristics also. Conventionally a single inverter is used to run one induction motor in industries. In the traction applications, two or more inductions motors are operated in parallel to reduce the size and cost of induction motors. In this application, the parallel connected induction motors can be driven by a single inverter unit. The stability problems may introduce in the parallel operation under low speed operating conditions. Hence, the speed deviations should be reduce with help of suitable controllers. The speed control of the parallel connected system is performed by PID controller and fuzzy logic controller. In this paper the speed response of the induction motor for the rating of IHP, 1440 rpm, and 50Hz with these controller are compared in time domain specifications. The stability analysis of the system also performed under low speed using matlab platform. The hardware model is developed for speed control using fuzzy logic controller which exhibited superior performances over the other controller.

  7. A CMOS high speed imaging system design based on FPGA

    NASA Astrophysics Data System (ADS)

    Tang, Hong; Wang, Huawei; Cao, Jianzhong; Qiao, Mingrui

    2015-10-01

    CMOS sensors have more advantages than traditional CCD sensors. The imaging system based on CMOS has become a hot spot in research and development. In order to achieve the real-time data acquisition and high-speed transmission, we design a high-speed CMOS imaging system on account of FPGA. The core control chip of this system is XC6SL75T and we take advantages of CameraLink interface and AM41V4 CMOS image sensors to transmit and acquire image data. AM41V4 is a 4 Megapixel High speed 500 frames per second CMOS image sensor with global shutter and 4/3" optical format. The sensor uses column parallel A/D converters to digitize the images. The CameraLink interface adopts DS90CR287 and it can convert 28 bits of LVCMOS/LVTTL data into four LVDS data stream. The reflected light of objects is photographed by the CMOS detectors. CMOS sensors convert the light to electronic signals and then send them to FPGA. FPGA processes data it received and transmits them to upper computer which has acquisition cards through CameraLink interface configured as full models. Then PC will store, visualize and process images later. The structure and principle of the system are both explained in this paper and this paper introduces the hardware and software design of the system. FPGA introduces the driven clock of CMOS. The data in CMOS is converted to LVDS signals and then transmitted to the data acquisition cards. After simulation, the paper presents a row transfer timing sequence of CMOS. The system realized real-time image acquisition and external controls.

  8. PEM-PCA: a parallel expectation-maximization PCA face recognition architecture.

    PubMed

    Rujirakul, Kanokmon; So-In, Chakchai; Arnonkijpanich, Banchar

    2014-01-01

    Principal component analysis or PCA has been traditionally used as one of the feature extraction techniques in face recognition systems yielding high accuracy when requiring a small number of features. However, the covariance matrix and eigenvalue decomposition stages cause high computational complexity, especially for a large database. Thus, this research presents an alternative approach utilizing an Expectation-Maximization algorithm to reduce the determinant matrix manipulation resulting in the reduction of the stages' complexity. To improve the computational time, a novel parallel architecture was employed to utilize the benefits of parallelization of matrix computation during feature extraction and classification stages including parallel preprocessing, and their combinations, so-called a Parallel Expectation-Maximization PCA architecture. Comparing to a traditional PCA and its derivatives, the results indicate lower complexity with an insignificant difference in recognition precision leading to high speed face recognition systems, that is, the speed-up over nine and three times over PCA and Parallel PCA.

  9. Evaluation of injection methods for fast, high peak capacity separations with low thermal mass gas chromatography.

    PubMed

    Fitz, Brian D; Mannion, Brandyn C; To, Khang; Hoac, Trinh; Synovec, Robert E

    2015-05-01

    Low thermal mass gas chromatography (LTM-GC) was evaluated for rapid, high peak capacity separations with three injection methods: liquid, headspace solid phase micro-extraction (HS-SPME), and direct vapor. An Agilent LTM equipped with a short microbore capillary column was operated at a column heating rate of 250 °C/min to produce a 60s separation. Two sets of experiments were conducted in parallel to characterize the instrumental platform. First, the three injection methods were performed in conjunction with in-house built high-speed cryo-focusing injection (HSCFI) to cryogenically trap and re-inject the analytes onto the LTM-GC column in a narrower band. Next, the three injection methods were performed natively with LTM-GC. Using HSCFI, the peak capacity of a separation of 50 nl of a 73 component liquid test mixture was 270, which was 23% higher than without HSCFI. Similar peak capacity gains were obtained when using the HSCFI with HS-SPME (25%), and even greater with vapor injection (56%). For the 100 μl vapor sample injected without HSCFI, the preconcentration factor, defined as the ratio of the maximum concentration of the detected analyte peak relative to the analyte concentration injected with the syringe, was determined to be 11 for the earliest eluting peak (most volatile analyte). In contrast, the preconcentration factor for the earliest eluting peak using HSCFI was 103. Therefore, LTM-GC is demonstrated to natively provide in situ analyte trapping, although not to as great an extent as with HSCFI. We also report the use of LTM-GC applied with time-of-flight mass spectrometry (TOFMS) detection for rapid, high peak capacity separations from SPME sampled banana peel headspace. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Parallel pulse processing and data acquisition for high speed, low error flow cytometry

    DOEpatents

    van den Engh, Gerrit J.; Stokdijk, Willem

    1992-01-01

    A digitally synchronized parallel pulse processing and data acquisition system for a flow cytometer has multiple parallel input channels with independent pulse digitization and FIFO storage buffer. A trigger circuit controls the pulse digitization on all channels. After an event has been stored in each FIFO, a bus controller moves the oldest entry from each FIFO buffer onto a common data bus. The trigger circuit generates an ID number for each FIFO entry, which is checked by an error detection circuit. The system has high speed and low error rate.

  11. Pushing the speed limit in enantioselective supercritical fluid chromatography.

    PubMed

    Regalado, Erik L; Welch, Christopher J

    2015-08-01

    Chromatographic enantioseparations on the order of a few seconds can be achieved by supercritical fluid chromatography using short columns packed with chiral stationary phases. The evolution of 'world record' speeds for the chromatographic separation of enantiomers has steadily dropped from an industry standard of 20-40 min just two decades ago, to a current ability to perform many enantioseparations in well under a minute. Improvements in instrument and column technologies enabled this revolution, but the ability to predict optimal separation time from an initial method development screening assay using the t(min cc) predictor greatly simplifies the development and optimization of high-speed chiral chromatographic separations. In this study, we illustrate how the use of this simple tool in combination with the workhorse technique of supercritical fluid chromatography on customized short chiral columns (1-2 cm length) allows us to achieve ultrafast enantioseparations of pharmaceutically relevant compounds on the 5-20 s scale, bringing the technique of high-throughput enantiopurity analysis out of the specialist realm and into the laboratories of most researchers. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Cluster formation and drag reduction-proposed mechanism of particle recirculation within the partition column of the bottom spray fluid-bed coater.

    PubMed

    Wang, Li Kun; Heng, Paul Wan Sia; Liew, Celine Valeria

    2015-04-01

    Bottom spray fluid-bed coating is a common technique for coating multiparticulates. Under the quality-by-design framework, particle recirculation within the partition column is one of the main variability sources affecting particle coating and coat uniformity. However, the occurrence and mechanism of particle recirculation within the partition column of the coater are not well understood. The purpose of this study was to visualize and define particle recirculation within the partition column. Based on different combinations of partition gap setting, air accelerator insert diameter, and particle size fraction, particle movements within the partition column were captured using a high-speed video camera. The particle recirculation probability and voidage information were mapped using a visiometric process analyzer. High-speed images showed that particles contributing to the recirculation phenomenon were behaving as clustered colonies. Fluid dynamics analysis indicated that particle recirculation within the partition column may be attributed to the combined effect of cluster formation and drag reduction. Both visiometric process analysis and particle coating experiments showed that smaller particles had greater propensity toward cluster formation than larger particles. The influence of cluster formation on coating performance and possible solutions to cluster formation were further discussed. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  13. Optimising resolution for a preparative separation of Chinese herbal medicine using a surrogate model sample system.

    PubMed

    Ye, Haoyu; Ignatova, Svetlana; Peng, Aihua; Chen, Lijuan; Sutherland, Ian

    2009-06-26

    This paper builds on previous modelling research with short single layer columns to develop rapid methods for optimising high-performance counter-current chromatography at constant stationary phase retention. Benzyl alcohol and p-cresol are used as model compounds to rapidly optimise first flow and then rotational speed operating conditions at a preparative scale with long columns for a given phase system using a Dynamic Extractions Midi-DE centrifuge. The transfer to a high value extract such as the crude ethanol extract of Chinese herbal medicine Millettia pachycarpa Benth. is then demonstrated and validated using the same phase system. The results show that constant stationary phase modelling of flow and speed with long multilayer columns works well as a cheap, quick and effective method of optimising operating conditions for the chosen phase system-hexane-ethyl acetate-methanol-water (1:0.8:1:0.6, v/v). Optimum conditions for resolution were a flow of 20 ml/min and speed of 1200 rpm, but for throughput were 80 ml/min at the same speed. The results show that 80 ml/min gave the best throughputs for tephrosin (518 mg/h), pyranoisoflavone (47.2 mg/h) and dehydrodeguelin (10.4 mg/h), whereas for deguelin (100.5 mg/h), the best flow rate was 40 ml/min.

  14. Seeing the forest for the trees: Networked workstations as a parallel processing computer

    NASA Technical Reports Server (NTRS)

    Breen, J. O.; Meleedy, D. M.

    1992-01-01

    Unlike traditional 'serial' processing computers in which one central processing unit performs one instruction at a time, parallel processing computers contain several processing units, thereby, performing several instructions at once. Many of today's fastest supercomputers achieve their speed by employing thousands of processing elements working in parallel. Few institutions can afford these state-of-the-art parallel processors, but many already have the makings of a modest parallel processing system. Workstations on existing high-speed networks can be harnessed as nodes in a parallel processing environment, bringing the benefits of parallel processing to many. While such a system can not rival the industry's latest machines, many common tasks can be accelerated greatly by spreading the processing burden and exploiting idle network resources. We study several aspects of this approach, from algorithms to select nodes to speed gains in specific tasks. With ever-increasing volumes of astronomical data, it becomes all the more necessary to utilize our computing resources fully.

  15. Parallel pulse processing and data acquisition for high speed, low error flow cytometry

    DOEpatents

    Engh, G.J. van den; Stokdijk, W.

    1992-09-22

    A digitally synchronized parallel pulse processing and data acquisition system for a flow cytometer has multiple parallel input channels with independent pulse digitization and FIFO storage buffer. A trigger circuit controls the pulse digitization on all channels. After an event has been stored in each FIFO, a bus controller moves the oldest entry from each FIFO buffer onto a common data bus. The trigger circuit generates an ID number for each FIFO entry, which is checked by an error detection circuit. The system has high speed and low error rate. 17 figs.

  16. A 780 × 800 μm2 Multichannel Digital Silicon Photomultiplier With Column-Parallel Time-to-Digital Converter and Basic Characterization

    NASA Astrophysics Data System (ADS)

    Mandai, Shingo; Jain, Vishwas; Charbon, Edoardo

    2014-02-01

    This paper presents a digital silicon photomultiplier (SiPM) partitioned in columns, whereas each column is connected to a column-parallel time-to-digital converter (TDC), in order to improve the timing resolution of single-photon detection. By reducing the number of pixels per TDC using a sharing scheme with three TDCs per column, the pixel-to-pixel skew is reduced. We report the basic characterization of the SiPM, comprising 416 single-photon avalanche diodes (SPADs); the characterization includes photon detection probability, dark count rate, afterpulsing, and crosstalk. We achieved 264-ps full-width at half maximum timing resolution of single-photon detection using a 48-fold column-parallel TDC with a temporal resolution of 51.8 ps (least significant bit), fully integrated in standard complementary metal-oxide semiconductor technology.

  17. High-resolution, high-throughput imaging with a multibeam scanning electron microscope

    PubMed Central

    EBERLE, AL; MIKULA, S; SCHALEK, R; LICHTMAN, J; TATE, ML KNOTHE; ZEIDLER, D

    2015-01-01

    Electron–electron interactions and detector bandwidth limit the maximal imaging speed of single-beam scanning electron microscopes. We use multiple electron beams in a single column and detect secondary electrons in parallel to increase the imaging speed by close to two orders of magnitude and demonstrate imaging for a variety of samples ranging from biological brain tissue to semiconductor wafers. Lay Description The composition of our world and our bodies on the very small scale has always fascinated people, making them search for ways to make this visible to the human eye. Where light microscopes reach their resolution limit at a certain magnification, electron microscopes can go beyond. But their capability of visualizing extremely small features comes at the cost of a very small field of view. Some of the questions researchers seek to answer today deal with the ultrafine structure of brains, bones or computer chips. Capturing these objects with electron microscopes takes a lot of time – maybe even exceeding the time span of a human being – or new tools that do the job much faster. A new type of scanning electron microscope scans with 61 electron beams in parallel, acquiring 61 adjacent images of the sample at the same time a conventional scanning electron microscope captures one of these images. In principle, the multibeam scanning electron microscope’s field of view is 61 times larger and therefore coverage of the sample surface can be accomplished in less time. This enables researchers to think about large-scale projects, for example in the rather new field of connectomics. A very good introduction to imaging a brain at nanometre resolution can be found within course material from Harvard University on http://www.mcb80x.org/# as featured media entitled ‘connectomics’. PMID:25627873

  18. A high-speed linear algebra library with automatic parallelism

    NASA Technical Reports Server (NTRS)

    Boucher, Michael L.

    1994-01-01

    Parallel or distributed processing is key to getting highest performance workstations. However, designing and implementing efficient parallel algorithms is difficult and error-prone. It is even more difficult to write code that is both portable to and efficient on many different computers. Finally, it is harder still to satisfy the above requirements and include the reliability and ease of use required of commercial software intended for use in a production environment. As a result, the application of parallel processing technology to commercial software has been extremely small even though there are numerous computationally demanding programs that would significantly benefit from application of parallel processing. This paper describes DSSLIB, which is a library of subroutines that perform many of the time-consuming computations in engineering and scientific software. DSSLIB combines the high efficiency and speed of parallel computation with a serial programming model that eliminates many undesirable side-effects of typical parallel code. The result is a simple way to incorporate the power of parallel processing into commercial software without compromising maintainability, reliability, or ease of use. This gives significant advantages over less powerful non-parallel entries in the market.

  19. The science of computing - Parallel computation

    NASA Technical Reports Server (NTRS)

    Denning, P. J.

    1985-01-01

    Although parallel computation architectures have been known for computers since the 1920s, it was only in the 1970s that microelectronic components technologies advanced to the point where it became feasible to incorporate multiple processors in one machine. Concommitantly, the development of algorithms for parallel processing also lagged due to hardware limitations. The speed of computing with solid-state chips is limited by gate switching delays. The physical limit implies that a 1 Gflop operational speed is the maximum for sequential processors. A computer recently introduced features a 'hypercube' architecture with 128 processors connected in networks at 5, 6 or 7 points per grid, depending on the design choice. Its computing speed rivals that of supercomputers, but at a fraction of the cost. The added speed with less hardware is due to parallel processing, which utilizes algorithms representing different parts of an equation that can be broken into simpler statements and processed simultaneously. Present, highly developed computer languages like FORTRAN, PASCAL, COBOL, etc., rely on sequential instructions. Thus, increased emphasis will now be directed at parallel processing algorithms to exploit the new architectures.

  20. Wide-field high-speed space-division multiplexing optical coherence tomography using an integrated photonic device

    PubMed Central

    Huang, Yongyang; Badar, Mudabbir; Nitkowski, Arthur; Weinroth, Aaron; Tansu, Nelson; Zhou, Chao

    2017-01-01

    Space-division multiplexing optical coherence tomography (SDM-OCT) is a recently developed parallel OCT imaging method in order to achieve multi-fold speed improvement. However, the assembly of fiber optics components used in the first prototype system was labor-intensive and susceptible to errors. Here, we demonstrate a high-speed SDM-OCT system using an integrated photonic chip that can be reliably manufactured with high precisions and low per-unit cost. A three-layer cascade of 1 × 2 splitters was integrated in the photonic chip to split the incident light into 8 parallel imaging channels with ~3.7 mm optical delay in air between each channel. High-speed imaging (~1s/volume) of porcine eyes ex vivo and wide-field imaging (~18.0 × 14.3 mm2) of human fingers in vivo were demonstrated with the chip-based SDM-OCT system. PMID:28856055

  1. Development and application of a high-performance liquid chromatography method using monolithic columns for the analysis of ecstasy tablets.

    PubMed

    Mc Fadden, Kim; Gillespie, John; Carney, Brian; O'Driscoll, Daniel

    2006-07-07

    A rapid and selective HPLC method using monolithic columns was developed for the separation and quantification of the principal amphetamines in ecstasy tablets. Three monolithic (Chromolith RP18e) columns of different lengths (25, 50 and 100 mm) were assessed. Validation studies including linearity, selectivity, precision, accuracy and limit of detection and quantification were carried out using the Chromolith SpeedROD, RP-18e, 50 mm x 4.6 mm column. Column backpressure and van Deemter plots demonstrated that monolithic columns provide higher efficiency at higher flow rates when compared to particulate columns without the loss of peak resolution. Application of the monolithic column to a large number of ecstasy tablets seized in Ireland ensured its suitability for the routine analysis of ecstasy tablets.

  2. Comparison in partition efficiency of protein separation between four different tubing modifications in spiral high-speed countercurrent chromatography

    PubMed Central

    Ito, Yoichiro; Clary, Robert

    2016-01-01

    High-speed countercurrent chromatography with a spiral tube assembly can retain a satisfactory amount of stationary phase of polymer phase systems used for protein separation. In order to improve the partition efficiency a simple tool to modify the tubing shapes was fabricated, and the following four different tubing modifications were made: intermittently pressed at 10 mm width, flat, flat-wave, and flat-twist. Partition efficiencies of the separation column made from these modified tubing were examined in protein separation with an aqueous-aqueous polymer phase system at flow rates of 1–2 ml/min under 800 rpm. The results indicated that the column with all modified tubing improved the partition efficiency at a flow rate of 1 ml/min, but at a higher flow rate of 2 ml/min the columns made of flattened tubing showed lowered partition efficiency apparently due to the loss of the retained stationary phase. Among all the modified columns, the column with intermittently pressed tubing gave the best peak resolution. It may be concluded that the intermittently pressed and flat-twist improve the partition efficiency in a semi-preparative separation while other modified tubing of flat and flat-wave configurations may be used for analytical separations with a low flow rate. PMID:27790621

  3. Comparison in partition efficiency of protein separation between four different tubing modifications in spiral high-speed countercurrent chromatography.

    PubMed

    Ito, Yoichiro; Clary, Robert

    2016-12-01

    High-speed countercurrent chromatography with a spiral tube assembly can retain a satisfactory amount of stationary phase of polymer phase systems used for protein separation. In order to improve the partition efficiency a simple tool to modify the tubing shapes was fabricated, and the following four different tubing modifications were made: intermittently pressed at 10 mm width, flat, flat-wave, and flat-twist. Partition efficiencies of the separation column made from these modified tubing were examined in protein separation with an aqueous-aqueous polymer phase system at flow rates of 1-2 ml/min under 800 rpm. The results indicated that the column with all modified tubing improved the partition efficiency at a flow rate of 1 ml/min, but at a higher flow rate of 2 ml/min the columns made of flattened tubing showed lowered partition efficiency apparently due to the loss of the retained stationary phase. Among all the modified columns, the column with intermittently pressed tubing gave the best peak resolution. It may be concluded that the intermittently pressed and flat-twist improve the partition efficiency in a semi-preparative separation while other modified tubing of flat and flat-wave configurations may be used for analytical separations with a low flow rate.

  4. A parallel bubble column system for the cultivation of phototrophic microorganisms.

    PubMed

    Havel, Jan; Franco-Lara, Ezequiel; Weuster-Botz, Dirk

    2008-07-01

    An incubator with up to 16 parallel bubble columns was equipped with artificial light sources assuring a light supply with a homogenous light spectrum directly above the bioreactors. Cylindrical light reflecting tubes were positioned around every single bubble column to avoid light scattering effects and to redirect the light from the top onto the cylindrical outer glass surface of each bubble column. The light reflecting tubes were equipped with light intensity filters to control the total light intensity for every single photo-bioreactor. Parallel cultivations of the unicellular obligate phototrophic cyanobacterium, Synechococcus PCC7942, were studied under different constant light intensities ranging from 20 to 102 microE m(-2)s(-1) at a constant humidified air flow rate supplemented with CO(2).

  5. A simple dual online ultra-high pressure liquid chromatography system (sDO-UHPLC) for high throughput proteome analysis.

    PubMed

    Lee, Hangyeore; Mun, Dong-Gi; Bae, Jingi; Kim, Hokeun; Oh, Se Yeon; Park, Young Soo; Lee, Jae-Hyuk; Lee, Sang-Won

    2015-08-21

    We report a new and simple design of a fully automated dual-online ultra-high pressure liquid chromatography system. The system employs only two nano-volume switching valves (a two-position four port valve and a two-position ten port valve) that direct solvent flows from two binary nano-pumps for parallel operation of two analytical columns and two solid phase extraction (SPE) columns. Despite the simple design, the sDO-UHPLC offers many advantageous features that include high duty cycle, back flushing sample injection for fast and narrow zone sample injection, online desalting, high separation resolution and high intra/inter-column reproducibility. This system was applied to analyze proteome samples not only in high throughput deep proteome profiling experiments but also in high throughput MRM experiments.

  6. The relation between the column density structures and the magnetic field orientation in the Vela C molecular complex

    NASA Astrophysics Data System (ADS)

    Soler, J. D.; Ade, P. A. R.; Angilè, F. E.; Ashton, P.; Benton, S. J.; Devlin, M. J.; Dober, B.; Fissel, L. M.; Fukui, Y.; Galitzki, N.; Gandilo, N. N.; Hennebelle, P.; Klein, J.; Li, Z.-Y.; Korotkov, A. L.; Martin, P. G.; Matthews, T. G.; Moncelsi, L.; Netterfield, C. B.; Novak, G.; Pascale, E.; Poidevin, F.; Santos, F. P.; Savini, G.; Scott, D.; Shariff, J. A.; Thomas, N. E.; Tucker, C. E.; Tucker, G. S.; Ward-Thompson, D.

    2017-07-01

    We statistically evaluated the relative orientation between gas column density structures, inferred from Herschel submillimetre observations, and the magnetic field projected on the plane of sky, inferred from polarized thermal emission of Galactic dust observed by the Balloon-borne Large-Aperture Submillimetre Telescope for Polarimetry (BLASTPol) at 250, 350, and 500 μm, towards the Vela C molecular complex. First, we find very good agreement between the polarization orientations in the three wavelength-bands, suggesting that, at the considered common angular resolution of 3.´0 that corresponds to a physical scale of approximately 0.61 pc, the inferred magnetic field orientation is not significantly affected by temperature or dust grain alignment effects. Second, we find that the relative orientation between gas column density structures and the magnetic field changes progressively with increasing gas column density, from mostly parallel or having no preferred orientation at low column densities to mostly perpendicular at the highest column densities. This observation is in agreement with previous studies by the Planck collaboration towards more nearby molecular clouds. Finally, we find a correspondencebetween (a) the trends in relative orientation between the column density structures and the projected magnetic field; and (b) the shape of the column density probability distribution functions (PDFs). In the sub-regions of Vela C dominated by one clear filamentary structure, or "ridges", where the high-column density tails of the PDFs are flatter, we find a sharp transition from preferentially parallel or having no preferred relative orientation at low column densities to preferentially perpendicular at highest column densities. In the sub-regions of Vela C dominated by several filamentary structures with multiple orientations, or "nests", where the maximum values of the column density are smaller than in the ridge-like sub-regions and the high-column density tails of the PDFs are steeper, such a transition is also present, but it is clearly less sharp than in the ridge-like sub-regions. Both of these results suggest that the magnetic field is dynamically important for the formation of density structures in this region.

  7. Parallel implementation of all-digital timing recovery for high-speed and real-time optical coherent receivers.

    PubMed

    Zhou, Xian; Chen, Xue

    2011-05-09

    The digital coherent receivers combine coherent detection with digital signal processing (DSP) to compensate for transmission impairments, and therefore are a promising candidate for future high-speed optical transmission system. However, the maximum symbol rate supported by such real-time receivers is limited by the processing rate of hardware. In order to cope with this difficulty, the parallel processing algorithms is imperative. In this paper, we propose a novel parallel digital timing recovery loop (PDTRL) based on our previous work. Furthermore, for increasing the dynamic dispersion tolerance range of receivers, we embed a parallel adaptive equalizer in the PDTRL. This parallel joint scheme (PJS) can be used to complete synchronization, equalization and polarization de-multiplexing simultaneously. Finally, we demonstrate that PDTRL and PJS allow the hardware to process 112 Gbit/s POLMUX-DQPSK signal at the hundreds MHz range. © 2011 Optical Society of America

  8. High-speed real-time animated displays on the ADAGE (trademark) RDS 3000 raster graphics system

    NASA Technical Reports Server (NTRS)

    Kahlbaum, William M., Jr.; Ownbey, Katrina L.

    1989-01-01

    Techniques which may be used to increase the animation update rate of real-time computer raster graphic displays are discussed. They were developed on the ADAGE RDS 3000 graphic system in support of the Advanced Concepts Simulator at the NASA Langley Research Center. These techniques involve the use of a special purpose parallel processor, for high-speed character generation. The description of the parallel processor includes the Barrel Shifter which is part of the hardware and is the key to the high-speed character rendition. The final result of this total effort was a fourfold increase in the update rate of an existing primary flight display from 4 to 16 frames per second.

  9. Preparation and characterization of a thermoresponsive gigaporous medium for high-speed protein chromatography.

    PubMed

    Qu, Jian-Bo; Chen, Yan-Li; Huan, Guan-Sheng; Zhou, Wei-Qing; Liu, Jian-Guo; Zhu, Hu; Zhang, Xiao-Yun

    2015-01-01

    A high-speed thermoresponsive medium was developed by grafting poly(N-isopropylacrylamide-co-butyl methacrylate) (P(NIPAM-co-BMA)) brushes onto gigaporous polystyrene (PS) microspheres via surface-initiated atom transfer radical polymerization (ATRP) technique, which has strong mechanical strength, good chemical stability and high mass transfer rate for biomacromolecules. The gigaporous structure, surface chemical composition, static protein adsorption, and thermoresponsive chromatographic properties of prepared medium (PS-P(NIPAM-co-BMA)) were characterized in detail. Results showed that the PS microspheres were successfully grafted with P(NIPAM-co-BMA) brushes and that the gigaporous structure was robustly maintained. After grafting, the nonspecific adsorption of proteins on PS microspheres was greatly reduced. A column packed with PS-P(NIPAM-co-BMA) exhibited low backpressure and significant thermo-responsibility. By simply changing the column temperature, it was able to separate three model proteins at the mobile phase velocity up to 2167 cm h(-1). In conclusion, the thermoresponsive polymer brushes grafted gigaporous PS microspheres prepared by ATRP are very promising in 'green' high-speed preparative protein chromatography. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Thread concept for automatic task parallelization in image analysis

    NASA Astrophysics Data System (ADS)

    Lueckenhaus, Maximilian; Eckstein, Wolfgang

    1998-09-01

    Parallel processing of image analysis tasks is an essential method to speed up image processing and helps to exploit the full capacity of distributed systems. However, writing parallel code is a difficult and time-consuming process and often leads to an architecture-dependent program that has to be re-implemented when changing the hardware. Therefore it is highly desirable to do the parallelization automatically. For this we have developed a special kind of thread concept for image analysis tasks. Threads derivated from one subtask may share objects and run in the same context but may process different threads of execution and work on different data in parallel. In this paper we describe the basics of our thread concept and show how it can be used as basis of an automatic task parallelization to speed up image processing. We further illustrate the design and implementation of an agent-based system that uses image analysis threads for generating and processing parallel programs by taking into account the available hardware. The tests made with our system prototype show that the thread concept combined with the agent paradigm is suitable to speed up image processing by an automatic parallelization of image analysis tasks.

  11. Spiral Countercurrent Chromatography

    PubMed Central

    Ito, Yoichiro; Knight, Martha; Finn, Thomas M.

    2013-01-01

    For many years, high-speed countercurrent chromatography conducted in open tubing coils has been widely used for the separation of natural and synthetic compounds. In this method, the retention of the stationary phase is solely provided by the Archimedean screw effect by rotating the coiled column in the centrifugal force field. However, the system fails to retain enough of the stationary phase for polar solvent systems such as the aqueous–aqueous polymer phase systems. To address this problem, the geometry of the coiled channel was modified to a spiral configuration so that the system could utilize the radially acting centrifugal force. This successfully improved the retention of the stationary phase. Two different types of spiral columns were fabricated: the spiral disk assembly, made by stacking multiple plastic disks with single or four interwoven spiral channels connected in series, and the spiral tube assembly, made by inserting the tetrafluoroethylene tubing into a spiral frame (spiral tube support). The capabilities of these column assemblies were successfully demonstrated by separations of peptides and proteins with polar two-phase solvent systems whose stationary phases had not been well retained in the earlier multilayer coil separation column for high-speed countercurrent chromatography. PMID:23833207

  12. Column-parallel correlated multiple sampling circuits for CMOS image sensors and their noise reduction effects.

    PubMed

    Suh, Sungho; Itoh, Shinya; Aoyama, Satoshi; Kawahito, Shoji

    2010-01-01

    For low-noise complementary metal-oxide-semiconductor (CMOS) image sensors, the reduction of pixel source follower noises is becoming very important. Column-parallel high-gain readout circuits are useful for low-noise CMOS image sensors. This paper presents column-parallel high-gain signal readout circuits, correlated multiple sampling (CMS) circuits and their noise reduction effects. In the CMS, the gain of the noise cancelling is controlled by the number of samplings. It has a similar effect to that of an amplified CDS for the thermal noise but is a little more effective for 1/f and RTS noises. Two types of the CMS with simple integration and folding integration are proposed. In the folding integration, the output signal swing is suppressed by a negative feedback using a comparator and one-bit D-to-A converter. The CMS circuit using the folding integration technique allows to realize a very low-noise level while maintaining a wide dynamic range. The noise reduction effects of their circuits have been investigated with a noise analysis and an implementation of a 1Mpixel pinned photodiode CMOS image sensor. Using 16 samplings, dynamic range of 59.4 dB and noise level of 1.9 e(-) for the simple integration CMS and 75 dB and 2.2 e(-) for the folding integration CMS, respectively, are obtained.

  13. Study of Electromagnetic Repulsion Switch to High Speed Reclosing and Recover Time Characteristics of Superconductor

    NASA Astrophysics Data System (ADS)

    Koyama, Tomonori; Kaiho, Katsuyuki; Yamaguchi, Iwao; Yanabu, Satoru

    Using a high-temperature superconductor, we constructed and tested a model superconducting fault current limiter (SFCL). The superconductor and vacuum interrupter as the commutation switch were connected in parallel using a bypass coil. When the fault current flows in this equipment, the superconductor is quenched and the current is then transferred to the parallel coil due to the voltage drop in the superconductor. This large current in the parallel coil actuates the magnetic repulsion mechanism of the vacuum interrupter and the current in the superconductor is broken. Using this equipment, the current flow time in the superconductor can be easily minimized. On the other hand, the fault current is also easily limited by large reactance of the parallel coil. This system has many merits. So, we introduced to electromagnetic repulsion switch. There is duty of high speed re-closing after interrupting fault current in the electrical power system. So the SFCL should be recovered to superconducting state before high speed re-closing. But, superconductor generated heat at the time of quench. It takes time to recover superconducting state. Therefore it is a matter of recovery time. In this paper, we studied recovery time of superconductor. Also, we proposed electromagnetic repulsion switch with reclosing system.

  14. Fluid/Structure Interaction Studies of Aircraft Using High Fidelity Equations on Parallel Computers

    NASA Technical Reports Server (NTRS)

    Guruswamy, Guru; VanDalsem, William (Technical Monitor)

    1994-01-01

    Abstract Aeroelasticity which involves strong coupling of fluids, structures and controls is an important element in designing an aircraft. Computational aeroelasticity using low fidelity methods such as the linear aerodynamic flow equations coupled with the modal structural equations are well advanced. Though these low fidelity approaches are computationally less intensive, they are not adequate for the analysis of modern aircraft such as High Speed Civil Transport (HSCT) and Advanced Subsonic Transport (AST) which can experience complex flow/structure interactions. HSCT can experience vortex induced aeroelastic oscillations whereas AST can experience transonic buffet associated structural oscillations. Both aircraft may experience a dip in the flutter speed at the transonic regime. For accurate aeroelastic computations at these complex fluid/structure interaction situations, high fidelity equations such as the Navier-Stokes for fluids and the finite-elements for structures are needed. Computations using these high fidelity equations require large computational resources both in memory and speed. Current conventional super computers have reached their limitations both in memory and speed. As a result, parallel computers have evolved to overcome the limitations of conventional computers. This paper will address the transition that is taking place in computational aeroelasticity from conventional computers to parallel computers. The paper will address special techniques needed to take advantage of the architecture of new parallel computers. Results will be illustrated from computations made on iPSC/860 and IBM SP2 computer by using ENSAERO code that directly couples the Euler/Navier-Stokes flow equations with high resolution finite-element structural equations.

  15. Genetic Parallel Programming: design and implementation.

    PubMed

    Cheang, Sin Man; Leung, Kwong Sak; Lee, Kin Hong

    2006-01-01

    This paper presents a novel Genetic Parallel Programming (GPP) paradigm for evolving parallel programs running on a Multi-Arithmetic-Logic-Unit (Multi-ALU) Processor (MAP). The MAP is a Multiple Instruction-streams, Multiple Data-streams (MIMD), general-purpose register machine that can be implemented on modern Very Large-Scale Integrated Circuits (VLSIs) in order to evaluate genetic programs at high speed. For human programmers, writing parallel programs is more difficult than writing sequential programs. However, experimental results show that GPP evolves parallel programs with less computational effort than that of their sequential counterparts. It creates a new approach to evolving a feasible problem solution in parallel program form and then serializes it into a sequential program if required. The effectiveness and efficiency of GPP are investigated using a suite of 14 well-studied benchmark problems. Experimental results show that GPP speeds up evolution substantially.

  16. Fabrication and characterization of superporous cellulose bead for high-speed protein chromatography.

    PubMed

    Wang, Dong-Mei; Hao, Gang; Shi, Qing-Hong; Sun, Yan

    2007-03-30

    Novel superporous cellulose (SC) matrix has been fabricated by water-in-oil emulsification-thermal regeneration using granules of calcium carbonate as porogenic agents. As a control, microporous cellulose (MC) bead was fabricated in the absence of calcium carbonate. Simultaneously, double cross-linking was applied to enhance the mechanical strength of the particles. The photographs by scanning electron microscopy of the SC bead illustrated that there were more "craters" of several microns scattering on the surface of the beads. It led to a higher water content and effective porosity of the SC medium. The two beads were then modified with diethylaminoethyl (DEAE) group to prepare anion exchangers. The dynamic uptake results of bovine serum albumin (BSA) exhibited that the pore diffusivity of BSA in the DEAE-SC bead was two to three times larger than that in the DEAE-MC bead. In addition, the column packed with the DEAE-SC showed lower backpressure, higher column efficiency and dynamic binding capacity than the column packed with the DEAE-MC at a flow rate range of 150-900cm/h. Moreover, the column efficiency of the DEAE-SC column was independent of flow velocity up to a flow rate of 1200cm/h. All the results exhibited the superior characteristics of the SC bead as a potential medium for high-speed protein chromatography.

  17. Gas chromatography fractionation platform featuring parallel flame-ionization detection and continuous high-resolution analyte collection in 384-well plates.

    PubMed

    Jonker, Willem; Clarijs, Bas; de Witte, Susannah L; van Velzen, Martin; de Koning, Sjaak; Schaap, Jaap; Somsen, Govert W; Kool, Jeroen

    2016-09-02

    Gas chromatography (GC) is a superior separation technique for many compounds. However, fractionation of a GC eluate for analyte isolation and/or post-column off-line analysis is not straightforward, and existing platforms are limited in the number of fractions that can be collected. Moreover, aerosol formation may cause serious analyte losses. Previously, our group has developed a platform that resolved these limitations of GC fractionation by post-column infusion of a trap solvent prior to continuous small-volume fraction collection in a 96-wells plate (Pieke et al., 2013 [17]). Still, this GC fractionation set-up lacked a chemical detector for the on-line recording of chromatograms, and the introduction of trap solvent resulted in extensive peak broadening for late-eluting compounds. This paper reports advancements to the fractionation platform allowing flame ionization detection (FID) parallel to high-resolution collection of a full GC chromatograms in up to 384 nanofractions of 7s each. To this end, a post-column split was incorporated which directs part of the eluate towards FID. Furthermore, a solvent heating device was developed for stable delivery of preheated/vaporized trap solvent, which significantly reduced band broadening by post-column infusion. In order to achieve optimal analyte trapping, several solvents were tested at different flow rates. The repeatability of the optimized GC fraction collection process was assessed demonstrating the possibility of up-concentration of isolated analytes by repetitive analyses of the same sample. The feasibility of the improved GC fractionation platform for bioactivity screening of toxic compounds was studied by the analysis of a mixture of test pesticides, which after fractionation were subjected to a post-column acetylcholinesterase (AChE) assay. Fractions showing AChE inhibition could be unambiguously correlated with peaks from the parallel-recorded FID chromatogram. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Control Circuitry for High Speed VLSI (Very Large Scale Integration) Winograd Fourier Transform Processors.

    DTIC Science & Technology

    1985-12-01

    Office of Scientific Research , and Air Force Space Division are sponsoring research for the development of a high speed DFT processor. This DFT...to the arithmetic circuitry through a master/slave 11-15 %v OPR ONESHOT OUTPUT OUTPUT .., ~ INITIALIZATION COLUMN’ 00 N DONE CUTRPLANE PLAtNE Figure...Since the TSP is an NP-complete problem, many mathematicians, operations researchers , computer scientists and the like have proposed heuristic

  19. Slow equilibration of reversed-phase columns for the separation of ionized solutes.

    PubMed

    Marchand, D H; Williams, L A; Dolan, J W; Snyder, L R

    2003-10-10

    Reversed-phase columns that have been stored in buffer-free solvents can exhibit pronounced retention-time drift when buffered, low-pH mobile phases are used with ionized solutes. Whereas non-ionized compounds exhibit constant retention times within 20 min of the beginning of mobile phase flow, the retention of ionized compounds can continue to change (by 20% or more) for several hours. If mobile phase pH is changed from low to high and back again, an even longer time may be required before the column reaches equilibration at low pH. The speed of column equilibration for ionized solutes can vary significantly among different reversed-phase columns and is not affected by flow rate.

  20. Fast Electrically Driven Capillary Rise Using Overdrive Voltage.

    PubMed

    Hong, Sung Jin; Hong, Jiwoo; Seo, Hee Won; Lee, Sang Joon; Chung, Sang Kug

    2015-12-29

    Enhancement of response speed (or reduction of response time) is crucial for the commercialization of devices based on electrowetting (EW), such as liquid lenses and reflective displays, and presents one of the main challenges in EW research studies. We demonstrate here that an overdrive EW actuation gives rise to a faster rise of a liquid column between parallel electrodes, compared to a DC EW actuation. Here, DC actuation is actually a simple applied step function, and overdrive is an applied step followed by reduction to a lower voltage. Transient behaviors and response time (i.e., the time required to reach the equilibrium height) of the rising liquid column are explored under different DC and overdrive EW actuations. When the liquid column rises up to a target height by means of an overdrive EW, the response time is reduced to as low as 1/6 of the response time using DC EW. We develop a theoretical model to simulate the EW-driven capillary rise by combining the kinetic equation of capillary flow (i.e., Lucas-Washburn equation) and the dynamic contact angle model considering contact line friction, contact angle hysteresis, contact angle saturation, and the EW effect. This theoretical model accurately predicts the outcome to within a ± 5% error in regard to the rising behaviors of the liquid column with a low viscosity, under both DC EW and overdrive actuation conditions, except for the early stage (

  1. Heterotrophic Cultivation of Cyanobacteria: Study of Effect of Exogenous Sources of Organic Carbon, Absolute Amount of Nutrients, and Stirring Speed on Biomass and Lipid Productivity

    PubMed Central

    Meireles dos Santos, Aline; Vieira, Karem Rodrigues; Basso Sartori, Rafaela; Meireles dos Santos, Alberto; Queiroz, Maria Isabel; Queiroz Zepka, Leila; Jacob-Lopes, Eduardo

    2017-01-01

    The production of bioproducts from cyanobacteria with techno-economic feasibility is a challenge to these biotechnological processes. The choice of low-cost raw materials is of great importance for the overall economy of bioprocesses, as they represent a significant percentage in the final cost of the product. The objective of this work was to study the operational parameters of cultivation (exogenous sources of organic carbon and absolute amount of nutrients) to optimize productivity in bioproducts by Aphanothece microscopica Nägeli, for further evaluation of stirring speed. The experiments were performed in a bubble column bioreactor, operating at 30°C, pH of 7.6, C/N ratio of 20, 100 mg/L of inoculum, continuous aeration of 1 volume of air per volume of culture per minute (VVM), and absence of light. The results indicate that absolute amounts of 5,000/250 using cassava starch resulted in improved system performance, reaching biomass productivity of 36.66 mg/L/h in parallel with lipid productivity of 6.65 mg/L/h. Finally, experiments with variation in stirring speed indicate that 200 rpm resulted in better average rate of substrate consumption (44.01 mg/L/h), in parallel to biomass productivity of 39.27 mg/L/h. However, the increase of stirring speed had a negative effect on lipid productivity of the process. The technological route developed indicates potential to production of biomass and bulk oil, as a result of the capacity of cyanobacteria to adapt their metabolism in varying culture conditions, which provides opportunities to modify, control, and thereby maximize the formation of targeted compounds. PMID:28265559

  2. Fast Face-Recognition Optical Parallel Correlator Using High Accuracy Correlation Filter

    NASA Astrophysics Data System (ADS)

    Watanabe, Eriko; Kodate, Kashiko

    2005-11-01

    We designed and fabricated a fully automatic fast face recognition optical parallel correlator [E. Watanabe and K. Kodate: Appl. Opt. 44 (2005) 5666] based on the VanderLugt principle. The implementation of an as-yet unattained ultra high-speed system was aided by reconfiguring the system to make it suitable for easier parallel processing, as well as by composing a higher accuracy correlation filter and high-speed ferroelectric liquid crystal-spatial light modulator (FLC-SLM). In running trial experiments using this system (dubbed FARCO), we succeeded in acquiring remarkably low error rates of 1.3% for false match rate (FMR) and 2.6% for false non-match rate (FNMR). Given the results of our experiments, the aim of this paper is to examine methods of designing correlation filters and arranging database image arrays for even faster parallel correlation, underlining the issues of calculation technique, quantization bit rate, pixel size and shift from optical axis. The correlation filter has proved its excellent performance and higher precision than classical correlation and joint transform correlator (JTC). Moreover, arrangement of multi-object reference images leads to 10-channel correlation signals, as sharply marked as those of a single channel. This experiment result demonstrates great potential for achieving the process speed of 10000 face/s.

  3. Electropneumatic rheostat regulates high current

    NASA Technical Reports Server (NTRS)

    Haacker, J. F.; Jedlicka, J. R.; Wagoner, C. B.

    1965-01-01

    Electropneumatic rheostat maintains a constant direct current in each of several high-power parallel loads, of variable resistance, across a single source. It provides current regulation at any preset value by dissipating the proper amount of energy thermally, and uses a column of mercury to vary the effective length of a resistance element.

  4. Rotating columns: Relating structure-from-motion, accretion/deletion, and figure/ground

    PubMed Central

    Froyen, Vicky; Feldman, Jacob; Singh, Manish

    2013-01-01

    We present a novel phenomenon involving an interaction between accretion deletion, figure-ground interpretation, and structure-from-motion. Our displays contain alternating light and dark vertical regions in which random-dot textures moved horizontally at constant speed but in opposite directions in alternating regions. This motion is consistent with all the light regions in front, with the dark regions completing amodally into a single large surface moving in the background, or vice versa. Surprisingly, the regions that are perceived as figural are also perceived as 3-D volumes rotating in depth (like rotating columns)—despite the fact that dot motion is not consistent with 3-D rotation. In a series of experiments, we found we could manipulate which set of regions is perceived as rotating volumes simply by varying known geometric cues to figure ground, including convexity, parallelism, symmetry, and relative area. Subjects indicated which colored regions they perceived as rotating. For our displays we found convexity to be a stronger cue than either symmetry or parallelism. We furthermore found a smooth monotonic decay of the proportion by which subjects perceive symmetric regions as figural, as a function of their relative area. Our results reveal an intriguing new interaction between accretion-deletion, figure-ground, and 3-D motion that is not captured by existing models. They also provide an effective tool for measuring figure-ground perception. PMID:23946432

  5. Rotating columns: relating structure-from-motion, accretion/deletion, and figure/ground.

    PubMed

    Froyen, Vicky; Feldman, Jacob; Singh, Manish

    2013-08-14

    We present a novel phenomenon involving an interaction between accretion deletion, figure-ground interpretation, and structure-from-motion. Our displays contain alternating light and dark vertical regions in which random-dot textures moved horizontally at constant speed but in opposite directions in alternating regions. This motion is consistent with all the light regions in front, with the dark regions completing amodally into a single large surface moving in the background, or vice versa. Surprisingly, the regions that are perceived as figural are also perceived as 3-D volumes rotating in depth (like rotating columns)-despite the fact that dot motion is not consistent with 3-D rotation. In a series of experiments, we found we could manipulate which set of regions is perceived as rotating volumes simply by varying known geometric cues to figure ground, including convexity, parallelism, symmetry, and relative area. Subjects indicated which colored regions they perceived as rotating. For our displays we found convexity to be a stronger cue than either symmetry or parallelism. We furthermore found a smooth monotonic decay of the proportion by which subjects perceive symmetric regions as figural, as a function of their relative area. Our results reveal an intriguing new interaction between accretion-deletion, figure-ground, and 3-D motion that is not captured by existing models. They also provide an effective tool for measuring figure-ground perception.

  6. SPEEDUP{trademark} ion exchange column model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hang, T.

    2000-03-06

    A transient model to describe the process of loading a solute onto the granular fixed bed in an ion exchange (IX) column has been developed using the SpeedUp{trademark} software package. SpeedUp offers the advantage of smooth integration into other existing SpeedUp flowsheet models. The mathematical algorithm of a porous particle diffusion model was adopted to account for convection, axial dispersion, film mass transfer, and pore diffusion. The method of orthogonal collocation on finite elements was employed to solve the governing transport equations. The model allows the use of a non-linear Langmuir isotherm based on an effective binary ionic exchange process.more » The SpeedUp column model was tested by comparing to the analytical solutions of three transport problems from the ion exchange literature. In addition, a sample calculation of a train of three crystalline silicotitanate (CST) IX columns in series was made using both the SpeedUp model and Purdue University's VERSE-LC code. All test cases showed excellent agreement between the SpeedUp model results and the test data. The model can be readily used for SuperLig{trademark} ion exchange resins, once the experimental data are complete.« less

  7. A programmable computational image sensor for high-speed vision

    NASA Astrophysics Data System (ADS)

    Yang, Jie; Shi, Cong; Long, Xitian; Wu, Nanjian

    2013-08-01

    In this paper we present a programmable computational image sensor for high-speed vision. This computational image sensor contains four main blocks: an image pixel array, a massively parallel processing element (PE) array, a row processor (RP) array and a RISC core. The pixel-parallel PE is responsible for transferring, storing and processing image raw data in a SIMD fashion with its own programming language. The RPs are one dimensional array of simplified RISC cores, it can carry out complex arithmetic and logic operations. The PE array and RP array can finish great amount of computation with few instruction cycles and therefore satisfy the low- and middle-level high-speed image processing requirement. The RISC core controls the whole system operation and finishes some high-level image processing algorithms. We utilize a simplified AHB bus as the system bus to connect our major components. Programming language and corresponding tool chain for this computational image sensor are also developed.

  8. High-speed technique based on a parallel projection correlation procedure for digital image correlation

    NASA Astrophysics Data System (ADS)

    Zaripov, D. I.; Renfu, Li

    2018-05-01

    The implementation of high-efficiency digital image correlation methods based on a zero-normalized cross-correlation (ZNCC) procedure for high-speed, time-resolved measurements using a high-resolution digital camera is associated with big data processing and is often time consuming. In order to speed-up ZNCC computation, a high-speed technique based on a parallel projection correlation procedure is proposed. The proposed technique involves the use of interrogation window projections instead of its two-dimensional field of luminous intensity. This simplification allows acceleration of ZNCC computation up to 28.8 times compared to ZNCC calculated directly, depending on the size of interrogation window and region of interest. The results of three synthetic test cases, such as a one-dimensional uniform flow, a linear shear flow and a turbulent boundary-layer flow, are discussed in terms of accuracy. In the latter case, the proposed technique is implemented together with an iterative window-deformation technique. On the basis of the results of the present work, the proposed technique is recommended to be used for initial velocity field calculation, with further correction using more accurate techniques.

  9. An improved design of spiral tube assembly for separation of proteins by high-speed counter-current chromatography.

    PubMed

    Dasarathy, Dhweeja; Ito, Yoichiro

    2015-10-30

    A new spiral tube assembly was designed to improve the column capacity and partition efficiency for protein separation. This spiral tube assembly has greater column capacity than the original tubing because of an increase in radial grooves from 4 to 12 to accommodate more spiral layers and 12 narrow spots instead of 4 in each circular loop to interrupt the laminar flow that causes sample band broadening. Standard PTFE tubing (1.6mm ID) and the modified flat-twisted tubing were used as the separation column. The performances of both assemblies were compared for separating three stable test proteins including cytochrome c, myoglobin, and lysozyme using a two phase aqueous-aqueous solvent system composed of polyethylene glycol 1000 (12.5% w/w) and dibasic potassium phosphate (12.5% w/w). All samples were run at 1, 2, 3, and 5mL/min at both 800rpm and 1000rpm. The separation of these three protein samples produced high stationary phase retentions at 1, 2, and 3mL/min, yet separated efficiently at 5mL/min in 40min. After comparing the separation efficiency in terms of the peak resolutions, theoretical plate numbers, and separation times, it was determined that the flat-twisted tubing was more effective in separating these protein samples. In order to validate the efficacy of this novel assembly, a mixture of five protein samples (cytochrome c, myoglobin, ovalbumin, lysozyme, and hemoglobin) were separated, under the optimal conditions established with these three protein samples, at 1mL/min with a revolution speed of 1000rpm. There were high stationary phase retentions of around 60%, with effective separations, demonstrating the efficiency of the flat-twisted spiral tube assembly. The separation time of 6h was a limitation but can potentially be shortened by improving the strength of the column that will permit an increase in revolution speed and flow rate. This novel spiral separation column will allow rapid and efficient separation of mixtures with high yield of the constituent components. Published by Elsevier B.V.

  10. Parallelization and automatic data distribution for nuclear reactor simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liebrock, L.M.

    1997-07-01

    Detailed attempts at realistic nuclear reactor simulations currently take many times real time to execute on high performance workstations. Even the fastest sequential machine can not run these simulations fast enough to ensure that the best corrective measure is used during a nuclear accident to prevent a minor malfunction from becoming a major catastrophe. Since sequential computers have nearly reached the speed of light barrier, these simulations will have to be run in parallel to make significant improvements in speed. In physical reactor plants, parallelism abounds. Fluids flow, controls change, and reactions occur in parallel with only adjacent components directlymore » affecting each other. These do not occur in the sequentialized manner, with global instantaneous effects, that is often used in simulators. Development of parallel algorithms that more closely approximate the real-world operation of a reactor may, in addition to speeding up the simulations, actually improve the accuracy and reliability of the predictions generated. Three types of parallel architecture (shared memory machines, distributed memory multicomputers, and distributed networks) are briefly reviewed as targets for parallelization of nuclear reactor simulation. Various parallelization models (loop-based model, shared memory model, functional model, data parallel model, and a combined functional and data parallel model) are discussed along with their advantages and disadvantages for nuclear reactor simulation. A variety of tools are introduced for each of the models. Emphasis is placed on the data parallel model as the primary focus for two-phase flow simulation. Tools to support data parallel programming for multiple component applications and special parallelization considerations are also discussed.« less

  11. Cedar Project---Original goals and progress to date

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cybenko, G.; Kuck, D.; Padua, D.

    1990-11-28

    This work encompasses a broad attack on high speed parallel processing. Hardware, software, applications development, and performance evaluation and visualization as well as research topics are proposed. Our goal is to develop practical parallel processing for the 1990's.

  12. SPEEDES - A multiple-synchronization environment for parallel discrete-event simulation

    NASA Technical Reports Server (NTRS)

    Steinman, Jeff S.

    1992-01-01

    Synchronous Parallel Environment for Emulation and Discrete-Event Simulation (SPEEDES) is a unified parallel simulation environment. It supports multiple-synchronization protocols without requiring users to recompile their code. When a SPEEDES simulation runs on one node, all the extra parallel overhead is removed automatically at run time. When the same executable runs in parallel, the user preselects the synchronization algorithm from a list of options. SPEEDES currently runs on UNIX networks and on the California Institute of Technology/Jet Propulsion Laboratory Mark III Hypercube. SPEEDES also supports interactive simulations. Featured in the SPEEDES environment is a new parallel synchronization approach called Breathing Time Buckets. This algorithm uses some of the conservative techniques found in Time Bucket synchronization, along with the optimism that characterizes the Time Warp approach. A mathematical model derived from first principles predicts the performance of Breathing Time Buckets. Along with the Breathing Time Buckets algorithm, this paper discusses the rules for processing events in SPEEDES, describes the implementation of various other synchronization protocols supported by SPEEDES, describes some new ones for the future, discusses interactive simulations, and then gives some performance results.

  13. Flexible All-Digital Receiver for Bandwidth Efficient Modulations

    NASA Technical Reports Server (NTRS)

    Gray, Andrew; Srinivasan, Meera; Simon, Marvin; Yan, Tsun-Yee

    2000-01-01

    An all-digital high data rate parallel receiver architecture developed jointly by Goddard Space Flight Center and the Jet Propulsion Laboratory is presented. This receiver utilizes only a small number of high speed components along with a majority of lower speed components operating in a parallel frequency domain structure implementable in CMOS, and can currently process up to 600 Mbps with standard QPSK modulation. Performance results for this receiver for bandwidth efficient QPSK modulation schemes such as square-root raised cosine pulse shaped QPSK and Feher's patented QPSK are presented, demonstrating the flexibility of the receiver architecture.

  14. Self-calibrated correlation imaging with k-space variant correlation functions.

    PubMed

    Li, Yu; Edalati, Masoud; Du, Xingfu; Wang, Hui; Cao, Jie J

    2018-03-01

    Correlation imaging is a previously developed high-speed MRI framework that converts parallel imaging reconstruction into the estimate of correlation functions. The presented work aims to demonstrate this framework can provide a speed gain over parallel imaging by estimating k-space variant correlation functions. Because of Fourier encoding with gradients, outer k-space data contain higher spatial-frequency image components arising primarily from tissue boundaries. As a result of tissue-boundary sparsity in the human anatomy, neighboring k-space data correlation varies from the central to the outer k-space. By estimating k-space variant correlation functions with an iterative self-calibration method, correlation imaging can benefit from neighboring k-space data correlation associated with both coil sensitivity encoding and tissue-boundary sparsity, thereby providing a speed gain over parallel imaging that relies only on coil sensitivity encoding. This new approach is investigated in brain imaging and free-breathing neonatal cardiac imaging. Correlation imaging performs better than existing parallel imaging techniques in simulated brain imaging acceleration experiments. The higher speed enables real-time data acquisition for neonatal cardiac imaging in which physiological motion is fast and non-periodic. With k-space variant correlation functions, correlation imaging gives a higher speed than parallel imaging and offers the potential to image physiological motion in real-time. Magn Reson Med 79:1483-1494, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  15. Double lead spiral platen parallel jaw end effector

    NASA Technical Reports Server (NTRS)

    Beals, David C.

    1989-01-01

    The double lead spiral platen parallel jaw end effector is an extremely powerful, compact, and highly controllable end effector that represents a significant improvement in gripping force and efficiency over the LaRC Puma (LP) end effector. The spiral end effector is very simple in its design and has relatively few parts. The jaw openings are highly predictable and linear, making it an ideal candidate for remote control. The finger speed is within acceptable working limits and can be modified to meet the user needs; for instance, greater finger speed could be obtained by increasing the pitch of the spiral. The force relaxation is comparable to the other tested units. Optimization of the end effector design would involve a compromise of force and speed for a given application.

  16. Growing Cobalt Silicide Columns In Silicon

    NASA Technical Reports Server (NTRS)

    Fathauer, Obert W.

    1991-01-01

    Codeposition by molecular-beam epitaxy yields variety of structures. Proposed fabrication process produces three-dimensional nanometer-sized structures on silicon wafers. Enables control of dimensions of metal and semiconductor epitaxial layers in three dimensions instead of usual single dimension (perpendicular to the plane of the substrate). Process used to make arrays of highly efficient infrared sensors, high-speed transistors, and quantum wires. For fabrication of electronic devices, both shapes and locations of columns controlled. One possible technique for doing this electron-beam lithography, see "Making Submicron CoSi2 Structures on Silicon Substrates" (NPO-17736).

  17. Fabrication and investigation of electrochromatographic columns with a simplex configuration.

    PubMed

    Liu, Qing; Yang, Lijun; Wang, Qiuquan; Zhang, Bo

    2014-07-04

    Duplex capillary columns with a packed and an open section are widely used in electrochromatography (CEC). The duplex column configuration leads to non-uniform voltage drop, electrical field distribution and separation performance. It also adds to the complexity in understanding and optimizing electrochromatographic process. In this study, we introduced a simplex column configuration based on single particle fritting technology. The new column configuration has an essentially uniform packed bed through the entire column length, with only 1mm length left unpacked serving as the optical detection window. The study shows that a simplex column has higher separation efficiency than a duplex column, especially at the high voltage range, due to the consistent distribution of electrical field over the column length. In comparison to the duplex column, the simplex column presented a lower flow rate at the same applied voltage, suggesting that an open section may support a higher speed than a packed section. In practice, the long and short ends of the simplex column could be used as independent CEC columns respectively. This "two-in-one" bi-functional column configuration provided extra flexibilities in selecting and optimizing electrochromatographic conditions. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. An Inexpensive and Versatile Version of Kundt's Tube for Measuring the Speed of Sound in Air

    ERIC Educational Resources Information Center

    Papacosta, Pangratios; Linscheid, Nathan

    2016-01-01

    Experiments that measure the speed of sound in air are common in high schools and colleges. In the Kundt's tube experiment, a horizontal air column is adjusted until a resonance mode is achieved for a specific frequency of sound. When this happens, the cork dust in the tube is disturbed at the displacement antinode regions. The location of the…

  19. Experimental Investigation of Rotating Menisci

    NASA Astrophysics Data System (ADS)

    Reichel, Yvonne; Dreyer, Michael E.

    2014-07-01

    In upper stages of spacecrafts, Propellant Management Devices (PMD's) can be used to position liquid propellant over the outlet in the absence of gravity. Centrifugal forces due to spin of the upper stage can drive the liquid away from the desired location resulting in malfunction of the stage. In this study, a simplified model consisting of two parallel, segmented and unsegmented disks and a central tube assembled at the center of the upper disk is analyzed experimentally during rotation in microgravity. For each drop tower experiment, the angular speed caused by a centrifugal stage in the drop capsule is kept constant. Steady-states for the menisci between the disks are observed for moderate rotation. For larger angular speeds, a stable shape of the free surfaces fail to sustain and the liquid is driven away. Additionally, tests were performed without rotation to quantify two effects: the removal of a metallic cylinder around the model to establish the liquid column and the determination of the the settling time from terrestrial to microgravity conditions.

  20. Experimental studies of interactions between Alfv'en waves and striated density depletions in the LAPD

    NASA Astrophysics Data System (ADS)

    Auerbach, D. W.; Carter, T. A.; Vincena, S.

    2008-11-01

    Satellite measurements in the earth's magnetosphere have associated Alfv'en frequency fluctuations with density depletions striated along the geomagnetic field. This poster presents laboratory studies in the LADP experiment at UCLA modeling this phenomena. Density depletions are pre-formed in the plasma column by selectively blocking a portion of the drive beam, and Alfv'en waves are driven in the cavity by means of an inserted antenna. Relevant experimental parameters include an ion cyclotron radius around a mm, alfven parallel wavelength several meters, electron inertial length around 6 mm, and electron thermal speeds about a third of the alfv'en speed. We report here on modifications to the wave propagation due to the density depletion. We also report on the details of the interactions between the driven wave and the secondary drift-alfv'en wave instabilities that arise on the density boundary, including wave-wave interactions and possible turbulent broadening effects on the main wave.

  1. Do diatoms percolate through soil and can they be used for tracing the origin of runoff?

    NASA Astrophysics Data System (ADS)

    De Graaf, Lenka; Cammeraat, Erik; Pfister, Laurent; Wetzel, Carlos; Klaus, Julian; Hissler, Christophe

    2015-04-01

    Tracers are widely used to study the movement of water in a catchment. Because of depletion of scientific possibilities with most common tracer types, we proposed the use of diatoms as a natural tracer. Paradoxical results on the contribution of surface runoff to the storm hydrograph were obtained in pioneer research on this idea. Diatom transport via the subsurface flow to the stream would explain this paradox. Prerequisite for this is vertical transport of diatoms through soils, which is the topic of this study. Emphasis is on percolation behavior (speed of percolation, speed of percolation over time, and species distribution) of Pseudostaurosira sp. and Melosira sp. (Bacillariophyceae) through undisturbed soil columns of contrasting substrates. Co-objective is to study the flowpaths of water through the soil columns. Natural undisturbed soil columns were sampled in the Attert basin (Luxembourg) on schist, marl and sandstone substrates. Rain simulation experiments were performed to study vertical diatom transport. Rhodamine dye experiments were carried out to gain insight in the active flowpaths of water, and breakthrough experiments were performed to study the responses of the soil columns to applied water. Diatoms were transported through the soil columns of the three substrates. A vast majority of diatom percolation took place within the first 15 minutes, percolation hereafter was marginal but nevertheless present. Peaks in diatom percolation corresponded with a high flux caused by the addition of the diatom culture, but seepage of diatoms along the sides is unlikely according to the species distribution and the rhodamine dye experiment. Pseudostaurosira sp. percolated significantly better than Melosira sp. Significantly more diatoms percolated through the marl columns compared to the schist columns and variance within the sandstone group was very high. Absolute differences between substrates however, were marginal. Most preferential flowpaths were observed in the marl columns, indicating highest active macroporosity in these columns. Although the sample size of this study was small, it is suspected that the highest diatom percolation percentages of the marl columns is linked to its greater macroporosity and most importantly, diatoms can percolate through soil (macro-) pores.

  2. At-line hyphenation of high-speed countercurrent chromatography with Sephadex LH-20 column chromatography for bioassay-guided separation of antioxidants from vine tea (Ampelopsis grossedentata).

    PubMed

    Ma, Ruyi; Zhou, Rongrong; Tong, Runna; Shi, Shuyun; Chen, Xiaoqing

    2017-01-01

    Vine tea (Ampelopsis grossedentata), a widely used healthy tea, beverage and herbal medicine, exhibited strong antioxidant activity. However, systematic purification of antioxidants, especially for those with similar structures or polarities, is a challenging work. Here, we present a novel at-line hyphenation of high-speed countercurrent chromatography with Sephadex LH-20 column chromatography (HSCCC-Sephadex LH-20 CC) for rapid and efficient separation of antioxidants from vine tea target-guided by 1,1-diphenyl-2-picryl-hydrazyl radical-high performance liquid chromatography (DPPH-HPLC) experiment. A makeup pump, a six-port switching valve and a trapping column were served as interface. The configuration had no operational time and mobile phase limitations between two dimensional chromatography and showed great flexibility without tedious sample-handling procedure. Seven targeted antioxidants were firstly separated by stepwise HSCCC using petroleum ether-ethyl acetate-methanol-water (4:9:4:9, v/v/v/v) and (4:9:5:8, v/v/v/v) as solvent systems, and then co-eluted antioxidants were on-line trapped, concentrated and desorbed to Sephadex LH-20 column for further off-line purification by methanol. It is noted that six elucidated antioxidants with purity over 95% exhibited stronger activity than ascorbic acid (VC). More importantly, this at-line hyphenated strategy could sever as a rapid and efficient pathway for systematic purification of bioactive components from complex matrix. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Sustained diffusive alternating current gliding arc discharge in atmospheric pressure air

    NASA Astrophysics Data System (ADS)

    Zhu, Jiajian; Gao, Jinlong; Li, Zhongshan; Ehn, Andreas; Aldén, Marcus; Larsson, Anders; Kusano, Yukihiro

    2014-12-01

    Rapid transition from glow discharge to thermal arc has been a common problem in generating stable high-power non-thermal plasmas especially at ambient conditions. A sustained diffusive gliding arc discharge was generated in a large volume in atmospheric pressure air, driven by an alternating current (AC) power source. The plasma column extended beyond the water-cooled stainless steel electrodes and was stabilized by matching the flow speed of the turbulent air jet with the rated output power. Comprehensive investigations were performed using high-speed movies measured over the plasma column, synchronized with simultaneously recorded current and voltage waveforms. Dynamic details of the novel non-equilibrium discharge are revealed, which is characterized by a sinusoidal current waveform with amplitude stabilized at around 200 mA intermediate between thermal arc and glow discharge, shedding light to the governing mechanism of the sustained spark-suppressed AC gliding arc discharge.

  4. Integration experiences and performance studies of A COTS parallel archive systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Hsing-bung; Scott, Cody; Grider, Bary

    2010-01-01

    Current and future Archive Storage Systems have been asked to (a) scale to very high bandwidths, (b) scale in metadata performance, (c) support policy-based hierarchical storage management capability, (d) scale in supporting changing needs of very large data sets, (e) support standard interface, and (f) utilize commercial-off-the-shelf(COTS) hardware. Parallel file systems have been asked to do the same thing but at one or more orders of magnitude faster in performance. Archive systems continue to move closer to file systems in their design due to the need for speed and bandwidth, especially metadata searching speeds such as more caching and lessmore » robust semantics. Currently the number of extreme highly scalable parallel archive solutions is very small especially those that will move a single large striped parallel disk file onto many tapes in parallel. We believe that a hybrid storage approach of using COTS components and innovative software technology can bring new capabilities into a production environment for the HPC community much faster than the approach of creating and maintaining a complete end-to-end unique parallel archive software solution. In this paper, we relay our experience of integrating a global parallel file system and a standard backup/archive product with a very small amount of additional code to provide a scalable, parallel archive. Our solution has a high degree of overlap with current parallel archive products including (a) doing parallel movement to/from tape for a single large parallel file, (b) hierarchical storage management, (c) ILM features, (d) high volume (non-single parallel file) archives for backup/archive/content management, and (e) leveraging all free file movement tools in Linux such as copy, move, ls, tar, etc. We have successfully applied our working COTS Parallel Archive System to the current world's first petaflop/s computing system, LANL's Roadrunner, and demonstrated its capability to address requirements of future archival storage systems.« less

  5. Integration experiments and performance studies of a COTS parallel archive system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Hsing-bung; Scott, Cody; Grider, Gary

    2010-06-16

    Current and future Archive Storage Systems have been asked to (a) scale to very high bandwidths, (b) scale in metadata performance, (c) support policy-based hierarchical storage management capability, (d) scale in supporting changing needs of very large data sets, (e) support standard interface, and (f) utilize commercial-off-the-shelf (COTS) hardware. Parallel file systems have been asked to do the same thing but at one or more orders of magnitude faster in performance. Archive systems continue to move closer to file systems in their design due to the need for speed and bandwidth, especially metadata searching speeds such as more caching andmore » less robust semantics. Currently the number of extreme highly scalable parallel archive solutions is very small especially those that will move a single large striped parallel disk file onto many tapes in parallel. We believe that a hybrid storage approach of using COTS components and innovative software technology can bring new capabilities into a production environment for the HPC community much faster than the approach of creating and maintaining a complete end-to-end unique parallel archive software solution. In this paper, we relay our experience of integrating a global parallel file system and a standard backup/archive product with a very small amount of additional code to provide a scalable, parallel archive. Our solution has a high degree of overlap with current parallel archive products including (a) doing parallel movement to/from tape for a single large parallel file, (b) hierarchical storage management, (c) ILM features, (d) high volume (non-single parallel file) archives for backup/archive/content management, and (e) leveraging all free file movement tools in Linux such as copy, move, Is, tar, etc. We have successfully applied our working COTS Parallel Archive System to the current world's first petafiop/s computing system, LANL's Roadrunner machine, and demonstrated its capability to address requirements of future archival storage systems.« less

  6. Atmospheric blocking as a traffic jam in the jet stream

    NASA Astrophysics Data System (ADS)

    Nakamura, N.; Huang, S. Y.

    2017-12-01

    It is demonstrated using the ERA-Interim product that synoptic to intraseasonal variabilities of extratropical circulation in the boreal storm track regions are strongly affected by the zonal convergence of the column-integrated eastward flux of local wave activity (LWA). In particular, from the multi-year daily samples of LWA fluxes, we find that the wintertime zonal LWA flux in the jet exit regions tends to maximize for an intermediate value of column-averaged LWA. This is because an increasing LWA decelerates the zonal flow, eventually weakening the eastward advection of LWA. From theory we argue that large wave events on the decreasing side of the flux curve with increasing LWA cannot be maintained as a stable steady state. Consistent with this argument, observed states corresponding to that side of flux curve often exhibit local wave breaking and blocking events. A close parallelism exists for the traffic flow problem, in which the traffic flux (traffic density times traffic speed) is often observed to maximize for an intermediate value of traffic density. This is because the traffic speed is controlled not only by the imposed speed limit but also by the traffic density — an increasingly heavy traffic slows down the flow naturally and eventually decreases the flux. Once the flux starts to decrease with an increasing traffic density, a traffic jam kicks in suddenly (Lighthill and Whitham 1955, Richards 1956). The above idea is demonstrated by a simple conceptual model based on the equivalent barotropic PV contour design (Nakamura and Huang 2017, JAS), which predicts a threshold of blocking onset. The idea also suggests that the LWA that gives the `flux capacity,' i.e., the maximum LWA flux at a given location, is a useful predictor of local wave breaking/block formation.

  7. An A-train climatology of extratropical cyclone clouds and precipitation

    NASA Astrophysics Data System (ADS)

    Naud, C. M.; Booth, J.; Del Genio, A. D.; van den Heever, S. C.; Posselt, D. J.

    2016-12-01

    It is demonstrated using the ERA-Interim product that synoptic to intraseasonal variabilities of extratropical circulation in the boreal storm track regions are strongly affected by the zonal convergence of the column-integrated eastward flux of local wave activity (LWA). In particular, from the multi-year daily samples of LWA fluxes, we find that the wintertime zonal LWA flux in the jet exit regions tends to maximize for an intermediate value of column-averaged LWA. This is because an increasing LWA decelerates the zonal flow, eventually weakening the eastward advection of LWA. From theory we argue that large wave events on the decreasing side of the flux curve with increasing LWA cannot be maintained as a stable steady state. Consistent with this argument, observed states corresponding to that side of flux curve often exhibit local wave breaking and blocking events. A close parallelism exists for the traffic flow problem, in which the traffic flux (traffic density times traffic speed) is often observed to maximize for an intermediate value of traffic density. This is because the traffic speed is controlled not only by the imposed speed limit but also by the traffic density — an increasingly heavy traffic slows down the flow naturally and eventually decreases the flux. Once the flux starts to decrease with an increasing traffic density, a traffic jam kicks in suddenly (Lighthill and Whitham 1955, Richards 1956). The above idea is demonstrated by a simple conceptual model based on the equivalent barotropic PV contour design (Nakamura and Huang 2017, JAS), which predicts a threshold of blocking onset. The idea also suggests that the LWA that gives the `flux capacity,' i.e., the maximum LWA flux at a given location, is a useful predictor of local wave breaking/block formation.

  8. High-speed prediction of crystal structures for organic molecules

    NASA Astrophysics Data System (ADS)

    Obata, Shigeaki; Goto, Hitoshi

    2015-02-01

    We developed a master-worker type parallel algorithm for allocating tasks of crystal structure optimizations to distributed compute nodes, in order to improve a performance of simulations for crystal structure predictions. The performance experiments were demonstrated on TUT-ADSIM supercomputer system (HITACHI HA8000-tc/HT210). The experimental results show that our parallel algorithm could achieve speed-ups of 214 and 179 times using 256 processor cores on crystal structure optimizations in predictions of crystal structures for 3-aza-bicyclo(3.3.1)nonane-2,4-dione and 2-diazo-3,5-cyclohexadiene-1-one, respectively. We expect that this parallel algorithm is always possible to reduce computational costs of any crystal structure predictions.

  9. High-Speed Rotor Analytical Dynamics on Flexible Foundation Subjected to Internal and External Excitation

    NASA Astrophysics Data System (ADS)

    Jivkov, Venelin S.; Zahariev, Evtim V.

    2016-12-01

    The paper presents a geometrical approach to dynamics simulation of a rigid and flexible system, compiled of high speed rotating machine with eccentricity and considerable inertia and mass. The machine is mounted on a vertical flexible pillar with considerable height. The stiffness and damping of the column, as well as, of the rotor bearings and the shaft are taken into account. Non-stationary vibrations and transitional processes are analyzed. The major frequency and modal mode of the flexible column are used for analytical reduction of its mass, stiffness and damping properties. The rotor and the foundation are modelled as rigid bodies, while the flexibility of the bearings is estimated by experiments and the requirements of the manufacturer. The transition effects as a result of limited power are analyzed by asymptotic methods of averaging. Analytical expressions for the amplitudes and unstable vibrations throughout resonance are derived by quasi-static approach increasing and decreasing of the exciting frequency. Analytical functions give the possibility to analyze the influence of the design parameter of many structure applications as wind power generators, gas turbines, turbo-generators, and etc. A numerical procedure is applied to verify the effectiveness and precision of the simulation process. Nonlinear and transitional effects are analyzed and compared to the analytical results. External excitations, as wave propagation and earthquakes, are discussed. Finite elements in relative and absolute coordinates are applied to model the flexible column and the high speed rotating machine. Generalized Newton - Euler dynamics equations are used to derive the precise dynamics equations. Examples of simulation of the system vibrations and nonstationary behaviour are presented.

  10. Achieving high peak capacity production for gas chromatography and comprehensive two-dimensional gas chromatography by minimizing off-column peak broadening.

    PubMed

    Wilson, Ryan B; Siegler, W Christopher; Hoggard, Jamin C; Fitz, Brian D; Nadeau, Jeremy S; Synovec, Robert E

    2011-05-27

    By taking into consideration band broadening theory and using those results to select experimental conditions, and also by reducing the injection pulse width, peak capacity production (i.e., peak capacity per separation time) is substantially improved for one dimensional (1D-GC) and comprehensive two dimensional (GC×GC) gas chromatography. A theoretical framework for determining the optimal linear gas velocity (the linear gas velocity producing the minimum H), from experimental parameters provides an in-depth understanding of the potential for GC separations in the absence of extra-column band broadening. The extra-column band broadening is referred to herein as off-column band broadening since it is additional band broadening not due to the on-column separation processes. The theory provides the basis to experimentally evaluate and improve temperature programmed 1D-GC separations, but in order to do so with a commercial 1D-GC instrument platform, off-column band broadening from injection and detection needed to be significantly reduced. Specifically for injection, a resistively heated transfer line is coupled to a high-speed diaphragm valve to provide a suitable injection pulse width (referred to herein as modified injection). Additionally, flame ionization detection (FID) was modified to provide a data collection rate of 5kHz. The use of long, relatively narrow open tubular capillary columns and a 40°C/min programming rate were explored for 1D-GC, specifically a 40m, 180μm i.d. capillary column operated at or above the optimal average linear gas velocity. Injection using standard auto-injection with a 1:400 split resulted in an average peak width of ∼1.5s, hence a peak capacity production of 40peaks/min. In contrast, use of modified injection produced ∼500ms peak widths for 1D-GC, i.e., a peak capacity production of 120peaks/min (a 3-fold improvement over standard auto-injection). Implementation of modified injection resulted in retention time, peak width, peak height, and peak area average RSD%'s of 0.006, 0.8, 3.4, and 4.0%, respectively. Modified injection onto the first column of a GC×GC coupled with another high-speed valve injection onto the second column produced an instrument with high peak capacity production (500-800peaks/min), ∼5-fold to 8-fold higher than typically reported for GC×GC. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Quantitative determination of p-aminosalicylic acid and its degradation product m-aminophenol in pellets by ion-pair high-performance liquid chromatography applying the monolithic Chromolith Speedrod RP-18e column.

    PubMed

    Vasbinder, E; Van der Weken, G; Vander Heyden, Y; Baeyens, W R G; Debunne, A; Remon, J P; García-Campaña, A M

    2004-01-01

    An ion-pair high performance liquid chromatographic method was developed for the simultaneous determination of p-aminosalicylic acid (PAS) and its degradation product m-aminophenol (MAP) in a newly developed multiparticular drug delivery system. Owing to the concentration differences of PAS and MAP, acetanilide and sulfanilic acid were used as internal standards, respectively. The separation was performed on a Chromolith SpeedROD RP-18e column, a new packing material consisting of monolithic rods of highly porous silica. The mobile phase composition was of 20 mm phosphate buffer, 20 mm tetrabutylammonium hydrogen sulphate and 16% (v/v) methanol adjusted to pH 6.8, at a flow-rate of 1.0 mL/min, resulting in a run-time of about 6 min. Detection was by UV at 233 nm. The method was validated and proved to be useful for stability testing of the new dosage form. Separation efficiency was compared between the new packing material Chromolith SpeedROD RP-18e and the conventional reversed-phase cartridge LiChroCART 125-4 (5 microm). A robustness test was carried out on both columns and different separation parameters (retention, resolution, run time, temperature) were determined. Copyright 2004 John Wiley & Sons, Ltd.

  12. A two-step A/D conversion and column self-calibration technique for low noise CMOS image sensors.

    PubMed

    Bae, Jaeyoung; Kim, Daeyun; Ham, Seokheon; Chae, Youngcheol; Song, Minkyu

    2014-07-04

    In this paper, a 120 frames per second (fps) low noise CMOS Image Sensor (CIS) based on a Two-Step Single Slope ADC (TS SS ADC) and column self-calibration technique is proposed. The TS SS ADC is suitable for high speed video systems because its conversion speed is much faster (by more than 10 times) than that of the Single Slope ADC (SS ADC). However, there exist some mismatching errors between the coarse block and the fine block due to the 2-step operation of the TS SS ADC. In general, this makes it difficult to implement the TS SS ADC beyond a 10-bit resolution. In order to improve such errors, a new 4-input comparator is discussed and a high resolution TS SS ADC is proposed. Further, a feedback circuit that enables column self-calibration to reduce the Fixed Pattern Noise (FPN) is also described. The proposed chip has been fabricated with 0.13 μm Samsung CIS technology and the chip satisfies the VGA resolution. The pixel is based on the 4-TR Active Pixel Sensor (APS). The high frame rate of 120 fps is achieved at the VGA resolution. The measured FPN is 0.38 LSB, and measured dynamic range is about 64.6 dB.

  13. Experimental observations of the hydrodynamic behavior of solvent systems in high-speed counter-current chromatography. I. Hydrodynamic distribution of two solvent phases in a helical column subjected to two types of synchronous planetary motion.

    PubMed

    Ito, Y

    1984-10-05

    Hydrodynamic distribution of two-phase solvent systems in a rotating helical column subjected to centrifugal fields produced by two different types of synchronous planetary motion has been studied by the use of the combined horizontal flow-through coil planet centrifuge. With continuous elution of the mobile phase, the simpler type of motion resulted in low retention of the stationary phase in the column whereas a more complex motion, which produces a quasi-radial centrifugal field varying in both intensity and direction, yielded high stationary phase retention for commonly used solvent systems having a wide range of hydrophobicity. These solvent systems display highly complex modes of hydrodynamic interaction in the coil according to their particular physical properties.

  14. The separation of flavonoids from Pongamia pinnata using combination columns in high-speed counter-current chromatography with a three-phase solvent system.

    PubMed

    Yin, Hao; Zhang, Si; Long, Lijuan; Yin, Hang; Tian, Xinpeng; Luo, Xiongming; Nan, Haihan; He, Sha

    2013-11-08

    The mangrove plant Pongamia pinnata (Leguminosae) is well known as a plant pesticide. Previous studies have indicated that the flavonoids are responsible of the biological activities of the plant. A new high-speed counter-current chromatography (HSCCC) method for the separation of three flavonoids, karanjin (1), pinnatin (2), and pongaflavone (3), from P. pinnata was developed in the present study. The lower and intermediate phase (LP and IP) of a new three-phase solvent system, n-hexane-acetonitrile-dichloromethane-water, at a volume ratio of 5:5:1:5, were used as the stationary phases, while the upper phase (UP) was used as the mobile phase, and the volume ratio between the stationary phases in the CCC column could be tuned by varying the initial pumped volume ratio of the stationary phases. The CCC columns containing all three phases of the solvent system were considered combination columns. According to the theories of combination column, it is possible to optimize the retention time of the target compounds by varying the volume ratio of the stationary phases in the HSCCC combination columns, as well as the suitable volume ratios of the stationary phases for the separation of the target compounds were predicted from the partition coefficients of the compounds in the three-phase solvent system. Then, three HSCCC separations using the combination columns with initial pumped LP:IP volume ratios of 1:0, 0.9:0.1, and 0.7:0.3 were performed separately based on the prediction. Three target compounds were prepared with high purity when the initial pumped volume ratio of the stationary phases was 0.9:0.1. The baseline separation of compounds 2 and 3 was achieved on the combination column with an initial pumped volume ratio of 0.7:0.3. Furthermore, the three experiments clearly demonstrated that the retentions and resolutions of the target compounds increased with an increasing volume ratio of IP, which is consistent with the prediction for the retention times for the solutes on combination columns. The method proposed here reduces the need for solvent selection compared with the conventional method and may have broad potential applicability in the preparation of natural products. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Open | SpeedShop: An Open Source Infrastructure for Parallel Performance Analysis

    DOE PAGES

    Schulz, Martin; Galarowicz, Jim; Maghrak, Don; ...

    2008-01-01

    Over the last decades a large number of performance tools has been developed to analyze and optimize high performance applications. Their acceptance by end users, however, has been slow: each tool alone is often limited in scope and comes with widely varying interfaces and workflow constraints, requiring different changes in the often complex build and execution infrastructure of the target application. We started the Open | SpeedShop project about 3 years ago to overcome these limitations and provide efficient, easy to apply, and integrated performance analysis for parallel systems. Open | SpeedShop has two different faces: it provides an interoperable tool set covering themore » most common analysis steps as well as a comprehensive plugin infrastructure for building new tools. In both cases, the tools can be deployed to large scale parallel applications using DPCL/Dyninst for distributed binary instrumentation. Further, all tools developed within or on top of Open | SpeedShop are accessible through multiple fully equivalent interfaces including an easy-to-use GUI as well as an interactive command line interface reducing the usage threshold for those tools.« less

  16. The development speed paradox: can increasing development speed reduce R&D productivity?

    PubMed

    Lendrem, Dennis W; Lendrem, B Clare

    2014-03-01

    In the 1990s the pharmaceutical industry sought to increase R&D productivity by shifting development tasks into parallel to reduce development cycle times and increase development speed. This paper presents a simple model demonstrating that, when attrition rates are high as in pharmaceutical development, such development speed initiatives can increase the expected time for the first successful molecule to complete development. Increasing the development speed of successful molecules could actually reduce R&D productivity - the development speed paradox. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Establishing column batch repeatability according to Quality by Design (QbD) principles using modeling software.

    PubMed

    Rácz, Norbert; Kormány, Róbert; Fekete, Jenő; Molnár, Imre

    2015-04-10

    Column technology needs further improvement even today. To get information of batch-to-batch repeatability, intelligent modeling software was applied. Twelve columns from the same production process, but from different batches were compared in this work. In this paper, the retention parameters of these columns with real life sample solutes were studied. The following parameters were selected for measurements: gradient time, temperature and pH. Based on calculated results, batch-to-batch repeatability of BEH columns was evaluated. Two parallel measurements on two columns from the same batch were performed to obtain information about the quality of packing. Calculating the average of individual working points at the highest critical resolution (R(s,crit)) it was found that the robustness, calculated with a newly released robustness module, had a success rate >98% among the predicted 3(6) = 729 experiments for all 12 columns. With the help of retention modeling all substances could be separated independently from the batch and/or packing, using the same conditions, having high robustness of the experiments. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. A simulation-based study of HighSpeed TCP and its deployment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Souza, Evandro de

    2003-05-01

    The current congestion control mechanism used in TCP has difficulty reaching full utilization on high speed links, particularly on wide-area connections. For example, the packet drop rate needed to fill a Gigabit pipe using the present TCP protocol is below the currently achievable fiber optic error rates. HighSpeed TCP was recently proposed as a modification of TCP's congestion control mechanism to allow it to achieve reasonable performance in high speed wide-area links. In this research, simulation results showing the performance of HighSpeed TCP and the impact of its use on the present implementation of TCP are presented. Network conditions includingmore » different degrees of congestion, different levels of loss rate, different degrees of bursty traffic and two distinct router queue management policies were simulated. The performance and fairness of HighSpeed TCP were compared to the existing TCP and solutions for bulk-data transfer using parallel streams.« less

  19. SEAL FOR HIGH SPEED CENTRIFUGE

    DOEpatents

    Skarstrom, C.W.

    1957-12-17

    A seal is described for a high speed centrifuge wherein the centrifugal force of rotation acts on the gasket to form a tight seal. The cylindrical rotating bowl of the centrifuge contains a closure member resting on a shoulder in the bowl wall having a lower surface containing bands of gasket material, parallel and adjacent to the cylinder wall. As the centrifuge speed increases, centrifugal force acts on the bands of gasket material forcing them in to a sealing contact against the cylinder wall. This arrangememt forms a simple and effective seal for high speed centrifuges, replacing more costly methods such as welding a closure in place.

  20. Compact type-I coil planet centrifuge for counter-current chromatography

    PubMed Central

    Yang, Yi; Gu, Dongyu; Liu, Yongqiang; Aisa, Haji Akber; Ito, Yoichiro

    2009-01-01

    A compact type-I coil planet centrifuge has been developed for performing counter-current chromatography. It has a revolution radius of 10 cm and a column holder height of 5 cm compared with 37 cm and 50 cm in the original prototype, respectively. The reduction in the revolution radius and column length permits application of higher revolution speed and more stable balancing of the rotor which leads us to learn more about its performance and the future potential of type-I coil planet centrifuge. The chromatographic performance of this apparatus was evaluated in terms of retention of the stationary phase (Sf), peak resolution (Rs), theoretical plate (N) and peak retention time (tR). The results of the experiment indicated that increasing the revolution speed slightly improved both the retention of the stationary phase and the peak resolution while the separation time is remarkably shortened to yield an excellent peak resolution at a revolution speed of 800 rpm. With a 12 ml capacity coiled column, DNP-glu, DNP-β-ala and DNP-ala were resolved at Rs of 2.75 and 2.16 within 90 min at a flow rate of 0.4 ml/min. We believe that the compact type-I coil planet centrifuge has a high analytical potential. PMID:20060979

  1. Compact type-I coil planet centrifuge for counter-current chromatography.

    PubMed

    Yang, Yi; Gu, Dongyu; Liu, Yongqiang; Aisa, Haji Akber; Ito, Yoichiro

    2010-02-19

    A compact type-I coil planet centrifuge has been developed for performing counter-current chromatography. It has a revolution radius of 10 cm and a column holder height of 5 cm compared with 37 and 50 cm in the original prototype, respectively. The reduction in the revolution radius and column length permits application of higher revolution speed and more stable balancing of the rotor which leads us to learn more about its performance and the future potential of type-I coil planet centrifuge. The chromatographic performance of this apparatus was evaluated in terms of retention of the stationary phase (S(f)), peak resolution (R(s)), theoretical plate (N) and peak retention time (t(R)). The results of the experiment indicated that increasing the revolution speed slightly improved both the retention of the stationary phase and the peak resolution while the separation time is remarkably shortened to yield an excellent peak resolution at a revolution speed of 800 rpm. With a 12 ml capacity coiled column, DNP-DL-glu, DNP-beta-ala and DNP-l-ala were resolved at R(s) of 2.75 and 2.16 within 90 min at a flow rate of 0.4 ml/min. We believe that the compact type-I coil planet centrifuge has a high analytical potential. Published by Elsevier B.V.

  2. Tuning a Parallel Segmented Flow Column and Enabling Multiplexed Detection.

    PubMed

    Pravadali-Cekic, Sercan; Kocic, Danijela; Hua, Stanley; Jones, Andrew; Dennis, Gary R; Shalliker, R Andrew

    2015-12-15

    Active flow technology (AFT) is new form of column technology that was designed to overcome flow heterogeneity to increase separation performance in terms of efficiency and sensitivity and to enable multiplexed detection. This form of AFT uses a parallel segmented flow (PSF) column. A PSF column outlet end-fitting consists of 2 or 4 ports, which can be multiplexed to connect up to 4 detectors. The PSF column not only allows a platform for multiplexed detection but also the combination of both destructive and non-destructive detectors, without additional dead volume tubing, simultaneously. The amount of flow through each port can also be adjusted through pressure management to suit the requirements of a specific detector(s). To achieve multiplexed detection using a PSF column there are a number of parameters which can be controlled to ensure optimal separation performance and quality of results; that is tube dimensions for each port, choice of port for each type of detector and flow adjustment. This protocol is intended to show how to use and tune a PSF column functioning in a multiplexed mode of detection.

  3. Conceptual design and kinematic analysis of a novel parallel robot for high-speed pick-and-place operations

    NASA Astrophysics Data System (ADS)

    Meng, Qizhi; Xie, Fugui; Liu, Xin-Jun

    2018-06-01

    This paper deals with the conceptual design, kinematic analysis and workspace identification of a novel four degrees-of-freedom (DOFs) high-speed spatial parallel robot for pick-and-place operations. The proposed spatial parallel robot consists of a base, four arms and a 1½ mobile platform. The mobile platform is a major innovation that avoids output singularity and offers the advantages of both single and double platforms. To investigate the characteristics of the robot's DOFs, a line graph method based on Grassmann line geometry is adopted in mobility analysis. In addition, the inverse kinematics is derived, and the constraint conditions to identify the correct solution are also provided. On the basis of the proposed concept, the workspace of the robot is identified using a set of presupposed parameters by taking input and output transmission index as the performance evaluation criteria.

  4. Parallel fuzzy connected image segmentation on GPU

    PubMed Central

    Zhuge, Ying; Cao, Yong; Udupa, Jayaram K.; Miller, Robert W.

    2011-01-01

    Purpose: Image segmentation techniques using fuzzy connectedness (FC) principles have shown their effectiveness in segmenting a variety of objects in several large applications. However, one challenge in these algorithms has been their excessive computational requirements when processing large image datasets. Nowadays, commodity graphics hardware provides a highly parallel computing environment. In this paper, the authors present a parallel fuzzy connected image segmentation algorithm implementation on NVIDIA’s compute unified device Architecture (cuda) platform for segmenting medical image data sets. Methods: In the FC algorithm, there are two major computational tasks: (i) computing the fuzzy affinity relations and (ii) computing the fuzzy connectedness relations. These two tasks are implemented as cuda kernels and executed on GPU. A dramatic improvement in speed for both tasks is achieved as a result. Results: Our experiments based on three data sets of small, medium, and large data size demonstrate the efficiency of the parallel algorithm, which achieves a speed-up factor of 24.4x, 18.1x, and 10.3x, correspondingly, for the three data sets on the NVIDIA Tesla C1060 over the implementation of the algorithm on CPU, and takes 0.25, 0.72, and 15.04 s, correspondingly, for the three data sets. Conclusions: The authors developed a parallel algorithm of the widely used fuzzy connected image segmentation method on the NVIDIA GPUs, which are far more cost- and speed-effective than both cluster of workstations and multiprocessing systems. A near-interactive speed of segmentation has been achieved, even for the large data set. PMID:21859037

  5. Parallel fuzzy connected image segmentation on GPU.

    PubMed

    Zhuge, Ying; Cao, Yong; Udupa, Jayaram K; Miller, Robert W

    2011-07-01

    Image segmentation techniques using fuzzy connectedness (FC) principles have shown their effectiveness in segmenting a variety of objects in several large applications. However, one challenge in these algorithms has been their excessive computational requirements when processing large image datasets. Nowadays, commodity graphics hardware provides a highly parallel computing environment. In this paper, the authors present a parallel fuzzy connected image segmentation algorithm implementation on NVIDIA's compute unified device Architecture (CUDA) platform for segmenting medical image data sets. In the FC algorithm, there are two major computational tasks: (i) computing the fuzzy affinity relations and (ii) computing the fuzzy connectedness relations. These two tasks are implemented as CUDA kernels and executed on GPU. A dramatic improvement in speed for both tasks is achieved as a result. Our experiments based on three data sets of small, medium, and large data size demonstrate the efficiency of the parallel algorithm, which achieves a speed-up factor of 24.4x, 18.1x, and 10.3x, correspondingly, for the three data sets on the NVIDIA Tesla C1060 over the implementation of the algorithm on CPU, and takes 0.25, 0.72, and 15.04 s, correspondingly, for the three data sets. The authors developed a parallel algorithm of the widely used fuzzy connected image segmentation method on the NVIDIA GPUs, which are far more cost- and speed-effective than both cluster of workstations and multiprocessing systems. A near-interactive speed of segmentation has been achieved, even for the large data set.

  6. Chromatographic properties PLOT multicapillary columns.

    PubMed

    Nikolaeva, O A; Patrushev, Y V; Sidelnikov, V N

    2017-03-10

    Multicapillary columns (MCCs) for gas chromatography make it possible to perform high-speed analysis of the mixtures of gaseous and volatile substances at a relatively large amount of the loaded sample. The study was performed using PLOT MCCs for gas-solid chromatography (GSC) with different stationary phases (SP) based on alumina, silica and poly-(1-trimethylsilyl-1-propyne) (PTMSP) polymer as well as porous polymers divinylbenzene-styrene (DVB-St), divinylbenzene-vinylimidazole (DVB-VIm) and divinylbenzene-ethylene glycol dimethacrylate (DVB-EGD). These MCCs have the efficiency of 4000-10000 theoretical plates per meter (TP/m) and at a column length of 25-30cm can separate within 10-20s multicomponent mixtures of substances belonging to different classes of chemical compounds. The sample amount not overloading the column is 0.03-1μg and depends on the features of a porous layer. Examples of separations on some of the studied columns are considered. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. FPGA implementation of a biological neural network based on the Hodgkin-Huxley neuron model.

    PubMed

    Yaghini Bonabi, Safa; Asgharian, Hassan; Safari, Saeed; Nili Ahmadabadi, Majid

    2014-01-01

    A set of techniques for efficient implementation of Hodgkin-Huxley-based (H-H) model of a neural network on FPGA (Field Programmable Gate Array) is presented. The central implementation challenge is H-H model complexity that puts limits on the network size and on the execution speed. However, basics of the original model cannot be compromised when effect of synaptic specifications on the network behavior is the subject of study. To solve the problem, we used computational techniques such as CORDIC (Coordinate Rotation Digital Computer) algorithm and step-by-step integration in the implementation of arithmetic circuits. In addition, we employed different techniques such as sharing resources to preserve the details of model as well as increasing the network size in addition to keeping the network execution speed close to real time while having high precision. Implementation of a two mini-columns network with 120/30 excitatory/inhibitory neurons is provided to investigate the characteristic of our method in practice. The implementation techniques provide an opportunity to construct large FPGA-based network models to investigate the effect of different neurophysiological mechanisms, like voltage-gated channels and synaptic activities, on the behavior of a neural network in an appropriate execution time. Additional to inherent properties of FPGA, like parallelism and re-configurability, our approach makes the FPGA-based system a proper candidate for study on neural control of cognitive robots and systems as well.

  8. Parallel-plate wet denuder coupled ion chromatograph for near-real-time detection of trace acidic gases in clean room air.

    PubMed

    Takeuchi, Masaki; Tsunoda, Hiromichi; Tanaka, Hideji; Shiramizu, Yoshimi

    2011-01-01

    This paper describes the performance of our automated acidic (CH(3)COOH, HCOOH, HCl, HNO(2), SO(2), and HNO(3)) gases monitor utilizing a parallel-plate wet denuder (PPWD). The PPWD quantitatively collects gaseous contaminants at a high sample flow rate (∼8 dm(3) min(-1)) compared to the conventional methods used in a clean room. Rapid response to any variability in the sample concentration enables near-real-time monitoring. In the developed monitor, the analyte collected with the PPWD is pumped into one of two preconcentration columns for 15 min, and determined by means of ion chromatography. While one preconcentration column is used for chromatographic separation, the other is used for loading the sample solution. The system allows continuous monitoring of the common acidic gases in an advanced semiconductor manufacturing clean room. 2011 © The Japan Society for Analytical Chemistry

  9. Fast, Massively Parallel Data Processors

    NASA Technical Reports Server (NTRS)

    Heaton, Robert A.; Blevins, Donald W.; Davis, ED

    1994-01-01

    Proposed fast, massively parallel data processor contains 8x16 array of processing elements with efficient interconnection scheme and options for flexible local control. Processing elements communicate with each other on "X" interconnection grid with external memory via high-capacity input/output bus. This approach to conditional operation nearly doubles speed of various arithmetic operations.

  10. Parallelization of fine-scale computation in Agile Multiscale Modelling Methodology

    NASA Astrophysics Data System (ADS)

    Macioł, Piotr; Michalik, Kazimierz

    2016-10-01

    Nowadays, multiscale modelling of material behavior is an extensively developed area. An important obstacle against its wide application is high computational demands. Among others, the parallelization of multiscale computations is a promising solution. Heterogeneous multiscale models are good candidates for parallelization, since communication between sub-models is limited. In this paper, the possibility of parallelization of multiscale models based on Agile Multiscale Methodology framework is discussed. A sequential, FEM based macroscopic model has been combined with concurrently computed fine-scale models, employing a MatCalc thermodynamic simulator. The main issues, being investigated in this work are: (i) the speed-up of multiscale models with special focus on fine-scale computations and (ii) on decreasing the quality of computations enforced by parallel execution. Speed-up has been evaluated on the basis of Amdahl's law equations. The problem of `delay error', rising from the parallel execution of fine scale sub-models, controlled by the sequential macroscopic sub-model is discussed. Some technical aspects of combining third-party commercial modelling software with an in-house multiscale framework and a MPI library are also discussed.

  11. Analysis and identification of subsynchronous vibration for a high pressure parallel flow centrifugal compressor

    NASA Technical Reports Server (NTRS)

    Kirk, R. G.; Nicholas, J. C.; Donald, G. H.; Murphy, R. C.

    1980-01-01

    The summary of a complete analytical design evaluation of an existing parallel flow compressor is presented and a field vibration problem that manifested itself as a subsynchronous vibration that tracked at approximately 2/3 of compressor speed is reviewed. The comparison of predicted and observed peak response speeds, frequency spectrum content, and the performance of the bearing-seal systems are presented as the events of the field problem are reviewed. Conclusions and recommendations are made as to the degree of accuracy of the analytical techniques used to evaluate the compressor design.

  12. Parallelism in Manipulator Dynamics. Revision.

    DTIC Science & Technology

    1983-12-01

    computing the motor torques required to drive a lower-pair kinematic chain (e.g., a typical manipulator arm in free motion, or a mechanical leg in the... computations , and presents two "mathematically exact" formulationsespecially suited to high-speed, highly parallel implementa- tions using special-purpose...YNAMICS by I(IIAR) IIAROLI) LATIROP .4ISTRACT This paper addresses the problem of efficiently computing the motor torques required to drive a lower-pair

  13. Semi-micro high-performance liquid chromatographic analysis of tiropramide in human plasma using column-switching.

    PubMed

    Baek, Soo Kyoung; Lee, Seung Seok; Park, Eun Jeon; Sohn, Dong Hwan; Lee, Hye Suk

    2003-02-05

    A rapid and sensitive column-switching semi-micro high-performance liquid chromatography method was developed for the direct analysis of tiropramide in human plasma. The plasma sample (100 microl) was directly injected onto Capcell Pak MF Ph-1 precolumn where deproteinization and analyte fractionation occurred. Tiropramide was then eluted into an enrichment column (Capcell Pak UG C(18)) using acetonitrile-potassium phosphate (pH 7.0, 50 mM) (12:88, v/v) and was analyzed on a semi-micro C(18) analytical column using acetonitrile-potassium phosphate (pH 7.0, 10 mM) (50:50, v/v). The method showed excellent sensitivity (limit of quantification 5 ng/ml), and good precision (C.V.

  14. High-throughput NGL electron-beam direct-write lithography system

    NASA Astrophysics Data System (ADS)

    Parker, N. William; Brodie, Alan D.; McCoy, John H.

    2000-07-01

    Electron beam lithography systems have historically had low throughput. The only practical solution to this limitation is an approach using many beams writing simultaneously. For single-column multi-beam systems, including projection optics (SCALPELR and PREVAIL) and blanked aperture arrays, throughput and resolution are limited by space-charge effects. Multibeam micro-column (one beam per column) systems are limited by the need for low voltage operation, electrical connection density and fabrication complexities. In this paper, we discuss a new multi-beam concept employing multiple columns each with multiple beams to generate a very large total number of parallel writing beams. This overcomes the limitations of space-charge interactions and low voltage operation. We also discuss a rationale leading to the optimum number of columns and beams per column. Using this approach we show how production throughputs >= 60 wafers per hour can be achieved at CDs

  15. Thermo- and pH-responsive polymer brushes-grafted gigaporous polystyrene microspheres as a high-speed protein chromatography matrix.

    PubMed

    Qu, Jian-Bo; Xu, Yu-Liang; Liu, Jun-Yi; Zeng, Jing-Bin; Chen, Yan-Li; Zhou, Wei-Qing; Liu, Jian-Guo

    2016-04-08

    Dual thermo- and pH-responsive chromatography has been proposed using poly(N-isopropylacrylamide-co-butyl methacrylate-co-N,N-dimethylaminopropyl acrylamide) (P(NIPAM-co-BMA-co-DMAPAAM)) brushes grafted gigaporous polystyrene microspheres (GPM) as matrix. Atom transfer radical polymerization (ATRP) initiator was first coupled onto GPM through Friedel-Crafts acylation with 2-bromoisobutyryl bromide. The dual-responsive polymer brushes were then grafted onto GPM via surface-initiated ATRP. The surface composition, gigaporous structure, protein adsorption and dual-responsive chromatographic properties of the matrix (GPM-P(NIPAM-co-BMA-co-DMAPAAM) were characterized in detail. Results showed that GPM were successfully grafted with thermoresponsive cationic polymer brushes and that the gigaporous structure was well maintained. A column packed with GPM-P(NIPAM-co-BMA-co-DMAPAAM presented low backpressure, good permeability and appreciable thermo-responsibility. By changing pH of the mobile phase and temperature of the column in turn, the column can separate three model proteins at the mobile phase velocity up to 2528cmh(-1). A separation mechanism of this matrix was also proposed. All results indicate that the dual thermo- and pH-responsive chromatography matrix has great potentials in 'green' high-speed protein chromatography. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Columnar Segregation of Magnocellular and Parvocellular Streams in Human Extrastriate Cortex

    PubMed Central

    2017-01-01

    Magnocellular versus parvocellular (M-P) streams are fundamental to the organization of macaque visual cortex. Segregated, paired M-P streams extend from retina through LGN into V1. The M stream extends further into area V5/MT, and parts of V2. However, elsewhere in visual cortex, it remains unclear whether M-P-derived information (1) becomes intermixed or (2) remains segregated in M-P-dominated columns and neurons. Here we tested whether M-P streams exist in extrastriate cortical columns, in 8 human subjects (4 female). We acquired high-resolution fMRI at high field (7T), testing for M- and P-influenced columns within each of four cortical areas (V2, V3, V3A, and V4), based on known functional distinctions in M-P streams in macaque: (1) color versus luminance, (2) binocular disparity, (3) luminance contrast sensitivity, (4) peak spatial frequency, and (5) color/spatial interactions. Additional measurements of resting state activity (eyes closed) tested for segregated functional connections between these columns. We found M- and P-like functions and connections within and between segregated cortical columns in V2, V3, and (in most experiments) area V4. Area V3A was dominated by the M stream, without significant influence from the P stream. These results suggest that M-P streams exist, and extend through, specific columns in early/middle stages of human extrastriate cortex. SIGNIFICANCE STATEMENT The magnocellular and parvocellular (M-P) streams are fundamental components of primate visual cortical organization. These streams segregate both anatomical and functional properties in parallel, from retina through primary visual cortex. However, in most higher-order cortical sites, it is unknown whether such M-P streams exist and/or what form those streams would take. Moreover, it is unknown whether M-P streams exist in human cortex. Here, fMRI evidence measured at high field (7T) and high resolution revealed segregated M-P streams in four areas of human extrastriate cortex. These results suggest that M-P information is processed in segregated parallel channels throughout much of human visual cortex; the M-P streams are more than a convenient sorting property in earlier stages of the visual system. PMID:28724749

  17. Parallel processing and expert systems

    NASA Technical Reports Server (NTRS)

    Yan, Jerry C.; Lau, Sonie

    1991-01-01

    Whether it be monitoring the thermal subsystem of Space Station Freedom, or controlling the navigation of the autonomous rover on Mars, NASA missions in the 90's cannot enjoy an increased level of autonomy without the efficient use of expert systems. Merely increasing the computational speed of uniprocessors may not be able to guarantee that real time demands are met for large expert systems. Speed-up via parallel processing must be pursued alongside the optimization of sequential implementations. Prototypes of parallel expert systems have been built at universities and industrial labs in the U.S. and Japan. The state-of-the-art research in progress related to parallel execution of expert systems was surveyed. The survey is divided into three major sections: (1) multiprocessors for parallel expert systems; (2) parallel languages for symbolic computations; and (3) measurements of parallelism of expert system. Results to date indicate that the parallelism achieved for these systems is small. In order to obtain greater speed-ups, data parallelism and application parallelism must be exploited.

  18. Cascaded VLSI neural network architecture for on-line learning

    NASA Technical Reports Server (NTRS)

    Thakoor, Anilkumar P. (Inventor); Duong, Tuan A. (Inventor); Daud, Taher (Inventor)

    1992-01-01

    High-speed, analog, fully-parallel, and asynchronous building blocks are cascaded for larger sizes and enhanced resolution. A hardware compatible algorithm permits hardware-in-the-loop learning despite limited weight resolution. A computation intensive feature classification application was demonstrated with this flexible hardware and new algorithm at high speed. This result indicates that these building block chips can be embedded as an application specific coprocessor for solving real world problems at extremely high data rates.

  19. Cascaded VLSI neural network architecture for on-line learning

    NASA Technical Reports Server (NTRS)

    Duong, Tuan A. (Inventor); Daud, Taher (Inventor); Thakoor, Anilkumar P. (Inventor)

    1995-01-01

    High-speed, analog, fully-parallel and asynchronous building blocks are cascaded for larger sizes and enhanced resolution. A hardware-compatible algorithm permits hardware-in-the-loop learning despite limited weight resolution. A comparison-intensive feature classification application has been demonstrated with this flexible hardware and new algorithm at high speed. This result indicates that these building block chips can be embedded as application-specific-coprocessors for solving real-world problems at extremely high data rates.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vincena, Stephen

    The aim of the original proposal was a basic plasma study to experimentally investigate the fundamental physics of how dense, fast-flowing, and field-aligned jets of plasma couple energy and momentum to a much larger, ambient, magnetized plasma. Coupling channels that were explored included bulk plasma heating and flow generation; shock wave production; and wave radiation, particularly in the form of shear and compressional Alfvén waves. The wave radiation, particularly to shear Alfvén waves was successfully modeled using the 3D Particle-In-Cell code, OSIRIS. Experimentally, these jets were produced via pulsed Nd:YAG laser ablation of solid carbon (graphite) rods, which were immersedmore » in the main plasma column of the Large Plasma Device (LaPD) at UCLA’s Basic Plasma Science Facility (BaPSF.) The axial expansion of the laser-produced plasma (LPP) was supersonic and with parallel expansion speeds approximately equal to the Alfvén speed. The project was renewed and refocused efforts to then utilize the laser-produced plasmas as a tool for the disruption and reconnection of current sheets in magnetized plasmas« less

  1. RAMA: A file system for massively parallel computers

    NASA Technical Reports Server (NTRS)

    Miller, Ethan L.; Katz, Randy H.

    1993-01-01

    This paper describes a file system design for massively parallel computers which makes very efficient use of a few disks per processor. This overcomes the traditional I/O bottleneck of massively parallel machines by storing the data on disks within the high-speed interconnection network. In addition, the file system, called RAMA, requires little inter-node synchronization, removing another common bottleneck in parallel processor file systems. Support for a large tertiary storage system can easily be integrated in lo the file system; in fact, RAMA runs most efficiently when tertiary storage is used.

  2. Performance comparison of three types of high-speed counter-current chromatographs for the separation of components of hydrophilic and hydrophobic color additives.

    PubMed

    Weisz, Adrian; Ito, Yoichiro

    2011-09-09

    The performance of three types of high-speed counter-current chromatography (HSCCC) instruments was assessed for their use in separating components in hydrophilic and hydrophobic dye mixtures. The HSCCC instruments compared were: (i) a J-type coil planet centrifuge (CPC) system with a conventional multilayer-coil column, (ii) a J-type CPC system with a spiral-tube assembly-coil column, and (iii) a cross-axis CPC system with a multilayer-coil column. The hydrophilic dye mixture consisted of a sample of FD&C Blue No. 2 that contained mainly two isomeric components, 5,5'- and 5,7'-disulfonated indigo, in the ratio of ∼7:1. The hydrophobic dye mixture consisted of a sample of D&C Red No. 17 (mainly Sudan III) and Sudan II in the ratio of ∼4:1. The two-phase solvent systems used for these separations were 1-butanol/1.3M HCl and hexane/acetonitrile. Each of the three instruments was used in two experiments for the hydrophilic dye mixture and two for the hydrophobic dye mixture, for a total of 12 experiments. In one set of experiments, the lower phase was used as the mobile phase, and in the second set of experiments, the upper phase was used as the mobile phase. The results suggest that: (a) use of a J-type instrument with either a multilayer-coil column or a spiral-tube assembly column, applying the lower phase as the mobile phase, is preferable for separating the hydrophilic components of FD&C Blue No. 2; and (b) use of a J-type instrument with multilayer-coil column, while applying either the upper phase or the lower phase as the mobile phase, is preferable for separating the hydrophobic dye mixture of D&C Red No. 17 and Sudan II. Published by Elsevier B.V.

  3. Feeding Currents generated by Cassiopea jellyfish

    NASA Astrophysics Data System (ADS)

    Gaddam, M. G.; Santhanakrishnan, A.

    2016-02-01

    Feeding currents generated by organisms dwelling in the benthic boundary layer can enhance nutrient fluxes in coastal habitats with low-speed ambient flows. Patchy aggregations of Cassiopea medusae, commonly referred to as the "upside-down" jellyfish, are seen in sheltered marine environments such as mangrove forests and coral reefs in shallow regions saturated with sunlight. They exhibit a sessile, non-swimming lifestyle, and are oriented such that their bells are attached to the substrate and oral arms directed toward the free surface. Pulsations of their bells drive flow toward and away from the body, assisting in suspension feeding and for exchange of inorganic and organic matter across the water column. The feeding currents generated by aggregations of these medusae and subsequent effects on mixing in the water column have not been examined. We experimentally investigated currents generated by groups of Cassiopea medusae in a low-speed recirculating water tunnel. Multiple medusae grouping arrangements were tested in the tunnel based on time-lapse videos of the organisms obtained overnight in laboratory aquaria. Fluorescent dye introduced underneath the substrate was used to investigate release of porewater via bell motion. Quantitative flow visualization studies of Cassiopea currents were conducted using 2D high-speed particle image velocimetry. Vertical mixing of medusa-induced jets were observed in the presence of minimal background flow. The implications of feeding currents generated by groups of Cassiopea medusae on mixing in the water column will be presented.

  4. Parallelization of interpolation, solar radiation and water flow simulation modules in GRASS GIS using OpenMP

    NASA Astrophysics Data System (ADS)

    Hofierka, Jaroslav; Lacko, Michal; Zubal, Stanislav

    2017-10-01

    In this paper, we describe the parallelization of three complex and computationally intensive modules of GRASS GIS using the OpenMP application programming interface for multi-core computers. These include the v.surf.rst module for spatial interpolation, the r.sun module for solar radiation modeling and the r.sim.water module for water flow simulation. We briefly describe the functionality of the modules and parallelization approaches used in the modules. Our approach includes the analysis of the module's functionality, identification of source code segments suitable for parallelization and proper application of OpenMP parallelization code to create efficient threads processing the subtasks. We document the efficiency of the solutions using the airborne laser scanning data representing land surface in the test area and derived high-resolution digital terrain model grids. We discuss the performance speed-up and parallelization efficiency depending on the number of processor threads. The study showed a substantial increase in computation speeds on a standard multi-core computer while maintaining the accuracy of results in comparison to the output from original modules. The presented parallelization approach showed the simplicity and efficiency of the parallelization of open-source GRASS GIS modules using OpenMP, leading to an increased performance of this geospatial software on standard multi-core computers.

  5. Research on parallel combinatory spread spectrum communication system with double information matching

    NASA Astrophysics Data System (ADS)

    Xue, Wei; Wang, Qi; Wang, Tianyu

    2018-04-01

    This paper presents an improved parallel combinatory spread spectrum (PC/SS) communication system with the method of double information matching (DIM). Compared with conventional PC/SS system, the new model inherits the advantage of high transmission speed, large information capacity and high security. Besides, the problem traditional system will face is the high bit error rate (BER) and since its data-sequence mapping algorithm. Hence the new model presented shows lower BER and higher efficiency by its optimization of mapping algorithm.

  6. Efficient Parallel Levenberg-Marquardt Model Fitting towards Real-Time Automated Parametric Imaging Microscopy

    PubMed Central

    Zhu, Xiang; Zhang, Dianwen

    2013-01-01

    We present a fast, accurate and robust parallel Levenberg-Marquardt minimization optimizer, GPU-LMFit, which is implemented on graphics processing unit for high performance scalable parallel model fitting processing. GPU-LMFit can provide a dramatic speed-up in massive model fitting analyses to enable real-time automated pixel-wise parametric imaging microscopy. We demonstrate the performance of GPU-LMFit for the applications in superresolution localization microscopy and fluorescence lifetime imaging microscopy. PMID:24130785

  7. Minimal Power Latch for Single-Slope ADCs

    NASA Technical Reports Server (NTRS)

    Hancock, Bruce R.

    2013-01-01

    Column-parallel analog-to-digital converters (ADCs) for imagers involve simultaneous operation of many ADCs. Single-slope ADCs are well adapted to this use because of their simplicity. Each ADC contains a comparator, comparing its input signal level to an increasing reference signal (ramp). When the ramp is equal to the input, the comparator triggers a latch that captures an encoded counter value (code). Knowing the captured code, the ramp value and hence the input signal are determined. In a column-parallel ADC, each column contains only the comparator and the latches; the ramp and code generation are shared. In conventional latch or flip-flop circuits, there is an input stage that tracks the input signal, and this stage consumes switching current every time the input changes. With many columns, many bits, and high code rates, this switching current can be substantial. It will also generate noise that may corrupt the analog signals. A latch was designed that does not track the input, and consumes power only at the instant of latching the data value. The circuit consists of two S-R (set-reset) latches, gated by the comparator. One is set by high data values and the other by low data values. The latches are cross-coupled so that the first one to set blocks the other. In order that the input data not need an inversion, which would consume power, the two latches are made in complementary polarity. This requires complementary gates from the comparator, instead of complementary data values, but the comparator only triggers once per conversion, and usually has complementary outputs to begin with. An efficient CMOS (complementary metal oxide semiconductor) implementation of this circuit is shown in the figure, where C is the comparator output, D is the data (code), and Q0 and Q1 are the outputs indicating the capture of a zero or one value. The latch for Q0 has a negative-true set signal and output, and is implemented using OR-AND-INVERT logic, while the latch for Q1 uses positive- true signals and is implemented using AND-OR-INVERT logic. In this implementation, both latches are cleared when the comparator is reset. Two redundant transistors are removed from the reset side of each latch, making for a compact layout. CMOS imagers with column-parallel ADCs have demonstrated high performance for remote sensing applications. With this latch circuit, the power consumption and noise can be further reduced. This innovation can be used in CMOS imagers and very-low-power electronics

  8. Void fraction, bubble size and interfacial area measurements in co-current downflow bubble column reactor with microbubble dispersion

    DOE PAGES

    Hernandez-Alvarado, Freddy; Kalaga, Dinesh V.; Turney, Damon; ...

    2017-05-06

    Micro-bubbles dispersed in bubble column reactors have received great interest in recent years, due to their small size, stability, high gas-liquid interfacial area concentrations and longer residence times. The high gas-liquid interfacial area concentrations lead to high mass transfer rates compared to conventional bubble column reactors. In the present work, experiments have been performed in a down-flow bubble column reactor with micro-bubbles generated and dispersed by a novel mechanism to determine the gas-liquid interfacial area concentrations by measuring the void fraction and bubble size distributions. Gamma-ray densitometry has been employed to determine the axial and radial distributions of void fractionmore » and a high speed camera equipped with a borescope is used to measure the axial and radial variations of bubble sizes. Also, the effects of superficial gas and liquid velocities on the two-phase flow characteristics have been investigated. Further, reconstruction techniques of the radial void fraction profiles from the gamma densitometry's chordal measurements are discussed and compared for a bubble column reactor with dispersed micro-bubbles. The results demonstrate that the new bubble generation technique offers high interfacial area concentrations (1,000 to 4,500 m 2/m 3) with sub-millimeter bubbles (500 to 900 µm) and high overall void fractions (10% – 60%) in comparison with previous bubble column reactor designs. The void fraction data was analyzed using slip velocity model and empirical correlation has been proposed to predict the Sauter mean bubble diameter.« less

  9. Void fraction, bubble size and interfacial area measurements in co-current downflow bubble column reactor with microbubble dispersion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hernandez-Alvarado, Freddy; Kalaga, Dinesh V.; Turney, Damon

    Micro-bubbles dispersed in bubble column reactors have received great interest in recent years, due to their small size, stability, high gas-liquid interfacial area concentrations and longer residence times. The high gas-liquid interfacial area concentrations lead to high mass transfer rates compared to conventional bubble column reactors. In the present work, experiments have been performed in a down-flow bubble column reactor with micro-bubbles generated and dispersed by a novel mechanism to determine the gas-liquid interfacial area concentrations by measuring the void fraction and bubble size distributions. Gamma-ray densitometry has been employed to determine the axial and radial distributions of void fractionmore » and a high speed camera equipped with a borescope is used to measure the axial and radial variations of bubble sizes. Also, the effects of superficial gas and liquid velocities on the two-phase flow characteristics have been investigated. Further, reconstruction techniques of the radial void fraction profiles from the gamma densitometry's chordal measurements are discussed and compared for a bubble column reactor with dispersed micro-bubbles. The results demonstrate that the new bubble generation technique offers high interfacial area concentrations (1,000 to 4,500 m 2/m 3) with sub-millimeter bubbles (500 to 900 µm) and high overall void fractions (10% – 60%) in comparison with previous bubble column reactor designs. The void fraction data was analyzed using slip velocity model and empirical correlation has been proposed to predict the Sauter mean bubble diameter.« less

  10. Programmable selectivity for GC with series-coupled columns using pulsed heating of the second column.

    PubMed

    Whiting, Joshua; Sacks, Richard

    2003-05-15

    A series-coupled ensemble of a nonpolar dimethyl polysiloxane column and a polar trifluoropropylmethyl polysiloxane column with independent at-column heating is used to obtain pulsed heating of the second column. For mixture component bands that are separated by the first column but coelute from the column ensemble, a temperature pulse is initiated after the first of the two components has crossed the column junction point and is in the second column, while the other component is still in the first column. This accelerates the band for the first component. If the second column cools sufficiently prior to the second component band crossing the junction, the second band experiences less acceleration, and increased separation is observed for the corresponding peaks in the ensemble chromatogram. High-speed at-column heating is obtained by wrapping the fused-silica capillary column with resistance heater wire and sensor wire. Rapid heating for a temperature pulse is obtained with a short-duration linear heating ramp of 1000 degrees C/min. During a pulse, the second-column temperature increases by 20-100 degrees C in a few seconds. Using a cold gas environment, cooling to a quiescent temperature of 30 degrees C can be obtained in approximately 25 s. The effects of temperature pulse initiation time and amplitude on ensemble peak separation and resolution are described. A series of appropriately timed temperature pulses is used to separate three coeluting pairs of components in a 13-component mixture.

  11. Sensing Impacts of the Fate of Trace Explosives Signatures Under Environmental Conditions

    DTIC Science & Technology

    2010-01-01

    vial with a pair of clean metal tweezers. A 10 mL aliquot of CHROMASOLV® Plus HPLC -grade acetone was dispensed on the wide surfaces of the sample...Evaporator Workstation under a nitrogen purge stream in a 50 ºC water bath and reconstituted with CHROMASOLV® HPLC -grade acetonitrile to 500 L... simultaneously on the two parallel GC columns, using a refrigerated (ɠ °C) 100-vial autosampler and two parallel auto-injectors. Column 1 (Restek 562719

  12. JPARSS: A Java Parallel Network Package for Grid Computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Jie; Akers, Walter; Chen, Ying

    2002-03-01

    The emergence of high speed wide area networks makes grid computinga reality. However grid applications that need reliable data transfer still have difficulties to achieve optimal TCP performance due to network tuning of TCP window size to improve bandwidth and to reduce latency on a high speed wide area network. This paper presents a Java package called JPARSS (Java Parallel Secure Stream (Socket)) that divides data into partitions that are sent over several parallel Java streams simultaneously and allows Java or Web applications to achieve optimal TCP performance in a grid environment without the necessity of tuning TCP window size.more » This package enables single sign-on, certificate delegation and secure or plain-text data transfer using several security components based on X.509 certificate and SSL. Several experiments will be presented to show that using Java parallelstreams is more effective than tuning TCP window size. In addition a simple architecture using Web services« less

  13. Acceleration of low-energy ions at parallel shocks with a focused transport model

    DOE PAGES

    Zuo, Pingbing; Zhang, Ming; Rassoul, Hamid K.

    2013-04-10

    Here, we present a test particle simulation on the injection and acceleration of low-energy suprathermal particles by parallel shocks with a focused transport model. The focused transport equation contains all necessary physics of shock acceleration, but avoids the limitation of diffusive shock acceleration (DSA) that requires a small pitch angle anisotropy. This simulation verifies that the particles with speeds of a fraction of to a few times the shock speed can indeed be directly injected and accelerated into the DSA regime by parallel shocks. At higher energies starting from a few times the shock speed, the energy spectrum of acceleratedmore » particles is a power law with the same spectral index as the solution of standard DSA theory, although the particles are highly anisotropic in the upstream region. The intensity, however, is different from that predicted by DSA theory, indicating a different level of injection efficiency. It is found that the shock strength, the injection speed, and the intensity of an electric cross-shock potential (CSP) jump can affect the injection efficiency of the low-energy particles. A stronger shock has a higher injection efficiency. In addition, if the speed of injected particles is above a few times the shock speed, the produced power-law spectrum is consistent with the prediction of standard DSA theory in both its intensity and spectrum index with an injection efficiency of 1. CSP can increase the injection efficiency through direct particle reflection back upstream, but it has little effect on the energetic particle acceleration once the speed of injected particles is beyond a few times the shock speed. This test particle simulation proves that the focused transport theory is an extension of DSA theory with the capability of predicting the efficiency of particle injection.« less

  14. Computer modeling design of a frame pier for a high-speed railway project

    NASA Astrophysics Data System (ADS)

    Shi, Jing-xian; Fan, Jiang

    2018-03-01

    In this paper, a double line pier on a high-speed railway in China is taken as an example. the size of each location is drawn up firstly. The design of pre-stressed steel beam for its crossbeam is carried out, and the configuration of ordinary reinforcement is carried out for concrete piers. Combined with bridge structure analysis software Midas Civil and BSAS, the frame pier is modeled and calculated. The results show that the beam and pier column section size reasonable design of pre-stressed steel beam with 17-7V5 high strength low relaxation steel strand, can meet the requirements of high speed railway carrying capacity; the main reinforcement of pier shaft with HRB400 diameter is 28mm, ring arranged around the pier, can satisfy the eccentric compression strength, stiffness and stability requirements, also meet the requirements of seismic design.

  15. Comprehensive two-dimensional HPLC to study the interaction of multiple components in Rheum palmatum L. with HSA by coupling a silica-bonded HSA column to a silica monolithic ODS column.

    PubMed

    Hu, Lianghai; Li, Xin; Feng, Shun; Kong, Liang; Su, Xingye; Chen, Xueguo; Qin, Feng; Ye, Mingliang; Zou, Hanfa

    2006-04-01

    A mode of comprehensive 2-D LC was developed by coupling a silica-bonded HSA column to a silica monolithic ODS column. This system combined the affinity property of the HSA column and the high-speed separation ability of the monolithic ODS column. The affinity chromatography with HSA-immobilized stationary phase was applied to study the interaction of multiple components in traditional Chinese medicines (TCMs) with HSA according to their affinity to protein in the first dimension. Then the unresolved components retained on the HSA column were further separated on the silica monolithic ODS column in the second dimension. By hyphenating the 2-D separation system to diode array detector and MS detectors, the UV and molecular weight information of the separated compounds can also be obtained. The developed separation system was applied to analysis of the extract of Rheum palmatum L., a number of low-abundant components can be separated on a single peak from the HSA column after normalization of peak heights. Six compounds were preliminarily identified according to their UV and MS spectra. It showed that this system was very useful for biological fingerprinting analysis of the components in TCMs and natural products.

  16. Effects of changes in size, speed and distance on the perception of curved 3D trajectories

    PubMed Central

    Zhang, Junjun; Braunstein, Myron L.; Andersen, George J.

    2012-01-01

    Previous research on the perception of 3D object motion has considered time to collision, time to passage, collision detection and judgments of speed and direction of motion, but has not directly studied the perception of the overall shape of the motion path. We examined the perception of the magnitude of curvature and sign of curvature of the motion path for objects moving at eye level in a horizontal plane parallel to the line of sight. We considered two sources of information for the perception of motion trajectories: changes in angular size and changes in angular speed. Three experiments examined judgments of relative curvature for objects moving at different distances. At the closest distance studied, accuracy was high with size information alone but near chance with speed information alone. At the greatest distance, accuracy with size information alone decreased sharply but accuracy for displays with both size and speed information remained high. We found similar results in two experiments with judgments of sign of curvature. Accuracy was higher for displays with both size and speed information than with size information alone, even when the speed information was based on parallel projections and was not informative about sign of curvature. For both magnitude of curvature and sign of curvature judgments, information indicating that the trajectory was curved increased accuracy, even when this information was not directly relevant to the required judgment. PMID:23007204

  17. Recovery of high purity phosphorus from municipal wastewater secondary effluent by a high-speed adsorbent.

    PubMed

    Midorikawa, I; Aoki, H; Omori, A; Shimizu, T; Kawaguchi, Y; Kassai, K; Murakami, T

    2008-01-01

    High purity phosphorus was recovered from municipal wastewater secondary effluent as phosphate, using a newly developed phosphorus adsorption and recovery system. A high-speed adsorbent having a unique porous structure was used in this system. The secondary effluent, showing total phosphorus (TP) of 0.1-2.1 mg P/L, was passed through an adsorbent packed column at high space velocity (SV) of 15 h(-1). The TP of the treated water was as low as 0.02-0.04 mg P/L, indicating that 97% of phosphorus in the secondary effluent was removed. The removed phosphorus was desorbed from the adsorbent by passing a sodium hydroxide aqueous solution through the column. Calcium hydroxide was added to this solution to precipitate the phosphorus as calcium phosphate. This precipitate was neutralized with hydrochloric acid aqueous solution, washed with water, and then solid-liquid separation was performed for the phosphorus recovery. The main constituent of the recovered phosphorus was apatite-type calcium phosphate, with 16% phosphorus content, which matched that of high-grade phosphorus ore. The hazardous elements content of the recovered phosphorus was exceedingly low. Therefore the recovered phosphorus can be applied to an alternative for phosphorus ore, or to a phosphate fertilizer. IWA Publishing 2008.

  18. Three-dimensional Finite Element Formulation and Scalable Domain Decomposition for High Fidelity Rotor Dynamic Analysis

    NASA Technical Reports Server (NTRS)

    Datta, Anubhav; Johnson, Wayne R.

    2009-01-01

    This paper has two objectives. The first objective is to formulate a 3-dimensional Finite Element Model for the dynamic analysis of helicopter rotor blades. The second objective is to implement and analyze a dual-primal iterative substructuring based Krylov solver, that is parallel and scalable, for the solution of the 3-D FEM analysis. The numerical and parallel scalability of the solver is studied using two prototype problems - one for ideal hover (symmetric) and one for a transient forward flight (non-symmetric) - both carried out on up to 48 processors. In both hover and forward flight conditions, a perfect linear speed-up is observed, for a given problem size, up to the point of substructure optimality. Substructure optimality and the linear parallel speed-up range are both shown to depend on the problem size as well as on the selection of the coarse problem. With a larger problem size, linear speed-up is restored up to the new substructure optimality. The solver also scales with problem size - even though this conclusion is premature given the small prototype grids considered in this study.

  19. An accurate, fast, and scalable solver for high-frequency wave propagation

    NASA Astrophysics Data System (ADS)

    Zepeda-Núñez, L.; Taus, M.; Hewett, R.; Demanet, L.

    2017-12-01

    In many science and engineering applications, solving time-harmonic high-frequency wave propagation problems quickly and accurately is of paramount importance. For example, in geophysics, particularly in oil exploration, such problems can be the forward problem in an iterative process for solving the inverse problem of subsurface inversion. It is important to solve these wave propagation problems accurately in order to efficiently obtain meaningful solutions of the inverse problems: low order forward modeling can hinder convergence. Additionally, due to the volume of data and the iterative nature of most optimization algorithms, the forward problem must be solved many times. Therefore, a fast solver is necessary to make solving the inverse problem feasible. For time-harmonic high-frequency wave propagation, obtaining both speed and accuracy is historically challenging. Recently, there have been many advances in the development of fast solvers for such problems, including methods which have linear complexity with respect to the number of degrees of freedom. While most methods scale optimally only in the context of low-order discretizations and smooth wave speed distributions, the method of polarized traces has been shown to retain optimal scaling for high-order discretizations, such as hybridizable discontinuous Galerkin methods and for highly heterogeneous (and even discontinuous) wave speeds. The resulting fast and accurate solver is consequently highly attractive for geophysical applications. To date, this method relies on a layered domain decomposition together with a preconditioner applied in a sweeping fashion, which has limited straight-forward parallelization. In this work, we introduce a new version of the method of polarized traces which reveals more parallel structure than previous versions while preserving all of its other advantages. We achieve this by further decomposing each layer and applying the preconditioner to these new components separately and in parallel. We demonstrate that this produces an even more effective and parallelizable preconditioner for a single right-hand side. As before, additional speed can be gained by pipelining several right-hand-sides.

  20. Resonant tunnelling diode based high speed optoelectronic transmitters

    NASA Astrophysics Data System (ADS)

    Wang, Jue; Rodrigues, G. C.; Al-Khalidi, Abdullah; Figueiredo, José M. L.; Wasige, Edward

    2017-08-01

    Resonant tunneling diode (RTD) integration with photo detector (PD) from epi-layer design shows great potential for combining terahertz (THz) RTD electronic source with high speed optical modulation. With an optimized layer structure, the RTD-PD presented in the paper shows high stationary responsivity of 5 A/W at 1310 nm wavelength. High power microwave/mm-wave RTD-PD optoelectronic oscillators are proposed. The circuitry employs two RTD-PD devices in parallel. The oscillation frequencies range from 20-44 GHz with maximum attainable power about 1 mW at 34/37/44GHz.

  1. FPGA implementation of a biological neural network based on the Hodgkin-Huxley neuron model

    PubMed Central

    Yaghini Bonabi, Safa; Asgharian, Hassan; Safari, Saeed; Nili Ahmadabadi, Majid

    2014-01-01

    A set of techniques for efficient implementation of Hodgkin-Huxley-based (H-H) model of a neural network on FPGA (Field Programmable Gate Array) is presented. The central implementation challenge is H-H model complexity that puts limits on the network size and on the execution speed. However, basics of the original model cannot be compromised when effect of synaptic specifications on the network behavior is the subject of study. To solve the problem, we used computational techniques such as CORDIC (Coordinate Rotation Digital Computer) algorithm and step-by-step integration in the implementation of arithmetic circuits. In addition, we employed different techniques such as sharing resources to preserve the details of model as well as increasing the network size in addition to keeping the network execution speed close to real time while having high precision. Implementation of a two mini-columns network with 120/30 excitatory/inhibitory neurons is provided to investigate the characteristic of our method in practice. The implementation techniques provide an opportunity to construct large FPGA-based network models to investigate the effect of different neurophysiological mechanisms, like voltage-gated channels and synaptic activities, on the behavior of a neural network in an appropriate execution time. Additional to inherent properties of FPGA, like parallelism and re-configurability, our approach makes the FPGA-based system a proper candidate for study on neural control of cognitive robots and systems as well. PMID:25484854

  2. Massively parallel information processing systems for space applications

    NASA Technical Reports Server (NTRS)

    Schaefer, D. H.

    1979-01-01

    NASA is developing massively parallel systems for ultra high speed processing of digital image data collected by satellite borne instrumentation. Such systems contain thousands of processing elements. Work is underway on the design and fabrication of the 'Massively Parallel Processor', a ground computer containing 16,384 processing elements arranged in a 128 x 128 array. This computer uses existing technology. Advanced work includes the development of semiconductor chips containing thousands of feedthrough paths. Massively parallel image analog to digital conversion technology is also being developed. The goal is to provide compact computers suitable for real-time onboard processing of images.

  3. Evolving binary classifiers through parallel computation of multiple fitness cases.

    PubMed

    Cagnoni, Stefano; Bergenti, Federico; Mordonini, Monica; Adorni, Giovanni

    2005-06-01

    This paper describes two versions of a novel approach to developing binary classifiers, based on two evolutionary computation paradigms: cellular programming and genetic programming. Such an approach achieves high computation efficiency both during evolution and at runtime. Evolution speed is optimized by allowing multiple solutions to be computed in parallel. Runtime performance is optimized explicitly using parallel computation in the case of cellular programming or implicitly taking advantage of the intrinsic parallelism of bitwise operators on standard sequential architectures in the case of genetic programming. The approach was tested on a digit recognition problem and compared with a reference classifier.

  4. Global Magnetohydrodynamic Simulation Using High Performance FORTRAN on Parallel Computers

    NASA Astrophysics Data System (ADS)

    Ogino, T.

    High Performance Fortran (HPF) is one of modern and common techniques to achieve high performance parallel computation. We have translated a 3-dimensional magnetohydrodynamic (MHD) simulation code of the Earth's magnetosphere from VPP Fortran to HPF/JA on the Fujitsu VPP5000/56 vector-parallel supercomputer and the MHD code was fully vectorized and fully parallelized in VPP Fortran. The entire performance and capability of the HPF MHD code could be shown to be almost comparable to that of VPP Fortran. A 3-dimensional global MHD simulation of the earth's magnetosphere was performed at a speed of over 400 Gflops with an efficiency of 76.5 VPP5000/56 in vector and parallel computation that permitted comparison with catalog values. We have concluded that fluid and MHD codes that are fully vectorized and fully parallelized in VPP Fortran can be translated with relative ease to HPF/JA, and a code in HPF/JA may be expected to perform comparably to the same code written in VPP Fortran.

  5. Scalable parallel communications

    NASA Technical Reports Server (NTRS)

    Maly, K.; Khanna, S.; Overstreet, C. M.; Mukkamala, R.; Zubair, M.; Sekhar, Y. S.; Foudriat, E. C.

    1992-01-01

    Coarse-grain parallelism in networking (that is, the use of multiple protocol processors running replicated software sending over several physical channels) can be used to provide gigabit communications for a single application. Since parallel network performance is highly dependent on real issues such as hardware properties (e.g., memory speeds and cache hit rates), operating system overhead (e.g., interrupt handling), and protocol performance (e.g., effect of timeouts), we have performed detailed simulations studies of both a bus-based multiprocessor workstation node (based on the Sun Galaxy MP multiprocessor) and a distributed-memory parallel computer node (based on the Touchstone DELTA) to evaluate the behavior of coarse-grain parallelism. Our results indicate: (1) coarse-grain parallelism can deliver multiple 100 Mbps with currently available hardware platforms and existing networking protocols (such as Transmission Control Protocol/Internet Protocol (TCP/IP) and parallel Fiber Distributed Data Interface (FDDI) rings); (2) scale-up is near linear in n, the number of protocol processors, and channels (for small n and up to a few hundred Mbps); and (3) since these results are based on existing hardware without specialized devices (except perhaps for some simple modifications of the FDDI boards), this is a low cost solution to providing multiple 100 Mbps on current machines. In addition, from both the performance analysis and the properties of these architectures, we conclude: (1) multiple processors providing identical services and the use of space division multiplexing for the physical channels can provide better reliability than monolithic approaches (it also provides graceful degradation and low-cost load balancing); (2) coarse-grain parallelism supports running several transport protocols in parallel to provide different types of service (for example, one TCP handles small messages for many users, other TCP's running in parallel provide high bandwidth service to a single application); and (3) coarse grain parallelism will be able to incorporate many future improvements from related work (e.g., reduced data movement, fast TCP, fine-grain parallelism) also with near linear speed-ups.

  6. Limits to high-speed simulations of spiking neural networks using general-purpose computers.

    PubMed

    Zenke, Friedemann; Gerstner, Wulfram

    2014-01-01

    To understand how the central nervous system performs computations using recurrent neuronal circuitry, simulations have become an indispensable tool for theoretical neuroscience. To study neuronal circuits and their ability to self-organize, increasing attention has been directed toward synaptic plasticity. In particular spike-timing-dependent plasticity (STDP) creates specific demands for simulations of spiking neural networks. On the one hand a high temporal resolution is required to capture the millisecond timescale of typical STDP windows. On the other hand network simulations have to evolve over hours up to days, to capture the timescale of long-term plasticity. To do this efficiently, fast simulation speed is the crucial ingredient rather than large neuron numbers. Using different medium-sized network models consisting of several thousands of neurons and off-the-shelf hardware, we compare the simulation speed of the simulators: Brian, NEST and Neuron as well as our own simulator Auryn. Our results show that real-time simulations of different plastic network models are possible in parallel simulations in which numerical precision is not a primary concern. Even so, the speed-up margin of parallelism is limited and boosting simulation speeds beyond one tenth of real-time is difficult. By profiling simulation code we show that the run times of typical plastic network simulations encounter a hard boundary. This limit is partly due to latencies in the inter-process communications and thus cannot be overcome by increased parallelism. Overall, these results show that to study plasticity in medium-sized spiking neural networks, adequate simulation tools are readily available which run efficiently on small clusters. However, to run simulations substantially faster than real-time, special hardware is a prerequisite.

  7. A High-Speed Design of Montgomery Multiplier

    NASA Astrophysics Data System (ADS)

    Fan, Yibo; Ikenaga, Takeshi; Goto, Satoshi

    With the increase of key length used in public cryptographic algorithms such as RSA and ECC, the speed of Montgomery multiplication becomes a bottleneck. This paper proposes a high speed design of Montgomery multiplier. Firstly, a modified scalable high-radix Montgomery algorithm is proposed to reduce critical path. Secondly, a high-radix clock-saving dataflow is proposed to support high-radix operation and one clock cycle delay in dataflow. Finally, a hardware-reused architecture is proposed to reduce the hardware cost and a parallel radix-16 design of data path is proposed to accelerate the speed. By using HHNEC 0.25μm standard cell library, the implementation results show that the total cost of Montgomery multiplier is 130 KGates, the clock frequency is 180MHz and the throughput of 1024-bit RSA encryption is 352kbps. This design is suitable to be used in high speed RSA or ECC encryption/decryption. As a scalable design, it supports any key-length encryption/decryption up to the size of on-chip memory.

  8. Heat Transfer in the Turbulent Boundary Layer of a Compressible Gas at High Speeds

    NASA Technical Reports Server (NTRS)

    Frankl, F.

    1942-01-01

    The Reynolds law of heat transfer from a wall to a turbulent stream is extended to the case of flow of a compressible gas at high speeds. The analysis is based on the modern theory of the turbulent boundary layer with laminar sublayer. The investigation is carried out for the case of a plate situated in a parallel stream. The results are obtained independently of the velocity distribution in the turbulent boundar layer.

  9. High-speed liquid chromatographic determination of pilocarpine in pharmaceutical dosage forms.

    PubMed

    Khalil, S K

    1977-11-01

    A specific method for the direct determination of pilocarpine in aqueous pharmaceuticals in the presence of decomposition products, methylcellulose, and other ingredients usually present in pharmaceuticals is described. The method involves separation by high-speed liquid chromatography using, in series, octadecylsilane bonded to silica and cyanopropylsilane bonded to silica columns and a tetrahydrofuran-pH 9.2 borate buffer (3:7) eluant. Quantitation is achieved by monitoring the absorbance of the effluent at 254 nm and using a pyridine internal standard and a calibration curve prepared from known concentrations of pilocarpine nitrate. The reproducibility of the retention time and peak area was better than 2.0%.

  10. Large-scale three-dimensional phase-field simulations for phase coarsening at ultrahigh volume fraction on high-performance architectures

    NASA Astrophysics Data System (ADS)

    Yan, Hui; Wang, K. G.; Jones, Jim E.

    2016-06-01

    A parallel algorithm for large-scale three-dimensional phase-field simulations of phase coarsening is developed and implemented on high-performance architectures. From the large-scale simulations, a new kinetics in phase coarsening in the region of ultrahigh volume fraction is found. The parallel implementation is capable of harnessing the greater computer power available from high-performance architectures. The parallelized code enables increase in three-dimensional simulation system size up to a 5123 grid cube. Through the parallelized code, practical runtime can be achieved for three-dimensional large-scale simulations, and the statistical significance of the results from these high resolution parallel simulations are greatly improved over those obtainable from serial simulations. A detailed performance analysis on speed-up and scalability is presented, showing good scalability which improves with increasing problem size. In addition, a model for prediction of runtime is developed, which shows a good agreement with actual run time from numerical tests.

  11. Fine structure of Galactic foreground ISM towards high-redshift AGN - utilizing Herschel PACS and SPIRE data

    NASA Astrophysics Data System (ADS)

    Perger, K.; Pinter, S.; Frey, S.; Tóth, L. V.

    2018-05-01

    One of the most certain ways to determine star formation rate in galaxies is based on far infrared (FIR) measurements. To decide the origin of the observed FIR emission, subtracting the Galactic foreground is a crucial step. We utilized Herschel photometric data to determine the hydrogen column densities in three galactic latitude regions, at b = 27°, 50° and -80°. We applied a pixel-by-pixel fit to the spectral energy distribution (SED) for the images aquired from parallel PACS-SPIRE observations in all three sky areas. We determined the column densities with resolutions 45'' and 6', and compared the results with values estimated from the IRAS dust maps. Column densities at 27° and 50° galactic latitudes determined from the Herschel data are in a good agreement with the literature values. However, at the highest galactic latitude we found that the column densities from the Herschel data exceed those derived from the IRAS dust map.

  12. Isolation of two new prenylated flavonoids from Sinopodophyllum emodi fruit by silica gel column and high-speed counter-current chromatography.

    PubMed

    Sun, Yanjun; Sun, Yinshi; Chen, Hui; Hao, Zhiyou; Wang, Junmin; Guan, Yanbin; Zhang, Yanli; Feng, Weisheng; Zheng, Xiaoke

    2014-10-15

    Two new prenylated flavonoids, sinoflavonoids A-B, were isolated from the dried fruits of Sinopodophyllum emodi by silica gel column chromatography (SGCC) and high-speed counter-current chromatography (HSCCC). The 95% ethanol extract was partitioned with petroleum ether, dichloromethane, ethyl acetate, and n-butanol in water, respectively. The ethyl acetate fraction was pre-separated by SGCC with a petroleum ether-acetone gradient. The eluates containing target compounds were further separated by HSCCC with n-hexane-ethyl acetate-methanol-water (4:6:4:4, v/v). Finally, 17.3mg of sinoflavonoid A and 25.9mg of sinoflavonoid B were obtained from 100mg of the pretreated concentrate. The purities of sinoflavonoid A and sinoflavonoid B were 98.47% and 99.38%, respectively, as determined by HPLC. Their structures were elucidated on the basis of spectroscopic evidences (HR-ESI-MS, (1)H-NMR, (13)C-NMR, HSQC, HMBC). The separation procedures proved to be efficient, especially for trace prenylated flavonoids. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Fast Whole-Engine Stirling Analysis

    NASA Technical Reports Server (NTRS)

    Dyson, Rodger W.; Wilson, Scott D.; Tew, Roy C.; Demko, Rikako

    2006-01-01

    This presentation discusses the simulation approach to whole-engine for physical consistency, REV regenerator modeling, grid layering for smoothness, and quality, conjugate heat transfer method adjustment, high-speed low cost parallel cluster, and debugging.

  14. Multiprocessor speed-up, Amdahl's Law, and the Activity Set Model of parallel program behavior

    NASA Technical Reports Server (NTRS)

    Gelenbe, Erol

    1988-01-01

    An important issue in the effective use of parallel processing is the estimation of the speed-up one may expect as a function of the number of processors used. Amdahl's Law has traditionally provided a guideline to this issue, although it appears excessively pessimistic in the light of recent experimental results. In this note, Amdahl's Law is amended by giving a greater importance to the capacity of a program to make effective use of parallel processing, but also recognizing the fact that imbalance of the workload of each processor is bound to occur. An activity set model of parallel program behavior is then introduced along with the corresponding parallelism index of a program, leading to upper and lower bounds to the speed-up.

  15. Microchannel cross load array with dense parallel input

    DOEpatents

    Swierkowski, Stefan P.

    2004-04-06

    An architecture or layout for microchannel arrays using T or Cross (+) loading for electrophoresis or other injection and separation chemistry that are performed in microfluidic configurations. This architecture enables a very dense layout of arrays of functionally identical shaped channels and it also solves the problem of simultaneously enabling efficient parallel shapes and biasing of the input wells, waste wells, and bias wells at the input end of the separation columns. One T load architecture uses circular holes with common rows, but not columns, which allows the flow paths for each channel to be identical in shape, using multiple mirror image pieces. Another T load architecture enables the access hole array to be formed on a biaxial, collinear grid suitable for EDM micromachining (square holes), with common rows and columns.

  16. Parameters that affect parallel processing for computational electromagnetic simulation codes on high performance computing clusters

    NASA Astrophysics Data System (ADS)

    Moon, Hongsik

    What is the impact of multicore and associated advanced technologies on computational software for science? Most researchers and students have multicore laptops or desktops for their research and they need computing power to run computational software packages. Computing power was initially derived from Central Processing Unit (CPU) clock speed. That changed when increases in clock speed became constrained by power requirements. Chip manufacturers turned to multicore CPU architectures and associated technological advancements to create the CPUs for the future. Most software applications benefited by the increased computing power the same way that increases in clock speed helped applications run faster. However, for Computational ElectroMagnetics (CEM) software developers, this change was not an obvious benefit - it appeared to be a detriment. Developers were challenged to find a way to correctly utilize the advancements in hardware so that their codes could benefit. The solution was parallelization and this dissertation details the investigation to address these challenges. Prior to multicore CPUs, advanced computer technologies were compared with the performance using benchmark software and the metric was FLoting-point Operations Per Seconds (FLOPS) which indicates system performance for scientific applications that make heavy use of floating-point calculations. Is FLOPS an effective metric for parallelized CEM simulation tools on new multicore system? Parallel CEM software needs to be benchmarked not only by FLOPS but also by the performance of other parameters related to type and utilization of the hardware, such as CPU, Random Access Memory (RAM), hard disk, network, etc. The codes need to be optimized for more than just FLOPs and new parameters must be included in benchmarking. In this dissertation, the parallel CEM software named High Order Basis Based Integral Equation Solver (HOBBIES) is introduced. This code was developed to address the needs of the changing computer hardware platforms in order to provide fast, accurate and efficient solutions to large, complex electromagnetic problems. The research in this dissertation proves that the performance of parallel code is intimately related to the configuration of the computer hardware and can be maximized for different hardware platforms. To benchmark and optimize the performance of parallel CEM software, a variety of large, complex projects are created and executed on a variety of computer platforms. The computer platforms used in this research are detailed in this dissertation. The projects run as benchmarks are also described in detail and results are presented. The parameters that affect parallel CEM software on High Performance Computing Clusters (HPCC) are investigated. This research demonstrates methods to maximize the performance of parallel CEM software code.

  17. Real-time SHVC software decoding with multi-threaded parallel processing

    NASA Astrophysics Data System (ADS)

    Gudumasu, Srinivas; He, Yuwen; Ye, Yan; He, Yong; Ryu, Eun-Seok; Dong, Jie; Xiu, Xiaoyu

    2014-09-01

    This paper proposes a parallel decoding framework for scalable HEVC (SHVC). Various optimization technologies are implemented on the basis of SHVC reference software SHM-2.0 to achieve real-time decoding speed for the two layer spatial scalability configuration. SHVC decoder complexity is analyzed with profiling information. The decoding process at each layer and the up-sampling process are designed in parallel and scheduled by a high level application task manager. Within each layer, multi-threaded decoding is applied to accelerate the layer decoding speed. Entropy decoding, reconstruction, and in-loop processing are pipeline designed with multiple threads based on groups of coding tree units (CTU). A group of CTUs is treated as a processing unit in each pipeline stage to achieve a better trade-off between parallelism and synchronization. Motion compensation, inverse quantization, and inverse transform modules are further optimized with SSE4 SIMD instructions. Simulations on a desktop with an Intel i7 processor 2600 running at 3.4 GHz show that the parallel SHVC software decoder is able to decode 1080p spatial 2x at up to 60 fps (frames per second) and 1080p spatial 1.5x at up to 50 fps for those bitstreams generated with SHVC common test conditions in the JCT-VC standardization group. The decoding performance at various bitrates with different optimization technologies and different numbers of threads are compared in terms of decoding speed and resource usage, including processor and memory.

  18. Implementation of a high-speed face recognition system that uses an optical parallel correlator.

    PubMed

    Watanabe, Eriko; Kodate, Kashiko

    2005-02-10

    We implement a fully automatic fast face recognition system by using a 1000 frame/s optical parallel correlator designed and assembled by us. The operational speed for the 1:N (i.e., matching one image against N, where N refers to the number of images in the database) identification experiment (4000 face images) amounts to less than 1.5 s, including the preprocessing and postprocessing times. The binary real-only matched filter is devised for the sake of face recognition, and the system is optimized by the false-rejection rate (FRR) and the false-acceptance rate (FAR), according to 300 samples selected by the biometrics guideline. From trial 1:N identification experiments with the optical parallel correlator, we acquired low error rates of 2.6% FRR and 1.3% FAR. Facial images of people wearing thin glasses or heavy makeup that rendered identification difficult were identified with this system.

  19. Repeatability of high-speed migration of tremor along the Nankai subduction zone, Japan

    NASA Astrophysics Data System (ADS)

    Kato, A.; Tsuruoka, H.; Nakagawa, S.; Hirata, N.

    2015-12-01

    Tectonic tremors have been considered to be a swarm or superimposed pulses of low-frequency earthquakes (LFEs). To systematically analyze the high-speed migration of tremor [e.g., Shelly et al., 2007], we here focus on an intensive cluster hosting many low-frequency earthquakes located at the western part of Shikoku Island. We relocated ~770 hypocenters of LFEs identified by the JMA, which took place from Jan. 2008 to Dec. 2013, applying double differential relocation algorithm [e.g., Waldhauser and Ellsworth, 2000] to arrival times picked by the JMA and those obtained by waveform cross correlation measurements. The epicentral distributions show a clear alignment parallel to the subduction of the Philippine Sea plate, as like a slip-parallel streaking. Then, we applied a matched-filter technique to continuous seismograms recorded near the source region using relocated template LFEs during 6 years (between Jan. 2008 and Dec. 2013). We newly detected about 60 times the number of template events, which is fairly larger than ones obtained by conventional envelope cross correlation method. Interestingly, we identified many repeated sequences of tremor migrations along the slip-parallel streaking (~350 sequences). Front of each or stacked migration of tremors can be modeled by a parabolic envelope, indicating a diffusion process. The diffusivity of parabolic envelope is estimated to be around 105 m2/s, which is categorized as high-speed migration feature (~100 km/hour). Most of the rapid migrations took place during occurrences of short-term slow slip events (SSEs), and seems to be triggered by ocean and solid Earth tides. The most plausible explanation of the high-speed propagation is a diffusion process of stress pulse concentrated within a cluster of strong brittle patches on the ductile shear zone [Ando et al., 2012]. The viscosity of the ductile shear zone within the streaking is at least one order magnitude smaller than that of the slow-speed migration. This discrepancy of viscosity indicates that the streaking has different rheology compared with background main tremor/SSE belt. In addition, the diffusivity did not show any significant change before and after the Tohoku-Oki M9.0 Earthquake, suggesting that the high-speed propagation of tremors seems to be stable against external stress perturbations.

  20. Swimming Speed of Larval Snail Does Not Correlate with Size and Ciliary Beat Frequency

    PubMed Central

    Chan, Kit Yu Karen; Jiang, Houshuo; Padilla, Dianna K.

    2013-01-01

    Many marine invertebrates have planktonic larvae with cilia used for both propulsion and capturing of food particles. Hence, changes in ciliary activity have implications for larval nutrition and ability to navigate the water column, which in turn affect survival and dispersal. Using high-speed high-resolution microvideography, we examined the relationship between swimming speed, velar arrangements, and ciliary beat frequency of freely swimming veliger larvae of the gastropod Crepidula fornicata over the course of larval development. Average swimming speed was greatest 6 days post hatching, suggesting a reduction in swimming speed towards settlement. At a given age, veliger larvae have highly variable speeds (0.8–4 body lengths s−1) that are independent of shell size. Contrary to the hypothesis that an increase in ciliary beat frequency increases work done, and therefore speed, there was no significant correlation between swimming speed and ciliary beat frequency. Instead, there are significant correlations between swimming speed and visible area of the velar lobe, and distance between centroids of velum and larval shell. These observations suggest an alternative hypothesis that, instead of modifying ciliary beat frequency, larval C. fornicata modify swimming through adjustment of velum extension or orientation. The ability to adjust velum position could influence particle capture efficiency and fluid disturbance and help promote survival in the plankton. PMID:24367554

  1. Novel wavelength diversity technique for high-speed atmospheric turbulence compensation

    NASA Astrophysics Data System (ADS)

    Arrasmith, William W.; Sullivan, Sean F.

    2010-04-01

    The defense, intelligence, and homeland security communities are driving a need for software dominant, real-time or near-real time atmospheric turbulence compensated imagery. The development of parallel processing capabilities are finding application in diverse areas including image processing, target tracking, pattern recognition, and image fusion to name a few. A novel approach to the computationally intensive case of software dominant optical and near infrared imaging through atmospheric turbulence is addressed in this paper. Previously, the somewhat conventional wavelength diversity method has been used to compensate for atmospheric turbulence with great success. We apply a new correlation based approach to the wavelength diversity methodology using a parallel processing architecture enabling high speed atmospheric turbulence compensation. Methods for optical imaging through distributed turbulence are discussed, simulation results are presented, and computational and performance assessments are provided.

  2. Event generators for address event representation transmitters

    NASA Astrophysics Data System (ADS)

    Serrano-Gotarredona, Rafael; Serrano-Gotarredona, Teresa; Linares Barranco, Bernabe

    2005-06-01

    Address Event Representation (AER) is an emergent neuromorphic interchip communication protocol that allows for real-time virtual massive connectivity between huge number neurons located on different chips. By exploiting high speed digital communication circuits (with nano-seconds timings), synaptic neural connections can be time multiplexed, while neural activity signals (with mili-seconds timings) are sampled at low frequencies. Also, neurons generate 'events' according to their activity levels. More active neurons generate more events per unit time, and access the interchip communication channel more frequently, while neurons with low activity consume less communication bandwidth. In a typical AER transmitter chip, there is an array of neurons that generate events. They send events to a peripheral circuitry (let's call it "AER Generator") that transforms those events to neurons coordinates (addresses) which are put sequentially on an interchip high speed digital bus. This bus includes a parallel multi-bit address word plus a Rqst (request) and Ack (acknowledge) handshaking signals for asynchronous data exchange. There have been two main approaches published in the literature for implementing such "AER Generator" circuits. They differ on the way of handling event collisions coming from the array of neurons. One approach is based on detecting and discarding collisions, while the other incorporates arbitration for sequencing colliding events . The first approach is supposed to be simpler and faster, while the second is able to handle much higher event traffic. In this article we will concentrate on the second arbiter-based approach. Boahen has been publishing several techniques for implementing and improving the arbiter based approach. Originally, he proposed an arbitration squeme by rows, followed by a column arbitration. In this scheme, while one neuron was selected by the arbiters to transmit his event out of the chip, the rest of neurons in the array were freezed to transmit any further events during this time window. This limited the maximum transmission speed. In order to improve this speed, Boahen proposed an improved 'burst mode' scheme. In this scheme after the row arbitration, a complete row of events is pipelined out of the array and arbitered out of the chip at higher speed. During this single row event arbitration, the array is free to generate new events and communicate to the row arbiter, in a pipelined mode. This scheme significantly improves maximum event transmission speed, specially for high traffic situations were speed is more critical. We have analyzed and studied this approach and have detected some shortcomings in the circuits reported by Boahen, which may render some false situations under some statistical conditions. The present paper proposes some improvements to overcome such situations. The improved "AER Generator" has been implemented in an AER transmitter system

  3. Blade row dynamic digital compressor program. Volume 1: J85 clean inlet flow and parallel compressor models

    NASA Technical Reports Server (NTRS)

    Tesch, W. A.; Steenken, W. G.

    1976-01-01

    The results are presented of a one-dimensional dynamic digital blade row compressor model study of a J85-13 engine operating with uniform and with circumferentially distorted inlet flow. Details of the geometry and the derived blade row characteristics used to simulate the clean inlet performance are given. A stability criterion based upon the self developing unsteady internal flows near surge provided an accurate determination of the clean inlet surge line. The basic model was modified to include an arbitrary extent multi-sector parallel compressor configuration for investigating 180 deg 1/rev total pressure, total temperature, and combined total pressure and total temperature distortions. The combined distortions included opposed, coincident, and 90 deg overlapped patterns. The predicted losses in surge pressure ratio matched the measured data trends at all speeds and gave accurate predictions at high corrected speeds where the slope of the speed lines approached the vertical.

  4. High-performance parallel interface to synchronous optical network gateway

    DOEpatents

    St. John, Wallace B.; DuBois, David H.

    1996-01-01

    A system of sending and receiving gateways interconnects high speed data interfaces, e.g., HIPPI interfaces, through fiber optic links, e.g., a SONET network. An electronic stripe distributor distributes bytes of data from a first interface at the sending gateway onto parallel fiber optics of the fiber optic link to form transmitted data. An electronic stripe collector receives the transmitted data on the parallel fiber optics and reforms the data into a format effective for input to a second interface at the receiving gateway. Preferably, an error correcting syndrome is constructed at the sending gateway and sent with a data frame so that transmission errors can be detected and corrected in a real-time basis. Since the high speed data interface operates faster than any of the fiber optic links the transmission rate must be adapted to match the available number of fiber optic links so the sending and receiving gateways monitor the availability of fiber links and adjust the data throughput accordingly. In another aspect, the receiving gateway must have sufficient available buffer capacity to accept an incoming data frame. A credit-based flow control system provides for continuously updating the sending gateway on the available buffer capacity at the receiving gateway.

  5. Variable speed control in wells turbine-based oscillating water column devices: optimum rotational speed

    NASA Astrophysics Data System (ADS)

    Lekube, J.; Garrido, A. J.; Garrido, I.

    2018-03-01

    The effects of climate change and global warming reveal the need to find alternative sources of clean energy. In this sense, wave energy power plants, and in particular Oscillating Water Column (OWC) devices, offer a huge potential of energy harnessing. Nevertheless, the conversion systems have not reached a commercially mature stage yet so as to compete with conventional power plants. At this point, the use of new control methods over the existing technology arises as a doable way to improve the efficiency of the system. Due to the non-uniform response that the turbine shows to the rotational speed variation, the speed control of the turbo-generator may offer a feasible solution for efficiency improvement during the energy conversion. In this context, a novel speed control approach for OWC systems is presented in this paper, demonstrating its goodness and affording promising results when particularized to the Mutriku’s wave power plant.

  6. Repeatability of gradient ultrahigh pressure liquid chromatography-tandem mass spectrometry methods in instrument-controlled thermal environments.

    PubMed

    Grinias, James P; Wong, Jenny-Marie T; Kennedy, Robert T

    2016-08-26

    The impact of viscous friction on eluent temperature and column efficiency in liquid chromatography is of renewed interest as the need for pressures exceeding 1000bar to use with columns packed with sub-2μm particles has grown. One way the development of axial and radial temperature gradients that arise due to viscous friction can be affected is by the thermal environment the column is placed in. In this study, a new column oven integrated into an ultrahigh pressure liquid chromatograph that enables both still-air and forced-air operating modes is investigated to find the magnitude of the effect of the axial thermal gradient that forms in 2.1×100mm columns packed with sub-2μm particles in these modes. Temperature increases of nearly 30K were observed when the generated power of the column exceeded 25W/m. The impact of the heating due to viscous friction on the repeatability of peak capacity, elution time, and peak area ratio to an internal standard for a gradient UHPLC-MS/MS method to analyze neurotransmitters was found to be limited. This result indicates that high speed UHPLC-MS/MS gradient methods under conditions of high viscous friction may be possible without the negative effects typically observed with isocratic separations under similar conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. 2D fall of granular columns controlled by slow horizontal withdrawal of a retaining wall

    NASA Astrophysics Data System (ADS)

    Mériaux, C. A.

    2006-12-01

    This paper describes a series of experiments designed to investigate the fall of granular columns in quasi- static regime. Columns made of alternatively green and red sand layers were initially laid out in a box and then released when a retaining wall was set in slow motion with constant speed. The dependence of the dynamics of the fall on the initial aspect ratio of the columns, the velocity of the wall and the material properties was investigated within the quasi-static regime. A change in the behaviour of the columns was identified to be a function of the aspect ratio (height/length) of the initial sand column. Columns of high aspect ratio first subsided before sliding along failure planes, while columns of small aspect ratio were only observed to slide along failure planes. The transition between these two characteristic falls occurred regardless of the material and the velocity of the wall in the context of the quasi-static regime. When the final height and length of the piles were analyzed, we found power-law relations of the ratio of initial to final height and final run-out to initial length with the aspect ratio of the column. The dissipation of energy is also shown to increase with the run-out length of the pile until it reaches a plateau.

  8. A novel superporous agarose medium for high-speed protein chromatography.

    PubMed

    Shi, Qing-Hong; Zhou, Xin; Sun, Yan

    2005-12-05

    A novel superporous agarose (SA) bead characterized by the presence of wide pores has been fabricated by water-in-oil emulsification using solid granules of calcium carbonate as porogenic agent. After cross-linking, the solid granules were removed by dissolving them in hydrochloric acid. Then, the gel was modified with diethylaminoethyl groups to create an anion exchanger, SA-DEAE, for protein adsorption. A homogeneous agarose (HA) bead was also produced and modified with DEAE for comparison. It was found that the porosity of SA-DEAE was about 6% larger than that of HA-DEAE. Moreover, both optical micrographs and confocal laser scanning microscopy (CLSM) of the ion exchangers with adsorbed fluorescein isothiocyanate (FITC) labeled IgG revealed the superporous structure of the SA medium. In addition, the SA-DEAE column had lower backpressure than the HA-DEAE column, confirming the convective flow of mobile phase through the wide pores. Due to the presence of the wide pores, more channels were available for protein transport and, furthermore, more diffusive pores in the agarose network were accessible for the protein approach from different directions. This led to 40% higher protein capacity and two times higher effective pore diffusivity in the SA-DEAE than in HA-DEAE. Moreover, an increase of the efficiency of the SA-DEAE column until a flow rate of 5 cm/min and the independency of the column efficiency at flow rates from 5 to 17.8 cm/min was found, indicating that intraparticle mass transfer was intensified by convective flow at elevated flow rates. Therefore, the chromatographic resolution of IgG and BSA was little affected up to a flow rate of 17.8 cm/min. The results indicate that the SA medium is favorable for high-speed protein chromatography. (c) 2005 Wiley Periodicals, Inc.

  9. Distributed Parallel Processing and Dynamic Load Balancing Techniques for Multidisciplinary High Speed Aircraft Design

    NASA Technical Reports Server (NTRS)

    Krasteva, Denitza T.

    1998-01-01

    Multidisciplinary design optimization (MDO) for large-scale engineering problems poses many challenges (e.g., the design of an efficient concurrent paradigm for global optimization based on disciplinary analyses, expensive computations over vast data sets, etc.) This work focuses on the application of distributed schemes for massively parallel architectures to MDO problems, as a tool for reducing computation time and solving larger problems. The specific problem considered here is configuration optimization of a high speed civil transport (HSCT), and the efficient parallelization of the embedded paradigm for reasonable design space identification. Two distributed dynamic load balancing techniques (random polling and global round robin with message combining) and two necessary termination detection schemes (global task count and token passing) were implemented and evaluated in terms of effectiveness and scalability to large problem sizes and a thousand processors. The effect of certain parameters on execution time was also inspected. Empirical results demonstrated stable performance and effectiveness for all schemes, and the parametric study showed that the selected algorithmic parameters have a negligible effect on performance.

  10. Parallel computing in experimental mechanics and optical measurement: A review (II)

    NASA Astrophysics Data System (ADS)

    Wang, Tianyi; Kemao, Qian

    2018-05-01

    With advantages such as non-destructiveness, high sensitivity and high accuracy, optical techniques have successfully integrated into various important physical quantities in experimental mechanics (EM) and optical measurement (OM). However, in pursuit of higher image resolutions for higher accuracy, the computation burden of optical techniques has become much heavier. Therefore, in recent years, heterogeneous platforms composing of hardware such as CPUs and GPUs, have been widely employed to accelerate these techniques due to their cost-effectiveness, short development cycle, easy portability, and high scalability. In this paper, we analyze various works by first illustrating their different architectures, followed by introducing their various parallel patterns for high speed computation. Next, we review the effects of CPU and GPU parallel computing specifically in EM & OM applications in a broad scope, which include digital image/volume correlation, fringe pattern analysis, tomography, hyperspectral imaging, computer-generated holograms, and integral imaging. In our survey, we have found that high parallelism can always be exploited in such applications for the development of high-performance systems.

  11. A direct-execution parallel architecture for the Advanced Continuous Simulation Language (ACSL)

    NASA Technical Reports Server (NTRS)

    Carroll, Chester C.; Owen, Jeffrey E.

    1988-01-01

    A direct-execution parallel architecture for the Advanced Continuous Simulation Language (ACSL) is presented which overcomes the traditional disadvantages of simulations executed on a digital computer. The incorporation of parallel processing allows the mapping of simulations into a digital computer to be done in the same inherently parallel manner as they are currently mapped onto an analog computer. The direct-execution format maximizes the efficiency of the executed code since the need for a high level language compiler is eliminated. Resolution is greatly increased over that which is available with an analog computer without the sacrifice in execution speed normally expected with digitial computer simulations. Although this report covers all aspects of the new architecture, key emphasis is placed on the processing element configuration and the microprogramming of the ACLS constructs. The execution times for all ACLS constructs are computed using a model of a processing element based on the AMD 29000 CPU and the AMD 29027 FPU. The increase in execution speed provided by parallel processing is exemplified by comparing the derived execution times of two ACSL programs with the execution times for the same programs executed on a similar sequential architecture.

  12. Designing a parallel evolutionary algorithm for inferring gene networks on the cloud computing environment.

    PubMed

    Lee, Wei-Po; Hsiao, Yu-Ting; Hwang, Wei-Che

    2014-01-16

    To improve the tedious task of reconstructing gene networks through testing experimentally the possible interactions between genes, it becomes a trend to adopt the automated reverse engineering procedure instead. Some evolutionary algorithms have been suggested for deriving network parameters. However, to infer large networks by the evolutionary algorithm, it is necessary to address two important issues: premature convergence and high computational cost. To tackle the former problem and to enhance the performance of traditional evolutionary algorithms, it is advisable to use parallel model evolutionary algorithms. To overcome the latter and to speed up the computation, it is advocated to adopt the mechanism of cloud computing as a promising solution: most popular is the method of MapReduce programming model, a fault-tolerant framework to implement parallel algorithms for inferring large gene networks. This work presents a practical framework to infer large gene networks, by developing and parallelizing a hybrid GA-PSO optimization method. Our parallel method is extended to work with the Hadoop MapReduce programming model and is executed in different cloud computing environments. To evaluate the proposed approach, we use a well-known open-source software GeneNetWeaver to create several yeast S. cerevisiae sub-networks and use them to produce gene profiles. Experiments have been conducted and the results have been analyzed. They show that our parallel approach can be successfully used to infer networks with desired behaviors and the computation time can be largely reduced. Parallel population-based algorithms can effectively determine network parameters and they perform better than the widely-used sequential algorithms in gene network inference. These parallel algorithms can be distributed to the cloud computing environment to speed up the computation. By coupling the parallel model population-based optimization method and the parallel computational framework, high quality solutions can be obtained within relatively short time. This integrated approach is a promising way for inferring large networks.

  13. Designing a parallel evolutionary algorithm for inferring gene networks on the cloud computing environment

    PubMed Central

    2014-01-01

    Background To improve the tedious task of reconstructing gene networks through testing experimentally the possible interactions between genes, it becomes a trend to adopt the automated reverse engineering procedure instead. Some evolutionary algorithms have been suggested for deriving network parameters. However, to infer large networks by the evolutionary algorithm, it is necessary to address two important issues: premature convergence and high computational cost. To tackle the former problem and to enhance the performance of traditional evolutionary algorithms, it is advisable to use parallel model evolutionary algorithms. To overcome the latter and to speed up the computation, it is advocated to adopt the mechanism of cloud computing as a promising solution: most popular is the method of MapReduce programming model, a fault-tolerant framework to implement parallel algorithms for inferring large gene networks. Results This work presents a practical framework to infer large gene networks, by developing and parallelizing a hybrid GA-PSO optimization method. Our parallel method is extended to work with the Hadoop MapReduce programming model and is executed in different cloud computing environments. To evaluate the proposed approach, we use a well-known open-source software GeneNetWeaver to create several yeast S. cerevisiae sub-networks and use them to produce gene profiles. Experiments have been conducted and the results have been analyzed. They show that our parallel approach can be successfully used to infer networks with desired behaviors and the computation time can be largely reduced. Conclusions Parallel population-based algorithms can effectively determine network parameters and they perform better than the widely-used sequential algorithms in gene network inference. These parallel algorithms can be distributed to the cloud computing environment to speed up the computation. By coupling the parallel model population-based optimization method and the parallel computational framework, high quality solutions can be obtained within relatively short time. This integrated approach is a promising way for inferring large networks. PMID:24428926

  14. Parallel array of independent thermostats for column separations

    DOEpatents

    Foret, Frantisek; Karger, Barry L.

    2005-08-16

    A thermostat array including an array of two or more capillary columns (10) or two or more channels in a microfabricated device is disclosed. A heat conductive material (12) surrounded each individual column or channel in array, each individual column or channel being thermally insulated from every other individual column or channel. One or more independently controlled heating or cooling elements (14) is positioned adjacent to individual columns or channels within the heat conductive material, each heating or cooling element being connected to a source of heating or cooling, and one or more independently controlled temperature sensing elements (16) is positioned adjacent to the individual columns or channels within the heat conductive material. Each temperature sensing element is connected to a temperature controller.

  15. Using Graphical Processing Units to Accelerate Orthorectification, Atmospheric Correction and Transformations for Big Data

    NASA Astrophysics Data System (ADS)

    O'Connor, A. S.; Justice, B.; Harris, A. T.

    2013-12-01

    Graphics Processing Units (GPUs) are high-performance multiple-core processors capable of very high computational speeds and large data throughput. Modern GPUs are inexpensive and widely available commercially. These are general-purpose parallel processors with support for a variety of programming interfaces, including industry standard languages such as C. GPU implementations of algorithms that are well suited for parallel processing can often achieve speedups of several orders of magnitude over optimized CPU codes. Significant improvements in speeds for imagery orthorectification, atmospheric correction, target detection and image transformations like Independent Components Analsyis (ICA) have been achieved using GPU-based implementations. Additional optimizations, when factored in with GPU processing capabilities, can provide 50x - 100x reduction in the time required to process large imagery. Exelis Visual Information Solutions (VIS) has implemented a CUDA based GPU processing frame work for accelerating ENVI and IDL processes that can best take advantage of parallelization. Testing Exelis VIS has performed shows that orthorectification can take as long as two hours with a WorldView1 35,0000 x 35,000 pixel image. With GPU orthorecification, the same orthorectification process takes three minutes. By speeding up image processing, imagery can successfully be used by first responders, scientists making rapid discoveries with near real time data, and provides an operational component to data centers needing to quickly process and disseminate data.

  16. Fast Gradient Elution Reversed-Phase HPLC with Diode-Array Detection as a High Throughput Screening Method for Drugs of Abuse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peter W. Carr; K.M. Fuller; D.R. Stoll

    A new approach has been developed by modifying a conventional gradient elution liquid chromatograph for the high throughput screening of biological samples to detect the presence of regulated intoxicants. The goal of this work was to improve the speed of a gradient elution screening method over current approaches by optimizing the operational parameters of both the column and the instrument without compromising the reproducibility of the retention times, which are the basis for the identification. Most importantly, the novel instrument configuration substantially reduces the time needed to re-equilibrate the column between gradient runs, thereby reducing the total time for eachmore » analysis. The total analysis time for each gradient elution run is only 2.8 minutes, including 0.3 minutes for column reequilibration between analyses. Retention times standard calibration solutes are reproducible to better than 0.002 minutes in consecutive runs. A corrected retention index was adopted to account for day-to-day and column-to-column variations in retention time. The discriminating power and mean list length were calculated for a library of 47 intoxicants and compared with previous work from other laboratories to evaluate fast gradient elution HPLC as a screening tool.« less

  17. Applications considerations in the system design of highly concurrent multiprocessors

    NASA Technical Reports Server (NTRS)

    Lundstrom, Stephen F.

    1987-01-01

    A flow model processor approach to parallel processing is described, using very-high-performance individual processors, high-speed circuit switched interconnection networks, and a high-speed synchronization capability to minimize the effect of the inherently serial portions of applications on performance. Design studies related to the determination of the number of processors, the memory organization, and the structure of the networks used to interconnect the processor and memory resources are discussed. Simulations indicate that applications centered on the large shared data memory should be able to sustain over 500 million floating point operations per second.

  18. Modular time division multiplexer: Efficient simultaneous characterization of fast and slow transients in multiple samples

    NASA Astrophysics Data System (ADS)

    Kim, Stephan D.; Luo, Jiajun; Buchholz, D. Bruce; Chang, R. P. H.; Grayson, M.

    2016-09-01

    A modular time division multiplexer (MTDM) device is introduced to enable parallel measurement of multiple samples with both fast and slow decay transients spanning from millisecond to month-long time scales. This is achieved by dedicating a single high-speed measurement instrument for rapid data collection at the start of a transient, and by multiplexing a second low-speed measurement instrument for slow data collection of several samples in parallel for the later transients. The MTDM is a high-level design concept that can in principle measure an arbitrary number of samples, and the low cost implementation here allows up to 16 samples to be measured in parallel over several months, reducing the total ensemble measurement duration and equipment usage by as much as an order of magnitude without sacrificing fidelity. The MTDM was successfully demonstrated by simultaneously measuring the photoconductivity of three amorphous indium-gallium-zinc-oxide thin films with 20 ms data resolution for fast transients and an uninterrupted parallel run time of over 20 days. The MTDM has potential applications in many areas of research that manifest response times spanning many orders of magnitude, such as photovoltaics, rechargeable batteries, amorphous semiconductors such as silicon and amorphous indium-gallium-zinc-oxide.

  19. Modular time division multiplexer: Efficient simultaneous characterization of fast and slow transients in multiple samples.

    PubMed

    Kim, Stephan D; Luo, Jiajun; Buchholz, D Bruce; Chang, R P H; Grayson, M

    2016-09-01

    A modular time division multiplexer (MTDM) device is introduced to enable parallel measurement of multiple samples with both fast and slow decay transients spanning from millisecond to month-long time scales. This is achieved by dedicating a single high-speed measurement instrument for rapid data collection at the start of a transient, and by multiplexing a second low-speed measurement instrument for slow data collection of several samples in parallel for the later transients. The MTDM is a high-level design concept that can in principle measure an arbitrary number of samples, and the low cost implementation here allows up to 16 samples to be measured in parallel over several months, reducing the total ensemble measurement duration and equipment usage by as much as an order of magnitude without sacrificing fidelity. The MTDM was successfully demonstrated by simultaneously measuring the photoconductivity of three amorphous indium-gallium-zinc-oxide thin films with 20 ms data resolution for fast transients and an uninterrupted parallel run time of over 20 days. The MTDM has potential applications in many areas of research that manifest response times spanning many orders of magnitude, such as photovoltaics, rechargeable batteries, amorphous semiconductors such as silicon and amorphous indium-gallium-zinc-oxide.

  20. RRAM-based parallel computing architecture using k-nearest neighbor classification for pattern recognition

    NASA Astrophysics Data System (ADS)

    Jiang, Yuning; Kang, Jinfeng; Wang, Xinan

    2017-03-01

    Resistive switching memory (RRAM) is considered as one of the most promising devices for parallel computing solutions that may overcome the von Neumann bottleneck of today’s electronic systems. However, the existing RRAM-based parallel computing architectures suffer from practical problems such as device variations and extra computing circuits. In this work, we propose a novel parallel computing architecture for pattern recognition by implementing k-nearest neighbor classification on metal-oxide RRAM crossbar arrays. Metal-oxide RRAM with gradual RESET behaviors is chosen as both the storage and computing components. The proposed architecture is tested by the MNIST database. High speed (~100 ns per example) and high recognition accuracy (97.05%) are obtained. The influence of several non-ideal device properties is also discussed, and it turns out that the proposed architecture shows great tolerance to device variations. This work paves a new way to achieve RRAM-based parallel computing hardware systems with high performance.

  1. Development of a novel parallel-spool pilot operated high-pressure solenoid valve with high flow rate and high speed

    NASA Astrophysics Data System (ADS)

    Dong, Dai; Li, Xiaoning

    2015-03-01

    High-pressure solenoid valve with high flow rate and high speed is a key component in an underwater driving system. However, traditional single spool pilot operated valve cannot meet the demands of both high flow rate and high speed simultaneously. A new structure for a high pressure solenoid valve is needed to meet the demand of the underwater driving system. A novel parallel-spool pilot operated high-pressure solenoid valve is proposed to overcome the drawback of the current single spool design. Mathematical models of the opening process and flow rate of the valve are established. Opening response time of the valve is subdivided into 4 parts to analyze the properties of the opening response. Corresponding formulas to solve 4 parts of the response time are derived. Key factors that influence the opening response time are analyzed. According to the mathematical model of the valve, a simulation of the opening process is carried out by MATLAB. Parameters are chosen based on theoretical analysis to design the test prototype of the new type of valve. Opening response time of the designed valve is tested by verifying response of the current in the coil and displacement of the main valve spool. The experimental results are in agreement with the simulated results, therefore the validity of the theoretical analysis is verified. Experimental opening response time of the valve is 48.3 ms at working pressure of 10 MPa. The flow capacity test shows that the largest effective area is 126 mm2 and the largest air flow rate is 2320 L/s. According to the result of the load driving test, the valve can meet the demands of the driving system. The proposed valve with parallel spools provides a new method for the design of a high-pressure valve with fast response and large flow rate.

  2. Peak capacity, peak-capacity production rate, and boiling point resolution for temperature-programmed GC with very high programming rates

    PubMed

    Grall; Leonard; Sacks

    2000-02-01

    Recent advances in column heating technology have made possible very fast linear temperature programming for high-speed gas chromatography. A fused-silica capillary column is contained in a tubular metal jacket, which is resistively heated by a precision power supply. With very rapid column heating, the rate of peak-capacity production is significantly enhanced, but the total peak capacity and the boiling-point resolution (minimum boiling-point difference required for the separation of two nonpolar compounds on a nonpolar column) are reduced relative to more conventional heating rates used with convection-oven instruments. As temperature-programming rates increase, elution temperatures also increase with the result that retention may become insignificant prior to elution. This results in inefficient utilization of the down-stream end of the column and causes a loss in the rate of peak-capacity production. The rate of peak-capacity production is increased by the use of shorter columns and higher carrier gas velocities. With high programming rates (100-600 degrees C/min), column lengths of 6-12 m and average linear carrier gas velocities in the 100-150 cm/s range are satisfactory. In this study, the rate of peak-capacity production, the total peak capacity, and the boiling point resolution are determined for C10-C28 n-alkanes using 6-18 m long columns, 50-200 cm/s average carrier gas velocities, and 60-600 degrees C/min programming rates. It was found that with a 6-meter-long, 0.25-mm i.d. column programmed at a rate of 600 degrees C/min, a maximum peak-capacity production rate of 6.1 peaks/s was obtained. A total peak capacity of about 75 peaks was produced in a 37-s long separation spanning a boiling-point range from n-C10 (174 degrees C) to n-C28 (432 degrees C).

  3. Low-Speed Investigation of Upper-Surface Leading-Edge Blowing on a High-Speed Civil Transport Configuration

    NASA Technical Reports Server (NTRS)

    Banks, Daniel W.; Laflin, Brenda E. Gile; Kemmerly, Guy T.; Campbell, Bryan A.

    1999-01-01

    The paper identifies speed, agility, human interface, generation of sensitivity information, task decomposition, and data transmission (including storage) as important attributes for a computer environment to have in order to support engineering design effectively. It is argued that when examined in terms of these attributes the presently available environment can be shown to be inadequate. A radical improvement is needed, and it may be achieved by combining new methods that have recently emerged from multidisciplinary design optimisation (MDO) with massively parallel processing computer technology. The caveat is that, for successful use of that technology in engineering computing, new paradigms for computing will have to be developed - specifically, innovative algorithms that are intrinsically parallel so that their performance scales up linearly with the number of processors. It may be speculated that the idea of simulating a complex behaviour by interaction of a large number of very simple models may be an inspiration for the above algorithms; the cellular automata are an example. Because of the long lead time needed to develop and mature new paradigms, development should begin now, even though the widespread availability of massively parallel processing is still a few years away.

  4. On the mechanical modeling of tensegrity columns subject to impact loading

    NASA Astrophysics Data System (ADS)

    Amendola, Ada; Favata, Antonino; Micheletti, Andrea

    2018-04-01

    A physical model of a tensegrity columns is additively manufactured in a titanium alloy. After removing sacrificial supports, such a model is post-tensioned through suitable insertion of Spectra cables. The wave dynamics of the examined system is first experimentally investigated by recording the motion through high-speed cameras assisted by a digital image correlation algorithm, which returns time-histories of the axial displacements of the bases of each prism of the column. Next, the experimental response is mechanically simulated by means of two different models: a stick-and-spring model accounting for the presence of bending-stiff connections between the 3D-printed elements (mixed bending-stretching response), and a tensegrity model accounting for a purely stretching response. The comparison of theory and experiment reveals that the presence of bending-stiff connections weakens the nonlinearity of the wave dynamics of the system. A stretching-dominated response instead supports highly compact solitary waves in the presence of small prestress and negligible bending stiffness of connections.

  5. Concurrent computation of attribute filters on shared memory parallel machines.

    PubMed

    Wilkinson, Michael H F; Gao, Hui; Hesselink, Wim H; Jonker, Jan-Eppo; Meijster, Arnold

    2008-10-01

    Morphological attribute filters have not previously been parallelized, mainly because they are both global and non-separable. We propose a parallel algorithm that achieves efficient parallelism for a large class of attribute filters, including attribute openings, closings, thinnings and thickenings, based on Salembier's Max-Trees and Min-trees. The image or volume is first partitioned in multiple slices. We then compute the Max-trees of each slice using any sequential Max-Tree algorithm. Subsequently, the Max-trees of the slices can be merged to obtain the Max-tree of the image. A C-implementation yielded good speed-ups on both a 16-processor MIPS 14000 parallel machine, and a dual-core Opteron-based machine. It is shown that the speed-up of the parallel algorithm is a direct measure of the gain with respect to the sequential algorithm used. Furthermore, the concurrent algorithm shows a speed gain of up to 72 percent on a single-core processor, due to reduced cache thrashing.

  6. Random number generators for large-scale parallel Monte Carlo simulations on FPGA

    NASA Astrophysics Data System (ADS)

    Lin, Y.; Wang, F.; Liu, B.

    2018-05-01

    Through parallelization, field programmable gate array (FPGA) can achieve unprecedented speeds in large-scale parallel Monte Carlo (LPMC) simulations. FPGA presents both new constraints and new opportunities for the implementations of random number generators (RNGs), which are key elements of any Monte Carlo (MC) simulation system. Using empirical and application based tests, this study evaluates all of the four RNGs used in previous FPGA based MC studies and newly proposed FPGA implementations for two well-known high-quality RNGs that are suitable for LPMC studies on FPGA. One of the newly proposed FPGA implementations: a parallel version of additive lagged Fibonacci generator (Parallel ALFG) is found to be the best among the evaluated RNGs in fulfilling the needs of LPMC simulations on FPGA.

  7. Countercurrent Chromatographic Separation of Proteins Using an Eccentric Coiled Column with Synchronous and Nonsynchronous Type-J Planetary Motions

    PubMed Central

    SHINOMIYA, Kazufusa; YOSHIDA, Kazunori; TOKURA, Koji; TSUKIDATE, Etsuhiro; YANAGIDAIRA, Kazuhiro; ITO, Yoichiro

    2015-01-01

    Protein separation was performed using the high-speed counter-current chromatograph (HSCCC) at both synchronous and nonsynchronous type-J planetary motions. The partition efficiency was evaluated with two different column configurations, eccentric coil and toroidal coil, on the separation of a set of stable protein samples including cytochrome C, myoglobin and lysozyme with a polymer phase system composed of 12.5% (w/w) polyethylene glycol 1000 and 12.5% (w/w) dibasic potassium phosphate. Better peak resolution was obtained by the eccentric coil than by the toroidal coil using either lower or upper phase as the mobile phase. The peak resolution was further improved using the eccentric coil by the nonsynchronous type-J planetary motion with the combination of 1066 rpm of column rotation and 1000 rpm of revolution. PMID:25765276

  8. Countercurrent chromatographic separation of proteins using an eccentric coiled column with synchronous and nonsynchronous type-J planetary motions.

    PubMed

    Shinomiya, Kazufusa; Yoshida, Kazunori; Tokura, Koji; Tsukidate, Etsuhiro; Yanagidaira, Kazuhiro; Ito, Yoichiro

    2015-01-01

    Protein separation was performed using the high-speed countercurrent chromatograph (HSCCC) at both synchronous and nonsynchronous type-J planetary motions. The partition efficiency was evaluated with two different column configurations, eccentric coil and toroidal coil, on the separation of a set of stable protein samples including cytochrome C, myoglobin and lysozyme with a polymer phase system composed of 12.5% (w/w) polyethylene glycol 1000 and 12.5% (w/w) dibasic potassium phosphate. Better peak resolution was obtained by the eccentric coil than by the toroidal coil using either lower or upper phase as the mobile phase. The peak resolution was further improved using the eccentric coil by the nonsynchronous type-J planetary motion with the combination of 1066 rpm of column rotation and 1000 rpm of revolution.

  9. Mixed Linear/Square-Root Encoded Single-Slope Ramp Provides Low-Noise ADC with High Linearity for Focal Plane Arrays

    NASA Technical Reports Server (NTRS)

    Wrigley, Chris J.; Hancock, Bruce R.; Newton, Kenneth W.; Cunningham, Thomas J.

    2013-01-01

    Single-slope analog-to-digital converters (ADCs) are particularly useful for onchip digitization in focal plane arrays (FPAs) because of their inherent monotonicity, relative simplicity, and efficiency for column-parallel applications, but they are comparatively slow. Squareroot encoding can allow the number of code values to be reduced without loss of signal-to-noise ratio (SNR) by keeping the quantization noise just below the signal shot noise. This encoding can be implemented directly by using a quadratic ramp. The reduction in the number of code values can substantially increase the quantization speed. However, in an FPA, the fixed pattern noise (FPN) limits the use of small quantization steps at low signal levels. If the zero-point is adjusted so that the lowest column is onscale, the other columns, including those at the center of the distribution, will be pushed up the ramp where the quantization noise is higher. Additionally, the finite frequency response of the ramp buffer amplifier and the comparator distort the shape of the ramp, so that the effective ramp value at the time the comparator trips differs from the intended value, resulting in errors. Allowing increased settling time decreases the quantization speed, while increasing the bandwidth increases the noise. The FPN problem is solved by breaking the ramp into two portions, with some fraction of the available code values allocated to a linear ramp and the remainder to a quadratic ramp. To avoid large transients, both the value and the slope of the linear and quadratic portions should be equal where they join. The span of the linear portion must cover the minimum offset, but not necessarily the maximum, since the fraction of the pixels above the upper limit will still be correctly quantized, albeit with increased quantization noise. The required linear span, maximum signal and ratio of quantization noise to shot noise at high signal, along with the continuity requirement, determines the number of code values that must be allocated to each portion. The distortion problem is solved by using a lookup table to convert captured code values back to signal levels. The values in this table will be similar to the intended ramp value, but with a correction for the finite bandwidth effects. Continuous-time comparators are used, and their bandwidth is set below the step rate, which smoothes the ramp and reduces the noise. No settling time is needed, as would be the case for clocked comparators, but the low bandwidth enhances the distortion of the non-linear portion. This is corrected by use of a return lookup table, which differs from the one used to generate the ramp. The return lookup table is obtained by calibrating against a stepped precision DC reference. This results in a residual non-linearity well below the quantization noise. This method can also compensate for differential non-linearity (DNL) in the DAC used to generate the ramp. The use of a ramp with a combination of linear and quadratic portions for a single-slope ADC is novel. The number of steps is minimized by keeping the step size just below the photon shot noise. This in turn maximizes the speed of the conversion. High resolution is maintained by keeping small quantization steps at low signals, and noise is minimized by allowing the lowest analog bandwidth, all without increasing the quantization noise. A calibrated return lookup table allows the system to maintain excellent linearity.

  10. Full range line-field parallel swept source imaging utilizing digital refocusing

    NASA Astrophysics Data System (ADS)

    Fechtig, Daniel J.; Kumar, Abhishek; Drexler, Wolfgang; Leitgeb, Rainer A.

    2015-12-01

    We present geometric optics-based refocusing applied to a novel off-axis line-field parallel swept source imaging (LPSI) system. LPSI is an imaging modality based on line-field swept source optical coherence tomography, which permits 3-D imaging at acquisition speeds of up to 1 MHz. The digital refocusing algorithm applies a defocus-correcting phase term to the Fourier representation of complex-valued interferometric image data, which is based on the geometrical optics information of the LPSI system. We introduce the off-axis LPSI system configuration, the digital refocusing algorithm and demonstrate the effectiveness of our method for refocusing volumetric images of technical and biological samples. An increase of effective in-focus depth range from 255 μm to 4.7 mm is achieved. The recovery of the full in-focus depth range might be especially valuable for future high-speed and high-resolution diagnostic applications of LPSI in ophthalmology.

  11. Integrated test system of infrared and laser data based on USB 3.0

    NASA Astrophysics Data System (ADS)

    Fu, Hui Quan; Tang, Lin Bo; Zhang, Chao; Zhao, Bao Jun; Li, Mao Wen

    2017-07-01

    Based on USB3.0, this paper presents the design method of an integrated test system for both infrared image data and laser signal data processing module. The core of the design is FPGA logic control, the design uses dual-chip DDR3 SDRAM to achieve high-speed laser data cache, and receive parallel LVDS image data through serial-to-parallel conversion chip, and it achieves high-speed data communication between the system and host computer through the USB3.0 bus. The experimental results show that the developed PC software realizes the real-time display of 14-bit LVDS original image after 14-to-8 bit conversion and JPEG2000 compressed image after decompression in software, and can realize the real-time display of the acquired laser signal data. The correctness of the test system design is verified, indicating that the interface link is normal.

  12. Performance of a 300 Mbps 1:16 serial/parallel optoelectronic receiver module

    NASA Technical Reports Server (NTRS)

    Richard, M. A.; Claspy, P. C.; Bhasin, K. B.; Bendett, M. B.

    1990-01-01

    Optical interconnects are being considered for the high speed distribution of multiplexed control signals in GaAs monolithic microwave integrated circuit (MMIC) based phased array antennas. The performance of a hybrid GaAs optoelectronic integrated circuit (OEIC) is described, as well as its design and fabrication. The OEIC converts a 16-bit serial optical input to a 16 parallel line electrical output using an on-board 1:16 demultiplexer and operates at data rates as high as 30b Mbps. The performance characteristics and potential applications of the device are presented.

  13. Megavolt parallel potentials arising from double-layer streams in the Earth's outer radiation belt.

    PubMed

    Mozer, F S; Bale, S D; Bonnell, J W; Chaston, C C; Roth, I; Wygant, J

    2013-12-06

    Huge numbers of double layers carrying electric fields parallel to the local magnetic field line have been observed on the Van Allen probes in connection with in situ relativistic electron acceleration in the Earth's outer radiation belt. For one case with adequate high time resolution data, 7000 double layers were observed in an interval of 1 min to produce a 230,000 V net parallel potential drop crossing the spacecraft. Lower resolution data show that this event lasted for 6 min and that more than 1,000,000 volts of net parallel potential crossed the spacecraft during this time. A double layer traverses the length of a magnetic field line in about 15 s and the orbital motion of the spacecraft perpendicular to the magnetic field was about 700 km during this 6 min interval. Thus, the instantaneous parallel potential along a single magnetic field line was the order of tens of kilovolts. Electrons on the field line might experience many such potential steps in their lifetimes to accelerate them to energies where they serve as the seed population for relativistic acceleration by coherent, large amplitude whistler mode waves. Because the double-layer speed of 3100  km/s is the order of the electron acoustic speed (and not the ion acoustic speed) of a 25 eV plasma, the double layers may result from a new electron acoustic mode. Acceleration mechanisms involving double layers may also be important in planetary radiation belts such as Jupiter, Saturn, Uranus, and Neptune, in the solar corona during flares, and in astrophysical objects.

  14. Continuous-time ΣΔ ADC with implicit variable gain amplifier for CMOS image sensor.

    PubMed

    Tang, Fang; Bermak, Amine; Abbes, Amira; Benammar, Mohieddine Amor

    2014-01-01

    This paper presents a column-parallel continuous-time sigma delta (CTSD) ADC for mega-pixel resolution CMOS image sensor (CIS). The sigma delta modulator is implemented with a 2nd order resistor/capacitor-based loop filter. The first integrator uses a conventional operational transconductance amplifier (OTA), for the concern of a high power noise rejection. The second integrator is realized with a single-ended inverter-based amplifier, instead of a standard OTA. As a result, the power consumption is reduced, without sacrificing the noise performance. Moreover, the variable gain amplifier in the traditional column-parallel read-out circuit is merged into the front-end of the CTSD modulator. By programming the input resistance, the amplitude range of the input current can be tuned with 8 scales, which is equivalent to a traditional 2-bit preamplification function without consuming extra power and chip area. The test chip prototype is fabricated using 0.18 μm CMOS process and the measurement result shows an ADC power consumption lower than 63.5 μW under 1.4 V power supply and 50 MHz clock frequency.

  15. Construction of a parallel processor for simulating manipulators and other mechanical systems

    NASA Technical Reports Server (NTRS)

    Hannauer, George

    1991-01-01

    This report summarizes the results of NASA Contract NAS5-30905, awarded under phase 2 of the SBIR Program, for a demonstration of the feasibility of a new high-speed parallel simulation processor, called the Real-Time Accelerator (RTA). The principal goals were met, and EAI is now proceeding with phase 3: development of a commercial product. This product is scheduled for commercial introduction in the second quarter of 1992.

  16. Design consideration in constructing high performance embedded Knowledge-Based Systems (KBS)

    NASA Technical Reports Server (NTRS)

    Dalton, Shelly D.; Daley, Philip C.

    1988-01-01

    As the hardware trends for artificial intelligence (AI) involve more and more complexity, the process of optimizing the computer system design for a particular problem will also increase in complexity. Space applications of knowledge based systems (KBS) will often require an ability to perform both numerically intensive vector computations and real time symbolic computations. Although parallel machines can theoretically achieve the speeds necessary for most of these problems, if the application itself is not highly parallel, the machine's power cannot be utilized. A scheme is presented which will provide the computer systems engineer with a tool for analyzing machines with various configurations of array, symbolic, scaler, and multiprocessors. High speed networks and interconnections make customized, distributed, intelligent systems feasible for the application of AI in space. The method presented can be used to optimize such AI system configurations and to make comparisons between existing computer systems. It is an open question whether or not, for a given mission requirement, a suitable computer system design can be constructed for any amount of money.

  17. An Inexpensive and Versatile Version of Kundt's Tube for Measuring the Speed of Sound in Air

    NASA Astrophysics Data System (ADS)

    Papacosta, Pangratios; Linscheid, Nathan

    2016-01-01

    Experiments that measure the speed of sound in air are common in high schools and colleges. In the Kundt's tube experiment, a horizontal air column is adjusted until a resonance mode is achieved for a specific frequency of sound. When this happens, the cork dust in the tube is disturbed at the displacement antinode regions. The location of the displacement antinodes enables the measurement of the wavelength of the sound that is being used. This paper describes a design that uses a speaker instead of the traditional aluminum rod as the sound source. This allows the use of multiple sound frequencies that yield a much more accurate speed of sound in air.

  18. PCLIPS: Parallel CLIPS

    NASA Technical Reports Server (NTRS)

    Hall, Lawrence O.; Bennett, Bonnie H.; Tello, Ivan

    1994-01-01

    A parallel version of CLIPS 5.1 has been developed to run on Intel Hypercubes. The user interface is the same as that for CLIPS with some added commands to allow for parallel calls. A complete version of CLIPS runs on each node of the hypercube. The system has been instrumented to display the time spent in the match, recognize, and act cycles on each node. Only rule-level parallelism is supported. Parallel commands enable the assertion and retraction of facts to/from remote nodes working memory. Parallel CLIPS was used to implement a knowledge-based command, control, communications, and intelligence (C(sup 3)I) system to demonstrate the fusion of high-level, disparate sources. We discuss the nature of the information fusion problem, our approach, and implementation. Parallel CLIPS has also be used to run several benchmark parallel knowledge bases such as one to set up a cafeteria. Results show from running Parallel CLIPS with parallel knowledge base partitions indicate that significant speed increases, including superlinear in some cases, are possible.

  19. A parallel implementation of a multisensor feature-based range-estimation method

    NASA Technical Reports Server (NTRS)

    Suorsa, Raymond E.; Sridhar, Banavar

    1993-01-01

    There are many proposed vision based methods to perform obstacle detection and avoidance for autonomous or semi-autonomous vehicles. All methods, however, will require very high processing rates to achieve real time performance. A system capable of supporting autonomous helicopter navigation will need to extract obstacle information from imagery at rates varying from ten frames per second to thirty or more frames per second depending on the vehicle speed. Such a system will need to sustain billions of operations per second. To reach such high processing rates using current technology, a parallel implementation of the obstacle detection/ranging method is required. This paper describes an efficient and flexible parallel implementation of a multisensor feature-based range-estimation algorithm, targeted for helicopter flight, realized on both a distributed-memory and shared-memory parallel computer.

  20. An approach to enhance pnetCDF performance in ...

    EPA Pesticide Factsheets

    Data intensive simulations are often limited by their I/O (input/output) performance, and "novel" techniques need to be developed in order to overcome this limitation. The software package pnetCDF (parallel network Common Data Form), which works with parallel file systems, was developed to address this issue by providing parallel I/O capability. This study examines the performance of an application-level data aggregation approach which performs data aggregation along either row or column dimension of MPI (Message Passing Interface) processes on a spatially decomposed domain, and then applies the pnetCDF parallel I/O paradigm. The test was done with three different domain sizes which represent small, moderately large, and large data domains, using a small-scale Community Multiscale Air Quality model (CMAQ) mock-up code. The examination includes comparing I/O performance with traditional serial I/O technique, straight application of pnetCDF, and the data aggregation along row and column dimension before applying pnetCDF. After the comparison, "optimal" I/O configurations of this application-level data aggregation approach were quantified. Data aggregation along the row dimension (pnetCDFcr) works better than along the column dimension (pnetCDFcc) although it may perform slightly worse than the straight pnetCDF method with a small number of processors. When the number of processors becomes larger, pnetCDFcr outperforms pnetCDF significantly. If the number of proces

  1. Importance of mechanics and kinematics in determining the stiffness contribution of the vertebral column during body-caudal-fin swimming in fishes.

    PubMed

    Nowroozi, Bryan N; Brainerd, Elizabeth L

    2014-02-01

    Whole-body stiffness in fishes has important consequences for swimming mode, speed and efficiency, but the contribution of vertebral column stiffness to whole-body stiffness is unclear. In our opinion, this lack of clarity is due in part to the lack of studies that have measured both in vitro mechanical properties of the vertebral column as well as in vivo vertebral kinematics in the same species. Some lack of clarity may also come from real variation in the mechanical role of the vertebral column across species. Previous studies, based on either mechanics or kinematics alone, suggest species-specific variation in vertebral column locomotor function that ranges from highly stiff regimes that contribute greatly to whole-body stiffness, and potentially act as a spring, to highly compliant regimes that only prohibit excessive flexion of the intervertebral joints. We review data collected in combined investigations of both mechanics and kinematics of three species, Myxine glutinosa, Acipenser transmontanus, and Morone saxatilis, to illustrate how mechanical testing within the context of the in vivo kinematics more clearly distinguishes the role of the vertebral column in each species. In addition, we identify species for which kinematic data are available, but mechanical data are lacking. We encourage further investigation of these species to fill these mechanical data gaps. Finally, we hope these future combined analyses will identify certain morphological, mechanical, or kinematic parameters that might be associated with certain vertebral column functional regimes with respect to body stiffness. Copyright © 2013 Elsevier GmbH. All rights reserved.

  2. Parallel optoelectronic trinary signed-digit division

    NASA Astrophysics Data System (ADS)

    Alam, Mohammad S.

    1999-03-01

    The trinary signed-digit (TSD) number system has been found to be very useful for parallel addition and subtraction of any arbitrary length operands in constant time. Using the TSD addition and multiplication modules as the basic building blocks, we develop an efficient algorithm for performing parallel TSD division in constant time. The proposed division technique uses one TSD subtraction and two TSD multiplication steps. An optoelectronic correlator based architecture is suggested for implementation of the proposed TSD division algorithm, which fully exploits the parallelism and high processing speed of optics. An efficient spatial encoding scheme is used to ensure better utilization of space bandwidth product of the spatial light modulators used in the optoelectronic implementation.

  3. ARC-2007-ACD07-0184-003

    NASA Image and Video Library

    2007-09-26

    From left: Data Parallel Line Relaxation (DPLR) software team members Kerry Trumble, Deepak Bose and David Hash analyze and predict the extreme environments NASA's space shuttle experiences during its super high-speed reentry into Earth’s atmosphere.

  4. The crew activity planning system bus interface unit

    NASA Technical Reports Server (NTRS)

    Allen, M. A.

    1979-01-01

    The hardware and software designs used to implement a high speed parallel communications interface to the MITRE 307.2 kilobit/second serial bus communications system are described. The primary topic is the development of the bus interface unit.

  5. Experimental investigation on underwater trajectory deviation of high-speed projectile with different nose shapes

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Huang, Wei; Gao, Yubo; Qi, Yafei; Hypervelocity Impact Research Center Team

    2015-06-01

    Laboratory-scaled oblique water entry experiments for the trajectory stability in the water column have been performed with four different nosed-projectiles at a range of velocities from 20m /s to 250 m /s . The slender projectiles are designed with flat, ogival, hemi-sperical, truncated-ogival noses to make comparisons on the trajectory deviation when they are launched at vertical and oblique impact angles (0°~25°). Two high-speed cameras that are positioned orthogonal to each other and normal to the column are employed to capture the entire process of projectiles' penetration. From the experimental results, the sequential images in two planes are presented to compare the trajectory deviation of different impact tests and the 3D trajectory models are extracted based on the location recorded by cameras. Considering the effect influenced by the impact velocities and noses of projectiles, it merited concluded that trajectory deviation is affected from most by impact angle, and least by impact velocities. Additionally, ogival projectiles tend to be more sensitive to oblique angle and experienced the largest attitude changing. National Natural Science Foundation of China (NO.: 11372088).

  6. Sensitivity of Offshore Surface Fluxes and Sea Breezes to the Spatial Distribution of Sea-Surface Temperature

    NASA Astrophysics Data System (ADS)

    Lombardo, Kelly; Sinsky, Eric; Edson, James; Whitney, Michael M.; Jia, Yan

    2018-03-01

    A series of numerical sensitivity experiments is performed to quantify the impact of sea-surface temperature (SST) distribution on offshore surface fluxes and simulated sea-breeze dynamics. The SST simulations of two mid-latitude sea-breeze events over coastal New England are performed using a spatially-uniform SST, as well as spatially-varying SST datasets of 32- and 1-km horizontal resolutions. Offshore surface heat and buoyancy fluxes vary in response to the SST distribution. Local sea-breeze circulations are relatively insensitive, with minimal differences in vertical structure and propagation speed among the experiments. The largest thermal perturbations are confined to the lowest 10% of the sea-breeze column due to the relatively high stability of the mid-Atlantic marine atmospheric boundary layer (ABL) suppressing vertical mixing, resulting in the depth of the marine layer remaining unchanged. Minimal impacts on the column-averaged virtual potential temperature and sea-breeze depth translates to small changes in sea-breeze propagation speed. This indicates that the use of datasets with a fine-scale SST may not produce more accurate sea-breeze simulations in highly stable marine ABL regimes, though may prove more beneficial in less stable sub-tropical environments.

  7. Holographic memory for high-density data storage and high-speed pattern recognition

    NASA Astrophysics Data System (ADS)

    Gu, Claire

    2002-09-01

    As computers and the internet become faster and faster, more and more information is transmitted, received, and stored everyday. The demand for high density and fast access time data storage is pushing scientists and engineers to explore all possible approaches including magnetic, mechanical, optical, etc. Optical data storage has already demonstrated its potential in the competition against other storage technologies. CD and DVD are showing their advantages in the computer and entertainment market. What motivated the use of optical waves to store and access information is the same as the motivation for optical communication. Light or an optical wave has an enormous capacity (or bandwidth) to carry information because of its short wavelength and parallel nature. In optical storage, there are two types of mechanism, namely localized and holographic memories. What gives the holographic data storage an advantage over localized bit storage is the natural ability to read the stored information in parallel, therefore, meeting the demand for fast access. Another unique feature that makes the holographic data storage attractive is that it is capable of performing associative recall at an incomparable speed. Therefore, volume holographic memory is particularly suitable for high-density data storage and high-speed pattern recognition. In this paper, we review previous works on volume holographic memories and discuss the challenges for this technology to become a reality.

  8. Highly accelerated cardiovascular MR imaging using many channel technology: concepts and clinical applications

    PubMed Central

    Sodickson, Daniel K.

    2010-01-01

    Cardiovascular magnetic resonance imaging (CVMRI) is of proven clinical value in the non-invasive imaging of cardiovascular diseases. CVMRI requires rapid image acquisition, but acquisition speed is fundamentally limited in conventional MRI. Parallel imaging provides a means for increasing acquisition speed and efficiency. However, signal-to-noise (SNR) limitations and the limited number of receiver channels available on most MR systems have in the past imposed practical constraints, which dictated the use of moderate accelerations in CVMRI. High levels of acceleration, which were unattainable previously, have become possible with many-receiver MR systems and many-element, cardiac-optimized RF-coil arrays. The resulting imaging speed improvements can be exploited in a number of ways, ranging from enhancement of spatial and temporal resolution to efficient whole heart coverage to streamlining of CVMRI work flow. In this review, examples of these strategies are provided, following an outline of the fundamentals of the highly accelerated imaging approaches employed in CVMRI. Topics discussed include basic principles of parallel imaging; key requirements for MR systems and RF-coil design; practical considerations of SNR management, supported by multi-dimensional accelerations, 3D noise averaging and high field imaging; highly accelerated clinical state-of-the art cardiovascular imaging applications spanning the range from SNR-rich to SNR-limited; and current trends and future directions. PMID:17562047

  9. A parallel algorithm for switch-level timing simulation on a hypercube multiprocessor

    NASA Technical Reports Server (NTRS)

    Rao, Hariprasad Nannapaneni

    1989-01-01

    The parallel approach to speeding up simulation is studied, specifically the simulation of digital LSI MOS circuitry on the Intel iPSC/2 hypercube. The simulation algorithm is based on RSIM, an event driven switch-level simulator that incorporates a linear transistor model for simulating digital MOS circuits. Parallel processing techniques based on the concepts of Virtual Time and rollback are utilized so that portions of the circuit may be simulated on separate processors, in parallel for as large an increase in speed as possible. A partitioning algorithm is also developed in order to subdivide the circuit for parallel processing.

  10. Enantioselective ultra-high and high performance liquid chromatography: a comparative study of columns based on the Whelk-O1 selector.

    PubMed

    Kotoni, Dorina; Ciogli, Alessia; D'Acquarica, Ilaria; Kocergin, Jelena; Szczerba, Ted; Ritchie, Harald; Villani, Claudio; Gasparrini, Francesco

    2012-12-21

    This paper reports on the thermodynamic and kinetic evaluation of a new ultra-high performance liquid chromatography broad-spectrum Pirkle-type chiral stationary phase (CSP) for enantioselective applications (eUHPLC). The well-known Whelk-O1 selector was covalently immobilized onto 1.7-μm high-surface-area, porous spherical silica particles to produce a totally synthetic, covalently bonded CSP that was packed into 150 mm, 100mm, 75 mm and 50mm columns, either 4.6 or 3.0mm ID. A 100 mm × 4.6 mm ID column was fully characterized from a kinetic and thermodynamic point of view, using as reference a conventional HPLC Whelk-O1 column, 250 mm×4.6mm ID, based on 5-μm porous silica particles. On the eUHPLC column, van Deemter plots generated H(min) values of 3.53 μm for 1,3-dinitrobenzene, at an interstitial mobile phase linear velocity (μ(inter)) of 5.07 mm/s, and H(min) of 4.26 and 4.17 μm for the two enantiomers of acenaphthenol, at μ(inter) of 4.85 mm/s and 4.24 mm/s, respectively. Resolution of 21 enantiomeric pairs including alcohols, epoxides, sulfoxides, phosphine oxides, benzodiazepines and 2-aryloxyproprionic esters used as herbicides, were obtained with significant advantages in terms of efficiency and analysis time. Speed gain factors were calculated for the different column geometries (150 mm, 100mm, 75 mm and 50mm, either 4.6 or 3.0mm ID), with respect to the standard HPLC column (250 mm ×4.6 mm ID), and were as high as 13, in the case of the 50-mm-long column, affording sub-minute separations of enantiomers with excellent resolution factors. In particular, trans-stilbene oxide was resolved in only 10s, while a 50 mm×3.0 mm ID column was used as a compromise between reduced mobile phase consumption (less than 1 mL per analysis) and smaller extra-column band-broadening effect. Given the relatively low viscosity in NP mode, and the excellent permeability of these eUHPLC columns, with backpressure values under 600 bar for a wide range of flow rates, the use of standard HPLC hardware is possible. In this case, however, a significant loss in resolution is observed, compared to the UHPLC instrumentation, if no modifications are introduced in the HPLC apparatus to reduce extra-column variance. The excellent efficiency and selectivity, conjugated with the very high-throughput and the ultra-fast analysis time, prove the potentials of the eUHPLC Whelk-O1 columns in the development of enantioselective UHPLC methods. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Pushbroom Stereo for High-Speed Navigation in Cluttered Environments

    DTIC Science & Technology

    2014-09-01

    inertial measurement sensors such as Achtelik et al .’s implemention of PTAM (parallel tracking and mapping) [15] with a barometric altimeter, stable flights...in indoor and outdoor environments are possible [1]. With a full vison- aided inertial navigation system (VINS), Li et al . have shown remarkable...avoidance on small UAVs. Stereo systems suffer from a similar speed issue, with most modern systems running at or below 30 Hz [8], [27]. Honegger et

  12. Magnetic nanoparticles and high-speed countercurrent chromatography coupled in-line and using the same solvent system for separation of quercetin-3-O-rutinoside, luteoloside and astragalin from a Mikania micrantha extract.

    PubMed

    Wang, Juanqiang; Geng, Shan; Wang, Binghai; Shao, Qian; Fang, Yingtong; Wei, Yun

    2017-07-28

    A new in-line method of magnetic nanoparticles (MNPs) coupled with high-speed countercurrent chromatography (HSCCC) using a same solvent system during the whole separation process was established to achieve the rapid separation of flavonoids from Mikania micrantha. The adsorption and desorption capacities of five different MNPs for flavonoid standards and Mikania micrantha crude extract were compared and the most suitable magnetic nanoparticle Fe 3 O 4 @SiO 2 @DIH@EMIMLpro was selected as the in-line MNP column. An in-line separation system was established by combining this MNP column with HSCCC through a six-way valve. The comparison between two solvent systems n-hexane-ethyl acetate-methanol-water (3:5:3:5, v/v) and ethyl acetate-methanol-water (25:1:25, v/v) showed that the latter solvent system was more suitable for simultaneously in-line separating three flavonoids quercetin-3-O-rutinoside, luteoloside and astragalin from Mikania micrantha. The purities of these three compounds with the ethyl acetate-methanol-water solvent system were 95.13%, 98.54% and 98.19% respectively. Results showed the established in-line separation system of MNP-HSCCC was efficient, recyclable and served to isolate potential flavonoids with similar polarities from natural complex mixtures. The in-line combination of magnetic nanoparticles with high-speed countercurrent chromatography eluting with the same solvent system during the whole separation process was established for the first time. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Comparison of the peak resolution and the stationary phase retention between the satellite and the planetary motions using the coil satellite centrifuge with counter-current chromatographic separation of 4-methylumbelliferyl sugar derivatives.

    PubMed

    Shinomiya, Kazufusa; Zaima, Kazumasa; Harada, Yukina; Yasue, Miho; Harikai, Naoki; Tokura, Koji; Ito, Yoichiro

    2017-01-20

    Coil satellite centrifuge (CSC) produces the complex satellite motion consisting of the triplicate rotation of the coiled column around three axes including the sun axis (the angular velocity, ω 1 ), the planet axis (ω 2 ) and the satellite axis (the central axis of the column) (ω 3 ) according to the following formula: ω 1 =ω 2 +ω 3 . Improved peak resolution in the separation of 4-methylumbelliferyl sugar derivatives was achieved using the conventional multilayer coiled columns with ethyl acetate/1-butanol/water (3: 2: 5, v/v) for the lower mobile phase at the combination of the rotation speeds (ω 1 , ω 2 , ω 3 )=(300, 150, 150rpm), and (1:4:5, v/v) for the upper mobile phase at (300:100:200rpm). The effect of the satellite motion on the peak resolution and the stationary phase retention was evaluated by each CSC separation with the different rotation speeds of ω 2 and ω 3 under the constant revolution speed at ω 1 =300rpm. With the lower mobile phase, almost constant peak resolution and stationary phase retention were yielded regardless of the change of ω 2 and ω 3 , while with the upper mobile phase these two values were sensitively varied according to the different combination of ω 2 and ω 3 . For example, when ω 2 =147 or 200rpm is used, no stationary phase was retained in the coiled column while ω 2 =150rpm could retain enough volume of stationary phase for separation. On the other hand, the combined rotation speeds at (ω 1 , ω 2 , ω 3 )=(300, 300, 0rpm) or (300, 0, 300rpm) produced insufficient peak resolution regardless of the choice of the mobile phase apparently due to the lack of rotation speed except at (300, 0, 300rpm) with the upper mobile phase. At lower rotation speed of ω 1 =300rpm, better peak resolution and stationary phase retention were obtained by the satellite motion (ω 3 ) than by the planetary motion (ω 2 ), or ω 3 >ω 2 . The effect of the hydrophobicity of the two-phase solvent systems on the stationary phase retention was further examined using the n-hexane/ethyl acetate/1-butanol/methanol/water system at different volume ratios. In the satellite motion at (ω 1 , ω 2 , ω 3 )=(300, 150, 150rpm), almost constant stationary phase retention was obtained with the lower mobile phase regardless of the hydrophobicity of the solvent system whereas the stationary phase retention varied according to the volume ratio of the two-phase solvent system for the upper mobile phase. However, stable stationary phase retention was observed with either phase used as the mobile phase. In order to analyze the acceleration acting on the coiled column, an acceleration sensor was set on the column holder by displacing the multilayer column. The combination of the rotation speeds at (300, 100, 200rpm) showed double loops in the acceleration track, whereas (300, 150, 150rpm) showed a single loop, and all other combinations showed, complex tracks. The overall results indicate that the satellite motion is seriously affected by the combination of rotation speeds and the hydrophobicity of the two-phase solvent system when the upper phase was used as the mobile phase for separation. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Comparison of the peak resolution and the stationary phase retention between the satellite and the planetary motions using the coil satellite centrifuge with counter-current chromatographic separation of 4-methylumbelliferyl sugar derivatives

    PubMed Central

    Shinomiya, Kazufusa; Zaima, Kazumasa; Harada, Yukina; Yasue, Miho; Harikai, Naoki; Tokura, Koji; Ito, Yoichiro

    2016-01-01

    Coil satellite centrifuge (CSC) produces the complex satellite motion consisting of the triplicate rotation of the coiled column around three axes including the sun axis (the angular velocity, ω1), the planet axis (ω2) and the satellite axis (the central axis of the column) (ω3) according to the following formula: ω1 = ω2 + ω3. Improved peak resolution in the separation of 4-methylumbelliferyl sugar derivatives was achieved using the conventional multilayer coiled columns with ethyl acetate/1-butanol/water (3 : 2 : 5, v/v) for the lower mobile phase at the combination of the rotation speeds (ω1, ω2, ω3) = (300, 150, 150 rpm), and (1 : 4 : 5, v/v) for the upper mobile phase at (300 : 100 : 200 rpm). The effect of the satellite motion on the peak resolution and the stationary phase retention was evaluated by each CSC separation with the different rotation speeds of ω2 and ω3 under the constant revolution speed at ω1 = 300 rpm. With the lower mobile phase, almost constant peak resolution and stationary phase retention were yielded regardless of the change of ω2 and ω3, while with the upper mobile phase these two values were sensitively varied according to the different combination of ω2 and ω3. For example, when ω2 = 147 or 200 rpm is used, no stationary phase was retained in the coiled column while ω2 = 150 rpm could retain enough volume of stationary phase for separation. On the other hand, the combined rotation speeds at (ω1, ω2, ω3) = (300, 300, 0 rpm) or (300, 0, 300 rpm) produced insufficient peak resolution regardless of the choice of the mobile phase apparently due to the lack of rotation speed except at (300, 0, 300 rpm) with the upper mobile phase. At lower rotation speed of ω1 = 300 rpm, better peak resolution and stationary phase retention were obtained by the satellite motion (ω3) than by the planetary motion (ω2), or ω3 > ω2. The effect of the hydrophobicity of the two-phase solvent systems on the stationary phase retention was further examined using the n-hexane/ethyl acetate/1-butanol/methanol/water system at different volume ratios. In the satellite motion at (ω1, ω2, ω3) = (300, 150, 150 rpm), almost constant stationary phase retention was obtained with the lower mobile phase regardless of the hydrophobicity of the solvent system whereas the stationary phase retention varied according to the volume ratio of the two-phase solvent system for the upper mobile phase. However, stable stationary phase retention was observed with either phase used as the mobile phase. In order to analyze the acceleration acting on the coiled column, an acceleration sensor was set on the column holder by displacing the multilayer column. The combination of the rotation speeds at (300, 100, 200 rpm) showed double loops in the acceleration track, whereas (300, 150, 150 rpm) showed a single loop, and all other combinations showed, complex tracks. The overall results indicate that the satellite motion is seriously affected by the combination of rotation speeds and the hydrophobicity of the two-phase solvent system when the upper phase was used as the mobile phase for separation. PMID:28040269

  15. High-performance parallel interface to synchronous optical network gateway

    DOEpatents

    St. John, W.B.; DuBois, D.H.

    1996-12-03

    Disclosed is a system of sending and receiving gateways interconnects high speed data interfaces, e.g., HIPPI interfaces, through fiber optic links, e.g., a SONET network. An electronic stripe distributor distributes bytes of data from a first interface at the sending gateway onto parallel fiber optics of the fiber optic link to form transmitted data. An electronic stripe collector receives the transmitted data on the parallel fiber optics and reforms the data into a format effective for input to a second interface at the receiving gateway. Preferably, an error correcting syndrome is constructed at the sending gateway and sent with a data frame so that transmission errors can be detected and corrected in a real-time basis. Since the high speed data interface operates faster than any of the fiber optic links the transmission rate must be adapted to match the available number of fiber optic links so the sending and receiving gateways monitor the availability of fiber links and adjust the data throughput accordingly. In another aspect, the receiving gateway must have sufficient available buffer capacity to accept an incoming data frame. A credit-based flow control system provides for continuously updating the sending gateway on the available buffer capacity at the receiving gateway. 7 figs.

  16. Parallel Solver for Diffuse Optical Tomography on Realistic Head Models With Scattering and Clear Regions.

    PubMed

    Placati, Silvio; Guermandi, Marco; Samore, Andrea; Scarselli, Eleonora Franchi; Guerrieri, Roberto

    2016-09-01

    Diffuse optical tomography is an imaging technique, based on evaluation of how light propagates within the human head to obtain the functional information about the brain. Precision in reconstructing such an optical properties map is highly affected by the accuracy of the light propagation model implemented, which needs to take into account the presence of clear and scattering tissues. We present a numerical solver based on the radiosity-diffusion model, integrating the anatomical information provided by a structural MRI. The solver is designed to run on parallel heterogeneous platforms based on multiple GPUs and CPUs. We demonstrate how the solver provides a 7 times speed-up over an isotropic-scattered parallel Monte Carlo engine based on a radiative transport equation for a domain composed of 2 million voxels, along with a significant improvement in accuracy. The speed-up greatly increases for larger domains, allowing us to compute the light distribution of a full human head ( ≈ 3 million voxels) in 116 s for the platform used.

  17. Precision Parameter Estimation and Machine Learning

    NASA Astrophysics Data System (ADS)

    Wandelt, Benjamin D.

    2008-12-01

    I discuss the strategy of ``Acceleration by Parallel Precomputation and Learning'' (AP-PLe) that can vastly accelerate parameter estimation in high-dimensional parameter spaces and costly likelihood functions, using trivially parallel computing to speed up sequential exploration of parameter space. This strategy combines the power of distributed computing with machine learning and Markov-Chain Monte Carlo techniques efficiently to explore a likelihood function, posterior distribution or χ2-surface. This strategy is particularly successful in cases where computing the likelihood is costly and the number of parameters is moderate or large. We apply this technique to two central problems in cosmology: the solution of the cosmological parameter estimation problem with sufficient accuracy for the Planck data using PICo; and the detailed calculation of cosmological helium and hydrogen recombination with RICO. Since the APPLe approach is designed to be able to use massively parallel resources to speed up problems that are inherently serial, we can bring the power of distributed computing to bear on parameter estimation problems. We have demonstrated this with the CosmologyatHome project.

  18. Real-world hydrologic assessment of a fully-distributed hydrological model in a parallel computing environment

    NASA Astrophysics Data System (ADS)

    Vivoni, Enrique R.; Mascaro, Giuseppe; Mniszewski, Susan; Fasel, Patricia; Springer, Everett P.; Ivanov, Valeriy Y.; Bras, Rafael L.

    2011-10-01

    SummaryA major challenge in the use of fully-distributed hydrologic models has been the lack of computational capabilities for high-resolution, long-term simulations in large river basins. In this study, we present the parallel model implementation and real-world hydrologic assessment of the Triangulated Irregular Network (TIN)-based Real-time Integrated Basin Simulator (tRIBS). Our parallelization approach is based on the decomposition of a complex watershed using the channel network as a directed graph. The resulting sub-basin partitioning divides effort among processors and handles hydrologic exchanges across boundaries. Through numerical experiments in a set of nested basins, we quantify parallel performance relative to serial runs for a range of processors, simulation complexities and lengths, and sub-basin partitioning methods, while accounting for inter-run variability on a parallel computing system. In contrast to serial simulations, the parallel model speed-up depends on the variability of hydrologic processes. Load balancing significantly improves parallel speed-up with proportionally faster runs as simulation complexity (domain resolution and channel network extent) increases. The best strategy for large river basins is to combine a balanced partitioning with an extended channel network, with potential savings through a lower TIN resolution. Based on these advances, a wider range of applications for fully-distributed hydrologic models are now possible. This is illustrated through a set of ensemble forecasts that account for precipitation uncertainty derived from a statistical downscaling model.

  19. GSRP/David Marshall: Fully Automated Cartesian Grid CFD Application for MDO in High Speed Flows

    NASA Technical Reports Server (NTRS)

    2003-01-01

    With the renewed interest in Cartesian gridding methodologies for the ease and speed of gridding complex geometries in addition to the simplicity of the control volumes used in the computations, it has become important to investigate ways of extending the existing Cartesian grid solver functionalities. This includes developing methods of modeling the viscous effects in order to utilize Cartesian grids solvers for accurate drag predictions and addressing the issues related to the distributed memory parallelization of Cartesian solvers. This research presents advances in two areas of interest in Cartesian grid solvers, viscous effects modeling and MPI parallelization. The development of viscous effects modeling using solely Cartesian grids has been hampered by the widely varying control volume sizes associated with the mesh refinement and the cut cells associated with the solid surface. This problem is being addressed by using physically based modeling techniques to update the state vectors of the cut cells and removing them from the finite volume integration scheme. This work is performed on a new Cartesian grid solver, NASCART-GT, with modifications to its cut cell functionality. The development of MPI parallelization addresses issues associated with utilizing Cartesian solvers on distributed memory parallel environments. This work is performed on an existing Cartesian grid solver, CART3D, with modifications to its parallelization methodology.

  20. The structure of the electron diffusion region during asymmetric anti-parallel magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Swisdak, M.; Drake, J. F.; Price, L.; Burch, J. L.; Cassak, P.

    2017-12-01

    The structure of the electron diffusion region during asymmetric magnetic reconnection is ex- plored with high-resolution particle-in-cell simulations that focus on an magnetopause event ob- served by the Magnetospheric Multiscale Mission (MMS). A major surprise is the development of a standing, oblique whistler-like structure with regions of intense positive and negative dissipation. This structure arises from high-speed electrons that flow along the magnetosheath magnetic sepa- ratrices, converge in the dissipation region and jet across the x-line into the magnetosphere. The jet produces a region of negative charge and generates intense parallel electric fields that eject the electrons downstream along the magnetospheric separatrices. The ejected electrons produce the parallel velocity-space crescents documented by MMS.

  1. Optimizing ion channel models using a parallel genetic algorithm on graphical processors.

    PubMed

    Ben-Shalom, Roy; Aviv, Amit; Razon, Benjamin; Korngreen, Alon

    2012-01-01

    We have recently shown that we can semi-automatically constrain models of voltage-gated ion channels by combining a stochastic search algorithm with ionic currents measured using multiple voltage-clamp protocols. Although numerically successful, this approach is highly demanding computationally, with optimization on a high performance Linux cluster typically lasting several days. To solve this computational bottleneck we converted our optimization algorithm for work on a graphical processing unit (GPU) using NVIDIA's CUDA. Parallelizing the process on a Fermi graphic computing engine from NVIDIA increased the speed ∼180 times over an application running on an 80 node Linux cluster, considerably reducing simulation times. This application allows users to optimize models for ion channel kinetics on a single, inexpensive, desktop "super computer," greatly reducing the time and cost of building models relevant to neuronal physiology. We also demonstrate that the point of algorithm parallelization is crucial to its performance. We substantially reduced computing time by solving the ODEs (Ordinary Differential Equations) so as to massively reduce memory transfers to and from the GPU. This approach may be applied to speed up other data intensive applications requiring iterative solutions of ODEs. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Estimation of vibration frequency of loudspeaker diaphragm by parallel phase-shifting digital holography

    NASA Astrophysics Data System (ADS)

    Kakue, T.; Endo, Y.; Shimobaba, T.; Ito, T.

    2014-11-01

    We report frequency estimation of loudspeaker diaphragm vibrating at high speed by parallel phase-shifting digital holography which is a technique of single-shot phase-shifting interferometry. This technique records multiple phaseshifted holograms required for phase-shifting interferometry by using space-division multiplexing. We constructed a parallel phase-shifting digital holography system consisting of a high-speed polarization-imaging camera. This camera has a micro-polarizer array which selects four linear polarization axes for 2 × 2 pixels. We set a loudspeaker as an object, and recorded vibration of diaphragm of the loudspeaker by the constructed system. By the constructed system, we demonstrated observation of vibration displacement of loudspeaker diaphragm. In this paper, we aim to estimate vibration frequency of the loudspeaker diaphragm by applying the experimental results to frequency analysis. Holograms consisting of 128 × 128 pixels were recorded at a frame rate of 262,500 frames per second by the camera. A sinusoidal wave was input to the loudspeaker via a phone connector. We observed displacement of the loudspeaker diaphragm vibrating by the system. We also succeeded in estimating vibration frequency of the loudspeaker diaphragm by applying frequency analysis to the experimental results.

  3. Matching pursuit parallel decomposition of seismic data

    NASA Astrophysics Data System (ADS)

    Li, Chuanhui; Zhang, Fanchang

    2017-07-01

    In order to improve the computation speed of matching pursuit decomposition of seismic data, a matching pursuit parallel algorithm is designed in this paper. We pick a fixed number of envelope peaks from the current signal in every iteration according to the number of compute nodes and assign them to the compute nodes on average to search the optimal Morlet wavelets in parallel. With the help of parallel computer systems and Message Passing Interface, the parallel algorithm gives full play to the advantages of parallel computing to significantly improve the computation speed of the matching pursuit decomposition and also has good expandability. Besides, searching only one optimal Morlet wavelet by every compute node in every iteration is the most efficient implementation.

  4. A Comparative Propulsion System Analysis for the High-Speed Civil Transport

    NASA Technical Reports Server (NTRS)

    Berton, Jeffrey J.; Haller, William J.; Senick, Paul F.; Jones, Scott M.; Seidel, Jonathan A.

    2005-01-01

    Six of the candidate propulsion systems for the High-Speed Civil Transport are the turbojet, turbine bypass engine, mixed flow turbofan, variable cycle engine, Flade engine, and the inverting flow valve engine. A comparison of these propulsion systems by NASA's Glenn Research Center, paralleling studies within the aircraft industry, is presented. This report describes the Glenn Aeropropulsion Analysis Office's contribution to the High-Speed Research Program's 1993 and 1994 propulsion system selections. A parametric investigation of each propulsion cycle's primary design variables is analytically performed. Performance, weight, and geometric data are calculated for each engine. The resulting engines are then evaluated on two airframer-derived supersonic commercial aircraft for a 5000 nautical mile, Mach 2.4 cruise design mission. The effects of takeoff noise, cruise emissions, and cycle design rules are examined.

  5. (abstract) A High Throughput 3-D Inner Product Processor

    NASA Technical Reports Server (NTRS)

    Daud, Tuan

    1996-01-01

    A particularily challenging image processing application is the real time scene acquisition and object discrimination. It requires spatio-temporal recognition of point and resolved objects at high speeds with parallel processing algorithms. Neural network paradigms provide fine grain parallism and, when implemented in hardware, offer orders of magnitude speed up. However, neural networks implemented on a VLSI chip are planer architectures capable of efficient processing of linear vector signals rather than 2-D images. Therefore, for processing of images, a 3-D stack of neural-net ICs receiving planar inputs and consuming minimal power are required. Details of the circuits with chip architectures will be described with need to develop ultralow-power electronics. Further, use of the architecture in a system for high-speed processing will be illustrated.

  6. On Multiple AER Handshaking Channels Over High-Speed Bit-Serial Bidirectional LVDS Links With Flow-Control and Clock-Correction on Commercial FPGAs for Scalable Neuromorphic Systems.

    PubMed

    Yousefzadeh, Amirreza; Jablonski, Miroslaw; Iakymchuk, Taras; Linares-Barranco, Alejandro; Rosado, Alfredo; Plana, Luis A; Temple, Steve; Serrano-Gotarredona, Teresa; Furber, Steve B; Linares-Barranco, Bernabe

    2017-10-01

    Address event representation (AER) is a widely employed asynchronous technique for interchanging "neural spikes" between different hardware elements in neuromorphic systems. Each neuron or cell in a chip or a system is assigned an address (or ID), which is typically communicated through a high-speed digital bus, thus time-multiplexing a high number of neural connections. Conventional AER links use parallel physical wires together with a pair of handshaking signals (request and acknowledge). In this paper, we present a fully serial implementation using bidirectional SATA connectors with a pair of low-voltage differential signaling (LVDS) wires for each direction. The proposed implementation can multiplex a number of conventional parallel AER links for each physical LVDS connection. It uses flow control, clock correction, and byte alignment techniques to transmit 32-bit address events reliably over multiplexed serial connections. The setup has been tested using commercial Spartan6 FPGAs attaining a maximum event transmission speed of 75 Meps (Mega events per second) for 32-bit events at a line rate of 3.0 Gbps. Full HDL codes (vhdl/verilog) and example demonstration codes for the SpiNNaker platform will be made available.

  7. Fmoc-RGDS based fibrils: atomistic details of their hierarchical assembly.

    PubMed

    Zanuy, David; Poater, Jordi; Solà, Miquel; Hamley, Ian W; Alemán, Carlos

    2016-01-14

    We describe the 3D supramolecular structure of Fmoc-RGDS fibrils, where Fmoc and RGDS refer to the hydrophobic N-(fluorenyl-9-methoxycarbonyl) group and the hydrophilic Arg-Gly-Asp-Ser peptide sequence, respectively. For this purpose, we performed atomistic all-atom molecular dynamics simulations of a wide variety of packing modes derived from both parallel and antiparallel β-sheet configurations. The proposed model, which closely resembles the cross-β core structure of amyloids, is stabilized by π-π stacking interactions between hydrophobic Fmoc groups. More specifically, in this organization, the Fmoc-groups of β-strands belonging to the same β-sheet form columns of π-stacked aromatic rings arranged in a parallel fashion. Eight of such columns pack laterally forming a compact and dense hydrophobic core, in which two central columns are surrounded by three adjacent columns on each side. In addition to such Fmoc···Fmoc interactions, the hierarchical assembly of the constituent β-strands involves a rich variety of intra- and inter-strand interactions. Accordingly, hydrogen bonding, salt bridges and π-π stacking interactions coexist in the highly ordered packing network proposed for the Fmoc-RGDS amphiphile. Quantum mechanical calculations, which have been performed to quantify the above referred interactions, confirm the decisive role played by the π-π stacking interactions between the rings of the Fmoc groups, even though both inter-strand and intra-strand hydrogen bonds and salt bridges also play a non-negligible role. Overall, these results provide a solid reference to complement the available experimental data, which are not precise enough to determine the fibril structure, and reconcile previous independent observations.

  8. Dual Super-Systolic Core for Real-Time Reconstructive Algorithms of High-Resolution Radar/SAR Imaging Systems

    PubMed Central

    Atoche, Alejandro Castillo; Castillo, Javier Vázquez

    2012-01-01

    A high-speed dual super-systolic core for reconstructive signal processing (SP) operations consists of a double parallel systolic array (SA) machine in which each processing element of the array is also conceptualized as another SA in a bit-level fashion. In this study, we addressed the design of a high-speed dual super-systolic array (SSA) core for the enhancement/reconstruction of remote sensing (RS) imaging of radar/synthetic aperture radar (SAR) sensor systems. The selected reconstructive SP algorithms are efficiently transformed in their parallel representation and then, they are mapped into an efficient high performance embedded computing (HPEC) architecture in reconfigurable Xilinx field programmable gate array (FPGA) platforms. As an implementation test case, the proposed approach was aggregated in a HW/SW co-design scheme in order to solve the nonlinear ill-posed inverse problem of nonparametric estimation of the power spatial spectrum pattern (SSP) from a remotely sensed scene. We show how such dual SSA core, drastically reduces the computational load of complex RS regularization techniques achieving the required real-time operational mode. PMID:22736964

  9. Supercritical Fluid Chromatography of Drugs: Parallel Factor Analysis for Column Testing in a Wide Range of Operational Conditions

    PubMed Central

    Al-Degs, Yahya; Andri, Bertyl; Thiébaut, Didier; Vial, Jérôme

    2017-01-01

    Retention mechanisms involved in supercritical fluid chromatography (SFC) are influenced by interdependent parameters (temperature, pressure, chemistry of the mobile phase, and nature of the stationary phase), a complexity which makes the selection of a proper stationary phase for a given separation a challenging step. For the first time in SFC studies, Parallel Factor Analysis (PARAFAC) was employed to evaluate the chromatographic behavior of eight different stationary phases in a wide range of chromatographic conditions (temperature, pressure, and gradient elution composition). Design of Experiment was used to optimize experiments involving 14 pharmaceutical compounds present in biological and/or environmental samples and with dissimilar physicochemical properties. The results showed the superiority of PARAFAC for the analysis of the three-way (column × drug × condition) data array over unfolding the multiway array to matrices and performing several classical principal component analyses. Thanks to the PARAFAC components, similarity in columns' function, chromatographic trend of drugs, and correlation between separation conditions could be simply depicted: columns were grouped according to their H-bonding forces, while gradient composition was dominating for condition classification. Also, the number of drugs could be efficiently reduced for columns classification as some of them exhibited a similar behavior, as shown by hierarchical clustering based on PARAFAC components. PMID:28695040

  10. Parallel performance investigations of an unstructured mesh Navier-Stokes solver

    NASA Technical Reports Server (NTRS)

    Mavriplis, Dimitri J.

    2000-01-01

    A Reynolds-averaged Navier-Stokes solver based on unstructured mesh techniques for analysis of high-lift configurations is described. The method makes use of an agglomeration multigrid solver for convergence acceleration. Implicit line-smoothing is employed to relieve the stiffness associated with highly stretched meshes. A GMRES technique is also implemented to speed convergence at the expense of additional memory usage. The solver is cache efficient and fully vectorizable, and is parallelized using a two-level hybrid MPI-OpenMP implementation suitable for shared and/or distributed memory architectures, as well as clusters of shared memory machines. Convergence and scalability results are illustrated for various high-lift cases.

  11. A parallel input composite transimpedance amplifier.

    PubMed

    Kim, D J; Kim, C

    2018-01-01

    A new approach to high performance current to voltage preamplifier design is presented. The design using multiple operational amplifiers (op-amps) has a parasitic capacitance compensation network and a composite amplifier topology for fast, precision, and low noise performance. The input stage consisting of a parallel linked JFET op-amps and a high-speed bipolar junction transistor (BJT) gain stage driving the output in the composite amplifier topology, cooperating with the capacitance compensation feedback network, ensures wide bandwidth stability in the presence of input capacitance above 40 nF. The design is ideal for any two-probe measurement, including high impedance transport and scanning tunneling microscopy measurements.

  12. A parallel input composite transimpedance amplifier

    NASA Astrophysics Data System (ADS)

    Kim, D. J.; Kim, C.

    2018-01-01

    A new approach to high performance current to voltage preamplifier design is presented. The design using multiple operational amplifiers (op-amps) has a parasitic capacitance compensation network and a composite amplifier topology for fast, precision, and low noise performance. The input stage consisting of a parallel linked JFET op-amps and a high-speed bipolar junction transistor (BJT) gain stage driving the output in the composite amplifier topology, cooperating with the capacitance compensation feedback network, ensures wide bandwidth stability in the presence of input capacitance above 40 nF. The design is ideal for any two-probe measurement, including high impedance transport and scanning tunneling microscopy measurements.

  13. Experimental and Computational Sonic Boom Assessment of Lockheed-Martin N+2 Low Boom Models

    NASA Technical Reports Server (NTRS)

    Cliff, Susan E.; Durston, Donald A.; Elmiligui, Alaa A.; Walker, Eric L.; Carter, Melissa B.

    2015-01-01

    Flight at speeds greater than the speed of sound is not permitted over land, primarily because of the noise and structural damage caused by sonic boom pressure waves of supersonic aircraft. Mitigation of sonic boom is a key focus area of the High Speed Project under NASA's Fundamental Aeronautics Program. The project is focusing on technologies to enable future civilian aircraft to fly efficiently with reduced sonic boom, engine and aircraft noise, and emissions. A major objective of the project is to improve both computational and experimental capabilities for design of low-boom, high-efficiency aircraft. NASA and industry partners are developing improved wind tunnel testing techniques and new pressure instrumentation to measure the weak sonic boom pressure signatures of modern vehicle concepts. In parallel, computational methods are being developed to provide rapid design and analysis of supersonic aircraft with improved meshing techniques that provide efficient, robust, and accurate on- and off-body pressures at several body lengths from vehicles with very low sonic boom overpressures. The maturity of these critical parallel efforts is necessary before low-boom flight can be demonstrated and commercial supersonic flight can be realized.

  14. Directly measuring of thermal pulse transfer in one-dimensional highly aligned carbon nanotubes.

    PubMed

    Zhang, Guang; Liu, Changhong; Fan, Shoushan

    2013-01-01

    Using a simple and precise instrument system, we directly measured the thermo-physical properties of one-dimensional highly aligned carbon nanotubes (CNTs). A kind of CNT-based macroscopic materials named super aligned carbon nanotube (SACNT) buckypapers was measured in our experiment. We defined a new one-dimensional parameter, the "thermal transfer speed" to characterize the thermal damping mechanisms in the SACNT buckypapers. Our results indicated that the SACNT buckypapers with different densities have obviously different thermal transfer speeds. Furthermore, we found that the thermal transfer speed of high-density SACNT buckypapers may have an obvious damping factor along the CNTs aligned direction. The anisotropic thermal diffusivities of SACNT buckypapers could be calculated by the thermal transfer speeds. The thermal diffusivities obviously increase as the buckypaper-density increases. For parallel SACNT buckypapers, the thermal diffusivity could be as high as 562.2 ± 55.4 mm(2)/s. The thermal conductivities of these SACNT buckypapers were also calculated by the equation k = Cpαρ.

  15. Nonlinear wave interaction in a plasma column

    NASA Technical Reports Server (NTRS)

    Larsen, J.

    1972-01-01

    Two particular cases of nonlinear wave interaction in a plasma column were investigated. The frequencies of the waves were on the order of magnitude of the electron plasma frequency, and ion motion was neglected. The nonlinear coupling of slow waves on a plasma column was studied by means of cold plasma theory, and the case of a plasma column surrounded by an infinite dielectric in the absence of a magnetic field was also examined. Nonlinear scattering from a plasma column in an electromagnetic field having it's magnetic field parallel to the axis of the column was investigated. Some experimental results on mode conversion in the presence of loss are presented along with some observations of nonlinear scattering, The effect of the earth's magnetic field and of discharge symmetry on the radiation pattern are discussed.

  16. Compact holographic optical neural network system for real-time pattern recognition

    NASA Astrophysics Data System (ADS)

    Lu, Taiwei; Mintzer, David T.; Kostrzewski, Andrew A.; Lin, Freddie S.

    1996-08-01

    One of the important characteristics of artificial neural networks is their capability for massive interconnection and parallel processing. Recently, specialized electronic neural network processors and VLSI neural chips have been introduced in the commercial market. The number of parallel channels they can handle is limited because of the limited parallel interconnections that can be implemented with 1D electronic wires. High-resolution pattern recognition problems can require a large number of neurons for parallel processing of an image. This paper describes a holographic optical neural network (HONN) that is based on high- resolution volume holographic materials and is capable of performing massive 3D parallel interconnection of tens of thousands of neurons. A HONN with more than 16,000 neurons packaged in an attache case has been developed. Rotation- shift-scale-invariant pattern recognition operations have been demonstrated with this system. System parameters such as the signal-to-noise ratio, dynamic range, and processing speed are discussed.

  17. Parallel processing of genomics data

    NASA Astrophysics Data System (ADS)

    Agapito, Giuseppe; Guzzi, Pietro Hiram; Cannataro, Mario

    2016-10-01

    The availability of high-throughput experimental platforms for the analysis of biological samples, such as mass spectrometry, microarrays and Next Generation Sequencing, have made possible to analyze a whole genome in a single experiment. Such platforms produce an enormous volume of data per single experiment, thus the analysis of this enormous flow of data poses several challenges in term of data storage, preprocessing, and analysis. To face those issues, efficient, possibly parallel, bioinformatics software needs to be used to preprocess and analyze data, for instance to highlight genetic variation associated with complex diseases. In this paper we present a parallel algorithm for the parallel preprocessing and statistical analysis of genomics data, able to face high dimension of data and resulting in good response time. The proposed system is able to find statistically significant biological markers able to discriminate classes of patients that respond to drugs in different ways. Experiments performed on real and synthetic genomic datasets show good speed-up and scalability.

  18. Performance evaluation of canny edge detection on a tiled multicore architecture

    NASA Astrophysics Data System (ADS)

    Brethorst, Andrew Z.; Desai, Nehal; Enright, Douglas P.; Scrofano, Ronald

    2011-01-01

    In the last few years, a variety of multicore architectures have been used to parallelize image processing applications. In this paper, we focus on assessing the parallel speed-ups of different Canny edge detection parallelization strategies on the Tile64, a tiled multicore architecture developed by the Tilera Corporation. Included in these strategies are different ways Canny edge detection can be parallelized, as well as differences in data management. The two parallelization strategies examined were loop-level parallelism and domain decomposition. Loop-level parallelism is achieved through the use of OpenMP,1 and it is capable of parallelization across the range of values over which a loop iterates. Domain decomposition is the process of breaking down an image into subimages, where each subimage is processed independently, in parallel. The results of the two strategies show that for the same number of threads, programmer implemented, domain decomposition exhibits higher speed-ups than the compiler managed, loop-level parallelism implemented with OpenMP.

  19. Wavelet-space correlation imaging for high-speed MRI without motion monitoring or data segmentation.

    PubMed

    Li, Yu; Wang, Hui; Tkach, Jean; Roach, David; Woods, Jason; Dumoulin, Charles

    2015-12-01

    This study aims to (i) develop a new high-speed MRI approach by implementing correlation imaging in wavelet-space, and (ii) demonstrate the ability of wavelet-space correlation imaging to image human anatomy with involuntary or physiological motion. Correlation imaging is a high-speed MRI framework in which image reconstruction relies on quantification of data correlation. The presented work integrates correlation imaging with a wavelet transform technique developed originally in the field of signal and image processing. This provides a new high-speed MRI approach to motion-free data collection without motion monitoring or data segmentation. The new approach, called "wavelet-space correlation imaging", is investigated in brain imaging with involuntary motion and chest imaging with free-breathing. Wavelet-space correlation imaging can exceed the speed limit of conventional parallel imaging methods. Using this approach with high acceleration factors (6 for brain MRI, 16 for cardiac MRI, and 8 for lung MRI), motion-free images can be generated in static brain MRI with involuntary motion and nonsegmented dynamic cardiac/lung MRI with free-breathing. Wavelet-space correlation imaging enables high-speed MRI in the presence of involuntary motion or physiological dynamics without motion monitoring or data segmentation. © 2014 Wiley Periodicals, Inc.

  20. Distributed Large Data-Object Environments: End-to-End Performance Analysis of High Speed Distributed Storage Systems in Wide Area ATM Networks

    NASA Technical Reports Server (NTRS)

    Johnston, William; Tierney, Brian; Lee, Jason; Hoo, Gary; Thompson, Mary

    1996-01-01

    We have developed and deployed a distributed-parallel storage system (DPSS) in several high speed asynchronous transfer mode (ATM) wide area networks (WAN) testbeds to support several different types of data-intensive applications. Architecturally, the DPSS is a network striped disk array, but is fairly unique in that its implementation allows applications complete freedom to determine optimal data layout, replication and/or coding redundancy strategy, security policy, and dynamic reconfiguration. In conjunction with the DPSS, we have developed a 'top-to-bottom, end-to-end' performance monitoring and analysis methodology that has allowed us to characterize all aspects of the DPSS operating in high speed ATM networks. In particular, we have run a variety of performance monitoring experiments involving the DPSS in the MAGIC testbed, which is a large scale, high speed, ATM network and we describe our experience using the monitoring methodology to identify and correct problems that limit the performance of high speed distributed applications. Finally, the DPSS is part of an overall architecture for using high speed, WAN's for enabling the routine, location independent use of large data-objects. Since this is part of the motivation for a distributed storage system, we describe this architecture.

  1. Wavelet-space Correlation Imaging for High-speed MRI without Motion Monitoring or Data Segmentation

    PubMed Central

    Li, Yu; Wang, Hui; Tkach, Jean; Roach, David; Woods, Jason; Dumoulin, Charles

    2014-01-01

    Purpose This study aims to 1) develop a new high-speed MRI approach by implementing correlation imaging in wavelet-space, and 2) demonstrate the ability of wavelet-space correlation imaging to image human anatomy with involuntary or physiological motion. Methods Correlation imaging is a high-speed MRI framework in which image reconstruction relies on quantification of data correlation. The presented work integrates correlation imaging with a wavelet transform technique developed originally in the field of signal and image processing. This provides a new high-speed MRI approach to motion-free data collection without motion monitoring or data segmentation. The new approach, called “wavelet-space correlation imaging”, is investigated in brain imaging with involuntary motion and chest imaging with free-breathing. Results Wavelet-space correlation imaging can exceed the speed limit of conventional parallel imaging methods. Using this approach with high acceleration factors (6 for brain MRI, 16 for cardiac MRI and 8 for lung MRI), motion-free images can be generated in static brain MRI with involuntary motion and nonsegmented dynamic cardiac/lung MRI with free-breathing. Conclusion Wavelet-space correlation imaging enables high-speed MRI in the presence of involuntary motion or physiological dynamics without motion monitoring or data segmentation. PMID:25470230

  2. Programming a hillslope water movement model on the MPP

    NASA Technical Reports Server (NTRS)

    Devaney, J. E.; Irving, A. R.; Camillo, P. J.; Gurney, R. J.

    1987-01-01

    A physically based numerical model was developed of heat and moisture flow within a hillslope on a parallel architecture computer, as a precursor to a model of a complete catchment. Moisture flow within a catchment includes evaporation, overland flow, flow in unsaturated soil, and flow in saturated soil. Because of the empirical evidence that moisture flow in unsaturated soil is mainly in the vertical direction, flow in the unsaturated zone can be modeled as a series of one dimensional columns. This initial version of the hillslope model includes evaporation and a single column of one dimensional unsaturated zone flow. This case has already been solved on an IBM 3081 computer and is now being applied to the massively parallel processor architecture so as to make the extension to the one dimensional case easier and to check the problems and benefits of using a parallel architecture machine.

  3. Parallel peak pruning for scalable SMP contour tree computation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carr, Hamish A.; Weber, Gunther H.; Sewell, Christopher M.

    As data sets grow to exascale, automated data analysis and visualisation are increasingly important, to intermediate human understanding and to reduce demands on disk storage via in situ analysis. Trends in architecture of high performance computing systems necessitate analysis algorithms to make effective use of combinations of massively multicore and distributed systems. One of the principal analytic tools is the contour tree, which analyses relationships between contours to identify features of more than local importance. Unfortunately, the predominant algorithms for computing the contour tree are explicitly serial, and founded on serial metaphors, which has limited the scalability of this formmore » of analysis. While there is some work on distributed contour tree computation, and separately on hybrid GPU-CPU computation, there is no efficient algorithm with strong formal guarantees on performance allied with fast practical performance. Here in this paper, we report the first shared SMP algorithm for fully parallel contour tree computation, withfor-mal guarantees of O(lgnlgt) parallel steps and O(n lgn) work, and implementations with up to 10x parallel speed up in OpenMP and up to 50x speed up in NVIDIA Thrust.« less

  4. Highly scalable parallel processing of extracellular recordings of Multielectrode Arrays.

    PubMed

    Gehring, Tiago V; Vasilaki, Eleni; Giugliano, Michele

    2015-01-01

    Technological advances of Multielectrode Arrays (MEAs) used for multisite, parallel electrophysiological recordings, lead to an ever increasing amount of raw data being generated. Arrays with hundreds up to a few thousands of electrodes are slowly seeing widespread use and the expectation is that more sophisticated arrays will become available in the near future. In order to process the large data volumes resulting from MEA recordings there is a pressing need for new software tools able to process many data channels in parallel. Here we present a new tool for processing MEA data recordings that makes use of new programming paradigms and recent technology developments to unleash the power of modern highly parallel hardware, such as multi-core CPUs with vector instruction sets or GPGPUs. Our tool builds on and complements existing MEA data analysis packages. It shows high scalability and can be used to speed up some performance critical pre-processing steps such as data filtering and spike detection, helping to make the analysis of larger data sets tractable.

  5. Template based parallel checkpointing in a massively parallel computer system

    DOEpatents

    Archer, Charles Jens [Rochester, MN; Inglett, Todd Alan [Rochester, MN

    2009-01-13

    A method and apparatus for a template based parallel checkpoint save for a massively parallel super computer system using a parallel variation of the rsync protocol, and network broadcast. In preferred embodiments, the checkpoint data for each node is compared to a template checkpoint file that resides in the storage and that was previously produced. Embodiments herein greatly decrease the amount of data that must be transmitted and stored for faster checkpointing and increased efficiency of the computer system. Embodiments are directed to a parallel computer system with nodes arranged in a cluster with a high speed interconnect that can perform broadcast communication. The checkpoint contains a set of actual small data blocks with their corresponding checksums from all nodes in the system. The data blocks may be compressed using conventional non-lossy data compression algorithms to further reduce the overall checkpoint size.

  6. Running accuracy analysis of a 3-RRR parallel kinematic machine considering the deformations of the links

    NASA Astrophysics Data System (ADS)

    Wang, Liping; Jiang, Yao; Li, Tiemin

    2014-09-01

    Parallel kinematic machines have drawn considerable attention and have been widely used in some special fields. However, high precision is still one of the challenges when they are used for advanced machine tools. One of the main reasons is that the kinematic chains of parallel kinematic machines are composed of elongated links that can easily suffer deformations, especially at high speeds and under heavy loads. A 3-RRR parallel kinematic machine is taken as a study object for investigating its accuracy with the consideration of the deformations of its links during the motion process. Based on the dynamic model constructed by the Newton-Euler method, all the inertia loads and constraint forces of the links are computed and their deformations are derived. Then the kinematic errors of the machine are derived with the consideration of the deformations of the links. Through further derivation, the accuracy of the machine is given in a simple explicit expression, which will be helpful to increase the calculating speed. The accuracy of this machine when following a selected circle path is simulated. The influences of magnitude of the maximum acceleration and external loads on the running accuracy of the machine are investigated. The results show that the external loads will deteriorate the accuracy of the machine tremendously when their direction coincides with the direction of the worst stiffness of the machine. The proposed method provides a solution for predicting the running accuracy of the parallel kinematic machines and can also be used in their design optimization as well as selection of suitable running parameters.

  7. Model Predictive Control-based Power take-off Control of an Oscillating Water Column Wave Energy Conversion System

    NASA Astrophysics Data System (ADS)

    Rajapakse, G.; Jayasinghe, S. G.; Fleming, A.; Shahnia, F.

    2017-07-01

    Australia’s extended coastline asserts abundance of wave and tidal power. The predictability of these energy sources and their proximity to cities and towns make them more desirable. Several tidal current turbine and ocean wave energy conversion projects have already been planned in the coastline of southern Australia. Some of these projects use air turbine technology with air driven turbines to harvest the energy from an oscillating water column. This study focuses on the power take-off control of a single stage unidirectional oscillating water column air turbine generator system, and proposes a model predictive control-based speed controller for the generator-turbine assembly. The proposed method is verified with simulation results that show the efficacy of the controller in extracting power from the turbine while maintaining the speed at the desired level.

  8. Two dimensional fall of granular columns controlled by slow horizontal withdrawal of a retaining wall

    NASA Astrophysics Data System (ADS)

    Mériaux, Catherine

    2006-09-01

    This paper describes a series of experiments designed to investigate the fall of granular columns in a quasi-static regime. Columns made of alternatively green and red sand layers were initially laid out in a box and then released when a retaining wall was set in slow motion with constant speed. The dependence of the dynamics of the fall on the initial aspect ratio of the columns, the velocity of the wall, and the material properties was investigated within the quasi-static regime. A change in the behavior of the columns was identified to be a function of the aspect ratio (height/length) of the initial sand column. Columns of high aspect ratio first subsided before sliding along failure planes, while columns of small aspect ratio were only observed to slide along failure planes. The transition between these two characteristic falls occurred regardless of the material and the velocity of the wall in the context of the quasi-static regime. When the final height and length of the piles were analyzed, we found power-law relations of the ratio of initial to final height and final run-out to initial length with the aspect ratio of the column. The dissipation of energy is also shown to increase with the run-out length of the pile until it reaches a plateau. Finally, we find that the structure of the slip planes that develop in our experiments are not well described by the failure of Coulomb's wedges for twin retaining rough walls.

  9. Distributed Computing for Signal Processing: Modeling of Asynchronous Parallel Computation.

    DTIC Science & Technology

    1986-03-01

    the proposed approaches 16, 16, 40 . 451. The conclusion most often reached is that the best scheme to use in a particular design depends highly upon...76. 40 . Siegel, H. J., McMillen. R. J., and Mueller. P. T.. Jr. A survey of interconnection methods for reconligurable parallel processing systems...addressing meehaanm distributed in the network area rimonication% tit reach gigabit./second speeds je g.. PoCoS83 .’ i.V--i the lirO! lk i nitronment is

  10. [Design and study of parallel computing environment of Monte Carlo simulation for particle therapy planning using a public cloud-computing infrastructure].

    PubMed

    Yokohama, Noriya

    2013-07-01

    This report was aimed at structuring the design of architectures and studying performance measurement of a parallel computing environment using a Monte Carlo simulation for particle therapy using a high performance computing (HPC) instance within a public cloud-computing infrastructure. Performance measurements showed an approximately 28 times faster speed than seen with single-thread architecture, combined with improved stability. A study of methods of optimizing the system operations also indicated lower cost.

  11. Ion heating and flows in a high power helicon source

    NASA Astrophysics Data System (ADS)

    Thompson, Derek S.; Agnello, Riccardo; Furno, Ivo; Howling, Alan; Jacquier, Rémy; Plyushchev, Gennady; Scime, Earl E.

    2017-06-01

    We report experimental measurements of ion temperatures and flows in a high power, linear, magnetized, helicon plasma device, the Resonant Antenna Ion Device (RAID). Parallel and perpendicular ion temperatures on the order of 0.6 eV are observed for an rf power of 4 kW, suggesting that higher power helicon sources should attain ion temperatures in excess of 1 eV. The unique RAID antenna design produces broad, uniform plasma density and perpendicular ion temperature radial profiles. Measurements of the azimuthal flow indicate rigid body rotation of the plasma column of a few kHz. When configured with an expanding magnetic field, modest parallel ion flows are observed in the expansion region. The ion flows and temperatures are derived from laser induced fluorescence measurements of the Doppler resolved velocity distribution functions of argon ions.

  12. Parallel computing using a Lagrangian formulation

    NASA Technical Reports Server (NTRS)

    Liou, May-Fun; Loh, Ching Yuen

    1991-01-01

    A new Lagrangian formulation of the Euler equation is adopted for the calculation of 2-D supersonic steady flow. The Lagrangian formulation represents the inherent parallelism of the flow field better than the common Eulerian formulation and offers a competitive alternative on parallel computers. The implementation of the Lagrangian formulation on the Thinking Machines Corporation CM-2 Computer is described. The program uses a finite volume, first-order Godunov scheme and exhibits high accuracy in dealing with multidimensional discontinuities (slip-line and shock). By using this formulation, a better than six times speed-up was achieved on a 8192-processor CM-2 over a single processor of a CRAY-2.

  13. Parallel computing using a Lagrangian formulation

    NASA Technical Reports Server (NTRS)

    Liou, May-Fun; Loh, Ching-Yuen

    1992-01-01

    This paper adopts a new Lagrangian formulation of the Euler equation for the calculation of two dimensional supersonic steady flow. The Lagrangian formulation represents the inherent parallelism of the flow field better than the common Eulerian formulation and offers a competitive alternative on parallel computers. The implementation of the Lagrangian formulation on the Thinking Machines Corporation CM-2 Computer is described. The program uses a finite volume, first-order Godunov scheme and exhibits high accuracy in dealing with multidimensional discontinuities (slip-line and shock). By using this formulation, we have achieved better than six times speed-up on a 8192-processor CM-2 over a single processor of a CRAY-2.

  14. Columnar Transitions in Microscale Evaporating Liquid Jets

    NASA Astrophysics Data System (ADS)

    Hunter, Hanif; Glezer, Ari

    2007-11-01

    Microscale evaporating liquid jets that are injected into a quiescent gaseous medium having adjustable ambient pressure are investigated over a range of jet speeds using a shadowgraph technique. The jets are formed by a laser-drilled 10 μm nozzle from a small-scale pressurized reservoir, and sub-atmospheric ambient pressure is maintained using a controllable, metered Venturi pump. The near-field jet features are captured by shadowgraph imaging using a pulsed ND-Yag laser and a 12 bit CCD camera where the field of view measured 200 μm on the side. As the ambient pressure is reduced, the jet column undergoes a series of spectacular transitions that are first marked by the appearance of vapor bubbles within the jet column. The transitions progress from columnar instabilities to series of column bifurcations to high-order branching and film formation and culminate in conical atomization of the jet column. In addition to the effects of the ambient pressure, the present investigation also considers effects of the liquid surface tension and vapor pressure on the onset, evolution, and hysteresis of the columnar transitions.

  15. How changing the particle structure can speed up protein mass transfer kinetics in liquid chromatography.

    PubMed

    Gritti, Fabrice; Horvath, Krisztian; Guiochon, Georges

    2012-11-09

    The mass transfer kinetics of a few compounds (uracil, 112 Da), insulin (5.5 kDa), lysozyme (13.4 kDa), and bovine serum albumin (BSA, 67 kDa) in columns packed with several types of spherical particles was investigated under non-retained conditions, in order to eliminate the poorly known contribution of surface diffusion to overall sample diffusivity across the porous particles in RPLC. Diffusivity across particles is then minimum. Based on the porosity of the particles accessible to analytes, it was accurately estimated from the elution times, the internal obstruction factor (using Pismen correlation), and the hindrance diffusion factor (using Renkin correlation). The columns used were packed with fully porous particles 2.5 μm Luna-C(18) 100 Å, core-shell particles 2.6 μm Kinetex-C(18) 100 Å, 3.6 μm Aeris Widepore-C(18) 200 Å, and prototype 2.7 μm core-shell particles (made of two concentric porous shells with 100 and 300 Å average pore size, respectively), and with 3.3 μm non-porous silica particles. The results demonstrate that the porous particle structure and the solid-liquid mass transfer resistance have practically no effect on the column efficiency for small molecules. For them, the column performance depends principally on eddy dispersion (packing homogeneity), to a lesser degree on longitudinal diffusion (effective sample diffusivity along the packed bed), and only slightly on the solid-liquid mass transfer resistance (sample diffusivity across the particle). In contrast, for proteins, this third HETP contribution, hence the porous particle structure, together with eddy dispersion govern the kinetic performance of columns. Mass transfer kinetics of proteins was observed to be fastest for columns packed with core-shell particles having either a large core-to-particle ratio or having a second, external, shell made of a thin porous layer with large mesopores (200-300 Å) and a high porosity (~/=0.5-0.7). The structure of this external shell seems to speed up the penetration of proteins into the particles. A stochastic model of the penetration of bulky proteins driven by a concentration gradient across an infinitely thin membrane of known porosity and pore size is suggested to explain this mechanism. Yet, under retained conditions, surface diffusion speeds up the mass transfer into the mesopores and levels the kinetic performance of particles built with either one or two porous shells. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. A high-speed on-chip pseudo-random binary sequence generator for multi-tone phase calibration

    NASA Astrophysics Data System (ADS)

    Gommé, Liesbeth; Vandersteen, Gerd; Rolain, Yves

    2011-07-01

    An on-chip reference generator is conceived by adopting the technique of decimating a pseudo-random binary sequence (PRBS) signal in parallel sequences. This is of great benefit when high-speed generation of PRBS and PRBS-derived signals is the objective. The design implemented standard CMOS logic is available in commercial libraries to provide the logic functions for the generator. The design allows the user to select the periodicity of the PRBS and the PRBS-derived signals. The characterization of the on-chip generator marks its performance and reveals promising specifications.

  17. A parallelizable real-time motion tracking algorithm with applications to ultrasonic strain imaging.

    PubMed

    Jiang, J; Hall, T J

    2007-07-07

    Ultrasound-based mechanical strain imaging systems utilize signals from conventional diagnostic ultrasound systems to image tissue elasticity contrast that provides new diagnostically valuable information. Previous works (Hall et al 2003 Ultrasound Med. Biol. 29 427, Zhu and Hall 2002 Ultrason. Imaging 24 161) demonstrated that uniaxial deformation with minimal elevation motion is preferred for breast strain imaging and real-time strain image feedback to operators is important to accomplish this goal. The work reported here enhances the real-time speckle tracking algorithm with two significant modifications. One fundamental change is that the proposed algorithm is a column-based algorithm (a column is defined by a line of data parallel to the ultrasound beam direction, i.e. an A-line), as opposed to a row-based algorithm (a row is defined by a line of data perpendicular to the ultrasound beam direction). Then, displacement estimates from its adjacent columns provide good guidance for motion tracking in a significantly reduced search region to reduce computational cost. Consequently, the process of displacement estimation can be naturally split into at least two separated tasks, computed in parallel, propagating outward from the center of the region of interest (ROI). The proposed algorithm has been implemented and optimized in a Windows system as a stand-alone ANSI C++ program. Results of preliminary tests, using numerical and tissue-mimicking phantoms, and in vivo tissue data, suggest that high contrast strain images can be consistently obtained with frame rates (10 frames s(-1)) that exceed our previous methods.

  18. Magnetospheric Multiscale Observations of the Electron Diffusion Region of Large Guide Field Magnetic Reconnection

    NASA Technical Reports Server (NTRS)

    Eriksson, S.; Wilder, F. D.; Ergun, R. E.; Schwartz, S. J.; Cassak, P. A.; Burch, J. L.; Chen, Li-Jen; Torbert, R. B.; Phan, T. D.; Lavraud, B.; hide

    2016-01-01

    We report observations from the Magnetospheric Multiscale (MMS) satellites of a large guide field magnetic reconnection event. The observations suggest that two of the four MMS spacecraft sampled the electron diffusion region, whereas the other two spacecraft detected the exhaust jet from the event. The guide magnetic field amplitude is approximately 4 times that of the reconnecting field. The event is accompanied by a significant parallel electric field (E(sub parallel lines) that is larger than predicted by simulations. The high-speed (approximately 300 km/s) crossing of the electron diffusion region limited the data set to one complete electron distribution inside of the electron diffusion region, which shows significant parallel heating. The data suggest that E(sub parallel lines) is balanced by a combination of electron inertia and a parallel gradient of the gyrotropic electron pressure.

  19. Supercomputing on massively parallel bit-serial architectures

    NASA Technical Reports Server (NTRS)

    Iobst, Ken

    1985-01-01

    Research on the Goodyear Massively Parallel Processor (MPP) suggests that high-level parallel languages are practical and can be designed with powerful new semantics that allow algorithms to be efficiently mapped to the real machines. For the MPP these semantics include parallel/associative array selection for both dense and sparse matrices, variable precision arithmetic to trade accuracy for speed, micro-pipelined train broadcast, and conditional branching at the processing element (PE) control unit level. The preliminary design of a FORTRAN-like parallel language for the MPP has been completed and is being used to write programs to perform sparse matrix array selection, min/max search, matrix multiplication, Gaussian elimination on single bit arrays and other generic algorithms. A description is given of the MPP design. Features of the system and its operation are illustrated in the form of charts and diagrams.

  20. The numerical simulation of a high-speed axial flow compressor

    NASA Technical Reports Server (NTRS)

    Mulac, Richard A.; Adamczyk, John J.

    1991-01-01

    The advancement of high-speed axial-flow multistage compressors is impeded by a lack of detailed flow-field information. Recent development in compressor flow modeling and numerical simulation have the potential to provide needed information in a timely manner. The development of a computer program is described to solve the viscous form of the average-passage equation system for multistage turbomachinery. Programming issues such as in-core versus out-of-core data storage and CPU utilization (parallelization, vectorization, and chaining) are addressed. Code performance is evaluated through the simulation of the first four stages of a five-stage, high-speed, axial-flow compressor. The second part addresses the flow physics which can be obtained from the numerical simulation. In particular, an examination of the endwall flow structure is made, and its impact on blockage distribution assessed.

  1. High-speed massively parallel scanning

    DOEpatents

    Decker, Derek E [Byron, CA

    2010-07-06

    A new technique for recording a series of images of a high-speed event (such as, but not limited to: ballistics, explosives, laser induced changes in materials, etc.) is presented. Such technique(s) makes use of a lenslet array to take image picture elements (pixels) and concentrate light from each pixel into a spot that is much smaller than the pixel. This array of spots illuminates a detector region (e.g., film, as one embodiment) which is scanned transverse to the light, creating tracks of exposed regions. Each track is a time history of the light intensity for a single pixel. By appropriately configuring the array of concentrated spots with respect to the scanning direction of the detection material, different tracks fit between pixels and sufficient lengths are possible which can be of interest in several high-speed imaging applications.

  2. Particle size distribution and column efficiency. An ongoing debate revived with 1.9μm Titan-C18 particles.

    PubMed

    Gritti, Fabrice; Bell, David S; Guiochon, Georges

    2014-08-15

    The mass transfer mechanism in four prototype columns (2.1 and 3.0×50mm, 2.1 and 3.0×100mm) packed with 1.9μm fully porous Titan-C18 particles was investigated by using two previously reported home-made protocols. The first one was used to measure the eddy dispersion HETP of these new columns, the second one to estimate their intrinsic (corrected for HPLC system contribution) HETPs. Titan particles are fully porous particles with a narrow particle size distribution (RSD of 9.2%). The mean Sauter diameter (dSauter=2.04μm) was determined from Coulter counter measurements on the raw silica material (before C18 derivatization) and in the absence of a dispersant agent (Triton X-100) in a 2% NaCl electrolyte solution. The results show that these RPLC Titan columns have intrinsic minimum reduced HETPs ranging from 1.7 to 1.9 and generate up to 290,000 plates per meter. The 3.0mm i.d. columns are more efficient than the 2.1mm i.d. ones and short columns are preferred to minimize efficiency losses due to frictional heating at high speeds. This work also revealed that (1) the lowest h values of the Titan columns are observed at low reduced velocities (νopt=5); (2) this is due to the unusually small diffusivity of analytes across the porous Titan-C18 particles; and (3) the Titan columns are not packed more uniformly than conventional columns packed with fully porous particles. Earlier and recent findings showing that the PSD has no direct physical impact on eddy dispersion and column efficiency are confirmed by these results. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Long-range attraction of an ultrarelativistic electron beam by a column of neutral plasma

    NASA Astrophysics Data System (ADS)

    Adli, E.; Lindstrøm, C. A.; Allen, J.; Clarke, C. I.; Frederico, J.; Gessner, S. J.; Green, S. Z.; Hogan, M. J.; Litos, M. D.; O'Shea, B.; Yakimenko, V.; An, W.; Clayton, C. E.; Marsh, K. A.; Mori, W. B.; Joshi, C.; Vafaei-Najafabadi, N.; Corde, S.; Lu, W.

    2016-10-01

    We report on the experimental observation of the attraction of a beam of ultrarelativistic electrons towards a column of neutral plasma. In experiments performed at the FACET test facility at SLAC we observe that an electron beam moving parallel to a neutral plasma column, at an initial distance of many plasma column radii, is attracted into the column. Once the beam enters the plasma it drives a plasma wake similar to that of an electron beam entering the plasma column head-on. A simple analytical model is developed in order to capture the essential physics of the attractive force. The attraction is further studied by 3D particle-in-cell numerical simulations. The results are an important step towards better understanding of particle beam-plasma interactions in general and plasma wakefield accelerator technology in particular.

  4. A low-power CMOS readout IC design for bolometer applications

    NASA Astrophysics Data System (ADS)

    Galioglu, Arman; Abbasi, Shahbaz; Shafique, Atia; Ceylan, Ömer; Yazici, Melik; Kaynak, Mehmet; Durmaz, Emre C.; Arsoy, Elif Gul; Gurbuz, Yasar

    2017-02-01

    A prototype of a readout IC (ROIC) designed for use in high temperature coefficient of resistance (TCR) SiGe microbolometers is presented. The prototype ROIC architecture implemented is based on a bridge with active and blind bolometer pixels with a capacitive transimpedance amplifier (CTIA) input stage and column parallel integration with serial readout. The ROIC is designed for use in high (>= 4 %/K) TCR and high detector resistance Si/SiGe microbolometers with 17x17 μm2 pixel sizes in development. The prototype has been designed and fabricated in 0.25- μm SiGe:C BiCMOS process.

  5. Design of a high-speed digital processing element for parallel simulation

    NASA Technical Reports Server (NTRS)

    Milner, E. J.; Cwynar, D. S.

    1983-01-01

    A prototype of a custom designed computer to be used as a processing element in a multiprocessor based jet engine simulator is described. The purpose of the custom design was to give the computer the speed and versatility required to simulate a jet engine in real time. Real time simulations are needed for closed loop testing of digital electronic engine controls. The prototype computer has a microcycle time of 133 nanoseconds. This speed was achieved by: prefetching the next instruction while the current one is executing, transporting data using high speed data busses, and using state of the art components such as a very large scale integration (VLSI) multiplier. Included are discussions of processing element requirements, design philosophy, the architecture of the custom designed processing element, the comprehensive instruction set, the diagnostic support software, and the development status of the custom design.

  6. GPU Particle Tracking and MHD Simulations with Greatly Enhanced Computational Speed

    NASA Astrophysics Data System (ADS)

    Ziemba, T.; O'Donnell, D.; Carscadden, J.; Cash, M.; Winglee, R.; Harnett, E.

    2008-12-01

    GPUs are intrinsically highly parallelized systems that provide more than an order of magnitude computing speed over a CPU based systems, for less cost than a high end-workstation. Recent advancements in GPU technologies allow for full IEEE float specifications with performance up to several hundred GFLOPs per GPU, and new software architectures have recently become available to ease the transition from graphics based to scientific applications. This allows for a cheap alternative to standard supercomputing methods and should increase the time to discovery. 3-D particle tracking and MHD codes have been developed using NVIDIA's CUDA and have demonstrated speed up of nearly a factor of 20 over equivalent CPU versions of the codes. Such a speed up enables new applications to develop, including real time running of radiation belt simulations and real time running of global magnetospheric simulations, both of which could provide important space weather prediction tools.

  7. A Comparison of Lifting-Line and CFD Methods with Flight Test Data from a Research Puma Helicopter

    NASA Technical Reports Server (NTRS)

    Bousman, William G.; Young, Colin; Toulmay, Francois; Gilbert, Neil E.; Strawn, Roger C.; Miller, Judith V.; Maier, Thomas H.; Costes, Michel; Beaumier, Philippe

    1996-01-01

    Four lifting-line methods were compared with flight test data from a research Puma helicopter and the accuracy assessed over a wide range of flight speeds. Hybrid Computational Fluid Dynamics (CFD) methods were also examined for two high-speed conditions. A parallel analytical effort was performed with the lifting-line methods to assess the effects of modeling assumptions and this provided insight into the adequacy of these methods for load predictions.

  8. Adaptive efficient compression of genomes

    PubMed Central

    2012-01-01

    Modern high-throughput sequencing technologies are able to generate DNA sequences at an ever increasing rate. In parallel to the decreasing experimental time and cost necessary to produce DNA sequences, computational requirements for analysis and storage of the sequences are steeply increasing. Compression is a key technology to deal with this challenge. Recently, referential compression schemes, storing only the differences between a to-be-compressed input and a known reference sequence, gained a lot of interest in this field. However, memory requirements of the current algorithms are high and run times often are slow. In this paper, we propose an adaptive, parallel and highly efficient referential sequence compression method which allows fine-tuning of the trade-off between required memory and compression speed. When using 12 MB of memory, our method is for human genomes on-par with the best previous algorithms in terms of compression ratio (400:1) and compression speed. In contrast, it compresses a complete human genome in just 11 seconds when provided with 9 GB of main memory, which is almost three times faster than the best competitor while using less main memory. PMID:23146997

  9. Different Relative Orientation of Static and Alternative Magnetic Fields and Cress Roots Direction of Growth Changes Their Gravitropic Reaction

    NASA Astrophysics Data System (ADS)

    Sheykina, Nadiia; Bogatina, Nina

    The following variants of roots location relatively to static and alternative components of magnetic field were studied. At first variant the static magnetic field was directed parallel to the gravitation vector, the alternative magnetic field was directed perpendicular to static one; roots were directed perpendicular to both two fields’ components and gravitation vector. At the variant the negative gravitropysm for cress roots was observed. At second variant the static magnetic field was directed parallel to the gravitation vector, the alternative magnetic field was directed perpendicular to static one; roots were directed parallel to alternative magnetic field. At third variant the alternative magnetic field was directed parallel to the gravitation vector, the static magnetic field was directed perpendicular to the gravitation vector, roots were directed perpendicular to both two fields components and gravitation vector; At forth variant the alternative magnetic field was directed parallel to the gravitation vector, the static magnetic field was directed perpendicular to the gravitation vector, roots were directed parallel to static magnetic field. In all cases studied the alternative magnetic field frequency was equal to Ca ions cyclotron frequency. In 2, 3 and 4 variants gravitropism was positive. But the gravitropic reaction speeds were different. In second and forth variants the gravitropic reaction speed in error limits coincided with the gravitropic reaction speed under Earth’s conditions. At third variant the gravitropic reaction speed was slowed essentially.

  10. Motion systems providing three or four degrees of freedom

    NASA Technical Reports Server (NTRS)

    Chou, Richard C. (Inventor)

    1982-01-01

    A motion system is provided by a platform generally parallel to a base and connected thereto by a column and powered and controlled extensible members, at least three of which are connected between distributed points around the column. In a three degree of freedom device, the column is conical, rigidly supported at its base with a universal joint at its top. The points of attachment define triangles in the base and in the platform surrounding the column with one extensible member connected between each. In the four degree of freedom version, the column is modified by making it effectively a column which is pivoted or guided at the base or contains an extensible member, preferably retains its triangular shape and its universal joint connection to the platform at its apex. For stability four powered and controlled extensible members are provided between points in the base and platform distributed around the column, a preferred pattern of arrangement being a square with the column at the center.

  11. Linear static structural and vibration analysis on high-performance computers

    NASA Technical Reports Server (NTRS)

    Baddourah, M. A.; Storaasli, O. O.; Bostic, S. W.

    1993-01-01

    Parallel computers offer the oppurtunity to significantly reduce the computation time necessary to analyze large-scale aerospace structures. This paper presents algorithms developed for and implemented on massively-parallel computers hereafter referred to as Scalable High-Performance Computers (SHPC), for the most computationally intensive tasks involved in structural analysis, namely, generation and assembly of system matrices, solution of systems of equations and calculation of the eigenvalues and eigenvectors. Results on SHPC are presented for large-scale structural problems (i.e. models for High-Speed Civil Transport). The goal of this research is to develop a new, efficient technique which extends structural analysis to SHPC and makes large-scale structural analyses tractable.

  12. Comparison of cavity preparation quality using an electric motor handpiece and an air turbine dental handpiece.

    PubMed

    Kenyon, Brian J; Van Zyl, Ian; Louie, Kenneth G

    2005-08-01

    The high-speed high-torque (electric motor) handpiece is becoming more popular in dental offices and laboratories in the United States. It is reported to cut more precisely and to assist in the creation of finer margins that enhance cavity preparations. The authors conducted an in vitro study to compare the quality of cavity preparations fabricated with a high-speed high-torque (electric motor) handpiece and a high-speed low-torque (air turbine) handpiece. Eighty-six dental students each cut two Class I preparations, one with an air turbine handpiece and the other with an electric motor high-speed handpiece. The authors asked the students to cut each preparation accurately to a circular outline and to establish a flat pulpal floor with 1.5 millimeters' depth, 90-degree exit angles, parallel vertical walls and sharp internal line angles, as well as to refine the preparation to achieve flat, smooth walls with a well-defined cavosurface margin. A single faculty member scored the preparations for criteria and refinement using a nine-point scale (range, 1-9). The authors analyzed the data statistically using paired t tests. In preparation criteria, the electric motor high-speed handpiece had a higher average grade than did the air turbine handpiece (5.07 and 4.90, respectively). For refinement, the average grade for the air turbine high-speed handpiece was greater than that for the electric motor high-speed handpiece (5.72 and 5.52, respectively). The differences were not statistically significant. The electric motor high-speed handpiece performed as well as, but not better than, the air turbine handpiece in the fabrication of high-quality cavity preparations.

  13. Preparative isolation and purification of harpagoside and angroside C from the root of Scrophularia ningpoensis Hemsley by high-speed counter-current chromatography.

    PubMed

    Tian, Jinfeng; Ye, Xiaoli; Shang, Yuanhong; Deng, Yafei; He, Kai; Li, Xuegang

    2012-10-01

    In this study, the bioactive component harpagoside and angroside C in the root of Scrophularia ningpoensis Hemsley was simultaneously separated by high-speed counter-current chromatography (HSCCC). A two-phase solvent system containing chloroform/n-butanol/methanol/water (4:1:3:2, v/v/v/v) was selected following consideration of the partition coefficient of the target compound. The crude extract (200 mg) was loaded onto a 280-mL HSCCC column and yielded 22 mg harpagoside and 31 mg angroside C with the purity of higher than 98 and 98.5%, respectively. It is feasible to isolate active compounds harpagoside and angroside C from S. ningpoensis using HSCCC. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Note: Sound recovery from video using SVD-based information extraction

    NASA Astrophysics Data System (ADS)

    Zhang, Dashan; Guo, Jie; Lei, Xiujun; Zhu, Chang'an

    2016-08-01

    This note reports an efficient singular value decomposition (SVD)-based vibration extraction approach that recovers sound information in silent high-speed video. A high-speed camera of which frame rates are in the range of 2 kHz-10 kHz is applied to film the vibrating objects. Sub-images cut from video frames are transformed into column vectors and then reconstructed to a new matrix. The SVD of the new matrix produces orthonormal image bases (OIBs) and image projections onto specific OIB can be recovered as understandable acoustical signals. Standard frequencies of 256 Hz and 512 Hz tuning forks are extracted offline from their vibrating surfaces and a 3.35 s speech signal is recovered online from a piece of paper that is stimulated by sound waves within 1 min.

  15. The Impact of Increasing Carbon Dioxide on Ozone Recovery

    NASA Technical Reports Server (NTRS)

    Rosenfield, Joan E.; Douglass, Anne R.; Considine, David B.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    We have used the GSFC coupled two-dimensional (2D) model to study the impact of increasing carbon dioxide from 1980 to 2050 on the recovery of ozone to its pre-1980 amounts. We find that the changes in temperature and circulation arising from increasing CO2 affect ozone recovery in a manner which varies greatly with latitude, altitude, and time of year. Middle and upper stratospheric ozone recovers faster at all latitudes due to a slowing of the ozone catalytic loss cycles. In the lower stratosphere, the recovery of tropical ozone is delayed due to a decrease in production and a speed up in the overturning circulation. The recovery of high northern latitude lower stratospheric ozone is delayed in spring and summer due to an increase in springtime heterogeneous chemical loss, and is speeded up in fall and winter due to increased downwelling. The net effect on the higher northern latitude column ozone is to slow down the recovery from late March to late July, while making it faster at other times. In the high southern latitudes, the impact of CO2 cooling is negligible. Annual mean column ozone is predicted to recover faster at all latitudes, and globally averaged ozone is predicted to recover approximately ten years faster as a result of increasing CO2.

  16. GRAVIDY, a GPU modular, parallel direct-summation N-body integrator: dynamics with softening

    NASA Astrophysics Data System (ADS)

    Maureira-Fredes, Cristián; Amaro-Seoane, Pau

    2018-01-01

    A wide variety of outstanding problems in astrophysics involve the motion of a large number of particles under the force of gravity. These include the global evolution of globular clusters, tidal disruptions of stars by a massive black hole, the formation of protoplanets and sources of gravitational radiation. The direct-summation of N gravitational forces is a complex problem with no analytical solution and can only be tackled with approximations and numerical methods. To this end, the Hermite scheme is a widely used integration method. With different numerical techniques and special-purpose hardware, it can be used to speed up the calculations. But these methods tend to be computationally slow and cumbersome to work with. We present a new graphics processing unit (GPU), direct-summation N-body integrator written from scratch and based on this scheme, which includes relativistic corrections for sources of gravitational radiation. GRAVIDY has high modularity, allowing users to readily introduce new physics, it exploits available computational resources and will be maintained by regular updates. GRAVIDY can be used in parallel on multiple CPUs and GPUs, with a considerable speed-up benefit. The single-GPU version is between one and two orders of magnitude faster than the single-CPU version. A test run using four GPUs in parallel shows a speed-up factor of about 3 as compared to the single-GPU version. The conception and design of this first release is aimed at users with access to traditional parallel CPU clusters or computational nodes with one or a few GPU cards.

  17. Design of a coil satellite centrifuge and its performance on counter-current chromatographic separation of 4-methylumbelliferyl sugar derivatives with polar organic-aqueous two-phase solvent systems.

    PubMed

    Shinomiya, Kazufusa; Tokura, Koji; Kimura, Emiru; Takai, Midori; Harikai, Naoki; Yoshida, Kazunori; Yanagidaira, Kazuhiro; Ito, Yoichiro

    2015-05-01

    A new high-speed counter-current chromatograph, named coil satellite centrifuge (CSC), was designed and fabricated in our laboratory. The CSC apparatus produces the satellite motion such that the coiled column simultaneously rotates around the sun axis (the angular velocity, ω1), the planet axis (ω2) and the satellite axis (the central axis of the column) (ω3). In order to achieve this triplicate rotary motion without twisting of the flow tube, the rotation of each axis was determined by the following formula: ω1=ω2+ω3. This relation enabled to lay out the flow tube without twisting by the simultaneous rotation of three axes. The flow tube was introduced from the bottom side of the apparatus into the sun axis of the first rotary frame reaching the upper side of the planet axis and connected to the column in the satellite axis. The performance of the apparatus was examined on separation of 4-methylumbelliferyl (MU) sugar derivatives as test samples with organic-aqueous two-phase solvent systems composed of ethyl acetate/1-butanol/water (3:2:5, v/v) for lower phase mobile and (1:4:5, v/v) for upper phase mobile. With lower phase mobile, five 4-MU sugar derivatives including β-D-cellobioside (Cel), β-D-glucopyranoside, α-D-mannopyranoside, β-D-fucopyranoside and α-L-fucopyranoside (α-L-Fuc) were separated with the combined rotation around each axis at counterclockwise (CCW) (ω1) - CCW (ω2) - CCW (ω3) by the flow tube distribution. With upper phase mobile, three 4-MU sugar derivatives including α-L-Fuc, β-D-galactopyranoside and Cel were separated with the combined rotation around each axis at clockwise (CW) (ω1) - CW (ω2) - CW (ω3) by the flow tube distribution. A series of experiments on peak resolution and stationary phase retention revealed that better partition efficiencies were obtained at the flow rate of 0.5 mL/min (column 1) and 0.8 mL/min (column 2) for lower phase mobile and 0.2 mL/min (column 1) and 0.4 mL/min (column 2) for upper phase mobile when using the left-handed multilayer coil (total capacity: 57.0 mL for column 1 and 75.0 mL for column 2) under the rotation speeds of approximately ω1=300 rpm, ω2=150 rpm and ω3=150 rpm. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. User Interface Developed for Controls/CFD Interdisciplinary Research

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The NASA Lewis Research Center, in conjunction with the University of Akron, is developing analytical methods and software tools to create a cross-discipline "bridge" between controls and computational fluid dynamics (CFD) technologies. Traditionally, the controls analyst has used simulations based on large lumping techniques to generate low-order linear models convenient for designing propulsion system controls. For complex, high-speed vehicles such as the High Speed Civil Transport (HSCT), simulations based on CFD methods are required to capture the relevant flow physics. The use of CFD should also help reduce the development time and costs associated with experimentally tuning the control system. The initial application for this research is the High Speed Civil Transport inlet control problem. A major aspect of this research is the development of a controls/CFD interface for non-CFD experts, to facilitate the interactive operation of CFD simulations and the extraction of reduced-order, time-accurate models from CFD results. A distributed computing approach for implementing the interface is being explored. Software being developed as part of the Integrated CFD and Experiments (ICE) project provides the basis for the operating environment, including run-time displays and information (data base) management. Message-passing software is used to communicate between the ICE system and the CFD simulation, which can reside on distributed, parallel computing systems. Initially, the one-dimensional Large-Perturbation Inlet (LAPIN) code is being used to simulate a High Speed Civil Transport type inlet. LAPIN can model real supersonic inlet features, including bleeds, bypasses, and variable geometry, such as translating or variable-ramp-angle centerbodies. Work is in progress to use parallel versions of the multidimensional NPARC code.

  19. Accelerating Electrostatic Surface Potential Calculation with Multiscale Approximation on Graphics Processing Units

    PubMed Central

    Anandakrishnan, Ramu; Scogland, Tom R. W.; Fenley, Andrew T.; Gordon, John C.; Feng, Wu-chun; Onufriev, Alexey V.

    2010-01-01

    Tools that compute and visualize biomolecular electrostatic surface potential have been used extensively for studying biomolecular function. However, determining the surface potential for large biomolecules on a typical desktop computer can take days or longer using currently available tools and methods. Two commonly used techniques to speed up these types of electrostatic computations are approximations based on multi-scale coarse-graining and parallelization across multiple processors. This paper demonstrates that for the computation of electrostatic surface potential, these two techniques can be combined to deliver significantly greater speed-up than either one separately, something that is in general not always possible. Specifically, the electrostatic potential computation, using an analytical linearized Poisson Boltzmann (ALPB) method, is approximated using the hierarchical charge partitioning (HCP) multiscale method, and parallelized on an ATI Radeon 4870 graphical processing unit (GPU). The implementation delivers a combined 934-fold speed-up for a 476,040 atom viral capsid, compared to an equivalent non-parallel implementation on an Intel E6550 CPU without the approximation. This speed-up is significantly greater than the 42-fold speed-up for the HCP approximation alone or the 182-fold speed-up for the GPU alone. PMID:20452792

  20. Interplay between intrinsic plasma rotation and magnetic island evolution in disruptive discharges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ronchi, G.; Severo, J. H. F.; Salzedas, F.

    The behavior of the intrinsic toroidal rotation of the plasma column during the growth and eventual saturation of m/n = 2/1 magnetic islands, triggered by programmed density rise, has been carefully investigated in disruptive discharges in TCABR. The results show that, as the island starts to grow and rotate at a speed larger than that of the plasma column, the angular frequency of the intrinsic toroidal rotation increases and that of the island decreases, following the expectation of synchronization. As the island saturates at a large size, just before a major disruption, the angular speed of the intrinsic rotation decreasesmore » quite rapidly, even though the island keeps still rotating at a reduced speed. This decrease of the toroidal rotation is quite reproducible and can be considered as an indicative of disruption.« less

  1. Atomic resolution characterization of a SrTiO{sub 3} grain boundary in the STEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGibbon, M.M.; Browning, N.D.; Chisholm, M.F.

    This paper uses the complementary techniques of high resolution Z-contrast imaging and PEELS (parallel detection electron energy loss spectroscopy) to investigate the atomic structure and chemistry of a 25 degree symmetric tilt boundary in a bicrystal of the electroceramic SrTiO{sub 3}. The gain boundary is composed of two different boundary structural units which occur in about equal numbers: one which contains Ti-O columns and the other without.

  2. Interferometric imaging of acoustical phenomena using high-speed polarization camera and 4-step parallel phase-shifting technique

    NASA Astrophysics Data System (ADS)

    Ishikawa, K.; Yatabe, K.; Ikeda, Y.; Oikawa, Y.; Onuma, T.; Niwa, H.; Yoshii, M.

    2017-02-01

    Imaging of sound aids the understanding of the acoustical phenomena such as propagation, reflection, and diffraction, which is strongly required for various acoustical applications. The imaging of sound is commonly done by using a microphone array, whereas optical methods have recently been interested due to its contactless nature. The optical measurement of sound utilizes the phase modulation of light caused by sound. Since light propagated through a sound field changes its phase as proportional to the sound pressure, optical phase measurement technique can be used for the sound measurement. Several methods including laser Doppler vibrometry and Schlieren method have been proposed for that purpose. However, the sensitivities of the methods become lower as a frequency of sound decreases. In contrast, since the sensitivities of the phase-shifting technique do not depend on the frequencies of sounds, that technique is suitable for the imaging of sounds in the low-frequency range. The principle of imaging of sound using parallel phase-shifting interferometry was reported by the authors (K. Ishikawa et al., Optics Express, 2016). The measurement system consists of a high-speed polarization camera made by Photron Ltd., and a polarization interferometer. This paper reviews the principle briefly and demonstrates the high-speed imaging of acoustical phenomena. The results suggest that the proposed system can be applied to various industrial problems in acoustical engineering.

  3. A novel approach for epipolar resampling of cross-track linear pushbroom imagery using orbital parameters model

    NASA Astrophysics Data System (ADS)

    Jannati, Mojtaba; Valadan Zoej, Mohammad Javad; Mokhtarzade, Mehdi

    2018-03-01

    This paper presents a novel approach to epipolar resampling of cross-track linear pushbroom imagery using orbital parameters model (OPM). The backbone of the proposed method relies on modification of attitude parameters of linear array stereo imagery in such a way to parallelize the approximate conjugate epipolar lines (ACELs) with the instantaneous base line (IBL) of the conjugate image points (CIPs). Afterward, a complementary rotation is applied in order to parallelize all the ACELs throughout the stereo imagery. The new estimated attitude parameters are evaluated based on the direction of the IBL and the ACELs. Due to the spatial and temporal variability of the IBL (respectively changes in column and row numbers of the CIPs) and nonparallel nature of the epipolar lines in the stereo linear images, some polynomials in the both column and row numbers of the CIPs are used to model new attitude parameters. As the instantaneous position of sensors remains fix, the digital elevation model (DEM) of the area of interest is not required in the resampling process. According to the experimental results obtained from two pairs of SPOT and RapidEye stereo imagery with a high elevation relief, the average absolute values of remained vertical parallaxes of CIPs in the normalized images were obtained 0.19 and 0.28 pixels respectively, which confirm the high accuracy and applicability of the proposed method.

  4. Vertebral column anomalies in Indo-Pacific and Atlantic humpback dolphins Sousa spp.

    PubMed

    Weir, Caroline R; Wang, John Y

    2016-08-09

    Conspicuous vertebral column abnormalities in humpback dolphins (genus Sousa) were documented for the first time during 3 photo-identification field studies of small populations in Taiwan, Senegal and Angola. Seven Taiwanese humpback dolphins S. chinensis taiwanensis with vertebral column anomalies (lordosis, kyphosis or scoliosis) were identified, along with 2 possible cases of vertebral osteomyelitis. There was evidence from several individuals photographed over consecutive years that the anomalies became more pronounced with age. Three Atlantic humpback dolphins S. teuszii were observed with axial deviations of the vertebral column (lordosis and kyphosis). Another possible case was identified in a calf, and 2 further animals were photographed with dorsal indents potentially indicative of anomalies. Vertebral column anomalies of humpback dolphins were predominantly evident in the lumbo-caudal region, but one Atlantic humpback dolphin had an anomaly in the cervico-thoracic region. Lordosis and kyphosis occurred simultaneously in several individuals. Apart from the described anomalies, all dolphins appeared in good health and were not obviously underweight or noticeably compromised in swim speed. This study presents the first descriptions of vertebral column anomalies in the genus Sousa. The causative factors for the anomalies were unknown in every case and are potentially diverse. Whether these anomalies result in reduced fitness of individuals or populations merits attention, as both the Taiwanese and Atlantic humpback dolphin are species of high conservation concern.

  5. Big data driven cycle time parallel prediction for production planning in wafer manufacturing

    NASA Astrophysics Data System (ADS)

    Wang, Junliang; Yang, Jungang; Zhang, Jie; Wang, Xiaoxi; Zhang, Wenjun Chris

    2018-07-01

    Cycle time forecasting (CTF) is one of the most crucial issues for production planning to keep high delivery reliability in semiconductor wafer fabrication systems (SWFS). This paper proposes a novel data-intensive cycle time (CT) prediction system with parallel computing to rapidly forecast the CT of wafer lots with large datasets. First, a density peak based radial basis function network (DP-RBFN) is designed to forecast the CT with the diverse and agglomerative CT data. Second, the network learning method based on a clustering technique is proposed to determine the density peak. Third, a parallel computing approach for network training is proposed in order to speed up the training process with large scaled CT data. Finally, an experiment with respect to SWFS is presented, which demonstrates that the proposed CTF system can not only speed up the training process of the model but also outperform the radial basis function network, the back-propagation-network and multivariate regression methodology based CTF methods in terms of the mean absolute deviation and standard deviation.

  6. Online measurement for geometrical parameters of wheel set based on structure light and CUDA parallel processing

    NASA Astrophysics Data System (ADS)

    Wu, Kaihua; Shao, Zhencheng; Chen, Nian; Wang, Wenjie

    2018-01-01

    The wearing degree of the wheel set tread is one of the main factors that influence the safety and stability of running train. Geometrical parameters mainly include flange thickness and flange height. Line structure laser light was projected on the wheel tread surface. The geometrical parameters can be deduced from the profile image. An online image acquisition system was designed based on asynchronous reset of CCD and CUDA parallel processing unit. The image acquisition was fulfilled by hardware interrupt mode. A high efficiency parallel segmentation algorithm based on CUDA was proposed. The algorithm firstly divides the image into smaller squares, and extracts the squares of the target by fusion of k_means and STING clustering image segmentation algorithm. Segmentation time is less than 0.97ms. A considerable acceleration ratio compared with the CPU serial calculation was obtained, which greatly improved the real-time image processing capacity. When wheel set was running in a limited speed, the system placed alone railway line can measure the geometrical parameters automatically. The maximum measuring speed is 120km/h.

  7. Trajectory Tracking of a Planer Parallel Manipulator by Using Computed Force Control Method

    NASA Astrophysics Data System (ADS)

    Bayram, Atilla

    2017-03-01

    Despite small workspace, parallel manipulators have some advantages over their serial counterparts in terms of higher speed, acceleration, rigidity, accuracy, manufacturing cost and payload. Accordingly, this type of manipulators can be used in many applications such as in high-speed machine tools, tuning machine for feeding, sensitive cutting, assembly and packaging. This paper presents a special type of planar parallel manipulator with three degrees of freedom. It is constructed as a variable geometry truss generally known planar Stewart platform. The reachable and orientation workspaces are obtained for this manipulator. The inverse kinematic analysis is solved for the trajectory tracking according to the redundancy and joint limit avoidance. Then, the dynamics model of the manipulator is established by using Virtual Work method. The simulations are performed to follow the given planar trajectories by using the dynamic equations of the variable geometry truss manipulator and computed force control method. In computed force control method, the feedback gain matrices for PD control are tuned with fixed matrices by trail end error and variable ones by means of optimization with genetic algorithm.

  8. Evaporating Spray in Supersonic Streams Including Turbulence Effects

    NASA Technical Reports Server (NTRS)

    Balasubramanyam, M. S.; Chen, C. P.

    2006-01-01

    Evaporating spray plays an important role in spray combustion processes. This paper describes the development of a new finite-conductivity evaporation model, based on the two-temperature film theory, for two-phase numerical simulation using Eulerian-Lagrangian method. The model is a natural extension of the T-blob/T-TAB atomization/spray model which supplies the turbulence characteristics for estimating effective thermal diffusivity within the droplet phase. Both one-way and two-way coupled calculations were performed to investigate the performance of this model. Validation results indicate the superiority of the finite-conductivity model in low speed parallel flow evaporating sprays. High speed cross flow spray results indicate the effectiveness of the T-blob/T-TAB model and point to the needed improvements in high speed evaporating spray modeling.

  9. Development of an ICT-Based Air Column Resonance Learning Media

    NASA Astrophysics Data System (ADS)

    Purjiyanta, Eka; Handayani, Langlang; Marwoto, Putut

    2016-08-01

    Commonly, the sound source used in the air column resonance experiment is the tuning fork having disadvantage of unoptimal resonance results due to the sound produced which is getting weaker. In this study we made tones with varying frequency using the Audacity software which were, then, stored in a mobile phone as a source of sound. One advantage of this sound source is the stability of the resulting sound enabling it to produce the same powerful sound. The movement of water in a glass tube mounted on the tool resonance and the tone sound that comes out from the mobile phone were recorded by using a video camera. Sound resonances recorded were first, second, and third resonance, for each tone frequency mentioned. The resulting sound stays longer, so it can be used for the first, second, third and next resonance experiments. This study aimed to (1) explain how to create tones that can substitute tuning forks sound used in air column resonance experiments, (2) illustrate the sound wave that occurred in the first, second, and third resonance in the experiment, and (3) determine the speed of sound in the air. This study used an experimental method. It was concluded that; (1) substitute tones of a tuning fork sound can be made by using the Audacity software; (2) the form of sound waves that occured in the first, second, and third resonance in the air column resonance can be drawn based on the results of video recording of the air column resonance; and (3) based on the experiment result, the speed of sound in the air is 346.5 m/s, while based on the chart analysis with logger pro software, the speed of sound in the air is 343.9 ± 0.3171 m/s.

  10. Tri-linear color multi-linescan sensor with 200 kHz line rate

    NASA Astrophysics Data System (ADS)

    Schrey, Olaf; Brockherde, Werner; Nitta, Christian; Bechen, Benjamin; Bodenstorfer, Ernst; Brodersen, Jörg; Mayer, Konrad J.

    2016-11-01

    In this paper we present a newly developed linear CMOS high-speed line-scanning sensor realized in a 0.35 μm CMOS OPTO process for line-scan with 200 kHz true RGB and 600 kHz monochrome line rate, respectively. In total, 60 lines are integrated in the sensor allowing for electronic position adjustment. The lines are read out in rolling shutter manner. The high readout speed is achieved by a column-wise organization of the readout chain. At full speed, the sensor provides RGB color images with a spatial resolution down to 50 μm. This feature enables a variety of applications like quality assurance in print inspection, real-time surveillance of railroad tracks, in-line monitoring in flat panel fabrication lines and many more. The sensor has a fill-factor close to 100%, preventing aliasing and color artefacts. Hence the tri-linear technology is robust against aliasing ensuring better inspection quality and thus less waste in production lines.

  11. Parallelization of the Flow Field Dependent Variation Scheme for Solving the Triple Shock/Boundary Layer Interaction Problem

    NASA Technical Reports Server (NTRS)

    Schunk, Richard Gregory; Chung, T. J.

    2001-01-01

    A parallelized version of the Flowfield Dependent Variation (FDV) Method is developed to analyze a problem of current research interest, the flowfield resulting from a triple shock/boundary layer interaction. Such flowfields are often encountered in the inlets of high speed air-breathing vehicles including the NASA Hyper-X research vehicle. In order to resolve the complex shock structure and to provide adequate resolution for boundary layer computations of the convective heat transfer from surfaces inside the inlet, models containing over 500,000 nodes are needed. Efficient parallelization of the computation is essential to achieving results in a timely manner. Results from a parallelization scheme, based upon multi-threading, as implemented on multiple processor supercomputers and workstations is presented.

  12. Parallel-vector unsymmetric Eigen-Solver on high performance computers

    NASA Technical Reports Server (NTRS)

    Nguyen, Duc T.; Jiangning, Qin

    1993-01-01

    The popular QR algorithm for solving all eigenvalues of an unsymmetric matrix is reviewed. Among the basic components in the QR algorithm, it was concluded from this study, that the reduction of an unsymmetric matrix to a Hessenberg form (before applying the QR algorithm itself) can be done effectively by exploiting the vector speed and multiple processors offered by modern high-performance computers. Numerical examples of several test cases have indicated that the proposed parallel-vector algorithm for converting a given unsymmetric matrix to a Hessenberg form offers computational advantages over the existing algorithm. The time saving obtained by the proposed methods is increased as the problem size increased.

  13. Parallel human genome analysis: microarray-based expression monitoring of 1000 genes.

    PubMed Central

    Schena, M; Shalon, D; Heller, R; Chai, A; Brown, P O; Davis, R W

    1996-01-01

    Microarrays containing 1046 human cDNAs of unknown sequence were printed on glass with high-speed robotics. These 1.0-cm2 DNA "chips" were used to quantitatively monitor differential expression of the cognate human genes using a highly sensitive two-color hybridization assay. Array elements that displayed differential expression patterns under given experimental conditions were characterized by sequencing. The identification of known and novel heat shock and phorbol ester-regulated genes in human T cells demonstrates the sensitivity of the assay. Parallel gene analysis with microarrays provides a rapid and efficient method for large-scale human gene discovery. Images Fig. 1 Fig. 2 Fig. 3 PMID:8855227

  14. An efficient 3-dim FFT for plane wave electronic structure calculations on massively parallel machines composed of multiprocessor nodes

    NASA Astrophysics Data System (ADS)

    Goedecker, Stefan; Boulet, Mireille; Deutsch, Thierry

    2003-08-01

    Three-dimensional Fast Fourier Transforms (FFTs) are the main computational task in plane wave electronic structure calculations. Obtaining a high performance on a large numbers of processors is non-trivial on the latest generation of parallel computers that consist of nodes made up of a shared memory multiprocessors. A non-dogmatic method for obtaining high performance for such 3-dim FFTs in a combined MPI/OpenMP programming paradigm will be presented. Exploiting the peculiarities of plane wave electronic structure calculations, speedups of up to 160 and speeds of up to 130 Gflops were obtained on 256 processors.

  15. Accelerating Astronomy & Astrophysics in the New Era of Parallel Computing: GPUs, Phi and Cloud Computing

    NASA Astrophysics Data System (ADS)

    Ford, Eric B.; Dindar, Saleh; Peters, Jorg

    2015-08-01

    The realism of astrophysical simulations and statistical analyses of astronomical data are set by the available computational resources. Thus, astronomers and astrophysicists are constantly pushing the limits of computational capabilities. For decades, astronomers benefited from massive improvements in computational power that were driven primarily by increasing clock speeds and required relatively little attention to details of the computational hardware. For nearly a decade, increases in computational capabilities have come primarily from increasing the degree of parallelism, rather than increasing clock speeds. Further increases in computational capabilities will likely be led by many-core architectures such as Graphical Processing Units (GPUs) and Intel Xeon Phi. Successfully harnessing these new architectures, requires significantly more understanding of the hardware architecture, cache hierarchy, compiler capabilities and network network characteristics.I will provide an astronomer's overview of the opportunities and challenges provided by modern many-core architectures and elastic cloud computing. The primary goal is to help an astronomical audience understand what types of problems are likely to yield more than order of magnitude speed-ups and which problems are unlikely to parallelize sufficiently efficiently to be worth the development time and/or costs.I will draw on my experience leading a team in developing the Swarm-NG library for parallel integration of large ensembles of small n-body systems on GPUs, as well as several smaller software projects. I will share lessons learned from collaborating with computer scientists, including both technical and soft skills. Finally, I will discuss the challenges of training the next generation of astronomers to be proficient in this new era of high-performance computing, drawing on experience teaching a graduate class on High-Performance Scientific Computing for Astrophysics and organizing a 2014 advanced summer school on Bayesian Computing for Astronomical Data Analysis with support of the Penn State Center for Astrostatistics and Institute for CyberScience.

  16. Method and apparatus for data sampling

    DOEpatents

    Odell, Daniel M. C.

    1994-01-01

    A method and apparatus for sampling radiation detector outputs and determining event data from the collected samples. The method uses high speed sampling of the detector output, the conversion of the samples to digital values, and the discrimination of the digital values so that digital values representing detected events are determined. The high speed sampling and digital conversion is performed by an A/D sampler that samples the detector output at a rate high enough to produce numerous digital samples for each detected event. The digital discrimination identifies those digital samples that are not representative of detected events. The sampling and discrimination also provides for temporary or permanent storage, either serially or in parallel, to a digital storage medium.

  17. High subsonic flow tests of a parallel pipe followed by a large area ratio diffuser

    NASA Technical Reports Server (NTRS)

    Barna, P. S.

    1975-01-01

    Experiments were performed on a pilot model duct system in order to explore its aerodynamic characteristics. The model was scaled from a design projected for the high speed operation mode of the Aircraft Noise Reduction Laboratory. The test results show that the model performed satisfactorily and therefore the projected design will most likely meet the specifications.

  18. Liquid film on a circular plate formed by a droplet train impingement

    NASA Astrophysics Data System (ADS)

    Sanada, Toshiyuki; Yamamoto, Shoya

    2017-11-01

    Droplet impingement phenomena are found in the wide variety of industrial processes, however the detail of liquid film structure formed by the continuous impact of droplets is not clarified. In this study, we experimentally investigated behavior of liquid film which was formed by a droplet train impact. Especially, we focus on the diameter of hydraulic jump formed on a circular plate. The effects of nozzle diameter, liquid surface tension and liquid flow rate on the jump diameter were investigated. In addition, we compared the liquid film by the droplet train impact with that by a liquid column impact. As a result, the hydraulic jump was observed under the smaller water flow rate condition compare to the liquid column impact. And the jump diameters for the case of droplet train impact were greater than that of liquid column impact. However, the jump diameters for the small surface tension liquid for the case of droplet train impact were smaller than that of liquid column impact. We consider that this phenomenon is related to both high speed lateral flow after droplet impact and splash formation. In addition, the liquid film heights after hydraulic jump on a small circular plate were sensitive to either the droplet train impact or liquid column impact.

  19. Bubble Size Distribution in a Vibrating Bubble Column

    NASA Astrophysics Data System (ADS)

    Mohagheghian, Shahrouz; Wilson, Trevor; Valenzuela, Bret; Hinds, Tyler; Moseni, Kevin; Elbing, Brian

    2016-11-01

    While vibrating bubble columns have increased the mass transfer between phases, a universal scaling law remains elusive. Attempts to predict mass transfer rates in large industrial scale applications by extrapolating laboratory scale models have failed. In a stationary bubble column, mass transfer is a function of phase interfacial area (PIA), while PIA is determined based on the bubble size distribution (BSD). On the other hand, BSD is influenced by the injection characteristics and liquid phase dynamics and properties. Vibration modifies the BSD by impacting the gas and gas-liquid dynamics. This work uses a vibrating cylindrical bubble column to investigate the effect of gas injection and vibration characteristics on the BSD. The bubble column has a 10 cm diameter and was filled with water to a depth of 90 cm above the tip of the orifice tube injector. BSD was measured using high-speed imaging to determine the projected area of individual bubbles, which the nominal bubble diameter was then calculated assuming spherical bubbles. The BSD dependence on the distance from the injector, injector design (1.6 and 0.8 mm ID), air flow rates (0.5 to 5 lit/min), and vibration conditions (stationary and vibration conditions varying amplitude and frequency) will be presented. In addition to mean data, higher order statistics will also be provided.

  20. Merging parallel optics packaging and surface mount technologies

    NASA Astrophysics Data System (ADS)

    Kopp, Christophe; Volpert, Marion; Routin, Julien; Bernabé, Stéphane; Rossat, Cyrille; Tournaire, Myriam; Hamelin, Régis

    2008-02-01

    Optical links are well known to present significant advantages over electrical links for very high-speed data rate at 10Gpbs and above per channel. However, the transition towards optical interconnects solutions for short and very short reach applications requires the development of innovative packaging solutions that would deal with very high volume production capability and very low cost per unit. Moreover, the optoelectronic transceiver components must be able to move from the edge to anywhere on the printed circuit board, for instance close to integrated circuits with high speed IO. In this paper, we present an original packaging design to manufacture parallel optic transceivers that are surface mount devices. The package combines highly integrated Multi-Chip-Module on glass and usual IC ceramics packaging. The use of ceramic and the development of sealing technologies achieve hermetic requirements. Moreover, thanks to a chip scale package approach the final device exhibits a much minimized footprint. One of the main advantages of the package is its flexibility to be soldered or plugged anywhere on the printed circuit board as any other electronic device. As a demonstrator we present a 2 by 4 10Gbps transceiver operating at 850nm.

  1. High-performance ultra-low power VLSI analog processor for data compression

    NASA Technical Reports Server (NTRS)

    Tawel, Raoul (Inventor)

    1996-01-01

    An apparatus for data compression employing a parallel analog processor. The apparatus includes an array of processor cells with N columns and M rows wherein the processor cells have an input device, memory device, and processor device. The input device is used for inputting a series of input vectors. Each input vector is simultaneously input into each column of the array of processor cells in a pre-determined sequential order. An input vector is made up of M components, ones of which are input into ones of M processor cells making up a column of the array. The memory device is used for providing ones of M components of a codebook vector to ones of the processor cells making up a column of the array. A different codebook vector is provided to each of the N columns of the array. The processor device is used for simultaneously comparing the components of each input vector to corresponding components of each codebook vector, and for outputting a signal representative of the closeness between the compared vector components. A combination device is used to combine the signal output from each processor cell in each column of the array and to output a combined signal. A closeness determination device is then used for determining which codebook vector is closest to an input vector from the combined signals, and for outputting a codebook vector index indicating which of the N codebook vectors was the closest to each input vector input into the array.

  2. A parallel method of atmospheric correction for multispectral high spatial resolution remote sensing images

    NASA Astrophysics Data System (ADS)

    Zhao, Shaoshuai; Ni, Chen; Cao, Jing; Li, Zhengqiang; Chen, Xingfeng; Ma, Yan; Yang, Leiku; Hou, Weizhen; Qie, Lili; Ge, Bangyu; Liu, Li; Xing, Jin

    2018-03-01

    The remote sensing image is usually polluted by atmosphere components especially like aerosol particles. For the quantitative remote sensing applications, the radiative transfer model based atmospheric correction is used to get the reflectance with decoupling the atmosphere and surface by consuming a long computational time. The parallel computing is a solution method for the temporal acceleration. The parallel strategy which uses multi-CPU to work simultaneously is designed to do atmospheric correction for a multispectral remote sensing image. The parallel framework's flow and the main parallel body of atmospheric correction are described. Then, the multispectral remote sensing image of the Chinese Gaofen-2 satellite is used to test the acceleration efficiency. When the CPU number is increasing from 1 to 8, the computational speed is also increasing. The biggest acceleration rate is 6.5. Under the 8 CPU working mode, the whole image atmospheric correction costs 4 minutes.

  3. High-speed volume measurement system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lane, Michael H.; Doyle, Jr., James L.; Brinkman, Michael J.

    2018-01-30

    Disclosed is a volume sensor having a first axis, a second axis, and a third axis, each axis including a laser source configured to emit a beam; a parallel beam generating assembly configured to receive the beam and split the beam into a first parallel beam and a second parallel beam, a beam-collimating assembly configured to receive the first parallel beam and the second parallel beam and output a first beam sheet and a second beam sheet, the first beam sheet and the second beam sheet being configured to traverse the object aperture; a first collecting lens and a secondmore » collecting lens; and a first photodetector and a second photodetector, the first photodetector and the second photodetector configured to output an electrical signal proportional to the object; wherein the first axis, the second axis, and the third axis are arranged at an angular offset with respect to each other.« less

  4. A Parallel Numerical Algorithm To Solve Linear Systems Of Equations Emerging From 3D Radiative Transfer

    NASA Astrophysics Data System (ADS)

    Wichert, Viktoria; Arkenberg, Mario; Hauschildt, Peter H.

    2016-10-01

    Highly resolved state-of-the-art 3D atmosphere simulations will remain computationally extremely expensive for years to come. In addition to the need for more computing power, rethinking coding practices is necessary. We take a dual approach by introducing especially adapted, parallel numerical methods and correspondingly parallelizing critical code passages. In the following, we present our respective work on PHOENIX/3D. With new parallel numerical algorithms, there is a big opportunity for improvement when iteratively solving the system of equations emerging from the operator splitting of the radiative transfer equation J = ΛS. The narrow-banded approximate Λ-operator Λ* , which is used in PHOENIX/3D, occurs in each iteration step. By implementing a numerical algorithm which takes advantage of its characteristic traits, the parallel code's efficiency is further increased and a speed-up in computational time can be achieved.

  5. Implementation of Parallel Dynamic Simulation on Shared-Memory vs. Distributed-Memory Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Shuangshuang; Chen, Yousu; Wu, Di

    2015-12-09

    Power system dynamic simulation computes the system response to a sequence of large disturbance, such as sudden changes in generation or load, or a network short circuit followed by protective branch switching operation. It consists of a large set of differential and algebraic equations, which is computational intensive and challenging to solve using single-processor based dynamic simulation solution. High-performance computing (HPC) based parallel computing is a very promising technology to speed up the computation and facilitate the simulation process. This paper presents two different parallel implementations of power grid dynamic simulation using Open Multi-processing (OpenMP) on shared-memory platform, and Messagemore » Passing Interface (MPI) on distributed-memory clusters, respectively. The difference of the parallel simulation algorithms and architectures of the two HPC technologies are illustrated, and their performances for running parallel dynamic simulation are compared and demonstrated.« less

  6. A Novel Crosstalk Suppression Method of the 2-D Networked Resistive Sensor Array

    PubMed Central

    Wu, Jianfeng; Wang, Lei; Li, Jianqing; Song, Aiguo

    2014-01-01

    The 2-D resistive sensor array in the row–column fashion suffered from the crosstalk problem for parasitic parallel paths. Firstly, we proposed an Improved Isolated Drive Feedback Circuit with Compensation (IIDFCC) based on the voltage feedback method to suppress the crosstalk. In this method, a compensated resistor was specially used to reduce the crosstalk caused by the column multiplexer resistors and the adjacent row elements. Then, a mathematical equivalent resistance expression of the element being tested (EBT) of this circuit was analytically derived and verified by the circuit simulations. The simulation results show that the measurement method can greatly reduce the influence on the EBT caused by parasitic parallel paths for the multiplexers' channel resistor and the adjacent elements. PMID:25046011

  7. Long-range attraction of an ultrarelativistic electron beam by a column of neutral plasma

    DOE PAGES

    Adli, Erik; Lindstrom, C. A.; Allen, J.; ...

    2016-10-12

    Here, we report on the experimental observation of the attraction of a beam of ultrarelativistic electrons towards a column of neutral plasma. In experiments performed at the FACET test facility at SLAC we observe that an electron beam moving parallel to a neutral plasma column, at an initial distance of many plasma column radii, is attracted into the column. Once the beam enters the plasma it drives a plasma wake similar to that of an electron beam entering the plasma column head-on. A simple analytical model is developed in order to capture the essential physics of the attractive force. Themore » attraction is further studied by 3D particle-in-cell numerical simulations. The results are an important step towards better understanding of particle beam–plasma interactions in general and plasma wakefield accelerator technology in particular.« less

  8. Long-range attraction of an ultrarelativistic electron beam by a column of neutral plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adli, Erik; Lindstrom, C. A.; Allen, J.

    Here, we report on the experimental observation of the attraction of a beam of ultrarelativistic electrons towards a column of neutral plasma. In experiments performed at the FACET test facility at SLAC we observe that an electron beam moving parallel to a neutral plasma column, at an initial distance of many plasma column radii, is attracted into the column. Once the beam enters the plasma it drives a plasma wake similar to that of an electron beam entering the plasma column head-on. A simple analytical model is developed in order to capture the essential physics of the attractive force. Themore » attraction is further studied by 3D particle-in-cell numerical simulations. The results are an important step towards better understanding of particle beam–plasma interactions in general and plasma wakefield accelerator technology in particular.« less

  9. INSTABILITIES DRIVEN BY THE DRIFT AND TEMPERATURE ANISOTROPY OF ALPHA PARTICLES IN THE SOLAR WIND

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verscharen, Daniel; Bourouaine, Sofiane; Chandran, Benjamin D. G., E-mail: daniel.verscharen@unh.edu, E-mail: s.bourouaine@unh.edu, E-mail: benjamin.chandran@unh.edu

    2013-08-20

    We investigate the conditions under which parallel-propagating Alfven/ion-cyclotron (A/IC) waves and fast-magnetosonic/whistler (FM/W) waves are driven unstable by the differential flow and temperature anisotropy of alpha particles in the solar wind. We focus on the limit in which w{sub Parallel-To {alpha}} {approx}> 0.25v{sub A}, where w{sub Parallel-To {alpha}} is the parallel alpha-particle thermal speed and v{sub A} is the Alfven speed. We derive analytic expressions for the instability thresholds of these waves, which show, e.g., how the minimum unstable alpha-particle beam speed depends upon w{sub Parallel-To {alpha}}/v{sub A}, the degree of alpha-particle temperature anisotropy, and the alpha-to-proton temperature ratio. Wemore » validate our analytical results using numerical solutions to the full hot-plasma dispersion relation. Consistent with previous work, we find that temperature anisotropy allows A/IC waves and FM/W waves to become unstable at significantly lower values of the alpha-particle beam speed U{sub {alpha}} than in the isotropic-temperature case. Likewise, differential flow lowers the minimum temperature anisotropy needed to excite A/IC or FM/W waves relative to the case in which U{sub {alpha}} = 0. We discuss the relevance of our results to alpha particles in the solar wind near 1 AU.« less

  10. Development of embedded real-time and high-speed vision platform

    NASA Astrophysics Data System (ADS)

    Ouyang, Zhenxing; Dong, Yimin; Yang, Hua

    2015-12-01

    Currently, high-speed vision platforms are widely used in many applications, such as robotics and automation industry. However, a personal computer (PC) whose over-large size is not suitable and applicable in compact systems is an indispensable component for human-computer interaction in traditional high-speed vision platforms. Therefore, this paper develops an embedded real-time and high-speed vision platform, ER-HVP Vision which is able to work completely out of PC. In this new platform, an embedded CPU-based board is designed as substitution for PC and a DSP and FPGA board is developed for implementing image parallel algorithms in FPGA and image sequential algorithms in DSP. Hence, the capability of ER-HVP Vision with size of 320mm x 250mm x 87mm can be presented in more compact condition. Experimental results are also given to indicate that the real-time detection and counting of the moving target at a frame rate of 200 fps at 512 x 512 pixels under the operation of this newly developed vision platform are feasible.

  11. Testing of Face-milled Spiral Bevel Gears at High-speed and Load

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.

    2001-01-01

    Spiral bevel gears are an important drive system components of rotorcraft (helicopters) currently in use. In this application the spiral bevel gears are required to transmit very high torque at high rotational speed. Available experimental data on the operational characteristics for thermal and structural behavior is relatively small in comparison to that found for parallel axis gears. An ongoing test program has been in place at NASA Glenn Research Center over the last ten years to investigate their operational behavior at operating conditions found in aerospace applications. This paper will summarize the results of the tests conducted on face-milled spiral bevel gears. The data from the pinion member (temperature and stress) were taken at conditions from slow-roll to 14400 rpm and up to 537 kW (720 hp). The results have shown that operating temperature is affected by the location of the lubricating jet with respect to the point it is injected and the operating conditions that are imposed. Also the stress measured from slow-roll to very high rotational speed, at various torque levels, indicated little dynamic affect over the rotational speeds tested.

  12. VLSI neuroprocessors

    NASA Technical Reports Server (NTRS)

    Kemeny, Sabrina E.

    1994-01-01

    Electronic and optoelectronic hardware implementations of highly parallel computing architectures address several ill-defined and/or computation-intensive problems not easily solved by conventional computing techniques. The concurrent processing architectures developed are derived from a variety of advanced computing paradigms including neural network models, fuzzy logic, and cellular automata. Hardware implementation technologies range from state-of-the-art digital/analog custom-VLSI to advanced optoelectronic devices such as computer-generated holograms and e-beam fabricated Dammann gratings. JPL's concurrent processing devices group has developed a broad technology base in hardware implementable parallel algorithms, low-power and high-speed VLSI designs and building block VLSI chips, leading to application-specific high-performance embeddable processors. Application areas include high throughput map-data classification using feedforward neural networks, terrain based tactical movement planner using cellular automata, resource optimization (weapon-target assignment) using a multidimensional feedback network with lateral inhibition, and classification of rocks using an inner-product scheme on thematic mapper data. In addition to addressing specific functional needs of DOD and NASA, the JPL-developed concurrent processing device technology is also being customized for a variety of commercial applications (in collaboration with industrial partners), and is being transferred to U.S. industries. This viewgraph p resentation focuses on two application-specific processors which solve the computation intensive tasks of resource allocation (weapon-target assignment) and terrain based tactical movement planning using two extremely different topologies. Resource allocation is implemented as an asynchronous analog competitive assignment architecture inspired by the Hopfield network. Hardware realization leads to a two to four order of magnitude speed-up over conventional techniques and enables multiple assignments, (many to many), not achievable with standard statistical approaches. Tactical movement planning (finding the best path from A to B) is accomplished with a digital two-dimensional concurrent processor array. By exploiting the natural parallel decomposition of the problem in silicon, a four order of magnitude speed-up over optimized software approaches has been demonstrated.

  13. Demonstration of an optoelectronic interconnect architecture for a parallel modified signed-digit adder and subtracter

    NASA Astrophysics Data System (ADS)

    Sun, Degui; Wang, Na-Xin; He, Li-Ming; Weng, Zhao-Heng; Wang, Daheng; Chen, Ray T.

    1996-06-01

    A space-position-logic-encoding scheme is proposed and demonstrated. This encoding scheme not only makes the best use of the convenience of binary logic operation, but is also suitable for the trinary property of modified signed- digit (MSD) numbers. Based on the space-position-logic-encoding scheme, a fully parallel modified signed-digit adder and subtractor is built using optoelectronic switch technologies in conjunction with fiber-multistage 3D optoelectronic interconnects. Thus an effective combination of a parallel algorithm and a parallel architecture is implemented. In addition, the performance of the optoelectronic switches used in this system is experimentally studied and verified. Both the 3-bit experimental model and the experimental results of a parallel addition and a parallel subtraction are provided and discussed. Finally, the speed ratio between the MSD adder and binary adders is discussed and the advantage of the MSD in operating speed is demonstrated.

  14. Full speed ahead for software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolfe, A.

    1986-03-10

    Supercomputing software is moving into high gear, spurred by the rapid spread of supercomputers into new applications. The critical challenge is how to develop tools that will make it easier for programmers to write applications that take advantage of vectorizing in the classical supercomputer and the parallelism that is emerging in supercomputers and minisupercomputers. Writing parallel software is a challenge that every programmer must face because parallel architectures are springing up across the range of computing. Cray is developing a host of tools for programmers. Tools to support multitasking (in supercomputer parlance, multitasking means dividing up a single program tomore » run on multiple processors) are high on Cray's agenda. On tap for multitasking is Premult, dubbed a microtasking tool. As a preprocessor for Cray's CFT77 FORTRAN compiler, Premult will provide fine-grain multitasking.« less

  15. Carbofuran biodegradation in brackish groundwater and its effect on the hydraulic properties of the porous medium

    NASA Astrophysics Data System (ADS)

    Amiaz, Yanai; Ronen, Zeev; Adar, Eilon; Weisbrod, Noam

    2015-04-01

    A chalk fractured aquitard beneath an industrial site is subjected to intense contamination due to percolation of contaminants from the different facilities operating at the site. In order to reduce further contamination, draining trenches were excavated and filled with coarse gravel (3-4 cm in diameter) forming a porous medium, to which the contaminated groundwater discharges from the fractures surrounding the trenches. This research is aimed at establishing a biodegrading process of high efficiency and performance within the draining trenches. The research includes both field and laboratory experiments. An experimental setup of five columns (50 cm length and 4.5 cm in diameter) was constructed under highly controlled conditions. Over the course of the experiments, the columns were filled with different particle sizes and placed in a temperature controlled chamber. Filtered groundwater (0.2 µm) from the site groundwater, enriched by a model contaminant carbofuran (CRF), was injected to the columns; as two of the columns were inoculated by CRF degrading microorganisms native in the site's groundwater, two columns were inoculated by CRF degrading bacteria from the external environment, and one column was used as a control. During the experiment, measurements were taken from different locations along each column. These include: (a) CRF concentration and (b) hydraulic pressure and solution viscosity (in order to obtain the changes in permeability). A tracer test using uranine was carried out in parallel, in order to obtain the changes in hydraulic parameters. Correlating CRF concentration variations to changes of hydraulic parameters enable the deduction due to the effect that biological activity (under different temperature regimes) has on the hydraulic properties of the porous medium and its effect on the process of contaminant groundwater bodies' remediation. Preliminary results suggest that although biodegradation occurs, microbial activity has minor effect on the hydraulic properties of the porous medium under the explored conditions.

  16. High-Throughput Industrial Coatings Research at The Dow Chemical Company.

    PubMed

    Kuo, Tzu-Chi; Malvadkar, Niranjan A; Drumright, Ray; Cesaretti, Richard; Bishop, Matthew T

    2016-09-12

    At The Dow Chemical Company, high-throughput research is an active area for developing new industrial coatings products. Using the principles of automation (i.e., using robotic instruments), parallel processing (i.e., prepare, process, and evaluate samples in parallel), and miniaturization (i.e., reduce sample size), high-throughput tools for synthesizing, formulating, and applying coating compositions have been developed at Dow. In addition, high-throughput workflows for measuring various coating properties, such as cure speed, hardness development, scratch resistance, impact toughness, resin compatibility, pot-life, surface defects, among others have also been developed in-house. These workflows correlate well with the traditional coatings tests, but they do not necessarily mimic those tests. The use of such high-throughput workflows in combination with smart experimental designs allows accelerated discovery and commercialization.

  17. Partition efficiencies of newly fabricated universal high-speed counter-current chromatograph for separation of two different types of sugar derivatives with organic-aqueous two-phase solvent systems.

    PubMed

    Shinomiya, Kazufusa; Sato, Kazuki; Yoshida, Kazunori; Tokura, Koji; Maruyama, Hiroshi; Yanagidaira, Kazuhiro; Ito, Yoichiro

    2013-12-27

    A new design of universal high-speed counter-current chromatograph (HSCCC) was fabricated in our laboratory. It holds a set of four column holders symmetrically around the rotary frame at a distance of 11.2cm from the central axis. By engaging the stationary gear on the central axis of the centrifuge to the planetary gears on the column holder shaft through a set of idle gears, two pairs of diagonally located column holders simultaneously rotate about their own axes in the opposite directions: one forward (type-J planetary motion) and the other backward (type-I planetary motion) each synchronously with the revolution. Using the eccentric coil assembly, partition efficiencies produced by these two planetary motions were compared on the separation of two different types of sugar derivatives (4-methylumbelliferyl and 5-bromo-4-chloro-3-indoxyl sugar derivatives) using organic-aqueous two-phase solvent systems composed of n-hexane/ethyl acetate/1-butanol/methanol/water and aqueous 0.1M sodium tetraborate, respectively. With lower phase mobile, better peak resolution was obtained by the type-J forward rotation for both samples probably due to higher retention of the stationary phase. With upper phase mobile, however, similar peak resolutions were obtained between these two planetary motions for both sugar derivatives. The overall results indicate that the present universal HSCCC is useful for counter-current chromatographic separation since each planetary motion has its specific applications: e.g., vortex CCC by the type-I planetary motion and HSCCC by the type-J planetary motion both for separation of various natural and synthetic products. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. New functionalities of potassium tantalate niobate deflectors enabled by the coexistence of pre-injected space charge and composition gradient

    NASA Astrophysics Data System (ADS)

    Zhu, Wenbin; Chao, Ju-Hung; Chen, Chang-Jiang; Campbell, Adrian L.; Henry, Michael G.; Yin, Stuart Shizhuo; Hoffman, Robert C.

    2017-10-01

    In most beam steering applications such as 3D printing and in vivo imaging, one of the essential challenges has been high-resolution high-speed multi-dimensional optical beam scanning. Although the pre-injected space charge controlled potassium tantalate niobate (KTN) deflectors can achieve speeds in the nanosecond regime, they deflect in only one dimension. In order to develop a high-resolution high-speed multi-dimensional KTN deflector, we studied the deflection behavior of KTN deflectors in the case of coexisting pre-injected space charge and composition gradient. We find that such coexistence can enable new functionalities of KTN crystal based electro-optic deflectors. When the direction of the composition gradient is parallel to the direction of the external electric field, the zero-deflection position can be shifted, which can reduce the internal electric field induced beam distortion, and thus enhance the resolution. When the direction of the composition gradient is perpendicular to the direction of the external electric field, two-dimensional beam scanning can be achieved by harnessing only one single piece of KTN crystal, which can result in a compact, high-speed two-dimensional deflector. Both theoretical analyses and experiments are conducted, which are consistent with each other. These new functionalities can expedite the usage of KTN deflection in many applications such as high-speed 3D printing, high-speed, high-resolution imaging, and free space broadband optical communication.

  19. A New Resonance Tube

    ERIC Educational Resources Information Center

    Bates, Alan

    2017-01-01

    The measurement of the speed of sound in air with the resonance tube is a popular experiment that often yields accurate results. One approach is to hold a vibrating tuning fork over an air column that is partially immersed in water. The column is raised and lowered in the water until the generated standing wave produces resonance: this occurs at…

  20. Comparing monolithic and fused core HPLC columns for fast chromatographic analysis of fat-soluble vitamins.

    PubMed

    Kurdi, Said El; Muaileq, Dina Abu; Alhazmi, Hassan A; Bratty, Mohammed Al; Deeb, Sami El

    2017-06-27

    HPLC stationary phases of monolithic and fused core type can be used to achieve fast chromatographic separation as an alternative to UPLC. In this study, monolithic and fused core stationary phases are compared for fast separation of four fat-soluble vitamins. Three new methods on the first and second generation monolithic silica RP-18e columns and a fused core pentafluoro-phenyl propyl column were developed. Application of three fused core columns offered comparable separations of retinyl palmitate, DL-α-tocopheryl acetate, cholecalciferol and menadione in terms of elution speed and separation efficiency. Separation was achieved in approx. 5 min with good resolution (Rs > 5) and precision (RSD ≤ 0.6 %). Monolithic columns showed, however, a higher number of theoretical plates, better precision and lower column backpressure than the fused core column. The three developed methods were successfully applied to separate and quantitate fat-soluble vitamins in commercial products.

  1. A Systems Approach to Scalable Transportation Network Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perumalla, Kalyan S

    2006-01-01

    Emerging needs in transportation network modeling and simulation are raising new challenges with respect to scal-ability of network size and vehicular traffic intensity, speed of simulation for simulation-based optimization, and fidel-ity of vehicular behavior for accurate capture of event phe-nomena. Parallel execution is warranted to sustain the re-quired detail, size and speed. However, few parallel simulators exist for such applications, partly due to the challenges underlying their development. Moreover, many simulators are based on time-stepped models, which can be computationally inefficient for the purposes of modeling evacuation traffic. Here an approach is presented to de-signing a simulator with memory andmore » speed efficiency as the goals from the outset, and, specifically, scalability via parallel execution. The design makes use of discrete event modeling techniques as well as parallel simulation meth-ods. Our simulator, called SCATTER, is being developed, incorporating such design considerations. Preliminary per-formance results are presented on benchmark road net-works, showing scalability to one million vehicles simu-lated on one processor.« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, C.

    Almost every computer architect dreams of achieving high system performance with low implementation costs. A multigauge machine can reconfigure its data-path width, provide parallelism, achieve better resource utilization, and sometimes can trade computational precision for increased speed. A simple experimental method is used here to capture the main characteristics of multigauging. The measurements indicate evidence of near-optimal speedups. Adapting these ideas in designing parallel processors incurs low costs and provides flexibility. Several operational aspects of designing a multigauge machine are discussed as well. Thus, this research reports the technical, economical, and operational feasibility studies of multigauging.

  3. Obsessive-compulsive tendencies are associated with a focused information processing strategy.

    PubMed

    Soref, Assaf; Dar, Reuven; Argov, Galit; Meiran, Nachshon

    2008-12-01

    The study examined the hypothesis that obsessive-compulsive (OC) tendencies are related to a reliance on focused and serial rather than a parallel, speed-oriented information processing style. Ten students with high OC tendencies and 10 students with low OC tendencies performed the flanker task, in which they were required to quickly classify a briefly presented target letter (S or H) that was flanked by compatible (e.g., SSSSS) or incompatible (e.g., HHSHH) noise letters. Participants received 4 blocks of 100 trials each, two with 50% compatible trials and two with 80% compatible trials and were informed of the probability of compatible trials before the beginning of each block. As predicted, high OC participants, as compared to low OC participants, had slower overall reaction time (RT) and lower tendency for parallel processing (defined as incompatible trials RT minus compatible trials RT). Low, more than high OC participants tended to adjust their focused/parallel processing including a shift towards parallel processing in blocks with 80% compatible trials and in trials following compatible trials. Implications of these results to the cognitive theory and therapy of OCD are discussed.

  4. High performance data transfer

    NASA Astrophysics Data System (ADS)

    Cottrell, R.; Fang, C.; Hanushevsky, A.; Kreuger, W.; Yang, W.

    2017-10-01

    The exponentially increasing need for high speed data transfer is driven by big data, and cloud computing together with the needs of data intensive science, High Performance Computing (HPC), defense, the oil and gas industry etc. We report on the Zettar ZX software. This has been developed since 2013 to meet these growing needs by providing high performance data transfer and encryption in a scalable, balanced, easy to deploy and use way while minimizing power and space utilization. In collaboration with several commercial vendors, Proofs of Concept (PoC) consisting of clusters have been put together using off-the- shelf components to test the ZX scalability and ability to balance services using multiple cores, and links. The PoCs are based on SSD flash storage that is managed by a parallel file system. Each cluster occupies 4 rack units. Using the PoCs, between clusters we have achieved almost 200Gbps memory to memory over two 100Gbps links, and 70Gbps parallel file to parallel file with encryption over a 5000 mile 100Gbps link.

  5. Parallel Simulation of Three-Dimensional Free Surface Fluid Flow Problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BAER,THOMAS A.; SACKINGER,PHILIP A.; SUBIA,SAMUEL R.

    1999-10-14

    Simulation of viscous three-dimensional fluid flow typically involves a large number of unknowns. When free surfaces are included, the number of unknowns increases dramatically. Consequently, this class of problem is an obvious application of parallel high performance computing. We describe parallel computation of viscous, incompressible, free surface, Newtonian fluid flow problems that include dynamic contact fines. The Galerkin finite element method was used to discretize the fully-coupled governing conservation equations and a ''pseudo-solid'' mesh mapping approach was used to determine the shape of the free surface. In this approach, the finite element mesh is allowed to deform to satisfy quasi-staticmore » solid mechanics equations subject to geometric or kinematic constraints on the boundaries. As a result, nodal displacements must be included in the set of unknowns. Other issues discussed are the proper constraints appearing along the dynamic contact line in three dimensions. Issues affecting efficient parallel simulations include problem decomposition to equally distribute computational work among a SPMD computer and determination of robust, scalable preconditioners for the distributed matrix systems that must be solved. Solution continuation strategies important for serial simulations have an enhanced relevance in a parallel coquting environment due to the difficulty of solving large scale systems. Parallel computations will be demonstrated on an example taken from the coating flow industry: flow in the vicinity of a slot coater edge. This is a three dimensional free surface problem possessing a contact line that advances at the web speed in one region but transitions to static behavior in another region. As such, a significant fraction of the computational time is devoted to processing boundary data. Discussion focuses on parallel speed ups for fixed problem size, a class of problems of immediate practical importance.« less

  6. Diagnostic-Photographic Determination of Drag/Lift/Torque Coefficients of High Speed Rigid Body in Water Column

    DTIC Science & Technology

    2008-01-01

    various physical processes such as supercavitation and bubbles. A diagnostic- photographic method is developed in this study to determine the drag...nonlinear dynamics, body and multi-phase fluid interaction, supercavitation , and instability theory. The technical application of the hydrodynamics of...uV U ω= = − ×V e e e ei i , (29) where Eq.(9) is used. For a supercavitation area, a correction factor may be

  7. High-speed parallel implementation of a modified PBR algorithm on DSP-based EH topology

    NASA Astrophysics Data System (ADS)

    Rajan, K.; Patnaik, L. M.; Ramakrishna, J.

    1997-08-01

    Algebraic Reconstruction Technique (ART) is an age-old method used for solving the problem of three-dimensional (3-D) reconstruction from projections in electron microscopy and radiology. In medical applications, direct 3-D reconstruction is at the forefront of investigation. The simultaneous iterative reconstruction technique (SIRT) is an ART-type algorithm with the potential of generating in a few iterations tomographic images of a quality comparable to that of convolution backprojection (CBP) methods. Pixel-based reconstruction (PBR) is similar to SIRT reconstruction, and it has been shown that PBR algorithms give better quality pictures compared to those produced by SIRT algorithms. In this work, we propose a few modifications to the PBR algorithms. The modified algorithms are shown to give better quality pictures compared to PBR algorithms. The PBR algorithm and the modified PBR algorithms are highly compute intensive, Not many attempts have been made to reconstruct objects in the true 3-D sense because of the high computational overhead. In this study, we have developed parallel two-dimensional (2-D) and 3-D reconstruction algorithms based on modified PBR. We attempt to solve the two problems encountered by the PBR and modified PBR algorithms, i.e., the long computational time and the large memory requirements, by parallelizing the algorithm on a multiprocessor system. We investigate the possible task and data partitioning schemes by exploiting the potential parallelism in the PBR algorithm subject to minimizing the memory requirement. We have implemented an extended hypercube (EH) architecture for the high-speed execution of the 3-D reconstruction algorithm using the commercially available fast floating point digital signal processor (DSP) chips as the processing elements (PEs) and dual-port random access memories (DPR) as channels between the PEs. We discuss and compare the performances of the PBR algorithm on an IBM 6000 RISC workstation, on a Silicon Graphics Indigo 2 workstation, and on an EH system. The results show that an EH(3,1) using DSP chips as PEs executes the modified PBR algorithm about 100 times faster than an LBM 6000 RISC workstation. We have executed the algorithms on a 4-node IBM SP2 parallel computer. The results show that execution time of the algorithm on an EH(3,1) is better than that of a 4-node IBM SP2 system. The speed-up of an EH(3,1) system with eight PEs and one network controller is approximately 7.85.

  8. Parallel network simulations with NEURON.

    PubMed

    Migliore, M; Cannia, C; Lytton, W W; Markram, Henry; Hines, M L

    2006-10-01

    The NEURON simulation environment has been extended to support parallel network simulations. Each processor integrates the equations for its subnet over an interval equal to the minimum (interprocessor) presynaptic spike generation to postsynaptic spike delivery connection delay. The performance of three published network models with very different spike patterns exhibits superlinear speedup on Beowulf clusters and demonstrates that spike communication overhead is often less than the benefit of an increased fraction of the entire problem fitting into high speed cache. On the EPFL IBM Blue Gene, almost linear speedup was obtained up to 100 processors. Increasing one model from 500 to 40,000 realistic cells exhibited almost linear speedup on 2,000 processors, with an integration time of 9.8 seconds and communication time of 1.3 seconds. The potential for speed-ups of several orders of magnitude makes practical the running of large network simulations that could otherwise not be explored.

  9. Parallel Network Simulations with NEURON

    PubMed Central

    Migliore, M.; Cannia, C.; Lytton, W.W; Markram, Henry; Hines, M. L.

    2009-01-01

    The NEURON simulation environment has been extended to support parallel network simulations. Each processor integrates the equations for its subnet over an interval equal to the minimum (interprocessor) presynaptic spike generation to postsynaptic spike delivery connection delay. The performance of three published network models with very different spike patterns exhibits superlinear speedup on Beowulf clusters and demonstrates that spike communication overhead is often less than the benefit of an increased fraction of the entire problem fitting into high speed cache. On the EPFL IBM Blue Gene, almost linear speedup was obtained up to 100 processors. Increasing one model from 500 to 40,000 realistic cells exhibited almost linear speedup on 2000 processors, with an integration time of 9.8 seconds and communication time of 1.3 seconds. The potential for speed-ups of several orders of magnitude makes practical the running of large network simulations that could otherwise not be explored. PMID:16732488

  10. More IMPATIENT: A Gridding-Accelerated Toeplitz-based Strategy for Non-Cartesian High-Resolution 3D MRI on GPUs

    PubMed Central

    Gai, Jiading; Obeid, Nady; Holtrop, Joseph L.; Wu, Xiao-Long; Lam, Fan; Fu, Maojing; Haldar, Justin P.; Hwu, Wen-mei W.; Liang, Zhi-Pei; Sutton, Bradley P.

    2013-01-01

    Several recent methods have been proposed to obtain significant speed-ups in MRI image reconstruction by leveraging the computational power of GPUs. Previously, we implemented a GPU-based image reconstruction technique called the Illinois Massively Parallel Acquisition Toolkit for Image reconstruction with ENhanced Throughput in MRI (IMPATIENT MRI) for reconstructing data collected along arbitrary 3D trajectories. In this paper, we improve IMPATIENT by removing computational bottlenecks by using a gridding approach to accelerate the computation of various data structures needed by the previous routine. Further, we enhance the routine with capabilities for off-resonance correction and multi-sensor parallel imaging reconstruction. Through implementation of optimized gridding into our iterative reconstruction scheme, speed-ups of more than a factor of 200 are provided in the improved GPU implementation compared to the previous accelerated GPU code. PMID:23682203

  11. Parallelization of the Coupled Earthquake Model

    NASA Technical Reports Server (NTRS)

    Block, Gary; Li, P. Peggy; Song, Yuhe T.

    2007-01-01

    This Web-based tsunami simulation system allows users to remotely run a model on JPL s supercomputers for a given undersea earthquake. At the time of this reporting, predicting tsunamis on the Internet has never happened before. This new code directly couples the earthquake model and the ocean model on parallel computers and improves simulation speed. Seismometers can only detect information from earthquakes; they cannot detect whether or not a tsunami may occur as a result of the earthquake. When earthquake-tsunami models are coupled with the improved computational speed of modern, high-performance computers and constrained by remotely sensed data, they are able to provide early warnings for those coastal regions at risk. The software is capable of testing NASA s satellite observations of tsunamis. It has been successfully tested for several historical tsunamis, has passed all alpha and beta testing, and is well documented for users.

  12. Removal of detergents from proteins and peptides in a spin-column format.

    PubMed

    Antharavally, Babu S

    2012-08-01

    To enable downstream analysis, it is critical to remove unbound detergents from protein and peptide samples. This unit describes the use of a high-performance resin that offers exceptional detergent removal for proteins and peptides. The easy-to-use spin format significantly improves results over the standard drip column and batch methodologies, with >95% removal of 1% to 5% detergents, including SDS, sodium deoxycholate, CHAPS, Triton X-100, Triton X-114, NP-40, Brij-35, octyl glucoside, octyl thioglucoside, and lauryl maltoside, with high recovery of proteins and peptides. Detergent removal efficiency is evaluated using colorimetric methods and mass spectrometry (MS). BSA tryptic peptides have been successfully analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and matrix-assisted laser desorption/ionization (MALDI)-MS for identification of protein, following detergent removal using the resin. Advantages of this method include speed (less than 15 min), efficient detergent removal, and high recovery of proteins and peptides. © 2012 by John Wiley & Sons, Inc.

  13. Kinetic efficiency of polar monolithic capillary columns in high-pressure gas chromatography.

    PubMed

    Kurganov, A A; Korolev, A A; Shiryaeva, V E; Popova, T P; Kanateva, A Yu

    2013-11-08

    Poppe plots were used for analysis of kinetic efficiency of monolithic sorbents synthesized in quartz capillaries for utilization in high-pressure gas chromatography. Values of theoretical plate time and maximum number of theoretical plates occurred to depend significantly on synthetic parameters such as relative amount of monomer in the initial polymerization mixture, temperature and polymerization time. Poppe plots let one to find synthesis conditions suitable either for high-speed separations or for maximal efficiency. It is shown that construction of kinetic Poppe curves using potential Van Deemter data demands compressibility of mobile phase to be taken into consideration in the case of gas chromatography. Model mixture of light hydrocarbons C1 to C4 was then used for investigation of influence of carrier gas nature on kinetic efficiency of polymeric monolithic columns. Minimal values of theoretical plate times were found for CO2 and N2O carrier gases. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Multichannel microscale system for high throughput preparative separation with comprehensive collection and analysis

    DOEpatents

    Karger, Barry L.; Kotler, Lev; Foret, Frantisek; Minarik, Marek; Kleparnik, Karel

    2003-12-09

    A modular multiple lane or capillary electrophoresis (chromatography) system that permits automated parallel separation and comprehensive collection of all fractions from samples in all lanes or columns, with the option of further on-line automated sample fraction analysis, is disclosed. Preferably, fractions are collected in a multi-well fraction collection unit, or plate (40). The multi-well collection plate (40) is preferably made of a solvent permeable gel, most preferably a hydrophilic, polymeric gel such as agarose or cross-linked polyacrylamide.

  15. A parallelizable real-time motion tracking algorithm with applications to ultrasonic strain imaging

    NASA Astrophysics Data System (ADS)

    Jiang, J.; Hall, T. J.

    2007-07-01

    Ultrasound-based mechanical strain imaging systems utilize signals from conventional diagnostic ultrasound systems to image tissue elasticity contrast that provides new diagnostically valuable information. Previous works (Hall et al 2003 Ultrasound Med. Biol. 29 427, Zhu and Hall 2002 Ultrason. Imaging 24 161) demonstrated that uniaxial deformation with minimal elevation motion is preferred for breast strain imaging and real-time strain image feedback to operators is important to accomplish this goal. The work reported here enhances the real-time speckle tracking algorithm with two significant modifications. One fundamental change is that the proposed algorithm is a column-based algorithm (a column is defined by a line of data parallel to the ultrasound beam direction, i.e. an A-line), as opposed to a row-based algorithm (a row is defined by a line of data perpendicular to the ultrasound beam direction). Then, displacement estimates from its adjacent columns provide good guidance for motion tracking in a significantly reduced search region to reduce computational cost. Consequently, the process of displacement estimation can be naturally split into at least two separated tasks, computed in parallel, propagating outward from the center of the region of interest (ROI). The proposed algorithm has been implemented and optimized in a Windows® system as a stand-alone ANSI C++ program. Results of preliminary tests, using numerical and tissue-mimicking phantoms, and in vivo tissue data, suggest that high contrast strain images can be consistently obtained with frame rates (10 frames s-1) that exceed our previous methods.

  16. Integrated sensor with frame memory and programmable resolution for light adaptive imaging

    NASA Technical Reports Server (NTRS)

    Zhou, Zhimin (Inventor); Fossum, Eric R. (Inventor); Pain, Bedabrata (Inventor)

    2004-01-01

    An image sensor operable to vary the output spatial resolution according to a received light level while maintaining a desired signal-to-noise ratio. Signals from neighboring pixels in a pixel patch with an adjustable size are added to increase both the image brightness and signal-to-noise ratio. One embodiment comprises a sensor array for receiving input signals, a frame memory array for temporarily storing a full frame, and an array of self-calibration column integrators for uniform column-parallel signal summation. The column integrators are capable of substantially canceling fixed pattern noise.

  17. A 16X16 Discrete Cosine Transform Chip

    NASA Astrophysics Data System (ADS)

    Sun, M. T.; Chen, T. C.; Gottlieb, A.; Wu, L.; Liou, M. L.

    1987-10-01

    Among various transform coding techniques for image compression the Discrete Cosine Transform (DCT) is considered to be the most effective method and has been widely used in the laboratory as well as in the market, place. DCT is computationally intensive. For video application at 14.3 MHz sample rate, a direct implementation of a 16x16 DCT requires a throughput, rate of approximately half a billion multiplications per second. In order to reduce the cost of hardware implementation, a single chip DCT implementation is highly desirable. In this paper, the implementation of a 16x16 DCT chip using a concurrent architecture will be presented. The chip is designed for real-time processing of 14.3 MHz sampled video data. It uses row-column decomposition to implement the two-dimensional transform. Distributed arithmetic combined with hit-serial and hit-parallel structures is used to implement the required vector inner products concurrently. Several schemes are utilized to reduce the size of required memory. The resultant circuit only uses memory, shift registers, and adders. No multipliers are required. It achieves high speed performance with a very regular and efficient integrated circuit realization. The chip accepts 0-bit input and produces 14-bit DCT coefficients. 12 bits are maintained after the first one-dimensional transform. The circuit has been laid out using a 2-μm CMOS technology with a symbolic design tool MULGA. The core contains approximately 73,000 transistors in an area of 7.2 x 7.0

  18. Ion Heating and Flows in a High Power Helicon Source

    NASA Astrophysics Data System (ADS)

    Scime, Earl; Agnello, Riccardo; Furno, Ivo; Howling, Alan; Jacquier, Remy; Plyushchev, Gennady; Thompson, Derek

    2017-10-01

    We report experimental measurements of ion temperatures and flows in a high power, linear, magnetized, helicon plasma device, the Resonant Antenna Ion Device (RAID). RAID is equipped with a high power helicon source. Parallel and perpendicular ion temperatures on the order of 0.6 eV are observed for an rf power of 4 kW, suggesting that higher power helicon sources should attain ion temperatures in excess of 1 eV. The unique RAID antenna design produces broad, uniform plasma density and perpendicular ion temperature radial profiles. Measurements of the azimuthal flow indicate rigid body rotation of the plasma column of a few kHz. When configured with an expanding magnetic field, modest parallel ion flows are observed in the expansion region. The ion flows and temperatures are derived from laser induced fluorescence measurements of the Doppler resolved velocity distribution functions of argon ions. This work supported by U.S. National Science Foundation Grant No. PHY-1360278.

  19. A Strassen-Newton algorithm for high-speed parallelizable matrix inversion

    NASA Technical Reports Server (NTRS)

    Bailey, David H.; Ferguson, Helaman R. P.

    1988-01-01

    Techniques are described for computing matrix inverses by algorithms that are highly suited to massively parallel computation. The techniques are based on an algorithm suggested by Strassen (1969). Variations of this scheme use matrix Newton iterations and other methods to improve the numerical stability while at the same time preserving a very high level of parallelism. One-processor Cray-2 implementations of these schemes range from one that is up to 55 percent faster than a conventional library routine to one that is slower than a library routine but achieves excellent numerical stability. The problem of computing the solution to a single set of linear equations is discussed, and it is shown that this problem can also be solved efficiently using these techniques.

  20. ELECTROSTRICTION VALVE

    DOEpatents

    Kippenhan, D.O.

    1962-09-25

    An accurately controlled, pulse gas valve is designed capable of delivering output pulses which vary in length from one-tenth millisecond to one second or more, repeated at intervals of a few milliseconds or- more. The pulsed gas valve comprises a column formed of barium titanate discs mounted in stacked relation and electrically connected in parallel, with means for applying voltage across the discs to cause them to expand and effect a mechanical elongation axially of the column. The column is mounted within an enclosure having an inlet port and an outlet port with an internal seat in communication with the outlet port, such that a plug secured to the end of the column will engage the seat of the outlet port to close the outlet port in response to the application of voltage is regulated by a conventional electronic timing circuit connected to the column. (AEC)

  1. Low Temperature Performance of High-Speed Neural Network Circuits

    NASA Technical Reports Server (NTRS)

    Duong, T.; Tran, M.; Daud, T.; Thakoor, A.

    1995-01-01

    Artificial neural networks, derived from their biological counterparts, offer a new and enabling computing paradigm specially suitable for such tasks as image and signal processing with feature classification/object recognition, global optimization, and adaptive control. When implemented in fully parallel electronic hardware, it offers orders of magnitude speed advantage. Basic building blocks of the new architecture are the processing elements called neurons implemented as nonlinear operational amplifiers with sigmoidal transfer function, interconnected through weighted connections called synapses implemented using circuitry for weight storage and multiply functions either in an analog, digital, or hybrid scheme.

  2. Accelerating electrostatic surface potential calculation with multi-scale approximation on graphics processing units.

    PubMed

    Anandakrishnan, Ramu; Scogland, Tom R W; Fenley, Andrew T; Gordon, John C; Feng, Wu-chun; Onufriev, Alexey V

    2010-06-01

    Tools that compute and visualize biomolecular electrostatic surface potential have been used extensively for studying biomolecular function. However, determining the surface potential for large biomolecules on a typical desktop computer can take days or longer using currently available tools and methods. Two commonly used techniques to speed-up these types of electrostatic computations are approximations based on multi-scale coarse-graining and parallelization across multiple processors. This paper demonstrates that for the computation of electrostatic surface potential, these two techniques can be combined to deliver significantly greater speed-up than either one separately, something that is in general not always possible. Specifically, the electrostatic potential computation, using an analytical linearized Poisson-Boltzmann (ALPB) method, is approximated using the hierarchical charge partitioning (HCP) multi-scale method, and parallelized on an ATI Radeon 4870 graphical processing unit (GPU). The implementation delivers a combined 934-fold speed-up for a 476,040 atom viral capsid, compared to an equivalent non-parallel implementation on an Intel E6550 CPU without the approximation. This speed-up is significantly greater than the 42-fold speed-up for the HCP approximation alone or the 182-fold speed-up for the GPU alone. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  3. Dynamically reconfigurable photovoltaic system

    DOEpatents

    Okandan, Murat; Nielson, Gregory N.

    2016-05-31

    A PV system composed of sub-arrays, each having a group of PV cells that are electrically connected to each other. A power management circuit for each sub-array has a communications interface and serves to connect or disconnect the sub-array to a programmable power grid. The power grid has bus rows and bus columns. A bus management circuit is positioned at a respective junction of a bus column and a bus row and is programmable through its communication interface to connect or disconnect a power path in the grid. As a result, selected sub-arrays are connected by selected power paths to be in parallel so as to produce a low system voltage, and, alternately in series so as to produce a high system voltage that is greater than the low voltage by at least a factor of ten.

  4. Dynamically reconfigurable photovoltaic system

    DOEpatents

    Okandan, Murat; Nielson, Gregory N.

    2016-12-27

    A PV system composed of sub-arrays, each having a group of PV cells that are electrically connected to each other. A power management circuit for each sub-array has a communications interface and serves to connect or disconnect the sub-array to a programmable power grid. The power grid has bus rows and bus columns. A bus management circuit is positioned at a respective junction of a bus column and a bus row and is programmable through its communication interface to connect or disconnect a power path in the grid. As a result, selected sub-arrays are connected by selected power paths to be in parallel so as to produce a low system voltage, and, alternately in series so as to produce a high system voltage that is greater than the low voltage by at least a factor of ten.

  5. Integrated on-line system for DNA sequencing by capillary electrophoresis: From template to called bases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ton, H.; Yeung, E.S.

    1997-02-15

    An integrated on-line prototype for coupling a microreactor to capillary electrophoresis for DNA sequencing has been demonstrated. A dye-labeled terminator cycle-sequencing reaction is performed in a fused-silica capillary. Subsequently, the sequencing ladder is directly injected into a size-exclusion chromatographic column operated at nearly 95{degree}C for purification. On-line injection to a capillary for electrophoresis is accomplished at a junction set at nearly 70{degree}C. High temperature at the purification column and injection junction prevents the renaturation of DNA fragments during on-line transfer without affecting the separation. The high solubility of DNA in and the relatively low ionic strength of 1 x TEmore » buffer permit both effective purification and electrokinetic injection of the DNA sample. The system is compatible with highly efficient separations by a replaceable poly(ethylene oxide) polymer solution in uncoated capillary tubes. Future automation and adaptation to a multiple-capillary array system should allow high-speed, high-throughput DNA sequencing from templates to called bases in one step. 32 refs., 5 figs.« less

  6. Parallel algorithm of VLBI software correlator under multiprocessor environment

    NASA Astrophysics Data System (ADS)

    Zheng, Weimin; Zhang, Dong

    2007-11-01

    The correlator is the key signal processing equipment of a Very Lone Baseline Interferometry (VLBI) synthetic aperture telescope. It receives the mass data collected by the VLBI observatories and produces the visibility function of the target, which can be used to spacecraft position, baseline length measurement, synthesis imaging, and other scientific applications. VLBI data correlation is a task of data intensive and computation intensive. This paper presents the algorithms of two parallel software correlators under multiprocessor environments. A near real-time correlator for spacecraft tracking adopts the pipelining and thread-parallel technology, and runs on the SMP (Symmetric Multiple Processor) servers. Another high speed prototype correlator using the mixed Pthreads and MPI (Massage Passing Interface) parallel algorithm is realized on a small Beowulf cluster platform. Both correlators have the characteristic of flexible structure, scalability, and with 10-station data correlating abilities.

  7. Automated target recognition and tracking using an optical pattern recognition neural network

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin

    1991-01-01

    The on-going development of an automatic target recognition and tracking system at the Jet Propulsion Laboratory is presented. This system is an optical pattern recognition neural network (OPRNN) that is an integration of an innovative optical parallel processor and a feature extraction based neural net training algorithm. The parallel optical processor provides high speed and vast parallelism as well as full shift invariance. The neural network algorithm enables simultaneous discrimination of multiple noisy targets in spite of their scales, rotations, perspectives, and various deformations. This fully developed OPRNN system can be effectively utilized for the automated spacecraft recognition and tracking that will lead to success in the Automated Rendezvous and Capture (AR&C) of the unmanned Cargo Transfer Vehicle (CTV). One of the most powerful optical parallel processors for automatic target recognition is the multichannel correlator. With the inherent advantages of parallel processing capability and shift invariance, multiple objects can be simultaneously recognized and tracked using this multichannel correlator. This target tracking capability can be greatly enhanced by utilizing a powerful feature extraction based neural network training algorithm such as the neocognitron. The OPRNN, currently under investigation at JPL, is constructed with an optical multichannel correlator where holographic filters have been prepared using the neocognitron training algorithm. The computation speed of the neocognitron-type OPRNN is up to 10(exp 14) analog connections/sec that enabling the OPRNN to outperform its state-of-the-art electronics counterpart by at least two orders of magnitude.

  8. High-Speed Systolic Array Testbed.

    DTIC Science & Technology

    1987-10-01

    applications since the concept was introduced by H.T. Kung In 1978. This highly parallel architecture of nearet neighbor data communciation and...must be addressed. For instance, should bit-serial or bit parallei computation be utilized. Does the dynamic range of the candidate applications or...numericai stability of the algorithms used require computations In fixed point and Integer format or the architecturally more complex and slower floating

  9. P-Hint-Hunt: a deep parallelized whole genome DNA methylation detection tool.

    PubMed

    Peng, Shaoliang; Yang, Shunyun; Gao, Ming; Liao, Xiangke; Liu, Jie; Yang, Canqun; Wu, Chengkun; Yu, Wenqiang

    2017-03-14

    The increasing studies have been conducted using whole genome DNA methylation detection as one of the most important part of epigenetics research to find the significant relationships among DNA methylation and several typical diseases, such as cancers and diabetes. In many of those studies, mapping the bisulfite treated sequence to the whole genome has been the main method to study DNA cytosine methylation. However, today's relative tools almost suffer from inaccuracies and time-consuming problems. In our study, we designed a new DNA methylation prediction tool ("Hint-Hunt") to solve the problem. By having an optimal complex alignment computation and Smith-Waterman matrix dynamic programming, Hint-Hunt could analyze and predict the DNA methylation status. But when Hint-Hunt tried to predict DNA methylation status with large-scale dataset, there are still slow speed and low temporal-spatial efficiency problems. In order to solve the problems of Smith-Waterman dynamic programming and low temporal-spatial efficiency, we further design a deep parallelized whole genome DNA methylation detection tool ("P-Hint-Hunt") on Tianhe-2 (TH-2) supercomputer. To the best of our knowledge, P-Hint-Hunt is the first parallel DNA methylation detection tool with a high speed-up to process large-scale dataset, and could run both on CPU and Intel Xeon Phi coprocessors. Moreover, we deploy and evaluate Hint-Hunt and P-Hint-Hunt on TH-2 supercomputer in different scales. The experimental results illuminate our tools eliminate the deviation caused by bisulfite treatment in mapping procedure and the multi-level parallel program yields a 48 times speed-up with 64 threads. P-Hint-Hunt gain a deep acceleration on CPU and Intel Xeon Phi heterogeneous platform, which gives full play of the advantages of multi-cores (CPU) and many-cores (Phi).

  10. Interval Management with Spacing to Parallel Dependent Runways (IMSPIDR) Experiment and Results

    NASA Technical Reports Server (NTRS)

    Baxley, Brian T.; Swieringa, Kurt A.; Capron, William R.

    2012-01-01

    An area in aviation operations that may offer an increase in efficiency is the use of continuous descent arrivals (CDA), especially during dependent parallel runway operations. However, variations in aircraft descent angle and speed can cause inaccuracies in estimated time of arrival calculations, requiring an increase in the size of the buffer between aircraft. This in turn reduces airport throughput and limits the use of CDAs during high-density operations, particularly to dependent parallel runways. The Interval Management with Spacing to Parallel Dependent Runways (IMSPiDR) concept uses a trajectory-based spacing tool onboard the aircraft to achieve by the runway an air traffic control assigned spacing interval behind the previous aircraft. This paper describes the first ever experiment and results of this concept at NASA Langley. Pilots flew CDAs to the Dallas Fort-Worth airport using airspeed calculations from the spacing tool to achieve either a Required Time of Arrival (RTA) or Interval Management (IM) spacing interval at the runway threshold. Results indicate flight crews were able to land aircraft on the runway with a mean of 2 seconds and less than 4 seconds standard deviation of the air traffic control assigned time, even in the presence of forecast wind error and large time delay. Statistically significant differences in delivery precision and number of speed changes as a function of stream position were observed, however, there was no trend to the difference and the error did not increase during the operation. Two areas the flight crew indicated as not acceptable included the additional number of speed changes required during the wind shear event, and issuing an IM clearance via data link while at low altitude. A number of refinements and future spacing algorithm capabilities were also identified.

  11. Control of jet noise

    NASA Technical Reports Server (NTRS)

    Schreck, Stefan

    1993-01-01

    This reports describes experiments conducted at the High-Speed Jet Facility at the University of Southern California on supersonic jets. The goal of the study was to develop methods for controlling the noise emitted from supersonic jets by passive and/or active means. Work by Seiner et al (1991) indicates that eddy Mach wave radiation is the dominant noise source in a heated high speed jet. Eddy Mach radiation is caused by turbulent eddies traveling at supersonic speed in the shear layer of the jet. The convection velocity of the eddies decays with increasing distance from the nozzle exit due to the mixing of the jet stream with the ambient fluid. Once the convection speed reaches subsonic velocities, eddy Mach wave radiation ceases. To control noise, a rapid decay of the convection velocity is desired. This may be accomplished by enhanced mixing in the jet. In this study, small aspect ratio rectangular jet nozzles were tested. A flapping mode was noticed in the jets. By amplifying screech components of the jets and destabilizing the jet columns with a collar device, the flapping mode was excited. The result was a rapid decay of the jet velocity. A reduction in eddy Mach radiation in rectangular supersonic jets may be achieved with this device.

  12. Concurrent Probabilistic Simulation of High Temperature Composite Structural Response

    NASA Technical Reports Server (NTRS)

    Abdi, Frank

    1996-01-01

    A computational structural/material analysis and design tool which would meet industry's future demand for expedience and reduced cost is presented. This unique software 'GENOA' is dedicated to parallel and high speed analysis to perform probabilistic evaluation of high temperature composite response of aerospace systems. The development is based on detailed integration and modification of diverse fields of specialized analysis techniques and mathematical models to combine their latest innovative capabilities into a commercially viable software package. The technique is specifically designed to exploit the availability of processors to perform computationally intense probabilistic analysis assessing uncertainties in structural reliability analysis and composite micromechanics. The primary objectives which were achieved in performing the development were: (1) Utilization of the power of parallel processing and static/dynamic load balancing optimization to make the complex simulation of structure, material and processing of high temperature composite affordable; (2) Computational integration and synchronization of probabilistic mathematics, structural/material mechanics and parallel computing; (3) Implementation of an innovative multi-level domain decomposition technique to identify the inherent parallelism, and increasing convergence rates through high- and low-level processor assignment; (4) Creating the framework for Portable Paralleled architecture for the machine independent Multi Instruction Multi Data, (MIMD), Single Instruction Multi Data (SIMD), hybrid and distributed workstation type of computers; and (5) Market evaluation. The results of Phase-2 effort provides a good basis for continuation and warrants Phase-3 government, and industry partnership.

  13. Pattern formation and filamentation in low temperature, magnetized plasmas - a numerical approach

    NASA Astrophysics Data System (ADS)

    Menati, Mohamad; Konopka, Uwe; Thomas, Edward

    2017-10-01

    In low-temperature discharges under the influence of high magnetic field, pattern and filament formation in the plasma has been reported by different groups. The phenomena present themselves as bright plasma columns (filaments) oriented parallel to the magnetic field lines at high magnetic field regime. The plasma structure can filament into different shapes from single columns to spiral and bright rings when viewed from the top. In spite of the extensive experimental observations, the observed effects lack a detailed theoretical and numerical description. In an attempt to numerically explain the plasma filamentation, we present a simplified model for the plasma discharge and power deposition into the plasma. Based on the model, 2-D and 3-D codes are being developed that solve Poisson's equation along with the fluid equations to obtain a self-consistent description of the plasma. The model and preliminary results applied to the specific plasma conditions will be presented. This work was supported by the US Dept. of Energy and NSF, DE-SC0016330, PHY-1613087.

  14. GPU Based N-Gram String Matching Algorithm with Score Table Approach for String Searching in Many Documents

    NASA Astrophysics Data System (ADS)

    Srinivasa, K. G.; Shree Devi, B. N.

    2017-10-01

    String searching in documents has become a tedious task with the evolution of Big Data. Generation of large data sets demand for a high performance search algorithm in areas such as text mining, information retrieval and many others. The popularity of GPU's for general purpose computing has been increasing for various applications. Therefore it is of great interest to exploit the thread feature of a GPU to provide a high performance search algorithm. This paper proposes an optimized new approach to N-gram model for string search in a number of lengthy documents and its GPU implementation. The algorithm exploits GPGPUs for searching strings in many documents employing character level N-gram matching with parallel Score Table approach and search using CUDA API. The new approach of Score table used for frequency storage of N-grams in a document, makes the search independent of the document's length and allows faster access to the frequency values, thus decreasing the search complexity. The extensive thread feature in a GPU has been exploited to enable parallel pre-processing of trigrams in a document for Score Table creation and parallel search in huge number of documents, thus speeding up the whole search process even for a large pattern size. Experiments were carried out for many documents of varied length and search strings from the standard Lorem Ipsum text on NVIDIA's GeForce GT 540M GPU with 96 cores. Results prove that the parallel approach for Score Table creation and searching gives a good speed up than the same approach executed serially.

  15. Aircraft Configuration and Flight Crew Compliance with Procedures While Conducting Flight Deck Based Interval Management (FIM) Operations

    NASA Technical Reports Server (NTRS)

    Shay, Rick; Swieringa, Kurt A.; Baxley, Brian T.

    2012-01-01

    Flight deck based Interval Management (FIM) applications using ADS-B are being developed to improve both the safety and capacity of the National Airspace System (NAS). FIM is expected to improve the safety and efficiency of the NAS by giving pilots the technology and procedures to precisely achieve an interval behind the preceding aircraft by a specific point. Concurrently but independently, Optimized Profile Descents (OPD) are being developed to help reduce fuel consumption and noise, however, the range of speeds available when flying an OPD results in a decrease in the delivery precision of aircraft to the runway. This requires the addition of a spacing buffer between aircraft, reducing system throughput. FIM addresses this problem by providing pilots with speed guidance to achieve a precise interval behind another aircraft, even while flying optimized descents. The Interval Management with Spacing to Parallel Dependent Runways (IMSPiDR) human-in-the-loop experiment employed 24 commercial pilots to explore the use of FIM equipment to conduct spacing operations behind two aircraft arriving to parallel runways, while flying an OPD during high-density operations. This paper describes the impact of variations in pilot operations; in particular configuring the aircraft, their compliance with FIM operating procedures, and their response to changes of the FIM speed. An example of the displayed FIM speeds used incorrectly by a pilot is also discussed. Finally, this paper examines the relationship between achieving airline operational goals for individual aircraft and the need for ATC to deliver aircraft to the runway with greater precision. The results show that aircraft can fly an OPD and conduct FIM operations to dependent parallel runways, enabling operational goals to be achieved efficiently while maintaining system throughput.

  16. Improved optimization of polycyclic aromatic hydrocarbons (PAHs) mixtures resolution in reversed-phase high-performance liquid chromatography by using factorial design and response surface methodology.

    PubMed

    Andrade-Eiroa, Auréa; Diévart, Pascal; Dagaut, Philippe

    2010-04-15

    A new procedure for optimizing PAHs separation in very complex mixtures by reverse phase high performance (RPLC) is proposed. It is based on changing gradually the experimental conditions all along the chromatographic procedure as a function of the physical properties of the compounds eluted. The temperature and speed flow gradients allowed obtaining the optimum resolution in large chromatographic determinations where PAHs with very different medium polarizability have to be separated. Whereas optimization procedures of RPLC methodologies had always been accomplished regardless of the physico-chemical properties of the target analytes, we found that resolution is highly dependent on the physico-chemical properties of the target analytes. Based on resolution criterion, optimization process for a 16 EPA PAHs mixture was performed on three sets of difficult-to-separate PAHs pairs: acenaphthene-fluorene (for the optimization procedure in the first part of the chromatogram where light PAHs elute), benzo[g,h,i]perylene-dibenzo[a,h]anthracene and benzo[g,h,i]perylene-indeno[1,2,3-cd]pyrene (for the optimization procedure of the second part of the chromatogram where the heavier PAHs elute). Two-level full factorial designs were applied to detect interactions among variables to be optimized: speed flow, temperature of column oven and mobile-phase gradient in the two parts of the studied chromatogram. Experimental data were fitted by multivariate nonlinear regression models and optimum values of speed flow and temperature were obtained through mathematical analysis of the constructed models. An HPLC system equipped with a reversed phase 5 microm C18, 250 mm x 4.6mm column (with acetonitrile/water mobile phase), a column oven, a binary pump, a photodiode array detector (PDA), and a fluorimetric detector were used in this work. Optimum resolution was achieved operating at 1.0 mL/min in the first part of the chromatogram (until 45 min) and 0.5 mL/min in the second one (from 45 min to the end) and by applying programmed temperature gradient (15 degrees C until 30 min and progressively increasing temperature until reaching 40 degrees C at 45 min). (c) 2009 Elsevier B.V. All rights reserved.

  17. Directly measuring of thermal pulse transfer in one-dimensional highly aligned carbon nanotubes

    PubMed Central

    Zhang, Guang; Liu, Changhong; Fan, Shoushan

    2013-01-01

    Using a simple and precise instrument system, we directly measured the thermo-physical properties of one-dimensional highly aligned carbon nanotubes (CNTs). A kind of CNT-based macroscopic materials named super aligned carbon nanotube (SACNT) buckypapers was measured in our experiment. We defined a new one-dimensional parameter, the “thermal transfer speed” to characterize the thermal damping mechanisms in the SACNT buckypapers. Our results indicated that the SACNT buckypapers with different densities have obviously different thermal transfer speeds. Furthermore, we found that the thermal transfer speed of high-density SACNT buckypapers may have an obvious damping factor along the CNTs aligned direction. The anisotropic thermal diffusivities of SACNT buckypapers could be calculated by the thermal transfer speeds. The thermal diffusivities obviously increase as the buckypaper-density increases. For parallel SACNT buckypapers, the thermal diffusivity could be as high as 562.2 ± 55.4 mm2/s. The thermal conductivities of these SACNT buckypapers were also calculated by the equation k = Cpαρ. PMID:23989589

  18. A NOVEL HIGH-SPEED METHOD FOR THE GENERATION OF 4-ARYLDIHYDROPYRIMIDINE COMPOUND LIBRARIES USING A MICROWAVE-ASSISTED BIGINELLI CONDENSATION PROTOCOL -

    EPA Science Inventory

    In this presentation we report the application of microwave assisted chemistry to the parallel synthesis of 4-aryl-3,4-dihydropyrimidin-2(1H)-ones employing a solventless Biginelli multicomponent condensation protocol. The novel method employs neat mixtures of B-ketoesters, aryl ...

  19. Neuromorphic Hardware Architecture Using the Neural Engineering Framework for Pattern Recognition.

    PubMed

    Wang, Runchun; Thakur, Chetan Singh; Cohen, Gregory; Hamilton, Tara Julia; Tapson, Jonathan; van Schaik, Andre

    2017-06-01

    We present a hardware architecture that uses the neural engineering framework (NEF) to implement large-scale neural networks on field programmable gate arrays (FPGAs) for performing massively parallel real-time pattern recognition. NEF is a framework that is capable of synthesising large-scale cognitive systems from subnetworks and we have previously presented an FPGA implementation of the NEF that successfully performs nonlinear mathematical computations. That work was developed based on a compact digital neural core, which consists of 64 neurons that are instantiated by a single physical neuron using a time-multiplexing approach. We have now scaled this approach up to build a pattern recognition system by combining identical neural cores together. As a proof of concept, we have developed a handwritten digit recognition system using the MNIST database and achieved a recognition rate of 96.55%. The system is implemented on a state-of-the-art FPGA and can process 5.12 million digits per second. The architecture and hardware optimisations presented offer high-speed and resource-efficient means for performing high-speed, neuromorphic, and massively parallel pattern recognition and classification tasks.

  20. VIEW OF PELTON WATER WHEEL COMPANY (SAN FRANCISCO) TURBINE: SPEED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF PELTON WATER WHEEL COMPANY (SAN FRANCISCO) TURBINE: SPEED 225 RPM, 17,500 HP. PHOTO BY JET LOWE, HAER, 1995. (Note: the dark hole in the concrete column to the left is from a tear in the negative.) - Elwha River Hydroelectric System, Glines Hydroelectric Dam & Plant, Port Angeles, Clallam County, WA

  1. Method and apparatus for data sampling

    DOEpatents

    Odell, D.M.C.

    1994-04-19

    A method and apparatus for sampling radiation detector outputs and determining event data from the collected samples is described. The method uses high speed sampling of the detector output, the conversion of the samples to digital values, and the discrimination of the digital values so that digital values representing detected events are determined. The high speed sampling and digital conversion is performed by an A/D sampler that samples the detector output at a rate high enough to produce numerous digital samples for each detected event. The digital discrimination identifies those digital samples that are not representative of detected events. The sampling and discrimination also provides for temporary or permanent storage, either serially or in parallel, to a digital storage medium. 6 figures.

  2. Parallel MR Imaging with Accelerations Beyond the Number of Receiver Channels Using Real Image Reconstruction.

    PubMed

    Ji, Jim; Wright, Steven

    2005-01-01

    Parallel imaging using multiple phased-array coils and receiver channels has become an effective approach to high-speed magnetic resonance imaging (MRI). To obtain high spatiotemporal resolution, the k-space is subsampled and later interpolated using multiple channel data. Higher subsampling factors result in faster image acquisition. However, the subsampling factors are upper-bounded by the number of parallel channels. Phase constraints have been previously proposed to overcome this limitation with some success. In this paper, we demonstrate that in certain applications it is possible to obtain acceleration factors potentially up to twice the channel numbers by using a real image constraint. Data acquisition and processing methods to manipulate and estimate of the image phase information are presented for improving image reconstruction. In-vivo brain MRI experimental results show that accelerations up to 6 are feasible with 4-channel data.

  3. SNSPD with parallel nanowires (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Ejrnaes, Mikkel; Parlato, Loredana; Gaggero, Alessandro; Mattioli, Francesco; Leoni, Roberto; Pepe, Giampiero; Cristiano, Roberto

    2017-05-01

    Superconducting nanowire single-photon detectors (SNSPDs) have shown to be promising in applications such as quantum communication and computation, quantum optics, imaging, metrology and sensing. They offer the advantages of a low dark count rate, high efficiency, a broadband response, a short time jitter, a high repetition rate, and no need for gated-mode operation. Several SNSPD designs have been proposed in literature. Here, we discuss the so-called parallel nanowires configurations. They were introduced with the aim of improving some SNSPD property like detection efficiency, speed, signal-to-noise ratio, or photon number resolution. Although apparently similar, the various parallel designs are not the same. There is no one design that can improve the mentioned properties all together. In fact, each design presents its own characteristics with specific advantages and drawbacks. In this work, we will discuss the various designs outlining peculiarities and possible improvements.

  4. Computational Performance of a Parallelized Three-Dimensional High-Order Spectral Element Toolbox

    NASA Astrophysics Data System (ADS)

    Bosshard, Christoph; Bouffanais, Roland; Clémençon, Christian; Deville, Michel O.; Fiétier, Nicolas; Gruber, Ralf; Kehtari, Sohrab; Keller, Vincent; Latt, Jonas

    In this paper, a comprehensive performance review of an MPI-based high-order three-dimensional spectral element method C++ toolbox is presented. The focus is put on the performance evaluation of several aspects with a particular emphasis on the parallel efficiency. The performance evaluation is analyzed with help of a time prediction model based on a parameterization of the application and the hardware resources. A tailor-made CFD computation benchmark case is introduced and used to carry out this review, stressing the particular interest for clusters with up to 8192 cores. Some problems in the parallel implementation have been detected and corrected. The theoretical complexities with respect to the number of elements, to the polynomial degree, and to communication needs are correctly reproduced. It is concluded that this type of code has a nearly perfect speed up on machines with thousands of cores, and is ready to make the step to next-generation petaflop machines.

  5. City transport of the future - the high speed pedestrian conveyor. Part 1: ergonomic considerations of accelerators, decelerators and transfer sections.

    PubMed

    Browning, A C

    1974-12-01

    In this article, an uncommon form of passenger transport is considered, the moving pavement or pedestrian conveyor running at speeds of up to 16 km/h. There are very little relevant ergonomic data for such devices and some specific laboratory experiments have been carried out using 1000 subjects to represent the general public. It is concluded that whilst high speed pedestrian conveyors are quite feasible, stations along them are likely to be large. The most attractive type is a set of parallel surfaces moving at different speeds and with handholds provided in the form of poles. This type could be extremely convenient for certain locations but will probably have to be restricted in its use to fairly fit adults carrying little luggage, and would find applications in situations where a large number of people need to travel in the same direction. Part 2, Ergonomic considerations of complete conveyor systems, will follow.

  6. Control of a small working robot on a large flexible manipulator for suppressing vibrations

    NASA Technical Reports Server (NTRS)

    Lee, Soo Han

    1991-01-01

    The short term objective of this research is the completion of experimental configuration of the Small Articulated Robot (SAM) and the derivations of the actuator dynamics of the Robotic Arm, Large and Flexible (RALF). In order to control vibrations SAM should have larger bandwidth than that of the vibrations. The bandwidth of SAM consist of 3 parts; structural rigidity, processing speed of controller, and motor speed. The structural rigidity was increased to a reasonably high value by attaching aluminum angles at weak points and replacing thin side plates by thicker ones. The high processing speed of the controller was achieved by using parallel processors (three 68000 process, three interface board, and one main processor (IBM-XT)). Maximum joint speed and acceleration of SAM is known as about 4 rad/s and 15 rad/sq s. Hence SAM can move only .04 rad at 3 Hz which is the natural frequency of RALF. This will be checked by experiment.

  7. Parallelization of a blind deconvolution algorithm

    NASA Astrophysics Data System (ADS)

    Matson, Charles L.; Borelli, Kathy J.

    2006-09-01

    Often it is of interest to deblur imagery in order to obtain higher-resolution images. Deblurring requires knowledge of the blurring function - information that is often not available separately from the blurred imagery. Blind deconvolution algorithms overcome this problem by jointly estimating both the high-resolution image and the blurring function from the blurred imagery. Because blind deconvolution algorithms are iterative in nature, they can take minutes to days to deblur an image depending how many frames of data are used for the deblurring and the platforms on which the algorithms are executed. Here we present our progress in parallelizing a blind deconvolution algorithm to increase its execution speed. This progress includes sub-frame parallelization and a code structure that is not specialized to a specific computer hardware architecture.

  8. Commodity cluster and hardware-based massively parallel implementations of hyperspectral imaging algorithms

    NASA Astrophysics Data System (ADS)

    Plaza, Antonio; Chang, Chein-I.; Plaza, Javier; Valencia, David

    2006-05-01

    The incorporation of hyperspectral sensors aboard airborne/satellite platforms is currently producing a nearly continual stream of multidimensional image data, and this high data volume has soon introduced new processing challenges. The price paid for the wealth spatial and spectral information available from hyperspectral sensors is the enormous amounts of data that they generate. Several applications exist, however, where having the desired information calculated quickly enough for practical use is highly desirable. High computing performance of algorithm analysis is particularly important in homeland defense and security applications, in which swift decisions often involve detection of (sub-pixel) military targets (including hostile weaponry, camouflage, concealment, and decoys) or chemical/biological agents. In order to speed-up computational performance of hyperspectral imaging algorithms, this paper develops several fast parallel data processing techniques. Techniques include four classes of algorithms: (1) unsupervised classification, (2) spectral unmixing, and (3) automatic target recognition, and (4) onboard data compression. A massively parallel Beowulf cluster (Thunderhead) at NASA's Goddard Space Flight Center in Maryland is used to measure parallel performance of the proposed algorithms. In order to explore the viability of developing onboard, real-time hyperspectral data compression algorithms, a Xilinx Virtex-II field programmable gate array (FPGA) is also used in experiments. Our quantitative and comparative assessment of parallel techniques and strategies may help image analysts in selection of parallel hyperspectral algorithms for specific applications.

  9. Preparation of the monomers of gingerols and 6-shogaol by flash high speed counter-current chromatography.

    PubMed

    Qiao, Qingliang; Du, Qizhen

    2011-09-09

    The flash high speed counter-current chromatographic (FHSCCC) separation of gingerols and 6-shogaol was performed on a HSCCC instrument equipped with a 1200-ml column (5 mm tubing i.d.) at a flow rate of 25 ml/min. The performance met the FHSCCC feature that the flow rate of mobile phase (ml) is equal to or greater than the square of the diameter of the column tubing (mm). The separation employed the upper phase of stationary phase of the n-hexane-ethyl acetate-methanol-water (3:2:2:3, v/v) as the stationary phase. A stepwise elution was performed by eluting with the lower phase of n-hexane-ethyl acetate-methanol-water (3:2:2:3, v/v) for first 90 min and the lower phase of the n-hexane-ethyl acetate-methanol-water (3:2:6:5, v/v) for the second 90 min. In each separation 5 g of the ethyl acetate extract of rhizomes of ginger was loaded, yielding 1.96 g of 6-gingerol (98.3%), 0.33 g of 8-gingerol (97.8%), 0.64 g of 6-shogaol (98.8%) and 0.57 g of 10-gingerol (98.2%). The separation can be expected to scale up to industrial separation. Copyright © 2010 Elsevier B.V. All rights reserved.

  10. Design and characterization of the ePix10k: a high dynamic range integrating pixel ASIC for LCLS detectors

    NASA Astrophysics Data System (ADS)

    Caragiulo, P.; Dragone, A.; Markovic, B.; Herbst, R.; Nishimura, K.; Reese, B.; Herrmann, S.; Hart, P.; Blaj, G.; Segal, J.; Tomada, A.; Hasi, J.; Carini, G.; Kenney, C.; Haller, G.

    2015-05-01

    ePix10k is a variant of a novel class of integrating pixel ASICs architectures optimized for the processing of signals in second generation LINAC Coherent Light Source (LCLS) X-Ray cameras. The ASIC is optimized for high dynamic range application requiring high spatial resolution and fast frame rates. ePix ASICs are based on a common platform composed of a random access analog matrix of pixel with global shutter, fast parallel column readout, and dedicated sigma-delta analog to digital converters per column. The ePix10k variant has 100um×100um pixels arranged in a 176×192 matrix, a resolution of 140e- r.m.s. and a signal range of 3.5pC (10k photons at 8keV). In its final version it will be able to sustain a frame rate of 2kHz. A first prototype has been fabricated and characterized. Performance in terms of noise, linearity, uniformity, cross-talk, together with preliminary measurements with bump bonded sensors are reported here.

  11. Bi-sensory, striped representations: comparative insights from owl and platypus.

    PubMed

    Pettigrew, John D

    2004-01-01

    Bi-sensory striped arrays are described in owl and platypus that share some similarities with the other variant of bi-sensory striped array found in primate and carnivore striate cortex: ocular dominance columns. Like ocular dominance columns, the owl and platypus striped systems each involve two different topographic arrays that are cut into parallel stripes, and interdigitated, so that higher-order neurons can integrate across both arrays. Unlike ocular dominance stripes, which have a separate array for each eye, the striped array in the middle third of the owl tectum has a separate array for each cerebral hemisphere. Binocular neurons send outputs from both hemispheres to the striped array where they are segregated into parallel stripes according to hemisphere of origin. In platypus primary somatosensory cortex (S1), the two arrays of interdigitated stripes are derived from separate sensory systems in the bill, 40,000 electroreceptors and 60,000 mechanoreceptors. The stripes in platypus S1 cortex produce bimodal electrosensory-mechanosensory neurons with specificity for the time-of-arrival difference between the two systems. This "thunder-and-lightning" system would allow the platypus to estimate the distance of the prey using time disparities generated at the bill between the earlier electrical wave and the later mechanical wave caused by the motion of benthic prey. The functional significance of parallel, striped arrays is not clear, even for the highly-studied ocular dominance system, but a general strategy is proposed here that is based on the detection of temporal disparities between the two arrays that can be used to estimate distance.

  12. Speed-resolution advantage of turbulent supercritical fluid chromatography in open tubular columns: II - Theoretical and experimental evidences.

    PubMed

    Gritti, Fabrice; Fogwill, Michael

    2017-06-09

    The potential advantage of turbulent supercritical fluid chromatography (TSFC) in open tubular columns (OTC) was evaluated on both theoretical and practical viewpoints. First, the dispersion model derived by Golay in 1958 and recently extended from laminar to turbulent flow regime is used for the predictions of the speed-resolution performance in TSFC. The average dispersion coefficient of matter in the turbulent flow regime was taken from the available experimental data over a range of Reynolds number from 2000 to 6000. Kinetic plots are built at constant pressure drop (ΔP=4500psi) and Schmidt number (Sc=15) for four inner diameters (10, 30, 100, and 300μm) of the OTC and for three retention factors (0, 1, and 10). Accordingly, in turbulent flow regime, for a Reynolds number of 4000 and a retention factor of 1 (the stationary film thickness is assumed to be negligible with respect to the OTC diameter), the theory projects that a 300μm i.d. OTC has the same speed-resolution power (200,000 theoretical plates; 2.4min hold-up time) as that of a 10μm i.d. OTC operated in laminar flow regime. Secondly, the experimental plate heights of n-butylbenzene are measured in laminar and turbulent flow regimes for a 180μm×4.8m fused silica capillary column using pure carbon dioxide as the mobile phase. The back pressure regulator was set at 1500psi, the temperature was uniform at 297K, and the flow rate was increased step-wise from 0.50 to 3.60mL/min so that the experimental Reynolds number increases from 700 to 5400. The experiments are in good agreement with the plate heights projected in TSFC at high flow rates and with those expected at low flow rates in a laminar flow regime. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Parallelization of GeoClaw code for modeling geophysical flows with adaptive mesh refinement on many-core systems

    USGS Publications Warehouse

    Zhang, S.; Yuen, D.A.; Zhu, A.; Song, S.; George, D.L.

    2011-01-01

    We parallelized the GeoClaw code on one-level grid using OpenMP in March, 2011 to meet the urgent need of simulating tsunami waves at near-shore from Tohoku 2011 and achieved over 75% of the potential speed-up on an eight core Dell Precision T7500 workstation [1]. After submitting that work to SC11 - the International Conference for High Performance Computing, we obtained an unreleased OpenMP version of GeoClaw from David George, who developed the GeoClaw code as part of his PH.D thesis. In this paper, we will show the complementary characteristics of the two approaches used in parallelizing GeoClaw and the speed-up obtained by combining the advantage of each of the two individual approaches with adaptive mesh refinement (AMR), demonstrating the capabilities of running GeoClaw efficiently on many-core systems. We will also show a novel simulation of the Tohoku 2011 Tsunami waves inundating the Sendai airport and Fukushima Nuclear Power Plants, over which the finest grid distance of 20 meters is achieved through a 4-level AMR. This simulation yields quite good predictions about the wave-heights and travel time of the tsunami waves. ?? 2011 IEEE.

  14. High-speed free-space based reconfigurable card-to-card optical interconnects with broadcast capability.

    PubMed

    Wang, Ke; Nirmalathas, Ampalavanapillai; Lim, Christina; Skafidas, Efstratios; Alameh, Kamal

    2013-07-01

    In this paper, we propose and experimentally demonstrate a free-space based high-speed reconfigurable card-to-card optical interconnect architecture with broadcast capability, which is required for control functionalities and efficient parallel computing applications. Experimental results show that 10 Gb/s data can be broadcast to all receiving channels for up to 30 cm with a worst-case receiver sensitivity better than -12.20 dBm. In addition, arbitrary multicasting with the same architecture is also investigated. 10 Gb/s reconfigurable point-to-point link and multicast channels are simultaneously demonstrated with a measured receiver sensitivity power penalty of ~1.3 dB due to crosstalk.

  15. Experimental study of near-field air entrainment by subsonic volcanic jets

    USGS Publications Warehouse

    Solovitz, Stephen A.; Mastin, Larry G.

    2009-01-01

    The flow structure in the developing region of a turbulent jet has been examined using particle image velocimetry methods, considering the flow at steady state conditions. The velocity fields were integrated to determine the ratio of the entrained air speed to the jet speed, which was approximately 0.03 for a range of Mach numbers up to 0.89 and Reynolds numbers up to 217,000. This range of experimental Mach and Reynolds numbers is higher than previously considered for high-accuracy entrainment measures, particularly in the near-vent region. The entrainment values are below those commonly used for geophysical analyses of volcanic plumes, suggesting that existing 1-D models are likely to understate the tendency for column collapse.

  16. A seismic reflection image for the base of a tectonic plate.

    PubMed

    Stern, T A; Henrys, S A; Okaya, D; Louie, J N; Savage, M K; Lamb, S; Sato, H; Sutherland, R; Iwasaki, T

    2015-02-05

    Plate tectonics successfully describes the surface of Earth as a mosaic of moving lithospheric plates. But it is not clear what happens at the base of the plates, the lithosphere-asthenosphere boundary (LAB). The LAB has been well imaged with converted teleseismic waves, whose 10-40-kilometre wavelength controls the structural resolution. Here we use explosion-generated seismic waves (of about 0.5-kilometre wavelength) to form a high-resolution image for the base of an oceanic plate that is subducting beneath North Island, New Zealand. Our 80-kilometre-wide image is based on P-wave reflections and shows an approximately 15° dipping, abrupt, seismic wave-speed transition (less than 1 kilometre thick) at a depth of about 100 kilometres. The boundary is parallel to the top of the plate and seismic attributes indicate a P-wave speed decrease of at least 8 ± 3 per cent across it. A parallel reflection event approximately 10 kilometres deeper shows that the decrease in P-wave speed is confined to a channel at the base of the plate, which we interpret as a sheared zone of ponded partial melts or volatiles. This is independent, high-resolution evidence for a low-viscosity channel at the LAB that decouples plates from mantle flow beneath, and allows plate tectonics to work.

  17. INVITED TOPICAL REVIEW: Parallel magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Larkman, David J.; Nunes, Rita G.

    2007-04-01

    Parallel imaging has been the single biggest innovation in magnetic resonance imaging in the last decade. The use of multiple receiver coils to augment the time consuming Fourier encoding has reduced acquisition times significantly. This increase in speed comes at a time when other approaches to acquisition time reduction were reaching engineering and human limits. A brief summary of spatial encoding in MRI is followed by an introduction to the problem parallel imaging is designed to solve. There are a large number of parallel reconstruction algorithms; this article reviews a cross-section, SENSE, SMASH, g-SMASH and GRAPPA, selected to demonstrate the different approaches. Theoretical (the g-factor) and practical (coil design) limits to acquisition speed are reviewed. The practical implementation of parallel imaging is also discussed, in particular coil calibration. How to recognize potential failure modes and their associated artefacts are shown. Well-established applications including angiography, cardiac imaging and applications using echo planar imaging are reviewed and we discuss what makes a good application for parallel imaging. Finally, active research areas where parallel imaging is being used to improve data quality by repairing artefacted images are also reviewed.

  18. A parallel Monte Carlo code for planar and SPECT imaging: implementation, verification and applications in (131)I SPECT.

    PubMed

    Dewaraja, Yuni K; Ljungberg, Michael; Majumdar, Amitava; Bose, Abhijit; Koral, Kenneth F

    2002-02-01

    This paper reports the implementation of the SIMIND Monte Carlo code on an IBM SP2 distributed memory parallel computer. Basic aspects of running Monte Carlo particle transport calculations on parallel architectures are described. Our parallelization is based on equally partitioning photons among the processors and uses the Message Passing Interface (MPI) library for interprocessor communication and the Scalable Parallel Random Number Generator (SPRNG) to generate uncorrelated random number streams. These parallelization techniques are also applicable to other distributed memory architectures. A linear increase in computing speed with the number of processors is demonstrated for up to 32 processors. This speed-up is especially significant in Single Photon Emission Computed Tomography (SPECT) simulations involving higher energy photon emitters, where explicit modeling of the phantom and collimator is required. For (131)I, the accuracy of the parallel code is demonstrated by comparing simulated and experimental SPECT images from a heart/thorax phantom. Clinically realistic SPECT simulations using the voxel-man phantom are carried out to assess scatter and attenuation correction.

  19. Multivariable speed synchronisation for a parallel hybrid electric vehicle drivetrain

    NASA Astrophysics Data System (ADS)

    Alt, B.; Antritter, F.; Svaricek, F.; Schultalbers, M.

    2013-03-01

    In this article, a new drivetrain configuration of a parallel hybrid electric vehicle is considered and a novel model-based control design strategy is given. In particular, the control design covers the speed synchronisation task during a restart of the internal combustion engine. The proposed multivariable synchronisation strategy is based on feedforward and decoupled feedback controllers. The performance and the robustness properties of the closed-loop system are illustrated by nonlinear simulation results.

  20. Conventional and narrow bore short capillary columns with cyclodextrin derivatives as chiral selectors to speed-up enantioselective gas chromatography and enantioselective gas chromatography-mass spectrometry analyses.

    PubMed

    Bicchi, Carlo; Liberto, Erica; Cagliero, Cecilia; Cordero, Chiara; Sgorbini, Barbara; Rubiolo, Patrizia

    2008-11-28

    The analysis of complex real-world samples of vegetable origin requires rapid and accurate routine methods, enabling laboratories to increase sample throughput and productivity while reducing analysis costs. This study examines shortening enantioselective-GC (ES-GC) analysis time following the approaches used in fast GC. ES-GC separations are due to a weak enantiomer-CD host-guest interaction and the separation is thermodynamically driven and strongly influenced by temperature. As a consequence, fast temperature rates can interfere with enantiomeric discrimination; thus the use of short and/or narrow bore columns is a possible approach to speeding-up ES-GC analyses. The performance of ES-GC with a conventional inner diameter (I.D.) column (25 m length x 0.25 mm I.D., 0.15 microm and 0.25 microm d(f)) coated with 30% of 2,3-di-O-ethyl-6-O-tert-butyldimethylsilyl-beta-cyclodextrin in PS-086 is compared to those of conventional I.D. short column (5m length x 0.25 mm I.D., 0.15 microm d(f)) and of different length narrow bore columns (1, 2, 5 and 10 m long x 0.10 mm I.D., 0.10 microm d(f)) in analysing racemate standards of pesticides and in the flavour and fragrance field and real-world-samples. Short conventional I.D. columns gave shorter analysis time and comparable or lower resolutions with the racemate standards, depending mainly on analyte volatility. Narrow-bore columns were tested under different analysis conditions; they provided shorter analysis time and resolutions comparable to those of conventional I.D. ES columns. The narrow-bore columns offering the most effective compromise between separation efficiency and analysis time are the 5 and 2m columns; in combination with mass spectrometry as detector, applied to lavender and bergamot essential oil analyses, these reduced analysis time by a factor of at least three while separation of chiral markers remained unaltered.

  1. Dual-thread parallel control strategy for ophthalmic adaptive optics.

    PubMed

    Yu, Yongxin; Zhang, Yuhua

    To improve ophthalmic adaptive optics speed and compensate for ocular wavefront aberration of high temporal frequency, the adaptive optics wavefront correction has been implemented with a control scheme including 2 parallel threads; one is dedicated to wavefront detection and the other conducts wavefront reconstruction and compensation. With a custom Shack-Hartmann wavefront sensor that measures the ocular wave aberration with 193 subapertures across the pupil, adaptive optics has achieved a closed loop updating frequency up to 110 Hz, and demonstrated robust compensation for ocular wave aberration up to 50 Hz in an adaptive optics scanning laser ophthalmoscope.

  2. Dual-thread parallel control strategy for ophthalmic adaptive optics

    PubMed Central

    Yu, Yongxin; Zhang, Yuhua

    2015-01-01

    To improve ophthalmic adaptive optics speed and compensate for ocular wavefront aberration of high temporal frequency, the adaptive optics wavefront correction has been implemented with a control scheme including 2 parallel threads; one is dedicated to wavefront detection and the other conducts wavefront reconstruction and compensation. With a custom Shack-Hartmann wavefront sensor that measures the ocular wave aberration with 193 subapertures across the pupil, adaptive optics has achieved a closed loop updating frequency up to 110 Hz, and demonstrated robust compensation for ocular wave aberration up to 50 Hz in an adaptive optics scanning laser ophthalmoscope. PMID:25866498

  3. Geospace simulations on the Cell BE processor

    NASA Astrophysics Data System (ADS)

    Germaschewski, K.; Raeder, J.; Larson, D.

    2008-12-01

    OpenGGCM (Open Geospace General circulation Model) is an established numerical code that simulates the Earth's space environment. The most computing intensive part is the MHD (magnetohydrodynamics) solver that models the plasma surrounding Earth and its interaction with Earth's magnetic field and the solar wind flowing in from the sun. Like other global magnetosphere codes, OpenGGCM's realism is limited by computational constraints on grid resolution. We investigate porting of the MHD solver to the Cell BE architecture, a novel inhomogeneous multicore architecture capable of up to 230 GFlops per processor. Realizing this high performance on the Cell processor is a programming challenge, though. We implemented the MHD solver using a multi-level parallel approach: On the coarsest level, the problem is distributed to processors based upon the usual domain decomposition approach. Then, on each processor, the problem is divided into 3D columns, each of which is handled by the memory limited SPEs (synergistic processing elements) slice by slice. Finally, SIMD instructions are used to fully exploit the vector/SIMD FPUs in each SPE. Memory management needs to be handled explicitly by the code, using DMA to move data from main memory to the per-SPE local store and vice versa. We obtained excellent performance numbers, a speed-up of a factor of 25 compared to just using the main processor, while still keeping the numerical implementation details of the code maintainable.

  4. Acceleration of Radiance for Lighting Simulation by Using Parallel Computing with OpenCL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zuo, Wangda; McNeil, Andrew; Wetter, Michael

    2011-09-06

    We report on the acceleration of annual daylighting simulations for fenestration systems in the Radiance ray-tracing program. The algorithm was optimized to reduce both the redundant data input/output operations and the floating-point operations. To further accelerate the simulation speed, the calculation for matrix multiplications was implemented using parallel computing on a graphics processing unit. We used OpenCL, which is a cross-platform parallel programming language. Numerical experiments show that the combination of the above measures can speed up the annual daylighting simulations 101.7 times or 28.6 times when the sky vector has 146 or 2306 elements, respectively.

  5. Treatment of groundwater containing Mn(II), Fe(II), As(III) and Sb(III) by bioaugmented quartz-sand filters.

    PubMed

    Bai, Yaohui; Chang, Yangyang; Liang, Jinsong; Chen, Chen; Qu, Jiuhui

    2016-12-01

    High concentrations of iron (Fe(II)) and manganese (Mn(II)) often occur simultaneously in groundwater. Previously, we demonstrated that Fe(II) and Mn(II) could be oxidized to biogenic Fe-Mn oxides (BFMO) via aeration and microbial oxidation, and the formed BFMO could further oxidize and adsorb other pollutants (e.g., arsenic (As(III)) and antimony (Sb(III))). To apply this finding to groundwater remediation, we established four quartz-sand columns for treating groundwater containing Fe(II), Mn(II), As(III), and Sb(III). A Mn-oxidizing bacterium (Pseudomonas sp. QJX-1) was inoculated into two parallel bioaugmented columns. Long-term treatment (120 d) showed that bioaugmentation accelerated the formation of Fe-Mn oxides, resulting in an increase in As and Sb removal. The bioaugmented columns also exhibited higher overall treatment effect and anti-shock load capacity than that of the non-bioaugmented columns. To clarify the causal relationship between the microbial community and treatment effect, we compared the biomass of active bacteria (reverse-transcribed real-time PCR), bacterial community composition (Miseq 16S rRNA sequencing) and community function (metagenomic sequencing) between the bioaugmented and non-bioaugmented columns. Results indicated that the QJX1 strain grew steadily and attached onto the filter material surface in the bioaugmented columns. In general, the inoculated strain did not significantly alter the composition of the indigenous bacterial community, but did improve the relative abundances of xenobiotic metabolism genes and Mn oxidation gene. Thus, bioaugmentation intensified microbial degradation/utilization for the direct removal of pollutants and increased the formation of Fe-Mn oxides for the indirect removal of pollutants. Our study provides an alternative method for the treatment of groundwater containing high Fe(II), Mn(II) and As/Sb. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Symplectic molecular dynamics simulations on specially designed parallel computers.

    PubMed

    Borstnik, Urban; Janezic, Dusanka

    2005-01-01

    We have developed a computer program for molecular dynamics (MD) simulation that implements the Split Integration Symplectic Method (SISM) and is designed to run on specialized parallel computers. The MD integration is performed by the SISM, which analytically treats high-frequency vibrational motion and thus enables the use of longer simulation time steps. The low-frequency motion is treated numerically on specially designed parallel computers, which decreases the computational time of each simulation time step. The combination of these approaches means that less time is required and fewer steps are needed and so enables fast MD simulations. We study the computational performance of MD simulation of molecular systems on specialized computers and provide a comparison to standard personal computers. The combination of the SISM with two specialized parallel computers is an effective way to increase the speed of MD simulations up to 16-fold over a single PC processor.

  7. Massively parallel processor computer

    NASA Technical Reports Server (NTRS)

    Fung, L. W. (Inventor)

    1983-01-01

    An apparatus for processing multidimensional data with strong spatial characteristics, such as raw image data, characterized by a large number of parallel data streams in an ordered array is described. It comprises a large number (e.g., 16,384 in a 128 x 128 array) of parallel processing elements operating simultaneously and independently on single bit slices of a corresponding array of incoming data streams under control of a single set of instructions. Each of the processing elements comprises a bidirectional data bus in communication with a register for storing single bit slices together with a random access memory unit and associated circuitry, including a binary counter/shift register device, for performing logical and arithmetical computations on the bit slices, and an I/O unit for interfacing the bidirectional data bus with the data stream source. The massively parallel processor architecture enables very high speed processing of large amounts of ordered parallel data, including spatial translation by shifting or sliding of bits vertically or horizontally to neighboring processing elements.

  8. Traction drive automatic transmission for gas turbine engine driveline

    DOEpatents

    Carriere, Donald L.

    1984-01-01

    A transaxle driveline for a wheeled vehicle has a high speed turbine engine and a torque splitting gearset that includes a traction drive unit and a torque converter on a common axis transversely arranged with respect to the longitudinal centerline of the vehicle. The drive wheels of the vehicle are mounted on a shaft parallel to the turbine shaft and carry a final drive gearset for driving the axle shafts. A second embodiment of the final drive gearing produces an overdrive ratio between the output of the first gearset and the axle shafts. A continuously variable range of speed ratios is produced by varying the position of the drive rollers of the traction unit. After starting the vehicle from rest, the transmission is set for operation in the high speed range by engaging a first lockup clutch that joins the torque converter impeller to the turbine for operation as a hydraulic coupling.

  9. Atmospheric effects of stratospheric aircraft - A status report from NASA's High-Speed Research Program

    NASA Technical Reports Server (NTRS)

    Wesoky, Howard L.; Prather, Michael J.

    1991-01-01

    Studies have indicated that, with sufficient technology development, future high-speed civil transport aircraft could be economically competitive with long-haul subsonic aircraft. However, uncertainty about atmospheric pollution, along with community noise and sonic boom, continues to be a major concern which is being addressed in the planned six-year High-Speed Research Program begun in 1990. Building on NASA's research in atmospheric science and emissions reduction, current analytical predictions indicate that an operating range may exist at altitudes below 20 km (i.e., corresponding to a cruise Mach number of approximately 2.4) where the goal level of 5 gm equivalent NO2 emissions/kg fuel will deplete less than one percent of column ozone. Because it will not be possible to directly measure the impact of an aircraft fleet on the atmosphere, the only means of assessment will be prediction. The process of establishing credibility for the predicted effects will likely be complex and involve continued model development and testing against climatological patterns. In particular, laboratory simulation of heterogeneous chemistry and other effects, and direct measurements of well understood tracers in the troposphere and stratosphere are being used to improve the current models.

  10. High-speed imaging using CMOS image sensor with quasi pixel-wise exposure

    NASA Astrophysics Data System (ADS)

    Sonoda, T.; Nagahara, H.; Endo, K.; Sugiyama, Y.; Taniguchi, R.

    2017-02-01

    Several recent studies in compressive video sensing have realized scene capture beyond the fundamental trade-off limit between spatial resolution and temporal resolution using random space-time sampling. However, most of these studies showed results for higher frame rate video that were produced by simulation experiments or using an optically simulated random sampling camera, because there are currently no commercially available image sensors with random exposure or sampling capabilities. We fabricated a prototype complementary metal oxide semiconductor (CMOS) image sensor with quasi pixel-wise exposure timing that can realize nonuniform space-time sampling. The prototype sensor can reset exposures independently by columns and fix these amount of exposure by rows for each 8x8 pixel block. This CMOS sensor is not fully controllable via the pixels, and has line-dependent controls, but it offers flexibility when compared with regular CMOS or charge-coupled device sensors with global or rolling shutters. We propose a method to realize pseudo-random sampling for high-speed video acquisition that uses the flexibility of the CMOS sensor. We reconstruct the high-speed video sequence from the images produced by pseudo-random sampling using an over-complete dictionary.

  11. PREPARATIVE ISOLATION AND PURIFICATION OF THREE GLYCINE-CONJUGATED CHOLIC ACIDS FROM PULVIS FELLIS SUIS BY HIGH-SPEED COUNTERCURRENT CHROMATOGRAPHY COUPLED WITH ELSD DETECTION.

    PubMed

    He, Jiao; Li, Jing; Sun, Wenji; Zhang, Tianyou; Ito, Yoichiro

    2012-01-01

    Coupled with evaporative light scattering detection, a high-speed counter-current chromatography (HSCCC) method was developed for preparative isolation and purification of three glycine-conjugated cholic acids, glycochenodeoxycholic acid (GCDCA), glycohyodeoxycholic acid (GHDCA) and glycohyocholic acid (GHCA) from Pulvis Fellis Suis (Pig gallbladder bile) for the first time. The separation was performed with a two-phase solvent system consisted of chloroform-methanol-water-acetic acid (65:30:10:1.5, v/v/v/v) by eluting the lower phase in the head-to-tail elution mode. The revolution speed of the separation column, flow rate of the mobile phase and separation temperature were 800 rpm, 2 ml/min and 25 °C, respectively. In a single operation, 33 mg of GCDCA, 38 mg of GHDCA and 23 mg of GHCA were obtained from 200 mg of crude extract with the purity of 95.65%, 96.72% and 96.63%, respectively, in one step separation. The HSCCC fractions were analyzed by high-performance liquid chromatography (HPLC) and the structures of the three glycine-conjugated cholic acids were identified by ESI-MS, (1)H NMR and (13)C NMR.

  12. PREPARATIVE ISOLATION AND PURIFICATION OF THREE GLYCINE-CONJUGATED CHOLIC ACIDS FROM PULVIS FELLIS SUIS BY HIGH-SPEED COUNTERCURRENT CHROMATOGRAPHY COUPLED WITH ELSD DETECTION

    PubMed Central

    He, Jiao; Li, Jing; Sun, Wenji; Zhang, Tianyou; Ito, Yoichiro

    2011-01-01

    Coupled with evaporative light scattering detection, a high-speed counter-current chromatography (HSCCC) method was developed for preparative isolation and purification of three glycine-conjugated cholic acids, glycochenodeoxycholic acid (GCDCA), glycohyodeoxycholic acid (GHDCA) and glycohyocholic acid (GHCA) from Pulvis Fellis Suis (Pig gallbladder bile) for the first time. The separation was performed with a two-phase solvent system consisted of chloroform-methanol-water-acetic acid (65:30:10:1.5, v/v/v/v) by eluting the lower phase in the head-to-tail elution mode. The revolution speed of the separation column, flow rate of the mobile phase and separation temperature were 800 rpm, 2 ml/min and 25 °C, respectively. In a single operation, 33 mg of GCDCA, 38 mg of GHDCA and 23 mg of GHCA were obtained from 200 mg of crude extract with the purity of 95.65%, 96.72% and 96.63%, respectively, in one step separation. The HSCCC fractions were analyzed by high-performance liquid chromatography (HPLC) and the structures of the three glycine-conjugated cholic acids were identified by ESI-MS, 1H NMR and 13C NMR. PMID:23008527

  13. Study on Ballistic Absorbing Energy Character of High Performance Polyethylene Needle Felt

    NASA Astrophysics Data System (ADS)

    Kailiang, Zhu; Jianqiao, Fu

    2017-11-01

    The ballistic performance of polyethylene needle felt is tested and the failure morphology after test is also observed. The results showed that when the non-dimensionally non-stressed fibers in polyethylene needles are subjected to high-speed projectile, secondary movement such as stretching and twisting occurs first. This secondary movement is very full, it is the main way of ballistic absorbing energy of the polyethylene needle felt which can avoid the polyethylene fiber short-term rapid heating-up and destroyed. Analysis results show that under normal temperature and humidity conditions, the V50 of 6-layer forded polyethylene needle felt sample is 250m/s. At (450 ± 50) m/s speed range of the target missile, the mean value of the penetrative specific energy absorption for 3-layer forded polyethylene needle felt anti-1.1g simulated projectiles (tapered column) reaches 24.1J·m2/kg.

  14. Separation of two major chalcones from Angelica keiskei by high-speed counter-current chromatography.

    PubMed

    Kil, Yun-Seo; Nam, Joo-Won; Lee, Jun; Seo, Eun Kyoung

    2015-08-01

    Angelica keiskei (Shin-sun cho) is an edible higher plant with the beneficial preventive effects on cancer, hypertension, and coronary heart disease. Two bioactive chalcones of Shin-sun cho, xanthoangelol (1) and 4-hydroxyderricin (2), were separated simultaneously by using high-speed counter-current chromatography with a two-phase solvent system composed of n-hexane-EtOAc-MeOH-H2O (9:5:9:4). Only nonconsuming processes, solvent fractionations and Sephadex LH-20 column chromatography, were conducted as presteps. Xanthoangelol (1, 35.9 mg, 99.9 % purity at 254 and 365 nm) and 4-hydroxyderricin (2, 4.4 mg, 98.7 % purity at 254 nm and 98.8 % purity at 365 nm) were successfully purified from 70 mg of the processed extract from A. keiskei. The structures of two compounds were confirmed by (1)H- and (13)C-NMR analysis.

  15. ISOLATION OF GLYCOSIDES FROM THE BARKS OF ILEX ROTUNDA BY HIGH-SPEED COUNTER-CURRENT CHROMATOGRAPHY.

    PubMed

    Wang, Chun; Chao, Zhimao; Sun, Wen; Wu, Xiaoyi; Ito, Yoichiro

    2014-04-01

    Semi-preparative and preparative high-speed counter-current chromatography (HSCCC) were successfully used for isolation of glycosides from 50% ethanol extract of the dried barks of Ilex rotunda Thunb. (Aquifoliaceae) by using a two-phase solvent system composed of ethyl acetate-n-butanol-water (1:6:7, v/v/v). From 1.0 g of the extract, syringaresinol 4',4"-di-o-β-d-glucopyranoside ( I , 20.2 mg),, syringin ( II , 56.8 mg), sinapaldehyde glucoside ( III , 26.2 mg),, syringaresinol 4'-o-β-d-glucopyranoside ( IV , 20.4 mg), and pedunculoside ( V , 45.1 mg) were obtained by one run of TBE-1000A HSCCC instrument with 1000 mL of column volume. Their structures were identified by IR, MS, and 1 H and 13 C NMR studies. Glycoside I was isolated from this plant for the first time.

  16. ISOLATION OF GLYCOSIDES FROM THE BARKS OF ILEX ROTUNDA BY HIGH-SPEED COUNTER-CURRENT CHROMATOGRAPHY

    PubMed Central

    Wang, Chun; Chao, Zhimao; Sun, Wen; Wu, Xiaoyi; Ito, Yoichiro

    2013-01-01

    Semi-preparative and preparative high-speed counter-current chromatography (HSCCC) were successfully used for isolation of glycosides from 50% ethanol extract of the dried barks of Ilex rotunda Thunb. (Aquifoliaceae) by using a two-phase solvent system composed of ethyl acetate-n-butanol-water (1:6:7, v/v/v). From 1.0 g of the extract, syringaresinol 4',4"-di-o-β-d-glucopyranoside (I, 20.2 mg),, syringin (II, 56.8 mg), sinapaldehyde glucoside (III, 26.2 mg),, syringaresinol 4'-o-β-d-glucopyranoside (IV, 20.4 mg), and pedunculoside (V, 45.1 mg) were obtained by one run of TBE-1000A HSCCC instrument with 1000 mL of column volume. Their structures were identified by IR, MS, and 1H and 13C NMR studies. Glycoside I was isolated from this plant for the first time. PMID:25132792

  17. Quasi-Periodic Oscillations in AM Herculis - Repeat for HOPR#87/95

    NASA Astrophysics Data System (ADS)

    Chanmugam, G.

    1991-07-01

    AM Her variables are close-binary systems in which a white dwarf with a magnetic field of 20--70 MG accretes matter from a companion star. Theoretical studies of magnetically channeled accretion flows in such systems predict that the shock formed near the white dwarf should oscillate with periods of order 0.1--1 s. Optical high-speed photometry has indeed shown the existence of such rapid, quasi-periodic oscillations in some AM Her binaries, but not in others. We will use HST to obtain ultraviolet high-speed photometry of several AM Her systems, in order to explore further the nature of the oscillations, and to extend the search into the UV. HSP observations of two systems (VV Pup and ST LMi, in which the accreting magnetic pole periodically passes behind the limb of the white dwarf) will allow detailed eclipse mapping of the accretion column and the shock oscillations to be carried out.

  18. Photovoltaic cell array

    NASA Technical Reports Server (NTRS)

    Eliason, J. T. (Inventor)

    1976-01-01

    A photovoltaic cell array consisting of parallel columns of silicon filaments is described. Each fiber is doped to produce an inner region of one polarity type and an outer region of an opposite polarity type to thereby form a continuous radial semi conductor junction. Spaced rows of electrical contacts alternately connect to the inner and outer regions to provide a plurality of electrical outputs which may be combined in parallel or in series.

  19. Using Perturbed QR Factorizations To Solve Linear Least-Squares Problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avron, Haim; Ng, Esmond G.; Toledo, Sivan

    2008-03-21

    We propose and analyze a new tool to help solve sparse linear least-squares problems min{sub x} {parallel}Ax-b{parallel}{sub 2}. Our method is based on a sparse QR factorization of a low-rank perturbation {cflx A} of A. More precisely, we show that the R factor of {cflx A} is an effective preconditioner for the least-squares problem min{sub x} {parallel}Ax-b{parallel}{sub 2}, when solved using LSQR. We propose applications for the new technique. When A is rank deficient we can add rows to ensure that the preconditioner is well-conditioned without column pivoting. When A is sparse except for a few dense rows we canmore » drop these dense rows from A to obtain {cflx A}. Another application is solving an updated or downdated problem. If R is a good preconditioner for the original problem A, it is a good preconditioner for the updated/downdated problem {cflx A}. We can also solve what-if scenarios, where we want to find the solution if a column of the original matrix is changed/removed. We present a spectral theory that analyzes the generalized spectrum of the pencil (A*A,R*R) and analyze the applications.« less

  20. A Simplified Method for Sampling and Analysis of High Volume Surface Water for Organic Contaminants Using XAD-2

    USGS Publications Warehouse

    Datta, S.; Do, L.V.; Young, T.M.

    2004-01-01

    A simple compressed-gas driven system for field processing and extracting water for subsequent analyses of hydrophobic organic compounds is presented. The pumping device is a pneumatically driven pump and filtration system that can easily clarify at 4L/min. The extraction device uses compressed gas to drive filtered water through two parallel XAD-2 resin columns, at about 200 mL/min. No batteries or inverters are required for water collection or processing. Solvent extractions were performed directly in the XAD-2 glass columns. Final extracts are cleaned-up on Florisil cartridges without fractionation and contaminants analyzed by GC-MS. Method detection limits (MDLs) and recoveries for dissolved organic contaminants, polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and pesticides are reported along with results of surface water analysis for the San Francisco Bay, CA.

  1. Integrated protein analysis platform based on column switch recycling size exclusion chromatography, microenzymatic reactor and microRPLC-ESI-MS/MS.

    PubMed

    Yuan, Huiming; Zhou, Yuan; Zhang, Lihua; Liang, Zhen; Zhang, Yukui

    2009-10-30

    An integrated platform with the combination of proteins and peptides separation was established via the unit of on-line proteins digestion, by which proteins were in sequence separated by column switch recycling size exclusion chromatography (csrSEC), on-line digested by an immobilized trypsin microreactor, trapped and desalted by two parallel C8 precolumns, separated by microRPLC with the linear gradient of organic modifier concentration, and identified by ESI-MS/MS. A 6-protein mixture, with Mr ranging from 10 kDa to 80 kDa, was used to evaluate the performance of the integrated platform, and all proteins were identified with sequence coverage over 5.67%. Our experimental results demonstrate that such an integrated platform is of advantages such as good time compatibility, high peak capacity, and facile automation, which might be a promising approach for proteome study.

  2. Parallel Simulation of Unsteady Turbulent Flames

    NASA Technical Reports Server (NTRS)

    Menon, Suresh

    1996-01-01

    Time-accurate simulation of turbulent flames in high Reynolds number flows is a challenging task since both fluid dynamics and combustion must be modeled accurately. To numerically simulate this phenomenon, very large computer resources (both time and memory) are required. Although current vector supercomputers are capable of providing adequate resources for simulations of this nature, the high cost and their limited availability, makes practical use of such machines less than satisfactory. At the same time, the explicit time integration algorithms used in unsteady flow simulations often possess a very high degree of parallelism, making them very amenable to efficient implementation on large-scale parallel computers. Under these circumstances, distributed memory parallel computers offer an excellent near-term solution for greatly increased computational speed and memory, at a cost that may render the unsteady simulations of the type discussed above more feasible and affordable.This paper discusses the study of unsteady turbulent flames using a simulation algorithm that is capable of retaining high parallel efficiency on distributed memory parallel architectures. Numerical studies are carried out using large-eddy simulation (LES). In LES, the scales larger than the grid are computed using a time- and space-accurate scheme, while the unresolved small scales are modeled using eddy viscosity based subgrid models. This is acceptable for the moment/energy closure since the small scales primarily provide a dissipative mechanism for the energy transferred from the large scales. However, for combustion to occur, the species must first undergo mixing at the small scales and then come into molecular contact. Therefore, global models cannot be used. Recently, a new model for turbulent combustion was developed, in which the combustion is modeled, within the subgrid (small-scales) using a methodology that simulates the mixing and the molecular transport and the chemical kinetics within each LES grid cell. Finite-rate kinetics can be included without any closure and this approach actually provides a means to predict the turbulent rates and the turbulent flame speed. The subgrid combustion model requires resolution of the local time scales associated with small-scale mixing, molecular diffusion and chemical kinetics and, therefore, within each grid cell, a significant amount of computations must be carried out before the large-scale (LES resolved) effects are incorporated. Therefore, this approach is uniquely suited for parallel processing and has been implemented on various systems such as: Intel Paragon, IBM SP-2, Cray T3D and SGI Power Challenge (PC) using the system independent Message Passing Interface (MPI) compiler. In this paper, timing data on these machines is reported along with some characteristic results.

  3. Hardware Implementation of 32-Bit High-Speed Direct Digital Frequency Synthesizer

    PubMed Central

    Ibrahim, Salah Hasan; Ali, Sawal Hamid Md.; Islam, Md. Shabiul

    2014-01-01

    The design and implementation of a high-speed direct digital frequency synthesizer are presented. A modified Brent-Kung parallel adder is combined with pipelining technique to improve the speed of the system. A gated clock technique is proposed to reduce the number of registers in the phase accumulator design. The quarter wave symmetry technique is used to store only one quarter of the sine wave. The ROM lookup table (LUT) is partitioned into three 4-bit sub-ROMs based on angular decomposition technique and trigonometric identity. Exploiting the advantages of sine-cosine symmetrical attributes together with XOR logic gates, one sub-ROM block can be removed from the design. These techniques, compressed the ROM into 368 bits. The ROM compressed ratio is 534.2 : 1, with only two adders, two multipliers, and XOR-gates with high frequency resolution of 0.029 Hz. These techniques make the direct digital frequency synthesizer an attractive candidate for wireless communication applications. PMID:24991635

  4. Beyond Scale-Free Small-World Networks: Cortical Columns for Quick Brains

    NASA Astrophysics Data System (ADS)

    Stoop, Ralph; Saase, Victor; Wagner, Clemens; Stoop, Britta; Stoop, Ruedi

    2013-03-01

    We study to what extent cortical columns with their particular wiring boost neural computation. Upon a vast survey of columnar networks performing various real-world cognitive tasks, we detect no signs of enhancement. It is on a mesoscopic—intercolumnar—scale that the existence of columns, largely irrespective of their inner organization, enhances the speed of information transfer and minimizes the total wiring length required to bind distributed columnar computations towards spatiotemporally coherent results. We suggest that brain efficiency may be related to a doubly fractal connectivity law, resulting in networks with efficiency properties beyond those by scale-free networks.

  5. Crossbar Switches For Optical Data-Communication Networks

    NASA Technical Reports Server (NTRS)

    Monacos, Steve P.

    1994-01-01

    Optoelectronic and electro-optical crossbar switches called "permutation engines" (PE's) developed to route packets of data through fiber-optic communication networks. Basic network concept described in "High-Speed Optical Wide-Area Data-Communication Network" (NPO-18983). Nonblocking operation achieved by decentralized switching and control scheme. Each packet routed up or down in each column of this 5-input/5-output permutation engine. Routing algorithm ensures each packet arrives at its designated output port without blocking any other packet that does not contend for same output port.

  6. Shallow Scattering Layer (SSL): Emergence Behaviors of Coastal Macrofauna

    DTIC Science & Technology

    2003-09-30

    group ascent and descent speeds were slower than those found in a deeper water column in Puget Sound by Kringel et al. ( 2003) despite the order...instruments separated by 50 m show high coherence, but they were collected at the same water depth. Our initial data record for West Sound , Orcas Island...West Sound , Orcas Island, Washington Volume backscattering strength at 265 kHz (dB) H ei g h t ab o v e T A P S ( m ) 0 0 10 20 midnight midnight

  7. SequenceL: Automated Parallel Algorithms Derived from CSP-NT Computational Laws

    NASA Technical Reports Server (NTRS)

    Cooke, Daniel; Rushton, Nelson

    2013-01-01

    With the introduction of new parallel architectures like the cell and multicore chips from IBM, Intel, AMD, and ARM, as well as the petascale processing available for highend computing, a larger number of programmers will need to write parallel codes. Adding the parallel control structure to the sequence, selection, and iterative control constructs increases the complexity of code development, which often results in increased development costs and decreased reliability. SequenceL is a high-level programming language that is, a programming language that is closer to a human s way of thinking than to a machine s. Historically, high-level languages have resulted in decreased development costs and increased reliability, at the expense of performance. In recent applications at JSC and in industry, SequenceL has demonstrated the usual advantages of high-level programming in terms of low cost and high reliability. SequenceL programs, however, have run at speeds typically comparable with, and in many cases faster than, their counterparts written in C and C++ when run on single-core processors. Moreover, SequenceL is able to generate parallel executables automatically for multicore hardware, gaining parallel speedups without any extra effort from the programmer beyond what is required to write the sequen tial/singlecore code. A SequenceL-to-C++ translator has been developed that automatically renders readable multithreaded C++ from a combination of a SequenceL program and sample data input. The SequenceL language is based on two fundamental computational laws, Consume-Simplify- Produce (CSP) and Normalize-Trans - pose (NT), which enable it to automate the creation of parallel algorithms from high-level code that has no annotations of parallelism whatsoever. In our anecdotal experience, SequenceL development has been in every case less costly than development of the same algorithm in sequential (that is, single-core, single process) C or C++, and an order of magnitude less costly than development of comparable parallel code. Moreover, SequenceL not only automatically parallelizes the code, but since it is based on CSP-NT, it is provably race free, thus eliminating the largest quality challenge the parallelized software developer faces.

  8. Airborne Lidar Measurements of Below-canopy Surface Water Height , Slope and Optical Properties in the Florida Everglades Shark River Slough

    NASA Astrophysics Data System (ADS)

    Dabney, P.; Harding, D. J.; Valett, S. R.; Yu, A. W.; Feliciano, E. A.; Neuenschwander, A. L.; Pitts, K.

    2015-12-01

    Determining the presence, persistence, optical properties and variation in height and slope of surface water beneath the dense canopies of flooded forests and mangrove stands could contribute to studies of the acquisition of water and nutrients by plant roots. NASA's airborne Slope Imaging Multi-polarization Photon-counting Lidar (SIMPL) provides unique capabilities that can identify below-canopy surface water, measure its height with respect to vegetation constituents with sub-decimeter precision and quantify its slope. It also provides information on canopy structure and closure, the water column extinction profile as a proxy for turbidity and water depth, with the penetration depth constrained by turbidity. It achieves this by using four laser beams operating at two wavelengths with measurements of water surface elevation at 1064 nm (near infrared) and water column properties at 532 nm (green), analogous to a bathymetric lidar. Importantly the instrument adds a polarimetry function, like some atmospheric lidars, which measures the amount of depolarization determined by the degree to which the plane-parallel transmitted laser pulse energy is converted to the perpendicular state. The degree of depolarization is sensitive to the number of photon multiple-scattering events. For the water surface, which is specular consisting only of single-scattering events, the near-infrared received signal retains the parallel polarization state. Absence of the perpendicular signal uniquely identifies surface water. Penetration of green light and the depth profile of photons converted to the perpendicular state compared to those in the parallel state is a measure of water-column multiple scattering, providing a relative measure of turbidity. The amount of photons reflected from the canopy versus the water provides a wavelength-dependent measure of canopy closure. By rapidly firing laser pulses (11,400 pulses per second) with a narrow width (1 nsec) and detecting single photons with 8 cm ranging precision, the surface altimetry data is acquired with very high spatial and vertical resolution. Examples of these capabilities will be shown using data collected in 2011 along and across the flow axis of the Florida Everglades Shark River Slough, targeting the slough's Long Term Ecology Research (LTER) field sites.

  9. Observational discrimination between modes of shock propagation in interstellar clouds: Predictions of CH+ and SH+ column densities in diffuse clouds

    NASA Technical Reports Server (NTRS)

    Flower, D. R.; Desforets, G. P.; Roueff, E.; Hartquist, T. W.

    1986-01-01

    Considerable effort in recent years has been devoted to the study of shocks in the diffuse interstellar medium. This work has been motivated partly by the observations of rotationally excited states of H2, and partly by the realization that species such as CH(+), OH and H2O might be formed preferentially in hot, post-shock gas. The problem of CH(+) and the difficulties encountered when trying to explain the high column densities, observed along lines of sight to certain hot stars, have been reviewed earlier. The importance of a transverse magnetic field on the structure of an interstellar shock was also demonstrated earlier. Transverse magnetic fields above a critical strength give rise to an acceleration zone or precursor, in which the parameters on the flow vary continuously. Chemical reactions, which change the degree of ionization of the gas, also modify the structure of the shock considerably. Recent work has shown that large column densities of CH(+) can be produced in magnetohydrodynamic shock models. Shock speeds U sub s approx. = 10 km/s and initial magnetic field strengths of a few micro G are sufficient to produce ion-neutral drift velocities which can drive the endothermic C(+)(H2,H)CH(+) reaction. It was also shown that single-fluid hydrodynamic models do not generate sufficiently large column densities of CH(+) unless unacceptably high shock velocities (u sub s approx. 20 km/s) are assumed in the models. Thus, the observed column densities of CH(+) provide a constraint on the mode of shock propagation in diffuse clouds. More precisely, they determine a lower limit to the ion-neutral drift velocity.

  10. Revisiting Molecular Dynamics on a CPU/GPU system: Water Kernel and SHAKE Parallelization.

    PubMed

    Ruymgaart, A Peter; Elber, Ron

    2012-11-13

    We report Graphics Processing Unit (GPU) and Open-MP parallel implementations of water-specific force calculations and of bond constraints for use in Molecular Dynamics simulations. We focus on a typical laboratory computing-environment in which a CPU with a few cores is attached to a GPU. We discuss in detail the design of the code and we illustrate performance comparable to highly optimized codes such as GROMACS. Beside speed our code shows excellent energy conservation. Utilization of water-specific lists allows the efficient calculations of non-bonded interactions that include water molecules and results in a speed-up factor of more than 40 on the GPU compared to code optimized on a single CPU core for systems larger than 20,000 atoms. This is up four-fold from a factor of 10 reported in our initial GPU implementation that did not include a water-specific code. Another optimization is the implementation of constrained dynamics entirely on the GPU. The routine, which enforces constraints of all bonds, runs in parallel on multiple Open-MP cores or entirely on the GPU. It is based on Conjugate Gradient solution of the Lagrange multipliers (CG SHAKE). The GPU implementation is partially in double precision and requires no communication with the CPU during the execution of the SHAKE algorithm. The (parallel) implementation of SHAKE allows an increase of the time step to 2.0fs while maintaining excellent energy conservation. Interestingly, CG SHAKE is faster than the usual bond relaxation algorithm even on a single core if high accuracy is expected. The significant speedup of the optimized components transfers the computational bottleneck of the MD calculation to the reciprocal part of Particle Mesh Ewald (PME).

  11. GPU accelerated fuzzy connected image segmentation by using CUDA.

    PubMed

    Zhuge, Ying; Cao, Yong; Miller, Robert W

    2009-01-01

    Image segmentation techniques using fuzzy connectedness principles have shown their effectiveness in segmenting a variety of objects in several large applications in recent years. However, one problem of these algorithms has been their excessive computational requirements when processing large image datasets. Nowadays commodity graphics hardware provides high parallel computing power. In this paper, we present a parallel fuzzy connected image segmentation algorithm on Nvidia's Compute Unified Device Architecture (CUDA) platform for segmenting large medical image data sets. Our experiments based on three data sets with small, medium, and large data size demonstrate the efficiency of the parallel algorithm, which achieves a speed-up factor of 7.2x, 7.3x, and 14.4x, correspondingly, for the three data sets over the sequential implementation of fuzzy connected image segmentation algorithm on CPU.

  12. Ultrascalable petaflop parallel supercomputer

    DOEpatents

    Blumrich, Matthias A [Ridgefield, CT; Chen, Dong [Croton On Hudson, NY; Chiu, George [Cross River, NY; Cipolla, Thomas M [Katonah, NY; Coteus, Paul W [Yorktown Heights, NY; Gara, Alan G [Mount Kisco, NY; Giampapa, Mark E [Irvington, NY; Hall, Shawn [Pleasantville, NY; Haring, Rudolf A [Cortlandt Manor, NY; Heidelberger, Philip [Cortlandt Manor, NY; Kopcsay, Gerard V [Yorktown Heights, NY; Ohmacht, Martin [Yorktown Heights, NY; Salapura, Valentina [Chappaqua, NY; Sugavanam, Krishnan [Mahopac, NY; Takken, Todd [Brewster, NY

    2010-07-20

    A massively parallel supercomputer of petaOPS-scale includes node architectures based upon System-On-a-Chip technology, where each processing node comprises a single Application Specific Integrated Circuit (ASIC) having up to four processing elements. The ASIC nodes are interconnected by multiple independent networks that optimally maximize the throughput of packet communications between nodes with minimal latency. The multiple networks may include three high-speed networks for parallel algorithm message passing including a Torus, collective network, and a Global Asynchronous network that provides global barrier and notification functions. These multiple independent networks may be collaboratively or independently utilized according to the needs or phases of an algorithm for optimizing algorithm processing performance. The use of a DMA engine is provided to facilitate message passing among the nodes without the expenditure of processing resources at the node.

  13. Coupling ultra high-pressure liquid chromatography with mass spectrometry: constraints and possible applications.

    PubMed

    Rodriguez-Aller, Marta; Gurny, Robert; Veuthey, Jean-Luc; Guillarme, Davy

    2013-05-31

    The introduction of columns packed with porous sub-2μm particles and the extension of the upper pressure limit of HPLC instrumentation to 1300bar (ultra-high pressure liquid chromatography, UHPLC) has opened new frontiers in resolution and speed of analysis. However, certain constraints appear when coupling UHPLC technology with mass spectrometry (MS). First, the most significant limitation is related to the narrow peaks that are produced by UHPLC that require a fast duty cycle, which is only available on the latest generations of MS devices. Thus, certain analyzers are more readily compatible with UHPLC (e.g., QqQ or TOF/MS) than others (e.g., ion trap or FT-MS). Second, due to the reduction of the column volume, extra-column band broadening can become significant, leading to a reduction in the kinetic performance of the UHPLC-MS configuration. Third, as the mobile phase linear velocity is higher in UHPLC, the electrospray ionization source must also be able to provide high sensitivity at flow rates of up to 1mL/min. Despite these limitations, the UHPLC-MS/MS platform has successfully been employed over the last decade for various types of applications, including those related to bioanalysis, drug metabolism, multi-residue screening, metabolomics, biopharmaceuticals and polar compounds. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Optical computing and image processing using photorefractive gallium arsenide

    NASA Technical Reports Server (NTRS)

    Cheng, Li-Jen; Liu, Duncan T. H.

    1990-01-01

    Recent experimental results on matrix-vector multiplication and multiple four-wave mixing using GaAs are presented. Attention is given to a simple concept of using two overlapping holograms in GaAs to do two matrix-vector multiplication processes operating in parallel with a common input vector. This concept can be used to construct high-speed, high-capacity, reconfigurable interconnection and multiplexing modules, important for optical computing and neural-network applications.

  15. Full-field transient vibrometry of the human tympanic membrane by local phase correlation and high-speed holography

    NASA Astrophysics Data System (ADS)

    Dobrev, Ivo; Furlong, Cosme; Cheng, Jeffrey T.; Rosowski, John J.

    2014-09-01

    Understanding the human hearing process would be helped by quantification of the transient mechanical response of the human ear, including the human tympanic membrane (TM or eardrum). We propose a new hybrid high-speed holographic system (HHS) for acquisition and quantification of the full-field nanometer transient (i.e., >10 kHz) displacement of the human TM. We have optimized and implemented a 2+1 frame local correlation (LC) based phase sampling method in combination with a high-speed (i.e., >40 K fps) camera acquisition system. To our knowledge, there is currently no existing system that provides such capabilities for the study of the human TM. The LC sampling method has a displacement difference of <11 nm relative to measurements obtained by a four-phase step algorithm. Comparisons between our high-speed acquisition system and a laser Doppler vibrometer indicate differences of <10 μs. The high temporal (i.e., >40 kHz) and spatial (i.e., >100 k data points) resolution of our HHS enables parallel measurements of all points on the surface of the TM, which allows quantification of spatially dependent motion parameters, such as modal frequencies and acoustic delays. Such capabilities could allow inferring local material properties across the surface of the TM.

  16. Studying an Eulerian Computer Model on Different High-performance Computer Platforms and Some Applications

    NASA Astrophysics Data System (ADS)

    Georgiev, K.; Zlatev, Z.

    2010-11-01

    The Danish Eulerian Model (DEM) is an Eulerian model for studying the transport of air pollutants on large scale. Originally, the model was developed at the National Environmental Research Institute of Denmark. The model computational domain covers Europe and some neighbour parts belong to the Atlantic Ocean, Asia and Africa. If DEM model is to be applied by using fine grids, then its discretization leads to a huge computational problem. This implies that such a model as DEM must be run only on high-performance computer architectures. The implementation and tuning of such a complex large-scale model on each different computer is a non-trivial task. Here, some comparison results of running of this model on different kind of vector (CRAY C92A, Fujitsu, etc.), parallel computers with distributed memory (IBM SP, CRAY T3E, Beowulf clusters, Macintosh G4 clusters, etc.), parallel computers with shared memory (SGI Origin, SUN, etc.) and parallel computers with two levels of parallelism (IBM SMP, IBM BlueGene/P, clusters of multiprocessor nodes, etc.) will be presented. The main idea in the parallel version of DEM is domain partitioning approach. Discussions according to the effective use of the cache and hierarchical memories of the modern computers as well as the performance, speed-ups and efficiency achieved will be done. The parallel code of DEM, created by using MPI standard library, appears to be highly portable and shows good efficiency and scalability on different kind of vector and parallel computers. Some important applications of the computer model output are presented in short.

  17. Experimenting with End-Correction and the Speed of Sound

    ERIC Educational Resources Information Center

    LoPresto, Michael C.

    2011-01-01

    What follows is an alternative to the standard tuning fork and quarter-wave tube speed of sound experiment. Rather than adjusting the water level in a glass or plastic tube to vary the length of an air column, a set of resonance tubes of different lengths is used. The experiment still demonstrates the principles of standing waves in air columns…

  18. A highly efficient multi-core algorithm for clustering extremely large datasets

    PubMed Central

    2010-01-01

    Background In recent years, the demand for computational power in computational biology has increased due to rapidly growing data sets from microarray and other high-throughput technologies. This demand is likely to increase. Standard algorithms for analyzing data, such as cluster algorithms, need to be parallelized for fast processing. Unfortunately, most approaches for parallelizing algorithms largely rely on network communication protocols connecting and requiring multiple computers. One answer to this problem is to utilize the intrinsic capabilities in current multi-core hardware to distribute the tasks among the different cores of one computer. Results We introduce a multi-core parallelization of the k-means and k-modes cluster algorithms based on the design principles of transactional memory for clustering gene expression microarray type data and categorial SNP data. Our new shared memory parallel algorithms show to be highly efficient. We demonstrate their computational power and show their utility in cluster stability and sensitivity analysis employing repeated runs with slightly changed parameters. Computation speed of our Java based algorithm was increased by a factor of 10 for large data sets while preserving computational accuracy compared to single-core implementations and a recently published network based parallelization. Conclusions Most desktop computers and even notebooks provide at least dual-core processors. Our multi-core algorithms show that using modern algorithmic concepts, parallelization makes it possible to perform even such laborious tasks as cluster sensitivity and cluster number estimation on the laboratory computer. PMID:20370922

  19. Solar wind helium ions - Observations of the Helios solar probes between 0.3 and 1 AU

    NASA Technical Reports Server (NTRS)

    Marsch, E.; Rosenbauer, H.; Schwenn, R.; Muehlhaeuser, K.-H.; Neubauer, F. M.

    1982-01-01

    A Helios solar probe survey of solar wind helium ion velocity distributions and derived parameters between 0.3 and 1 AU is presented. Distributions in high-speed wind are found to generally have small total anisotropies, with some indication that, in the core part, the temperatures are greater parallel rather than perpendicular to the magnetic field. The anisotropy tends to increase with heliocentric radial distance, and the average dependence of helium ion temperatures on radial distance from the sun is described by a power law. Differential ion speeds with values of more than 150 km/sec are observed near perihelion, or 0.3 AU. The role of Coulomb collisions in limiting differential ion speeds and the ion temperature ratio is investigated, and it is found that collisions play a distinct role in low-speed wind, by limiting both differential ion velocity and temperature.

  20. Modulated heat pulse propagation and partial transport barriers in chaotic magnetic fields

    DOE PAGES

    del-Castillo-Negrete, Diego; Blazevski, Daniel

    2016-04-01

    Direct numerical simulations of the time dependent parallel heat transport equation modeling heat pulses driven by power modulation in 3-dimensional chaotic magnetic fields are presented. The numerical method is based on the Fourier formulation of a Lagrangian-Green's function method that provides an accurate and efficient technique for the solution of the parallel heat transport equation in the presence of harmonic power modulation. The numerical results presented provide conclusive evidence that even in the absence of magnetic flux surfaces, chaotic magnetic field configurations with intermediate levels of stochasticity exhibit transport barriers to modulated heat pulse propagation. In particular, high-order islands and remnants of destroyed flux surfaces (Cantori) act as partial barriers that slow down or even stop the propagation of heat waves at places where the magnetic field connection length exhibits a strong gradient. The key parameter ismore » $$\\gamma=\\sqrt{\\omega/2 \\chi_\\parallel}$$ that determines the length scale, $$1/\\gamma$$, of the heat wave penetration along the magnetic field line. For large perturbation frequencies, $$\\omega \\gg 1$$, or small parallel thermal conductivities, $$\\chi_\\parallel \\ll 1$$, parallel heat transport is strongly damped and the magnetic field partial barriers act as robust barriers where the heat wave amplitude vanishes and its phase speed slows down to a halt. On the other hand, in the limit of small $$\\gamma$$, parallel heat transport is largely unimpeded, global transport is observed and the radial amplitude and phase speed of the heat wave remain finite. Results on modulated heat pulse propagation in fully stochastic fields and across magnetic islands are also presented. In qualitative agreement with recent experiments in LHD and DIII-D, it is shown that the elliptic (O) and hyperbolic (X) points of magnetic islands have a direct impact on the spatio-temporal dependence of the amplitude and the time delay of modulated heat pulses.« less

  1. CMOS Image Sensors for High Speed Applications.

    PubMed

    El-Desouki, Munir; Deen, M Jamal; Fang, Qiyin; Liu, Louis; Tse, Frances; Armstrong, David

    2009-01-01

    Recent advances in deep submicron CMOS technologies and improved pixel designs have enabled CMOS-based imagers to surpass charge-coupled devices (CCD) imaging technology for mainstream applications. The parallel outputs that CMOS imagers can offer, in addition to complete camera-on-a-chip solutions due to being fabricated in standard CMOS technologies, result in compelling advantages in speed and system throughput. Since there is a practical limit on the minimum pixel size (4∼5 μm) due to limitations in the optics, CMOS technology scaling can allow for an increased number of transistors to be integrated into the pixel to improve both detection and signal processing. Such smart pixels truly show the potential of CMOS technology for imaging applications allowing CMOS imagers to achieve the image quality and global shuttering performance necessary to meet the demands of ultrahigh-speed applications. In this paper, a review of CMOS-based high-speed imager design is presented and the various implementations that target ultrahigh-speed imaging are described. This work also discusses the design, layout and simulation results of an ultrahigh acquisition rate CMOS active-pixel sensor imager that can take 8 frames at a rate of more than a billion frames per second (fps).

  2. Interdigitated Color- and Disparity-Selective Columns within Human Visual Cortical Areas V2 and V3

    PubMed Central

    Polimeni, Jonathan R.; Tootell, Roger B.H.

    2016-01-01

    In nonhuman primates (NHPs), secondary visual cortex (V2) is composed of repeating columnar stripes, which are evident in histological variations of cytochrome oxidase (CO) levels. Distinctive “thin” and “thick” stripes of dark CO staining reportedly respond selectively to stimulus variations in color and binocular disparity, respectively. Here, we first tested whether similar color-selective or disparity-selective stripes exist in human V2. If so, available evidence predicts that such stripes should (1) radiate “outward” from the V1–V2 border, (2) interdigitate, (3) differ from each other in both thickness and length, (4) be spaced ∼3.5–4 mm apart (center-to-center), and, perhaps, (5) have segregated functional connections. Second, we tested whether analogous segregated columns exist in a “next-higher” tier area, V3. To answer these questions, we used high-resolution fMRI (1 × 1 × 1 mm3) at high field (7 T), presenting color-selective or disparity-selective stimuli, plus extensive signal averaging across multiple scan sessions and cortical surface-based analysis. All hypotheses were confirmed. V2 stripes and V3 columns were reliably localized in all subjects. The two stripe/column types were largely interdigitated (e.g., nonoverlapping) in both V2 and V3. Color-selective stripes differed from disparity-selective stripes in both width (thickness) and length. Analysis of resting-state functional connections (eyes closed) showed a stronger correlation between functionally alike (compared with functionally unlike) stripes/columns in V2 and V3. These results revealed a fine-scale segregation of color-selective or disparity-selective streams within human areas V2 and V3. Together with prior evidence from NHPs, this suggests that two parallel processing streams extend from visual subcortical regions through V1, V2, and V3. SIGNIFICANCE STATEMENT In current textbooks and reviews, diagrams of cortical visual processing highlight two distinct neural-processing streams within the first and second cortical areas in monkeys. Two major streams consist of segregated cortical columns that are selectively activated by either color or ocular interactions. Because such cortical columns are so small, they were not revealed previously by conventional imaging techniques in humans. Here we demonstrate that such segregated columnar systems exist in humans. We find that, in humans, color versus binocular disparity columns extend one full area further, into the third visual area. Our approach can be extended to reveal and study additional types of columns in human cortex, perhaps including columns underlying more cognitive functions. PMID:26865609

  3. Decomposition method for fast computation of gigapixel-sized Fresnel holograms on a graphics processing unit cluster.

    PubMed

    Jackin, Boaz Jessie; Watanabe, Shinpei; Ootsu, Kanemitsu; Ohkawa, Takeshi; Yokota, Takashi; Hayasaki, Yoshio; Yatagai, Toyohiko; Baba, Takanobu

    2018-04-20

    A parallel computation method for large-size Fresnel computer-generated hologram (CGH) is reported. The method was introduced by us in an earlier report as a technique for calculating Fourier CGH from 2D object data. In this paper we extend the method to compute Fresnel CGH from 3D object data. The scale of the computation problem is also expanded to 2 gigapixels, making it closer to real application requirements. The significant feature of the reported method is its ability to avoid communication overhead and thereby fully utilize the computing power of parallel devices. The method exhibits three layers of parallelism that favor small to large scale parallel computing machines. Simulation and optical experiments were conducted to demonstrate the workability and to evaluate the efficiency of the proposed technique. A two-times improvement in computation speed has been achieved compared to the conventional method, on a 16-node cluster (one GPU per node) utilizing only one layer of parallelism. A 20-times improvement in computation speed has been estimated utilizing two layers of parallelism on a very large-scale parallel machine with 16 nodes, where each node has 16 GPUs.

  4. Shared virtual memory and generalized speedup

    NASA Technical Reports Server (NTRS)

    Sun, Xian-He; Zhu, Jianping

    1994-01-01

    Generalized speedup is defined as parallel speed over sequential speed. The generalized speedup and its relation with other existing performance metrics, such as traditional speedup, efficiency, scalability, etc., are carefully studied. In terms of the introduced asymptotic speed, it was shown that the difference between the generalized speedup and the traditional speedup lies in the definition of the efficiency of uniprocessor processing, which is a very important issue in shared virtual memory machines. A scientific application was implemented on a KSR-1 parallel computer. Experimental and theoretical results show that the generalized speedup is distinct from the traditional speedup and provides a more reasonable measurement. In the study of different speedups, various causes of superlinear speedup are also presented.

  5. High-speed high-resolution epifluorescence imaging system using CCD sensor and digital storage for neurobiological research

    NASA Astrophysics Data System (ADS)

    Takashima, Ichiro; Kajiwara, Riichi; Murano, Kiyo; Iijima, Toshio; Morinaka, Yasuhiro; Komobuchi, Hiroyoshi

    2001-04-01

    We have designed and built a high-speed CCD imaging system for monitoring neural activity in an exposed animal cortex stained with a voltage-sensitive dye. Two types of custom-made CCD sensors were developed for this system. The type I chip has a resolution of 2664 (H) X 1200 (V) pixels and a wide imaging area of 28.1 X 13.8 mm, while the type II chip has 1776 X 1626 pixels and an active imaging area of 20.4 X 18.7 mm. The CCD arrays were constructed with multiple output amplifiers in order to accelerate the readout rate. The two chips were divided into either 24 (I) or 16 (II) distinct areas that were driven in parallel. The parallel CCD outputs were digitized by 12-bit A/D converters and then stored in the frame memory. The frame memory was constructed with synchronous DRAM modules, which provided a capacity of 128 MB per channel. On-chip and on-memory binning methods were incorporated into the system, e.g., this enabled us to capture 444 X 200 pixel-images for periods of 36 seconds at a rate of 500 frames/second. This system was successfully used to visualize neural activity in the cortices of rats, guinea pigs, and monkeys.

  6. Micro-seismic waveform matching inversion based on gravitational search algorithm and parallel computation

    NASA Astrophysics Data System (ADS)

    Jiang, Y.; Xing, H. L.

    2016-12-01

    Micro-seismic events induced by water injection, mining activity or oil/gas extraction are quite informative, the interpretation of which can be applied for the reconstruction of underground stress and monitoring of hydraulic fracturing progress in oil/gas reservoirs. The source characterises and locations are crucial parameters that required for these purposes, which can be obtained through the waveform matching inversion (WMI) method. Therefore it is imperative to develop a WMI algorithm with high accuracy and convergence speed. Heuristic algorithm, as a category of nonlinear method, possesses a very high convergence speed and good capacity to overcome local minimal values, and has been well applied for many areas (e.g. image processing, artificial intelligence). However, its effectiveness for micro-seismic WMI is still poorly investigated; very few literatures exits that addressing this subject. In this research an advanced heuristic algorithm, gravitational search algorithm (GSA) , is proposed to estimate the focal mechanism (angle of strike, dip and rake) and source locations in three dimension. Unlike traditional inversion methods, the heuristic algorithm inversion does not require the approximation of green function. The method directly interacts with a CPU parallelized finite difference forward modelling engine, and updating the model parameters under GSA criterions. The effectiveness of this method is tested with synthetic data form a multi-layered elastic model; the results indicate GSA can be well applied on WMI and has its unique advantages. Keywords: Micro-seismicity, Waveform matching inversion, gravitational search algorithm, parallel computation

  7. Numerical Simulation of Flow Field Within Parallel Plate Plastometer

    NASA Technical Reports Server (NTRS)

    Antar, Basil N.

    2002-01-01

    Parallel Plate Plastometer (PPP) is a device commonly used for measuring the viscosity of high polymers at low rates of shear in the range 10(exp 4) to 10(exp 9) poises. This device is being validated for use in measuring the viscosity of liquid glasses at high temperatures having similar ranges for the viscosity values. PPP instrument consists of two similar parallel plates, both in the range of 1 inch in diameter with the upper plate being movable while the lower one is kept stationary. Load is applied to the upper plate by means of a beam connected to shaft attached to the upper plate. The viscosity of the fluid is deduced from measuring the variation of the plate separation, h, as a function of time when a specified fixed load is applied on the beam. Operating plate speeds measured with the PPP is usually in the range of 10.3 cm/s or lower. The flow field within the PPP can be simulated using the equations of motion of fluid flow for this configuration. With flow speeds in the range quoted above the flow field between the two plates is certainly incompressible and laminar. Such flows can be easily simulated using numerical modeling with computational fluid dynamics (CFD) codes. We present below the mathematical model used to simulate this flow field and also the solutions obtained for the flow using a commercially available finite element CFD code.

  8. Hysteretic growth and decay of a waterspout column

    NASA Astrophysics Data System (ADS)

    Naumov, Igor V.; Herrada, Miguel A.; Sharifullin, Bulat R.; Shtern, Vladimir N.

    2018-02-01

    This work explores a model waterspout: a flow of water and sunflower oil driven by the rotating lid in a sealed vertical cylindrical container. The experiments reveal the hysteretic growth and decay of a water column. The numerical simulations uncover vortex breakdown (VB) in the water and oil flows. As the rotation speeds up, (1) a VB water cell emerges near the bottom center, (2) it expands and occupies almost the entire water volume except a thin layer adjusted to the interface, (3) a VB oil cell emerges and disappears above the interface-axis intersection, (4) the interface rises near the axis, descends at the periphery, and shifts from the sidewall to the bottom, (5) the water touches the lid near the axis and forms a column, extending from the bottom up to the lid. As the rotation decelerates, the process reverses, but the flow states differ from those for the direct process at same rotation speeds. It is argued that the hysteresis is a capillary phenomenon and occurs because the interface-wall contact angle differs in the direct and reverse processes.

  9. Applications of High Speed Networks

    DTIC Science & Technology

    1991-09-01

    plished in order to achieve a dpgree of parallelism by constructing a distributed switch. The type of switch, self -routing, processes the packet...control more than a dozen missiles in flight, and the four Mark 99 target illuminators direct missiles in the terminal phase. The self -contained Phalanx...military installations, weapon system respose and expected missile performance against a threat. Projects are already underway transposing of

  10. Special-purpose computer for holography HORN-2

    NASA Astrophysics Data System (ADS)

    Ito, Tomoyoshi; Eldeib, Hesham; Yoshida, Kenji; Takahashi, Shinya; Yabe, Takashi; Kunugi, Tomoaki

    1996-01-01

    We designed and built a special-purpose computer for holography, HORN-2 (HOlographic ReconstructioN). HORN-2 calculates light intensity at high speed of 0.3 Gflops per one board with single (32-bit floating point) precision. The cost of the board is 500 000 Japanese yen (5000 US dollar). We made three boards. Operating them in parallel, we get about 1 Gflops.

  11. Playback system designed for X-Band SAR

    NASA Astrophysics Data System (ADS)

    Yuquan, Liu; Changyong, Dou

    2014-03-01

    SAR(Synthetic Aperture Radar) has extensive application because it is daylight and weather independent. In particular, X-Band SAR strip map, designed by Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, provides high ground resolution images, at the same time it has a large spatial coverage and a short acquisition time, so it is promising in multi-applications. When sudden disaster comes, the emergency situation acquires radar signal data and image as soon as possible, in order to take action to reduce loss and save lives in the first time. This paper summarizes a type of X-Band SAR playback processing system designed for disaster response and scientific needs. It describes SAR data workflow includes the payload data transmission and reception process. Playback processing system completes signal analysis on the original data, providing SAR level 0 products and quick image. Gigabit network promises radar signal transmission efficiency from recorder to calculation unit. Multi-thread parallel computing and ping pong operation can ensure computation speed. Through gigabit network, multi-thread parallel computing and ping pong operation, high speed data transmission and processing meet the SAR radar data playback real time requirement.

  12. Fast disk array for image storage

    NASA Astrophysics Data System (ADS)

    Feng, Dan; Zhu, Zhichun; Jin, Hai; Zhang, Jiangling

    1997-01-01

    A fast disk array is designed for the large continuous image storage. It includes a high speed data architecture and the technology of data striping and organization on the disk array. The high speed data path which is constructed by two dual port RAM and some control circuit is configured to transfer data between a host system and a plurality of disk drives. The bandwidth can be more than 100 MB/s if the data path based on PCI (peripheral component interconnect). The organization of data stored on the disk array is similar to RAID 4. Data are striped on a plurality of disk, and each striping unit is equal to a track. I/O instructions are performed in parallel on the disk drives. An independent disk is used to store the parity information in the fast disk array architecture. By placing the parity generation circuit directly on the SCSI (or SCSI 2) bus, the parity information can be generated on the fly. It will affect little on the data writing in parallel on the other disks. The fast disk array architecture designed in the paper can meet the demands of the image storage.

  13. The energy density distribution of an ideal gas and Bernoulli’s equations

    NASA Astrophysics Data System (ADS)

    Santos, Leonardo S. F.

    2018-05-01

    This work discusses the energy density distribution in an ideal gas and the consequences of Bernoulli’s equation and the corresponding relation for compressible fluids. The aim of this work is to study how Bernoulli’s equation determines the energy flow in a fluid, although Bernoulli’s equation does not describe the energy density itself. The model from molecular dynamic considerations that describes an ideal gas at rest with uniform density is modified to explore the gas in motion with non-uniform density and gravitational effects. The difference between the component of the speed of a particle that is parallel to the gas speed and the gas speed itself is called ‘parallel random speed’. The pressure from the ‘parallel random speed’ is denominated as parallel pressure. The modified model predicts that the energy density is the sum of kinetic and potential gravitational energy densities plus two terms with static and parallel pressures. The application of Bernoulli’s equation and the corresponding relation for compressible fluids in the energy density expression has resulted in two new formulations. For incompressible and compressible gas, the energy density expressions are written as a function of stagnation, static and parallel pressures, without any dependence on kinetic or gravitational potential energy densities. These expressions of the energy density are the main contributions of this work. When the parallel pressure was uniform, the energy density distribution for incompressible approximation and compressible gas did not converge to zero for the limit of null static pressure. This result is rather unusual because the temperature tends to zero for null pressure. When the gas was considered incompressible and the parallel pressure was equal to static pressure, the energy density maintained this unusual behaviour with small pressures. If the parallel pressure was equal to static pressure, the energy density converged to zero for the limit of the null pressure only if the gas was compressible. Only the last situation describes an intuitive behaviour for an ideal gas.

  14. Fast, high peak capacity separations in comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry.

    PubMed

    Fitz, Brian D; Wilson, Ryan B; Parsons, Brendon A; Hoggard, Jamin C; Synovec, Robert E

    2012-11-30

    Peak capacity production is substantially improved for two-dimensional gas chromatography coupled with time-of-flight mass spectrometry (GC×GC-TOFMS) and applied to the fast separation of a 28 component liquid test mixture, and two complex vapor samples (a 65 component volatile organic compound test mixture, and the headspace of warm ground coffee beans). A high peak capacity is achieved in a short separation time by selecting appropriate experimental conditions based on theoretical modeling of on-column band broadening, and by reducing the off-column band broadening by applying a narrow, concentrated injection pulse onto the primary column using high-speed cryo-focusing injection (HSCFI), referred to as thermal injection. A long, relatively narrow open tubular capillary column (20 m, 100 μm inner diameter (i.d.) with a 0.4 μm film thickness to benefit column capacity) was used as the primary column. The initial flow rate was 2 ml/min (60 cm/s average linear flow velocity) which is slightly below the optimal average linear gas velocity of 83 cm/s, due to the flow rate constraint of the TOFMS vacuum system. The oven temperature programming rate was 30°C/min. The secondary column (1.8m, 100 μm i.d. with a 0.1 μm film thickness) provided a relatively high peak capacity separation, concurrent with a significantly shorter modulation period, P(M), than commonly applied with the commercial instrument. With this GC×GC-TOFMS instrumental platform, compounds in the 28 component liquid test mixture provided a ∼7 min separation (with a ∼6.5 min separation time window), producing average peak widths of ∼600 ms full width half maximum (FWHM), resulting in a peak capacity on the primary column of ∼400 peaks (at unit resolution). Using a secondary column with a 500 ms P(M), average peak widths of ∼20 ms FWHM were achieved, thus providing a peak capacity of 15 peaks on the second dimension. Overall, an ideal orthogonal GC×GC peak capacity of ∼6000 peaks (at unit resolution) was achieved (or a β-corrected orthogonal peak capacity of ∼4400, at an average modulation ratio, M(R), of ∼2). This corresponds to an ideal orthogonal peak capacity production of ∼1000 peaks/min (or ∼700 peaks/min, β-corrected). For comparison, standard split/split-less injection techniques with a 1:100 split, when combined with standard GC×GC conditions typically provide a peak capacity production of ∼100 peaks/min, hence the instrumental platform we report provides a ∼7-fold to 10-fold improvement. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Real-time speckle variance swept-source optical coherence tomography using a graphics processing unit.

    PubMed

    Lee, Kenneth K C; Mariampillai, Adrian; Yu, Joe X Z; Cadotte, David W; Wilson, Brian C; Standish, Beau A; Yang, Victor X D

    2012-07-01

    Advances in swept source laser technology continues to increase the imaging speed of swept-source optical coherence tomography (SS-OCT) systems. These fast imaging speeds are ideal for microvascular detection schemes, such as speckle variance (SV), where interframe motion can cause severe imaging artifacts and loss of vascular contrast. However, full utilization of the laser scan speed has been hindered by the computationally intensive signal processing required by SS-OCT and SV calculations. Using a commercial graphics processing unit that has been optimized for parallel data processing, we report a complete high-speed SS-OCT platform capable of real-time data acquisition, processing, display, and saving at 108,000 lines per second. Subpixel image registration of structural images was performed in real-time prior to SV calculations in order to reduce decorrelation from stationary structures induced by the bulk tissue motion. The viability of the system was successfully demonstrated in a high bulk tissue motion scenario of human fingernail root imaging where SV images (512 × 512 pixels, n = 4) were displayed at 54 frames per second.

  16. Application Characterization at Scale: Lessons learned from developing a distributed Open Community Runtime system for High Performance Computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Landwehr, Joshua B.; Suetterlein, Joshua D.; Marquez, Andres

    2016-05-16

    Since 2012, the U.S. Department of Energy’s X-Stack program has been developing solutions including runtime systems, programming models, languages, compilers, and tools for the Exascale system software to address crucial performance and power requirements. Fine grain programming models and runtime systems show a great potential to efficiently utilize the underlying hardware. Thus, they are essential to many X-Stack efforts. An abundant amount of small tasks can better utilize the vast parallelism available on current and future machines. Moreover, finer tasks can recover faster and adapt better, due to a decrease in state and control. Nevertheless, current applications have been writtenmore » to exploit old paradigms (such as Communicating Sequential Processor and Bulk Synchronous Parallel processing). To fully utilize the advantages of these new systems, applications need to be adapted to these new paradigms. As part of the applications’ porting process, in-depth characterization studies, focused on both application characteristics and runtime features, need to take place to fully understand the application performance bottlenecks and how to resolve them. This paper presents a characterization study for a novel high performance runtime system, called the Open Community Runtime, using key HPC kernels as its vehicle. This study has the following contributions: one of the first high performance, fine grain, distributed memory runtime system implementing the OCR standard (version 0.99a); and a characterization study of key HPC kernels in terms of runtime primitives running on both intra and inter node environments. Running on a general purpose cluster, we have found up to 1635x relative speed-up for a parallel tiled Cholesky Kernels on 128 nodes with 16 cores each and a 1864x relative speed-up for a parallel tiled Smith-Waterman kernel on 128 nodes with 30 cores.« less

  17. Columnar to Nematic Mesophase Transition: Binary Mixtures of Copper Soaps with Hydrocarbons

    NASA Astrophysics Data System (ADS)

    Seghrouchni, R.; Skoulios, A.

    1995-09-01

    Copper (II) soaps are known to produce columnar mesophases at high temperatures. The polar groups of the soap molecules are stacked over one another within columns surrounded by the paraffin chains in a disordered conformation and laterally arranged according to a two-dimensional hexagonal lattice. Upon addition of a hydrocarbon, the mesophases swell homogeneously. The hydrocarbon molecules locate themselves among the disordered chains of the soap molecules, the columnar cores remain perfectly unchanged, keeping a constant intra-columnar stacking period, and the hexagonal lattice expands in proportion to the amount of hydrocarbon added to the system. Beyond a certain degree of swelling, the columnar mesophases suddenly turn into a nematic mesophase through a first-order phase transition. The structural elements that align parallel to the nematic director are the very same molecular columns that are involved in the columnar mesophases. The columnar to nematic mesophase transition was studied systematically as a function of the molecular size of the soaps and hydrocarbons used as diluents and discussed on a molecular level, emphasizing such aspects as the persistence length of the paraffin chains and the location of the solvent molecules among the columns.

  18. Column Number Density Expressions Through M = 0 and M = 1 Point Source Plumes Along Any Straight Path

    NASA Technical Reports Server (NTRS)

    Woronowicz, Michael

    2016-01-01

    Analytical expressions for column number density (CND) are developed for optical line of sight paths through a variety of steady free molecule point source models including directionally-constrained effusion (Mach number M = 0) and flow from a sonic orifice (M = 1). Sonic orifice solutions are approximate, developed using a fair simulacrum fitted to the free molecule solution. Expressions are also developed for a spherically-symmetric thermal expansion (M = 0). CND solutions are found for the most general paths relative to these sources and briefly explored. It is determined that the maximum CND from a distant location through directed effusion and sonic orifice cases occurs along the path parallel to the source plane that intersects the plume axis. For the effusive case this value is exactly twice the CND found along the ray originating from that point of intersection and extending to infinity along the plume's axis. For sonic plumes this ratio is reduced to about 4/3. For high Mach number cases the maximum CND will be found along the axial centerline path. Keywords: column number density, plume flows, outgassing, free molecule flow.

  19. Mobile autonomous robotic apparatus for radiologic characterization

    DOEpatents

    Dudar, Aed M.; Ward, Clyde R.; Jones, Joel D.; Mallet, William R.; Harpring, Larry J.; Collins, Montenius X.; Anderson, Erin K.

    1999-01-01

    A mobile robotic system that conducts radiological surveys to map alpha, beta, and gamma radiation on surfaces in relatively level open areas or areas containing obstacles such as stored containers or hallways, equipment, walls and support columns. The invention incorporates improved radiation monitoring methods using multiple scintillation detectors, the use of laser scanners for maneuvering in open areas, ultrasound pulse generators and receptors for collision avoidance in limited space areas or hallways, methods to trigger visible alarms when radiation is detected, and methods to transmit location data for real-time reporting and mapping of radiation locations on computer monitors at a host station. A multitude of high performance scintillation detectors detect radiation while the on-board system controls the direction and speed of the robot due to pre-programmed paths. The operators may revise the preselected movements of the robotic system by ethernet communications to remonitor areas of radiation or to avoid walls, columns, equipment, or containers. The robotic system is capable of floor survey speeds of from 1/2-inch per second up to about 30 inches per second, while the on-board processor collects, stores, and transmits information for real-time mapping of radiation intensity and the locations of the radiation for real-time display on computer monitors at a central command console.

  20. Mobile autonomous robotic apparatus for radiologic characterization

    DOEpatents

    Dudar, A.M.; Ward, C.R.; Jones, J.D.; Mallet, W.R.; Harpring, L.J.; Collins, M.X.; Anderson, E.K.

    1999-08-10

    A mobile robotic system is described that conducts radiological surveys to map alpha, beta, and gamma radiation on surfaces in relatively level open areas or areas containing obstacles such as stored containers or hallways, equipment, walls and support columns. The invention incorporates improved radiation monitoring methods using multiple scintillation detectors, the use of laser scanners for maneuvering in open areas, ultrasound pulse generators and receptors for collision avoidance in limited space areas or hallways, methods to trigger visible alarms when radiation is detected, and methods to transmit location data for real-time reporting and mapping of radiation locations on computer monitors at a host station. A multitude of high performance scintillation detectors detect radiation while the on-board system controls the direction and speed of the robot due to pre-programmed paths. The operators may revise the preselected movements of the robotic system by ethernet communications to remonitor areas of radiation or to avoid walls, columns, equipment, or containers. The robotic system is capable of floor survey speeds of from 1/2-inch per second up to about 30 inches per second, while the on-board processor collects, stores, and transmits information for real-time mapping of radiation intensity and the locations of the radiation for real-time display on computer monitors at a central command console. 4 figs.

  1. Don't Forget Kīlauea: Explosive Hazards at an Ocean Island Basaltic Volcano

    NASA Astrophysics Data System (ADS)

    Swanson, D. A.; Houghton, B. F.

    2015-12-01

    Kīlauea alternates between periods of high and low magma supply rate, each period lasting centuries. The low rate is only a few percent of the high rate. High supply rate, typified by the past 200 years, leads to frequent lava flows, elevated SO2 emission, and relatively low-hazard Hawaiian-style explosive activity (lava fountains, spattering). Periods of low magma supply are very different. They accompany formation and maintenance of a deep caldera, the floor of which is at or below the water table, and are characterized by phreatomagmatic and phreatic explosive eruptions largely powered by external water. The low magma supply rate results in few lava flows and reduced SO2 output. Studies of explosive deposits from the past two periods of low magma supply (~200 BCE-1000 CE and ~1500-1800 CE) indicate that VEIs calculated from isopach maps can range up to a low 3. Clast-size studies suggest that subplinian column heights can reach >10 km (most recently in 1790), though more frequent column heights are ~5-8 km. Pyroclastic density currents (PDCs) present severe proximal hazards; a PDC in 1790 killed a few hundred people in an area of Hawaíi Volcanoes National Park today visited by 5000 people daily. Ash in columns less than about 5 km a.s.l. is confined to the trade-wind regime and advects southwest. Ash in higher columns enters the jet stream and is transported east and southeast of the summit caldera. Recurrence of such column heights today would present aviation hazards, which, for an isolated state dependent on air transport, could have especially deleterious economic impact. There is currently no way to estimate when a period of low magma supply, a deep caldera, and powerful explosive activity will return. Hazard assessments must take into account the cyclic nature of Kīlauea's eruptive activity, not just its present status; consequently, assessments for periods of high and low magma supply rates should be made in parallel to cover all eventualities.

  2. Parallel algorithms for quantum chemistry. I. Integral transformations on a hypercube multiprocessor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whiteside, R.A.; Binkley, J.S.; Colvin, M.E.

    1987-02-15

    For many years it has been recognized that fundamental physical constraints such as the speed of light will limit the ultimate speed of single processor computers to less than about three billion floating point operations per second (3 GFLOPS). This limitation is becoming increasingly restrictive as commercially available machines are now within an order of magnitude of this asymptotic limit. A natural way to avoid this limit is to harness together many processors to work on a single computational problem. In principle, these parallel processing computers have speeds limited only by the number of processors one chooses to acquire. Themore » usefulness of potentially unlimited processing speed to a computationally intensive field such as quantum chemistry is obvious. If these methods are to be applied to significantly larger chemical systems, parallel schemes will have to be employed. For this reason we have developed distributed-memory algorithms for a number of standard quantum chemical methods. We are currently implementing these on a 32 processor Intel hypercube. In this paper we present our algorithm and benchmark results for one of the bottleneck steps in quantum chemical calculations: the four index integral transformation.« less

  3. Enhancement of soft X-ray lasing action with thin blade radiators

    DOEpatents

    Suckewer, Szymon; Skinner, Charles H.; Voorhees, David R.

    1988-01-01

    An enhancement of approximately 100 of stimulated emission over spontaneous emission of the CVI 182 Angstrom line was obtained in a recombining magnetically confined plasma column. The plasma was formed by focusing a CO.sub.2 laser beam on a carbon disc. A magnetic solenoid produced a strong magnetic field which confined the plasma to the shape of a column. A single thin carbon blade extended parallel to the plasma column and served to make the column axially more uniform and also acted as a heat sink. Axial and transverse measurements of the soft X-ray lasing action were made from locations off-set from the central axis of the plasma column. Multiple carbon blades located at equal intervals around the plasma column were also found to produce acceptable results. According to another embodiment 10 a thin coating of aluminum or magnesium was placed on the carbon disc and blade. The Z of the coating should preferably be at least 5 greater than the Z of the target. Measurements of the soft X-rays generated at 182 Angstroms showed a significant increase in intensity enhancement.

  4. Efficient system interrupt concept design at the microprogramming level

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fakharzadeh, M.M.

    1989-01-01

    Over the past decade the demand for high speed super microcomputers has been tremendously increased. To satisfy this demand many high speed 32-bit microcomputers have been designed. However, the currently available 32-bit systems do not provide an adequate solution to many highly demanding problems such as in multitasking, and in interrupt driven applications, which both require context switching. Systems for these purposes usually incorporate sophisticated software. In order to be efficient, a high end microprocessor based system must satisfy stringent software demands. Although these microprocessors use the latest technology in the fabrication design and run at a very high speed,more » they still suffer from insufficient hardware support for such applications. All too often, this lack also is the premier cause of execution inefficiency. In this dissertation a micro-programmable control unit and operation unit is considered in an advanced design. An automaton controller is designed for high speed micro-level interrupt handling. Different stack models are designed for the single task and multitasking environment. The stacks are used for storage of various components of the processor during the interrupt calls, procedure calls, and task switching. A universal (as an example seven port) register file is designed for high speed parameter passing, and intertask communication in the multitasking environment. In addition, the register file provides a direct path between ALU and the peripheral data which is important in real-time control applications. The overall system is a highly parallel architecture, with no pipeline and internal cache memory, which allows the designer to be able to predict the processor's behavior during the critical times.« less

  5. Scalable descriptive and correlative statistics with Titan.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, David C.; Pebay, Philippe Pierre

    This report summarizes the existing statistical engines in VTK/Titan and presents the parallel versions thereof which have already been implemented. The ease of use of these parallel engines is illustrated by the means of C++ code snippets. Furthermore, this report justifies the design of these engines with parallel scalability in mind; then, this theoretical property is verified with test runs that demonstrate optimal parallel speed-up with up to 200 processors.

  6. Parallel-Processing CMOS Circuitry for M-QAM and 8PSK TCM

    NASA Technical Reports Server (NTRS)

    Gray, Andrew; Lee, Dennis; Hoy, Scott; Fisher, Dave; Fong, Wai; Ghuman, Parminder

    2009-01-01

    There has been some additional development of parts reported in "Multi-Modulator for Bandwidth-Efficient Communication" (NPO-40807), NASA Tech Briefs, Vol. 32, No. 6 (June 2009), page 34. The focus was on 1) The generation of M-order quadrature amplitude modulation (M-QAM) and octonary-phase-shift-keying, trellis-coded modulation (8PSK TCM), 2) The use of square-root raised-cosine pulse-shaping filters, 3) A parallel-processing architecture that enables low-speed [complementary metal oxide/semiconductor (CMOS)] circuitry to perform the coding, modulation, and pulse-shaping computations at a high rate; and 4) Implementation of the architecture in a CMOS field-programmable gate array.

  7. Enhanced Axial Resolution of Wide-Field Two-Photon Excitation Microscopy by Line Scanning Using a Digital Micromirror Device.

    PubMed

    Park, Jong Kang; Rowlands, Christopher J; So, Peter T C

    2017-01-01

    Temporal focusing multiphoton microscopy is a technique for performing highly parallelized multiphoton microscopy while still maintaining depth discrimination. While the conventional wide-field configuration for temporal focusing suffers from sub-optimal axial resolution, line scanning temporal focusing, implemented here using a digital micromirror device (DMD), can provide substantial improvement. The DMD-based line scanning temporal focusing technique dynamically trades off the degree of parallelization, and hence imaging speed, for axial resolution, allowing performance parameters to be adapted to the experimental requirements. We demonstrate this new instrument in calibration specimens and in biological specimens, including a mouse kidney slice.

  8. Enhanced Axial Resolution of Wide-Field Two-Photon Excitation Microscopy by Line Scanning Using a Digital Micromirror Device

    PubMed Central

    Park, Jong Kang; Rowlands, Christopher J.; So, Peter T. C.

    2017-01-01

    Temporal focusing multiphoton microscopy is a technique for performing highly parallelized multiphoton microscopy while still maintaining depth discrimination. While the conventional wide-field configuration for temporal focusing suffers from sub-optimal axial resolution, line scanning temporal focusing, implemented here using a digital micromirror device (DMD), can provide substantial improvement. The DMD-based line scanning temporal focusing technique dynamically trades off the degree of parallelization, and hence imaging speed, for axial resolution, allowing performance parameters to be adapted to the experimental requirements. We demonstrate this new instrument in calibration specimens and in biological specimens, including a mouse kidney slice. PMID:29387484

  9. Using domain decomposition in the multigrid NAS parallel benchmark on the Fujitsu VPP500

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, J.C.H.; Lung, H.; Katsumata, Y.

    1995-12-01

    In this paper, we demonstrate how domain decomposition can be applied to the multigrid algorithm to convert the code for MPP architectures. We also discuss the performance and scalability of this implementation on the new product line of Fujitsu`s vector parallel computer, VPP500. This computer has Fujitsu`s well-known vector processor as the PE each rated at 1.6 C FLOPS. The high speed crossbar network rated at 800 MB/s provides the inter-PE communication. The results show that the physical domain decomposition is the best way to solve MG problems on VPP500.

  10. Preparative isolation and purification of four flavonoids from the petals of Nelumbo nucifera by high-speed counter-current chromatography.

    PubMed

    Xingfeng, Guo; Daijie, Wang; Wenjuan, Duan; Jinhua, Du; Xiao, Wang

    2010-01-01

    Flavonoids, the primary constituents of the petals of Nelumbo nucifera, are known to have antioxidant properties and antibacterial bioactivities. However, efficient methods for the preparative isolation and purification of flavonoids from this plant are not currently available. To develop an efficient method for the preparative isolation and purification of flavonoids from the petals of N. nucifera by high-speed counter-current chromatography (HSCCC). Following an initial clean-up step on a polyamide column, HSCCC was utilised to separate and purify flavonoids. Purities and identities of the isolated compounds were established by HPLC-PAD, ESI-MS, (1)H-NMR and (13)C-NMR. The separation was performed using a two-phase solvent system composed of ethyl acetate-methanol-water-acetic acid (4 : 1 : 5 : 0.1, by volume), in which the upper phase was used as the stationary phase and the lower phase was used as the mobile phase at a flow-rate of 1.0 mL/min in the head-to-tail elution mode. Ultimately, 5.0 mg syringetin-3-O-beta-d-glucoside, 6.5 mg quercetin-3-O-beta-d-glucoside, 12.8 mg isorhamnetin-3-O-beta-d-glucoside and 32.5 mg kaempferol-3-O-beta-d-glucoside were obtained from 125 mg crude sample. The combination of HSCCC with a polyamide column is an efficient method for the preparative separation and purification of flavonoids from the petals of N. nucifera. (c) 2009 John Wiley & Sons, Ltd.

  11. Application of high-performance liquid chromatography to the determination of glyoxylate synthesis in chick embryo liver.

    PubMed

    Qureshi, A A; Elson, C E; Lebeck, L A

    1982-11-19

    The isolation and identification of three major alpha-keto end products (glyoxylate, pyruvate, alpha-ketoglutarate) of the isocitrate lyase reaction in 18-day chick embryo liver have been described. This was accomplished by the separation of these alpha-keto acids as their 2,4-dinitrophenylhydrazones (DNPHs) by high-performance liquid chromatography (HPLC). The DNPHs of alpha-keto acids were eluted with an isocratic solvent system of methanol-water-acetic acid (60:38.5:1.5) containing 5 mM tetrabutylammonium phosphate from a reversed-phase ultrasphere C18 (IP) and from a radial compression C18 column. The separation can be completed on the radial compression column within 15-20 min as compared to 30-40 min with a conventional reversed-phase column. Retention times and peak areas were integrated for both the assay samples and reference compounds. A relative measure of alpha-keto acid in the peak was calculated by comparison with the standard. The identification of each peak was done on the basis of retention time matching, co-chromatography with authentic compounds, and stopped flow UV-VIS scanning between 240 and 440 nm. Glyoxylate represented 5% of the total product of the isocitrate lyase reaction. Day 18 parallels the peak period of embryonic hepatic glycogenesis which occurs at a time when the original egg glucose reserve has been depleted.

  12. Computing row and column counts for sparse QR and LU factorization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilbert, John R.; Li, Xiaoye S.; Ng, Esmond G.

    2001-01-01

    We present algorithms to determine the number of nonzeros in each row and column of the factors of a sparse matrix, for both the QR factorization and the LU factorization with partial pivoting. The algorithms use only the nonzero structure of the input matrix, and run in time nearly linear in the number of nonzeros in that matrix. They may be used to set up data structures or schedule parallel operations in advance of the numerical factorization. The row and column counts we compute are upper bounds on the actual counts. If the input matrix is strong Hall and theremore » is no coincidental numerical cancellation, the counts are exact for QR factorization and are the tightest bounds possible for LU factorization. These algorithms are based on our earlier work on computing row and column counts for sparse Cholesky factorization, plus an efficient method to compute the column elimination tree of a sparse matrix without explicitly forming the product of the matrix and its transpose.« less

  13. Applications of Emerging Parallel Optical Link Technology to High Energy Physics Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chramowicz, J.; Kwan, S.; Prosser, A.

    2011-09-01

    Modern particle detectors depend upon optical fiber links to deliver event data to upstream trigger and data processing systems. Future detector systems can benefit from the development of dense arrangements of high speed optical links emerging from the telecommunications and storage area network market segments. These links support data transfers in each direction at rates up to 120 Gbps in packages that minimize or even eliminate edge connector requirements. Emerging products include a class of devices known as optical engines which permit assembly of the optical transceivers in close proximity to the electrical interfaces of ASICs and FPGAs which handlemore » the data in parallel electrical format. Such assemblies will reduce required printed circuit board area and minimize electromagnetic interference and susceptibility. We will present test results of some of these parallel components and report on the development of pluggable FPGA Mezzanine Cards equipped with optical engines to provide to collaborators on the Versatile Link Common Project for the HI-LHC at CERN.« less

  14. The Software Correlator of the Chinese VLBI Network

    NASA Technical Reports Server (NTRS)

    Zheng, Weimin; Quan, Ying; Shu, Fengchun; Chen, Zhong; Chen, Shanshan; Wang, Weihua; Wang, Guangli

    2010-01-01

    The software correlator of the Chinese VLBI Network (CVN) has played an irreplaceable role in the CVN routine data processing, e.g., in the Chinese lunar exploration project. This correlator will be upgraded to process geodetic and astronomical observation data. In the future, with several new stations joining the network, CVN will carry out crustal movement observations, quick UT1 measurements, astrophysical observations, and deep space exploration activities. For the geodetic or astronomical observations, we need a wide-band 10-station correlator. For spacecraft tracking, a realtime and highly reliable correlator is essential. To meet the scientific and navigation requirements of CVN, two parallel software correlators in the multiprocessor environments are under development. A high speed, 10-station prototype correlator using the mixed Pthreads and MPI (Massage Passing Interface) parallel algorithm on a computer cluster platform is being developed. Another real-time software correlator for spacecraft tracking adopts the thread-parallel technology, and it runs on the SMP (Symmetric Multiple Processor) servers. Both correlators have the characteristic of flexible structure and scalability.

  15. Flexbar 3.0 - SIMD and multicore parallelization.

    PubMed

    Roehr, Johannes T; Dieterich, Christoph; Reinert, Knut

    2017-09-15

    High-throughput sequencing machines can process many samples in a single run. For Illumina systems, sequencing reads are barcoded with an additional DNA tag that is contained in the respective sequencing adapters. The recognition of barcode and adapter sequences is hence commonly needed for the analysis of next-generation sequencing data. Flexbar performs demultiplexing based on barcodes and adapter trimming for such data. The massive amounts of data generated on modern sequencing machines demand that this preprocessing is done as efficiently as possible. We present Flexbar 3.0, the successor of the popular program Flexbar. It employs now twofold parallelism: multi-threading and additionally SIMD vectorization. Both types of parallelism are used to speed-up the computation of pair-wise sequence alignments, which are used for the detection of barcodes and adapters. Furthermore, new features were included to cover a wide range of applications. We evaluated the performance of Flexbar based on a simulated sequencing dataset. Our program outcompetes other tools in terms of speed and is among the best tools in the presented quality benchmark. https://github.com/seqan/flexbar. johannes.roehr@fu-berlin.de or knut.reinert@fu-berlin.de. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  16. Novel approach for image skeleton and distance transformation parallel algorithms

    NASA Astrophysics Data System (ADS)

    Qing, Kent P.; Means, Robert W.

    1994-05-01

    Image Understanding is more important in medical imaging than ever, particularly where real-time automatic inspection, screening and classification systems are installed. Skeleton and distance transformations are among the common operations that extract useful information from binary images and aid in Image Understanding. The distance transformation describes the objects in an image by labeling every pixel in each object with the distance to its nearest boundary. The skeleton algorithm starts from the distance transformation and finds the set of pixels that have a locally maximum label. The distance algorithm has to scan the entire image several times depending on the object width. For each pixel, the algorithm must access the neighboring pixels and find the maximum distance from the nearest boundary. It is a computational and memory access intensive procedure. In this paper, we propose a novel parallel approach to the distance transform and skeleton algorithms using the latest VLSI high- speed convolutional chips such as HNC's ViP. The algorithm speed is dependent on the object's width and takes (k + [(k-1)/3]) * 7 milliseconds for a 512 X 512 image with k being the maximum distance of the largest object. All objects in the image will be skeletonized at the same time in parallel.

  17. Sedimentation equilibrium analysis of protein interactions with global implicit mass conservation constraints and systematic noise decomposition.

    PubMed

    Vistica, Jennifer; Dam, Julie; Balbo, Andrea; Yikilmaz, Emine; Mariuzza, Roy A; Rouault, Tracey A; Schuck, Peter

    2004-03-15

    Sedimentation equilibrium is a powerful tool for the characterization of protein self-association and heterogeneous protein interactions. Frequently, it is applied in a configuration with relatively long solution columns and with equilibrium profiles being acquired sequentially at several rotor speeds. The present study proposes computational tools, implemented in the software SEDPHAT, for the global analysis of equilibrium data at multiple rotor speeds with multiple concentrations and multiple optical detection methods. The detailed global modeling of such equilibrium data can be a nontrivial computational problem. It was shown previously that mass conservation constraints can significantly improve and extend the analysis of heterogeneous protein interactions. Here, a method for using conservation of mass constraints for the macromolecular redistribution is proposed in which the effective loading concentrations are calculated from the sedimentation equilibrium profiles. The approach is similar to that described by Roark (Biophys. Chem. 5 (1976) 185-196), but its utility is extended by determining the bottom position of the solution columns from the macromolecular redistribution. For analyzing heterogeneous associations at multiple protein concentrations, additional constraints that relate the effective loading concentrations of the different components or their molar ratio in the global analysis are introduced. Equilibrium profiles at multiple rotor speeds also permit the algebraic determination of radial-dependent baseline profiles, which can govern interference optical ultracentrifugation data, but usually also occur, to a smaller extent, in absorbance optical data. Finally, the global analysis of equilibrium profiles at multiple rotor speeds with implicit mass conservation and computation of the bottom of the solution column provides an unbiased scale for determining molar mass distributions of noninteracting species. The properties of these tools are studied with theoretical and experimental data sets.

  18. A high efficiency readout architecture for a large matrix of pixels.

    NASA Astrophysics Data System (ADS)

    Gabrielli, A.; Giorgi, F.; Villa, M.

    2010-07-01

    In this work we present a fast readout architecture for silicon pixel matrix sensors that has been designed to sustain very high rates, above 1 MHz/mm2 for matrices greater than 80k pixels. This logic can be implemented within MAPS (Monolithic Active Pixel Sensors), a kind of high resolution sensor that integrates on the same bulk the sensor matrix and the CMOS logic for readout, but it can be exploited also with other technologies. The proposed architecture is based on three main concepts. First of all, the readout of the hits is performed by activating one column at a time; all the fired pixels on the active column are read, sparsified and reset in parallel in one clock cycle. This implies the use of global signals across the sensor matrix. The consequent reduction of metal interconnections improves the active area while maintaining a high granularity (down to a pixel pitch of 40 μm). Secondly, the activation for readout takes place only for those columns overlapping with a certain fired area, thus reducing the sweeping time of the whole matrix and reducing the pixel dead-time. Third, the sparsification (x-y address labeling of the hits) is performed with a lower granularity with respect to single pixels, by addressing vertical zones of 8 pixels each. The fine-grain Y resolution is achieved by appending the zone pattern to the zone address of a hit. We show then the benefits of this technique in presence of clusters. We describe this architecture from a schematic point of view, then presenting the efficiency results obtained by VHDL simulations.

  19. Gas exchange rates across the sediment-water and air-water interfaces in south San Francisco Bay

    USGS Publications Warehouse

    Hartman, Blayne; Hammond, Douglas E.

    1984-01-01

    Radon 222 concentrations in the water and sedimentary columns and radon exchange rates across the sediment-water and air-water interfaces have been measured in a section of south San Francisco Bay. Two independent methods have been used to determine sediment-water exchange rates, and the annual averages of these methods agree within the uncertainty of the determinations, about 20%. The annual average of benthic fluxes from shoal areas is nearly a factor of 2 greater than fluxes from the channel areas. Fluxes from the shoal and channel areas exceed those expected from simple molecular diffusion by factors of 4 and 2, respectively, apparently due to macrofaunal irrigation. Values of the gas transfer coefficient for radon exchange across the air-water interface were determined by constructing a radon mass balance for the water column and by direct measurement using floating chambers. The chamber method appears to yield results which are too high. Transfer coefficients computed using the mass balance method range from 0.4 m/day to 1.8 m/day, with a 6-year average of 1.0 m/day. Gas exchange is linearly dependent upon wind speed over a wind speed range of 3.2–6.4 m/s, but shows no dependence upon current velocity. Gas transfer coefficients predicted from an empirical relationship between gas exchange rates and wind speed observed in lakes and the oceans are within 30% of the coefficients determined from the radon mass balance and are considerably more accurate than coefficients predicted from theoretical gas exchange models.

  20. Development of high-speed video cameras

    NASA Astrophysics Data System (ADS)

    Etoh, Takeharu G.; Takehara, Kohsei; Okinaka, Tomoo; Takano, Yasuhide; Ruckelshausen, Arno; Poggemann, Dirk

    2001-04-01

    Presented in this paper is an outline of the R and D activities on high-speed video cameras, which have been done in Kinki University since more than ten years ago, and are currently proceeded as an international cooperative project with University of Applied Sciences Osnabruck and other organizations. Extensive marketing researches have been done, (1) on user's requirements on high-speed multi-framing and video cameras by questionnaires and hearings, and (2) on current availability of the cameras of this sort by search of journals and websites. Both of them support necessity of development of a high-speed video camera of more than 1 million fps. A video camera of 4,500 fps with parallel readout was developed in 1991. A video camera with triple sensors was developed in 1996. The sensor is the same one as developed for the previous camera. The frame rate is 50 million fps for triple-framing and 4,500 fps for triple-light-wave framing, including color image capturing. Idea on a video camera of 1 million fps with an ISIS, In-situ Storage Image Sensor, was proposed in 1993 at first, and has been continuously improved. A test sensor was developed in early 2000, and successfully captured images at 62,500 fps. Currently, design of a prototype ISIS is going on, and, hopefully, will be fabricated in near future. Epoch-making cameras in history of development of high-speed video cameras by other persons are also briefly reviewed.

  1. Kinetic treatment of nonlinear magnetized plasma motions - General geometry and parallel waves

    NASA Technical Reports Server (NTRS)

    Khabibrakhmanov, I. KH.; Galinskii, V. L.; Verheest, F.

    1992-01-01

    The expansion of kinetic equations in the limit of a strong magnetic field is presented. This gives a natural description of the motions of magnetized plasmas, which are slow compared to the particle gyroperiods and gyroradii. Although the approach is 3D, this very general result is used only to focus on the parallel propagation of nonlinear Alfven waves. The derivative nonlinear Schroedinger-like equation is obtained. Two new terms occur compared to earlier treatments, a nonlinear term proportional to the heat flux along the magnetic field line and a higher-order dispersive term. It is shown that kinetic description avoids the singularities occurring in magnetohydrodynamic or multifluid approaches, which correspond to the degenerate case of sound speeds equal to the Alfven speed, and that parallel heat fluxes cannot be neglected, not even in the case of low parallel plasma beta. A truly stationary soliton solution is derived.

  2. Study of Solid State Drives performance in PROOF distributed analysis system

    NASA Astrophysics Data System (ADS)

    Panitkin, S. Y.; Ernst, M.; Petkus, R.; Rind, O.; Wenaus, T.

    2010-04-01

    Solid State Drives (SSD) is a promising storage technology for High Energy Physics parallel analysis farms. Its combination of low random access time and relatively high read speed is very well suited for situations where multiple jobs concurrently access data located on the same drive. It also has lower energy consumption and higher vibration tolerance than Hard Disk Drive (HDD) which makes it an attractive choice in many applications raging from personal laptops to large analysis farms. The Parallel ROOT Facility - PROOF is a distributed analysis system which allows to exploit inherent event level parallelism of high energy physics data. PROOF is especially efficient together with distributed local storage systems like Xrootd, when data are distributed over computing nodes. In such an architecture the local disk subsystem I/O performance becomes a critical factor, especially when computing nodes use multi-core CPUs. We will discuss our experience with SSDs in PROOF environment. We will compare performance of HDD with SSD in I/O intensive analysis scenarios. In particular we will discuss PROOF system performance scaling with a number of simultaneously running analysis jobs.

  3. Biomechanical Comparison of Parallel and Crossed Suture Repair for Longitudinal Meniscus Tears.

    PubMed

    Milchteim, Charles; Branch, Eric A; Maughon, Ty; Hughey, Jay; Anz, Adam W

    2016-04-01

    Longitudinal meniscus tears are commonly encountered in clinical practice. Meniscus repair devices have been previously tested and presented; however, prior studies have not evaluated repair construct designs head to head. This study compared a new-generation meniscus repair device, SpeedCinch, with a similar established device, Fast-Fix 360, and a parallel repair construct to a crossed construct. Both devices utilize self-adjusting No. 2-0 ultra-high molecular weight polyethylene (UHMWPE) and 2 polyether ether ketone (PEEK) anchors. Crossed suture repair constructs have higher failure loads and stiffness compared with simple parallel constructs. The newer repair device would exhibit similar performance to an established device. Controlled laboratory study. Sutures were placed in an open fashion into the body and posterior horn regions of the medial and lateral menisci in 16 cadaveric knees. Evaluation of 2 repair devices and 2 repair constructs created 4 groups: 2 parallel vertical sutures created with the Fast-Fix 360 (2PFF), 2 crossed vertical sutures created with the Fast-Fix 360 (2XFF), 2 parallel vertical sutures created with the SpeedCinch (2PSC), and 2 crossed vertical sutures created with the SpeedCinch (2XSC). After open placement of the repair construct, each meniscus was explanted and tested to failure on a uniaxial material testing machine. All data were checked for normality of distribution, and 1-way analysis of variance by ranks was chosen to evaluate for statistical significance of maximum failure load and stiffness between groups. Statistical significance was defined as P < .05. The mean maximum failure loads ± 95% CI (range) were 89.6 ± 16.3 N (125.7-47.8 N) (2PFF), 72.1 ± 11.7 N (103.4-47.6 N) (2XFF), 71.9 ± 15.5 N (109.4-41.3 N) (2PSC), and 79.5 ± 25.4 N (119.1-30.9 N) (2XSC). Interconstruct comparison revealed no statistical difference between all 4 constructs regarding maximum failure loads (P = .49). Stiffness values were also similar, with no statistical difference on comparison (P = .28). Both devices in the current study had similar failure load and stiffness when 2 vertical or 2 crossed sutures were tested in cadaveric human menisci. Simple parallel vertical sutures perform similarly to crossed suture patterns at the time of implantation.

  4. Massively Parallel Rogue Cell Detection Using Serial Time-Encoded Amplified Microscopy of Inertially Ordered Cells in High-Throughput Flow

    DTIC Science & Technology

    2012-08-01

    techniques and STEAM imager. It couples the high-speed capability of the STEAM imager and differential phase contrast imaging of DIC / Nomarski microscopy...On 10 TPE chips, we obtained 9 homogenous and strong bonds, the failed bond being due to operator error and presence of air bubbles in the TPE...instruments, structural dynamics, and microelectromechanical systems (MEMS) via laser-scanning surface vibrometry , and observation of biomechanical motility

  5. Bayer image parallel decoding based on GPU

    NASA Astrophysics Data System (ADS)

    Hu, Rihui; Xu, Zhiyong; Wei, Yuxing; Sun, Shaohua

    2012-11-01

    In the photoelectrical tracking system, Bayer image is decompressed in traditional method, which is CPU-based. However, it is too slow when the images become large, for example, 2K×2K×16bit. In order to accelerate the Bayer image decoding, this paper introduces a parallel speedup method for NVIDA's Graphics Processor Unit (GPU) which supports CUDA architecture. The decoding procedure can be divided into three parts: the first is serial part, the second is task-parallelism part, and the last is data-parallelism part including inverse quantization, inverse discrete wavelet transform (IDWT) as well as image post-processing part. For reducing the execution time, the task-parallelism part is optimized by OpenMP techniques. The data-parallelism part could advance its efficiency through executing on the GPU as CUDA parallel program. The optimization techniques include instruction optimization, shared memory access optimization, the access memory coalesced optimization and texture memory optimization. In particular, it can significantly speed up the IDWT by rewriting the 2D (Tow-dimensional) serial IDWT into 1D parallel IDWT. Through experimenting with 1K×1K×16bit Bayer image, data-parallelism part is 10 more times faster than CPU-based implementation. Finally, a CPU+GPU heterogeneous decompression system was designed. The experimental result shows that it could achieve 3 to 5 times speed increase compared to the CPU serial method.

  6. Investigation of high-speed shaft bearing loads in wind turbine gearboxes through dynamometer testing

    DOE PAGES

    Guo, Yi; Keller, Jonathan

    2017-11-10

    Many wind turbine gearboxes require repair or replacement well before reaching the end of their design life. The most common failure is bearing axial cracks, commonly called white etching cracks (WECs), which typically occur in the inner raceways of the high-speed parallel-stage rolling element bearings. Although the root causes of WECs are debated, one theory is that they are related to routine dynamic operating conditions and occasional transient events prevalent in wind turbines that can result in high bearing stress and sliding of the rolling elements. Here, this paper examined wind turbine gearbox high-speed shaft bearing loads and stresses throughmore » modeling and full-scale dynamometer testing. Bearing outer race loads were directly measured and predicted using a variety of modeling tools in normal operations, misaligned conditions, and transient events particularly prone to bearing sliding. Test data and models of bearing loads were well correlated. Neither operational misalignment due to rotor moments nor static generator misalignment affected the bearing loads when compared with pure-torque conditions. Thus, it is not likely that generator misalignment is a causal factor of WECs. In contrast, during transient events, the bearings experienced alternating periods of high stress, torque reversals, and loads under the minimum requisite at high rotating speeds while showing indications of sliding, all of which could be related to the formation of WECs.« less

  7. Investigation of high-speed shaft bearing loads in wind turbine gearboxes through dynamometer testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Yi; Keller, Jonathan

    Many wind turbine gearboxes require repair or replacement well before reaching the end of their design life. The most common failure is bearing axial cracks, commonly called white etching cracks (WECs), which typically occur in the inner raceways of the high-speed parallel-stage rolling element bearings. Although the root causes of WECs are debated, one theory is that they are related to routine dynamic operating conditions and occasional transient events prevalent in wind turbines that can result in high bearing stress and sliding of the rolling elements. Here, this paper examined wind turbine gearbox high-speed shaft bearing loads and stresses throughmore » modeling and full-scale dynamometer testing. Bearing outer race loads were directly measured and predicted using a variety of modeling tools in normal operations, misaligned conditions, and transient events particularly prone to bearing sliding. Test data and models of bearing loads were well correlated. Neither operational misalignment due to rotor moments nor static generator misalignment affected the bearing loads when compared with pure-torque conditions. Thus, it is not likely that generator misalignment is a causal factor of WECs. In contrast, during transient events, the bearings experienced alternating periods of high stress, torque reversals, and loads under the minimum requisite at high rotating speeds while showing indications of sliding, all of which could be related to the formation of WECs.« less

  8. Towards Autonomous Modular UAV Missions: The Detection, Geo-Location and Landing Paradigm

    PubMed Central

    Kyristsis, Sarantis; Antonopoulos, Angelos; Chanialakis, Theofilos; Stefanakis, Emmanouel; Linardos, Christos; Tripolitsiotis, Achilles; Partsinevelos, Panagiotis

    2016-01-01

    Nowadays, various unmanned aerial vehicle (UAV) applications become increasingly demanding since they require real-time, autonomous and intelligent functions. Towards this end, in the present study, a fully autonomous UAV scenario is implemented, including the tasks of area scanning, target recognition, geo-location, monitoring, following and finally landing on a high speed moving platform. The underlying methodology includes AprilTag target identification through Graphics Processing Unit (GPU) parallelized processing, image processing and several optimized locations and approach algorithms employing gimbal movement, Global Navigation Satellite System (GNSS) readings and UAV navigation. For the experimentation, a commercial and a custom made quad-copter prototype were used, portraying a high and a low-computational embedded platform alternative. Among the successful targeting and follow procedures, it is shown that the landing approach can be successfully performed even under high platform speeds. PMID:27827883

  9. Towards Autonomous Modular UAV Missions: The Detection, Geo-Location and Landing Paradigm.

    PubMed

    Kyristsis, Sarantis; Antonopoulos, Angelos; Chanialakis, Theofilos; Stefanakis, Emmanouel; Linardos, Christos; Tripolitsiotis, Achilles; Partsinevelos, Panagiotis

    2016-11-03

    Nowadays, various unmanned aerial vehicle (UAV) applications become increasingly demanding since they require real-time, autonomous and intelligent functions. Towards this end, in the present study, a fully autonomous UAV scenario is implemented, including the tasks of area scanning, target recognition, geo-location, monitoring, following and finally landing on a high speed moving platform. The underlying methodology includes AprilTag target identification through Graphics Processing Unit (GPU) parallelized processing, image processing and several optimized locations and approach algorithms employing gimbal movement, Global Navigation Satellite System (GNSS) readings and UAV navigation. For the experimentation, a commercial and a custom made quad-copter prototype were used, portraying a high and a low-computational embedded platform alternative. Among the successful targeting and follow procedures, it is shown that the landing approach can be successfully performed even under high platform speeds.

  10. Simultaneous delivery time and aperture shape optimization for the volumetric-modulated arc therapy (VMAT) treatment planning problem

    NASA Astrophysics Data System (ADS)

    Mahnam, Mehdi; Gendreau, Michel; Lahrichi, Nadia; Rousseau, Louis-Martin

    2017-07-01

    In this paper, we propose a novel heuristic algorithm for the volumetric-modulated arc therapy treatment planning problem, optimizing the trade-off between delivery time and treatment quality. We present a new mixed integer programming model in which the multi-leaf collimator leaf positions, gantry speed, and dose rate are determined simultaneously. Our heuristic is based on column generation; the aperture configuration is modeled in the columns and the dose distribution and time restriction in the rows. To reduce the number of voxels and increase the efficiency of the master model, we aggregate similar voxels using a clustering technique. The efficiency of the algorithm and the treatment quality are evaluated on a benchmark clinical prostate cancer case. The computational results show that a high-quality treatment is achievable using a four-thread CPU. Finally, we analyze the effects of the various parameters and two leaf-motion strategies.

  11. The high performance parallel algorithm for Unified Gas-Kinetic Scheme

    NASA Astrophysics Data System (ADS)

    Li, Shiyi; Li, Qibing; Fu, Song; Xu, Jinxiu

    2016-11-01

    A high performance parallel algorithm for UGKS is developed to simulate three-dimensional flows internal and external on arbitrary grid system. The physical domain and velocity domain are divided into different blocks and distributed according to the two-dimensional Cartesian topology with intra-communicators in physical domain for data exchange and other intra-communicators in velocity domain for sum reduction to moment integrals. Numerical results of three-dimensional cavity flow and flow past a sphere agree well with the results from the existing studies and validate the applicability of the algorithm. The scalability of the algorithm is tested both on small (1-16) and large (729-5832) scale processors. The tested speed-up ratio is near linear ashind thus the efficiency is around 1, which reveals the good scalability of the present algorithm.

  12. Extended Logic Intelligent Processing System for a Sensor Fusion Processor Hardware

    NASA Technical Reports Server (NTRS)

    Stoica, Adrian; Thomas, Tyson; Li, Wei-Te; Daud, Taher; Fabunmi, James

    2000-01-01

    The paper presents the hardware implementation and initial tests from a low-power, highspeed reconfigurable sensor fusion processor. The Extended Logic Intelligent Processing System (ELIPS) is described, which combines rule-based systems, fuzzy logic, and neural networks to achieve parallel fusion of sensor signals in compact low power VLSI. The development of the ELIPS concept is being done to demonstrate the interceptor functionality which particularly underlines the high speed and low power requirements. The hardware programmability allows the processor to reconfigure into different machines, taking the most efficient hardware implementation during each phase of information processing. Processing speeds of microseconds have been demonstrated using our test hardware.

  13. Using parallel banded linear system solvers in generalized eigenvalue problems

    NASA Technical Reports Server (NTRS)

    Zhang, Hong; Moss, William F.

    1993-01-01

    Subspace iteration is a reliable and cost effective method for solving positive definite banded symmetric generalized eigenproblems, especially in the case of large scale problems. This paper discusses an algorithm that makes use of two parallel banded solvers in subspace iteration. A shift is introduced to decompose the banded linear systems into relatively independent subsystems and to accelerate the iterations. With this shift, an eigenproblem is mapped efficiently into the memories of a multiprocessor and a high speed-up is obtained for parallel implementations. An optimal shift is a shift that balances total computation and communication costs. Under certain conditions, we show how to estimate an optimal shift analytically using the decay rate for the inverse of a banded matrix, and how to improve this estimate. Computational results on iPSC/2 and iPSC/860 multiprocessors are presented.

  14. a Spatiotemporal Aggregation Query Method Using Multi-Thread Parallel Technique Based on Regional Division

    NASA Astrophysics Data System (ADS)

    Liao, S.; Chen, L.; Li, J.; Xiong, W.; Wu, Q.

    2015-07-01

    Existing spatiotemporal database supports spatiotemporal aggregation query over massive moving objects datasets. Due to the large amounts of data and single-thread processing method, the query speed cannot meet the application requirements. On the other hand, the query efficiency is more sensitive to spatial variation then temporal variation. In this paper, we proposed a spatiotemporal aggregation query method using multi-thread parallel technique based on regional divison and implemented it on the server. Concretely, we divided the spatiotemporal domain into several spatiotemporal cubes, computed spatiotemporal aggregation on all cubes using the technique of multi-thread parallel processing, and then integrated the query results. By testing and analyzing on the real datasets, this method has improved the query speed significantly.

  15. Implementing parallel spreadsheet models for health policy decisions: The impact of unintentional errors on model projections

    PubMed Central

    Bailey, Stephanie L.; Bono, Rose S.; Nash, Denis; Kimmel, April D.

    2018-01-01

    Background Spreadsheet software is increasingly used to implement systems science models informing health policy decisions, both in academia and in practice where technical capacity may be limited. However, spreadsheet models are prone to unintentional errors that may not always be identified using standard error-checking techniques. Our objective was to illustrate, through a methodologic case study analysis, the impact of unintentional errors on model projections by implementing parallel model versions. Methods We leveraged a real-world need to revise an existing spreadsheet model designed to inform HIV policy. We developed three parallel versions of a previously validated spreadsheet-based model; versions differed by the spreadsheet cell-referencing approach (named single cells; column/row references; named matrices). For each version, we implemented three model revisions (re-entry into care; guideline-concordant treatment initiation; immediate treatment initiation). After standard error-checking, we identified unintentional errors by comparing model output across the three versions. Concordant model output across all versions was considered error-free. We calculated the impact of unintentional errors as the percentage difference in model projections between model versions with and without unintentional errors, using +/-5% difference to define a material error. Results We identified 58 original and 4,331 propagated unintentional errors across all model versions and revisions. Over 40% (24/58) of original unintentional errors occurred in the column/row reference model version; most (23/24) were due to incorrect cell references. Overall, >20% of model spreadsheet cells had material unintentional errors. When examining error impact along the HIV care continuum, the percentage difference between versions with and without unintentional errors ranged from +3% to +16% (named single cells), +26% to +76% (column/row reference), and 0% (named matrices). Conclusions Standard error-checking techniques may not identify all errors in spreadsheet-based models. Comparing parallel model versions can aid in identifying unintentional errors and promoting reliable model projections, particularly when resources are limited. PMID:29570737

  16. Implementing parallel spreadsheet models for health policy decisions: The impact of unintentional errors on model projections.

    PubMed

    Bailey, Stephanie L; Bono, Rose S; Nash, Denis; Kimmel, April D

    2018-01-01

    Spreadsheet software is increasingly used to implement systems science models informing health policy decisions, both in academia and in practice where technical capacity may be limited. However, spreadsheet models are prone to unintentional errors that may not always be identified using standard error-checking techniques. Our objective was to illustrate, through a methodologic case study analysis, the impact of unintentional errors on model projections by implementing parallel model versions. We leveraged a real-world need to revise an existing spreadsheet model designed to inform HIV policy. We developed three parallel versions of a previously validated spreadsheet-based model; versions differed by the spreadsheet cell-referencing approach (named single cells; column/row references; named matrices). For each version, we implemented three model revisions (re-entry into care; guideline-concordant treatment initiation; immediate treatment initiation). After standard error-checking, we identified unintentional errors by comparing model output across the three versions. Concordant model output across all versions was considered error-free. We calculated the impact of unintentional errors as the percentage difference in model projections between model versions with and without unintentional errors, using +/-5% difference to define a material error. We identified 58 original and 4,331 propagated unintentional errors across all model versions and revisions. Over 40% (24/58) of original unintentional errors occurred in the column/row reference model version; most (23/24) were due to incorrect cell references. Overall, >20% of model spreadsheet cells had material unintentional errors. When examining error impact along the HIV care continuum, the percentage difference between versions with and without unintentional errors ranged from +3% to +16% (named single cells), +26% to +76% (column/row reference), and 0% (named matrices). Standard error-checking techniques may not identify all errors in spreadsheet-based models. Comparing parallel model versions can aid in identifying unintentional errors and promoting reliable model projections, particularly when resources are limited.

  17. A Hybrid Shared-Memory Parallel Max-Tree Algorithm for Extreme Dynamic-Range Images.

    PubMed

    Moschini, Ugo; Meijster, Arnold; Wilkinson, Michael H F

    2018-03-01

    Max-trees, or component trees, are graph structures that represent the connected components of an image in a hierarchical way. Nowadays, many application fields rely on images with high-dynamic range or floating point values. Efficient sequential algorithms exist to build trees and compute attributes for images of any bit depth. However, we show that the current parallel algorithms perform poorly already with integers at bit depths higher than 16 bits per pixel. We propose a parallel method combining the two worlds of flooding and merging max-tree algorithms. First, a pilot max-tree of a quantized version of the image is built in parallel using a flooding method. Later, this structure is used in a parallel leaf-to-root approach to compute efficiently the final max-tree and to drive the merging of the sub-trees computed by the threads. We present an analysis of the performance both on simulated and actual 2D images and 3D volumes. Execution times are about better than the fastest sequential algorithm and speed-up goes up to on 64 threads.

  18. Parallelized Kalman-Filter-Based Reconstruction of Particle Tracks on Many-Core Architectures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cerati, Giuseppe; Elmer, Peter; Krutelyov, Slava

    Faced with physical and energy density limitations on clock speed, contemporary microprocessor designers have increasingly turned to on-chip parallelism for performance gains. Examples include the Intel Xeon Phi, GPGPUs, and similar technologies. Algorithms should accordingly be designed with ample amounts of fine-grained parallelism if they are to realize the full performance of the hardware. This requirement can be challenging for algorithms that are naturally expressed as a sequence of small-matrix operations, such as the Kalman filter methods widely in use in high-energy physics experiments. In the High-Luminosity Large Hadron Collider (HL-LHC), for example, one of the dominant computational problems ismore » expected to be finding and fitting charged-particle tracks during event reconstruction; today, the most common track-finding methods are those based on the Kalman filter. Experience at the LHC, both in the trigger and offline, has shown that these methods are robust and provide high physics performance. Previously we reported the significant parallel speedups that resulted from our efforts to adapt Kalman-filter-based tracking to many-core architectures such as Intel Xeon Phi. Here we report on how effectively those techniques can be applied to more realistic detector configurations and event complexity.« less

  19. Using the liquid nature of the stationary phase in countercurrent chromatography. IV. The cocurrent CCC method.

    PubMed

    Berthod, Alain; Hassoun, Mahmoud

    2006-05-26

    The retention volumes of solutes in countercurrent chromatography (CCC) are directly proportional to their distribution coefficients, K(D) in the biphasic liquid system used as mobile and stationary phase in the CCC column. The cocurrent CCC method consists in putting the liquid "stationary" phase in slow motion in the same direction as the mobile phase. A mixture of five steroid compounds of widely differing polarities was used as a test mixture to evaluate the capabilities of the method with the biphasic liquid system made of water/methanol/ethyl acetate/heptane 6/5/6/5 (v/v) and a 53 mL CCC column of the coil planet centrifuge type. It is shown that the chromatographic resolution obtained in cocurrent CCC is very good because the solute band broadening is minimized as long as the solute is located inside the "stationary" phase. Pushing the method at its limits, it is demonstrated that the five steroids can still be (partly) separated when the flow rate of the two liquid phases is the same (2 mL/min). This is due to the higher volume of upper phase (72% of the column volume) contained inside the CCC column producing a lower linear speed compared to the aqueous lower phase linear speed. The capabilities of the cocurrent CCC method compare well with those of the gradient elution method in HPLC. Continuous detection is a problem due to the fact that two immiscible liquid phases elute from the column. It was partly solved using an evaporative light scattering detector.

  20. Reference Values for Shear Wave Elastography of Neck and Shoulder Muscles in Healthy Individuals.

    PubMed

    Ewertsen, Caroline; Carlsen, Jonathan; Perveez, Mohammed Aftab; Schytz, Henrik

    2018-01-01

    to establish reference values for ultrasound shear-wave elastography for pericranial muscles in healthy individuals (m. trapezius, m. splenius capitis, m. semispinalis capitis, m. sternocleidomastoideus and m. masseter). Also to evaluate day-to-day variations in the shear-wave speeds and evaluate the effect of the pennation of the muscle fibers, ie scanning parallel or perpendicularly to the fibers. 10 healthy individuals (5 males and 5 females) had their pericranial muscles examined with shear-wave elastography in two orthogonal planes on two different days for their dominant and non-dominant side. Mean shear wave speeds from 5 ROI's in each muscle, for each scan plane for the dominant and non-dominant side for the two days were calculated. The effect of the different parameters - muscle pennation, gender, dominant vs non-dominant side and day was evaluated. The effect of scan plane in relation to muscle pennation was statistically significant (p<0.0001). The mean shear-wave speed when scanning parallel to the muscle fibers was significantly higher than the mean shear-wave speed when scanning perpendicularly to the fibers. The day-to-day variation was statistically significant (p=0.0258), but not clinically relevant. Shear-wave speeds differed significantly between muscles. Mean shear wave speeds (m/s) for the muscles in the parallel plane were: for masseter 2.45 (SD:+/-0.25), semispinal 3.36 (SD:+/-0.75), splenius 3.04 (SD:+/-0.65), sternocleidomastoid 2.75 (SD:+/-0.23), trapezius 3.20 (SD:+/-0.27) and trapezius lateral 3.87 (SD:+/-3.87). The shear wave speed variation depended on the direction of scanning. Shear wave elastography may be a method to evaluate muscle stiffness in patients suffering from chronic neck pain.

Top