Radiated Sound of a High-Speed Water-Jet-Propelled Transportation Vessel.
Rudd, Alexis B; Richlen, Michael F; Stimpert, Alison K; Au, Whitlow W L
2016-01-01
The radiated noise from a high-speed water-jet-propelled catamaran was measured for catamaran speeds of 12, 24, and 37 kn. The radiated noise increased with catamaran speed, although the shape of the noise spectrum was similar for all speeds and measuring hydrophone depth. The spectra peaked at ~200 Hz and dropped off continuously at higher frequencies. The radiated noise was 10-20 dB lower than noise from propeller-driven ships at comparable speeds. The combination of low radiated noise and high speed could be a factor in the detection and avoidance of water-jet-propelled ships by baleen whales.
Dual Cavitating Hydrofoil Structures for Multi-Speed Applications.
A hydrofoil structures for efficient operation over a wide speed range from subcavitating to supercavitating operation is provided. The...dualcavitating hydrofoil overcomes cavitation problems associated with high speed operation of prior art subcavitating hydrofoils by providing a supercavitating ...profile shape in the lower surface to achieve a supercavitating condition at high speeds and overcomes performance related problems associated with low
Dualcavitating Hydrofoil Structures.
The invention is directed to hydrofoil structures for efficient operation over a wide speed range from subcavitating to supercavitating operation. A...structures by providing a supercavitating profile shape in the lower surface to achieve a supercavitating condition at high speeds and that overcomes...problems associated with low speed operation of prior art supercavitating hydrofoil structures by providing an upper surface that combines with the lower
Preliminary Tests in the NACA Tank to Investigate the Fundamental Characteristics of Hydrofoils
NASA Technical Reports Server (NTRS)
Ward, Kenneth E.; Land, Norman S.
1940-01-01
This preliminary investigation was made to study the hydrodynamic properties and general behavior of simple hydrofoils. Six 5- by 30-inch plain, rectangular hydrofoils were tested in the NACA tank at various speeds, angles of attack and depths below the water surface. Two of the hydrofoils had sections representing the sections of commonly used airfoils, one had a section similar to one developed Guidoni for use with hydrofoil-equipped seaplane floats, and three had sections designed to have constant chordwise pressure distributions at given values of the lift coefficient for the purpose of delaying the speed at which cavitation begins. The experimental results are presented as curves of the lift and drag coefficients plotted against speed for the various angles of attack and depths for which the hydrofoils were tested. A number of derived curves are included for the purpose of better comparing the characteristics of the hydrofoils and to show the effects of depth. Several representative photographs show the development of cavitation on the the upper surface of the hydrofoils. The results indicate that properly designed hydrofoil sections will have excellent characteristics and that the speed at which cavitation occurs may be delayed to an appreciable extent by the use of suitable sections.
High Speed Vessels to Market : Comparative Case Studies in the Passenger Trade
DOT National Transportation Integrated Search
2001-08-01
The Volpe Center chose to study several existing catamarans and high speed monohulls in comparison to representative SWATH family craft, including the SLICE 400 (passenger) and SLICE 600 (passenger/90 car) variants, the former similar in size and per...
NASA Technical Reports Server (NTRS)
Wadlin, Kenneth L; Shuford, Charles L , Jr; Mcgehee, John R
1955-01-01
A theoretical and experimental investigation at subcavitation speeds was made of the effect of the free-water surface and rigid boundaries on the lift and drag of an aspect-ratio-10 hydrofoil at both subcritical and supercritical speeds and of an aspect ratio-4 hydrofoil at supercritical speeds. Approximate theoretical solutions for the effects of the free-water surface and rigid boundaries on drag at subcritical speeds are developed. An approximate theoretical solution for the effects of these boundaries on drag at subcritical speeds is also presented. The agreement between theory and experiment at both supercritical and subcritical speeds is satisfactory for engineering calculations of hydrofoil characteristics from aerodynamic data. The experimental investigation indicated no appreciable effect of the limiting speed of wave propagation on lift-curve slope or angle of zero lift. It also showed that the increase in drag as the critical speed is approached from the supercritical range is gradual. The result is contrary to the abrupt increase at the critical speed predicted by theory.
The influence of surface roughness on cloud cavitation flow around hydrofoils
NASA Astrophysics Data System (ADS)
Hao, Jiafeng; Zhang, Mindi; Huang, Xu
2018-02-01
The aim of this study is to investigate experimentally the effect of surface roughness on cloud cavitation around Clark-Y hydrofoils. High-speed video and particle image velocimetry (PIV) were used to obtain cavitation patterns images (Prog. Aerosp. Sci. 37: 551-581, 2001), as well as velocity and vorticity fields. Results are presented for cloud cavitating conditions around a Clark-Y hydrofoil fixed at angle of attack of α =8{°} for moderate Reynolds number of Re=5.6 × 105. The results show that roughness had a great influence on the pattern, velocity and vorticity distribution of cloud cavitation. For cavitating flow around a smooth hydrofoil (A) and a rough hydrofoil (B), cloud cavitation occurred in the form of finger-like cavities and attached subulate cavities, respectively. The period of cloud cavitation around hydrofoil A was shorter than for hydrofoil B. Surface roughness had a great influence on the process of cloud cavitation. The development of cloud cavitation around hydrofoil A consisted of two stages: (1) Attached cavities developed along the surface to the trailing edge; (2) A reentrant jet developed, resulting in shedding and collapse of cluster bubbles or vortex structure. Meanwhile, its development for hydrofoil B included three stages: (1) Attached cavities developed along the surface to the trailing edge, with accumulation and rotation of bubbles at the trailing edge of the hydrofoil affecting the flow field; (2) Development of a reentrant jet resulted in the first shedding of cavities. Interaction and movement of flows from the pressure side and suction side brought liquid water from the pressure side to the suction side of the hydrofoil, finally forming a reentrant jet. The jet kept moving along the surface to the leading edge of the hydrofoil, resulting in large-scale shedding of cloud bubbles. Several vortices appeared and dissipated during the process; (3) Cavities grew and shed again.
Performance and cavitation characteristics of bi-directional hydrofoils
NASA Astrophysics Data System (ADS)
Nedyalkov, Ivaylo; Wosnik, Martin
2013-11-01
Tidal turbines extract energy from flows which reverse direction. One way to address this bi-directionality in horizontal axis turbines that avoid the use of complex and maintenance-intensive yaw or blade pitch mechanisms, is to design bi-directional blades which perform (equally) well in either flow direction. A large number of proposed hydrofoil designs were investigated using numerical simulations. Selected candidate foils were also tested (at various speeds and angles of attack) in the High-Speed Cavitation Tunnel (HICaT) at the University of New Hampshire. Lift and drag were measured using a force balance, and cavitation inception and desinence were recorded. Experimental and numerical results were compared, and the foils were compared to each other and to reference foils. Bi-directional hydrofoils may provide a feasible solution to the problem of reversing flow direction, when their performance and cavitation characteristics are comparable to those for unidirectional foils, and the penalty in decreased energy production is outweighed by the cost reduction due to lower complexity and respectively lower installation and maintenance costs.
Cavitation on Hydrofoils with Leading Edge Protuberances
NASA Astrophysics Data System (ADS)
Custodio, Derrick; Henoch, Charles; Johari, Hamid; Office of Naval Research Collaboration
2012-11-01
The effects of spanwise-uniform sinusoidal leading edge protuberances on the flow characteristics and forces of finite-span hydrofoils under vaporous cavitation conditions were examined experimentally over angles of attack ranging from -9° α <= 27°. Two planforms were studied, rectangular and swept, at a Reynolds number of ~ 720,000. Two protuberance wavelengths, λ = 0.25 c and 0.50 c, and three amplitudes, A = 0.025 c, 0.05 c, and 0.12 c, were examined as they resemble the humpback whale flipper morphology. All hydrofoils retain a mean NACA 634-021 profile. The forces and moments were measured at a freestream velocity of 7.2 m/s, and high-speed digital photography was used to capture flow field images at several angles of attack. The cavitation number corresponding to incipient leading edge cavitation was also calculated. As far as forces and cavitation number are concerned, results show that the baseline hydrofoil tends to have nearly equal or improved performance over the modified hydrofoils at most angles of attack tested. Flow images reveal that it is possible that the extent of sheet and tip vortex cavitation can be reduced with the introduction of leading edge protuberances. The forces and cavitation characteristics will be presented. Sponsored by the ONR-ULI program.
NASA Astrophysics Data System (ADS)
Nedyalkov, Ivaylo; Wosnik, Martin
2012-11-01
A NACA 63-424 hydrofoil with a 75 mm chord and a 152 mm span was tested in the recently renovated 6-inch high-speed water tunnel at the University of New Hampshire. The NACA 63-424 foil is being considered for use on rotors of marine hydrokinetic turbines, including the US Department of Energy Reference Horizontal Axis Turbine (RHAT) for tidal and ocean current applications. For various angles of attack, the foil was tested at speeds ranging from 2 m/s to 12 m/s. Pressure in the test section was varied independently. For each angle, speed and pressure setting, high speed videos were recorded (at 3600 frames per second and above). Cavitation inception and desinance were obtained. Lift and drag were measured using a new 2-component force balance. In tidal turbines applications, bidirectional foils do not require pitch control, hence the experiments were repeated for a bidirectional version of the NACA 63-424 foil and the characteristics of the two foils were compared. The results can be used to predict cavitation inception and performance of marine hydrokinetic turbines, for a given site, deployment depth and and tip speed ratio.
Design of Bi-Directional Hydrofoils for Tidal Current Turbines
NASA Astrophysics Data System (ADS)
Nedyalkov, Ivaylo; Wosnik, Martin
2015-11-01
Tidal Current Turbines operate in flows which reverse direction. Bi-directional hydrofoils have rotational symmetry and allow such turbines to operate without the need for pitch or yaw control, decreasing the initial and maintenance costs. A numerical test-bed was developed to automate the simulations of hydrofoils in OpenFOAM and was utilized to simulate the flow over eleven classes of hydrofoils comprising a total of 700 foil shapes at different angles of attack. For promising candidate foil shapes physical models of 75 mm chord and 150 mm span were fabricated and tested in the University of New Hampshire High-Speed Cavitation Tunnel (HiCaT). The experimental results were compared to the simulations for model validation. The numerical test-bed successfully generated simulations for a wide range of foil shapes, although, as expected, the k - ω - SST turbulence model employed here was not adequate for some of the foils and for large angles of attack at which separation occurred. An optimization algorithm is currently being coupled with the numerical test-bed and additional turbulence models will be implemented in the future.
Naval War College Review. Volume 61, Number 2, Spring 2008
2008-01-01
However, for ships operating in the tramp trade in search of cargo on the spot market, transparency is problematic. Vessel position is a source of...commercial High Speed Vehicles. We have tried out the HSVs in a variety of exercises and real operations. Their wave-piercing catamaran hulls have helped to... a datum that independent shipping in World War II moved 250 nautical miles a day or more.11 On land an army maneuvering at operational speed against
NASA Astrophysics Data System (ADS)
Timoshevskiy, M. V.; Zapryagaev, I. I.; Pervunin, K. S.; Markovich, D. M.
2016-10-01
In the paper, the possibility of active control of a cavitating flow over a 2D hydrofoil that replicates a scaled-down model of high-pressure hydroturbine guide vane (GV) was tested. The flow manipulation was implemented by a continuous tangential liquid injection at different flow rates through a spanwise slot in the foil surface. In experiments, the hydrofoil was placed in the test channel at the attack angle of 9°. Different cavitation conditions were reached by varying the cavitation number and injection velocity. In order to study time dynamics and spatial patterns of partial cavities, high-speed imaging was employed. A PIV method was used to measure the mean and fluctuating velocity fields over the hydrofoil. Hydroacoustic measurements were carried out by means of a pressure transducer to identify spectral characteristics of the cavitating flow. It was found that the present control technique is able to modify the partial cavity pattern (or even totally suppress cavitation) in case of stable sheet cavitation and change the amplitude of pressure pulsations at unsteady regimes. The injection technique makes it also possible to significantly influence the spatial distributions of the mean velocity and its turbulent fluctuations over the GV section for non-cavitating flow and sheet cavitation.
Foil system fatigue load environments for commercial hydrofoil operation
NASA Technical Reports Server (NTRS)
Graves, D. L.
1979-01-01
The hydrofoil fatigue loads environment in the open sea is examined. The random nature of wave orbital velocities, periods and heights plus boat heading, speed and control system design are considered in the assessment of structural fatigue requirements. Major nonlinear load events such as hull slamming and foil unwetting are included in the fatigue environment. Full scale rough water load tests, field experience plus analytical loads work on the model 929 Jetfoil commercial hydrofoil are discussed. The problem of developing an overall sea environment for design is defined. State of the art analytical approaches are examined.
NASA Technical Reports Server (NTRS)
McKann, Robert E.; Blanchard, Ulysse J.; Pearson, Albin O.
1960-01-01
The hydrodynamic and aerodynamic characteristics of a model of a multijet water-based Mach 2.0 aircraft equipped with hydrofoils have been determined. Takeoff stability and spray characteristics were very good, and sufficient excess thrust was available for takeoff in approximately 32 seconds and 4,700 feet at a gross weight of 225,000 pounds. Longitudinal and lateral stability during smooth-water landings were good. Lateral stability was good during rough-water landings, but forward location of the hydrofoils or added pitch damping was required to prevent diving. Hydrofoils were found to increase the aerodynamic lift-curve slope and to increase the aerodynamic drag coefficient in the transonic speed range, and the maximum lift-drag ratio decreased from 7.6 to 7.2 at the cruise Mach number of 0.9. The hydrofoils provided an increment of positive pitching moment over the Mach number range of the tests (0.6 to 1.42) and reduced the effective dihedral and directional stability.
Hydrodynamic Characteristics of Two Low-Drag Supercavitating Hydrofoils
NASA Technical Reports Server (NTRS)
McGehee, John R.; Johnson, Virgil E., Jr.
1959-01-01
An experimental investigation has been conducted in Langley tank no. 2 to determine the hydrodynamic characteristics of two low-drag supercavitating hydrofoils operating in a range of cavitation numbers from 0 to approximately 6. The hydrofoils had aspect ratios of 1 and 3, and the sections were derived by assuming five terms in the vorticity-distribution expansion of the equivalent airfoil. The aspect-ratio-1 hydrofoil was also tested at zero cavitation number with two sets of end plates having depths of 3/8 and 1/4 chords. Zero cavitation number was established by operating the hydrofoils near the water surface so that complete ventilation of the upper surfaces could be obtained. For those depths of submersion where complete ventilation was not obtained through vortex ventilation, two probes were used to introduce air to the upper surfaces of the hydrofoils and to induce complete ventilation. Data were obtained for a range of speeds from 20 to 80 fps, angles of attack from 2 to 20 deg, and ratios of depth of submersion to chord from 0 to 0.85. The experimental results obtained from the aspect-ratio-1 and aspect-ratio-3, five-term hydrofoils were compared with a three-dimensional zero-cavitation-number theory. The theoretical and experimental values of lift and center of pressure for the aspect-ratio-1 hydrofoil were in agreement, within engineering accuracy, for the range of lift coefficients investigated. The theoretical drag coefficients were lower, by a constant amount, than the experimental drag coefficients. The theoretical expressions derived for the lift, drag, and center of pressure of the aspect-ratio-3 hydrofoil were in agreement, within engineering accuracy, with the experimental values. The theoretical and experimental drag coefficients of the aspect-ratio-3 five-term hydrofoil were lower than the theoretical drag coefficients computed for a comparable Tulin-Burkart hydrofoil.
Sustainable Oceanographic Vessels - Setting an Example
NASA Astrophysics Data System (ADS)
van Leer, J. C.
2009-12-01
In response to climate change, global warming and post “peak oil” fuel scarcity, the oceanographic community should consider reducing its carbon foot print. Why should scientists operate inefficient vessels while lecturing the general public on the need to reduce CO2 emissions? We have already seen curtailment of ship schedules and ship lay-ups, due in part to rising fuel costs, following $140/barrel crude oil. When the global recession ends, upward pressure on oil prices will again commence. Who can forecast how high fuel prices may ultimately rise during the typical 25-30 year lifetime of a research vessel? Are we to curtail future work at sea when oceanic climate research is becoming ever more important? A catamaran research vessel has been designed which can be electrically propelled from by a combination of high efficiency generators, photovoltaic panels and/or sails. Sail produced power is transformed with propellers and motor/generators into electric power which is stored in battery banks. This vessel could operate as the first true hybrid oceanographic research vessel. It could even continue operations without fuel in cases of a severe fuel shortage or fueling denial. Since the power produced by any water turbine increases with the cube of the velocity flowing over its propeller, the low fluid friction and high stability of a catamaran, with reasonably slender hulls, provide an important boost to efficient hybrid operation. The author has chartered a 42’ hybrid catamaran sailboat and found it efficient and extremely easy to operate and control. A 79’ motor sailing catamaran research vessel by Lock Crowther Designs will be presented as one example of a sustainable research vessel with excellent speed and sea-keeping. A center well makes operation as a small drilling/coring ship for coastal climate investigation possible. The center well also supports a host of remote sensing and robotic gear handling capabilities.
Air Entrainment in Steady Breaking Waves
NASA Astrophysics Data System (ADS)
Li, C. Y.; Duncan, J. H.; Wenz, A.; Full, O. E.
1997-11-01
Air entrainment due to steady breaking waves generated by fully submerged hydrofoils moving at constant speed and angle of attack is investigated experimentally. Three hydrofoils with the same shape (NACA 0012) but different chords (15, 20 and 30 cm) are used with Froude scaled operating conditions to generate the breaking waves. In this way, the effect of scale due to the combined influence of surface tension and viscosity on the bubble entrainment process is investigated. The bubbles are measured from plan-view and side-view 35-mm photographs of the wake. It is found that the number and average size of the bubbles increases dramatically with scale. High-speed movies of the turbulent breaking region that rides on the forward face of the wave are also used to observe bubble entrainment events. It is found that the bubbles are entrained periodically when the leading edge of the breaking region rushes forward and plunges over a pocket of air. This plunging process appears to become more frequent and more violent as the scale of the breaker increases.
Fluid-structure coupling for an oscillating hydrofoil
NASA Astrophysics Data System (ADS)
Münch, C.; Ausoni, P.; Braun, O.; Farhat, M.; Avellan, F.
2010-08-01
Fluid-structure investigations in hydraulic machines using coupled simulations are particularly time-consuming. In this study, an alternative method is presented that linearizes the hydrodynamic load of a rigid, oscillating hydrofoil. The hydrofoil, which is surrounded by incompressible, turbulent flow, is modeled with forced and free pitching motions, where the mean incidence angle is 0° with a maximum angle amplitude of 2°. Unsteady simulations of the flow, performed with ANSYS CFX, are presented and validated with experiments which were carried out in the EPFL High-Speed Cavitation Tunnel. First, forced motion is investigated for reduced frequencies ranging from 0.02 to 100. The hydrodynamic load is modeled as a simple combination of inertia, damping and stiffness effects. As expected, the potential flow analysis showed the added moment of inertia is constant, while the fluid damping and the fluid stiffness coefficients depend on the reduced frequency of the oscillation motion. Behavioral patterns were observed and two cases were identified depending on if vortices did or did not develop in the hydrofoil wake. Using the coefficients identified in the forced motion case, the time history of the profile incidence is then predicted analytically for the free motion case and excellent agreement is found for the results from coupled fluid-structure simulations. The model is validated and may be extended to more complex cases, such as blade grids in hydraulic machinery.
1975-05-01
ventilated, but never supercavitating , for speeds up to 80 knots. In particular, choking of the air flow to the foil vent was not con- sidered. If this...4Conolly, A.C., "Experimental Investigations of Supercavitating Hydrofoils with Flaps," General Dynamics/Convair Report GD/C-63-210 (Dec 1963). 10 THE SIX...Dec 1966). 4. Conolly, A.C., "Experimenta, Investigations of Supercavitating Hydro- foils with Flaps," General Dynamics/Convair Report GD/C-63-210 (Dec
Dynamic analysis of propulsion mechanism directly driven by wave energy for marine mobile buoy
NASA Astrophysics Data System (ADS)
Yu, Zhenjiang; Zheng, Zhongqiang; Yang, Xiaoguang; Chang, Zongyu
2016-07-01
Marine mobile buoy(MMB) have many potential applications in the maritime industry and ocean science. Great progress has been made, however the technology in this area is far from maturity in theory and faced with many difficulties in application. A dynamic model of the propulsion mechanism is very necessary for optimizing the parameters of the MMB, especially with consideration of hydrodynamic force. The principle of wave-driven propulsion mechanism is briefly introduced. To set a theory foundation for study on the MMB, a dynamic model of the propulsion mechanism of the MMB is obtained. The responses of the motion of the platform and the hydrofoil are obtained by using a numerical integration method to solve the ordinary differential equations. A simplified form of the motion equations is reached by omitting terms with high order small values. The relationship among the heave motion of the buoy, stiffness of the elastic components, and the forward speed can be obtained by using these simplified equations. The dynamic analysis show the following: The angle of displacement of foil is fairly small with the biggest value around 0.3 rad; The speed of mobile buoy and the angle of hydrofoil increased gradually with the increase of heave motion of buoy; The relationship among heaven motion, stiffness and attack angle is that heave motion leads to the angle change of foil whereas the item of speed or push function is determined by vertical velocity and angle, therefore, the heave motion and stiffness can affect the motion of buoy significantly if the size of hydrofoil is kept constant. The proposed model is provided to optimize the parameters of the MMB and a foundation is laid for improving the performance of the MMB.
Sea Surface Scanner: An advanced catamaran to study the sea surface
NASA Astrophysics Data System (ADS)
Wurl, O.; Mustaffa, N. I. H.; Ribas Ribas, M.
2016-02-01
The Sea Surface Scanner is a remote-controlled catamaran with the capability to sample the sea-surface microlayer in high resolution. The catamaran is equipped with a suite of sensors to scan the sea surface on chemical, biological and physical parameters. Parameters include UV absorption, fluorescence spectra, chlorophyll-a, photosynthetic efficiency, chromophoric dissolved organic matter (CDOM), dissolved oxygen, pH, temperature, and salinity. A further feature is a capability to collect remotely discrete water samples for detailed lab analysis. We present the first high-resolution (< 30 sec) data on the sea surface microlayer. We discuss the variability of biochemical properties of the sea surface and its implication on air-sea interaction.
NASA Astrophysics Data System (ADS)
Pervunin, K. S.; Timoshevskiy, M. V.; Churkin, S. A.; Kravtsova, A. Yu; Markovich, D. M.; Hanjalić, K.
2015-12-01
Cavitation on two symmetric foils, a NACA0015 hydrofoil and a scaled-down model of a Francis turbine guide vane (GV), was investigated by high-speed visualization and PIV. At small attack angles the differences between the profiles of the mean and fluctuating velocities for both hydrofoils were shown to be insignificant. However, at the higher angle of incidence, flow separation from the GV surface was discovered for quasi-steady regimes including cavitation-free and cavitation inception cases. The flow separation leads to the appearance of a second maximum in velocity fluctuations distributions downstream far from the GV surface. When the transition to unsteady regimes occurred, the velocity distributions became quite similar for both foils. Additionally, for the GV an unsteady regime characterized by asymmetric spanwise variations of the sheet cavity length along with alternating periodic detachments of clouds between the sidewalls of the test channel was for the first time visualized. This asymmetric behaviour is very likely to be governed by the cross instability that was recently described by Decaix and Goncalvès [8]. Moreover, it was concluded that the existence of the cross instability is independent on the test body shape and its aspect ratio.
NASA Technical Reports Server (NTRS)
1990-01-01
West Coast Netting, Inc.'s net of Hyperester twine, is made of three strands of fiber twisted together by a company-invented sophisticated twisting machine and process that maintain precisely the same tension on each strand. The resulting twine offers higher strength and improved abrasion resistance. The technology that created the Hyperester supertwine has found spinoff applications, first as an extra-efficient seine for tuna fishing, then as a capture net for law enforcement agencies. The newest one is as a deck for racing catamarans. Hyperester twine net has been used on most of the high performance racing catamarans of recent years, including the America's Cup Challenge boats. They are tough and hold up well in the continual exposure to sunlight and saltwater.
Design of a High Speed Planing Hull with a Cambered Step and Surface Piercing Hydrofoils
2014-06-01
Impact Acceleration (Hoggard and Jones) - 1/10 highest eta_110_CG = 7.0*( H13 /Bpx)*(1+Tau/2...hulls with a higher deadrise angle perform better, with improved ride quality as the impact of wave is reduced. However, there is a disadvantage...the previous studies of Blount, Codega and Savitsky, a planing hull’s running trim angle and associated lift coefficient has a large impact on dynamic
Liang, Lihua; Yuan, Jia; Zhang, Songtao; Zhao, Peng
2018-01-01
This work presents optimal linear quadratic regulator (LQR) based on genetic algorithm (GA) to solve the two degrees of freedom (2 DoF) motion control problem in head seas for wave piercing catamarans (WPC). The proposed LQR based GA control strategy is to select optimal weighting matrices (Q and R). The seakeeping performance of WPC based on proposed algorithm is challenged because of multi-input multi-output (MIMO) system of uncertain coefficient problems. Besides the kinematical constraint problems of WPC, the external conditions must be considered, like the sea disturbance and the actuators (a T-foil and two flaps) control. Moreover, this paper describes the MATLAB and LabVIEW software plats to simulate the reduction effects of WPC. Finally, the real-time (RT) NI CompactRIO embedded controller is selected to test the effectiveness of the actuators based on proposed techniques. In conclusion, simulation and experimental results prove the correctness of the proposed algorithm. The percentage of heave and pitch reductions are more than 18% in different high speeds and bad sea conditions. And the results also verify the feasibility of NI CompactRIO embedded controller.
Liang, Lihua; Zhang, Songtao; Zhao, Peng
2018-01-01
This work presents optimal linear quadratic regulator (LQR) based on genetic algorithm (GA) to solve the two degrees of freedom (2 DoF) motion control problem in head seas for wave piercing catamarans (WPC). The proposed LQR based GA control strategy is to select optimal weighting matrices (Q and R). The seakeeping performance of WPC based on proposed algorithm is challenged because of multi-input multi-output (MIMO) system of uncertain coefficient problems. Besides the kinematical constraint problems of WPC, the external conditions must be considered, like the sea disturbance and the actuators (a T-foil and two flaps) control. Moreover, this paper describes the MATLAB and LabVIEW software plats to simulate the reduction effects of WPC. Finally, the real-time (RT) NI CompactRIO embedded controller is selected to test the effectiveness of the actuators based on proposed techniques. In conclusion, simulation and experimental results prove the correctness of the proposed algorithm. The percentage of heave and pitch reductions are more than 18% in different high speeds and bad sea conditions. And the results also verify the feasibility of NI CompactRIO embedded controller. PMID:29709008
Physical and numerical investigation of the flow induced vibration of the hydrofoil
NASA Astrophysics Data System (ADS)
Wu, Q.; Wang, G. Y.; Huang, B.
2016-11-01
The objective of this paper is to investigate the flow induced vibration of a flexible hydrofoil in cavitating flows via combined experimental and numerical studies. The experiments are presented for the modified NACA66 hydrofoil made of POM Polyacetate in the closed-loop cavitation tunnel at Beijing Institute of Technology. The high-speed camera and the single point Laser Doppler Vibrometer are applied to analyze the transient flow structures and the corresponding structural vibration characteristics. The hybrid coupled fluid structure interaction model is conducted to couple the incompressible and unsteady Reynolds Averaged Navier-Stokes solver with a simplified two-degree-of-freedom structural model. The k-ω SST turbulence model with the turbulence viscosity correction and the Zwart cavitation model are introduced to the present simulations. The results showed that with the decreasing of the cavitation number, the cavitating flows display incipient cavitation, sheet cavitation, cloud cavitation and supercavitation. The vibration magnitude increases dramatically for the cloud cavitation and decline for the supercavitation. The cloud cavitation development strongly affects the vibration response, which is corresponding to the periodically developing and shedding of the large-scale cloud cavity. The main frequency of the vibration amplitude is accordance with the cavity shedding frequency and other two frequencies of the vibration amplitude are corresponding to the natural frequencies of the bending and twisting modes.
Kinetics of enzymatic synthesis of liquid wax ester from oleic acid and oleyl alcohol.
Radzi, Salina Mat; Mohamad, Rosfarizan; Basri, Mahiran; Salleh, Abu Bakar; Ariff, Arbakariya; Rahman, Mohammad Basyaruddin Abdul; Rahman, Raja Noor Zaliha Raja Abdul
2010-01-01
The kinetics of wax ester synthesis from oleic acid and oleyl alcohol using immobilized lipase from Candida antartica as catalyst was studied with different types of impeller (Rushton turbine and AL-hydrofoil) to create different mixing conditions in 2l stirred tank reactor. The effects of catalyst concentration, reaction temperature, and impeller tip speed on the synthesis were also evaluated. Rushton turbine impeller exhibited highest conversion rate at lower impeller tip speed as compared to AL-hydrofoil impeller. A second-order reversible kinetic model from single progress curve for the prediction of fractional conversion at given reaction time was proposed and the corresponding kinetic parameter values were calculated by non-linear regression method. The results from the simulation using the proposed model showed satisfactory agreement with the experimental data. Activation energy shows a value of 21.77 Kcal/mol. The thermodynamic parameters of the process, enthalpy and entropy, were 21.15 Kcal/mol and 52.07 cal/mol.K, respectively.
Radiated noise from commercial ships in the Gulf of Maine: implications for whale/vessel collisions.
Allen, J Kaitlyn; Peterson, Michael L; Sharrard, George V; Wright, Dana L; Todd, Sean K
2012-09-01
To understand mysticete acoustic-based detection of ships, radiated noise from high-speed craft, cruise ships, catamarans and fishing vessels was recorded June-September 2009. Calibrated acoustic data (<2500 Hz) from a vertical hydrophone array was combined with ship passage information. A cruise ship had the highest broadband source level, while a fishing vessel had the lowest. Ship noise radiated asymmetrically and varied with depth. Bow null-effect acoustic shadow zones were observed for all ship classes and were correlated with ship-length-to-draft-ratios. These shadow zones may reduce ship detection by near-surface mysticetes.
Applications of Hydrofoils with Leading Edge Protuberances
2012-03-30
of angles of attack. Table 20 presents important hydrodynamic characteristics of the finite-span rectangular hydrofoils with cavitation . 107...Table 20. Hydrodynamic characteristics of finite-span rectangular planform hydrofoils with cavitation . Rec = 7.2 × 105 [deg−1] CLmax α...characteristics of the swept planform hydrofoils under cavitation conditions. Table 21. Hydrodynamic characteristics of swept planform hydrofoils under cavitation
Shape design and CFD analysis on a 1MW-class horizontal axis tidal current turbine blade
NASA Astrophysics Data System (ADS)
Singh, P. M.; Choi, Y. D.
2013-12-01
This study aims to develop a 1MW-class horizontal axis tidal current turbine rotor blade which can be applied near the southwest island regions of South Korea. On the basis of actual tidal current conditions of southern region of Korea, configuration design of 1MW class turbine rotor blade is carried out by BEMT (Blade element momentum theory). The hydrodynamic performance including the lift and drag forces, is conducted with the variation of the angle of attack using an open source code of X-Foil. The purpose of the study is to study the shape of the hydrofoil used and how it affects the performance of the turbine. After a thorough study of many airfoils, a new hydrofoil is developed using the S814 and DU-91-W2- 250 airfoils, which show good performance for rough conditions. A combination of the upper and lower surface of the two hydrofoils is tested. Three dimensional models were developed and the optimized blade geometry is used for CFD (Computational Fluid Dynamics) analysis with hexahedral numerical grids. Power coefficient, pressure coefficient and velocity distributions are investigated according to Tip Speed Ratio by CFD analysis.
The Flow Field on Hydrofoils with Leading Edge Protuberances
NASA Astrophysics Data System (ADS)
Custodio, Derrick; Henoch, Charles; Johari, Hamid
2008-11-01
The agility of the humpback whale has been attributed to the use of its pectoral flippers, on which protuberances are present along the leading edge. The forces and moments on hydrofoils with leading edge protuberances were measured in a water tunnel and were compared to a baseline NACA 63(4)-021 hydrofoil revealing significant performance differences. Three protuberance amplitudes and two spanwise wavelengths, closely resembling the morphology found in nature, were examined. Qualitative flow visualization techniques were used to examine flow patterns surrounding the hydrofoils, and Particle Image Velocimetry (PIV) was used to quantify these patterns. Flow visualizations have revealed counter-rotating vortices stemming from the shoulders of the protuberances. These streamwise vortices are a result of the spanwise pressure gradient brought about by the varying leading edge curvature. PIV was used to quantify the strength of these vortices as a function of angle of attack and leading edge geometry. At low angles of attack, these vortices are symmetric with respect to the protuberances; however, the symmetry is lost at high angles of attack. The loss of symmetry can be correlated with the separation point location on the hydrofoil.
Development of a spined underwater biomimetic vehicle with SMA actuators
NASA Astrophysics Data System (ADS)
Rediniotis, Othon K.; Lagoudas, Dimitris C.; Garner, Luke J.; Wilson, Larry N.
1999-06-01
We present here our progress towards the development of a type of biomimetic active hydrofoil that utilizes Shape Memory Alloy (SMA) actuator technology. The actuation is presently applied to the control of hydrodynamic forces and moments, including thrust generation, on a 2D hydrofoil. The SMA actuation elements are two sets of thin wires (0.015' to 0.027') on either side of an elastomer element that provides the main structural support. Controlled heating and cooling of the two wire sets generates bi-directional bending of the elastomer, which in turn deflects (for quasi-static control) or oscillates (for thrust generation) the trailing edge of the hydrofoil. The aquatic environment of the hydrofoil lends itself to cooling schemes that utilize the excellent heat transfer properties of water. The SMA actuator was able to deflect the trailing edge by +/- 5 degree(s) at rates as high as 2 Hz. FEM modeling of hydrofoil response to thermoelectric heating has been carried out using a thermomechanical constitutive model for SMAs. FEM predictions are compared with experimental measurements.
NASA Astrophysics Data System (ADS)
Wosnik, M.; Bachant, P.; Nedyalkov, I.; Rowell, M.; Dufresne, N.; Lyon, V.
2013-12-01
We report on research related to MHK turbines at the Center for Ocean Renewable Energy (CORE) at the University of New Hampshire (UNH). The research projects span varies scales, levels of complexity and environments - from fundamental studies of hydrofoil sections in a high speed water tunnel, to moderate Reynolds number turbine tests with inflow and wake studies in a large cross-section tow tank, to deployments of highly instrumented process models at tidal energy test sites in New England. A concerted effort over the past few years has brought significant new research infrastructure for marine hydrokinetic energy conversion online at UNH-CORE. It includes: a high-speed cavitation tunnel with independent control of velocity and pressure; a highly accurate tow mechanism, turbine test bed and wake traversing system for the 3.7m x 2.4m cross-section UNH tow tank; a 10.7m x 3.0m tidal energy test platform which can accommodate turbines up to 1.5m in diameter, for deployments at the UNH-CORE Tidal Energy Test Site in Great Bay Estuary, NH, a sheltered 'nursery site' suitable for intermediate scale tidal energy conversion device testing with peak currents typically above 2 m/s during each tidal cycle. Further, a large boundary layer wind tunnel, the new UNH Flow Physics Facility (W6.0m x H2.7m xL72m) is being used for detailed turbine wake studies, producing data and insight also applicable to MHK turbines in low Froude number deployments. Bi-directional hydrofoils, which perform equally well in either flow direction and could avoid the use of complex and maintenance-intensive yaw or blade pitch mechanisms, are being investigated theoretically, numerically and experimentally. For selected candidate shapes lift, drag, wake, and cavitation inception/desinence are measured. When combined with a cavitation inception model for MHK turbines, this information can be used to prescribe turbine design/operational parameters. Experiments were performed with a 1m diameter and 1m tall three-bladed cross-flow axis turbine (UNH RVAT) in a tow tank. For cross-flow axis turbines hydrofoil performance remains Reynolds number dependent at intermediate scales due to the large range of angles of attack encountered during turbine rotation. The experiments, with turbine diameter Reynolds numbers ReD = 0.5 x105 to 2.0 x106, were aimed at providing detailed data for model comparison at significantly higher Reynolds numbers than previously available. Measurements include rotor power, thrust, tip speed ratio, and detailed maps of mean flow and turbulence components in the near-wake. Mechanical exergy efficiency was calculated from power and drag measurements using an actuator disk approach. The spatial and temporal resolutions of different flow measurement techniques (ADCP, ADV, PIV) were systematically characterized. Finally, Reynolds-averaged Navier-Stokes (RANS) simulations were performed to assess their ability to predict the experimental results. A scaled version of a mixer-ejector hydrokinetic turbine, with a specially designed shroud to promotes wake mixing to enable increased mass flow through the turbine rotor, was evaluated experimentally at the UNH Tidal Energy Test Site in Great Bay Estuary, NH and in Muskeget Channel, MA. State-of-the-art instrumentation was used to measure the tidal energy resource and turbine wake flow velocities, turbine power extraction, test platform loadings and platform motion induced by sea state.
Catamaran or semi-submersible for floating platform - selection of a better design
NASA Astrophysics Data System (ADS)
Qasim, Idrees; Gao, Liangtian; Peng, Duojin; Liu, Bo
2018-02-01
With nonstop advancement in marine engineering, more and more new structures are being designed and explored for tidal current energy. There are three different kinds of support structures for tidal current power station mostly in use, which are sea-bed mounted/gravity based system, pile mounted system and floating moored platform. Comparing all of them, the floating mooring system is most suitable for deep water systems and the application of this arrangement is widely usable. In this paper, a semi-submersible and a catamaran as floating platforms for tidal current power stations are studied are compared on the basis of its economics, efficiency of turbine and stability of the station. Based on basic ship theory and using software MAXSURF, the stability of Catamaran tidal current power station is also calculated. It is found that the catamaran design is optimal choice.
performance of supercavitating hydrofoils. No appreciable scale effect was found for scale ratios up to 3 in the fully-cavitating flow region. The...overall performance of the hydrofoil by increasing the aspect ratio above 3, and (2) moderate taper ratio seems to be advantageous in view of the overall performance of supercavitating hydrofoils. (Author)
Design and implementation of a biomimetic turtle hydrofoil for an autonomous underwater vehicle.
Font, Davinia; Tresanchez, Marcel; Siegentahler, Cedric; Pallejà, Tomàs; Teixidó, Mercè; Pradalier, Cedric; Palacin, Jordi
2011-01-01
This paper presents the design and implementation of a turtle hydrofoil for an Autonomous Underwater Vehicle (AUV). The final design of the AUV must have navigation performance like a turtle, which has also been the biomimetic inspiration for the design of the hydrofoil and propulsion system. The hydrofoil design is based on a National Advisory Committee for Aeronautics (NACA) 0014 hydrodynamic profile. During the design stage, four different propulsion systems were compared in terms of propulsion path, compactness, sealing and required power. The final implementation is based on a ball-and-socket mechanism because it is very compact and provides three degrees of freedom (DoF) to the hydrofoil with very few restrictions on the propulsion path. The propulsion obtained with the final implementation of the hydrofoil has been empirically evaluated in a water channel comparing different motion strategies. The results obtained have confirmed that the proposed turtle hydrofoil controlled with a mechanism with three DoF generates can be used in the future implementation of the planned AUV.
Acoustics of a Mixed Porosity Felt Airfoil
2016-06-06
higher Reynolds numbers. 15. SUBJECT TERMS wings, hydrofoils, propulsor blade , stall, shed vortices, trailing edge scattering, owl, mixed...hydrofoils, and propulsor blades produce noise in operation. This noise has several potential sources, including stall, shed vortices, and trailing edge...that are concerned primarily with cooling high-temperature turbine blades [10] or mitigating shock waves [11] [12]. Theoretical work on a poroelastic
Design and Implementation of a Biomimetic Turtle Hydrofoil for an Autonomous Underwater Vehicle
Font, Davinia; Tresanchez, Marcel; Siegentahler, Cedric; Pallejà, Tomàs; Teixidó, Mercè; Pradalier, Cedric; Palacin, Jordi
2011-01-01
This paper presents the design and implementation of a turtle hydrofoil for an Autonomous Underwater Vehicle (AUV). The final design of the AUV must have navigation performance like a turtle, which has also been the biomimetic inspiration for the design of the hydrofoil and propulsion system. The hydrofoil design is based on a National Advisory Committee for Aeronautics (NACA) 0014 hydrodynamic profile. During the design stage, four different propulsion systems were compared in terms of propulsion path, compactness, sealing and required power. The final implementation is based on a ball-and-socket mechanism because it is very compact and provides three degrees of freedom (DoF) to the hydrofoil with very few restrictions on the propulsion path. The propulsion obtained with the final implementation of the hydrofoil has been empirically evaluated in a water channel comparing different motion strategies. The results obtained have confirmed that the proposed turtle hydrofoil controlled with a mechanism with three DoF generates can be used in the future implementation of the planned AUV. PMID:22247660
NASA Astrophysics Data System (ADS)
Zapryagaev, Ivan I.; Timoshevskiy, Mikhail V.; Pervunin, Konstantin S.
2017-09-01
Tip-clearance cavitation is one of the most aggressive forms of cavitation as it can cause surface erosion of hydraulic machinery elements and, as a result, their fatigue damage and disturb designed operating conditions. At present, the literature lacks for detailed experimental data on the inception and development of this type of cavitation at various flow conditions. In the paper, a tip-leakage cavitation occurring in the clearance between an end face of a 2D hydrofoil (a scaled-down model of guide vanes (GV) of a Francis turbine) and a transparent wall of the test section was studied. The experiments were carried out for different cavitating regimes on the cavitation number and two attack angles of 3° and 9°, with the gap size (tip clearance width) varied in the range from 0.4 to 0.8 mm. In order to determine the cavitation inception conditions and investigate the dynamics of the tip-leakage cavitation, a high-speed visualization was applied. A modified PIV/PTV technique with a diverging laser beam instead of a laser light sheet was used to measure the mean velocity distributions within the gap. It was shown that the cavitation pattern on the suction side of the GV model impacts the dynamics of the leakage flow in the gap but does not affect the sheet cavity formed close to the foil leading edge in the clearance as well as its size and dynamics. When the gap size is increased, the tip-leakage cavitation initiates at higher cavitation numbers or, in other words, conditions for the cavitation occurrence become more favorable.
NASA Technical Reports Server (NTRS)
Heyson, H. H.
1976-01-01
The development of a very large cargo aircraft by combining, in catamaran fashion, two existing wide body transports was studied. Advantages of this system include: lighter weight and increased payload; increased fuel economy; and reduction in direct operating costs.
Effect of superhydrophobic surfaces on the flow over a hydrofoil at low Reynolds number
NASA Astrophysics Data System (ADS)
Kim, Hyunseok; Kim, Nayoung; Park, Hyungmin
2014-11-01
In the present study, we experimentally investigate the effect of superhydrophobic surface on the flow over a hydrofoil at low Rec <104 , where c is the chord length of a hydrofoil. As a hydrofoil, we consider the cross-sections typically used for airfoils like NACA0012, NACA0024, and NACA4412, which stand for thin, thick and cambered hydrofoils, respectively. Spray-coating of hydrophobic nanoparticles are applied onto the hydrofoil surface and subsequent velocity fields are measured in a water tunnel using two-dimensional particle image velocimetry at different angles of attack, α =0° -20° . At small α's (for example, less than 10°), it is found that the surface slip tends to affect the flow separation slightly and also modify the size of recirculation region in the wake. Since a massive separation occurs at the leading edge at larger α's, however, the effect of superhydrophobic surface becomes diminished. In the talk, the dependence of the hydrodynamic role of surface slip on the hydrofoil shape and Rec will be presented. Supported by the NRF Programs (NRF-2012M2A8A4055647, NRF-2013R1A1A1008373) of Korean government.
Analysis of user perception of hydrofoil service
DOT National Transportation Integrated Search
1983-06-01
This memorandum presents the findings from a survey of hydrofoil passengers in Southern Italy. This hydrofoil service links the ports of Palermo and Naples with a stop in Ustica, a resort island off the northern coast of Sicily. The vessel used in th...
Shiu, Henry; Swales, Henry; Van Damn, Case
2015-06-03
Dataset contains MHK Hydrofoils Design and Optimization and CFD Analysis Report for the Aquantis 2.5 MW Ocean Current Generation Device, as well as MHK Hydrofoils Wind Tunnel Test Plan and Checkout Test Report.
Parametric system identification of catamaran for improving controller design
NASA Astrophysics Data System (ADS)
Timpitak, Surasak; Prempraneerach, Pradya; Pengwang, Eakkachai
2018-01-01
This paper presents an estimation of simplified dynamic model for only surge- and yaw- motions of catamaran by using system identification (SI) techniques to determine associated unknown parameters. These methods will enhance the performance of designing processes for the motion control system of Unmanned Surface Vehicle (USV). The simulation results demonstrate an effective way to solve for damping forces and to determine added masses by applying least-square and AutoRegressive Exogenous (ARX) methods. Both methods are then evaluated according to estimated parametric errors from the vehicle’s dynamic model. The ARX method, which yields better estimated accuracy, can then be applied to identify unknown parameters as well as to help improving a controller design of a real unmanned catamaran.
Development of a shape memory alloy actuated biomimetic vehicle
NASA Astrophysics Data System (ADS)
Garner, L. J.; Wilson, L. N.; Lagoudas, D. C.; Rediniotis, O. K.
2000-10-01
The development of a biomimetic active hydrofoil that utilizes shape memory alloy (SMA) actuator technology is presented. This work is the first stage prototype of a vehicle that will consist of many actuated body segments. The current work describes the design, modeling and testing of a single-segment demonstration SMA actuated hydrofoil. The SMA actuation elements are two sets of thin wires on either side of an elastomeric component that joins together the leading and trailing edges of the hydrofoil. Controlled heating and cooling of the two wire sets generates bi-directional bending of the elastomer, which in turn deflects the trailing edge of the hydrofoil. In this paper the design of the hydrofoil and the experimental tests preformed thereon are explained. A detailed account of SMA actuator preparation (training) and material characterization is given. Finite-element method (FEM) modeling of hydrofoil response to electrical heating of the SMA actuators is carried out using a thermomechanical constitutive model for the SMA with input from the material characterization. The modeling predictions are finally compared with experimental measurements of the trailing edge deflection and the SMA actuator temperature.
Dynamics and control of hydrofoil wakes
NASA Astrophysics Data System (ADS)
Kjeldsen, Morten; Wosnik, Martin; Arndt, Roger
2008-11-01
The problem of rotor-stator interaction (RSI) is an issue within the field of turbomachinery. The flow field entering the rotor cascade will depend on the stator blade to blade velocity distributions, and the viscous wake trailing cascade blades. This flow field is also dependent on the mode of operation, e.g by changing the angle of each blade in hydroturbines. Manipulating the stator viscous wakes is one method to minimize the problems associated RSI; i.e. noise and vibration. In order to explore this concept, a comprehensive experimental program was carried out in a high-speed water tunnel utilizing a series of NACA 0015 hydrofoils. Baseline wake data were collected with a hydraulically smooth foil and compared with two foils modified with two sizes of vortex generators (VG) positioned close to the leading edge of the foil. Not only was the effect of the modifications on wake spreading investigated but also the effect on wake dynamics such as vortex shedding was studied. A high frame-rate PIV system was used at recording rates of 1 and 10 kHz to map the near wake region, extending roughly 1 chord-length downstream the trailing edge, over a range of angles of attack and velocities. The results show that wake dynamics and wake characteristics, i.e. velocity deficit and width, scale with average drag. It was demonstrated that the use of VGs can improve both the dynamics and spreading characteristics of the wake.
Theoretical and experimental investigations of an active hydrofoil with SMA actuators
NASA Astrophysics Data System (ADS)
Rediniotis, Othon K.; Lagoudas, Dimitris C.; Mashio, Tomoka; Garner, Luke J.; Qidwai, Muhammad A.
1997-06-01
In the area of underwater vehicle design, the development of highly maneuverable vehicles is presently of interest with their design being based on the swimming techniques and anatomic structure of fish; primarily the undulatory body motions, the highly controllable fins and the large aspect ratio lunatic tail. The tailoring and implementation of the accumulated knowledge into biomimetic vehicles is a task of multidisciplinary nature with two of the dominant fields being actuation and hydrodynamic control. Within this framework, we present here our progress towards the development of a type of biomimetic muscle that utilizes shape memory alloy (SMA) technology. The muscle is presently applied to the control of hydrodynamic forces and moments, including thrust generation, on a 2D hydrofoil. The main actuation elements are two sets of thin SMA wires embedded into an elastomeric element that provides the main structural support. Controlled heating and cooling of the two wire sets generates bi-direction bending of the elastomer, which in turn deflects or oscillates the trailing edge of the hydrofoil. The aquatic environment of the hydrofoil lends itself to cooling schemes that utilize the excellent heat transfer properties of water. The modeling of deflected shapes as a function of input current has been carried out using a thermomechanical constitutive model for SMA coupled with the elastic response of the elastomer. An approximate structural analysis model, as well as detailed FEM analysis has been performed and the model predictions are been compared with preliminary experimental measurements.
The Low-Noise Potential of Distributed Propulsion on a Catamaran Aircraft
NASA Technical Reports Server (NTRS)
Posey, Joe W.; Tinetti, A. F.; Dunn, M. H.
2006-01-01
The noise shielding potential of an inboard-wing catamaran aircraft when coupled with distributed propulsion is examined. Here, only low-frequency jet noise from mid-wing-mounted engines is considered. Because low frequencies are the most difficult to shield, these calculations put a lower bound on the potential shielding benefit. In this proof-of-concept study, simple physical models are used to describe the 3-D scattering of jet noise by conceptualized catamaran aircraft. The Fast Scattering Code is used to predict noise levels on and about the aircraft. Shielding results are presented for several catamaran type geometries and simple noise source configurations representative of distributed propulsion radiation. Computational analyses are presented that demonstrate the shielding benefits of distributed propulsion and of increasing the width of the inboard wing. Also, sample calculations using the FSC are presented that demonstrate additional noise reduction on the aircraft fuselage by the use of acoustic liners on the inboard wing trailing edge. A full conceptual aircraft design would have to be analyzed over a complete mission to more accurately quantify community noise levels and aircraft performance, but the present shielding calculations show that a large acoustic benefit could be achieved by combining distributed propulsion and liner technology with a twin-fuselage planform.
Examining Dynamic Stall for an Oscillating NACA 4412 Hydrofoil
NASA Astrophysics Data System (ADS)
McVay, Eric; Lang, Amy; Gamble, Lawren; Bradshaw, Michael
2013-11-01
Dynamic stall is unsteady separation that occurs when a hydrofoil pitches through the static stall angle while simultaneously experiencing a rapid change in angle of attack. The NACA 4412 hydrofoil was selected for this research because it has strong trailing edge turbulent boundary layer separation characteristics. General dynamic stall angle of attack for approximately symmetric airfoils has been recorded to occur at 24 degrees, with separation beginning at about 16 degrees. It is predicted that the boundary layer will stay attached at a higher angle of attack because of the cambered geometry of the hydrofoil. It is also hypothesized that the boundary layer separation occurs closer to the trailing edge and that the dynamic stall angle of attack occurs somewhere between 24 and 28 degrees for the oscillating NACA 4412 hydrofoil. This research was conducted in a water tunnel facility using Time Resolved Digital Particle Image Velocimetry (TR-DPIV). The hydrofoil was pitched up from 0 to 30 degrees at Reynolds numbers of 60,000, 80,000 and 100,000. Flow characteristics, dynamic stall angles of attack, and points of boundary layer separation were compared at each velocity with both tripped and un-tripped surfaces. Follow-on research will be conducted using flow control techniques from sharks and dolphins to examine the potential benefits of these natural designs for separation control. Support for this research by NSF REU Grant #1062611 and CBET Grant #0932352 is gratefully acknowledged.
Flow Field Characteristics of Finite-span Hydrofoils with Leading Edge Protuberances
NASA Astrophysics Data System (ADS)
Custodio, Derrick; Henoch, Charles; Johari, Hamid; Office of Naval Research Collaboration
2011-11-01
Past work has shown that humpback whale-like leading edge protuberances can significantly alter the load characteristics of both 2D and finite-span hydrofoils. To understand the mechanisms responsible for observed performance changes, the flow field characteristics of a baseline hydrofoil and models with leading edge protuberances were examined using the Stereo Particle Image Velocimetry (SPIV) technique. The near surface flow field on the hydrofoils was measured along with the tip vortex flow field on finite-span hydrofoils. Angles of attack ranging from 6 to 24 degrees were examined at freestream velocities of 1.8 m/s and 4.5 m/s, corresponding to Reynolds numbers of 180 and 450 thousand, respectively. While Reynolds number does not play a major role in establishing the flow field trends, both the protuberance geometry and spatial proximity to protuberances affect the velocity and vorticity characteristics near the foil surface, and in the wake and tip vortex. Near surface measurements reveal counter-rotating vortices on protuberance shoulders, while tip vortex measurements show that streamwise vorticity can be strongly affected by the presence of protuberances. The observed flow field characteristics will be presented. Sponsored by the ONR-ULI program.
NASA Astrophysics Data System (ADS)
Smith, Drew; Lang, Amy; Wahidi, Redha
2011-11-01
Shark skin is being investigated as a means of passive flow separation control due to the flexibility and preferential flow direction of the scales covering the skin. In this study, the effect of the scales is observed in a tripped turbulent boundary layer by comparing the flow over a NACA 4412 hydrofoil with a smooth surface to that over the same hydrofoil with samples of mako shark skin affixed to its upper surface. These samples were taken from the flank area of the shark because the scales at that location have been shown to have the greatest angle of erection, and thus the best potential for separation control. All flow data in this study was obtained using Time-Resolved Digital Particle Image Velocimetry and recorded at multiple angles of attack (between 8 and 16 degrees) and two Reynolds numbers. The flow was primarily analyzed by means of the backflow coefficient (a value based on the percentage of time that flow in a region over the hydrofoil is reversed) and the time history of instantaneous flow velocity values at specific points in the boundary layer over the hydrofoil models. Research performed under NSF grant 0932352.
The Flow Field on Hydrofoils with Leading Edge Protuberances
NASA Astrophysics Data System (ADS)
Custodio, Derrick; Henoch, Charles; Johari, Hamid
2009-11-01
The exceptional mobility of the humpback whale has been linked to the use of its unique pectoral flippers. Biologists speculate that the flippers leading edge protuberances are a form of passive flow control. Force measurements on 2D hydrofoils with spanwise uniform leading edge protuberances, resembling those seen on the humpback whale flipper, were taken in a water tunnel and have revealed performance modifications when compared to a baseline NACA 63(4)-021 hydrofoil model. Qualitative flow visualization techniques and Particle Image Velocimetry (PIV) flow field measurements on the modified hydrofoils have shown that streamwise vortices originating from the shoulders of the protuberances are the likely cause of performance changes. Varying levels of interaction among adjacent streamwise vortices have been observed as a function of angle of attack and chord location. The circulation of these vortices as a function of angle of attack and spatial location was measured and an analysis of the vortex interactions will be presented.
Surface Patterning: Controlling Fluid Flow Through Dolphin and Shark Skin Biomimicry
NASA Astrophysics Data System (ADS)
Gamble, Lawren; Lang, Amy; Bradshaw, Michael; McVay, Eric
2013-11-01
Dolphin skin is characterized by circumferential ridges, perpendicular to fluid flow, present from the crest of the head until the tail fluke. When observing a cross section of skin, the ridges have a sinusoidal pattern. Sinusoidal grooves have been proven to induce vortices in the cavities that can help control flow separation which can reduce pressure drag. Shark skin, however, is patterned with flexible scales that bristle up to 50 degrees with reversed flow. Both dolphin ridges and shark scales are thought to help control fluid flow and increase swimming efficiency by delaying the separation of the boundary layer. This study investigates how flow characteristics can be altered with bio-inspired surface patterning. A NACA 4412 hydrofoil was entirely patterned with transverse sinusoidal grooves, inspired by dolphin skin but scaled so the cavities on the model have the same Reynolds number as the cavities on a swimming shark. Static tests were conducted at a Reynolds number of approximately 100,000 and at varying angles of attack. The results were compared to the smooth hydrofoil case. The flow data was quantified using Digital Particle Image Velocimetry (DPIV). The results of this study demonstrated that the patterned hydrofoil experienced greater separation than the smooth hydrofoil. It is hypothesize that this could be remediated if the pattern was placed only after the maximum thickness of the hydrofoil. Funding through NSF REU grant 1062611 is gratefully acknowledged.
1978-11-03
gas turbine m; E T3; ?V,S; ?T,S (dt; is necessary. Beneath Eq. (1) we use the fuel flow as the control variable mBr = f(t) (6), and further on T = f...Speed Configuration Applications General Electric 2400 kW1 Semi- Submerged T-64 1000 r.p.m. Platform "Kaimalino" AVCO Lycominq 2500 kW Amphibious Assault...important technology for hydrofoil ships with fukly submerged foil systems. These vehicles are inherently dynamically unstable and must often operate in an
Fifth International Conference on High Energy Density Physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beg, Farhat
The Fifth International Conference on High Energy Density Physics (ICHED 2015) was held in the Catamaran Hotel in San Diego from August 23-27, 2015. This meeting was the fifth in a series which began in 2008 in conjunction with the April meeting of the American Physical Society (APS). The main goal of this conference has been to bring together researchers from all fields of High Energy Density Science (HEDS) into one, unified meeting.
Influence of polymer additive on flow past a hydrofoil: A numerical study
NASA Astrophysics Data System (ADS)
Xiong, Yongliang; Peng, Sai; Yang, Dan; Duan, Juan; Wang, Limin
2018-01-01
Flows of dilute polymer solutions past a hydrofoil (NACA0012) are examined by direct numerical simulation to investigate the modification of the wake pattern due to the addition of polymer. The influence of polymer additive is modeled by the FENE-P model in order to simulate a non-linear modulus of elasticity and a finite extendibility of the polymer macromolecules. Simulations were carried out at a Reynolds number of 1000 with the angle of attack varying from 0° to 20°. The results show that the influence of polymer on the flow behavior of the flow past a hydrofoil exhibits different flow regimes. In general, the addition of polymer modifies the wake patterns for all angles of attack in this study. Consequently, both drag and lift forces are changed as the Weissenberg number increases while the drag of the hydrofoil is enhanced at small angles of attack and reduced at large angles of attack. As the Weissenberg number increases, two attached recirculation bubbles or two columns of shedding vortices downstream tend to be symmetric, and the polymer tends to make the flow less sensitive to the variation of the angle of attack.
Mind the gap - tip leakage vortex in axial turbines
NASA Astrophysics Data System (ADS)
Dreyer, M.; Decaix, J.; Münch-Alligné, C.; Farhat, M.
2014-03-01
The tendency of designing large Kaplan turbines with a continuous increase of output power is bringing to the front the cavitation erosion issue. Due to the flow in the gap between the runner and the discharge ring, axial turbine blades may develop the so called tip leakage vortex (TLV) cavitation with negative consequences. Such vortices may interact strongly with the wake of guide vanes leading to their multiple collapses and rebounds. If the vortex trajectory remains close to the blade tip, these collapses may lead to severe erosion. One is still unable today to predict its occurrence and development in axial turbines with acceptable accuracy. Numerical flow simulations as well as the actual scale-up rules from small to large scales are unreliable. The present work addresses this problematic in a simplified case study representing TLV cavitation to better understand its sensitivity to the gap width. A Naca0009 hydrofoil is used as a generic blade in the test section of EPFL cavitation tunnel. A sliding mounting support allowing an adjustable gap between the blade tip and wall was manufactured. The vortex trajectory is visualized with a high speed camera and appropriate lighting. The three dimensional velocity field induced by the TLV is investigated using stereo particle image velocimetry. We have taken into account the vortex wandering in the image processing to obtain accurate measurements of the vortex properties. The measurements were performed in three planes located downstream of the hydrofoil for different values of the flow velocity, the incidence angle and the gap width. The results clearly reveal a strong influence of the gap width on both trajectory and intensity of the tip leakage vortex.
Cavitation in liquid cryogens. 2: Hydrofoil
NASA Technical Reports Server (NTRS)
Hord, J.
1973-01-01
Boundary layer principles, along with two-phase concepts, are used to improve existing correlative theory for developed cavity data. Details concerning cavity instrumentation, data analysis, correlative techniques, and experimental and theoretical aspects of a cavitating hydrofoil are given. Both desinent and thermodynamic data, using liquid hydrogen and liquid nitrogen, are reported. The thermodynamic data indicated that stable thermodynamic equilibrium exists throughout the vaporous cryogen cavities. The improved correlative formulas were used to evaluate these data. A new correlating parameter based on consideration of mass limiting two-phase flow flux across the cavity interface, is proposed. This correlating parameter appears attractive for future correlative and predictive applications. Agreement between theory and experiment is discussed, and directions for future analysis are suggested. The front half of the cavities, developed on the hydrofoil, may be considered as parabolically shaped.
Investigation of longitudinal control system for a small hydrofoil boat
NASA Technical Reports Server (NTRS)
Phillips, W. H.; Shaughnessy, J. D.
1976-01-01
An analysis of a hydromechanical system for longitudinal control of a small hydrofoil boat is presented. The system incorporates height and acceleration sensors operating flaps on the foils through a mechanical linkage. Effects of some of the system parameters on the stability and response to waves are shown. The results indicate that the system is capable of providing adequate stability, but the response to stern waves at low frequencies is larger than desired.
NASA Astrophysics Data System (ADS)
Meneghello, Gianluca; Beyhaghi, Pooriya; Bewley, Thomas
2016-11-01
The identification of an optimized hydrofoil shape depends on an accurate characterization of both its geometry and the incoming, turbulent, free-stream flow. We analyze this dependence using the computationally inexpensive vortex lattice model implemented in AVL, coupled with the recently developed global, derivative-free optimization algorithm implemented in Δ - DOGS . Particular attention will be given to the effect of the free-stream turbulence level - as modeled by a change in the viscous drag coefficients - on the optimized values of the parameters describing the three dimensional shape of the foil. Because the simplicity of AVL, when contrasted with more complex and computationally expensive LES or RANS models, may cast doubts on its usefulness, its validity and limitations will be discussed by comparison with water tank measurement, and again taking into account the effect of the uncertainty in the free-stream characterization.
Set-Based Approach to Design under Uncertainty and Applications to Shaping a Hydrofoil
2016-01-01
given requirements. This notion of set-based designwas pioneered by Toyota and adopted by the U.S. Navy [1]. It responds to most real-world design...in such a way that all desired shape variations are allowed both on the suction and pressure side. Figure 2 gives a schematic representation of the...of the hydrofoil. The control points of the pressure side have been changed in different ways to en- sure the overall hydrodynamic performance
Theoretical Motions of Hydrofoil Systems
1947-06-01
mentioned in the main test. 22 NACA TIT No. 1285 By the use of D ’ Alemberts principle , the" following equations of equilibrium at the center of gravity...spacing-is d ^Bii;a^i§_iiv order; tominimize the.-effepts-of unavo idable.. change s iiic enter-: of, r gravi ty. location. eine ouster ej._ $n...disturbance to hydrofoil system k, empirical constant used to determine value 1 *(WJ* of d (CT) /ÖZ1 fco> k5 empirical constants used to determine
1994-01-01
length scales mensional hydrofoil and tip vortex flow around a F circulation three dimensional hydrofoil. The simulated mean v molecular viscosity flow...Unstructured Grid for Free Surface Flow Simulations , by T. Hino, L. Martinelli, and A. Jameson 173 "A Semi-Implicit Semi-Lagrangian Finite Element Model...Haussling Solid-Fluid Juncture Boundary Layer and Wake with Waves, by J.E. Choi and F. Stern 215 Direct Numerical and Large-Eddy Simulations of Turbulent
1975-10-01
associated with drag- reducing polymers since Wu’s discovery of pump effects in 1969(16) Some of the research has involved tests on propellers finite span...AD-A022 433 LIFT, DRAG, AND PRESSURE DISTRIBUTION EFFECTS ACCOMPANYING DRAG- REDUCING POLYMER INJECTION ON TWO-DIMENSIONAL HYDROFOIL Daniel H. Fruman...et al Hydronautits, IncorponAted "Prepared f’or: Office of Naval Research October 197’ .!. S.IIE KA NTO CmaY - t 093103 A pprove!- for p~thic relpsa
Controlling air pollution from passenger ferries: cost-effectiveness of seven technological options.
Farrell, Alexander E; Corbett, James J; Winebrake, James J
2002-12-01
Continued interest in improving air quality in the United States along with renewed interest in the expansion of urban passenger ferry service has created concern about air pollution from ferry vessels. This paper presents a methodology for estimating the air pollution emissions from passenger ferries and the costs of emissions control strategies. The methodology is used to estimate the emissions and costs of retrofitting or re-powering ferries with seven technological options (combinations of propulsion and emission control systems) onto three vessels currently in service in San Francisco Bay. The technologies include improved engine design, cleaner fuels (including natural gas), and exhaust gas cleanup devices. The three vessels span a range of ages and technologies, from a 25-year-old monohull to a modern, high-speed catamaran built only four years ago. By looking at a range of technologies, vessel designs, and service conditions, a sense of the broader implications of controlling emissions from passenger ferries across a range of vessels and service profiles is provided. Tier 2-certified engines are the most cost-effective choice, but all options are cost-effective relative to other emission control strategies already in place in the transportation system.
A new helicostat from SNIAS helicopter division
NASA Technical Reports Server (NTRS)
Morisset, J.
1977-01-01
The Helicostat was described as a helicopter in which the vehicle weight is nullified by two balloons arranged in a catamaran fashion. Development of such a vehicle is discussed, and various uses for these helicopters are summarized.
Direct Adaptive Rejection of Vortex-Induced Disturbances for a Powered SPAR Platform
NASA Technical Reports Server (NTRS)
VanZwieten, Tannen S.; Balas, Mark J.; VanZwieten, James H.; Driscoll, Frederick R.
2009-01-01
The Rapidly Deployable Stable Platform (RDSP) is a novel vessel designed to be a reconfigurable, stable at-sea platform. It consists of a detachable catamaran and spar, performing missions with the spar extending vertically below the catamaran and hoisting it completely out of the water. Multiple thrusters located along the spar allow it to be actively controlled in this configuration. A controller is presented in this work that uses an adaptive feedback algorithm in conjunction with Direct Adaptive Disturbance Rejection (DADR) to mitigate persistent, vortex-induced disturbances. Given the frequency of a disturbance, the nominal DADR scheme adaptively compensates for its unknown amplitude and phase. This algorithm is extended to adapt to a disturbance frequency that is only coarsely known by including a Phase Locked Loop (PLL). The PLL improves the frequency estimate on-line, allowing the modified controller to reduce vortex-induced motions by more than 95% using achievable thrust inputs.
Time resolved PIV and flow visualization of 3D sheet cavitation
NASA Astrophysics Data System (ADS)
Foeth, E. J.; van Doorne, C. W. H.; van Terwisga, T.; Wieneke, B.
2006-04-01
Time-resolved PIV was applied to study fully developed sheet cavitation on a hydrofoil with a spanwise varying angle of attack. The hydrofoil was designed to have a three-dimensional cavitation pattern closely related to propeller cavitation, studied for its adverse effects as vibration, noise, and erosion production. For the PIV measurements, fluorescent tracer particles were applied in combination with an optical filter, in order to remove the reflections of the laser lightsheet by the cavitation. An adaptive mask was developed to find the interface between the vapor and liquid phase. The velocity at the interface of the cavity was found to be very close to the velocity predicted by a simple streamline model. For a visualization of the global flow dynamics, the laser beam was expanded and used to illuminate the entire hydrofoil and cavitation structure. The time-resolved recordings reveal the growth of the attached cavity and the cloud shedding. Our investigation proves the viability of accurate PIV measurements around developed sheet cavitation. The presented results will further be made available as a benchmark for the validation of numerical simulations of this complicated flow.
46 CFR 171.057 - Intact stability requirements for a sailing catamaran.
Code of Federal Regulations, 2011 CFR
2011-10-01
... displacement of the vessel, in kilograms (pounds). X=4.88 kilograms/square meter (1.0 pounds/square foot). (b... sail area above the deck, in meters (feet). W=the total displacement of the vessel, in kilograms...
46 CFR 171.057 - Intact stability requirements for a sailing catamaran.
Code of Federal Regulations, 2013 CFR
2013-10-01
... displacement of the vessel, in kilograms (pounds). X=4.88 kilograms/square meter (1.0 pounds/square foot). (b... sail area above the deck, in meters (feet). W=the total displacement of the vessel, in kilograms...
46 CFR 171.057 - Intact stability requirements for a sailing catamaran.
Code of Federal Regulations, 2012 CFR
2012-10-01
... displacement of the vessel, in kilograms (pounds). X=4.88 kilograms/square meter (1.0 pounds/square foot). (b... sail area above the deck, in meters (feet). W=the total displacement of the vessel, in kilograms...
46 CFR 171.057 - Intact stability requirements for a sailing catamaran.
Code of Federal Regulations, 2014 CFR
2014-10-01
... displacement of the vessel, in kilograms (pounds). X=4.88 kilograms/square meter (1.0 pounds/square foot). (b... sail area above the deck, in meters (feet). W=the total displacement of the vessel, in kilograms...
Observations and Measurements on Unsteady Cloud Cavitation Flow Structures
NASA Astrophysics Data System (ADS)
Gu, L. X.; Yan, G. J.; Huang, B.
2015-12-01
The objectives of this paper are to investigate the unsteady structures and hydrodynamics of cavitating flows. Experimental results are presented for a Clark-Y hydrofoil, which is fixed at α=0°, 5° and 8°. The high-speed video camera and Particle Image Velocimetry (PIV) are applied to investigate the transient flow structures. The dynamic measurement system is used to record the dynamic characteristics. The cloud cavitation exhibits noticeable unsteady characteristics. For the case of α=0°, there exit strong interactions between the attached cavity and the re-entrant flow. While for the case of α=8°, the re-entrant flow is relatively thin and the interaction between the cavity and re-entrant flow is limited. The results also present that the periodic collapse and shedding of the large-scale cloud cavitation, which leads to substantial increase of turbulent velocity fluctuations in the cavity region. Experimental evidence indicates that the hydrodynamics are clearly affected by the cavitating flow structures, the amplitude of load fluctuation are much higher for the cloud cavitating cases.
Effect of cavitation on flow structure of a tip vortex
NASA Astrophysics Data System (ADS)
Matthieu, Dreyer; Reclari, Martino; Farhat, Mohamed
2013-11-01
Tip vortices, which may develop in axial turbines and marine propellers, are often associated with the occurrence of cavitation because of the low pressure in their core. Although this issue has received a great deal of attention, it is still unclear how the phase transition affects the flow structure of such a vortex. In the present work, we investigate the change of the vortex structure due to cavitation incipience. The measurement of the velocity field is performed in the case of a tip vortex generated by an elliptical hydrofoil placed in the test section of EPFL high speed cavitation tunnel. To this end, a 3D stereo PIV is used with fluorescent seeding particles. A cost effective method is developed to produce in-house fluorescent seeding material, based on polyamide particles and Rhodamine-B dye. The amount of cavitation in the vortex core is controlled by the inlet pressure in the test section, starting with the non-cavitating case. We present an extensive analysis of the vorticity distribution, the vortex intensity and core size for various cavitation developments. This research is supported by CCEM and swisselectric research.
NASA Astrophysics Data System (ADS)
Tian, Ruijun
Two typical unsteady fluid-structure interaction problems have been investigated in the present study. One of them was about actively plunged flexible hydrofoil; the other was about gravity-driven falling plates in water. Real-time velocity field and dynamic response on the moving objects were measured to study these unsteady and highly nonlinear problems. For a long time, scientists have believed that bird and insect flight benefits greatly from the flexibility and morphing facility of their wings via flapping motion. A significant advantage flexible wing models have over quasi-steady rigid wing models is a much higher lift generation capability. Both experimental and computational studies have shown that the leading and trailing edge vortexes (LEV and TEV) play a major role in the efficient generation of such unconventionally high lift force. In this study, two NACA0012 miniature hydrofoils, one flexible and the other rigid, were actively plunged at various frequencies in a viscous glycerol-water solution to study the influence of flexibility. Two-dimensional, phase-locked particle image velocimetry (PIV) measurements were conducted to investigate the temporal and spacial development of LEVs and TEVs. Simultaneous measurements of lift and thrust forces were recorded to reveal the relationship between hydrodynamic force and the evolution of the surrounding flow field. Results from the flexible hydrofoil were compared to those from the rigid one in order to quantitatively analyze the effects of flexibility. The second problem focused on fluid-structure interaction of gravity driven falling plates. Falling leaves and paper cards in air has drawn plenty of research interest in the past decades to investigate the interaction between the fluid flow and the falling object. In this research, time-resolved PIV were employed to experimentally visualize the flow field evolution around the gravity-driven falling plates. The plates were made of different materials with various geometric dimensions, in order to investigate the effects of non-dimensional parameters such as Reynolds number (Re) and dimensionless moment of inertia (I*). Within the range of relative high Reynolds numbers (Re > 500), three types of falling modes were observed: i.e., periodic fluttering, periodic tumbling and marginal chaotic motion. It was found that the nondimensional moment of inertia controlled the falling mode. The flow features through the falling path of the plate were characterized and compared with their corresponding kinematics. Based on theoretical analysis and experimental results, a semi-analytic model was developed to calculate the real-time hydrodynamic force and moment applied on falling plates. With this model, the falling trajectory of 2D plates with arbitrary material/dimension combinations can be predicted. The model yielded a good match for both the dynamic force simulation and trajectory prediction.
46 CFR 171.057 - Intact stability requirements for a sailing catamaran.
Code of Federal Regulations, 2010 CFR
2010-10-01
... center of effort of the sail area above the deck, in meters (feet). W=the total displacement of the... deck, in meters (feet). W=the total displacement of the vessel, in kilograms (pounds). X=7.32 kilograms...
Large Scale Visual Recognition
2012-06-01
mammal jelly fungus living thing man s animal orangutan mammal cougar mammal mammal German shepherd hyena red fox Flat Ours sailboat catamaran...snow leopard feline o er living thing conch en y wheelbarrow carnivore orangutan mammal meerkat mammal carnivore polar bear lynx lion Flat
Thrust augmentation in tandem flapping foils by foil-wake interaction
NASA Astrophysics Data System (ADS)
Anderson, Erik; Lauder, George
2006-11-01
Propulsion by pitching and heaving airfoils and hydrofoils has been a focus of much research in the field of biologically inspired propulsion. Organisms that use this sort of propulsion are self-propelled, so it is difficult to use standard experimental metrics such as thrust and drag to characterize performance. We have constructed a flapping foil robot mounted in a flume on air-bearings that allows for the determination of self-propelled speed as a metric of performance. We have used a pair of these robots to examine the impact of an upstream flapping foil on a downstream flapping foil as might apply to tandem fins of a swimming organism or in-line swimming of schooling organisms. Self-propelled speed and a force transducer confirmed significant thrust augmentation for particular foil-to-foil spacings, phase differences, and flapping frequencies. Flow visualization shows the mechanism to be related to the effective angle of attack of the downstream foil due to the structure of the wake of the upstream foil. This confirms recent computational work and the hypotheses by early investigators of fish fluid dynamics.
NASA Astrophysics Data System (ADS)
Seeley, Charles; Coutu, André; Monette, Christine; Nennemann, Bernd; Marmont, Hugues
2012-03-01
Hydroelectric power generation is an important non-fossil fuel power source to help meet the world’s energy needs. Fluid-structure interaction (FSI), in the form of mass loading and damping, governs the dynamic response of water turbines, such as Francis turbines. Although the effects of fluid mass loading are well documented, fluid damping is also a critical quantity that may limit vibration amplitudes during service, and therefore help to avoid premature failure of the turbines. However, fluid damping has received less attention in the literature. This paper presents an experimental investigation of damping due to FSI. Three hydrofoils were designed and built to investigate damping due to FSI. Piezoelectric actuation using macrofiber composites (MFCs) provided excitation to the hydrofoil test structure, independent of the flow conditions, to overcome the noisy environment. Natural frequency and damping estimates were experimentally obtained from sine sweep frequency response functions measured with a laser vibrometer through a window in the test section. The results indicate that, although the natural frequencies were not substantially affected by the flow, the damping ratios were observed to increase in a linear manner with respect to flow velocity.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-07
... catamaran owned by our sailing club. The vessel will be used for teaching sailing classes and for sailboat charters in San Diego and Long Beach. Our sailing club owns a fleet of sailboats used to teach sailing...
Multi-tiered sensing and data processing for monitoring ship structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farrar, Charles; Salvino, Liming; Lynch, Jerome
2009-01-01
A comprehensive structural health monitoring (SHM) system is a critical mechanism to ensure hull integrity and evaluate structural performance over the life of a ship, especially for lightweight high-speed ships. One of the most important functions of a SHM system is to provide real-time performance guidance and reduce the risk of structural damage during operations at sea. This is done by continuous feedback from onboard sensors providing measurements of seaway loads and structural responses. Applications of SHM should also include diagnostic capabilities such as identifying the presence of damage, assessing the location and extent of damage when it does occurmore » in order to plan for future inspection and maintenance. The development of such SHM systems is extremely challenging because of the physical size of these structures, the widely varying and often extreme operational and environmental conditions associated with the missions of high performance ships, the lack of data from known damage conditions, the limited sensing that was not designed specifically for SHM, the management of the vast amounts of data, and the need for continued, real-time data processing. This paper will discuss some of these challenges and several outstanding issues that need to be addressed in the context of applying various SHM approaches to sea trials data measured on an aluminum high-speed catamaran, the HSV-2 Swift. A multi-tiered approach for sensing and data processing will be discussed as potential SHM architecture for future shipboard application. This approach will involve application of low cost and dense sensor arrays such as wireless communications in selected areas of the ship hull in addition to conventional sensors measuring global structural response of the ship. A recent wireless hull monitoring demo on FSF-I SeaFighter will be discussed as an example to show how this proposed architecture is a viable approach for long-term and real-time hull monitoring.« less
NASA Astrophysics Data System (ADS)
Mahdi, M.; Ebrahimi, R.; Shams, M.
2011-06-01
A numerical scheme for simulating the acoustic and hydrodynamic cavitation was developed. Bubble instantaneous radius was obtained using Gilmore equation which considered the compressibility of the liquid. A uniform temperature was assumed for the inside gas during the collapse. Radiation heat transfer inside the bubble and the heat conduction to the bubble was considered. The numerical code was validated with the experimental data and a good correspondence was observed. The dynamics of hydrofoil cavitation bubble were also investigated. It was concluded that the thermal radiation heat transfer rate strongly depended on the cavitation number, initial bubble radius and hydrofoil angle of attack.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-23
... DEPARTMENT OF TRANSPORTATION Maritime Administration [Docket No. MARAD 2012 0012] Requested Administrative Waiver of the Coastwise Trade Laws: Vessel SILVER MOON; Invitation for Public Comments AGENCY... SILVER MOON is: Intended Commercial Use of Vessel: ``Catamaran Sailing Charters, both term and day...
NASA Astrophysics Data System (ADS)
Oller Aramayo, S. A.; Nallim, L. G.; Oller, S.
2013-12-01
This paper shows an integrated structural design optimization of a composite rotor-hydrofoil of a water current turbine by means the finite elements method (FEM), using a Serial/Parallel mixing theory (Rastellini et al. Comput. Struct. 86:879-896, 2008, Martinez et al., 2007, Martinez and Oller Arch. Comput. Methods. 16(4):357-397, 2009, Martinez et al. Compos. Part B Eng. 42(2011):134-144, 2010) coupled with a fluid-dynamic formulation and multi-objective optimization algorithm (Gen and Cheng 1997, Lee et al. Compos. Struct. 99:181-192, 2013, Lee et al. Compos. Struct. 94(3):1087-1096, 2012). The composite hydrofoil of the turbine rotor has been design using a reinforced laminate composites, taking into account the optimization of the carbon fiber orientation to obtain the maximum strength and lower rotational-inertia. Also, these results have been compared with a steel hydrofoil remarking the different performance on both structures. The mechanical and geometrical parameters involved in the design of this fiber-reinforced composite material are the fiber orientation, number of layers, stacking sequence and laminate thickness. Water pressure in the rotor of the turbine is obtained from a coupled fluid-dynamic simulation (CFD), whose detail can be found in the reference Oller et al. (2012). The main purpose of this paper is to achieve a very low inertia rotor minimizing the start-stop effect, because it is applied in axial water flow turbine currently in design by the authors, in which is important to take the maximum advantage of the kinetic energy. The FEM simulation codes are engineered by CIMNE (International Center for Numerical Method in Engineering, Barcelona, Spain), COMPack for the solids problem application, KRATOS for fluid dynamic application and RMOP for the structural optimization. To validate the procedure here presented, many turbine rotors made of composite materials are analyzed and three of them are compared with the steel one.
A Coastal Bay Summer Breeze Study, Part 1: Results of the Quiberon 2006 Experimental Campaign
NASA Astrophysics Data System (ADS)
Mestayer, Patrice G.; Calmet, Isabelle; Herlédant, Olivier; Barré, Sophie; Piquet, Thibaud; Rosant, Jean-Michel
2018-04-01
The Quiberon 2006 experiment was launched to document the onset and development of land and sea breezes over a semi-circular coastal bay propitious to inshore sailing competitions. The measurements were taken during the 2 weeks of 16-28 June 2006. Micrometeorological variables were recorded at three shore sites around the bay using turbulence sensors on 10-30-m high masts, on four instrumented catamarans at selected sites within the bay, and at a fourth shore site with a Sodar. Synoptic data and local measurements are analyzed here from the point of view of both micrometeorologists and competition skippers, testing in particular the empirical rules of breeze veering and backing according to the wind direction with respect to the coastline orientation at the mesoscale (the quadrant theory). Our analysis focuses on the patterns of lower-altitude wind direction and speed around the bay and over the water basin, and the temporal variations during the periods of the breeze onset, establishment and thermal reinforcement. In offshore synoptic-flow conditions (quadrants 1 and 2), the clockwise rotation of the surface flow had a very large amplitude, reaching up to 360°. The breeze strength was negatively correlated to that of the synoptic wind speed. In conditions of onshore synoptic flow from the west (quadrant 3) at an angle to the mainland coast but perpendicular to the Quiberon peninsula, the rotation of the flow was backwards in the early morning and clockwise during the day with a moderate amplitude (40°-50°) around the synoptic wind direction. As the surface wind speed was much larger than the synoptic wind speed, such a case we have designated as a "synoptic breeze". The breeze onset was shown to fail several times under the influence of weak non-thermal events, e.g., the passage of an occluded front or clouds or an excess of convection. Finally, several local-scale influences of the complex coastal shape appeared in our measurements, e.g., wind fanning in the lee of the isthmus and airflow skirting around the peninsula forehand.
Submerged electricity generation plane with marine current-driven motors
Dehlsen, James G.P.; Dehlsen, James B.; Fleming, Alexander
2014-07-01
An underwater apparatus for generating electric power from ocean currents and deep water tides. A submersible platform including two or more power pods, each having a rotor with fixed-pitch blades, with drivetrains housed in pressure vessels that are connected by a transverse structure providing buoyancy, which can be a wing depressor, hydrofoil, truss, or faired tube. The platform is connected to anchors on the seafloor by forward mooring lines and a vertical mooring line that restricts the depth of the device in the water column. The platform operates using passive, rather than active, depth control. The wing depressor, along with rotor drag loads, ensures the platform seeks the desired operational current velocity. The rotors are directly coupled to a hydraulic pump that drives at least one constant-speed hydraulic-motor generator set and enables hydraulic braking. A fluidic bearing decouples non-torque rotor loads to the main shaft driving the hydraulic pumps.
Effects of stern-foil submerged elevation on the lift and drag of a hydrofoil craft
NASA Astrophysics Data System (ADS)
Suastika, K.; Apriansyah
2018-03-01
Effects of the stern-foil submerged elevation on the lift and drag of a hydrofoil craft are studied by using computational fluid dynamics (CFD) and by considering three alternative stern-foil submerged elevations. The submerged elevation of the front foil is kept constant in all the alternatives. From among the alternatives, the deepest stern-foil placement results in the highest stern-foil lift with the highest foil’s lift-to-drag ratio. However, considering the lift-to-drag ratio of the whole foil-strut-hull system, the shallowest stern-foil placement results in the highest lift-to-drag ratio. The struts and the foil’s submerged elevation significantly affects the drag of the whole foil-strut-hull system.
DeWitt, Nancy T.; Flocks, James G.; Pfeiffer, William R.; Gibson, James N.; Wiese, Dana S.
2012-01-01
Data were collected aboard the U.S. Army Corps of Engineers (USACE) SV Irvington, a 56-foot (ft) Kvichak Marine Industries, Inc., catamaran (fig. 2). Side scan sonar and multibeam bathymetry data were collected simultaneously along the tracklines. The side scan sonar towfish was towed off the starboard side just slightly behind the vessel, close to the seafloor. The multibeam transducer was attached to a retractable strut-arm lowered between the catamaran hulls. Navigation was acquired with an Applanix POS MV and differentially corrected using the broadcast signal from a local National Geodetic Survey (NGS) Continuously Operating Reference Station (CORS) beacon. See the digital FACS equipment log for details about the acquisition equipment used. Raw datasets were stored digitally and processed using HYPACK Inc., HYSWEEP software at the USACE Mobile, Ala., District office. For more information on processing refer to the Equipment and Processing page. Chirp seismic data were also collected during this survey and are archived separately.
NASA Astrophysics Data System (ADS)
Sysoev, N. I.; Turuk, Yu V.; Kolesnichenko, I. Y.; Lugantsev, B. B.
2017-10-01
The reasons for the failure of the pitch stability of the knife-plane installation due to the action of extreme effort in the plane of the seam from the conveyor side on the mechanism of removing sections of mechanized sets are shown. The technique for determining this effort is presented. The constructions of the adaptive mechanisms of the removing sections of mechanized sets with the basements of catamaran type, in the constrictions of which elastic elements (rods) are used, are considered. The constructions of the mechanism of removing a section of the mechanized set with the basement of catamaran type in which the stock of the hydraulic jack is connected with the band loop through the movable rods intermediate basement with a link are worked out. The intermediate basement unloads the stock of the hydraulic jack of the moving installation from the side curving efforts, caused by the action of lateral forces in the plane of the seam on the conveyor side. It increases the reliability and efficiency of work of the knife plane mechanized complex.
NASA Astrophysics Data System (ADS)
Sunardi; Sukandar; Setionohadi, B.; Sulkhani, E.; Sambah, A. B.; Pamungkas, S.
2018-04-01
River is the only access to enter the pond area in Ujung Pangkah District, Gresik. The area is difficult to access due to the siltation of the river with only 50 cm depth. In addition, rent for traditional boat is expensive. This research developed a design of a small boat efficient enough to transport fish farmer from and to the pond area. Engine from motorcycle was used as it was easy to operate and economical use of fuel. The fundamental change for this design was a small double-hulled low-lane vessel. The motor matic engine was adjusted to a propeller to get maximum boost. The results showed that a ship with 3 meters length, 1.2 meters width and 1 m height, 2 persons in charge and speed of 7 knots, could use 150cc automatic motor engine by lowering engine rotation (RPM) from 7000 RPM to 4500 RPM using a Gear Box and 4-leaf B-Serries blades with a diameter of 14 cm.
Propulsion of a fin whale (Balaenoptera physalus): why the fin whale is a fast swimmer.
Bose, N; Lien, J
1989-07-22
Measurements of an immature fin whale (Balaenoptera physalus), which died as a result of entrapment in fishing gear near Frenchmans Cove, Newfoundland (47 degrees 9' N, 55 degrees 25' W), were made to obtain estimates of volume and surface area of the animal. Detailed measurements of the flukes, both planform and sections, were also obtained. A strip theory was developed to calculate the hydrodynamic performance of the whale's flukes as an oscillating propeller. This method is based on linear, two-dimensional, small-amplitude, unsteady hydrofoil theory with correction factors used to account for the effects of finite span and finite amplitude motion. These correction factors were developed from theoretical results of large-amplitude heaving motion and unsteady lifting-surface theory. A model that makes an estimate of the effects of viscous flow on propeller performance was superimposed on the potential-flow results. This model estimates the drag of the hydrofoil sections by assuming that the drag is similar to that of a hydrofoil section in steady flow. The performance characteristics of the flukes of the fin whale were estimated by using this method. The effects of the different correction factors, and of the frictional drag of the fluke sections, are emphasized. Frictional effects in particular were found to reduce the hydrodynamic efficiency of the flukes significantly. The results are discussed and compared with the known characteristics of fin-whale swimming.
Numerical investigation of unsteady cavitation around a NACA 66 hydrofoil using OpenFOAM
NASA Astrophysics Data System (ADS)
Hidalgo, V. H.; Luo, X. W.; Escaler, X.; Ji, J.; Aguinaga, A.
2014-03-01
The prediction and control of cavitation damage in pumps, propellers, hydro turbines and fluid machinery in general is necessary during the design stage. The present paper deals with a numerical investigation of unsteady cloud cavitation around a NACA 66 hydrofoil. The current study is focused on understanding the dynamic pressures generated during the cavity collapses as a fundamental characteristic in cavitation erosion. A 2D and 3D unsteady flow simulation has been carried out using OpenFOAM. Then, Paraview and Python programming language have been used to characterize dynamic pressure field. Adapted Large Eddy Simulation (LES) and Zwart cavitation model have been implemented to improve the analysis of cloud motion and to visualize the bubble expansions. Additional results also confirm the correlation between cavity formation and generated pressures.
Cavitation in liquid cryogens. 4: Combined correlations for venturi, hydrofoil, ogives, and pumps
NASA Technical Reports Server (NTRS)
Hord, J.
1974-01-01
The results of a series of experimental and analytical cavitation studies are presented. Cross-correlation is performed of the developed cavity data for a venturi, a hydrofoil and three scaled ogives. The new correlating parameter, MTWO, improves data correlation for these stationary bodies and for pumping equipment. Existing techniques for predicting the cavitating performance of pumping machinery were extended to include variations in flow coefficient, cavitation parameter, and equipment geometry. The new predictive formulations hold promise as a design tool and universal method for correlating pumping machinery performance. Application of these predictive formulas requires prescribed cavitation test data or an independent method of estimating the cavitation parameter for each pump. The latter would permit prediction of performance without testing; potential methods for evaluating the cavitation parameter prior to testing are suggested.
Modular Hydropower Engineering and Pilot Scale Manufacturing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chesser, Phillip C.
Emrgy has developed, prototyped and tested a modular hydropower system for renewable energy generation. ORNL worked with Emrgy to demonstrate the use of additive manufacturing in the production of the hydrofoils and spokes for the hydrokinetic system. Specifically, during Phase 1 of this effort, ORNL printed and finished machined patterns for both the hydrofoils and spokes that were subsequently used in a sand casting manufacturing process. Emrgy utilized the sand castings for a pilot installation in Denver, CO, where the parts represented an 80% cost savings from the previous prototype build that was manufactured using subtractive manufacturing. In addition, themore » castings were completed with ORNL’s newly developed AlCeMg alloy that will be tested for performance improvements including higher corrosion resistance in a water application than the 6160 alloy used previously« less
Ventilation of an hydrofoil wake
NASA Astrophysics Data System (ADS)
Arndt, Roger; Lee, Seung Jae; Monson, Garrett
2013-11-01
Ventilation physics plays a role in a variety of important engineering applications. For example, hydroturbine ventilation is used for control of vibration and cavitation erosion and more recently for improving the dissolved oxygen content of the flow through the turbine. The latter technology has been the focus of an ongoing study involving the ventilation of an hydrofoil wake to determine the velocity and size distribution of bubbles in a bubbly wake. This was carried out by utilizing particle shadow velocimetry (PSV). This technique is a non-scattering approach that relies on direct in-line volume illumination by a pulsed source such as a light-emitting diode (LED). The data are compared with previous studies of ventilated flow. The theoretical results of Hinze suggest that a scaling relationship is possible that can lead to developing appropriate design parameters for a ventilation system. Sponsored by ONR and DOE.
Intermittent Swimming with a Flexible Propulsor
NASA Astrophysics Data System (ADS)
Akoz, Emre; Moored, Keith
2017-11-01
Aquatic animals use a variety of swimming gaits to propel themselves efficiently through the oceans. One type of gait known as intermittent or burst-and-coast swimming is used by species such as saithe, cod and trout. Recent studies have shown that this gait can save up to 60% of a swimmer's energy by exploiting an inviscid Garrick mechanism. These detailed studies have examined the effects of an intermittent swimming gait on rigid propulsors, yet the caudal fins of intermittent swimmers are in fact highly flexible propulsors. In this respect, to gain a comprehensive understanding of intermittent swimming, the effect of elasticity on the swimming performance and wake flow of an intermittent swimmer is investigated. To accomplish this a torsional spring structural model is strongly coupled to a fast boundary element method solver that captures the fluid-structure interaction of a two-dimensional self-propelled intermittently pitching hydrofoil. It is shown that flexibility introduces extra vortices to the coasting phase of motion that can either promote or diminish thrust production depending upon the hydrofoil parameters. An optimal intermittent flexible swimmer is shown to increase its efficiency by as much as 28% when compared to an optimal continuous flexible swimmer. Supported by the Office of Naval Research under Program Director Dr. Bob Brizzolara, MURI Grant Number N00014-14-1-0533.
Numerical and experimental investigations on cavitation erosion
NASA Astrophysics Data System (ADS)
Fortes Patella, R.; Archer, A.; Flageul, C.
2012-11-01
A method is proposed to predict cavitation damage from cavitating flow simulations. For this purpose, a numerical process coupling cavitating flow simulations and erosion models was developed and applied to a two-dimensional (2D) hydrofoil tested at TUD (Darmstadt University of Technology, Germany) [1] and to a NACA 65012 tested at LMH-EPFL (Lausanne Polytechnic School) [2]. Cavitation erosion tests (pitting tests) were carried out and a 3D laser profilometry was used to analyze surfaces damaged by cavitation [3]. The method allows evaluating the pit characteristics, and mainly the volume damage rates. The paper describes the developed erosion model, the technique of cavitation damage measurement and presents some comparisons between experimental results and numerical damage predictions. The extent of cavitation erosion was correctly estimated in both hydrofoil geometries. The simulated qualitative influence of flow velocity, sigma value and gas content on cavitation damage agreed well with experimental observations.
NASA Astrophysics Data System (ADS)
Smith, Murray J.; Walker, Carolyn F.; Bell, Thomas G.; Harvey, Mike J.; Saltzman, Eric S.; Law, Cliff S.
2018-04-01
Direct measurements of marine dimethylsulfide (DMS) fluxes are sparse, particularly in the Southern Ocean. The Surface Ocean Aerosol Production (SOAP) voyage in February-March 2012 examined the distribution and flux of DMS in a biologically active frontal system in the southwest Pacific Ocean. Three distinct phytoplankton blooms were studied with oceanic DMS concentrations as high as 25 nmol L-1. Measurements of DMS fluxes were made using two independent methods: the eddy covariance (EC) technique using atmospheric pressure chemical ionization-mass spectrometry (API-CIMS) and the gradient flux (GF) technique from an autonomous catamaran platform. Catamaran flux measurements are relatively unaffected by airflow distortion and are made close to the water surface, where gas gradients are largest. Flux measurements were complemented by near-surface hydrographic measurements to elucidate physical factors influencing DMS emission. Individual DMS fluxes derived by EC showed significant scatter and, at times, consistent departures from the Coupled Ocean-Atmosphere Response Experiment gas transfer algorithm (COAREG). A direct comparison between the two flux methods was carried out to separate instrumental effects from environmental effects and showed good agreement with a regression slope of 0.96 (r2 = 0.89). A period of abnormal downward atmospheric heat flux enhanced near-surface ocean stratification and reduced turbulent exchange, during which GF and EC transfer velocities showed good agreement but modelled COAREG values were significantly higher. The transfer velocity derived from near-surface ocean turbulence measurements on a spar buoy compared well with the COAREG model in general but showed less variation. This first direct comparison between EC and GF fluxes of DMS provides confidence in compilation of flux estimates from both techniques, as well as in the stable periods when the observations are not well predicted by the COAREG model.
System identification for precision control of a wingsailed GPS-guided catamaran
NASA Astrophysics Data System (ADS)
Elkaim, Gabriel Hugh
This thesis details the Atlantis project, whose aim is the design, development, and experimental testing of an autonomous wind-propelled marine craft. Functionally, such a vehicle is the marine equivalent of an unmanned aerial vehicle (UAV), and would serve similar purposes. The Atlantis project has been able to demonstrate an advance in control precision of a wind-propelled marine vehicle from typical commercial autopilot accuracy of 100 meters to an accuracy of better than one meter with a prototype based on a modified Prindle-19 light catamaran. The project involves substantial innovations in three areas: wind-propulsion system, overall system architecture, and sensors. The wind-propulsion system is a rigid wing-sail mounted vertically on bearings, mass balanced to allow free rotation in azimuth about a stub-mast. Aerodynamic torque about the stub-mast is trimmed using a flying tail mounted on booms aft of the wing. This arrangement allows the wing-sail to automatically attain the optimum angle to the wind, and weathervane into gusts without inducing large heeling moments. The sensor system uses differential Global Positioning System (DGPS) augmented by a low-cost attitude system based on accelerometer- and magnetometer-triads for position and velocity measurements. Accurate attitude determination is required to create a synthetic position sensor that is located at the center-of-gravity (c.g.) of the boat, rather than at the Global Positioning System (GPS) antenna location. A high-performance estimator/controller was implemented and tested on the full-scale prototype. The identified controllers were able to perform remarkably well, in the presence of wind and waves, tracking the desired line to within 0.3 meters (˜1 foot).
46 CFR 35.20-40 - Maneuvering characteristics-T/OC.
Code of Federal Regulations, 2014 CFR
2014-10-01
... information for fact sheets for specialized craft such as semi-submersibles, hydrofoils, hovercraft and other vessels of unusual design will be specified on a case by case basis. [CGD 73-78, 40 FR 2689, Jan. 15, 1975] ...
46 CFR 35.20-40 - Maneuvering characteristics-T/OC.
Code of Federal Regulations, 2012 CFR
2012-10-01
... information for fact sheets for specialized craft such as semi-submersibles, hydrofoils, hovercraft and other vessels of unusual design will be specified on a case by case basis. [CGD 73-78, 40 FR 2689, Jan. 15, 1975] ...
46 CFR 35.20-40 - Maneuvering characteristics-T/OC.
Code of Federal Regulations, 2013 CFR
2013-10-01
... information for fact sheets for specialized craft such as semi-submersibles, hydrofoils, hovercraft and other vessels of unusual design will be specified on a case by case basis. [CGD 73-78, 40 FR 2689, Jan. 15, 1975] ...
NASA Astrophysics Data System (ADS)
Timar, T.
1981-09-01
A new blowdown system was developed for cleaning debris from the inlet grill of waterjet propulsion system on Boeing hydrofoil boats. A system was required to work with existing waterjet ducts which are open ended. The new blowdown system consists of an abrupt discharge of high pressure compressed air amidst the water inlet duct. It utilizes the open end of the propulsor discharge nozzle as a safety valve. Feasibility was proven by semi-steady state equations and was confirmed by full scale testing. A system was developed and installed and is now fully operational.
Fleet Battle Experiment Juliet Final Reconstruction and Analysis Report
2003-04-01
8000 tons 145 Selected Vessel Statistics Joint Venture Sea SLICE Ship particulars Wave Piercing Catamaran ( CAT ) Small Waterplane Area Twin Hull (SWATH...and broadcasting capabilities. NSWC Corona used a built-in function within GCCS-M to broadcast all OTH Gold Contact (CTC) messages to a file. These...example would be the prohibition of e-mail from electronically accessing the e- 309 mail address book; thus denying many self-propagating viruses
NASA Astrophysics Data System (ADS)
Yang, Dan-dan; Yu, An; Ji, Bin; Zhou, Jia-jian; Luo, Xian-wu
2018-04-01
The present paper studies the ventilated cavitation over a NACA0015 hydrofoil by numerical methods. The corresponding cavity evolutions are obtained at three ventilation rates by using the level set method. To depict the complicated turbulent flow structure, the filter-based density corrected model (FBDCM) and the modified partially-averaged Navier-Stokes (MPANS) model are applied in the present numerical analyses. It is indicated that the predicted results of the cavitation shedding dynamics by both turbulence models agree fairly well with the experimental data. It is also noted that the shedding frequency and the super cavity length predicted by the MPANS method are closer to the experiment data as compared to that predicted by the FBDCM model. The simulation results show that in the ventilated cavitation, the vapor cavity and the air cavity have the same shedding frequency. As the ventilated rate increases, the vapor cavity is depressed rapidly. The cavitation-vortex interaction in the ventilated cavitation is studied based on the vorticity transport equation (VTE) and the Lagrangian coherent structure (LCS). Those results demonstrate that the vortex dilatation and baroclinic torque terms are highly dependent on the evolution of the cavitation. In addition, from the LCSs and the tracer particles in the flow field, one may see the process from the attached cavity to the cloud cavity.
Sensitivity Analysis of the Seakeeping Behavior of Trimaran Ships
2003-12-01
Architects and Marine Engineers; 1967. 827 p. [18] Lloyd ARJM. Seakeeping: Ship Behavior in Rough Weather. West Yorkshire ; Ellis Horwood Ltd ; 1989...INCAT Australia Pty Ltd . This design features side hulls with a very low freeboard at their bows and a definite, above-water center bow. Additional...composite ship, uses an Air Cushion Catamaran (ACC) design, which is an advanced variant of SES technology. Most recently, a co -operative design team that
Study on photovoltaic power system on ships
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katagi, Takeshi; Fujii, Yoshimi; Nishikawa, Eiichi
1995-11-01
This paper presents the application of photovoltaic power systems to ships. Two types of leisure or fishing boats powered by photovoltaics are designed. The boats described are single hull and catamaran type with twin hulls. The design of a new electric power system using a photovoltaic power system in a harbor ship having 20 tons is also proposed. The results of this study show that the photovoltaic power system can apply to small ships.
Gas transfer in a bubbly wake flow
NASA Astrophysics Data System (ADS)
Karn, A.; Gulliver, J. S.; Monson, G. M.; Ellis, C.; Arndt, R. E. A.; Hong, J.
2016-05-01
The present work reports simultaneous bubble size and gas transfer measurements in a bubbly wake flow of a hydrofoil, designed to be similar to a hydroturbine blade. Bubble size was measured by a shadow imaging technique and found to have a Sauter mean diameter of 0.9 mm for a reference case. A lower gas flow rate, greater liquid velocities, and a larger angle of attack all resulted in an increased number of small size bubbles and a reduced weighted mean bubble size. Bubble-water gas transfer is measured by the disturbed equilibrium technique. The gas transfer model of Azbel (1981) is utilized to characterize the liquid film coefficient for gas transfer, with one scaling coefficient to reflect the fact that characteristic turbulent velocity is replaced by cross-sectional mean velocity. The coefficient was found to stay constant at a particular hydrofoil configuration while it varied within a narrow range of 0.52-0.60 for different gas/water flow conditions.
Modeling and simulation of large scale stirred tank
NASA Astrophysics Data System (ADS)
Neuville, John R.
The purpose of this dissertation is to provide a written record of the evaluation performed on the DWPF mixing process by the construction of numerical models that resemble the geometry of this process. There were seven numerical models constructed to evaluate the DWPF mixing process and four pilot plants. The models were developed with Fluent software and the results from these models were used to evaluate the structure of the flow field and the power demand of the agitator. The results from the numerical models were compared with empirical data collected from these pilot plants that had been operated at an earlier date. Mixing is commonly used in a variety ways throughout industry to blend miscible liquids, disperse gas through liquid, form emulsions, promote heat transfer and, suspend solid particles. The DOE Sites at Hanford in Richland Washington, West Valley in New York, and Savannah River Site in Aiken South Carolina have developed a process that immobilizes highly radioactive liquid waste. The radioactive liquid waste at DWPF is an opaque sludge that is mixed in a stirred tank with glass frit particles and water to form slurry of specified proportions. The DWPF mixing process is composed of a flat bottom cylindrical mixing vessel with a centrally located helical coil, and agitator. The helical coil is used to heat and cool the contents of the tank and can improve flow circulation. The agitator shaft has two impellers; a radial blade and a hydrofoil blade. The hydrofoil is used to circulate the mixture between the top region and bottom region of the tank. The radial blade sweeps the bottom of the tank and pushes the fluid in the outward radial direction. The full scale vessel contains about 9500 gallons of slurry with flow behavior characterized as a Bingham Plastic. Particles in the mixture have an abrasive characteristic that cause excessive erosion to internal vessel components at higher impeller speeds. The desire for this mixing process is to ensure the agitation of the vessel is adequate to produce a homogenous mixture but not so high that it produces excessive erosion to internal components. The main findings reported by this study were: (1) Careful consideration of the fluid yield stress characteristic is required to make predictions of fluid flow behavior. Laminar Models can predict flow patterns and stagnant regions in the tank until full movement of the flow field occurs. Power Curves and flow patterns were developed for the full scale mixing model to show the differences in expected performance of the mixing process for a broad range of fluids that exhibit Herschel--Bulkley and Bingham Plastic flow behavior. (2) The impeller power demand is independent of the flow model selection for turbulent flow fields in the region of the impeller. The laminar models slightly over predicted the agitator impeller power demand produced by turbulent models. (3) The CFD results show that the power number produced by the mixing system is independent of size. The 40 gallon model produced the same power number results as the 9300 gallon model for the same process conditions. (4) CFD Results show that the Scale-Up of fluid motion in a 40 gallon tank should compare with fluid motion at full scale, 9300 gallons by maintaining constant impeller Tip Speed.
EXPERIMENTAL PERFORMANCE OF A CONTROLLABLE-PITCH SUPERCAVITATING PROPELLER.
Studies were made of cavitation performance and open-water characteristics of a controllable-pitch supercavitating propeller with two, three, and...By means of several numerical examples, the feasibility of using a controllable-pitch supercavitating propeller is demonstrated. A practical application to a hydrofoil boat is also presented. (Author)
Performance variation due to stiffness in a tuna-inspired flexible foil model.
Rosic, Mariel-Luisa N; Thornycroft, Patrick J M; Feilich, Kara L; Lucas, Kelsey N; Lauder, George V
2017-01-17
Tuna are fast, economical swimmers in part due to their stiff, high aspect ratio caudal fins and streamlined bodies. Previous studies using passive caudal fin models have suggested that while high aspect ratio tail shapes such as a tuna's generally perform well, tail performance cannot be determined from shape alone. In this study, we analyzed the swimming performance of tuna-tail-shaped hydrofoils of a wide range of stiffnesses, heave amplitudes, and frequencies to determine how stiffness and kinematics affect multiple swimming performance parameters for a single foil shape. We then compared the foil models' kinematics with published data from a live swimming tuna to determine how well the hydrofoil models could mimic fish kinematics. Foil kinematics over a wide range of motion programs generally showed a minimum lateral displacement at the narrowest part of the foil, and, immediately anterior to that, a local area of large lateral body displacement. These two kinematic patterns may enhance thrust in foils of intermediate stiffness. Stiffness and kinematics exhibited subtle interacting effects on hydrodynamic efficiency, with no one stiffness maximizing both thrust and efficiency. Foils of intermediate stiffnesses typically had the greatest coefficients of thrust at the highest heave amplitudes and frequencies. The comparison of foil kinematics with tuna kinematics showed that tuna motion is better approximated by a zero angle of attack foil motion program than by programs that do not incorporate pitch. These results indicate that open questions in biomechanics may be well served by foil models, given appropriate choice of model characteristics and control programs. Accurate replication of biological movements will require refinement of motion control programs and physical models, including the creation of models of variable stiffness.
Unsteady propulsion by an intermittent swimming gait
NASA Astrophysics Data System (ADS)
Akoz, Emre; Moored, Keith W.
2018-01-01
Inviscid computational results are presented on a self-propelled swimmer modeled as a virtual body combined with a two-dimensional hydrofoil pitching intermittently about its leading edge. Lighthill (1971) originally proposed that this burst-and-coast behavior can save fish energy during swimming by taking advantage of the viscous Bone-Lighthill boundary layer thinning mechanism. Here, an additional inviscid Garrick mechanism is discovered that allows swimmers to control the ratio of their added mass thrust-producing forces to their circulatory drag-inducing forces by decreasing their duty cycle, DC, of locomotion. This mechanism can save intermittent swimmers as much as 60% of the energy it takes to swim continuously at the same speed. The inviscid energy savings are shown to increase with increasing amplitude of motion, increase with decreasing Lighthill number, Li, and switch to an energetic cost above continuous swimming for sufficiently low DC. Intermittent swimmers are observed to shed four vortices per cycle that form into groups that are self-similar with the DC. In addition, previous thrust and power scaling laws of continuous self-propelled swimming are further generalized to include intermittent swimming. The key is that by averaging the thrust and power coefficients over only the bursting period then the intermittent problem can be transformed into a continuous one. Furthermore, the intermittent thrust and power scaling relations are extended to predict the mean speed and cost of transport of swimmers. By tuning a few coefficients with a handful of simulations these self-propelled relations can become predictive. In the current study, the mean speed and cost of transport are predicted to within 3% and 18% of their full-scale values by using these relations.
2013-09-30
analyze the MCR drifter, in situ mini-catamaran, pressure, and USGS tripod observations; • describe the tidal chocking behavior at New River Inlet (NRI...i.e. waves , wind and potentially stratification) APPROACH Our approach is to collect field observations to evaluate the sensitivity of Delft3D at...forecast model using the predicted tides, wind, wave and river discharge conditions to optimize spatial coverage and drifter retrieval operations. On
46 CFR 153.2 - Definitions and acronyms.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., including hydrofoils, air-cushion vehicles, submersibles, floating craft whether self-propelled or not, and fixed or floating platforms. Slop tanks include slop tanks and cargo tanks used as slop tanks. Solidifying NLS means a Category A, B, or C NLS that has a melting point— (1) Greater than 0 °C but less than...
Study on tip leakage vortex cavitating flows using a visualization method
NASA Astrophysics Data System (ADS)
Zhao, Yu; Jiang, Yutong; Cao, Xiaolong; Wang, Guoyu
2018-01-01
Experimental investigations of unsteady cavitating flows in a hydrofoil tip leakage region with different gap sizes are conducted to highlight the development of gap cavitation. The experiments were taken in a closed cavitation tunnel, during which high-speed camera had been used to capture the cavitation patterns. A new visualization method based on image processing was developed to capture time-dependent cavitation patterns. The results show that the visualization method can effectively capture the cavitation patterns in the tip region, including both the attached cavity in the gap and the tip leakage vortex (TLV) cavity near the trailing edge. Moreover, with the decrease of cavitation number, the TLV cavity develops from a rapid onset-growth-collapse process to a continuous process, and extends both upstream and downstream. The attached cavity in the gap develops gradually stretching beyond the gap and combines with the vortex cavity to form the triangle cavitating region. Furthermore, the influences of gap size on the cavitation are also discussed. The gap size has a great influence on the loss across the gap, and hence the locations of the inception attached cavity. Besides, inception locations and extending direction of the TLV cavity with different gap sizes also differ. The TLV in the case with τ = 0.061 is more likely to be jet-like compared with that in the case with τ = 0.024, and the gap size has a great influence on the TLV strength.
Wind machines. [aerodynamics of sailwing vehicles
NASA Technical Reports Server (NTRS)
Lissaman, P. B. S.
1973-01-01
The basic elements of the air/water momentum exchange are described by the environment, the potential, the air and water subsystems, the total system, and the rule. Many of these topics have direct analogues in aerogenerator design. Aspects of optimal sail design and of waveless hulls are briefly outlined. A wind driven vehicle capable of moving directly downwind faster than the wind, is reported. The lecture is illustrated with slides and movie clips showing surfing catamarans, land and water versions of the Bauer vehicle, hang gliding, land sailing, and wind surfing.
Study on a Cavitating Hydrofoil having a Practical Blade Profile Shape.
1980-10-31
and punched on regular IBM cards. These cards were conveniently used as input data for data reduction. The data acquisition system also has an...FIGURE 3.4 FLOW CONFIGURATION OF DOUBLE WAKE MODEL FOR PARTIALLY CAVITATING FOIL W =+ itp B C F T w St (pI FIGURE 3.5 POTENTIAL PLANE ia W T B C F W
Performance of hydrofoils with humpback whale-like leading edge protuberances.
NASA Astrophysics Data System (ADS)
Levshin, Alexandra; Henoch, Charles; Johari, Hamid
2005-11-01
The humpback whale (Megaptera novaeangliae) is extremely maneuverable, compared to other whale species, despite its large size and rigid body. Turning maneuvers are especially evident during pursuit of prey. The agility of humpback whale has been attributed to their use of pectoral flippers. The thick flippers have large aspect ratios, and large scale protuberances are present on the leading edge. The flippers do not flap during turning maneuvers. The cross-section of the flipper has a profile similar to a NACA 634-021 airfoil. The amplitude of leading edge protuberances ranges from 2.5 to 12% of the chord, with a spanwise extent of 10 to 50% the chord depending on the location along the span. It has been hypothesized that the `bumpy' leading edge is used for flow control. To examine the effects of protuberances on the leading edge of hydrofoils, a series of rectangular foils with bumpy leading edges were manufactured. The leading edge is sinusoidal in the spanwise direction with amplitudes and wavelengths comparable to that of humpback whale's flippers. The forces and moments on these bumpy foils were measured in a water tunnel and compared with a smooth leading edge foil.
Supercavitating 2-D Hydrofoils: Prediction of Performance and Design
2001-02-01
addressed in nonlinear theory via the hodograph technique as introduced by Helmholtz, Kirchoff and Levi - Civita (Birkhoff & Zarantonello 1957)1. The...around bluff bodies at zero cavitation number. The formulation of the cavitating flow around bodies at non-zero cavitation numbers created a lot of...technique in dealing with general body shapes, very few cases have been treated analytically. The hodograph technique was extended numerically to
2000-01-27
99)03604-5] I. INTRODUCTION Electron spin is becoming increasingly popular in elec- tronics. New devices, now generally referred to as spintron...relevant spin relaxation mechanisms are very sensitive to factors like mo- bility (which is higher in QWs), electron-hole separation (smaller in...from a naive theory . In addition to explaining experiment, the spin -hot-spot model predicts the behavior of other polyvalent metals. The model is
Investigation into the behaviors of ventilated supercavities in unsteady flow
NASA Astrophysics Data System (ADS)
Shao, Siyao; Wu, Yue; Haynes, Joseph; Arndt, Roger E. A.; Hong, Jiarong
2018-05-01
A systematic investigation of ventilated supercavitation behaviors in an unsteady flow is conducted using a high-speed water tunnel at the Saint Anthony Falls Laboratory. The cavity is generated with a forward facing model under varying ventilation rates and cavitator sizes. The unsteady flow is produced by a gust generator consisting of two hydrofoils flapping in unison with a varying angle of attack (AoA) and frequency (fg). The current experiment reveals five distinct cavity states, namely, the stable state, wavy state, pulsating state I, pulsating state II, and collapsing state, based on the variation of cavity geometry and pressure signatures inside the cavity. The distribution of cavity states over a broad range of unsteady conditions is summarized in a cavity state map. It shows that the transition of the supercavity from the stable state to pulsating and collapsing states is primarily induced by increasing AoA while the transition to the wavy state triggers largely by increasing fg. Remarkably, the state map over the non-dimensionalized half wavelength and wave amplitude of the perturbation indicates that the supercavity loses its stability and transitions to pulsating or collapsing states when the level of its distortion induced by the flow unsteadiness exceeds the cavity dimension under a steady condition. The state maps under different ventilation rates and cavitator sizes yield similar distribution but show that the occurrence of the cavity collapse can be suppressed with increasing ventilation coefficient or cavitator size. Such knowledge can be integrated into designing control strategies for the supercavitating devices operating under different unsteady conditions.
Notes of the Design of Two Supercavitating Hydrofoils
1975-07-01
Foil Section Characteristics Definition Tulin Two -Term Levi - Civita Larock and Street Two -Term three pararreter Prcgram and Inputs linearized two ...36 NOMENCLATURE Symbol Description Dimensions AIA 2 Angle distribution multipliers in Levi - radians Civita Program AR Aspect ratio CL Lift coefficient...angle of attack radian B Constant angle in Levi - Civita program radian 6 Linearized angle of attack superposed degrees C Wu’s 1955 program parameter
Development of Integrated Programs for Aerospace-vehicle design (IPAD): Reference design process
NASA Technical Reports Server (NTRS)
Meyer, D. D.
1979-01-01
The airplane design process and its interfaces with manufacturing and customer operations are documented to be used as criteria for the development of integrated programs for the analysis, design, and testing of aerospace vehicles. Topics cover: design process management, general purpose support requirements, design networks, and technical program elements. Design activity sequences are given for both supersonic and subsonic commercial transports, naval hydrofoils, and military aircraft.
Porpoises Among the Whales: Small Navies in Asia and the Pacific
1994-03-01
Maverick 14 miles 300 lbs. 800+ mph Air-to-surface vessels) may decide the outcome. (U.S.) Military analysts generally maintain Silkworm 59-93 miles...Sarawak with Malaysia,* and, despite the fact into the newly formed Malaysian federation. that the two countries are ASEAN ISee also Morgan and Fryer 1985...4its constabulary and coastal-defense Fast-attack hydrofoils 5 6 Large patrol craft 18 1 roles. The Malaysian navy is only Coastal patrol craft 18
The Influence of Hydrofoil Oscillation on Boundary Layer Transition and Cavitation Noise.
1981-04-01
p., and V. are fluid density, reference free-stream AVERAGED static pressure and reference free-stream velocity, respec- ORSPL3. Lair tively. S3.1...of cavitation on a propeller in both uni- ly, the location of boundary layer transition with the foil in form and nonuniform flow. He concluded that...the presence of oscillation must be determined either theoretically or ex- sheet and bubble cavitation in nonuniform flow can be perimentally. Thirdly
A Study of the Flow Structure of Tip Vortices on a Hydrofoil
1986-11-28
as measured from the flow visualization imager. . . 0 . . . 61 III.10 The vertical location of the tip vortex center as measured from the flow...pressure gra- dients of opposite sign exist on both sides of an airfoil . These gradients induce an inward lateral flow on the suc- tion side and an...And most recently, Cebeci et al. (1986) developed a viscous/inviscid interaction method to calculate the flow around airfoils , emphasizing the
Pitch and heave dynamics of an elastically-mounted cyber-physical hydrofoil
NASA Astrophysics Data System (ADS)
Su, Yunxing; Onoue, Kyohei; Miller, Michael; Breuer, Kenneth
2017-11-01
The energy harvesting performance of an elastically-mounted hydrofoil (chord, c, span, s) subject to a prescribed pitching motion is studied using a cyber-physical force-feedback control system. We vary the mass, m, the frequency of the pitching motion, ω, the parameters of the elastic support (stiffness, k and damping, b) and the Reynolds number, Re . The extracted energy is obtained from measured heave force and velocity, Fẏ . The ratio between the pitching frequency and the natural frequency of the system, ω /√{ k / m } , and the damping coefficient, b / (0.5 ρUsc) , are found to play a major role. In particular, the maximum power output is achieved at a frequency ratio of 1, which corresponds to an optimal phase difference of 90° between the driven pitch and passive heave motions. At the resonance condition, the damping coefficient defines the heaving amplitude, H, and thus the width of the wake and the Strouhal number, St = fH / U . The power coefficient, Cp = < Fẏ / (0.5 ρU3 sc) > , reaches a maximum of 0.65 at a damping coefficient around 1.5, regardless of the Reynolds number (Re = 20,000 - 55,000). The contribution of the pitch component to power extraction is found to be small (< 10% of the heave component). This work is funded by ARPA-e.
Study of cavitating inducer instabilities
NASA Technical Reports Server (NTRS)
Young, W. E.; Murphy, R.; Reddecliff, J. M.
1972-01-01
An analytic and experimental investigation into the causes and mechanisms of cavitating inducer instabilities was conducted. Hydrofoil cascade tests were performed, during which cavity sizes were measured. The measured data were used, along with inducer data and potential flow predictions, to refine an analysis for the prediction of inducer blade suction surface cavitation cavity volume. Cavity volume predictions were incorporated into a linearized system model, and instability predictions for an inducer water test loop were generated. Inducer tests were conducted and instability predictions correlated favorably with measured instability data.
Experimental Characterization of Supercavitating Finds Piercing a Ventilated Supercavity
2013-08-05
for a Flat Plate Hydrofoil vs. Angle of Attack and Cavitation Number using Wu’s Free Streamline Theory (Wu, 1955). 21 2.3 Estimated Lift and Drag for...degrees. 94 4.52 Comparison of theory and measured lift coefficients, 2 inch chord, γ = 0o, large cavitator. 95 4.53 Comparison of theory and measured... lift coefficients, 2 inch chord, γ = 45o, small cavitator 95 4.54 Comparison of theory and measured drag coefficients, 2 inch chord, γ = 0o, large
NASA Technical Reports Server (NTRS)
Schwind, R. G.; Allen, H. J.
1973-01-01
High frequency surface pressure measurements were obtained from wind-tunnel tests over the Reynolds number range 1.2 times one million to 6.2 times one million on a rectangular wing of NACA 63-009 airfoil section. Measurements were also obtained with a wide selection of leading-edge serrations added to the basic airfoil. Under a two-dimensional laminar bubble very close to the leading edge of the basic airfoil there is a large apatial peak in rms pressure. Frequency analysis of the pressure signals in this region show a large, high-frequency energy peak which is interpreted as an oscillation in size and position of the bubble. The serrations divide the bubble into segments and reduce the peak rms pressures. A low Reynolds number flow visualization test on a hydrofoil in water was also conducted. A von Karman vortex street was found trailing from the rear of the foil. Its frequency is at a much lower Strouhal number than in the high Reynolds number experiment, and is related to the trailing-edge and boundary-layer thicknesses.
1992-01-01
pore ".*l u-itb 4’Pomo4*tv. bowwr there Is a $s to eight Wtrth or’ wa~ tuIA4 PotrM Uor two Ue4r.0- quarters. aI4 a * cw to throe Wot~th wltlAt portod or...Combatant Missile (Hydrofoil) Squadron TWO , MLSG, Key West, FL .. ......... ................ 211 PART 12 - COMNAVAIRLANT AND COMNAVAIRPAC General Information...COMNAVMEDCOM Navy School of Health Sciences, San Diego DET, Oakland, CA . . . . 253 Navy Disease Vector Ecology and Control Center, Alameda, CA . . 254 Naval
NASA Technical Reports Server (NTRS)
Wright, E. Alvey
1974-01-01
Hawaii, an archipelago where transportation distances are short but the interfaces are many, seeks elimination of modal changes by totally-submerged hydrofoil craft operating at the water surface directly between tourist resort destinations, by dual mode rapid transit vehicles operating directly between the deplaning bridges at Honolulu International Airport and hotel porte-cochere at Waikiki, by demand responsive vehicles for collection and distribution operating on fixed guideways for line haul, and by roll-on/roll-off inter-island ferries for all models of manually operated ground vehicles. The paper also describes facilitation of unavoidable interfaces by innovative sub-systems.
Measurement of Surface Strains from a Composite Hydrofoil using Fibre Bragg Grating Sensing Arrays
2015-07-01
Gratings for Structural Fatigue Testing of Military Aircraft. Claire Davis, Silvia Tejedor, Ivan Grabovac, James Kopczyk, and Travis Nuyens. Photonic...puticarion Reduxtt ~ Techrdogy for opWnum prCICE.ld!ses. It !here is 10 be a delay between lh’! pretreeiJOOnt and boncfiOQ ol alurrinil.l’n, tte ...enable bonding 10 be delsyed lor ~ 102 Meks wi\\ho!.J det.eriora!ion d tte p ecreeted sllface. The carect apPic:stion of ~ 112 shluld no! alter 1he
Reliability Modeling of Critical Electronic Devices.
1983-05-01
form are given below: 1) Xn = K 7E = AS + B 2) Xn = K TTE = A(S)B 3) Xn = K TE = A exp(BS) 24 A- where Xn = predicted normalized failure rate 0 0 K...naval, sheltered NS 5 7.3 a,. naval, unsheltered NU 10 16.8 naval, undersea , unsheltered NUU 14 20.6 naval, benign, submarine NSB 4 6.0 naval, hydrofoil... undersea , launch USL 18 37.1 3 S missile, free flight MFF 9 12.6 airbreathing missile, flight MFA 11 17.6 space, flight SF 2 2.1 Notes: (1) includes bomber
The Shock and Vibration Bulletin. Part 3: Structure Medium Interaction, Case Studies in Dynamics
NASA Technical Reports Server (NTRS)
1979-01-01
Structure and medium interactions topics are addressed. Topics include: a failure analysis of underground concrete structures subjected to blast loadings, an optimization design procedure for concrete slabs, and a discussion of the transient response of a cylindrical shell submerged in a fluid. Case studies in dynamics are presented which include an examination of a shock isolation platform for a seasparrow launcher, a discussion of hydrofoil fatigue load environments, and an investigation of the dynamic characteristics of turbine generators and low tuned foundations.
1979-03-01
g DAVID W. TAYLOR NAVAL SHIP SRESEARCH AND DEVELOPMENT CENTERIBethesda, Md. 20064 S C SEAGOING BOX SCORES AND SEAKEEPING CRITERIA FOR MONOHULL, SWATH...Iteria for SWATIH for the Trans it Alone or the ’ratwiit I’ltu Sonai Search Fti’lux. on . . . 5.1 A,.3 - Govorit nR Cr ier ia for Monolu I Is fti the...L V NOTATION A Nondimensional coefficients a Regular wave amplitude B Ship beam e Exponential e - 2.7183 g Gravity acceleration Hz Hertz, unit of
Frequency characteristics of liquid hydrogen cavitating flow over a NACA0015 hydrofoil
NASA Astrophysics Data System (ADS)
Zhu, Jiakai; Wang, Shunhao; Qiu, Limin; Zhi, Xiaoqin; Zhang, Xiaobin
2018-03-01
Large eddy simulation on unsteady cavitating flow of liquid hydrogen over a three-dimensional NACA0015 hydrofoil with the attack angle (α) of 6° are carried out to investigate the dynamic features of cavity with the existence of thermal effects. The numerical model considers the compressibility of both liquid and vapor phase, and is validated by comparing the results with the available experimental data. Special emphasis is put on analyzing the frequency characteristics of cavitation cloud. Strouhal number (St) is plotted against σ/2α (σ is cavitation number), and the water cavitation data reported by Andrt et al. are also used as a reference. It is found that the St number for LH2 cavitation is much smaller than the water, in which the thermal effects are generally not considered, at the same σ/2α value when it is greater than about 2.0, while it returns to the same level as water when σ/2α decreases to below 2.0. The reason is primarily ascribed to the thermal effects, and the detailed explanations are given based on the recognitions that the shedding mechanism of cavitation clouds is predominated by the combined action of the vortex flow and thermal effects. While, when σ/2α decreases to a critical value, the relative effect of the thermal effects on the cavitation dynamics is greatly weakened compared with the mechanism due to the vortex flow, like those in isothermal cavitation flow in traditional fluids. The results provide a deeper understanding of the cryogenic fluid cavitation flow.
Experimental investigation on cavitating flow shedding over an axisymmetric blunt body
NASA Astrophysics Data System (ADS)
Hu, Changli; Wang, Guoyu; Huang, Biao
2015-03-01
Nowadays, most researchers focus on the cavity shedding mechanisms of unsteady cavitating flows over different objects, such as 2D/3D hydrofoils, venturi-type section, axisymmetric bodies with different headforms, and so on. But few of them pay attention to the differences of cavity shedding modality under different cavitation numbers in unsteady cavitating flows over the same object. In the present study, two kinds of shedding patterns are investigated experimentally. A high speed camera system is used to observe the cavitating flows over an axisymmetric blunt body and the velocity fields are measured by a particle image velocimetry (PIV) technique in a water tunnel for different cavitation conditions. The U-type cavitating vortex shedding is observed in unsteady cavitating flows. When the cavitation number is 0.7, there is a large scale cavity rolling up and shedding, which cause the instability and dramatic fluctuation of the flows, while at cavitation number of 0.6, the detached cavities can be conjunct with the attached part to induce the break-off behavior again at the tail of the attached cavity, as a result, the final shedding is in the form of small scale cavity and keeps a relatively steady flow field. It is also found that the interaction between the re-entrant flow and the attached cavity plays an important role in the unsteady cavity shedding modality. When the attached cavity scale is insufficient to overcome the re-entrant flow, it deserves the large cavity rolling up and shedding just as that at cavitation number of 0.7. Otherwise, the re-entrant flow is defeated by large enough cavity to induce the cavity-combined process and small scale cavity vortexes shedding just as that of the cavitation number of 0.6. This research shows the details of two different cavity shedding modalities which is worthful and meaningful for the further study of unsteady cavitation.
On the Changes in Lift of Hydrofoils Due to Surface Injections of Polymer Additives
1978-02-01
detailed dese rip tion oVi oh- J ectives . A discuosl on of’ the var~ous phyviva mechnnisms ILhat have boen pos tul a td i~n the U.1. Le ro uy to vxp 1 a...C’. C, .C’, CN 40 ’ 0 ’ ft V2 *Scn CN 0 .P. C, C, C. 0~ V, C3s0 0 s0S) -4 it 0kI l t (- to 55551 C. C!, 4" C, C .* ik kI4 4~~~ ~ *: it c 4 L 1% It
The biomechanics of solids and fluids: the physics of life
NASA Astrophysics Data System (ADS)
Alexander, David E.
2016-09-01
Biomechanics borrows and extends engineering techniques to study the mechanical properties of organisms and their environments. Like physicists and engineers, biomechanics researchers tend to specialize on either fluids or solids (but some do both). For solid materials, the stress-strain curve reveals such useful information as various moduli, ultimate strength, extensibility, and work of fracture. Few biological materials are linearly elastic so modified elastic moduli are defined. Although biological materials tend to be less stiff than engineered materials, biomaterials tend to be tougher due to their anisotropy and high extensibility. Biological beams are usually hollow cylinders; particularly in plants, beams and columns tend to have high twist-to-bend ratios. Air and water are the dominant biological fluids. Fluids generate both viscous and pressure drag (normalized as drag coefficients) and the Reynolds number (Re) gives their relative importance. The no-slip conditions leads to velocity gradients (‘boundary layers’) on surfaces and parabolic flow profiles in tubes. Rather than rigidly resisting drag in external flows, many plants and sessile animals reconfigure to reduce drag as speed increases. Living in velocity gradients can be beneficial for attachment but challenging for capturing particulate food. Lift produced by airfoils and hydrofoils is used to produce thrust by all flying animals and many swimming ones, and is usually optimal at higher Re. At low Re, most swimmers use drag-based mechanisms. A few swimmers use jetting for rapid escape despite its energetic inefficiency. At low Re, suspension feeding depends on mechanisms other than direct sieving because thick boundary layers reduce effective porosity. Most biomaterials exhibit a combination of solid and fluid properties, i.e., viscoelasticity. Even rigid biomaterials exhibit creep over many days, whereas pliant biomaterials may exhibit creep over hours or minutes. Instead of rigid materials, many organisms use tensile fibers wound around pressurized cavities (hydrostats) for rigid support; the winding angle of helical fibers greatly affects hydrostat properties. Biomechanics researchers have gone beyond borrowing from engineers and adopted or developed a variety of new approaches—e.g., laser speckle interferometry, optical correlation, and computer-driven physical models—that are better-suited to biological situations.
High Resolution Marine Magnetic Survey of Shallow Water Littoral Area
Ginzburg, Boris; Cohen, Tsuriel Ram; Zafrir, Hovav; Alimi, Roger; Salomonski, Nizan; Sharvit, Jacob
2007-01-01
The purpose of this paper is to present a system developed for detection and accurate mapping of ferro-metallic objects buried below the seabed in shallow waters. The system comprises a precise magnetic gradiometer and navigation subsystem, both installed on a non-magnetic catamaran towed by a low-magnetic interfering boat. In addition we present the results of a marine survey of a near-shore area in the vicinity of Atlit, a town situated on the Mediterranean coast of Israel, about 15 km south of Haifa. The primary purpose of the survey was to search for a Harvard airplane that crashed into the sea in 1960. A magnetic map of the survey area (3.5 km2 on a 0.5 m grid) was created revealing the anomalies at sub-meter accuracy. For each investigated target location a corresponding ferro-metallic item was dug out, one of which turned to be very similar to a part of the crashed airplane. The accuracy of location was confirmed by matching the position of the actual dug artifacts with the magnetic map within a range of ± 1 m, in a water depth of 9 m. PMID:28903191
DES Prediction of Cavitation Erosion and Its Validation for a Ship Scale Propeller
NASA Astrophysics Data System (ADS)
Ponkratov, Dmitriy, Dr
2015-12-01
Lloyd's Register Technical Investigation Department (LR TID) have developed numerical functions for the prediction of cavitation erosion aggressiveness within Computational Fluid Dynamics (CFD) simulations. These functions were previously validated for a model scale hydrofoil and ship scale rudder [1]. For the current study the functions were applied to a cargo ship's full scale propeller, on which the severe cavitation erosion was reported. The performed Detach Eddy Simulation (DES) required a fine computational mesh (approximately 22 million cells), together with a very small time step (2.0E-4 s). As the cavitation for this type of vessel is primarily caused by a highly non-uniform wake, the hull was also included in the simulation. The applied method under predicted the cavitation extent and did not fully resolve the tip vortex; however, the areas of cavitation collapse were captured successfully. Consequently, the developed functions showed a very good prediction of erosion areas, as confirmed by comparison with underwater propeller inspection results.
An Integrated Hydrofoil and Propeller Design Tool for the Window (Trademark) Environment
1996-06-01
Duui Code onto a angle ?w6crom& f Windows"’ basul application. Tbomis Supervimor hauuio E Kerwin rTk, Pioum o(Oo Esgmsurwiq 3 rwi•"* I S 4 S...adler funtow~ C.1. 1 PhePLI WinMain fiintion. 193 C. 1.2 The PU. F - -,-WndPfoc flaiction. 200 C. 1.3 The PLL WMCornwwd Hanudler ftuwtmL. 0 C.2 The PLL...34MW ISM~ p.J 3 lbm C.OW nd uma Jdlf Wehoinf Woo AMMse (A’MOVA I MIINeld baftf f 96) p2OM L. 13 I as hr as the screw propeller. Charles Babbage, an
System identification and the modeling of sailing yachts
NASA Astrophysics Data System (ADS)
Legursky, Katrina
This research represents an exploration of sailing yacht dynamics with full-scale sailing motion data, physics-based models, and system identification techniques. The goal is to provide a method of obtaining and validating suitable physics-based dynamics models for use in control system design on autonomous sailing platforms, which have the capacity to serve as mobile, long range, high endurance autonomous ocean sensing platforms. The primary contributions of this study to the state-of-the-art are the formulation of a five degree-of-freedom (DOF) linear multi-input multi-output (MIMO) state space model of sailing yacht dynamics, the process for identification of this model from full-scale data, a description of the maneuvers performed during on-water tests, and an analysis method to validate estimated models. The techniques and results described herein can be directly applied to and tested on existing autonomous sailing platforms. A full-scale experiment on a 23ft monohull sailing yacht is developed to collect motion data for physics-based model identification. Measurements include 3 axes of accelerations, velocities, angular rates, and attitude angles in addition to apparent wind speed and direction. The sailing yacht herein is treated as a dynamic system with two control inputs, the rudder angle, deltaR, and the mainsail angle, delta B, which are also measured. Over 20 hours of full scale sailing motion data is collected, representing three sail configurations corresponding to a range of wind speeds: the Full Main and Genoa (abbrev. Genoa) for lower wind speeds, the Full Main and Jib (abbrev. Jib) for mid-range wind speeds, and the Reefed Main and Jib (abbrev. Reef) for the highest wind speeds. The data also covers true wind angles from upwind through a beam reach. A physics-based non-linear model to describe sailing yacht motion is outlined, including descriptions of methods to model the aerodynamics and hydrodynamics of a sailing yacht in surge, sway, roll, and yaw. Existing aerodynamic models for sailing yachts are unsuitable for control system design as they do not include a physical description of the sails' dynamic effect on the system. A new aerodynamic model is developed and validated using the full-scale sailing data which includes sail deflection as a control input to the system. The Maximum Likelihood Estimation (MLE) algorithm is used with non-linear simulation data to successfully estimate a set of hydrodynamic derivatives for a sailing yacht. It is shown that all sailing yacht models will contain a second order mode (referred to herein as Mode 1A.S or 4B.S) which is dependent upon trimmed roll angle. For the test yacht it is concluded that for this mode when the trimmed roll angle is, roll rate and roll angle are the dominant motion variables, and for surge velocity and yaw rate dominate. This second order mode is dynamically stable for . It transitions from stability in the higher values of to instability in the region defined by. These conclusions align with other work which has also found roll angle to be a driving factor in the dynamic behavior of a tall-ship (Johnson, Miles, Lasher, & Womack, 2009). It is also shown that all linear models also contain a first order mode, (referred to herein as Mode 3A.F or 1B.F), which lies very close to the origin of the complex plane indicating a long time constant. Measured models have indicated this mode can be stable or unstable. The eigenvector analysis reveals that the mode is stable if the surge contribution is < 40% and the sway contribution is > 20%. The small set of maneuvers necessary for model identification, quick OSLS estimation method, and detailed modal analysis of estimated models outlined in this work are immediately applicable to existing autonomous mono-hull sailing yachts, and could readily be adapted for use with other wind-powered vessel configurations such as wing-sails, catamarans, and tri-marans. (Abstract shortened by UMI.)
Biomechanics and energetics in aquatic and semiaquatic mammals: platypus to whale.
Fish, F E
2000-01-01
A variety of mammalian lineages have secondarily invaded the water. To locomote and thermoregulate in the aqueous medium, mammals developed a range of morphological, physiological, and behavioral adaptations. A distinct difference in the suite of adaptations, which affects energetics, is apparent between semiaquatic and fully aquatic mammals. Semiaquatic mammals swim by paddling, which is inefficient compared to the use of oscillating hydrofoils of aquatic mammals. Semiaquatic mammals swim at the water surface and experience a greater resistive force augmented by wave drag than submerged aquatic mammals. A dense, nonwettable fur insulates semiaquatic mammals, whereas aquatic mammals use a layer of blubber. The fur, while providing insulation and positive buoyancy, incurs a high energy demand for maintenance and limits diving depth. Blubber contours the body to reduce drag, is an energy reserve, and suffers no loss in buoyancy with depth. Despite the high energetic costs of a semiaquatic existence, these animals represent modern analogs of evolutionary intermediates between ancestral terrestrial mammals and their fully aquatic descendants. It is these intermediate animals that indicate which potential selection factors and mechanical constraints may have directed the evolution of more derived aquatic forms.
Note: Development of a small maglev-type antirolling system.
Park, Cheol Hoon; Park, Hee Chang; Cho, Han Wook; Moon, Seok Jun; Chung, Tae Young
2010-05-01
Various passive and/or active antirolling devices have been used for suppressing the rolling motion of ships in the ocean. In this study, a maglev-type active mass driver (AMD) is developed for controlling the rolling motion of a shiplike structure. No friction is generated during the motion of this maglev-type AMD, as the moving mass is floated by the magnetic levitation force and displaced by the propulsion force generated by the linear motor. For verifying the feasibility of the proposed method, a small AMD having a moving mass of approximately 4.0 kg is constructed and used in a small-scale model of a catamaran. This paper presents the detailed design procedures and obtained experimental results. Our results show that the developed maglev-type AMD has the potential for use in controlling the rolling motion of ships and other oceanographic vessels.
Flow structures in the wake of heaving and pitching foils
NASA Astrophysics Data System (ADS)
Najdzin, Derek; Pardo, Enrique; Leftwich, Megan C.; Bardet, Philippe M.
2012-11-01
A 10-bar mechanism drives a cambering hydrofoil in an oscillatory heaving and pitching motion that replicates the flapping motion of a dolphin tail. The mechanism sits on a force-balance with six strain gages that together measure the forces and moments experienced by the fin during an oscillation. Planar Laser-Induced Fluorescence is used to image the flow structures created downstream of the cambering fin for a range of Reynolds and Strouhal numbers. The images are taken in the mid-plane, parallel to the bottom of the water tunnel. These results are compared to a rigid foil at matching conditions to investigate the role of camber changes during the flapping cycle.
The Influence of depth and surface waves on marine current turbine performance
NASA Astrophysics Data System (ADS)
Lust, Ethan; Flack, Karen; Luznik, Luksa; van Benthem, Max; Walker, Jessica
2013-11-01
Performance characteristics are presented for a 1/25th scale marine current turbine operating in calm conditions and in the presence of intermediate and deep water waves. The two-bladed turbine has radius of 0.4 m and a maximum blade pitch of 17°. The hydrofoil is a NACA63-618 which was selected to be Reynolds number independent for lift in the operational range (ReC = 2 - 4 × 105) . The experiments were performed in the 116 m tow-tank at the United States Naval Academy at depths of 0.8D and 1.75D measured from the blade tip to the mean free surface. Overall average values for power and thrust coefficient were found to be insensitive to wave form and weakly sensitive to turbine depth. Waves yield a small increase in turbine performance which can be explained by Stokes drift. Variations on performance parameters are on the same order of magnitude as the average value especially near the mean free surface and in the presence of high energy waves. Office of Naval Research.
NASA Astrophysics Data System (ADS)
Cheng, Huai-yu; Long, Xin-ping; Ji, Bin; Liu, Qi; Bai, Xiao-rui
2018-02-01
In the present paper, the unsteady cavitating flow around a 3-D Clark-Y hydrofoil is numerically investigated with the filter-based density correction model (FBDCM), a turbulence model and the Zwart-Gerber-Belamri (ZGB) cavitation model. A reasonable agreement is obtained between the numerical and experimental results. To study the complex flow structures more straightforwardly, a 3-D Lagrangian technology is developed, which can provide the particle tracks and the 3-D Lagrangian coherent structures (LCSs). Combined with the traditional methods based on the Eulerian viewpoint, this technology is used to analyze the attached cavity evolution and the re-entrant jet behavior in detail. At stage I, the collapse of the previous shedding cavity and the growth of a new attached cavity, the significant influence of the collapse both on the suction and pressure sides are captured quite well by the 3-D LCSs, which is underestimated by the traditional methods like the iso-surface of Q-criteria. As a kind of special LCSs, the arching LCSs are observed in the wake, induced by the counter-rotating vortexes. At stage II, with the development of the re-entrant jet, the influence of the cavitation on the pressure side is still not negligible. And with this 3-D Lagrangian technology, the tracks of the re-entrant jet are visualized clearly, moving from the trailing edge to the leading edge. Finally, at stage III, the re-entrant jet collides with the mainstream and finally induces the shedding. The cavitation evolution and the re-entrant jet movement in the whole cycle are well visualized with the 3-D Lagrangian technology. Moreover, the comparison between the LCSs obtained with 2-D and 3-D Lagrangian technologies indicates the advantages of the latter. It is demonstrated that the 3-D Lagrangian technology is a promising tool in the investigation of complex cavitating flows.
Hydrodynamic studies on two wiggling hydrofoils in an oblique arrangement
NASA Astrophysics Data System (ADS)
Lin, Xingjian; He, Guoyi; He, Xinyi; Wang, Qi; Chen, Longsheng
2018-06-01
The propulsive performance of an oblique school of fish is numerically studied using an immersed boundary technique. The effect of the spacing and wiggling phase on the hydrodynamics of the system is investigated. The hydrodynamics of the system is deeply affected by the spacing between each fish in the school. When the horizontal separation is smaller than the length of the fish body, the downstream fish exhibits a larger thrust coefficient and greater propulsive efficiency than the isolated fish. However, the corresponding values for the upstream fish are smaller. The opposite behavior occurs when the horizontal separation increases beyond the length of fish body. The propulsive performance of the entire oblique school of fish can be substantially enhanced when the separations are optimized.
Classification of Intact Stability Standards for Dynamically Supported Craft.
1979-10-01
nineteenth century. By 1914, planing boats had been developed sufficiently to be used successfully in World War I. It appears that hydrofoil craft, which...of ship, It ’, ervice jeed sVl or .ago. 281s PAGE I S BS T QUAL1t~ TY PFCJ= .......... -HM TO DOC . ~~~~~~~~ ~~~~~~ ... ,__.-. ul ... . _:L._. TABLE 3-1...1l- A 1".. A , L "lp | it [ -ff. lfv-tiv44 1.d. P|I,, tdv. An- rAlnj 1. eq slh W-rr t - ii, ,J 1’a.g . s 15yl.ar svr l g ,’ii.l n Ir 1, hi , tan1 .40n
Some observations of tip-vortex cavitation
NASA Astrophysics Data System (ADS)
Arndt, R. E. A.; Arakeri, V. H.; Higuchi, H.
1991-08-01
Cavitation has been observed in the trailing vortex system of an elliptic platform hydrofoil. A complex dependence on Reynolds number and gas content is noted at inception. Some of the observations can be related to tension effects associated with the lack of sufficiently large-sized nuclei. Inception measurements are compared with estimates of pressure in the vortex obtained from LDV measurements of velocity within the vortex. It is concluded that a complete correlation is not possible without knowledge of the fluctuating levels of pressure in tip-vortex flows. When cavitation is fully developed, the observed tip-vortex trajectory flows. When cavitation is fully developed, the observed tip-vortex trajectory shows a surprising lack of dependence on any of the physical parameters varied, such as angle of attack, Reynolds number, cavitation number, and dissolved gas content.
Lovesey, E J
1970-06-01
In just over a decade the hovercraft has progressed from first prototype to a successful commercial form of transport which also has the ability to penetrate many environments hitherto virtually inaccessible to manned vehicles. Comparison with rival short range vehicles such as the helicopter and hydrofoil show that the hovercraft has become one of the most versatile forms of transport available. This versatility and ability to operate in unusual or extreme environments has been accompanied by the problems of control and of protection of the occupants of the hovercraft from the hazards associated with these environments. Several of these problems are discussed, together with their possible solutions. This article is based on a paper given to the Nederlands Vereniging Voor Ergonomie/Ergonomics Research Society joint conference at Noordwijk in Holland, 11-13 June, 1969.
Sabra, Karim G; Winkel, Eric S; Bourgoyne, Dwayne A; Elbing, Brian R; Ceccio, Steve L; Perlin, Marc; Dowling, David R
2007-04-01
It has been demonstrated theoretically and experimentally that an estimate of the impulse response (or Green's function) between two receivers can be obtained from the cross correlation of diffuse wave fields at these two receivers in various environments and frequency ranges: ultrasonics, civil engineering, underwater acoustics, and seismology. This result provides a means for structural monitoring using ambient structure-borne noise only, without the use of active sources. This paper presents experimental results obtained from flow-induced random vibration data recorded by pairs of accelerometers mounted within a flat plate or hydrofoil in the test section of the U.S. Navy's William B. Morgan Large Cavitation Channel. The experiments were conducted at high Reynolds number (Re > 50 million) with the primary excitation source being turbulent boundary layer pressure fluctuations on the upper and lower surfaces of the plate or foil. Identical deterministic time signatures emerge from the noise cross-correlation function computed via robust and simple processing of noise measured on different days by a pair of passive sensors. These time signatures are used to determine and/or monitor the structural response of the test models from a few hundred to a few thousand Hertz.
Finite element based damage assessment of composite tidal turbine blades
NASA Astrophysics Data System (ADS)
Fagan, Edward M.; Leen, Sean B.; Kennedy, Ciaran R.; Goggins, Jamie
2015-07-01
With significant interest growing in the ocean renewables sector, horizontal axis tidal current turbines are in a position to dominate the marketplace. The test devices that have been placed in operation so far have suffered from premature failures, caused by difficulties with structural strength prediction. The goal of this work is to develop methods of predicting the damage level in tidal turbines under their maximum operating tidal velocity. The analysis was conducted using the finite element software package Abaqus; shell models of three representative tidal turbine blades are produced. Different construction methods will affect the damage level in the blade and for this study models were developed with varying hydrofoil profiles. In order to determine the risk of failure, a user material subroutine (UMAT) was created. The UMAT uses the failure criteria designed by Alfred Puck to calculate the risk of fibre and inter-fibre failure in the blades. The results show that degradation of the stiffness is predicted for the operating conditions, having an effect on the overall tip deflection. The failure criteria applied via the UMAT form a useful tool for analysis of high risk regions within the blade designs investigated.
NASA Astrophysics Data System (ADS)
Saustrup, S.; Gulick, S. P.; Goff, J. A.; Davis, M. B.; Duncan, D.; Reece, R.
2013-12-01
The University of Texas Institute for Geophysics (UTIG), part of the Jackson School of Geosciences, annually offers a unique and intensive three-week marine geology and geophysics field course during the spring/summer semester intersession. Now entering its seventh year, the course transitions students from a classroom environment through real-world, hands-on field acquisition, on to team-oriented data interpretation, culminating in a professional presentation before academic and industry employer representatives. The course is available to graduate students and select upper-division undergraduates, preparing them for direct entry into the geoscience workforce or for further academic study. Geophysical techniques used include high-resolution multichannel seismic reflection, CHIRP sub-bottom profiling, multibeam bathymetry, sidescan sonar, sediment coring, grab sampling, data processing, and laboratory analysis of sediments. Industry-standard equipment, methods, software packages, and visualization techniques are used throughout the course, putting students ahead of many of their peers in this respect. The course begins with a 3-day classroom introduction to the field area geology, geophysical methods, and computing resources used. The class then travels to the Gulf Coast for a week of hands-on field and lab work aboard two research vessels: UTIG's 22-foot, aluminum hulled Lake Itasca; and NOAA's 82-foot high-speed catamaran R/V Manta. The smaller vessel handles primarily shallow, inshore targets using multibeam bathymetry, sidescan sonar, and grab sampling. The larger vessel is used both inshore and offshore for multichannel seismic, CHIRP profiling, multibeam bathymetry, gravity coring, and vibracoring. Field areas to date have included Galveston and Port Aransas, Texas, and Grand Isle, Louisiana, with further work in Grand Isle scheduled for 2014. In the field, students work in teams of three, participating in survey design, instrument set-up, field deployment, data acquisition optimization, quality control, data archival, log-keeping, real-time data processing, laboratory sediment analysis, and even boat-handling. Teams are rotated through the two vessels and the onshore field laboratory to ensure that each student has hands-on experience with each aspect of the process. Although all students work on all data areas in the field, after returning from the field each team is assigned a particular region or geologic problem to interpret. Each team prepares and presents a formal presentation to UTIG researchers and industry representatives, explaining and defending their interpretations. This unique approach to hands-on field training, real-world science, and project-based teamwork helps prepare students for direct entry into the workforce, giving them a leg up on competitors for positions. This course has an impressive success ratio to show, with many students receiving job offers directly as a result of their participation in the course.
DeWitt, Nancy T.; Flocks, James G.; Reynolds, B.J.; Hansen, Mark
2012-01-01
The Gulf Islands National Seashore (GUIS) is composed of a series of barrier islands along the Mississippi - Alabama coastline. Historically these islands have undergone long-term shoreline change. The devastation of Hurricane Katrina in 2005 prompted questions about the stability of the barrier islands and their potential response to future storm impacts. Additionally, there was concern from the National Park Service (NPS) about the preservation of the historical Fort Massachusetts, located on West Ship Island. During the early 1900s, Ship Island was an individual island. In 1969 Hurricane Camille breached Ship Island, widening the cut and splitting it into what is now known as West Ship Island and East Ship Island. In July of 2007, the U.S. Geological Survey (USGS) was able to provide the NPS with a small bathymetric survey of Camille Cut using high-resolution single-beam bathymetry. This provided GUIS with a post-Katrina assessment of the bathymetry in Camille Cut and along the northern shoreline directly in front of Fort Massachusetts. Ultimately, this survey became an initial bathymetry dataset toward a larger USGS effort included in the Northern Gulf of Mexico (NGOM) Ecosystem Change and Hazard Susceptibility Project (http://ngom.usgs.gov/gomsc/mscip/). This report serves as an archive of the processed single-beam bathymetry. Data products herein include gridded and interpolated digital depth surfaces and x,y,z data products. Additional files include trackline maps, navigation files, geographic information system (GIS) files, Field Activity Collection System (FACS) logs, and formal Federal Geographic Data Committee (FGDC) metadata. Scanned images of the handwritten FACS logs and digital FACS logs are also provided as PDF files. Refer to the Acronyms page for description of acronyms and abbreviations used in this report or hold the cursor over an acronym for a pop-up explanation. The USGS St. Petersburg Coastal and Marine Science Center assigns a unique identifier to each cruise or field activity. For example, 07CCT01 tells us the data were collected in 2007 for the Coastal Change and Transport (CCT) study and the data were collected during the first (01) field activity for that project in that calendar year. Refer to http://walrus.wr.usgs.gov/infobank/programs/html/definition/activity.html for a detailed description of the method used to assign the field activity ID. Data were collected using a 26-foot (ft) Glacier Bay catamaran. The single-beam transducers were sled mounted on a rail attached between the catamaran hulls. Navigation was acquired using HYPACK, Inc., Hypack version 4.3a.7.1 and differentially corrected using land-based GPS stations. See the digital FACS equipment log for details about the acquisition equipment used. Raw datasets were stored digitally and processed systematically using NovAtel's Waypoint GrafNav version 7.6, SANDS version 3.7, and ESRI ArcGIS version 9.3.1. For more information on processing refer to the Equipment and Processing page.
Cavitation in liquid cryogens. 3: Ogives
NASA Technical Reports Server (NTRS)
Hord, J.
1973-01-01
Experimental results for three, scaled, quarter-caliber ogives are given. Both desinent and developed cavity data, using liquid hydrogen and liquid nitrogen, are reported. The desinent data do not exhibit a consistent ogive size effect, but the developed cavity data were consistently influenced by ogive size; B-factor increases with increasing ogive diameter. The developed cavity data indicated that stable thermodynamic equilibrium exists throughout the vaporous cavities. These data were correlated by using the extended theory derived in NASA-CR-2156 (volume II of this report series). The new correlating parameter MTWO, improves data correlation for the ogives, hydrofoil, and venturi and appears attractive for future predictive applications. The cavitation coefficient and equipment size effects are shown to vary with specific equipment-fluid combinations. A method of estimating cavitation coefficient from knowledge of the noncavitating pressure coefficient is suggested.
Large eddy simulation of cavitating flows
NASA Astrophysics Data System (ADS)
Gnanaskandan, Aswin; Mahesh, Krishnan
2014-11-01
Large eddy simulation on unstructured grids is used to study hydrodynamic cavitation. The multiphase medium is represented using a homogeneous equilibrium model that assumes thermal equilibrium between the liquid and the vapor phase. Surface tension effects are ignored and the governing equations are the compressible Navier Stokes equations for the liquid/vapor mixture along with a transport equation for the vapor mass fraction. A characteristic-based filtering scheme is developed to handle shocks and material discontinuities in non-ideal gases and mixtures. A TVD filter is applied as a corrector step in a predictor-corrector approach with the predictor scheme being non-dissipative and symmetric. The method is validated for canonical one dimensional flows and leading edge cavitation over a hydrofoil, and applied to study sheet to cloud cavitation over a wedge. This work is supported by the Office of Naval Research.
A physics based multiscale modeling of cavitating flows.
Ma, Jingsen; Hsiao, Chao-Tsung; Chahine, Georges L
2017-03-02
Numerical modeling of cavitating bubbly flows is challenging due to the wide range of characteristic lengths of the physics at play: from micrometers (e.g., bubble nuclei radius) to meters (e.g., propeller diameter or sheet cavity length). To address this, we present here a multiscale approach which integrates a Discrete Singularities Model (DSM) for dispersed microbubbles and a two-phase Navier Stokes solver for the bubbly medium, which includes a level set approach to describe large cavities or gaseous pockets. Inter-scale schemes are used to smoothly bridge the two transitioning subgrid DSM bubbles into larger discretized cavities. This approach is demonstrated on several problems including cavitation inception and vapor core formation in a vortex flow, sheet-to-cloud cavitation over a hydrofoil, cavitation behind a blunt body, and cavitation on a propeller. These examples highlight the capabilities of the developed multiscale model in simulating various form of cavitation.
A physics based multiscale modeling of cavitating flows
Ma, Jingsen; Hsiao, Chao-Tsung; Chahine, Georges L.
2018-01-01
Numerical modeling of cavitating bubbly flows is challenging due to the wide range of characteristic lengths of the physics at play: from micrometers (e.g., bubble nuclei radius) to meters (e.g., propeller diameter or sheet cavity length). To address this, we present here a multiscale approach which integrates a Discrete Singularities Model (DSM) for dispersed microbubbles and a two-phase Navier Stokes solver for the bubbly medium, which includes a level set approach to describe large cavities or gaseous pockets. Inter-scale schemes are used to smoothly bridge the two transitioning subgrid DSM bubbles into larger discretized cavities. This approach is demonstrated on several problems including cavitation inception and vapor core formation in a vortex flow, sheet-to-cloud cavitation over a hydrofoil, cavitation behind a blunt body, and cavitation on a propeller. These examples highlight the capabilities of the developed multiscale model in simulating various form of cavitation. PMID:29720773
The influence of surface waves on tidal turbine performance characteristics
NASA Astrophysics Data System (ADS)
Van Benthem, M.; Luznik, L.; Flack, K.; Lust, E.
2012-12-01
Performance characteristics are presented for a 1/25th scale horizontal axis marine current turbine operating in calm conditions and in the presence of intermediate and deep water waves. The two-bladed turbine has radius of 0.4 m and a maximum blade pitch of 17°. The hydrofoil is a NACA63-618 which was selected to be Reynolds number independent in the operational range (ReC = 2 - 4 x 105). The experiments were performed in the 116 m towing tank at the United States Naval Academy at two depths 0.8D and 1.6D measured from the blade tip to the mean free surface. The performance characteristics without waves match expected results from blade-element-momentum theory. Results show that the average power coefficient is unaffected by the presence of waves, however, the phase averaged results indicate significant variation with wave phase.
The Influence of surface waves on marine current turbine performance
NASA Astrophysics Data System (ADS)
Lust, Ethan; Flack, Karen; Luznik, Luksa
2012-11-01
Performance characteristics are presented for a 1/25th scale marine current turbine operating in calm conditions and in the presence of intermediate and deep water waves. The two-bladed turbine has radius of 0.4 m and a maximum blade pitch of 17. The hydrofoil is a NACA63-618 which was selected to be Reynolds number independent in the operational range (ReC = 2 - 4 × 105) . The experiments were performed in the 116 m tow-tank at the United States Naval Academy at a depth of 0.8D measured from the blade tip to the mean free surface. The performance characteristics without waves match expected results from blade-element-momentum theory. Results show that the average power coefficient is unaffected by the presence of waves, however, the phase averaged results indicate significant variation with wave phase. Work supported by ONR.
Hullborne Hydrofoil Six-Degree of Freedom Motion Prediction Computer Program
1976-07-01
UAVEI (7.7) , WAVE2 (797) .!NUEX(1493) .DtIM3(4034) KRN 21 NOE=2 *NO%1 KRN 22 no0 12IzlNON KPZN 23 NIxN0N- I KPN 24 FR(I.1)xEM1 CK,1) KRN 25 FR(192)2-SNE...CON7(J,1)* WAVE2 (1,J)-CON2(NJ,1 )*SOUR2(1,J) KRN III PRA(1,3)=PRA(T,3)+CON1(J,2)*WAVEi CIJ)-CON1(NJ,2)*SOUR1(I.J) KRN 112 PRA(1,4)zPRA(194) .CON2(J,2...8217 WAVE2 (lj)-CON2(NJ,2)*SOUR2(IJJ KRN 113 PPV(1.2)=PRV(192) *CON2(J,1)*SOUR2(I.J) *CON2(NJt1)* WAVE2 (1.J) KRN 115 PRV(193;=PRV(193),CONI(Jt?)4SOUR1(1,J
NASA Astrophysics Data System (ADS)
Jaanimagi, Paul A.
1992-01-01
This volume presents papers grouped under the topics on advances in streak and framing camera technology, applications of ultrahigh-speed photography, characterizing high-speed instrumentation, high-speed electronic imaging technology and applications, new technology for high-speed photography, high-speed imaging and photonics in detonics, and high-speed velocimetry. The papers presented include those on a subpicosecond X-ray streak camera, photocathodes for ultrasoft X-ray region, streak tube dynamic range, high-speed TV cameras for streak tube readout, femtosecond light-in-flight holography, and electrooptical systems characterization techniques. Attention is also given to high-speed electronic memory video recording techniques, high-speed IR imaging of repetitive events using a standard RS-170 imager, use of a CCD array as a medium-speed streak camera, the photography of shock waves in explosive crystals, a single-frame camera based on the type LD-S-10 intensifier tube, and jitter diagnosis for pico- and femtosecond sources.
Potiaumpai, Melanie; Martins, Maria Carolina Massoni; Rodriguez, Roberto; Mooney, Kiersten; Signorile, Joseph F
2016-12-01
To compare energy expenditure and volume of oxygen consumption and carbon dioxide production during a high-speed yoga and a standard-speed yoga program. Randomized repeated measures controlled trial. A laboratory of neuromuscular research and active aging. Sun-Salutation B was performed, for eight minutes, at a high speed versus and a standard-speed separately while oxygen consumption was recorded. Caloric expenditure was calculated using volume of oxygen consumption and carbon dioxide production. Difference in energy expenditure (kcal) of HSY and SSY. Significant differences were observed in energy expenditure between yoga speeds with high-speed yoga producing significantly higher energy expenditure than standard-speed yoga (MD=18.55, SE=1.86, p<0.01). Significant differences were also seen between high-speed and standard-speed yoga for volume of oxygen consumed and carbon dioxide produced. High-speed yoga results in a significantly greater caloric expenditure than standard-speed yoga. High-speed yoga may be an effective alternative program for those targeting cardiometabolic markers. Copyright © 2016 Elsevier Ltd. All rights reserved.
Developing course lecture notes on high-speed rail.
DOT National Transportation Integrated Search
2017-07-15
1. Introduction a. World-wide Development of High-Speed Rail (Japan, Europe, China) b. High-speed Rail in the U.S. 2. High-Speed Rail Infrastructure a. Geometric Design of High Speed Rail i. Horizontal Curve ii. Vertical Curve iii. Grade and Turnout ...
NASA Astrophysics Data System (ADS)
Oka, Mohachiro; Enokizono, Masato; Mori, Yuji; Yamazaki, Kazumasa
2018-04-01
Recently, the application areas for electric motors have been expanding. For instance, electric motors are used in new technologies such as rovers, drones, cars, and robots. The motor used in such machinery should be small, high-powered, highly-efficient, and high-speed. In such motors, loss at high-speed rotation must be especially minimal. Eddy-current loss in the stator core is known to increase greatly during loss at high-speed rotation of the motor. To produce an efficient high-speed motor, we are developing a stator core for a motor using an ultrathin electrical steel sheet with only a small amount of eddy-current loss. Furthermore, the magnetic property evaluation for efficient, high-speed motor stator cores that use conventional commercial frequency is insufficient. Thus, we made a new high-speed magnetic property evaluation system to evaluate the magnetic properties of the efficient high-speed motor stator core. This system was composed of high-speed A/D converters, D/A converters, and a high-speed power amplifier. In experiments, the ultrathin electrical steel sheet dramatically suppressed iron loss and, in particular, eddy-current loss. In addition, a new high-speed magnetic property evaluation system accurately evaluated the magnetic properties of the efficient high-speed motor stator core.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-12
... High-Speed Rail Authority--Construction Exemption--In Merced, Madera and Fresno Counties, CA AGENCY... High-Speed Rail Authority (Authority). This Final EIS is titled ``California High-Speed Train: Merced... Final EIS assesses the potential environmental impacts of constructing and operating a high-speed...
Feasibility of using Big Area Additive Manufacturing to Directly Manufacture Boat Molds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Post, Brian K.; Chesser, Phillip C.; Lind, Randall F.
The goal of this project was to explore the feasibility of using Big Area Additive Manufacturing (BAAM) to directly manufacture a boat mold without the need for coatings. All prior tooling projects with BAAM required the use to thick coatings to overcome the surface finish limitations of the BAAM process. While the BAAM process significantly lowers the cost of building the mold, the high cost element rapidly became the coatings (cost of the material, labor on coating, and finishing). As an example, the time and cost to manufacture the molds for the Wind Turbine project with TPI Composites Inc. andmore » the molds for the submarine project with Carderock Naval Warfare Systems was a fraction of the time and cost of the coatings. For this project, a catamaran boat hull mold was designed, manufactured, and assembled with an additional 0.15” thickness of material on all mold surfaces. After printing, the mold was immediately machined and assembled. Alliance MG, LLC (AMG), the industry partner of this project, experimented with mold release agents on the carbon-fiber reinforced acrylonitrile butadiene styrene (CF ABS) to verify that the material can be directly used as a mold (rather than needing a coating). In addition, for large molds (such as the wind turbine mold with TPI Composites Inc.), the mold only provided the target surface. A steel subframe had to be manufactured to provide structural integrity. If successful, this will significantly reduce the time and cost necessary for manufacturing large resin infusion molds using the BAAM process.« less
36 CFR 1192.175 - High-speed rail cars, monorails and systems.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false High-speed rail cars... TRANSPORTATION VEHICLES Other Vehicles and Systems § 1192.175 High-speed rail cars, monorails and systems. (a) All cars for high-speed rail systems, including but not limited to those using “maglev” or high speed...
36 CFR 1192.175 - High-speed rail cars, monorails and systems.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 36 Parks, Forests, and Public Property 3 2012-07-01 2012-07-01 false High-speed rail cars... TRANSPORTATION VEHICLES Other Vehicles and Systems § 1192.175 High-speed rail cars, monorails and systems. (a) All cars for high-speed rail systems, including but not limited to those using “maglev” or high speed...
36 CFR 1192.175 - High-speed rail cars, monorails and systems.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 36 Parks, Forests, and Public Property 3 2011-07-01 2011-07-01 false High-speed rail cars... TRANSPORTATION VEHICLES Other Vehicles and Systems § 1192.175 High-speed rail cars, monorails and systems. (a) All cars for high-speed rail systems, including but not limited to those using “maglev” or high speed...
36 CFR § 1192.175 - High-speed rail cars, monorails and systems.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 36 Parks, Forests, and Public Property 3 2013-07-01 2012-07-01 true High-speed rail cars... TRANSPORTATION VEHICLES Other Vehicles and Systems § 1192.175 High-speed rail cars, monorails and systems. (a) All cars for high-speed rail systems, including but not limited to those using “maglev” or high speed...
36 CFR 1192.175 - High-speed rail cars, monorails and systems.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 36 Parks, Forests, and Public Property 3 2014-07-01 2014-07-01 false High-speed rail cars... TRANSPORTATION VEHICLES Other Vehicles and Systems § 1192.175 High-speed rail cars, monorails and systems. (a) All cars for high-speed rail systems, including but not limited to those using “maglev” or high speed...
DOT National Transportation Integrated Search
1999-12-01
Amtrak is planning to provide high-speed passenger train service at speeds significantly higher than their current top speed of 125 mph, and with these higher speeds, there are concerns with safety from the aerodynamic effects created by a passing tr...
2008 13th Expeditionary Warfare Conference
2008-10-23
Ships 6 Joint High Speed Vessel (JHSV) • Program Capability – High speed lift ship capable of transporting cargo and personnel across intra... high - speed aluminum trimaran hullform that enables the ship to reach sustainable speeds of over 40 knots and range in excess of 3,500 nautical miles...advancing concepts for a very high speed , manned submersible,
High-speed and ultrahigh-speed cinematographic recording techniques
NASA Astrophysics Data System (ADS)
Miquel, J. C.
1980-12-01
A survey is presented of various high-speed and ultrahigh-speed cinematographic recording systems (covering a range of speeds from 100 to 14-million pps). Attention is given to the functional and operational characteristics of cameras and to details of high-speed cinematography techniques (including image processing, and illumination). A list of cameras (many of them French) available in 1980 is presented
Deliyski, Dimitar D.; Hillman, Robert E.
2015-01-01
Purpose The authors discuss the rationale behind the term laryngeal high-speed videoendoscopy to describe the application of high-speed endoscopic imaging techniques to the visualization of vocal fold vibration. Method Commentary on the advantages of using accurate and consistent terminology in the field of voice research is provided. Specific justification is described for each component of the term high-speed videoendoscopy, which is compared and contrasted with alternative terminologies in the literature. Results In addition to the ubiquitous high-speed descriptor, the term endoscopy is necessary to specify the appropriate imaging technology and distinguish among modalities such as ultrasound, magnetic resonance imaging, and nonendoscopic optical imaging. Furthermore, the term video critically indicates the electronic recording of a sequence of optical still images representing scenes in motion, in contrast to strobed images using high-speed photography and non-optical high-speed magnetic resonance imaging. High-speed videoendoscopy thus concisely describes the technology and can be appended by the desired anatomical nomenclature such as laryngeal. Conclusions Laryngeal high-speed videoendoscopy strikes a balance between conciseness and specificity when referring to the typical high-speed imaging method performed on human participants. Guidance for the creation of future terminology provides clarity and context for current and future experiments and the dissemination of results among researchers. PMID:26375398
Hydrodynamic damping and stiffness prediction in Francis turbine runners using CFD
NASA Astrophysics Data System (ADS)
Nennemann, Bernd; Monette, Christine; Chamberland-Lauzon, Joël
2016-11-01
Fluid-structure interaction (FSI) has a major impact on the dynamic response of the structural components of hydroelectric turbines. On mid- to high-head Francis runners, the rotor-stator interaction (RSI) phenomenon has to be considered carefully during the design phase to avoid operational issues on the prototype machine. The RSI dynamic response amplitudes of the runner are driven by three main factors: (1) pressure forcing amplitudes, (2) excitation frequencies in relation to natural frequencies and (3) damping. All three of the above factors are significantly influenced by both mechanical and hydraulic parameters. The prediction of the first two factors has been largely documented in the literature. However, the prediction of hydro-dynamic damping has only recently and only partially been treated. Two mode-based approaches (modal work and coupled single degree of freedom) for the prediction of flow-added dynamic parameters using separate finite element analyses (FEA) in still water and unsteady computational fluid dynamic (CFD) analyses are presented. The modal motion is connected to the time resolved CFD calculation by means of dynamic mesh deformation. This approach has partially been presented in a previous paper applied to a simplified hydrofoil. The present work extends the approach to Francis runners under RSI loading. In particular the travelling wave mode shapes of turbine runners are considered. Reasonable agreement with experimental results is obtained in parts of the operating range.
Hydro-dynamic damping theory in flowing water
NASA Astrophysics Data System (ADS)
Monette, C.; Nennemann, B.; Seeley, C.; Coutu, A.; Marmont, H.
2014-03-01
Fluid-structure interaction (FSI) has a major impact on the dynamic response of the structural components of hydroelectric turbines. On mid-head to high-head Francis runners, the rotor-stator interaction (RSI) phenomenon always has to be considered carefully during the design phase to avoid operational issues later on. The RSI dynamic response amplitudes are driven by three main factors: (1) pressure forcing amplitudes, (2) excitation frequencies in relation to natural frequencies and (3) damping. The prediction of the two first factors has been largely documented in the literature. However, the prediction of fluid damping has received less attention in spite of being critical when the runner is close to resonance. Experimental damping measurements in flowing water on hydrofoils were presented previously. Those results showed that the hydro-dynamic damping increased linearly with the flow. This paper presents development and validation of a mathematical model, based on momentum exchange, to predict damping due to fluid structure interaction in flowing water. The model is implemented as an analytical procedure for simple structures, such as cantilever beams, but is also implemented in more general ways using three different approaches for more complex structures such as runner blades: a finite element procedure, a CFD modal work based approach and a CFD 1DOF approach. The mathematical model and all three implementation approaches are shown to agree well with experimental results.
NASA Astrophysics Data System (ADS)
Harwood, Casey; Young, Yin Lu; Ceccio, Steven
2014-11-01
High-lift devices that operate at or near a fluid free surface (such as surface-piercing or shallowly-submerged propellers and hydrofoils) are prone to a multiphase flow phenomenon called ventilation, wherein non-condensable gas is entrained in the low-pressure flow, forming a cavity around the body and dramatically altering the global hydrodynamic forces. Experiments are being conducted at the University of Michigan's towing tank using a canonical surface-piercing strut to investigate atmospheric ventilation. The goals of the work are (i) to gain an understanding of the dominant physics in fully wetted, partially ventilated, and fully ventilated flow regimes, (ii) to quantify the effects of governing dimensionless parameters on the transition between flow regimes, and (iii) to develop scaling relations for the transition between flow regimes. Using theoretical arguments and flow visualization techniques, new criteria are developed for classifying flow regimes and transition mechanisms. Unsteady transition mechanisms are described and mapped as functions of the governing non-dimensional parameters. A theoretical scaling relationship is developed for ventilation washout, which is shown to adequately capture the experimentally-observed washout boundary. This material is based upon work supported by the National Science Foundation Graduate Student Research Fellowship under Grant No. DGE 1256260. Support also comes from the Naval Engineering Education Center (Award No. N65540-10-C-003).
14 CFR 23.253 - High speed characteristics.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false High speed characteristics. 23.253 Section... Requirements § 23.253 High speed characteristics. If a maximum operating speed VMO/MMO is established under § 23.1505(c), the following speed increase and recovery characteristics must be met: (a) Operating...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-19
...-Speed Rail Authority--Construction Exemption--in Merced, Madera and Fresno Counties, Cal AGENCY: Surface...-Speed Rail Authority (Authority) to construct an approximately 65- mile high-speed passenger rail line... statewide California High-Speed Train System. This exemption is subject to environmental mitigation...
14 CFR 23.253 - High speed characteristics.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false High speed characteristics. 23.253 Section... Requirements § 23.253 High speed characteristics. If a maximum operating speed VMO/MMO is established under § 23.1505(c), the following speed increase and recovery characteristics must be met: (a) Operating...
Predictors of older drivers' involvement in high-range speeding behavior.
Chevalier, Anna; Coxon, Kristy; Rogers, Kris; Chevalier, Aran John; Wall, John; Brown, Julie; Clarke, Elizabeth; Ivers, Rebecca; Keay, Lisa
2017-02-17
Even small increases in vehicle speed raise crash risk and resulting injury severity. Older drivers are at increased risk of involvement in casualty crashes and injury compared to younger drivers. However, there is little objective evidence about older drivers' speeding. This study investigates the nature and predictors of high-range speeding among drivers aged 75-94 years. Speed per second was estimated using Global Positioning System devices installed in participants' vehicles. High-range speeding events were defined as traveling an average 10+km/h above the speed limit over 30 seconds. Descriptive analysis examined speeding events by participant characteristics and mileage driven. Regression analyses were used to examine the association between involvement in high-range speeding events and possible predictive factors. Most (96%, 182/190) participants agreed to have their vehicle instrumented, and speeding events were accurately recorded for 97% (177/182) of participants. While 77% (136/177) of participants were involved in one or more high-range events, 42% (75/177) were involved in greater than five events during 12-months of data collection. Participants involved in high-range events drove approximately twice as many kilometres as those not involved. High-range events tended to be infrequent (median = 6 per 10,000 km; IQR = 2-18). The rate of high-range speeding was associated with better cognitive function and attention to the driving environment. This suggests those older drivers with poorer cognition and visual attention may drive more cautiously, thereby reducing their high-range speeding behavior.
Research on natural frequency based on modal test for high speed vehicles
NASA Astrophysics Data System (ADS)
Ma, Guangsong; He, Guanglin; Guo, Yachao
2018-04-01
High speed vehicle as a vibration system, resonance generated in flight may be harmful to high speed vehicles. It is possible to solve the resonance problem by acquiring the natural frequency of the high-speed aircraft and then taking some measures to avoid the natural frequency of the high speed vehicle. Therefore, In this paper, the modal test of the high speed vehicle was carried out by using the running hammer method and the PolyMAX modal parameter identification method. Firstly, the total frequency response function, coherence function of the high speed vehicle are obtained by the running hammer stimulation test, and through the modal assurance criterion (MAC) to determine the accuracy of the estimated parameters. Secondly, the first three order frequencies, the pole steady state diagram of the high speed vehicles is obtained by the PolyMAX modal parameter identification method. At last, the natural frequency of the vibration system was accurately obtained by the running hammer method.
Potential scenarios of concern for high speed rail operations
DOT National Transportation Integrated Search
2011-03-16
Currently, multiple operating authorities are proposing the : introduction of high-speed rail service in the United States. : While high-speed rail service shares a number of basic : principles with conventional-speed rail service, the operational : ...
14 CFR 25.253 - High-speed characteristics.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false High-speed characteristics. 25.253 Section...-speed characteristics. (a) Speed increase and recovery characteristics. The following speed increase and... inadvertent speed increases (including upsets in pitch and roll) must be simulated with the airplane trimmed...
14 CFR 25.253 - High-speed characteristics.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false High-speed characteristics. 25.253 Section...-speed characteristics. (a) Speed increase and recovery characteristics. The following speed increase and... inadvertent speed increases (including upsets in pitch and roll) must be simulated with the airplane trimmed...
High-speed adaptive optics for imaging of the living human eye
Yu, Yongxin; Zhang, Tianjiao; Meadway, Alexander; Wang, Xiaolin; Zhang, Yuhua
2015-01-01
The discovery of high frequency temporal fluctuation of human ocular wave aberration dictates the necessity of high speed adaptive optics (AO) correction for high resolution retinal imaging. We present a high speed AO system for an experimental adaptive optics scanning laser ophthalmoscope (AOSLO). We developed a custom high speed Shack-Hartmann wavefront sensor and maximized the wavefront detection speed based upon a trade-off among the wavefront spatial sampling density, the dynamic range, and the measurement sensitivity. We examined the temporal dynamic property of the ocular wavefront under the AOSLO imaging condition and improved the dual-thread AO control strategy. The high speed AO can be operated with a closed-loop frequency up to 110 Hz. Experiment results demonstrated that the high speed AO system can provide improved compensation for the wave aberration up to 30 Hz in the living human eye. PMID:26368408
49 CFR 236.1007 - Additional requirements for high-speed service.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 4 2011-10-01 2011-10-01 false Additional requirements for high-speed service..., AND APPLIANCES Positive Train Control Systems § 236.1007 Additional requirements for high-speed... by this subpart, and which have been utilized on high-speed rail systems with similar technical and...
49 CFR 38.175 - High-speed rail cars, monorails and systems.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 1 2011-10-01 2011-10-01 false High-speed rail cars, monorails and systems. 38....175 High-speed rail cars, monorails and systems. (a) All cars for high-speed rail systems, including... for high-platform, level boarding and shall comply with § 38.111(a) of this part for each type of car...
49 CFR 38.175 - High-speed rail cars, monorails and systems.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 1 2014-10-01 2014-10-01 false High-speed rail cars, monorails and systems. 38....175 High-speed rail cars, monorails and systems. (a) All cars for high-speed rail systems, including... for high-platform, level boarding and shall comply with § 38.111(a) of this part for each type of car...
49 CFR 38.175 - High-speed rail cars, monorails and systems.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 1 2013-10-01 2013-10-01 false High-speed rail cars, monorails and systems. 38....175 High-speed rail cars, monorails and systems. (a) All cars for high-speed rail systems, including... for high-platform, level boarding and shall comply with § 38.111(a) of this part for each type of car...
49 CFR 38.175 - High-speed rail cars, monorails and systems.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 1 2010-10-01 2010-10-01 false High-speed rail cars, monorails and systems. 38....175 High-speed rail cars, monorails and systems. (a) All cars for high-speed rail systems, including... for high-platform, level boarding and shall comply with § 38.111(a) of this part for each type of car...
49 CFR 38.175 - High-speed rail cars, monorails and systems.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 1 2012-10-01 2012-10-01 false High-speed rail cars, monorails and systems. 38....175 High-speed rail cars, monorails and systems. (a) All cars for high-speed rail systems, including... for high-platform, level boarding and shall comply with § 38.111(a) of this part for each type of car...
High Speed Balancing Applied to the T700 Engine
NASA Technical Reports Server (NTRS)
Walton, J.; Lee, C.; Martin, M.
1989-01-01
The work performed under Contracts NAS3-23929 and NAS3-24633 is presented. MTI evaluated the feasibility of high-speed balancing for both the T700 power turbine rotor and the compressor rotor. Modifications were designed for the existing Corpus Christi Army Depot (CCAD) T53/T55 high-speed balancing system for balancing T700 power turbine rotors. Tests conducted under these contracts included a high-speed balancing evaluation for T700 power turbines in the Army/NASA drivetrain facility at MTI. The high-speed balancing tests demonstrated the reduction of vibration amplitudes at operating speed for both low-speed balanced and non-low-speed balanced T700 power turbines. In addition, vibration data from acceptance tests of T53, T55, and T700 engines were analyzed and a vibration diagnostic procedure developed.
Advanced Hydrofoil Development Trials Program Documentation Review.
1978-10-01
fl 0 a c3za o .9 0 a J 0 .I 8 .~ m 20. - 0w 0 Ko .-K z ac 40c4 K A I" UP 0 4 42 .9 cc w w . rI- - KGUO 0 UW U- 3 =i 0 % 0 4 0.. 00~ 0 #A a- CiK 4j ai...40 04 i44 :4 20 Chit 304 in lat Iaw3 4 ’ Bu Um~~~ 4 in ouru ns 2 IAS W, a A0~~~u 2- 245 f pin 0! 0 1-I4lo W mj 29 WO 0 onc I-~u 0 - in o o It o4 a...Lp I 1 09 4 t4 41 D f i t x- 8 - U, 6- U, 00 2 . *Z t 10 0 0 O 0 or 00 I-0 a. u Oh ) V ..0 f,fl de ko U.J -C utI ( o f E 0 ’u 0 ! .4 1 a# hf 2 ma’. i
Effects of physical properties on thermo-fluids cavitating flows
NASA Astrophysics Data System (ADS)
Chen, T. R.; Wang, G. Y.; Huang, B.; Li, D. Q.; Ma, X. J.; Li, X. L.
2015-12-01
The aims of this paper are to study the thermo-fluid cavitating flows and to evaluate the effects of physical properties on cavitation behaviours. The Favre-averaged Navier-Stokes equations with the energy equation are applied to numerically investigate the liquid nitrogen cavitating flows around a NASA hydrofoil. Meanwhile, the thermodynamic parameter Σ is used to assess the thermodynamic effects on cavitating flows. The results indicate that the thermodynamic effects on the thermo-fluid cavitating flows significantly affect the cavitation behaviours, including pressure and temperature distribution, the variation of physical properties, and cavity structures. The thermodynamic effects can be evaluated by physical properties under the same free-stream conditions. The global sensitivity analysis of liquid nitrogen suggests that ρv, Cl and L significantly influence temperature drop and cavity structure in the existing numerical framework, while pv plays the dominant role when these properties vary with temperature. The liquid viscosity μl slightly affects the flow structure via changing the Reynolds number Re equivalently, however, it hardly affects the temperature distribution.
URANS simulations of the tip-leakage cavitating flow with verification and validation procedures
NASA Astrophysics Data System (ADS)
Cheng, Huai-yu; Long, Xin-ping; Liang, Yun-zhi; Long, Yun; Ji, Bin
2018-04-01
In the present paper, the Vortex Identified Zwart-Gerber-Belamri (VIZGB) cavitation model coupled with the SST-CC turbulence model is used to investigate the unsteady tip-leakage cavitating flow induced by a NACA0009 hydrofoil. A qualitative comparison between the numerical and experimental results is made. In order to quantitatively evaluate the reliability of the numerical data, the verification and validation (V&V) procedures are used in the present paper. Errors of numerical results are estimated with seven error estimators based on the Richardson extrapolation method. It is shown that though a strict validation cannot be achieved, a reasonable prediction of the gross characteristics of the tip-leakage cavitating flow can be obtained. Based on the numerical results, the influence of the cavitation on the tip-leakage vortex (TLV) is discussed, which indicates that the cavitation accelerates the fusion of the TLV and the tip-separation vortex (TSV). Moreover, the trajectory of the TLV, when the cavitation occurs, is close to the side wall.
Simulations of Cavitating Cryogenic Inducers
NASA Technical Reports Server (NTRS)
Dorney, Dan (Technical Monitor); Hosangadi, Ashvin; Ahuja, Vineet; Ungewitter, Ronald J.
2004-01-01
Simulations of cavitating turbopump inducers at their design flow rate are presented. Results over a broad range of Nss, numbers extending from single-phase flow conditions through the critical head break down point are discussed. The flow characteristics and performance of a subscale geometry designed for water testing are compared with the fullscale configuration that employs LOX. In particular, thermal depression effects arising from cavitation in cryogenic fluids are identified and their impact on the suction performance of the inducer quantified. The simulations have been performed using the CRUNCH CFD[R] code that has a generalized multi-element unstructured framework suitable for turbomachinery applications. An advanced multi-phase formulation for cryogenic fluids that models temperature depression and real fluid property variations is employed. The formulation has been extensively validated for both liquid nitrogen and liquid hydrogen by simulating the experiments of Hord on hydrofoils; excellent estimates of the leading edge temperature and pressure depression were obtained while the comparisons in the cavity closure region were reasonable.
NASA Astrophysics Data System (ADS)
Escaler, X.; De La Torre, O.; Farhat, M.
2015-12-01
Submerged structures that operate under extreme flows are prone to suffer large scale cavitation attached to their surfaces. Under such conditions the added mass effects differ from the expected ones in pure liquids. Moreover, the existence of small gaps between the structure and surrounding bodies filled with fluid also influence the dynamic response. A series of experiments and numerical simulations have been carried out with a truncated NACA0009 hydrofoil mounted as a cantilever beam at the LMH-EPFL cavitation tunnel. The three first modes of vibration have been determined and analysed under various hydrodynamic conditions ranging from air and still water to partial cavitation and supercavitation. A remote nonintrusive excitation system with piezoelectric patches has been used for the experiments. The effects of the cavity properties and the lateral gap size on the natural frequencies and mode shapes have been determined. As a result, the significance of several parameters in the design of such structures is discussed.
Numerical investigations on cavitation intensity for 3D homogeneous unsteady viscous flows
NASA Astrophysics Data System (ADS)
Leclercq, C.; Archer, A.; Fortes-Patella, R.
2016-11-01
The cavitation erosion remains an industrial issue. In this paper, we deal with the cavitation intensity which can be described as the aggressiveness - or erosive capacity - of a cavitating flow. The estimation of this intensity is a challenging problem both in terms of modelling the cavitating flow and predicting the erosion due to cavitation. For this purpose, a model was proposed to estimate cavitation intensity from 3D unsteady cavitating flow simulations. An intensity model based on pressure and void fraction derivatives was developped and applied to a NACA 65012 hydrofoil tested at LMH-EPFL (École Polytechnique Fédérale de Lausanne) [1]. 2D and 3D unsteady cavitating simulations were performed using a homogeneous model with void fraction transport equation included in Code_Saturne with cavitating module [2]. The article presents a description of the numerical code and the physical approach considered. Comparisons between 2D and 3D simulations, as well as between numerical and experimental results obtained by pitting tests, are analyzed in the paper.
A Generalized Multi-Phase Framework for Modeling Cavitation in Cryogenic Fluids
NASA Technical Reports Server (NTRS)
Dorney, Dan (Technical Monitor); Hosangadi, Ashvin; Ahuja, Vineet
2003-01-01
A generalized multi-phase formulation for cavitation in fluids operating at temperatures elevated relative to their critical temperatures is presented. The thermal effects and the accompanying property variations due to phase change are modeled rigorously. Thermal equilibrium is assumed and fluid thermodynamic properties are specified along the saturation line using the NIST-12 databank. Fundamental changes in the physical characteristics of the cavity when thermal effects become pronounced are identified; the cavity becomes more porous, the interface less distinct, and has increased entrainment when temperature variations are present. Quantitative estimates of temperature and pressure depressions in both liquid nitrogen and liquid hydrogen were computed and compared with experimental data of Hord for hydrofoils. Excellent estimates of the leading edge temperature and pressure depression were obtained while the comparisons in the cavity closure region were reasonable. Liquid nitrogen cavities were consistently found to be in thermal equilibrium while liquid hydrogen cavities exhibited small, but distinct, non-equilibrium effects.
Experimental measurement of dolphin thrust generated during a tail stand using DPIV
NASA Astrophysics Data System (ADS)
Wei, Timothy; Fish, Frank; Williams, Terrie; Wu, Vicki; Sherman, Erica; Misfeldt, Mitchel; Ringenberg, Hunter; Rogers, Dylan
2016-11-01
The thrust generated by dolphins doing tail stands was measured using DPIV. The technique entailed measuring vortex strength associated with the tail motion and correlating it to above water video sequences showing the amount of the dolphin's body that was being lifted out of the water. The underlying drivers for this research included: i) understanding the physiology, hydrodynamics and efficiency of dolphin locomotion, ii) developing non-invasive measurement techniques for studying marine swimming and iii) quantifying the actual propulsive capabilities of these animals. Two different bottlenose dolphins at the Long Marine Lab at UC-Santa Cruz were used as test subjects. Application of the Kutta-Joukowski Theorem on measured vortex circulations yielded thrust values that were well correlated with estimates of dolphin body weight being supported above water. This demonstrates that the tail motion can be interpreted as a flapping hydrofoil that can generate a sustained thrust roughly equal to the dolphin's weight. Videos of DPIV measurements overlaid with the dolphins will be presented along with thrust/weight data.
Mach 4 Test Results of a Dual-Flowpath, Turbine Based Combined Cycle Inlet
NASA Technical Reports Server (NTRS)
Albertson, Cindy w.; Emami, Saied; Trexler, Carl A.
2006-01-01
An experimental study was conducted to evaluate the performance of a turbine based combined cycle (TBCC) inlet concept, consisting of a low speed turbojet inlet and high speed dual-mode scramjet inlet. The main objectives of the study were (1) to identify any interactions between the low and the high speed inlets during the mode transition phase in which both inlets are operating simultaneously and (2) to determine the effect of the low speed inlet operation on the performance of the high speed inlet. Tests were conducted at a nominal freestream Mach number of 4 using an 8 percent scale model representing a single module of a TBCC inlet. A flat plate was installed upstream of the model to produce a turbulent boundary layer which simulated the full-scale vehicle forebody boundary layer. A flowmeter/back pressure device, with remote actuation, was attached aft of the high speed inlet isolator to simulate the back pressure resulting from dual-mode scramjet combustion. Results indicate that the inlets did not interact with each other sufficiently to affect inlet operability. Flow spillage resulting from a high speed inlet unstart did not propagate far enough upstream to affect the low speed inlet. Also, a low speed inlet unstart did not cause the high speed inlet to unstart. The low speed inlet improved the performance of the high speed inlet at certain conditions by diverting a portion of the boundary layer generated on the forebody plate.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-16
... the Atlanta to Charlotte Portion of the Southeast High Speed Rail Corridor AGENCY: Federal Rail... potential passenger rail improvements between Atlanta, GA and Charlotte, NC, along the Southeast High-Speed... federal High-Speed Intercity Passenger Rail (HSIPR) program and includes the development of a Passenger...
75 FR 417 - Certificate of Alternative Compliance for the High Speed Ferry SUSITNA
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-05
... Compliance for the High Speed Ferry SUSITNA AGENCY: Coast Guard, DHS. ACTION: Notice. SUMMARY: The Coast Guard announces that a Certificate of Alternative Compliance was issued for the high speed ferry SUSITNA... been issued for the high speed ferry SUSITNA, O.N. 1189367. Full compliance with 72 COLREGS and the...
AGARD Index of Publications 1983-1985
1987-06-01
a high performance high speed General Aviation propeller the advent of the highly loaded program...distribution data at high speed and CLmax data at low speed are NS3-3036# Saab-.;cania, Linkoping (Sweden). described. A flight wing pressure survey which...also well with predictions based on wind tunnel data. flight at high speed and wind tunnel measurements on a half Reynolds Number and transition
NASA Astrophysics Data System (ADS)
Yu, Liping; Pan, Bing
2017-08-01
Full-frame, high-speed 3D shape and deformation measurement using stereo-digital image correlation (stereo-DIC) technique and a single high-speed color camera is proposed. With the aid of a skillfully designed pseudo stereo-imaging apparatus, color images of a test object surface, composed of blue and red channel images from two different optical paths, are recorded by a high-speed color CMOS camera. The recorded color images can be separated into red and blue channel sub-images using a simple but effective color crosstalk correction method. These separated blue and red channel sub-images are processed by regular stereo-DIC method to retrieve full-field 3D shape and deformation on the test object surface. Compared with existing two-camera high-speed stereo-DIC or four-mirror-adapter-assisted singe-camera high-speed stereo-DIC, the proposed single-camera high-speed stereo-DIC technique offers prominent advantages of full-frame measurements using a single high-speed camera but without sacrificing its spatial resolution. Two real experiments, including shape measurement of a curved surface and vibration measurement of a Chinese double-side drum, demonstrated the effectiveness and accuracy of the proposed technique.
Analysis of optical route in a micro high-speed magneto-optic switch
NASA Astrophysics Data System (ADS)
Weng, Zihua; Yang, Guoguang; Huang, Yuanqing; Chen, Zhimin; Zhu, Yun; Wu, Jinming; Lin, Shufen; Mo, Weiping
2005-02-01
A novel micro high-speed 2x2 magneto-optic switch and its optical route, which is used in high-speed all-optical communication network, is designed and analyzed in this paper. The study of micro high-speed magneto-optic switch mainly involves the optical route and high-speed control technique design. The optical route design covers optical route design of polarization in optical switch, the performance analysis and material selection of magneto-optic crystal and magnetic path design in Faraday rotator. The research of high-speed control technique involves the study of nanosecond pulse generator, high-speed magnetic field and its control technique etc. High-speed current transients from nanosecond pulse generator are used to switch the magnetization of the magneto-optic crystal, which propagates a 1550nm optical beam. The optical route design schemes and electronic circuits of high-speed control technique are both simulated on computer and test by the experiments respectively. The experiment results state that the nanosecond pulse generator can output the pulse with rising edge time 3~35ns, voltage amplitude 10~90V and pulse width 10~100ns. Under the control of CPU singlechip, the optical beam can be stably switched and the switching time is less than 1μs currently.
Cleveland-Columbus-Cincinnati high-speed rail study
DOT National Transportation Integrated Search
2001-07-01
In the past five years, the evaluation of different high-speed rail (HSR) studies in the Midwest has resulted in a realization that high speed rail, with speeds greater than 110 miles per hour, is too expensive in the short term to be implemented in ...
Cross-Regional Assessment Of Coupling And Variability In Precipitation-Runoff Relationships
NASA Astrophysics Data System (ADS)
Carey, S. K.; Tetzlaff, D.; Soulsby, C.; Buttle, J. M.; Laudon, H.; McDonnell, J. J.; McGuire, K. J.; Seibert, J.; Shanley, J. B.
2011-12-01
The higher mid-latitudes of the northern hemisphere are particularly sensitive to change due to the important role the zero-degree isotherm plays in the phase of precipitation and intermediate storage as snow. An international inter-catchment comparison program North-Watch seeks to improve our understanding of the sensitivity of northern catchments to change by examining their hydrological and biogeochemical variability and response. The catchments are located in Sweden (Krycklan), Scotland (Mharcaidh, Girnock and Strontian), the United States (Sleepers River, Hubbard Brook and HJ Andrews) and Canada (Catamaran, Dorset and Wolf Creek). For this study, 8 catchments with 10 continuous years of daily precipitation and runoff data were selected to assess the seasonal coupling of rainfall and runoff and the memory effect of runoff events on the hydrograph at different time scales. To assess the coupling and synchroneity of precipitation, continuous wavelet transforms and wavelet coherence were used. Wavelet spectra identified the relative importance of both annual versus seasonal flows while wavelet coherence was applied to identify over different time scales along the 10-year window how well precipitation and runoff were coupled. For example, while on a given day, precipitation may be closely coupled to runoff, a wet year may not necessarily be a high runoff year in catchments with large storage. Assessing different averaging periods in the variation of daily flows highlights the importance of seasonality in runoff response and the relative influence of rain versus snowmelt on flow magnitude and variability. Wet catchments with limited seasonal precipitation variability (Strontian, Girnock) have precipitation signals more closely coupled with runoff, whereas dryer catchments dominated by snow (Wolf Creek, Krycklan) have strongly coupling only during freshet. Most catchments with highly seasonal precipitation show strong intermittent coupling during their wet season. At longer time scales, some catchments do not exhibit coupling in their input-output relations, which is related to catchment storage.
33 CFR 84.24 - High-speed craft.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false High-speed craft. 84.24 Section... RULES ANNEX I: POSITIONING AND TECHNICAL DETAILS OF LIGHTS AND SHAPES § 84.24 High-speed craft. (a) The masthead light of high-speed craft with a length to breadth ratio of less than 3.0 may be placed at a...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-17
..., LLC High-Speed Passenger Train Project AGENCY: Bureau of Land Management, Interior. ACTION: Notice of... (ROD) for the DesertXpress Enterprises, LLC High-Speed Passenger Train Project (DesertXpress Project...-managed lands to build an Electrical Multiple Unit (EMU) high-speed passenger rail line in compliance with...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-26
...)] California High-Speed Rail Authority--Construction Exemption--In Fresno, Kings, Tulare, and Kern Counties, CA By petition filed on September 26, 2013, California High-Speed Rail Authority (Authority), a state... 49 U.S.C. 10901 for authority to construct an approximately 114-mile high-speed passenger rail line...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-01
... Environmental Impact Statement for the DesertXpress High-Speed Passenger Train Project AGENCY: Federal Railroad... for the DesertXpress High-Speed Passenger Train Project (DesertXpress project). FRA is the Lead Agency... and operation of an interstate high-speed passenger train system between Victorville, California and...
33 CFR 84.24 - High-speed craft.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false High-speed craft. 84.24 Section... RULES ANNEX I: POSITIONING AND TECHNICAL DETAILS OF LIGHTS AND SHAPES § 84.24 High-speed craft. (a) The masthead light of high-speed craft with a length to breadth ratio of less than 3.0 may be placed at a...
High-Speed Sealift Technology. Volume 1
1998-09-01
performance of high - speed commercial and military sealift ships , in advance of detailed design studies, in order to help define realistic future mission...Therefore, the viability of new High - Speed Sealift (HSS) ships (oceangoing cargo vessels capable of at least 40 kt that are able to onload and offload... propulsion power for dynamically supported concepts) VK = average ship speed for a voyage (i.e., sustained or service speed )
Calculated performance, stability and maneuverability of high-speed tilting-prop-rotor aircraft
NASA Technical Reports Server (NTRS)
Johnson, Wayne; Lau, Benton H.; Bowles, Jeffrey V.
1986-01-01
The feasibility of operating tilting-prop-rotor aircraft at high speeds is examined by calculating the performance, stability, and maneuverability of representative configurations. The rotor performance is examined in high-speed cruise and in hover. The whirl-flutter stability of the coupled-wing and rotor motion is calculated in the cruise mode. Maneuverability is examined in terms of the rotor-thrust limit during turns in helicopter configuration. Rotor airfoils, rotor-hub configuration, wing airfoil, and airframe structural weights representing demonstrated advance technology are discussed. Key rotor and airframe parameters are optimized for high-speed performance and stability. The basic aircraft-design parameters are optimized for minimum gross weight. To provide a focus for the calculations, two high-speed tilt-rotor aircraft are considered: a 46-passenger, civil transport and an air-combat/escort fighter, both with design speeds of about 400 knots. It is concluded that such high-speed tilt-rotor aircraft are quite practical.
Aerodynamic Characteristics of Airfoils at High Speeds
NASA Technical Reports Server (NTRS)
Briggs, L J; Hull, G F; Dryden, H L
1925-01-01
This report deals with an experimental investigation of the aerodynamical characteristics of airfoils at high speeds. Lift, drag, and center of pressure measurements were made on six airfoils of the type used by the air service in propeller design, at speeds ranging from 550 to 1,000 feet per second. The results show a definite limit to the speed at which airfoils may efficiently be used to produce lift, the lift coefficient decreasing and the drag coefficient increasing as the speed approaches the speed of sound. The change in lift coefficient is large for thick airfoil sections (camber ratio 0.14 to 0.20) and for high angles of attack. The change is not marked for thin sections (camber ratio 0.10) at low angles of attack, for the speed range employed. At high speeds the center of pressure moves back toward the trailing edge of the airfoil as the speed increases. The results indicate that the use of tip speeds approaching the speed of sound for propellers of customary design involves a serious loss in efficiency.
High-speed optical 3D sensing and its applications
NASA Astrophysics Data System (ADS)
Watanabe, Yoshihiro
2016-12-01
This paper reviews high-speed optical 3D sensing technologies for obtaining the 3D shape of a target using a camera. The focusing speed is from 100 to 1000 fps, exceeding normal camera frame rates, which are typically 30 fps. In particular, contactless, active, and real-time systems are introduced. Also, three example applications of this type of sensing technology are introduced, including surface reconstruction from time-sequential depth images, high-speed 3D user interaction, and high-speed digital archiving.
High Speed Rail (HSR) in the United States
2009-12-08
Magnetic Levitation ( Maglev ) ...............................................................................................5 High Speed Rail In...commonly referred to as “ maglev .” 6 Passenger Rail Working Group of the National Surface... maglev train in 2003. Because of the greater costs, and relatively minor benefits,11 of operating at extremely high speeds, the top operating speed
DOT National Transportation Integrated Search
2001-09-01
High-speed trains in the speed range of 100 to 160 mph require tracks of nearly perfect geometry and mechanical uniformity, when subjected to moving wheel loads. Therefore, this report briefly describes the remedies being used by various railroads to...
NASA Astrophysics Data System (ADS)
Tresser, Shachar; Dolev, Amit; Bucher, Izhak
2018-02-01
High-speed machinery is often designed to pass several "critical speeds", where vibration levels can be very high. To reduce vibrations, rotors usually undergo a mass balancing process, where the machine is rotated at its full speed range, during which the dynamic response near critical speeds can be measured. High sensitivity, which is required for a successful balancing process, is achieved near the critical speeds, where a single deflection mode shape becomes dominant, and is excited by the projection of the imbalance on it. The requirement to rotate the machine at high speeds is an obstacle in many cases, where it is impossible to perform measurements at high speeds, due to harsh conditions such as high temperatures and inaccessibility (e.g., jet engines). This paper proposes a novel balancing method of flexible rotors, which does not require the machine to be rotated at high speeds. With this method, the rotor is spun at low speeds, while subjecting it to a set of externally controlled forces. The external forces comprise a set of tuned, response dependent, parametric excitations, and nonlinear stiffness terms. The parametric excitation can isolate any desired mode, while keeping the response directly linked to the imbalance. A software controlled nonlinear stiffness term limits the response, hence preventing the rotor to become unstable. These forces warrant sufficient sensitivity required to detect the projection of the imbalance on any desired mode without rotating the machine at high speeds. Analytical, numerical and experimental results are shown to validate and demonstrate the method.
Development of a 300,000-pixel ultrahigh-speed high-sensitivity CCD
NASA Astrophysics Data System (ADS)
Ohtake, H.; Hayashida, T.; Kitamura, K.; Arai, T.; Yonai, J.; Tanioka, K.; Maruyama, H.; Etoh, T. Goji; Poggemann, D.; Ruckelshausen, A.; van Kuijk, H.; Bosiers, Jan T.
2006-02-01
We are developing an ultrahigh-speed, high-sensitivity broadcast camera that is capable of capturing clear, smooth slow-motion videos even where lighting is limited, such as at professional baseball games played at night. In earlier work, we developed an ultrahigh-speed broadcast color camera1) using three 80,000-pixel ultrahigh-speed, highsensitivity CCDs2). This camera had about ten times the sensitivity of standard high-speed cameras, and enabled an entirely new style of presentation for sports broadcasts and science programs. Most notably, increasing the pixel count is crucially important for applying ultrahigh-speed, high-sensitivity CCDs to HDTV broadcasting. This paper provides a summary of our experimental development aimed at improving the resolution of CCD even further: a new ultrahigh-speed high-sensitivity CCD that increases the pixel count four-fold to 300,000 pixels.
Lubrication of optimized-design tapered-roller bearings to 2.4 million DN
NASA Technical Reports Server (NTRS)
Parker, R. J.; Pinel, S. I.; Signer, Hans R.
1980-01-01
The performance of 120.65 mm (4.75 in.) bore high speed design, tapered roller bearings was investigated at shaft speeds to 20,000 rpm (2.4 million DN) under combined thrust and radial load. The test bearing design was computer optimized for high speed operation. Temperature distribution bearing heat generation were determined as a function of shaft speed, radial and thrust loads, lubricant flow rates, and lubricant inlet temperature. The high speed design, tapered roller bearing operated successfully at shaft speeds up to 20,000 rpm under heavy thrust and radial loads. Bearing temperatures and heat generation with the high speed design bearing were significantly less than those of a modified standard bearing tested previously. Cup cooling was effective in decreasing the high cup temperatures to levels equal to the cone temperature.
Two laboratory methods for the calibration of GPS speed meters
NASA Astrophysics Data System (ADS)
Bai, Yin; Sun, Qiao; Du, Lei; Yu, Mei; Bai, Jie
2015-01-01
The set-ups of two calibration systems are presented to investigate calibration methods of GPS speed meters. The GPS speed meter calibrated is a special type of high accuracy speed meter for vehicles which uses Doppler demodulation of GPS signals to calculate the measured speed of a moving target. Three experiments are performed: including simulated calibration, field-test signal replay calibration, and in-field test comparison with an optical speed meter. The experiments are conducted at specific speeds in the range of 40-180 km h-1 with the same GPS speed meter as the device under calibration. The evaluation of measurement results validates both methods for calibrating GPS speed meters. The relative deviations between the measurement results of the GPS-based high accuracy speed meter and those of the optical speed meter are analyzed, and the equivalent uncertainty of the comparison is evaluated. The comparison results justify the utilization of GPS speed meters as reference equipment if no fewer than seven satellites are available. This study contributes to the widespread use of GPS-based high accuracy speed meters as legal reference equipment in traffic speed metrology.
High-speed high-stress ring shear tests on granular sods and clayey soils
Hiroshi Fukuoka; Kyoji Sassa
1991-01-01
The purposes of this study is to obtain exact knowledge of the influences on friction angle during shear by shearing speeds. Ring shear tests on sandy and clayey materials have been carried out with a newly developed High-speed High-Stress Ring Shear Apparatus to examine if there are some changes in the frictional behaviors of these materials at high shearing speeds of...
Fundamental Structure of High-Speed Reacting Flows: Supersonic Combustion and Detonation
2016-04-30
AFRL-AFOSR-VA-TR-2016-0195 Fundamental Structure of High-Speed Reacting Flows: Supersonic Combustion and Detonation Kenneth Yu MARYLAND UNIV COLLEGE...MARCH 2016 4. TITLE AND SUBTITLE FUNDAMENTAL STRUCTURE OF HIGH-SPEED REACTING FLOWS: SUPERSONIC COMBUSTION AND DETONATION 5a. CONTRACT NUMBER...public release. Final Report on Fundamental Structure of High-Speed Reacting Flows: Supersonic Combustion and Detonation Grant
The use of high-speed imaging in education
NASA Astrophysics Data System (ADS)
Kleine, H.; McNamara, G.; Rayner, J.
2017-02-01
Recent improvements in camera technology and the associated improved access to high-speed camera equipment have made it possible to use high-speed imaging not only in a research environment but also specifically for educational purposes. This includes high-speed sequences that are created both with and for a target audience of students in high schools and universities. The primary goal is to engage students in scientific exploration by providing them with a tool that allows them to see and measure otherwise inaccessible phenomena. High-speed imaging has the potential to stimulate students' curiosity as the results are often surprising or may contradict initial assumptions. "Live" demonstrations in class or student- run experiments are highly suitable to have a profound influence on student learning. Another aspect is the production of high-speed images for demonstration purposes. While some of the approaches known from the application of high speed imaging in a research environment can simply be transferred, additional techniques must often be developed to make the results more easily accessible for the targeted audience. This paper describes a range of student-centered activities that can be undertaken which demonstrate how student engagement and learning can be enhanced through the use of high speed imaging using readily available technologies.
Perils of using speed zone data to assess real-world compliance to speed limits.
Chevalier, Anna; Clarke, Elizabeth; Chevalier, Aran John; Brown, Julie; Coxon, Kristy; Ivers, Rebecca; Keay, Lisa
2017-11-17
Real-world driving studies, including those involving speeding alert devices and autonomous vehicles, can gauge an individual vehicle's speeding behavior by comparing measured speed with mapped speed zone data. However, there are complexities with developing and maintaining a database of mapped speed zones over a large geographic area that may lead to inaccuracies within the data set. When this approach is applied to large-scale real-world driving data or speeding alert device data to determine speeding behavior, these inaccuracies may result in invalid identification of speeding. We investigated speeding events based on service provider speed zone data. We compared service provider speed zone data (Speed Alert by Smart Car Technologies Pty Ltd., Ultimo, NSW, Australia) against a second set of speed zone data (Google Maps Application Programming Interface [API] mapped speed zones). We found a systematic error in the zones where speed limits of 50-60 km/h, typical of local roads, were allocated to high-speed motorways, which produced false speed limits in the speed zone database. The result was detection of false-positive high-range speeding. Through comparison of the service provider speed zone data against a second set of speed zone data, we were able to identify and eliminate data most affected by this systematic error, thereby establishing a data set of speeding events with a high level of sensitivity (a true positive rate of 92% or 6,412/6,960). Mapped speed zones can be a source of error in real-world driving when examining vehicle speed. We explored the types of inaccuracies found within speed zone data and recommend that a second set of speed zone data be utilized when investigating speeding behavior or developing mapped speed zone data to minimize inaccuracy in estimates of speeding.
Retrofit device and method to improve humidity control of vapor compression cooling systems
Roth, Robert Paul; Hahn, David C.; Scaringe, Robert P.
2016-08-16
A method and device for improving moisture removal capacity of a vapor compression system is disclosed. The vapor compression system is started up with the evaporator blower initially set to a high speed. A relative humidity in a return air stream is measured with the evaporator blower operating at the high speed. If the measured humidity is above the predetermined high relative humidity value, the evaporator blower speed is reduced from the initially set high speed to the lowest possible speed. The device is a control board connected with the blower and uses a predetermined change in measured relative humidity to control the blower motor speed.
Design of noise barrier inspection system for high-speed railway
NASA Astrophysics Data System (ADS)
Liu, Bingqian; Shao, Shuangyun; Feng, Qibo; Ma, Le; Cholryong, Kim
2016-10-01
The damage of noise barriers will highly reduce the transportation safety of the high-speed railway. In this paper, an online inspection system of noise barrier based on laser vision for the safety of high-speed railway is proposed. The inspection system, mainly consisted of a fast camera and a line laser, installed in the first carriage of the high-speed CIT(Composited Inspection Train).A Laser line was projected on the surface of the noise barriers and the images of the light line were received by the camera while the train is running at high speed. The distance between the inspection system and the noise barrier can be obtained based on laser triangulation principle. The results of field tests show that the proposed system can meet the need of high speed and high accuracy to get the contour distortion of the noise barriers.
High speed imaging - An important industrial tool
NASA Technical Reports Server (NTRS)
Moore, Alton; Pinelli, Thomas E.
1986-01-01
High-speed photography, which is a rapid sequence of photographs that allow an event to be analyzed through the stoppage of motion or the production of slow-motion effects, is examined. In high-speed photography 16, 35, and 70 mm film and framing rates between 64-12,000 frames per second are utilized to measure such factors as angles, velocities, failure points, and deflections. The use of dual timing lamps in high-speed photography and the difficulties encountered with exposure and programming the camera and event are discussed. The application of video cameras to the recording of high-speed events is described.
Analysis and topology optimization design of high-speed driving spindle
NASA Astrophysics Data System (ADS)
Wang, Zhilin; Yang, Hai
2018-04-01
The three-dimensional model of high-speed driving spindle is established by using SOLIDWORKS. The model is imported through the interface of ABAQUS, A finite element analysis model of high-speed driving spindle was established by using spring element to simulate bearing boundary condition. High-speed driving spindle for the static analysis, the spindle of the stress, strain and displacement nephogram, and on the basis of the results of the analysis on spindle for topology optimization, completed the lightweight design of high-speed driving spindle. The design scheme provides guidance for the design of axial parts of similar structures.
Potiaumpai, Melanie; Martins, Maria Carolina Massoni; Wong, Claudia; Desai, Trusha; Rodriguez, Roberto; Mooney, Kiersten; Signorile, Joseph F
2017-02-01
To compare the difference in muscle activation between high-speed yoga and standard-speed yoga and to compare muscle activation of the transitions between poses and the held phases of a yoga pose. Randomized sequence crossover trial SETTING: A laboratory of neuromuscular research and active aging Interventions: Eight minutes of continuous Sun Salutation B was performed, at a high speed versus a standard-speed, separately. Electromyography was used to quantify normalized muscle activation patterns of eight upper and lower body muscles (pectoralis major, medial deltoids, lateral head of the triceps, middle fibers of the trapezius, vastus medialis, medial gastrocnemius, thoracic extensor spinae, and external obliques) during the high-speed and standard-speed yoga protocols. Difference in normalized muscle activation between high-speed yoga and standard-speed yoga. Normalized muscle activity signals were significantly higher in all eight muscles during the transition phases of poses compared to the held phases (p<0.01). There was no significant interaction between speed×phase; however, greater normalized muscle activity was seen for highspeed yoga across the entire session. Our results show that transitions from one held phase of a pose to another produces higher normalized muscle activity than the held phases of the poses and that overall activity is greater during highspeed yoga than standard-speed yoga. Therefore, the transition speed and associated number of poses should be considered when targeting specific improvements in performance. Copyright © 2016 Elsevier Ltd. All rights reserved.
High-Lift Systems on Commercial Subsonic Airliners
NASA Technical Reports Server (NTRS)
Rudolph, Peter K. C.
1996-01-01
The early breed of slow commercial airliners did not require high-lift systems because their wing loadings were low and their speed ratios between cruise and low speed (takeoff and landing) were about 2:1. However, even in those days the benefit of high-lift devices was recognized. Simple trailing-edge flaps were in use, not so much to reduce landing speeds, but to provide better glide-slope control without sideslipping the airplane and to improve pilot vision over the nose by reducing attitude during low-speed flight. As commercial-airplane cruise speeds increased with the development of more powerful engines, wing loadings increased and a real need for high-lift devices emerged to keep takeoff and landing speeds within reasonable limits. The high-lift devices of that era were generally trailing-edge flaps. When jet engines matured sufficiently in military service and were introduced commercially, airplane speed capability had to be increased to best take advantage of jet engine characteristics. This speed increase was accomplished by introducing the wing sweep and by further increasing wing loading. Whereas increased wing loading called for higher lift coefficients at low speeds, wing sweep actually decreased wing lift at low speeds. Takeoff and landing speeds increased on early jet airplanes, and, as a consequence, runways worldwide had to be lengthened. There are economical limits to the length of runways; there are safety limits to takeoff and landing speeds; and there are speed limits for tires. So, in order to hold takeoff and landing speeds within reasonable limits, more powerful high-lift devices were required. Wing trailing-edge devices evolved from plain flaps to Fowler flaps with single, double, and even triple slots. Wing leading edges evolved from fixed leading edges to a simple Krueger flap, and from fixed, slotted leading edges to two- and three-position slats and variable-camber (VC) Krueger flaps. The complexity of high-lift systems probably peaked on the Boeing 747, which has a VC Krueger flap and triple-slotted, inboard and outboard trailing-edge flaps. Since then, the tendency in high-lift system development has been to achieve high levels of lift with simpler devices in order to reduce fleet acquisition and maintenance costs. The intent of this paper is to: (1) review available high-lift devices, their functions, and design criteria; (2) appraise high-lift systems presently in service on commercial air liners; (3) present personal study results on high-lift systems; (4) develop a weight and cost model for high-lift systems; and (5) discuss the development tendencies of future high-lift systems.
In-pavement fiber Bragg grating sensors for high-speed weigh-in-motion measurements
NASA Astrophysics Data System (ADS)
Al-Tarawneh, Mu'ath; Huang, Ying
2017-04-01
The demand on high-speed weigh-in-motion (WIM) measurement rises significantly in last decade to collect weight information for traffic managements especially after the introduction of weigh-station bypass programs such as Pre-Pass. In this study, a three-dimension glass fiber-reinforced polymer packaged fiber Bragg grating sensor (3D GFRP-FBG) is introduced to be embedded inside flexible pavements for weigh-in-motion (WIM) measurement at high speed. Sensitivity study showed that the developed sensor is very sensitive to the passing weights at high speed. Field tests also validated that the developed sensor was able to detect weights at a vehicle driving speed up to 55mph, which can be applied for WIM measurements at high speed.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-24
...-Speed Rail Authority--Construction Exemption--in Merced, Madera and Fresno Counties, Cal On March 27, 2013, California High-Speed Rail Authority (Authority), a noncarrier state agency, filed a petition for... construct an approximately 65-mile dedicated high-speed passenger rail line between Merced and Fresno...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-28
... Environmental Policy Act of 1969 (NEPA) for the State of Oklahoma High-Speed Rail Initiative: Tulsa--Oklahoma... South Central High Speed Rail Corridor and is a federally-designated high-speed rail (HSR) corridor...-Speed Rail Initiative: Tulsa--Oklahoma City Passenger Rail Corridor Investment Plan. The proposed route...
2007 Expeditionary Warfare Conference (12th)
2007-10-25
Ships 10 Joint High Speed Vessel (JHSV) Today • Program Capability – High speed lift ship capable of transporting cargo and personnel across...develop technologies that will: – Improve the capability to transfer cargo between Sea Base platforms – Provide for high speed / heavy lift...state actors for legitimacy and influence over the relevant population” Joint High Speed Vessel In-Service Amphibs LCAC & Ship to Shore
Polymer Surface Textured with Nanowire Bundles to Repel High-Speed Water Drops.
Li, Y P; Li, X Y; Zhu, X P; Lei, M K; Lakhtakia, A
2018-05-22
Water drops impacting windshields of high-speed trains and aircraft as well as blades in steam turbine power generators obliquely and at high speeds are difficult to repel. Impacting drops penetrate the void regions of nanotextured and microtextured superhydrophobic coatings, with this pinning resulting in the loss of drop mobility. In order to repel high-speed water drops, we nanotextured polymer surfaces with nanowire bundles separated from their neighbors by microscale void regions, with the nanowires in a bundle separated from their neighbors by nanoscale void regions. Water drops with speeds below a critical speed rebound completely. Water drops with speeds exceeding a critical speed rebound partially, but residual droplets that begin to be pinned undergo a spontaneous dewetting process and slide off. The natural oscillations of residual droplets drive this dewetting process in the interbundle void regions, resulting in a transition from the sticky Wenzel state to the slippery Cassie state without external stimuli.
Is There an Optimal Speed for Economical Running?
Black, Matthew I; Handsaker, Joseph C; Allen, Sam J; Forrester, Stephanie E; Folland, Jonathan P
2018-01-01
The influence of running speed and sex on running economy is unclear and may have been confounded by measurements of oxygen cost that do not account for known differences in substrate metabolism, across a limited range of speeds, and differences in performance standard. Therefore, this study assessed the energy cost of running over a wide range of speeds in high-level and recreational runners to investigate the effect of speed (in absolute and relative terms) and sex (men vs women of equivalent performance standard) on running economy. To determine the energy cost (kcal · kg -1 · km -1 ) of submaximal running, speed at lactate turn point (sLTP), and maximal rate of oxygen uptake, 92 healthy runners (high-level men, n = 14; high-level women, n = 10; recreational men, n = 35; recreational women, n = 33) completed a discontinuous incremental treadmill test. There were no sex-specific differences in the energy cost of running for the recreational or high-level runners when compared at absolute or relative running speeds (P > .05). The absolute and relative speed-energy cost relationships for the high-level runners demonstrated a curvilinear U shape with a nadir reflecting the most economical speed at 13 km/h or 70% sLTP. The high-level runners were more economical than the recreational runners at all absolute and relative running speeds (P < .05). These findings demonstrate that there is an optimal speed for economical running, there is no sex-specific difference, and high-level endurance runners exhibit better running economy than recreational endurance runners.
Applications of High-speed motion analysis system on Solid Rocket Motor (SRM)
NASA Astrophysics Data System (ADS)
Liu, Yang; He, Guo-qiang; Li, Jiang; Liu, Pei-jin; Chen, Jian
2007-01-01
High-speed motion analysis system could record images up to 12,000fps and analyzed with the image processing system. The system stored data and images directly in electronic memory convenient for managing and analyzing. The high-speed motion analysis system and the X-ray radiography system were established the high-speed real-time X-ray radiography system, which could diagnose and measure the dynamic and high-speed process in opaque. The image processing software was developed for improve quality of the original image for acquiring more precise information. The typical applications of high-speed motion analysis system on solid rocket motor (SRM) were introduced in the paper. The research of anomalous combustion of solid propellant grain with defects, real-time measurement experiment of insulator eroding, explosion incision process of motor, structure and wave character of plume during the process of ignition and flameout, measurement of end burning of solid propellant, measurement of flame front and compatibility between airplane and missile during the missile launching were carried out using high-speed motion analysis system. The significative results were achieved through the research. Aim at application of high-speed motion analysis system on solid rocket motor, the key problem, such as motor vibrancy, electrical source instability, geometry aberrance, and yawp disturbance, which damaged the image quality, was solved. The image processing software was developed which improved the capability of measuring the characteristic of image. The experimental results showed that the system was a powerful facility to study instantaneous and high-speed process in solid rocket motor. With the development of the image processing technique, the capability of high-speed motion analysis system was enhanced.
Speed but not amplitude of visual feedback exacerbates force variability in older adults.
Kim, Changki; Yacoubi, Basma; Christou, Evangelos A
2018-06-23
Magnification of visual feedback (VF) impairs force control in older adults. In this study, we aimed to determine whether the age-associated increase in force variability with magnification of visual feedback is a consequence of increased amplitude or speed of visual feedback. Seventeen young and 18 older adults performed a constant isometric force task with the index finger at 5% of MVC. We manipulated the vertical (force gain) and horizontal (time gain) aspect of the visual feedback so participants performed the task with the following VF conditions: (1) high amplitude-fast speed; (2) low amplitude-slow speed; (3) high amplitude-slow speed. Changing the visual feedback from low amplitude-slow speed to high amplitude-fast speed increased force variability in older adults but decreased it in young adults (P < 0.01). Changing the visual feedback from low amplitude-slow speed to high amplitude-slow speed did not alter force variability in older adults (P > 0.2), but decreased it in young adults (P < 0.01). Changing the visual feedback from high amplitude-slow speed to high amplitude-fast speed increased force variability in older adults (P < 0.01) but did not alter force variability in young adults (P > 0.2). In summary, increased force variability in older adults with magnification of visual feedback was evident only when the speed of visual feedback increased. Thus, we conclude that in older adults deficits in the rate of processing visual information and not deficits in the processing of more visual information impair force control.
High-speed and high-fidelity system and method for collecting network traffic
Weigle, Eric H [Los Alamos, NM
2010-08-24
A system is provided for the high-speed and high-fidelity collection of network traffic. The system can collect traffic at gigabit-per-second (Gbps) speeds, scale to terabit-per-second (Tbps) speeds, and support additional functions such as real-time network intrusion detection. The present system uses a dedicated operating system for traffic collection to maximize efficiency, scalability, and performance. A scalable infrastructure and apparatus for the present system is provided by splitting the work performed on one host onto multiple hosts. The present system simultaneously addresses the issues of scalability, performance, cost, and adaptability with respect to network monitoring, collection, and other network tasks. In addition to high-speed and high-fidelity network collection, the present system provides a flexible infrastructure to perform virtually any function at high speeds such as real-time network intrusion detection and wide-area network emulation for research purposes.
Examination of vehicle performance at high speed and high cant deficiency
DOT National Transportation Integrated Search
2011-03-16
In the US, increasing passenger speeds to improve trip time : usually involves increasing speeds through curves. Increasing : speeds through curves will increase the lateral force exerted on : track during curving, thus requiring more intensive track...
Ultra-high-speed variable focus optics for novel applications in advanced imaging
NASA Astrophysics Data System (ADS)
Kang, S.; Dotsenko, E.; Amrhein, D.; Theriault, C.; Arnold, C. B.
2018-02-01
With the advancement of ultra-fast manufacturing technologies, high speed imaging with high 3D resolution has become increasingly important. Here we show the use of an ultra-high-speed variable focus optical element, the TAG Lens, to enable new ways to acquire 3D information from an object. The TAG Lens uses sound to adjust the index of refraction profile in a liquid and thereby can achieve focal scanning rates greater than 100 kHz. When combined with a high-speed pulsed LED and a high-speed camera, we can exploit this phenomenon to achieve high-resolution imaging through large depths. By combining the image acquisition with digital image processing, we can extract relevant parameters such as tilt and angle information from objects in the image. Due to the high speeds at which images can be collected and processed, we believe this technique can be used as an efficient method of industrial inspection and metrology for high throughput applications.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-20
... Envelope Protection: High Speed Limiting AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice... inadvertently or intentionally exceeding a speed approximately equivalent to V FC or attaining V DF . Current Title 14 Code of Federal Regulations (14 CFR) part 25 do not relate to a high speed limiter that might...
High-speed flight propulsion systems. Progress in Astronautics and Aeronautics. Vol. 137
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murthy, S.N.B.; Curran, E.T.
1991-01-01
Various papers on high-speed flight propulsion systems are presented. The topics addressed are: propulsion systems from takeoff to high-speed flight, propulsion system performance and integration for high Mach air-breathing flight, energy analysis of high-speed flight systems, waves and thermodynamics in high Mach number propulsive ducts, turbulent free shear layer mixing and combustion, turbulent mixing in supersonic combustion systems, mixing and mixing enhancement in supersonic reacting flowfields, study of combustion and heat-exchange processes in high-enthalpy short-duration facilities, and facility requirements for hypersonic propulsion system testing.
On-Line Path Generation and Tracking for High-Speed Wheeled Autonomous Vehicles
2006-02-17
On-Line Path Generation and Tracking for High-Speed Wheeled Autonomous Vehicles Report Title ABSTRACT In this work we proposed two semi-analytic...298-102 Enclosure 1 On-Line Path Generation and Tracking for High-Speed Wheeled Autonomous Vehicles by...Specifically, the following problems will be addressed during this project: 2.1 Challenges The problem of trajectory planning for high-speed autonomous vehicles is
Development of aerodynamic foil journal bearings for a high speed cryogenic turboexpander
NASA Astrophysics Data System (ADS)
Xiong, L.-Y.; Wu, G.; Hou, Y.; Liu, L.-Q.; Ling, M.-F.; Chen, C.-Z.
The research presented in this paper is aimed at the development of aerodynamic foil journal bearings applying to a small high speed cryogenic turboexpander. A small high speed cryogenic turboexpander is designed. Attention has been paid to the study of the effect of foil stiffness on the vibration performance of bearings. From rotation tests, it is clear that, with the proper choice of foil stiffness, the foil bearing presented here can possess sufficiently high stability. The maximum rotational speed obtained is greater than 230 000 rpm. Therefore, owing to its simplicity and high performance, this type of foil journal bearing can hopefully be applied to a small high speed cryogenic turboexpander.
16,000-rpm Interior Permanent Magnet Reluctance Machine with Brushless Field Excitation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsu, John S; Burress, Timothy A; Lee, Seong T
2008-01-01
This paper introduces a high speed brushless field excitation (BFE) machine that offers high torque per ampere (A) per core length at low speed and weakened flux at high speed. Lower core losses at high speeds, are attained by reducing the field excitation. Safety and reliability are increased by weakening the field when a winding short-circuit fault occurs. For a high-speed motor the bridges that link the rotor punching segments together must be thickened for mechanical integrity; BFE can ensure sufficient rotor flux when needed. Projected efficiency map including losses of the excitation coils confirms the advantage of this technology.
Modeling and simulation of soft sensor design for real-time speed and position estimation of PMSM.
Omrane, Ines; Etien, Erik; Dib, Wissam; Bachelier, Olivier
2015-07-01
This paper deals with the design of a speed soft sensor for permanent magnet synchronous motor. At high speed, model-based soft sensor is used and it gives excellent results. However, it fails to deliver satisfactory performance at zero or very low speed. High-frequency soft sensor is used at low speed. We suggest to use a model-based soft sensor together with the high-frequency soft sensor to overcome the limitations of the first one at low speed range. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Using a High-Speed Camera to Measure the Speed of Sound
ERIC Educational Resources Information Center
Hack, William Nathan; Baird, William H.
2012-01-01
The speed of sound is a physical property that can be measured easily in the lab. However, finding an inexpensive and intuitive way for students to determine this speed has been more involved. The introduction of affordable consumer-grade high-speed cameras (such as the Exilim EX-FC100) makes conceptually simple experiments feasible. Since the…
Du, Lei; Sun, Qiao; Cai, Changqing; Bai, Jie; Fan, Zhe; Zhang, Yue
2018-01-01
Traffic speed meters are important legal measuring instruments specially used for traffic speed enforcement and must be tested and verified in the field every year using a vehicular mobile standard speed-measuring instrument to ensure speed-measuring performances. The non-contact optical speed sensor and the GPS speed sensor are the two most common types of standard speed-measuring instruments. The non-contact optical speed sensor requires extremely high installation accuracy, and its speed-measuring error is nonlinear and uncorrectable. The speed-measuring accuracy of the GPS speed sensor is rapidly reduced if the amount of received satellites is insufficient enough, which often occurs in urban high-rise regions, tunnels, and mountainous regions. In this paper, a new standard speed-measuring instrument using a dual-antenna Doppler radar sensor is proposed based on a tradeoff between the installation accuracy requirement and the usage region limitation, which has no specified requirements for its mounting distance and no limitation on usage regions and can automatically compensate for the effect of an inclined installation angle on its speed-measuring accuracy. Theoretical model analysis, simulated speed measurement results, and field experimental results compared with a GPS speed sensor with high accuracy showed that the dual-antenna Doppler radar sensor is effective and reliable as a new standard speed-measuring instrument. PMID:29621142
Du, Lei; Sun, Qiao; Cai, Changqing; Bai, Jie; Fan, Zhe; Zhang, Yue
2018-04-05
Traffic speed meters are important legal measuring instruments specially used for traffic speed enforcement and must be tested and verified in the field every year using a vehicular mobile standard speed-measuring instrument to ensure speed-measuring performances. The non-contact optical speed sensor and the GPS speed sensor are the two most common types of standard speed-measuring instruments. The non-contact optical speed sensor requires extremely high installation accuracy, and its speed-measuring error is nonlinear and uncorrectable. The speed-measuring accuracy of the GPS speed sensor is rapidly reduced if the amount of received satellites is insufficient enough, which often occurs in urban high-rise regions, tunnels, and mountainous regions. In this paper, a new standard speed-measuring instrument using a dual-antenna Doppler radar sensor is proposed based on a tradeoff between the installation accuracy requirement and the usage region limitation, which has no specified requirements for its mounting distance and no limitation on usage regions and can automatically compensate for the effect of an inclined installation angle on its speed-measuring accuracy. Theoretical model analysis, simulated speed measurement results, and field experimental results compared with a GPS speed sensor with high accuracy showed that the dual-antenna Doppler radar sensor is effective and reliable as a new standard speed-measuring instrument.
Research on the tool holder mode in high speed machining
NASA Astrophysics Data System (ADS)
Zhenyu, Zhao; Yongquan, Zhou; Houming, Zhou; Xiaomei, Xu; Haibin, Xiao
2018-03-01
High speed machining technology can improve the processing efficiency and precision, but also reduce the processing cost. Therefore, the technology is widely regarded in the industry. With the extensive application of high-speed machining technology, high-speed tool system has higher and higher requirements on the tool chuck. At present, in high speed precision machining, several new kinds of clip heads are as long as there are heat shrinkage tool-holder, high-precision spring chuck, hydraulic tool-holder, and the three-rib deformation chuck. Among them, the heat shrinkage tool-holder has the advantages of high precision, high clamping force, high bending rigidity and dynamic balance, etc., which are widely used. Therefore, it is of great significance to research the new requirements of the machining tool system. In order to adapt to the requirement of high speed machining precision machining technology, this paper expounds the common tool holder technology of high precision machining, and proposes how to select correctly tool clamping system in practice. The characteristics and existing problems are analyzed in the tool clamping system.
High Voltage Flux Compression Generators
2008-04-02
the generator: the armature radial expansion speed, the high explosive (HE) detonation speed, and the armature-stator helical contact speed. Clearly... detonation speeds, which are also the speed at which the self-similar expanding armature cone moves axially, are on the order of 8 to 9 mm/μs...product of detonation speed and the ratio of stator underside circumference to pitch, ( )prvv sc π2Δ= rr . For a typical circumference-to-pitch ratio
Communications for High Speed Ground Transportation
DOT National Transportation Integrated Search
1971-11-15
This report is an account of investigations and analyses undertaken for the Office of High Speed Ground Transportation (OHSGT), beginning in July of 1970, which relate to communications systems for high speed ground vehicles. The authorized scope of ...
High-speed texture measurement of pavements.
DOT National Transportation Integrated Search
2003-01-01
This study was conducted to validate high-speed texture measuring equipment for use in highway applications. The evaluation included two high-speed systems and a new static referencing device. Tests were conducted on 22 runway and taxiway test sectio...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-03
...; Flight Envelope Protection: High Speed Limiting AGENCY: Federal Aviation Administration (FAA), DOT... protection: high speed limiting. As published, the document contained an error in that the Special Conditions...
Chicago-St. Louis high speed rail plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stead, M.E.
1994-12-31
The Illinois Department of Transportation (IDOT), in cooperation with Amtrak, undertook the Chicago-St. Louis High Speed Rail Financial and Implementation Plan study in order to develop a realistic and achievable blueprint for implementation of high speed rail in the Chicago-St. Louis corridor. This report presents a summary of the Price Waterhouse Project Team`s analysis and the Financial and Implementation Plan for implementing high speed rail service in the Chicago-St. Louis corridor.
Water Containment Systems for Testing High-Speed Flywheels
NASA Technical Reports Server (NTRS)
Trase, Larry; Thompson, Dennis
2006-01-01
Water-filled containers are used as building blocks in a new generation of containment systems for testing high-speed flywheels. Such containment systems are needed to ensure safety by trapping high-speed debris in the event of centrifugal breakup or bearing failure. Traditional containment systems for testing flywheels consist mainly of thick steel rings. The effectiveness of this approach to shielding against high-speed debris was demonstrated in a series of tests.
A simulation-based study of HighSpeed TCP and its deployment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Souza, Evandro de
2003-05-01
The current congestion control mechanism used in TCP has difficulty reaching full utilization on high speed links, particularly on wide-area connections. For example, the packet drop rate needed to fill a Gigabit pipe using the present TCP protocol is below the currently achievable fiber optic error rates. HighSpeed TCP was recently proposed as a modification of TCP's congestion control mechanism to allow it to achieve reasonable performance in high speed wide-area links. In this research, simulation results showing the performance of HighSpeed TCP and the impact of its use on the present implementation of TCP are presented. Network conditions includingmore » different degrees of congestion, different levels of loss rate, different degrees of bursty traffic and two distinct router queue management policies were simulated. The performance and fairness of HighSpeed TCP were compared to the existing TCP and solutions for bulk-data transfer using parallel streams.« less
Kempton, Thomas; Sullivan, Courtney; Bilsborough, Johann C; Cordy, Justin; Coutts, Aaron J
2015-01-01
To determine the match-to-match variability in physical activity and technical performance measures in Australian Football, and examine the influence of playing position, time of season, and different seasons on these measures of variability. Longitudinal observational study. Global positioning system, accelerometer and technical performance measures (total kicks, handballs, possessions and Champion Data rank) were collected from 33 players competing in the Australian Football League over 31 matches during 2011-2012 (N=511 observations). The global positioning system data were categorised into total distance, mean speed (mmin(-1)), high-speed running (>14.4 kmh(-1)), very high-speed running (>19.9 kmh(-1)), and sprint (>23.0 kmh(-1)) distance while player load was collected from the accelerometer. The data were log transformed to provide coefficient of variation and the between subject standard deviation (expressed as percentages). Match-to-match variability was increased for higher speed activities (high-speed running, very high-speed running, sprint distance, coefficient of variation %: 13.3-28.6%) compared to global measures (speed, total distance, player load, coefficient of variation %: 5.3-9.2%). The between-match variability was relativity stable for all measures between and within AFL seasons, with only few differences between positions. Higher speed activities (high-speed running, very high-speed running, sprint distance), but excluding mean speed, total distance and player load, were all higher in the final third phase of the season compared to the start of the season. While global measures of physical performance are relatively stable, higher-speed activities and technical measures exhibit a large degree of between-match variability in Australian Football. However, these measures remain relatively stable between positions, and within and between Australian Football League seasons. Copyright © 2013 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
High-speed flow visualization in hypersonic, transonic, and shock tube flows
NASA Astrophysics Data System (ADS)
Kleine, H.; Olivier, H.
2017-02-01
High-speed flow visualisation has played an important role in the investigations conducted at the Stoßwellenlabor of the RWTH Aachen University for many decades. In addition to applying the techniques of high-speed imaging, this laboratory has been actively developing new or enhanced visualisation techniques and approaches such as various schlieren methods or time-resolved Mach-Zehnder interferometry. The investigated high-speed flows are inherently highly transient, with flow Mach numbers ranging from about M = 0.7 to M = 8. The availability of modern high-speed cameras has allowed us to expand the investigations into problems where reduced reproducibility had so far limited the amount of information that could be extracted from a limited number of flow visualisation records. Following a brief historical overview, some examples of recent studies are given, which represent the breadth of applications in which high-speed imaging has been an essential diagnostic tool to uncover the physics of high-speed flows. Applications include the stability of hypersonic corner flows, the establishment of shock wave systems in transonic airfoil flow, and the complexities of the interactions of shock waves with obstacles of various shapes.
Thermomechanical simulations and experimental validation for high speed incremental forming
NASA Astrophysics Data System (ADS)
Ambrogio, Giuseppina; Gagliardi, Francesco; Filice, Luigino; Romero, Natalia
2016-10-01
Incremental sheet forming (ISF) consists in deforming only a small region of the workspace through a punch driven by a NC machine. The drawback of this process is its slowness. In this study, a high speed variant has been investigated from both numerical and experimental points of view. The aim has been the design of a FEM model able to perform the material behavior during the high speed process by defining a thermomechanical model. An experimental campaign has been performed by a CNC lathe with high speed to test process feasibility. The first results have shown how the material presents the same performance than in conventional speed ISF and, in some cases, better material behavior due to the temperature increment. An accurate numerical simulation has been performed to investigate the material behavior during the high speed process confirming substantially experimental evidence.
High speed demodulation systems for fiber optic grating sensors
NASA Technical Reports Server (NTRS)
Udd, Eric (Inventor); Weisshaar, Andreas (Inventor)
2002-01-01
Fiber optic grating sensor demodulation systems are described that offer high speed and multiplexing options for both single and multiple parameter fiber optic grating sensors. To attain very high speeds for single parameter fiber grating sensors ratio techniques are used that allow a series of sensors to be placed in a single fiber while retaining high speed capability. These methods can be extended to multiparameter fiber grating sensors. Optimization of speeds can be obtained by minimizing the number of spectral peaks that must be processed and it is shown that two or three spectral peak measurements may in specific multiparameter applications offer comparable or better performance than processing four spectral peaks. Combining the ratio methods with minimization of peak measurements allows very high speed measurement of such important environmental effects as transverse strain and pressure.
NASA Technical Reports Server (NTRS)
Donlan, Charles J.; Kuhn, Richard E.
1948-01-01
An analysis of the estimated high-speed flying qualities of the Chance Vought XF7U-1 airplane in the Mach number range from 0.40 to 0.91 has been made, based on tests of an 0.08-scale model of this airplane in the Langley high-speed 7- by 10-foot wind tunnel. The analysis indicates longitudinal control-position instability at transonic speeds, but the accompanying trim changes are not large. Control-position maneuvering stability, however, is present for all speeds. Longitudinal lateral control appear adequate, but the damping of the short-period longitudinal and lateral oscillations at high altitudes is poor and may require artificial damping.
High-speed ground transportation noise and vibration impact assessment.
DOT National Transportation Integrated Search
2012-09-01
This report is the second edition of a guidance manual originally issued in 2005, which presents procedures for predicting and assessing noise and vibration impacts of high-speed ground transportation projects. Projects involving high-speed trains us...
High-speed and intercity passenger rail testing strategy.
DOT National Transportation Integrated Search
2013-05-01
This high-speed and intercity passenger rail (HSIPR) testing strategy addresses the requirements for testing of high-speed train sets and technology before introduction to the North American railroad system. The report documents the results of a surv...
6. FAN HOUSE OF 8FOOT HIGH SPEED TUNNEL. AIR INTAKES ...
6. FAN HOUSE OF 8-FOOT HIGH SPEED TUNNEL. AIR INTAKES AND FILTERS ARE ENCLOSED IN THE UPPER LEVEL STRUCTURE. - NASA Langley Research Center, 8-Foot High Speed Wind Tunnel, 641 Thornell Avenue, Hampton, Hampton, VA
South Carolina southeast high speed rail corridor improvement study
DOT National Transportation Integrated Search
2001-02-01
The Southeast Rail Corridor was originally designated as a high-speed corridor in Section 1010 of the Intermodal Surface Transportation Efficiency Act (ISTEA) of 1991. More specifically, it involved the high-speed grade-crossing improvement program o...
Wideband quad optical sensor for high-speed sub-nanometer interferometry.
Riobo, L M; Veiras, F E; Sorichetti, P A; Garea, M T
2017-01-20
This paper describes the design and performance of a low-noise and high-speed optical sensor that provides two output signals in quadrature from the simultaneous detection of four phase-shifted interferograms. The sensor employs four high-speed photodiodes and high-speed, low-noise transimpedance amplifiers. The optical and electronic design was optimized for high-speed displacement measurement interferometry, over a broad range of operating frequencies. Compared to other experimental schemes, the sensor is simpler and of lower cost. The performance of the sensor is demonstrated by characterizing a piezoelectric transducer for ultrasonic applications. We measured displacements between 38 pm and 32 nm with 6% relative uncertainty, in the frequency range from 1 to 2 MHz.
Optimal design of high-speed loading spindle based on ABAQUS
NASA Astrophysics Data System (ADS)
Yang, Xudong; Dong, Yu; Ge, Qingkuan; Yang, Hai
2017-12-01
The three-dimensional model of high-speed loading spindle is established by using ABAQUS’s modeling module. A finite element analysis model of high-speed loading spindle was established by using spring element to simulate bearing boundary condition. The static and dynamic performance of the spindle structure with different specifications of the rectangular spline and the different diameter neck of axle are studied in depth, and the influence of different spindle span on the static and dynamic performance of the high-speed loading spindle is studied. Finally, the optimal structure of the high-speed loading spindle is obtained. The results provide a theoretical basis for improving the overall performance of the test-bed
Budgerigar flight in a varying environment: flight at distinct speeds?
Schiffner, Ingo; Srinivasan, Mandyam V
2016-06-01
How do flying birds respond to changing environments? The behaviour of budgerigars, Melopsittacus undulatus, was filmed as they flew through a tapered tunnel. Unlike flying insects-which vary their speed progressively and continuously by holding constant the optic flow induced by the walls-the birds showed a tendency to fly at only two distinct, fixed speeds. They switched between a high speed in the wider section of the tunnel, and a low speed in the narrower section. The transition between the two speeds was abrupt, and anticipatory. The high speed was close to the energy-efficient, outdoor cruising speed for these birds, while the low speed was approximately half this value. This is the first observation of the existence of two distinct, preferred flight speeds in birds. A dual-speed flight strategy may be beneficial for birds that fly in varying environments, with the high speed set at an energy-efficient value for flight through open spaces, and the low speed suited to safe manoeuvring in a cluttered environment. The constancy of flight speed within each regime enables the distances of obstacles and landmarks to be directly calibrated in terms of optic flow, thus facilitating simple and efficient guidance of flight through changing environments. © 2016 The Author(s).
NASA Technical Reports Server (NTRS)
Johnson, Howard C. (Editor)
1988-01-01
Recent advances in high-speed optical and electrooptic devices are discussed in reviews and reports. Topics examined include data quantification and related technologies, high-speed photographic applications and instruments, flash and cine radiography, and novel ultrafast methods. Also considered are optical streak technology, high-speed videographic and photographic equipment, and X-ray streak cameras. Extensive diagrams, drawings, graphs, sample images, and tables of numerical data are provided.
Field Test Data for Detecting Vibrations of a Building Using High-Speed Video Cameras
2017-10-01
ARL-TR-8185 ● OCT 2017 US Army Research Laboratory Field Test Data for Detecting Vibrations of a Building Using High -Speed Video...Field Test Data for Detecting Vibrations of a Building Using High -Speed Video Cameras by Caitlin P Conn and Geoffrey H Goldman Sensors and...June 2016 – October 2017 4. TITLE AND SUBTITLE Field Test Data for Detecting Vibrations of a Building Using High -Speed Video Cameras 5a. CONTRACT
Gearbox Reliability Collaborative Investigation of Gearbox Motion and High-Speed-Shaft Loads
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keller, Jon; Guo, Yi; Sethuraman, Latha
2016-03-18
This paper extends a model-to-test validation effort to examine the effect of different constant rotor torque and moment conditions and intentional generator misalignment on the gearbox motion and high-speed-shaft loads. Fully validating gearbox motion and high-speed-shaft loads across a range of test conditions is a critical precursor to examining the bearing loads, as the gearbox motion and high-speed-shaft loads are the drivers of these bearing loads.
2016-04-04
Terminal Performance of Lead-Free Pistol Bullets in Ballistic Gelatin Using Retarding Force Analysis from High Speed Video ELIJAH COURTNEY, AMY...quantified using high speed video . The temporary stretch cavities and permanent wound cavities are also characterized. Two factors tend to re- duce the...Performance of Lead-Free Pistol Bullets in Ballistic Gelatin Using Retarding Force Analysis from High Speed Video cavity. In addition, stretching can also
High-speed AFM and the reduction of tip-sample forces
NASA Astrophysics Data System (ADS)
Miles, Mervyn; Sharma, Ravi; Picco, Loren
High-speed DC-mode AFM has been shown to be routinely capable of imaging at video rate, and, if required, at over 1000 frames per second. At sufficiently high tip-sample velocities in ambient conditions, the tip lifts off the sample surface in a superlubricity process which reduces the level of shear forces imposed on the sample by the tip and therefore reduces the potential damage and distortion of the sample being imaged. High-frequency mechanical oscillations, both lateral and vertical, have been reported to reduced the tip-sample frictional forces. We have investigated the effect of combining linear high-speed scanning with these small amplitude high-frequency oscillations with the aim of reducing further the force interaction in high-speed imaging. Examples of this new version of high-speed AFM imaging will be presented for biological samples.
Safety Relevant Observations on the ICE High Speed Train
DOT National Transportation Integrated Search
1991-07-01
The safety of high speed rail technology proposed for possible application in the United States is of concern to the Federal Railroad Administration. This report, one in a series of reports planned for high speed rail technologies presents an initial...
Advancing high-speed rail policy in the United States.
DOT National Transportation Integrated Search
2012-06-01
This report builds on a review of international experience with high-speed rail projects to develop recommendations for a High-speed rail policy framework for the United States. The international review looked at the experience of Korea, Taiwan, Chin...
High speed flow cytometric separation of viable cells
Sasaki, D.T.; Van den Engh, G.J.; Buckie, A.M.
1995-11-14
Hematopoietic cell populations are separated to provide cell sets and subsets as viable cells with high purity and high yields, based on the number of original cells present in the mixture. High-speed flow cytometry is employed using light characteristics of the cells to separate the cells, where high flow speeds are used to reduce the sorting time.
High speed flow cytometric separation of viable cells
Sasaki, Dennis T.; Van den Engh, Gerrit J.; Buckie, Anne-Marie
1995-01-01
Hematopoietic cell populations are separated to provide cell sets and subsets as viable cells with high purity and high yields, based on the number of original cells present in the mixture. High-speed flow cytometry is employed using light characteristics of the cells to separate the cells, where high flow speeds are used to reduce the sorting time.
NASA Astrophysics Data System (ADS)
Dyachenko, Leonid K.; Benin, Andrey V.
2017-06-01
When the high-speed railway traffic is being organized, it becomes necessary to elaborate bridge design standards for high-speed railways (HSR). Methodology of studying the issues of HSR bridge design is based on the comprehensive analysis of domestic research as well as international experience in design, construction and operation of high-speed railways. Serious requirements are imposed on the HSR artificial structures, which raise a number of scientific tasks associated mainly with the issues of the dynamic interaction of the rolling stock and the bridge elements. To ensure safety of traffic and reliability of bridges during the whole period of operation one needs to resolve the dynamic problems of various types of high-speed trains moving along the structures. The article analyses dependences of the magnitude of inertial response on the external stress parameters and proposes a simplified method of determination of the dynamic live load factor caused by the passage of high-speed trains. The usefulness of the given research arises from the reduction of complexity of the complicated dynamic calculations needed to describe a high-speed train travelling along the artificial structures.
Combined High-Speed 3D Scalar and Velocity Reconstruction of Hairpin Vortex
NASA Astrophysics Data System (ADS)
Sabatino, Daniel; Rossmann, Tobias; Zhu, Xuanyu; Thorsen, Mary
2017-11-01
The combination of 3D scanning stereoscopic particle image velocimetry (PIV) and 3D Planar Laser Induced Fluorescence (PLIF) is used to create high-speed three-dimensional reconstructions of the scalar and velocity fields of a developing hairpin vortex. The complete description of the regenerating hairpin vortex is needed as transitional boundary layers and turbulent spots are both comprised of and influenced by these vortices. A new high-speed, high power, laser-based imaging system is used which enables both high-speed 3D scanning stereo PIV and PLIF measurements. The experimental system uses a 250 Hz scanning mirror, two high-speed cameras with a 10 kHz frame rate, and a 40 kHz pulsed laser. Individual stereoscopic PIV images and scalar PLIF images are then reconstructed into time-resolved volumetric velocity and scalar data. The results from the volumetric velocity and scalar fields are compared to previous low-speed tomographic PIV data and scalar visualizations to determine the accuracy and fidelity of the high-speed diagnostics. Comparisons between the velocity and scalar field during hairpin development and regeneration are also discussed. Supported by the National Science Foundation under Grant CBET-1531475, Lafayette College,and the McCutcheon Foundation.
11. INTERIOR VIEW OF 8FOOT HIGH SPEED WIND TUNNEL. SAME ...
11. INTERIOR VIEW OF 8-FOOT HIGH SPEED WIND TUNNEL. SAME CAMERA POSITION AS VA-118-B-10 LOOKING IN THE OPPOSITE DIRECTION. - NASA Langley Research Center, 8-Foot High Speed Wind Tunnel, 641 Thornell Avenue, Hampton, Hampton, VA
Reference H Piloted Assessment (LaRC.1) Pilot Briefing Guide
NASA Technical Reports Server (NTRS)
Jackson, E. Bruce; Raney, David L.; Hahne, David E.; Derry, Stephen D.; Glaab, Louis J.
1999-01-01
This document describes the purpose of and method by which an assessment of the Boeing Reference H High-Speed Civil Transport design was evaluated in the NASA Langley Research Center's Visual/Motion Simulator in January 1997. Six pilots were invited to perform approximately 60 different Mission Task Elements that represent most normal and emergency flight operations of concern to the High Speed Research program. The Reference H design represents a candidate configuration for a High-Speed Civil Transport, a second generation supersonic civilian transport aircraft. The High-Speed Civil Transport is intended to be economically sound and environmentally safe while carrying passengers and cargo at supersonic speeds with a trans-Pacific range. This simulation study was designated "LaRC. 1" for the purposes of planning, scheduling and reporting within the Guidance and Flight Controls super-element of the High-Speed Research program. The study was based upon Cycle 3 release of the Reference H simulation model.
Fabrication and Testing of High-Speed-Single-Rotor and Compound-Rotor Systems
2016-05-04
pitch link loads, hub loads, rotor wakes and performance of high -speed single-rotor and compound-rotor systems to support 1. REPORT DATE (DD-MM-YYYY) 4...Public Release; Distribution Unlimited UU UU UU UU 05-04-2016 14-Jul-2014 13-Jan-2016 Final Report: Fabrication and Testing of High -Speed Single- Rotor and...Final Report: Fabrication and Testing of High -Speed Single-Rotor and Compound-Rotor Systems Report Title The Alfred Gessow Rotorcraft Center has
Fabrication and Testing of High-Speed Single-Rotor and Compound-Rotor Systems
2016-04-05
pitch link loads, hub loads, rotor wakes and performance of high -speed single-rotor and compound-rotor systems to support 1. REPORT DATE (DD-MM-YYYY) 4...Public Release; Distribution Unlimited UU UU UU UU 05-04-2016 14-Jul-2014 13-Jan-2016 Final Report: Fabrication and Testing of High -Speed Single- Rotor and...Final Report: Fabrication and Testing of High -Speed Single-Rotor and Compound-Rotor Systems Report Title The Alfred Gessow Rotorcraft Center has
2012-09-01
when travelling at sprint speed. To help overcome the shortcomings of the LCS in conducting HA/DR operations, the Irregular Warfare (IW) mission...high sprint speed, which allows the LCS to reach the disaster region faster than any other ships, especially if the IW mission package is adopted. The...high sprint speed in excess of 40 knots and a high sustained speed to enable it to run along a 30+ knots CSG or 20+ knots ESG. The high sprint
High-speed digital signal normalization for feature identification
NASA Technical Reports Server (NTRS)
Ortiz, J. A.; Meredith, B. D.
1983-01-01
A design approach for high speed normalization of digital signals was developed. A reciprocal look up table technique is employed, where a digital value is mapped to its reciprocal via a high speed memory. This reciprocal is then multiplied with an input signal to obtain the normalized result. Normalization improves considerably the accuracy of certain feature identification algorithms. By using the concept of pipelining the multispectral sensor data processing rate is limited only by the speed of the multiplier. The breadboard system was found to operate at an execution rate of five million normalizations per second. This design features high precision, a reduced hardware complexity, high flexibility, and expandability which are very important considerations for spaceborne applications. It also accomplishes a high speed normalization rate essential for real time data processing.
Lubrication and cooling for high speed gears
NASA Technical Reports Server (NTRS)
Townsend, D. P.
1985-01-01
The problems and failures occurring with the operation of high speed gears are discussed. The gearing losses associated with high speed gearing such as tooth mesh friction, bearing friction, churning, and windage are discussed with various ways shown to help reduce these losses and thereby improve efficiency. Several different methods of oil jet lubrication for high speed gearing are given such as into mesh, out of mesh, and radial jet lubrication. The experiments and analytical results for the various methods of oil jet lubrication are shown with the strengths and weaknesses of each method discussed. The analytical and experimental results of gear lubrication and cooling at various test conditions are presented. These results show the very definite need of improved methods of gear cooling at high speed and high load conditions.
Sea Basing and Alternatives for Deploying and Sustaining Ground Combat Forces
2007-07-01
speed roll-on/roll-off ship (top) and an intratheater high - speed vessel (bottom) are shown alongside a notional mobile landing platform (center...F), might be needed to fully support sea-based ground forces. Those other ships could include tankers and high - speed ships for spe- cial cargo . The...maritime prepositioning squadron; T-HSS = high - speed ship ; TBD = to be determined. Vehicles Cargo Aircraft (Thousands of (Thousands
Impact of Increased Football Field Width on Player High-Speed Collision Rate.
Joseph, Jacob R; Khalsa, Siri S; Smith, Brandon W; Park, Paul
2017-07-01
High-acceleration head impact is a known risk for mild traumatic brain injury (mTBI) based on studies using helmet accelerometry. In football, offensive and defensive players are at higher risk of mTBI due to increased speed of play. Other collision sport studies suggest that increased playing surface size may contribute to reductions in high-speed collisions. We hypothesized that wider football fields lead to a decreased rate of high-speed collisions. Computer football game simulation was developed using MATLAB. Four wide receivers were matched against 7 defensive players. Each offensive player was randomized to one of 5 typical routes on each play. The ball was thrown 3 seconds into play; ball flight time was 2 seconds. Defensive players were delayed 0.5 second before reacting to ball release. A high-speed collision was defined as the receiver converging with a defensive player within 0.5 second of catching the ball. The simulation counted high-speed collisions for 1 team/season (65 plays/game for 16 games/season = 1040 plays/season) averaged during 10 seasons, and was validated against existing data using standard field width (53.3 yards). Field width was increased in 1-yard intervals up to 58.3 yards. Using standard field width, 188 ± 4 high-speed collisions were seen per team per season (18% of plays). When field width increased by 3 yards, high-speed collision rate decreased to 135 ± 3 per team per season (28% decrease; P < 0.0001). Even small increases in football field width can lead to substantial decline in high-speed collisions, with potential for reducing instances of mTBI in football players. Copyright © 2017 Elsevier Inc. All rights reserved.
High Rotation Speed Friction Stir Welding for 2014 Aluminum Alloy Thin Sheets
NASA Astrophysics Data System (ADS)
Chen, Shujin; Zhou, Yang; Xue, Junrong; Ni, Ruiyang; Guo, Yue; Dong, Jianghui
2017-03-01
In this study, 2014 aluminum alloy sheets with 1 mm thickness are welded successfully by friction stir welding (FSW) robot under the condition of high rotation speed. When the high rotation speed of 10,000-16,500 rpm is applied, the lower axial pressure (less than 200 N) is obtained, which reduces stiffness requirements for equipment. Welding deformation is inevitable because high rotation speed can easily result in rapid heating rate and uneven heat input. The welding distortion caused by two cooling methods is measured, respectively, by laser range finder. The experimental results show that the welding distortion is smaller under the condition of water cooling. When the rotation speed is up to 15,000 rpm and welding speed 50-170 mm/min, the whole welding process is controllable. Under the higher rotation speed condition, the welding defects disappear gradually and more stable mechanical properties can be obtained up to 75% of base metal (ω = 16,000 rpm, ν = 110 mm/min). The results of different welding parameters demonstrate that the high rotation speed can increase material mixing and reduce the axial force (z force), and it can benefit lightweight sheet welding by using FSW robot.
Modern rotor balancing - Emerging technologies
NASA Technical Reports Server (NTRS)
Zorzi, E. S.; Von Pragenau, G. L.
1985-01-01
Modern balancing methods for flexible and rigid rotors are explored. Rigid rotor balancing is performed at several hundred rpm, well below the first bending mode of the shaft. High speed balancing is necessary when the nominal rotational speed is higher than the first bending mode. Both methods introduce weights which will produce rotor responses at given speeds that will be exactly out of phase with the responses of an unbalanced rotor. Modal balancing seeks to add weights which will leave other rotor modes unaffected. Also, influence coefficients can be determined by trial and error addition of weights and recording of their effects on vibration at speeds of interest. The latter method is useful for balancing rotors at other than critical speeds and for performing unified balancing beginning with the first critical speed. Finally, low-speed flexible balancing permits low-speed tests and adjustments of rotor assemblies which will not be accessible when operating in their high-speed functional configuration. The method was developed for the high pressure liquid oxygen turbopumps for the Shuttle.
Cummins, Cloe; McLean, Blake; Halaki, Mark; Orr, Rhonda
2017-07-01
To quantify the external training loads of positional groups in preseason training drills. Thirty-three elite rugby league players were categorized into 1 of 4 positional groups: outside backs (n = 9), adjustables (n = 9), wide-running forwards (n = 9), and hit-up forwards (n = 6). Data for 8 preseason weeks were collected using microtechnology devices. Training drills were classified based on drill focus: speed and agility, conditioning, and generic and positional skills. Total, high-speed, and very-high-speed distance decreased across the preseason in speed and agility (moderate, small, and small, respectively), conditioning (large, large, and small) and generic skills (large, large, and large). The duration of speed and generic skills also decreased (77% and 48%, respectively). This was matched by a concomitant increase in total distance (small), high-speed running (small), very-high-speed running (moderate), and 2-dimensional (2D) BodyLoad (small) demands in positional skills. In positional skills, hit-up forwards (1240 ± 386 m) completed less very-high-speed running than outside backs (2570 ± 1331 m) and adjustables (2121 ± 1163 m). Hit-up forwards (674 ± 253 AU) experienced greater 2D BodyLoad demands than outside backs (432 ± 230 AU, P = .034). In positional drills, hit-up forwards experienced greater relative 2D BodyLoad demands than outside backs (P = .015). Conversely, outside backs experienced greater relative high- (P = .007) and very-high-speed-running (P < .001) demands than hit-up forwards. Significant differences were observed in training loads between positional groups during positional skills but not in speed and agility, conditioning, and generic skills. This work also highlights the importance of different external-load parameters to adequately quantify workload across different positional groups.
Electron heating within interaction zones of simple high-speed solar wind streams
NASA Technical Reports Server (NTRS)
Feldman, W. C.; Asbridge, J. R.; Bame, S. J.; Gosling, J. T.; Lemons, D. S.
1978-01-01
In the present paper, electron heating within the high-speed portions of three simple stream-stream interaction zones is studied to further our understanding of the physics of heat flux regulation in interplanetary space. To this end, the thermal signals present in the compressions at the leading edges of the simple high-speed streams are analyzed, showing that the data are inconsistent with the Spitzer conductivity. Instead, a polynomial law is found to apply. Its implication concerning the mechanism of interplanetary heat conduction is discussed, and the results of applying this conductivity law to high-speed flows inside of 1 AU are studied. A self-consistent model of the radial evolution of electrons in the high-speed solar wind is proposed.
DeWitt, Nancy T.; Flocks, James G.; Pfeiffer, William R.; Wiese, Dana S.
2010-01-01
In March of 2010, the U.S. Geological Survey (USGS) conducted geophysical surveys east of Cat Island, Mississippi (fig. 1). The efforts were part of the USGS Gulf of Mexico Science Coordination partnership with the U.S. Army Corps of Engineers (USACE) to assist the Mississippi Coastal Improvements Program (MsCIP) and the Northern Gulf of Mexico (NGOM) Ecosystem Change and Hazards Susceptibility Project by mapping the shallow geological stratigraphic framework of the Mississippi Barrier Island Complex. These geophysical surveys will provide the data necessary for scientists to define, interpret, and provide baseline bathymetry and seafloor habitat for this area and to aid scientists in predicting future geomorpholocial changes of the islands with respect to climate change, storm impact, and sea-level rise. Furthermore, these data will provide information for barrier island restoration, particularly in Camille Cut, and provide protection for the historical Fort Massachusetts. For more information refer to http://ngom.usgs.gov/gomsc/mscip/index.html. This report serves as an archive of the processed swath bathymetry and side scan sonar data (SSS). Data products herein include gridded and interpolated surfaces, surface images, and x,y,z data products for both swath bathymetry and side scan sonar imagery. Additional files include trackline maps, navigation files, GIS files, Field Activity Collection System (FACS) logs, and formal FGDC metadata. Scanned images of the handwritten FACS logs and digital FACS logs are also provided as PDF files. Refer to the Acronyms page for expansion of acronyms and abbreviations used in this report or hold the cursor over an acronym for a pop-up explanation. The USGS St. Petersburg Coastal and Marine Science Center assigns a unique identifier to each cruise or field activity. For example, 10CCT01 tells us the data were collected in 2010 for the Coastal Change and Transport (CCT) study and the data were collected during the first field activity for that project in that calendar year. Refer to http://walrus.wr.usgs.gov/infobank/programs/html/definition/activity.html for a detailed description of the method used to assign the field activity ID. Data were collected using a 26-foot (ft) Glacier Bay Catamaran. Side scan sonar and interferometric swath bathymetry data were collected simultaneously along the tracklines. The side scan sonar towfish was towed off the port side just slightly behind the vessel, close to the seafloor. The interferometric swath transducer was sled-mounted on a rail attached between the catamaran hulls. During the survey the sled is secured into position. Navigation was acquired with a CodaOctopus Octopus F190 Precision Attitude and Positioning System and differentially corrected with OmniSTAR. See the digital FACS equipment log for details about the acquisition equipment used. Both raw datasets were stored digitally and processed using CARIS HIPS and SIPS software at the USGS St. Petersburg Coastal and Marine Science Center. For more information on processing refer to the Equipment and Processing page. Post-processing of the swath dataset revealed a motion artifact that is attributed to movement of the pole that the swath transducers are attached to in relation to the boat. The survey took place in the winter months, in which strong winds and rough waves contributed to a reduction in data quality. The rough seas contributed to both the movement of the pole and the very high noise base seen in the raw amplitude data of the side scan sonar. Chirp data were also collected during this survey and are archived separately.
Reducing Heating In High-Speed Cinematography
NASA Technical Reports Server (NTRS)
Slater, Howard A.
1989-01-01
Infrared-absorbing and infrared-reflecting glass filters simple and effective means for reducing rise in temperature during high-speed motion-picture photography. "Hot-mirror" and "cold-mirror" configurations, employed in projection of images, helps prevent excessive heating of scenes by powerful lamps used in high-speed photography.
49 CFR 236.1007 - Additional requirements for high-speed service.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Additional requirements for high-speed service. 236.1007 Section 236.1007 Transportation Other Regulations Relating to Transportation (Continued..., AND APPLIANCES Positive Train Control Systems § 236.1007 Additional requirements for high-speed...
Florida High Speed Rail Authority - 2003 report to the legislature
DOT National Transportation Integrated Search
2003-01-01
Since its last full report to the Legislature in January 2002, the Florida High Speed Rail Authority (FHSRA) has continued to fulfill the duties defined in the Florida High Speed Rail Authority Act, Section 341.8201 to 341.842, Florida Statutes. The ...
HIGH-SPEED GC/MS FOR AIR ANALYSIS
High speed or fast gas chromatography (FGC) consists of narrow bandwidth injection into a high-speed carrier gas stream passing through a short column leading to a fast detector. Many attempts have been made to demonstrate FGC, but until recently no practical method for routin...
NASA Astrophysics Data System (ADS)
Zhang, H. J.; Wang, M.; Zhu, Z.; Zhang, X.; Yu, T.; Wu, Z. Q.
2018-03-01
High-rotation-speed friction stir welding (HRS-FSW) is a promising technique to reduce the welding loads during FSW and thus facilitates the application of FSW for in situ fabrication and repair. In this study, 6061 aluminum alloy was friction stir welded at high-rotation speeds ranging from 3000 to 7000 rpm at a fixed welding speed of 50 mm/min, and the effects of rotation speed on the nugget zone macro- and microstructures were investigated in detail in order to illuminate the process features. Temperature measurements during HRS-FSW indicated that the peak temperature did not increase consistently with rotation speed; instead, it dropped remarkably at 5000 rpm because of the lowering of material shear stress. The nugget size first increased with rotation speed until 5000 rpm and then decreased due to the change of the dominant tool/workpiece contact condition from sticking to sliding. At the rotation speed of 5000 rpm, where the weld material experienced weaker thermal effect and higher-strain-rate plastic deformation, the nugget exhibited relatively small grain size, large textural intensity, and high dislocation density. Consequently, the joint showed superior nugget hardness and simultaneously a slightly low tensile ductility.
NASA Astrophysics Data System (ADS)
Yu, Chenghai; Ma, Ning; Wang, Kai; Du, Juan; Van den Braembussche, R. A.; Lin, Feng
2014-04-01
A similitude method to model the tip clearance flow in a high-speed compressor with a low-speed model is presented in this paper. The first step of this method is the derivation of similarity criteria for tip clearance flow, on the basis of an inviscid model of tip clearance flow. The aerodynamic parameters needed for the model design are then obtained from a numerical simulation of the target high-speed compressor rotor. According to the aerodynamic and geometric parameters of the target compressor rotor, a large-scale low-speed rotor blade is designed with an inverse blade design program. In order to validate the similitude method, the features of tip clearance flow in the low-speed model compressor are compared with the ones in the high-speed compressor at both design and small flow rate points. It is found that not only the trajectory of the tip leakage vortex but also the interface between the tip leakage flow and the incoming main flow in the high-speed compressor match well with that of its low speed model. These results validate the effectiveness of the similitude method for the tip clearance flow proposed in this paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garfield, B.R.; Rendell, J.T.
1991-01-01
The present conference discusses the application of schlieren photography in industry, laser fiber-optic high speed photography, holographic visualization of hypervelocity explosions, sub-100-picosec X-ray grating cameras, flash soft X-radiography, a novel approach to synchroballistic photography, a programmable image converter framing camera, high speed readout CCDs, an ultrafast optomechanical camera, a femtosec streak tube, a modular streak camera for laser ranging, and human-movement analysis with real-time imaging. Also discussed are high-speed photography of high-resolution moire patterns, a 2D electron-bombarded CCD readout for picosec electrooptical data, laser-generated plasma X-ray diagnostics, 3D shape restoration with virtual grating phase detection, Cu vapor lasers for highmore » speed photography, a two-frequency picosec laser with electrooptical feedback, the conversion of schlieren systems to high speed interferometers, laser-induced cavitation bubbles, stereo holographic cinematography, a gatable photonic detector, and laser generation of Stoneley waves at liquid-solid boundaries.« less
Hayward, Christopher S; Salamonsen, Robert; Keogh, Anne M; Woodard, John; Ayre, Peter; Prichard, Roslyn; Kotlyar, Eugene; Macdonald, Peter S; Jansz, Paul; Spratt, Phillip
2015-09-01
Left ventricular assist devices are crucial in rehabilitation of patients with end-stage heart failure. Whether cardiopulmonary function is enhanced with higher pump output is unknown. 10 patients (aged 39±16 years, mean±SD) underwent monitored adjustment of pump speed to determine minimum safe low speed and maximum safe high speed at rest. Patients were then randomized to these speed settings and underwent three 6-minute walk tests (6MWT) and symptom-limited cardiopulmonary stress tests (CPX) on separate days. Pump speed settings (low, normal and high) resulted in significantly different resting pump flows of 4.43±0.6, 5.03±0.94, and 5.72±1.2 l/min (P<.001). There was a significant enhancement of pump flows (greater at higher speed settings) with exercise (P<0.05). Increased pump speed was associated with a trend to increased 6MWT distance (P=.10); and CPX exercise time (p=.27). Maximum workload achieved and peak oxygen consumption were significantly different comparing low to high pump speed settings only (P<.05). N-terminal-pro-B-type natriuretic peptide release was significantly reduced at higher pump speed with exercise (P<.01). We have found that alteration of pump speed setting resulted in significant variation in estimated pump flow. The high-speed setting was associated with lower natriuretic hormone release consistent with lower myocardial wall stress. This did not, however, improve exercise tolerance.
4 Gbps direct modulation of 450 nm GaN laser for high-speed visible light communication.
Lee, Changmin; Zhang, Chong; Cantore, Michael; Farrell, Robert M; Oh, Sang Ho; Margalith, Tal; Speck, James S; Nakamura, Shuji; Bowers, John E; DenBaars, Steven P
2015-06-15
We demonstrate high-speed data transmission with a commercial high power GaN laser diode at 450 nm. 2.6 GHz bandwidth was achieved at an injection current of 500 mA using a high-speed visible light communication setup. Record high 4 Gbps free-space data transmission rate was achieved at room temperature.
LAVA Applications to Open Rotors
NASA Technical Reports Server (NTRS)
Kiris, Cetin C.; Housman, Jeff; Barad, Mike; Brehm, Christoph
2015-01-01
Outline: LAVA (Launch Ascent Vehicle Aerodynamics); Introduction; Acoustics Related Applications; LAVA Applications to Open Rotor; Structured Overset Grids; Cartesian Grid with Immersed Boundary; High Speed Case; High Speed Case with Plate Low Speed Case.
NASA Astrophysics Data System (ADS)
Moser, Stefan; Nau, Siegfried; Salk, Manfred; Thoma, Klaus
2014-02-01
The in situ investigation of dynamic events, ranging from car crash to ballistics, often is key to the understanding of dynamic material behavior. In many cases the important processes and interactions happen on the scale of milli- to microseconds at speeds of 1000 m s-1 or more. Often, 3D information is necessary to fully capture and analyze all relevant effects. High-speed 3D-visualization techniques are thus required for the in situ analysis. 3D-capable optical high-speed methods often are impaired by luminous effects and dust, while flash x-ray based methods usually deliver only 2D data. In this paper, a novel 3D-capable flash x-ray based method, in situ flash x-ray high-speed computed tomography is presented. The method is capable of producing 3D reconstructions of high-speed processes based on an undersampled dataset consisting of only a few (typically 3 to 6) x-ray projections. The major challenges are identified, discussed and the chosen solution outlined. The application is illustrated with an exemplary application of a 1000 m s-1 high-speed impact event on the scale of microseconds. A quantitative analysis of the in situ measurement of the material fragments with a 3D reconstruction with 1 mm voxel size is presented and the results are discussed. The results show that the HSCT method allows gaining valuable visual and quantitative mechanical information for the understanding and interpretation of high-speed events.
Tip leakage vortex dynamics and inception
NASA Astrophysics Data System (ADS)
Oweis, Ghanem; Ceccio, Steven; Jessup, Stuart; Chesnakas, Christopher; Fry, David
2002-11-01
The McCormick rule for tip vortex cavitation scaling predicts that cavitation should take place in the vortex where the average core pressure deficit from the free stream is the largest along the vortex tube. The average core pressure deficit can be calculated from the vortex core size and circulation and these can be measured by LDV or hot wire, among other methods. The same rule applies to the tip vortex from a wall-bounded hydrofoil. Recent cavitation inception experiments on a ducted propeller in the NSWCCD 36 inch water tunnel combined with PIV and LDV measurements of the tip vortex flow are described. These tests reveal a disagreement between the actual inception location and that predicted by the McCormick rule. It is hypothesized that in this case the inception mechanism is related to local flow phenomena associated with local vortex unsteadiness, as opposed to the average vortex parameters (core size and circulation) used in the viscous scaling rule of McCormick. Discussion of the flow field measurements, bubble population, and the noise production from the inception events is given.
A fish-like robot: Mechanics of swimming due to constraints
NASA Astrophysics Data System (ADS)
Tallapragada, Phanindra; Malla, Rijan
2014-11-01
It is well known that due to reasons of symmetry, a body with one degree of actuation cannot swim in an ideal fluid. However certain velocity constraints arising in fluid-body interactions, such as the Kutta condition classically applied at the trailing cusp of a Joukowski hydrofoil break this symmetry through vortex shedding. Thus Joukowski foils that vary shape periodically can be shown to be able to swim through vortex shedding. In general it can be shown that vortex shedding due to the Kutta condition is equivalent to nonintegrable constraints arising in the mechanics of finite-dimensional mechanical systems. This equivalence allows hydrodynamic problems involving vortex shedding, especially those pertaining to swimming and related phenomena to be framed in the context of geometric mechanics on manifolds. This formal equivalence also allows the design of bio inspired robots that swim not due to shape change but due to internal moving masses and rotors. Such robots lacking articulated joints are easy to design, build and control. We present such a fish-like robot that swims due to the rotation of internal rotors.
High Speed Surface Thermocouples Interface to Wireless Transmitters
2017-03-15
Government and/or Private Sector Use Being able to measure high-speed surface temperatures in hostile environments where wireless transmission of the data...09/16/2016 See Item 16 Draft Reg Repro 16. REMARKS Eric Gingrich, COR I Item 0: High Speed Surface Thermocouples Interface to Wireless ...Speed Surface Thermocouples Interface to Wireless Transmitters W56HZV-16-C-0149 Sb. GRANT NUMBER Sc. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Sd. PROJECT
Analog storage integrated circuit
Walker, J. T.; Larsen, R. S.; Shapiro, S. L.
1989-01-01
A high speed data storage array is defined utilizing a unique cell design for high speed sampling of a rapidly changing signal. Each cell of the array includes two input gates between the signal input and a storage capacitor. The gates are controlled by a high speed row clock and low speed column clock so that the instantaneous analog value of the signal is only sampled and stored by each cell on coincidence of the two clocks.
Analog storage integrated circuit
Walker, J.T.; Larsen, R.S.; Shapiro, S.L.
1989-03-07
A high speed data storage array is defined utilizing a unique cell design for high speed sampling of a rapidly changing signal. Each cell of the array includes two input gates between the signal input and a storage capacitor. The gates are controlled by a high speed row clock and low speed column clock so that the instantaneous analog value of the signal is only sampled and stored by each cell on coincidence of the two clocks. 6 figs.
Chi, Wen-Chun; Cheng, Ming-Yang
2014-03-01
Due to issues such as limited space, it is difficult if it is not impossible to employ a position sensor in the drive control of high-speed micro PMSMs. In order to alleviate this problem, this paper analyzes and implements a simple and robust position sensorless field-oriented control method of high-speed micro PMSMs based on the sliding-mode observer. In particular, the angular position and velocity of the rotor of the high-speed micro PMSM are estimated using the sliding-mode observer. This observer is able to accurately estimate rotor position in the low speed region and guarantee fast convergence of the observer in the high speed region. The proposed position sensorless control method is suitable for electric dental handpiece motor drives where a wide speed range operation is essential. The proposed sensorless FOC method is implemented using a cost-effective 16-bit microcontroller and tested in a prototype electric dental handpiece motor. Several experiments are performed to verify the effectiveness of the proposed method. © 2013 ISA. Published by Elsevier Ltd. All rights reserved.
DOT National Transportation Integrated Search
1997-06-01
This report describes analysis tools to predict shift under high-speed vehicle- : track interaction. The analysis approach is based on two fundamental models : developed (as part of this research); the first model computes the track lateral : residua...
Safety of High-Speed Guided Ground Transportation Systems : Shared Right-of-Way Safety Issues
DOT National Transportation Integrated Search
1992-09-01
One of the most important issues in the debate over the viability in the United States of high-speed guided ground : transportation (HSGGT) systems, which include magnetic levitation (maglev) and high-speed rail (HSR), is the : feasibility of using e...
DOT National Transportation Integrated Search
2014-07-01
In the past, U.S. studies on high-speed rail (HSR) have focused primarily on the economic implications of high-speed rail development. Recently, however, studies have begun evaluating multimodal connectivity of HSR stations. The ways in which differe...
DOT National Transportation Integrated Search
2013-05-01
The development of both incremental and dedicated high-speed rail lines in the United States poses a number of questions. Despite nearly 50 years of international experience in planning, designing, building and operating high-speed passenger infrastr...
Tri-state high speed rail study : Chicago - Milwaukee - Twin Cities corridor
DOT National Transportation Integrated Search
1991-05-01
This report, the Final Report for the Tri-State Study of High Speed Rail Service, describes the work carried out by TMS/Benesch in analyzing the potential for high speed rail in the Tri-State Corridor. Specifically, the study provides a pre-feasibili...
NASA Astrophysics Data System (ADS)
Wu, Huaying; Wang, Li Zhong; Wang, Yantao; Yuan, Xiaolei
2018-05-01
The blade or surface grinding blade of the hypervelocity grinding wheel may be damaged due to too high rotation rate of the spindle of the machine and then fly out. Its speed as a projectile may severely endanger the field persons. Critical thickness model of the protective plate of the high-speed machine is studied in this paper. For easy analysis, the shapes of the possible impact objects flying from the high-speed machine are simplified as sharp-nose model, ball-nose model and flat-nose model. Whose front ending shape to represent point, line and surface contacting. Impact analysis based on J-C model is performed for the low-carbon steel plate with different thicknesses in this paper. One critical thickness computational model for the protective plate of high-speed machine is established according to the damage characteristics of the thin plate to get relation among plate thickness and mass, shape and size and impact speed of impact object. The air cannon is used for impact test. The model accuracy is validated. This model can guide identification of the thickness of single-layer outer protective plate of a high-speed machine.
NASA Technical Reports Server (NTRS)
Kemmerly, Guy T.; Campbell, Bryan A.; Banks, Daniel W.; Yaros, Steven F.
1999-01-01
As a part of a national effort to develop an economically feasible High Speed Civil Transport (HSCT), a single configuration has been accepted as the testing baseline by the organizations working in the High Speed Research (HSR) program. The configuration is based on a design developed by the Boeing Company and is referred to as the Reference H (Ref H). The data contained in this report are low-speed stability-and-control and ground-effect measurements obtained on a 0.06 scale model of the Ref H in a subsonic tunnel.
NASA Astrophysics Data System (ADS)
Higashino, Satoru; Kobayashi, Shoei; Yamagami, Tamotsu
2007-06-01
High data transfer rate has been demanded for data storage devices along increasing the storage capacity. In order to increase the transfer rate, high-speed data processing techniques in read-channel devices are required. Generally, parallel architecture is utilized for the high-speed digital processing. We have developed a new architecture of Interpolated Timing Recovery (ITR) to achieve high-speed data transfer rate and wide capture-range in read-channel devices for the information storage channels. It facilitates the parallel implementation on large-scale-integration (LSI) devices.
First Annual High-Speed Research Workshop, part 4
NASA Technical Reports Server (NTRS)
Whitehead, Allen H., Jr. (Compiler)
1992-01-01
Papers presented at the First Annual High Speed Research Workshop held in Williamsburg, Viginia, on May 14-16, 1991 are presented. This NASA-sponsored workshop provided a national forum for presenting and discussing important technology issues related to the definition of an economically viable and environmentally compatible High Speed Civil Transport. The sessions are developed around the technical components of NASA's Phase 1 High Speed Research Program which addresses the environmental issues of atmospheric emissions, community noise, and sonic boom. In particular, this part of the publication, Part 4, addresses high lift research and supersonic laminar flow control.
Kenyon, Brian J; Van Zyl, Ian; Louie, Kenneth G
2005-08-01
The high-speed high-torque (electric motor) handpiece is becoming more popular in dental offices and laboratories in the United States. It is reported to cut more precisely and to assist in the creation of finer margins that enhance cavity preparations. The authors conducted an in vitro study to compare the quality of cavity preparations fabricated with a high-speed high-torque (electric motor) handpiece and a high-speed low-torque (air turbine) handpiece. Eighty-six dental students each cut two Class I preparations, one with an air turbine handpiece and the other with an electric motor high-speed handpiece. The authors asked the students to cut each preparation accurately to a circular outline and to establish a flat pulpal floor with 1.5 millimeters' depth, 90-degree exit angles, parallel vertical walls and sharp internal line angles, as well as to refine the preparation to achieve flat, smooth walls with a well-defined cavosurface margin. A single faculty member scored the preparations for criteria and refinement using a nine-point scale (range, 1-9). The authors analyzed the data statistically using paired t tests. In preparation criteria, the electric motor high-speed handpiece had a higher average grade than did the air turbine handpiece (5.07 and 4.90, respectively). For refinement, the average grade for the air turbine high-speed handpiece was greater than that for the electric motor high-speed handpiece (5.72 and 5.52, respectively). The differences were not statistically significant. The electric motor high-speed handpiece performed as well as, but not better than, the air turbine handpiece in the fabrication of high-quality cavity preparations.
High-speed cell recognition algorithm for ultrafast flow cytometer imaging system.
Zhao, Wanyue; Wang, Chao; Chen, Hongwei; Chen, Minghua; Yang, Sigang
2018-04-01
An optical time-stretch flow imaging system enables high-throughput examination of cells/particles with unprecedented high speed and resolution. A significant amount of raw image data is produced. A high-speed cell recognition algorithm is, therefore, highly demanded to analyze large amounts of data efficiently. A high-speed cell recognition algorithm consisting of two-stage cascaded detection and Gaussian mixture model (GMM) classification is proposed. The first stage of detection extracts cell regions. The second stage integrates distance transform and the watershed algorithm to separate clustered cells. Finally, the cells detected are classified by GMM. We compared the performance of our algorithm with support vector machine. Results show that our algorithm increases the running speed by over 150% without sacrificing the recognition accuracy. This algorithm provides a promising solution for high-throughput and automated cell imaging and classification in the ultrafast flow cytometer imaging platform. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
High-speed cell recognition algorithm for ultrafast flow cytometer imaging system
NASA Astrophysics Data System (ADS)
Zhao, Wanyue; Wang, Chao; Chen, Hongwei; Chen, Minghua; Yang, Sigang
2018-04-01
An optical time-stretch flow imaging system enables high-throughput examination of cells/particles with unprecedented high speed and resolution. A significant amount of raw image data is produced. A high-speed cell recognition algorithm is, therefore, highly demanded to analyze large amounts of data efficiently. A high-speed cell recognition algorithm consisting of two-stage cascaded detection and Gaussian mixture model (GMM) classification is proposed. The first stage of detection extracts cell regions. The second stage integrates distance transform and the watershed algorithm to separate clustered cells. Finally, the cells detected are classified by GMM. We compared the performance of our algorithm with support vector machine. Results show that our algorithm increases the running speed by over 150% without sacrificing the recognition accuracy. This algorithm provides a promising solution for high-throughput and automated cell imaging and classification in the ultrafast flow cytometer imaging platform.
DOT National Transportation Integrated Search
2017-02-01
As a burgeoning literature on high-speed rail development indicates, good station-area planning is a very important prerequisite for the eventual successful operation of a high-speed rail station; it can also trigger opportunities for economic develo...
Evaluation of intrusion detection technologies for high speed rail grade crossings : final report.
DOT National Transportation Integrated Search
2003-12-01
The rail industry is in the process of developing a prototype system for high speed rail. One of the concerns when using high speed rail is the danger of obstructions on the track. This level of danger is much higher than with traditional railway veh...
High speed cryogenic self-acting, shaft seals for liquid rocket turbopumps
NASA Technical Reports Server (NTRS)
Burcham, R. E.
1983-01-01
Three self acting lift pad liquid oxygen face seals and two self acting gaseous helium circumferential seals for high speed liquid oxygen turbopump were evaluated. The development of a technology for reliable, 10 hour life, multiple start seals for use in high speed liquid oxygen turbopumps is discussed.
NASA Technical Reports Server (NTRS)
Tobagi, Fouad A.; Dalgic, Ismail; Pang, Joseph
1990-01-01
The design and implementation of interface units for high speed Fiber Optic Local Area Networks and Broadband Integrated Services Digital Networks are discussed. During the last years, a number of network adapters that are designed to support high speed communications have emerged. This approach to the design of a high speed network interface unit was to implement package processing functions in hardware, using VLSI technology. The VLSI hardware implementation of a buffer management unit, which is required in such architectures, is described.
Subsidence Evaluation of High-Speed Railway in Shenyang Based on Time-Series Insar
NASA Astrophysics Data System (ADS)
Zhang, Yun; Wei, Lianhuan; Li, Jiayu; Liu, Shanjun; Mao, Yachun; Wu, Lixin
2018-04-01
More and more high-speed railway are under construction in China. The slow settlement along high-speed railway tracks and newly-built stations would lead to inhomogeneous deformation of local area, and the accumulation may be a threat to the safe operation of high-speed rail system. In this paper, surface deformation of the newly-built high-speed railway station as well as the railway lines in Shenyang region will be retrieved by time series InSAR analysis using multi-orbit COSMO-SkyMed images. This paper focuses on the non-uniform subsidence caused by the changing of local environment along the railway. The accuracy of the settlement results can be verified by cross validation of the results obtained from two different orbits during the same period.
The Influence Of Team Rating On Running Performance In Elite Gaelic Football.
Mangan, Shane; Malone, Shane; Ryan, Martin; Gahan, Jason Mc; Warne, Joe; Martin, Denise; O'Neill, Cian; Burns, Con; Collins, Kieran
2017-11-06
It is currently unknown how team rating influences running performance in Gaelic football. GPS technologies were used to quantify match-running performance within 5 elite Gaelic football teams over a period of 5 years (2012-2016). In total 780 player data sets were collected over 95 matches. Running performance variables included total distance, high-speed distance (≥17 km h) and the percentage of high-speed distance. Team ratings were determined objectively using the Elo Ratings System for Gaelic football. Reference team rating had trivial effects on total distance (p = 0.011, partial η2 = 0.008) and high-speed distance (p = 0.011, partial η2 = 0.008). Opposition team rating had small effects on total distance (p = 0.005, partial η2 = 0.016) and high-speed distance (p = 0.001, partial η2 = 0.020). Top tier teams cover greater total distances and high-speed distance than lower tier teams. Players cover considerably less total distance and high-speed distance against tier 3 and tier 4 teams. Tier 1 players ran a significantly higher percentage of distance at high-speed, than players who played for tier 2 teams (p = 0.020). The competitive advantage of top tier Gaelic football teams is closely linked with their ability to demonstrate a higher physical intensity than lower tier teams.
Measurements of speed of response of high-speed visible and IR optical detectors
NASA Technical Reports Server (NTRS)
Rowe, H. E.; Osmundson, J. S.
1972-01-01
A technique for measuring speed of response of high speed visible and IR optical detectors to mode-locked Nd:YAG laser pulses is described. Results of measurements of response times of four detectors are presented. Three detectors that can be used as receivers in a 500-MHz optical communication system are tested.
High speed machining of space shuttle external tank liquid hydrogen barrel panel
NASA Technical Reports Server (NTRS)
Hankins, J. D.
1983-01-01
Actual and projected optimum High Speed Machining data for producing shuttle external tank liquid hydrogen barrel panels of aluminum alloy 2219-T87 are reported. The data included various machining parameters; e.g., spindle speeds, cutting speed, table feed, chip load, metal removal rate, horsepower, cutting efficiency, cutter wear (lack of) and chip removal methods.
High speed machining of space shuttle external tank liquid hydrogen barrel panel
NASA Astrophysics Data System (ADS)
Hankins, J. D.
1983-11-01
Actual and projected optimum High Speed Machining data for producing shuttle external tank liquid hydrogen barrel panels of aluminum alloy 2219-T87 are reported. The data included various machining parameters; e.g., spindle speeds, cutting speed, table feed, chip load, metal removal rate, horsepower, cutting efficiency, cutter wear (lack of) and chip removal methods.
40 CFR 85.2215 - Two speed idle test-EPA 91.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Two speed idle test-EPA 91. 85.2215... Tests § 85.2215 Two speed idle test—EPA 91. (a) General requirements—(1) Exhaust gas sampling algorithm...) of this section, consists of an idle mode followed by a high-speed mode. (ii) The second-chance high...
40 CFR 85.2215 - Two speed idle test-EPA 91.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Two speed idle test-EPA 91. 85.2215... Tests § 85.2215 Two speed idle test—EPA 91. (a) General requirements—(1) Exhaust gas sampling algorithm...) of this section, consists of an idle mode followed by a high-speed mode. (ii) The second-chance high...
A CBO Study. Sea Basing and Alternatives for Deploying and Sustaining Ground Combat Forces
2007-07-01
ships in the planned MPF(F) will not be large enough to receive aircraft capable of delivering cargo over intercontinental ranges. A high - speed ... speed roll-on/roll-off ship (top) and an intratheater high - speed vessel (bottom) are shown alongside a notional mobile landing platform (center) with...might be needed to fully support sea-based ground forces. Those other ships could include tankers and high - speed ships for spe- cial
NASA Technical Reports Server (NTRS)
Ludi, LeRoy H.
1961-01-01
Flight tests have been conducted with a single-rotor helicopter to determine the effects of partial-power descents with forward speed, high-speed level turns, pull-outs from autorotation, and high-forward-speed high-rotor-speed autorotation on the flapwise bending and torsional moments of the rotor blade. One blade of the helicopter was equipped at 14 percent and 40 percent of the blade radius with strain gages calibrated to measure moments rather than stresses. The results indicate that the maximum moments encountered in partial-power descents with forward speed tend to be generally reduced from the maximum moments encountered during partid-power descents at zero forward speed. High-speed level turns and pull-outs from auto-rotation caused retreating-blade stall which produced torsional moments (values up to 2,400 inch-pounds). at the 14-percent-radius station that were as large as those encountered during the previous investigations of retreating-blade stall (values up t o 2,500 inch-pounds). High-forward- speed high-rotor-speed autorotation produced flapwise bending moments (values up to 7,200 inch-pounds) at the 40-percent-radius station which were as large as the flapwise bending moments (values up to 7,800 inch-pounds) a t the 14-percent-radius station encountered during partial - power vertical descents. The results of the present investigation (tip-speed ratios up to 0.325 and an unaccelerated level-flight mean lift coefficient of about 0.6), in combination with the related results of at zero forward speed produce the largest rotor-blade vibratory moments. However, inasmuch as these large moments occur only during 1 percent of the cycles and 88 percent of the cycles are at moment values less than 70 percent of these maximum values in partial-power descents, other conditions, such as high-speed flight where the large moments are combined with large percentages of time spent,must not be neglected in any rotor-blade service-life assessment.
Research on high-speed railway's vibration analysis checking based on intelligent mobile terminal
NASA Astrophysics Data System (ADS)
Li, Peigang; Xie, Shulin; Zhao, Xuefeng
2017-04-01
Recently, the development of high-speed railway meets the requirement of society booming and it has gradually become the first choice for long-length journey. Since ensuring the safety and stable operation are of great importance to high-speed trains owing to its unique features, vibration analysis checking is one of main means to be adopted. Due to the popularization of Smartphone, in this research, a novel public-participating method to achieve high-speed railway's vibration analysis checking based on smartphone and an inspection application of high-speed railway line built in the intelligent mobile terminal were proposed. Utilizing the accelerometer, gyroscope, GPS and other high-performance sensors which were integrated in smartphone, the application can obtain multiple parameters like acceleration, angle, etc and pinpoint the location. Therefore, through analyzing the acceleration data in time domain and frequency domain using fast Fourier transform, the research compared much of data from monitoring tests under different measure conditions and measuring points. Furthermore, an idea of establishing a system about analysis checking was outlined in paper. It has been validated that the smartphone-based high-speed railway line inspection system is reliable and feasible on the high-speed railway lines. And it has more advantages, such as convenience, low cost and being widely used. Obviously, the research has important practical significance and broad application prospects.
Professor Jesse W. Beams and the first practical magnetic suspension
NASA Technical Reports Server (NTRS)
Allaire, P. E.; Humphris, R. R.; Lewis, D. W.
1992-01-01
Dr. Jesse W. Beams developed the first practical magnetic suspension for high speed rotating devices. The devices included high speed rotating mirrors, ultracentrifuges, and high speed centrifugal field rotors. A brief biography of Dr. Beams is presented, and the following topics are discussed: (1) early axial magnetic suspension for ultracentrifuges; and (2) magnetic suspension for high centrifugal fields.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petersen, Eric; Mathieu, Olivier; Morones, Anibal
This Final Report documents the entire four years of the project, from October 1, 2013 through September 30, 2017. This project was concerned with the chemical kinetics of fuel blends with high-hydrogen content in the presence of impurities. Emphasis was also on the design and construction of a new, high-pressure turbulent flame speed facility and the use of ignition delay times and flame speeds to elucidate the diluent and impurity effects on the fuel chemistry at gas turbine engine conditions and to also validate the chemical kinetics models. The project was divided into five primary tasks: 1) Project Management andmore » Program Planning; 2) Turbulent Flame Speed Measurements at Atmospheric Pressure; 3) Experiments and Kinetics of Syngas Blends with Impurities; 4) Design and Construction of a High-Pressure Turbulent Flame Speed Facility; and 5) High-Pressure Turbulent Flame Speed Measurements. Details on the execution and results of each of these tasks are provided in the main report.« less
Soap-film coating: High-speed deposition of multilayer nanofilms
Zhang, Renyun; Andersson, Henrik A.; Andersson, Mattias; Andres, Britta; Edlund, Håkan; Edström, Per; Edvardsson, Sverker; Forsberg, Sven; Hummelgård, Magnus; Johansson, Niklas; Karlsson, Kristoffer; Nilsson, Hans-Erik; Norgren, Magnus; Olsen, Martin; Uesaka, Tetsu; Öhlund, Thomas; Olin, Håkan
2013-01-01
The coating of thin films is applied in numerous fields and many methods are employed for the deposition of these films. Some coating techniques may deposit films at high speed; for example, ordinary printing paper is coated with micrometre-thick layers of clay at a speed of tens of meters per second. However, to coat nanometre thin films at high speed, vacuum techniques are typically required, which increases the complexity of the process. Here, we report a simple wet chemical method for the high-speed coating of films with thicknesses at the nanometre level. This soap-film coating technique is based on forcing a substrate through a soap film that contains nanomaterials. Molecules and nanomaterials can be deposited at a thickness ranging from less than a monolayer to several layers at speeds up to meters per second. We believe that the soap-film coating method is potentially important for industrial-scale nanotechnology. PMID:23503102
Hong, Do-Kwan; Joo, Dae-Suk; Woo, Byung-Chul; Koo, Dae-Hyun; Ahn, Chan-Woo
2014-01-01
The objective of the present study was to deal with the rotordynamics of the rotor of an ultra-high speed PM type synchronous motor-generator for a 500 W rated micro gas turbine generator. This paper introduces dynamic analysis, and experiments on the motor-generator. The focus is placed on an analytical approach considering the mechanical dynamic problems. It is essential to deal with dynamic stability at ultra-high speeds. Unbalance response analysis is performed by calculating the unbalance with and without balancing using a balancing machine. Critical speed analysis is performed to determine the operating speed with sufficient separation margin. The unbalance response analysis is compared with the experimental results considering the balancing grade (ISO 1940-1) and predicted vibration displacement with and without balancing. Based on these results, a high-speed motor-generator was successfully developed. PMID:25177804
Experimental quiet engine program
NASA Technical Reports Server (NTRS)
Cornell, W. G.
1975-01-01
Full-scale low-tip-speed fans, a full-scale high-tip-speed fan, scale model versions of fans, and two full-scale high-bypass-ratio turbofan engines, were designed, fabricated, tested, and evaluated. Turbine noise suppression was investigated. Preliminary design studies of flight propulsion system concepts were used in application studies to determine acoustic-economic tradeoffs. Salient results are as follows: tradeoff evaluation of fan tip speed and blade loading; systematic data on source noise characteristics and suppression effectiveness; documentation of high- and low-fan-speed aerodynamic and acoustic technology; aerodynamic and acoustic evaluation of acoustic treatment configurations, casing tip bleed, serrated and variable pitch rotor blades, leaned outlet guide vanes, slotted tip casings, rotor blade shape modifications, and inlet noise suppression; systematic evaluation of aerodynamic and acoustic effects; flyover noise projections of engine test data; turbine noise suppression technology development; and tradeoff evaluation of preliminary design high-fan-speed and low-fan-speed flight engines.
Wang, Weijie; Loke, Desmond; Shi, Luping; Zhao, Rong; Yang, Hongxin; Law, Leong-Tat; Ng, Lung-Tat; Lim, Kian-Guan; Yeo, Yee-Chia; Chong, Tow-Chong; Lacaita, Andrea L
2012-01-01
The quest for universal memory is driving the rapid development of memories with superior all-round capabilities in non-volatility, high speed, high endurance and low power. Phase-change materials are highly promising in this respect. However, their contradictory speed and stability properties present a key challenge towards this ambition. We reveal that as the device size decreases, the phase-change mechanism changes from the material inherent crystallization mechanism (either nucleation- or growth-dominated), to the hetero-crystallization mechanism, which resulted in a significant increase in PCRAM speeds. Reducing the grain size can further increase the speed of phase-change. Such grain size effect on speed becomes increasingly significant at smaller device sizes. Together with the nano-thermal and electrical effects, fast phase-change, good stability and high endurance can be achieved. These findings lead to a feasible solution to achieve a universal memory.
Wang, Weijie; Loke, Desmond; Shi, Luping; Zhao, Rong; Yang, Hongxin; Law, Leong-Tat; Ng, Lung-Tat; Lim, Kian-Guan; Yeo, Yee-Chia; Chong, Tow-Chong; Lacaita, Andrea L.
2012-01-01
The quest for universal memory is driving the rapid development of memories with superior all-round capabilities in non-volatility, high speed, high endurance and low power. Phase-change materials are highly promising in this respect. However, their contradictory speed and stability properties present a key challenge towards this ambition. We reveal that as the device size decreases, the phase-change mechanism changes from the material inherent crystallization mechanism (either nucleation- or growth-dominated), to the hetero-crystallization mechanism, which resulted in a significant increase in PCRAM speeds. Reducing the grain size can further increase the speed of phase-change. Such grain size effect on speed becomes increasingly significant at smaller device sizes. Together with the nano-thermal and electrical effects, fast phase-change, good stability and high endurance can be achieved. These findings lead to a feasible solution to achieve a universal memory. PMID:22496956
Optimal forwarding ratio on dynamical networks with heterogeneous mobility
NASA Astrophysics Data System (ADS)
Gan, Yu; Tang, Ming; Yang, Hanxin
2013-05-01
Since the discovery of non-Poisson statistics of human mobility trajectories, more attention has been paid to understand the role of these patterns in different dynamics. In this study, we first introduce the heterogeneous mobility of mobile agents into dynamical networks, and then investigate packet forwarding strategy on the heterogeneous dynamical networks. We find that the faster speed and the higher proportion of high-speed agents can enhance the network throughput and reduce the mean traveling time in random forwarding. A hierarchical structure in the dependence of high-speed is observed: the network throughput remains unchanged at small and large high-speed value. It is also interesting to find that a slightly preferential forwarding to high-speed agents can maximize the network capacity. Through theoretical analysis and numerical simulations, we show that the optimal forwarding ratio stems from the local structural heterogeneity of low-speed agents.
High-speed microjet generation using laser-induced vapor bubbles
NASA Astrophysics Data System (ADS)
Oudalov, Nikolai; Tagawa, Yoshiyuki; Peters, Ivo; Visser, Claas-Willem; van der Meer, Devaraj; Prosperetti, Andrea; Sun, Chao; Lohse, Detlef
2011-11-01
The generation and evolution of microjets are studied both experimentally and numerically. The jets are generated by focusing a laser pulse into a microscopic capillary tube (~50 μm) filled with water-based red dye. A vapor bubble is created instantly after shooting the laser (<1 μs), sending out a shockwave towards the curved free surface at which the high-speed microjet forms. The process of jet formation is captured using high-speed recordings at 1.0 × 106 fps. The velocity of the microjets can reach speeds of ~850 m/s while maintaining a very sharp geometry. The high-speed recordings enable us to study the effect of several parameters on the jet velocity, e.g. the absorbed energy and the distance between the laser spot and the free surface.The results show a clear dependence on these variables, even for supersonic speeds. Comparisons with numerical simulations confirm the nature of these dependencies.
Mamalis, Andrew; Koo, Eugene; Isseroff, R Rivkah; Murphy, William; Jagdeo, Jared
2015-01-01
Skin fibrosis is a significant medical problem that leads to a functional, aesthetic, and psychosocial impact on quality-of-life. Light-emitting diode-generated 633-nm red light (LED-RL) is part of the visible light spectrum that is not known to cause DNA damage and is considered a safe, non-invasive, inexpensive, and portable potential alternative to ultraviolet phototherapy that may change the treatment paradigm of fibrotic skin disease. The goal of our study was to investigate the how reactive oxygen species (ROS) free radicals generated by high fluence LED-RL inhibit the migration of skin fibroblasts, the main cell type involved in skin fibrosis. Fibroblast migration speed is increased in skin fibrosis, and we studied cellular migration speed of cultured human skin fibroblasts as a surrogate measure of high fluence LED-RL effect on fibroblast function. To ascertain the inhibitory role of LED-RL generated ROS on migration speed, we hypothesized that resveratrol, a potent antioxidant, could prevent the photoinhibitory effects of high fluence LED-RL on fibroblast migration speed. High fluence LED-RL generated ROS were measured by flow cytometry analysis using dihydrorhodamine (DHR). For purposes of comparison, we assessed the effects of ROS generated by hydrogen peroxide (H2O2) on fibroblast migration speed and the ability of resveratrol, a well known antioxidant, to prevent LED-RL and H2O2 generated ROS-associated changes in fibroblast migration speed. To determine whether resveratrol could prevent the high fluence LED-RL ROS-mediated photoinhibition of human skin fibroblast migration, treated cells were incubated with resveratrol at concentrations of 0.0001% and 0.001% for 24 hours, irradiated with high fluences LED-RL of 480, 640, and 800 J/cm2. High fluence LED-RL increases intracellular fibroblast ROS and decreases fibroblast migration speed. LED-RL at 480, 640 and 800 J/cm2 increased ROS levels to 132.8%, 151.0%, and 158.4% relative to matched controls, respectively. These LED-RL associated increases in ROS were prevented by pretreating cells with 0.0001% or 0.001% resveratrol. Next, we quantified the effect of hydrogen peroxide (H2O2)-associated ROS on fibroblast migration speed, and found that while H2O2-associated ROS significantly decreased relative fibroblast migration speed, pretreatment with 0.0001% or 0.001% resveratrol significantly prevented the decreases in migration speed. Furthermore, we found that LED-RL at 480, 640 and 800 J/cm2 decreased fibroblast migration speed to 83.0%, 74.4%, and 68.6% relative to matched controls, respectively. We hypothesized that these decreases in fibroblast migration speed were due to associated increases in ROS generation. Pretreatment with 0.0001% and 0.001% resveratrol prevented the LED-RL associated decreases in migration speed. High fluence LED-RL increases ROS and is associated with decreased fibroblast migration speed. We provide mechanistic support that the decreased migration speed associated with high fluence LED-RL is mediated by ROS, by demonstrating that resveratrol prevents high fluence LED-RL associated migration speed change. These data lend support to an increasing scientific body of evidence that high fluence LED-RL has anti-fibrotic properties. We hypothesize that our findings may result in a greater understanding of the fundamental mechanisms underlying visible light interaction with skin and we anticipate clinicians and other researchers may utilize these pathways for patient benefit.
Metabolic power demands of rugby league match play.
Kempton, Tom; Sirotic, Anita Claire; Rampinini, Ermanno; Coutts, Aaron James
2015-01-01
To describe the metabolic demands of rugby league match play for positional groups and compare match distances obtained from high-speed-running classifications with those derived from high metabolic power. Global positioning system (GPS) data were collected from 25 players from a team competing in the National Rugby League competition over 39 matches. Players were classified into positional groups (adjustables, outside backs, hit-up forwards, and wide-running forwards). The GPS devices provided instantaneous raw velocity data at 5 Hz, which were exported to a customized spreadsheet. The spreadsheet provided calculations for speed-based distances (eg, total distance; high-speed running, >14.4 km/h; and very-high-speed running, >18.1 km/h) and metabolic-power variables (eg, energy expenditure; average metabolic power; and high-power distance, >20 W/kg). The data show that speed-based distances and metabolic power varied between positional groups, although this was largely related to differences in time spent on field. The distance covered at high running speed was lower than that obtained from high-power thresholds for all positional groups; however, the difference between the 2 methods was greatest for hit-up forwards and adjustables. Positional differences existed for all metabolic parameters, although these are at least partially related to time spent on the field. Higher-speed running may underestimate the demands of match play when compared with high-power distance-although the degree of difference between the measures varied by position. The analysis of metabolic power may complement traditional speed-based classifications and improve our understanding of the demands of rugby league match play.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanson, C.E.; Abbot, P.; Dyer, I.
1993-01-01
Noise levels from magnetically-levitated trains (maglev) at very high speed may be high enough to cause environmental noise impact in residential areas. Aeroacoustic sources dominate the sound at high speeds and guideway vibrations generate noticeable sound at low speed. In addition to high noise levels, the startle effect as a result of sudden onset of sound from a rapidly moving nearby maglev vehicle may lead to increased annoyance to neighbors of a maglev system. The report provides a base for determining the noise consequences and potential mitigation for a high speed maglev system in populated areas of the United States.more » Four areas are included in the study: (1) definition of noise sources; (2) development of noise criteria; (3) development of design guidelines; and (4) recommendations for a noise testing facility.« less
The effect of the chopper on granules from wet high-shear granulation using a PMA-1 granulator.
Briens, Lauren; Logan, Ryan
2011-12-01
Chopper presence and then chopper speed was varied during wet high shear granulation of a placebo formulation using a PMA-1 granulator while also varying the impeller speed. The granules were extensively analyzed for differences due to the chopper. The effect of the chopper on the granules varied with impeller speed from no effect at a low impeller speed of 300 rpm to flow interruptions at an impeller speed of 700 rpm to minimal impact at very high impeller speeds as caking at the bowl perimeter obscured the effect of the chopper on the flow pattern. Differences in the granule flowability were minimal. However, it was concluded that the largest fraction of optimal granules would be obtained at an impeller speed of 700 rpm with the chopper at 1,000 rpm allowing balances between flow establishment, segregation, and centrifugal forces.
NASA Astrophysics Data System (ADS)
Niwa, Yoshimitsu; Matsuzaki, Jun; Yokokura, Kunio
The high-speed vacuum circuit breaker, which forced the fault current to zero was investigated. The test circuit breaker consisted of a vacuum interrupter and a high frequency current source. The vacuum interrupter, which had the axial magnetic field electrode and the disk shape electrode, was tested. The arcing period of the high-speed vacuum circuit breaker is much shorter than that of conventional circuit breaker. The arc behavior of the test electrodes immediately after the contact separation was observed by a high-speed video camcorder. The relation between the current waveform just before the current zero and the interruption ability by varying the high frequency current source was investigated experimentally. The results demonstrate the interruption ability and the arc behavior of the high-speed vacuum circuit breaker. The high current interruption was made possible by the low current period just before the current zero, although the arcing time is short and the arc is concentrated.
High-Speed Photography with Computer Control.
ERIC Educational Resources Information Center
Winters, Loren M.
1991-01-01
Describes the use of a microcomputer as an intervalometer for the control and timing of several flash units to photograph high-speed events. Applies this technology to study the oscillations of a stretched rubber band, the deceleration of high-speed projectiles in water, the splashes of milk drops, and the bursts of popcorn kernels. (MDH)
DOT National Transportation Integrated Search
2017-02-01
As a burgeoning literature on high-speed rail development indicates, good station-area planning is a very important prerequisite for the : eventual successful operation of a high-speed rail station; it can also trigger opportunities for economic deve...
Comparison of Drop and Wind-Tunnel Experiments on Bomb Drag at High Subsonic Speeds
NASA Technical Reports Server (NTRS)
Gothert, B.
1948-01-01
The drag coefficients of bombs at high velocities velocity of fall was 97 percent of the speed of sound) (the highest are determined by drop tests and compared with measurements taken in the DVL high-speed closed wind tunnel and the open jet at AVA - Gottingen.
Rounding Technique for High-Speed Digital Signal Processing
NASA Technical Reports Server (NTRS)
Wechsler, E. R.
1983-01-01
Arithmetic technique facilitates high-speed rounding of 2's complement binary data. Conventional rounding of 2's complement numbers presents problems in high-speed digital circuits. Proposed technique consists of truncating K + 1 bits then attaching bit in least significant position. Mean output error is zero, eliminating introducing voltage offset at input.
Calibration and test capabilities of the Langley 7- by 10- foot high speed tunnel
NASA Technical Reports Server (NTRS)
Fox, C. H., Jr.; Huffman, J. K.
1977-01-01
The results of a new subsonic calibration of the Langley 7 by 10 foot high speed tunnel with the test section in a solid wall configuration are presented. A description of the test capabilities of the 7 by 10 foot high speed tunnel is also given.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-08
... High-Speed Train Project Fresno to Bakersfield Section AGENCY: Federal Railroad Administration (FRA... Impact Statement (EIS) that has been prepared for the California High-Speed Train (HST) Project Fresno to... lead federal agency and the California High-Speed Rail Authority (Authority) is the lead state agency...
78 FR 22811 - Special Local Regulations; Mayaguez Grand Prix, Mayaguez Bay; Mayaguez, PR
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-17
..., a high speed boat race. The event is scheduled to take place on Sunday, June 9, 2013. Approximately 30 high- speed power boats will be participating in the races. The special local regulation is... area, where all persons and vessels, except those persons and vessels participating in the high-speed...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-08
... Supplemental Draft Environmental Impact Statement for the DesertXpress High-Speed Passenger Rail Project AGENCY... for the DesertXpress High- Speed Passenger Train Project (Project). FRA is the lead agency for the... involve the construction and operation of an interstate high-speed passenger train system between...
78 FR 7331 - SLR; Fajardo Offshore Grand Prix; Rada Fajardo; Fajardo, PR
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-01
... waters of Rada Fajardo in Fajardo, Puerto Rico during the Fajardo Offshore Grand Prix, a high speed boat race. The event is scheduled to take place on Sunday, March 17, 2013. Approximately 30 high-speed power... vessels participating in the high-speed boat races, are prohibited from entering, transiting through...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-26
... Supplemental Draft Environmental Impact Statement for the California High-Speed Train Project Fresno to... of the California High- Speed Train (HST) Project (Project). FRA is the lead Federal agency and the California High-Speed Rail Authority (Authority) is the lead state agency for the environmental review...
ERIC Educational Resources Information Center
Deliyski, Dimitar D.; Hillman, Robert E.; Mehta, Daryush D.
2015-01-01
Purpose: The authors discuss the rationale behind the term "laryngeal high-speed videoendoscopy" to describe the application of high-speed endoscopic imaging techniques to the visualization of vocal fold vibration. Method: Commentary on the advantages of using accurate and consistent terminology in the field of voice research is…
Complete de-Dopplerization and acoustic holography for external noise of a high-speed train.
Yang, Diange; Wen, Junjie; Miao, Feng; Wang, Ziteng; Gu, Xiaoan; Lian, Xiaomin
2016-09-01
Identification and measurement of moving sound sources are the bases for vehicle noise control. Acoustic holography has been applied in successfully identifying the moving sound source since the 1990s. However, due to the high demand for the accuracy of holographic data, currently the maximum velocity achieved by acoustic holography is just above 100 km/h. The objective of this study was to establish a method based on the complete Morse acoustic model to restore the measured signal in high-speed situations, and to propose a far-field acoustic holography method applicable for high-speed moving sound sources. Simulated comparisons of the proposed far-field acoustic holography with complete Morse model, the acoustic holography with simplified Morse model and traditional delay-and-sum beamforming were conducted. Experiments with a high-speed train running at the speed of 278 km/h validated the proposed far-field acoustic holography. This study extended the applications of acoustic holography to high-speed situations and established the basis for quantitative measurements of far-field acoustic holography.
Investigation of Blade Impulsive Noise on a Scaled Fully Articulated Rotor System
NASA Technical Reports Server (NTRS)
Scheiman, James; Hoad, Danny R.
1977-01-01
Helicopter impulsive noise tests were conducted in the Langley V/STOL tunnel with an articulated rotor system. The tests demonstrated that impulsive noise could be simulated for low-speed forward flight with low descent rates and also in the high-speed level flight. For the low forward speed condition, the noise level was highly sensitive to small changes in descent rate. For the high-speed condition, the noise level was increased with an increase in rotor thrust.
Power Conditioning for High-Speed Tracked Vehicles
DOT National Transportation Integrated Search
1971-01-01
The linear induction motor is to provide the propulsion of high-speed tracked vehicles; speed and brake control of the propulsion motor is essential for vehicle operation. The purpose of power conditioning is to provide the power matching interface b...
Power Conditioning for High Speed Tracked Vehicles
DOT National Transportation Integrated Search
1973-01-01
The linear induction motor is to provide the propulsion of high-speed tracked vehicles; speed and brake control of the propulsion motor is essential for vehicle operation. The purpose of power conditioning is to provide the power matching interface b...
DOT National Transportation Integrated Search
1994-06-01
Advanced high speed fixed guideway transportation systems such as magnetic levitation systems have speed, acceleration, : and banking capabilities which present new guideway design issues. This increased performance results in new concerns : for pass...
NASA Astrophysics Data System (ADS)
Shin, Jaewook; Bosworth, Bryan T.; Foster, Mark A.
2017-02-01
The process of multiple scattering has inherent characteristics that are attractive for high-speed imaging with high spatial resolution and a wide field-of-view. A coherent source passing through a multiple-scattering medium naturally generates speckle patterns with diffraction-limited features over an arbitrarily large field-of-view. In addition, the process of multiple scattering is deterministic allowing a given speckle pattern to be reliably reproduced with identical illumination conditions. Here, by exploiting wavelength dependent multiple scattering and compressed sensing, we develop a high-speed 2D time-stretch microscope. Highly chirped pulses from a 90-MHz mode-locked laser are sent through a 2D grating and a ground-glass diffuser to produce 2D speckle patterns that rapidly evolve with the instantaneous frequency of the chirped pulse. To image a scene, we first characterize the high-speed evolution of the generated speckle patterns. Subsequently we project the patterns onto the microscopic region of interest and collect the total light from the scene using a single high-speed photodetector. Thus the wavelength dependent speckle patterns serve as high-speed pseudorandom structured illumination of the scene. An image sequence is then recovered using the time-dependent signal received by the photodetector, the known speckle pattern evolution, and compressed sensing algorithms. Notably, the use of compressed sensing allows for reconstruction of a time-dependent scene using a highly sub-Nyquist number of measurements, which both increases the speed of the imager and reduces the amount of data that must be collected and stored. We will discuss our experimental demonstration of this approach and the theoretical limits on imaging speed.
NASA Astrophysics Data System (ADS)
Zhang, Zhiming; Huang, Ying; Bridgelall, Raj; Palek, Leonard; Strommen, Robert
2015-06-01
Weigh-in-motion (WIM) measurement has been widely used for weight enforcement, pavement design, freight management, and intelligent transportation systems to monitor traffic in real-time. However, to use such sensors effectively, vehicles must exit the traffic stream and slow down to match their current capabilities. Hence, agencies need devices with higher vehicle passing speed capabilities to enable continuous weight measurements at mainline speeds. The current practices for data acquisition at such high speeds are fragmented. Deployment configurations and settings depend mainly on the experiences of operation engineers. To assure adequate data, most practitioners use very high frequency measurements that result in redundant samples, thereby diminishing the potential for real-time processing. The larger data memory requirements from higher sample rates also increase storage and processing costs. The field lacks a sampling design or standard to guide appropriate data acquisition of high-speed WIM measurements. This study develops the appropriate sample rate requirements as a function of the vehicle speed. Simulations and field experiments validate the methods developed. The results will serve as guidelines for future high-speed WIM measurements using in-pavement strain-based sensors.
Dynamic Projection Mapping onto Deforming Non-Rigid Surface Using Deformable Dot Cluster Marker.
Narita, Gaku; Watanabe, Yoshihiro; Ishikawa, Masatoshi
2017-03-01
Dynamic projection mapping for moving objects has attracted much attention in recent years. However, conventional approaches have faced some issues, such as the target objects being limited to rigid objects, and the limited moving speed of the targets. In this paper, we focus on dynamic projection mapping onto rapidly deforming non-rigid surfaces with a speed sufficiently high that a human does not perceive any misalignment between the target object and the projected images. In order to achieve such projection mapping, we need a high-speed technique for tracking non-rigid surfaces, which is still a challenging problem in the field of computer vision. We propose the Deformable Dot Cluster Marker (DDCM), a novel fiducial marker for high-speed tracking of non-rigid surfaces using a high-frame-rate camera. The DDCM has three performance advantages. First, it can be detected even when it is strongly deformed. Second, it realizes robust tracking even in the presence of external and self occlusions. Third, it allows millisecond-order computational speed. Using DDCM and a high-speed projector, we realized dynamic projection mapping onto a deformed sheet of paper and a T-shirt with a speed sufficiently high that the projected images appeared to be printed on the objects.
Foraging at the edge of the world: low-altitude, high-speed manoeuvering in barn swallows
Warrick, Douglas R.; Hedrick, Tyson L.; Crandell, Kristen E.
2016-01-01
While prior studies of swallow manoeuvering have focused on slow-speed flight and obstacle avoidance in still air, swallows survive by foraging at high speeds in windy environments. Recent advances in field-portable, high-speed video systems, coupled with precise anemometry, permit measures of high-speed aerial performance of birds in a natural state. We undertook the present study to test: (i) the manner in which barn swallows (Hirundo rustica) may exploit wind dynamics and ground effect while foraging and (ii) the relative importance of flapping versus gliding for accomplishing high-speed manoeuvers. Using multi-camera videography synchronized with wind-velocity measurements, we tracked coursing manoeuvers in pursuit of prey. Wind speed averaged 1.3–2.0 m s−1 across the atmospheric boundary layer, exhibiting a shear gradient greater than expected, with instantaneous speeds of 0.02–6.1 m s−1. While barn swallows tended to flap throughout turns, they exhibited reduced wingbeat frequency, relying on glides and partial bounds during maximal manoeuvers. Further, the birds capitalized on the near-earth wind speed gradient to gain kinetic and potential energy during both flapping and gliding turns; providing evidence that such behaviour is not limited to large, fixed-wing soaring seabirds and that exploitation of wind gradients by small aerial insectivores may be a significant aspect of their aeroecology. This article is part of the themed issue ‘Moving in a moving medium: new perspectives on flight'. PMID:27528781
Sleep-related vehicle crashes on low speed roads.
Filtness, A J; Armstrong, K A; Watson, A; Smith, S S
2017-02-01
Very little is known about the characteristics of sleep related (SR) crashes occurring on low speed roads compared with current understanding of the role of sleep in crashes occurring on high speed roads e.g. motorways. To address this gap, analyses were undertaken to identify the differences and similarities between (1) SR crashes occurring on roads with low (≤60km/h) and high (≥100km/h) speed limits, and (2) SR crashes and not-SR crashes occurring on roads with low speed limits. Police reports of all crashes occurring on low and high speed roads over a ten year period between 2000 and 2009 were examined for Queensland, Australia. Attending police officers identified all crash attributes, including 'fatigue/fell asleep', which indicates that the police believe the crash to have a causal factor relating to falling asleep, sleepiness due to sleep loss, time of day, or fatigue. Driver or rider involvement in crashes was classified as SR or not-SR. All crash-associated variables were compared using Chi-square tests (Cramer's V=effect size). A series of logistic regression was performed, with driver and crash characteristics as predictors of crash category. A conservative alpha level of 0.001 determined statistical significance. There were 440,855 drivers or riders involved in a crash during this time; 6923 (1.6%) were attributed as SR. SR crashes on low speed roads have similar characteristics to those on high speed roads with young (16-24y) males consistently over represented. SR crashes on low speed roads are noticeably different to not-SR crashes in the same speed zone in that male and young novice drivers are over represented and outcomes are more severe. Of all the SR crashes identified, 41% occurred on low speed roads. SR crashes are not confined to high speed roads. Low speed SR crashes warrant specific investigation because they occur in densely populated areas, exposing a greater number of people to risk and have more severe outcomes than not-SR crashes on the same low speed roads. Copyright © 2016 Elsevier Ltd. All rights reserved.
First Annual High-Speed Research Workshop, part 3
NASA Technical Reports Server (NTRS)
Whitehead, Allen H., Jr. (Compiler)
1992-01-01
The First High-Speed Research (HSR) Workshop was hosted by NASA LaRC and was held 14-16 May 1991, in Williamsburg, Virginia. The purpose of the workshop was to provide a national forum for the government, industry, and university participants to present and discuss important technology issues related to the development of a commercially viable, environmentally compatible, U.S. High-Speed Civil Transport. The workshop sessions are organized around the major task elements in NASA's Phase 1 High-Speed Research Program which basically addresses the environmental issues of atmospheric emissions, community noise, and sonic boom.
Trend on High-speed Power Line Communication Technology
NASA Astrophysics Data System (ADS)
Ogawa, Osamu
High-speed power line communication (PLC) is useful technology to easily build the communication networks, because construction of new infrastructure is not necessary. In Europe and America, PLC has been used for broadband networks since the beginning of 21th century. In Japan, high-speed PLC was deregulated only indoor usage in 2006. Afterward it has been widely used for home area network, LAN in hotels and school buildings and so on. And recently, PLC is greatly concerned as communication technology for smart grid network. In this paper, the author surveys the high-speed PLC technology and its current status.
High speed turboprops for executive aircraft, potential and recent test results
NASA Technical Reports Server (NTRS)
Mikkelson, D. C.; Mitchell, G. A.
1980-01-01
Four high speed propeller models were designed and tested in an 8x6 foot wind tunnel in order to evaluate the potential of advanced propeller technology. Results from these tests show that the combination of: increased blade number, aerodynamically integrated propeller/nacelles, reduced blade thickness, spinner area ruling, and blade sweep are important in achieving high propeller efficiency at the high cruise speeds.
Horvath, C; Lewis, I; Watson, B
2012-03-01
In Australia, young drivers aged 17-24 years, and particularly males, have the highest risk of being involved in a fatal crash. Investigation of young drivers' beliefs allows for a greater understanding of their involvement in risky behaviours, such as speeding, as beliefs are associated with intentions, the antecedent to behaviour. The theory of planned behaviour (TPB) was used to conceptualise beliefs using a scenario based questionnaire distributed to licenced drivers (N=398). The questionnaire measured individual's beliefs and intentions to speed in a particular situation. Consistent with a TPB-based approach, the beliefs of those with low intentions to speed ('low intenders') were compared with the beliefs of those with high intentions ('high intenders') with such comparisons conducted separately for males and females. Overall, significant differences in the beliefs held by low and high intenders and for both females and males were found. Specifically, for females, it was found that high intenders were significantly more likely to perceive advantages of speeding, less likely to perceive disadvantages, and more likely to be encouraged to speed on familiar and inappropriately signed roads than female low intenders. Females, however, did not differ in their perceptions of support from friends, with all females reporting some level of disapproval from most friends and all females (i.e., low and high intenders) reporting approval to speed from their male friends. The results for males revealed that high intenders were significantly more likely to speed on familiar and inappropriately signed roads as well as having greater perceptions of support from all friends, except from those friends with whom they worked. Low and high intending males did not differ in their perceptions of the advantages and disadvantages of speeding, with the exception of feelings of excitement whereby high intenders reported speeding to be more exciting than low intenders. The findings are discussed in terms of how they may directly inform the content of mass media and public education campaigns aimed at encouraging young drivers to slow down. Copyright © 2011 Elsevier Ltd. All rights reserved.
High-speed imaging system for observation of discharge phenomena
NASA Astrophysics Data System (ADS)
Tanabe, R.; Kusano, H.; Ito, Y.
2008-11-01
A thin metal electrode tip instantly changes its shape into a sphere or a needlelike shape in a single electrical discharge of high current. These changes occur within several hundred microseconds. To observe these high-speed phenomena in a single discharge, an imaging system using a high-speed video camera and a high repetition rate pulse laser was constructed. A nanosecond laser, the wavelength of which was 532 nm, was used as the illuminating source of a newly developed high-speed video camera, HPV-1. The time resolution of our system was determined by the laser pulse width and was about 80 nanoseconds. The system can take one hundred pictures at 16- or 64-microsecond intervals in a single discharge event. A band-pass filter at 532 nm was placed in front of the camera to block the emission of the discharge arc at other wavelengths. Therefore, clear images of the electrode were recorded even during the discharge. If the laser was not used, only images of plasma during discharge and thermal radiation from the electrode after discharge were observed. These results demonstrate that the combination of a high repetition rate and a short pulse laser with a high speed video camera provides a unique and powerful method for high speed imaging.
Assessment of rural soundscapes with high-speed train noise.
Lee, Pyoung Jik; Hong, Joo Young; Jeon, Jin Yong
2014-06-01
In the present study, rural soundscapes with high-speed train noise were assessed through laboratory experiments. A total of ten sites with varying landscape metrics were chosen for audio-visual recording. The acoustical characteristics of the high-speed train noise were analyzed using various noise level indices. Landscape metrics such as the percentage of natural features (NF) and Shannon's diversity index (SHDI) were adopted to evaluate the landscape features of the ten sites. Laboratory experiments were then performed with 20 well-trained listeners to investigate the perception of high-speed train noise in rural areas. The experiments consisted of three parts: 1) visual-only condition, 2) audio-only condition, and 3) combined audio-visual condition. The results showed that subjects' preference for visual images was significantly related to NF, the number of land types, and the A-weighted equivalent sound pressure level (LAeq). In addition, the visual images significantly influenced the noise annoyance, and LAeq and NF were the dominant factors affecting the annoyance from high-speed train noise in the combined audio-visual condition. In addition, Zwicker's loudness (N) was highly correlated with the annoyance from high-speed train noise in both the audio-only and audio-visual conditions. © 2013.
Evaluating safety and operations of high-speed signalized intersections.
DOT National Transportation Integrated Search
2010-03-01
This Final Report reviews a research effort to evaluate the safety and operations of high-speed intersections in the State of : Oregon. In particular, this research effort focuses on four-leg, signalized intersections with speed limits of 45 mph or :...
Evaluating safety and operation of high-speed intersections.
DOT National Transportation Integrated Search
2010-03-01
This Final Report reviews a research effort to evaluate the safety and operations of high-speed intersections in the State of : Oregon. In particular, this research effort focuses on four-leg, signalized intersections with speed limits of 45 mph or :...
On-line high-speed rail defect detection.
DOT National Transportation Integrated Search
2004-10-01
This report presents the results of phase 2 of the project On-line high-speed rail defect detection aimed at improving the reliability and the speed of current defect detection in rails. Ultrasonic guided waves, traveling in the rail running di...
DOT National Transportation Integrated Search
1995-10-31
Proposed high-speed ground transportation systems, such as Maglev, may have motion characteristics : affecting passenger comfort which set them apart from anything previously experienced. Operating at : aircraft speeds along rights-of-way established...
Results of winglet development studies for DC-10 derivatives
NASA Technical Reports Server (NTRS)
Shollenberger, C. A.; Humphreys, J. W.; Heiberger, F. S.; Pearson, R. M.
1983-01-01
The results of investigations into the application of winglets to the DC-10 aircraft are presented. The DC-10 winglet configuration was developed and its cruise performance determined in a previous investigation. This study included high speed and low speed wind tunnel tests to evaluate aerodynamic characteristics, and a subsonic flutter wind tunnel test with accompanying analysis and evaluation of results. Additionally, a configuration integration study employed the results of the wind tunnel studies to determine the overall impact of the installation of winglets on the DC-10 aircraft. Conclusions derived from the high speed and low speed tests indicate that the winglets had no significant effects on the DC-10 stability characteristics or high speed buffet. It was determined that winglets had a minimal effect on aircraft lift characteristics and improved the low speed aircraft drag under high lift conditions. The winglets affected the DC-10 flutter characteristics by reducing the flutter speed of the basic critical mode and introducing a new critical mode involving outer wing torsion and longitudinal bending. The overall impact of winglets was determined to be of sufficient benefit to merit flight evaluation.
Plasma measurement by optical visualization and triple probe method under high-speed impact
NASA Astrophysics Data System (ADS)
Sakai, T.; Umeda, K.; Kinoshita, S.; Watanabe, K.
2017-02-01
High-speed impact on spacecraft by space debris poses a threat. When a high-speed projectile collides with target, it is conceivable that the heat created by impact causes severe damage at impact point. Investigation of the temperature is necessary for elucidation of high-speed impact phenomena. However, it is very difficult to measure the temperature with standard methods for two main reasons. One reason is that a thermometer placed on the target is instantaneously destroyed upon impact. The other reason is that there is not enough time resolution to measure the transient temperature changes. In this study, the measurement of plasma induced by high-speed impact was investigated to estimate temperature changes near the impact point. High-speed impact experiments were performed with a vertical gas gun. The projectile speed was approximately 700 m/s, and the target material was A5052. The experimental data to calculate the plasma parameters of electron temperature and electron density were measured by triple probe method. In addition, the diffusion behavior of plasma was observed by optical visualization technique using high-speed camera. The frame rate and the exposure time were 260 kfps and 1.0 μs, respectively. These images are considered to be one proof to show the validity of plasma measurement. The experimental results showed that plasma signals were detected for around 70 μs, and the rising phase of the wave form was in good agreement with timing of optical visualization image when the plasma arrived at the tip of triple probe.
DOT National Transportation Integrated Search
1999-11-01
This report presents the results of a study to evaluate the aerodynamic (air velocity and pressure) effects of the new high-speed trains on the safety and comfort of people, and the impacts on physical facilities, in and around Northeast Corridor sta...
LTA application of a long trailing wire high speed/low weight reeling system
NASA Technical Reports Server (NTRS)
Werb, D. F.
1975-01-01
The successful development of a unique yet simple reeling system for handling long trailing tensile members at high speeds is described. This high speed when combined with the system simplicity, low weight and effective motive power consumption make this reeling system particularly attractive to LTA planners and designers for numerous LTA missions.
High-Speed Video Analysis of Damped Harmonic Motion
ERIC Educational Resources Information Center
Poonyawatpornkul, J.; Wattanakasiwich, P.
2013-01-01
In this paper, we acquire and analyse high-speed videos of a spring-mass system oscillating in glycerin at different temperatures. Three cases of damped harmonic oscillation are investigated and analysed by using high-speed video at a rate of 120 frames s[superscript -1] and Tracker Video Analysis (Tracker) software. We present empirical data for…
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-14
... for the California High-Speed Train Project Fresno to Bakersfield Section AGENCY: Federal Railroad... High-Speed Train (HST) Project (Project) issued on June 20, 2012 has been extended and shall now end on October 19, 2012. FRA and the Project sponsor, the California High Speed Rail Authority (Authority), made...
Smoother Conversion From Helicopter To Airplane
NASA Technical Reports Server (NTRS)
Stroub, Robert H.
1992-01-01
Proposed high-speed rotorcraft converts between rotating-wing flight and fixed-wing flight without high vibration. Functions both while hovering and moving at transonic or low supersonic speeds. Aircraft takes off and hovers like ordinary helicopter. After accelerating to sufficient forward speed for conversion, rotor blades retracted into large, rotating hub fairing. Rotation then stopped. Two blades extended to serve as wings, and aircraft accelerates to its cruising speed.
Huber, R; Adler, D C; Srinivasan, V J; Fujimoto, J G
2007-07-15
A Fourier domain mode-locked (FDML) laser at 1050 nm for ultra-high-speed optical coherence tomography (OCT) imaging of the human retina is demonstrated. Achievable performance, physical limitations, design rules, and scaling principles for FDML operation and component choice in this wavelength range are discussed. The fiber-based FDML laser operates at a sweep rate of 236 kHz over a 63 nm tuning range, with 7 mW average output power. Ultra-high-speed retinal imaging is demonstrated at 236,000 axial scans per second. This represents a speed improvement of approximately10x over typical high-speed OCT systems, paving the way for densely sampled volumetric data sets and new imaging protocols.
Yan, Rongwei; Shen, Jie; Liu, Xiaojing; Zou, Yong; Xu, Xinjun
2018-05-01
The objective of this study was to develop a consecutive preparation method for the isolation and purification of hainanmurpanin, meranzin, and phebalosin from leaves of Murraya exotica L. The process involved supercritical fluid extraction with CO 2 , solvent extraction, and two-step high-speed countercurrent chromatography. Pressure, temperature, and the volume of entrainer were optimized as 27 MPa, 52°C, and 60 mL by response surface methodology in supercritical fluid extraction with CO 2 , and the yield of the crude extracts was 7.91 g from 100 g of leaves. Subsequently, 80% methanol/water was used to extract and condense the three compounds from the crude extracts, and 4.23 g of methanol/water extracts was obtained. Then, a two-step high-speed countercurrent chromatography procedure was developed for the isolation of the three target compounds from methanol/water extracts, including conventional high-speed countercurrent chromatography for further enrichment and consecutive high-speed countercurrent chromatography for purification. The yield of concentrates from high-speed countercurrent chromatography was 2.50 g from 4.23 g of methanol/water extracts. Finally, the consecutive high-speed countercurrent chromatography produced 103.2 mg of hainanmurpanin, 244.7 mg of meranzin, and 255.4 mg of phebalosin with purities up to 97.66, 99.36, and 98.64%, respectively, from 900 mg of high-speed countercurrent chromatography concentrates in one run of three consecutive sample loadings without exchanging a solvent system. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Aerodynamic effects of high-speed passenger trains on other trains.
DOT National Transportation Integrated Search
2002-04-01
This study assesses the potential safety risks associated with aerodynamic loads produced by the Acela high-speed train when passing freight and bi-level commuter passenger cars. Acela operates at speeds up to 150 mph, on tangent tracks adjacent to n...
High-speed rail aerodynamic assessment and mitigation report : final report.
DOT National Transportation Integrated Search
2015-12-01
This report advances the current state of knowledge, as well as shared understanding and evaluation of present procedures used to : mitigate the impacts effects from high-speed trains (HST) operating at speeds between 110 mph and 250 mph. This work g...
Engineering studies in support of the development of high-speed track geometry specifications
DOT National Transportation Integrated Search
1997-03-01
The Federal Railroad Administration has been directing engineering studies to support the development of high speed track geometry standards. These standards are intended to cover train operating speeds from 110 mph to 200 mph. The studies conducted ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
TerraTek, A Schlumberger Company
2008-12-31
The two phase program addresses long-term developments in deep well and hard rock drilling. TerraTek believes that significant improvements in drilling deep hard rock will be obtained by applying ultra-high rotational speeds (greater than 10,000 rpm). The work includes a feasibility of concept research effort aimed at development that will ultimately result in the ability to reliably drill 'faster and deeper' possibly with smaller, more mobile rigs. The principle focus is on demonstration testing of diamond bits rotating at speeds in excess of 10,000 rpm to achieve high rate of penetration (ROP) rock cutting with substantially lower inputs of energymore » and loads. The significance of the 'ultra-high rotary speed drilling system' is the ability to drill into rock at very low weights on bit and possibly lower energy levels. The drilling and coring industry today does not practice this technology. The highest rotary speed systems in oil field and mining drilling and coring today run less than 10,000 rpm - usually well below 5,000 rpm. This document provides the progress through two phases of the program entitled 'Smaller Footprint Drilling System for Deep and Hard Rock Environments: Feasibility of Ultra-High-Speed Diamond Drilling' for the period starting 30 June 2003 and concluding 31 March 2009. The accomplishments of Phases 1 and 2 are summarized as follows: (1) TerraTek reviewed applicable literature and documentation and convened a project kick-off meeting with Industry Advisors in attendance (see Black and Judzis); (2) TerraTek designed and planned Phase I bench scale experiments (See Black and Judzis). Improvements were made to the loading mechanism and the rotational speed monitoring instrumentation. New drill bit designs were developed to provided a more consistent product with consistent performance. A test matrix for the final core bit testing program was completed; (3) TerraTek concluded small-scale cutting performance tests; (4) Analysis of Phase 1 data indicated that there is decreased specific energy as the rotational speed increases; (5) Technology transfer, as part of Phase 1, was accomplished with technical presentations to the industry (see Judzis, Boucher, McCammon, and Black); (6) TerraTek prepared a design concept for the high speed drilling test stand, which was planned around the proposed high speed mud motor concept. Alternative drives for the test stand were explored; a high speed hydraulic motor concept was finally used; (7) The high speed system was modified to accommodate larger drill bits than originally planned; (8) Prototype mud turbine motors and the high speed test stand were used to drive the drill bits at high speed; (9) Three different rock types were used during the testing: Sierra White granite, Crab Orchard sandstone, and Colton sandstone. The drill bits used included diamond impregnated bits, a polycrystalline diamond compact (PDC) bit, a thermally stable PDC (TSP) bit, and a hybrid TSP and natural diamond bit; and (10) The drill bits were run at rotary speeds up to 5500 rpm and weight on bit (WOB) to 8000 lbf. During Phase 2, the ROP as measured in depth of cut per bit revolution generally increased with increased WOB. The performance was mixed with increased rotary speed, with the depth cut with the impregnated drill bit generally increasing and the TSP and hybrid TSP drill bits generally decreasing. The ROP in ft/hr generally increased with all bits with increased WOB and rotary speed. The mechanical specific energy generally improved (decreased) with increased WOB and was mixed with increased rotary speed.« less
Integrated High-Speed Torque Control System for a Robotic Joint
NASA Technical Reports Server (NTRS)
Davis, Donald R. (Inventor); Radford, Nicolaus A. (Inventor); Permenter, Frank Noble (Inventor); Valvo, Michael C. (Inventor); Askew, R. Scott (Inventor)
2013-01-01
A control system for achieving high-speed torque for a joint of a robot includes a printed circuit board assembly (PCBA) having a collocated joint processor and high-speed communication bus. The PCBA may also include a power inverter module (PIM) and local sensor conditioning electronics (SCE) for processing sensor data from one or more motor position sensors. Torque control of a motor of the joint is provided via the PCBA as a high-speed torque loop. Each joint processor may be embedded within or collocated with the robotic joint being controlled. Collocation of the joint processor, PIM, and high-speed bus may increase noise immunity of the control system, and the localized processing of sensor data from the joint motor at the joint level may minimize bus cabling to and from each control node. The joint processor may include a field programmable gate array (FPGA).
Research of x-ray nondestructive detector for high-speed running conveyor belt with steel wire ropes
NASA Astrophysics Data System (ADS)
Wang, Junfeng; Miao, Changyun; Wang, Wei; Lu, Xiaocui
2008-03-01
An X-ray nondestructive detector for high-speed running conveyor belt with steel wire ropes is researched in the paper. The principle of X-ray nondestructive testing (NDT) is analyzed, the general scheme of the X-ray nondestructive testing system is proposed, and the nondestructive detector for high-speed running conveyor belt with steel wire ropes is developed. The hardware of system is designed with Xilinx's VIRTEX-4 FPGA that embeds PowerPC and MAC IP core, and its network communication software based on TCP/IP protocol is programmed by loading LwIP to PowerPC. The nondestructive testing of high-speed conveyor belt with steel wire ropes and network transfer function are implemented. It is a strong real-time system with rapid scanning speed, high reliability and remotely nondestructive testing function. The nondestructive detector can be applied to the detection of product line in industry.
The 1995 NASA High-Speed Research Program Sonic Boom Workshop. Volume 1
NASA Technical Reports Server (NTRS)
Baize, Daniel G. (Editor)
1996-01-01
The High-Speed Research Program and NASA Langley Research Center sponsored the NASA High-Speed Research Program Sonic Boom Workshop on September 12-13, 1995. The workshop was designed to bring together NASAs scientists and engineers and their counterparts in industry, other Government agencies, and academia working together in the sonic boom element of NASAs High-Speed Research Program. Specific objectives of this workshop were to (1) report the progress and status of research in sonic boom propagation, acceptability, and design; (2) promote and disseminate this technology within the appropriate technical communities; (3) help promote synergy among the scientists working in the Program; and (4) identify technology pacing the development of viable reduced-boom High-Speed Civil Transport concepts. The Workshop included these sessions: Session 1 - Sonic Boom Propagation (Theoretical); Session 2 - Sonic Boom Propagation (Experimental); and Session 3 - Acceptability Studies - Human and Animal.
Altering the Speed Profiles of Wheelchair Rugby Players With Game-Simulation Drill Design.
Rhodes, James M; Mason, Barry S; Paulson, Thomas A W; Goosey-Tolfrey, Victoria L
2018-01-01
To examine the speed profiles of elite wheelchair rugby (WCR) players during game-simulation training drills of differing player number and shot-clock regulations. A secondary aim was to determine whether the profiles were further influenced by player classification. Eight elite WCR players (low-point n = 3, high-point n = 5) were monitored using a radio-frequency-based indoor tracking system during training sessions over a 5-mo period. Speed profiles were collected for 3 modified game-simulation drills-3-versus-3 drills (n = 8 observations), 30-s shot clock (n = 24 observations), and 15-s shot clock (n = 16 observations)-and were compared with regular game-simulation drills (4 vs 4, 40-s shot clock; n = 16 observations). Measures included mean and peak speed; exercise-intensity ratios, defined as the ratio of time spent performing at high and low speeds; and the number of high-speed activities performed. Compared with regular game-simulation drills, 3-versus-3 drills elicited a moderate increase in mean speed (6.3%; effect size [ES] = 0.7) and the number of high-speed activities performed (44.1%; ES = 1.1). Minimal changes in speed profiles were observed during the 30-s shot clock, although moderate to large increases in all measures were observed during the 15-s shot-clock drills. Classification-specific differences were further identified, with increased activity observed for high-point players during the 3-versus-3 drill and for low-point players during the 15-s shot clock. By reducing the number of players on court and the shot clock to 15 s, coaches can significantly increase elite WCR players' speed profiles during game-simulation drills.
Wang, Runxiao; Zhao, Wentao; Li, Shujun; Zhang, Shunqi
2016-01-01
Both the linear leg spring model and the two-segment leg model with constant spring stiffness have been broadly used as template models to investigate bouncing gaits for legged robots with compliant legs. In addition to these two models, the other stiffness leg spring models developed using inspiration from biological characteristic have the potential to improve high-speed running capacity of spring-legged robots. In this paper, we investigate the effects of "J"-curve spring stiffness inspired by biological materials on running speeds of segmented legs during high-speed locomotion. Mathematical formulation of the relationship between the virtual leg force and the virtual leg compression is established. When the SLIP model and the two-segment leg model with constant spring stiffness and with "J"-curve spring stiffness have the same dimensionless reference stiffness, the two-segment leg model with "J"-curve spring stiffness reveals that (1) both the largest tolerated range of running speeds and the tolerated maximum running speed are found and (2) at fast running speed from 25 to 40/92 m s -1 both the tolerated range of landing angle and the stability region are the largest. It is suggested that the two-segment leg model with "J"-curve spring stiffness is more advantageous for high-speed running compared with the SLIP model and with constant spring stiffness.
2016-01-01
Both the linear leg spring model and the two-segment leg model with constant spring stiffness have been broadly used as template models to investigate bouncing gaits for legged robots with compliant legs. In addition to these two models, the other stiffness leg spring models developed using inspiration from biological characteristic have the potential to improve high-speed running capacity of spring-legged robots. In this paper, we investigate the effects of “J”-curve spring stiffness inspired by biological materials on running speeds of segmented legs during high-speed locomotion. Mathematical formulation of the relationship between the virtual leg force and the virtual leg compression is established. When the SLIP model and the two-segment leg model with constant spring stiffness and with “J”-curve spring stiffness have the same dimensionless reference stiffness, the two-segment leg model with “J”-curve spring stiffness reveals that (1) both the largest tolerated range of running speeds and the tolerated maximum running speed are found and (2) at fast running speed from 25 to 40/92 m s−1 both the tolerated range of landing angle and the stability region are the largest. It is suggested that the two-segment leg model with “J”-curve spring stiffness is more advantageous for high-speed running compared with the SLIP model and with constant spring stiffness. PMID:28018127
High-Speed, high-power, switching transistor
NASA Technical Reports Server (NTRS)
Carnahan, D.; Ohu, C. K.; Hower, P. L.
1979-01-01
Silicon transistor rate for 200 angstroms at 400 to 600 volts combines switching speed of transistors with ruggedness, power capacity of thyristor. Transistor introduces unique combination of increased power-handling capability, unusally low saturation and switching losses, and submicrosecond switching speeds. Potential applications include high power switching regulators, linear amplifiers, chopper controls for high frequency electrical vehicle drives, VLF transmitters, RF induction heaters, kitchen cooking ranges, and electronic scalpels for medical surgery.
2013-05-01
logic to perform control function computations and are connected to the full authority digital engine control ( FADEC ) via a high-speed data...Digital Engine Control ( FADEC ) via a high speed data communication bus. The short term distributed engine control configu- rations will be core...concen- trator; and high temperature electronics, high speed communication bus between the data concentrator and the control law processor master FADEC
NASA Astrophysics Data System (ADS)
Di, Yue; Jin, Yi; Jiang, Hong-liang; Zhai, Chao
2013-09-01
Due to the particularity of the high-speed flow, in order to accurately obtain its' temperature, the measurement system should has some characteristics of not interfereing with the flow, non-contact measurement and high time resolution. The traditional measurement method cannot meet the above requirements, however the measurement method based on tunable diode laser absorption spectroscopy (TDLAS) technology can meet the requirements for high-speed flow temperature measurement. When the near-infared light of a specific frequency is through the media to be measured, it will be absorbed by the water vapor molecules and then the transmission light intensity is detected by the detector. The temperature of the water vapor which is also the high-speed flow temperature, can be accurately obtained by the Beer-Lambert law. This paper focused on the research of absorption spectrum method for high speed flow temperature measurement with the scope of 250K-500K. Firstly, spectral line selection method for low temperature measurement of high-speed flow is discussed. Selected absorption lines should be isolated and have a high peak absorption within the range of 250-500K, at the same time the interference of the other lines should be avoided, so that a high measurement accuracy can be obtained. According to the near-infrared absorption spectra characteristics of water vapor, four absorption lines at the near 1395 nm and 1409 nm are selected. Secondly, a system for the temperature measurement of the water vapor in the high-speed flow is established. Room temperature are measured through two methods, direct absorption spectroscopy (DAS) and wavelength modulation spectroscopy (WMS) ,the results show that this system can realize on-line measurement of the temperature and the measurement error is about 3%. Finally, the system will be used for temperature measurement of the high-speed flow in the shock tunnel, its feasibility of measurement is analyzed.
Mid- to high-frequency noise from high-speed boats and its potential impacts on humpback dolphins.
Li, Songhai; Wu, Haiping; Xu, Youhou; Peng, Chongwei; Fang, Liang; Lin, Mingli; Xing, Luru; Zhang, Peijun
2015-08-01
The impact of noise made by vessels on marine animals has come under increased concern. However, most measurements on noise from vessels have only taken into account the low-frequency components. For cetaceans operating in the mid- and high-frequencies, such as the Indo-Pacific humpback dolphin (Sousa chinensis), mid- to high-frequency noise components may be of more concern, in terms of their potential impacts. In this study, noise made by a small high-speed boat was recorded using a broadband recording system in a dolphin watching area focusing on the effects on humpback dolphins in Sanniang Bay, China. The high-speed boat produced substantial mid- to high-frequency noise components with frequencies to >100 kHz, measured at three speeds: ∼40, 30, and 15 km/h. The noise from the boat raised the ambient noise levels from ∼5 to 47 decibels (dB) root-mean-square (rms) across frequency bands ranging from 1 to 125 kHz at a distance of 20 to 85 m, with louder levels recorded at higher speeds and at closer distances. To conclude, the noise produced by the small high-speed boat could be heard by Sousa chinensis and therefore potentially had adverse effects on the dolphins.
High-speed railway signal trackside equipment patrol inspection system
NASA Astrophysics Data System (ADS)
Wu, Nan
2018-03-01
High-speed railway signal trackside equipment patrol inspection system comprehensively applies TDI (time delay integration), high-speed and highly responsive CMOS architecture, low illumination photosensitive technique, image data compression technique, machine vision technique and so on, installed on high-speed railway inspection train, and achieves the collection, management and analysis of the images of signal trackside equipment appearance while the train is running. The system will automatically filter out the signal trackside equipment images from a large number of the background image, and identify of the equipment changes by comparing the original image data. Combining with ledger data and train location information, the system accurately locate the trackside equipment, conscientiously guiding maintenance.
Oyama, Sakiko; Myers, Joseph B
2018-05-01
Oyama, S and Myers, JB. The relationship between the push off ground reaction force and ball speed in high school baseball pitchers. J Strength Cond Res 32(5): 1324-1328, 2018-Baseball pitching is a sequential movement that requires transfer of momentum from the lower extremity to the throwing arm. Therefore, the ground reaction force (GRF) during push off is suggested to play a role in production of ball speed. The purpose of this study was to investigate the correlation between GRF characteristics during push off and ball speed in high school baseball pitchers. A total of 52 pitchers performed fast pitches from an indoor pitching mound. A force plate embedded in an indoor mound was used to capture the push off GRF. The GRF characteristics (peak anterior, vertical, and resultant forces, vertical and resultant forces at the time of peak anterior GRF, and impulse produced by the anterior GRF) from the 3 fastest strike pitches from each pitcher were used for analyses. Spearman's rank correlation coefficients were used to describe the relationships between ball speed and the GRF characteristics. Ball speed was only weakly correlated with peak resultant force (ρ = 0.32, p = 0.02) and vertical (ρ = 0.45, p < 0.001) and resultant (ρ = 0.42, p = 0.002) forces at the time of peak anterior force. The ball speed was not correlated with other variables. The correlation between ball speed and push off force in high school pitchers was weak, especially when compared with what was reported for adult pitchers in other studies. Unlike for adult pitchers, higher push off force is only weakly correlated with ball velocity in high school pitchers, which suggests that training to better use body momentum may help high school pitchers improve ball speed.
NASA Astrophysics Data System (ADS)
Bell, T. G.; De Bruyn, W.; Miller, S. D.; Ward, B.; Christensen, K.; Saltzman, E. S.
2013-05-01
Shipboard measurements of eddy covariance DMS air/sea fluxes and seawater concentration were carried out in the North Atlantic bloom region in June/July 2011. Gas transfer coefficients (k660) show a linear dependence on mean horizontal wind speed at wind speeds up to 11 m s-1. At higher wind speeds the relationship between k660 and wind speed weakens. At high winds, measured DMS fluxes were lower than predicted based on the linear relationship between wind speed and interfacial stress extrapolated from low to intermediate wind speeds. In contrast, the transfer coefficient for sensible heat did not exhibit this effect. The apparent suppression of air/sea gas flux at higher wind speeds appears to be related to sea state, as determined from shipboard wave measurements. These observations are consistent with the idea that long waves suppress near surface water side turbulence, and decrease interfacial gas transfer. This effect may be more easily observed for DMS than for less soluble gases, such as CO2, because the air/sea exchange of DMS is controlled by interfacial rather than bubble-mediated gas transfer under high wind speed conditions.
NASA Astrophysics Data System (ADS)
Bell, T. G.; De Bruyn, W.; Miller, S. D.; Ward, B.; Christensen, K.; Saltzman, E. S.
2013-11-01
Shipboard measurements of eddy covariance dimethylsulfide (DMS) air-sea fluxes and seawater concentration were carried out in the North Atlantic bloom region in June/July 2011. Gas transfer coefficients (k660) show a linear dependence on mean horizontal wind speed at wind speeds up to 11 m s-1. At higher wind speeds the relationship between k660 and wind speed weakens. At high winds, measured DMS fluxes were lower than predicted based on the linear relationship between wind speed and interfacial stress extrapolated from low to intermediate wind speeds. In contrast, the transfer coefficient for sensible heat did not exhibit this effect. The apparent suppression of air-sea gas flux at higher wind speeds appears to be related to sea state, as determined from shipboard wave measurements. These observations are consistent with the idea that long waves suppress near-surface water-side turbulence, and decrease interfacial gas transfer. This effect may be more easily observed for DMS than for less soluble gases, such as CO2, because the air-sea exchange of DMS is controlled by interfacial rather than bubble-mediated gas transfer under high wind speed conditions.
Cavitation in ultrasound and shockwave therapy
NASA Astrophysics Data System (ADS)
Colonius, Tim
2014-11-01
Acoustic waves, especially high-intensity ultrasound and shock waves, are used for medical imaging and intra- and extra-corporeal manipulation of cells, tissue, and urinary calculi. Waves are currently used to treat kidney stone disease, plantar fasciitis, and bone nonunion, and they are being investigated as a technique to ablate cancer tumors and mediate drug delivery. In many applications, acoustic waves induce the expansion and collapse of preexisting or newly cavitating bubbles whose presence can either mediate the generation of localized stresses or lead to collateral damage, depending on how effectively they can be controlled. We describe efforts aimed at simulating the collapse of bubbles, both individually and in clusters, with the aim to characterize the induced mechanical stresses and strains. To simulate collapse of one or a few bubbles, compressible Euler and Navier-Stokes simulations of multi-component materials are performed with WENO-based shock and interface capturing schemes. Repetitive insonification generates numerous bubbles that are difficult to resolve numerically. Such clouds are also important in traditional engineering applications such as caveating hydrofoils. Models that incorporate the dynamics of an unresolved dispersed phase consisting of the bubble cloud are also developed. The results of several model problems including bubble collapse near rigid surfaces, bubble collapse near compliant surfaces and in small capillaries are analyzed. The results are processed to determine the potential for micron-sized preexisting gas bubbles to damage capillaries. The translation of the fundamental fluid dynamics into improvements in the design and clinical application of shockwave lithotripters will be discussed. NIH Grant PO1-DK043881.
High-Speed 3D Printing of High-Performance Thermosetting Polymers via Two-Stage Curing.
Kuang, Xiao; Zhao, Zeang; Chen, Kaijuan; Fang, Daining; Kang, Guozheng; Qi, Hang Jerry
2018-04-01
Design and direct fabrication of high-performance thermosets and composites via 3D printing are highly desirable in engineering applications. Most 3D printed thermosetting polymers to date suffer from poor mechanical properties and low printing speed. Here, a novel ink for high-speed 3D printing of high-performance epoxy thermosets via a two-stage curing approach is presented. The ink containing photocurable resin and thermally curable epoxy resin is used for the digital light processing (DLP) 3D printing. After printing, the part is thermally cured at elevated temperature to yield an interpenetrating polymer network epoxy composite, whose mechanical properties are comparable to engineering epoxy. The printing speed is accelerated by the continuous liquid interface production assisted DLP 3D printing method, achieving a printing speed as high as 216 mm h -1 . It is also demonstrated that 3D printing structural electronics can be achieved by combining the 3D printed epoxy composites with infilled silver ink in the hollow channels. The new 3D printing method via two-stage curing combines the attributes of outstanding printing speed, high resolution, low volume shrinkage, and excellent mechanical properties, and provides a new avenue to fabricate 3D thermosetting composites with excellent mechanical properties and high efficiency toward high-performance and functional applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Nurbuwat, Adzin Kondo; Eryandi, Kholid Yusuf; Estriyanto, Yuyun; Widiastuti, Indah; Pambudi, Nugroho Agung
2018-02-01
The objective of this study is to measure the time performance of a self-cancelling turn signal mechanism based on the In this study the performance of self-cancelling turn signal based on ATMega328P microcontroller is measured at low speed and high speed treatment on motorcycles commonly used in Indonesia. Time performance measurements were made by comparing the self-cancelling turn signal based on ATMega328P microcontroller with standard motor turn time. Measurements of time at low speed treatment were performed at a speed range of 15 km / h, 20 km / h, 25 km / h on the U-turn test trajectory. The angle of the turning angle of the potentiometer is determined at 3°. The limit of steering wheel turning angle at the potentiometer is set at 3°. For high-speed treatment is 30 km / h, 40 km / h, 50km / h, and 60 km / h, on the L-turn test track with a tilt angle (roll angle) read by the L3G4200D gyroscope sensor. Each speed test is repeated 3 replications. Standard time is a reference for self-cancelling turn signal performance. The standard time obtained is 15.68 s, 11.96 s, 9.34 s at low speed and 4.63 s, 4.06 s, 3.61 s, 3.13 s at high speed. The time test of self-cancelling turn signal shows 16.10 s, 12.42 s, 10.24 s at the low speed and 5.18, 4.51, 3.73, 3.21 at the high speed. At a speed of 15 km / h occurs the instability of motion turns motorcycle so that testing is more difficult. Small time deviations indicate the tool works well. The largest time deviation value is 0.9 seconds at low speed and 0.55 seconds at high speed. The conclusion at low velocity of the highest deviation value occurred at the speed of 25 km / h test due to the movement of slope with inclination has started to happen which resulted in slow reading of steering movement. At higher speeds the time slows down due to rapid sensor readings on the tilt when turning fast at ever higher speeds. The timing performance of self-cancelling turn signal decreases as the motorcycle turning characteristics move from the turn using the steering angle to using a tilt angle based on speed, or vice versa.
Active control system for high speed windmills
Avery, D.E.
1988-01-12
A pump stroke is matched to the operating speed of a high speed windmill. The windmill drives a hydraulic pump for a control. Changes in speed of a wind driven shaft open supply and exhaust valves to opposite ends of a hydraulic actuator to lengthen and shorten an oscillating arm thereby lengthening and shortening the stroke of an output pump. Diminishing wind to a stall speed causes the valves to operate the hydraulic cylinder to shorten the oscillating arm to zero. A pressure accumulator in the hydraulic system provides the force necessary to supply the hydraulic fluid under pressure to drive the actuator into and out of the zero position in response to the windmill shaft speed approaching and exceeding windmill stall speed. 4 figs.
Active control system for high speed windmills
Avery, Don E.
1988-01-01
A pump stroke is matched to the operating speed of a high speed windmill. The windmill drives a hydraulic pump for a control. Changes in speed of a wind driven shaft open supply and exhaust valves to opposite ends of a hydraulic actuator to lengthen and shorten an oscillating arm thereby lengthening and shortening the stroke of an output pump. Diminishing wind to a stall speed causes the valves to operate the hydraulic cylinder to shorten the oscillating arm to zero. A pressure accumulator in the hydraulic system provides the force necessary to supply the hydraulic fluid under pressure to drive the actuator into and out of the zero position in response to the windmill shaft speed approaching and exceeding windmill stall speed.
Vibration compensation for high speed scanning tunneling microscopy
NASA Astrophysics Data System (ADS)
Croft, D.; Devasia, S.
1999-12-01
Low scanning speed is a fundamental limitation of scanning tunneling microscopes (STMs), making real time imaging of surface processes and nanofabrication impractical. The effective scanning bandwidth is currently limited by the smallest resonant vibrational frequency of the piezobased positioning system (i.e., scanner) used in the STM. Due to this limitation, the acquired images are distorted during high speed operations. In practice, the achievable scan rates are much less than 1/10th of the resonant vibrational frequency of the STM scanner. To alleviate the scanning speed limitation, this article describes an inversion-based approach that compensates for the structural vibrations in the scanner and thus, allows STM imaging at high scanning speeds (relative to the smallest resonant vibrational frequency). Experimental results are presented to show the increase in scanning speeds achievable by applying the vibration compensation methods.
Yiu, Edwin M-L; Wang, Gaowu; Lo, Andy C Y; Chan, Karen M-K; Ma, Estella P-M; Kong, Jiangping; Barrett, Elizabeth Ann
2013-11-01
The present study aimed to determine whether there were physiological differences in the vocal fold vibration between nonfatigued and fatigued voices using high-speed laryngoscopic imaging and quantitative analysis. Twenty participants aged from 18 to 23 years (mean, 21.2 years; standard deviation, 1.3 years) with normal voice were recruited to participate in an extended singing task. Vocal fatigue was induced using a singing task. High-speed laryngoscopic image recordings of /i/ phonation were taken before and after the singing task. The laryngoscopic images were semiautomatically analyzed with the quantitative high-speed video processing program to extract indices related to the anteroposterior dimension (length), transverse dimension (width), and the speed of opening and closing. Significant reduction in the glottal length-to-width ratio index was found after vocal fatigue. Physiologically, this indicated either a significantly shorter (anteroposteriorly) or a wider (transversely) glottis after vocal fatigue. The high-speed imaging technique using quantitative analysis has the potential for early identification of vocally fatigued voice. Copyright © 2013 The Voice Foundation. All rights reserved.
NASA Astrophysics Data System (ADS)
Kuroda, R.; Sugawa, S.
2017-02-01
Ultra-high speed (UHS) CMOS image sensors with on-chop analog memories placed on the periphery of pixel array for the visualization of UHS phenomena are overviewed in this paper. The developed UHS CMOS image sensors consist of 400H×256V pixels and 128 memories/pixel, and the readout speed of 1Tpixel/sec is obtained, leading to 10 Mfps full resolution video capturing with consecutive 128 frames, and 20 Mfps half resolution video capturing with consecutive 256 frames. The first development model has been employed in the high speed video camera and put in practical use in 2012. By the development of dedicated process technologies, photosensitivity improvement and power consumption reduction were simultaneously achieved, and the performance improved version has been utilized in the commercialized high-speed video camera since 2015 that offers 10 Mfps with ISO16,000 photosensitivity. Due to the improved photosensitivity, clear images can be captured and analyzed even under low light condition, such as under a microscope as well as capturing of UHS light emission phenomena.
Loss reduction in axial-flow compressors through low-speed model testing
NASA Technical Reports Server (NTRS)
Wisler, D. C.
1984-01-01
A systematic procedure for reducing losses in axial-flow compressors is presented. In this procedure, a large, low-speed, aerodynamic model of a high-speed core compressor is designed and fabricated based on aerodynamic similarity principles. This model is then tested at low speed where high-loss regions associated with three-dimensional endwall boundary layers flow separation, leakage, and secondary flows can be located, detailed measurements made, and loss mechanisms determined with much greater accuracy and much lower cost and risk than is possible in small, high-speed compressors. Design modifications are made by using custom-tailored airfoils and vector diagrams, airfoil endbends, and modified wall geometries in the high-loss regions. The design improvements resulting in reduced loss or increased stall margin are then scaled to high speed. This paper describes the procedure and presents experimental results to show that in some cases endwall loss has been reduced by as much as 10 percent, flow separation has been reduced or eliminated, and stall margin has been substantially improved by using these techniques.
Technology needs for high-speed rotorcraft, volume 1
NASA Technical Reports Server (NTRS)
Wilkerson, J. B.; Schneider, J. J.; Bartie, K. M.
1991-01-01
High-speed rotorcraft concepts and the technology needed to extend rotorcraft cruise speeds up to 450 knots (while retaining the helicopter attributes of low downwash velocities) were identified. Task I identified 20 concepts with high-speed potential. These concepts were qualitatively evaluated to determine the five most promising ones. These five concepts were designed with optimum wing loading and disk loading to a common NASA-defined military transport mission. The optimum designs were quantitatively compared against 11 key criteria and ranked accordingly. The two highest ranking concepts were selected for the further study.
Evaluating safety and operation of high-speed signalized intersections : final report, March 2010.
DOT National Transportation Integrated Search
2010-03-01
This Final Report reviews a research effort to evaluate the safety and operations of high-speed intersections in the State of : Oregon. In particular, this research effort focuses on four-leg, signalized intersections with speed limits of 45 mph or :...
Environmental impact statement : Chicago-St. Louis high speed rail project
DOT National Transportation Integrated Search
2000-05-16
The proposed action would provide High-Speed Rail (HSR) passenger service between Chicago and St. Louis, operating at top speeds of 110 mph (180 kph) through most of the project area, except for a 29-kilometer (18-mile) segment between Lincoln and Sp...
NASA Technical Reports Server (NTRS)
Howard, Samuel
2012-01-01
A variable-speed power turbine concept is analyzed for rotordynamic feasibility in a Large Civil Tilt-Rotor (LCTR) class engine. Implementation of a variable-speed power turbine in a rotorcraft engine would enable high efficiency propulsion at the high forward velocities anticipated of large tilt-rotor vehicles. Therefore, rotordynamics is a critical issue for this engine concept. A preliminary feasibility study is presented herein to address this concern and identify if variable-speed is possible in a conceptual engine sized for the LCTR. The analysis considers critical speed placement in the operating speed envelope, stability analysis up to the maximum anticipated operating speed, and potential unbalance response amplitudes to determine that a variable-speed power turbine is likely to be challenging, but not impossible to achieve in a tilt-rotor propulsion engine.
NASA Astrophysics Data System (ADS)
Zhang, Jingyi; Upadhyay, Piyush; Hovanski, Yuri; Field, David P.
2018-01-01
Friction stir welding (FSW) is a cost-effective and high-quality joining process for aluminum alloys (especially heat-treatable alloys) that is historically operated at lower joining speeds (up to hundreds of millimeters per minute). In this study, we present a microstructural analysis of friction stir welded AA7075-T6 blanks with high welding speeds up to 3 M/min. Textures, microstructures, mechanical properties, and weld quality are analyzed using TEM, EBSD, metallographic imaging, and Vickers hardness. The higher welding speed results in narrower, stronger heat-affected zones (HAZs) and also higher hardness in the nugget zones. The material flow direction in the nugget zone is found to be leaning towards the welding direction as the welding speed increases. Results are coupled with welding parameters and thermal history to aid in the understanding of the complex material flow and texture gradients within the welds in an effort to optimize welding parameters for high-speed processing.
Advanced superposition methods for high speed turbopump vibration analysis
NASA Technical Reports Server (NTRS)
Nielson, C. E.; Campany, A. D.
1981-01-01
The small, high pressure Mark 48 liquid hydrogen turbopump was analyzed and dynamically tested to determine the cause of high speed vibration at an operating speed of 92,400 rpm. This approaches the design point operating speed of 95,000 rpm. The initial dynamic analysis in the design stage and subsequent further analysis of the rotor only dynamics failed to predict the vibration characteristics found during testing. An advanced procedure for dynamics analysis was used in this investigation. The procedure involves developing accurate dynamic models of the rotor assembly and casing assembly by finite element analysis. The dynamically instrumented assemblies are independently rap tested to verify the analytical models. The verified models are then combined by modal superposition techniques to develop a completed turbopump model where dynamic characteristics are determined. The results of the dynamic testing and analysis obtained are presented and methods of moving the high speed vibration characteristics to speeds above the operating range are recommended. Recommendations for use of these advanced dynamic analysis procedures during initial design phases are given.
Nanoscale wear and kinetic friction between atomically smooth surfaces sliding at high speeds
NASA Astrophysics Data System (ADS)
Rajauria, Sukumar; Canchi, Sripathi V.; Schreck, Erhard; Marchon, Bruno
2015-02-01
The kinetic friction and wear at high sliding speeds is investigated using the head-disk interface of hard disk drives, wherein the head and the disk are less than 10 nm apart and move at sliding speeds of 5-10 m/s relative to each other. While the spacing between the sliding surfaces is of the same order of magnitude as various AFM based fundamental studies on friction, the sliding speed is nearly six orders of magnitude larger, allowing a unique set-up for a systematic study of nanoscale wear at high sliding speeds. In a hard disk drive, the physical contact between the head and the disk leads to friction, wear, and degradation of the head overcoat material (typically diamond like carbon). In this work, strain gauge based friction measurements are performed; the friction coefficient as well as the adhering shear strength at the head-disk interface is extracted; and an experimental set-up for studying friction between high speed sliding surfaces is exemplified.
A MHz speed wavelength sweeping for ultra-high speed FBG interrogation
NASA Astrophysics Data System (ADS)
Kim, Gyeong Hun; Lee, Hwi Don; Eom, Tae Joong; Jeong, Myung Yung; Kim, Chang-Seok
2015-09-01
We demonstrated a MHz speed wavelength-swept fiber laser based on the active mode locking (AML) technique and applied to interrogation system of an array of fiber Bragg grating (FBG) sensors. MHz speed wavelength sweeping of wavelength-swept fiber laser can be obtained by programmable frequency modulation of the semiconductor optical amplifier (SOA) without any wavelength tunable filter. Both static and dynamic strain measurement of FBG sensors were successfully characterized with high linearity of an R-square value of 0.9999 at sweeping speed of 50 kHz.
Experimental ball bearing dynamics study. [by high speed photography
NASA Technical Reports Server (NTRS)
Signer, H. R.
1973-01-01
A photographic method was employed to record the kinematic performance of rolling elements in turbo machinery ball bearings. The 110 mm split inner ring test bearings had nominal contact angles of 26 deg and 34 deg. High speed films were taken at inner ring speeds of 4,000, 8,000 and 12,000 rpm and at thrust loads of 4,448 N and 22,240 N (1,000 and 5,000 lbs). The films were measured and this data reduced to obtain separator speed, ball speed and ball spin axis orientation.
Wang, Bing; Liu, Zhanqiang; Hou, Xin; Zhao, Jinfu
2018-03-21
The paper aims to investigate the influences of material constitutive and fracture parameters in addition to cutting speed on chip formation during high-speed cutting of Inconel 718. Finite element analyses for chip formation are conducted with Johnson-Cook constitutive and fracture models. Meanwhile, experiments of high-speed orthogonal cutting are performed to verify the simulation results with cutting speeds ranging from 50 m/min to 7000 m/min. The research indicates that the chip morphology transforms from serrated to fragmented at the cutting speed of 7000 m/min due to embrittlement of the workpiece material under ultra-high cutting speeds. The parameter of shear localization sensitivity is put forward to describe the influences of material mechanical properties on serrated chip formation. The results demonstrate that the effects of initial yield stress and thermal softening coefficient on chip shear localization are much more remarkable than the other constitutive parameters. For the material fracture parameters, the effects of initial fracture strain and exponential factor of stress state on chip shear localization are more much prominent. This paper provides guidance for controlling chip formation through the adjustment of material mechanical properties and the selection of appropriate cutting parameters.
Hou, Xin; Zhao, Jinfu
2018-01-01
The paper aims to investigate the influences of material constitutive and fracture parameters in addition to cutting speed on chip formation during high-speed cutting of Inconel 718. Finite element analyses for chip formation are conducted with Johnson–Cook constitutive and fracture models. Meanwhile, experiments of high-speed orthogonal cutting are performed to verify the simulation results with cutting speeds ranging from 50 m/min to 7000 m/min. The research indicates that the chip morphology transforms from serrated to fragmented at the cutting speed of 7000 m/min due to embrittlement of the workpiece material under ultra-high cutting speeds. The parameter of shear localization sensitivity is put forward to describe the influences of material mechanical properties on serrated chip formation. The results demonstrate that the effects of initial yield stress and thermal softening coefficient on chip shear localization are much more remarkable than the other constitutive parameters. For the material fracture parameters, the effects of initial fracture strain and exponential factor of stress state on chip shear localization are more much prominent. This paper provides guidance for controlling chip formation through the adjustment of material mechanical properties and the selection of appropriate cutting parameters. PMID:29561770
2005 10th Annual Expeditionary Conference
2005-10-27
HIGH SPEED CONNECTORS/ SHIP INTERFACES PAUL BISHOP COALESCENT – BISHOP GROUP CO-DIRECTOR LOGISTICS Study Team 5 Bill...Force (CLF) 5. Connectors: High Speed Ship (HSS), High Speed Vessel (HSV), Assault Connectors (LCAC, EFV) 6. Sister Service and Coalition Force Ships ...of wartime cargo moves by ship Theater port infrastructure is critical to off-loading ships UNCLASSIFIED (U) Create a port Augment an established
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-14
... the Chicago, IL to St. Louis, MO High Speed Rail Program Corridor AGENCY: Federal Railroad... (EIS) for the Chicago, IL to St. Louis, MO High Speed Rail Corridor Program in compliance with the... Joliet and St. Louis to support additional passenger trains. The EIS will consider increasing the number...
Characterizing Vibratory Kinematics in Children and Adults with High-Speed Digital Imaging
ERIC Educational Resources Information Center
Patel, Rita; Dubrovskiy, Denis; Döllinger, Michael
2014-01-01
Purpose: The aim of this study is to quantify and identify characteristic vibratory motion in typically developing prepubertal children and young adults using high-speed digital imaging. Method: The vibrations of the vocal folds were recorded from 27 children (ages 5-9 years) and 35 adults (ages 21-45 years), with high speed at 4,000 frames per…
Perceived Benefits and Barriers to the Use of High-Speed Broadband in Ireland's Second-Level Schools
ERIC Educational Resources Information Center
Coyne, Bryan; Devitt, Niamh; Lyons, Seán; McCoy, Selina
2015-01-01
As part of Ireland's National Digital Strategy, high-speed broadband is being rolled out to all second-level schools to support greater use of information and communication technology (ICT) in education. This programme signals a move from slow and unreliable broadband connections for many schools to a guaranteed high-speed connection with…
A brief review of some mechanisms causing boundary layer transition at high speeds
NASA Technical Reports Server (NTRS)
Tauber, M. E.
1990-01-01
In high speed flight, the state of the boundary layer can strongly influence the design of vehicles through its effect on skin friction drag and aerodynamic heating. The major mechanisms causing boundary layer transition on high speed vehicles are briefly reviewed and some empirical relations from the unclassified literature are given for the transition Reynolds numbers.
78 FR 28164 - Special Local Regulation; Aguada Offshore Grand Prix, Bahia de Aguadilla; Aguada, PR
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-14
... Aguada Offshore Grand Prix, a high speed boat race. The event is scheduled to take place on Sunday, August 4, 2013. Approximately 30 high-speed power boats will be participating in the races. It is... Series, Inc. is sponsoring the Aguada Offshore Grand Prix, a series of high-speed boat races. The races...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-06
... Balneario de Boqueron, a high speed boat race. The event is scheduled to take place on Sunday, May 5, 2013. Approximately 40 high- speed power boats will be participating in the races. It is anticipated that 5 spectator... regulation will establish the following three areas: a high speed boat race area, where all persons and...
Effects of lubrication on the performance of high speed spur gears
NASA Technical Reports Server (NTRS)
Mizutani, Hachiro; Isikawa, Yuuichi; Townsend, Dennis P.
1989-01-01
An experimental analysis was conducted to determine power loss and gear noise of high speed spur gears with long addendum under various conditions of load, speed, and oil jet pressure for into mesh lubrication. Power losses were calculated from temperature measurements of lubricating oil, gears, gear box, and oil flow rate. Furthermore, power loss was divided into windage loss, friction loss and churning loss. The results show that windage loss and churning loss were the main components of gear power loss of high gear speed. In addition, lubricating conditions had some influences on gear noise especially under low oil temperature or high viscosity.
Effect of steam sterilization inside the turbine chambers of dental turbines.
Andersen, H K; Fiehn, N E; Larsen, T
1999-02-01
It has been demonstrated that contamination of the insides of high-speed dental turbines occurs and that bacteria as well as viruses may remain infectious when expelled from such turbines during subsequent use. Consequently, it has been widely recommended that a high-speed turbine be sterilized after each patient. The purpose of this study was to evaluate the effect of steam autoclaving on a high-speed dental turbine with a contaminated turbine chamber. Streptococcus salivarius and endospores of Bacillus stearothermophilus were used as test organisms to determine the effectiveness of 4 different small non-vacuum autoclaves and one vacuum autoclave. The study demonstrated different efficiencies among the small non-vacuum autoclaves, the best showing close to a 6 log reduction of the test organisms inside the turbine chamber. When cleaning and lubrication of the high-speed dental turbine was carried out before autoclaving, this level of reduction was observed for all the examined non-vacuum autoclaves. It is concluded that cleaning before sterilization is essential for safe use of high-speed dental turbines and that small non-vacuum autoclaves should be carefully evaluated before being used for the reprocessing of hollow instruments such as high-speed turbines.
Study on sound-speed dispersion in a sandy sediment at frequency ranges of 0.5-3 kHz and 90-170 kHz
NASA Astrophysics Data System (ADS)
Yu, Sheng-qi; Liu, Bao-hua; Yu, Kai-ben; Kan, Guang-ming; Yang, Zhi-guo
2017-03-01
In order to study the properties of sound-speed dispersion in a sandy sediment, the sound speed was measured both at high frequency (90-170 kHz) and low frequency (0.5-3 kHz) in laboratory environments. At high frequency, a sampling measurement was conducted with boiled and uncooked sand samples collected from the bottom of a large water tank. The sound speed was directly obtained through transmission measurement using single source and single hydrophone. At low frequency, an in situ measurement was conducted in the water tank, where the sandy sediment had been homogeneously paved at the bottom for a long time. The sound speed was indirectly inverted according to the traveling time of signals received by three buried hydrophones in the sandy sediment and the geometry in experiment. The results show that the mean sound speed is approximate 1710-1713 m/s with a weak positive gradient in the sand sample after being boiled (as a method to eliminate bubbles as much as possible) at high frequency, which agrees well with the predictions of Biot theory, the effective density fluid model (EDFM) and Buckingham's theory. However, the sound speed in the uncooked sandy sediment obviously decreases (about 80%) both at high frequency and low frequency due to plenty of bubbles in existence. And the sound-speed dispersion performs a weak negative gradient at high frequency. Finally, a water-unsaturated Biot model is presented for trying to explain the decrease of sound speed in the sandy sediment with plenty of bubbles.
NASA Technical Reports Server (NTRS)
Viken, Jeffrey K.; Watson-Viken, Sally A.; Pfenninger, Werner; Morgan, Harry L., Jr.; Campbell, Richard L.
1987-01-01
The design and testing of Natural Laminar Flow (NLF) airfoils is examined. The NLF airfoil was designed for low speed, having a low profile drag at high chord Reynolds numbers. The success of the low speed NLF airfoil sparked interest in a high speed NLF airfoil applied to a single engine business jet with an unswept wing. Work was also conducted on the two dimensional flap design. The airfoil was decambered by removing the aft loading, however, high design Mach numbers are possible by increasing the aft loading and reducing the camber overall on the airfoil. This approach would also allow for flatter acceleration regions which are more stabilizing for cross flow disturbances. Sweep could then be used to increase the design Mach number to a higher value also. There would be some degradation of high lift by decambering the airfoil overall, and this aspect would have to be considered in a final design.
A High-Speed Design of Montgomery Multiplier
NASA Astrophysics Data System (ADS)
Fan, Yibo; Ikenaga, Takeshi; Goto, Satoshi
With the increase of key length used in public cryptographic algorithms such as RSA and ECC, the speed of Montgomery multiplication becomes a bottleneck. This paper proposes a high speed design of Montgomery multiplier. Firstly, a modified scalable high-radix Montgomery algorithm is proposed to reduce critical path. Secondly, a high-radix clock-saving dataflow is proposed to support high-radix operation and one clock cycle delay in dataflow. Finally, a hardware-reused architecture is proposed to reduce the hardware cost and a parallel radix-16 design of data path is proposed to accelerate the speed. By using HHNEC 0.25μm standard cell library, the implementation results show that the total cost of Montgomery multiplier is 130 KGates, the clock frequency is 180MHz and the throughput of 1024-bit RSA encryption is 352kbps. This design is suitable to be used in high speed RSA or ECC encryption/decryption. As a scalable design, it supports any key-length encryption/decryption up to the size of on-chip memory.
High-speed pulse-shape generator, pulse multiplexer
Burkhart, Scott C.
2002-01-01
The invention combines arbitrary amplitude high-speed pulses for precision pulse shaping for the National Ignition Facility (NIF). The circuitry combines arbitrary height pulses which are generated by replicating scaled versions of a trigger pulse and summing them delayed in time on a pulse line. The combined electrical pulses are connected to an electro-optic modulator which modulates a laser beam. The circuit can also be adapted to combine multiple channels of high speed data into a single train of electrical pulses which generates the optical pulses for very high speed optical communication. The invention has application in laser pulse shaping for inertial confinement fusion, in optical data links for computers, telecommunications, and in laser pulse shaping for atomic excitation studies. The invention can be used to effect at least a 10.times. increase in all fiber communication lines. It allows a greatly increased data transfer rate between high-performance computers. The invention is inexpensive enough to bring high-speed video and data services to homes through a super modem.
Siroraj, A Pearlcid; Giri G V V; Ramkumar, Subramaniam; Narasimhan, Malathi
2016-05-01
The aim of this study was to find out the ideal speed for making a precise osteotomy with minimal damage to the surrounding bone. Thirty-six patients were divided into two groups (n=18 in each) depending on the speed of the handpiece used for osteotomy (slow=20000rpm and fast=40000rpm). Samples were taken from the peripheral bone and examined histologically to measure the margins of the osteotomy, the amount of debris produced, and the degree of thermal osteonecrosis. The osteotomy made with the high speed handpiece was better than that made with the low speed one on all counts. The margins in the high speed group were more or less precisely as required, with less debris and no thermal necrosis, which illustrated the efficacy of a high speed osteotomy. These findings can apply to other procedures that involve osteotomies in maxillofacial surgery. Copyright © 2016 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
Effect of Tip-Speed Constraints on the Optimized Design of a Wind Turbine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dykes, K.; Resor, B.; Platt, A.
This study investigates the effect of tip-velocity constraints on system levelized cost of energy (LCOE). The results indicate that a change in maximum tip speed from 80 to 100~m/s could produce a 32% decrease in gearbox weight (a 33% reduction in cost) which would result in an overall reduction of 1%-9% in system LCOE depending on the design approach. Three 100~m/s design cases were considered including a low tip-speed ratio/high-solidity rotor design, a high tip-speed ratio/ low-solidity rotor design, and finally a flexible blade design in which a high tip-speed ratio was used along with removing the tip deflection constraintmore » on the rotor design. In all three cases, the significant reduction in gearbox weight caused by the higher tip-speed and lower overall gear ratio was counterbalanced by increased weights for the rotor and/or other drivetrain components and the tower. As a result, the increased costs of either the rotor or drivetrain components offset the overall reduction in turbine costs from down-sizing the gearbox. Other system costs were not significantly affected, whereas energy production was slightly reduced in the 100~m/s case low tip-speed ratio case and increased in the high tip-speed ratio case. This resulted in system cost of energy reductions moving from the 80~m/s design to the 100~m/s designs of 1.2% for the low tip-speed ratio, 4.6% for the high tip-speed ratio, and 9.5% for the final flexible case (the latter result is optimistic because the impact of deflection of the flexible blade on power production was not modeled). Overall, the results demonstrate that there is a trade-off in system design between the maximum tip velocity and the overall wind plant cost of energy, and there are many trade-offs within the overall system in designing a turbine for a high maximum tip velocity.« less
NASA Astrophysics Data System (ADS)
Jiang, Changlong; Ma, Cheng; He, Ning; Zhang, Xugang; Wang, Chongyang; Jia, Huibo
2002-12-01
In many real-time fields the sustained high-speed data recording system is required. This paper proposes a high-speed and sustained data recording system based on the complex-RAID 3+0. The system consists of Array Controller Module (ACM), String Controller Module (SCM) and Main Controller Module (MCM). ACM implemented by an FPGA chip is used to split the high-speed incoming data stream into several lower-speed streams and generate one parity code stream synchronously. It also can inversely recover the original data stream while reading. SCMs record lower-speed streams from the ACM into the SCSI disk drivers. In the SCM, the dual-page buffer technology is adopted to implement speed-matching function and satisfy the need of sustainable recording. MCM monitors the whole system, controls ACM and SCMs to realize the data stripping, reconstruction, and recovery functions. The method of how to determine the system scale is presented. At the end, two new ways Floating Parity Group (FPG) and full 2D-Parity Group (full 2D-PG) are proposed to improve the system reliability and compared with the Traditional Parity Group (TPG). This recording system can be used conveniently in many areas of data recording, storing, playback and remote backup with its high-reliability.
NASA Technical Reports Server (NTRS)
Brown, Gerald V.; Kascak, Albert F.; Jansen, Ralph H.; Dever, Timothy P.; Duffy, Kirsten P.
2006-01-01
For magnetic-bearing-supported high-speed rotating machines with significant gyroscopic effects, it is necessary to stabilize forward and backward tilt whirling modes. Instability or low damping of these modes can prevent the attainment of desired shaft speed. We show analytically that both modes can be stabilized by using cross-axis proportional gains and high- and low-pass filters in the magnetic bearing controller. Furthermore, at high shaft speeds, where system phase lags degrade the stability of the forward-whirl mode, a phasor advance of the control signal can partially counteract the phase lag. In some range of high shaft speed, the derivative gain for the tilt modes (essential for stability for slowly rotating shafts) can be removed entirely. We show analytically how the tilt eigenvalues depend on shaft speed and on various controller feedback parameters.
High speed data transmission coaxial-cable in the space communication system
NASA Astrophysics Data System (ADS)
Su, Haohang; Huang, Jing
2018-01-01
An effective method is proved based on the scattering parameter of high speed 8-core coaxial-cable measured by vector network analyzer, and the semi-physical simulation is made to receive the eye diagram at different data transmission rate. The result can be apply to analysis decay and distortion of the signal through the coaxial-cable at high frequency, and can extensively design for electromagnetic compatibility of high-speed data transmission system.
2015-08-12
Seat’s legacy "seat roller" (a dry metal wheel on a shaft), when subjected to high loads (such as ejections at high speeds or with an aircraft yaw...Calibrated, Equivalent, True” KIAS = Knots Indicated Airspeed ( aircraft -dependent interpretation of speed , as displayed on gage) KCAS = Knots...the man-seat on the aircraft rail during high- speed ejections. This high friction response – when combined with modern changes to the ejection system
A portable high-speed camera system for vocal fold examinations.
Hertegård, Stellan; Larsson, Hans
2014-11-01
In this article, we present a new portable low-cost system for high-speed examinations of the vocal folds. Analysis of glottal vibratory parameters from the high-speed recordings is compared with videostroboscopic recordings. The high-speed system is built around a Fastec 1 monochrome camera, which is used with newly developed software, High-Speed Studio (HSS). The HSS has options for video/image recording, contains a database, and has a set of analysis options. The Fastec/HSS system has been used clinically since 2011 in more than 2000 patient examinations and recordings. The Fastec 1 camera has sufficient time resolution (≥4000 frames/s) and light sensitivity (ISO 3200) to produce images for detailed analyses of parameters pertinent to vocal fold function. The camera can be used with both rigid and flexible endoscopes. The HSS software includes options for analyses of glottal vibrations, such as kymogram, phase asymmetry, glottal area variation, open and closed phase, and angle of vocal fold abduction. It can also be used for separate analysis of the left and vocal fold movements, including maximum speed during opening and closing, a parameter possibly related to vocal fold elasticity. A blinded analysis of 32 patients with various voice disorders examined with both the Fastec/HSS system and videostroboscopy showed that the high-speed recordings were significantly better for the analysis of glottal parameters (eg, mucosal wave and vibration asymmetry). The monochrome high-speed system can be used in daily clinical work within normal clinical time limits for patient examinations. A detailed analysis can be made of voice disorders and laryngeal pathology at a relatively low cost. Copyright © 2014 The Voice Foundation. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Yiguang; Chi, Nan
2016-10-01
Light emitting diodes (LEDs) based visible light communication (VLC) has been considered as a promising technology for indoor high-speed wireless access, due to its unique advantages, such as low cost, license free and high security. To achieve high-speed VLC transmission, carrierless amplitude and phase (CAP) modulation has been utilized for its lower complexity and high spectral efficiency. Moreover, to compensate the linear and nonlinear distortions such as frequency attenuation, sampling time offset, LED nonlinearity etc., series of pre- and post-equalization schemes should be employed in high-speed VLC systems. In this paper, we make an investigation on several advanced pre- and postequalization schemes for high-order CAP modulation based VLC systems. We propose to use a weighted preequalization technique to compensate the LED frequency attenuation. In post-equalization, a hybrid post equalizer is proposed, which consists of a linear equalizer, a Volterra series based nonlinear equalizer, and a decision-directed least mean square (DD-LMS) equalizer. Modified cascaded multi-modulus algorithm (M-CMMA) is employed to update the weights of the linear and the nonlinear equalizer, while DD-LMS can further improve the performance after the preconvergence. Based on high-order CAP modulation and these equalization schemes, we have experimentally demonstrated a 1.35-Gb/s, a 4.5-Gb/s and a 8-Gb/s high-speed indoor VLC transmission systems. The results show the benefit and feasibility of the proposed equalization schemes for high-speed VLC systems.
Marras, Stefano; Noda, Takuji; Steffensen, John F; Svendsen, Morten B S; Krause, Jens; Wilson, Alexander D M; Kurvers, Ralf H J M; Herbert-Read, James; Boswell, Kevin M; Domenici, Paolo
2015-10-01
Billfishes are considered among the fastest swimmers in the oceans. Despite early estimates of extremely high speeds, more recent work showed that these predators (e.g., blue marlin) spend most of their time swimming slowly, rarely exceeding 2 m s(-1). Predator-prey interactions provide a context within which one may expect maximal speeds both by predators and prey. Beyond speed, however, an important component determining the outcome of predator-prey encounters is unsteady swimming (i.e., turning and accelerating). Although large predators are faster than their small prey, the latter show higher performance in unsteady swimming. To contrast the evading behaviors of their highly maneuverable prey, sailfish and other large aquatic predators possess morphological adaptations, such as elongated bills, which can be moved more rapidly than the whole body itself, facilitating capture of the prey. Therefore, it is an open question whether such supposedly very fast swimmers do use high-speed bursts when feeding on evasive prey, in addition to using their bill for slashing prey. Here, we measured the swimming behavior of sailfish by using high-frequency accelerometry and high-speed video observations during predator-prey interactions. These measurements allowed analyses of tail beat frequencies to estimate swimming speeds. Our results suggest that sailfish burst at speeds of about 7 m s(-1) and do not exceed swimming speeds of 10 m s(-1) during predator-prey interactions. These speeds are much lower than previous estimates. In addition, the oscillations of the bill during swimming with, and without, extension of the dorsal fin (i.e., the sail) were measured. We suggest that extension of the dorsal fin may allow sailfish to improve the control of the bill and minimize its yaw, hence preventing disturbance of the prey. Therefore, sailfish, like other large predators, may rely mainly on accuracy of movement and the use of the extensions of their bodies, rather than resorting to top speeds when hunting evasive prey. © The Author 2015. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.
Roth, Robert Paul; Hahn, David C.; Scaringe, Robert P.
2015-12-08
A device and method are provided to improve performance of a vapor compression system using a retrofittable control board to start up the vapor compression system with the evaporator blower initially set to a high speed. A baseline evaporator operating temperature with the evaporator blower operating at the high speed is recorded, and then the device detects if a predetermined acceptable change in evaporator temperature has occurred. The evaporator blower speed is reduced from the initially set high speed as long as there is only a negligible change in the measured evaporator temperature and therefore a negligible difference in the compressor's power consumption so as to obtain a net increase in the Coefficient of Performance.
Protective Effectiveness of Porous Shields Under the Influence of High-Speed Impact Loading
NASA Astrophysics Data System (ADS)
Kramshonkov, E. N.; Krainov, A. V.; Shorohov, P. V.
2016-02-01
The results of numerical simulations of a compact steel impactor with the aluminum porous shields under high-speed shock loading are presented. The porosity of barrier varies in wide range provided that its mass stays the same, but the impactor has always equal (identical) mass. Here presented the final assessment of the barrier perforation speed depending on its porosity and initial shock speed. The range of initial impact speed varies from 1 to 10 km/s. Physical phenomena such as: destruction, melting, vaporization of a interacting objects are taken into account. The analysis of a shield porosity estimation disclosed that the protection effectiveness of porous shield reveals at the initial impact speed grater then 1.5 km/s, and it increases when initial impact speed growth.
NASA Astrophysics Data System (ADS)
Grigoryev, Evgeny G.
2011-01-01
Simultaneous electro discharge sintering of high strength structure of tungsten carbide—cobalt composite and connection it with high-speed steel substrate is investigated and suitable operating parameters are defined. Tungsten carbide—cobalt and high-speed steel joining was produced by the method of high voltage electrical discharge together with application of mechanical pressure to powder compact. It was found that the density and hardness of composite material reach its maximum values at certain magnitudes of applied pressure and high voltage electrical discharge parameters. We show that there is an upper level for the discharge voltage beyond which the powder of composite material disintegrates like an exploding wire. Due to our results it is possible to determine optimal parameters for simultaneous electro discharge sintering of WC-Co and bonding it with high-speed steel substrate.
DOT National Transportation Integrated Search
2000-08-01
The report describes a risk-based approach for assessing the implications of higher train speeds on highway-railroad grade crossing safety, and allocating limited resources to best reduce this risk. To predict accident frequency, an existing DOT mode...
Twin-spool turbopumps for ''low'' net positive suction pressure operations
NASA Technical Reports Server (NTRS)
Bair, E. K.; Campbell, W. E.; Ford, O. I.
1970-01-01
Modified single-shaft turbopump incorporates inducer and main pump, each separately driven at different speeds through coaxial-shaft arrangement. Inducer operates at low speed for low net positive suction pressure, main pump operates at high speed to generate high pressure. This arrangement requires no external control for the inducer.
Flow-Visualization Techniques Used at High Speed by Configuration Aerodynamics Wind-Tunnel-Test Team
NASA Technical Reports Server (NTRS)
Lamar, John E. (Editor)
2001-01-01
This paper summarizes a variety of optically based flow-visualization techniques used for high-speed research by the Configuration Aerodynamics Wind-Tunnel Test Team of the High-Speed Research Program during its tenure. The work of other national experts is included for completeness. Details of each technique with applications and status in various national wind tunnels are given.
Gated high speed optical detector
NASA Technical Reports Server (NTRS)
Green, S. I.; Carson, L. M.; Neal, G. W.
1973-01-01
The design, fabrication, and test of two gated, high speed optical detectors for use in high speed digital laser communication links are discussed. The optical detectors used a dynamic crossed field photomultiplier and electronics including dc bias and RF drive circuits, automatic remote synchronization circuits, automatic gain control circuits, and threshold detection circuits. The equipment is used to detect binary encoded signals from a mode locked neodynium laser.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-02
... the Space Coast Super Boat Grand Prix, a series of high-speed boat races. The event is scheduled to take place on Saturday and Sunday, May 18-19, 2013, and approximately 30 high-speed race boats are... inherent dangers involved with a high-speed race and the number of vessels involved, it is in the best...
Introduction of the M-85 high-speed rotorcraft concept
NASA Technical Reports Server (NTRS)
Stroub, Robert H.
1991-01-01
As a result of studying possible requirements for high-speed rotorcraft and studying many high-speed concepts, a new high-speed rotorcraft concept, designated as M-85, was derived. The M-85 is a helicopter that is reconfigured to a fixed-wing aircraft for high-speed cruise. The concept was derived as an approach to enable smooth, stable conversion between fixed-wing and rotary-wing while retaining hover and low-speed flight characteristics of a low disk loading helicopter. The name, M-85, reflects the high-speed goals of 0.85 Mach number at high altitude. For a high-speed rotorcraft, it is expected that a viable concept must be a cruise-efficient, fixed-wing aircraft so it may be attractive for a multiplicity of missions. It is also expected that a viable high-speed rotorcraft concept must be cruise efficient first and secondly, efficient in hover. What makes the M-85 unique is the large circular hub fairing that is large enough to support the aircraft during conversion between rotary-wind and fixed-wing modes. With the aircraft supported by this hub fairing, the rotor blades can be unloaded during the 100 percent change in rotor rpm. With the blades unloaded, the potential for vibratory loads would be lessened. In cruise, the large circular hub fairing would be part of the lifting system with additional lifting panels deployed for better cruise efficiency. In hover, the circular hub fairing would slightly reduce lift potential and/or decrease hover efficiency of the rotor system. The M-85 concept is described and estimated forward flight performance characteristics are presented in terms of thrust requirements and L/D with airspeed. The forward flight performance characteristics reflect recent completed wind tunnel tests of the wing concept. Also presented is a control system technique that is critical to achieving low oscillatory loads in rotary-wing mode. Hover characteristics, C(sub p) versus C(sub T) from test data, is discussed. Other techniques pertinent to the M-85 concept such as passively controlling inplane vibration during starting and stopping of the rotor system, aircraft control system, and rotor drive technologies are discussed.
Miyoshi, Yusuke; Fukazawa, Yusuke; Amasaka, Yuya; Reckmann, Robin; Yokoi, Tomoya; Ishida, Kazuki; Kawahara, Kenji; Ago, Hiroki; Maki, Hideyuki
2018-03-29
High-speed light emitters integrated on silicon chips can enable novel architectures for silicon-based optoelectronics, such as on-chip optical interconnects, and silicon photonics. However, conventional light sources based on compound semiconductors face major challenges for their integration with a silicon-based platform because of their difficulty of direct growth on a silicon substrate. Here we report ultra-high-speed (100-ps response time), highly integrated graphene-based on-silicon-chip blackbody emitters in the near-infrared region including telecommunication wavelength. Their emission responses are strongly affected by the graphene contact with the substrate depending on the number of graphene layers. The ultra-high-speed emission can be understood by remote quantum thermal transport via surface polar phonons of the substrates. We demonstrated real-time optical communications, integrated two-dimensional array emitters, capped emitters operable in air, and the direct coupling of optical fibers to the emitters. These emitters can open new routes to on-Si-chip, small footprint, and high-speed emitters for highly integrated optoelectronics and silicon photonics.
NASA Astrophysics Data System (ADS)
Wu, Han; Zeng, Xiao-Hui; Yu, Yang
2017-12-01
In this study, the intrinsic mechanism of aerodynamic effects on the motion stability of a high-speed maglev system was investigated. The concept of a critical speed for maglev vehicles considering the aerodynamic effect is proposed. The study was carried out based on a single magnetic suspension system, which is convenient for proposing relevant concepts and obtaining explicit expressions. This study shows that the motion stability of the suspension system is closely related to the vehicle speed when aerodynamic effects are considered. With increases of the vehicle speed, the stability behavior of the system changes. At a certain vehicle speed, the stability of the system reaches a critical state, followed by instability. The speed corresponding to the critical state is the critical speed. Analysis reveals that when the system reaches the critical state, it takes two forms, with two critical speeds, and thus two expressions for the critical speed are obtained. The conditions of the existence of the critical speed were determined, and the effects of the control parameters and the lift coefficient on the critical speed were analyzed by numerical analysis. The results show that the first critical speed appears when the aerodynamic force is upward, and the second critical speed appears when the aerodynamic force is downward. Moreover, both critical speeds decrease with the increase of the lift coefficient.
Zheng, Chenguang; Bieri, Kevin Wood; Trettel, Sean Gregory; Colgin, Laura Lee
2015-01-01
In hippocampal area CA1 of rats, the frequency of gamma activity has been shown to increase with running speed (Ahmed and Mehta, 2012). This finding suggests that different gamma frequencies simply allow for different timings of transitions across cell assemblies at varying running speeds, rather than serving unique functions. However, accumulating evidence supports the conclusion that slow (~25–55 Hz) and fast (~60–100 Hz) gamma are distinct network states with different functions. If slow and fast gamma constitute distinct network states, then it is possible that slow and fast gamma frequencies are differentially affected by running speed. In this study, we tested this hypothesis and found that slow and fast gamma frequencies change differently as a function of running speed in hippocampal areas CA1 and CA3, and in the superficial layers of the medial entorhinal cortex (MEC). Fast gamma frequencies increased with increasing running speed in all three areas. Slow gamma frequencies changed significantly less across different speeds. Furthermore, at high running speeds, CA3 firing rates were low, and MEC firing rates were high, suggesting that CA1 transitions from CA3 inputs to MEC inputs as running speed increases. These results support the hypothesis that slow and fast gamma reflect functionally distinct states in the hippocampal network, with fast gamma driven by MEC at high running speeds and slow gamma driven by CA3 at low running speeds. PMID:25601003
Study of Car Acceleration and Deceleration Characteristics at Dangerous Route FT050
NASA Astrophysics Data System (ADS)
Omar, N.; Prasetijo, J.; Daniel, B. D.; Abdullah, M. A. E.; Ismail, I.
2018-04-01
Individual vehicle acceleration and deceleration are important to generate vehicles speed profile. This study covered acceleration and deceleration characteristics of passenger car in Federal Route FT050 Jalan Batu Pahat-Ayer Hitam that was the top ranking dangerous road. Global Positioning System was used to record 10 cars speed to develop speed profile with clustering zone. At the acceleration manoeuver, the acceleration rate becomes lower as the drivers get near to desired speed. While, at deceleration manoeuver, vehicles with high speed needs more time to stop compare to low speed vehicle. This is because, the drivers need to accelerate more from zero speed to achieve desired speed and drivers need more distance and time to stop their vehicles. However, it was found out that 30% to 50% are driving in dangerous condition that was proven in clustering acceleration and deceleration speed profile. As conclusion, this excessive drivers are the factor that creating high risk in rear-end collision that inline FT050 as dangerous road in Malaysia
Inhibition of bubble coalescence: effects of salt concentration and speed of approach.
Del Castillo, Lorena A; Ohnishi, Satomi; Horn, Roger G
2011-04-01
Bubble coalescence experiments have been performed using a sliding bubble apparatus, in which mm-sized bubbles in an aqueous electrolyte solution without added surfactant rose toward an air meniscus at different speeds obtained by varying the inclination of a closed glass cylinder containing the liquid. The coalescence times of single bubbles contacting the meniscus were monitored using a high speed camera. Results clearly show that stability against coalescence of colliding air bubbles is influenced by both the salt concentration and the approach speed of the bubbles. Contrary to the widespread belief that bubbles in pure water are unstable, we demonstrate that bubbles formed in highly purified water and colliding with the meniscus at very slow approach speeds can survive for minutes or even hours. At higher speeds, bubbles in water only survive for a few seconds, and at still higher speeds they coalesce instantly. Addition of a simple electrolyte (KCl) removes the low-speed stability and shifts the transition between transient stability and instant coalescence to higher approach speeds. At high electrolyte concentration no bubbles were observed to coalesce instantly. These observations are consistent with recent results of Yaminsky et al. (Langmuir 26 (2010) 8061) and the transitions between different regions of behavior are in semi-quantitative agreement with Yaminsky's model. Copyright © 2010 Elsevier Inc. All rights reserved.
Differential Velocity between Solar Wind Protons and Alpha Particles in Pressure Balance Structures
NASA Technical Reports Server (NTRS)
Yamauchi, Yohei; Suess, Steven T.; Steinberg, John T.; Sakurai, Takashi
2004-01-01
Pressure balance structures (PBSs) are a common high-plasma beta feature in high-latitude, high-speed solar wind. They have been proposed as remnants of coronal plumes. If true, they should reflect the observation that plumes are rooted in unipolar magnetic flux concentrations in the photosphere and are heated as oppositely directed flux is advected into and reconnects with the flux concentration. A minimum variance analysis (MVA) of magnetic discontinuities in PBSs showed there is a larger proportion of tangential discontinuities than in the surrounding high-speed wind, supporting the hypothesis that plasmoids or extended current sheets are formed during reconnection at the base of plumes. To further evaluate the character of magnetic field discontinuities in PBSs, differential streaming between alpha particles and protons is analyzed here for the same sample of PBSs used in the MVA. Alpha particles in high-speed wind generally have a higher radial flow speed than protons. However, if the magnetic field is folded back on itself, as in a large-amplitude Alfven wave, alpha particles will locally have a radial flow speed less than protons. This characteristic is used here to distinguish between folded back magnetic fields (which would contain rotational discontinuities) and tangential discontinuities using Ulysses high-latitude, high-speed solar wind data. The analysis indicates that almost all reversals in the radial magnetic field in PBSs are folded back field lines. This is found to also be true outside PBSs, supporting existing results for typical high-speed, high-latitude wind. There remains a small number of cases that appear not to be folds in the magnetic field and which may be flux tubes with both ends rooted in the Sun. The distinct difference in MVA results inside and outside PBSs remains unexplained.
Differential Velocity Between Solar Wind Protons and Alpha Particles in Pressure Balance Structures
NASA Technical Reports Server (NTRS)
Yamauchi, Y.; Suess, S. T.; Steinberg, J. T.; Sakurai, T.
2003-01-01
Pressure balance structures (PBSs) are a common high plasma beta feature in high latitude, high speed solar wind. They have been proposed as remnants of coronal plumes. If true, they should reflect the observation that plumes are rooted in unipolar magnetic flux concentrations in the photosphere and are heated as oppositely directed flux is advected into and reconnects with the flux concentration. A minimum variance analysis (MVA) of magnetic discontinuities in PBSs showed there is a larger proportion of tangential discontinuities than in the surrounding high speed wind, supporting the hypothesis that plasmoids or extended current sheets are formed during reconnection at the base of plumes. To further evaluate the character of magnetic field discontinuities in PBSs, differential streaming between alpha particles and protons is analyzed here for the same sample of PBSs used in the MVA. Alpha particles in high speed wind generally have a higher radial flow speed than protons. However, if the magnetic field is folded back on itself, as in a large amplitude Alfven wave, alpha particles will locally have a radial flow speed less than protons. This characteristic is used here to distinguish between folded back magnetic fields (which would contain rotational discontinuities) and tangential discontinuities using Ulysses high latitude, high speed solar wind data. The analysis indicates that almost all reversals in the radial magnetic field in PBSs are folded back field lines. This is found to also be true outside PBSs, supporting existing results for typical high speed, high latitude wind. There remains a small number of cases that appear not to be folds in the magnetic field and which may be flux tubes with both ends rooted in the Sun. The distinct difference in MVA results inside and outside PBSs remains unexplained.
Optical characterization of high speed microscanners based on static slit profiling method
NASA Astrophysics Data System (ADS)
Alaa Elhady, A.; Sabry, Yasser M.; Khalil, Diaa
2017-01-01
Optical characterization of high-speed microscanners is a challenging task that usually requires special high speed, extremely expensive camera systems. This paper presents a novel simple method to characterize the scanned beam spot profile and size in high-speed optical scanners under operation. It allows measuring the beam profile and the spot sizes at different scanning angles. The method is analyzed theoretically and applied experimentally on the characterization of a Micro Electro Mechanical MEMS scanner operating at 2.6 kHz. The variation of the spot size versus the scanning angle, up to ±15°, is extracted and the dynamic bending curvature effect of the micromirror is predicted.
Speed limit recommendation in vicinity of signalized, high-speed intersection.
DOT National Transportation Integrated Search
2012-04-01
We evaluated the traffic operations and safety effects of 5 mph and 10 mph speed limit reductions in the vicinity of highspeed, : signalized intersections with advance warning flashers (AWF). Traffic operational effects of the reduced speed : limits ...
NASA Technical Reports Server (NTRS)
Reames, D. V.; Richardson, I. G.; Barbier, L. M.
1991-01-01
The abundances of energetic ions accelerated from high-speed solar wind streams by shock waves formed at corotating interaction regions (CIRs) where high-speed streams overtake the lower-speed solar wind are examined. The observed element abundances appear to represent those of the high-speed solar wind, unmodified by the shock acceleration. These abundances, relative to those in the solar photosphere, are organized by the first ionization potential (FIP) of the ions in a way that is different from the FIP effect commonly used to describe differences between abundances in the solar photosphere and those in the solar corona, solar energetic particles (SEPs), and the low-speed solar wind. In contrast, the FIP effect of the ion abundances in the CIR events is characterized by a smaller amplitude of the differences between high-FIP and low-FIP ions and by elevated abundances of He, C, and S.
The Next Generation of High-Speed Dynamic Stability Wind Tunnel Testing (Invited)
NASA Technical Reports Server (NTRS)
Tomek, Deborah M.; Sewall, William G.; Mason, Stan E.; Szchur, Bill W. A.
2006-01-01
Throughout industry, accurate measurement and modeling of dynamic derivative data at high-speed conditions has been an ongoing challenge. The expansion of flight envelopes and non-conventional vehicle design has greatly increased the demand for accurate prediction and modeling of vehicle dynamic behavior. With these issues in mind, NASA Langley Research Center (LaRC) embarked on the development and shakedown of a high-speed dynamic stability test technique that addresses the longstanding problem of accurately measuring dynamic derivatives outside the low-speed regime. The new test technique was built upon legacy technology, replacing an antiquated forced oscillation system, and greatly expanding the capabilities beyond classic forced oscillation testing at both low and high speeds. The modern system is capable of providing a snapshot of dynamic behavior over a periodic cycle for varying frequencies, not just a damping derivative term at a single frequency.
NASA Technical Reports Server (NTRS)
Donlan, C. J.; Myers, B. C., II; Mattson, A. T.
1976-01-01
The high speed aerodynamic characteristics of a family of four wing-fuselage configurations of 0, 35, 45, and 60 deg sweepback were determined from transonic bump model tests that were conducted in the Langley high speed 7 by 10 foot tunnel; sting supported model tests were conducted in the Langley 8 foot high speed tunnel and in the Langley high speed 7 by 10 foot tunnel, and rocket model tests were conducted by the Langley Pilotless Aircraft Research Division. A complementary study of the effect of Mach number gradients and streamline curvature on bump results is also included. The qualitative data obtained from the various test facilities for the wing-fuselage configurations were in essential agreement as regards the relative effects of sweepback and Mach number except for drag at zero lift. Quantitatively, important differences were present.
NASA Astrophysics Data System (ADS)
Munoz, Joshua
The primary focus of this research is evaluation of feasibility, applicability, and accuracy of Doppler Light Detection And Ranging (LIDAR) sensors as non-contact means for measuring track speed, distance traveled, and curvature. Speed histories, currently measured with a rotary, wheelmounted encoder, serve a number of useful purposes, one significant use involving derailment investigations. Distance calculation provides a spatial reference system for operators to locate track sections of interest. Railroad curves, using an IMU to measure curvature, are monitored to maintain track infrastructure within regulations. Speed measured with high accuracy leads to highfidelity distance and curvature data through utilization of processor clock rate and left-and rightrail speed differentials during curve navigation, respectively. Wheel-mounted encoders, or tachometers, provide a relatively low-resolution speed profile, exhibit increased noise with increasing speed, and are subject to the inertial behavior of the rail car which affects output data. The IMU used to measure curvature is dependent on acceleration and yaw rate sensitivity and experiences difficulty in low-speed conditions. Preliminary system tests onboard a "Hy-Rail" utility vehicle capable of traveling on rail show speed capture is possible using the rails as the reference moving target and furthermore, obtaining speed profiles from both rails allows for the calculation of speed differentials in curves to estimate degrees curvature. Ground truth distance calibration and curve measurement were also carried out. Distance calibration involved placement of spatial landmarks detected by a sensor to synchronize distance measurements as a pre-processing procedure. Curvature ground truth measurements provided a reference system to confirm measurement results and observe alignment variation throughout a curve. Primary testing occurred onboard a track geometry rail car, measuring rail speed over substantial mileage in various weather conditions, providing highaccuracy data to further calculate distance and curvature along the test routes. Tests results indicate the LIDAR system measures speed at higher accuracy than the encoder, absent of noise influenced by increasing speed. Distance calculation is also high in accuracy, results showing high correlation with encoder and ground truth data. Finally, curvature calculation using speed data is shown to have good correlation with IMU measurements and a resolution capable of revealing localized track alignments. Further investigations involve a curve measurement algorithm and speed calibration method independent from external reference systems, namely encoder and ground truth data. The speed calibration results show a high correlation with speed data from the track geometry vehicle. It is recommended that the study be extended to provide assessment of the LIDAR's sensitivity to car body motion in order to better isolate the embedded behavior in the speed and curvature profiles. Furthermore, in the interest of progressing the system toward a commercially viable unit, methods for self-calibration and pre-processing to allow for fully independent operation is highly encouraged.
An Evolutionary Method for Financial Forecasting in Microscopic High-Speed Trading Environment.
Huang, Chien-Feng; Li, Hsu-Chih
2017-01-01
The advancement of information technology in financial applications nowadays have led to fast market-driven events that prompt flash decision-making and actions issued by computer algorithms. As a result, today's markets experience intense activity in the highly dynamic environment where trading systems respond to others at a much faster pace than before. This new breed of technology involves the implementation of high-speed trading strategies which generate significant portion of activity in the financial markets and present researchers with a wealth of information not available in traditional low-speed trading environments. In this study, we aim at developing feasible computational intelligence methodologies, particularly genetic algorithms (GA), to shed light on high-speed trading research using price data of stocks on the microscopic level. Our empirical results show that the proposed GA-based system is able to improve the accuracy of the prediction significantly for price movement, and we expect this GA-based methodology to advance the current state of research for high-speed trading and other relevant financial applications.
NASA Technical Reports Server (NTRS)
Baize, Daniel G. (Editor)
1999-01-01
The High-Speed Research Program and NASA Langley Research Center sponsored the NASA High-Speed Research Program Sonic Boom Workshop on September 12-13, 1995. The workshop was designed to bring together NASAs scientists and engineers and their counterparts in industry, other Government agencies, and academia working together in the sonic boom element of NASAs High-Speed Research Program. Specific objectives of this workshop were to: (1) report the progress and status of research in sonic boom propagation, acceptability, and design; (2) promote and disseminate this technology within the appropriate technical communities; (3) help promote synergy among the scientists working in the Program; and (4) identify technology pacing, the development C, of viable reduced-boom High-Speed Civil Transport concepts. The Workshop was organized in four sessions: Sessions 1 Sonic Boom Propagation (Theoretical); Session 2 Sonic Boom Propagation (Experimental); Session 3 Acceptability Studies-Human and Animal; and Session 4 - Configuration Design, Analysis, and Testing.
Endurance tests with large-bore tapered-roller bearings to 2.2 million DN
NASA Technical Reports Server (NTRS)
Parker, R. J.; Signer, H. R.; Pinel, S. I.
1981-01-01
Endurance life tests were run with standard design and optimized high-speed design 120.65-mm-(4.750-in.-) bore tapered-roller bearings at shaft speeds of 12,500 and 18,500 rpm, respectively. Standard design bearings of vacuum melted AISI 4320 and CBS-1000M, and high-speed design bearings of CBS-1000M and through-hardened AISI M-50 were run under heavy combined radial and thrust load until fatigue failure or until a preset cutoff time of 1100 hours was reached. Standard design bearings made from CBS 1000M material ran to a 10 percent life approximately six times rated catalog life. Twelve identical bearings of AISI 4320 material ran to ten times rated catalog life without failure. Cracking and fracture of the cones of AISI M-50 high-speed design bearings occurred at 18,500 rpm due to high tensile hoop stresses. Four CBS 1000M high-speed design bearings ran to twenty-four times rated catalog life without any spalling, cracking or fracture failures.
Commercially available high-speed system for recording and monitoring vocal fold vibrations.
Sekimoto, Sotaro; Tsunoda, Koichi; Kaga, Kimitaka; Makiyama, Kiyoshi; Tsunoda, Atsunobu; Kondo, Kenji; Yamasoba, Tatsuya
2009-12-01
We have developed a special purpose adaptor making it possible to use a commercially available high-speed camera to observe vocal fold vibrations during phonation. The camera can capture dynamic digital images at speeds of 600 or 1200 frames per second. The adaptor is equipped with a universal-type attachment and can be used with most endoscopes sold by various manufacturers. Satisfactory images can be obtained with a rigid laryngoscope even with the standard light source. The total weight of the adaptor and camera (including battery) is only 1010 g. The new system comprising the high-speed camera and the new adaptor can be purchased for about $3000 (US), while the least expensive stroboscope costs about 10 times that price, and a high-performance high-speed imaging system may cost 100 times as much. Therefore the system is both cost-effective and useful in the outpatient clinic or casualty setting, on house calls, and for the purpose of student or patient education.
Hybrid hydrostatic/ball bearings in high-speed turbomachinery
NASA Technical Reports Server (NTRS)
Nielson, C. E.
1983-01-01
A high speed, high pressure liquid hydrogen turbopump was designed, fabricated, and tested under a previous contract. This design was then modified to incorporate hybrid hydrostatic/ball bearings on both the pump end and turbine end to replace the original conventional ball bearing packages. The design, analysis, turbopump modification, assembly, and testing of the turbopump with hybrid bearings is presented here. Initial design considerations and rotordynamic performance analysis was made to define expected turbopump operating characteristics and are reported. The results of testing the turbopump to speeds of 9215 rad/s (88,000 rpm) using a wide range of hydrostatic bearing supply pressures are presented. The hydrostatic bearing test data and the rotordynamic behavior of the turbopump was closely analyzed and are included in the report. The testing of hybrid hydrostatic/ball bearings on a turbopump to the high speed requirements has indicated the configuration concept is feasible. The program has presented a great deal of information on the technology requirements of integrating the hybrid bearing into high speed turbopump designs for improved bearing life.
High-Speed Tests of a Model Twin-Engine Low-Wing Transport Airplane
NASA Technical Reports Server (NTRS)
Becker, John V; LEONARD LLOYD H
1942-01-01
Report presents the results of force tests made of a 1/8-scale model of a twin-engine low-wing transport airplane in the NACA 8-foot high-speed tunnel to investigate compressibility and interference effects of speeds up to 450 miles per hour. In addition to tests of the standard arrangement of the model, tests were made with several modifications designed to reduce the drag and to increase the critical speed.
High-speed cylindrical collapse of two perfect fluids
NASA Astrophysics Data System (ADS)
Sharif, M.; Ahmad, Zahid
2007-09-01
In this paper, the study of the gravitational collapse of cylindrically distributed two perfect fluid system has been carried out. It is assumed that the collapsing speeds of the two fluids are very large. We explore this condition by using the high-speed approximation scheme. There arise two cases, i.e., bounded and vanishing of the ratios of the pressures with densities of two fluids given by c s , d s . It is shown that the high-speed approximation scheme breaks down by non-zero pressures p 1, p 2 when c s , d s are bounded below by some positive constants. The failure of the high-speed approximation scheme at some particular time of the gravitational collapse suggests the uncertainty on the evolution at and after this time. In the bounded case, the naked singularity formation seems to be impossible for the cylindrical two perfect fluids. For the vanishing case, if a linear equation of state is used, the high-speed collapse does not break down by the effects of the pressures and consequently a naked singularity forms. This work provides the generalisation of the results already given by Nakao and Morisawa (Prog Theor Phys 113:73, 2005) for the perfect fluid.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vigil, M.B.
1995-03-01
This document provides a written compilation of the presentations and viewgraphs from the 1994 Conference on High Speed Computing given at the High Speed Computing Conference, {open_quotes}High Performance Systems,{close_quotes} held at Gleneden Beach, Oregon, on April 18 through 21, 1994.
Networking via wireless bridge produces greater speed and flexibility, lowers cost.
1998-10-01
Wireless computer networking. Computer connectivity is essential in today's high-tech health care industry. But telephone lines aren't fast enough, and high-speed connections like T-1 lines are costly. Read about an Ohio community hospital that installed a wireless network "bridge" to connect buildings that are miles apart, creating a reliable high-speed link that costs one-tenth of a T-1 line.
Double Tunneling Injection Quantum Dot Lasers for High Speed Operation
2017-10-23
Double Tunneling-Injection Quantum Dot Lasers for High -Speed Operation The views, opinions and/or findings contained in this report are those of...SECURITY CLASSIFICATION OF: 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 13. SUPPLEMENTARY NOTES 12. DISTRIBUTION AVAILIBILITY STATEMENT 6...State University Title: Double Tunneling-Injection Quantum Dot Lasers for High -Speed Operation Report Term: 0-Other Email: asryan@vt.edu Distribution
Dynamic Range Enhancement of High-Speed Electrical Signal Data via Non-Linear Compression
NASA Technical Reports Server (NTRS)
Laun, Matthew C. (Inventor)
2016-01-01
Systems and methods for high-speed compression of dynamic electrical signal waveforms to extend the measuring capabilities of conventional measuring devices such as oscilloscopes and high-speed data acquisition systems are discussed. Transfer function components and algorithmic transfer functions can be used to accurately measure signals that are within the frequency bandwidth but beyond the voltage range and voltage resolution capabilities of the measuring device.
Kinematic and Dynamic Analysis of High-Speed Intermittent-Motion Mechanisms.
1984-01-16
intermittent-motion mechanisms which -"have potential application to the high-speed automatic weapon system , and an investigation on the workspace of a robotic...manipulator system . The problems of this investigation belong to a selected group of unsolved or partially solved problems which are relevant and...design of high-speed machinery and automated manufacturing systems . Accession For IiTIS GRA&I DTIC TAB Unamounced 0 Justificatio By_, Distribut ion
NASA Astrophysics Data System (ADS)
Vardanyan, E. L.; Budilov, V. V.; Ramazanov, K. N.; Khusnimardanov, R. N.; Nagimov, R. Sh
2017-05-01
The operation conditions and mechanism of wear of slotting tools from high-speed steel was researched. The analysis of methods increasing durability was carried out. The effect of intermetallic coatings deposited from vacuum-arc discharge plasma on the physical-mechanical high-speed steel EP657MP was discovered. The pilot batch of the slotting tool and production tests were carried out.
Wavelet-space correlation imaging for high-speed MRI without motion monitoring or data segmentation.
Li, Yu; Wang, Hui; Tkach, Jean; Roach, David; Woods, Jason; Dumoulin, Charles
2015-12-01
This study aims to (i) develop a new high-speed MRI approach by implementing correlation imaging in wavelet-space, and (ii) demonstrate the ability of wavelet-space correlation imaging to image human anatomy with involuntary or physiological motion. Correlation imaging is a high-speed MRI framework in which image reconstruction relies on quantification of data correlation. The presented work integrates correlation imaging with a wavelet transform technique developed originally in the field of signal and image processing. This provides a new high-speed MRI approach to motion-free data collection without motion monitoring or data segmentation. The new approach, called "wavelet-space correlation imaging", is investigated in brain imaging with involuntary motion and chest imaging with free-breathing. Wavelet-space correlation imaging can exceed the speed limit of conventional parallel imaging methods. Using this approach with high acceleration factors (6 for brain MRI, 16 for cardiac MRI, and 8 for lung MRI), motion-free images can be generated in static brain MRI with involuntary motion and nonsegmented dynamic cardiac/lung MRI with free-breathing. Wavelet-space correlation imaging enables high-speed MRI in the presence of involuntary motion or physiological dynamics without motion monitoring or data segmentation. © 2014 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Johnston, William; Tierney, Brian; Lee, Jason; Hoo, Gary; Thompson, Mary
1996-01-01
We have developed and deployed a distributed-parallel storage system (DPSS) in several high speed asynchronous transfer mode (ATM) wide area networks (WAN) testbeds to support several different types of data-intensive applications. Architecturally, the DPSS is a network striped disk array, but is fairly unique in that its implementation allows applications complete freedom to determine optimal data layout, replication and/or coding redundancy strategy, security policy, and dynamic reconfiguration. In conjunction with the DPSS, we have developed a 'top-to-bottom, end-to-end' performance monitoring and analysis methodology that has allowed us to characterize all aspects of the DPSS operating in high speed ATM networks. In particular, we have run a variety of performance monitoring experiments involving the DPSS in the MAGIC testbed, which is a large scale, high speed, ATM network and we describe our experience using the monitoring methodology to identify and correct problems that limit the performance of high speed distributed applications. Finally, the DPSS is part of an overall architecture for using high speed, WAN's for enabling the routine, location independent use of large data-objects. Since this is part of the motivation for a distributed storage system, we describe this architecture.