Science.gov

Sample records for high-speed ethernet router

  1. Phaser High Speed, High Frequency Electro-Photonic ADC for Space Enabled Router

    NASA Astrophysics Data System (ADS)

    Rodriguez Bejarano, J. M.; Alvaro Sanchez, A.; Sanchez Renedo, M.; Regada Alvarez, R.

    2016-08-01

    Satellites revolution will be brought by the provision of a new generation of cost-effective broadband interactive services.This necessarily imply to increase the processing power on board of spacecraft but at the same time to reduce the mass, power and volume of the payload. This only can be achieved by the development of disruptive components that would replace the elements of classic designs.PHASER product is intended to be a space-grade, high speed digitizer capable of direct RF-sampling up to Ka band signals, exhibiting an improvement of more than two order of magnitude in the digitizer frequency response respect to the SoA, which enables a dramatic hardware complexity reduction for the next generation satellite payloads.This paper introduces the processing capabilities designed for the PHASER demonstrating its suitability for the Space Router scenario, a particular case of Ku- band FSS multibeam system.

  2. High speed packet switching

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This document constitutes the final report prepared by Proteon, Inc. of Westborough, Massachusetts under contract NAS 5-30629 entitled High-Speed Packet Switching (SBIR 87-1, Phase 2) prepared for NASA-Greenbelt, Maryland. The primary goal of this research project is to use the results of the SBIR Phase 1 effort to develop a sound, expandable hardware and software router architecture capable of forwarding 25,000 packets per second through the router and passing 300 megabits per second on the router's internal busses. The work being delivered under this contract received its funding from three different sources: the SNIPE/RIG contract (Contract Number F30602-89-C-0014, CDRL Sequence Number A002), the SBIR contract, and Proteon. The SNIPE/RIG and SBIR contracts had many overlapping requirements, which allowed the research done under SNIPE/RIG to be applied to SBIR. Proteon funded all of the work to develop new router interfaces other than FDDI, in addition to funding the productization of the router itself. The router being delivered under SBIR will be a fully product-quality machine. The work done during this contract produced many significant findings and results, summarized here and explained in detail in later sections of this report. The SNIPE/RIG contract was completed. That contract had many overlapping requirements with the SBIR contract, and resulted in the successful demonstration and delivery of a high speed router. The development that took place during the SNIPE/RIG contract produced findings that included the choice of processor and an understanding of the issues surrounding inter processor communications in a multiprocessor environment. Many significant speed enhancements to the router software were made during that time. Under the SBIR contract (and with help from Proteon-funded work), it was found that a single processor router achieved a throughput significantly higher than originally anticipated. For this reason, a single processor router was

  3. Optical Ethernet

    NASA Astrophysics Data System (ADS)

    Chan, Calvin C. K.; Lam, Cedric F.; Tsang, Danny H. K.

    2005-04-01

    Call for Papers: Optical Ethernet The Journal of Optical Networking (JON) is soliciting papers for a second feature issue on Optical Ethernet. Ethernet has evolved from a LAN technology connecting desktop computers to a universal broadband network interface. It is not only the vehicle for local data connectivity but also the standard interface for next-generation network equipment such as video servers and IP telephony. High-speed Ethernet has been increasingly assuming the volume of backbone network traffic from SONET/SDH-based circuit applications. It is clear that IP has become the universal network protocol for future converged networks, and Ethernet is becoming the ubiquitous link layer for connectivity. Network operators have been offering Ethernet services for several years. Problems and new requirements in Ethernet service offerings have been captured through previous experience. New study groups and standards bodies have been formed to address these problems. This feature issue aims at reviewing and updating the new developments and R&D efforts of high-speed Ethernet in recent years, especially those related to the field of optical networking. The scope of the papers includes, but is not limited to, the following: Ethernet PHY development 10-Gbit Ethernet on multimode fiber Native Ethernet transport and Ethernet on legacy networks EPON Ethernet OAM Resilient packet ring (RPR) and Ethernet QoS definition and management on Ethernet Ethernet protection switching Circuit emulation services on Ethernet Transparent LAN service development Carrier VLAN and Ethernet Ethernet MAC frame expansion Ethernet switching High-speed Ethernet applications Economic models of high-speed Ethernet services Ethernet field deployment and standard activities

  4. Optical Ethernet

    NASA Astrophysics Data System (ADS)

    Chan, Calvin C. K.; Lam, Cedric F.; Tsang, Danny H. K.

    2005-05-01

    Call for Papers: Optical Ethernet The Journal of Optical Networking (JON) is soliciting papers for a second feature issue on Optical Ethernet. Ethernet has evolved from a LAN technology connecting desktop computers to a universal broadband network interface. It is not only the vehicle for local data connectivity but also the standard interface for next-generation network equipment such as video servers and IP telephony. High-speed Ethernet has been increasingly assuming the volume of backbone network traffic from SONET/SDH-based circuit applications. It is clear that IP has become the universal network protocol for future converged networks, and Ethernet is becoming the ubiquitous link layer for connectivity. Network operators have been offering Ethernet services for several years. Problems and new requirements in Ethernet service offerings have been captured through previous experience. New study groups and standards bodies have been formed to address these problems. This feature issue aims at reviewing and updating the new developments and R&D efforts of high-speed Ethernet in recent years, especially those related to the field of optical networking. The scope of the papers includes, but is not limited to, the following: Ethernet PHY development 10-Gbit Ethernet on multimode fiber Native Ethernet transport and Ethernet on legacy networks EPON Ethernet OAM Resilient packet ring (RPR) and Ethernet QoS definition and management on Ethernet Ethernet protection switching Circuit emulation services on Ethernet Transparent LAN service development Carrier VLAN and Ethernet Ethernet MAC frame expansion Ethernet switching High-speed Ethernet applications Economic models of high-speed Ethernet services Ethernet field deployment and standard activities

  5. Optical Ethernet

    NASA Astrophysics Data System (ADS)

    Chan, Calvin C. K.; Lam, Cedric F.; Tsang, Danny H. K.

    2005-07-01

    Call for Papers: Optical Ethernet The Journal of Optical Networking (JON) is soliciting papers for a second feature issue on Optical Ethernet. Ethernet has evolved from a LAN technology connecting desktop computers to a universal broadband network interface. It is not only the vehicle for local data connectivity but also the standard interface for next-generation network equipment such as video servers and IP telephony. High-speed Ethernet has been increasingly assuming the volume of backbone network traffic from SONET/SDH-based circuit applications. It is clear that IP has become the universal network protocol for future converged networks, and Ethernet is becoming the ubiquitous link layer for connectivity. Network operators have been offering Ethernet services for several years. Problems and new requirements in Ethernet service offerings have been captured through previous experience. New study groups and standards bodies have been formed to address these problems. This feature issue aims at reviewing and updating the new developments and R&D efforts of high-speed Ethernet in recent years, especially those related to the field of optical networking. The scope of the papers includes, but is not limited to, the following: Ethernet PHY development 10-Gbit Ethernet on multimode fiber Native Ethernet transport and Ethernet on legacy networks EPON Ethernet OAM Resilient packet ring (RPR) and Ethernet QoS definition and management on Ethernet Ethernet protection switching Circuit emulation services on Ethernet Transparent LAN service development Carrier VLAN and Ethernet Ethernet MAC frame expansion Ethernet switching High-speed Ethernet applications Economic models of high-speed Ethernet services Ethernet field deployment and standard activities

  6. Optical Ethernet

    NASA Astrophysics Data System (ADS)

    Chan, Calvin C. K.; Lam, Cedric F.; Tsang, Danny H. K.

    2005-06-01

    Call for Papers: Optical Ethernet The Journal of Optical Networking (JON) is soliciting papers for a second feature issue on Optical Ethernet. Ethernet has evolved from a LAN technology connecting desktop computers to a universal broadband network interface. It is not only the vehicle for local data connectivity but also the standard interface for next-generation network equipment such as video servers and IP telephony. High-speed Ethernet has been increasingly assuming the volume of backbone network traffic from SONET/SDH-based circuit applications. It is clear that IP has become the universal network protocol for future converged networks, and Ethernet is becoming the ubiquitous link layer for connectivity. Network operators have been offering Ethernet services for several years. Problems and new requirements in Ethernet service offerings have been captured through previous experience. New study groups and standards bodies have been formed to address these problems. This feature issue aims at reviewing and updating the new developments and R&D efforts of high-speed Ethernet in recent years, especially those related to the field of optical networking. The scope of the papers includes, but is not limited to, the following: Ethernet PHY development 10-Gbit Ethernet on multimode fiber Native Ethernet transport and Ethernet on legacy networks EPON Ethernet OAM Resilient packet ring (RPR) and Ethernet QoS definition and management on Ethernet Ethernet protection switching Circuit emulation services on Ethernet Transparent LAN service development Carrier VLAN and Ethernet Ethernet MAC frame expansion Ethernet switching High-speed Ethernet applications Economic models of high-speed Ethernet services Ethernet field deployment and standard activities

  7. Optical Ethernet

    NASA Astrophysics Data System (ADS)

    Chan, Calvin C. K.; Lam, Cedric F.; Tsang, Danny H. K.

    2005-08-01

    Call for Papers: Optical Ethernet The Journal of Optical Networking (JON) is soliciting papers for a second feature issue on Optical Ethernet. Ethernet has evolved from a LAN technology connecting desktop computers to a universal broadband network interface. It is not only the vehicle for local data connectivity but also the standard interface for next-generation network equipment such as video servers and IP telephony. High-speed Ethernet has been increasingly assuming the volume of backbone network traffic from SONET/SDH-based circuit applications. It is clear that IP has become the universal network protocol for future converged networks, and Ethernet is becoming the ubiquitous link layer for connectivity. Network operators have been offering Ethernet services for several years. Problems and new requirements in Ethernet service offerings have been captured through previous experience. New study groups and standards bodies have been formed to address these problems. This feature issue aims at reviewing and updating the new developments and R&D efforts of high-speed Ethernet in recent years, especially those related to the field of optical networking. The scope of the papers includes, but is not limited to, the following: Ethernet PHY development 10-Gbit Ethernet on multimode fiber Native Ethernet transport and Ethernet on legacy networks EPON Ethernet OAM Resilient packet ring (RPR) and Ethernet QoS definition and management on Ethernet Ethernet protection switching Circuit emulation services on Ethernet Transparent LAN service development Carrier VLAN and Ethernet Ethernet MAC frame expansion Ethernet switching High-speed Ethernet applications Economic models of high-speed Ethernet services Ethernet field deployment and standard activities

  8. Optical Ethernet

    NASA Astrophysics Data System (ADS)

    Chan, Calvin C. K.; Lam, Cedric F.; Tsang, Danny H. K.

    2005-09-01

    Call for Papers: Optical Ethernet The Journal of Optical Networking (JON) is soliciting papers for a second feature issue on Optical Ethernet. Ethernet has evolved from a LAN technology connecting desktop computers to a universal broadband network interface. It is not only the vehicle for local data connectivity but also the standard interface for next-generation network equipment such as video servers and IP telephony. High-speed Ethernet has been increasingly assuming the volume of backbone network traffic from SONET/SDH-based circuit applications. It is clear that IP has become the universal network protocol for future converged networks, and Ethernet is becoming the ubiquitous link layer for connectivity. Network operators have been offering Ethernet services for several years. Problems and new requirements in Ethernet service offerings have been captured through previous experience. New study groups and standards bodies have been formed to address these problems. This feature issue aims at reviewing and updating the new developments and R&D efforts of high-speed Ethernet in recent years, especially those related to the field of optical networking. Scope of Submission The scope of the papers includes, but is not limited to, the following: Ethernet PHY development 10-Gbit Ethernet on multimode fiber Native Ethernet transport and Ethernet on legacy networks EPON Ethernet OAM Resilient packet ring (RPR) and Ethernet QoS definition and management on Ethernet Ethernet protection switching Circuit emulation services on Ethernet Transparent LAN service development Carrier VLAN and Ethernet Ethernet MAC frame expansion Ethernet switching High-speed Ethernet applications Economic models of high-speed Ethernet services Ethernet field deployment and standard activities To submit to this special issue, follow the normal procedure for submission to JON, indicating "Optical Ethernet feature" in the "Comments" field of the online submission form. For all other questions

  9. High-Speed Edge Trimming of CFRP and Online Monitoring of Performance of Router Tools Using Acoustic Emission

    PubMed Central

    Prakash, Rangasamy; Krishnaraj, Vijayan; Zitoune, Redouane; Sheikh-Ahmad, Jamal

    2016-01-01

    Carbon fiber reinforced polymers (CFRPs) have found wide-ranging applications in numerous industrial fields such as aerospace, automotive, and shipping industries due to their excellent mechanical properties that lead to enhanced functional performance. In this paper, an experimental study on edge trimming of CFRP was done with various cutting conditions and different geometry of tools such as helical-, fluted-, and burr-type tools. The investigation involves the measurement of cutting forces for the different machining conditions and its effect on the surface quality of the trimmed edges. The modern cutting tools (router tools or burr tools) selected for machining CFRPs, have complex geometries in cutting edges and surfaces, and therefore a traditional method of direct tool wear evaluation is not applicable. An acoustic emission (AE) sensing was employed for on-line monitoring of the performance of router tools to determine the relationship between AE signal and length of machining for different kinds of geometry of tools. The investigation showed that the router tool with a flat cutting edge has better performance by generating lower cutting force and better surface finish with no delamination on trimmed edges. The mathematical modeling for the prediction of cutting forces was also done using Artificial Neural Network and Regression Analysis. PMID:28773919

  10. High-Speed Edge Trimming of CFRP and Online Monitoring of Performance of Router Tools Using Acoustic Emission.

    PubMed

    Prakash, Rangasamy; Krishnaraj, Vijayan; Zitoune, Redouane; Sheikh-Ahmad, Jamal

    2016-09-26

    Carbon fiber reinforced polymers (CFRPs) have found wide-ranging applications in numerous industrial fields such as aerospace, automotive, and shipping industries due to their excellent mechanical properties that lead to enhanced functional performance. In this paper, an experimental study on edge trimming of CFRP was done with various cutting conditions and different geometry of tools such as helical-, fluted-, and burr-type tools. The investigation involves the measurement of cutting forces for the different machining conditions and its effect on the surface quality of the trimmed edges. The modern cutting tools (router tools or burr tools) selected for machining CFRPs, have complex geometries in cutting edges and surfaces, and therefore a traditional method of direct tool wear evaluation is not applicable. An acoustic emission (AE) sensing was employed for on-line monitoring of the performance of router tools to determine the relationship between AE signal and length of machining for different kinds of geometry of tools. The investigation showed that the router tool with a flat cutting edge has better performance by generating lower cutting force and better surface finish with no delamination on trimmed edges. The mathematical modeling for the prediction of cutting forces was also done using Artificial Neural Network and Regression Analysis.

  11. CAGE100: Real-Time Multi-Port Packet Capture System for 100 Gigabit Ethernet Traffic

    SciTech Connect

    Namazi, Ali; Azimi-Sadjadi, Babak; Lin, Chujen

    2012-06-14

    Future large scale sciences are anticipated to use massive amount of data in their experiments. DOE's ESnet (Energy Science Network) is developing a 100 Gbps backbone based on this state-of-the-art 100 Gigabit Ethernet standard. ESnet will serve thousands of DOE and non-DOE scientists with its high bandwidth backbone, and connect several national laboratories. Current Ethernet test and debug solutions, such as network traffic capturer/analyzer tools, support up to 10 Gbps speed, and the very few capable of handling 100 Gbps are extremely costly. Such tools are essential in the development of high speed devices and routers, and ultimately the success of 100 Gigabit Ethernet.

  12. Personal computers on Ethernet

    NASA Technical Reports Server (NTRS)

    Kao, R.

    1988-01-01

    Many researchers in the Division have projects which require transferring large files between their personal computers (PC) and VAX computers in the Laboratory for Oceans Computing Facility (LOCF). Since Ethernet local area network provides high speed communication channels which make file transfers (among other capabilities) practical, a network plan was assembled to connect IBM and IBM compatible PC's to Ethernet for participating personnel. The design employs ThinWire Ethernet technology. A simplified configuration diagram is shown. A DEC multiport repeater (DEMPR) is used for connection of ThinWire Ethernet segments. One port of DEMPR is connected to a H4000 transceiver and the transceiver is clamped onto the Goddard Ethernet backbonecoaxial cable so that the PC's can be optionally on the SPAN network. All these common elements were successfully installed and tested.

  13. Ethernet redundancy

    SciTech Connect

    Burak, K.

    2006-07-01

    We describe the Ethernet systems and their evolution: LAN Segmentation, DUAL networks, network loops, network redundancy and redundant network access. Ethernet (IEEE 802.3) is an open standard with no licensing fees and its specifications are freely available. As a result, it is the most popular data link protocol in use. It is important that the network be redundant and standard Ethernet protocols like RSTP (IEEE 802.1w) provide the fast network fault detection and recovery times that is required today. As Ethernet does continue to evolve, network redundancy is and will be a mixture of technology standards. So it is very important that both end-stations and networking devices be Ethernet (IEEE 802.3) compliant. Then when new technologies, such as the IEEE 802.1aq Shortest Path Bridging protocol, come to market they can be easily deployed in the network without worry.

  14. Performance evaluation of video on ethernet

    SciTech Connect

    Pihlman, M.; Farrell, R.

    1993-08-01

    The purpose of this project was to determine the feasibility of using an ethernet local area network (LAN) to support videoconferencing connections between CAMEO Macintosh desktop videoconferencing systems. The specific goals were to: (1) to ensure that CAMEO video could be transported-without protocol modification-via existing ethernet networks, and would do so without ``bringing-down`` the network; (2) to measure the effect of CAMEO video connections on ethernet traffic; (3) to evaluate qualitatively how generated ethernet traffic effects the CAMEO video; and (4) to evaluate qualitatively how multiple CAMEO connections work between two routered ethernet networks via a backbone. High quality CAMEO video can be transported on an ethernet network and between routered networks, via a backbone. The number of simultaneous video connections possible on an ethernet segment would probably be less than 45, since each connection uses 2.2% of the network and errors increase rapidly as video connections are made. However, the actual number of simultaneous video connections possible will depend upon your network implementation and the amount of ``normal`` traffic present. The remainder of this report discusses the effect of CAMEO video on our networks.

  15. Electronic Router

    NASA Technical Reports Server (NTRS)

    Crusan, Jason

    2005-01-01

    Electronic Router (E-Router) is an application program for routing documents among the cognizant individuals in a government agency or other organization. E-Router supplants a prior 14 NASA Tech Briefs, May 2005 system in which paper documents were routed physically in packages by use of paper slips, packages could be lost, routing times were unacceptably long, tracking of packages was difficult, and there was a need for much photocopying. E-Router enables a user to create a digital package to be routed. Input accepted by E-Router includes the title of the package, the person(s) to whom the package is to be routed, attached files, and comments to reviewers. Electronic mail is used to notify reviewers of needed actions. The creator of the package can, at any time, see the status of the package in the routing structure. At the end of the routing process, E-Router keeps a record of the package and of approvals and/or concurrences of the reviewers. There are commercial programs that perform the general functions of E-Router, but they are more complicated. E-Router is Web-based, easy to use, and does not require the installation or use of client software.

  16. Petaflops router

    DOEpatents

    Baker, Zachary Kent; Power, John Fredrick; Tripp, Justin Leonard; Dunham, Mark Edward; Stettler, Matthew W; Jones, John Alexander

    2014-10-14

    Disclosed is a method and system for performing operations on at least one input data vector in order to produce at least one output vector to permit easy, scalable and fast programming of a petascale equivalent supercomputer. A PetaFlops Router may comprise one or more PetaFlops Nodes, which may be connected to each other and/or external data provider/consumers via a programmable crossbar switch external to the PetaFlops Node. Each PetaFlops Node has a FPGA and a programmable intra-FPGA crossbar switch that permits input and output variables to be configurably connected to various physical operators contained in the FPGA as desired by a user. This allows a user to specify the instruction set of the system on a per-application basis. Further, the intra-FPGA crossbar switch permits the output of one operation to be delivered as an input to a second operation. By configuring the external crossbar switch, the output of a first operation on a first PetaFlops Node may be used as the input for a second operation on a second PetaFlops Node. An embodiment may provide an ability for the system to recognize and generate pipelined functions. Streaming operators may be connected together at run-time and appropriately staged to allow data to flow through a series of functions. This allows the system to provide high throughput and parallelism when possible. The PetaFlops Router may implement the user desired instructions by appropriately configuring the intra-FPGA crossbar switch on each PetaFlops Node and the external crossbar switch.

  17. High speed handpieces

    PubMed Central

    Bhandary, Nayan; Desai, Asavari; Shetty, Y Bharath

    2014-01-01

    High speed instruments are versatile instruments used by clinicians of all specialties of dentistry. It is important for clinicians to understand the types of high speed handpieces available and the mechanism of working. The centers for disease control and prevention have issued guidelines time and again for disinfection and sterilization of high speed handpieces. This article presents the recent developments in the design of the high speed handpieces. With a view to prevent hospital associated infections significant importance has been given to disinfection, sterilization & maintenance of high speed handpieces. How to cite the article: Bhandary N, Desai A, Shetty YB. High speed handpieces. J Int Oral Health 2014;6(1):130-2. PMID:24653618

  18. Router Security Configuration Guide

    DTIC Science & Technology

    2007-11-02

    Providing Router Security Guidance............................................................ 9 1.3. Typographic and Diagrammatic Conventions Used in this...and available software. Router Security Configuration Guide UNCLASSIFIED 10 UNCLASSIFIED Version 1.0g 1.3. Typographic and Diagrammatic... typographic conventions are used as part of presenting the examples. § Specific router and host commands are identified in the text using Courier bold

  19. High Speed Research Program

    NASA Technical Reports Server (NTRS)

    Anderson, Robert E.; Corsiglia, Victor R.; Schmitz, Frederic H. (Technical Monitor)

    1994-01-01

    An overview of the NASA High Speed Research Program will be presented from a NASA Headquarters perspective. The presentation will include the objectives of the program and an outline of major programmatic issues.

  20. High-Speed Photography

    SciTech Connect

    Paisley, D.L.; Schelev, M.Y.

    1998-08-01

    The applications of high-speed photography to a diverse set of subjects including inertial confinement fusion, laser surgical procedures, communications, automotive airbags, lightning etc. are briefly discussed. (AIP) {copyright} {ital 1998 Society of Photo-Optical Instrumentation Engineers.}

  1. High speed door assembly

    DOEpatents

    Shapiro, Carolyn

    1993-01-01

    A high speed door assembly, comprising an actuator cylinder and piston rods, a pressure supply cylinder and fittings, an electrically detonated explosive bolt, a honeycomb structured door, a honeycomb structured decelerator, and a structural steel frame encasing the assembly to close over a 3 foot diameter opening within 50 milliseconds of actuation, to contain hazardous materials and vapors within a test fixture.

  2. High speed door assembly

    DOEpatents

    Shapiro, C.

    1993-04-27

    A high speed door assembly is described, comprising an actuator cylinder and piston rods, a pressure supply cylinder and fittings, an electrically detonated explosive bolt, a honeycomb structured door, a honeycomb structured decelerator, and a structural steel frame encasing the assembly to close over a 3 foot diameter opening within 50 milliseconds of actuation, to contain hazardous materials and vapors within a test fixture.

  3. Implementation of High Speed Distributed Data Acquisition System

    NASA Astrophysics Data System (ADS)

    Raju, Anju P.; Sekhar, Ambika

    2012-09-01

    This paper introduces a high speed distributed data acquisition system based on a field programmable gate array (FPGA). The aim is to develop a "distributed" data acquisition interface. The development of instruments such as personal computers and engineering workstations based on "standard" platforms is the motivation behind this effort. Using standard platforms as the controlling unit allows independence in hardware from a particular vendor and hardware platform. The distributed approach also has advantages from a functional point of view: acquisition resources become available to multiple instruments; the acquisition front-end can be physically remote from the rest of the instrument. High speed data acquisition system transmits data faster to a remote computer system through Ethernet interface. The data is acquired through 16 analog input channels. The input data commands are multiplexed and digitized and then the data is stored in 1K buffer for each input channel. The main control unit in this design is the 16 bit processor implemented in the FPGA. This 16 bit processor is used to set up and initialize the data source and the Ethernet controller, as well as control the flow of data from the memory element to the NIC. Using this processor we can initialize and control the different configuration registers in the Ethernet controller in a easy manner. Then these data packets are sending to the remote PC through the Ethernet interface. The main advantages of the using FPGA as standard platform are its flexibility, low power consumption, short design duration, fast time to market, programmability and high density. The main advantages of using Ethernet controller AX88796 over others are its non PCI interface, the presence of embedded SRAM where transmit and reception buffers are located and high-performance SRAM-like interface. The paper introduces the implementation of the distributed data acquisition using FPGA by VHDL. The main advantages of this system are high

  4. High Speed Video Insertion

    NASA Astrophysics Data System (ADS)

    Janess, Don C.

    1984-11-01

    This paper describes a means of inserting alphanumeric characters and graphics into a high speed video signal and locking that signal to an IRIG B time code. A model V-91 IRIG processor, developed by Instrumentation Technology Systems under contract to Instrumentation Marketing Corporation has been designed to operate in conjunction with the NAC model FHS-200 High Speed Video Camera which operates at 200 fields per second. The system provides for synchronizing the vertical and horizontal drive signals such that the vertical sync precisely coincides with five millisecond transitions in the IRIG time code. Additionally, the unit allows for the insertion of an IRIG time message as well as other data and symbols.

  5. Transfer With SNR High-Speed Transport Protocol.

    DTIC Science & Technology

    1995-12-01

    To validate SNR as a high speed transport protocol, efficient means of transferring large data files are required. The problem is that no file...transfer program is currently implemented for SNR . The SNR protocol was described in IEEE Transactions on Communications 91 Vol. 38 #11. The approach taken...was to modify the Trivial File Transfer Protocol (TFTP) and use it with the SNR Receiver and Transmitter implementations in both the FDDI and Ethernet

  6. High Speed Vortex Flows

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.; Wilcox, Floyd J., Jr.; Bauer, Steven X. S.; Allen, Jerry M.

    2000-01-01

    A review of the research conducted at the National Aeronautics and Space Administration (NASA), Langley Research Center (LaRC) into high-speed vortex flows during the 1970s, 1980s, and 1990s is presented. The data reviewed is for flat plates, cavities, bodies, missiles, wings, and aircraft. These data are presented and discussed relative to the design of future vehicles. Also presented is a brief historical review of the extensive body of high-speed vortex flow research from the 1940s to the present in order to provide perspective of the NASA LaRC's high-speed research results. Data are presented which show the types of vortex structures which occur at supersonic speeds and the impact of these flow structures to vehicle performance and control is discussed. The data presented shows the presence of both small- and large scale vortex structures for a variety of vehicles, from missiles to transports. For cavities, the data show very complex multiple vortex structures exist at all combinations of cavity depth to length ratios and Mach number. The data for missiles show the existence of very strong interference effects between body and/or fin vortices and the downstream fins. It was shown that these vortex flow interference effects could be both positive and negative. Data are shown which highlights the effect that leading-edge sweep, leading-edge bluntness, wing thickness, location of maximum thickness, and camber has on the aerodynamics of and flow over delta wings. The observed flow fields for delta wings (i.e. separation bubble, classical vortex, vortex with shock, etc.) are discussed in the context of' aircraft design. And data have been shown that indicate that aerodynamic performance improvements are available by considering vortex flows as a primary design feature. Finally a discussing of a design approach for wings which utilize vortex flows for improved aerodynamic performance at supersonic speed is presented.

  7. High speed flywheel

    DOEpatents

    McGrath, Stephen V.

    1991-01-01

    A flywheel for operation at high speeds utilizes two or more ringlike coments arranged in a spaced concentric relationship for rotation about an axis and an expansion device interposed between the components for accommodating radial growth of the components resulting from flywheel operation. The expansion device engages both of the ringlike components, and the structure of the expansion device ensures that it maintains its engagement with the components. In addition to its expansion-accommodating capacity, the expansion device also maintains flywheel stiffness during flywheel operation.

  8. High speed flywheel

    SciTech Connect

    McGrath, S.V.

    1991-05-07

    This patent describes a flywheel for operation at high speed which utilizes two or more ringlike components arranged in a spaced concentric relationship for rotation about an axis and an expansion device interposed between the components for accommodating radial growth of the components resulting from flywheel operation. The expansion device engages both of the ringlike components, and the structure of the expansion device ensures that it maintains its engagement with the components. In addition to its expansion-accommodating capacity, the expansion device also maintains flywheel stiffness during flywheel operation.

  9. High speed transient sampler

    DOEpatents

    McEwan, Thomas E.

    1995-01-01

    A high speed sampler comprises a meandered sample transmission line for transmitting an input signal, a straight strobe transmission line for transmitting a strobe signal, and a plurality of sampling gates along the transmission lines. The sampling gates comprise a four terminal diode bridge having a first strobe resistor connected from a first terminal of the bridge to the positive strobe line, a second strobe resistor coupled from the third terminal of the bridge to the negative strobe line, a tap connected to the second terminal of the bridge and to the sample transmission line, and a sample holding capacitor connected to the fourth terminal of the bridge. The resistance of the first and second strobe resistors is much higher than the signal transmission line impedance in the preferred system. This results in a sampling gate which applies a very small load on the sample transmission line and on the strobe generator. The sample holding capacitor is implemented using a smaller capacitor and a larger capacitor isolated from the smaller capacitor by resistance. The high speed sampler of the present invention is also characterized by other optimizations, including transmission line tap compensation, stepped impedance strobe line, a multi-layer physical layout, and unique strobe generator design. A plurality of banks of such samplers are controlled for concatenated or interleaved sample intervals to achieve long sample lengths or short sample spacing.

  10. High speed transient sampler

    DOEpatents

    McEwan, T.E.

    1995-11-28

    A high speed sampler comprises a meandered sample transmission line for transmitting an input signal, a straight strobe transmission line for transmitting a strobe signal, and a plurality of sampling gates along the transmission lines. The sampling gates comprise a four terminal diode bridge having a first strobe resistor connected from a first terminal of the bridge to the positive strobe line, a second strobe resistor coupled from the third terminal of the bridge to the negative strobe line, a tap connected to the second terminal of the bridge and to the sample transmission line, and a sample holding capacitor connected to the fourth terminal of the bridge. The resistance of the first and second strobe resistors is much higher than the signal transmission line impedance in the preferred system. This results in a sampling gate which applies a very small load on the sample transmission line and on the strobe generator. The sample holding capacitor is implemented using a smaller capacitor and a larger capacitor isolated from the smaller capacitor by resistance. The high speed sampler of the present invention is also characterized by other optimizations, including transmission line tap compensation, stepped impedance strobe line, a multi-layer physical layout, and unique strobe generator design. A plurality of banks of such samplers are controlled for concatenated or interleaved sample intervals to achieve long sample lengths or short sample spacing. 17 figs.

  11. High speed multiphoton imaging

    NASA Astrophysics Data System (ADS)

    Li, Yongxiao; Brustle, Anne; Gautam, Vini; Cockburn, Ian; Gillespie, Cathy; Gaus, Katharina; Lee, Woei Ming

    2016-12-01

    Intravital multiphoton microscopy has emerged as a powerful technique to visualize cellular processes in-vivo. Real time processes revealed through live imaging provided many opportunities to capture cellular activities in living animals. The typical parameters that determine the performance of multiphoton microscopy are speed, field of view, 3D imaging and imaging depth; many of these are important to achieving data from in-vivo. Here, we provide a full exposition of the flexible polygon mirror based high speed laser scanning multiphoton imaging system, PCI-6110 card (National Instruments) and high speed analog frame grabber card (Matrox Solios eA/XA), which allows for rapid adjustments between frame rates i.e. 5 Hz to 50 Hz with 512 × 512 pixels. Furthermore, a motion correction algorithm is also used to mitigate motion artifacts. A customized control software called Pscan 1.0 is developed for the system. This is then followed by calibration of the imaging performance of the system and a series of quantitative in-vitro and in-vivo imaging in neuronal tissues and mice.

  12. High speed flywheel

    SciTech Connect

    McGrath, S.V.

    1990-01-01

    This invention relates generally to flywheels and relates more particularly to the construction of a high speed, low-mass flywheel. Flywheels with which this invention is to be compared include those constructed of circumferentially wound filaments or fibers held together by a matrix or bonding material. Flywheels of such construction are known to possess a relatively high hoop strength but a relatively low radial strength. Hoop-wound flywheels are, therefore, particularly susceptible to circumferential cracks, and the radial stress limitations of such a flywheel substantially limit its speed capabilities. It is an object of the present invention to provide a new and improved flywheel which experiences reduced radial stress at high operating speeds. Another object of the present invention is to provide flywheel whose construction allows for radial growth as flywheel speed increases while providing the necessary stiffness for transferring and maintaining kinetic energy within the flywheel. Still another object of the present invention is to provide a flywheel having concentrically-disposed component parts wherein rotation induced radial stresses at the interfaces of such component parts approach zero. Yet another object of the present invention is to provide a flywheel which is particularly well-suited for high speed applications. 5 figs.

  13. Mobile Router Technology Development

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.; Stewart, David H.; Bell, Terry L.; Kachmar, Brian A.; Shell, Dan; Leung, Kent

    2002-01-01

    Cisco Systems and NASA have been performing joint research on mobile routing technology under a NASA Space Act Agreement. Cisco developed mobile router technology and provided that technology to NASA for applications to aeronautic and space-based missions. NASA has performed stringent performance testing of the mobile router, including the interaction of routing and transport-level protocols. This paper describes mobile routing, the mobile router, and some key configuration parameters. In addition, the paper describes the mobile routing test network and test results documenting the performance of transport protocols in dynamic routing environments.

  14. HIGH SPEED CAMERA

    DOEpatents

    Rogers, B.T. Jr.; Davis, W.C.

    1957-12-17

    This patent relates to high speed cameras having resolution times of less than one-tenth microseconds suitable for filming distinct sequences of a very fast event such as an explosion. This camera consists of a rotating mirror with reflecting surfaces on both sides, a narrow mirror acting as a slit in a focal plane shutter, various other mirror and lens systems as well as an innage recording surface. The combination of the rotating mirrors and the slit mirror causes discrete, narrow, separate pictures to fall upon the film plane, thereby forming a moving image increment of the photographed event. Placing a reflecting surface on each side of the rotating mirror cancels the image velocity that one side of the rotating mirror would impart, so as a camera having this short a resolution time is thereby possible.

  15. High speed civil transport

    NASA Technical Reports Server (NTRS)

    Bogardus, Scott; Loper, Brent; Nauman, Chris; Page, Jeff; Parris, Rusty; Steinbach, Greg

    1990-01-01

    The design process of the High Speed Civil Transport (HSCT) combines existing technology with the expectation of future technology to create a Mach 3.0 transport. The HSCT was designed to have a range in excess of 6000 nautical miles and carry up to 300 passengers. This range will allow the HSCT to service the economically expanding Pacific Basin region. Effort was made in the design to enable the aircraft to use conventional airports with standard 12,000 foot runways. With a takeoff thrust of 250,000 pounds, the four supersonic through-flow engines will accelerate the HSCT to a cruise speed of Mach 3.0. The 679,000 pound (at takeoff) HSCT is designed to cruise at an altitude of 70,000 feet, flying above most atmospheric disturbances.

  16. Universal router concept

    NASA Technical Reports Server (NTRS)

    Pesch, W. A.

    1970-01-01

    Portable universal router can cut holes of large diameter and irregular shapes, machine recesses, and drill holes with certain edge-distance limitations. Rectangular and round holes may be cut without a template.

  17. High speed civil transport

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This report discusses the design and marketability of a next generation supersonic transport. Apogee Aeronautics Corporation has designated its High Speed Civil Transport (HSCT): Supercruiser HS-8. Since the beginning of the Concorde era, the general consensus has been that the proper time for the introduction of a next generation Supersonic Transport (SST) would depend upon the technical advances made in the areas of propulsion (reduction in emissions) and material composites (stronger, lighter materials). It is believed by many in the aerospace industry that these beforementioned technical advances lie on the horizon. With this being the case, this is the proper time to begin the design phase for the next generation HSCT. The design objective for a HSCT was to develop an aircraft that would be capable of transporting at least 250 passengers with baggage at a distance of 5500 nmi. The supersonic Mach number is currently unspecified. In addition, the design had to be marketable, cost effective, and certifiable. To achieve this goal, technical advances in the current SST's must be made, especially in the areas of aerodynamics and propulsion. As a result of these required aerodynamic advances, several different supersonic design concepts were reviewed.

  18. High Speed Ice Friction

    NASA Astrophysics Data System (ADS)

    Seymour-Pierce, Alexandra; Sammonds, Peter; Lishman, Ben

    2014-05-01

    Many different tribological experiments have been run to determine the frictional behaviour of ice at high speeds, ostensibly with the intention of applying results to everyday fields such as winter tyres and sports. However, experiments have only been conducted up to linear speeds of several metres a second, with few additional subject specific studies reaching speeds comparable to these applications. Experiments were conducted in the cold rooms of the Rock and Ice Physics Laboratory, UCL, on a custom built rotational tribometer based on previous literature designs. Preliminary results from experiments run at 2m/s for ice temperatures of 271 and 263K indicate that colder ice has a higher coefficient of friction, in accordance with the literature. These results will be presented, along with data from further experiments conducted at temperatures between 259-273K (in order to cover a wide range of the temperature dependent behaviour of ice) and speeds of 2-15m/s to produce a temperature-velocity-friction map for ice. The effect of temperature, speed and slider geometry on the deformation of ice will also be investigated. These speeds are approaching those exhibited by sports such as the luge (where athletes slide downhill on an icy track), placing the tribological work in context.

  19. High speed transition prediction

    NASA Technical Reports Server (NTRS)

    Gasperas, Gediminis

    1992-01-01

    The main objective of this work period was to develop, acquire and apply state-of-the-art tools for the prediction of transition at high speeds at NASA Ames. Although various stability codes as well as basic state codes were acquired, the development of a new Parabolized Stability Equation (PSE) code was minimal. The time that was initially allocated for development was used on other tasks, in particular for the Leading Edge Suction problem, in acquiring proficiency in various graphics tools, and in applying these tools to evaluate various Navier-Stokes and Euler solutions. The second objective of this work period was to attend the Transition and Turbulence Workshop at NASA Langley in July and August, 1991. A report on the Workshop follows. From July 8, 1991 to August 2, 1991, the author participated in the Transition and Turbulence Workshop at NASA Langley. For purposes of interest here, analysis can be said to consist of solving simplified governing equations by various analytical methods, such as asymptotic methods, or by use of very meager computer resources. From the composition of the various groups at the Workshop, it can be seen that analytical methods are generally more popular in Great Britain than they are in the U.S., possibly due to historical factors and the lack of computer resources. Experimenters at the Workshop were mostly concerned with subsonic flows, and a number of demonstrations were provided, among which were a hot-wire experiment to probe the boundary layer on a rotating disc, a hot-wire rake to map a free shear layer behind a cylinder, and the use of heating strips on a flat plate to control instability waves and consequent transition. A highpoint of the demonstrations was the opportunity to observe the rather noisy 'quiet' supersonic pilot tunnel in operation.

  20. High Speed Fibre Optic Backbone LAN

    NASA Astrophysics Data System (ADS)

    Tanimoto, Masaaki; Hara, Shingo; Kajita, Yuji; Kashu, Fumitoshi; Ikeuchi, Masaru; Hagihara, Satoshi; Tsuzuki, Shinji

    1987-09-01

    Our firm has developed the SUMINET-4100 series, a fibre optic local area network (LAN), to serve the communications system trunk line needs for facilities, such as steel refineries, automobile plants and university campuses, that require large transmission capacity, and for the backbone networks used in intelligent building systems. The SUMINET-4100 series is already in service in various fields of application. Of the networks available in this series, the SUMINET-4150 has a trunk line speed of 128 Mbps and the multiplexer used for time division multiplexing (TDM) was enabled by designing an ECL-TTL gate array (3000 gates) based custom LSI. The synchronous, full-duplex V.24 and V.3.5 interfaces (SUMINET-2100) are provided for use with general purpose lines. And the IBM token ring network, the SUMINET-3200, designed for heterogeneous PCs and the Ethernet can all be connected to sub loops. Further, the IBM 3270 TCA and 5080 CADAM can be connected in the local mode. Interfaces are also provided for the NTT high-speed digital service, the digital PBX systems, and the Video CODEC system. The built-in loop monitor (LM) and network supervisory processor (NSP) provide management of loop utilization and send loop status signals to the host CPU's network configuration and control facility (NCCF). These built-in functions allow both the computer system and LAN to be managed from a single source at the host. This paper outlines features of the SUMINET-4150 and provides an example of its installation.

  1. Gated high speed optical detector

    NASA Technical Reports Server (NTRS)

    Green, S. I.; Carson, L. M.; Neal, G. W.

    1973-01-01

    The design, fabrication, and test of two gated, high speed optical detectors for use in high speed digital laser communication links are discussed. The optical detectors used a dynamic crossed field photomultiplier and electronics including dc bias and RF drive circuits, automatic remote synchronization circuits, automatic gain control circuits, and threshold detection circuits. The equipment is used to detect binary encoded signals from a mode locked neodynium laser.

  2. A simulation-based study of HighSpeed TCP and its deployment

    SciTech Connect

    Souza, Evandro de

    2003-05-01

    The current congestion control mechanism used in TCP has difficulty reaching full utilization on high speed links, particularly on wide-area connections. For example, the packet drop rate needed to fill a Gigabit pipe using the present TCP protocol is below the currently achievable fiber optic error rates. HighSpeed TCP was recently proposed as a modification of TCP's congestion control mechanism to allow it to achieve reasonable performance in high speed wide-area links. In this research, simulation results showing the performance of HighSpeed TCP and the impact of its use on the present implementation of TCP are presented. Network conditions including different degrees of congestion, different levels of loss rate, different degrees of bursty traffic and two distinct router queue management policies were simulated. The performance and fairness of HighSpeed TCP were compared to the existing TCP and solutions for bulk-data transfer using parallel streams.

  3. Gigabit Ethernet: A Technical Assessment.

    ERIC Educational Resources Information Center

    Axner, David

    1997-01-01

    Describes gigabit ethernet for LAN (local area network) technology that will expand ethernet bandwidth. Technical details are discussed, including protocol stacks, optical fiber, deployment strategy for performance improvement, ATM (Asynchronous Transfer Mode), real-time protocol, reserve reservation protocol, and standards. (LRW)

  4. High-Speed Electrochemical Imaging.

    PubMed

    Momotenko, Dmitry; Byers, Joshua C; McKelvey, Kim; Kang, Minkyung; Unwin, Patrick R

    2015-09-22

    The design, development, and application of high-speed scanning electrochemical probe microscopy is reported. The approach allows the acquisition of a series of high-resolution images (typically 1000 pixels μm(-2)) at rates approaching 4 seconds per frame, while collecting up to 8000 image pixels per second, about 1000 times faster than typical imaging speeds used up to now. The focus is on scanning electrochemical cell microscopy (SECCM), but the principles and practicalities are applicable to many electrochemical imaging methods. The versatility of the high-speed scan concept is demonstrated at a variety of substrates, including imaging the electroactivity of a patterned self-assembled monolayer on gold, visualization of chemical reactions occurring at single wall carbon nanotubes, and probing nanoscale electrocatalysts for water splitting. These studies provide movies of spatial variations of electrochemical fluxes as a function of potential and a platform for the further development of high speed scanning with other electrochemical imaging techniques.

  5. SEAL FOR HIGH SPEED CENTRIFUGE

    DOEpatents

    Skarstrom, C.W.

    1957-12-17

    A seal is described for a high speed centrifuge wherein the centrifugal force of rotation acts on the gasket to form a tight seal. The cylindrical rotating bowl of the centrifuge contains a closure member resting on a shoulder in the bowl wall having a lower surface containing bands of gasket material, parallel and adjacent to the cylinder wall. As the centrifuge speed increases, centrifugal force acts on the bands of gasket material forcing them in to a sealing contact against the cylinder wall. This arrangememt forms a simple and effective seal for high speed centrifuges, replacing more costly methods such as welding a closure in place.

  6. High speed multiwire photon camera

    NASA Technical Reports Server (NTRS)

    Lacy, Jeffrey L. (Inventor)

    1991-01-01

    An improved multiwire proportional counter camera having particular utility in the field of clinical nuclear medicine imaging. The detector utilizes direct coupled, low impedance, high speed delay lines, the segments of which are capacitor-inductor networks. A pile-up rejection test is provided to reject confused events otherwise caused by multiple ionization events occuring during the readout window.

  7. High speed multiwire photon camera

    NASA Technical Reports Server (NTRS)

    Lacy, Jeffrey L. (Inventor)

    1989-01-01

    An improved multiwire proportional counter camera having particular utility in the field of clinical nuclear medicine imaging. The detector utilizes direct coupled, low impedance, high speed delay lines, the segments of which are capacitor-inductor networks. A pile-up rejection test is provided to reject confused events otherwise caused by multiple ionization events occurring during the readout window.

  8. CHEETAH: circuit-switched high-speed end-to-end transport architecture

    NASA Astrophysics Data System (ADS)

    Veeraraghavan, Malathi; Zheng, Xuan; Lee, Hyuk; Gardner, M.; Feng, Wuchun

    2003-10-01

    Leveraging the dominance of Ethernet in LANs and SONET/SDH in MANs and WANs, we propose a service called CHEETAH (Circuit-switched High-speed End-to-End Transport ArcHitecture). The service concept is to provide end hosts with high-speed, end-to-end circuit connectivity on a call-by-call shared basis, where a "circuit" consists of Ethernet segments at the ends that are mapped into Ethernet-over-SONET long-distance circuits. This paper focuses on the file-transfer application for such circuits. For this application, the CHEETAH service is proposed as an add-on to the primary Internet access service already in place for enterprise hosts. This allows an end host that is sending a file to first attempt setting up an end-to-end Ethernet/EoS circuit, and if rejected, fall back to the TCP/IP path. If the circuit setup is successful, the end host will enjoy a much shorter file-transfer delay than on the TCP/IP path. To determine the conditions under which an end host with access to the CHEETAH service should attempt circuit setup, we analyze mean file-transfer delays as a function of call blocking probability in the circuit-switched network, probability of packet loss in the IP network, round-trip times, link rates, and so on.

  9. High Speed Photometry for BUSCA

    NASA Astrophysics Data System (ADS)

    Cordes, O.; Reif, K.

    The camera BUSCA (Bonn University Simultaneous CAmera) is a standard instrument at the 2.2m telescope at Calar Alto Observatory (Spain) since 2001. At the moment some modifications of BUSCA are planned and partially realised. One major goal is the replacement of the old thick CCDs in the blue, yellow-green, and near-infrared channels. The newer CCDs have better cosmetics and performance in sensitivity. The other goal is to replace the old "Heidelberg"-style controller with a newly designed controller with the main focus on high-speed readout and on an advanced windowing mechanism. We present a theoretical analysis of the new controller design and its advantage in high speed photometry of rapidly pulsating stars. As an example PG1605+072 was chosen which was observed with BUSCA before in 2001 and 2002.

  10. High-speed rotorcraft propulsion

    NASA Technical Reports Server (NTRS)

    Rutherford, John W.; Fitzpatrick, Robert E.

    1991-01-01

    Recently completed high-speed rotorcraft design studies for NASA provide the basis to assess technology needs for the development of these aircraft. Preliminary analysis of several concepts possessing helicopter-like hover characteristics and cruise capabilities in the 450 knot regime, led to the selection of two concepts for further study. The concepts selected included the Rotor/Wing and the Tilt Wing. The two unique concepts use turbofan and turboshaft engines respectively. Designs, based on current technology for each, established a baseline configuration from which technology trade studies could be conducted. Propulsion technology goals from the IHPTET program established the advanced technolgy year. Due to high-speed requirements, each concept possesses its own unique propulsion challenges. Trade studies indicate that achieving th IHPTET Phase III goals significantly improves the effectiveness of both concepts. Increased engine efficiency is particularly important to VTOL aircraft by reducing gross weight.

  11. High-speed code validation

    NASA Technical Reports Server (NTRS)

    Barnwell, Richard W.; Rogers, R. Clayton; Pittman, James L.; Dwoyer, Douglas L.

    1987-01-01

    The topics are presented in viewgraph form and include the following: NFL body experiment; high-speed validation problems; 3-D Euler/Navier-Stokes inlet code; two-strut inlet configuration; pressure contours in two longitudinal planes; sidewall pressure distribution; pressure distribution on strut inner surface; inlet/forebody tests in 60 inch helium tunnel; pressure distributions on elliptical missile; code validations; small scale test apparatus; CARS nonintrusive measurements; optimized cone-derived waverider study; etc.

  12. Focused Mission High Speed Combatant

    DTIC Science & Technology

    2003-05-09

    hull types to determine which hull type best meets the requirements for the Focused Mission High Speed Combatant. The first step in the analysis...MAPC, uses parametric models and scaling to create high level designs of various hull types. The inputs are desired speed , range, payload, sea state...reached 10 SWATH vessels exhibit superior seakeeping at near zero speed compared to other hull forms 5 Assumes 2 equal-sized GE Gas Turbines 11

  13. Bufferless Ultra-High Speed All-Optical Packet Routing

    NASA Astrophysics Data System (ADS)

    Muttagi, Shrihari; Prince, Shanthi

    2011-10-01

    All-Optical network is still in adolescence to cope up with steep rise in data traffic at the backbone network. Routing of packets in optical network depends on the processing speed of the All-Optical routers, thus there is a need to enhance optical processing to curb the delay in packet forwarding unit. In the proposed scheme, the header processing takes place on fly, therefore processing delay is at its lower limit. The objective is to propose a framework which establishes high data rate transmission with least latency in data routing from source to destination. The Routing table and optical header pulses are converted into Pulse Position (PP) format, thus reducing the complexity and in turn the processing delay. Optical pulse matching is exercised which results in multi-output transmission. This results in ultra-high speed packet forwarding unit. In addition, this proposed scheme includes dispersion compensation unit, which makes the data reliable.

  14. Ethernet for Aerospace Applications - Ethernet Heads for the Skies

    NASA Technical Reports Server (NTRS)

    Grams, Paul R.

    2015-01-01

    One of the goals of aerospace applications is to reduce the cost and complexity of avionic systems. Ethernet is a highly scalable, flexible, and popular protocol. The aerospace market is large, with a forecasted production of over 50,000 turbine-powered aircraft valued at $1.7 trillion between 2012 and 2022. Boeing estimates demand for commercial aircraft by 2033 to total over 36,000 with a value of over $5 trillion. In 2014 US airlines served over 750 million passengers and this is growing over 2% yearly. Electronic fly-by-wire is now used for all airliners and high performance aircraft. Although Ethernet has been widely used for four decades, its use in aerospace applications is just beginning to become common. Ethernet is the universal solution in commercial networks because of its high bandwidths, lower cost, openness, reliability, maintainability, flexibility, and interoperability. However, when Ethernet was designed applications with time-critical, safety relevant and deterministic requirements were not given much consideration. Many aerospace applications use a variety of communication architectures that add cost and complexity. Some of them are SpaceWire, MIL-STD-1553, Avionics Full Duplex Switched Ethernet (AFDX), and Time-Triggered Ethernet (TTE). Aerospace network designers desire to decrease the number of networks to reduce cost and effort while improving scalability, flexibility, openness, maintainability, and reliability. AFDX and TTE are being considered more for critical aerospace systems because they provide redundancy, failover protection, guaranteed timing, and frame priority and are based on Ethernet IEEE 802.3. This paper explores the use of AFDX and TTE for aerospace applications.

  15. High speed quantitative digital microscopy

    NASA Technical Reports Server (NTRS)

    Castleman, K. R.; Price, K. H.; Eskenazi, R.; Ovadya, M. M.; Navon, M. A.

    1984-01-01

    Modern digital image processing hardware makes possible quantitative analysis of microscope images at high speed. This paper describes an application to automatic screening for cervical cancer. The system uses twelve MC6809 microprocessors arranged in a pipeline multiprocessor configuration. Each processor executes one part of the algorithm on each cell image as it passes through the pipeline. Each processor communicates with its upstream and downstream neighbors via shared two-port memory. Thus no time is devoted to input-output operations as such. This configuration is expected to be at least ten times faster than previous systems.

  16. A high speed sequential decoder

    NASA Technical Reports Server (NTRS)

    Lum, H., Jr.

    1972-01-01

    The performance and theory of operation for the High Speed Hard Decision Sequential Decoder are delineated. The decoder is a forward error correction system which is capable of accepting data from binary-phase-shift-keyed and quadriphase-shift-keyed modems at input data rates up to 30 megabits per second. Test results show that the decoder is capable of maintaining a composite error rate of 0.00001 at an input E sub b/N sub o of 5.6 db. This performance has been obtained with minimum circuit complexity.

  17. High speed holographic digital recorder.

    PubMed

    Roberts, H N; Watkins, J W; Johnson, R H

    1974-04-01

    Concepts, feasibility experiments, and key component developments are described for a holographic digital record/reproduce system with the potential for 1.0 Gbit/sec rates and higher. Record rates of 500 Mbits/sec have been demonstrated with a ten-channel acoustooptic modulator array and a mode-locked, cavity-dumped argon-ion laser. Acoustooptic device technology has been advanced notably during the development of mode lockers, cavity dumpers, beam deflectors, and multichannel modulator arrays. The development of high speed multichannel photodetector arrays for the readout subsystem requires special attention. The feasibility of 1.0 Gbits/sec record rates has been demonstrated.

  18. High Speed Holographic Movie Camera

    NASA Astrophysics Data System (ADS)

    Hentschel, W.; Lauterborn, W.

    1985-08-01

    A high speed holographic movie camera system has been developed to investigate the dynamic behavior of cavitation bubbles in liquids. As a light source for holography, a high power multiply cavity-dumped argonion laser is used to record very long hologram series with framing rates up to 300 kHz. For separating successively recorded holograms, two spatial multiplexing techniques are applied simultaneously: rotation of the holographic plate or film and acousto-optic beam deflection. With the combination of these two techniques we achieve up to 4000 single holograms in one series.

  19. High Speed Holographic Movie Camera

    NASA Astrophysics Data System (ADS)

    Hentschel, W.; Lauterborn, W.

    1985-02-01

    A high speed holographic movie camera system has been developed in our laboratories at the Third Physical Institute of the University of Gdttingen. As a light source for holography a high power multiply cavity-dumped argonion laser is used to record very long hologram series with framing rates up to 300 kHz. For separating successively recorded holograms two spatial multiplexing techniques are applied simultaneously: rotating of the holographic plate or film and acousto-optic beam deflection. With the combination of these two techniques we achieve up to 4000 single holograms in one series.

  20. Flexible high-speed CODEC

    NASA Technical Reports Server (NTRS)

    Segallis, Greg P.; Wernlund, Jim V.; Corry, Glen

    1993-01-01

    This report is prepared by Harris Government Communication Systems Division for NASA Lewis Research Center under contract NAS3-25087. It is written in accordance with SOW section 4.0 (d) as detailed in section 2.6. The purpose of this document is to provide a summary of the program, performance results and analysis, and a technical assessment. The purpose of this program was to develop a flexible, high-speed CODEC that provides substantial coding gain while maintaining bandwidth efficiency for use in both continuous and bursted data environments for a variety of applications.

  1. High speed quantitative digital microscopy

    NASA Technical Reports Server (NTRS)

    Castleman, K. R.; Price, K. H.; Eskenazi, R.; Ovadya, M. M.; Navon, M. A.

    1984-01-01

    Modern digital image processing hardware makes possible quantitative analysis of microscope images at high speed. This paper describes an application to automatic screening for cervical cancer. The system uses twelve MC6809 microprocessors arranged in a pipeline multiprocessor configuration. Each processor executes one part of the algorithm on each cell image as it passes through the pipeline. Each processor communicates with its upstream and downstream neighbors via shared two-port memory. Thus no time is devoted to input-output operations as such. This configuration is expected to be at least ten times faster than previous systems.

  2. High-Speed TCP Testing

    NASA Technical Reports Server (NTRS)

    Brooks, David E.; Gassman, Holly; Beering, Dave R.; Welch, Arun; Hoder, Douglas J.; Ivancic, William D.

    1999-01-01

    Transmission Control Protocol (TCP) is the underlying protocol used within the Internet for reliable information transfer. As such, there is great interest to have all implementations of TCP efficiently interoperate. This is particularly important for links exhibiting long bandwidth-delay products. The tools exist to perform TCP analysis at low rates and low delays. However, for extremely high-rate and lone-delay links such as 622 Mbps over geosynchronous satellites, new tools and testing techniques are required. This paper describes the tools and techniques used to analyze and debug various TCP implementations over high-speed, long-delay links.

  3. Remote Transmission at High Speed

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Omni and NASA Test Operations at Stennis entered a Dual-Use Agreement to develop the FOTR-125, a 125 megabit-per-second fiber-optic transceiver that allows accurate digital recordings over a great distance. The transceiver s fiber-optic link can be as long as 25 kilometers. This makes it much longer than the standard coaxial link, which can be no longer than 50 meters.The FOTR-125 utilizes laser diode transmitter modules and integrated receivers for the optical interface. Two transmitters and two receivers are employed at each end of the link with automatic or manual switchover to maximize the reliability of the communications link. NASA uses the transceiver in Stennis High-Speed Data Acquisition System (HSDAS). The HSDAS consists of several identical systems installed on the Center s test stands to process all high-speed data related to its propulsion test programs. These transceivers allow the recorder and HSDAS controls to be located in the Test Control Center in a remote location while the digitizer is located on the test stand.

  4. High-speed phosphor thermometry.

    PubMed

    Fuhrmann, N; Baum, E; Brübach, J; Dreizler, A

    2011-10-01

    Phosphor thermometry is a semi-invasive surface temperature measurement technique utilising the luminescence properties of doped ceramic materials. Typically, these phosphor materials are coated onto the object of interest and are excited by a short UV laser pulse. Up to now, primarily Q-switched laser systems with repetition rates of 10 Hz were employed for excitation. Accordingly, this diagnostic tool was not applicable to resolve correlated temperature transients at time scales shorter than 100 ms. This contribution reports on the first realisation of a high-speed phosphor thermometry system employing a highly repetitive laser in the kHz regime and a fast decaying phosphor. A suitable material was characterised regarding its temperature lifetime characteristic and its measurement precision. Additionally, the influence of laser power on the phosphor coating was investigated in terms of heating effects. A demonstration of this high-speed technique has been conducted inside the thermally highly transient system of an optically accessible internal combustion engine. Temperatures have been measured with a repetition rate of 6 kHz corresponding to one sample per crank angle degree at 1000 rpm.

  5. High-speed phosphor thermometry

    NASA Astrophysics Data System (ADS)

    Fuhrmann, N.; Baum, E.; Brübach, J.; Dreizler, A.

    2011-10-01

    Phosphor thermometry is a semi-invasive surface temperature measurement technique utilising the luminescence properties of doped ceramic materials. Typically, these phosphor materials are coated onto the object of interest and are excited by a short UV laser pulse. Up to now, primarily Q-switched laser systems with repetition rates of 10 Hz were employed for excitation. Accordingly, this diagnostic tool was not applicable to resolve correlated temperature transients at time scales shorter than 100 ms. This contribution reports on the first realisation of a high-speed phosphor thermometry system employing a highly repetitive laser in the kHz regime and a fast decaying phosphor. A suitable material was characterised regarding its temperature lifetime characteristic and its measurement precision. Additionally, the influence of laser power on the phosphor coating was investigated in terms of heating effects. A demonstration of this high-speed technique has been conducted inside the thermally highly transient system of an optically accessible internal combustion engine. Temperatures have been measured with a repetition rate of 6 kHz corresponding to one sample per crank angle degree at 1000 rpm.

  6. Mobile Router Developed and Tested

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.

    2002-01-01

    The NASA Glenn Research Center, under a NASA Space Act Agreement with Cisco Systems, has been performing joint networking research to apply Internet-based technologies and protocols to space-based communications. As a result of this research, NASA performed stringent performance testing of the mobile router, including the interaction of routing and the transport-level protocol. In addition, Cisco Systems developed the mobile router for both commercial and Government markets. The code has become part of the Cisco Systems Internetworking Operating System (IOS) as of release 12.2 (4) T--which will make this capability available to the community at large. The mobile router is software code that resides in a network router and enables entire networks to roam while maintaining connectivity to the Internet. This router code is pertinent to a myriad of applications for both Government and commercial sectors, including the "wireless battlefield." NASA and the Department of Defense will utilize this technology for near-planetary observation and sensing spacecraft. It is also a key enabling technology for aviation-based information applications. Mobile routing will make it possible for information such as weather, air traffic control, voice, and video to be transmitted to aircraft using Internet-based protocols. This technology shows great promise in reducing congested airways and mitigating aviation disasters due to bad weather. The mobile router can also be incorporated into emergency vehicles (such as ambulances and life-flight aircraft) to provide real-time connectivity back to the hospital and health-care experts, enabling the timely application of emergency care. Commercial applications include entertainment services, Internet protocol (IP) telephone, and Internet connectivity for cruise ships, commercial shipping, tour buses, aircraft, and eventually cars. A mobile router, which is based on mobile IP, allows hosts (mobile nodes) to seamlessly "roam" among various IP

  7. Experiments on high speed ejectors

    NASA Technical Reports Server (NTRS)

    Wu, J. J.

    1986-01-01

    Experimental studies were conducted to investigate the flow and the performance of thrust augmenting ejectors for flight Mach numbers in the range of 0.5 to 0.8, primary air stagnation pressures up to 107 psig (738 kPa), and primary air stagnation temperatures up to 1250 F (677 C). The experiment verified the existence of the second solution ejector flow, where the flow after complete mixing is supersonic. Thrust augmentation in excess of 1.2 was demonstrated for both hot and cold primary jets. The experimental ejector performed better than the corresponding theoretical optimal first solution ejector, where the mixed flow is subsonic. Further studies are required to realize the full potential of the second solution ejector. The research program was started by the Flight Dynamics Research Corporation (FDRC) to investigate the characteristic of a high speed ejector which augments thrust of a jet at high flight speeds.

  8. High-speed data search

    NASA Technical Reports Server (NTRS)

    Driscoll, James N.

    1994-01-01

    The high-speed data search system developed for KSC incorporates existing and emerging information retrieval technology to help a user intelligently and rapidly locate information found in large textual databases. This technology includes: natural language input; statistical ranking of retrieved information; an artificial intelligence concept called semantics, where 'surface level' knowledge found in text is used to improve the ranking of retrieved information; and relevance feedback, where user judgements about viewed information are used to automatically modify the search for further information. Semantics and relevance feedback are features of the system which are not available commercially. The system further demonstrates focus on paragraphs of information to decide relevance; and it can be used (without modification) to intelligently search all kinds of document collections, such as collections of legal documents medical documents, news stories, patents, and so forth. The purpose of this paper is to demonstrate the usefulness of statistical ranking, our semantic improvement, and relevance feedback.

  9. Small Scale High Speed Turbomachinery

    NASA Technical Reports Server (NTRS)

    London, Adam P. (Inventor); Droppers, Lloyd J. (Inventor); Lehman, Matthew K. (Inventor); Mehra, Amitav (Inventor)

    2015-01-01

    A small scale, high speed turbomachine is described, as well as a process for manufacturing the turbomachine. The turbomachine is manufactured by diffusion bonding stacked sheets of metal foil, each of which has been pre-formed to correspond to a cross section of the turbomachine structure. The turbomachines include rotating elements as well as static structures. Using this process, turbomachines may be manufactured with rotating elements that have outer diameters of less than four inches in size, and/or blading heights of less than 0.1 inches. The rotating elements of the turbomachines are capable of rotating at speeds in excess of 150 feet per second. In addition, cooling features may be added internally to blading to facilitate cooling in high temperature operations.

  10. Flexible High Speed Codec (FHSC)

    NASA Technical Reports Server (NTRS)

    Segallis, G. P.; Wernlund, J. V.

    1991-01-01

    The ongoing NASA/Harris Flexible High Speed Codec (FHSC) program is described. The program objectives are to design and build an encoder decoder that allows operation in either burst or continuous modes at data rates of up to 300 megabits per second. The decoder handles both hard and soft decision decoding and can switch between modes on a burst by burst basis. Bandspreading is low since the code rate is greater than or equal to 7/8. The encoder and a hard decision decoder fit on a single application specific integrated circuit (ASIC) chip. A soft decision applique is implemented using 300 K emitter coupled logic (ECL) which can be easily translated to an ECL gate array.

  11. High speed sampler and demultiplexer

    DOEpatents

    McEwan, T.E.

    1995-12-26

    A high speed sampling demultiplexer based on a plurality of sampler banks, each bank comprising a sample transmission line for transmitting an input signal, a strobe transmission line for transmitting a strobe signal, and a plurality of sampling gates at respective positions along the sample transmission line for sampling the input signal in response to the strobe signal. Strobe control circuitry is coupled to the plurality of banks, and supplies a sequence of bank strobe signals to the strobe transmission lines in each of the plurality of banks, and includes circuits for controlling the timing of the bank strobe signals among the banks of samplers. Input circuitry is included for supplying the input signal to be sampled to the plurality of sample transmission lines in the respective banks. The strobe control circuitry can repetitively strobe the plurality of banks of samplers such that the banks of samplers are cycled to create a long sample length. Second tier demultiplexing circuitry is coupled to each of the samplers in the plurality of banks. The second tier demultiplexing circuitry senses the sample taken by the corresponding sampler each time the bank in which the sampler is found is strobed. A plurality of such samples can be stored by the second tier demultiplexing circuitry for later processing. Repetitive sampling with the high speed transient sampler induces an effect known as ``strobe kickout``. The sample transmission lines include structures which reduce strobe kickout to acceptable levels, generally 60 dB below the signal, by absorbing the kickout pulses before the next sampling repetition. 16 figs.

  12. High speed sampler and demultiplexer

    DOEpatents

    McEwan, Thomas E.

    1995-01-01

    A high speed sampling demultiplexer based on a plurality of sampler banks, each bank comprising a sample transmission line for transmitting an input signal, a strobe transmission line for transmitting a strobe signal, and a plurality of sampling gates at respective positions along the sample transmission line for sampling the input signal in response to the strobe signal. Strobe control circuitry is coupled to the plurality of banks, and supplies a sequence of bank strobe signals to the strobe transmission lines in each of the plurality of banks, and includes circuits for controlling the timing of the bank strobe signals among the banks of samplers. Input circuitry is included for supplying the input signal to be sampled to the plurality of sample transmission lines in the respective banks. The strobe control circuitry can repetitively strobe the plurality of banks of samplers such that the banks of samplers are cycled to create a long sample length. Second tier demultiplexing circuitry is coupled to each of the samplers in the plurality of banks. The second tier demultiplexing circuitry senses the sample taken by the corresponding sampler each time the bank in which the sampler is found is strobed. A plurality of such samples can be stored by the second tier demultiplexing circuitry for later processing. Repetitive sampling with the high speed transient sampler induces an effect known as "strobe kickout". The sample transmission lines include structures which reduce strobe kickout to acceptable levels, generally 60 dB below the signal, by absorbing the kickout pulses before the next sampling repetition.

  13. Alert Notification System Router

    NASA Technical Reports Server (NTRS)

    Gurganus, Joseph; Carey, Everett; Antonucci, Robert; Hitchener, Peter

    2009-01-01

    The Alert Notification System Router (ANSR) software provides satellite operators with notifications of key events through pagers, cell phones, and e-mail. Written in Java, this application is specifically designed to meet the mission-critical standards for mission operations while operating on a variety of hardware environments. ANSR is a software component that runs inside the Mission Operations Center (MOC). It connects to the mission's message bus using the GMSEC [Goddard Space Flight Center (GSFC) Mission Services Evolution Center (GMSEC)] standard. Other components, such as automation and monitoring components, can use ANSR to send directives to notify users or groups. The ANSR system, in addition to notifying users, can check for message acknowledgements from a user and escalate the notification to another user if there is no acknowledgement. When a firewall prevents ANSR from accessing the Internet directly, proxies can be run on the other side of the wall. These proxies can be configured to access the Internet, notify users, and poll for their responses. Multiple ANSRs can be run in parallel, providing a seamless failover capability in the event that one ANSR system becomes incapacitated.

  14. Better Bonded Ethernet Load Balancing

    SciTech Connect

    Gabler, Jason

    2006-09-29

    When a High Performance Storage System's mover shuttles large amounts of data to storage over a single Ethernet device that single channel can rapidly become saturated. Using Linux Ethernet channel bonding to address this and similar situations was not, until now, a viable solution. The various modes in which channel bonding could be configured always offered some benefit but only under strict conditions or at a system resource cost that was greater than the benefit gained by using channel bonding. Newer bonding modes designed by various networking hardware companies, helpful in such networking scenarios, were already present in their own switches. However, Linux-based systems were unable to take advantage of those new modes as they had not yet been implemented in the Linux kernel bonding driver. So, except for basic fault tolerance, Linux channel bonding could not positively combine separate Ethernet devices to provide the necessary bandwidth.

  15. Preliminary study of high-speed machining

    SciTech Connect

    Jordan, R.E.

    1980-07-01

    The feasibility of a high speed machining process has been established for application to Bendix aluminum products, based upon information gained through visits to existing high speed machining facilities and by the completion of a representative Bendix part using this process. The need for an experimental high speed machining capability at Bendix for further process evaluation is established.

  16. High-speed IP packet forwarding over Internet using ATM technology

    NASA Astrophysics Data System (ADS)

    Esaki, Hiroshi

    1995-10-01

    Framework of IP packet delivery with high throughput and small latency using ATM technology in large scaled internets is proposed, while keeping the current subnet model. Router has the mapping functionality between flow-identifier (e.g. in IPv6 header) and VPI/VCI value to forward IP packets cell-by-cell, rather than the conventional packet-by- packet forwarding. By using this cut-thru IP packet forwarding, both resource reservation oriented IP packet flows (i.e. IP packet flow provided by RSVP) and nonresource reservation oriented IP packet flows (i.e. best effort service) experience less packet delivery latency and obtain higher throughput, compared to the conventional hop-by-hop packet forwarding does. In order to perform the cut-thru IP packet forwarding using cell relaying capability in the router, routers exchange the information how the IP packet flows are aggregated into ATM- VCC. This information exchanging is hop-by-hop base, and the cut-thru decision is a matter of every router's local decision. With the hop-by-hop cut-thru IP packet forwarding, soft-state oriented and scalable QoS-ed high speed communication platform can be provided.

  17. Hypereutectoid high-speed steels

    SciTech Connect

    Kremnev, L.S.

    1986-01-01

    Half of the tungsten and molybdenum contained in R6M5 and R18 steels is concentrated in the undissolved eutectic carbides hindering austenitic grain gowth in hardening and providing the necessary strength and impact strength. This article describes the tungsten-free low-alloy high-speed steel 11M5F with a chemical composition of 1.03-1.10% C, 5.2-5.7% Mo, 3.8-4.2% Cr, 1.3-1.7% V, 0.3-0.6% Si, and 0.3% Ce. The properties of 11M5F and R6M5 steels are examined and compared. The results of production and laboratory tests of the cutting properties of tools of the steels developed showed their high effectiveness, especially of 11M5F steel with 1% A1. The life of tools of the tungsten-free steels is two or three times greater than the life of tools of R6M5 steel.

  18. 8-Foot High Speed Tunnel

    NASA Technical Reports Server (NTRS)

    1936-01-01

    Control panel below the test section of the 8-Foot High Speed Tunnel (8-Foot HST). Authorized July 17, 1933, construction of the 8-Foot HST was paid for with funds from the Federal Public Works Administration. Manly Hood and Russell Robinson designed the unusual facility which could produce a 500 mph wind stream across an 8-Foot test section. The concrete shell was not part of the original design. Like most projects funded through New Deal programs, the PWA restricted the amount of money which could be spent on materials. The majority of funds were supposed to be expended on labor. Though originally, Hood and Robinson had planned a welded steel pressure vessel around the test section, PWA officials proposed the idea of concrete. This picture shows the test section inside the igloo-like structure with walls of 1-foot thick reinforced concrete. The thick walls were needed 'because of the Bernoulli effect, [which meant that] the text chamber had to withstand powerful, inwardly directed pressure. Operating personnel located inside the igloo were subjected to pressures equivalent to 10,000-foot altitude and had to wear oxygen masks and enter through airlocks. A heat exchanger removed the large quantities of heat generated by the big fan.'

  19. High speed imager test station

    DOEpatents

    Yates, G.J.; Albright, K.L.; Turko, B.T.

    1995-11-14

    A test station enables the performance of a solid state imager (herein called a focal plane array or FPA) to be determined at high image frame rates. A programmable waveform generator is adapted to generate clock pulses at determinable rates for clock light-induced charges from a FPA. The FPA is mounted on an imager header board for placing the imager in operable proximity to level shifters for receiving the clock pulses and outputting pulses effective to clock charge from the pixels forming the FPA. Each of the clock level shifters is driven by leading and trailing edge portions of the clock pulses to reduce power dissipation in the FPA. Analog circuits receive output charge pulses clocked from the FPA pixels. The analog circuits condition the charge pulses to cancel noise in the pulses and to determine and hold a peak value of the charge for digitizing. A high speed digitizer receives the peak signal value and outputs a digital representation of each one of the charge pulses. A video system then displays an image associated with the digital representation of the output charge pulses clocked from the FPA. In one embodiment, the FPA image is formatted to a standard video format for display on conventional video equipment. 12 figs.

  20. High speed imager test station

    DOEpatents

    Yates, George J.; Albright, Kevin L.; Turko, Bojan T.

    1995-01-01

    A test station enables the performance of a solid state imager (herein called a focal plane array or FPA) to be determined at high image frame rates. A programmable waveform generator is adapted to generate clock pulses at determinable rates for clock light-induced charges from a FPA. The FPA is mounted on an imager header board for placing the imager in operable proximity to level shifters for receiving the clock pulses and outputting pulses effective to clock charge from the pixels forming the FPA. Each of the clock level shifters is driven by leading and trailing edge portions of the clock pulses to reduce power dissipation in the FPA. Analog circuits receive output charge pulses clocked from the FPA pixels. The analog circuits condition the charge pulses to cancel noise in the pulses and to determine and hold a peak value of the charge for digitizing. A high speed digitizer receives the peak signal value and outputs a digital representation of each one of the charge pulses. A video system then displays an image associated with the digital representation of the output charge pulses clocked from the FPA. In one embodiment, the FPA image is formatted to a standard video format for display on conventional video equipment.

  1. ADVANCED HIGH SPEED PROGRAMMABLE PREFORMING

    SciTech Connect

    Norris Jr, Robert E; Lomax, Ronny D; Xiong, Fue; Dahl, Jeffrey S; Blanchard, Patrick J

    2010-01-01

    Polymer-matrix composites offer greater stiffness and strength per unit weight than conventional materials resulting in new opportunities for lightweighting of automotive and heavy vehicles. Other benefits include design flexibility, less corrosion susceptibility, and the ability to tailor properties to specific load requirements. However, widespread implementation of structural composites requires lower-cost manufacturing processes than those that are currently available. Advanced, directed-fiber preforming processes have demonstrated exceptional value for rapid preforming of large, glass-reinforced, automotive composite structures. This is due to process flexibility and inherently low material scrap rate. Hence directed fiber performing processes offer a low cost manufacturing methodology for producing preforms for a variety of structural automotive components. This paper describes work conducted at the Oak Ridge National Laboratory (ORNL), focused on the development and demonstration of a high speed chopper gun to enhance throughput capabilities. ORNL and the Automotive Composites Consortium (ACC) revised the design of a standard chopper gun to expand the operational envelope, enabling delivery of up to 20kg/min. A prototype unit was fabricated and used to demonstrate continuous chopping of multiple roving at high output over extended periods. In addition fiber handling system modifications were completed to sustain the high output the modified chopper affords. These hardware upgrades are documented along with results of process characterization and capabilities assessment.

  2. Quiet High-Speed Fan

    NASA Technical Reports Server (NTRS)

    Lieber, Lysbeth; Repp, Russ; Weir, Donald S.

    1996-01-01

    A calibration of the acoustic and aerodynamic prediction methods was performed and a baseline fan definition was established and evaluated to support the quiet high speed fan program. A computational fluid dynamic analysis of the NASA QF-12 Fan rotor, using the DAWES flow simulation program was performed to demonstrate and verify the causes of the relatively poor aerodynamic performance observed during the fan test. In addition, the rotor flowfield characteristics were qualitatively compared to the acoustic measurements to identify the key acoustic characteristics of the flow. The V072 turbofan source noise prediction code was used to generate noise predictions for the TFE731-60 fan at three operating conditions and compared to experimental data. V072 results were also used in the Acoustic Radiation Code to generate far field noise for the TFE731-60 nacelle at three speed points for the blade passage tone. A full 3-D viscous flow simulation of the current production TFE731-60 fan rotor was performed with the DAWES flow analysis program. The DAWES analysis was used to estimate the onset of multiple pure tone noise, based on predictions of inlet shock position as a function of the rotor tip speed. Finally, the TFE731-60 fan rotor wake structure predicted by the DAWES program was used to define a redesigned stator with the leading edge configured to minimize the acoustic effects of rotor wake / stator interaction, without appreciably degrading performance.

  3. High-speed pressure clamp.

    PubMed

    Besch, Stephen R; Suchyna, Thomas; Sachs, Frederick

    2002-10-01

    We built a high-speed, pneumatic pressure clamp to stimulate patch-clamped membranes mechanically. The key control element is a newly designed differential valve that uses a single, nickel-plated piezoelectric bending element to control both pressure and vacuum. To minimize response time, the valve body was designed with minimum dead volume. The result is improved response time and stability with a threefold decrease in actuation latency. Tight valve clearances minimize the steady-state air flow, permitting us to use small resonant-piston pumps to supply pressure and vacuum. To protect the valve from water contamination in the event of a broken pipette, an optical sensor detects water entering the valve and increases pressure rapidly to clear the system. The open-loop time constant for pressure is 2.5 ms for a 100-mmHg step, and the closed-loop settling time is 500-600 micros. Valve actuation latency is 120 micros. The system performance is illustrated for mechanically induced changes in patch capacitance.

  4. High speed holographic cine-recorder

    NASA Astrophysics Data System (ADS)

    Snyder, Donald; Watts, David; Gordon, Joseph; Lysogorski, Charles; Powers, Aaron; Perry, John; Chenette, Eugene; Hudson, Roger; Young, Raymond

    2005-08-01

    Air Force Research Laboratory and North Dancer Labs researchers have completed the initial development and transition to operational use of a high-speed holographic movie system. This paper documents the first fully operational use of a novel and unique experimental capability for high-speed holographic movies and high-speed cinema interferometry. In this paper we document the initial experiments that were performed with the High Speed Holographic Recorder (HSHR) at the Munitions Directorate, Air Force Research Laboratory Site at Eglin, AFB, Florida. These experiments were performed to assess the possibilities for high-speed cine-laser holography combined with high-speed videography to document the formation and propagation of plumes of materials created by impact of high-speed projectiles. This paper details the development of the experimental procedures and initial results of this new tool. After successful integration and testing the system was delivered to Arnold Engineering Development Center.

  5. Design and evaluation of FDDI fiber optics networkfor Ethernets, VAX's and Ingraph work stations

    NASA Technical Reports Server (NTRS)

    Wernicki, M. Chris

    1992-01-01

    The purpose of this project is to design and evaluate the FDDI Fiber Optics Network for Ethernets, VAX's, and Ingraph work stations. From the KSC Headquarters communication requirement, it would be necessary to develop the FDDI network based on IEEE Standards outlined in the ANSI X3T9.5, Standard 802.3 and 802.5 topology - direct link via intermediate concentrator and bridge/router access. This analysis should examine the major factors that influence the operating conditions of the Headquarters Fiber plant. These factors would include, but are not limited to the interconnecting devices such as repeaters, bridges, routers and many other relevant or significant FDDI characteristics. This analysis is needed to gain a better understanding of overall FDDI performance.

  6. Performance analysis of LAN bridges and routers

    NASA Technical Reports Server (NTRS)

    Hajare, Ankur R.

    1991-01-01

    Bridges and routers are used to interconnect Local Area Networks (LANs). The performance of these devices is important since they can become bottlenecks in large multi-segment networks. Performance metrics and test methodology for bridges and routers were not standardized. Performance data reported by vendors is not applicable to the actual scenarios encountered in an operational network. However, vendor-provided data can be used to calibrate models of bridges and routers that, along with other models, yield performance data for a network. Several tools are available for modeling bridges and routers - Network II.5 was used. The results of the analysis of some bridges and routers are presented.

  7. Five-port optical router for photonic networks-on-chip.

    PubMed

    Ji, Ruiqiang; Yang, Lin; Zhang, Lei; Tian, Yonghui; Ding, Jianfeng; Chen, Hongtao; Lu, Yangyang; Zhou, Ping; Zhu, Weiwei

    2011-10-10

    We experimentally demonstrate a spatially non-blocking five-port optical router, which is based on microring resonators tuned through the thermo-optic effect. The characteristics of the microring-resonator-based switching element are investigated to achieve balanced performances in its two output ports. The optical router is fabricated on the SOI platform using standard CMOS processing. The effective footprint of the device is about 440×660 μm2. The microring resonators have 3-dB bandwidths of larger than 0.31 nm (38 GHz), and extinction ratios of better than 21 dB for through ports and 16 dB for drop ports. Finally, 12.5 Gbps high-speed signal transmission experiments verify the routing functionality of the optical router.

  8. High speed imaging - An important industrial tool

    NASA Technical Reports Server (NTRS)

    Moore, Alton; Pinelli, Thomas E.

    1986-01-01

    High-speed photography, which is a rapid sequence of photographs that allow an event to be analyzed through the stoppage of motion or the production of slow-motion effects, is examined. In high-speed photography 16, 35, and 70 mm film and framing rates between 64-12,000 frames per second are utilized to measure such factors as angles, velocities, failure points, and deflections. The use of dual timing lamps in high-speed photography and the difficulties encountered with exposure and programming the camera and event are discussed. The application of video cameras to the recording of high-speed events is described.

  9. High-Speed Ring Bus

    NASA Technical Reports Server (NTRS)

    Wysocky, Terry; Kopf, Edward, Jr.; Katanyoutananti, Sunant; Steiner, Carl; Balian, Harry

    2010-01-01

    The high-speed ring bus at the Jet Propulsion Laboratory (JPL) allows for future growth trends in spacecraft seen with future scientific missions. This innovation constitutes an enhancement of the 1393 bus as documented in the Institute of Electrical and Electronics Engineers (IEEE) 1393-1999 standard for a spaceborne fiber-optic data bus. It allows for high-bandwidth and time synchronization of all nodes on the ring. The JPL ring bus allows for interconnection of active units with autonomous operation and increased fault handling at high bandwidths. It minimizes the flight software interface with an intelligent physical layer design that has few states to manage as well as simplified testability. The design will soon be documented in the AS-1393 standard (Serial Hi-Rel Ring Network for Aerospace Applications). The framework is designed for "Class A" spacecraft operation and provides redundant data paths. It is based on "fault containment regions" and "redundant functional regions (RFR)" and has a method for allocating cables that completely supports the redundancy in spacecraft design, allowing for a complete RFR to fail. This design reduces the mass of the bus by incorporating both the Control Unit and the Data Unit in the same hardware. The standard uses ATM (asynchronous transfer mode) packets, standardized by ITU-T, ANSI, ETSI, and the ATM Forum. The IEEE-1393 standard uses the UNI form of the packet and provides no protection for the data portion of the cell. The JPL design adds optional formatting to this data portion. This design extends fault protection beyond that of the interconnect. This includes adding protection to the data portion that is contained within the Bus Interface Units (BIUs) and by adding to the signal interface between the Data Host and the JPL 1393 Ring Bus. Data transfer on the ring bus does not involve a master or initiator. Following bus protocol, any BIU may transmit data on the ring whenever it has data received from its host. There

  10. Design of a data transmission system based on gigabit ethernet

    NASA Astrophysics Data System (ADS)

    Yuan, Yongxin; Zhang, Lijun; Xu, Bin; Wang, Jiqiang; Yuan, Yonggang

    2013-09-01

    FPGA(Field-programmable gate array) is programmable device, characterized by high speed and reconfiguration. We could test the circuit programmed by HDL (Hardware Description Language). By observing results of simulations through ModelSim, developers could fix logic errors. Also, they could analyze performance of circuits by the results. In the system, we build the Gigabit Ethernet development platform based on a FPGA. This paper presents the technique of FPGA and Gigabit Ethernet, as well as relevant techniques. On the basis of merits and drawbacks of different design proposals and real demands, we take the EP3C10E144C8N chip belonging to the series of Cyclone III produced by Altera corp. as main controller chip. By the use of an AX88180 MAC chip produced by ASIX Electronics Corporation and a RTL8211E physical chip by Realtek Semiconductor Corporation, we build the development platform. At the receiving end, we capture data frames from the network adapter by winpcap programming and throw video data in the buffer. Considering large amounts of data in the real-time transportation, we design fixed-length queue as the primary structures for buffer. Size of a buffer unit is 32KB, which means that 32 packets can fill the buffer. When the buffer is full, we put the buffer unit to the end of the queue. We get data from buffer and hand it over to application process to display and store video data. When packet loss is detected by the system, log file will record it and thus we can check how many packets lose. The simulations by Quartus II and practical application proves that the system is stable, featuring high speed and low cost. It can be used in various high speed real-time transmission with little modification.

  11. Ethernet for Space Flight Applications

    NASA Technical Reports Server (NTRS)

    Webb, Evan; Day, John H. (Technical Monitor)

    2002-01-01

    NASA's Goddard Space Flight Center (GSFC) is adapting current data networking technologies to fly on future spaceflight missions. The benefits of using commercially based networking standards and protocols have been widely discussed and are expected to include reduction in overall mission cost, shortened integration and test (I&T) schedules, increased operations flexibility, and hardware and software upgradeability/scalability with developments ongoing in the commercial world. The networking effort is a comprehensive one encompassing missions ranging from small University Explorer (UNEX) class spacecraft to large observatories such as the Next Generation Space Telescope (NGST). Mission aspects such as flight hardware and software, ground station hardware and software, operations, RF communications, and security (physical and electronic) are all being addressed to ensure a complete end-to-end system solution. One of the current networking development efforts at GSFC is the SpaceLAN (Spacecraft Local Area Network) project, development of a space-qualifiable Ethernet network. To this end we have purchased an IEEE 802.3-compatible 10/100/1000 Media Access Control (MAC) layer Intellectual Property (IP) core and are designing a network node interface (NNI) and associated network components such as a switch. These systems will ultimately allow the replacement of the typical MIL-STD-1553/1773 and custom interfaces that inhabit most spacecraft. In this paper we will describe our current Ethernet NNI development along with a novel new space qualified physical layer that will be used in place of the standard interfaces. We will outline our plans for development of space qualified network components that will allow future spacecraft to operate in significant radiation environments while using a single onboard network for reliable commanding and data transfer. There will be a brief discussion of some issues surrounding system implications of a flight Ethernet. Finally, we will

  12. Low-cost and highly reliable optoelectronic devices for 10-Gb/s ethernet applications

    NASA Astrophysics Data System (ADS)

    Tsai, Cheng-Hung; Lee, Shin-Ge; Chen, Chen-Kun; Hsu, Chih-Hao; Lee, Chun-Sheng; Shen, Kun-Yi; Cheng, Shou-Chien; Lee, Chun-Hsing; Cheng, Fu-Yi; Huang, Min-Fa; Shaw, Cheng-Da; Yu, Yu-Chen; Chu, Mu-Tao

    2004-10-01

    With the drastic expansion of internet usage, the demand of 10Gbps transmission optoelectronic devices for local-area-network (LAN) and storage-area-network (SAN) are increasing. The key issues of these applications are to improve cost, manufacturability and reliability of optoelectronic devices in high speed transmission. The authors have demonstrated highly manufacturable and reliable optical front end and trasneiver module for 10Gbps Ethernet applications in this paper. TO-Can package is a way to reduce cost of 10Gbps optical assembly. However, the signal integrity of high speed transmitter optical sub-assembly (TOSA) and receiver optical sub-assembly (ROSA) are limited due to the mismatched characteristic impedance, parasitic inductance and spread capacitance of conventional TO-Can package. In this paper, high performance and high sensitivity of 10Gbps TOSA and ROSA with TO-Can package are discussed and demonstrated to overcome the critical issues mentioned, respectively. In order to improve the signal integrity and manufacturability of 10Gbps OSA in 10Gigabit Ethernet small form factor transceiver module assembly. The authors also integrate high speed flex board and OSA package to extend the signal path, and to minimize the effect of crosstalk in module. The high speed transceiver modules with TO-Can package embedded compliant with XFP multi-source agreement (MSA) are also demonstrated in this paper. The performance of temperature-stabilized transceiver module over awide case temperature range is tested. The optical eye diagram of 10Gbps transmitter developed in this study shows an excellent quality passing the 10Gbps Ethernet mask test between 0 degrees Centigrade and to 70 degrees Centigrade. Finally, the reliability tests regulated by Telcordia GR-468-CORE and MIL-STD-883 are also performed and certified to pave the ways of highly manufacturable and reliable XFP transceiver modules for 10Gbps Ethernet applications.

  13. Research and implement on the high speed network system with CIINS based on ATM for aero manufacturing enterprise

    NASA Astrophysics Data System (ADS)

    Jiang, Zhi-qiang; Feng, Xi-lan; Zong, Xue-wen; Ding, Yu-cheng

    2005-12-01

    In this paper, the design and implementation on the high-speed network system of the Computer Integrated and Information Network System (CIINS) for aeronautical manufacturing enterprise based on ATM is explained. And designing the high-speed network, choosing the devices, network administration, and developing the network application are discussed. And also, the key technology of the network design is analyzed. The system safety is ensured, when the ATM with QoS in the main backbone network and the work team with network layer in intelligent Ethernet equipment are adapted, and a kind of firewall based on Hard-wall technology is implemented.

  14. Lightweight, high speed bearing balls: A concept

    NASA Technical Reports Server (NTRS)

    Parker, R. J.

    1974-01-01

    Low mass bearing balls with hardened iron-plated surfaces can eliminate problems of low fatigue strength and flexure fatigue, and lead to increased life and reliability of high speed ball bearings. Low mass balls exert lower centrifugal forces on outer race of bearing thus eliminating detrimental effect of high speed operation.

  15. High Speed Video for Airborne Instrumentation Application

    NASA Technical Reports Server (NTRS)

    Tseng, Ting; Reaves, Matthew; Mauldin, Kendall

    2006-01-01

    A flight-worthy high speed color video system has been developed. Extensive system development and ground and environmental. testing hes yielded a flight qualified High Speed Video System (HSVS), This HSVS was initially used on the F-15B #836 for the Lifting Insulating Foam Trajectory (LIFT) project.

  16. Reducing Heating In High-Speed Cinematography

    NASA Technical Reports Server (NTRS)

    Slater, Howard A.

    1989-01-01

    Infrared-absorbing and infrared-reflecting glass filters simple and effective means for reducing rise in temperature during high-speed motion-picture photography. "Hot-mirror" and "cold-mirror" configurations, employed in projection of images, helps prevent excessive heating of scenes by powerful lamps used in high-speed photography.

  17. High-Speed Photography with Computer Control.

    ERIC Educational Resources Information Center

    Winters, Loren M.

    1991-01-01

    Describes the use of a microcomputer as an intervalometer for the control and timing of several flash units to photograph high-speed events. Applies this technology to study the oscillations of a stretched rubber band, the deceleration of high-speed projectiles in water, the splashes of milk drops, and the bursts of popcorn kernels. (MDH)

  18. High-Speed Photography with Computer Control.

    ERIC Educational Resources Information Center

    Winters, Loren M.

    1991-01-01

    Describes the use of a microcomputer as an intervalometer for the control and timing of several flash units to photograph high-speed events. Applies this technology to study the oscillations of a stretched rubber band, the deceleration of high-speed projectiles in water, the splashes of milk drops, and the bursts of popcorn kernels. (MDH)

  19. Obstacle-avoiding router for custom VLSI

    SciTech Connect

    Hamachi, G.T.

    1986-01-01

    Magic's automatic routing system combines the flexibility of hand routing with the speed and quality of automatic channel routers by allowing chip designers to prewire selected nets by hand. The router then works around this previously-placed layout, called obstacles, to automatically wire the remaining nets. This ability to partially hand route an integrated circuit gives designers complete control over critical paths, power and ground routing, and other special nets. At the same time, the router provides a fast way to make the remaining connections in the design. The system's novel features include a fast channel decomposer, an obstacle-avoiding global router, and an obstacle avoiding switchbox router. The router's channel decomposition algorithm relies on a corner stitched data structure to efficiently produce a small number of large channels. The global router considers obstacles during path generation, trading off net length and channel complexity to simplify the subsequent channel routing task. While able to cope with obstacles, Magic's switchbox router is still comparable to the best traditional (non-obstacle-avoiding) channel routers. The router's obstacle-avoidance features rely on two underlying concepts: (1) a preferred direction for crossing an obstacle, and (2) hazards or areas the routing should avoid.

  20. New all-optical wavelength auto-router based on spatial solitons.

    PubMed

    Wu, Yaw-Dong

    2004-09-06

    We propose a novel all-optical wavelength auto-router based on spatial solitons. By using the swing effect of spatial solitons in a Kerr-type nonlinear medium, the proposed nonlinear waveguide structure could function as a self-routing wavelength division multiplexer (WDM). It could be a potential key component in the applications of ultra-high-speed and ultra-high-capacity optical communications and optical data processing systems.

  1. High-Speed Edge-Detecting Line Scan Smart Camera

    NASA Technical Reports Server (NTRS)

    Prokop, Norman F.

    2012-01-01

    A high-speed edge-detecting line scan smart camera was developed. The camera is designed to operate as a component in a NASA Glenn Research Center developed inlet shock detection system. The inlet shock is detected by projecting a laser sheet through the airflow. The shock within the airflow is the densest part and refracts the laser sheet the most in its vicinity, leaving a dark spot or shadowgraph. These spots show up as a dip or negative peak within the pixel intensity profile of an image of the projected laser sheet. The smart camera acquires and processes in real-time the linear image containing the shock shadowgraph and outputting the shock location. Previously a high-speed camera and personal computer would perform the image capture and processing to determine the shock location. This innovation consists of a linear image sensor, analog signal processing circuit, and a digital circuit that provides a numerical digital output of the shock or negative edge location. The smart camera is capable of capturing and processing linear images at over 1,000 frames per second. The edges are identified as numeric pixel values within the linear array of pixels, and the edge location information can be sent out from the circuit in a variety of ways, such as by using a microcontroller and onboard or external digital interface to include serial data such as RS-232/485, USB, Ethernet, or CAN BUS; parallel digital data; or an analog signal. The smart camera system can be integrated into a small package with a relatively small number of parts, reducing size and increasing reliability over the previous imaging system..

  2. FASTBUS Readout Controller card for high speed data acquisition

    SciTech Connect

    Zimmermann, S. Rio Grande do Sul Univ., Porto Alegre, RS . Dept. of Electrical Engineering); Areti, V.H.; Foster, G.W.; Joshi, U.; Treptow, K. )

    1991-10-01

    This article describes a FASTBUS Readout Controller (FRC) for high speed data acquisition in FASTBUS based systems. The controller has two main interfaces: to FASTBUS and to a Readout Port. The FASTBUS interface performs FASTBUS master and slave operations at a maximum transfer rate exceeding 40 MBytes/s. The Readout Port can be adapted for a variety of protocols. Currently, it will be interfaced to a VME bus based processor with a VSB port. The on-board LR33000 embedded processor controls the readout, executing a list of operations download into its memory. It scans the FASTBUS modules and stores the data in a triple port DRAM (TPDRAM), through one of the Serial Access Memory (SAM) ports of the (TPDRAM). Later, it transfers this data to the readout port using the other SAM. The FRC also supports serial communication via RS232 and Ethernet interfaces. This device is intended for use in the data acquisition system at the Collider Detector at Fermilab. 5 refs., 3 figs.

  3. Lubrication and cooling for high speed gears

    NASA Technical Reports Server (NTRS)

    Townsend, D. P.

    1985-01-01

    The problems and failures occurring with the operation of high speed gears are discussed. The gearing losses associated with high speed gearing such as tooth mesh friction, bearing friction, churning, and windage are discussed with various ways shown to help reduce these losses and thereby improve efficiency. Several different methods of oil jet lubrication for high speed gearing are given such as into mesh, out of mesh, and radial jet lubrication. The experiments and analytical results for the various methods of oil jet lubrication are shown with the strengths and weaknesses of each method discussed. The analytical and experimental results of gear lubrication and cooling at various test conditions are presented. These results show the very definite need of improved methods of gear cooling at high speed and high load conditions.

  4. ERROR CORRECTION IN HIGH SPEED ARITHMETIC,

    DTIC Science & Technology

    The errors due to a faulty high speed multiplier are shown to be iterative in nature. These errors are analyzed in various aspects. The arithmetic coding technique is suggested for the improvement of high speed multiplier reliability. Through a number theoretic investigation, a large class of arithmetic codes for single iterative error correction are developed. The codes are shown to have near-optimal rates and to render a simple decoding method. The implementation of these codes seems highly practical. (Author)

  5. Agile Electromagnetics Exploiting High Speed Logic (AEEHSL).

    DTIC Science & Technology

    2014-09-26

    examination and alteration of codes and filter weights 3. READ Mode - This mode enables the reading or replaying of the data from the digital tape recorder...available in this subsystems are used to initialize the * radar, clock the code from the high-speed code storage memory to drive the code modulator, delay...correlation process. There is storage space within the high speed memory for 32 codes of length 64 bits or less. The radiated code can be changed by a

  6. High-speed mirror-scanning tracker

    NASA Astrophysics Data System (ADS)

    Tong, HengWei

    1999-06-01

    This paper introduces a high speed single-mirror scanner developed by us as a versatile tracker. It can be connected with a high speed camera, a TV tracker (or color video recorder) /measurer/recorder. It can be guided by a computer, a joystick (automatic or manual) or TV tracker. In this paper, we also present the advantages of our scanner contrasted with the limitations of fixed camera system. In addition, several usable projects of mirror scanner are discussed.

  7. ETHERNET BASED EMBEDDED IOC FOR FEL CONTROL SYSTEM

    SciTech Connect

    Jianxun Yan; Daniel Sexton; Albert Grippo; Steven Moore; Kevin Jordan

    2008-01-23

    An Ethernet based embedded Input Output Controller (IOC) has been developed to upgrade the control system for the Free Electron Laser Project at Jefferson Lab. The embedded IOC, called the Single Board IOC (SBIOC), was integrated with a ColdFire embedded microprocessor and a Field Programmable Gate Array (FPGA) on a circuit board, which can be easily configured to control different kinds of I/O devices. The SBIOC provided features of a complete System-on-Module (SOM) as a stand alone system with abundant high speed I/O ports to couple with suitable devices. The software kits, Experimental Physics and Industrial Control System (EPICS) and Real Time Executive for Multiprocessor System (RTEMS), were chosen to work with our existing control system. The embedded IOC system has the features of a low cost IOC, free open source RTOS, plug-and-play-like ease of installation and flexibility.

  8. High-speed readout of high-Z pixel detectors with the LAMBDA detector

    NASA Astrophysics Data System (ADS)

    Pennicard, D.; Smoljanin, S.; Sheviakov, I.; Xia, Q.; Rothkirch, A.; Yu, Y.; Struth, B.; Hirsemann, H.; Graafsma, H.

    2014-12-01

    High-frame-rate X-ray pixel detectors make it possible to perform time-resolved experiments at synchrotron beamlines, and to make better use of these sources by shortening experiment times. LAMBDA is a photon-counting hybrid pixel detector based on the Medipix3 chip, designed to combine a small pixel size of 55 μm, a large tileable module design, high speed, and compatibility with ``high-Z'' sensors for hard X-ray detection. This technical paper focuses on LAMBDA's high-speed-readout functionality, which allows a frame rate of 2000 frames per second with no deadtime between successive images. This takes advantage of the Medipix3 chip's ``continuous read-write'' function and highly parallelised readout. The readout electronics serialise this data and send it back to a server PC over two 10 Gigabit Ethernet links. The server PC controls the detector and receives, processes and stores the data using software designed for the Tango control system. As a demonstration of high-speed readout of a high-Z sensor, a GaAs LAMBDA detector was used to make a high-speed X-ray video of a computer fan.

  9. High Speed Digital Camera Technology Review

    NASA Technical Reports Server (NTRS)

    Clements, Sandra D.

    2009-01-01

    A High Speed Digital Camera Technology Review (HSD Review) is being conducted to evaluate the state-of-the-shelf in this rapidly progressing industry. Five HSD cameras supplied by four camera manufacturers participated in a Field Test during the Space Shuttle Discovery STS-128 launch. Each camera was also subjected to Bench Tests in the ASRC Imaging Development Laboratory. Evaluation of the data from the Field and Bench Tests is underway. Representatives from the imaging communities at NASA / KSC and the Optical Systems Group are participating as reviewers. A High Speed Digital Video Camera Draft Specification was updated to address Shuttle engineering imagery requirements based on findings from this HSD Review. This draft specification will serve as the template for a High Speed Digital Video Camera Specification to be developed for the wider OSG imaging community under OSG Task OS-33.

  10. The VK-8L High - Speed Camera

    NASA Astrophysics Data System (ADS)

    Venatovsky, I. V.; Tsukanov, A. A.; Kirillov, V. A.

    1985-02-01

    To enhance the time resolution of high-speed cine equipment during the investigation of rapidly flowing processes, a light source to illumi late an object under test is represented b7 solid-state laser exposure devices operating in the mode of Q-factor flodulation. With a high-speed eine cafiera being run in the continuous scanning mode, these devices will permit a sequence of fra Mlles to be obtained within a short exposure time of 150 ns to 200 nanoseconds. At scanning speeds of up to 250 m/s this will ensure satisfactory image quality from the slear viewpoint. In the case of faster continuous scanuin speeds and of shorter exposure times, it becomes necessary to run the high-speed cauera in the fl ode of frame-by-frame cinematography.

  11. Scientific Visualization in High Speed Network Environments

    NASA Technical Reports Server (NTRS)

    Vaziri, Arsi; Kutler, Paul (Technical Monitor)

    1997-01-01

    In several cases, new visualization techniques have vastly increased the researcher's ability to analyze and comprehend data. Similarly, the role of networks in providing an efficient supercomputing environment have become more critical and continue to grow at a faster rate than the increase in the processing capabilities of supercomputers. A close relationship between scientific visualization and high-speed networks in providing an important link to support efficient supercomputing is identified. The two technologies are driven by the increasing complexities and volume of supercomputer data. The interaction of scientific visualization and high-speed networks in a Computational Fluid Dynamics simulation/visualization environment are given. Current capabilities supported by high speed networks, supercomputers, and high-performance graphics workstations at the Numerical Aerodynamic Simulation Facility (NAS) at NASA Ames Research Center are described. Applied research in providing a supercomputer visualization environment to support future computational requirements are summarized.

  12. Machine Vision Techniques For High Speed Videography

    NASA Astrophysics Data System (ADS)

    Hunter, David B.

    1984-11-01

    The priority associated with U.S. efforts to increase productivity has led to, among other things, the development of Machine Vision systems for use in manufacturing automation requirements. Many such systems combine solid state television cameras and data processing equipment to facilitate high speed, on-line inspection and real time dimensional measurement of parts and assemblies. These parts are often randomly oriented and spaced on a conveyor belt under continuous motion. Television imagery of high speed events has historically been achieved by use of pulsed (strobe) illumination or high speed shutter techniques synchronized with a camera's vertical blanking to separate write and read cycle operation. Lack of synchronization between part position and camera scanning in most on-line applications precludes use of this vertical interval illumination technique. Alternatively, many Machine Vision cameras incorporate special techniques for asynchronous, stop-motion imaging. Such cameras are capable of imaging parts asynchronously at rates approaching 60 hertz while remaining compatible with standard video recording units. Techniques for asynchronous, stop-motion imaging have not been incorporated in cameras used for High Speed Videography. Imaging of these events has alternatively been obtained through the utilization of special, high frame rate cameras to minimize motion during the frame interval. High frame rate cameras must undoubtedly be utilized for recording of high speed events occurring at high repetition rates. However, such cameras require very specialized, and often expensive, video recording equipment. It seems, therefore, that Machine Vision cameras with capability for asynchronous, stop-motion imaging represent a viable approach for cost effective video recording of high speed events occurring at repetition rates up to 60 hertz.

  13. Modeling and testing of ethernet transformers

    NASA Astrophysics Data System (ADS)

    Bowen, David

    2011-12-01

    Twisted-pair Ethernet is now the standard home and office last-mile network technology. For decades, the IEEE standard that defines Ethernet has required electrical isolation between the twisted pair cable and the Ethernet device. So, for decades, every Ethernet interface has used magnetic core Ethernet transformers to isolate Ethernet devices and keep users safe in the event of a potentially dangerous fault on the network media. The current state-of-the-art Ethernet transformers are miniature (<5mm diameter) ferrite-core toroids wrapped with approximately 10 to 30 turns of wire. As small as current Ethernet transformers are, they still limit further Ethernet device miniaturization and require a separate bulky package or jack housing. New coupler designs must be explored which are capable of exceptional miniaturization or on-chip fabrication. This dissertation thoroughly explores the performance of the current commercial Ethernet transformers to both increase understanding of the device's behavior and outline performance parameters for replacement devices. Lumped element and distributed circuit models are derived; testing schemes are developed and used to extract model parameters from commercial Ethernet devices. Transfer relation measurements of the commercial Ethernet transformers are compared against the model's behavior and it is found that the tuned, distributed models produce the best transfer relation match to the measured data. Process descriptions and testing results on fabricated thin-film dielectric-core toroid transformers are presented. The best results were found for a 32-turn transformer loaded with 100Ω, the impedance of twisted pair cable. This transformer gave a flat response from about 10MHz to 40MHz with a height of approximately 0.45. For the fabricated transformer structures, theoretical methods to determine resistance, capacitance and inductance are presented. A special analytical and numerical analysis of the fabricated transformer

  14. High Speed and Slow Motion: The Technology of Modern High Speed Cameras

    ERIC Educational Resources Information Center

    Vollmer, Michael; Mollmann, Klaus-Peter

    2011-01-01

    The enormous progress in the fields of microsystem technology, microelectronics and computer science has led to the development of powerful high speed cameras. Recently a number of such cameras became available as low cost consumer products which can also be used for the teaching of physics. The technology of high speed cameras is discussed,…

  15. High Speed and Slow Motion: The Technology of Modern High Speed Cameras

    ERIC Educational Resources Information Center

    Vollmer, Michael; Mollmann, Klaus-Peter

    2011-01-01

    The enormous progress in the fields of microsystem technology, microelectronics and computer science has led to the development of powerful high speed cameras. Recently a number of such cameras became available as low cost consumer products which can also be used for the teaching of physics. The technology of high speed cameras is discussed,…

  16. High speed optical tomography for flow visualization

    NASA Technical Reports Server (NTRS)

    Snyder, Ray; Hesselink, Lambertus

    1987-01-01

    A novel optical architecture (based on holographic optical elements) for making high speed tomographic measurements is presented. The system is designed for making density or species concentration measurements in a nonsteady fluid or combustion flow. Performance evaluations of the optical system are discussed, and a test phase object was successfully reconstructed using this optical arrangement.

  17. Maneuverability Estimation of High-Speed Craft

    DTIC Science & Technology

    2015-06-01

    derived based on equations by Lewandowski and Denny- Hubble in order to find the fundamental maneuvering characteristics. The model is developed in...characteristic of high- speed craft. A mathematical model is derived based on equations by Lewandowski and Denny- Hubble in order to find the fundamental...33 C. EQUATIONS BY DENNY AND HUBBLE ................................................43 D. NOMOTO

  18. High speed hydrogen/graphite interaction

    NASA Technical Reports Server (NTRS)

    Kelly, A. J.; Hamman, R.; Sharma, O. P.; Harrje, D. T.

    1974-01-01

    Various aspects of a research program on high speed hydrogen/graphite interaction are presented. Major areas discussed are: (1) theoretical predictions of hydrogen/graphite erosion rates; (2) high temperature, nonequilibrium hydrogen flow in a nozzle; and (3) molecular beam studies of hydrogen/graphite erosion.

  19. High-Speed Sealift Technology. Volume 1

    DTIC Science & Technology

    1998-09-01

    Engineering Directorate Technology Projection Report HIGH-SPEED SEALIFT TECHNOLOGY Volume 1 BY OWEN K. RITTER MICHAEL T. TEMPLEMAN...7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Naval Surface Warfare Center,Carderock Division,Total Ship Systems Engineering Directorate...11 3.4.3.2 Diesel Engines

  20. Italian High-speed Airplane Engines

    NASA Technical Reports Server (NTRS)

    Bona, C F

    1940-01-01

    This paper presents an account of Italian high-speed engine designs. The tests were performed on the Fiat AS6 engine, and all components of that engine are discussed from cylinders to superchargers as well as the test set-up. The results of the bench tests are given along with the performance of the engines in various races.

  1. Impedance Matching for High Speed Optical Communication

    DTIC Science & Technology

    1988-06-01

    OPTICAL COMMUNICATION 16, PERaPNAL AUATHOR(S)ur. Kenry Zmuda IfTYJE OF REPORT 13b TIMý COVA5ED 14. DATE OF REPORT (Year, Month. Day) I5 PAGE COUNT EnaJ...294. 5. D. J. Nicholson and H. Zmuda, "Matching Structures for High Speed Optical Communication ", To be published in the Proceedings of Society of

  2. High-speed data word monitor

    NASA Technical Reports Server (NTRS)

    Wirth, M. N.

    1975-01-01

    Small, portable, self-contained device provides high-speed display of bit pattern or any selected portion of transmission, can suppress filler patterns so that display is not updated, and can freeze display so that specific event may be observed in detail.

  3. High-Speed Photometry of Catalina Sources

    NASA Astrophysics Data System (ADS)

    Warner, Brian; Woudt, Patrick A.

    2010-12-01

    High-speed photometry of cataclysmic variables selected from the Catalina Real-Time Transient (CRTS) survey results in orbital periods for 12 objects (10 dwarf novae and 2 polars). The period distribution for all CRTS sources has a pronounced peak near 80 minutes, confirming previous results from the Sloan Digital Sky Survey cataclysmic variables.

  4. Low-loss and low-crosstalk 8 × 8 silicon nanowire AWG routers fabricated with CMOS technology.

    PubMed

    Wang, Jing; Sheng, Zhen; Li, Le; Pang, Albert; Wu, Aimin; Li, Wei; Wang, Xi; Zou, Shichang; Qi, Minghao; Gan, Fuwan

    2014-04-21

    Low-loss and low-crosstalk 8 × 8 arrayed waveguide grating (AWG) routers based on silicon nanowire waveguides are reported. A comparative study of the measurement results of the 3.2 nm-channel-spacing AWGs with three different designs is performed to evaluate the effect of each optimal technique, showing that a comprehensive optimization technique is more effective to improve the device performance than a single optimization. Based on the comprehensive optimal design, we further design and experimentally demonstrate a new 8-channel 0.8 nm-channel-spacing silicon AWG router for dense wavelength division multiplexing (DWDM) application with 130 nm CMOS technology. The AWG router with a channel spacing of 3.2 nm (resp. 0.8 nm) exhibits low insertion loss of 2.32 dB (resp. 2.92 dB) and low crosstalk of -20.5~-24.5 dB (resp. -16.9~-17.8 dB). In addition, sophisticated measurements are presented including all-input transmission testing and high-speed WDM system demonstrations for these routers. The functionality of the Si nanowire AWG as a router is characterized and a good cyclic rotation property is demonstrated. Moreover, we test the optical eye diagrams and bit-error-rates (BER) of the de-multiplexed signal when the multi-wavelength high-speed signals are launched into the AWG routers in a system experiment. Clear optical eye diagrams and low power penalty from the system point of view are achieved thanks to the low crosstalk of the AWG devices.

  5. An Assessment of Gigabit Ethernet Technology and Its Applications at the NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Bakes, Catherine Murphy; Kim, Chan M.; Ramos, Calvin T.

    2000-01-01

    This paper describes Gigabit Ethernet and its role in supporting R&D programs at NASA Glenn. These programs require an advanced high-speed network capable of transporting multimedia traffic, including real-time visualization, high- resolution graphics, and scientific data. GigE is a 1 Gbps extension to 10 and 100 Mbps Ethernet. The IEEE 802.3z and 802.3ab standards define the MAC layer and 1000BASE-X and 1000BASE-T physical layer specifications for GigE. GigE switches and buffered distributors support IEEE 802.3x flow control. The paper also compares GigE with ATM in terms of quality of service, data rate, throughput, scalability, interoperability, network management, and cost of ownership.

  6. Virtual Ethernet ring architecture for reliable Ethernet service delivery over SDH/SONET

    NASA Astrophysics Data System (ADS)

    Parikh, Anand

    2002-09-01

    With its low cost, ubiquity, and scale, Ethernet is the technology most widely envisioned to change the economics of packet service delivery for both carriers and their customers. This paper discusses a new architecture that simplifies and lowers the cost to deliver data services. By fully integrating Ethernet with existing SONET/SDH networks in a "Virtual Ethernet Ring," carriers can now provide a multipoint Ethernet service that can span long distances across multiple metro areas. This architecture leverages the plug-and-play advantages of Ethernet - auto-provisioning, broadcast and discovery, etc. - across a distributed wide area network. It provides the advantage of granular, software-provisioned bandwidth to the customer. It also provides SONET/SDH quality resilience with security and bandwidth guarantee. By incorporating protocol mediation technology, this architecture enables the migration from today's frame relay, ATM and IP services to a new generation of granular, readily scalable Ethernet services such as Ethernet Private Line, Ethernet Virtual Private Lines and Internet/Frame Relay/ATM/Access Services.

  7. Application of Mobile Router to Military Communications

    NASA Technical Reports Server (NTRS)

    Stewart, David H.; Ivancic, William D.; Bell, Terry L.; Kachmar, Brian A.; Shell, Dan; Leung, Kent

    2002-01-01

    Cisco Systems and NASA Glenn Research Center under a NASA Space Act Agreement have been performing joint networking research to apply Internet technologies and protocols to space-based communications. During this time, Cisco Systems developed the mobile-router which NASA and Cisco jointly tested. The early field trials of this technology have been successfully completed. The mobile-router is software code that resides in a network router. A Mobile-Router allows entire networks to roam while maintaining connectivity to the Internet. This router code is pertinent to a myriad of applications for both the government and commercial sectors. This technology will be applied to the wireless battlefield. NASA and the Department of Defense will utilize this technology for near-planetary observation and sensing spacecraft. It is the enabling technology for communication via the Internet or Intranets to aircraft. Information such as weather, air traffic control, voice and video can be easily and inexpensively transmitted to the aircraft using Internet protocols. The mobile router can be incorporated into emergency vehicles particularly ambulances and life-flight aircraft to provide real-time connectivity back to the hospital and healthcare experts. Commercial applications include entertainment services, IP telephone, and Internet connectivity for cruise ships, commercial shipping, tour busses, aircraft, and eventually cars. This paper will briefly describe the mobile router operation. An upcoming wide area network field test with application to US Coast Guard communications will be described. The paper will also highlight military and government networks that will benefit from the deployment of mobile router and the associated applications.

  8. High speed technology development and evaluation

    NASA Astrophysics Data System (ADS)

    Parker, D. R.; Brown, E. R.; Dickson, J. F.

    1986-10-01

    Semiconductor technology suited to high on-board data handling rates was investigated. Very high speed discrete logic and high speed gate arrays; single chip digital signal processors and single chip floating point processing peripherals; and analog CCD technologies and custom designed CCD chips for synthetic aperture radar applications were assessed. The 2 micron CMOS technology is highly reliable, supporting semicustom design techniques. Process JGC, the CCD technology, is highly reliable except for tolerance to ionizing radiation. Reliability of the ECL 16-bit serial-parallel parallel-serial converter junction isolated bipolar process, process WZA, is compromised by a design error and oxide contamination contributing to high leakage levels. The bipolar circuit is tolerant to an ionizing radiation of 20kRad. Step stress environmental testing to 200 C produces no failures in CMOS and CCD technologies, but accelerates the degradation of the oxide contaminated bipolar process. All technologies are susceptible to single event upsets.

  9. Abbreviated annealing of high-speed steel

    SciTech Connect

    Zablotskii, V.K.; Bartel, G.P.

    1987-07-01

    The authors investigate the structural and phase transformations during the heating, holding, and cooling of high-speed steels of two basic groups: tungsten (R18, R12, R12F3, and R12F4K5) and tungsten-molybdenum (R6M5, 10R6M5, R6M5K5, R8M3, 10R8M3, and R8M3K6S) steels in the forged state. They propose a cooling regime with complete alpha-gamma recrystallization whose implementation at a Soviet steel plant has made it possible to reduce the duration of heat treatment and increase productivity by 20% in cutting the annealed high-speed steels.

  10. High-speed massively parallel scanning

    DOEpatents

    Decker, Derek E.

    2010-07-06

    A new technique for recording a series of images of a high-speed event (such as, but not limited to: ballistics, explosives, laser induced changes in materials, etc.) is presented. Such technique(s) makes use of a lenslet array to take image picture elements (pixels) and concentrate light from each pixel into a spot that is much smaller than the pixel. This array of spots illuminates a detector region (e.g., film, as one embodiment) which is scanned transverse to the light, creating tracks of exposed regions. Each track is a time history of the light intensity for a single pixel. By appropriately configuring the array of concentrated spots with respect to the scanning direction of the detection material, different tracks fit between pixels and sufficient lengths are possible which can be of interest in several high-speed imaging applications.

  11. Pulse Detonation Engines for High Speed Flight

    NASA Technical Reports Server (NTRS)

    Povinelli, Louis A.

    2002-01-01

    Revolutionary concepts in propulsion are required in order to achieve high-speed cruise capability in the atmosphere and for low cost reliable systems for earth to orbit missions. One of the advanced concepts under study is the air-breathing pulse detonation engine. Additional work remains in order to establish the role and performance of a PDE in flight applications, either as a stand-alone device or as part of a combined cycle system. In this paper, we shall offer a few remarks on some of these remaining issues, i.e., combined cycle systems, nozzles and exhaust systems and thrust per unit frontal area limitations. Currently, an intensive experimental and numerical effort is underway in order to quantify the propulsion performance characteristics of this device. In this paper, we shall highlight our recent efforts to elucidate the propulsion potential of pulse detonation engines and their possible application to high-speed or hypersonic systems.

  12. High speed flight effects on noise propagation

    NASA Astrophysics Data System (ADS)

    Burrin, R. H.; Ahuja, K. K.; Salikuddin, M.

    1987-01-01

    An experimental study to investigate the effects of source motion on sound propagation at high Mach numbers was devised to determine, in particular, if the large amplifications in the forward arc to high speeds, predicted by the 'convective amplification' factors normally used for low speeds, are realistic. An acoustic point source and a microphone, both immersed in flows up to a Mach number of 0.8, were used to obtain the convective amplification factors for comparison with predictions. The results confirmed the existence of high levels of noise propagating ahead of an aircraft flying at high speed. The commonly adopted prediction formula, namely (1 - M sub 0 cos theta sub E) exp -4, was categorically confirmed by the data for frequencies up to 5 kHz and Mach numbers of 0.2 to 0.8. At higher frequencies, the predictions are followed up to emission angles of 120 deg, but then deviate downward towards the direction of flight.

  13. High speed printing with polygon scan heads

    NASA Astrophysics Data System (ADS)

    Stutz, Glenn

    2016-03-01

    To reduce and in many cases eliminate the costs associated with high volume printing of consumer and industrial products, this paper investigates and validates the use of the new generation of high speed pulse on demand (POD) lasers in concert with high speed (HS) polygon scan heads (PSH). Associated costs include consumables such as printing ink and nozzles, provisioning labor, maintenance and repair expense as well as reduction of printing lines due to high through put. Targets that are applicable and investigated include direct printing on plastics, printing on paper/cardboard as well as printing on labels. Market segments would include consumer products (CPG), medical and pharmaceutical products, universal ID (UID), and industrial products. In regards to the POD lasers employed, the wavelengths include UV(355nm), Green (532nm) and IR (1064nm) operating within the repetition range of 180 to 250 KHz.

  14. High-speed tensile test instrument.

    PubMed

    Mott, P H; Twigg, J N; Roland, D F; Schrader, H S; Pathak, J A; Roland, C M

    2007-04-01

    A novel high-speed tensile test instrument is described, capable of measuring the mechanical response of elastomers at strain rates ranging from 10 to 1600 s(-1) for strains through failure. The device employs a drop weight that engages levers to stretch a sample on a horizontal track. To improve dynamic equilibrium, a common problem in high speed testing, equal and opposite loading was applied to each end of the sample. Demonstrative results are reported for two elastomers at strain rates to 588 s(-1) with maximum strains of 4.3. At the higher strain rates, there is a substantial inertial contribution to the measured force, an effect unaccounted for in prior works using the drop weight technique. The strain rates were essentially constant over most of the strain range and fill a three-decade gap in the data from existing methods.

  15. High speed receiver for capsule endoscope.

    PubMed

    Woo, S H; Yoon, K W; Moon, Y K; Lee, J H; Park, H J; Kim, T W; Choi, H C; Won, C H; Cho, J H

    2010-10-01

    In this study, a high-speed receiver for a capsule endoscope was proposed and implemented. The proposed receiver could receive 20 Mbps data that was sufficient to receive images with a higher resolution than conventional receivers. The receiver used a 1.2 GHz band to receive radio frequency (RF) signal, and demodulated the signal to an intermediate frequency (IF) stage (150 MHz). The demodulated signal was amplified, filtered, and under-sampled by a high-speed analog-to-digital converter (ADC). In order to decode the under-sampled data in real time, a simple frequency detection algorithm was selected and was implemented by using a FPGA. The implemented system could receive 20 Mbps data.

  16. High Speed Research Program Sonic Fatigue

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A. (Technical Monitor); Beier, Theodor H.; Heaton, Paul

    2005-01-01

    The objective of this sonic fatigue summary is to provide major findings and technical results of studies, initiated in 1994, to assess sonic fatigue behavior of structure that is being considered for the High Speed Civil Transport (HSCT). High Speed Research (HSR) program objectives in the area of sonic fatigue were to predict inlet, exhaust and boundary layer acoustic loads; measure high cycle fatigue data for materials developed during the HSR program; develop advanced sonic fatigue calculation methods to reduce required conservatism in airframe designs; develop damping techniques for sonic fatigue reduction where weight effective; develop wing and fuselage sonic fatigue design requirements; and perform sonic fatigue analyses on HSCT structural concepts to provide guidance to design teams. All goals were partially achieved, but none were completed due to the premature conclusion of the HSR program. A summary of major program findings and recommendations for continued effort are included in the report.

  17. DAC 22 High Speed Civil Transport Model

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Between tests, NASA research engineer Dave Hahne inspects a tenth-scale model of a supersonic transport model in the 30- by 60-Foot Tunnel at NASA Langley Research Center, Hampton, Virginia. The model is being used in support of NASA's High-Speed Research (HSR) program. Langley researchers are applying advance aerodynamic design methods to develop a wing leading-edge flap system which significantly improves low-speed fuel efficiency and reduces noise generated during takeoff operation. Langley is NASA's lead center for the agency's HSR program, aimed at developing technology to help U.S. industry compete in the rapidly expanding trans-oceanic transport market. A U.S. high-speed civil transport is expected to fly in about the year 2010. As envisioned, it would fly 300 passengers across the Pacific in about four hours at Mach 2.4 (approximately 1,600 mph/1950 kph) for a modest increase over business class fares.

  18. Safety issues in high speed machining

    NASA Astrophysics Data System (ADS)

    1994-05-01

    There are several risks related to High-Speed Milling, but they have not been systematically determined or studied so far. Increased loads by high centrifugal forces may result in dramatic hazards. Flying tools or fragments from a tool with high kinetic energy may damage surrounding people, machines and devices. In the project, mechanical risks were evaluated, theoretic values for kinetic energies of rotating tools were calculated, possible damages of the flying objects were determined and terms to eliminate the risks were considered. The noise levels of the High-Speed Machining center owned by the Helsinki University of Technology (HUT) and the Technical Research Center of Finland (VTT) in practical machining situation were measured and the results were compared to those after basic preventive measures were taken.

  19. The NASA high-speed turboprop program

    NASA Technical Reports Server (NTRS)

    Dugan, J. F.; Miller, B. A.; Graber, E. J.; Sagerser, D. A.

    1980-01-01

    Technology readiness for Mach 0.7 to 0.8 turboprop powered aircraft with the potential for fuel savings and DOC reductions of up to 30 and 15 percent respectively relative to current in-service aircraft is addressed. The areas of propeller aeroacoustics, propeller structures, turboprop installed performance, aircraft cabin environment, and turboprop engine and aircraft studies are emphasized. Large scale propeller characteristics and high speed propeller flight research tests using a modified testbed aircraft are also considered.

  20. Data Capture Technique for High Speed Signaling

    DOEpatents

    Barrett, Wayne Melvin; Chen, Dong; Coteus, Paul William; Gara, Alan Gene; Jackson, Rory; Kopcsay, Gerard Vincent; Nathanson, Ben Jesse; Vranas, Paylos Michael; Takken, Todd E.

    2008-08-26

    A data capture technique for high speed signaling to allow for optimal sampling of an asynchronous data stream. This technique allows for extremely high data rates and does not require that a clock be sent with the data as is done in source synchronous systems. The present invention also provides a hardware mechanism for automatically adjusting transmission delays for optimal two-bit simultaneous bi-directional (SiBiDi) signaling.

  1. High Speed Blood and Fluid Transfusion Equipment

    DTIC Science & Technology

    2010-06-01

    it stores energy for heating fluid when not attached to an external power source, (2) that it provides for high heating and infusion rates, up to...8217 % High Speed Blood and Fluid Transfusion Equipment Final Report Prepared by: Rocky Research 1598 Foothill Drive Boulder City, NV 89005...University of Nevada School of Medicine Trauma Institute Department of Surgery 2040 W. Charleston Blvd #302 Las Vegas, NV 89102 Principal

  2. The high-speed camera ULTRACAM

    NASA Astrophysics Data System (ADS)

    Marsh, T. R.; Dhillon, V. S.

    2006-08-01

    ULTRACAM is a high-speed, tri-band CCD camera designed for observations of time variable celestial objects. Commissioned on the 4.2m WHT in La Palma, it has now been used for observations of many types of phenomena and objects including stellar occultations, accreting black-holes, neutron stars and white dwarfs, pulsars, eclipsing binaries and pulsating stars. In this paper we describe the salient features of ULTRACAM and discuss some of the results of its use.

  3. High-speed Digital Color Imaging Pyrometry

    DTIC Science & Technology

    2011-08-01

    and environment of the events. To overcome these challenges, we have characterized and calibrated a digital high-speed color camera that may be...correction) to determine their effect on the calculated temperature. Using this technique with a Phantom color camera , we measured the temperature of...constant value of approximately 1980~K. 15. SUBJECT TERMS Pyrometry, color camera 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT

  4. Laser Trigger For High Speed Camera

    NASA Astrophysics Data System (ADS)

    Chang, Rong-Seng; Lin, Chin-Wu; Cheng, Tung

    1987-09-01

    High speed camera coorperated with laser trigger to catch high speed unpredictable events has many applications: such as scoring system for the end game of missile interception, war head explosive study etc. When the event happening in a very short duration, the repetition rate of the laser ranging must be as high as 5K herze and the pulse duration should be less than 10 nsec. In some environment, like inside the aircraft, the abailable space for high speed camera to set up is limited, large film capacity camera could not be used. In order to use the small capacity film, the exact trigger time for the camera are especially important. The target velocity, camera acceleration characteristics, speed regulation, camera size, weight and the ruggedness are all be considered before the laser trigger be designed. Electric temporal gate is used to measure the time of flight ranging datum. The triangular distance measurement principle are also used to get the ranging when the base line i.e. the distance between the laser transmitter and receiver are large enough.

  5. 50-Gbit/s vertical illumination avalanche photodiode for 400-Gbit/s Ethernet systems.

    PubMed

    Nada, Masahiro; Yokoyama, Haruki; Muramoto, Yoshifumi; Ishibashi, Tadao; Matsuzaki, Hideaki

    2014-06-16

    50-Gbit/s error-free operation is demonstrated by a high-speed avalanche photodiode for the first time. The APD exhibits 3-dB bandwidth of 35 GHz and excellent receiver sensitivity of -10.8 dBm at a BER of 10(-12) against non-return to zero input optical signals. These results indicate our APD is promising for the systems with serial baud rate of 50 Gbit/s such as 400-Gbit/s Ethernet systems.

  6. Architectures and applications of high-speed vision

    NASA Astrophysics Data System (ADS)

    Watanabe, Yoshihiro; Oku, Hiromasa; Ishikawa, Masatoshi

    2014-11-01

    With the progress made in high-speed imaging technology, image processing systems that can process images at high frame rates, as well as their applications, are expected. In this article, we examine architectures for high-speed vision systems, and also dynamic image control, which can realize high-speed active optical systems. In addition, we also give an overview of some applications in which high-speed vision is used, including man-machine interfaces, image sensing, interactive displays, high-speed three-dimensional sensing, high-speed digital archiving, microvisual feedback, and high-speed intelligent robots.

  7. Multimode fibered photodetectors for high-power high-speed applications beyond 10 Gb/s

    NASA Astrophysics Data System (ADS)

    Howard, Roy; Wang, Xinde; Joshi, Abhay; Becker, Don; Datta, Shubhashish; Wree, Christoph

    2007-04-01

    We report the development of top illuminated InGaAs photodetectors pigtailed to 50 μm core multimode (MM) fibers. These PIN diodes, in conjunction with low dispersion graded index MM fibers, allow for low cost and rugged solutions for high speed digital and analog applications. Our PIN diodes have previously demonstrated high optical power handling capability at large signal bandwidths. Coupled with large collection efficiency of MM fibers, these devices are suitable for a diverse range of systems, including avionics, ultra-fast Ethernet, radio over fiber, optical backplanes and free space laser links. The effect of the MM fiber's transfer function and fiber misalignment on the photodetector response is addressed. The spatial and temporal filtering effects of the MM fiber and the photodiode are explored experimentally through a 40 Gb/s link. Enhancement in photodiode linearity due to MM fiber is also reported.

  8. Analysis of SCTP and TCP based communication in high-speed clusters

    NASA Astrophysics Data System (ADS)

    Kozlovszky, M.; Berceli, T.; Kutor, L.

    2006-04-01

    Performance and financial constraints are pushing modern DAQs (Data Acquisition Systems) to use distributed cluster environments instead of monolith one-box systems. Inside clusters application communication layers should support outstanding high performance requirements. We are currently investigating different network protocols that could meet the requirements of high speed/low latency peer-to-peer communication within DAQ clusters. We have carried out various performance measurements with TCP and SCTP over Fast and Gigabit Ethernet. We are focusing on Ethernet Technologies, because this transport medium is broad deployed, cost efficient and it has much better cost/throughput ratio than other available communication alternatives (e.g.: Myrinet, Infiniband). During this study, a protocol performance measurement application with different peer transport components has been developed. In the first part of the paper, we give a short comparison of the two protocols (SCTP and TCP), and an introduction of the transport layer structure developed. Later on we discuss the performance results of single/multi-stream peer-to-peer communication, give overview about application code transition possibilities from application developer point of view between the two protocols, and draw conclusions about usability.

  9. High-Speed Propeller for Aircraft

    NASA Technical Reports Server (NTRS)

    Sagerser, D. A.; Gatzen, B. S.

    1986-01-01

    Engine efficiency increased. Propeller blades required to be quite thin and highly swept to minimize compressibility losses and propeller noise during high-speed cruise. Use of 8 or 10 blades with highpropeller-power loading allows overall propeller diameter to be kept relatively small. Area-ruled spinner and integrated nacelle shape reduce compressibility losses in propeller hub region. Finally, large modern turboshaft engine and gearbox provide power to advanced propeller. Fuel savings of 30 to 50 percent over present systems anticipated. Propfan system adaptable to number of applications, such as highspeed (subsonic) business and general-aviation aircraft, and military aircraft including V/STOL.

  10. Pulsed laser triggered high speed microfluidic switch

    NASA Astrophysics Data System (ADS)

    Wu, Ting-Hsiang; Gao, Lanyu; Chen, Yue; Wei, Kenneth; Chiou, Pei-Yu

    2008-10-01

    We report a high-speed microfluidic switch capable of achieving a switching time of 10 μs. The switching mechanism is realized by exciting dynamic vapor bubbles with focused laser pulses in a microfluidic polydimethylsiloxane (PDMS) channel. The bubble expansion deforms the elastic PDMS channel wall and squeezes the adjacent sample channel to control its fluid and particle flows as captured by the time-resolved imaging system. A switching of polystyrene microspheres in a Y-shaped channel has also been demonstrated. This ultrafast laser triggered switching mechanism has the potential to advance the sorting speed of state-of-the-art microscale fluorescence activated cell sorting devices.

  11. Flow imaging by high speed transmission tomography.

    PubMed

    Johansen, Geir Anton; Hampel, Uwe; Hjertaker, Bjørn Tore

    2010-01-01

    Fourth generation medical X-ray scanners using a gantry with a rotating X-ray source and a fixed circular detector array as sensor head, are too slow for imaging of the process dynamics for instance in multiphase flows. To avoid inconsistent measurements and motion blurring, all measurements need to be carried out in a short time compared to the time constants of the process dynamics. Two different high speed tomographic imaging systems are presented here demonstrating that image rates of several thousand images per second is possible. Copyright 2009 Elsevier Ltd. All rights reserved.

  12. Characterization and Compensation of High Speed Digitizers

    SciTech Connect

    Fong, P; Teruya, A; Lowry, M

    2005-04-04

    Increasingly, ADC technology is being pressed into service for single single-shot instrumentation applications that were formerly served by vacuum-tube based oscilloscopes and streak cameras. ADC technology, while convenient, suffers significant performance impairments. Thus, in these demanding applications, a quantitative and accurate representation of these impairments is critical to an understanding of measurement accuracy. We have developed a phase-plane behavioral model, implemented it in SIMULINK and applied it to interleaved, high-speed ADCs (up to 4 gigasamples/sec). We have also developed and demonstrated techniques to effectively compensate for these impairments based upon the model.

  13. High Speed Solid State Circuit Breaker

    NASA Technical Reports Server (NTRS)

    Podlesak, Thomas F.

    1993-01-01

    The U.S. Army Research Laboratory, Fort Monmouth, NJ, has developed and is installing two 3.3 MW high speed solid state circuit breakers at the Army's Pulse Power Center. These circuit breakers will interrupt 4160V three phase power mains in no more than 300 microseconds, two orders of magnitude faster than conventional mechanical contact type circuit breakers. These circuit breakers utilize Gate Turnoff Thyristors (GTO's) and are currently utility type devices using air cooling in an air conditioned enclosure. Future refinements include liquid cooling, either water or two phase organic coolant, and more advanced semiconductors. Each of these refinements promises a more compact, more reliable unit.

  14. An SAE high speed ring bus overview

    NASA Astrophysics Data System (ADS)

    Kroeger, Brian W.; Shih, Hubert

    An overview of the protocols and important features of the SAE high-speed ring bus (HSRB) standard is presented here, along with the functional design of a typical ring interface unit architecture. The counterrotating ring topology, with both loopback and bypass mechanisms, provides the high degree of fault tolerance desirable in many military and avionic systems. The error-detection, fault-detection, and recovery mechanisms are briefly described to illustrate the robustness of the HSRB system. The reserved-priority token-passing protocol is shown to provide efficient and deterministic performance, uselful in real-time applications where messages must be transmitted predictably, quickly, and reliably.

  15. Some problems of high speed travel

    PubMed Central

    Reader, D. C.

    1975-01-01

    Some aspects of high speed flight are examined to investigate whether increase in speed implies any lowering of safety standards. The problem of circadian dysrhythmia is discussed and methods of attenuating its effects are explained and some new hypnotic drugs are mentioned. The risk of decompression has been quantified and predictions have been made for risks in commercial service. Cosmic radiation in supersonic aircraft is unlikely to limit commercial operation or significantly increase risks to passengers and crew. The supersonic boom is likely to limit the terrain over which supersonic aircraft can operate and regulations covering engine noise on the ground could restrict some flights. PMID:1208294

  16. The Hubble Space Telescope high speed photometer

    NASA Technical Reports Server (NTRS)

    Vancitters, G. W., Jr.; Bless, R. C.; Dolan, J. F.; Elliot, J. L.; Robinson, E. L.; White, R. L.

    1988-01-01

    The Hubble Space Telescope will provide the opportunity to perform precise astronomical photometry above the disturbing effects of the atmosphere. The High Speed Photometer is designed to provide the observatory with a stable, precise photometer with wide dynamic range, broad wavelenth coverage, time resolution in the microsecond region, and polarimetric capability. Here, the scientific requirements for the instrument are examined, the unique design features of the photometer are explored, and the improvements to be expected over the performance of ground-based instruments are projected.

  17. High Speed SPM of Functional Materials

    SciTech Connect

    Huey, Bryan D.

    2015-08-14

    The development and optimization of applications comprising functional materials necessitates a thorough understanding of their static and dynamic properties and performance at the nanoscale. Leveraging High Speed SPM and concepts enabled by it, efficient measurements and maps with nanoscale and nanosecond temporal resolution are uniquely feasible. This includes recent enhancements for topographic, conductivity, ferroelectric, and piezoelectric properties as originally proposed, as well as newly developed methods or improvements to AFM-based mechanical, friction, thermal, and photoconductivity measurements. The results of this work reveal fundamental mechanisms of operation, and suggest new approaches for improving the ultimate speed and/or efficiency, of data storage systems, magnetic-electric sensors, and solar cells.

  18. Finite element methods for high speed flows

    NASA Technical Reports Server (NTRS)

    Loehner, R.; Morgan, K.; Peraire, J.; Zienkiewicz, O. C.

    1985-01-01

    An explicit finite element based solution procedure for solving the equations of compressible viscous high speed flow is presented. The method uses domain splitting to advance the solution with different timesteps on different portions of the mesh. For steady inviscid flows, adaptive mesh refinement procedures are successfully employed to enhance the definition of discontinuities. Preliminary ideas on the application of adaptive mesh refinement to the solution of problems involving steady viscous flow are presented. Sample timings are given for the performance of the finite element code on modern supercomputers.

  19. Conclusions from high-speed rotorcraft studies

    NASA Technical Reports Server (NTRS)

    Conway, Scott

    1991-01-01

    Under the tutelage of NASA-Ames, evaluations have been made of the technology required for high-speed rotorcraft flight with a view to the performance potential and development risks of several candidate configurations. Configurational performance limitations were associated with rotor performance at high Mach numbers and advance ratios, nacelle interference effects on rotor flow, and wing/rotor aeroelastic stability requirements. Attention is given to tiltwing, tilt-for-VTOL/fold-for-cruise rotor, and conventional tiltrotor configurations capable of carrying 30 passengers for the intercity commuter market.

  20. Continuous QKD and high speed data encryption

    NASA Astrophysics Data System (ADS)

    Zbinden, Hugo; Walenta, Nino; Guinnard, Olivier; Houlmann, Raphael; Wen, Charles Lim Ci; Korzh, Boris; Lunghi, Tommaso; Gisin, Nicolas; Burg, Andreas; Constantin, Jeremy; Legré, Matthieu; Trinkler, Patrick; Caselunghe, Dario; Kulesza, Natalia; Trolliet, Gregory; Vannel, Fabien; Junod, Pascal; Auberson, Olivier; Graf, Yoan; Curchod, Gilles; Habegger, Gilles; Messerli, Etienne; Portmann, Christopher; Henzen, Luca; Keller, Christoph; Pendl, Christian; Mühlberghuber, Michael; Roth, Christoph; Felber, Norbert; Gürkaynak, Frank; Schöni, Daniel; Muheim, Beat

    2013-10-01

    We present the results of a Swiss project dedicated to the development of high speed quantum key distribution and data encryption. The QKD engine features fully automated key exchange, hardware key distillation based on finite key security analysis, efficient authentication and wavelength division multiplexing of the quantum and the classical channel and one-time pas encryption. The encryption device allows authenticated symmetric key encryption (e.g AES) at rates of up to 100 Gb/s. A new quantum key can uploaded up to 1000 times second from the QKD engine.

  1. High-speed spectroradiometer for remote sensing.

    PubMed

    Miyazaki, T; Shimizu, H; Yasuoka, Y

    1987-11-15

    A high-speed spectroradiometer designed for spectral reflectance measurement in remote sensing is described. This instrument uses a monochromatic grating and a photomultiplier system for light detection and sweeps over the 400-850-nm wavelength spectral range with the spectral resolution of 2 nm within 1 s. The instrument has the inherent advantage of portability and speed of operation which make it particularly suitable for field work in the area of fast moving surfaces, e.g., water with wave motion. Some applications of its use in laboratory and field experiments also have been presented. The instrument would seem to be an appropriate instrument for ground data collection in remote sensing.

  2. High-speed multispectral confocal biomedical imaging

    PubMed Central

    Carver, Gary E.; Locknar, Sarah A.; Morrison, William A.; Krishnan Ramanujan, V.; Farkas, Daniel L.

    2014-01-01

    Abstract. A new approach for generating high-speed multispectral confocal images has been developed. The central concept is that spectra can be acquired for each pixel in a confocal spatial scan by using a fast spectrometer based on optical fiber delay lines. This approach merges fast spectroscopy with standard spatial scanning to create datacubes in real time. The spectrometer is based on a serial array of reflecting spectral elements, delay lines between these elements, and a single element detector. The spatial, spectral, and temporal resolution of the instrument is described and illustrated by multispectral images of laser-induced autofluorescence in biological tissues. PMID:24658777

  3. Loop Redundant of Industrial Ethernet Applied to Airport

    NASA Astrophysics Data System (ADS)

    Yangfan

    This paper describes the technical characteristics of Loop redundant of industrial ethernet, further details the scheme execution planning of Loop redundant of industrial ethernet and the overall schedule relation between ring network implementation and airport construction period.

  4. Evaluation of Giga-bit Ethernet instrumentation for SalSA electronics readout

    NASA Astrophysics Data System (ADS)

    Varner, Gary S.; Murakami, Laine; Ridley, David; Zhu, Chaopin; Gorham, Peter

    2005-12-01

    An instrumentation prototype for acquiring high-speed transient data from an array of high bandwidth antennas is presented. Multi-kilometer cable runs complicate acquisition of such large bandwidth radio signals from an extensive antenna array. Solutions using analog fiber optic links are being explored though are very expensive. We propose an inexpensive solution that allows for individual operation of each antenna element, operating at potentially high local self-trigger rates. Digitized data packets are transmitted to the surface via commercially available Giga-bit Ethernet hardware. Events are then reconstructed on a computer farm by sorting the received packets using standard networking gear, eliminating the need for custom, very high speed trigger hardware. Such a system is completely scalable and leverages the enormous capital investment made by the telecommunications industry. Test results from a demonstration prototype are presented.

  5. Implementing Ethernet Services on the Payload Executive Processor (PEP)

    NASA Technical Reports Server (NTRS)

    Pruett, David; Guyette, Greg

    2016-01-01

    The Ethernet interface is more common and easier interface to implement for payload developers already familiar with Ethernet protocol in their labs. The Ethernet interface allows for a more distributed payload architecture. Connections can be placed in locations not serviced by the PEP 1553 bus. The Ethernet interface provides a new access port into the PEP so as to use the already existing services. Initial capability will include a subset of services with a plan to expand services later.

  6. Thermomechanical phenomena in high speed rubbing

    NASA Technical Reports Server (NTRS)

    Kennedy, F. E.

    1980-01-01

    An analytical approach is presented for the modeling of the thermomechanical interactions which occur in high speed sliding situations. These sliding contact problems which are characterized by active and interrelated thermal and mechanical phenomena could be called 'rub energetics' problems. Analytical models were developed to simulate two different rub situations: high energy braking of disk brakes and high speed rubs of gas path seals in turbine engines. The models proved to be particularly useful in predicting the severe temperatures and deformations near hot contact patches on the rubbing surfaces. The size of the hot patches is generally determined by normal load and the properties of the contacting materials. Temperatures at the contact patches can approach the melting point of the materials, especially at high sliding velocities. These high temperatures can lead to large amounts of near-surface deformation and high wear rates. Decreased contact temperatures can result from using materials with increased thermal conductivity and increased heat capacity or choosing mechanical properties (decreased stiffness, yield stress or coefficient of thermal expansion) which give larger hot spot size.

  7. High-speed civil transport study

    NASA Technical Reports Server (NTRS)

    1989-01-01

    A system study of the potential for a high-speed commercial transport has addressed technological, economic, and environmental constraints. Market projections indicate a need for fleets of transports with supersonic or greater cruise speeds by the year 2000 to 2005. The associated design requirements called for a vehicle to carry 250 to 300 passengers over a range of 5,000 to 6,000 nautical miles. The study was initially unconstrained in terms of vehicle characteristic, such as cruise speed, propulsion systems, fuels, or structural materials. Analyses led to a focus on the most promising vehicle concepts. These were concepts that used a kerosene-type fuel and cruised at Mach numbers between 2.0 to 3.2. Further systems study identified the impact of environmental constraints (for community noise, sonic boom, and engine emissions) on economic attractiveness and technological needs. Results showed that current technology cannot produce a viable high-speed civil transport; significant advances are required to reduce takeoff gross weight and allow for both economic attractiveness and environmental accepatability. Specific technological requirements were identified to meet these needs.

  8. Study of high-speed civil transports

    NASA Technical Reports Server (NTRS)

    1989-01-01

    A systems study to identify the economic potential for a high-speed commercial transport (HSCT) has considered technology, market characteristics, airport infrastructure, and environmental issues. Market forecasts indicate a need for HSCT service in the 2000/2010 time frame conditioned on economic viability and environmental acceptability. Design requirements focused on a 300 passenger, 3 class service, and 6500 nautical mile range based on the accelerated growth of the Pacific region. Compatibility with existing airports was an assumed requirement. Mach numbers between 2 and 25 were examined in conjunction with the appropriate propulsion systems, fuels, structural materials, and thermal management systems. Aircraft productivity was a key parameter with aircraft worth, in comparison to aircraft price, being the airline-oriented figure of merit. Aircraft screening led to determination that Mach 3.2 (TSJF) would have superior characteristics to Mach 5.0 (LNG) and the recommendation that the next generation high-speed commercial transport aircraft use a kerosene fuel. The sensitivity of aircraft performance and economics to environmental constraints (e.g., sonic boom, engine emissions, and airport/community noise) was identified together with key technologies. In all, current technology is not adequate to produce viable HSCTs for the world marketplace. Technology advancements must be accomplished to meet environmental requirements (these requirements are as yet undetermined for sonic boom and engine emissions). High priority is assigned to aircraft gross weight reduction which benefits both economics and environmental aspects. Specific technology requirements are identified and national economic benefits are projected.

  9. ACTS High-Speed VSAT Demonstrated

    NASA Technical Reports Server (NTRS)

    Tran, Quang K.

    1999-01-01

    The Advanced Communication Technology Satellite (ACTS) developed by NASA has demonstrated the breakthrough technologies of Ka-band transmission, spot-beam antennas, and onboard processing. These technologies have enabled the development of very small and ultrasmall aperture terminals (VSAT s and USAT's), which have capabilities greater than have been possible with conventional satellite technologies. The ACTS High Speed VSAT (HS VSAT) is an effort at the NASA Glenn Research Center at Lewis Field to experimentally demonstrate the maximum user throughput data rate that can be achieved using the technologies developed and implemented on ACTS. This was done by operating the system uplinks as frequency division multiple access (FDMA), essentially assigning all available time division multiple access (TDMA) time slots to a single user on each of two uplink frequencies. Preliminary results show that, using a 1.2-m antenna in this mode, the High Speed VSAT can achieve between 22 and 24 Mbps of the 27.5 Mbps burst rate, for a throughput efficiency of 80 to 88 percent.

  10. High-speed civil transport study. Summary

    NASA Technical Reports Server (NTRS)

    1989-01-01

    A system of study of the potential for a high speed commercial transport aircraft addressed technology, economic, and environmental constraints. Market projections indicated a need for fleets of transport with supersonic or greater cruise speeds by the years 2000 to 2005. The associated design requirements called for a vehicle to carry 250 to 300 passengers over a range of 5000 to 6000 nautical miles. The study was initially unconstrained in terms of vehicle characteristics, such as cruise speed, propulsion systems, fuels, or structural materials. Analyses led to a focus on the most promising vehicle concepts. These were concepts that used a kerosene type fuel and cruised at Mach numbers between 2.0 to 3.2. Further systems study identified the impact of environmental constraints (for community noise, sonic boom, and engine emissions) on economic attractiveness and technological needs. Results showed that current technology cannot produce a viable high speed civil transport. Significant advances are needed to take off gross weight and allow for both economic attractiveness and environment acceptability. Specific technological requirements were identified to meet these needs.

  11. High-speed optogenetic circuit mapping

    NASA Astrophysics Data System (ADS)

    Augustine, George J.; Chen, Susu; Gill, Harin; Katarya, Malvika; Kim, Jinsook; Kudolo, John; Lee, Li M.; Lee, Hyunjeong; Lo, Shun Qiang; Nakajima, Ryuichi; Park, Min-Yoon; Tan, Gregory; Tang, Yanxia; Teo, Peggy; Tsuda, Sachiko; Wen, Lei; Yoon, Su-In

    2013-03-01

    Scanning small spots of laser light allows mapping of synaptic circuits in brain slices from transgenic mice expressing channelrhodopsin-2 (ChR2). These light spots photostimulate presynaptic neurons expressing ChR2, while postsynaptic responses can be monitored in neurons that do not express ChR2. Correlating the location of the light spot with the amplitude of the postsynaptic response elicited at that location yields maps of the spatial organization of the synaptic circuits. This approach yields maps within minutes, which is several orders of magnitude faster than can be achieved with conventional paired electrophysiological methods. We have applied this high-speed technique to map local circuits in many brain regions. In cerebral cortex, we observed that maps of excitatory inputs to pyramidal cells were qualitatively different from those measured for interneurons within the same layers of the cortex. In cerebellum, we have used this approach to quantify the convergence of molecular layer interneurons on to Purkinje cells. The number of converging interneurons is reduced by treatment with gap junction blockers, indicating that electrical synapses between interneurons contribute substantially to the spatial convergence. Remarkably, gap junction blockers affect convergence in sagittal cerebellar slices but not in coronal slices, indicating sagittal polarization of electrical coupling between interneurons. By measuring limb movement or other forms of behavioral output, this approach also can be used in vivo to map brain circuits non-invasively. In summary, ChR2-mediated high-speed mapping promises to revolutionize our understanding of brain circuitry.

  12. Applications for high-speed infrared imaging

    NASA Astrophysics Data System (ADS)

    Richards, Austin A.

    2005-03-01

    The phrase high-speed imaging is generally associated with short exposure times, fast frame rates or both. Supersonic projectiles, for example, are often impossible to see with the unaided eye, and require strobe photography to stop their apparent motion. It is often necessary to image high-speed objects in the infrared region of the spectrum, either to detect them or to measure their surface temperature. Conventional infrared cameras have time constants similar to the human eye, so they too, are often at a loss when it comes to photographing fast-moving hot targets. Other types of targets or scenes such as explosions change very rapidly with time. Visualizing those changes requires an extremely high frame rate combined with short exposure times in order to slow down a dynamic event so that it can be studied and quantified. Recent advances in infrared sensor technology and computing power have pushed the envelope of what is possible to achieve with commercial IR camera systems.

  13. MM-122: High speed civil transport

    NASA Technical Reports Server (NTRS)

    Demarest, Bill; Anders, Kurt; Manchec, John; Yang, Eric; Overgaard, Dan; Kalkwarf, Mike

    1992-01-01

    The rapidly expanding Pacific Rim market along with other growing markets indicates that the future market potential for a high speed civil transport is great indeed. The MM-122 is the answer to the international market desire for a state of the art, long range, high speed civil transport. It will carry 250 passengers a distance of 5200 nm at over twice the speed of sound. The MM-122 is designed to incorporate the latest technologies in the areas of control systems, propulsions, aerodynamics, and materials. The MM-122 will accomplish these goals using the following design parameters. First, a double delta wing planform with highly swept canards and an appropriately area ruled fuselage will be incorporated to accomplish desired aerodynamic characteristics. Propulsion will be provided by four low bypass variable cycle turbofan engines. A quad-redundant fly-by-wire flight control system will be incorporated to provide appropriate static stability and level 1 handling qualities. Finally, the latest in conventional metallic and modern composite materials will be used to provide desired weight and performance characteristics. The MM-122 incorporates the latest in technology and cost minimization techniques to provide a viable solution to this future market potential.

  14. Pressure Distribution Over Airfoils at High Speeds

    NASA Technical Reports Server (NTRS)

    Briggs, L J; Dryden, H L

    1927-01-01

    This report deals with the pressure distribution over airfoils at high speeds, and describes an extension of an investigation of the aerodynamic characteristics of certain airfoils which was presented in NACA Technical Report no. 207. The results presented in report no. 207 have been confirmed and extended to higher speeds through a more extensive and systematic series of tests. Observations were also made of the air flow near the surface of the airfoils, and the large changes in lift coefficients were shown to be associated with a sudden breaking away of the flow from the upper surface. The tests were made on models of 1-inch chord and comparison with the earlier measurements on models of 3-inch chord shows that the sudden change in the lift coefficient is due to compressibility and not to a change in the Reynolds number. The Reynolds number still has a large effect, however, on the drag coefficient. The pressure distribution observations furnish the propeller designer with data on the load distribution at high speeds, and also give a better picture of the air-flow changes.

  15. A Delay Model for Router Micro-Architectures

    DTIC Science & Technology

    1999-01-01

    virtual-channel flow control. The results show that virtual channels incur a modest additional cycle of per-hop router latency that is more than offset by the 25-40% throughput improvement over a wormhole router.

  16. Visualization of high speed phenomena using high-speed infrared camera

    NASA Astrophysics Data System (ADS)

    Yaoita, T.; Marcotte, F.

    2017-02-01

    The standard infrared camera has taken certain integration time with the photography per once, it was unsuitable for high-speed photography. By the infrared camera which can buffer photography data efficiently continually, high-speed photography of 2,000fps is enabled in 320X240 pixels and 11,000fps in128X100 pixels by windowing mode. The heat generation of specimen phenomenon is used for the monitoring of the start point of the destruction and the thermometry of combustion gases.

  17. An overview of high-speed networking for workstations

    SciTech Connect

    Hake, K.

    1995-04-01

    The telecommunications industry provides new technologies for GIS (Geographic Information System) workstation upgrades: Fast Ethernet, 100VG-AnyLAN, and Asynchronous Transfer Mode (ATM). These network technologies are based on approved standards and have industry backing (alliance for Fast Ethernet). This paper briefly examines these technologies. Fast Ethernet is an extension to its predecessor 10 Mbps Ethernet, providing a 10x increase in transmission rate. 100VG-AnyLAN offers extensions to Ethernet but embraces the Token Ring technology, allowing internetworking and better performance for networked video. ATM takes a radial approach by simplifying the information quantum to a 53-byte cell, resulting in rapid data handling for telecommunications equipment and allowing efficient transport of data, video, and voice communications. Switched Ethernet and Full Duplexing are among the other technologies competing for this market. The ultimate test of usefulness for any technology lies in how they handle the GIS environment requirements; working demonstration systems will help clarify marketing rhetoric and determine which vendor best implemented the standard.

  18. Stochastic Stability in Internet Router Congestion Games

    NASA Astrophysics Data System (ADS)

    Chung, Christine; Pyrga, Evangelia

    Congestion control at bottleneck routers on the internet is a long standing problem. Many policies have been proposed for effective ways to drop packets from the queues of these routers so that network endpoints will be inclined to share router capacity fairly and minimize the overflow of packets trying to enter the queues. We study just how effective some of these queuing policies are when each network endpoint is a self-interested player with no information about the other players’ actions or preferences. By employing the adaptive learning model of evolutionary game theory, we study policies such as Droptail, RED, and the greedy-flow-punishing policy proposed by Gao et al. [10] to find the stochastically stable states: the states of the system that will be reached in the long run.

  19. Analysis of all-optical IP routers

    NASA Astrophysics Data System (ADS)

    Tamil, Lakshman S.; Masetti, Francesco B.; McDermott, Thomas C.; Castanon, Gerardo; Ge, Andrew; Tancevski, Ljubisa

    1998-10-01

    The increased data traffic experienced today and the projected increase in the data traffic in the future demand exploration of novel approaches to IP transport such as transport of IP traffic over optics. The bimodal nature of the IP traffic short packets which are typical of transactional-style flows and large packets or bursts which are encountered in the transport of large data blocks requires, design of routers that are capable of routing packets with variable lengths efficiently. In this paper, we discuss the design aspects of such all-optical IP-switches. The broadcast and select architecture is a prime candidate for implementing optical IP routers. Construction of optical routers with buffering, wavelength conversion and multipath routing are considered. The merits and demerits of all these cases and the effect of buffer size, wavelength conversion and multiple-path routing on the blocking probability and probability of packet loss are discussed.

  20. Experimental demonstration of a quantum router.

    PubMed

    Yuan, X X; Ma, J-J; Hou, P-Y; Chang, X-Y; Zu, C; Duan, L-M

    2015-07-22

    The router is a key element for a network. We describe a scheme to realize genuine quantum routing of single-photon pulses based on cascading of conditional quantum gates in a Mach-Zehnder interferometer and report a proof-of-principle experiment for its demonstration using linear optics quantum gates. The polarization of the control photon routes in a coherent way the path of the signal photon while preserving the qubit state of the signal photon represented by its polarization. We demonstrate quantum nature of this router by showing entanglement generated between the initially unentangled control and signal photons, and confirm that the qubit state of the signal photon is well preserved by the router through quantum process tomography.

  1. Experimental demonstration of a quantum router

    PubMed Central

    Yuan, X. X.; Ma, J.-J.; Hou, P.-Y.; Chang, X.-Y.; Zu, C.; Duan, L.-M.

    2015-01-01

    The router is a key element for a network. We describe a scheme to realize genuine quantum routing of single-photon pulses based on cascading of conditional quantum gates in a Mach-Zehnder interferometer and report a proof-of-principle experiment for its demonstration using linear optics quantum gates. The polarization of the control photon routes in a coherent way the path of the signal photon while preserving the qubit state of the signal photon represented by its polarization. We demonstrate quantum nature of this router by showing entanglement generated between the initially unentangled control and signal photons, and confirm that the qubit state of the signal photon is well preserved by the router through quantum process tomography. PMID:26197928

  2. Neutron and high speed photogrammetric arcjet diagnosis

    NASA Technical Reports Server (NTRS)

    Stewart, P. A. E.; Rogers, J. D.; Fowler, P. H.; Deininger, W. D.; Taylor, A. D.

    1989-01-01

    Two methods for real time internal diagnostics of arcjet engines are described. One method uses cold, thermal, or epithermal neutrons. Cold neutrons are used to detect the presence and location of hydrogenous propellants. Thermal neutrons are used to delineate the edge contours of anode and cathode surfaces and to measure stress/strain. Epithermal neutrons are used to measure temperatures on arcjet surfaces, bulk material temperatures, and point temperatures in bulk materials. It is found that this method, with an exposure time of 10 min, produces at temperature accuracy for W or Re of + or - 2.5 C. The other method uses visible-light high-speed photogrammetry to obtain images of the transient behavior of the arc during start-up and to relate this behavior to electrial supply characteristics such as voltage, current, and ripple.

  3. High Speed Photography In The United Kingdom

    NASA Astrophysics Data System (ADS)

    Lunn, George H.

    1989-06-01

    At the 13th Congress in Tokyo, I presented a paper with this title in which some early history was mentioned followed by a more detailed study of the activities of the main research groups in Britain from the period between 1950 and 1978. On this occasion, some early topics will be mentioned. The period since 1978 has seen quite a few changes in that research is now more in the hands of commercial groups as opposed to the previous governmental laboratories. It is true that the pricipal camera systems have reached towards their physical limits. However other new techniques are still expanding, for example, Lasers, Holography and Videography. The new systems are principally in the hands of major or specialist companies with the offical and industrial research groups using their products. The Association for High Speed Photography continues to encourage both researchers and users by providing oportunities for users, suppliers and manufacturers to meet and discuss.

  4. Merging of high speed argon plasma jets

    SciTech Connect

    Case, A.; Messer, S.; Brockington, S.; Wu, L.; Witherspoon, F. D.; Elton, R.

    2013-01-15

    Formation of an imploding plasma liner for the plasma liner experiment (PLX) requires individual plasma jets to merge into a quasi-spherical shell of plasma converging on the origin. Understanding dynamics of the merging process requires knowledge of the plasma phenomena involved. We present results from the study of the merging of three plasma jets in three dimensional geometry. The experiments were performed using HyperV Technologies Corp. 1 cm Minirailguns with a preionized argon plasma armature. The vacuum chamber partially reproduces the port geometry of the PLX chamber. Diagnostics include fast imaging, spectroscopy, interferometry, fast pressure probes, B-dot probes, and high speed spatially resolved photodiodes, permitting measurements of plasma density, temperature, velocity, stagnation pressure, magnetic field, and density gradients. These experimental results are compared with simulation results from the LSP 3D hybrid PIC code.

  5. Design of a high speed business transport

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The design of a High Speed Business Transport (HSBT) was considered by the Aeronautical Design Class during the academic year 1989 to 1990. The project was chosen to offer an opportunity to develop user friendliness for some computer codes such as WAVE DRAG, supplied by NASA/Langley, and to experiment with several design lessons developed by Dr. John McMasters and his colleages at Boeing. Central to these design lessons was an appeal to marketing and feasibility considerations. There was an emphasis upon simplified analytical techniques to study trades and to stimulate creative thinking before committing to extensive analytical activity. Two designs stood out among all the rest because of the depth of thought and consideration of alternatives. One design, the Aurora, used a fixed wing design to satisfy the design mission: the Viero used a swept wing configuration to overcome problems related to supersonic flight. A summary of each of these two designs is given.

  6. Active control system for high speed windmills

    DOEpatents

    Avery, Don E.

    1988-01-01

    A pump stroke is matched to the operating speed of a high speed windmill. The windmill drives a hydraulic pump for a control. Changes in speed of a wind driven shaft open supply and exhaust valves to opposite ends of a hydraulic actuator to lengthen and shorten an oscillating arm thereby lengthening and shortening the stroke of an output pump. Diminishing wind to a stall speed causes the valves to operate the hydraulic cylinder to shorten the oscillating arm to zero. A pressure accumulator in the hydraulic system provides the force necessary to supply the hydraulic fluid under pressure to drive the actuator into and out of the zero position in response to the windmill shaft speed approaching and exceeding windmill stall speed.

  7. High speed civil transport aerodynamic optimization

    NASA Technical Reports Server (NTRS)

    Ryan, James S.

    1994-01-01

    This is a report of work in support of the Computational Aerosciences (CAS) element of the Federal HPCC program. Specifically, CFD and aerodynamic optimization are being performed on parallel computers. The long-range goal of this work is to facilitate teraflops-rate multidisciplinary optimization of aerospace vehicles. This year's work is targeted for application to the High Speed Civil Transport (HSCT), one of four CAS grand challenges identified in the HPCC FY 1995 Blue Book. This vehicle is to be a passenger aircraft, with the promise of cutting overseas flight time by more than half. To meet fuel economy, operational costs, environmental impact, noise production, and range requirements, improved design tools are required, and these tools must eventually integrate optimization, external aerodynamics, propulsion, structures, heat transfer, controls, and perhaps other disciplines. The fundamental goal of this project is to contribute to improved design tools for U.S. industry, and thus to the nation's economic competitiveness.

  8. High-speed multichannel optical switching

    SciTech Connect

    Mikaelian, A.L.; Salakhutdinov, V.K.

    1994-12-31

    The programmable interconnection between N input and N output channels based on a matrix of microholograms is considered. Such a system can be used for optical switching having high speed, about gigabits-per-second. An example of such a system using bacteriorhodopsin film is investigated both theoretically and experimentally. The thickness of bacteriorhodopsin was 50 {micro}m and the cell size 3cmx2cm. To maintain interconnects each microhologram was regenerated by means of a routing system composed of a He-Ne laser, deflectors and optical elements. Experimentally, 20 channels were used. The diameter of the microhologram was 1 mm, and the diffraction efficiency was about 2%. The tests and calculations show the possibility of arranging 10{sup 4} switching channels with speed about 1 gigabit per second.

  9. Technology needs for high-speed rotorcraft

    NASA Technical Reports Server (NTRS)

    Rutherford, John; Orourke, Matthew; Martin, Christopher; Lovenguth, Marc; Mitchell, Clark

    1991-01-01

    A study to determine the technology development required for high-speed rotorcraft development was conducted. The study begins with an initial assessment of six concepts capable of flight at, or greater than 450 knots with helicopter-like hover efficiency (disk loading less than 50 pfs). These concepts were sized and evaluated based on measures of effectiveness and operational considerations. Additionally, an initial assessment of the impact of technology advances on the vehicles attributes was made. From these initial concepts a tilt wing and rotor/wing concepts were selected for further evaluation. A more detailed examination of conversion and technology trade studies were conducted on these two vehicles, each sized for a different mission.

  10. High-speed electrical motor evaluation

    SciTech Connect

    Not Available

    1989-02-03

    Under this task, MTI conducted a general review of state-of-the-art high-speed motors. The purpose of this review was to assess the operating parameters, limitations and performance of existing motor designs, and to establish commercial sources for a motor compatible with the requirements of the Brayton-cycle system. After the motor requirements were established, a list of motor types, manufacturers and designs capable of achieving the requisite performance was compiled. This list was based on an in-house evaluation of designs. Following the establishment of these options, a technical evaluation of the designs selected was conducted. In parallel with their evaluations, MTI focused on the establishment of commercial sources.

  11. High-speed spatial scanning pyrometer

    NASA Technical Reports Server (NTRS)

    Cezairliyan, A.; Chang, R. F.; Foley, G. M.; Miller, A. P.

    1993-01-01

    A high-speed spatial scanning pyrometer has been designed and developed to measure spectral radiance temperatures at multiple target points along the length of a rapidly heating/cooling specimen in dynamic thermophysical experiments at high temperatures (above about 1800 K). The design, which is based on a self-scanning linear silicon array containing 1024 elements, enables the pyrometer to measure spectral radiance temperatures (nominally at 650 nm) at 1024 equally spaced points along a 25-mm target length. The elements of the array are sampled consecutively every 1 microsec, thereby permitting one cycle of measurements to be completed in approximately 1 msec. Procedures for calibration and temperature measurement as well as the characteristics and performance of the pyrometer are described. The details of sources and estimated magnitudes of possible errors are given. An example of measurements of radiance temperatures along the length of a tungsten rod, during its cooling following rapid resistive pulse heating, is presented.

  12. HIGH SPEED KERR CELL FRAMING CAMERA

    DOEpatents

    Goss, W.C.; Gilley, L.F.

    1964-01-01

    The present invention relates to a high speed camera utilizing a Kerr cell shutter and a novel optical delay system having no moving parts. The camera can selectively photograph at least 6 frames within 9 x 10/sup -8/ seconds during any such time interval of an occurring event. The invention utilizes particularly an optical system which views and transmits 6 images of an event to a multi-channeled optical delay relay system. The delay relay system has optical paths of successively increased length in whole multiples of the first channel optical path length, into which optical paths the 6 images are transmitted. The successively delayed images are accepted from the exit of the delay relay system by an optical image focusing means, which in turn directs the images into a Kerr cell shutter disposed to intercept the image paths. A camera is disposed to simultaneously view and record the 6 images during a single exposure of the Kerr cell shutter. (AEC)

  13. High-speed digital wireless battlefield network

    NASA Astrophysics Data System (ADS)

    Dao, Son K.; Zhang, Yongguang; Shek, Eddie C.; van Buer, Darrel

    1999-07-01

    In the past two years, the Digital Wireless Battlefield Network consortium that consists of HRL Laboratories, Hughes Network Systems, Raytheon, and Stanford University has participated in the DARPA TRP program to leverage the efforts in the development of commercial digital wireless products for use in the 21st century battlefield. The consortium has developed an infrastructure and application testbed to support the digitized battlefield. The consortium has implemented and demonstrated this network system. Each member is currently utilizing many of the technology developed in this program in commercial products and offerings. These new communication hardware/software and the demonstrated networking features will benefit military systems and will be applicable to the commercial communication marketplace for high speed voice/data multimedia distribution services.

  14. Very high-speed digital holography

    NASA Astrophysics Data System (ADS)

    Pérez López, Carlos; Mendoza Santoyo, Fernando; Rodríguez Vera, Ramón; Moreno, David; Barrientos, Bernardino

    2006-08-01

    It is reported for the first time the use of a high speed camera in digital holography with an out of plane sensitivity. The camera takes the image plane holograms of a cw laser illuminated rectangular framed polyester material at a rate of 5000 per second, that is a spacing of 200 microseconds between holograms, and 512 by 500 pixels at 10 bit resolution. The freely standing object has a random movement due to non controlled environmental air currents. As is usual with this technique each digital hologram is Fourier processed in order to obtain upon comparison with a consecutive digital hologram the phase map of the displacement. High quality results showing the amplitude and direction of the random movement are presented.

  15. Very high speed cw digital holographic interferometry

    NASA Astrophysics Data System (ADS)

    Pérez-López, Carlos; de La Torre-Ibarra, Manuel H.; Mendoza Santoyo, Fernando

    2006-10-01

    It is reported for the first time the use of a very high speed camera in digital holographic interferometry with an out of plane sensitivity setup. The image plane holograms of a spherical latex balloon illuminated by a cw laser were acquired at a rate of 4000 frames per second, representing a time spacing between holograms of 250 microseconds, for 512 × 512 pixels at 8 bits resolution. Two types of tests were accomplished for a proof of principle of the technique, one with no constrains on the object which meant random movements due to non controlled environmental air currents, and the other with specific controlled conditions on the object. Results presented correspond to a random sample of sequential digital holograms, chosen from a 1 second exposure, individually Fourier processed in order to perform the usual comparison by subtraction between consecutive pairs thus obtaining the phase map of the object out of plane displacement, shown as a movie.

  16. High speed nanotechnology-based photodetector

    NASA Astrophysics Data System (ADS)

    Kurtz, Russell M.; Pradhan, Ranjit D.; Parfenov, Alexander V.; Holmstedt, Jason; Esterkin, Vladimir; Menon, Naresh; Aye, Tin M.; Chua, Kang-Bin; Schindler, Axel; Balandin, Alexander A.; Nichter, James E.

    2005-08-01

    An inexpensive, easily integrated, 40 Gbps photoreceiver operating in the communications band would revolutionize the telecommunications industry. While generation of 40 Gbps data is not difficult, its reception and decoding require specific technologies. We present a 40 Gbps photoreceiver that exceeds the capabilities of current devices. This photoreceiver is based on a technology we call "nanodust." This new technology enables nanoscale photodetectors to be embedded in matrices made from a different semiconductor, or directly integrated into a CMOS amplification circuit. Photoreceivers based on quantum dust technology can be designed to operate in any spectral region, including the telecommunications bands near 1.31 and 1.55 micrometers. This technology also lends itself to normal-incidence detection, enabling a large detector size with its associated increase in sensitivity, even at high speeds and reception wavelengths beyond the capability of silicon.

  17. Development of a Revolutionary High Speed Spindle

    NASA Technical Reports Server (NTRS)

    Agba, Emmanuel I.

    1999-01-01

    This report presents the development of a hydraulic motor driven spindle system to be employed for high speed machining of composite materials and metals. The spindle system is conceived to be easily retrofitted into conventional milling machines. The need for the hydraulic spindle arises because of the limitations placed on conventional electric motor driven spindles by the low cutting power and the presence of vibrational phenomena associated with voltage frequency at high rotational speeds. Also, the electric motors are usually large and expensive when power requirements are moderately high. In contrast, hydraulic motor driven spindles promise a distinct increase in spindle life over the conventional electric motor driven spindles. In this report, existing technologies applicable to spindle holder for severe operating conditions were reviewed, conceptual designs of spindle holder system were developed and evaluated, and a detailed design of an acceptable concept was conducted. Finally, a rapid prototype of the design was produced for design evaluation.

  18. Active control system for high speed windmills

    DOEpatents

    Avery, D.E.

    1988-01-12

    A pump stroke is matched to the operating speed of a high speed windmill. The windmill drives a hydraulic pump for a control. Changes in speed of a wind driven shaft open supply and exhaust valves to opposite ends of a hydraulic actuator to lengthen and shorten an oscillating arm thereby lengthening and shortening the stroke of an output pump. Diminishing wind to a stall speed causes the valves to operate the hydraulic cylinder to shorten the oscillating arm to zero. A pressure accumulator in the hydraulic system provides the force necessary to supply the hydraulic fluid under pressure to drive the actuator into and out of the zero position in response to the windmill shaft speed approaching and exceeding windmill stall speed. 4 figs.

  19. Information exchange between Ethernet and SDH ring

    NASA Astrophysics Data System (ADS)

    Ge, Liangwei; Wu, Yue; Han, Liqiao

    2002-10-01

    The design of an ASIC, which is capable of connecting multiple Ethernets by SDH links through complex network topology, is given here. A closed-loop congestion control mechanism over the entire network is put forward, a scheduling algorithm for traffic of four differenct priorities is suggested and the requried buffer size under self-similar traffic is calculated.

  20. A Local Computer Network Implementation Using Ethernet.

    DTIC Science & Technology

    1982-08-01

    1 1.2. Levels of Protocol .......................... 41 2. HOST TO CONTROLLER COMMNICATION ...transfer any file to the HP 3000 or receive any file from the HP 3000. 1.1. hSnt Desription L" Ethernet is a registered trademark of the Xerox Corporation

  1. Discrete analog computing with rotor-routers.

    PubMed

    Propp, James

    2010-09-01

    Rotor-routing is a procedure for routing tokens through a network that can implement certain kinds of computation. These computations are inherently asynchronous (the order in which tokens are routed makes no difference) and distributed (information is spread throughout the system). It is also possible to efficiently check that a computation has been carried out correctly in less time than the computation itself required, provided one has a certificate that can itself be computed by the rotor-router network. Rotor-router networks can be viewed as both discrete analogs of continuous linear systems and deterministic analogs of stochastic processes.

  2. TOPICAL REVIEW: Plasmas in high speed aerodynamics

    NASA Astrophysics Data System (ADS)

    Bletzinger, P.; Ganguly, B. N.; Van Wie, D.; Garscadden, A.

    2005-02-01

    A review is presented of the studies in the former Soviet Union and in the USA of the mutual interactions of plasmas and high speed flows and shocks. There are reports from as early as the 1980s of large changes in the standoff distance ahead of a blunt body in ballistic tunnels, significantly reduced drag and modifications of travelling shocks in bounded weakly ionized gases. Energy addition to the flow results in an increase in the local sound speed that leads to expected modifications of the flow and changes to the pressure distribution around a vehicle due to the decrease in local Mach number. The critical question was, did a plasma provide a significant energy multiplier for the system? There have been a large number of experimental studies on the influence of a weakly ionized plasma on relatively low Mach number shocks and inherently also on the influence of the shock on the plasma. This literature is reviewed and illustrated with representative examples. The convergence through more controlled experiments and improved modelling to a physics understanding of the effects being essentially due to heating is outlined. It is demonstrated that the heating in many cases is global; however, tailored experiments with positive columns, dielectric barrier discharges and focused microwave plasmas can produce very localized heating. The latter appears more attractive for energy efficiency in flow control. Tailored localized ionization and thermal effects are also of interest for high speed inlet shock control and for producing reliable ignition for short residence time combustors, and work in these areas is also reviewed.

  3. Computation of high-speed reacting flows

    NASA Astrophysics Data System (ADS)

    Clutter, James Keith

    A computational study has been conducted for high-speed reacting flows relevant to munition problems, including shock-induced combustion and gun muzzle blast. The theoretical model considers inviscid and viscous flows, multi-species, finite rate chemical reaction schemes, and turbulence. Both the physical and numerical aspects are investigated to determine their impact on simulation accuracy. A range of hydrogen and oxygen reaction mechanisms are evaluated for the shock-induced combustion flow scenario. Characteristics of the mechanisms such as the induction time, heat release rate, and second explosion limit are found to impact the accuracy of the computation. On the numerical side, reaction source term treatments, including logarithmic weighting and scaling modifications, are investigated to determine their effectiveness in addressing numerical errors caused by disparate length scales between chemical reactions and fluid dynamics. It is demonstrated that these techniques can enhance solution accuracy. Computations of shock-induced combustion have also been performed using a κ-ɛ model to account for the turbulent transport of species and heat. An algebraic model of the temperature fluctuations has been used to estimate the impact of the turbulent effect on the chemical reaction source terms. The turbulence effects when represented with the current models are found to be minimal in the shock-induced combustion flow investigated in the present work. For the gun system simulations, computations for both a large caliber howitzer and small caliber firearms are carried out. A reduced kinetic scheme and an algebraic turbulence model are employed. The present approach, which accounts for the chemical reaction aspects of the gun muzzle blast problem, is found to improve the prediction of peak overpressures and can capture the effects produced by small caliber firearm sound suppressors. The present study has established the numerical and physical requirements for

  4. High-speed shutter for mirror cameras

    NASA Astrophysics Data System (ADS)

    Trofimenko, Vladimir V.; Klimashin, V. P.; Drozhbin, Yu. A.

    1999-06-01

    High-speed mirror cameras are mainly used for investigations of quick processes in a wide spectral range of radiation including ultraviolet and infrared regions (from 0.2 to 11 micrometer). High-speed shutters for these cameras must be non-selective and when opened must transmit the whole radiation without refraction, absorption and scattering. Electromechanical, electrodynamic and induction-dynamic shutters possess such properties because their optical channels contain no medium. Electromechanical shutters are devices where the displacement of the working blind which opens or closes an aperture is produced by a spring. Such shutters are relatively slow and are capable of closing an aperture of 50 mm in diameter in 10 - 15 ms. Electrodynamic and induction-dynamic shutters are devices where displacement of a blind is produced by the electromagnetic interaction between circuits with electric currents. In induction-dynamic shutter the secondary circuit is current-conducting blind itself in which a short-circuited loop forms. The latter is more quick because of the lower mass of its moveable secondary circuit. For this reason induction-dynamic shutters with a flat primary circuit coil and a tightly fitted to it load- bearing aluminum plate have been investigated. The blind which opens or closes an aperture was attached to this plate. The dependencies of cut-off time on the form, size and the number of turns of the primary circuit coil, on size, type of material, thickness and weight of the load-bearing plate and the blind, as well as on capacitance in the discharge circuit and the capacitor voltage have been investigated. The influence of the environmental atmosphere on the cut-off time was also studied. For this purpose the shutter was placed into the chamber where vacuum up to 10- atm could be produced. As a result the values of the above mentioned parameters have been optimized and the designs of the shutters which are shown have been developed.

  5. MetaRouter: bioinformatics for bioremediation

    PubMed Central

    Pazos, Florencio; Guijas, David; Valencia, Alfonso; De Lorenzo, Victor

    2005-01-01

    Bioremediation, the exploitation of biological catalysts (mostly microorganisms) for removing pollutants from the environment, requires the integration of huge amounts of data from different sources. We have developed MetaRouter, a system for maintaining heterogeneous information related to bioremediation in a framework that allows its query, administration and mining (application of methods for extracting new knowledge). MetaRouter is an application intended for laboratories working in biodegradation and bioremediation, which need to maintain and consult public and private data, linked internally and with external databases, and to extract new information from it. Among the data-mining features is a program included for locating biodegradative pathways for chemical compounds according to a given set of constraints and requirements. The integration of biodegradation information with the corresponding protein and genome data provides a suitable framework for studying the global properties of the bioremediation network. The system can be accessed and administrated through a web interface. The full-featured system (except administration facilities) is freely available at http://pdg.cnb.uam.es/MetaRouter. Additional material: http://www.pdg.cnb.uam.es/biodeg_net/MetaRouter. PMID:15608267

  6. Scalable modeling and performance evaluation of dynamic RED router using fluid-flow approximation

    NASA Astrophysics Data System (ADS)

    Ohsaki, Hiroyuki; Yamamoto, Hideyuki; Imase, Makoto

    2005-10-01

    In recent years, AQM (Active Queue Management) mechanisms, which support the end-to-end congestion control mechanism of TCP (Transmission Control Protocol), have been widely studied in the literature. AQM mechanism is a congestion controller at a router for suppressing and stabilizing its queue length (i.e., the number of packets in the buffer) by actively discarding arriving packets. Although a number of AQM mechanisms have been proposed, behaviors of those AQM mechanisms other than RED (Random Early Detection) have not been fully investigated. In this paper, using fluid-flow approximation, we analyze steady state behavior of DRED (Dynamic RED), which is designed with a control theoretic approach. More specifically, we model several network components such as congestion control mechanism of TCP, DRED router, and link propagation delay as independent SISO (Single-Input Single-Output) continuous-time systems. By interconnecting those SISO models, we obtain a continuous-time model for the entire network. Unlike other fluid-based modeling approaches, our analytic approach is scalable; our analytic approach is scalable in terms of the number of TCP connections and DRED routers since both input and output of all continuous-time systems are uniformly defined as a packet transmission rate. By performing steady-state analysis, we derive TCP throughput, average queue length of DRED router, and packet loss probability. Through several numerical examples, we quantitatively show that DRED has an intrinsic problem in high-speed networks; i.e., DRED cannot stabilize its queue length when the bottleneck link bandwidth is high. We also validate accuracy of our analytic approach by comparing analytic results with simulation ones.

  7. Deterministic Ethernet for Space Applications

    NASA Astrophysics Data System (ADS)

    Fidi, C.; Wolff, B.

    2015-09-01

    essential for such spacecraft’s to allow the use in launcher, satellite, human space flight and exploration missions. Using one technology and the related infrastructure for these different applications will lead to a significant reduction of complexity and would moreover lead to significant savings in size weight and power while increasing the performance of the overall system. The paper focuses on the use of the TTEthernet technology for launchers, satellites and human spaceflight and will demonstrate the scalability of the technology for the different applications. The data used is derived from the ESA TRP 7594 on “Reliable High-Speed Data Bus/Network for Safety-Oriented Missions”.

  8. Sensor study for high speed autonomous operations

    NASA Astrophysics Data System (ADS)

    Schneider, Anne; La Celle, Zachary; Lacaze, Alberto; Murphy, Karl; Del Giorno, Mark; Close, Ryan

    2015-06-01

    As robotic ground systems advance in capabilities and begin to fulfill new roles in both civilian and military life, the limitation of slow operational speed has become a hindrance to the wide-spread adoption of these systems. For example, military convoys are reluctant to employ autonomous vehicles when these systems slow their movement from 60 miles per hour down to 40. However, these autonomous systems must operate at these lower speeds due to the limitations of the sensors they employ. Robotic Research, with its extensive experience in ground autonomy and associated problems therein, in conjunction with CERDEC/Night Vision and Electronic Sensors Directorate (NVESD), has performed a study to specify system and detection requirements; determined how current autonomy sensors perform in various scenarios; and analyzed how sensors should be employed to increase operational speeds of ground vehicles. The sensors evaluated in this study include the state of the art in LADAR/LIDAR, Radar, Electro-Optical, and Infrared sensors, and have been analyzed at high speeds to study their effectiveness in detecting and accounting for obstacles and other perception challenges. By creating a common set of testing benchmarks, and by testing in a wide range of real-world conditions, Robotic Research has evaluated where sensors can be successfully employed today; where sensors fall short; and which technologies should be examined and developed further. This study is the first step to achieve the overarching goal of doubling ground vehicle speeds on any given terrain.

  9. High speed point derivative microseismic detector

    DOEpatents

    Uhl, James Eugene; Warpinski, Norman Raymond; Whetten, Ernest Blayne

    1998-01-01

    A high speed microseismic event detector constructed in accordance with the present invention uses a point derivative comb to quickly and accurately detect microseismic events. Compressional and shear waves impinging upon microseismic receiver stations disposed to collect waves are converted into digital data and analyzed using a point derivative comb including assurance of quiet periods prior to declaration of microseismic events. If a sufficient number of quiet periods have passed, the square of a two point derivative of the incoming digital signal is compared to a trip level threshold exceeding the determined noise level to declare a valid trial event. The squaring of the derivative emphasizes the differences between noise and signal, and the valid event is preferably declared when the trip threshold has been exceeded over a temporal comb width to realize a comb over a given time period. Once a trial event has been declared, the event is verified through a spatial comb, which applies the temporal event comb to additional stations. The detector according to the present invention quickly and accurately detects initial compressional waves indicative of a microseismic event which typically exceed the ambient cultural noise level by a small amount, and distinguishes the waves from subsequent larger amplitude shear waves.

  10. High speed point derivative microseismic detector

    DOEpatents

    Uhl, J.E.; Warpinski, N.R.; Whetten, E.B.

    1998-06-30

    A high speed microseismic event detector constructed in accordance with the present invention uses a point derivative comb to quickly and accurately detect microseismic events. Compressional and shear waves impinging upon microseismic receiver stations disposed to collect waves are converted into digital data and analyzed using a point derivative comb including assurance of quiet periods prior to declaration of microseismic events. If a sufficient number of quiet periods have passed, the square of a two point derivative of the incoming digital signal is compared to a trip level threshold exceeding the determined noise level to declare a valid trial event. The squaring of the derivative emphasizes the differences between noise and signal, and the valid event is preferably declared when the trip threshold has been exceeded over a temporal comb width to realize a comb over a given time period. Once a trial event has been declared, the event is verified through a spatial comb, which applies the temporal event comb to additional stations. The detector according to the present invention quickly and accurately detects initial compressional waves indicative of a microseismic event which typically exceed the ambient cultural noise level by a small amount, and distinguishes the waves from subsequent larger amplitude shear waves. 9 figs.

  11. Exhaust emissions from high speed passenger ferries

    NASA Astrophysics Data System (ADS)

    Cooper, D. A.

    Exhaust emission measurements have been carried out on-board three high-speed passenger ferries (A, B and C) during normal service routes. Ship A was powered by conventional, medium-speed, marine diesel engines, Ship B by gas turbine engines and Ship C conventional, medium-speed, marine diesel engines equipped with selective catalytic reduction (SCR) systems for NO x abatement. All ships had similar auxiliary engines (marine diesels) for generating electric power on-board. Real-world emission factors of NOx, SO2, CO, CO 2, NMVOC, CH4, N2O, NH3, PM and PAH at steady-state engine loads and for complete voyages were determined together with an estimate of annual emissions. In general, Ship B using gas turbines showed favourable NO x, PM and PAH emissions but at the expense of higher fuel consumption and CO 2 emissions. Ship C with the SCR had the lowest NO x emissions but highest NH 3 emissions especially during harbour approaches and stops. The greatest PM and PAH specific emissions were measured from auxiliary engines operating at low engine loads during harbour stops. Since all ships used a low-sulphur gas oil, SO 2 emissions were relatively low in all cases.

  12. High speed exhaust gas recirculation valve

    SciTech Connect

    Fensom, Rod; Kidder, David J.

    2005-01-18

    In order to minimize pollutants such as Nox, internal combustion engines typically include an exhaust gas recirculation (EGR) valve that can be used to redirect a portion of exhaust gases to an intake conduit, such as an intake manifold, so that the redirected exhaust gases will be recycled. It is desirable to have an EGR valve with fast-acting capabilities, and it is also desirable to have the EGR valve take up as little space as possible. An exhaust gas recirculation valve is provided that includes an exhaust passage tube, a valve element pivotally mounted within the exhaust passage tube, a linear actuator; and a gear train. The gear train includes a rack gear operatively connected to the linear actuator, and at least one rotatable gear meshing with the rack gear and operatively connected to the valve element to cause rotation of the valve element upon actuation of the linear actuator. The apparatus provides a highly compact package having a high-speed valve actuation capability.

  13. Technology needs for high speed rotorcraft (3)

    NASA Technical Reports Server (NTRS)

    Detore, Jack; Conway, Scott

    1991-01-01

    The spectrum of vertical takeoff and landing (VTOL) type aircraft is examined to determine which aircraft are most likely to achieve high subsonic cruise speeds and have hover qualities similar to a helicopter. Two civil mission profiles are considered: a 600-n.mi. mission for a 15- and a 30-passenger payload. Applying current technology, only the 15- and 30-passenger tiltfold aircraft are capable of attaining the 450-knot design goal. The two tiltfold aircraft at 450 knots and a 30-passenger tiltrotor at 375 knots were further developed for the Task II technology analysis. A program called High-Speed Total Envelope Proprotor (HI-STEP) is recommended to meet several of these issues based on the tiltrotor concept. A program called Tiltfold System (TFS) is recommended based on the tiltrotor concept. A task is identified to resolve the best design speed from productivity and demand considerations based on the technology that emerges from the recommended programs. HI-STEP's goals are to investigate propulsive efficiency, maneuver loads, and aeroelastic stability. Programs currently in progress that may meet the other technology needs include the Integrated High Performance Turbine Engine Technology (IHPTET) (NASA Lewis) and the Advanced Structural Concepts Program funded through NASA Langley.

  14. High-speed ACR/NEMA interface

    NASA Astrophysics Data System (ADS)

    Reijns, Gerard L.; Santilli, D.; Schellingerhout, G.; Jochem, A. J.; Ottes, Fenno P.; van Aken, I. W.

    1990-08-01

    The design and implementation of a standard high speed ACR-NEMA communications interface is described. The upper layers e.g. the Presentation layer, Session layer and part of the Transport/Network layer have been implemented in software. In order to reach the speed requirement of 8M byte/sec. the lower layers e.g. part of the Transport/Network layer and Data Link layer have been implemented in hardware. We have developed and built an interface for an IBM personal computer P5/2 model 50, working under the operating system OS/2. The PS/2, model 50 has been equipped with a fast micro-channel bus, which enables a large throughput. The operating systern OS/2 has a multitasking capability, which enables concurrent programming. In order to minimize the delays, we used this multitasking facility to create a number of parallel operating "threads". The Transport/Network layer functions have been implemented using a receive thread, two send threads and a device driver with three hardware registers. The time to transfer a packet by DMA, to initiate the DMA logic and to execute the required Kernal functions have each been measured and figures are shown. The Data Link layer provides for storage of two packets in two separate random access memories (RAM's). These two RAM's enable a pipelined operation, which minimizes the delay in the Data Link layer.

  15. Cryogenic, high speed, turbopump bearing cooling requirements

    NASA Technical Reports Server (NTRS)

    Dolan, Fred J.; Gibson, Howard G.; Cannon, James L.; Cody, Joe C.

    1988-01-01

    Although the Space Shuttle Main Engine (SSME) has repeatedly demonstrated the capability to perform during launch, the High Pressure Oxidizer Turbopump (HPOTP) main shaft bearings have not met their 7.5 hour life requirement. A tester is being employed to provide the capability of subjecting full scale bearings and seals to speeds, loads, propellants, temperatures, and pressures which simulate engine operating conditions. The tester design permits much more elaborate instrumentation and diagnostics than could be accommodated in an SSME turbopump. Tests were made to demonstrate the facilities; and the devices' capabilities, to verify the instruments in its operating environment and to establish a performance baseline for the flight type SSME HPOTP Turbine Bearing design. Bearing performance data from tests are being utilized to generate: (1) a high speed, cryogenic turbopump bearing computer mechanical model, and (2) a much improved, very detailed thermal model to better understand bearing internal operating conditions. Parametric tests were also made to determine the effects of speed, axial loads, coolant flow rate, and surface finish degradation on bearing performance.

  16. Computation of High Speed Jet Noise

    NASA Technical Reports Server (NTRS)

    Freund, Jonathan B.

    2002-01-01

    The objective of this work was to use direct numerical simulation (DNS) techniques to study the physics of noise generation by a high-speed turbulent jet. A Mach 0.9, Reynolds number 3,600 jet was selected because of available experimental data. New numerical methods for generating disturbances at the nozzle and computing far-field sound were developed and reported in the course of this work. Over 25 million mesh points were used in the simulations which ran for over 50,000 timesteps and required over 50,000 processor hours on state-of-the-art parallel computer systems to complete. Figures show a visualization of the jet and sound field, a comparison of the mean flow development with the experiment, a directivity comparison with the experiment, and time spectrum comparison with the experiment. Agreement is seen to be excellent. These are fully document in the attached references. Full details of the work, detailed achievements and conclusions are discussed in appendices, which are copies of publications that resulted from this work. We have studied noise mechanisms in supersonic jets, the refraction of sound by turbulence in subsonic jets, and noise sources in conjunction with a DNS of a Mach 0.9 jet.

  17. 8-Foot High Speed Tunnel (HST)

    NASA Technical Reports Server (NTRS)

    1953-01-01

    Semi-automatic readout equipment installed in the 1950s used for data recording and reduction in the 8-Foot High Speed Tunnel (HST). A 1957 NACA report on wind tunnel facilities at Langley included these comments on the data recording and reduction equipment for the 8-foot HST: 'The data recording and reduction equipment used for handling steady force and pressure information at the Langley 8-foot transonic tunnel is similar to that described for the Langley 16-foot transonic tunnel. Very little dynamic data recording equipment, however, is available.' The description of the 16-foot transonic tunnel equipment is as follows: 'A semiautomatic force data readout system provides tabulated raw data and punch card storage of raw data concurrent with the operation of the wind tunnel. Provision is made for 12 automatic channels of strain gage-data output, and eight channels of four-digit manually operated inputs are available for tabulating and punching constants, configuration codes, and other information necessary for data reduction and identification. The data are then processed on electronic computing machines to obtain the desired coefficients. These coefficients and their proper identification are then machine tabulated to provide a printed record of the results. The punched cards may also be fed into an automatic plotting device for the preparation of plots necessary for data analysis.'

  18. High-speed Civil Transport Aircraft Emissions

    NASA Technical Reports Server (NTRS)

    Miake-Lye, Richard C.; Matulaitis, J. A.; Krause, F. H.; Dodds, Willard J.; Albers, Martin; Hourmouziadis, J.; Hasel, K. L.; Lohmann, R. P.; Stander, C.; Gerstle, John H.

    1992-01-01

    Estimates are given for the emissions from a proposed high speed civil transport (HSCT). This advanced technology supersonic aircraft would fly in the lower stratosphere at a speed of roughly Mach 1.6 to 3.2 (470 to 950 m/sec or 920 to 1850 knots). Because it would fly in the stratosphere at an altitude in the range of 15 to 23 km commensurate with its design speed, its exhaust effluents could perturb the chemical balance in the upper atmosphere. The first step in determining the nature and magnitude of any chemical changes in the atmosphere resulting from these proposed aircraft is to identify and quantify the chemically important species they emit. Relevant earlier work is summarized, dating back to the Climatic Impact Assessment Program of the early 1970s and current propulsion research efforts. Estimates are provided of the chemical composition of an HSCT's exhaust, and these emission indices are presented. Other aircraft emissions that are not due to combustion processes are also summarized; these emissions are found to be much smaller than the exhaust emissions. Future advances in propulsion technology, in experimental measurement techniques, and in understanding upper atmospheric chemistry may affect these estimates of the amounts of trace exhaust species or their relative importance.

  19. High speed imaging in icing windtunnel tests

    NASA Astrophysics Data System (ADS)

    de Pauw, Dennis; Graham, Percival; Dolatabadi, Ali

    2012-11-01

    The detailed visualization and behavior of a spray impinging on a hydrophilic, and superhydrophobic aerodynamic shape in isothermal room and icing conditions can provide deep understanding of in-flight icing. A superhydrophobic coating has a very low surface energy so it can be used to counteract the ice accumulation. It also reduces the adhesion strength of ice to the surface which ensures easier removal of the ice during flight. The focus of the experiments primarily lies on the fundamental study of multiple droplet, i.e. spray, impact on a NACA 0012 airfoil in room and icing conditions. Under such conditions, important icing features such as rivulets and runback flow are observed. This provides us with the basics of ice formation on an aerodynamic surface. The study also focuses on the comparison between aluminum and superhydrophobic surfaces for ice accumulation in conditions which approach flight conditions. All the experiments are carried out in a small scale icing windtunnel using high speed photography with frame rates ranging from five thousand to fifty thousand frames per second.

  20. Flickering aurora studies using high speed cameras

    NASA Astrophysics Data System (ADS)

    McHarg, M. G.; Stenbaek-Nielsen, H. C.; Samara, M.; Michell, R.; Hampton, D. L.; Haaland, R. K.

    2009-12-01

    We report on observations of flickering aurora using two different digital camera systems. The first, a high speed Phantom 7 camera with a Video Scope HS 1845 HS image intensifier coupled with an 50mm lens provides fast frame rates with data recorded at 200 and 400 frames per second with a 512x384 pixel, 11.8x8.8 degree FOV. The second system is an Andor Electron-Multiplying Charge Couple Device (EMCCD) running at 33 frames per second using a 256 by 256 format covering 16x16 degrees field of view. Both systems made observations of flickering aurora in the magnetic zenith, using optical filters transmitting the prompt blue and red emissions of nitrogen. The Andor system was deployed at the Poker Flat rocket range near Fairbanks AK, while the Phantom system was deployed approximately 400 miles north of Poker Flat at Toolik Lake observatory. We find both narrow band low frequency (~5-10 Hz) and wider band, higher frequency (50- 70 Hz) oscillations in the optical intensity of flickering aurora. Direct comparison of the optical data and the dispersion relation for ion cyclotron waves thought to be responsible for the modulation of electrons causing the intensity fluctuations seen in flickering aurora are presented.

  1. High speed ground transportation study. Executive summary

    SciTech Connect

    Not Available

    1992-10-01

    In 1991, the Washington State Legislature enacted Chapter 231, Laws of 1991 (SHB 1452), which directed that a comprehensive assessment be made of the feasibility of developing a high speed ground transportation (HSGT) system in the State of Washington. The legislation came about because there was a growing recognition that major transportation corridors were reaching unacceptable levels of congestion, and that even though most large metropolitan areas were developing specific plans to ease that congestion within their urban boundaries, intercity travel between those areas was becoming increasingly difficult. The study area included the State of Washington plus the Portland, OR urban area and the lower mainland of British Columbia. Two major corridors were identified and analyzed. The study was not meant to focus on the technologies but rather on the economic, environmental, institutional and financial feasibility of implementing HSGT in this state. The study was not meant to be a siting study. Alignments and station locations were assumed only to test feasibility, and to evaluate corridors and service areas. Specific location decisions will require more detailed engineering and operations studies.

  2. High speed curved position sensitive detector

    DOEpatents

    Hendricks, Robert W.; Wilson, Jack W.

    1989-01-01

    A high speed curved position sensitive porportional counter detector for use in x-ray diffraction, the detection of 5-20 keV photons and the like. The detector employs a planar anode assembly of a plurality of parallel metallic wires. This anode assembly is supported between two cathode planes, with at least one of these cathode planes having a serpentine resistive path in the form of a meander having legs generally perpendicular to the anode wires. This meander is produced by special microelectronic fabrication techniques whereby the meander "wire" fans outwardly at the cathode ends to produce the curved aspect of the detector, and the legs of the meander are small in cross-section and very closely spaced whereby a spatial resolution of about 50 .mu.m can be achieved. All of the other performance characteristics are about as good or better than conventional position sensitive proportional counter type detectors. Count rates of up to 40,000 counts per second with 0.5 .mu.s shaping time constants are achieved.

  3. Material constraints on high-speed design

    NASA Astrophysics Data System (ADS)

    Bucur, Diana; Militaru, Nicolae

    2015-02-01

    Current high-speed circuit designs with signal rates up to 100Gbps and above are implying constraints for dielectric and conductive materials and their dependence of frequency, for component elements and for production processes. The purpose of this paper is to highlight through various simulation results the frequency dependence of specific parameters like insertion and return loss, eye diagrams, group delay that are part of signal integrity analyses type. In low-power environment designs become more complex as the operation frequency increases. The need for new materials with spatial uniformity for dielectric constant is a need for higher data rates circuits. The fiber weave effect (FWE) will be analyzed through the eye diagram results for various dielectric materials in a differential signaling scheme given the fact that the FWE is a phenomenon that affects randomly the performance of the circuit on balanced/differential transmission lines which are typically characterized through the above mentioned approaches. Crosstalk between traces is also of concern due to propagated signals that have tight rise and fall times or due to high density of the boards. Criteria should be considered to achieve maximum performance of the designed system requiring critical electronic properties.

  4. CMOS Image Sensors for High Speed Applications.

    PubMed

    El-Desouki, Munir; Deen, M Jamal; Fang, Qiyin; Liu, Louis; Tse, Frances; Armstrong, David

    2009-01-01

    Recent advances in deep submicron CMOS technologies and improved pixel designs have enabled CMOS-based imagers to surpass charge-coupled devices (CCD) imaging technology for mainstream applications. The parallel outputs that CMOS imagers can offer, in addition to complete camera-on-a-chip solutions due to being fabricated in standard CMOS technologies, result in compelling advantages in speed and system throughput. Since there is a practical limit on the minimum pixel size (4∼5 μm) due to limitations in the optics, CMOS technology scaling can allow for an increased number of transistors to be integrated into the pixel to improve both detection and signal processing. Such smart pixels truly show the potential of CMOS technology for imaging applications allowing CMOS imagers to achieve the image quality and global shuttering performance necessary to meet the demands of ultrahigh-speed applications. In this paper, a review of CMOS-based high-speed imager design is presented and the various implementations that target ultrahigh-speed imaging are described. This work also discusses the design, layout and simulation results of an ultrahigh acquisition rate CMOS active-pixel sensor imager that can take 8 frames at a rate of more than a billion frames per second (fps).

  5. High speed image correlation for vibration analysis

    NASA Astrophysics Data System (ADS)

    Siebert, T.; Wood, R.; Splitthof, K.

    2009-08-01

    Digital speckle correlation techniques have already been successfully proven to be an accurate displacement analysis tool for a wide range of applications. With the use of two cameras, three dimensional measurements of contours and displacements can be carried out. With a simple setup it opens a wide range of applications. Rapid new developments in the field of digital imaging and computer technology opens further applications for these measurement methods to high speed deformation and strain analysis, e.g. in the fields of material testing, fracture mechanics, advanced materials and component testing. The high resolution of the deformation measurements in space and time opens a wide range of applications for vibration analysis of objects. Since the system determines the absolute position and displacements of the object in space, it is capable of measuring high amplitudes and even objects with rigid body movements. The absolute resolution depends on the field of view and is scalable. Calibration of the optical setup is a crucial point which will be discussed in detail. Examples of the analysis of harmonic vibration and transient events from material research and industrial applications are presented. The results show typical features of the system.

  6. High-Speed RaPToRS

    NASA Astrophysics Data System (ADS)

    Henchen, Robert; Esham, Benjamin; Becker, William; Pogozelski, Edward; Padalino, Stephen; Sangster, Thomas; Glebov, Vladimir

    2008-11-01

    The High-Speed Rapid Pneumatic Transport of Radioactive Samples (HS-RaPToRS) system, designed to quickly and safely move radioactive materials, was assembled and tested at the Mercury facility of the Naval Research Laboratory (NRL) in Washington D.C. A sample, which is placed inside a four-inch-diameter carrier, is activated before being transported through a PVC tube via airflow. The carrier travels from the reaction chamber to the end station where it pneumatically brakes prior to the gate. A magnetic latch releases the gate when the carrier arrives and comes to rest. The airflow, optical carrier-monitoring devices, and end gate are controlled manually or automatically with LabView software. The installation and testing of the RaPToRS system at NRL was successfully completed with transport times of less than 3 seconds. The speed of the carrier averaged 16 m/s. Prospective facilities for similar systems include the Laboratory for Laser Energetics and the National Ignition Facility.

  7. Impedance Discontinuity Reduction Between High-Speed Differential Connectors and PCB Interfaces

    NASA Technical Reports Server (NTRS)

    Navidi, Sal; Agdinaoay, Rodell; Walter, Keith

    2013-01-01

    High-speed serial communication (i.e., Gigabit Ethernet) requires differential transmission and controlled impedances. Impedance control is essential throughout cabling, connector, and circuit board construction. An impedance discontinuity arises at the interface of a high-speed quadrax and twinax connectors and the attached printed circuit board (PCB). This discontinuity usually is lower impedance since the relative dielectric constant of the board is higher (i.e., polyimide approx. = 4) than the connector (Teflon approx. = 2.25). The discontinuity can be observed in transmit or receive eye diagrams, and can reduce the effective link margin of serial data networks. High-speed serial data network transmission improvements can be made at the connector-to-board interfaces as well as improving differential via hole impedances. The impedance discontinuity was improved by 10 percent by drilling a 20-mil (approx. = 0.5-mm) hole in between the pin of a differential connector spaced 55 mils (approx. = 1.4 mm) apart as it is attached to the PCB. The effective dielectric constant of the board can be lowered by drilling holes into the board material between the differential lines in a quadrax or twinax connector attachment points. The differential impedance is inversely proportional to the square root of the relative dielectric constant. This increases the differential impedance and thus reduces the above described impedance discontinuity. The differential via hole impedance can also be increased in the same manner. This technique can be extended to multiple smaller drilled holes as well as tapered holes (i.e., big in the middle followed by smaller ones diagonally).

  8. The high speed civil transport and NASA's High Speed Research (HSR) program

    NASA Technical Reports Server (NTRS)

    Shaw, Robert J.

    1994-01-01

    Ongoing studies being conducted not only in this country but in Europe and Asia suggest that a second generation supersonic transport, or High-Speed Civil Transport (HSCT), could become an important part of the 21st century international air transportation system. However, major environmental compatibility and economic viability issues must be resolved if the HSCT is to become a reality. This talk will overview the NASA High-Speed Research (HSR) program which is aimed at providing the U.S. industry with a technology base to allow them to consider launching an HSCT program early in the next century. The talk will also discuss some of the comparable activities going on within Europe and Japan.

  9. High-Speed Data Recorder for Space, Geodesy, and Other High-Speed Recording Applications

    NASA Technical Reports Server (NTRS)

    Taveniku, Mikael

    2013-01-01

    A high-speed data recorder and replay equipment has been developed for reliable high-data-rate recording to disk media. It solves problems with slow or faulty disks, multiple disk insertions, high-altitude operation, reliable performance using COTS hardware, and long-term maintenance and upgrade path challenges. The current generation data recor - ders used within the VLBI community are aging, special-purpose machines that are both slow (do not meet today's requirements) and are very expensive to maintain and operate. Furthermore, they are not easily upgraded to take advantage of commercial technology development, and are not scalable to multiple 10s of Gbit/s data rates required by new applications. The innovation provides a softwaredefined, high-speed data recorder that is scalable with technology advances in the commercial space. It maximally utilizes current technologies without being locked to a particular hardware platform. The innovation also provides a cost-effective way of streaming large amounts of data from sensors to disk, enabling many applications to store raw sensor data and perform post and signal processing offline. This recording system will be applicable to many applications needing realworld, high-speed data collection, including electronic warfare, softwaredefined radar, signal history storage of multispectral sensors, development of autonomous vehicles, and more.

  10. Photodetector having high speed and sensitivity

    DOEpatents

    Morse, Jeffrey D.; Mariella, Jr., Raymond P.

    1991-01-01

    The present invention provides a photodetector having an advantageous combination of sensitivity and speed; it has a high sensitivity while retaining high speed. In a preferred embodiment, visible light is detected, but in some embodiments, x-rays can be detected, and in other embodiments infrared can be detected. The present invention comprises a photodetector having an active layer, and a recombination layer. The active layer has a surface exposed to light to be detected, and comprises a semiconductor, having a bandgap graded so that carriers formed due to interaction of the active layer with the incident radiation tend to be swept away from the exposed surface. The graded semiconductor material in the active layer preferably comprises Al.sub.1-x Ga.sub.x As. An additional sub-layer of graded In.sub.1-y Ga.sub.y As may be included between the Al.sub.1-x Ga.sub.x As layer and the recombination layer. The recombination layer comprises a semiconductor material having a short recombination time such as a defective GaAs layer grown in a low temperature process. The recombination layer is positioned adjacent to the active layer so that carriers from the active layer tend to be swept into the recombination layer. In an embodiment, the photodetector may comprise one or more additional layers stacked below the active and recombination layers. These additional layers may include another active layer and another recombination layer to absorb radiation not absorbed while passing through the first layers. A photodetector having a stacked configuration may have enhanced sensitivity and responsiveness at selected wavelengths such as infrared.

  11. Chromotomosynthesis for high speed hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Bostick, Randall L.; Perram, Glen P.

    2012-09-01

    A rotating direct vision prism, chromotomosynthetic imaging (CTI) system operating in the visible creates hyperspectral imagery by collecting a set of 2D images with each spectrally projected at a different rotation angle of the prism. Mathematical reconstruction techniques that have been well tested in the field of medical physics are used to reconstruct the data to produce the 3D hyperspectral image. The instrument operates with a 100 mm focusing lens in the spectral range of 400-900 nm with a field of view of 71.6 mrad and angular resolution of 0.8-1.6 μrad. The spectral resolution is 0.6 nm at the shortest wavelengths, degrading to over 10 nm at the longest wavelengths. Measurements using a pointlike target show that performance is limited by chromatic aberration. The accuracy and utility of the instrument is assessed by comparing the CTI results to spatial data collected by a wideband image and hyperspectral data collected using a liquid crystal tunable filter (LCTF). The wide-band spatial content of the scene reconstructed from the CTI data is of same or better quality as a single frame collected by the undispersed imaging system with projections taken at every 1°. Performance is dependent on the number of projections used, with projections at 5° producing adequate results in terms of target characterization. The data collected by the CTI system can provide spatial information of equal quality as a comparable imaging system, provide high-frame rate slitless 1-D spectra, and generate 3-D hyperspectral imagery which can be exploited to provide the same results as a traditional multi-band spectral imaging system. While this prototype does not operate at high speeds, components exist which will allow for CTI systems to generate hyperspectral video imagery at rates greater than 100 Hz. The instrument has considerable potential for characterizing bomb detonations, muzzle flashes, and other battlefield combustion events.

  12. High Speed Dynamics in Brittle Materials

    NASA Astrophysics Data System (ADS)

    Hiermaier, Stefan

    2015-06-01

    Brittle Materials under High Speed and Shock loading provide a continuous challenge in experimental physics, analysis and numerical modelling, and consequently for engineering design. The dependence of damage and fracture processes on material-inherent length and time scales, the influence of defects, rate-dependent material properties and inertia effects on different scales make their understanding a true multi-scale problem. In addition, it is not uncommon that materials show a transition from ductile to brittle behavior when the loading rate is increased. A particular case is spallation, a brittle tensile failure induced by the interaction of stress waves leading to a sudden change from compressive to tensile loading states that can be invoked in various materials. This contribution highlights typical phenomena occurring when brittle materials are exposed to high loading rates in applications such as blast and impact on protective structures, or meteorite impact on geological materials. A short review on experimental methods that are used for dynamic characterization of brittle materials will be given. A close interaction of experimental analysis and numerical simulation has turned out to be very helpful in analyzing experimental results. For this purpose, adequate numerical methods are required. Cohesive zone models are one possible method for the analysis of brittle failure as long as some degree of tension is present. Their recent successful application for meso-mechanical simulations of concrete in Hopkinson-type spallation tests provides new insight into the dynamic failure process. Failure under compressive loading is a particular challenge for numerical simulations as it involves crushing of material which in turn influences stress states in other parts of a structure. On a continuum scale, it can be modeled using more or less complex plasticity models combined with failure surfaces, as will be demonstrated for ceramics. Models which take microstructural

  13. Photogrammetric Techniques Using High-Speed Cineradiography

    NASA Astrophysics Data System (ADS)

    Nusholtz, Guy S.; Bender, Max; Suggitt, Bryan R.; Kaiker, Patricia S.; Muscott, Gail J.

    1986-01-01

    A high-speed 16-mm cineradiographic system previously developed at the University of Michigan Transportation Research Institute for use in biomechanics research has been undergoing a continuous upgrading in capability. In addition to changes in the structural aspect of the cineradiography, improvements have been made in the procedures used to obtain better image quality as well as methods for interpretation of the digitized results. The current improvements in the system include: 1) filtering the X-ray source before penetration of the subject to increase image contrast as well as to protect the image tube; 2) pre-processing of the film to increase its effective speed; 3) development of a neutral density radio-contrast media for outlining anatomical structure without using the vascular system; and 4) development of procedures for obtaining analytical information about motion of non-rigid anatomical structures from digitized film. This system now consists of either a 35-mm Photosonics 4B, a 16-mm Photosonics 1B, or a 16-mm Milliken which views a 50-mm (2-inch) diameter output of a P-11 phosphor of a high gain, four-stage magnetically focused image intensifier tube, gated on and off synchronously with the motion picture camera shutter. A lens optically couples the input photocathode of the image tube to an X-ray fluorescent (rare earth) screen image produced by a smoothed DC X-ray generator of a conventional type. The system is capable of looking at a large spectrum of anatomical structures under a wide range of dynamic loading conditions.

  14. High Speed/ Low Effluent Process for Ethanol

    SciTech Connect

    M. Clark Dale

    2006-10-30

    n this project, BPI demonstrated a new ethanol fermentation technology, termed the High Speed/ Low Effluent (HS/LE) process on both lab and large pilot scale as it would apply to wet mill and/or dry mill corn ethanol production. The HS/LE process allows very rapid fermentations, with 18 to 22% sugar syrups converted to 9 to 11% ethanol ‘beers’ in 6 to 12 hours using either a ‘consecutive batch’ or ‘continuous cascade’ implementation. This represents a 5 to 8X increase in fermentation speeds over conventional 72 hour batch fermentations which are the norm in the fuel ethanol industry today. The ‘consecutive batch’ technology was demonstrated on a large pilot scale (4,800 L) in a dry mill corn ethanol plant near Cedar Rapids, IA (Xethanol Biofuels). The pilot demonstrated that 12 hour fermentations can be accomplished on an industrial scale in a non-sterile industrial environment. Other objectives met in this project included development of a Low Energy (LE) Distillation process which reduces the energy requirements for distillation from about 14,000 BTU/gal steam ($0.126/gal with natural gas @ $9.00 MCF) to as low as 0.40 KW/gal electrical requirements ($0.022/gal with electricity @ $0.055/KWH). BPI also worked on the development of processes that would allow application of the HS/LE fermentation process to dry mill ethanol plants. A High-Value Corn ethanol plant concept was developed to produce 1) corn germ/oil, 2) corn bran, 3) ethanol, 4) zein protein, and 5) nutritional protein, giving multiple higher value products from the incoming corn stream.

  15. Router Agent Technology for Policy-Based Network Management

    NASA Technical Reports Server (NTRS)

    Chow, Edward T.; Sudhir, Gurusham; Chang, Hsin-Ping; James, Mark; Liu, Yih-Chiao J.; Chiang, Winston

    2011-01-01

    This innovation can be run as a standalone network application on any computer in a networked environment. This design can be configured to control one or more routers (one instance per router), and can also be configured to listen to a policy server over the network to receive new policies based on the policy- based network management technology. The Router Agent Technology transforms the received policies into suitable Access Control List syntax for the routers it is configured to control. It commits the newly generated access control lists to the routers and provides feedback regarding any errors that were faced. The innovation also automatically generates a time-stamped log file regarding all updates to the router it is configured to control. This technology, once installed on a local network computer and started, is autonomous because it has the capability to keep listening to new policies from the policy server, transforming those policies to router-compliant access lists, and committing those access lists to a specified interface on the specified router on the network with any error feedback regarding commitment process. The stand-alone application is named RouterAgent and is currently realized as a fully functional (version 1) implementation for the Windows operating system and for CISCO routers.

  16. 8-Foot High Speed Tunnel (HST

    NASA Technical Reports Server (NTRS)

    1957-01-01

    Interior view of the slotted throat test section installed in the 8-Foot High Speed Tunnel (HST) in 1950. The slotted region is about 160 inches in length. In this photograph, the sting-type model support is seen straight on. In a NASA report, the test section is described as follows: 'The test section of the Langley 8-foot transonic tunnel is dodecagonal in cross section and has a cross-sectional area of about 43 square feet. Longitudinal slots are located between each of the 12 wall panels to allow continuous operation through the transonic speed range. The slots contain about 11 percent of the total periphery of the test section. Six of the twelve panels have windows in them to allow for schlieren observations. The entire test section is enclosed in a hemispherical shaped chamber.' John Becker noted that the tunnel's 'final achievement was the development and use in routine operations of the first transonic slotted throat. The investigations of wing-body shapes in this tunnel led to Whitcomb's discovery of the transonic area rule.' James Hansen described the origins of the the slotted throat as follows: 'In 1946 Langley physicist Ray H. Wright conceived a way to do transonic research effectively in a wind tunnel by placing slots in the throat of the test section. The concept for what became known as the slotted-throat or slotted-wall tunnel came to Wright not as a solution to the chronic transonic problem, but as a way to get rid of wall interference (i.e., the mutual effect of two or more meeting waves or vibrations of any kind caused by solid boundaries) at subsonic speeds. For most of the year before Wright came up with this idea, he had been trying to develop a theoretical understanding of wall interference in the 8-Foot HST, which was then being repowered for Mach 1 capability.' When Wright presented these ideas to John Stack, the response was enthusiastic but neither Wright nor Stack thought of slotted-throats as a solution to the transonic problem, only

  17. High Speed Link Radiated Emission Reduction

    NASA Astrophysics Data System (ADS)

    Bisognin, P.; Pelissou, P.; Cissou, R.; Giniaux, M.; Vargas, O.

    2016-05-01

    To control the radiated emission of high-speed link and associated unit, the current approach is to implement overall harness shielding on cables bundles. This method is very efficient in the HF/ VHF (high frequency/ very high frequency) and UHF (ultra-high frequency) ranges when the overall harness shielding is properly bonded on EMC back-shell. Unfortunately, with the increasing frequency, the associated half wavelength matches with the size of Sub-D connector that is the case for the L band. Therefore, the unit connectors become the main source of interference emission. For the L-band and S-band, the current technology of EMC back-shell leaves thin aperture matched with the L band half wavelength and therefore, the shielding effectiveness is drastically reduced. In addition, overall harness shielding means significant increases of the harness mass.Airbus D&S Toulouse and Elancourt investigated a new solution to avoid the need of overall harness shielding. The objective is to procure EM (Electro-Magnetic) clean unit connected to cables bundles free of any overall harness shielding. The proposed solution is to implement EMC common mode filtering on signal interfaces directly on unit PCB as close as possible the unit connector.Airbus D&S Elancourt designed and manufactured eight mock-ups of LVDS (Low Voltage Differential Signaling) interface PCBs' with different solutions of filtering. After verification of the signal integrity, three mock-ups were retained (RC filter and two common mode choke coil) in addition to the reference one (without EMC filter).Airbus D&S Toulouse manufactured associated LVDS cable bundles and integrated the RX (Receiver) and TX (Transmitter) LVDS boards in shielded boxes.Then Airbus D&S performed radiated emission measurement of the LVDS links subassemblies (e.g. RX and TX boxes linked by LVDS cables) according to the standard test method. This paper presents the different tested solutions and main conclusions on the feasibility of such

  18. High-speed dual Langmuir probe.

    PubMed

    Lobbia, Robert B; Gallimore, Alec D

    2010-07-01

    In an effort to temporally resolve the electron density, electron temperature, and plasma potential for turbulent plasma discharges, a unique high-speed dual Langmuir probe (HDLP) has been developed. A traditional single Langmuir probe of cylindrical geometry (exposed to the plasma) is swept simultaneously with a nearby capacitance and noise compensating null probe (fully insulated from the plasma) to enable bias sweep rates on a microsecond timescale. Traditional thin-sheath Langmuir probe theory is applied for interpretation of the collected probe data. Data at a sweep rate of 100 kHz are presented; however the developed system is capable of running at 1 MHz-near the upper limit of the applied electrostatic Langmuir probe theory for the investigated plasma conditions. Large sets (100,000 sweeps at each of 352 spatial locations) of contiguous turbulent plasma properties are collected using simple electronics for probe bias driving and current measurement attaining 80 dB signal-to-noise measurements with dc to 1 MHz bandwidth. Near- and far-field plume measurements with the HDLP system are performed downstream from a modern Hall effect thruster where the time-averaged plasma properties exhibit the approximate ranges: electron density n(e) from (1x10(15))-(5x10(16)) m(-3), electron temperature T(e) from 1 to 3.5 eV, and plasma potential V(p) from 5 to 15 V. The thruster discharge of 200 V (constant anode potential) and 2 A (average discharge current) displays strong, 2.2 A peak-to-peak, current oscillations at 19 kHz, characteristic of the thruster "breathing mode" ionization instability. Large amplitude discharge current fluctuations are typical for most Hall thrusters, yet the HDLP system reveals the presence of the same 19 kHz fluctuations in n(e)(t), T(e)(t), and V(p)(t) throughout the entire plume with peak-to-peak divided by mean plasma properties that average 94%. The propagation delays between the discharge current fluctuations and the corresponding plasma

  19. High speed operation of permanent magnet machines

    NASA Astrophysics Data System (ADS)

    El-Refaie, Ayman M.

    This work proposes methods to extend the high-speed operating capabilities of both the interior PM (IPM) and surface PM (SPM) machines. For interior PM machines, this research has developed and presented the first thorough analysis of how a new bi-state magnetic material can be usefully applied to the design of IPM machines. Key elements of this contribution include identifying how the unique properties of the bi-state magnetic material can be applied most effectively in the rotor design of an IPM machine by "unmagnetizing" the magnet cavity center posts rather than the outer bridges. The importance of elevated rotor speed in making the best use of the bi-state magnetic material while recognizing its limitations has been identified. For surface PM machines, this research has provided, for the first time, a clear explanation of how fractional-slot concentrated windings can be applied to SPM machines in order to achieve the necessary conditions for optimal flux weakening. A closed-form analytical procedure for analyzing SPM machines designed with concentrated windings has been developed. Guidelines for designing SPM machines using concentrated windings in order to achieve optimum flux weakening are provided. Analytical and numerical finite element analysis (FEA) results have provided promising evidence of the scalability of the concentrated winding technique with respect to the number of poles, machine aspect ratio, and output power rating. Useful comparisons between the predicted performance characteristics of SPM machines equipped with concentrated windings and both SPM and IPM machines designed with distributed windings are included. Analytical techniques have been used to evaluate the impact of the high pole number on various converter performance metrics. Both analytical techniques and FEA have been used for evaluating the eddy-current losses in the surface magnets due to the stator winding subharmonics. Techniques for reducing these losses have been

  20. Jet Engine Control Using Ethernet with a BRAIN (Postprint)

    DTIC Science & Technology

    2008-07-01

    ARINC - 664 , TTEthernet 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT: SAR 18. NUMBER OF PAGES 24 19a. NAME OF RESPONSIBLE...Ethernets F.1.1 ARINC 664 Another broadband technology that has gained significant traction with aerospace and industrial control is Ethernet. In...aerospace applications, ARINC 664 [ARI05] or AFDX™ (a full-duplex, profiled, switched Ethernet) has established itself as the de facto standard on large air

  1. High speed imaging technology: yesterday, today, and tomorrow

    NASA Astrophysics Data System (ADS)

    Pendley, Gil J.

    2003-07-01

    The purpose of this discussion is to familiarize readers with an overview of high-speed imaging technology as a means of analyzing objects in motion that occur too fast for the eye to see or conventional photography or video to capture. This information is intended to provide a brief historical narrative from the inception of high-speed imaging in the USA and the acceptance of digital video technology to augment or replace high-speed motion picture cameras. It is not intended a definitive work on the subject. For those interested in greater detail, such as application techniques, formulae, very high-speed and ultra speed technology etc. I recommend the latest text on the subject: High Speed Photography and Photonics first published in 1997 by Focal Press in the UK and copyrighted by the Association for High Speed Photography in the United Kingdom.

  2. Chicago-St. Louis high speed rail plan

    SciTech Connect

    Stead, M.E.

    1994-12-31

    The Illinois Department of Transportation (IDOT), in cooperation with Amtrak, undertook the Chicago-St. Louis High Speed Rail Financial and Implementation Plan study in order to develop a realistic and achievable blueprint for implementation of high speed rail in the Chicago-St. Louis corridor. This report presents a summary of the Price Waterhouse Project Team`s analysis and the Financial and Implementation Plan for implementing high speed rail service in the Chicago-St. Louis corridor.

  3. Water Containment Systems for Testing High-Speed Flywheels

    NASA Technical Reports Server (NTRS)

    Trase, Larry; Thompson, Dennis

    2006-01-01

    Water-filled containers are used as building blocks in a new generation of containment systems for testing high-speed flywheels. Such containment systems are needed to ensure safety by trapping high-speed debris in the event of centrifugal breakup or bearing failure. Traditional containment systems for testing flywheels consist mainly of thick steel rings. The effectiveness of this approach to shielding against high-speed debris was demonstrated in a series of tests.

  4. 33 CFR 84.24 - High-speed craft.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false High-speed craft. 84.24 Section... RULES ANNEX I: POSITIONING AND TECHNICAL DETAILS OF LIGHTS AND SHAPES § 84.24 High-speed craft. (a) The masthead light of high-speed craft with a length to breadth ratio of less than 3.0 may be placed at a...

  5. 33 CFR 84.24 - High-speed craft.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false High-speed craft. 84.24 Section... RULES ANNEX I: POSITIONING AND TECHNICAL DETAILS OF LIGHTS AND SHAPES § 84.24 High-speed craft. (a) The masthead light of high-speed craft with a length to breadth ratio of less than 3.0 may be placed at a...

  6. 33 CFR 84.24 - High-speed craft.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false High-speed craft. 84.24 Section... RULES ANNEX I: POSITIONING AND TECHNICAL DETAILS OF LIGHTS AND SHAPES § 84.24 High-speed craft. (a) The masthead light of high-speed craft with a length to breadth ratio of less than 3.0 may be placed at a...

  7. Re-examine the business case for metro optical Ethernet

    NASA Astrophysics Data System (ADS)

    Chang, Ted D.

    2004-04-01

    Ethernet is the next big thing in the telecom industry. In the metro network, access capacity is always an issue - not enough bandwidth to offer broadband services which will generate new revenue for service providers. Ethernet has been identified as one of the technologies that can break this spell in the next few years. Then why have we not seen large scale metro Ethernet deployment from any carriers? This article examines the issues in optical Ethernet technology, and the strengths and weakness of works in progress trying to solve them.

  8. Dependability analysis of WRT54GL router

    NASA Astrophysics Data System (ADS)

    Gawkowski, Piotr; DzieŻyc, Marcin

    2016-09-01

    The paper presents the methodology, techniques and achieved results of dependability analysis of popular WRT54GL router using complex Software Implemented Fault Injection (SWIFI) system. Several problems and their solutions are discussed and presented, for instance, the SWIFI in embedded system, high controllability over the injected faults and observability of their effects, and the automation of the experiments. They are presented on the background of the achieved dependability results.

  9. High-speed wireless optical LANs

    NASA Astrophysics Data System (ADS)

    Oe, Kunishige; Sato, Syuichi; Okayama, Motoyuki; Kubota, Toshihiro

    2001-11-01

    Study on high speed indoor wireless optical LAN system enabling 100Mbps signal transmission with low bit error rate (10-9) is presented. To realize the optical LAN system handling 100 Mbps signal, a directed line of sight (LOS) system is adopted as the optical receiver sensitivity for a bit error rate of 10-9 for 100 Mbps signals is fairly large. In the system, new approaches are introduced: WDM technology which enables bi-directional transmission in full duplex manner is applied using a 1.3 micrometers laser diode for down-link and 0.65 micrometers red laser diode for up-link light sources. As the wavelengths of the two lasers are quite separated from each other, this WDM technology brings an advantage that two kind of semiconductor materials can be used for detectors; GaInAs is used for down-link while Si is applied for up-link. GaInAs PD cannot detect the up-link laser light of 0.65 micrometers and Si PD or APD cannot detect the down-link laser light of 1.3micrometers . Therefore full duplex transmission can be achieved in this configuration. In the indoor wireless optical LAN system, one of the critical points is the transmitter configuration for down- link which enables to deliver optical power enough for 100 Mbps transmission to user areas as wide as possible with inexpensive prices. To realize the point, a special 1.3micrometers laser diode, a spot-size converter integrated laser (SS-LD), is introduced in company with convex lens and an object lens to deliver optical power to areas as wide as possible. As the far-field patterns of the SS-LD are fairly narrow, most of the output power of the LD could be collected to and spread wide by the object lens of 40 magnifications. Using the device, 3m diameter circle area in the plane 2m apart from the 1.3micrometers SS-LD emitting 20 mW optical power, could receive optical power above the receiver sensitivity for a bit error rate of 10-9 for 100 Mbps signals. The visible red light is convenient for not only position

  10. 8-Foot High Speed Tunnel (HST)

    NASA Image and Video Library

    1957-03-19

    Interior view of the slotted throat test section installed in the 8-Foot High Speed Tunnel (HST) in 1950. The slotted region is about 160 inches in length. In this photograph, the sting-type model support is seen straight on. In a NASA report, the test section is described as follows: The test section of the Langley 8-foot transonic tunnel is dodecagonal in cross section and has a cross-sectional area of about 43 square feet. Longitudinal slots are located between each of the 12 wall panels to allow continuous operation through the transonic speed range. The slots contain about 11 percent of the total periphery of the test section. Six of the twelve panels have windows in them to allow for schlieren observations. The entire test section is enclosed in a hemispherical shaped chamber. John Becker noted that the tunnel s final achievement was the development and use in routine operations of the first transonic slotted throat. The investigations of wing-body shapes in this tunnel led to Whitcomb s discovery of the transonic area rule. James Hansen described the origins of the the slotted throat as follows: In 1946 Langley physicist Ray H. Wright conceived a way to do transonic research effectively in a wind tunnel by placing slots in the throat of the test section. The concept for what became known as the slotted-throat or slotted-wall tunnel came to Wright not as a solution to the chronic transonic problem, but as a way to get rid of wall interference (i.e., the mutual effect of two or more meeting waves or vibrations of any kind caused by solid boundaries) at subsonic speeds. For most of the year before Wright came up with this idea, he had been trying to develop a theoretical understanding of wall interference in the 8-Foot HST, which was then being repowered for Mach 1 capability. When Wright presented these ideas to John Stack, the response was enthusiastic but neither Wright nor Stack thought of slotted-throats as a solution to the transonic problem, only the

  11. Gigabit Ethernet Asynchronous Clock Compensation FIFO

    NASA Technical Reports Server (NTRS)

    Duhachek, Jeff

    2012-01-01

    Clock compensation for Gigabit Ethernet is necessary because the clock recovered from the 1.25 Gb/s serial data stream has the potential to be 200 ppm slower or faster than the system clock. The serial data is converted to 10-bit parallel data at a 125 MHz rate on a clock recovered from the serial data stream. This recovered data needs to be processed by a system clock that is also running at a nominal rate of 125 MHz, but not synchronous to the recovered clock. To cross clock domains, an asynchronous FIFO (first-in-first-out) is used, with the write pointer (wprt) in the recovered clock domain and the read pointer (rptr) in the system clock domain. Because the clocks are generated from separate sources, there is potential for FIFO overflow or underflow. Clock compensation in Gigabit Ethernet is possible by taking advantage of the protocol data stream features. There are two distinct data streams that occur in Gigabit Ethernet where identical data is transmitted for a period of time. The first is configuration, which happens during auto-negotiation. The second is idle, which occurs at the end of auto-negotiation and between every packet. The identical data in the FIFO can be repeated by decrementing the read pointer, thus compensating for a FIFO that is draining too fast. The identical data in the FIFO can also be skipped by incrementing the read pointer, which compensates for a FIFO draining too slowly. The unique and novel features of this FIFO are that it works in both the idle stream and the configuration streams. The increment or decrement of the read pointer is different in the idle and compensation streams to preserve disparity. Another unique feature is that the read pointer to write pointer difference range changes between compensation and idle to minimize FIFO latency during packet transmission.

  12. High speed data transmission for the SSC solenoidal detector

    NASA Astrophysics Data System (ADS)

    Leskovar, B.

    1991-04-01

    High speed data transmission using fiber optics for the Superconducting Super Collider solenoidal detector has been studied. The solenoidal detector system will consist of nine subsystems involving more than a total 10(exp 7) channels of readout electronics. Consequently, a new high performance data acquisition system, incorporating high-speed optical fiber networks, will be required to process this large quantity of data.

  13. The Advantages of ISDN for High-Speed Remote Access.

    ERIC Educational Resources Information Center

    Galvin, Mark; Hauf, Al

    1997-01-01

    Explains why ISDN (integrated services digital network) is the most practical solution for high-speed remote access, including reliability, cost, flexibility, scaleability, standards, and manageability. Other data transmission options are discussed, including asymmetric digital subscriber lines (ADSL), high-speed digital subscriber lines (HDSL),…

  14. 14 CFR 23.253 - High speed characteristics.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false High speed characteristics. 23.253 Section 23.253 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... Requirements § 23.253 High speed characteristics. If a maximum operating speed VMO/MMO is established...

  15. HIGH-SPEED GC/MS FOR AIR ANALYSIS

    EPA Science Inventory

    High speed or fast gas chromatography (FGC) consists of narrow bandwidth injection into a high-speed carrier gas stream passing through a short column leading to a fast detector. Many attempts have been made to demonstrate FGC, but until recently no practical method for routin...

  16. Seakeeping Analysis of Small Displacement High-Speed Vessels

    DTIC Science & Technology

    2003-03-01

    72 73 74 75 76 77 78 79 80 81 82 83 VI. LIST OF REFERENCES [1] Kennell, Colen. Design ... trends in High-Speed Transport. Marine Technology, Vol. 35, No. 3, July 1998, pp.127-134. [2] Ritter, Owen K., Templeman, Michael T. High-Speed

  17. HIGH-SPEED GC/MS FOR AIR ANALYSIS

    EPA Science Inventory

    High speed or fast gas chromatography (FGC) consists of narrow bandwidth injection into a high-speed carrier gas stream passing through a short column leading to a fast detector. Many attempts have been made to demonstrate FGC, but until recently no practical method for routin...

  18. 14 CFR 23.253 - High speed characteristics.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false High speed characteristics. 23.253 Section... Requirements § 23.253 High speed characteristics. If a maximum operating speed VMO/MMO is established under § 23.1505(c), the following speed increase and recovery characteristics must be met: (a) Operating...

  19. 14 CFR 23.253 - High speed characteristics.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false High speed characteristics. 23.253 Section... Requirements § 23.253 High speed characteristics. If a maximum operating speed VMO/MMO is established under § 23.1505(c), the following speed increase and recovery characteristics must be met: (a) Operating...

  20. 14 CFR 23.253 - High speed characteristics.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false High speed characteristics. 23.253 Section... Requirements § 23.253 High speed characteristics. Link to an amendment published at 76 FR 75755, December 2, 2011. If a maximum operating speed VMO/MMO is established under § 23.1505(c), the following speed...

  1. 14 CFR 23.253 - High speed characteristics.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false High speed characteristics. 23.253 Section... Requirements § 23.253 High speed characteristics. If a maximum operating speed VMO/MMO is established under § 23.1505(c), the following speed increase and recovery characteristics must be met: (a) Operating...

  2. High-Speed Video Analysis of Damped Harmonic Motion

    ERIC Educational Resources Information Center

    Poonyawatpornkul, J.; Wattanakasiwich, P.

    2013-01-01

    In this paper, we acquire and analyse high-speed videos of a spring-mass system oscillating in glycerin at different temperatures. Three cases of damped harmonic oscillation are investigated and analysed by using high-speed video at a rate of 120 frames s[superscript -1] and Tracker Video Analysis (Tracker) software. We present empirical data for…

  3. Structural vulnerability and intervention of high speed railway networks

    NASA Astrophysics Data System (ADS)

    Zhang, Jianhua; Hu, Funian; Wang, Shuliang; Dai, Yang; Wang, Yixing

    2016-11-01

    This paper employs complex network theory to assess the structural vulnerability of high speed railway networks subjected to two different malicious attacks. Chinese, US and Japanese high speed railway networks are used to discuss the vulnerable characteristics of systems. We find that high speed railway networks are very fragile when suffering serious disturbances and two attack rules can cause analogous damages to one high speed railway network, which illustrates that the station with large degree possesses high betweenness, vice versa. Meanwhile, we discover that Japanese high speed railway network has the best global connectivity, but Chinese high speed railway network has the best local connectivity and possesses the largest transport capacity. Moreover, we find that there exist several redundant paths in Chinese high speed railway network and discover the critical stations of three HSRNs. Furthermore, the nearest-link method is adopted to implement topological interventions and to improve the connectivity and reliability of high speed railway networks. In addition, the feasibility and effectiveness of topological interventions are shown by simulations.

  4. 33 CFR 84.24 - High-speed craft.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... of the isosceles triangle formed by the side lights and masthead light when seen in end elevation is... RULES ANNEX I: POSITIONING AND TECHNICAL DETAILS OF LIGHTS AND SHAPES § 84.24 High-speed craft. (a) The masthead light of high-speed craft with a length to breadth ratio of less than 3.0 may be placed at...

  5. 33 CFR 84.24 - High-speed craft.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... of the isosceles triangle formed by the side lights and masthead light when seen in end elevation is... RULES ANNEX I: POSITIONING AND TECHNICAL DETAILS OF LIGHTS AND SHAPES § 84.24 High-speed craft. (a) The masthead light of high-speed craft with a length to breadth ratio of less than 3.0 may be placed at...

  6. High-Speed Video Analysis of Damped Harmonic Motion

    ERIC Educational Resources Information Center

    Poonyawatpornkul, J.; Wattanakasiwich, P.

    2013-01-01

    In this paper, we acquire and analyse high-speed videos of a spring-mass system oscillating in glycerin at different temperatures. Three cases of damped harmonic oscillation are investigated and analysed by using high-speed video at a rate of 120 frames s[superscript -1] and Tracker Video Analysis (Tracker) software. We present empirical data for…

  7. Hardware Realization of an Ethernet Packet Analyzer Search Engine

    DTIC Science & Technology

    2007-11-02

    specific for the home automation industry. This analyzer will be at the gateway of a network and analyze Ethernet packets as they go by. It will keep... home automation and not the computer network. This system is a stand-alone real-time network analyzer capable of decoding Ethernet protocols. The

  8. A novel architecture of recovered data comparison for high speed clock and data recovery

    NASA Astrophysics Data System (ADS)

    Gao, Susan; Li, Fei; Wang, Zhigong; Cui, Hongliang

    2005-05-01

    A clock and data recovery (CDR) circuit is one of the crucial blocks in high-speed serial link communication systems. The data received in these systems are asynchronous and noisy, requiring that a clock be extracted to allow synchronous operations. Furthermore, the data must be "retimed" so that the jitter accumulated during transmission is removed. This paper presents a novel architecture of CDR, which is very tolerant to long sequences of serial ones or zeros and also robust to occasional long absence of transitions. The design is based on the fact that a basic clock recovery having a clock recovery circuit (CRC) and a data decision circuit separately would generate a high jitter clock when the received non-return-to-zero (NRZ) data with long sequences of ones or zeros. To eliminate this drawback, the proposed architecture incorporates a data circuit decision circuit within the phase-locked loop (PLL) CRC. Other than this, a new phase detector (PD) is also proposed, which was easy to accomplish and robust at high speed. This PD is functional with a random input and automatically turns to disable during both the locked state and long absence of transitions. The voltage-controlled oscillator (VCO) is also designed delicately to suppress the jitter. Due to the high stability, the jitter is highly reduced when the loop is locked. The simulation results of such CDR working at 1.25Gb/s particularly for 1000BASE-X Gigabit Ethernet by using TSMC 0.25μm technology are presented to prove the feasibility of this architecture. One more CDR based on edge detection architecture is also built in the circuit for performance comparisons.

  9. Readout electronics for CBM-TOF super module quality evaluation based on 10 Gbps ethernet

    NASA Astrophysics Data System (ADS)

    Jiang, D.; Cao, P.; Huang, X.; Zheng, J.; Wang, Q.; Li, B.; Li, J.; Liu, S.; An, Q.

    2017-07-01

    The Compressed Baryonic Matter-Time of Flight (CBM-TOF) wall uses high performance of Multi-gap Resistive Plate Chambers (MRPC) assembled in super modules to identify charged particles with high channel density and high measurement precision at high event rate. Electronics meet the challenge for reading data out from a super module at high speed of about 6 Gbps in real time. In this paper, the readout electronics for CBM-TOF super module quality evaluation is proposed based on 10 Gigabit Ethernet. The digitized TOF data from one super module will be concentrated at the front-end electronics residing on the side of the super module and transmitted to an extreme speed readout module (XSRM) housed in the backend crate through the PCI Express (PCIe) protocol via optic channels. Eventually, the XSRM transmits data to the data acquisition (DAQ) system through four 10 Gbps Ethernet ports in real time. This readout structure has advantages of high performance and expansibility. Furthermore, it is easy to operate. Test results on the prototype show that the overall data readout performance for each XSRM can reach up to 28.8 Gbps, which means XSRM can meet the requirement of reading data out from 4 super modules with 1280 channels in real time.

  10. Ethernet Networks for Real-Time Systems: Application to Launchers

    NASA Astrophysics Data System (ADS)

    Robert, Jeremy; Georges, Jean-Philippe; Divoux, Thierry; Miramont, Philippe; Rmill, Badr

    2011-08-01

    The present paper highlights the results obtained in CNES french Research & Technology activity. The objective of this study is to replace the historical serial data bus (MIL-STD 1553B) with a COTS (Components Off The Shelf) solution into a launcher as Ariane 5. As a matter of course, this solution must guarantee at least the same performances (real-time, reliability, etc). As a result this paper focuses on Ethernet standard. Nowadays, Ethernet is a consensual solution implemented in several domains as such industrial context (Jaguar, etc) or even avionics (Airbus A380). The paper highlights the first is- sues of the native Ethernet and its main evolutions which enable to embed an Ethernet network in a launcher, while ensuring real-time performances. Finally, a methodology is proposed to design an Ethernet reliable architecture.

  11. A gigabit ethernet link source card.

    SciTech Connect

    Blair, R. E.; Dawson, J. W.; Drake, G.; Haberichter, W. N.; Schlereth, J. L.

    2002-09-18

    A Link Source Card (LSC) has been developed which employs Gigabit Ethernet as the physical medium. The LSC is implemented as a mezzanine card compliant with the S-Link specifications, and is intended for use in development of the Region of Interest Building (ROIB) in the Level 2 Trigger of ATLAS. The LSC will be used to bring Region of Internet Fragments from Level 1 Trigger elements to the ROIB, and to transfer compiled Region of Interest Records to Supervisor Processors. The card uses the LSI 8101/8104 Media Access Controller (MAC) [1] and the Agilent HDMP-1636 Transceiver. An Altera 10K50A FPGA [2] is configured to provide several state machines which perform all the tasks on the card, such as formulating the Ethernet header, read/write registers in the MAC, etc. An on-card static RAM provides storage for 512K S-Link words, and a FIFO provides 4K buffering of input S-Link words. The LSC has been tested in a setup where it transfers data to a NIC in the PCI bus of a PC.

  12. Analysis of tri-stage memory array for high-speed packet buffers

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Jin, Depeng; Zeng, Lieguang

    2005-02-01

    The speed of high-performance switches and routers is often limited by the bandwidth of commercially available memories. Meanwhile, the rapid growth in network bandwidth accompanied by the slowly increasing memory speed makes the problem even harder over time. There are, in fact, several techniques to build faster memories. However, some are based on the ideas from computer systems, such as parallelism, interleaving and banking, which can hardly be applied directly to packet buffering, while the others like hybrid SRAM-DRAM packet buffers are restricted by the speed of SRAM and inapplicable as the link rate exceeds the speed of SRAM. Motivated by increasing the throughput of packet buffers with only common memory arrays, we present one particular packet buffer architecture called Tri-Stage Memory Array (TSMA) that can speed up the packet buffering and retrieving processes to an arbitrary high speed theoretically. To replenish TSMA, a memory management algorithm called Most Urgent Queue First (MUQF) is also described and analyzed. It is proved that TSMA architecture coupled with MUQF algorithm can guarantee a bounded delay for each packet under any traffic arrival pattern or scheduling algorithm. Moreover, we provide an alternative architecture of TSMA to achieve simple implementation.

  13. The use of high-speed imaging in education

    NASA Astrophysics Data System (ADS)

    Kleine, H.; McNamara, G.; Rayner, J.

    2017-02-01

    Recent improvements in camera technology and the associated improved access to high-speed camera equipment have made it possible to use high-speed imaging not only in a research environment but also specifically for educational purposes. This includes high-speed sequences that are created both with and for a target audience of students in high schools and universities. The primary goal is to engage students in scientific exploration by providing them with a tool that allows them to see and measure otherwise inaccessible phenomena. High-speed imaging has the potential to stimulate students' curiosity as the results are often surprising or may contradict initial assumptions. "Live" demonstrations in class or student- run experiments are highly suitable to have a profound influence on student learning. Another aspect is the production of high-speed images for demonstration purposes. While some of the approaches known from the application of high speed imaging in a research environment can simply be transferred, additional techniques must often be developed to make the results more easily accessible for the targeted audience. This paper describes a range of student-centered activities that can be undertaken which demonstrate how student engagement and learning can be enhanced through the use of high speed imaging using readily available technologies.

  14. High speed sampling circuit design for pulse laser ranging

    NASA Astrophysics Data System (ADS)

    Qian, Rui-hai; Gao, Xuan-yi; Zhang, Yan-mei; Li, Huan; Guo, Hai-chao; Guo, Xiao-kang; He, Shi-jie

    2016-10-01

    In recent years, with the rapid development of digital chip, high speed sampling rate analog to digital conversion chip can be used to sample narrow laser pulse echo. Moreover, high speed processor is widely applied to achieve digital laser echo signal processing algorithm. The development of digital chip greatly improved the laser ranging detection accuracy. High speed sampling and processing circuit used in the laser ranging detection system has gradually been a research hotspot. In this paper, a pulse laser echo data logging and digital signal processing circuit system is studied based on the high speed sampling. This circuit consists of two parts: the pulse laser echo data processing circuit and the data transmission circuit. The pulse laser echo data processing circuit includes a laser diode, a laser detector and a high sample rate data logging circuit. The data transmission circuit receives the processed data from the pulse laser echo data processing circuit. The sample data is transmitted to the computer through USB2.0 interface. Finally, a PC interface is designed using C# language, in which the sampling laser pulse echo signal is demonstrated and the processed laser pulse is plotted. Finally, the laser ranging experiment is carried out to test the pulse laser echo data logging and digital signal processing circuit system. The experiment result demonstrates that the laser ranging hardware system achieved high speed data logging, high speed processing and high speed sampling data transmission.

  15. Branched silver nanowires as controllable plasmon routers.

    PubMed

    Fang, Yurui; Li, Zhipeng; Huang, Yingzhou; Zhang, Shunping; Nordlander, Peter; Halas, Naomi J; Xu, Hongxing

    2010-05-12

    Using polarization dependent scattering spectroscopy, we investigate plasmon propagation on branched silver nanowires. By controlling the polarization of the incident laser light, the wire plasmons can be routed into different wire branches and result in light emission from the corresponding wire ends. This routing behavior is found to be strongly dependent on the wavelength of light. Thus for certain incident polarizations, light of different wavelength will be routed into different branches. The branched nanowire can thus serve as a controllable router and multiplexer in integrated plasmonic circuits.

  16. All-optical broadcasting switch fabric architecture for gigabit switching router (GSR)

    NASA Astrophysics Data System (ADS)

    Wei, Wei; Zeng, QingJi

    2001-10-01

    In current high performance IP Gigabit Switching Router (GSR) design, one of the key issues is about switching fabrics. In the traditional bus-based router architectures, the data transfer rate of copper backplanes will soon reach the speed limit because of connector reflections and crosstalk. An optical switching fabric technology is necessary in order to satisfy the demand for high bandwidth and line switching rate. In this paper we firstly present a novel all-optical broadcasting switch fabric design scheme based on broadcasting bus architecture. In this section we also discuss the advantages and disadvantages of this kind of architecture and demonstrate that this kind of switching fabric architecture have no interior blocking as well as none I/O blocking (e.g. HOL). Secondly, we discuss such implementation scheme of all-optical broadcasting switch fabric architecture as queuing, scheduling and multicasting. Finally we get a conclusion that all-optical broadcasting switch fabric is one of the cost-effective solutions to design high-speed, scalable and simple switch fabric compared with complicated electric crossbar switch fabrics in GSR design.

  17. Turbomachinery technology for high-speed civil flight

    NASA Technical Reports Server (NTRS)

    Saunders, Neal T.; Glassman, Arthur J.

    1989-01-01

    NASA Lewis' research and technology efforts applicable to turbomachinery for high-speed flight are discussed. The potential benefits and cycle requirements for advanced variable cycle engines and the supersonic throughflow fan engine for a high-speed civil transport application are presented. The supersonic throughflow fan technology program is discussed. Technology efforts in the basic discipline areas addressing the severe operating conditions associated with high-speed flight turbomachinery are reviewed. Included are examples of work in internal fluid mechanics, high-temperature materials, structural analysis, instrumentation and controls.

  18. High Speed Measurements using Fiber-optic Bragg Grating Sensors

    SciTech Connect

    Benterou, J J; May, C A; Udd, E; Mihailov, S J; Lu, P

    2011-03-26

    Fiber grating sensors may be used to monitor high-speed events that include catastrophic failure of structures, ultrasonic testing and detonations. This paper provides insights into the utility of fiber grating sensors to measure structural changes under extreme conditions. An emphasis is placed on situations where there is a structural discontinuity. Embedded chirped fiber Bragg grating (CFBG) sensors can track the very high-speed progress of detonation waves (6-9 km/sec) inside energetic materials. This paper discusses diagnostic instrumentation and analysis techniques used to measure these high-speed events.

  19. High-speed optical 3D sensing and its applications

    NASA Astrophysics Data System (ADS)

    Watanabe, Yoshihiro

    2016-12-01

    This paper reviews high-speed optical 3D sensing technologies for obtaining the 3D shape of a target using a camera. The focusing speed is from 100 to 1000 fps, exceeding normal camera frame rates, which are typically 30 fps. In particular, contactless, active, and real-time systems are introduced. Also, three example applications of this type of sensing technology are introduced, including surface reconstruction from time-sequential depth images, high-speed 3D user interaction, and high-speed digital archiving.

  20. Trend on High-speed Power Line Communication Technology

    NASA Astrophysics Data System (ADS)

    Ogawa, Osamu

    High-speed power line communication (PLC) is useful technology to easily build the communication networks, because construction of new infrastructure is not necessary. In Europe and America, PLC has been used for broadband networks since the beginning of 21th century. In Japan, high-speed PLC was deregulated only indoor usage in 2006. Afterward it has been widely used for home area network, LAN in hotels and school buildings and so on. And recently, PLC is greatly concerned as communication technology for smart grid network. In this paper, the author surveys the high-speed PLC technology and its current status.

  1. First Annual High-Speed Research Workshop, part 4

    NASA Technical Reports Server (NTRS)

    Whitehead, Allen H., Jr. (Compiler)

    1992-01-01

    Papers presented at the First Annual High Speed Research Workshop held in Williamsburg, Viginia, on May 14-16, 1991 are presented. This NASA-sponsored workshop provided a national forum for presenting and discussing important technology issues related to the definition of an economically viable and environmentally compatible High Speed Civil Transport. The sessions are developed around the technical components of NASA's Phase 1 High Speed Research Program which addresses the environmental issues of atmospheric emissions, community noise, and sonic boom. In particular, this part of the publication, Part 4, addresses high lift research and supersonic laminar flow control.

  2. High-speed AFM of human chromosomes in liquid

    NASA Astrophysics Data System (ADS)

    Picco, L. M.; Dunton, P. G.; Ulcinas, A.; Engledew, D. J.; Hoshi, O.; Ushiki, T.; Miles, M. J.

    2008-09-01

    Further developments of the previously reported high-speed contact-mode AFM are described. The technique is applied to the imaging of human chromosomes at video rate both in air and in water. These are the largest structures to have been imaged with high-speed AFM and the first imaging in liquid to be reported. A possible mechanism that allows such high-speed contact-mode imaging without significant damage to the sample is discussed in the context of the velocity dependence of the measured lateral force on the AFM tip.

  3. High speed measurements using fiber-optic Bragg gratings

    NASA Astrophysics Data System (ADS)

    Benterou, Jerry; May, Chadd; Udd, Eric; Mihailov, Stephen J.; Lu, Ping

    2011-06-01

    Fiber grating sensors may be used to monitor high-speed events that include catastrophic failure of structures, ultrasonic testing and detonations. This paper provides insights into the utility of fiber grating sensors to measure structural changes under extreme conditions. An emphasis is placed on situations where there is a structural discontinuity. Embedded chirped fiber Bragg grating (CFBG) sensors can track the very high-speed progress of detonation waves (6-9 km/sec) inside energetic materials. This paper discusses diagnostic instrumentation and analysis techniques used to measure these high-speed events.

  4. First Annual High-Speed Research Workshop, part 3

    NASA Technical Reports Server (NTRS)

    Whitehead, Allen H., Jr. (Compiler)

    1992-01-01

    The First High-Speed Research (HSR) Workshop was hosted by NASA LaRC and was held 14-16 May 1991, in Williamsburg, Virginia. The purpose of the workshop was to provide a national forum for the government, industry, and university participants to present and discuss important technology issues related to the development of a commercially viable, environmentally compatible, U.S. High-Speed Civil Transport. The workshop sessions are organized around the major task elements in NASA's Phase 1 High-Speed Research Program which basically addresses the environmental issues of atmospheric emissions, community noise, and sonic boom.

  5. High-speed digital project, HSD test capability

    NASA Astrophysics Data System (ADS)

    Markley, R. E.; Elarton, J. L.; Allen, C. T.

    1994-04-01

    Establishing a high-speed digital (HSD) test capability for the Digital Waveform Synthesizer (DWS) multichip module (MCM) has required the development of several areas: a detailed test plan for the MCM; design, fabrication and proving of the high-speed test console; and the specification, design, and development of the high-speed test and environmental conditioning interface to the DWS. These development activities have been successfully completed at the Allied Signal Inc., Kansas City Division (KCD), and the test capability described herein is currently supporting DWS MCM testing and can be adapted to similar HSD module testing.

  6. High-speed seal and bearing test facility

    NASA Technical Reports Server (NTRS)

    Panos, Jean B.

    1994-01-01

    The following topics are discussed in this viewgraph presentation: high speed seal/bearing rig background, project status, facility features, test rig capabilities, EMD testing advantages, and future opportunities.

  7. High speed demodulation systems for fiber optic grating sensors

    NASA Technical Reports Server (NTRS)

    Udd, Eric (Inventor); Weisshaar, Andreas (Inventor)

    2002-01-01

    Fiber optic grating sensor demodulation systems are described that offer high speed and multiplexing options for both single and multiple parameter fiber optic grating sensors. To attain very high speeds for single parameter fiber grating sensors ratio techniques are used that allow a series of sensors to be placed in a single fiber while retaining high speed capability. These methods can be extended to multiparameter fiber grating sensors. Optimization of speeds can be obtained by minimizing the number of spectral peaks that must be processed and it is shown that two or three spectral peak measurements may in specific multiparameter applications offer comparable or better performance than processing four spectral peaks. Combining the ratio methods with minimization of peak measurements allows very high speed measurement of such important environmental effects as transverse strain and pressure.

  8. Design of high speed camera based on CMOS technology

    NASA Astrophysics Data System (ADS)

    Park, Sei-Hun; An, Jun-Sick; Oh, Tae-Seok; Kim, Il-Hwan

    2007-12-01

    The capacity of a high speed camera in taking high speed images has been evaluated using CMOS image sensors. There are 2 types of image sensors, namely, CCD and CMOS sensors. CMOS sensor consumes less power than CCD sensor and can take images more rapidly. High speed camera with built-in CMOS sensor is widely used in vehicle crash tests and airbag controls, golf training aids, and in bullet direction measurement in the military. The High Speed Camera System made in this study has the following components: CMOS image sensor that can take about 500 frames per second at a resolution of 1280*1024; FPGA and DDR2 memory that control the image sensor and save images; Camera Link Module that transmits saved data to PC; and RS-422 communication function that enables control of the camera from a PC.

  9. High speed testing of the hollow roller bearing

    NASA Astrophysics Data System (ADS)

    Bowen, W. L.; Murphy, T. W., Jr.

    1980-08-01

    This bearing with its preloaded, hollow rollers has the qualities required for high speed operation. Roller hollowness improves cooling ability and its lighter weight reduces the centrifugal force against the raceway. Preloading between inner and outer races for 360 deg insures good roller guidance and minimizes roller skidding. However, the problems of operating a full complement of rollers at very high speeds were unknown. Also, limitations caused by roller bending fatigue needed investigation. To answer these questions, a high speed test machine was constructed and a hollow roller test bearing was designed for operation at 3 million DN. This paper describes the construction of a high speed test cell and subsequent testing of a full complement, preloaded, 115 mm hollow roller bearing. Testing culminated in a successful endurance test of 1000 hours at 26,100 RPM (3 million DN). The results verified several advantages regarding roller stability and antiskidding qualities as well as demonstrating a unique fail-safe condition.

  10. High Speed Balancing Applied to the T700 Engine

    NASA Technical Reports Server (NTRS)

    Walton, J.; Lee, C.; Martin, M.

    1989-01-01

    The work performed under Contracts NAS3-23929 and NAS3-24633 is presented. MTI evaluated the feasibility of high-speed balancing for both the T700 power turbine rotor and the compressor rotor. Modifications were designed for the existing Corpus Christi Army Depot (CCAD) T53/T55 high-speed balancing system for balancing T700 power turbine rotors. Tests conducted under these contracts included a high-speed balancing evaluation for T700 power turbines in the Army/NASA drivetrain facility at MTI. The high-speed balancing tests demonstrated the reduction of vibration amplitudes at operating speed for both low-speed balanced and non-low-speed balanced T700 power turbines. In addition, vibration data from acceptance tests of T53, T55, and T700 engines were analyzed and a vibration diagnostic procedure developed.

  11. Discharge characteristics of a high speed fuel injection system

    NASA Technical Reports Server (NTRS)

    Matthews, Robertson

    1925-01-01

    Discussed here are some discharge characteristics of a fuel injection system intended primarily for high speed service. The system consisted of a cam actuated fuel pump, a spring loaded automatic injection valve, and a connecting tube.

  12. Thermomechanical simulations and experimental validation for high speed incremental forming

    NASA Astrophysics Data System (ADS)

    Ambrogio, Giuseppina; Gagliardi, Francesco; Filice, Luigino; Romero, Natalia

    2016-10-01

    Incremental sheet forming (ISF) consists in deforming only a small region of the workspace through a punch driven by a NC machine. The drawback of this process is its slowness. In this study, a high speed variant has been investigated from both numerical and experimental points of view. The aim has been the design of a FEM model able to perform the material behavior during the high speed process by defining a thermomechanical model. An experimental campaign has been performed by a CNC lathe with high speed to test process feasibility. The first results have shown how the material presents the same performance than in conventional speed ISF and, in some cases, better material behavior due to the temperature increment. An accurate numerical simulation has been performed to investigate the material behavior during the high speed process confirming substantially experimental evidence.

  13. The High Speed Photometer for the Space Telescope

    NASA Technical Reports Server (NTRS)

    Bless, R. C.

    1982-01-01

    An overview of the high speed photometer (HSP), its optics and detectors, its electronics, its mechanical structure, and some observational considerations are presented. The capabilities and limitations of the HSP are outlined.

  14. The flight of an autogiro at high speed

    NASA Technical Reports Server (NTRS)

    Bennett, J A J

    1933-01-01

    This report presents a method for computing the flight performance of an autogiro at high speed, the velocity component along the blades being accounted for by calculation of the profile drag and the equation for zero torque.

  15. High-speed vertical cavity surface emitting lasers

    SciTech Connect

    Lear, K.L.; Ochiai, M.; Hietala, V.M.

    1997-03-01

    High speed modulation and pulsing are reported for oxide-confined vertical cavity surface emitting laser diodes (VCSELs) with inverted doping and proton implantation to reduce the extrinsic limitations.

  16. Reduced Order Modeling For High Speed Flows with Moving Shocks

    DTIC Science & Technology

    2001-12-03

    use of Proper Orthogonal Decomposition ( POD ) for reduced order modeling (ROM)of fluid problems is extended to high-speed compressible fluid flows. The...challenge in using POD for high-speed flows is presented by the presence of moving discontinuities in the flow field. To ovecome these difficulties...difficulty. The accuracy and order reduction of the domain decomposition POD /ROM approach is quantified for each application. ROMs with as large as three

  17. High speed data transmission at the Superconducting Super Collider

    SciTech Connect

    Leskovar, B. )

    1991-04-01

    In this paper high speed data transmission using fiber optics in the data acquisition system of the Superconducting Super Collider has been investigated. Emphasis is placed on the high speed data transmission system overview, the local data network and on subassemblies, such as optical transmitters and receivers. Also, the performance of candidate subassemblies having a low power dissipation for the data acquisition system is discussed.

  18. High-speed ground transportation: some current and future alternatives

    SciTech Connect

    Morita, T.

    1984-01-01

    High-speed ground transportation (HSGT), the value of time, and the social and technological considerations of inter-city transportation are discussed in this article. A particularly promising mode of high-speed ground transportation (MAGLEV) is discussed in some detail. An average speed for HSGT service, 400 kilometers per hour, seems to be attainable. In conclusion, the proposal for a hypersonic subway will be analyzed. 2 figures, 1 table.

  19. Application Of High Speed Photography In Science And Technology

    NASA Astrophysics Data System (ADS)

    Wu Ji-Zong, Wu; Yu-Ju, Lin

    1983-03-01

    The service works in high-speed photography carried out by the Department of Precision Instruments, Tianjin University are described in this paper. A compensation type high-speed camera was used in these works. The photographic methods adopted and better results achieved in the studies of several technical fields, such as velocity field of flow of overflow surface of high dam, combustion process of internal combustion engine, metal cutting, electrical are welding, experiment of piling of steel tube piles for supporting the marine platforms and characteristics of motion of wrist watch escape mechanism and so on are illustrated in more detail. As the extension of human visual organs and for increasing the abi-lities of observing and studying the high-speed processes, high-speed photography plays a very important role. In order to promote the application and development on high-speed photography, we have carried out the consultative and service works inside and outside Tianjin Uni-versity. The Pentazet 35 compensation type high-speed camera, made in East Germany, was used to record the high-speed events in various kinds of technical investigations and necessary results have been ob-tained. 1. Measurement of flow velocity on the overflow surface of high dam. In the design of a key water control project with high head, it is extremely necessary to determinate various characteristics of flow velocity field on the overflow surface of high dam. Since the water flow on the surface of high overflow dam possesses the features of large flow velocity and shallow water depth, therefore it is difficult to use the conventional current meters such as pilot tube, miniature cur-rent meter or electrical measuring methods of non-electrical quantities for studying this problem. Adopting the high-speed photographic method to study analogously the characteristics of flow velocity field on the overflow surface of high dam is a kind of new measuring method. People

  20. Fronthaul evolution: From CPRI to Ethernet

    NASA Astrophysics Data System (ADS)

    Gomes, Nathan J.; Chanclou, Philippe; Turnbull, Peter; Magee, Anthony; Jungnickel, Volker

    2015-12-01

    It is proposed that using Ethernet in the fronthaul, between base station baseband unit (BBU) pools and remote radio heads (RRHs), can bring a number of advantages, from use of lower-cost equipment, shared use of infrastructure with fixed access networks, to obtaining statistical multiplexing and optimised performance through probe-based monitoring and software-defined networking. However, a number of challenges exist: ultra-high-bit-rate requirements from the transport of increased bandwidth radio streams for multiple antennas in future mobile networks, and low latency and jitter to meet delay requirements and the demands of joint processing. A new fronthaul functional division is proposed which can alleviate the most demanding bit-rate requirements by transport of baseband signals instead of sampled radio waveforms, and enable statistical multiplexing gains. Delay and synchronisation issues remain to be solved.

  1. The unstable behavior of low and high-speed compressors

    SciTech Connect

    Day, I.J. . Whittle Lab.); Freeman, C. )

    1994-04-01

    By far the greater part of the understanding about stall and surge in axial compressors comes from work on low-speed laboratory machines. As a general rule, these machines do not model the compressibility effects present in high-speed compressors and therefore doubt has always existed about the application of low-speed results to high-speed machines. In recent years interest in active control has led to a number of studies of compressor stability in engine-type compressors. The instrumentation used in these experiments has been sufficiently detailed that, for the first time, adequate data are available to make direct comparisons between high-speed and low-speed compressors. This paper presents new data from an eight-stage fixed geometry engine compressor and compares then with low-speed laboratory data. The results show remarkable similarities in both the stalling and surging behavior of the two machines, particularly when the engine compressor is run at intermediate speeds. The engine results also show that, as in the laboratory tests, surge is precipitated by the onset of rotating stall. This is true even at very high speeds where it had previously been thought that surge might be the result of a blast wave moving through the compressor. This paper therefore contains new information about high-speed compressors and confirms that low-speed testing is an effective means of obtaining insight into the behavior of high-speed machines.

  2. Ethernet-Enabled Power and Communication Module for Embedded Processors

    NASA Technical Reports Server (NTRS)

    Perotti, Jose; Oostdyk, Rebecca

    2010-01-01

    The power and communications module is a printed circuit board (PCB) that has the capability of providing power to an embedded processor and converting Ethernet packets into serial data to transfer to the processor. The purpose of the new design is to address the shortcomings of previous designs, including limited bandwidth and program memory, lack of control over packet processing, and lack of support for timing synchronization. The new design of the module creates a robust serial-to-Ethernet conversion that is powered using the existing Ethernet cable. This innovation has a small form factor that allows it to power processors and transducers with minimal space requirements.

  3. Radiation Hardened 10BASE-T Ethernet Physical Layer (PHY)

    NASA Technical Reports Server (NTRS)

    Lin, Michael R. (Inventor); Petrick, David J. (Inventor); Ballou, Kevin M. (Inventor); Espinosa, Daniel C. (Inventor); James, Edward F. (Inventor); Kliesner, Matthew A. (Inventor)

    2017-01-01

    Embodiments may provide a radiation hardened 10BASE-T Ethernet interface circuit suitable for space flight and in compliance with the IEEE 802.3 standard for Ethernet. The various embodiments may provide a 10BASE-T Ethernet interface circuit, comprising a field programmable gate array (FPGA), a transmitter circuit connected to the FPGA, a receiver circuit connected to the FPGA, and a transformer connected to the transmitter circuit and the receiver circuit. In the various embodiments, the FPGA, transmitter circuit, receiver circuit, and transformer may be radiation hardened.

  4. Ethernet ring protection with managed FDB using APS payload

    NASA Astrophysics Data System (ADS)

    Im, Jinsung; Ryoo, Jeong-dong; Joo, Bheom Soon; Rhee, J.-K. Kevin

    2007-11-01

    Ethernet ring protection (ERP) is a new technology based on OAM (operations, administration, and maintenance) being standardized by the ITU-T G.8032 working group. In this paper, we present the recent development of Ethernet ring protection which is called FDB (filtering database) flush scheme and propose a new Ethernet ring protection technique introducing a managed FDB using APS to deliver information how to fix FDB selectively. We discuss the current development of the ERP technology at ITU-T and performance comparisons between different proposals.

  5. Scalable, high-capacity optical switches for Internet routers and moving platforms

    NASA Astrophysics Data System (ADS)

    Joe, In-Sung

    Internet traffic nearly doubles every year, and we need faster routers with higher ports count, yet lower electrical power consumption. Current internet routers use electrical switches that consume large amounts of electrical power to operate at high data rates. These internet routers dissipate ˜ 10kW per rack, and their capacity is limited by cooling constraints. The power consumption is also critical for moving platforms. As avionics advance, the demand for larger capacity networks increases. Optical fibers are already chosen for high speed data transmission in advanced aircraft. In optical communication systems, integrated passive optical components, such as Array Waveguide Gratings (AWGs), have provided larger capacity with lower power consumption, because minimal electrical power is required for their operation. In addition, compact, wavelength-tunable semiconductor lasers with wide tuning ranges that can switch their wavelengths in tens of nanoseconds have been demonstrated. Here we present a wavelength-selective optical packet switch based on Waveguide Grating Routers (WGRs), passive splitters, and combiners. Tunable lasers on the transmitter side are the only active switching elements. The WGR is operated on multiple Free Spectral Ranges (FSRs) to achieve increased port count and switching capacity while maintaining strict-sense, non-blocking operation. Switching times of less than 24ns between two wavelengths covering three FSRs is demonstrated experimentally. The electrical power consumption, size, weight, and cost of our optical switch is compared with those of conventional electrical switches, showing substantial improvements at large throughputs (˜2 Tb/s full duplex). A revised switch design that does not suffer optical loss from star couplers is proposed. This switch design uses only WGRs, and it is suitable for networks with stringent power budgets. The burst nature of the optical packet transmission requires clock recovery for every incoming

  6. Review of High-Speed Fiber Optic Grating Sensors Systems

    SciTech Connect

    Udd, E; Benterou, J; May, C; Mihailov, S J; Lu, P

    2010-03-24

    Fiber grating sensors can be used to support a wide variety of high speed measurement applications. This includes measurements of vibrations on bridges, traffic monitoring on freeways, ultrasonic detection to support non-destructive tests on metal plates and providing details of detonation events. This paper provides a brief overview of some of the techniques that have been used to support high speed measurements using fiber grating sensors over frequency ranges from 10s of kHz, to MHZ and finally toward frequencies approaching the GHz regime. Very early in the development of fiber grating sensor systems it was realized that a high speed fiber grating sensor system could be realized by placing an optical filter that might be a fiber grating in front of a detector so that spectral changes in the reflection from a fiber grating were amplitude modulated. In principal the only limitation on this type of system involved the speed of the output detector which with the development of high speed communication links moved from the regime of 10s of MHz toward 10s of GHz. The earliest deployed systems involved civil structures including measurements of the strain fields on composite utility poles and missile bodies during break tests, bridges and freeways. This was followed by a series of developments that included high speed fiber grating sensors to support nondestructive testing via ultrasonic wave detection, high speed machining and monitoring ship hulls. Each of these applications involved monitoring mechanical motion of structures and thus interest was in speeds up to a few 10s of MHz. Most recently there has been interest in using fiber grating to monitor the very high speed events such as detonations and this has led to utilization of fiber gratings that are consumed during an event that may require detection speeds of hundreds of MHz and in the future multiple GHz.

  7. Quality of service on high-speed data networks

    NASA Astrophysics Data System (ADS)

    Barbero, Ezio; Antonelli, Ferruccio

    1995-02-01

    Since the beginning of this century the issue of `quality' has been gaining increasing importance in a number of fields of human activities. For telecommunication services, too, the quality perceived by customers has been taken into account early on as an issue of strategic importance. Whilst for telephony the Quality of Service (QoS) has been already investigated and identified in terms of parameters and related test methodology, the situation for high speed data services (i.e. CBDS/SMDS, Frame Relay, etc.), provided by means of high speed network based on Asynchronous Transfer Moe (ATM) or Metropolitan Area Network technologies, can still be considered `under study'. There is a death of experience not only in terms of measurement instruments and procedures, but also in terms of knowledge of the relationship between the QoS provided at a network level and the quality perceived by the user on his or her terminal. The complexity of the equipment involved in setting up an end-to-end solution based on high speed data communications makes the problems of knowledge and supply of quality very hard to solve. Starting from the experience gained in carrying out high- speed network field trials based on Metropolitan Area Networks and, more recently, on ATM technology, the paper mainly deals with the problem of defining, measuring and then offering a specific QoS. First, the issue of what the user expects from the `high-speed network' is addressed. This analysis is carried out trying to gather what is peculiar to high-speed data communications from the user standpoint. Next, the focus is on how to cope with the requirements due to users' expectations, while carefully considering the basic principles of quality. Finally, a solution is proposed, starting from the experience gained from high speed networks installed in Italy.

  8. Parallelized control protocols for high-performance routers

    NASA Astrophysics Data System (ADS)

    Yu, Shao-hua; Ji, Meng

    2005-11-01

    This paper proposes a novel parallelized architecture for control protocols in high-performance routers (HPRs). Unlike traditional centralized manner, this approach distributes the functionality of control plane protocols within a router and achieves scalability by selectively off-loading certain link-layer and interface operations to data plane processing components. This paper presents the design and implementation of this method on a 320Gbps distributed router. The experiment results show that the proposed scheme can yield better performance and faster response than the centralized approach.

  9. Building a Reliable Onboard Network with Ethernet: A GSFC Prototype

    NASA Technical Reports Server (NTRS)

    Marquart, Jane

    2004-01-01

    This viewgraph presentation discusses the architecture of an Ethernet-based communication network for spacecraft. The presentation also contains information on data link reliability, PDU formats, and NIC/OS Measurements.

  10. SUNRISE: A SpaceFibre Router

    NASA Astrophysics Data System (ADS)

    Parkes, Steve; McClements, Chris; McLaren, David; Florit, Albert Ferrer; Gonzalez Villafranca, Alberto

    2016-08-01

    SpaceFibre is a new generation of SpaceWire technology which is able to support the very high data- rates required by sensors like SAR and multi-spectral imagers. Data rates of between 1 and 16 Gbits/s are required to support several sensors currently being planned. In addition a mass-memory unit requires high performance networking to interconnect many memory modules. SpaceFibre runs over both electrical and fibre-optic media and provides and adds quality of service and fault detection, isolation and recovery technology to the network. SpaceFibre is compatible with the widely used SpaceWire protocol at the network level allowing existing SpaceWire devices to be readily incorporated into a SpaceFibre network. SpaceFibre provides 2 to 5 Gbits/s links (2.5 to 6.25 Gbits/s data signalling rate) which can be operated in parallel (multi-laning) to give higher data rates. STAR- Dundee with University of Dundee has designed and tested several SpaceFibre interface devices.The SUNRISE project is a UK Space Agency, Centre for Earth Observation and Space Technology (CEOI- ST) project in which STAR-Dundee and University of Dundee will design and prototype critical SpaceFibre router technology necessary for future on-board data- handling systems. This will lay a vital foundation for future very high data-rate sensor and telecommunications systems.This paper give a brief introduction to SpaceFibre, explains the operation of a SpaceFibre network, and then describes the SUNRISE SpaceFibre Router. The initial results of the SUNRISE project are described.

  11. Custom ASIC development for high-speed Viterbi decoding

    NASA Astrophysics Data System (ADS)

    Miller, S. P.; Becker, N.; Johnson, P. N.

    A high-speed, emitter-coupled logic (ECL) gate array which greatly facilitates the implementation of very-high-speed Viterbi algorithm processors has been developed. These high-speed Viterbi decoders were incorporated into two bandwidth-efficient, jointly optimized coded modulation systems with baseband information rates of 140 and 200 Mb/s. The 200-Mb/s system was developed for NASA under the advanced modulation technology development program. The octal phase shift keying (8PSK) modulation technique used in these systems requires symbol rates of 60 and 75 Msymbol/s. The gate array device also has the potential for use in similar systems with symbol rates in excess of 100 Msymbol/s. Some details of the coded modulation systems that require the implementation of high-speed Viterbi processors are provided to demonstrate current practical applications and the need for this processing capability. The specific gate array design is described in conjunction with the performance goals and measured parameters of the completed device. Performance measurements obtained from high-speed coded modulation systems that use the gate array are also presented to show the performance obtained.

  12. High-speed imaging system for observation of discharge phenomena

    NASA Astrophysics Data System (ADS)

    Tanabe, R.; Kusano, H.; Ito, Y.

    2008-11-01

    A thin metal electrode tip instantly changes its shape into a sphere or a needlelike shape in a single electrical discharge of high current. These changes occur within several hundred microseconds. To observe these high-speed phenomena in a single discharge, an imaging system using a high-speed video camera and a high repetition rate pulse laser was constructed. A nanosecond laser, the wavelength of which was 532 nm, was used as the illuminating source of a newly developed high-speed video camera, HPV-1. The time resolution of our system was determined by the laser pulse width and was about 80 nanoseconds. The system can take one hundred pictures at 16- or 64-microsecond intervals in a single discharge event. A band-pass filter at 532 nm was placed in front of the camera to block the emission of the discharge arc at other wavelengths. Therefore, clear images of the electrode were recorded even during the discharge. If the laser was not used, only images of plasma during discharge and thermal radiation from the electrode after discharge were observed. These results demonstrate that the combination of a high repetition rate and a short pulse laser with a high speed video camera provides a unique and powerful method for high speed imaging.

  13. Ultra-high-speed spectropolarimeter based on photoelastic modulator.

    PubMed

    Zhang, Rui; Li, Kewu; Chen, Yuanyuan; Wen, Tingdun; Zhang, Minjuan; Wang, Yaoli; Xue, Peng; Wang, Zhibin

    2016-10-20

    Combined with the advantages of photoelastic modulator (PEM) ultra-high-speed modulation, this paper presents a method of ultra-high-speed spectropolarimeter based on PEM. The method provides the necessary measuring instruments for ultra-high-speed polarization spectroscopy. The main idea of this method is that an intensity modulator consisting of two retarders is placed before the PEM. The incident light under test goes through two retarders to the PEM. The interference signals are obtained by the PEM modulation. The different Stokes element interference signals are modulated by the PEM at different positions of the optical path difference. This method realizes the separation of Stokes element interference signals. The interference signals corresponding to each element are extracted, and the incident light Stokes element spectra can be obtained from the Fourier transforms of the interference signals. The modulation frequency of the PEM is high (tens to hundreds of kilohertz), so this method can realize ultra-high-speed full polarization spectroscopy. A prototype ultra-high-speed spectropolarimeter based on PEM was designed and tested. If the single-sided Fourier transformation is used, the single-sided interferogram scanning time is approximately 5 μs (i.e., the prototype is capable of scanning 20,000 interferograms per second). Polychromatic light polarization spectroscopy is measured by the prototype. The experimental results show that the average error of the prototype is less than 0.03.

  14. Assessment of rural soundscapes with high-speed train noise.

    PubMed

    Lee, Pyoung Jik; Hong, Joo Young; Jeon, Jin Yong

    2014-06-01

    In the present study, rural soundscapes with high-speed train noise were assessed through laboratory experiments. A total of ten sites with varying landscape metrics were chosen for audio-visual recording. The acoustical characteristics of the high-speed train noise were analyzed using various noise level indices. Landscape metrics such as the percentage of natural features (NF) and Shannon's diversity index (SHDI) were adopted to evaluate the landscape features of the ten sites. Laboratory experiments were then performed with 20 well-trained listeners to investigate the perception of high-speed train noise in rural areas. The experiments consisted of three parts: 1) visual-only condition, 2) audio-only condition, and 3) combined audio-visual condition. The results showed that subjects' preference for visual images was significantly related to NF, the number of land types, and the A-weighted equivalent sound pressure level (LAeq). In addition, the visual images significantly influenced the noise annoyance, and LAeq and NF were the dominant factors affecting the annoyance from high-speed train noise in the combined audio-visual condition. In addition, Zwicker's loudness (N) was highly correlated with the annoyance from high-speed train noise in both the audio-only and audio-visual conditions.

  15. Low-cost high-manufacturability and thermal stability optical front-end for 10-Gb ethernet applications

    NASA Astrophysics Data System (ADS)

    Lee, Shin-Ge; Lee, Chun-Hsing; Liao, Li-Chun; Tsai, Cheng-Hung; Chen, Chih-Li; Huang, Min-Fa; Hsu, Chih-Hao; Cheng, Fu-Yi; Kao, Min-Sheng; Wang, Chiung-Hung

    2004-05-01

    With the drastic expansion of internet usage, the demand of 10Gb/s transmission optoelectronic devices for local-area-network (LAN) and storage-area-network (SAN) are increasing. The key issues of these applications are to improve cost, manufacturability and reliability of optoelectronic devices in high speed transmission. The authors have demonstrated extremely low cost, high manufacturability and thermal stability optical fron-end for 10Gb/s Ethernet applications in this paper. High performance and high sensitivity of 10Gb/s transmitter optical sub-assembly (TOSA) and receiver optical sub-assembly (ROSA) with TO-Can packages are discussed and demonstrated to overcome the critical points in high speed applications, respectively. Moreover, 10km interconnection of 10Gb/s optical front-end without isolated elements inside are also proved to be error free at 10.3125Gb/s. In order to improve the signal integrity and manufacturability of 10Gb/s OSA in small form factor transceiver modules assembly, the authors also integrate high speed flex board and OSA package to extend the signal path, and to minimize the effect of crosstalk in modules. Furthermore, the integration of flex board and OSA package more release the difficulties in conjuunction OSA and electrical sub-assembly (ESA) in module to fulfill the request of 10Gb/s transeivers' Multi-Source Agreement (MSA). The performance of temperature stabilized TOSA over wide case temperature range is also experimented. The optical eye diagram of 10Gb/s TOSA developed in this study showing excellent eye quality passing 10Gb/s Ethernet mask test between 0°C to 85°C.

  16. Tank Tests of Two Floats for High-speed Seaplanes

    NASA Technical Reports Server (NTRS)

    Bell, Joe W

    1933-01-01

    At the request of the Bureau of Aeronautics, Navy Department, a study of the design of floats especially suitable for use on high-speed seaplanes was undertaken in the N.A.C.A. tank. This note give the results obtained in tests of one-quarter full-size models of two floats for high-speed seaplanes. One was a float similar to that used on the Macchi high-speed seaplane which competed in the 1926 Schneider Trophy races, and the other a float designed at the N.A.C.A. tank in an attempt to improve on the water performance of the Macchi float. The model of the latter showed considerably better water performance than the model of the Macchi float.

  17. The application of high-speed digital image correlation.

    SciTech Connect

    Reu, Phillip L.; Miller, Timothy J.

    2008-02-01

    Digital image correlation (DIC) is a method of using digital images to calculate two-dimensional displacement and deformation or for stereo systems three-dimensional shape, displacement, and deformation. While almost any imaging system can be used with DIC, there are some important challenges when working with the technique in high- and ultra-high-speed applications. This article discusses three of these challenges: camera sensor technology, camera frame rate, and camera motion mitigation. Potential solutions are treated via three demonstration experiments showing the successful application of high-speed DIC for dynamic events. The application and practice of DIC at high speeds, rather than the experimental results themselves, provide the main thrust of the discussion.

  18. High-speed digital signal normalization for feature identification

    NASA Technical Reports Server (NTRS)

    Ortiz, J. A.; Meredith, B. D.

    1983-01-01

    A design approach for high speed normalization of digital signals was developed. A reciprocal look up table technique is employed, where a digital value is mapped to its reciprocal via a high speed memory. This reciprocal is then multiplied with an input signal to obtain the normalized result. Normalization improves considerably the accuracy of certain feature identification algorithms. By using the concept of pipelining the multispectral sensor data processing rate is limited only by the speed of the multiplier. The breadboard system was found to operate at an execution rate of five million normalizations per second. This design features high precision, a reduced hardware complexity, high flexibility, and expandability which are very important considerations for spaceborne applications. It also accomplishes a high speed normalization rate essential for real time data processing.

  19. High-speed LWR transients simulation for optimizing emergency response

    SciTech Connect

    Wulff, W.; Cheng, H.S.; Lekach, S.V.; Mallen, A.N.; Stritar, A.

    1984-11-19

    The purpose of computer-assisted emergency response in nuclear power plants, and the requirements for achieving such a response, are presented. An important requirement is the attainment of realistic high-speed plant simulations at the reactor site. Currently pursued development programs for plant simulations are reviewed. Five modeling principles are established and a criterion is presented for selecting numerical procedures and efficient computer hardware to achieve high-speed simulations. A newly developed technology for high-speed power plant simulation is described and results are presented. It is shown that simulation speeds ten times greater than real-time process-speeds are possible, and that plant instrumentation can be made part of the computational loop in a small, on-site minicomputer. Additional technical issues are presented which must still be resolved before the newly developed technology can be implemented in a nuclear power plant.

  20. High-speed optical correlator with coaxial holographic system

    NASA Astrophysics Data System (ADS)

    Ikeda, Kanami; Watanabe, Eriko

    2015-09-01

    A high-speed volume holographic optical correlator is developed, which takes advantage of a coaxial holographic system. We have realized this high-speed correlator using an optimal design of the signal pattern, which improves the shift multiplex recording shift pitch. The speed of this correlator was further improved by increasing the number of pixels in the spatial light modulator and using a high speed rotating actuator. This correlation system successfully achieved an equal error rate of 0% by performing optical correlation over 900 times. It also achieved optical correlation experiment, at a shift pitch of 2.45 µm and a disk rotation speed of 900 rpm. In terms of optical correlation calculation speed, it yielded a peak interval of 542 ns, which corresponds to 1.846 × 106 frames per second.

  1. Material requirements for the High Speed Civil Transport

    NASA Technical Reports Server (NTRS)

    Stephens, Joseph R.; Hecht, Ralph J.; Johnson, Andrew M.

    1993-01-01

    Under NASA-sponsored High Speed Research (HSR) programs, the materials and processing requirements have been identified for overcoming the environmental and economic barriers of the next generation High Speed Civil Transport (HSCT) propulsion system. The long (2 to 5 hours) supersonic cruise portion of the HSCT cycle will place additional durability requirements on all hot section engine components. Low emissions combustor designs will require high temperature ceramic matrix composite liners to meet an emission goal of less than 5g NO(x) per Kg fuel burned. Large axisymmetric and two-dimensional exhaust nozzle designs are now under development to meet or exceed FAR 36 Stage III noise requirements, and will require lightweight, high temperature metallic, intermetallic, and ceramic matrix composites to reduce nozzle weight and meet structural and acoustic component performance goals. This paper describes and discusses the turbomachinery, combustor, and exhaust nozzle requirements of the High Speed Civil Transport propulsion system.

  2. Material requirements for the High Speed Civil Transport

    NASA Technical Reports Server (NTRS)

    Stephens, Joseph R.; Hecht, Ralph J.; Johnson, Andrew M.

    1993-01-01

    Under NASA-sponsored High Speed Research (HSR) programs, the materials and processing requirements have been identified for overcoming the environmental and economic barriers of the next generation High Speed Civil Transport (HSCT) propulsion system. The long (2 to 5 hours) supersonic cruise portion of the HSCT cycle will place additional durability requirements on all hot section engine components. Low emissions combustor designs will require high temperature ceramic matrix composite liners to meet an emission goal of less than 5g NO(x) per Kg fuel burned. Large axisymmetric and two-dimensional exhaust nozzle designs are now under development to meet or exceed FAR 36 Stage III noise requirements, and will require lightweight, high temperature metallic, intermetallic, and ceramic matrix composites to reduce nozzle weight and meet structural and acoustic component performance goals. This paper describes and discusses the turbomachinery, combustor, and exhaust nozzle requirements of the High Speed Civil Transport propulsion system.

  3. LIHSP: Lucky Imaging And High Speed Photometry at LCOGT

    NASA Astrophysics Data System (ADS)

    Bianco, Federica; Street, R.; Tsapras, Y.; Shporer, A.; Tufts, J.; Lister, T.; Gomez, E.; Rosing, W.; Brown, T.; LCOGT Team

    2011-05-01

    Las Cumbres Observatory Global Telescope Network (LCOGT) is building a world wide telescope network with an emphasis on time domain astronomy. The final LCOGT network will have at least 40 telescopes in at least 7 sites around the world to continuously cover the dark sky in both hemispheres: two 2.0m telescopes, already available on Haleakala - HI, USA (FTN), and Siding Spring - Australia (FTS), roughly fifteen 1m, and twenty-five 0.4m telescopes now in various stages of construction and commissioning. We are integrating our telescopes with high speed EMCCD cameras to provide high speed photometry as well as lucky imaging capabilities. Here we present our first generation high speed solutions, already installed at FTN and FTS and currently being integrated into our robotic system. Similar facilities are being fabricated for the 0.4m network, and designed for the 1m network.

  4. Secondary Containment Design for a High Speed Centrifuge

    SciTech Connect

    Snyder, K.W.

    1999-03-01

    Secondary containment for high speed rotating machinery, such as a centrifuge, is extremely important for operating personnel safety. Containment techniques can be very costly, ungainly and time consuming to construct. A novel containment concept is introduced which is fabricated out of modular sections of polycarbonate glazed into a Unistrut metal frame. A containment study for a high speed centrifuge is performed which includes the development of parameters for secondary containment design. The Unistrut/polycarbonate shield framing concept is presented including design details and proof testing procedures. The economical fabrication and modularity of the design indicates a usefulness for this shielding system in a wide variety of containment scenarios.

  5. Multiply-agile encryption in high speed communication networks

    SciTech Connect

    Pierson, L.G.; Witzke, E.L.

    1997-05-01

    Different applications have different security requirements for data privacy, data integrity, and authentication. Encryption is one technique that addresses these requirements. Encryption hardware, designed for use in high-speed communications networks, can satisfy a wide variety of security requirements if that hardware is key-agile, robustness-agile and algorithm-agile. Hence, multiply-agile encryption provides enhanced solutions to the secrecy, interoperability and quality of service issues in high-speed networks. This paper defines these three types of agile encryption. Next, implementation issues are discussed. While single-algorithm, key-agile encryptors exist, robustness-agile and algorithm-agile encryptors are still research topics.

  6. High-speed multiplexing of keyboard data inputs

    NASA Technical Reports Server (NTRS)

    Anderson, T. O. (Inventor)

    1981-01-01

    A high speed multiplexing system is described in which keyboard entered data is sequentially and automatically sampled by the multiplexing system for input to a computer. A sequencer is provided which sequentially and automatically controls the multiplexer to sample each keyboard input in accordance with a predetermined sampling sequence. Whenever keyboard entered data appears on input lines to the multiplexer, the system inputs the keyboard data to the computer during a brief time interval in which the multiplexer remains at the particular keyboard address or port. Thus, a high speed sampling circuit is provided whereby the only operator action required is data entry through a keyboard. Priority or interrupt systems are not required.

  7. High speed propeller acoustics and aerodynamics - A boundary element approach

    NASA Technical Reports Server (NTRS)

    Farassat, F.; Myers, M. K.; Dunn, M. H.

    1989-01-01

    The Boundary Element Method (BEM) is applied in this paper to the problems of acoustics and aerodynamics of high speed propellers. The underlying theory is described based on the linearized Ffowcs Williams-Hawkings equation. The surface pressure on the blade is assumed unknown in the aerodynamic problem. It is obtained by solving a singular integral equation. The acoustic problem is then solved by moving the field point inside the fluid medium and evaluating some surface and line integrals. Thus the BEM provides a powerful technique in calculation of high speed propeller aerodynamics and acoustics.

  8. Technology needs for high-speed rotorcraft, volume 1

    NASA Technical Reports Server (NTRS)

    Wilkerson, J. B.; Schneider, J. J.; Bartie, K. M.

    1991-01-01

    High-speed rotorcraft concepts and the technology needed to extend rotorcraft cruise speeds up to 450 knots (while retaining the helicopter attributes of low downwash velocities) were identified. Task I identified 20 concepts with high-speed potential. These concepts were qualitatively evaluated to determine the five most promising ones. These five concepts were designed with optimum wing loading and disk loading to a common NASA-defined military transport mission. The optimum designs were quantitatively compared against 11 key criteria and ranked accordingly. The two highest ranking concepts were selected for the further study.

  9. High-speed GaInNAs laser diodes

    NASA Astrophysics Data System (ADS)

    Kondow, Masahiko; Nakahara, Kouji; Fujisaki, S.; Tanaka, Shigehisa; Kudo, M.; Taniguchi, Tadashi; Terano, A.; Uchiyama, H.

    2004-05-01

    The explosive growth of Internet/intranet traffic has created a strong demand for cost-effective high-speed light-sources to be used in local access networks and data links. The frequency of relaxation oscillation (fr) is a major factor that restricts the high-speed operation of laser diodes. To achieve a high fr, the material of an active layer should have a large differential gain. By using GaInNAs, very deep quantum wells, especially in the conduction band can be formed. Deep quantum wells bring a large differential gain. In this paper, we show how GaInNAs lasers can be applied in this application

  10. First Annual High-Speed Research Workshop, part 1

    NASA Technical Reports Server (NTRS)

    Whitehead, Allen H., Jr. (Compiler)

    1992-01-01

    The workshop was presented to provide a national forum for the government, industry, and university participants in the program to present and discuss important technology issues related to the development of a commercially viable, environmentally compatible U.S. High Speed Civil Transport. The workshop sessions were organized around the major task elements in NASA's Phase 1 High Speed Research Program which basically addressed the environmental issues of atmospheric emissions, community noise, and sonic boom. This volume is divided into three sessions entitled: Plenary Session (which gives overviews from NASA, Boeing, Douglas, GE, and Pratt & Whitney on the HSCT program); Airframe Systems Studies; and Atmospheric Effects.

  11. High speed propeller acoustics and aerodynamics - A boundary element approach

    NASA Technical Reports Server (NTRS)

    Farassat, F.; Myers, M. K.; Dunn, M. H.

    1989-01-01

    The Boundary Element Method (BEM) is applied in this paper to the problems of acoustics and aerodynamics of high speed propellers. The underlying theory is described based on the linearized Ffowcs Williams-Hawkings equation. The surface pressure on the blade is assumed unknown in the aerodynamic problem. It is obtained by solving a singular integral equation. The acoustic problem is then solved by moving the field point inside the fluid medium and evaluating some surface and line integrals. Thus the BEM provides a powerful technique in calculation of high speed propeller aerodynamics and acoustics.

  12. Review of high-speed fiber optic grating sensor systems

    NASA Astrophysics Data System (ADS)

    Udd, Eric; Benterou, Jerry; May, Chadd; Mihailov, Stephen J.; Lu, Ping

    2010-04-01

    Fiber grating sensors can be used to support a wide variety of high speed measurement applications. This includes measurements of vibrations on bridges, traffic monitoring on freeways, ultrasonic detection to support non-destructive tests on metal plates, and providing details of detonation events. This paper provides a brief overview of some of the techniques that have been used to support high speed measurements using fiber grating sensors over frequency ranges from 10s of kHz, to MHZ and finally toward frequencies approaching the GHz regime.

  13. Proceedings: High-speed rail and maglev workshop

    SciTech Connect

    Not Available

    1993-04-01

    On October 30 and 31, 1991, the EPRI Public and Advanced Transportation Program sponsored a workshop on high-speed rail (HSR) and maglev. The purpose of this workshop was to provide utility managers with increased knowledge about these technologies, public policy regarding them, and their potential costs and benefits to utilities, including induced economic development. With this information, utilities should be better prepared to make decisions related to the development of these high speed intercity passenger options in their service areas. A main goal, achieved by the workshop, was to provide EPRI and its member utilities with ideas and information for developing an assessment and research agenda on these technologies.

  14. Development of magnetically levitated high speed transport system in Japan

    SciTech Connect

    Sawada, Kazuo

    1996-07-01

    In Japan, huge passenger traffic moves through the Tokyo-Osaka corridor and the demand is mounting on one more high speed line besides the Tokaido Shinkansen. A magnetically levitated vehicle (JR Maglev) using superconducting magnets has been developed for the Tokyo-Osaka superspeed express. JR Maglev has many advantages over conventional rail systems. This paper describes the necessity of one more high speed line in this corridor, the reason the author chose Maglev, the scheme of this system, history of the development and outline of the new Yamanashi test line project.

  15. Magneto-optical system for high speed real time imaging

    NASA Astrophysics Data System (ADS)

    Baziljevich, M.; Barness, D.; Sinvani, M.; Perel, E.; Shaulov, A.; Yeshurun, Y.

    2012-08-01

    A new magneto-optical system has been developed to expand the range of high speed real time magneto-optical imaging. A special source for the external magnetic field has also been designed, using a pump solenoid to rapidly excite the field coil. Together with careful modifications of the cryostat, to reduce eddy currents, ramping rates reaching 3000 T/s have been achieved. Using a powerful laser as the light source, a custom designed optical assembly, and a high speed digital camera, real time imaging rates up to 30 000 frames per seconds have been demonstrated.

  16. Magneto-optical system for high speed real time imaging.

    PubMed

    Baziljevich, M; Barness, D; Sinvani, M; Perel, E; Shaulov, A; Yeshurun, Y

    2012-08-01

    A new magneto-optical system has been developed to expand the range of high speed real time magneto-optical imaging. A special source for the external magnetic field has also been designed, using a pump solenoid to rapidly excite the field coil. Together with careful modifications of the cryostat, to reduce eddy currents, ramping rates reaching 3000 T/s have been achieved. Using a powerful laser as the light source, a custom designed optical assembly, and a high speed digital camera, real time imaging rates up to 30 000 frames per seconds have been demonstrated.

  17. A superconducting high-speed flywheel energy storage system

    NASA Astrophysics Data System (ADS)

    de Andrade, R.; Ferreira, A. C.; Sotelo, G. G.; Suemitsu, W. I.; Rolim, L. G. B.; Silva Neto, J. L.; Neves, M. A.; dos Santos, V. A.; da Costa, G. C.; Rosario, M.; Stephan, R.; Nicolsky, R.

    2004-08-01

    High-speed flywheel systems have been studied as compensators of voltage sags and momentary interruptions of energy. Besides the complexity of these systems, the main concerns are bearing losses. This work is part of the development of a superconducting high-speed flywheel energy storage prototype. In order to minimize the bearing losses, this system uses a superconducting axial thrust magnetic bearing in a vacuum chamber, which guarantees low friction losses, and a switched reluctance motor-generator to drive the flywheel system. Dynamic simulations made for this prototype, connected to the electric power network, show the viability of use it as a compensator.

  18. Multiplexed broadband beam steering system utilizing high speed MEMS mirrors.

    PubMed

    Knoernschild, Caleb; Kim, Changsoon; Lu, Felix P; Kim, Jungsang

    2009-04-27

    We present a beam steering system based on micro-electromechanical systems technology that features high speed steering of multiple laser beams over a broad wavelength range. By utilizing high speed micromirrors with a broadband metallic coating, our system has the flexibility to simultaneously incorporate a wide range of wavelengths and multiple beams. We demonstrate reconfiguration of two independent beams at different wavelengths (780 and 635 nm) across a common 5x5 array with 4 micros settling time. Full simulation of the optical system provides insights on the scalability of the system. Such a system can provide a versatile tool for applications where fast laser multiplexing is necessary.

  19. Ethylene Trace-gas Techniques for High-speed Flows

    NASA Technical Reports Server (NTRS)

    Davis, David O.; Reichert, Bruce A.

    1994-01-01

    Three applications of the ethylene trace-gas technique to high-speed flows are described: flow-field tracking, air-to-air mixing, and bleed mass-flow measurement. The technique involves injecting a non-reacting gas (ethylene) into the flow field and measuring the concentration distribution in a downstream plane. From the distributions, information about flow development, mixing, and mass-flow rates can be dtermined. The trace-gas apparatus and special considerations for use in high-speed flow are discussed. A description of each application, including uncertainty estimates is followed by a demonstrative example.

  20. Dynamically reconfigurable router for NoC congestion reduction

    NASA Astrophysics Data System (ADS)

    Rosales, Juan E.; Tobajas, Félix; de Armas, Valentín; Mori, José A.; Sarmiento, Roberto

    2011-05-01

    Multiprocessor System-on-Chip (MPSoCs) are emerging as one of the technologies providing a way to support the growing design complexity of embedded systems including several types of cores. The interconnection among cores of a MPSoC is proposed to be provided by Networks-on-Chip (NoC). In real applications it is usual to find different interconnection needs amongst cores, so distinct bandwidth is needed in each node of a NoC. Since larger FIFOs in NoC routers provide larger throughputs and smaller latencies, depths are usually sized for the worst case, compromising not only the routing area, but power consumption. In this paper, a reconfigurable router with a dynamic sharing mechanism of buffers at the input channels is proposed to reduce congestion in the network. In this situation, a channel may dynamically lend or borrow some non-used buffer units to or from neighboring channels, in accordance to the connection rates. The proposed reconfigurable router architecture was embedded in the Hermes NoC. The main advantages of the Hermes are its small size and modular design. This, as well as the open source approach, have lead to the selection of this NoC. The basic element of Hermes is a router with five bi-directional ports employing an XY routing algorithm. FIFO buffering is present only at the input channel, with all channels having the same buffer depth defined at design time. The proposed reconfigurable router has been coded in VHDL at RTL level from the adaptation of the Hermes router to fit into the proposed scheme. Results obtained from the simulation of the router under scenarios with different traffic characteristics and percentage of shared buffer, show that mean latency can be reduced up to a 30% in comparison to the original router.

  1. Proposal for a transmon-based quantum router.

    PubMed

    Sala, Arnau; Blaauboer, M

    2016-07-13

    We propose an implementation of a quantum router for microwave photons in a superconducting qubit architecture consisting of a transmon qubit, SQUIDs and a nonlinear capacitor. We model and analyze the dynamics of operation of the quantum switch using quantum Langevin equations in a scattering approach and compute the photon reflection and transmission probabilities. For parameters corresponding to up-to-date experimental devices we predict successful operation of the router with probabilities above 94%.

  2. Modeling the 10-gigabit ethernet ASC WAN.

    SciTech Connect

    Tolendino, Lawrence F.; Wertz, Jason Scott

    2006-07-01

    In recent years, modeling and simulation has played an increasingly important role in the maintenance of the nuclear stockpile. The Advanced Simulation and Computing (ASC) program continues to support and encourage the development of a modeling and simulation infrastructure to make these goals a reality. The Distance Computing Network has been making make the ASC resources available to users throughout the tri-lab environment for over five years. This network relies on the Transmission Control Protocol/Internet Protocol (TCP/IP) protocol suite to provide high performance and reliable communications. Understanding TCP/IP operation in this unique environment is critical. Software modeling has been used to analyze current network performance and predict the effect of proposed changes. Recently the network architecture was radically changed and the software model had to be changed as well. Whereas the original network was based on 2.5 gigabit per second ATM links, the redesigned network is comprised of 10-gigabit Ethernet links arranged as a 3-node ring. Therefore, a new software model was needed to continue to predict the performance of proposed changes and allow engineers to experiment with new network applications without the risk of interfering with critical operations.

  3. Safety of high speed ground transportation systems: Safety of advanced braking concepts for high speed ground transportation systems. Final report

    SciTech Connect

    Wagner, D.P.; Ahlbeck, D.R.; Luedeke, J.F.; Cook, S.D.; Dielman, M.A.

    1995-09-01

    The objective of this study is to develop qualitative and quantitative information on the various braking strategies used in high-speed ground transportation systems in support of the Federal Railroad Administration (FRA). The approach employed in this study is composed of two steps: first, build a technical understanding of the various braking strategies, and second, perform a safety analysis for each system. The systems considered in this study include seven operating high-speed rail transportation systems and three existing magnetic levitation systems. The principal technique used in the system safety analysis is Failure Modes and Effects Analysis (FMEA), an inductive approach to identifying system failure modes that depends on a thorough understanding of the system design and operation. Key elements derived from the system safety analysis are the fault-tolerant and fail-safe characteristics of the braking systems. The report concludes with recommended guidance on the structure of potential future regulations governing high-speed rail braking systems.

  4. Hard plastic cladding fiber (HPCF) based optical components for high speed short reach optical communications

    NASA Astrophysics Data System (ADS)

    Kim, Jun Ki; Kim, Dong Uk; Kim, Tae Young; Park, Chang Soo; Oh, Kyunghwan

    2006-09-01

    We developed the primary components applicable to HPCF links for short reach (SR) and very short reach (VSR) data communication systems. We fabricated 4x4 HPCF fused taper splitter, HPCF pigtailed VCSEL and PIN photodiode for high speed short reach communications and characterized back to back transmission performance of the link composed of these components by measuring eye diagrams and jitters. Adapting the fusion-tapering technique for glass optical fiber, we successfully fabricated a 4x4 HPCF fused taper coupler. The HPCF with a core diameter of 200μm and an outer diameter of 230μm had step refractive index of 1.45 and 1.40 for the core and the clad. The optimized fusion length and tapering waist which make minimum insertion loss of about 7dB and uniform output power splitting ratio with less than 0.5dB are 13mm and 150µm, respectively. As a light source for VSR networks, we chose a vertical cavity surface emitting laser (VCSEL) and developed a package with a HPCF pigtail. After positioning VCSEL and HPCF that made a minimum coupling loss, we glued the HPCF inside ceramic ferrule housing. In HPCF-PIN PD packaging, we added a micro polymer lens tip onto the HPCF ends to match the mode field area to the sensitive area of GaAs or InGaAs PIN PD. Coupling between a PIN PD chip and the lensed HPCF was optimized with the radius of curvature of 156µm with a low coupling loss of 0.3dB, which is compatible to conventional MMF-PD packaging. For 1.25 Gbps data rate, the eyes adequate to eye mask in gigabit Ethernet were wide open after all HPCF transmission link and no significant power penalty was observed.

  5. Advances in high-speed low-latency communications for nanopositioning in advanced microscopy

    NASA Astrophysics Data System (ADS)

    Jordan, Scott C.

    2012-06-01

    We present a comparison of classical and recently developed communications interfacing technologies relevant to scanned imaging. We adopt an applications perspective, with a focus on interfacing techniques as enablers for enhanced resolution, speed, stability, information density or similar benefits. A wealth of such applications have emerged, ranging from nanoscale-stabilized force microscopy yielding 100X resolution improvement thanks to leveraging the latest in interfacing capabilities, to novel approaches in analog interfacing which improve data density and DAC resolution by several orders of magnitude. Our intent is to provide tools to understand, select and implement advanced interfacing to take applications to the next level. We have entered an era in which new interfacing techniques are enablers, in their own right, for novel imaging techniques. For example, clever leveraging of new interfacing technologies has yielded nanoscale stabilization and atomic-force microscopy (AFM) resolution enhancement. To assist in choosing and implementing interfacing strategies that maximize performance and enable new capabilities, we review available interfaces such as USB2, GPIB and Ethernet against the specific needs of positioning for the scanned-imaging community. We spotlight recent developments such as LabVIEW FPGA, which allows non-specialists to quickly devise custom logic and interfaces of unprecedentedly high performance and parallelism. Notable applications are reviewed, including a clever amalgamation of AFM and optical tweezers and a picometer-scaleaccuracy interferometer devised for ultrafine positioning validation. We note the Serial Peripheral Interface (SPI), emerging as a high-speed/low-latency instrumentation interface. The utility of instrument-specific parallel (PIO) and TTL sync/trigger (DIO) interfaces is also discussed. Requirements of tracking and autofocus are reviewed against the time-critical needs of typical applications (to avoid, for example

  6. High-speed civil transport study: Special factors

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Studies relating to environmental factors associated with high speed civil transports were conducted. Projected total engine emissions for year 2015 fleets of several subsonic/supersonic transport fleet scenarios, discussion of sonic boom reduction methods, discussion of community noise level requirements, fuels considerations, and air traffic control impact are presented.

  7. Modelling Of Residual Stresses Induced By High Speed Milling Process

    SciTech Connect

    Desmaison, Olivier; Mocellin, Katia; Jardin, Nicolas

    2011-05-04

    Maintenance processes used in heavy industries often include high speed milling operations. The reliability of the post-process material state has to be studied. Numerical simulation appears to be a very interesting way to supply an efficient residual stresses (RS) distribution prediction.Because the adiabatic shear band and the serrated chip shaping are features of the austenitic stainless steel high speed machining, a 2D high speed orthogonal cutting model is briefly presented. This finite element model, developed on Forge registered software, is based on data taken from Outeiro and al.'s paper [1]. A new behaviour law fully coupling Johnson-Cook's constitutive law and Latham and Cockcroft's damage model is detailed in this paper. It ensures results that fit those found in literature.Then, the numerical tools used on the 2D model are integrated to a 3D high speed milling model. Residual stresses distribution is analysed, on the surface and into the depth of the material. Various revolutions and passes of the two teeth hemispheric mill on the workpiece are simulated. Thus the sensitivity of the residual stresses generation to the cutting conditions can be discussed. In order to validate the 3D model, a comparison of the cutting forces measured by EDF R and D to those given by numerical simulations is achieved.

  8. Maintenance and repair of high-speed dental handpieces.

    PubMed

    Norkiewicz, D S; Sundberg, M A; Druckman, R F; Breault, L G

    2001-01-01

    High-speed dental handpieces constitute an integral part of the dental practice. A handpiece that is worn or malfunctions is inconvenient and may affect production. This article is designed to help practitioners understand the factors that contribute to handpiece wear and breakdown. Basic maintenance and options for repair also are discussed.

  9. Numerical Simulation of High-Speed Turbulent Reacting Flows

    NASA Technical Reports Server (NTRS)

    Givi, P.; Taulbee, D. B.; Madnia, C. K.; Jaberi, F. A.; Colucci, P. J.; Gicquel, L. Y. M.; Adumitroaie, V.; James, S.

    1999-01-01

    The objectives of this research are: (1) to develop and implement a new methodology for large eddy simulation of (LES) of high-speed reacting turbulent flows. (2) To develop algebraic turbulence closures for statistical description of chemically reacting turbulent flows.

  10. Fiber laser for high speed laser transfer printing

    NASA Astrophysics Data System (ADS)

    Petkovšek, Rok; Novak, Vid; Agrež, Vid

    2017-01-01

    High speed industrial laser transfer printing requires high power lasers that can deliver pulses on demand and having arbitrary pulse duration in range of few nanoseconds to milliseconds or more. A special kind of MOPA fiber laser is presented using wavelength multiplexing to achieve pulses on demand with minimal transients. The system is further tested in printing application.

  11. The Lag Model Applied to High Speed Flows

    NASA Technical Reports Server (NTRS)

    Olsen, Michael E.; Coakley, Thomas J.; Lillard, Randolph P.

    2005-01-01

    The Lag model has shown great promise in prediction of low speed and transonic separations. The predictions of the model, along with other models (Spalart-Allmaras and Menter SST) are assessed for various high speed flowfields. In addition to skin friction and separation predictions, the prediction of heat transfer are compared among these models, and some fundamental building block flowfields, are investigated.

  12. Nanopatterned Quantum Dot Lasers for High Speed, High Efficiency, Operation

    DTIC Science & Technology

    2015-04-27

    SECURITY CLASSIFICATION OF: Quantum dot (QD) active regions hold potential for realizing extremely high performance semiconductor diode lasers...2009 31-Dec-2014 Approved for Public Release; Distribution Unlimited Final Report: Nanopatterned Quantum Dot Lasers for High Speed, High Efficiency...Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 quantum dots , nanopatterning, MOCVD, laser REPORT DOCUMENTATION PAGE 11

  13. High-speed-propeller wind-tunnel aeroacoustic results

    NASA Technical Reports Server (NTRS)

    Jeracki, R. J.; Dittmar, J. H.

    1980-01-01

    Some aerodynamic concepts are presented together with an explanation of how these concepts are applied to advanced propeller design. The unique features of this propulsion system are addressed with emphasis on the design concepts being considered for the high speed turboprop. More particular emphasis is given to the blade sweep, long blade chords, and the large number of blades.

  14. Incorporating YBCO Coated Conductors in High-speed Superconducting Generators

    DTIC Science & Technology

    2008-07-01

    4.0 kW/lb (8.82 kW/kg). The machine configuration chosen by GE for design was a homopolar inductor alternator (HIA) which locates the...extremely severe ac loss environment. Even if this is ultimately impossible for high speed generators, it may not preclude lower speed motors and

  15. High-Speed Computer-Controlled Switch-Matrix System

    NASA Technical Reports Server (NTRS)

    Spisz, E.; Cory, B.; Ho, P.; Hoffman, M.

    1985-01-01

    High-speed computer-controlled switch-matrix system developed for communication satellites. Satellite system controlled by onboard computer and all message-routing functions between uplink and downlink beams handled by newly developed switch-matrix system. Message requires only 2-microsecond interconnect period, repeated every millisecond.

  16. Optimum Design of High Speed Prop-Rotors

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Aditi

    1992-01-01

    The objective of this research is to develop optimization procedures to provide design trends in high speed prop-rotors. The necessary disciplinary couplings are all considered within a closed loop optimization process. The procedures involve the consideration of blade aeroelastic, aerodynamic performance, structural and dynamic design requirements. Further, since the design involves consideration of several different objectives, multiobjective function formulation techniques are developed.

  17. High-speed cylindrical collapse of two perfect fluids

    NASA Astrophysics Data System (ADS)

    Sharif, M.; Ahmad, Zahid

    2007-09-01

    In this paper, the study of the gravitational collapse of cylindrically distributed two perfect fluid system has been carried out. It is assumed that the collapsing speeds of the two fluids are very large. We explore this condition by using the high-speed approximation scheme. There arise two cases, i.e., bounded and vanishing of the ratios of the pressures with densities of two fluids given by c s , d s . It is shown that the high-speed approximation scheme breaks down by non-zero pressures p 1, p 2 when c s , d s are bounded below by some positive constants. The failure of the high-speed approximation scheme at some particular time of the gravitational collapse suggests the uncertainty on the evolution at and after this time. In the bounded case, the naked singularity formation seems to be impossible for the cylindrical two perfect fluids. For the vanishing case, if a linear equation of state is used, the high-speed collapse does not break down by the effects of the pressures and consequently a naked singularity forms. This work provides the generalisation of the results already given by Nakao and Morisawa (Prog Theor Phys 113:73, 2005) for the perfect fluid.

  18. Ultra-high-speed bionanoscope for cell and microbe imaging

    NASA Astrophysics Data System (ADS)

    Etoh, T. Goji; Vo Le, Cuong; Kawano, Hiroyuki; Ishikawa, Ikuko; Miyawaki, Atshushi; Dao, Vu T. S.; Nguyen, Hoang Dung; Yokoi, Sayoko; Yoshida, Shigeru; Nakano, Hitoshi; Takehara, Kohsei; Saito, Yoshiharu

    2008-11-01

    We are developing an ultra-high-sensitivity and ultra-high-speed imaging system for bioscience, mainly for imaging of microbes with visible light and cells with fluorescence emission. Scarcity of photons is the most serious problem in applications of high-speed imaging to the scientific field. To overcome the problem, the system integrates new technologies consisting of (1) an ultra-high-speed video camera with sub-ten-photon sensitivity with the frame rate of more than 1 mega frames per second, (2) a microscope with highly efficient use of light applicable to various unstained and fluorescence cell observations, and (3) very powerful long-pulse-strobe Xenon lights and lasers for microscopes. Various auxiliary technologies to support utilization of the system are also being developed. One example of them is an efficient video trigger system, which detects a weak signal of a sudden change in a frame under ultra-high-speed imaging by canceling high-frequency fluctuation of illumination light. This paper outlines the system with its preliminary evaluation results.

  19. High speed CMOS/SOS standard cell notebook

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The NASA/MSFC high speed CMOS/SOS standard cell family, designed to be compatible with the PR2D (Place, Route in 2-Dimensions) automatic layout program, is described. Standard cell data sheets show the logic diagram, the schematic, the truth table, and propagation delays for each logic cell.

  20. High-speed video processing and display system

    NASA Astrophysics Data System (ADS)

    Dagtekin, Mustafa; DeMarco, Stephen C.; Ramanath, Rajeev; Snyder, Wesley E.

    2000-04-01

    A video processing and display system for performing high speed geometrical image transformations has been designed. It involves looking up the video image by using a pointer memory. The system supports any video format which does not exceed the clock rate that the system supports. It also is capable of changing the brightness and colormap of the image through hardware.

  1. High-speed pulse-shape generator, pulse multiplexer

    DOEpatents

    Burkhart, Scott C.

    2002-01-01

    The invention combines arbitrary amplitude high-speed pulses for precision pulse shaping for the National Ignition Facility (NIF). The circuitry combines arbitrary height pulses which are generated by replicating scaled versions of a trigger pulse and summing them delayed in time on a pulse line. The combined electrical pulses are connected to an electro-optic modulator which modulates a laser beam. The circuit can also be adapted to combine multiple channels of high speed data into a single train of electrical pulses which generates the optical pulses for very high speed optical communication. The invention has application in laser pulse shaping for inertial confinement fusion, in optical data links for computers, telecommunications, and in laser pulse shaping for atomic excitation studies. The invention can be used to effect at least a 10.times. increase in all fiber communication lines. It allows a greatly increased data transfer rate between high-performance computers. The invention is inexpensive enough to bring high-speed video and data services to homes through a super modem.

  2. Modelling Of Residual Stresses Induced By High Speed Milling Process

    NASA Astrophysics Data System (ADS)

    Desmaison, Olivier; Mocellin, Katia; Jardin, Nicolas

    2011-05-01

    Maintenance processes used in heavy industries often include high speed milling operations. The reliability of the post-process material state has to be studied. Numerical simulation appears to be a very interesting way to supply an efficient residual stresses (RS) distribution prediction. Because the adiabatic shear band and the serrated chip shaping are features of the austenitic stainless steel high speed machining, a 2D high speed orthogonal cutting model is briefly presented. This finite element model, developed on Forge® software, is based on data taken from Outeiro & al.'s paper [1]. A new behaviour law fully coupling Johnson-Cook's constitutive law and Latham and Cockcroft's damage model is detailed in this paper. It ensures results that fit those found in literature. Then, the numerical tools used on the 2D model are integrated to a 3D high speed milling model. Residual stresses distribution is analysed, on the surface and into the depth of the material. Various revolutions and passes of the two teeth hemispheric mill on the workpiece are simulated. Thus the sensitivity of the residual stresses generation to the cutting conditions can be discussed. In order to validate the 3D model, a comparison of the cutting forces measured by EDF R&D to those given by numerical simulations is achieved.

  3. Analysis of high speed flow, thermal and structural interactions

    NASA Technical Reports Server (NTRS)

    Thornton, Earl A.

    1994-01-01

    Research for this grant focused on the following tasks: (1) the prediction of severe, localized aerodynamic heating for complex, high speed flows; (2) finite element adaptive refinement methodology for multi-disciplinary analyses; (3) the prediction of thermoviscoplastic structural response with rate-dependent effects and large deformations; (4) thermoviscoplastic constitutive models for metals; and (5) coolant flow/structural heat transfer analyses.

  4. Geometric Acoustics in High-Speed Boundary Layers

    NASA Astrophysics Data System (ADS)

    Parziale, N. J.; Shepherd, J. E.; Hornung, H. G.

    A key mechanism responsible for the instability of high-speed boundary layers are the high-frequency modes discovered by Mack [1]. These modes are primarily acoustic in nature, are always present if the edge Mach number is sufficiently large, and are the dominant instability mechanism when the wall temperature is sufficiently low compared to the recovery temperature.

  5. Cosmic ray modulation by high-speed solar wind fluxes

    NASA Technical Reports Server (NTRS)

    Dorman, L. I.; Kaminer, N. S.; Kuzmicheva, A. E.; Mymrina, N. V.

    1985-01-01

    Cosmic ray intensity variations connected with recurrent high-speed fluxes (HSF) of solar wind are investigated. The increase of intensity before the Earth gets into a HSF, north-south anisotropy and diurnal variation of cosmic rays inside a HSF as well as the characteristics of Forbush decreases are considered.

  6. Penetrating injury from high-speed motor vehicle collision

    PubMed Central

    Daniels, Alan H.

    2015-01-01

    We present the case history of a post motor vehicle crash victim with lower extremity fractures and decreased blood flow. Emergent Angipgraphy revealed a foreign body which was later operated and removed. The case emphasizes that High-speed motor vehicle accidents commonly lead to penetrating injury from objects within and outside of the vehicle. PMID:26229302

  7. HIGH SPEED GC/MS FOR AIR ANALYSIS

    EPA Science Inventory

    A high speed GC/MS system consisting of a gas chromatograph equipped with a narrow bandwidth injection accessory and using a time-of-flight mass spectrometer detector has been adapted for analysis of ambient whole air samples which have been collected in passivated canisters. ...

  8. 14 CFR 25.253 - High-speed characteristics.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false High-speed characteristics. 25.253 Section...-speed characteristics. (a) Speed increase and recovery characteristics. The following speed increase and... inadvertent speed increases (including upsets in pitch and roll) must be simulated with the airplane trimmed...

  9. 14 CFR 25.253 - High-speed characteristics.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false High-speed characteristics. 25.253 Section...-speed characteristics. (a) Speed increase and recovery characteristics. The following speed increase and... inadvertent speed increases (including upsets in pitch and roll) must be simulated with the airplane trimmed...

  10. High-Speed Computer-Controlled Switch-Matrix System

    NASA Technical Reports Server (NTRS)

    Spisz, E.; Cory, B.; Ho, P.; Hoffman, M.

    1985-01-01

    High-speed computer-controlled switch-matrix system developed for communication satellites. Satellite system controlled by onboard computer and all message-routing functions between uplink and downlink beams handled by newly developed switch-matrix system. Message requires only 2-microsecond interconnect period, repeated every millisecond.

  11. Faster than "g", Revisited with High-Speed Imaging

    ERIC Educational Resources Information Center

    Vollmer, Michael; Mollmann, Klaus-Peter

    2012-01-01

    The introduction of modern high-speed cameras in physics teaching provides a tool not only for easy visualization, but also for quantitative analysis of many simple though fast occurring phenomena. As an example, we present a very well-known demonstration experiment--sometimes also discussed in the context of falling chimneys--which is commonly…

  12. Numerical Simulation of High-Speed Turbulent Reacting Flows

    NASA Technical Reports Server (NTRS)

    Jaberi, F. A.; Colucci, P. J.; James, S.; Givi, P.

    1996-01-01

    The purpose of this research is to continue our efforts in advancing the state of knowledge in large eddy simulation (LES) methods for computational analysis of high-speed reacting turbulent flows. We have just completed the first year of Phase 3 of this research.

  13. High speed flow cytometric separation of viable cells

    DOEpatents

    Sasaki, Dennis T.; Van den Engh, Gerrit J.; Buckie, Anne-Marie

    1995-01-01

    Hematopoietic cell populations are separated to provide cell sets and subsets as viable cells with high purity and high yields, based on the number of original cells present in the mixture. High-speed flow cytometry is employed using light characteristics of the cells to separate the cells, where high flow speeds are used to reduce the sorting time.

  14. High speed flow cytometric separation of viable cells

    DOEpatents

    Sasaki, D.T.; Van den Engh, G.J.; Buckie, A.M.

    1995-11-14

    Hematopoietic cell populations are separated to provide cell sets and subsets as viable cells with high purity and high yields, based on the number of original cells present in the mixture. High-speed flow cytometry is employed using light characteristics of the cells to separate the cells, where high flow speeds are used to reduce the sorting time.

  15. A high-speed distortionless predictive image-compression scheme

    NASA Technical Reports Server (NTRS)

    Cheung, K.-M.; Smyth, P.; Wang, H.

    1990-01-01

    A high-speed distortionless predictive image-compression scheme that is based on differential pulse code modulation output modeling combined with efficient source-code design is introduced. Experimental results show that this scheme achieves compression that is very close to the difference entropy of the source.

  16. Florida's high-speed rail and maglev projects

    SciTech Connect

    Smith, C.H. )

    1990-04-01

    The author discusses how the State of Florida has taken an innovative approach to meeting its future needs for an efficient transportation system that will complement its extensive highway network and aviation system. This new concept is a statewide, high-speed, fixed guideway ground transportation system. The technologies will include advanced electrified wheels-on-rail trains and magnetically levitated and propelled vehicles.

  17. Penetrating injury from high-speed motor vehicle collision.

    PubMed

    Daniels, Alan H

    2015-01-01

    We present the case history of a post motor vehicle crash victim with lower extremity fractures and decreased blood flow. Emergent Angipgraphy revealed a foreign body which was later operated and removed. The case emphasizes that High-speed motor vehicle accidents commonly lead to penetrating injury from objects within and outside of the vehicle.

  18. Analysis of javelin throwing by high-speed photography

    NASA Astrophysics Data System (ADS)

    Yamamoto, Yoshitaka; Matsuoka, Rutsu; Ishida, Yoshihisa; Seki, Kazuichi

    1999-06-01

    A xenon multiple exposure light source device was manufactured to record the trajectory of a flying javelin, and a wind tunnel experiment was performed with some javelin models to analyze the flying characteristics of the javelin. Furthermore, form of javelin throwing by athletes was recorded to estimate the characteristics in the form of each athlete using a high speed cameras.

  19. Faster than "g", Revisited with High-Speed Imaging

    ERIC Educational Resources Information Center

    Vollmer, Michael; Mollmann, Klaus-Peter

    2012-01-01

    The introduction of modern high-speed cameras in physics teaching provides a tool not only for easy visualization, but also for quantitative analysis of many simple though fast occurring phenomena. As an example, we present a very well-known demonstration experiment--sometimes also discussed in the context of falling chimneys--which is commonly…

  20. Towards a high-speed quantum random number generator

    NASA Astrophysics Data System (ADS)

    Stucki, Damien; Burri, Samuel; Charbon, Edoardo; Chunnilall, Christopher; Meneghetti, Alessio; Regazzoni, Francesco

    2013-10-01

    Randomness is of fundamental importance in various fields, such as cryptography, numerical simulations, or the gaming industry. Quantum physics, which is fundamentally probabilistic, is the best option for a physical random number generator. In this article, we will present the work carried out in various projects in the context of the development of a commercial and certified high speed random number generator.

  1. Research in high speed fiber optics local area networks

    NASA Technical Reports Server (NTRS)

    Tobagi, F. A.

    1986-01-01

    The design of high speed local area networks (HSLAN) for communication among distributed devices requires solving problems in three areas: the network medium and its topology, the medium access control, and the network interface. Considerable progress was already made in the first two areas. Accomplishments are divided into two groups according to their theoretical or experimental nature. A brief summary is given.

  2. Improved Kinetic Models for High-Speed Combustion Simulation

    DTIC Science & Technology

    2008-06-01

    TYPE 3. DATES COVERED (From - To) June 2008 Final 18 May 2006 – 18 June 2008 4 . TITLE AND SUBTITLE IMPROVED KINETIC MODELS FOR HIGH-SPEED...44 4 Results and Discussion...19 4 . Multi-Step, Sequential Process Leading to Formation of Phenyl from Benzyl (Scheme 1) ....20 5. Generic Chemical Activation Reaction System

  3. New seed-cotton reclaimer for high speed roller gins

    USDA-ARS?s Scientific Manuscript database

    An experimental laboratory prototype reclaimer is being developed by the USDA-ARS in cooperation with Lummus Corporation. The objective of the project is to develop a seed-cotton reclaimer for high speed roller ginning that has a higher operational capacity and reduced seed loss in comparison to cur...

  4. Introduction of the M-85 high-speed rotorcraft concept

    NASA Technical Reports Server (NTRS)

    Stroub, Robert H.

    1991-01-01

    As a result of studying possible requirements for high-speed rotorcraft and studying many high-speed concepts, a new high-speed rotorcraft concept, designated as M-85, was derived. The M-85 is a helicopter that is reconfigured to a fixed-wing aircraft for high-speed cruise. The concept was derived as an approach to enable smooth, stable conversion between fixed-wing and rotary-wing while retaining hover and low-speed flight characteristics of a low disk loading helicopter. The name, M-85, reflects the high-speed goals of 0.85 Mach number at high altitude. For a high-speed rotorcraft, it is expected that a viable concept must be a cruise-efficient, fixed-wing aircraft so it may be attractive for a multiplicity of missions. It is also expected that a viable high-speed rotorcraft concept must be cruise efficient first and secondly, efficient in hover. What makes the M-85 unique is the large circular hub fairing that is large enough to support the aircraft during conversion between rotary-wind and fixed-wing modes. With the aircraft supported by this hub fairing, the rotor blades can be unloaded during the 100 percent change in rotor rpm. With the blades unloaded, the potential for vibratory loads would be lessened. In cruise, the large circular hub fairing would be part of the lifting system with additional lifting panels deployed for better cruise efficiency. In hover, the circular hub fairing would slightly reduce lift potential and/or decrease hover efficiency of the rotor system. The M-85 concept is described and estimated forward flight performance characteristics are presented in terms of thrust requirements and L/D with airspeed. The forward flight performance characteristics reflect recent completed wind tunnel tests of the wing concept. Also presented is a control system technique that is critical to achieving low oscillatory loads in rotary-wing mode. Hover characteristics, C(sub p) versus C(sub T) from test data, is discussed. Other techniques pertinent to

  5. Ethernet-Based Services for Next Generation Networks

    NASA Astrophysics Data System (ADS)

    Hernandez-Valencia, Enrique

    Over the last few years, Ethernet technology and services have emerged as an indispensable component of the broadband networking and telecommunications infrastructure, both for network operators and service providers. As an example, Worldwide Enterprise customer demand for Ethernet services by itself is expected to hit the 30B US mark by year 2012. Use of Ethernet technology in the feeder networks that support residential applications, such as "triple play" voice, data, and video services, is equally on the rise. As the synergies between packet-aware transport and service oriented equipment continue to be exploited in the path toward transport convergence. Ethernet technology is expected to play a critical part in the evolution toward converged Optical/Packet Transport networks. Here we discuss the main business motivations, services, and technologies driving the specifications of so-called carrier Ethernet and highlight challenges associated with delivering the expectations for low implementation complexity, easy of use, provisioning and management of networks and network elements embracing this technology.

  6. Simulation of router action on a lathe to test the cutting tool performance in edge-trimming of graphite/epoxy composite

    NASA Astrophysics Data System (ADS)

    Ramulu, M.; Rogers, E.

    1994-04-01

    The predominant machining application with graphite/epoxy composite materials in aerospace industry is peripheral trimming. The computer numerically controlled (CNC) high speed routers required to do edge trimming work are generally scheduled for production work in industry and are not available for extensive cutter testing. Therefore, an experimental method of simulating the conditions of periphery trim using a lathe is developed in this paper. The validity of the test technique will be demonstrated by conducting carbide tool wear tests under dry cutting conditions. The experimental results will be analyzed to characterize the wear behavior of carbide cutting tools in machining the composite materials.

  7. High-speed imaging of explosive eruptions: applications and perspectives

    NASA Astrophysics Data System (ADS)

    Taddeucci, Jacopo; Scarlato, Piergiorgio; Gaudin, Damien; Capponi, Antonio; Alatorre-Ibarguengoitia, Miguel-Angel; Moroni, Monica

    2013-04-01

    Explosive eruptions, being by definition highly dynamic over short time scales, necessarily call for observational systems capable of relatively high sampling rates. "Traditional" tools, like as seismic and acoustic networks, have recently been joined by Doppler radar and electric sensors. Recent developments in high-speed camera systems now allow direct visual information of eruptions to be obtained with a spatial and temporal resolution suitable for the analysis of several key eruption processes. Here we summarize the methods employed to gather and process high-speed videos of explosive eruptions, and provide an overview of the several applications of these new type of data in understanding different aspects of explosive volcanism. Our most recent set up for high-speed imaging of explosive eruptions (FAMoUS - FAst, MUltiparametric Set-up,) includes: 1) a monochrome high speed camera, capable of 500 frames per second (fps) at high-definition (1280x1024 pixel) resolution and up to 200000 fps at reduced resolution; 2) a thermal camera capable of 50-200 fps at 480-120x640 pixel resolution; and 3) two acoustic to infrasonic sensors. All instruments are time-synchronized via a data logging system, a hand- or software-operated trigger, and via GPS, allowing signals from other instruments or networks to be directly recorded by the same logging unit or to be readily synchronized for comparison. FAMoUS weights less than 20 kg, easily fits into four, hand-luggage-sized backpacks, and can be deployed in less than 20' (and removed in less than 2', if needed). So far, explosive eruptions have been recorded in high-speed at several active volcanoes, including Fuego and Santiaguito (Guatemala), Stromboli (Italy), Yasur (Vanuatu), and Eyjafiallajokull (Iceland). Image processing and analysis from these eruptions helped illuminate several eruptive processes, including: 1) Pyroclasts ejection. High-speed videos reveal multiple, discrete ejection pulses within a single Strombolian

  8. Ethernet Based Embedded IOC for FEL Control Systems

    SciTech Connect

    Yan, Jianxun; Sexton, Daniel; Grippo, Albert; Moore, Steven; Jordan, Kevin

    2008-01-01

    An Ethernet based embedded Input Output Controller (IOC) has been developed as part of an upgrade to the control system for the Free Electron Laser Project at Jefferson Lab. Currently most of the FEL systems are controlled, configured and monitored using a central VME bus-based configuration. These crate based systems are limited in growth and usually interleave multiple systems. In order to accommodate incremental system growth and lower channel costs, we developed a stand-alone system, an Ethernet based embedded controller called the Single Board IOC (SBIOC). The SBIOC is a module which integrates an Altera FPGA and the Arcturus uCdimm Coldfire 5282 Microcontroller daughter card into one module, which can be easily configured for different kinds of I/O devices. The microcontroller is a complete System-on-Module, including three highly integrated functional blocks, the core processor, memory, and Ethernet communication. A real-time operating system, RTEMS is cross compiled with

  9. Multi-Objective Topology Design of Industrial Ethernet Networks

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Lampe, Mattias; Wang, Zhi

    2012-05-01

    The objective of this paper is to investigate methods to guarantee the network performance of industrial Ethernet networks by an optimized topology design. The proposed approach differs from former works on network design by taking into account the specific requirements of industrial applications, the Quality of Service (QoS) related features of industrial Ethernet protocols, and the increasing network complexity in the industrial field. A multi-objective variable neighbourhood search algorithm (MOVNS) is presented offering a co-design method of physical topology and logical topology to satisfy the requirements of real-time capability, high reliability, and fast recovery time. The result analysis on simulation test cases shows the proposed algorithm can greatly improve the performance of industrial Ethernet networks at a moderate computational complexity.

  10. Impact of extremely high speed logic technology on radar performance

    NASA Astrophysics Data System (ADS)

    Reedy, E. K.; Efurd, R. B.; Yoder, M. N.

    Limitations related to the utilization of digital procedures in radar systems are connected with the difference between the throughput rates of the digital devices and the required throughput rate for broadband, multiple-range-gated radar signals. The present investigation is concerned with the feasibility of innovative uses of extremely high speed integrated circuits in radar. The probable technologies for high speed electronics are related to silicon, gallium arsenide, and Josephson junctions. Attention is given to the classical implementation of a coherent-on-receive system, aspects of phase error memory coherent-on-receive coherent oscillator correction, phase error memory coherent-on-receive video correction, processing at IF, and a comparative performance tradeoff.

  11. Coronal holes and high-speed wind streams

    NASA Technical Reports Server (NTRS)

    Zirker, J. B.

    1977-01-01

    Coronal holes, regions of unusually low density and low temperature in the solar corona, are identified as Bartel's M regions, i.e., sources of high-speed wind streams that produce recurrent geomagnetic variations. Throughout the Skylab period the polar caps of the sun were coronal holes, and at lower latitudes the most persistent and recurrent holes were equatorial extensions of the polar caps. The holes rotated 'rigidly' at the equatorial synodic rate. They formed in regions of unipolar photospheric magnetic field, and their internal magnetic fields diverged rapidly with increasing distance from the sun. The geometry of the magnetic field in the inner corona seems to control both the physical properties of the holes and the global distribution of high-speed wind streams in the heliosphere. Phenomenological models for the birth and decay of coronal holes have been proposed.

  12. Numerical Investigation of Aerodynamic Characteristics of High Speed Train

    NASA Astrophysics Data System (ADS)

    Ali, J. S. Mohamed; Omar, Ashraf Ali; Ali, Muhammad ‘Atif B.; Baseair, Abdul Rahman Bin Mohd

    2017-03-01

    In this work, initially the effect of nose shape on the drag characteristics of a high speed train is studied. Then the influence of cross winds on the aerodynamics and hence the stability of such modern high speed trains is analyzed. CFD analysis was conducted using STAR-CCM+ on trains with different features and important aerodynamic coefficients such as the drag, side force and rolling moment coefficients have been calculated for yaw angles of crosswinds ranging from 0° to 90°. The results show that the modification on train nose shape can reduce the drag up to more than 50%. It was also found that, bogie faring only reduces small percentage of drag but significantly contributed to higher rolling moment and side force coefficient hence induced train instability.

  13. Noise isolation system for high-speed circuits

    DOEpatents

    McNeilly, David R.

    1986-01-01

    A noise isolation circuit is provided that consists of a dual function bypass which confines high-speed switching noise to the component or circuit which generates it and isolates the component or circuit from high-frequency noise transients which may be present on the ground and power supply busses. A local circuit ground is provided which is coupled to the system ground by sufficient impedance to force the dissipation of the noise signal in the local circuit or component generating the noise. The dual function bypass network couples high-frequency noise signals generated in the local component or circuit through a capacitor to the local ground while isolating the component or circuit from noise signals which may be present on the power supply busses or system ground. The network is an effective noise isolating system and is applicable to both high-speed analog and digital circuits.

  14. Noise isolation system for high-speed circuits

    DOEpatents

    McNeilly, D.R.

    1983-12-29

    A noise isolation circuit is provided that consists of a dual function bypass which confines high-speed switching noise to the component or circuit which generates it and isolates the component or circuit from high-frequency noise transients which may be present on the ground and power supply busses. A local circuit ground is provided which is coupled to the system ground by sufficient impedance to force the dissipation of the noise signal in the local circuit or component generating the noise. The dual function bypass network couples high-frequency noise signals generated in the local component or circuit through a capacitor to the local ground while isolating the component or circuit from noise signals which may be present on the power supply busses or system ground. The network is an effective noise isolating system and is applicable to both high-speed analog and digital circuits.

  15. High-speed oblique drop impact on thin liquid films

    NASA Astrophysics Data System (ADS)

    Guo, Yisen; Lian, Yongsheng

    2017-08-01

    We numerically investigate high-speed drop impact on thin liquid films with a focus on oblique impact. The flow behavior is described by solving the incompressible Navier-Stokes equations using the variable density pressure projection method. The phase interfaces are captured using the moment-of-fluid method. The numerical method is validated against experiments and theoretical predictions. Our study on high-speed oblique impact reveals that the tangential velocity can significantly alter impact phenomena: a higher tangential velocity leads to a lower lamella height and radius on the side behind the advancing drop, and the higher tangential velocity also leads to stronger vortices at the drop and film interface due to Kelvin-Helmholtz instability. Our investigation on the effect of liquid film thickness shows that a thinner liquid film leads to an earlier crown breakup. Last, our study shows that lowering the film density can prompt earlier splashing.

  16. TDRSS Augmentation for Launch and Ascent High Speed Navigation Filter

    NASA Technical Reports Server (NTRS)

    Holt, Greg .

    2007-01-01

    An investigation was performed to evaluate the feasibility and possible advantages of augmenting the High Speed Trajectory Determination (HSTD) ground navigation filter with measurements from the Tracking & Data Relay Satellite System (TDRSS) constellation. The proposed communications system strategy for Constellation uses TDRSS rather than ground S-band, so the capability of replacing the S-band navigation capability with TDRSS was considered. HSTD simulations were performed with combinations of S-band, C-band, and TDRSS measurements. Several assumptions are made with regard to measurement biases and signal noise characteristics to produce first-look level accuracies. Preliminary results show that solutions using TDRSS instead of S-band have similar or improved performance from the view of filter covariance and may be a feasible alternative. These results also show that TDRSS tracking alone gives poorer observations and resulting performance Operational and other constraints to the use of TDRSS in a high-speed ground navigation filter are not addressed.

  17. MEMS-based high speed scanning probe microscopy.

    PubMed

    Disseldorp, E C M; Tabak, F C; Katan, A J; Hesselberth, M B S; Oosterkamp, T H; Frenken, J W M; van Spengen, W M

    2010-04-01

    The high speed performance of a scanning probe microscope (SPM) is improved if a microelectromechanical systems (MEMS) device is employed for the out-of-plane scanning motion. We have carried out experiments with MEMS high-speed z-scanners (189 kHz fundamental resonance frequency) in both atomic force microscope and scanning tunneling microscope modes. The experiments show that with the current MEMS z-scanner, lateral tip speeds of 5 mm/s can be achieved with full feedback on surfaces with significant roughness. The improvement in scan speed, obtained with MEMS scanners, increases the possibilities for SPM observations of dynamic processes. Even higher speed MEMS scanners with fundamental resonance frequencies in excess of a megahertz are currently under development.

  18. High-Speed Jet Noise Reduction NASA Perspective

    NASA Technical Reports Server (NTRS)

    Huff, Dennis L.; Handy, J. (Technical Monitor)

    2001-01-01

    History shows that the problem of high-speed jet noise reduction is difficult to solve. the good news is that high performance military aircraft noise is dominated by a single source called 'jet noise' (commercial aircraft have several sources). The bad news is that this source has been the subject of research for the past 50 years and progress has been incremental. Major jet noise reduction has been achieved through changing the cycle of the engine to reduce the jet exit velocity. Smaller reductions have been achieved using suppression devices like mixing enhancement and acoustic liners. Significant jet noise reduction without any performance loss is probably not possible! Recent NASA Noise Reduction Research Programs include the High Speed Research Program, Advanced Subsonic Technology Noise Reduction Program, Aerospace Propulsion and Power Program - Fundamental Noise, and Quiet Aircraft Technology Program.

  19. High speed magneto-resistive random access memory

    NASA Technical Reports Server (NTRS)

    Wu, Jiin-Chuan (Inventor); Stadler, Henry L. (Inventor); Katti, Romney R. (Inventor)

    1992-01-01

    A high speed read MRAM memory element is configured from a sandwich of magnetizable, ferromagnetic film surrounding a magneto-resistive film which may be ferromagnetic or not. One outer ferromagnetic film has a higher coercive force than the other and therefore remains magnetized in one sense while the other may be switched in sense by a switching magnetic field. The magneto-resistive film is therefore sensitive to the amplitude of the resultant field between the outer ferromagnetic films and may be constructed of a high resistivity, high magneto-resistive material capable of higher sensing currents. This permits higher read voltages and therefore faster read operations. Alternate embodiments with perpendicular anisotropy, and in-plane anisotropy are shown, including an embodiment which uses high permeability guides to direct the closing flux path through the magneto-resistive material. High density, high speed, radiation hard, memory matrices may be constructed from these memory elements.

  20. Coronal holes and high-speed wind streams

    NASA Technical Reports Server (NTRS)

    Zirker, J. B.

    1977-01-01

    Coronal holes, regions of unusually low density and low temperature in the solar corona, are identified as Bartel's M regions, i.e., sources of high-speed wind streams that produce recurrent geomagnetic variations. Throughout the Skylab period the polar caps of the sun were coronal holes, and at lower latitudes the most persistent and recurrent holes were equatorial extensions of the polar caps. The holes rotated 'rigidly' at the equatorial synodic rate. They formed in regions of unipolar photospheric magnetic field, and their internal magnetic fields diverged rapidly with increasing distance from the sun. The geometry of the magnetic field in the inner corona seems to control both the physical properties of the holes and the global distribution of high-speed wind streams in the heliosphere. Phenomenological models for the birth and decay of coronal holes have been proposed.

  1. Design of high speed proprotors using multiobjective optimization techniques

    NASA Technical Reports Server (NTRS)

    Mccarthy, Thomas R.; Chattopadhyay, Aditi

    1993-01-01

    A multidisciplinary optimization procedure is developed for the design of high speed proprotors. The objectives are to simultaneously maximize the propulsive efficiency in high speed cruise without sacrificing the rotor figure of merit in hover. Since the problem involves multiple design objectives, multiobjective function formulation techniques are used. A derailed two-celled isotropic box beam is used to model the load carrying member within the rotor blade. Constraints are imposed on rotor blade aeroelastic stability in cruise, the first natural frequency in hover and total blade weight. Both aerodynamic and structural design variables are used. The results obtained using both techniques are compared to the reference rotor and show significant aerodynamic performance improvements without sacrificing dynamic and aeroelastic stability requirements.

  2. Zonal analysis of two high-speed inlets

    NASA Technical Reports Server (NTRS)

    Dilley, A. D.; Switzer, G. F.; Eppard, W. M.

    1991-01-01

    Using a zonal technique, thin layer Navier-Stokes solutions for two high speed inlet geometries are presented and compared with experimental data. The first configuration consists of a 3-D inlet preceded by a sharp flat plate. Results with two different grids demonstrate the importance of adequate grid refinement in high speed internal flow computations. The fine grid solution has reasonably good agreement with experimental heat transfer and pressure values inside the inlet. The other configuration consists of a 3-D inlet mounted on a research hypersonic forebody. Numerical results for this configuration have good agreement with experimental pressure data along the forebody, but not inside the inlet. A more refined grid calculation is currently being done to better predict the flowfield in the inlet.

  3. High Speed Photography What Role Does It Play In Mining?

    NASA Astrophysics Data System (ADS)

    Crosby, William A.

    1987-09-01

    High speed photography is being employed to help improve the efficiency of a number of different mining activities. Its principal use, however, is as an aid in the optimization of blasting operations. Blasts are commonly of very short duration and great benefit can thus be gained by being able to observe the events at a suitably selected slow motion over an extended period of time. This paper presents an overview of some of the high speed photographic applications in both surface and underground operations using qualitative and quantitative techniques. The primary use is the direct photography of the blast, the analysis of the resulting films representing the bulk of the optimization work. Other applications are designed to check out individual blast components, particularly evaluating blast tamping, and actual delay element times for such accessories as detonating relays, down-the-hole delays and other delaying and initiating systems.

  4. Ultra-high-speed optical and electronic distributed devices

    SciTech Connect

    Hietala, V.M.; Plut, T.A.; Kravitz, S.H.; Vawter, G.A.; Wendt, J.R.; Armendariz, M.G.

    1995-08-01

    This report summarizes work on the development of ultra-high-speed semiconductor optical and electronic devices. High-speed operation is achieved by velocity matching the input stimulus to the output signal along the device`s length. Electronic devices such as field-effect transistors (FET`s), should experience significant speed increases by velocity matching the electrical input and output signals along the device. Likewise, optical devices, which are typically large, can obtain significant bandwidths by velocity matching the light being generated, detected or modulated with the electrical signal on the device`s electrodes. The devices discussed in this report utilize truly distributed electrical design based on slow-wave propagation to achieve velocity matching.

  5. Development of a High Speed Crowbar for LANSCE

    NASA Astrophysics Data System (ADS)

    Friedrichs, C.; Lyles, J.; Doub, J. M.

    1997-05-01

    Each of the four 200 Mhz Final Power Amplifiers (FPAs) in the LANSCE proton linac has its own capacitor bank and crowbar. The dissipation in the 10 ohm crowbar limiting resistor is 67 kW, and oil cooling is used. Our stated upgrade goal was to substantially reduce the limiting resistor dissipation and eliminate the oil cooling. Early tests showed that the fault energy quickly rose to unacceptable levels as the current limiting resistance was reduced. FPA arcs are normally quenched by interrupting the FPA modulator current, and the crowbar waits 10 microseconds for this to occur. The successful upgrade strategy was to replace the 10 ohm resistor with a 3 ohm air cooled resistor and to add a high speed crowbar circuit which operates only if there are simultaneous arcs in the FPA and its modulator. This paper describes the high speed circuit and its interface with the existing crowbar. Test results are also given.

  6. Current situation: US tests under way. [High Speed Rail Transportation

    SciTech Connect

    Not Available

    1993-04-16

    Though US high-speed rail (HSR) activity is picking up, the technology is much farther advanced in Europe and Japan. Several HSR projects have been proposed for various parts of the country, but nearly all remain in the early developmental stages. The closest equivalent to regular high-speed rail service in the US still is provided by the Amtrak Metroliners running between New York and Washington. In late January, Amtrak began a three-month trial of a Swedish-built X2000 train on the New York-Washington run. Popularly known as the [open quotes]tilt train,[close quotes] it has a computer-guided suspension system that permits higher speeds on curves. The system enables trains to bank on curves, much as racing cars do, thus minimizing the queasiness that centrifugal force can cause. Passengers report feeling little or no discomfort when the X2000 tilts.

  7. Detection of object vibrations from high speed infrared images

    NASA Astrophysics Data System (ADS)

    Paunescu, Gabriela; Lutzmann, Peter

    2016-10-01

    Remote detection of vibrational features from an object is important for many short range civil applications, but it is also of interest for long range applications in the defense and security area. The well-established laser Doppler vibrometry technique is widely used as a high-sensitivity, non-contact method. The development of camera technology in recent years made image-based methods reliable passive alternatives for vibration and dynamic measurements. Very sensitive applications have been demonstrated using high speed cameras in the visual spectral range. However, for long range applications, where turbulence becomes a limiting factor, image acquisition in the short- to mid-wave IR region would be desirable, as the atmospheric effects attenuate at longer wavelength. In this paper, we investigate experimentally the vibration detection from short- and mid-wave IR image sequences using high speed imaging technique. Experiments on the extraction of vibration signature under strong local turbulence conditions are presented.

  8. A High-speed Characterization Technique for Solar Silicon

    NASA Technical Reports Server (NTRS)

    Lehmann, V.; Foell, H.; Bernewitz, L.; Grabmaier, J. G.

    1984-01-01

    High-speed crystal growth techniques demand high-speed characterization techniques to allow a timely feed-back of information to the crystal growers. The unique properties of the Si electrolyte-contact (SEC) provide for an extremely fast and simple measurement of the light-induced photo-current for any piece of Si without lengthy preparation of the specimen. Electropolishing at high anodic current densities allows for insitu generation of fresh surfaces whereas preferential etching of defects in various modes is possible at low current densities. In n-type Si a simple estimation of the minority-carrier diffusion length is possible in many cases. Laser-scanning enables local probing of the photocurrent and provides data about the homogeneity of a sample. The experimental realization of the method is described in detail and examples are given and discussed.

  9. Characterizing pyrotechnic igniter output with high-speed schlieren imaging

    NASA Astrophysics Data System (ADS)

    Skaggs, M. N.; Hargather, M. J.; Cooper, M. A.

    2017-01-01

    Small-scale pyrotechnic igniter output has been characterized using a high-speed schlieren imaging system for observing critical features of the post-combustion flow. The diagnostic, with laser illumination, was successfully applied towards the quantitative characterization of the output from Ti/KClO_4 and TiH_{1.65}/KClO_4 pyrotechnic igniters. The high-speed image sequences showed shock motion, burned gas expansion, and particle motion. A statistical-based analysis methodology for tracking the full-field shock motion enabled straightforward comparisons across the experimental parameters of pyrotechnic material and initial density. This characterization of the mechanical energy of the shock front within the post-combustion environment is a necessary addition to the large body of literature focused on pyrotechnic combustion behavior within the powder bed. Ultimately, understanding the role that the combustion behavior has on the resulting multiphase environment is required for tailored igniter development and comparative performance assessments.

  10. High-speed wavefront modulation in complex media (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Turtaev, Sergey; Leite, Ivo T.; Cizmár, TomáÅ.¡

    2017-02-01

    Using spatial light modulators(SLM) to control light propagation through scattering media is a critical topic for various applications in biomedical imaging, optical micromanipulation, and fibre endoscopy. Having limited switching rate, typically 10-100Hz, current liquid-crystal SLM can no longer meet the growing demands of high-speed imaging. A new way based on binary-amplitude holography implemented on digital micromirror devices(DMD) has been introduced recently, allowing to reach refreshing rates of 30kHz. Here, we summarise the advantages and limitations in speed, efficiency, scattering noise, and pixel cross-talk for each device in ballistic and diffusive regimes, paving the way for high-speed imaging through multimode fibres.

  11. Popping a Hole in High-Speed Pursuits

    NASA Technical Reports Server (NTRS)

    2005-01-01

    NASA s Plum Brook Station, a 6,400-acre, remote test installation site for Glenn Research Center, houses unique, world-class test facilities, including the world s largest space environment simulation chamber and the world s only laboratory capable of full-scale rocket engine firings and launch vehicle system level tests at high-altitude conditions. Plum Brook Station performs complex and innovative ground tests for the U.S. Government (civilian and military), the international aerospace community, as well as the private sector. Popping a Hole in High-Speed Pursuits Recently, Plum Brook Station s test facilities and NASA s engineering experience were combined to improve a family of tire deflating devices (TDDs) that helps law enforcement agents safely, simply, and successfully stop fleeing vehicles in high-speed pursuit

  12. Investigation Of Vapor Explosion Mechanisms Using High Speed Photography

    NASA Astrophysics Data System (ADS)

    Armstrong, Donn R.; Anderson, Richard P.

    1983-03-01

    The vapor explosion, a physical interaction between hot and cold liquids that causes the explosive vaporization of the cold liquid, is a hazard of concern in such diverse industries as metal smelting and casting, paper manufacture, and nuclear power generation. Intensive work on this problem worldwide, for the past 25 years has generated a number of theories and mechanisms proposed to explain vapor explosions. High speed photography has been the major instrument used to test the validity of the theories and to provide the observations that have lead to new theories. Examples are given of experimental techniques that have been used to investigate vapor explosions. Detailed studies of specific mechanisms have included microsecond flash photograph of contact boiling and high speed cinematography of shock driven breakup of liquid drops. Other studies looked at the explosivity of various liquid pairs using cinematography inside a pulsed nuclear reactor and x-ray cinematography of a thermite-sodium interaction.

  13. Update on Douglas' high-speed civil transport studies

    NASA Technical Reports Server (NTRS)

    Bunin, Bruce L.

    1992-01-01

    A summary is presented of high speed civil transport (HSCT) studies underway at Douglas Aircraft. A brief review is given of experience with design and development of advanced supersonic transport concepts and associated technology. A review is then presented of past NASA funded contract research studies focused on selection of appropriate concepts for high speed civil transport aircraft to be introduced in the year 2000 time frame for commercial service. Follow-on activities to those studies are then presented which were conducted under independent research studies as well as under further NASA funded efforts. Design Mach number selections and associated baseline design missions are then discussed along with forecasted passenger traffic and associated supersonic fleet sizes, and then proceeds into a discussion of individual issues related either to environmental acceptability or overall technology requirements in order to achieve the required economic viability of the program. A summary is given of current and future plans and activities.

  14. Field-based high-speed imaging of explosive eruptions

    NASA Astrophysics Data System (ADS)

    Taddeucci, J.; Scarlato, P.; Freda, C.; Moroni, M.

    2012-12-01

    Explosive eruptions involve, by definition, physical processes that are highly dynamic over short time scales. Capturing and parameterizing such processes is a major task in eruption understanding and forecasting, and a task that necessarily requires observational systems capable of high sampling rates. Seismic and acoustic networks are a prime tool for high-frequency observation of eruption, recently joined by Doppler radar and electric sensors. In comparison with the above monitoring systems, imaging techniques provide more complete and direct information of surface processes, but usually at a lower sampling rate. However, recent developments in high-speed imaging systems now allow such information to be obtained with a spatial and temporal resolution suitable for the analysis of several key eruption processes. Our most recent set up for high-speed imaging of explosive eruptions (FAMoUS - FAst, MUltiparametric Set-up,) includes: 1) a monochrome high speed camera, capable of 500 frames per second (fps) at high-definition (1280x1024 pixel) resolution and up to 200000 fps at reduced resolution; 2) a thermal camera capable of 50-200 fps at 480-120x640 pixel resolution; and 3) two acoustic to infrasonic sensors. All instruments are time-synchronized via a data logging system, a hand- or software-operated trigger, and via GPS, allowing signals from other instruments or networks to be directly recorded by the same logging unit or to be readily synchronized for comparison. FAMoUS weights less than 20 kg, easily fits into four, hand-luggage-sized backpacks, and can be deployed in less than 20' (and removed in less than 2', if needed). So far, explosive eruptions have been recorded in high-speed at several active volcanoes, including Fuego and Santiaguito (Guatemala), Stromboli (Italy), Yasur (Vanuatu), and Eyjafiallajokull (Iceland). Image processing and analysis from these eruptions helped illuminate several eruptive processes, including: 1) Pyroclasts ejection. High-speed

  15. Initial Experiments of High-Speed Drive System Windage Losses

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.; Hurrell, Michael J.

    2010-01-01

    High speed gearing performance is very important to the overall drive system efficiency. Certain losses such as gear meshing and bearing drag can be minimized by design changes such as pressure angle of the gears and the geometry and type of bearings being used. One component that can have a large effect on the overall performance of high-speed drive systems is the parasitic drag known as gear windage. This loss mechanism is not well understood and minimizing this component is usually accomplished through much trial and error. The results presented in this paper will document some of the design parameter effects on the amount of windage losses. A new test facility at NASA Glenn has been assembled to systematically study the design variables. Results from recent tests will be presented. The tests are for a single gear, with and without lubricants, and some initial studies using shrouds

  16. Initial Experiments of High-Speed Drive System Windage Losses

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.; Hurrell, Michael J.

    2011-01-01

    High speed gearing performance is very important to the overall drive system efficiency. Certain losses such as gear meshing and bearing drag can be minimized by design changes such as pressure angle of the gears and the geometry and type of bearings being used. One component that can have a large effect on the overall performance of high-speed drive systems is the parasitic drag known as gear windage. This loss mechanism is not well understood and minimizing this component is usually accomplished through much trial and error. The results presented in this paper will document some of the design parameter effects on the amount of windage losses. A new test facility at NASA Glenn has been assembled to systematically study the design variables. Results from recent tests will be presented. The tests are for a single gear, with and without lubricants, and some initial studies using shrouds.

  17. Robust adaptive cruise control of high speed trains.

    PubMed

    Faieghi, Mohammadreza; Jalali, Aliakbar; Mashhadi, Seyed Kamal-e-ddin Mousavi

    2014-03-01

    The cruise control problem of high speed trains in the presence of unknown parameters and external disturbances is considered. In particular a Lyapunov-based robust adaptive controller is presented to achieve asymptotic tracking and disturbance rejection. The system under consideration is nonlinear, MIMO and non-minimum phase. To deal with the limitations arising from the unstable zero-dynamics we do an output redefinition such that the zero-dynamics with respect to new outputs becomes stable. Rigorous stability analyses are presented which establish the boundedness of all the internal states and simultaneously asymptotic stability of the tracking error dynamics. The results are presented for two common configurations of high speed trains, i.e. the DD and PPD designs, based on the multi-body model and are verified by several numerical simulations.

  18. Open tube guideway for high speed air cushioned vehicles

    NASA Technical Reports Server (NTRS)

    Goering, R. S. (Inventor)

    1974-01-01

    This invention is a tubular shaped guideway for high-speed air-cushioned supported vehicles. The tubular guideway is split and separated such that the sides of the guideway are open. The upper portion of the tubular guideway is supported above the lower portion by truss-like structural members. The lower portion of the tubular guideway may be supported by the terrain over which the vehicle travels, on pedestals or some similar structure.

  19. Afterpulse time spectra of high-speed photon detectors

    NASA Astrophysics Data System (ADS)

    Leskovar, B.

    1985-01-01

    Recent progress of understanding of the afterpulse time spectra of high-speed photon detectors using photoemission and secondary emission processes is reviewed and summarized. Furthermore, the afterpulse time spectra of high-gain conventionally designed and microchannel plate photon detectors was investigated. Specifically, the devices studied included RCA 8850, RCA 8854 and ITT F 4129g photomultipliers. Descriptions are given of the measuring techniques.

  20. First Annual High-Speed Research Workshop, part 2

    NASA Technical Reports Server (NTRS)

    Whitehead, Allen H., Jr. (Compiler)

    1992-01-01

    This workshop provided a national forum for presenting and discussing important technology issues related to the definition of an economically viable and environmentally compatible High Speed Civil Transport. The workshop was organized into 13 sessions. This volume is part 2 of 4 and covers 4 of the 13 sessions: (1) source noise; (2) sonic boom (aerodynamic performance); (3) propulsion systems studies; and (4) emission reduction.

  1. High Speed Trimaran (HST) Seatrain Experiments, Model 5714

    DTIC Science & Technology

    2013-12-01

    Architecture and Engeering Department Code 80. The following people contributed to the suc- cess of this test program; Mr. Gabor Karafiath, Code 8500 for...Francisco Rodriguez all from code 3613 for model propeller manufacture, Mr. Donnie Walker Code 854 and Mr. Dennis Mullinix under contract for...globalsecurity.org/military/systems/ship/inls.htm. [3] Gabor Karafiath, Bryson Metcalf, and Jesse Geisbert. "Seatrain for High Capacity, High Speed, Ocean

  2. High-speed high-efficiency photodetectors based on heterostructures

    NASA Astrophysics Data System (ADS)

    Korolkov, V. I.

    Recent advances in the development of high-speed high-efficiency heterostructure photodetectors (HPs) are reviewed. It is noted that the performance of semiconductor photodetectors has been improved by forbidden bandwidth control. Various types of HPs are examined, including modifications of heterophotodiodes and detectors with internal amplification; avalanche photodiodes; bipolar phototransistors; and planar photoresistance devices and field-effect phototransistors. These devices are compared in terms of speed and efficiency.

  3. Numerical Simulation of High-Speed Turbulent Reacting Flows

    NASA Technical Reports Server (NTRS)

    Givi, P.; Taulbee, D. B.; Madnia, C. K.; Jaberi, F. A.; Colucci, P. J.; Gicquel, L. Y. M.; Adumitroaie, V.; James, S.

    1999-01-01

    The objectives of this research are: (1) to develop and implement a new methodology for large eddy simulation of (LES) of high-speed reacting turbulent flows. (2) To develop algebraic turbulence closures for statistical description of chemically reacting turbulent flows. We have just completed the third year of Phase III of this research. This is the Final Report of our activities on this research sponsored by the NASA LaRC.

  4. High-Speed Tests of Radial-Engine Cowlings

    NASA Technical Reports Server (NTRS)

    Robinson, Russell G.; Becker, John V.

    1939-01-01

    The drag characteristics of eight radial-engine cowlings have been determined over a wide speed range in the N.A.C.A. 8-foot high-speed wind tunnel. The pressure distribution over all cowlings was measured, to and above the speed of the compressibility burble, as an aid in interpreting the force tests. One-fifth-scale models of radial-engine cowlings on a wing-nacelle combination mere used in the tests.

  5. Engineering models of high speed penetration into geological shields

    NASA Astrophysics Data System (ADS)

    Ben-Dor, Gabi; Dubinsky, Anatoly; Elperin, Tov

    2014-03-01

    The survey is dedicated to approximate empirical and analytical models which were suggested for describing high-speed penetration into geological shields. This review differs from the previously published reviews on this topic in the following respects: (i) includes a large number of models; (ii) describes models suggested during recent years; (iii) much attention is given to models which have been originally published in Russian and are not well known in the West. References list includes 81 items.

  6. Design of a high-speed real-time symbiont

    NASA Technical Reports Server (NTRS)

    Grunby, E. I.

    1972-01-01

    The problems involved, approach taken, and solution arrived at are described in a software study to design a high speed, real time symbiont for analog telemetry processing. The symbiont design is based on the need for transferring data from one I/O device to another without significant use of core space or central processor time. The queues, programmed wait states, and teletype commands incorporated in the symbiont design are discussed.

  7. High Speed Aerodynamic Characteristics of the GAF0PH Aerofoil

    DTIC Science & Technology

    1980-09-01

    upper surface of the aerofoil for angles of incidence greater than 210. POSTAL ADDRESS: Chief Superintendent, Aeronautical Research Laboratories, Box...kCLAERO-.NOTE3 98 -AR-002-223 -LEVEL m DEPARTMENT OF DEFENCE 00 DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION AERONAUTICAL RESEARCH LABORATORIES...MELBOURNE, VICTORIA AERODYNAMICS NOTE 398 ’,\\ HIGH SPEED AERODYNAMIC CHARACTERISTICS OF THE GAFPH AEROFOIL by ~B D :, . , .IR-© Approved for Public Release

  8. High Speed Rail (HSR) in the United States

    DTIC Science & Technology

    2009-12-08

    450,000 long-term jobs.53 48 HM Treasury and Department for Transport, The Eddington Transport Study...and Transport Research) #655, 2009, p. 13, http://www.vti.se/EPiBrowser/Publikationer%20-%20English/ R655Eng.pdf. 51 Eddington Transport Study, 2006...www.gao.gov/new.items/d09317.pdf. 56 Eddington Transport Study, 2006, p. 208. High Speed Rail (HSR) in the United States Congressional Research

  9. High Speed, High Accuracy Stage for Advanced Lithography. Phase I

    DTIC Science & Technology

    2007-11-02

    noise and 5nm LSB of our laser interferometer. Zerodur Mounting bar Base expended in this direction Sensor heads Interferometer mirror ...state of the art. Their CORE machine claims an accuracy of 80nm over a 6- inch square field. This machine uses high-speed mirrors to scan multiple...variety of optical paths. If the laboratory is not quiet (e.g. if the interferometer mirror is moving, or if people are talking in the laboratory

  10. NASA/GE Collaboration on Open Rotors - High Speed Testing

    NASA Technical Reports Server (NTRS)

    VanZante, Dale E.

    2011-01-01

    A low-noise open rotor system is being tested in collaboration with General Electric and CFM International, a 50/50 joint company between Snecmaand GE. Candidate technologies for lower noise will be investigated as well as installation effects such as pylon integration. Current test status for the 8x6 SWT high speed testing is presented as well as future scheduled testing which includes the FAA/CLEEN test entry. The tunnel blockage and propeller thrust calibration configurations are shown.

  11. ONR/Hughes High Speed Towed Array System (HSTAS)

    DTIC Science & Technology

    1978-01-01

    see Figure 1) was conceived, designed, and fabricated. The system was successfully sea tested in July of 1977 in Exuma Sound in the Bahamas aboard...than PVC which is known to produce lower self noise levels at the water temperatures of Exuma Sound. 3 IIi ADMINISTRATIVE INFORMATIONj The High Speed...in Exuma Sound during the perioe L6 to 22 July 1977. All the goals set forth in Section II of this report were met within the opera- ttonal constraints

  12. Kinematic and Kinetic Evaluation of High Speed Backward Running

    DTIC Science & Technology

    1999-06-30

    Presented to the Department of Exercise and Movement Science and the Graduate School of the University of Oregon in partial fulfillment of the...dissertation prepared by Alan W. Arata in partial fulfillment of the requirements for the Doctor of Philosophy degree in the Department of Exercise and...Department of Exercise and Movement Science to be taken June 1999 Title: KINEMATIC AND KINETIC EVALUATION OF HIGH SPEED BACKWARD RUNNING Approved

  13. High Speed Video Applications In The Pharmaceutical Industry

    NASA Astrophysics Data System (ADS)

    Stapley, David

    1985-02-01

    The pursuit of quality is essential in the development and production of drugs. The pursuit of excellence is relentless, a never ending search. In the pharmaceutical industry, we all know and apply wide-ranging techniques to assure quality production. We all know that in reality none of these techniques are perfect for all situations. We have all experienced, the damaged foil, blister or tube, the missing leaflet, the 'hard to read' batch code. We are all aware of the need to supplement the traditional techniques of fault finding. This paper shows how high speed video systems can be applied to fully automated filling and packaging operations as a tool to aid the company's drive for high quality and productivity. The range of products involved totals some 350 in approximately 3,000 pack variants, encompassing creams, ointments, lotions, capsules, tablets, parenteral and sterile antibiotics. Pharmaceutical production demands diligence at all stages, with optimum use of the techniques offered by the latest technology. Figure 1 shows typical stages of pharmaceutical production in which quality must be assured, and highlights those stages where the use of high speed video systems have proved of value to date. The use of high speed video systems begins with the very first use of machine and materials: commissioning and validation, (the term used for determining that a process is capable of consistently producing the requisite quality) and continues to support inprocess monitoring, throughout the life of the plant. The activity of validation in the packaging environment is particularly in need of a tool to see the nature of high speed faults, no matter how infrequently they occur, so that informed changes can be made precisely and rapidly. The prime use of this tool is to ensure that machines are less sensitive to minor variations in component characteristics.

  14. Environmental issues: noise, rail noise, and high-speed rail

    SciTech Connect

    Hall, F.L.; Welland, J.D.; Bragdon, C.R.; Houtman, J.W.; Immers, B.H.

    1987-01-01

    The six papers in the report deal with the following areas: the effect of noise barriers on the market value of adjacent residential properties; control of airport- and aircraft-related noise in the United States; a traffic-assignment model to reduce noise annoyance in urban networks; a survey of railroad occupational noise sources; a prediction procedure for rail transportation ground-borne noise and vibration; and high-speed rail in California: the dream, the process, and the reality.

  15. 26. "AIR INSTALLATIONS; EDWARDS AIR FORCE BASE, CALIFORNIA; HIGH SPEED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. "AIR INSTALLATIONS; EDWARDS AIR FORCE BASE, CALIFORNIA; HIGH SPEED TEST TRACK." Drawing No. 10-259. One inch to 400 feet plan of original 10,000-foot sled track. No date. No D.O. series number. No headings as above. - Edwards Air Force Base, South Base Sled Track, Edwards Air Force Base, North of Avenue B, between 100th & 140th Streets East, Lancaster, Los Angeles County, CA

  16. Determination of aminocresol isomers by high-speed liquid chromatography.

    PubMed

    Sakurai, H; Kito, M

    Aminocresol isomers (4-hydroxy-m-toluidine [II], 3-hydroxy-p-toluidine [II], 2-hydroxy-p-toluidine [III]) and p-aminophenol have been separated and determined by a high-speed liquid Chromatographie method. Since this method is applicable in aqueous media, it was used to investigate the suitability of a haemin-cysteine system as a model for the cytochrome P-450 mono-oxygenase system, by determination of the [I], [II], [III] and p-aminophenol formed.

  17. High-speed OCT light sources and systems [Invited

    PubMed Central

    Klein, Thomas; Huber, Robert

    2017-01-01

    Imaging speed is one of the most important parameters that define the performance of optical coherence tomography (OCT) systems. During the last two decades, OCT speed has increased by over three orders of magnitude. New developments in wavelength-swept lasers have repeatedly been crucial for this development. In this review, we discuss the historical evolution and current state of the art of high-speed OCT systems, with focus on wavelength swept light sources and swept source OCT systems. PMID:28270988

  18. Calibration of high-speed imaging by laser triangulation.

    PubMed

    Larsson, Hans; Hertegård, Stellan

    2004-01-01

    A method was developed for absolute calibration of endoscopic vocal fold images using laser triangulation. The laser is attached to a rigid endoscope with 8-degrees angle in relation to the optical axis of the endoscope. A special software is used for calibration and measurements from high-speed images. The equipment can provide measurements both in horizontal and vertical planes, and can be used for calibrated measurements of vocal fold length, amplitude of vocal fold vibrations and vertical movements.

  19. High speed cylindrical rolling element bearing analysis 'CYBEAN' - Analytic formulation

    NASA Technical Reports Server (NTRS)

    Kleckner, R. J.; Pirvics, J.; Castelli, V.

    1979-01-01

    This paper documents the analytic foundation and software architecture for the computerized mathematical simulation of high speed cylindrical rolling element bearing behavior. The software, CYBEAN (CYlindrical BEaring ANalysis), considers a flexible, variable geometry outer ring, EHD films, roller centrifugal and quasidynamic loads, roller tilt and skew, mounting fits, cage and flange interactions. The representation includes both steady state and time transient simulation of thermal interactions internal to and coupled with the surroundings of the bearing. A sample problem illustrating program use is presented.

  20. Diode Laser Diagnostics of High Speed Flows (Postprint)

    DTIC Science & Technology

    2006-10-01

    high speed flows are required. Generally, wall measurements (e.g. pressure, temperature , and heat flux) dominate the instrumentation suite routinely...from 500 to 2000 psf. Unvitiated (cold) flows have also been studied. III. Experiment TDLAS employs single mode diode lasers that are temperature ...too high because it does not account for the entropy rise due to wall friction. Therefore, the pitot pressure and thermocouple temperature probe

  1. Strain rate effect in high-speed wire drawing process

    NASA Astrophysics Data System (ADS)

    He, S.; Van Houtte, P.; Van Bael, A.; Mei, F.; Sarban, A.; Boesman, P.; Galvez, F.; Atienza, J. M.

    2002-05-01

    This paper presents a study on the strain rate effect during high-speed wire drawing process by means of finite element simulation. Based on the quasistatic stresses obtained by normal tensile tests and dynamic stresses at high strain rates by split Hopkinson pressure bar tests, the wire drawing process was simulated for low carbon steel and high carbon steel. The results show that both the deformation process and the final properties of drawn wires are influenced by the strain rate.

  2. The dynamics of a high-speed Jovian jet

    NASA Technical Reports Server (NTRS)

    Maxworthy, T.

    1984-01-01

    New measurements of the velocity field in the neighborhood of the high-speed jet located at approximately 24 deg N latitude in the Jovian atmosphere are presented. The maximum zonal velocity is found to be 182 + or - 10 m/s, located at 23.7 + or - 0.2 deg N and representing the largest velocity measured on the planet. The distinctive cloud markings found close to this latitude are discussed and possible dynamical consequences presented.

  3. NASA High-Speed 2D Photogrammetric Measurement System

    NASA Technical Reports Server (NTRS)

    Dismond, Harriett R.

    2012-01-01

    The object of this report is to provide users of the NASA high-speed 2D photogrammetric measurement system with procedures required to obtain drop-model trajectory and impact data for full-scale and sub-scale models. This guide focuses on use of the system for vertical drop testing at the NASA Langley Landing and Impact Research (LandIR) Facility.

  4. High Speed Optical Photometry of LMXBs and CVs

    NASA Astrophysics Data System (ADS)

    Mason, Paul A.; Robinson, Edward L.; Gomez, Sebastian; Gonzalez, Emmanuel; Lopez, Isaac D.; Monroy, Lorena; Price, Alex

    2013-02-01

    High speed photometry of several accreting binaries was obtained using the McDonald Observatory 2.1m telescope and ARGOS CCD photometer. A broad-band filter (BVR) was used in order to maximize flux and maintain a short (1-10s) integration time on faint targets. Such observations obtained over several years allow for variability study over time scales covering many orders of magnitude. Observations and analysis for several binaries are summarized.

  5. Pulse laser high speed schlieren photographic system and its application

    NASA Astrophysics Data System (ADS)

    Lin, Yuju; Li, Shicheng; Wang, Qingyou; Ni, Wenjun; Xiang, Yong

    1989-06-01

    Two models of a pulsed Q-switched ruby laser high speed schlieren photographic system are introduced. The models are described and results are presented from tests using each model. One model is used to record the armor-piercing process of the terminal trajectory and the chamber shooting process of the midway trajectory. The other model is used to study the detonating mechanism of high energy dynamite. Also, possibilities for future development of the system are considered.

  6. High-Speed Tests of Conventional Radial-Engine Cowlings

    NASA Technical Reports Server (NTRS)

    Robinson, Russell G; Becker, John V

    1942-01-01

    The drag characteristics of eight radial-engine cowlings have been determined over a wide speed range in the NACA 8-foot high-speed wind tunnel. The pressure distribution over all cowlings was measured, to and above the speed of the compressibility burble, as an aid in interpreting the force tests. One-fifth-scale models of radial-engine cowlings on a wing-nacelle combination were used in the tests.

  7. Novel Applications of High Speed Optical-Injection Locked Lasers

    DTIC Science & Technology

    2010-07-31

    frequency response of high speed phototransistors . We have also shown the OIL lasers can significantly extend the reach of optical communications, to I20km...speed InP Heterojunction PhotoTransistors (HPTs). 1 HPT test wafers have been designed and taped out, consisting of single ended HPTs... phototransistors . Light transmitted by the lens fiber and waveguide into the base of the transistor modulates the base current in the device. The

  8. Gearbox Reliability Collaborative High-Speed Shaft Calibration

    SciTech Connect

    Keller, J.; McNiff, B.

    2014-09-01

    Instrumentation has been added to the high-speed shaft, pinion, and tapered roller bearing pair of the Gearbox Reliability Collaborative gearbox to measure loads and temperatures. The new shaft bending moment and torque instrumentation was calibrated and the purpose of this document is to describe this calibration process and results, such that the raw shaft bending and torque signals can be converted to the proper engineering units and coordinate system reference for comparison to design loads and simulation model predictions.

  9. High speed commercial transport fuels considerations and research needs

    NASA Technical Reports Server (NTRS)

    Lee, C. M.; Niedzwiecki, R. W.

    1989-01-01

    NASA is currently evaluating the potential of incorporating High Speed Civil Transport (HSCT) aircraft in the commercial fleet in the beginning of the 21st century. NASA sponsored HSCT enabling studies currently underway with airframers and engine manufacturers, are addressing a broad range of technical, environmental, economic, and related issues. Supersonic cruise speeds for these aircraft were originally focused in the Mach 2 to 5 range. At these flight speeds, both jet fuels and liquid methane were considered potential fuel candidates. For the year 2000 to 2010, cruise Mach numbers of 2 to 3+ are projected for aircraft fuel with thermally stable liquid jet fuels. For 2015 and beyond, liquid methane fueled aircraft cruising at Mach numbers of 4+ may be viable candidates. Operation at supersonic speeds will be much more severe than those encountered at subsonic flight. One of the most critical problems is the potential deterioration of the fuel due to the high temperature environment. HSCT fuels will not only be required to provide the energy necessary for flight, but will also be subject to aerodynamic heating and, will be required to serve as the primary heat sink for cooling the engine and airframe. To define fuel problems for high speed flight, a fuels workshop was conducted at NASA Lewis Research Center. The purpose of the workshop was to gather experts on aviation fuels, airframe fuel systems, airport infrastructure, and combustion systems to discuss high speed fuel alternatives, fuel supply scenarios, increased thermal stability approaches and measurements, safety considerations, and to provide directional guidance for future R and D efforts. Subsequent follow-up studies defined airport infrastructure impacts of high speed fuel candidates. The results of these activities are summarized. In addition, an initial case study using modified in-house refinery simulation model Gordian code (1) is briefly discussed. This code can be used to simulate different

  10. Ultra high speed image processing techniques. [electronic packaging techniques

    NASA Technical Reports Server (NTRS)

    Anthony, T.; Hoeschele, D. F.; Connery, R.; Ehland, J.; Billings, J.

    1981-01-01

    Packaging techniques for ultra high speed image processing were developed. These techniques involve the development of a signal feedthrough technique through LSI/VLSI sapphire substrates. This allows the stacking of LSI/VLSI circuit substrates in a 3 dimensional package with greatly reduced length of interconnecting lines between the LSI/VLSI circuits. The reduced parasitic capacitances results in higher LSI/VLSI computational speeds at significantly reduced power consumption levels.

  11. Instrumentation for propulsion systems development. [high speed fans and turbines

    NASA Technical Reports Server (NTRS)

    Warshawsky, I.

    1978-01-01

    Apparatus and techniques developed or used by NASA-Lewis to make steady state or dynamic measurements of gas temperature, pressure, and velocity and of the temperature, tip clearance, and vibration of the blades of high-speed fans or turbines are described. The advantages and limitations of each instrument and technique are discussed and the possibility of modifying them for use in developing various propulsion systems is suggested.

  12. High-Speed Multiparameter Photophysical Analyses of Fluorophore Libraries

    PubMed Central

    Dean, Kevin M.; Davis, Lloyd M.; Lubbeck, Jennifer L.; Manna, Premashis; Friis, Pia; Palmer, Amy E.; Jimenez, Ralph

    2015-01-01

    There is a critical need for high-speed multi-parameter photophysical measurements of large libraries of fluorescent probe variants for imaging and biosensor development. We present a microfluidic flow cytometer that rapidly assays 104–105 member cell-based fluorophore libraries, simultaneously measuring fluorescence lifetime and photo-bleaching. Together, these photophysical characteristics determine imaging performance. We demonstrate the ability to resolve the diverse photophysical characteristics of different library types and the ability to identify rare populations. PMID:25898152

  13. Picosecond Semiconductor Lasers For Characterizing High-Speed Image Shutters

    NASA Astrophysics Data System (ADS)

    Pagano, T. S.; Janson, F. J.; Yates, G. J.; Jaramillo, S. A.

    1986-01-01

    A portable system that utilizes solid state electronic timing circuits and a pulsed semiconductor laser for characterizing the optical gate sequence of high-speed image shutters, including microchannel-plate intensifier tubes (MCPTs), and silicon-intensified target vidicons (SITVs), is described and compared to earlier methods of characterization. Gate sequences obtained using the system and streak camera data of the semiconductor laser pulse are presented, with a brief discussion of the electronic delay timing and avalanche circuits used in the system.

  14. High-Speed, Low-Level Flight: Aircrew Factors

    DTIC Science & Technology

    1980-03-01

    clear from the material presented that the major problems currently encountered in high-speed, low-level flight are ’ride-bumpiness’, excessive workload...which we have for centuries, colonized, administered, developed, explored and loved. The unexpected drying up of preferential sources of raw materials and...definition means assuming responsibility for providing them with the material means necessary to carry the assigned mission, one can nevertheless say that the

  15. Pushbroom Stereo for High-Speed Navigation in Cluttered Environments

    DTIC Science & Technology

    2014-09-01

    second (fps) on a conventional CPU. Our system is lightweight and accurate The authors are with the Computer Science and Artificial Intellegence Laboratory...PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Massachusetts Institute of Technology, Computer Science and Artificial Intellegence Laboratory,Cambridge,MA...high-speed, small UAV, flying at over 20 MPH (9 m/s) close to obstacles. The system requires no external sensing or computation and is, to the best of

  16. Multiport power router and its impact on future smart grids

    NASA Astrophysics Data System (ADS)

    Kado, Yuichi; Shichijo, Daiki; Wada, Keiji; Iwatsuki, Katsumi

    2016-07-01

    We propose a Y configuration power router as a unit cell to easily construct a power delivery system that can meet many types of user requirements. The Y configuration power router controls the direction and magnitude of power flows between three ports regardless of DC or AC. We constructed a prototype three-way isolated DC/DC converter that is the core unit of the Y configuration power router. The electrical insulation between three ports assures safety and reliability for power network systems. We then tested the operation of power flow control. The experimental results revealed that our methodology based on a governing equation was appropriate to control the power flow of the three-way DC/DC converter. In addition, a distribution network composed of power routers had the ability to easily enable interchanges of electrical power between autonomous microgrid cells. We also explored the requirements for communication between energy routers to achieve dynamic adjustments of energy flows in a coordinated manner and their impact on resilient power grid systems.

  17. High-speed Telescopic Imaging of a Sprite Streamer Head

    NASA Astrophysics Data System (ADS)

    Kanmae, T.; Stenbaek-Nielsen, H. C.; McHarg, M. G.; Haaland, R. K.

    2010-12-01

    Sprites start with downward moving streamer heads and the similarity between sprite streamers and streamers observed in the laboratory has been noted by many researchers. We present here high-speed optical observations of a downward propagating sprite streamer head showing remarkable similarity with a laboratory streamer head recorded by Nudnova and Starikovski (J. Phys. D: Appl. Phys., 41, doi:10.1088/0022-3727/41/23/234003, 2008). The sprite event was recorded at 07:06:09 UT on 15 July 2010 from the Langmuir Laboratory, New Mexico. The camera used was an intensified Phantom 7.3 high-speed camera with a 500 mm Takahashi Sky 9 lens giving a field-of-view of 1.3x0.6 degrees. Another similar high-speed camera with an 85 mm Nikon lens, co-aligned with the telescopic camera, had a 7.3x3.7 degree field-of-view. The two cameras were operated at 16,000 fps with 20 μs exposures and 10,000 fps with 100 μs exposures respectively. The two sets of observations offer an opportunity to investigate the scaling laws between high altitude sprite streamers and those observed under ground-based laboratory conditions.

  18. High Speed Imaging of Cavitation around Dental Ultrasonic Scaler Tips.

    PubMed

    Vyas, Nina; Pecheva, Emilia; Dehghani, Hamid; Sammons, Rachel L; Wang, Qianxi X; Leppinen, David M; Walmsley, A Damien

    2016-01-01

    Cavitation occurs around dental ultrasonic scalers, which are used clinically for removing dental biofilm and calculus. However it is not known if this contributes to the cleaning process. Characterisation of the cavitation around ultrasonic scalers will assist in assessing its contribution and in developing new clinical devices for removing biofilm with cavitation. The aim is to use high speed camera imaging to quantify cavitation patterns around an ultrasonic scaler. A Satelec ultrasonic scaler operating at 29 kHz with three different shaped tips has been studied at medium and high operating power using high speed imaging at 15,000, 90,000 and 250,000 frames per second. The tip displacement has been recorded using scanning laser vibrometry. Cavitation occurs at the free end of the tip and increases with power while the area and width of the cavitation cloud varies for different shaped tips. The cavitation starts at the antinodes, with little or no cavitation at the node. High speed image sequences combined with scanning laser vibrometry show individual microbubbles imploding and bubble clouds lifting and moving away from the ultrasonic scaler tip, with larger tip displacement causing more cavitation.

  19. Unsteady Flow Simulation of High-speed Turbopumps

    NASA Technical Reports Server (NTRS)

    Kiris, Cetin C.; Kwak, dochan; Chan, William; Housman, Jeffrey A.

    2006-01-01

    Computation of high-speed hydrodynamics requires high-fidelity simulation to resolve flow features involving transient flow, cavitation, tip vortex and multiple scales of unsteady fluctuations. One example of this type in aerospace is related to liquid-fueled rocket turbopump. Rocket turbopumps operate under severe conditions at very high rotational speeds typically at thousands of rpm. For example, the Shuttle orbiter low-pressure-fuel-turbopump creates transient flow features associated with reverse flows, tip clearance effects, secondary flows, vortex shedding, junction flows, and cavitation effects. Flow unsteadiness originating from the orbiter Low-Pressure-Fuel-Turbopump (LPFTP) inducer is one of the major contributors to the high frequency cyclic loading that results in high cycle fatigue damage to the flow liners just upstream of the LPFTP. The reverse flow generated at the tip of the inducer blades travels upstream and interacts with the bellows cavity. Simulation procedure for this type high-speed hydrodynamic problems requires a method for quantifying multi-scale and multi-phase flow as well as an efficient high-end computing strategy. The current paper presents a high-fidelity computational procedure for unsteady hydrodynamic problems using a high-speed liquid-fueled rocket turbopump.

  20. Multivariable Techniques for High-Speed Research Flight Control Systems

    NASA Technical Reports Server (NTRS)

    Newman, Brett A.

    1999-01-01

    This report describes the activities and findings conducted under contract with NASA Langley Research Center. Subject matter is the investigation of suitable multivariable flight control design methodologies and solutions for large, flexible high-speed vehicles. Specifically, methodologies are to address the inner control loops used for stabilization and augmentation of a highly coupled airframe system possibly involving rigid-body motion, structural vibrations, unsteady aerodynamics, and actuator dynamics. Design and analysis techniques considered in this body of work are both conventional-based and contemporary-based, and the vehicle of interest is the High-Speed Civil Transport (HSCT). Major findings include: (1) control architectures based on aft tail only are not well suited for highly flexible, high-speed vehicles, (2) theoretical underpinnings of the Wykes structural mode control logic is based on several assumptions concerning vehicle dynamic characteristics, and if not satisfied, the control logic can break down leading to mode destabilization, (3) two-loop control architectures that utilize small forward vanes with the aft tail provide highly attractive and feasible solutions to the longitudinal axis control challenges, and (4) closed-loop simulation sizing analyses indicate the baseline vane model utilized in this report is most likely oversized for normal loading conditions.

  1. Direct Numerical Simulation of Disperse Multiphase High-Speed Flows

    SciTech Connect

    Nourgaliev, R R; Dinh, T N; Theofanous, T G; Koning, J M; Greenman, R M; Nakafuji, G T

    2004-02-17

    A recently introduced Level-Set-based Cartesian Grid (LSCG) Characteristics-Based Matching (CBM) method is applied for direct numerical simulation of shock-induced dispersal of solid material. The method incorporates the latest advancements in the level set technology and characteristics-based numerical methods for solution of hyperbolic conservation laws and boundary treatment. The LSCG/CBM provides unique capabilities to simulate complex fluid-solid (particulate) multiphase flows under high-speed flow conditions and taking into account particle-particle elastic and viscoelastic collisions. The particular emphasis of the present study is placed on importance of appropriate modeling of particle-particle collisions, which are demonstrated to crucially influence the global behavior of high-speed multiphase particulate flows. The results of computations reveal the richness and complexity of flow structures in compressible disperse systems, due to dynamic formation of shocks and contact discontinuities, which provide an additional long-range interaction mechanism in dispersed high-speed multiphase flows.

  2. High speed turboprop aeroacoustic study (counterrotation). Volume 1: Model development

    NASA Technical Reports Server (NTRS)

    Whitfield, C. E.; Mani, R.; Gliebe, P. R.

    1990-01-01

    The isolated counterrotating high speed turboprop noise prediction program was compared with model data taken in the GE Aircraft Engines Cell 41 anechoic facility, the Boeing Transonic Wind Tunnel, and in NASA-Lewis' 8x6 and 9x15 wind tunnels. The predictions show good agreement with measured data under both low and high speed simulated flight conditions. The installation effect model developed for single rotation, high speed turboprops was extended to include counterotation. The additional effect of mounting a pylon upstream of the forward rotor was included in the flow field modeling. A nontraditional mechanism concerning the acoustic radiation from a propeller at angle of attach was investigated. Predictions made using this approach show results that are in much closer agreement with measurement over a range of operating conditions than those obtained via traditional fluctuating force methods. The isolated rotors and installation effects models were combines into a single prediction program, results of which were compared with data taken during the flight test of the B727/UDF engine demonstrator aircraft. Satisfactory comparisons between prediction and measured data for the demonstrator airplane, together with the identification of a nontraditional radiation mechanism for propellers at angle of attack are achieved.

  3. Sound transmission loss of windows on high speed trains

    NASA Astrophysics Data System (ADS)

    Zhang, Yumei; Xiao, Xinbiao; Thompson, David; Squicciarini, Giacomo; Wen, Zefeng; Li, Zhihui; Wu, Yue

    2016-09-01

    The window is one of the main components of the high speed train car body structure through which noise can be transmitted. To study the windows’ acoustic properties, the vibration of one window of a high speed train has been measured for a running speed of 250 km/h. The corresponding interior noise and the noise in the wheel-rail area have been measured simultaneously. The experimental results show that the window vibration velocity has a similar spectral shape to the interior noise. Interior noise source identification further indicates that the window makes a contribution to the interior noise. Improvement of the window's Sound Transmission Loss (STL) can reduce the interior noise from this transmission path. An STL model of the window is built based on wave propagation and modal superposition methods. From the theoretical results, the window's STL property is studied and several factors affecting it are investigated, which provide indications for future low noise design of high speed train windows.

  4. Numerical simulation of high speed incremental forming of aluminum alloy

    NASA Astrophysics Data System (ADS)

    Giuseppina, Ambrogio; Teresa, Citrea; Luigino, Filice; Francesco, Gagliardi

    2013-12-01

    In this study, an innovative process is analyzed with the aim to satisfy the industrial requirements, such as process flexibility, differentiation and customizing of products, cost reduction, minimization of execution time, sustainable production, etc. The attention is focused on incremental forming process, nowadays used in different fields such as: rapid prototyping, medical sector, architectural industry, aerospace and marine, in the production of molds and dies. Incremental forming consists in deforming only a small region of the workspace through a punch driven by a NC machine. SPIF is the considered variant of the process, in which the punch gives local deformation without dies and molds; consequently, the final product geometry can be changed by the control of an actuator without requiring a set of different tools. The drawback of this process is its slowness. The aim of this study is to assess the IF feasibility at high speeds. An experimental campaign will be performed by a CNC lathe with high speed to test process feasibility and the influence on materials formability mainly on aluminum alloys. The first results show how the material presents the same performance than in conventional speed IF and, in some cases, better material behavior due to the temperature field. An accurate numerical simulation has been performed to investigate the material behavior during the high speed process substantially confirming experimental evidence.

  5. High speed turbulent reacting flows: DNS and LES

    NASA Technical Reports Server (NTRS)

    Givi, Peyman

    1990-01-01

    Work on understanding the mechanisms of mixing and reaction in high speed turbulent reacting flows was continued. Efforts, in particular, were concentrated on taking advantage of modern computational methods to simulate high speed turbulent flows. In doing so, two methodologies were used: large eddy simulations (LES) and direct numerical simulations (DNS). In the work related with LES the objective is to study the behavior of the probability density functions (pdfs) of scalar properties within the subgrid in reacting turbulent flows. The data base obtained by DNS for a detailed study of the pdf characteristics within the subgrid was used. Simulations are performed for flows under various initializations to include the effects of compressibility on mixing and chemical reactions. In the work related with DNS, a two-dimensional temporally developing high speed mixing layer under the influence of a second-order non-equilibrium chemical reaction of the type A + B yields products + heat was considered. Simulations were performed with different magnitudes of the convective Mach numbers and with different chemical kinetic parameters for the purpose of examining the isolated effects of the compressibility and the heat released by the chemical reactions on the structure of the layer. A full compressible code was developed and utilized, so that the coupling between mixing and chemical reactions is captured in a realistic manner.

  6. Shape optimization of high-speed penetrators: a review

    NASA Astrophysics Data System (ADS)

    Ben-Dor, Gabi; Dubinsky, Anatoly; Elperin, Tov

    2012-12-01

    In spite of a large number of publications on shape optimization of penetrating projectiles there are no dedicated surveys of these studies. The goal of the present review is to close this gap. The review includes more than 50 studies published since 1980 and devoted to solving particular problems of shape optimization of high-speed penetrators. We analyze publications which employed analytical and numerical method for shape optimization of high-speed penetrators against concrete, metal, fiber-reinforced plastic laminate and soil shields. We present classification of the mathematical models used for describing interaction between a penetrator and a shield. The reviewed studies are summarized in the table where we display the following information: the model; indicate whether the model accounts for or neglects friction at the surface of penetrator; criterion for optimization (depth of penetration into a semi-infinite shield, ballistic limit velocity for a shield having a finite thickness, several criteria); class of considered shapes of penetrators (bodies of revolution, different classes of 3-D bodies, etc.); method of solution (analytical or numerical); in comments we present additional information on formulation of the optimization problem. The survey also includes discussion on certain methodological facets in formulating shape optimization problems for high-speed penetrators.

  7. High Speed Imaging of Cavitation around Dental Ultrasonic Scaler Tips

    PubMed Central

    Vyas, Nina; Pecheva, Emilia; Dehghani, Hamid; Sammons, Rachel L.; Wang, Qianxi X.; Leppinen, David M.; Walmsley, A. Damien

    2016-01-01

    Cavitation occurs around dental ultrasonic scalers, which are used clinically for removing dental biofilm and calculus. However it is not known if this contributes to the cleaning process. Characterisation of the cavitation around ultrasonic scalers will assist in assessing its contribution and in developing new clinical devices for removing biofilm with cavitation. The aim is to use high speed camera imaging to quantify cavitation patterns around an ultrasonic scaler. A Satelec ultrasonic scaler operating at 29 kHz with three different shaped tips has been studied at medium and high operating power using high speed imaging at 15,000, 90,000 and 250,000 frames per second. The tip displacement has been recorded using scanning laser vibrometry. Cavitation occurs at the free end of the tip and increases with power while the area and width of the cavitation cloud varies for different shaped tips. The cavitation starts at the antinodes, with little or no cavitation at the node. High speed image sequences combined with scanning laser vibrometry show individual microbubbles imploding and bubble clouds lifting and moving away from the ultrasonic scaler tip, with larger tip displacement causing more cavitation. PMID:26934340

  8. Software Developed for Analyzing High- Speed Rolling-Element Bearings

    NASA Technical Reports Server (NTRS)

    Fleming, David P.

    2005-01-01

    COBRA-AHS (Computer Optimized Ball & Roller Bearing Analysis--Advanced High Speed, J.V. Poplawski & Associates, Bethlehem, PA) is used for the design and analysis of rolling element bearings operating at high speeds under complex mechanical and thermal loading. The code estimates bearing fatigue life by calculating three-dimensional subsurface stress fields developed within the bearing raceways. It provides a state-of-the-art interactive design environment for bearing engineers within a single easy-to-use design-analysis package. The code analyzes flexible or rigid shaft systems containing up to five bearings acted upon by radial, thrust, and moment loads in 5 degrees of freedom. Bearing types include high-speed ball, cylindrical roller, and tapered roller bearings. COBRA-AHS is the first major upgrade in 30 years of such commercially available bearing software. The upgrade was developed under a Small Business Innovation Research contract from the NASA Glenn Research Center, and incorporates the results of 30 years of NASA and industry bearing research and technology.

  9. Hybrid hydrostatic/ball bearings in high-speed turbomachinery

    NASA Technical Reports Server (NTRS)

    Nielson, C. E.

    1983-01-01

    A high speed, high pressure liquid hydrogen turbopump was designed, fabricated, and tested under a previous contract. This design was then modified to incorporate hybrid hydrostatic/ball bearings on both the pump end and turbine end to replace the original conventional ball bearing packages. The design, analysis, turbopump modification, assembly, and testing of the turbopump with hybrid bearings is presented here. Initial design considerations and rotordynamic performance analysis was made to define expected turbopump operating characteristics and are reported. The results of testing the turbopump to speeds of 9215 rad/s (88,000 rpm) using a wide range of hydrostatic bearing supply pressures are presented. The hydrostatic bearing test data and the rotordynamic behavior of the turbopump was closely analyzed and are included in the report. The testing of hybrid hydrostatic/ball bearings on a turbopump to the high speed requirements has indicated the configuration concept is feasible. The program has presented a great deal of information on the technology requirements of integrating the hybrid bearing into high speed turbopump designs for improved bearing life.

  10. High-speed traveling-wave electro-absorption modulators

    NASA Astrophysics Data System (ADS)

    Westergren, Urban; Yu, Yichuan; Thylén, Lars

    2006-07-01

    Electroabsorption modulators (EAM) based on quantum-confined Stark effect (QCSE) in multiplequantum wells (MQW) have been demonstrated to provide high-speed, low drive voltage, and high extinction ratio. They are compact in size and can be monolithically integrated with continuous-wave (CW) lasers. In order to achieve both high speed and low drive-voltage operation, travelling-wave (TW) electrode structures can be used for EAMs. The inherently low impedance of high-speed EAMs may be transformed to values close to the standard 50Ohm impedance using periodic microwave structures with a combination of passive transmission lines with high characteristic impedance and active modulator sections with low impedance. Modulation bandwidths of 100GHz (-3dBe) have been accomplished with electrical reflections lower than -10dB in a 50Ohm system. Transmission at 80Gbit/s with non-return-to-zero (NRZ) code has been demonstrated for InP-based TWEAMs using electronic time-domain multiplexing (ETDM), indicating the possibility of reaching speeds of 100Gbit/s and beyond.

  11. A Network Layer for Teleoperations in High Speed Environments

    SciTech Connect

    Lamarche, Brian L.; Hopkins, Derek F.; Hughes, Chad O.; McKenna, Tom P.; Fulp, Errin W.

    2007-05-01

    Teleoperation systems allow an operator to control a device at a remote location via a network [?, ?]. The stability of these systems is highly dependent on data loss and delay since command messages and the associated device feedback must remain synchronized [?]. The communication network is often cited as the source of delays and loss, however it is no longer the case with high speed optical networks. In a high speed environment, the end systems (operator and device) are the primary cause of poor system performance, since losses and delays are the result of saturated end systems. Given the speed and available bandwidth of optical networks, it is easy for a sender to overwhelm the receiver with messages. Another problem advanced teleoperations is each stream of information (command or feedback) may require a different type of network service, such as sensitivity to data loss and delay. As a result, no single transport protocol is suitable for transmitting the various feedback and command messages. Therefore a new teleoperation system is needed that provides greater protocol flexibility as well as management for systems using high speed networks.

  12. Harnessing multicore processors for high-speed secure transfer.

    SciTech Connect

    Bresnahan, J.; Kettimuthu, R.; Link, M.; Foster, I.; Mathematics and Computer Science; Univ. of Chicago

    2007-01-01

    A growing need for ultra-high-speed data transfers has motivated continued improvements in the transmission speeds of the physical network layer. As researchers develop protocols and software to operate over such networks, they often fail to account for security. The processing power required to encrypt or sign packets of data can significantly decrease transfer rates, and thus security is often sacrificed for throughput. Emerging multicore processors provide a higher ratio of CPUs to network interfaces and can, in principle, be used to accelerate encrypted transfers by applying multiple processing and network resources to a single transfer. We discuss the attributes that network protocols and software must have to exploit such systems. In particular, we study how these attributes may be applied in the GridFTP code distributed with the globus toolkit. GridFTP is a well-accepted and robust protocol for high-speed data transfer. It has been shown to scale to near-network speeds. While GridFTP can provide encrypted and protected data transfers, it historically suffers transfer performance penalties when these features are enabled. We present configurations to the Globus GridFTP server that can achieve fully encrypted high-speed data transfers.

  13. High-speed imaging of blood splatter patterns

    SciTech Connect

    McDonald, T.E.; Albright, K.A.; King, N.S.P.; Yates, G.J. ); Levine, G.F. . Bureau of Forensic Services)

    1993-01-01

    The interpretation of blood splatter patterns is an important element in reconstructing the events and circumstances of an accident or crime scene. Unfortunately, the interpretation of patterns and stains formed by blood droplets is not necessarily intuitive and study and analysis are required to arrive at a correct conclusion. A very useful tool in the study of blood splatter patterns is high-speed photography. Scientists at the Los Alamos National Laboratory, Department of Energy (DOE), and Bureau of Forensic Services, State of California, have assembled a high-speed imaging system designed to image blood splatter patterns. The camera employs technology developed by Los Alamos for the underground nuclear testing program and has also been used in a military mine detection program. The camera uses a solid-state CCD sensor operating at approximately 650 frames per second (75 MPixels per second) with a microchannel plate image intensifier that can provide shuttering as short as 5 ns. The images are captured with a laboratory high-speed digitizer and transferred to an IBM compatible PC for display and hard copy output for analysis. The imaging system is described in this paper.

  14. High-speed imaging of blood splatter patterns

    SciTech Connect

    McDonald, T.E.; Albright, K.A.; King, N.S.P.; Yates, G.J.; Levine, G.F.

    1993-05-01

    The interpretation of blood splatter patterns is an important element in reconstructing the events and circumstances of an accident or crime scene. Unfortunately, the interpretation of patterns and stains formed by blood droplets is not necessarily intuitive and study and analysis are required to arrive at a correct conclusion. A very useful tool in the study of blood splatter patterns is high-speed photography. Scientists at the Los Alamos National Laboratory, Department of Energy (DOE), and Bureau of Forensic Services, State of California, have assembled a high-speed imaging system designed to image blood splatter patterns. The camera employs technology developed by Los Alamos for the underground nuclear testing program and has also been used in a military mine detection program. The camera uses a solid-state CCD sensor operating at approximately 650 frames per second (75 MPixels per second) with a microchannel plate image intensifier that can provide shuttering as short as 5 ns. The images are captured with a laboratory high-speed digitizer and transferred to an IBM compatible PC for display and hard copy output for analysis. The imaging system is described in this paper.

  15. First NASA/Industry High Speed Research Program Nozzle Symposium

    NASA Technical Reports Server (NTRS)

    Long-Davis, Mary Jo

    1999-01-01

    The First High Speed Research (HSR) Nozzle Symposium was hosted by NASA Lewis Research Center on November 17-19, 1992 in Cleveland, Ohio, and was sponsored by the HSR Source Noise Working Group. The purpose of this symposium was to provide a national forum for the government, industry, and university participants in the program to present and discuss important low noise nozzle research results and technology issues related to the development of appropriate nozzles for a commercially viable, environmentally compatible, U.S. High-Speed Civil Transport. The HSR Phase I research program was initiated in FY90 and is approaching the first major milestone (end of FY92) relative to an initial FAR 36 Stage 3 nozzle noise assessment. Significant research results relative to that milestone were presented. The opening session provided a brief overview of the Program and status of the Phase H plan. The next five sessions were technically oriented and highlighted recent significant analytical and experimental accomplishments. The last Session included a panel discussion by the Session Chairs, summarizing the progress seen to date and discussing issues relative to further advances in technology necessary to achieve the Program Goals. Attendance at the Symposium was by invitation only and included only industry, academic, and government participants who are actively involved in the High-Speed Research Program. The technology presented in this meeting is considered commercially sensitive.

  16. Driver assist behaviors for high-speed small UGVs

    NASA Astrophysics Data System (ADS)

    Yamauchi, Brian

    2011-05-01

    Currently deployed small UGVs operate at speeds up to around 6 mph and have proven their usefulness in explosives ordnance disposal (EOD) missions. As part of the TARDEC-funded Stingray Project, iRobot is investigating techniques to increase the speed of small UGVs so they can be useful in a wider range of missions, such as high-speed reconnaissance and infantry assault missions. We have developed a prototype Stingray PackBot, using wheels rather than tracks, that is capable of traveling at speeds up to 18 mph. A key issue when traveling at such speeds is how to maintain stability during sharp turns and over rough terrain. We are developing driver assist behaviors that will provide dynamic stability control for high-speed small UGVs using techniques such as dynamic weight shifting to limit oversteer and understeer. These driver assist behaviors will enable operators to use future high-speed small UGVs in high optempo infantry missions and keep warfighters out of harm's way.

  17. Improved pulse laser ranging algorithm based on high speed sampling

    NASA Astrophysics Data System (ADS)

    Gao, Xuan-yi; Qian, Rui-hai; Zhang, Yan-mei; Li, Huan; Guo, Hai-chao; He, Shi-jie; Guo, Xiao-kang

    2016-10-01

    Narrow pulse laser ranging achieves long-range target detection using laser pulse with low divergent beams. Pulse laser ranging is widely used in military, industrial, civil, engineering and transportation field. In this paper, an improved narrow pulse laser ranging algorithm is studied based on the high speed sampling. Firstly, theoretical simulation models have been built and analyzed including the laser emission and pulse laser ranging algorithm. An improved pulse ranging algorithm is developed. This new algorithm combines the matched filter algorithm and the constant fraction discrimination (CFD) algorithm. After the algorithm simulation, a laser ranging hardware system is set up to implement the improved algorithm. The laser ranging hardware system includes a laser diode, a laser detector and a high sample rate data logging circuit. Subsequently, using Verilog HDL language, the improved algorithm is implemented in the FPGA chip based on fusion of the matched filter algorithm and the CFD algorithm. Finally, the laser ranging experiment is carried out to test the improved algorithm ranging performance comparing to the matched filter algorithm and the CFD algorithm using the laser ranging hardware system. The test analysis result demonstrates that the laser ranging hardware system realized the high speed processing and high speed sampling data transmission. The algorithm analysis result presents that the improved algorithm achieves 0.3m distance ranging precision. The improved algorithm analysis result meets the expected effect, which is consistent with the theoretical simulation.

  18. Double Helical Gear Performance Results in High Speed Gear Trains

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.; Ehinger, Ryan; Sinusas, Eric; Kilmain, Charles

    2010-01-01

    The operation of high speed gearing systems in the transmissions of tiltrotor aircraft has an effect on overall propulsion system efficiency. Recent work has focused on many aspects of high-speed helical gear trains as would be used in tiltrotor aircraft such as operational characteristics, comparison of analytical predictions to experimental data and the affect of superfinishing on transmission performance. Baseline tests of an aerospace quality system have been conducted in the NASA Glenn High-Speed Helical Gear Train Test Facility and have been described in earlier studies. These earlier tests had utilized single helical gears. The results that will be described in this study are those attained using double helical gears. This type of gear mesh can be configured in this facility to either pump the air-oil environment from the center gap between the meshing gears to the outside of tooth ends or in the reverse direction. Tests were conducted with both inward and outward air-oil pumping directions. Results are compared to the earlier baseline results of single helical gears.

  19. Double Helical Gear Performance Results in High Speed Gear Trains

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.; Ehinger, Ryan; Sinusas, Eric; Kilmain, Charles

    2009-01-01

    The operation of high speed gearing systems in the transmissions of tiltrotor aircraft has an effect on overall propulsion system efficiency. Recent work has focused on many aspects of high-speed helical gear trains as would be used in tiltrotor aircraft such as operational characteristics, comparison of analytical predictions to experimental data and the affect of superfinishing on transmission performance. Baseline tests of an aerospace quality system have been conducted in the NASA Glenn High-Speed Helical Gear Train Test Facility and have been described in earlier studies. These earlier tests had utilized single helical gears. The results that will be described in this study are those attained using double helical gears. This type of gear mesh can be configured in this facility to either pump the air-oil environment from the center gap between the meshing gears to the outside of tooth ends or in the reverse direction. Tests were conducted with both inward and outward air-oil pumping directions. Results are compared to the earlier baseline results of single helical gears.

  20. Noise in the passenger cars of high-speed trains.

    PubMed

    Hong, Joo Young; Cha, Yongwon; Jeon, Jin Yong

    2015-12-01

    The aim of this study is to investigate the effects of both room acoustic conditions and spectral characteristics of noises on acoustic discomfort in a high-speed train's passenger car. Measurement of interior noises in a high-speed train was performed when the train was operating at speeds of 100 km/h and 300 km/h. Acoustic discomfort caused by interior noises was evaluated by paired comparison methods based on the variation of reverberation time (RT) in a passenger car and the spectral differences in interior noises. The effect of RT on acoustic discomfort was not significant, whereas acoustic discomfort significantly varied depending on spectral differences in noise. Acoustic discomfort increased with increment of the sound pressure level (SPL) ratio at high frequencies, and variation in high-frequency noise components were described using sharpness. Just noticeable differences of SPL with low- and high-frequency components were determined to be 3.7 and 2.9 dB, respectively. This indicates that subjects were more sensitive to differences in SPLs at the high-frequency range than differences at the low-frequency range. These results support that, for interior noises, reduction in SPLs at high frequencies would significantly contribute to improved acoustic quality in passenger cars of high-speed trains.

  1. High speed displacement analysis using digital speckle correlation

    NASA Astrophysics Data System (ADS)

    Siebert, T.; Splitthof, K.; Becker, T.; Krupka, R.

    2006-06-01

    Digital speckle correlation techniques have already been successfully proven for accurate displacement analysis. With the use of two cameras, three dimensional measurements of contours and displacements can be carried out. The principle of this technique is pretty easy to understood and realized, opening a nearly unlimited range of applications. Rapid new developments in the field of digital imaging and computer technology, especially for very much dynamic applications, opens further applications for these measurement method up to high speed deformation and strain analysis, e.g. in the fields of, material testing, fracture mechanics, high speed testing, advanced materials and component testing. The dynamic range is combined with the capability to measure very large strains (up to more than 100%). The resolution of the deformation in space and time opens a wide range of applications for vibration analysis of objects. Since the system determines the absolute position and displacements of the object in space it is capable of measuring high amplitudes and even objects with rigid body movements, which is a big advantage against full field ESPI systems. The absolute resolution depends on the field of view and is scalable. Calibration of the optical setup is a crucial point which will be discussed in detail. Examples of the analysis of high speed harmonic vibration and transient events out of material research and industrial applications are presented. Results of measurement performed on a vibrating membrane and a tensile test sample are show typical features of the system.

  2. A computer tool to support in design of industrial Ethernet.

    PubMed

    Lugli, Alexandre Baratella; Santos, Max Mauro Dias; Franco, Lucia Regina Horta Rodrigues

    2009-04-01

    This paper presents a computer tool to support in the project and development of an industrial Ethernet network, verifying the physical layer (cables-resistance and capacitance, scan time, network power supply-POE's concept "Power Over Ethernet" and wireless), and occupation rate (amount of information transmitted to the network versus the controller network scan time). These functions are accomplished without a single physical element installed in the network, using only simulation. The computer tool has a software that presents a detailed vision of the network to the user, besides showing some possible problems in the network, and having an extremely friendly environment.

  3. A rapid protection switching method in carrier ethernet ring networks

    NASA Astrophysics Data System (ADS)

    Yuan, Liang; Ji, Meng

    2008-11-01

    Abstract: Ethernet is the most important Local Area Network (LAN) technology since more than 90% data traffic in access layer is carried on Ethernet. From 10M to 10G, the improving Ethernet technology can be not only used in LAN, but also a good choice for MAN even WAN. MAN are always constructed in ring topology because the ring network could provide resilient path protection by using less resource (fibre or cable) than other network topologies. In layer 2 data networks, spanning tree protocol (STP) is always used to protect transmit link and preventing the formation of logic loop in networks. However, STP cannot guarantee the efficiency of service convergence when link fault happened. In fact, convergent time of networks with STP is about several minutes. Though Rapid Spanning Tree Protocol (RSTP) and Multi-Spanning Tree Protocol (MSTP) improve the STP technology, they still need a couple of seconds to achieve convergence, and can not provide sub-50ms protection switching. This paper presents a novel rapid ring protection method (RRPM) for carrier Ethernet. Unlike other link-fault detection method, it adopts distributed algorithm to detect link fault rapidly (sub-50ms). When networks restore from link fault, it can revert to the original working state. RRPM can provide single ring protection and interconnected ring protection without the formation of super loop. In normal operation, the master node blocks the secondary port for all non-RRPM Ethernet frames belonging to the given RRPM Ring, thereby avoiding a loop in the ring. When link fault happens, the node on which the failure happens moves from the "ring normal" state to the "ring fault" state. It also sends "link down" frame immediately to other nodes and blocks broken port and flushes its forwarding database. Those who receive "link down" frame will flush forwarding database and master node should unblock its secondary port. When the failure restores, the whole ring will revert to the normal state. That is

  4. Indoor optical wireless communication: a GigaEthernet network prototype at 60 dB link margin

    NASA Astrophysics Data System (ADS)

    Bouchet, Olivier; Launay, Gilles; Besnard, Pascal

    2009-08-01

    The optical wireless system is a promising solution for increasing the available communication bandwidth within a room. This technology can give a very high-speed communication between devices and becomes a good alternative with respect to radio systems. For both technologies, the architecture is similar: a base station is installed to cover zones and transmit data with a defined quality of service. A device may be connected to the Wireless Local Area Network (WLAN) with an adapter that emits and receives on this network. The wireless optical technology has advantageous specific characteristics, such as: secure data transmission, immunity, high data rate, wavelength re-use. Nevertheless, the optical system may have a limit on the network management aspect and link budget. The scope of this paper is to present a prototype developed during a collaborative project. This prototype uses a Giga Ethernet chip and components in the 1550 nm band. Based on OOK modulation, the prototype is fully compatible with the direct conversion of fibre-based Giga-Ethernet to an analogue free space version. Moreover, it also proposes a new class 1 high power emission solution with 30 dBm on 45° HP (Half Power) angle and a new large Field Of View (FOV) module on the reception side. This full duplex system, composed by one Base station and two Modules, transmits data on, at least, one meter. The document will present the prototype characteristics with testbed and experimentation results.

  5. 76 FR 36154 - In the Matter of Certain Equipment for Communications Networks, Including Switches, Routers...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-21

    ... COMMISSION In the Matter of Certain Equipment for Communications Networks, Including Switches, Routers... United States after importation of certain equipment for communications networks, including switches... networks, including switches, routers, gateways, bridges, wireless access points, cable modems, IP...

  6. Application of high-speed videography in sports analysis

    NASA Astrophysics Data System (ADS)

    Smith, Sarah L.

    1993-01-01

    The goal of sport biomechanists is to provide information to coaches and athletes about sport skill technique that will assist them in obtaining the highest levels of athletic performance. Within this technique evaluation process, two methodological approaches can be taken to study human movement. One method describes the motion being performed; the second approach focuses on understanding the forces causing the motion. It is with the movement description method that video image recordings offer a means for athletes, coaches, and sport biomechanists to analyze sport performance. Staff members of the Technique Evaluation Program provide video recordings of sport performance to athletes and coaches during training sessions held at the Olympic Training Center in Colorado Springs, Colorado. These video records are taken to provide a means for the qualitative evaluation or the quantitative analysis of sport skills as performed by elite athletes. High-speed video equipment (NAC HVRB-200 and NAC HSV-400 Video Systems) is used to capture various sport movement sequences that will permit coaches, athletes, and sport biomechanists to evaluate and/or analyze sport performance. The PEAK Performance Motion Measurement System allows sport biomechanists to measure selected mechanical variables appropriate to the sport being analyzed. Use of two high-speed cameras allows for three-dimensional analysis of the sport skill or the ability to capture images of an athlete's motion from two different perspectives. The simultaneous collection and synchronization of force data provides for a more comprehensive analysis and understanding of a particular sport skill. This process of combining force data with motion sequences has been done extensively with cycling. The decision to use high-speed videography rather than normal speed video is based upon the same criteria that are used in other settings. The rapidness of the sport movement sequence and the need to see the location of body parts

  7. 36 CFR 1192.175 - High-speed rail cars, monorails and systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false High-speed rail cars... TRANSPORTATION VEHICLES Other Vehicles and Systems § 1192.175 High-speed rail cars, monorails and systems. (a) All cars for high-speed rail systems, including but not limited to those using “maglev” or high speed...

  8. An SFQ-based high-performance packet switch for next-generation high-end routers

    NASA Astrophysics Data System (ADS)

    Yorozu, S.; Kameda, Y.; Tahara, S.

    2001-08-01

    Switching throughput capacities of over 10 Tbps will be required of high-end systems on the backbones of nationwide telecommunications networks within the next decade. However conventional technologies cannot accommodate such capacities. Superconducting single flux quantum (SFQ) technology is a promising approach because of its ultra-low power consumption and ultra-high speed characteristics. We have proposed an opto-electronic-SFQ hybrid switching system. This system is separated into three functions: SFQ packet switching, high-performance CMOS control, and optical transmission. The packet switch is an improved Batcher-Banyan switch that uses a time-shifted internal speedup unit, and shuffle and grouping exchange schemes. Simulation showed good scalability; no conventional router could ever attain this capacity. We report on the numerical analysis and architectural-level design results for this packet switch.

  9. QMP-MVIA: a message passing system for Linux clusters with gigabit Ethernet mesh connections

    SciTech Connect

    Jie Chen; W. Watson III; Robert Edwards; Weizhen Mao

    2004-09-01

    Recent progress in performance coupled with a decline in price for copper-based gigabit Ethernet (GigE) interconnects makes them an attractive alternative to expensive high speed network interconnects (NIC) when constructing Linux clusters. However traditional message passing systems based on TCP for GigE interconnects cannot fully utilize the raw performance of today's GigE interconnects due to the overhead of kernel involvement and multiple memory copies during sending and receiving messages. The overhead is more evident in the case of mesh connected Linux clusters using multiple GigE interconnects in a single host. We present a general message passing system called QMP-MVIA (QCD Message Passing over M-VIA) for Linux clusters with mesh connections using GigE interconnects. In particular, we evaluate and compare the performance characteristics of TCP and M-VIA (an implementation of the VIA specification) software for a mesh communication architecture to demonstrate the feasibility of using M-VIA as a point-to-point communication software, on which QMP-MVIA is based. Furthermore, we illustrate the design and implementation of QMP-MVIA for mesh connected Linux clusters with emphasis on both point-to-point and collective communications, and demonstrate that QMP-MVIA message passing system using GigE interconnects achieves bandwidth and latency that are not only better than systems based on TCP but also compare favorably to systems using some of the specialized high speed interconnects in a switched architecture at much lower cost.

  10. Wavelength-conserving grating router for intermediate wavelength density

    DOEpatents

    Deri, Robert J.; Patel, Rajesh R.; Bond, Steven W.; Bennett, Cory V.

    2007-03-20

    A wavelength router to be used for fiber optical networking router is based on a diffraction grating which utilizes only N wavelengths to interconnect N inputs to N outputs. The basic approach is to augment the grating with additional couplers or wavelength selective elements so than N-1 of the 2N-1 outputs are combined with other N outputs (leaving only N outputs). One embodiment uses directional couplers as combiners. Another embodiment uses wavelength-selective couplers. Another embodiment uses a pair of diffraction gratings to maintain parallel propagation of all optical beams. Also, beam combining can be implemented either by using retroflection back through the grating pair or by using couplers.

  11. An Audio Stream Redirector for the Ethernet Speaker

    ERIC Educational Resources Information Center

    Mandrekar, Ishan; Prevelakis, Vassilis; Turner, David Michael

    2004-01-01

    The authors have developed the "Ethernet Speaker" (ES), a network-enabled single board computer embedded into a conventional audio speaker. Audio streams are transmitted in the local area network using multicast packets, and the ES can select any one of them and play it back. A key requirement for the ES is that it must be capable of playing any…

  12. Using a Commercial Ethernet PHY Device in a Radiation Environment

    NASA Technical Reports Server (NTRS)

    Parks, Jeremy; Arani, Michael; Arroyo, Roberto

    2014-01-01

    This work involved placing a commercial Ethernet PHY on its own power boundary, with limited current supply, and providing detection methods to determine when the device is not operating and when it needs either a reset or power-cycle. The device must be radiation-tested and free of destructive latchup errors. The commercial Ethernet PHY's own power boundary must be supplied by a current-limited power regulator that must have an enable (for power cycling), and its maximum power output must not exceed the PHY's input requirements, thus preventing damage to the device. A regulator with configurable output limits and short-circuit protection (such as the RHFL4913, rad hard positive voltage regulator family) is ideal. This will prevent a catastrophic failure due to radiation (such as a short between the commercial device's power and ground) from taking down the board's main power. Logic provided on the board will detect errors in the PHY. An FPGA (field-programmable gate array) with embedded Ethernet MAC (Media Access Control) will work well. The error detection includes monitoring the PHY's interrupt line, and the status of the Ethernet's switched power. When the PHY is determined to be non-functional, the logic device resets the PHY, which will often clear radiation induced errors. If this doesn't work, the logic device power-cycles the FPGA by toggling the regulator's enable input. This should clear almost all radiation induced errors provided the device is not latched up.

  13. An ethernet/IP security review with intrusion detection applications

    SciTech Connect

    Laughter, S. A.; Williams, R. D.

    2006-07-01

    Supervisory Control and Data Acquisition (SCADA) and automation networks, used throughout utility and manufacturing applications, have their own specific set of operational and security requirements when compared to corporate networks. The modern climate of heightened national security and awareness of terrorist threats has made the security of these systems of prime concern. There is a need to understand the vulnerabilities of these systems and how to monitor and protect them. Ethernet/IP is a member of a family of protocols based on the Control and Information Protocol (CIP). Ethernet/IP allows automation systems to be utilized on and integrated with traditional TCP/IP networks, facilitating integration of these networks with corporate systems and even the Internet. A review of the CIP protocol and the additions Ethernet/IP makes to it has been done to reveal the kind of attacks made possible through the protocol. A set of rules for the SNORT Intrusion Detection software is developed based on the results of the security review. These can be used to monitor, and possibly actively protect, a SCADA or automation network that utilizes Ethernet/IP in its infrastructure. (authors)

  14. Integrated Formal Analysis of Timed-Triggered Ethernet

    NASA Technical Reports Server (NTRS)

    Dutertre, Bruno; Shankar, Nstarajan; Owre, Sam

    2012-01-01

    We present new results related to the verification of the Timed-Triggered Ethernet (TTE) clock synchronization protocol. This work extends previous verification of TTE based on model checking. We identify a suboptimal design choice in a compression function used in clock synchronization, and propose an improvement. We compare the original design and the improved definition using the SAL model checker.

  15. WorldFIP offers high-speed strength

    SciTech Connect

    Beeston, J.W.

    1996-11-01

    WorldFIB has a 10-year track record in fieldbus standardization and a significant lead in installations already incorporating the ISA/IEC physical layer. This article briefly describes WorldFIP, its approach to interoperability, and how it sees its technology advancing in the future. WorldFIP is an industry `club` - a nonprofit association dedicated to an international standard fieldbus. Since it was founded, WorldFIP has made major contributions to the work of the ISA and IEC. As a result, WorldFIP already uses the ISA/IEC physical layer. Reflecting its dedication to open international standards, WorldFIP is a member of Fieldbus Foundation (FF) and has already achieved the status of a European standard. WorldFIP membership reflects many industry sectors, including petrochemical, discrete manufacturing, mass transportation, and utilities. Many sectors have been able to move faster than the petrochemical sector because they have less hazardous processes. They also often have high-speed machinery, leading to WorldFIP having a major strength in high-speed fieldbus. Because of this advanced open approach, WorldFIP members have had high-speed products on the market for several years. They also have in-depth experience designing and installing systems and solving real problems that arise in real installations. WorldFIP recognized from the beginning that a fieldbus had to support not just the needs for both real-time control and instrumentation but also the need to extract information about the plant and its equipment without disturbing the real-time world. It also recognized that those involved in automation, instrumentation, and control could easily specify their requirements in terms of cyclic variables, event variables, and messages. WorldFIP supports these needs by supporting three types of network traffic: (1) Cyclic: always transmitted on time. (2) Events: transmitted when occurring. (3) Messages: transmitted when required. 3 refs.

  16. Fusion: ultra-high-speed and IR image sensors

    NASA Astrophysics Data System (ADS)

    Etoh, T. Goji; Dao, V. T. S.; Nguyen, Quang A.; Kimata, M.

    2015-08-01

    Most targets of ultra-high-speed video cameras operating at more than 1 Mfps, such as combustion, crack propagation, collision, plasma, spark discharge, an air bag at a car accident and a tire under a sudden brake, generate sudden heat. Researchers in these fields require tools to measure the high-speed motion and heat simultaneously. Ultra-high frame rate imaging is achieved by an in-situ storage image sensor. Each pixel of the sensor is equipped with multiple memory elements to record a series of image signals simultaneously at all pixels. Image signals stored in each pixel are read out after an image capturing operation. In 2002, we developed an in-situ storage image sensor operating at 1 Mfps 1). However, the fill factor of the sensor was only 15% due to a light shield covering the wide in-situ storage area. Therefore, in 2011, we developed a backside illuminated (BSI) in-situ storage image sensor to increase the sensitivity with 100% fill factor and a very high quantum efficiency 2). The sensor also achieved a much higher frame rate,16.7 Mfps, thanks to the wiring on the front side with more freedom 3). The BSI structure has another advantage that it has less difficulties in attaching an additional layer on the backside, such as scintillators. This paper proposes development of an ultra-high-speed IR image sensor in combination of advanced nano-technologies for IR imaging and the in-situ storage technology for ultra-highspeed imaging with discussion on issues in the integration.

  17. A CMOS high speed imaging system design based on FPGA

    NASA Astrophysics Data System (ADS)

    Tang, Hong; Wang, Huawei; Cao, Jianzhong; Qiao, Mingrui

    2015-10-01

    CMOS sensors have more advantages than traditional CCD sensors. The imaging system based on CMOS has become a hot spot in research and development. In order to achieve the real-time data acquisition and high-speed transmission, we design a high-speed CMOS imaging system on account of FPGA. The core control chip of this system is XC6SL75T and we take advantages of CameraLink interface and AM41V4 CMOS image sensors to transmit and acquire image data. AM41V4 is a 4 Megapixel High speed 500 frames per second CMOS image sensor with global shutter and 4/3" optical format. The sensor uses column parallel A/D converters to digitize the images. The CameraLink interface adopts DS90CR287 and it can convert 28 bits of LVCMOS/LVTTL data into four LVDS data stream. The reflected light of objects is photographed by the CMOS detectors. CMOS sensors convert the light to electronic signals and then send them to FPGA. FPGA processes data it received and transmits them to upper computer which has acquisition cards through CameraLink interface configured as full models. Then PC will store, visualize and process images later. The structure and principle of the system are both explained in this paper and this paper introduces the hardware and software design of the system. FPGA introduces the driven clock of CMOS. The data in CMOS is converted to LVDS signals and then transmitted to the data acquisition cards. After simulation, the paper presents a row transfer timing sequence of CMOS. The system realized real-time image acquisition and external controls.

  18. Going End to End to Deliver High-Speed Data

    NASA Technical Reports Server (NTRS)

    2005-01-01

    By the end of the 1990s, the optical fiber "backbone" of the telecommunication and data-communication networks had evolved from megabits-per-second transmission rates to gigabits-per-second transmission rates. Despite this boom in bandwidth, however, users at the end nodes were still not being reached on a consistent basis. (An end node is any device that does not behave like a router or a managed hub or switch. Examples of end node objects are computers, printers, serial interface processor phones, and unmanaged hubs and switches.) The primary reason that prevents bandwidth from reaching the end nodes is the complex local network topology that exists between the optical backbone and the end nodes. This complex network topology consists of several layers of routing and switch equipment which introduce potential congestion points and network latency. By breaking down the complex network topology, a true optical connection can be achieved. Access Optical Networks, Inc., is making this connection a reality with guidance from NASA s nondestructive evaluation experts.

  19. Magnetic Bearing Controller Improvements for High Speed Flywheel System

    NASA Technical Reports Server (NTRS)

    Dever, Timothy P.; Brown, Gerald V.; Jansen, Ralph H.; Kascak, Peter E.; Provenza, Andrew J.

    2003-01-01

    A magnetic bearing control system for a high-speed flywheel system is described. The flywheel utilizes a five axis active magnetic bearing system, using eddy current sensors for position feedback to the bearing controller. Magnetic bearing controller features designed to improve flywheel operation and testing are described. Operational improvements include feed forward control to compensate for rotor imbalance, moving notch filtering to compensate for synchronous and harmonic rotational noise, and fixed notching to prevent rotor bending mode excitation. Testing improvements include adding safe gain, bearing current hold, bearing current zero, and excitation input features. Performance and testing improvements provided by these features are measured and discussed.

  20. Development of small bore, high speed tapered roller bearing

    NASA Technical Reports Server (NTRS)

    Morrison, F. R.; Gassel, S. S.; Bovenkerk, R. L.

    1981-01-01

    The performance of four rolling bearing configurations for use on the input pinion shaft of a proposed commercial helicopter transmission was evaluated. The performance characteristics of a high speed tapered roller bearing operating under conditions comparable to those existing at this input pinion shaft were defined. The tapered roller bearing shaft support configuration was developed for the gearbox using commercially available bearing designings. The configuration was optimized and interactive thermomechanically system analyzed. Automotive pinion quality tapered roller bearings were found to be reliable under load and speed conditions in excess of those anticipated in the helicopter transmission. However, it is indicated that the elastohydrodynamic lubricant films are inadequate.