Science.gov

Sample records for high-speed optical quantum

  1. High speed optical quantum random number generation.

    PubMed

    Fürst, Martin; Weier, Henning; Nauerth, Sebastian; Marangon, Davide G; Kurtsiefer, Christian; Weinfurter, Harald

    2010-06-07

    We present a fully integrated, ready-for-use quantum random number generator (QRNG) whose stochastic model is based on the randomness of detecting single photons in attenuated light. We show that often annoying deadtime effects associated with photomultiplier tubes (PMT) can be utilized to avoid postprocessing for bias or correlations. The random numbers directly delivered to a PC, generated at a rate of up to 50 Mbit/s, clearly pass all tests relevant for (physical) random number generators.

  2. High-speed linear optics quantum computing using active feed-forward.

    PubMed

    Prevedel, Robert; Walther, Philip; Tiefenbacher, Felix; Böhi, Pascal; Kaltenbaek, Rainer; Jennewein, Thomas; Zeilinger, Anton

    2007-01-04

    As information carriers in quantum computing, photonic qubits have the advantage of undergoing negligible decoherence. However, the absence of any significant photon-photon interaction is problematic for the realization of non-trivial two-qubit gates. One solution is to introduce an effective nonlinearity by measurements resulting in probabilistic gate operations. In one-way quantum computation, the random quantum measurement error can be overcome by applying a feed-forward technique, such that the future measurement basis depends on earlier measurement results. This technique is crucial for achieving deterministic quantum computation once a cluster state (the highly entangled multiparticle state on which one-way quantum computation is based) is prepared. Here we realize a concatenated scheme of measurement and active feed-forward in a one-way quantum computing experiment. We demonstrate that, for a perfect cluster state and no photon loss, our quantum computation scheme would operate with good fidelity and that our feed-forward components function with very high speed and low error for detected photons. With present technology, the individual computational step (in our case the individual feed-forward cycle) can be operated in less than 150 ns using electro-optical modulators. This is an important result for the future development of one-way quantum computers, whose large-scale implementation will depend on advances in the production and detection of the required highly entangled cluster states.

  3. High Speed Quantum Key Distribution Over Optical Fiber Network System1

    PubMed Central

    Ma, Lijun; Mink, Alan; Tang, Xiao

    2009-01-01

    The National Institute of Standards and Technology (NIST) has developed a number of complete fiber-based high-speed quantum key distribution (QKD) systems that includes an 850 nm QKD system for a local area network (LAN), a 1310 nm QKD system for a metropolitan area network (MAN), and a 3-node quantum network controlled by a network manager. This paper discusses the key techniques used to implement these systems, which include polarization recovery, noise reduction, frequency up-conversion detection based on a periodically polled lithium nitrate (PPLN) waveguide, custom high-speed data handling boards and quantum network management. Using our quantum network, a QKD secured video surveillance application has been demonstrated. Our intention is to show the feasibility and sophistication of QKD systems based on current technology. PMID:27504218

  4. High speed optical networks

    NASA Astrophysics Data System (ADS)

    Frankel, Michael Y.; Livas, Jeff

    2005-02-01

    This overview will discuss core network technology and cost trade-offs inherent in choosing between "analog" architectures with high optical transparency, and ones heavily dependent on frequent "digital" signal regeneration. The exact balance will be related to the specific technology choices in each area outlined above, as well as the network needs such as node geographic spread, physical connectivity patterns, and demand loading. Over the course of a decade, optical networks have evolved from simple single-channel SONET regenerator-based links to multi-span multi-channel optically amplified ultra-long haul systems, fueled by high demand for bandwidth at reduced cost. In general, the cost of a well-designed high capacity system is dominated by the number of optical to electrical (OE) and electrical to optical (EO) conversions required. As the reach and channel capacity of the transport systems continued to increase, it became necessary to improve the granularity of the demand connections by introducing (optical add/drop multiplexers) OADMs. Thus, if a node requires only small demand connectivity, most of the optical channels are expressed through without regeneration (OEO). The network costs are correspondingly reduced, partially balanced by the increased cost of the OADM nodes. Lately, the industry has been aggressively pursuing a natural extension of this philosophy towards all-optical "analog" core networks, with each demand touching electrical digital circuitry only at the in/egress nodes. This is expected to produce a substantial elimination of OEO costs, increase in network capacity, and a notionally simpler operation and service turn-up. At the same time, such optical "analog" network requires a large amount of complicated hardware and software for monitoring and manipulating high bit rate optical signals. New and more complex modulation formats that provide resiliency to both optical noise and nonlinear propagation effects are important for extended

  5. Gated high speed optical detector

    NASA Technical Reports Server (NTRS)

    Green, S. I.; Carson, L. M.; Neal, G. W.

    1973-01-01

    The design, fabrication, and test of two gated, high speed optical detectors for use in high speed digital laser communication links are discussed. The optical detectors used a dynamic crossed field photomultiplier and electronics including dc bias and RF drive circuits, automatic remote synchronization circuits, automatic gain control circuits, and threshold detection circuits. The equipment is used to detect binary encoded signals from a mode locked neodynium laser.

  6. Optically controlled polarizer using a ladder transition for high speed Stokesmetric Imaging and Quantum Zeno Effect based optical logic.

    PubMed

    Krishnamurthy, Subramanian; Wang, Y; Tu, Y; Tseng, S; Shahriar, M S

    2013-10-21

    We demonstrate an optically controlled polarizer at ~1323 nm using a ladder transition in a Rb vapor cell. The lower leg of the 5S(1/2),F = 1->5P(1/2),F = 1,2->6S(1/2),F = 1,2 transitions is excited by a Ti:Sapphire laser locked to a saturated absorption signal, representing the control beam. A tunable fiber laser at ~1323 nm is used to excite the upper leg of the transitions, representing the signal beam. When the control beam is linearly polarized, it produces an excitation of the intermediate level with a particular orientation of the angular momentum. Under ideal conditions, this orientation is transparent to the signal beam if it has the same polarization as the control beam and is absorbed when it is polarized orthogonally. We also present numerical simulations of the system using a comprehensive model which incorporates all the relevant Zeeman sub-levels in the system, and identify means to improve the performance of the polarizer. A novel algorithm to compute the evolution of large scale quantum system enabled us to perform this computation, which may have been considered too cumbersome to carry out previously. We describe how such a polarizer may serve as a key component for high-speed Stokesmetric imaging. We also show how such a polarizer, combined with an optically controlled waveplate, recently demonstrated by us, can be used to realize a high speed optical logic gate by making use of the Quantum Zeno Effect. Finally, we describe how such a logic gate can be realized at an ultra-low power level using a tapered nanofiber embedded in a vapor cell.

  7. Ultra-High Speed Optical Communication and Switching via Novel Quantum Devices.

    DTIC Science & Technology

    1995-09-01

    A joint theoretical experimental research program was undertaken to initiate the development of novel quantum devices for greatly improved optical ... communication and switching in both local network and long haul applications. Specifically, Northwest University theoretically investigated and

  8. High speed optical tomography for flow visualization

    NASA Technical Reports Server (NTRS)

    Snyder, Ray; Hesselink, Lambertus

    1987-01-01

    A novel optical architecture (based on holographic optical elements) for making high speed tomographic measurements is presented. The system is designed for making density or species concentration measurements in a nonsteady fluid or combustion flow. Performance evaluations of the optical system are discussed, and a test phase object was successfully reconstructed using this optical arrangement.

  9. High speed all optical networks

    NASA Technical Reports Server (NTRS)

    Chlamtac, Imrich; Ganz, Aura

    1990-01-01

    An inherent problem of conventional point-to-point wide area network (WAN) architectures is that they cannot translate optical transmission bandwidth into comparable user available throughput due to the limiting electronic processing speed of the switching nodes. The first solution to wavelength division multiplexing (WDM) based WAN networks that overcomes this limitation is presented. The proposed Lightnet architecture takes into account the idiosyncrasies of WDM switching/transmission leading to an efficient and pragmatic solution. The Lightnet architecture trades the ample WDM bandwidth for a reduction in the number of processing stages and a simplification of each switching stage, leading to drastically increased effective network throughputs. The principle of the Lightnet architecture is the construction and use of virtual topology networks, embedded in the original network in the wavelength domain. For this construction Lightnets utilize the new concept of lightpaths which constitute the links of the virtual topology. Lightpaths are all-optical, multihop, paths in the network that allow data to be switched through intermediate nodes using high throughput passive optical switches. The use of the virtual topologies and the associated switching design introduce a number of new ideas, which are discussed in detail.

  10. Impedance Matching for High Speed Optical Communication

    DTIC Science & Technology

    1988-06-01

    OPTICAL COMMUNICATION 16, PERaPNAL AUATHOR(S)ur. Kenry Zmuda IfTYJE OF REPORT 13b TIMý COVA5ED 14. DATE OF REPORT (Year, Month. Day) I5 PAGE COUNT EnaJ...294. 5. D. J. Nicholson and H. Zmuda, "Matching Structures for High Speed Optical Communication ", To be published in the Proceedings of Society of

  11. High-speed multichannel optical switching

    SciTech Connect

    Mikaelian, A.L.; Salakhutdinov, V.K.

    1994-12-31

    The programmable interconnection between N input and N output channels based on a matrix of microholograms is considered. Such a system can be used for optical switching having high speed, about gigabits-per-second. An example of such a system using bacteriorhodopsin film is investigated both theoretically and experimentally. The thickness of bacteriorhodopsin was 50 {micro}m and the cell size 3cmx2cm. To maintain interconnects each microhologram was regenerated by means of a routing system composed of a He-Ne laser, deflectors and optical elements. Experimentally, 20 channels were used. The diameter of the microhologram was 1 mm, and the diffraction efficiency was about 2%. The tests and calculations show the possibility of arranging 10{sup 4} switching channels with speed about 1 gigabit per second.

  12. High-speed quantum networking by ship

    PubMed Central

    Devitt, Simon J.; Greentree, Andrew D.; Stephens, Ashley M.; Van Meter, Rodney

    2016-01-01

    Networked entanglement is an essential component for a plethora of quantum computation and communication protocols. Direct transmission of quantum signals over long distances is prevented by fibre attenuation and the no-cloning theorem, motivating the development of quantum repeaters, designed to purify entanglement, extending its range. Quantum repeaters have been demonstrated over short distances, but error-corrected, global repeater networks with high bandwidth require new technology. Here we show that error corrected quantum memories installed in cargo containers and carried by ship can provide a exible connection between local networks, enabling low-latency, high-fidelity quantum communication across global distances at higher bandwidths than previously proposed. With demonstrations of technology with sufficient fidelity to enable topological error-correction, implementation of the quantum memories is within reach, and bandwidth increases with improvements in fabrication. Our approach to quantum networking avoids technological restrictions of repeater deployment, providing an alternate path to a worldwide Quantum Internet. PMID:27805001

  13. High-speed quantum networking by ship.

    PubMed

    Devitt, Simon J; Greentree, Andrew D; Stephens, Ashley M; Van Meter, Rodney

    2016-11-02

    Networked entanglement is an essential component for a plethora of quantum computation and communication protocols. Direct transmission of quantum signals over long distances is prevented by fibre attenuation and the no-cloning theorem, motivating the development of quantum repeaters, designed to purify entanglement, extending its range. Quantum repeaters have been demonstrated over short distances, but error-corrected, global repeater networks with high bandwidth require new technology. Here we show that error corrected quantum memories installed in cargo containers and carried by ship can provide a exible connection between local networks, enabling low-latency, high-fidelity quantum communication across global distances at higher bandwidths than previously proposed. With demonstrations of technology with sufficient fidelity to enable topological error-correction, implementation of the quantum memories is within reach, and bandwidth increases with improvements in fabrication. Our approach to quantum networking avoids technological restrictions of repeater deployment, providing an alternate path to a worldwide Quantum Internet.

  14. High-speed quantum networking by ship

    NASA Astrophysics Data System (ADS)

    Devitt, Simon J.; Greentree, Andrew D.; Stephens, Ashley M.; van Meter, Rodney

    2016-11-01

    Networked entanglement is an essential component for a plethora of quantum computation and communication protocols. Direct transmission of quantum signals over long distances is prevented by fibre attenuation and the no-cloning theorem, motivating the development of quantum repeaters, designed to purify entanglement, extending its range. Quantum repeaters have been demonstrated over short distances, but error-corrected, global repeater networks with high bandwidth require new technology. Here we show that error corrected quantum memories installed in cargo containers and carried by ship can provide a exible connection between local networks, enabling low-latency, high-fidelity quantum communication across global distances at higher bandwidths than previously proposed. With demonstrations of technology with sufficient fidelity to enable topological error-correction, implementation of the quantum memories is within reach, and bandwidth increases with improvements in fabrication. Our approach to quantum networking avoids technological restrictions of repeater deployment, providing an alternate path to a worldwide Quantum Internet.

  15. High Speed Fibre Optic Backbone LAN

    NASA Astrophysics Data System (ADS)

    Tanimoto, Masaaki; Hara, Shingo; Kajita, Yuji; Kashu, Fumitoshi; Ikeuchi, Masaru; Hagihara, Satoshi; Tsuzuki, Shinji

    1987-09-01

    Our firm has developed the SUMINET-4100 series, a fibre optic local area network (LAN), to serve the communications system trunk line needs for facilities, such as steel refineries, automobile plants and university campuses, that require large transmission capacity, and for the backbone networks used in intelligent building systems. The SUMINET-4100 series is already in service in various fields of application. Of the networks available in this series, the SUMINET-4150 has a trunk line speed of 128 Mbps and the multiplexer used for time division multiplexing (TDM) was enabled by designing an ECL-TTL gate array (3000 gates) based custom LSI. The synchronous, full-duplex V.24 and V.3.5 interfaces (SUMINET-2100) are provided for use with general purpose lines. And the IBM token ring network, the SUMINET-3200, designed for heterogeneous PCs and the Ethernet can all be connected to sub loops. Further, the IBM 3270 TCA and 5080 CADAM can be connected in the local mode. Interfaces are also provided for the NTT high-speed digital service, the digital PBX systems, and the Video CODEC system. The built-in loop monitor (LM) and network supervisory processor (NSP) provide management of loop utilization and send loop status signals to the host CPU's network configuration and control facility (NCCF). These built-in functions allow both the computer system and LAN to be managed from a single source at the host. This paper outlines features of the SUMINET-4150 and provides an example of its installation.

  16. Nanopatterned Quantum Dot Lasers for High Speed, High Efficiency, Operation

    DTIC Science & Technology

    2015-04-27

    SECURITY CLASSIFICATION OF: Quantum dot (QD) active regions hold potential for realizing extremely high performance semiconductor diode lasers...2009 31-Dec-2014 Approved for Public Release; Distribution Unlimited Final Report: Nanopatterned Quantum Dot Lasers for High Speed, High Efficiency...Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 quantum dots , nanopatterning, MOCVD, laser REPORT DOCUMENTATION PAGE 11

  17. High-speed wireless optical LANs

    NASA Astrophysics Data System (ADS)

    Oe, Kunishige; Sato, Syuichi; Okayama, Motoyuki; Kubota, Toshihiro

    2001-11-01

    Study on high speed indoor wireless optical LAN system enabling 100Mbps signal transmission with low bit error rate (10-9) is presented. To realize the optical LAN system handling 100 Mbps signal, a directed line of sight (LOS) system is adopted as the optical receiver sensitivity for a bit error rate of 10-9 for 100 Mbps signals is fairly large. In the system, new approaches are introduced: WDM technology which enables bi-directional transmission in full duplex manner is applied using a 1.3 micrometers laser diode for down-link and 0.65 micrometers red laser diode for up-link light sources. As the wavelengths of the two lasers are quite separated from each other, this WDM technology brings an advantage that two kind of semiconductor materials can be used for detectors; GaInAs is used for down-link while Si is applied for up-link. GaInAs PD cannot detect the up-link laser light of 0.65 micrometers and Si PD or APD cannot detect the down-link laser light of 1.3micrometers . Therefore full duplex transmission can be achieved in this configuration. In the indoor wireless optical LAN system, one of the critical points is the transmitter configuration for down- link which enables to deliver optical power enough for 100 Mbps transmission to user areas as wide as possible with inexpensive prices. To realize the point, a special 1.3micrometers laser diode, a spot-size converter integrated laser (SS-LD), is introduced in company with convex lens and an object lens to deliver optical power to areas as wide as possible. As the far-field patterns of the SS-LD are fairly narrow, most of the output power of the LD could be collected to and spread wide by the object lens of 40 magnifications. Using the device, 3m diameter circle area in the plane 2m apart from the 1.3micrometers SS-LD emitting 20 mW optical power, could receive optical power above the receiver sensitivity for a bit error rate of 10-9 for 100 Mbps signals. The visible red light is convenient for not only position

  18. Towards a high-speed quantum random number generator

    NASA Astrophysics Data System (ADS)

    Stucki, Damien; Burri, Samuel; Charbon, Edoardo; Chunnilall, Christopher; Meneghetti, Alessio; Regazzoni, Francesco

    2013-10-01

    Randomness is of fundamental importance in various fields, such as cryptography, numerical simulations, or the gaming industry. Quantum physics, which is fundamentally probabilistic, is the best option for a physical random number generator. In this article, we will present the work carried out in various projects in the context of the development of a commercial and certified high speed random number generator.

  19. High speed multi focal plane optical system

    NASA Technical Reports Server (NTRS)

    Minott, P. O. (Inventor)

    1983-01-01

    An apparatus for eliminating beamsplitter generated optical aberrations in a pupil concentric optical system providing a plurality of spatially separated images on different focal planes or surfaces is presented. The system employs a buried surface beamsplitter having spherically curved entrance and exit faces which are concentric to a system aperture stop with the entrance face being located in the path of a converging light beam directed there from an image forming objective element which is also concentric to the aperture stop.

  20. High speed all-optical networks

    NASA Technical Reports Server (NTRS)

    Chlamtac, Imrich

    1993-01-01

    An inherent problem of conventional point-to-point WAN architectures is that they cannot translate optical transmission bandwidth into comparable user available throughput due to the limiting electronic processing speed of the switching nodes. This report presents the first solution to WDM based WAN networks that overcomes this limitation. The proposed Lightnet architecture takes into account the idiosyncrasies of WDM switching/transmission leading to an efficient and pragmatic solution. The Lightnet architecture trades the ample WDM bandwidth for a reduction in the number of processing stages and a simplification of each switching stage, leading to drastically increased effective network throughputs.

  1. High-speed optical 3D sensing and its applications

    NASA Astrophysics Data System (ADS)

    Watanabe, Yoshihiro

    2016-12-01

    This paper reviews high-speed optical 3D sensing technologies for obtaining the 3D shape of a target using a camera. The focusing speed is from 100 to 1000 fps, exceeding normal camera frame rates, which are typically 30 fps. In particular, contactless, active, and real-time systems are introduced. Also, three example applications of this type of sensing technology are introduced, including surface reconstruction from time-sequential depth images, high-speed 3D user interaction, and high-speed digital archiving.

  2. High speed demodulation systems for fiber optic grating sensors

    NASA Technical Reports Server (NTRS)

    Udd, Eric (Inventor); Weisshaar, Andreas (Inventor)

    2002-01-01

    Fiber optic grating sensor demodulation systems are described that offer high speed and multiplexing options for both single and multiple parameter fiber optic grating sensors. To attain very high speeds for single parameter fiber grating sensors ratio techniques are used that allow a series of sensors to be placed in a single fiber while retaining high speed capability. These methods can be extended to multiparameter fiber grating sensors. Optimization of speeds can be obtained by minimizing the number of spectral peaks that must be processed and it is shown that two or three spectral peak measurements may in specific multiparameter applications offer comparable or better performance than processing four spectral peaks. Combining the ratio methods with minimization of peak measurements allows very high speed measurement of such important environmental effects as transverse strain and pressure.

  3. High-speed optical correlator with coaxial holographic system

    NASA Astrophysics Data System (ADS)

    Ikeda, Kanami; Watanabe, Eriko

    2015-09-01

    A high-speed volume holographic optical correlator is developed, which takes advantage of a coaxial holographic system. We have realized this high-speed correlator using an optimal design of the signal pattern, which improves the shift multiplex recording shift pitch. The speed of this correlator was further improved by increasing the number of pixels in the spatial light modulator and using a high speed rotating actuator. This correlation system successfully achieved an equal error rate of 0% by performing optical correlation over 900 times. It also achieved optical correlation experiment, at a shift pitch of 2.45 µm and a disk rotation speed of 900 rpm. In terms of optical correlation calculation speed, it yielded a peak interval of 542 ns, which corresponds to 1.846 × 106 frames per second.

  4. Magneto-optical system for high speed real time imaging

    NASA Astrophysics Data System (ADS)

    Baziljevich, M.; Barness, D.; Sinvani, M.; Perel, E.; Shaulov, A.; Yeshurun, Y.

    2012-08-01

    A new magneto-optical system has been developed to expand the range of high speed real time magneto-optical imaging. A special source for the external magnetic field has also been designed, using a pump solenoid to rapidly excite the field coil. Together with careful modifications of the cryostat, to reduce eddy currents, ramping rates reaching 3000 T/s have been achieved. Using a powerful laser as the light source, a custom designed optical assembly, and a high speed digital camera, real time imaging rates up to 30 000 frames per seconds have been demonstrated.

  5. Magneto-optical system for high speed real time imaging.

    PubMed

    Baziljevich, M; Barness, D; Sinvani, M; Perel, E; Shaulov, A; Yeshurun, Y

    2012-08-01

    A new magneto-optical system has been developed to expand the range of high speed real time magneto-optical imaging. A special source for the external magnetic field has also been designed, using a pump solenoid to rapidly excite the field coil. Together with careful modifications of the cryostat, to reduce eddy currents, ramping rates reaching 3000 T/s have been achieved. Using a powerful laser as the light source, a custom designed optical assembly, and a high speed digital camera, real time imaging rates up to 30 000 frames per seconds have been demonstrated.

  6. A high-speed, reconfigurable, channel- and time-tagged photon arrival recording system for intensity-interferometry and quantum optics experiments

    NASA Astrophysics Data System (ADS)

    Girish, B. S.; Pandey, Deepak; Ramachandran, Hema

    2017-08-01

    We present a compact, inexpensive multichannel module, APODAS (Avalanche Photodiode Output Data Acquisition System), capable of detecting 0.8 billion photons per second and providing real-time recording on a computer hard-disk, of channel- and time-tagged information of the arrival of upto 0.4 billion photons per second. Built around a Virtex-5 Field Programmable Gate Array (FPGA) unit, APODAS offers a temporal resolution of 5 nanoseconds with zero deadtime in data acquisition, utilising an efficient scheme for time and channel tagging and employing Gigabit ethernet for the transfer of data. Analysis tools have been developed on a Linux platform for multi-fold coincidence studies and time-delayed intensity interferometry. As illustrative examples, the second-order intensity correlation function ( g 2) of light from two commonly used sources in quantum optics —a coherent laser source and a dilute atomic vapour emitting spontaneously, constituting a thermal source— are presented. With easy reconfigurability and with no restriction on the total record length, APODAS can be readily used for studies over various time scales. This is demonstrated by using APODAS to reveal Rabi oscillations on nanosecond time scales in the emission of ultracold atoms, on the one hand, and, on the other hand, to measure the second-order correlation function on the millisecond time scales from tailored light sources. The efficient and versatile performance of APODAS promises its utility in diverse fields, like quantum optics, quantum communication, nuclear physics, astrophysics and biology.

  7. Review of High-Speed Fiber Optic Grating Sensors Systems

    SciTech Connect

    Udd, E; Benterou, J; May, C; Mihailov, S J; Lu, P

    2010-03-24

    Fiber grating sensors can be used to support a wide variety of high speed measurement applications. This includes measurements of vibrations on bridges, traffic monitoring on freeways, ultrasonic detection to support non-destructive tests on metal plates and providing details of detonation events. This paper provides a brief overview of some of the techniques that have been used to support high speed measurements using fiber grating sensors over frequency ranges from 10s of kHz, to MHZ and finally toward frequencies approaching the GHz regime. Very early in the development of fiber grating sensor systems it was realized that a high speed fiber grating sensor system could be realized by placing an optical filter that might be a fiber grating in front of a detector so that spectral changes in the reflection from a fiber grating were amplitude modulated. In principal the only limitation on this type of system involved the speed of the output detector which with the development of high speed communication links moved from the regime of 10s of MHz toward 10s of GHz. The earliest deployed systems involved civil structures including measurements of the strain fields on composite utility poles and missile bodies during break tests, bridges and freeways. This was followed by a series of developments that included high speed fiber grating sensors to support nondestructive testing via ultrasonic wave detection, high speed machining and monitoring ship hulls. Each of these applications involved monitoring mechanical motion of structures and thus interest was in speeds up to a few 10s of MHz. Most recently there has been interest in using fiber grating to monitor the very high speed events such as detonations and this has led to utilization of fiber gratings that are consumed during an event that may require detection speeds of hundreds of MHz and in the future multiple GHz.

  8. Multiplexed communication over a high-speed quantum channel

    SciTech Connect

    Heurs, M.; Webb, J. G.; Dunlop, A. E.; Harb, C. C.; Huntington, E. H.; Ralph, T. C.

    2010-03-15

    In quantum information systems it is of particular interest to consider the best way in which to use the nonclassical resources consumed by that system. Quantum communication protocols are integral to quantum information systems and are among the most promising near-term applications of quantum information science. Here we show that a multiplexed, digital quantum communications system supported by a comb of vacuum squeezing has a greater channel capacity per photon than a source of broadband squeezing with the same analog band width. We report on the time-resolved, simultaneous observation of the first dozen teeth in a 2.4-GHz comb of vacuum squeezing produced by a subthreshold optical parametric oscillator, as required for such a quantum communications channel. We also demonstrate multiplexed communication on that channel.

  9. High-speed optical links for UAV applications

    NASA Astrophysics Data System (ADS)

    Chen, C.; Grier, A.; Malfa, M.; Booen, E.; Harding, H.; Xia, C.; Hunwardsen, M.; Demers, J.; Kudinov, K.; Mak, G.; Smith, B.; Sahasrabudhe, A.; Patawaran, F.; Wang, T.; Wang, A.; Zhao, C.; Leang, D.; Gin, J.; Lewis, M.; Nguyen, D.; Quirk, K.

    2017-02-01

    High speed optical backbone links between a fleet of UAVs is an integral part of the Facebook connectivity architecture. To support the architecture, the optical terminals need to provide high throughput rates (in excess of tens of Gbps) while achieving low weight and power consumption. The initial effort is to develop and demonstrate an optical terminal capable of meeting the data rate requirements and demonstrate its functions for both air-air and air-ground engagements. This paper is a summary of the effort to date.

  10. Ultra-high-speed optical and electronic distributed devices

    SciTech Connect

    Hietala, V.M.; Plut, T.A.; Kravitz, S.H.; Vawter, G.A.; Wendt, J.R.; Armendariz, M.G.

    1995-08-01

    This report summarizes work on the development of ultra-high-speed semiconductor optical and electronic devices. High-speed operation is achieved by velocity matching the input stimulus to the output signal along the device`s length. Electronic devices such as field-effect transistors (FET`s), should experience significant speed increases by velocity matching the electrical input and output signals along the device. Likewise, optical devices, which are typically large, can obtain significant bandwidths by velocity matching the light being generated, detected or modulated with the electrical signal on the device`s electrodes. The devices discussed in this report utilize truly distributed electrical design based on slow-wave propagation to achieve velocity matching.

  11. Novel Applications of High Speed Optical-Injection Locked Lasers

    DTIC Science & Technology

    2010-07-31

    frequency response of high speed phototransistors . We have also shown the OIL lasers can significantly extend the reach of optical communications, to I20km...speed InP Heterojunction PhotoTransistors (HPTs). 1 HPT test wafers have been designed and taped out, consisting of single ended HPTs... phototransistors . Light transmitted by the lens fiber and waveguide into the base of the transistor modulates the base current in the device. The

  12. Bufferless Ultra-High Speed All-Optical Packet Routing

    NASA Astrophysics Data System (ADS)

    Muttagi, Shrihari; Prince, Shanthi

    2011-10-01

    All-Optical network is still in adolescence to cope up with steep rise in data traffic at the backbone network. Routing of packets in optical network depends on the processing speed of the All-Optical routers, thus there is a need to enhance optical processing to curb the delay in packet forwarding unit. In the proposed scheme, the header processing takes place on fly, therefore processing delay is at its lower limit. The objective is to propose a framework which establishes high data rate transmission with least latency in data routing from source to destination. The Routing table and optical header pulses are converted into Pulse Position (PP) format, thus reducing the complexity and in turn the processing delay. Optical pulse matching is exercised which results in multi-output transmission. This results in ultra-high speed packet forwarding unit. In addition, this proposed scheme includes dispersion compensation unit, which makes the data reliable.

  13. High speed optical links between LLNL and Berkeley

    SciTech Connect

    Lennon, W.J.; Thombley, R.L.

    1994-08-08

    The Advanced Telecommunications Program at Lawrence Livermore National Laboratory, in collaboration with Pacific Bell, is developing an experimental high speed, four wavelength, protocol independent optical link for evaluating wide area networking interconnection schemes and the use of fiber amplifiers. Lawrence Livermore National Laboratory, as a super-user, supercomputer, and super-application site, is anticipating the future bandwidth and protocol requirements to connect to other such sites as well as to connect to remote sited control centers and experiments. In this paper we discuss our vision of the future of Wide Area Networking and describe the plans for the wavelength division multiplexed link between Livermore and the University of California at Berkeley.

  14. High-speed digital fiber optic links for satellite traffic

    NASA Technical Reports Server (NTRS)

    Daryoush, A. S.; Ackerman, E.; Saedi, R.; Kunath, R. R.; Shalkhauser, K.

    1989-01-01

    Large aperture phased array antennas operating at millimeter wave frequencies are designed for space-based communications and imaging platforms. Array elements are comprised of active T/R modules which are linked to the central processing unit through high-speed fiber-optic networks. The system architecture satisfying system requirements at millimeter wave frequency is T/R level data mixing where data and frequency reference signals are distributed independently before mixing at the T/R modules. This paper demonstrates design procedures of a low loss high-speed fiber-optic link used for transmission of data signals over 600-900 MHz bandwidth inside satellite. The fiber-optic link is characterized for transmission of analog and digital data. A dynamic range of 79 dB/MHz was measured for analog data over the bandwidth. On the other hand, for bursted SMSK satellite traffic at 220 Mbps rates, BER of 2 x 10 to the -7th was measured for E(b)/N(o) of 14.3 dB.

  15. High-speed digital fiber optic links for satellite traffic

    NASA Technical Reports Server (NTRS)

    Daryoush, A. S.; Ackerman, E.; Saedi, R.; Kunath, R. R.; Shalkhauser, K.

    1989-01-01

    Large aperture phased array antennas operating at millimeter wave frequencies are designed for space-based communications and imaging platforms. Array elements are comprised of active T/R modules which are linked to the central processing unit through high-speed fiber-optic networks. The system architecture satisfying system requirements at millimeter wave frequency is T/R level data mixing where data and frequency reference signals are distributed independently before mixing at the T/R modules. This paper demonstrates design procedures of a low loss high-speed fiber-optic link used for transmission of data signals over 600-900 MHz bandwidth inside satellite. The fiber-optic link is characterized for transmission of analog and digital data. A dynamic range of 79 dB/MHz was measured for analog data over the bandwidth. On the other hand, for bursted SMSK satellite traffic at 220 Mbps rates, BER of 2 x 10 to the -7th was measured for E(b)/N(o) of 14.3 dB.

  16. High-speed digital fiber optic links for satellite traffic

    NASA Astrophysics Data System (ADS)

    Daryoush, A. S.; Ackerman, E.; Saedi, R.; Kunath, R. R.; Shalkhauser, K.

    1989-09-01

    Large aperture phased array antennas operating at millimeter wave frequencies are designed for space-based communications and imaging platforms. Array elements are comprised of active T/R modules which are linked to the central processing unit through high-speed fiber-optic networks. The system architecture satisfying system requirements at millimeter wave frequency is T/R level data mixing where data and frequency reference signals are distributed independently before mixing at the T/R modules. This paper demonstrates design procedures of a low loss high-speed fiber-optic link used for transmission of data signals over 600-900 MHz bandwidth inside satellite. The fiber-optic link is characterized for transmission of analog and digital data. A dynamic range of 79 dB/MHz was measured for analog data over the bandwidth. On the other hand, for bursted SMSK satellite traffic at 220 Mbps rates, BER of 2 x 10 to the -7th was measured for E(b)/N(o) of 14.3 dB.

  17. Optical buffer films for high-speed interferometric imaging

    NASA Astrophysics Data System (ADS)

    Lysogorski, Charles D.

    1995-02-01

    To understand wind tunnel flow-field turbulence, it is necessary to understand how high speed (kHz) transient events develop in time. The framing rates necessary to record such imagery are too high for conventional video camera systems to be used. While high-speed, film-based cameras (e.g. Cordin drum film recorders) have sufficient spatial resolution and framing rates, analyzing the data acquired with these cameras is time consuming, possibly taking days to process and digitize the film images. These limitations in existing digital imaging technologies, and pulsed flow-field illumination systems have prevented digital movies of phenomena in turbulent and unstable flow-field regions to be made with sufficient spatial and temporal resolution. To address this need, I am presenting two techniques which can record data onto an intermediate optical buffer with the desired temporal and spatial resolution. These optical buffers incorporate real-time erasable recording film which consist of a phosphor or bacteriorhodopsin (BR) that would be used to temporarily store the images which were recorded at kHz rates. These images are then reconstructed and digitized at standard video rates, and stored on an optical disk. The primary advantage of this technique is in the ability to record images at extremely fast rates (60 kHz or faster) and then digitize the images at standard video recording rates.

  18. High-speed analog fiber optic links for satellite communication

    NASA Astrophysics Data System (ADS)

    Daryoush, A. S.; Herczfeld, P. R.; Kunath, R. R.

    1988-01-01

    Large-aperture phased array antennas operating at millimeter wave frequencies are designed for space-based communications and imaging. Array elements are comprised of active transmit/receive (T/R) modules which are linked to the central processing unit through a high-speed fiberoptic network. This paper demonstrates optical control of active modules for satellite communication at 24 GHz. An approach called T/R level data mixing, which utilizes fiberoptic transmission of a data signal to individual T/R modules to be upconverted by an optically synchronized local oscillator, is demonstrated at 24 GHz. A free-running HEMT oscillator, used as local oscillator at 24 GHz, is synchronized using indirect subharmonic optical injection locking over a locking range of 14 MHz. Results of data link performance over 500-1000 MHz is also reported in terms of gain-bandwidth, linearity and third-order intercept, sensitivity, and dynamic range.

  19. Submonolayer Quantum Dots for High Speed Surface Emitting Lasers

    PubMed Central

    2007-01-01

    We report on progress in growth and applications of submonolayer (SML) quantum dots (QDs) in high-speed vertical-cavity surface-emitting lasers (VCSELs). SML deposition enables controlled formation of high density QD arrays with good size and shape uniformity. Further increase in excitonic absorption and gain is possible with vertical stacking of SML QDs using ultrathin spacer layers. Vertically correlated, tilted or anticorrelated arrangements of the SML islands are realized and allow QD strain and wavefunction engineering. Respectively, both TE and TM polarizations of the luminescence can be achieved in the edge-emission using the same constituting materials. SML QDs provide ultrahigh modal gain, reduced temperature depletion and gain saturation effects when used in active media in laser diodes. Temperature robustness up to 100 °C for 0.98 μm range vertical-cavity surface-emitting lasers (VCSELs) is realized in the continuous wave regime. An open eye 20 Gb/s operation with bit error rates better than 10−12has been achieved in a temperature range 25–85 °Cwithout current adjustment. Relaxation oscillations up to ∼30 GHz have been realized indicating feasibility of 40 Gb/s signal transmission. PMID:21794188

  20. Reflectively coupled waveguide photodetector for high speed optical interconnection.

    PubMed

    Hsu, Shih-Hsiang

    2010-01-01

    To fully utilize GaAs high drift mobility, techniques to monolithically integrate In0.53Ga0.47As p-i-n photodetectors with GaAs based optical waveguides using total internal reflection coupling are reviewed. Metal coplanar waveguides, deposited on top of the polyimide layer for the photodetector's planarization and passivation, were then uniquely connected as a bridge between the photonics and electronics to illustrate the high-speed monitoring function. The photodetectors were efficiently implemented and imposed on the echelle grating circle for wavelength division multiplexing monitoring. In optical filtering performance, the monolithically integrated photodetector channel spacing was 2 nm over the 1,520-1,550 nm wavelength range and the pass band was 1 nm at the -1 dB level. For high-speed applications the full-width half-maximum of the temporal response and 3-dB bandwidth for the reflectively coupled waveguide photodetectors were demonstrated to be 30 ps and 11 GHz, respectively. The bit error rate performance of this integrated photodetector at 10 Gbit/s with 2(7)-1 long pseudo-random bit sequence non-return to zero input data also showed error-free operation.

  1. Reflectively Coupled Waveguide Photodetector for High Speed Optical Interconnection

    PubMed Central

    Hsu*, Shih-Hsiang

    2010-01-01

    To fully utilize GaAs high drift mobility, techniques to monolithically integrate In0.53Ga0.47As p-i-n photodetectors with GaAs based optical waveguides using total internal reflection coupling are reviewed. Metal coplanar waveguides, deposited on top of the polyimide layer for the photodetector’s planarization and passivation, were then uniquely connected as a bridge between the photonics and electronics to illustrate the high-speed monitoring function. The photodetectors were efficiently implemented and imposed on the echelle grating circle for wavelength division multiplexing monitoring. In optical filtering performance, the monolithically integrated photodetector channel spacing was 2 nm over the 1,520–1,550 nm wavelength range and the pass band was 1 nm at the −1 dB level. For high-speed applications the full-width half-maximum of the temporal response and 3-dB bandwidth for the reflectively coupled waveguide photodetectors were demonstrated to be 30 ps and 11 GHz, respectively. The bit error rate performance of this integrated photodetector at 10 Gbit/s with 27-1 long pseudo-random bit sequence non-return to zero input data also showed error-free operation. PMID:22163502

  2. Coherent DWDM technology for high speed optical communications

    NASA Astrophysics Data System (ADS)

    Saunders, Ross

    2011-10-01

    The introduction of coherent digital optical transmission enables a new generation of high speed optical data transport and fiber impairment mitigation. An initial implementation of 40 Gb/s coherent systems using Dual Polarization Quadrature Phase Shift Keying (DP-QPSK) is already being installed in carrier networks. New systems running at 100 Gb/s DP-QPSK data rate are in development and early technology lab and field trial phase. Significant investment in the 100 Gb/s ecosystem (optical components, ASICs, transponders and systems) bodes well for commercial application in 2012 and beyond. Following in the footsteps of other telecommunications fields such as wireless and DSL, we can expect coherent optical transmission to evolve from QPSK to higher order modulations schemes such as Mary PSK and/or QAM. This will be an interesting area of research in coming years and poses significant challenges in terms of electro-optic, DSP, ADC/DAC design and fiber nonlinearity mitigation to reach practical implementation ready for real network deployments.

  3. Optical communication equalized technique suitable for high-speed transmission

    NASA Astrophysics Data System (ADS)

    Zhu, Yaolin; Guan, Hao

    2017-07-01

    To solve the phase distortion and high error rate in optical signal transmission, an equalized technique is proposed, which aims to improve the constant modulus algorithm (CMA). In order to correct phase rotating and reduce the error rate with 64 quadrature amplitude modulation (QAM), the method takes the mean square error as the judgment and utilizes the time-varying step size. Simulation results demonstrate that the proposed algorithm can improve the convergence speed of constellation points, make the eye opening larger, and the signal noise ratio (SNR) can be increased by 4 dB under the same bit error rate (BER), which is efficient for the recovery of information in high-speed transmission.

  4. Electrically Switched Holographic Film for High Speed Optical Beam Steering

    NASA Astrophysics Data System (ADS)

    Sutherland, R. L.; Natarajan, L. V.; Tondiglia, V. P.; Bunning, T. J.

    1997-03-01

    We have developed a novel composite material which forms electrically switchable gratings upon standard holographic recording. The gratings consist of periodic arrays of nanometer scale liquid crystal domains in a dense polymer host. NMR and SEM studies indicate a homeotropic alignment of the liquid crystal with an axial defect or symmetry axis along the long axis of prolate sheroid droplets. Samples exhibit good optical quality with high diffraction efficiency in a single Bragg mode. The diffraction efficiency can be modulated by an external electric field, and wide on/off dynamic range switching (>25 dB) is achieved. Simple models relate the dynamic range, switching voltage (<5 V/μm), and response time (25 μs) to the material morphology. Applications incorporating high speed beam steering will be discussed.

  5. Probing single processive molecular motors with high-speed optical tweezers and fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Gardini, L.; Pavone, F. S.; Capitanio, M.

    2017-02-01

    Here we present development of optical techniques for the study of single processive myosin motors based on the combination of high-speed optical tweezers force spectroscopy and single molecule fluorescence imaging. Ultrafast force-clamp spectroscopy1 is applied to study the dependence of single chemo-mechanical steps of processive myosin motors on the applied load. On the other hand, single molecule localization through FIONA (Fluorescence Imaging with One Nanometer Accuracy)2, 3 is applied to in vitro motility assay to measure parameters such as the runlength, velocity and step size of single myosin V motors, labeled with Quantum Dots, under unloaded conditions.

  6. Generalized OFDM (GOFDM) for ultra-high-speed optical transmission.

    PubMed

    Djordjevic, Ivan; Arabaci, Murat; Xu, Lei; Wang, Ting

    2011-03-28

    We propose a coded N-dimensional modulation scheme suitable for ultra-high-speed serial optical transport. The proposed scheme can be considered as a generalization of OFDM, and hence, we call it as generalized OFDM (GOFDM). In this scheme, the orthogonal subcarriers are used as basis functions and the signal constellation points are defined over this N-dimensional linear space. To facilitate implementation, we propose using N-dimensional pulse-amplitude modulation (ND-PAM) as the signal constellation diagram, which is obtained as the N-ary Cartesian product of one-dimensional PAM. In conventional OFDM, QAM/PSK signal constellation points are transmitted over orthogonal subcarriers and then they are multiplexed together in an OFDM stream. Individual subcarriers, therefore, carry N parallel QAM/PSK streams. In the proposed GOFDM scheme instead, an N-dimensional signal constellation point is transmitted over all N subcarriers simultaneously. When some of the subcarriers are severely affected by channel impairments, the constellation points carried by those subcarriers may be lost in the conventional OFDM. In comparison, under such conditions, the overall signal constellation point will face only small distortion in GOFDM and it can be recovered successfully using the information on the other high fidelity subcarriers. Furthermore, because the channel capacity is a logarithmic function of signal-to-noise ratio but a linear function of the number of dimensions, the spectral efficiency of optical transmission systems can be improved with GOFDM.

  7. High-speed switching of biphoton delays through electro-optic pump frequency modulation

    DOE PAGES

    Odele, Ogaga D.; Lukens, Joseph M.; Jaramillo-Villegas, Jose A.; ...

    2016-12-08

    The realization of high-speed tunable delay control has received significant attention in the scene of classical photonics. In quantum optics, however, such rapid delay control systems for entangled photons have remained undeveloped. Here for the first time, we demonstrate rapid (2.5 MHz) modulation of signal-idler arrival times through electro-optic pump frequency modulation. Our technique applies the quantum phenomenon of nonlocal dispersion cancellation along with pump frequency tuning to control the relative delay between photon pairs. Chirped fiber Bragg gratings are employed to provide large amounts of dispersion which result in biphoton delays exceeding 30 ns. This rapid delay modulation schememore » could be useful for on-demand single-photon distribution in addition to quantum versions of pulse position modulation.« less

  8. High-speed switching of biphoton delays through electro-optic pump frequency modulation

    NASA Astrophysics Data System (ADS)

    Odele, Ogaga D.; Lukens, Joseph M.; Jaramillo-Villegas, Jose A.; Imany, Poolad; Langrock, Carsten; Fejer, Martin M.; Leaird, Daniel E.; Weiner, Andrew M.

    2017-01-01

    The realization of high-speed tunable delay control has received significant attention in the scene of classical photonics. In quantum optics, however, such rapid delay control systems for entangled photons have remained undeveloped. Here for the first time, we demonstrate rapid (2.5 MHz) modulation of signal-idler arrival times through electro-optic pump frequency modulation. Our technique applies the quantum phenomenon of nonlocal dispersion cancellation along with pump frequency tuning to control the relative delay between photon pairs. Chirped fiber Bragg gratings are employed to provide large amounts of dispersion which result in biphoton delays exceeding 30 ns. This rapid delay modulation scheme could be useful for on-demand single-photon distribution in addition to quantum versions of pulse position modulation.

  9. Holistic design in high-speed optical interconnects

    NASA Astrophysics Data System (ADS)

    Saeedi, Saman

    Integrated circuit scaling has enabled a huge growth in processing capability, which necessitates a corresponding increase in inter-chip communication bandwidth. As bandwidth requirements for chip-to-chip interconnection scale, deficiencies of electrical channels become more apparent. Optical links present a viable alternative due to their low frequency-dependent loss and higher bandwidth density in the form of wavelength division multiplexing. As integrated photonics and bonding technologies are maturing, commercialization of hybrid-integrated optical links are becoming a reality. Increasing silicon integration leads to better performance in optical links but necessitates a corresponding co-design strategy in both electronics and photonics. In this light, holistic design of high-speed optical links with an in-depth understanding of photonics and state-of-the-art electronics brings their performance to unprecedented levels. This thesis presents developments in high-speed optical links by co-designing and co-integrating the primary elements of an optical link: receiver, transmitter, and clocking. In the first part of this thesis a 3D-integrated CMOS/Silicon-photonic receiver will be presented. The electronic chip features a novel design that employs a low-bandwidth TIA front-end, double-sampling and equalization through dynamic offset modulation. Measured results show -14.9dBm of sensitivity and energy eciency of 170fJ/b at 25Gb/s. The same receiver front-end is also used to implement source-synchronous 4-channel WDM-based parallel optical receiver. Quadrature ILO-based clocking is employed for synchronization and a novel frequency-tracking method that exploits the dynamics of IL in a quadrature ring oscillator to increase the effective locking range. An adaptive body-biasing circuit is designed to maintain the per-bit-energy consumption constant across wide data-rates. The prototype measurements indicate a record-low power consumption of 153fJ/b at 32Gb/s. The

  10. High-speed data encryption over 25 km of fiber by two-mode coherent-state quantum cryptography.

    PubMed

    Corndorf, Eric; Barbosa, Geraldo; Liang, Chuang; Yuen, Horace P; Kumar, Prem

    2003-11-01

    We demonstrate high-speed (250 Mbps) data encryption over 25 km of telecommunication fiber by use of coherent states. For the parameter values used in the experiment, the demonstration is secure against individual ciphertext-only eavesdropping attacks near the transmitter with ideal detection equipment. Whereas other quantum-cryptographic schemes require the use of fragile quantum states and ultrasensitive detection equipment, our protocol is loss tolerant, uses off-the-shelf components, and is optically amplifiable.

  11. STARMAP: protocol for high-speed fiber optic networks

    NASA Astrophysics Data System (ADS)

    Irvine-Halliday, Dave; Fapojuwo, Abraham O.; Pye, S. G.

    1993-02-01

    STARMAP is a new, active star-configured, multiple access protocol designed particularly for very high-speed fiber optic LANs but equally applicable to lower speed copper based systems. The main features include: collision-free operation; no packet retransmissions; bounded access delay time; high degree of service fairness; no back-off algorithm required; an integrated data/voice transmission capability; a Universal, a Selective and a Local (Global & Selective) Broadcast capability; very high security; Local Selective Broadcast packets never leave the local hub; a relative insensitivity to `Master' hub failure; preemptive and nonpreemptive priority packet service scheme; novel variable delay register in the hubs; excellent natural diagnostic capability; Loop Creating Links significantly improve network performance; true parallel transmissions. Computer simulations of example STARMAP networks show that at typical values of the offered traffic load, the network throughput exceeds the link bit rate and in the limit, approaches a value equal to the product of the link bit rate and the number of hubs in the network. The useful life of twisted wire pair and coaxial cable based networks may be significantly extended due to the substantial increases in network throughput achievable.

  12. Atomic thermal motion effect on efficiency of a high-speed quantum memory

    NASA Astrophysics Data System (ADS)

    Tikhonov, Kirill; Golubeva, Tania; Golubev, Yuri

    2015-11-01

    We discuss the influence of atomic thermal motion on the efficiency of multimode quantum memory in two configurations: over the free expand of atoms cooled beforehand in a magneto-optical trap, and over complete mixing of atoms in a closed cell at room temperature. We consider the high-speed quantum memory, and assume that writing and retrieval are short enough, and the displacements of atoms during these stages are negligibly small. At the same time we take in account thermal motion during the storage time, which, as well known, must be much longer than durations of all the other memory processes for successful application of memory cell in communication and computation. We will analyze this influence in terms of eigenmodes of the full memory cycle and show that distortion of the eigenmodes, caused by thermal motion, leads to the efficiency reduction. We will demonstrate, that in the multimode memory this interconnection has complicated character.

  13. Exploring the Sutherland High-speed Optical Cameras (SHOC)

    NASA Astrophysics Data System (ADS)

    Coppejans, Rocco; Gulbis, A. A. S.; Fourie, P.; Rust, M.; Sass, C.; Stoffels, J.; Whittal, H.; Cloete, J.

    2012-10-01

    Based on two existing instruments POETS (Souza et al., 2006, PASP, 118, 1550) and MORIS (Gulbis et al. 2011, PASP, 123, 461), two new instruments, SHOC (the Sutherland High-speed Optical Cameras), have been developed for use on the South African Astronomical Observatorie's (SAAO) 1.9m, 1.0m and 0.75m telescopes at Sutherland, South Africa. Each SHOC system consists of a camera, GPS, control computer and peripherals. The primary components are two, off-the-shelf Andor iXon X3 888 UVB cameras, each of which utilizes a 1024x1024, frame transfer, thermoelectrically-cooled, back-illuminated CCD. SHOC's most important feature is that it can achieve frame rates of between one and twenty frames per second during normal operation (dependent on binning and subframing) with nanosecond timing accuracy on each frame (achieved using frame-by-frame GPS triggering). Frame rates can be increased further and fainter targets observed by making use of the electron multiplying (EM) modes. SHOC is therefore ideally suited to observing transiting exoplanets and stellar occultations of Kuiper Belt objects. For occultations, this advantage is further increased by Sutherland being one of a few observatories on the African continent operating 1m class optical telescopes. Here, we will present the instrument, measured characteristics (including signal-to-noise ratios (SNR) for conventional and EM modes as a function of stellar magnitudes and exposure times), and SHOC's applications to planetary science. Attention will specifically be given to recently completed characterization work in which the SNR parameter space was explored and a comparison made between the SNR obtained in the EM and conventional modes. This will not only enable observers to optimize the instrument settings for their observations but also clearly demonstrates the advantages and potential pitfalls of the EM modes.

  14. High Speed Measurements using Fiber-optic Bragg Grating Sensors

    SciTech Connect

    Benterou, J J; May, C A; Udd, E; Mihailov, S J; Lu, P

    2011-03-26

    Fiber grating sensors may be used to monitor high-speed events that include catastrophic failure of structures, ultrasonic testing and detonations. This paper provides insights into the utility of fiber grating sensors to measure structural changes under extreme conditions. An emphasis is placed on situations where there is a structural discontinuity. Embedded chirped fiber Bragg grating (CFBG) sensors can track the very high-speed progress of detonation waves (6-9 km/sec) inside energetic materials. This paper discusses diagnostic instrumentation and analysis techniques used to measure these high-speed events.

  15. High speed measurements using fiber-optic Bragg gratings

    NASA Astrophysics Data System (ADS)

    Benterou, Jerry; May, Chadd; Udd, Eric; Mihailov, Stephen J.; Lu, Ping

    2011-06-01

    Fiber grating sensors may be used to monitor high-speed events that include catastrophic failure of structures, ultrasonic testing and detonations. This paper provides insights into the utility of fiber grating sensors to measure structural changes under extreme conditions. An emphasis is placed on situations where there is a structural discontinuity. Embedded chirped fiber Bragg grating (CFBG) sensors can track the very high-speed progress of detonation waves (6-9 km/sec) inside energetic materials. This paper discusses diagnostic instrumentation and analysis techniques used to measure these high-speed events.

  16. High Speed Quantum-Well Optoelectronic Devices by MBE

    DTIC Science & Technology

    1989-05-01

    emitwing ( transverse ) device structures. In both areas, significant advances have resulted as well. Surface-emitting lasers with segmented periodic...quantum-wire and strained-layer structures, including lasers . In the third section novel transverse modulators and lasers that use vertical Fabry-Perot...QWW Lasers 11 b. Extremely Wide Modulation Bandwidth in a low Threshold Current Strained Quantum Well Laser 12 Ill. Novel Transverse Modulators and

  17. Review of high-speed fiber optic grating sensor systems

    NASA Astrophysics Data System (ADS)

    Udd, Eric; Benterou, Jerry; May, Chadd; Mihailov, Stephen J.; Lu, Ping

    2010-04-01

    Fiber grating sensors can be used to support a wide variety of high speed measurement applications. This includes measurements of vibrations on bridges, traffic monitoring on freeways, ultrasonic detection to support non-destructive tests on metal plates, and providing details of detonation events. This paper provides a brief overview of some of the techniques that have been used to support high speed measurements using fiber grating sensors over frequency ranges from 10s of kHz, to MHZ and finally toward frequencies approaching the GHz regime.

  18. Research in high speed fiber optics local area networks

    NASA Technical Reports Server (NTRS)

    Tobagi, F. A.

    1986-01-01

    The design of high speed local area networks (HSLAN) for communication among distributed devices requires solving problems in three areas: the network medium and its topology, the medium access control, and the network interface. Considerable progress was already made in the first two areas. Accomplishments are divided into two groups according to their theoretical or experimental nature. A brief summary is given.

  19. High-speed red RCLEDs and VCSELs for plastic optical fiber application

    NASA Astrophysics Data System (ADS)

    Chiou, Shu-Woei; Lee, Yea-Chen; Chang, Chih-Sung; Chen, Tzer-Peng

    2005-03-01

    To investigate the high performance light source for high-speed plastic optical fiber (POF) communication application is important as high-speed short distance communication for the home networks becomes popular. It is straightforward to reduce the size of RCLEDs to increase the small-signal modulation bandwidth (f-3dB). But reduce the size of RCLEDs not only reduce the output power but also decrease lifetime because higher current density flowed through active region. In this paper, we improve. f-3dB of RCLEDs with the aperture of 84μm by reducing the number of quantum wells (QWs) in active region. We found the speed of RCLED inverse proportional to the number of QWs. By reducing the number of QWs to one, the device with standard aperture size exhibits high f-3dB as 235MHz at bias current of 20mA without sacrificing the other performance like maximum output power, high temperature performance, etc. These devices can transmit data rate as high as 500Mb/sec through graded-index POF over 50 meters. Beyond 1Gbits/sec, we have investigated red VCSELs as suitable high-speed light sources. The structure of red VCSELs is similar to RCLEDs except more pairs of DBR yield high reflectivity. Our red VCSEL can have output power as high as 1.5mW at 5mA and transmission data rate up to 2.5Gbits/sec.

  20. High-speed quantum-random number generation by continuous measurement of arrival time of photons

    SciTech Connect

    Yan, Qiurong; Zhao, Baosheng; Hua, Zhang; Liao, Qinghong; Yang, Hao

    2015-07-15

    We demonstrate a novel high speed and multi-bit optical quantum random number generator by continuously measuring arrival time of photons with a common starting point. To obtain the unbiased and post-processing free random bits, the measured photon arrival time is converted into the sum of integral multiple of a fixed period and a phase time. Theoretical and experimental results show that the phase time is an independent and uniform random variable. A random bit extraction method by encoding the phase time is proposed. An experimental setup has been built and the unbiased random bit generation rate could reach 128 Mb/s, with random bit generation efficiency of 8 bits per detected photon. The random numbers passed all tests in the statistical test suite.

  1. High-speed quantum-random number generation by continuous measurement of arrival time of photons

    NASA Astrophysics Data System (ADS)

    Yan, Qiurong; Zhao, Baosheng; Hua, Zhang; Liao, Qinghong; Yang, Hao

    2015-07-01

    We demonstrate a novel high speed and multi-bit optical quantum random number generator by continuously measuring arrival time of photons with a common starting point. To obtain the unbiased and post-processing free random bits, the measured photon arrival time is converted into the sum of integral multiple of a fixed period and a phase time. Theoretical and experimental results show that the phase time is an independent and uniform random variable. A random bit extraction method by encoding the phase time is proposed. An experimental setup has been built and the unbiased random bit generation rate could reach 128 Mb/s, with random bit generation efficiency of 8 bits per detected photon. The random numbers passed all tests in the statistical test suite.

  2. High Speed Optical Photometry of LMXBs and CVs

    NASA Astrophysics Data System (ADS)

    Mason, Paul A.; Robinson, Edward L.; Gomez, Sebastian; Gonzalez, Emmanuel; Lopez, Isaac D.; Monroy, Lorena; Price, Alex

    2013-02-01

    High speed photometry of several accreting binaries was obtained using the McDonald Observatory 2.1m telescope and ARGOS CCD photometer. A broad-band filter (BVR) was used in order to maximize flux and maintain a short (1-10s) integration time on faint targets. Such observations obtained over several years allow for variability study over time scales covering many orders of magnitude. Observations and analysis for several binaries are summarized.

  3. High-Speed Quantum Key Distribution Using Photonic Integrated Circuits

    DTIC Science & Technology

    2013-01-01

    time [6, 7, 8, 9], energy-time [10], and orbital angular momentum (OAM) [11, 12, 13]. Dispersive optics QKD (DO-QKD) is a high-dimensional QKD...and orbital angular momentum (OAM). Because we desired a protocol that is maximally compatible with modern-day fiber communications systems, we focused...connections to implement SNSPD detectors on-chip, as recently successfully demonstrated by our team. In addition, the wavelength-division- multiplexed

  4. High speed fiber optics local area networks: Design and implementation

    NASA Technical Reports Server (NTRS)

    Tobagi, Fouad A.

    1988-01-01

    The design of high speed local area networks (HSLAN) for communication among distributed devices requires solving problems in three areas: (1) the network medium and its topology; (2) the medium access control; and (3) the network interface. Considerable progress has been made in all areas. Accomplishments are divided into two groups according to their theoretical or experimental nature. A brief summary is given in Section 2, including references to papers which appeared in the literature, as well as to Ph.D. dissertations and technical reports published at Stanford University.

  5. Integrated Optical Circuits In Ultra-High Speed Fiber Optics LANs

    NASA Astrophysics Data System (ADS)

    Yeh, C.; Gerla, M.

    1985-09-01

    Successful implementation of ultra-high-speed fiber optics local area networks depends not only on the invention of efficient new protocols and architectures but also on the development of new interface devices. These interface devices may take the form of inte-grated optical circuits (I0Cs). This presentation will focus on the various functions of the interface devices which may be performed by different IOCs.

  6. High-Speed Characterizatin of Optical Telecommunication Signals

    SciTech Connect

    Dorrer, C.

    2007-05-17

    Optical telecommunication systems constantly evolve toward higher bit rates, requiring the modulation and detection of higher-bandwidth optical waves. Commercial systems operating at 40 Gb/s are now available and research and development efforts are targeting higher bit rates for which optical pulses with picosecond-range duration are used. Chromatic dispersion, nonlinearities and amplified spontaneous emission from optical amplifiers are sources of transmission impairments that must be characterized and mitigated. Advanced modulation formats rely on the modulation of not only the amplitude of an optical wave (e.g., on/off keying), but also its phase (e.g., phase-shift keying) in order to optimize the transmission capabilities. The importance of the characterization of the properties of optical sources and components and the specificities of the optical telecommunication environment with respect to ultrafast optics are emphasized. Various diagnostics measuring the electric field of optical sources in the telecommunication environment are described. Sampling diagnostics capable of measuring eye diagrams and constellation diagrams of high-bit-rate, data-encoded sources are presented. Various optical pulse characterization techniques that meet the sensitivity requirements imposed by the telecommunication environment are also described.

  7. Reconfigurable high-speed optical signal processing and high-capacity optical transmitter

    NASA Astrophysics Data System (ADS)

    Chitgarha, Mohammad Reza

    The field of optics and photonics enables several technologies including communication, bioimaging, spectroscopy, Ladars, microwave photonics and data processing [1-139]. The ability to use and manipulate large amounts of data is transforming many vital areas of society. The high capacity that optics brought to communications might also bring advantages to increase performance in signal processing by using a novel all-optical implementation of a tapped-delay-line, a fundamental building block for digital signal processing. This all-optical alternative provides real-time processing of amplitude- and phase-encoded optical fields, such that the overall potential speed-up is 10-100 fold faster than individual electronic processors with 5 GHz clock speeds. It can also enhance the optical data generation and transmission techniques by using different optical nonlinear processes to achieve higher baud rate data with more complex modulation format. Here, we demonstrate a reconfigurable high- speed optical tapped-delay-line, enabling several fundamental real-time signal processing functions such as equalization, correlation and discrete Fourier transform. Using nonlinear optics and dispersive elements, continuous tunability in time, amplitude and phase of the tapped-delay-line can be achieved at high speed. We also demonstrate a reconfigurable optical generation of higher-order modulation formats including pulse-amplitude-modulation (PAM) signals and quadrature-amplitude-modulation (QAM) signals [140-195].

  8. High-Speed Optical Diagnostics of Laser-Interactions

    NASA Astrophysics Data System (ADS)

    Bin Suaidi, Mohamad Kadim

    Available from UMI in association with The British Library. The interaction of an 8 ns, 10 mJ and 1.06 μm infrared pulse of radiation from a Q-switched Nd-YAG laser with water near a solid boundary is studied using high speed photographic techniques. The laser-liquid interaction has been used to generate high frequency sound waves by the mechanism of dielectric breakdown of the liquid around the beam waist of the focused laser beam. This leads to the production of a short duration plasma which rapidly heats and vaporises the surrounding liquid giving rise to a vapour cavity and the formation of a cavitation bubble resulting in the emission of a spherical acoustic wave. The acoustic transient associated with the breakdown, in turn interacted with a liquid-polymer interface leading to the generation of acoustic waves at this boundary and the propagation of stress-waves in the solid. Diagnostics of the laser-interaction events are recorded using a Mach-Zehnder interferometer illuminated by a sub-nanosecond nitrogen laser-pumped dye laser and computer-controlled video-imaging and capture systems. Measurements of the transient pressure distributions from the digitally recorded interferograms are carried out using a process known as Abel inversion. Dynamic photoelastic studies of the stress-waves propagation in the solid are performed using a circular polariscope arrangement thus producing the photoelastic fringe patterns. Identification of the wave structures are greatly enhanced by also recording the events in schlieren and focused shadowgraphy as well as by the combination of the above techniques. The initial part of the project also involved the design and development of a nitrogen laser and tunable dye laser system. The short-duration and high peak power output pulse of the nitrogen laser is then used to pump the dye laser giving sufficiently high power output with good spectral linewidth to provide an ideal light source for high-speed photography of the laser

  9. A high-speed GaAs MESFET optical controller

    NASA Technical Reports Server (NTRS)

    Claspy, P. C.; Bhasin, K. B.; Richard, M.; Bendett, M.; Gustafson, G.

    1989-01-01

    Optical interconnects are being considered for control signal distribution in phased array antennas. A packaged hybrid GaAs optical controller with a 1:16 demultiplexed output that is suitable for this application is described. The controller, which was fabricated using enhancement/depletion mode MESFET technology, operates at demultiplexer-limited input data rates up to 305 Mb/s and requires less than 200 microW optical input power.

  10. A high-speed GaAs MESFET optical controller

    NASA Technical Reports Server (NTRS)

    Claspy, P. C.; Bhasin, K. B.; Richard, M.; Bendett, M.; Gustafson, G.

    1989-01-01

    Optical interconnects are being considered for control signal distribution in phased array antennas. A packaged hybrid GaAs optical controller with a 1:16 demultiplexed output that is suitable for this application is described. The controller, which was fabricated using enhancement/depletion mode MESFET technology, operates at demultiplexer-limited input data rates up to 305 Mb/s and requires less than 200 microW optical input power.

  11. High-speed adaptive optics for imaging of the living human eye

    PubMed Central

    Yu, Yongxin; Zhang, Tianjiao; Meadway, Alexander; Wang, Xiaolin; Zhang, Yuhua

    2015-01-01

    The discovery of high frequency temporal fluctuation of human ocular wave aberration dictates the necessity of high speed adaptive optics (AO) correction for high resolution retinal imaging. We present a high speed AO system for an experimental adaptive optics scanning laser ophthalmoscope (AOSLO). We developed a custom high speed Shack-Hartmann wavefront sensor and maximized the wavefront detection speed based upon a trade-off among the wavefront spatial sampling density, the dynamic range, and the measurement sensitivity. We examined the temporal dynamic property of the ocular wavefront under the AOSLO imaging condition and improved the dual-thread AO control strategy. The high speed AO can be operated with a closed-loop frequency up to 110 Hz. Experiment results demonstrated that the high speed AO system can provide improved compensation for the wave aberration up to 30 Hz in the living human eye. PMID:26368408

  12. High-speed adaptive optics for imaging of the living human eye.

    PubMed

    Yu, Yongxin; Zhang, Tianjiao; Meadway, Alexander; Wang, Xiaolin; Zhang, Yuhua

    2015-09-07

    The discovery of high frequency temporal fluctuation of human ocular wave aberration dictates the necessity of high speed adaptive optics (AO) correction for high resolution retinal imaging. We present a high speed AO system for an experimental adaptive optics scanning laser ophthalmoscope (AOSLO). We developed a custom high speed Shack-Hartmann wavefront sensor and maximized the wavefront detection speed based upon a trade-off among the wavefront spatial sampling density, the dynamic range, and the measurement sensitivity. We examined the temporal dynamic property of the ocular wavefront under the AOSLO imaging condition and improved the dual-thread AO control strategy. The high speed AO can be operated with a closed-loop frequency up to 110 Hz. Experiment results demonstrated that the high speed AO system can provide improved compensation for the wave aberration up to 30 Hz in the living human eye.

  13. Deposited silicon high-speed integrated electro-optic modulator.

    PubMed

    Preston, Kyle; Manipatruni, Sasikanth; Gondarenko, Alexander; Poitras, Carl B; Lipson, Michal

    2009-03-30

    We demonstrate a micrometer-scale electro-optic modulator operating at 2.5 Gbps and 10 dB extinction ratio that is fabricated entirely from deposited silicon. The polycrystalline silicon material exhibits properties that simultaneously enable high quality factor optical resonators and sub-nanosecond electrical carrier injection. We use an embedded p(+)n(-)n(+) diode to achieve optical modulation using the free carrier plasma dispersion effect. Active optical devices in a deposited microelectronic material can break the dependence on the traditional single layer silicon-on-insulator platform and help lead to monolithic large-scale integration of photonic networks on a microprocessor chip.

  14. High-speed optical phase-shifting apparatus

    SciTech Connect

    Zortman, William A.

    2016-11-08

    An optical phase shifter includes an optical waveguide, a plurality of partial phase shifting elements arranged sequentially, and control circuitry electrically coupled to the partial phase shifting elements. The control circuitry is adapted to provide an activating signal to each of the N partial phase shifting elements such that the signal is delayed by a clock cycle between adjacent partial phase shifting elements in the sequence. The transit time for a guided optical pulse train between the input edges of consecutive partial phase shifting elements in the sequence is arranged to be equal to a clock cycle, thereby enabling pipelined processing of the optical pulses.

  15. Vertical-emitting, ring-geometry, ultra-low threshold and ultra-high-speed quantum-well lasers for optical interconnect. Status report No. 6, Jun-Sep 90

    SciTech Connect

    Mittelstein, M.; Bar-Chaim, N.

    1990-09-01

    Emphasis was placed on the following efforts: design and implementation of a test station for vertical emitting lasers; ridge waveguide structure and ring configiuration lasers; refinement of grating fabrication for repeatability; and single quantum well material investigation, Keywords: Ring lasers; Optical waveguides; Lasers (R.H.)

  16. High-speed high-density holographic memory using electro-optic beam steering devices

    NASA Astrophysics Data System (ADS)

    Chao, Tien-Hsin; Zhou, Hanying; Reyes, George F.; Dragoi, Danut; Hanan, Jay

    2002-11-01

    An innovative compact holographic memory system will be presented. This system utilizes a new electro-optic (E-O) beam steering technology to achieve high-speed, high-density holographic data storage.

  17. Optical characterization of high speed microscanners based on static slit profiling method

    NASA Astrophysics Data System (ADS)

    Alaa Elhady, A.; Sabry, Yasser M.; Khalil, Diaa

    2017-01-01

    Optical characterization of high-speed microscanners is a challenging task that usually requires special high speed, extremely expensive camera systems. This paper presents a novel simple method to characterize the scanned beam spot profile and size in high-speed optical scanners under operation. It allows measuring the beam profile and the spot sizes at different scanning angles. The method is analyzed theoretically and applied experimentally on the characterization of a Micro Electro Mechanical MEMS scanner operating at 2.6 kHz. The variation of the spot size versus the scanning angle, up to ±15°, is extracted and the dynamic bending curvature effect of the micromirror is predicted.

  18. Radiation-hard/high-speed parallel optical links

    NASA Astrophysics Data System (ADS)

    Gan, K. K.; Buchholz, P.; Heidbrink, S.; Kagan, H. P.; Kass, R. D.; Moore, J.; Smith, D. S.; Vogt, M.; Ziolkowski, M.

    2016-09-01

    We have designed and fabricated a compact parallel optical engine for transmitting data at 5 Gb/s. The device consists of a 4-channel ASIC driving a VCSEL (Vertical Cavity Surface Emitting Laser) array in an optical package. The ASIC is designed using only core transistors in a 65 nm CMOS process to enhance the radiation-hardness. The ASIC contains an 8-bit DAC to control the bias and modulation currents of the individual channels in the VCSEL array. The performance of the optical engine up at 5 Gb/s is satisfactory.

  19. Optical Peaking Enhancement in High-Speed Ring Modulators

    PubMed Central

    Müller, J.; Merget, F.; Azadeh, S. Sharif; Hauck, J.; García, S. Romero; Shen, B.; Witzens, J.

    2014-01-01

    Ring resonator modulators (RRM) combine extreme compactness, low power consumption and wavelength division multiplexing functionality, making them a frontrunner for addressing the scalability requirements of short distance optical links. To extend data rates beyond the classically assumed bandwidth capability, we derive and experimentally verify closed form equations of the electro-optic response and asymmetric side band generation resulting from inherent transient time dynamics and leverage these to significantly improve device performance. An equivalent circuit description with a commonly used peaking amplifier model allows straightforward assessment of the effect on existing communication system architectures. A small signal analytical expression of peaking in the electro-optic response of RRMs is derived and used to extend the electro-optic bandwidth of the device above 40 GHz as well as to open eye diagrams penalized by intersymbol interference at 32, 40 and 44 Gbps. Predicted peaking and asymmetric side band generation are in excellent agreement with experiments. PMID:25209255

  20. High speed optical object recognition processor with massive holographic memory

    NASA Technical Reports Server (NTRS)

    Chao, T.; Zhou, H.; Reyes, G.

    2002-01-01

    Real-time object recognition using a compact grayscale optical correlator will be introduced. A holographic memory module for storing a large bank of optimum correlation filters, to accommodate the large data throughput rate needed for many real-world applications, has also been developed. System architecture of the optical processor and the holographic memory will be presented. Application examples of this object recognition technology will also be demonstrated.

  1. High-speed CMOS optical communication using silicon light emitters

    NASA Astrophysics Data System (ADS)

    Goosen, Marius E.; Venter, Petrus J.; du Plessis, Monuko; Nell, Ilse J.; Bogalecki, Alfons W.; Rademeyer, Pieter

    2011-01-01

    The idea of moving CMOS into the mainstream optical domain remains an attractive one. In this paper we discuss our recent advances towards a complete silicon optical communication solution. We prove that transmission of baseband data at multiples of megabits per second rates are possible using improved silicon light sources in a completely native standard CMOS process with no post processing. The CMOS die is aligned to a fiber end and the light sources are directly modulated. An optical signal is generated and transmitted to a silicon Avalanche Photodiode (APD) module, received and recovered. Signal detectability is proven through eye diagram measurements. The results show an improvement of more than tenfold over our previous results, also demonstrating the fastest optical communication from standard CMOS light sources. This paper presents an all silicon optical data link capable of 2 Mb/s at a bit error rate of 10-10, or alternatively 1 Mb/s at a bit error rate of 10-14. As the devices are not operating at their intrinsic switching speed limit, we believe that even higher transmission rates are possible with complete integration of all components in CMOS.

  2. High-speed VLSI concentrators for terabit intelligent optical backplanes

    NASA Astrophysics Data System (ADS)

    Supmonchai, Boonchuay; Szymanski, Ted H.

    1998-05-01

    Self-routing `concentrators' are fundamental building blocks of optical switching systems. An N-to-M concentrator can process and extract data packets from N optical channels and forward the packets to M electrical channels, where typically N M. Terabit Optical Backplanes which exploit free-space optical data links, with bandwidths approaching 1 - 10 Terabits per second will require extremely fast self- routing concentrators which can make routing decisions within a few nanoseconds. In this paper, a VLSI analysis of a new circuit called the `Daisy Chain' concentrator is presented. This concentrator has a regular topology suitable for very efficient VLSI layout, which leads to very high clock rates. The analyses are performed using 0.8 micrometers standard cell CMOS technology with the Synopsys CAD tool. The results shows that the proposed concentrator uses substantially less VLSI area from 20 - 50% less in the control logic and up to 150% less on the switching logic than the previous best known concentrator circuit. It also performs significantly faster, ranging from 20 - 40% faster in the control logic and 150 - 300% faster in the switching logic. Using 0.8 micrometers CMOS technology, the proposed concentrator can be used in smart pixel arrays for optical backplanes with clock rates in the range of 500 Mhz. Using faster CMOS or ECL logic, the concentrator can support clock rates in the several Gigahertz range.

  3. Recent Advances in Ultra-High-Speed Waveguide Photodiodes for Optical Communication Systems

    NASA Astrophysics Data System (ADS)

    Makita, Kikuo; Shiba, Kazuhiro; Nakata, Takeshi; Mizuki, Emiko; Watanabe, Sawaki

    This paper describes the recent advances in semiconductor photodiodes for use in ultra-high-speed optical systems. We developed two types of waveguide photodiodes (WG-PD) — an evanescently coupled waveguide photodiode (EC-WG-PD) and a separated-absorption-and-multiplication waveguide avalanche photodiode (WG-APD). The EC-WG-PD is very robust under high optical input operation because of its distribution of photo current density along the light propagation. The EC-WG-PD simultaneously exhibited a high external quantum efficiency of 70% for both 1310 and 1550nm, and a wide bandwidth of more than 40GHz. The WG-APD, on the other hand, has a wide bandwidth of 36.5GHz and a gain-bandwidth product of 170GHz as a result of its small waveguide mesa structure and a thin multiplication layer. Record high receiver sensitivity of -19.6dBm at 40Gbps was achieved. Additionally, a monolithically integrated dual EC-WG-PD for differential phase shift-keying (DPSK) systems was developed. Each PD has equivalent characteristics with 3-dB-down bandwidth of more than 40GHz and external quantum efficiency of 70% at 1550nm.

  4. A prototype high-speed optically-steered X-band phased array antenna.

    PubMed

    Wu, Pengfei; Tang, Suning; Raible, Daniel E

    2013-12-30

    We develop a prototype of optically-steered X-band phased array antenna with capabilities of multi-band and multi-beam operations. It exploits high-speed wavelength tunable lasers for optical true-time delays over a dispersive optical fiber link, enabling agile, broadband and vibration-free RF beam steering with large angle.

  5. Radiation-hard/high-speed array-based optical engine

    NASA Astrophysics Data System (ADS)

    Gan, K. K.; Buchholz, P.; Heidbrink, S.; Kagan, H. P.; Kass, R. D.; Moore, J.; Smith, D. S.; Vogt, M.; Ziolkowski, M.

    2016-12-01

    We have designed and fabricated a compact array-based optical engine for transmitting data at 10 Gb/s. The device consists of a 4-channel ASIC driving a VCSEL (Vertical Cavity Surface Emitting Laser) array in an optical package. The ASIC is designed using only core transistors in a 65 nm CMOS process to enhance the radiation-hardness. The ASIC contains an 8-bit DAC to control the bias and modulation currents of the individual channels in the VCSEL array. The DAC settings are stored in SEU (single event upset) tolerant registers. Several devices were irradiated with 24 GeV/c protons and the performance of the devices is satisfactory after the irradiation.

  6. High-speed optical processing using digital micromirror device

    NASA Astrophysics Data System (ADS)

    Chao, Tien-Hsin; Lu, Thomas; Walker, Brian; Reyes, George

    2014-04-01

    We have designed optical processing architecture and algorithms utilizing the DMD as the input and filter Spatial Light Modulators (SLM). Detailed system analysis will be depicted. Experimental demonstration, for the first time, showing that a complex-valued spatial filtered can be successfully written on the DMDSLM using a Computer Generated Hologram (CGH) [1] encoding technique will also be provided. The high-resolution, high-bandwidth provided by the DMD and its potential low cost due to mass production will enable its vast defense and civil application.

  7. High-speed optical coherence tomography signal processing on GPU

    NASA Astrophysics Data System (ADS)

    Li, Xiqi; Shi, Guohua; Zhang, Yudong

    2011-01-01

    The signal processing speed of spectral domain optical coherence tomography (SD-OCT) has become a bottleneck in many medical applications. Recently, a time-domain interpolation method was proposed. This method not only gets a better signal-to noise ratio (SNR) but also gets a faster signal processing time for the SD-OCT than the widely used zero-padding interpolation method. Furthermore, the re-sampled data is obtained by convoluting the acquired data and the coefficients in time domain. Thus, a lot of interpolations can be performed concurrently. So, this interpolation method is suitable for parallel computing. An ultra-high optical coherence tomography signal processing can be realized by using graphics processing unit (GPU) with computer unified device architecture (CUDA). This paper will introduce the signal processing steps of SD-OCT on GPU. An experiment is performed to acquire a frame SD-OCT data (400A-lines×2048 pixel per A-line) and real-time processed the data on GPU. The results show that it can be finished in 6.208 milliseconds, which is 37 times faster than that on Central Processing Unit (CPU).

  8. High speed liquid scintillators for optical fiber applications

    NASA Astrophysics Data System (ADS)

    Lutz, S. S.; Franks, L. A.; Flournoy, J. M.; Lyons, P. B.

    1982-02-01

    Three liquid scintillator systems have been developed which offer the long-wavelength emission and short impulse response required for long-path, wide-bandwidth, optical fiber applications. Binary liquid systems employing the dye Coumarin 540-A are reported with impulse responses (fwhm) of 1.4 ns at 570 nm in benzyl alcohol and 350 ps at 525 nm in pseudo-cumene. Addition of 10 g/ℓ of 4,4‴ di(2-butyloctoxy-1)-p-quaterphenyl substantially improves performance of the latter system at low Coumarin 540 concentrations. A third system using the dye Nile Blue nitrate has a fwhm of less than 1 ns at 700 nm when simultaneously heated and quenched with phenol.

  9. High-speed 32×32 MEMS optical phased array

    NASA Astrophysics Data System (ADS)

    Megens, Mischa; Yoo, Byung-Wook; Chan, Trevor; Yang, Weijian; Sun, Tianbo; Chang-Hasnain, Connie J.; Wu, Ming C.; Horsley, David A.

    2014-03-01

    Optical phased arrays (OPAs) with fast response time are of great interest for various applications such as displays, free space optical communications, and lidar. Existing liquid crystal OPAs have millisecond response time and small beam steering angle. Here, we report on a novel 32×32 MEMS OPA with fast response time (<4 microseconds), large field of view (+/-2°), and narrow beam divergence (0.1°). The OPA is composed of high-contrast grating (HCG) mirrors which function as phase shifters. Relative to beam steering systems based on a single rotating MEMS mirror, which are typically limited to bandwidths below 50 kHz, the MEMS OPA described here has the advantage of greatly reduced mass and therefore achieves a bandwidth over 500 kHz. The OPA is fabricated using deep UV lithography to create submicron mechanical springs and electrical interconnects, enabling a high (85%) fill-factor. Each HCG mirror is composed of only a single layer of polysilicon and achieves >99% reflectivity through the use of a subwavelength grating patterned into the mirror's polysilicon surface. Conventional metal-coated MEMS mirrors must be thick (1- 50 μm) to prevent warpage arising from thermal and residual stress. The single material construction used here results in a high degree of flatness even in a thin 400 nm HCG mirror. Beam steering is demonstrated using binary phase patterns and is accomplished with the help of a closed-loop phase control system based on a phase-shifting interferometer that provides in-situ measurement of the phase shift of each mirror in the array.

  10. Nanocomposites for high-speed optical modulators and plasmonic thermal mid-infrared emitters

    NASA Astrophysics Data System (ADS)

    Demir, Veysi

    Demand for high-speed optical modulators and narrow-bandwidth infrared thermal emitters for numerous applications continues to rise and new optical devices are needed to deal with massive data flows, processing powers, and fabrication costs. Conventional techniques are usually hindered by material limitations or electronic interconnects and advances in organic nanocomposite materials and their integration into photonic integrated circuits (PICs) have been acknowledged as a promising alternative to single crystal techniques. The work presented in this thesis uses plasmonic and magneto-optic effects towards the development of novel optical devices for harnessing light and generating high bandwidth signals (>40GHz) at room and cryogenic temperatures (4.2°K). Several publications have resulted from these efforts and are listed at the end of the abstract. In our first published research we developed a narrow-bandwidth mid-infrared thermal emitter using an Ag/dielectric/Ag thin film structure arranged in hexagonal planar lattice structures. PECVD produced nanoamorphous carbon (NAC) is used as a dielectric layer. Spectrally tunable (>2 mum) and narrow bandwidth (<0.5 mum) emission peaks in the range of 4-7 mum were demonstrated by decreasing the resistivity of NAC from 1012 and 109 O.cm with an MoSi2 dopant and increasing the emitter lattice constant from 4 to 7 mum. This technique offers excellent flexibility for developing cost-effective mid-IR sources as compared to costly fiber and quantum cascade lasers (QCLs). Next, the effect of temperature on the Verdet constant for cobalt-ferrite polymer nanocomposites was measured for a series of temperatures ranging from 40 to 200°K with a Faraday rotation polarimeter. No visual change was observed in the films during thermal cycling, and ˜4x improvement was achieved at 40°K. The results are promising and further analysis is merited at 4.2°K to assess the performance of this material for cryogenic magneto-optic modulators

  11. Absorption Filter Based Optical Diagnostics in High Speed Flows

    NASA Technical Reports Server (NTRS)

    Samimy, Mo; Elliott, Gregory; Arnette, Stephen

    1996-01-01

    Two major regimes where laser light scattered by molecules or particles in a flow contains significant information about the flow are Mie scattering and Rayleigh scattering. Mie scattering is used to obtain only velocity information, while Rayleigh scattering can be used to measure both the velocity and the thermodynamic properties of the flow. Now, recently introduced (1990, 1991) absorption filter based diagnostic techniques have started a new era in flow visualization, simultaneous velocity and thermodynamic measurements, and planar velocity measurements. Using a filtered planar velocimetry (FPV) technique, we have modified the optically thick iodine filter profile of Miles, et al., and used it in the pressure-broaden regime which accommodates measurements in a wide range of velocity applications. Measuring velocity and thermodynamic properties simultaneously, using absorption filtered based Rayleigh scattering, involves not only the measurement of the Doppler shift, but also the spectral profile of the Rayleigh scattering signal. Using multiple observation angles, simultaneous measurement of one component velocity and thermodynamic properties in a supersonic jet were measured. Presently, the technique is being extended for simultaneous measurements of all three components of velocity and thermodynamic properties.

  12. Measurements of speed of response of high-speed visible and IR optical detectors

    NASA Technical Reports Server (NTRS)

    Rowe, H. E.; Osmundson, J. S.

    1972-01-01

    A technique for measuring speed of response of high speed visible and IR optical detectors to mode-locked Nd:YAG laser pulses is described. Results of measurements of response times of four detectors are presented. Three detectors that can be used as receivers in a 500-MHz optical communication system are tested.

  13. High Speed 1.55 μm Lasers for Fiber Optic Transmission

    NASA Astrophysics Data System (ADS)

    Morton, Paul A.

    This paper describes the essential elements for creating a practical wide bandwidth directly modulated laser source. This includes considerations of the intrinsic limitations of the laser structure, due to the resonant frequency and damping of the laser output, together with carrier transport issues to allow carriers in the device active region to be efficiently modulated at high speeds. The use of a P-doped compressively strained multiple-quantum well active region to provide high intrinsic speed and remove transport limitations is described, together with record setting results of 25 GHz modulation bandwidth for a 1.55 μm Fabry-Perot laser and 26 GHz bandwidth for a 1.55 μm DFB laser. The challenges of providing high bandwidth electrical connections to the laser on a suitable submount, together with fiber attachment and microwave packaging are discussed. Results of fully packaged 1.55 μm DFB lasers with 25 GHz modulation bandwidth are shown. Digital modulation of the packaged 1.55 μm DFB including impedance matching is described, and the transient wavelength chirp is presented. This low chirp is reduced further using an optical filter, to provide a 10 GBit/s source that can transmit error free over 38.5 km of standard optical fiber.

  14. High-Speed Photography and Digital Optical Measurement Techniques for Geomaterials: Fundamentals and Applications

    NASA Astrophysics Data System (ADS)

    Xing, H. Z.; Zhang, Q. B.; Braithwaite, C. H.; Pan, B.; Zhao, J.

    2017-06-01

    Geomaterials (i.e. rock, sand, soil and concrete) are increasingly being encountered and used in extreme environments, in terms of the pressure magnitude and the loading rate. Advancing the understanding of the mechanical response of materials to impact loading relies heavily on having suitable high-speed diagnostics. One such diagnostic is high-speed photography, which combined with a variety of digital optical measurement techniques can provide detailed insights into phenomena including fracture, impact, fragmentation and penetration in geological materials. This review begins with a brief history of high-speed imaging. Section 2 discusses of the current state of the art of high-speed cameras, which includes a comparison between charge-coupled device and complementary metal-oxide semiconductor sensors. The application of high-speed photography to geomechanical experiments is summarized in Sect. 3. Section 4 is concerned with digital optical measurement techniques including photoelastic coating, Moiré, caustics, holographic interferometry, particle image velocimetry, digital image correlation and infrared thermography, in combination with high-speed photography to capture transient phenomena. The last section provides a brief summary and discussion of future directions in the field.

  15. Silicon photonic transceiver circuit for high-speed polarization-based discrete variable quantum key distribution

    SciTech Connect

    Cai, Hong; Long, Christopher M.; DeRose, Christopher T.; Boynton, Nicholas; Urayama, Junji; Camacho, Ryan; Pomerene, Andrew; Starbuck, Andrew L.; Trotter, Douglas C.; Davids, Paul S.; Lentine, Anthony L.

    2017-01-01

    We demonstrate a silicon photonic transceiver circuit for high-speed discrete variable quantum key distribution that employs a common structure for transmit and receive functions. The device is intended for use in polarization-based quantum cryptographic protocols, such as BB84. Our characterization indicates that the circuit can generate the four BB84 states (TE/TM/45°/135° linear polarizations) with >30 dB polarization extinction ratios and gigabit per second modulation speed, and is capable of decoding any polarization bases differing by 90° with high extinction ratios.

  16. Optoelectronics for high-speed, wavelength-division- multiplexed optical communications networks

    NASA Astrophysics Data System (ADS)

    Hudgings, Janice Anne

    1999-11-01

    All-optical wavelength division multiplexed (WDM) communications networks have the potential to revolutionize future high-speed communications. All- optical networks offer enormous bandwidth capacity on the order of 25 THz, which is orders of magnitude greater than the capacity of radio or copper coaxial cable. In addition, wavelength division multiplexing offers a natural method of supporting with a single network multiple simultaneous applications with widely varying bandwidth requirements, modulation formats, and quality of service requirements. However, future implementation of all-optical WDM networks relies on further development of optical device technology. We present an experimental demonstration of a step- tunable, all-optical wavelength converter using cavity- enhanced four wave mixing (FWM) in a semiconductor laser. The converter is modulation format transparent, has a high conversion efficiency (> -10 dB), and is step- tunable over a large conversion range (> 2.5 THz). In addition, we derive a mathematical model of the wavelength converter, which is used to simulate step- tuning and to examine the relationship between the conversion efficiency and information bandwidth of the device. Likewise, the development of appropriate optical sources is critical to the success of all-optical communications networks. Vertical-cavity surface-emitting lasers (VCSELs) are rapidly emerging as strong competitors to the conventional edge-emitting semiconductor lasers. We have developed a novel three-contact VCSEL with an intracavity quantum-well absorber. The three-contact design of this structure enables independent control of the gain and absorber regions. If the VCSEL is designed such that the lasing wavelength is shorter than the bandedge of the intracavity absorber, the laser exhibits broad negative differential resistance, due to changes in the cavity photon density as the relative absorption is varied. With this design, the device is useful as an integrated

  17. High-speed and reconfigurable all-optical signal processing for phase and amplitude modulated signals

    NASA Astrophysics Data System (ADS)

    Khaleghi, Salman

    Technology has empowered people in all walks of life to generate, store, and communicate enormous amounts of data. Recent technological advances in high-speed backbone data networks, together with the growing trend toward bandwidth-demanding applications such as data and video sharing, cloud computing, and data collection systems, have created a need for higher capacities in signal transmission and signal processing. Optical communication systems have long benefited from the large bandwidth of optical signals (beyond tera-hertz) to transmit information. Through the use of optical signal processing techniques, this Ph.D. dissertation explores the potential of very-high-speed optics to assist electronics in processing huge amounts of data at high speeds. Optical signal processing brings together various fields of optics and signal processing---nonlinear devices and processes, analog and digital signals, and advanced data modulation formats---to achieve high-speed signal processing functions that can potentially operate at the line rate of fiber optic communications. Information can be encoded in amplitude, phase, wavelength, polarization, and spatial features of an optical wave to achieve high-capacity transmission. Many advances in the key enabling technologies have led to recent research in optical signal processing for digital signals that are encoded in one or more of these dimensions. Optical Kerr nonlinearities have femto-second response times that have been exploited for fast processing of optical signals. Various optical nonlinearities and chromatic dispersions have enabled key sub-system applications such as wavelength conversion, multicasting, multiplexing, demultiplexing, and tunable optical delays. In this Ph.D. dissertation, we employ these recent advances in the enabling technologies for high-speed optical signal processing to demonstrate various techniques that can process phase- and amplitude-encoded optical signals at the line rate of optics. We use

  18. High-speed optical packet processing technologies based on novel optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Takenouchi, Hirokazu; Takahashi, Ryo; Takahata, Kiyoto; Nakahara, Tatsushi; Suzuki, Hiroyuki

    2004-10-01

    To cope with the explosive growth of IP traffic, we must increase both the link capacity between nodes and the node throughput. These requirements have stimulated research on photonic networks that use optical technologies. Optical packet switching (OPS) is an attractive solution because it maximizes the use of the network bandwidth. The key functions in achieving such networks include synchronization, label processing, compression/decompression, regeneration, and buffering for high-speed asynchronous optical packets. However, it is impractical to implement such functions by using all-optical approaches. We have proposed a new optoelectronic system composed of a packet-by-packet optical clock-pulse generator (OCG), an all-optical serial-to-parallel converter (SPC), a photonic parallel-to-serial converter (PSC), and CMOS circuitry. The OCG provides a single optical pulse synchronized with the incoming packet, and the SPC carries out a parallel conversion of the incoming packet. The parallel converted data are processed in the smart CMOS circuit, and reconstructed into an optical packet by the photonic PSC. Our system makes it possible to carry out various functions for high-speed asynchronous optical packets. This paper reviews our recent work on high-speed optical packet processing technologies such as buffering, packet compression/decompression, and label swapping, which are key technologies for constructing future OPS networks.

  19. InGaAs self-assembly quantum dot for high-speed 1300 nm electroabsorption modulator

    NASA Astrophysics Data System (ADS)

    Lin, Chuan-Han; Wu, Jui-pin; Kuo, Yu-zheng; Chiu, Yi-jen; Tzeng, T. E.; Lay, T. S.

    2011-05-01

    In this paper, a new type of high-speed electroabsorption modulator (EAM) based on quantum dot (QD) p-i-n heterostructure is demonstrated. The QD layers sandwiched by p-AlGaAs and n-AlGaAs are grown by multilayer InGaAs self-assembled QD with luminance wavelength of 1300 nm, serving as the active region of EAM. The photocurrent spectrum measurement exhibits a red shift of 15 nm in QD transition energy levels on biasing from 0 to 6 V. A quadratic relation of energy shift against the reversed bias is extracted, confirming the quantum-confined Stark effect (QCSE) in QD. On fabricating a 300 μm long EAM, as high as DC 5 dB extinction ratio by 6 V voltage swing at 1310 nm is observed. As compared with well-developed quantum well (QW) EAM (well thickness ∼10 nm) of the same length, the lower density of states still shows the same order of magnitude in extinction ratio, suggesting strong QCSE in such 3-dimensional confined QD. An electrical-to-optical conversion with -3 dB bandwidth of 3.3 GHz is also attained in such QD EAM, where the speed is mainly limited by the parasitic capacitance on substrate. It implies that through optimization of QD and device structures, the advantages of QD properties are quite promising to be used in high-speed optoelectronic fields.

  20. High Speed All Optical Nyquist Signal Generation and Full-band Coherent Detection

    PubMed Central

    Zhang, Junwen; Yu, Jianjun; Fang, Yuan; Chi, Nan

    2014-01-01

    Spectrum efficient data transmission is of key interest for high capacity optical communication systems considering the limited available bandwidth. Transmission of the high speed signal with higher-order modulation formats within the Nyquist bandwidth using coherent detection brings attractive performance advantages. However, high speed Nyquist signal generation with high order modulation formats is challenging. Electrical Nyquist pulse generation is restricted by the limited sampling rate and processor capacities of digital-to-analog convertor devices, while the optical Nyquist signals can provide a much higher symbol rate using time domain multiplexing method. However, most optical Nyquist signals are based on direct detection with simple modulation formats. Here we report the first experimental demonstration of high speed all optical Nyquist signal generation based on Sinc-shaped pulse generation and time-division multiplexing with high level modulation format and full-band coherent detection. Our experiments demonstrate a highly flexible and compatible all optical high speed Nyquist signal generation and detection scheme for future fiber communication systems. PMID:25142269

  1. Nonlinearity mitigation for high-speed optical OFDM transmitters using digital pre-distortion.

    PubMed

    Bao, Yuan; Li, Zhaohui; Li, Jianping; Feng, Xinhuan; Guan, Bai-ou; Li, Guifang

    2013-03-25

    Optical orthogonal frequency-division multiplexing (OOFDM) signal is sensitive to nonlinear distortions induced by optical modulators. We propose and experimentally demonstrate a digital pre-distortion (DPD) algorithm to linearize the optical modulators including electro-absorption modulated lasers (EML) and Mach-Zehnder modulators (MZM) used in high-speed OOFDM transmitters. By using an adaptive DPD algorithm with a learning structure, the inverse transfer function of a modulator, which is based on a polynomial model, has been obtained. In the experiment, the performance improvements with and without considering the memory effects of the DPD model are illustrated. The two typical kinds of high-speed OOFDM signals with a bit rate up to 30-Gb/s have been implemented experimentally. The results show that the nonlinear distortion induced by optical modulators can be compensated by using the DPD algorithm to substantially improve the optical modulation index.

  2. Monolithic integration of optical mode-size converter and high-speed electroabsorption modulators using laterally undercut waveguide

    NASA Astrophysics Data System (ADS)

    Wu, Tsu-Hsiu; Lin, Fang-Zheng; Yan, Hung-Jung; Wu, Jui-Pin; Chiu, Yi-Jen

    2010-02-01

    A new monolithic integration scheme of fabricating optical spot-size converter (SSC) is realized in this work. High-speed electroabsorption modulator (EAM) is used to integrate such SSC. By laterally tapering the active region of an optical waveguide through undercut active region, a vertically asymmetric waveguide coupler can be defined to form an SSC, where the top is a tapered active waveguide, and the bottom is a large core of passive waveguide mode-matched to single-mode fiber (SMF). Through the top tapered active waveguide, the effective index can be gradually varied in the propagation direction, momentarily matching the bottom low-index passive waveguide. It not only performs the resonant coupling in such asymmetric waveguide coupler, but also locks the transferred power by the tapered structure. InGaAsP/InP multiple quantum wells are used as active region of active waveguide. Based on the highly selective etching properties between InGaAsP and InP, the tapered active waveguide can be fabricated by a method, called selectively undercut-etching-active-region (UEAR), enabling the processing a narrow waveguide structure (up to submicron) by general wet etching from a large waveguide ridge. It also leads to good microwave performance of waveguide. By taking this advantage, a SSC-integrated EAM can perform high-speed electrical-to-optical (EO) response as well as low-insertion loss properties. A mode transfer efficiency of 70% is obtained in such SSC. By narrowing waveguide by UEAR, over 40 GHz of -3dB electrical-to-optical (EO) response is obtained from this device. The high efficient SSC integrated with high-speed EAM suggests that the UEAR technique can have potential for applications in high-speed optoelectronic fields.

  3. Dispersive and nonlinear effects in high-speed reconfigurable WDM optical fiber communication systems

    NASA Astrophysics Data System (ADS)

    Yu, Changyuan

    Chromatic dispersion, polarization mode dispersion (PMD) and nonlinear effects are important issues on the physical layer of high-speed reconfigurable WDM optical fiber communication systems. For beyond 10 Gbit/s optical fiber transmission system, it is essential that chromatic dispersion and PMD be well managed by dispersion monitoring and compensation. One the other hand, dispersive and nonlinear effects in optical fiber systems can also be beneficial and has applications on pulse management, all-optical signal processing and network function, which will be essential for high bite-rate optical networks and replacing the expensive optical-electrical-optical (O/E/O) conversion. In this Ph.D. dissertation, we present a detailed research on dispersive and nonlinear effects in high-speed optical communication systems. We have demonstrated: (i) A novel technique for optically compensating the PMD-induced RF power fading that occurs in single-sideband (SSB) subcarrier-multiplexed systems. By aligning the polarization states of the optical carrier and the SSB, RF power fading due to all orders of PMD can be completely compensated. (ii) Chromatic-dispersion-insensitive PMD monitoring by using a narrowband FBG notch filter to recover the RF clock power for 10Gb/s NRZ data, and apply it as a control signal for PMD compensation. (iii) Chirp-free high-speed optical pulse generation with a repetition rate of 160 GHz (which is four times of the frequency of the electrical clock) using a phase modulator and polarization maintaining (PM) fiber. (iv) Polarization-insensitive all-optical wavelength conversion based on four-wave mixing in dispersion-shifted fiber (DSF) with a fiber Bragg grating and a Faraday rotator mirror. (v) Width-tunable optical RZ pulse train generation based on four-wave mixing in highly-nonlinear fiber. By electrically tuning the delay between two pump pulse trains, the pulse-width of a generated pulse train is continuously tuned. (vi) A high-speed all-optical

  4. Quantum witness of high-speed low-noise single-photon detection.

    PubMed

    Zhao, Lin; Huang, Kun; Liang, Yan; Chen, Jie; Shi, Xueshun; Wu, E; Zeng, Heping

    2015-12-14

    We demonstrate high-speed and low-noise near-infrared single-photon detection by using a capacitance balancing circuit to achieve a high spike noise suppression for an InGaAs/InP avalanche photodiode. The single-photon detector could operate at a tunable gate repetition rate from 10 to 60 MHz. A peak detection efficiency of 34% has been achieved with a dark count rate of 9 × 10⁻³ per gate when the detection window was set to 1 ns. Additionally, quantum detector tomography has also been performed at 60 MHz of repetition rate and for the detection window of 1 ns, enabling to witness the quantum features of the detector with the help of a negative Wigner function. By varying the bias voltage of the detector, we further demonstrated a transition from the full-quantum to semi-classical regime.

  5. High-speed, room-temperature quantum cascade detectors at 4.3 μm

    SciTech Connect

    Zhou, Yuhong; Zhai, Shenqiang; Wang, Fengjiao; Liu, Junqi E-mail: fqliu@red.semi.ac.cn; Liu, Fengqi E-mail: fqliu@red.semi.ac.cn; Liu, Shuman; Zhang, Jinchuan; Zhuo, Ning; Wang, Lijun; Wang, ZhanGuo

    2016-03-15

    We present high-speed, room-temperature operated 4.3 μm quantum cascade detectors. The devices are processed as square mesas with 50 Ω coplanar access line and air-bridge connector. The high frequency features are explored using microwave rectification technique and a RLC circuit model. The -3 dB cutoff frequency is experimentally 9 GHz and 4 GHz for 20×20 μm{sup 2} and 50×50 μm{sup 2} detectors, respectively. The equivalent circuit analysis shows that a second order filter feature governs the devices. Higher cutoff frequency can be achieved by eliminate the parasitics further.

  6. High-speed free-space quantum key distribution system for urban daylight applications.

    PubMed

    García-Martínez, M J; Denisenko, N; Soto, D; Arroyo, D; Orue, A B; Fernandez, V

    2013-05-10

    We report a free-space quantum key distribution system designed for high-speed key transmission in urban areas. Clocking the system at gigahertz frequencies and efficiently filtering background enables higher secure key rates than those previously achieved by similar systems. The transmitter and receiver are located in two separate buildings 300 m apart in downtown Madrid and they exchange secure keys at rates up to 1 Mbps. The system operates in full bright daylight conditions with an average secure key rate of 0.5 Mbps and 24 h stability without human intervention.

  7. Rad-Tolerant, Thermally Stable, High-Speed Fiber-Optic Network for Harsh Environments

    NASA Technical Reports Server (NTRS)

    Leftwich, Matt; Hull, Tony; Leary, Michael; Leftwich, Marcus

    2013-01-01

    Future NASA destinations will be challenging to get to, have extreme environmental conditions, and may present difficulty in retrieving a spacecraft or its data. Space Photonics is developing a radiation-tolerant (rad-tolerant), high-speed, multi-channel fiber-optic transceiver, associated reconfigurable intelligent node communications architecture, and supporting hardware for intravehicular and ground-based optical networking applications. Data rates approaching 3.2 Gbps per channel will be achieved.

  8. NASA Langley and AF RADC high-speed fiber optic transceiver program

    NASA Astrophysics Data System (ADS)

    Hendricks, Herbert D.; Cook, Anthony L.; Mack, Terry L.; Hunter, James R.

    NASA-Langley and the USAF Rome Air Development Center have been pursuing the development of military- and space-qualified fiber optic transceivers for a variety of ground-based, space-based, and general avionic applications. An initial development pursued a design called the multipurpose fiber optic transceiver (MFOX) and provided a family of fiber optic transceivers which operated up to 1 Gb/s. Currently, a second generation of high-speed fiber optic transceivers (HSFOX) is being developed. This design will utilize an all-integrated-circuits approach in order to develop a lighter-weight, smaller-size, and more efficient transceiver. The high-speed fiber optic transceiver will be military-and-space-operating in the 0.05-5 Gb/s data rate range. The initial results of tests, performance, and availability of commercial high-speed all-integrated-circuit chipsets for fiber-optic transceivers are discussed, as well as the performance of transceivers fabricated from these chipsets.

  9. NASA Langley and AF RADC high-speed fiber optic transceiver program

    NASA Technical Reports Server (NTRS)

    Hendricks, Herbert D.; Cook, Anthony L.; Mack, Terry L.; Hunter, James R.

    1990-01-01

    NASA-Langley and the USAF Rome Air Development Center have been pursuing the development of military- and space-qualified fiber optic transceivers for a variety of ground-based, space-based, and general avionic applications. An initial development pursued a design called the multipurpose fiber optic transceiver (MFOX) and provided a family of fiber optic transceivers which operated up to 1 Gb/s. Currently, a second generation of high-speed fiber optic transceivers (HSFOX) is being developed. This design will utilize an all-integrated-circuits approach in order to develop a lighter-weight, smaller-size, and more efficient transceiver. The high-speed fiber optic transceiver will be military-and-space-operating in the 0.05-5 Gb/s data rate range. The initial results of tests, performance, and availability of commercial high-speed all-integrated-circuit chipsets for fiber-optic transceivers are discussed, as well as the performance of transceivers fabricated from these chipsets.

  10. High speed all optical shear wave imaging optical coherence elastography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Song, Shaozhen; Hsieh, Bao-Yu; Wei, Wei; Shen, Tueng; O'Donnell, Matthew; Wang, Ruikang K.

    2016-03-01

    Optical Coherence Elastography (OCE) is a non-invasive testing modality that maps the mechanical property of soft tissues with high sensitivity and spatial resolution using phase-sensitive optical coherence tomography (PhS-OCT). Shear wave OCE (SW-OCE) is a leading technique that relies on the speed of propagating shear waves to provide a quantitative elastography. Previous shear wave imaging OCT techniques are based on repeated M-B scans, which have several drawbacks such as long acquisition time and repeated wave stimulations. Recent developments of Fourier domain mode-locked high-speed swept-source OCT system has enabled enough speed to perform KHz B-scan rate OCT imaging. Here we propose ultra-high speed, single shot shear wave imaging to capture single-shot transient shear wave propagation to perform SW-OCE. The frame rate of shear wave imaging is 16 kHz, at A-line rate of ~1.62 MHz, which allows the detection of high-frequency shear wave of up to 8 kHz. The shear wave is generated photothermal-acoustically, by ultra-violet pulsed laser, which requires no contact to OCE subjects, while launching high frequency shear waves that carries rich localized elasticity information. The image acquisition and processing can be performed at video-rate, which enables real-time 3D elastography. SW-OCE measurements are demonstrated on tissue-mimicking phantoms and porcine ocular tissue. This approach opens up the feasibility to perform real-time 3D SW-OCE in clinical applications, to obtain high-resolution localized quantitative measurement of tissue biomechanical property.

  11. Plasma measurement by optical visualization and triple probe method under high-speed impact

    NASA Astrophysics Data System (ADS)

    Sakai, T.; Umeda, K.; Kinoshita, S.; Watanabe, K.

    2017-02-01

    High-speed impact on spacecraft by space debris poses a threat. When a high-speed projectile collides with target, it is conceivable that the heat created by impact causes severe damage at impact point. Investigation of the temperature is necessary for elucidation of high-speed impact phenomena. However, it is very difficult to measure the temperature with standard methods for two main reasons. One reason is that a thermometer placed on the target is instantaneously destroyed upon impact. The other reason is that there is not enough time resolution to measure the transient temperature changes. In this study, the measurement of plasma induced by high-speed impact was investigated to estimate temperature changes near the impact point. High-speed impact experiments were performed with a vertical gas gun. The projectile speed was approximately 700 m/s, and the target material was A5052. The experimental data to calculate the plasma parameters of electron temperature and electron density were measured by triple probe method. In addition, the diffusion behavior of plasma was observed by optical visualization technique using high-speed camera. The frame rate and the exposure time were 260 kfps and 1.0 μs, respectively. These images are considered to be one proof to show the validity of plasma measurement. The experimental results showed that plasma signals were detected for around 70 μs, and the rising phase of the wave form was in good agreement with timing of optical visualization image when the plasma arrived at the tip of triple probe.

  12. Fiber Fabry-Perot tunable filter for high-speed optical packet switching

    SciTech Connect

    Taranenko, N.L.; Tenbrink, S.C.; Hsu, K.; Miller, C.M.

    1997-01-01

    Tunable optical filters are important building blocks for All-Optical systems and networks. Fast optical tuning in several microseconds is necessary to perform high-speed optical packet switching. Multi- Gigabit/sec packet-switching will provide flexibility and higher network throughput when large numbers of users communicate simultaneously. One approach to achieve fast wavelength tuning is to use high-speed piezoelectrically-driven Fiber Fabry-Perot tunable filters (FFP-TFs). The requirement for tuning in microseconds raises a whole new set of challenges, such as ringing, thermostability and mechanical inertia control. It was shown that correlation between the mechanical resonance and optical response of the filter is important for the filter`s speed and for mounting hardware and control circuitry optimization. These features together with the FFP-TF`s high capacitance (approximately 0.25-0.5 microfarad) are being folded into building a special controller to substantially improve the shape of the driving signal and the response of the filter. The resultant controller enables tuning the high-speed FFP-TF three-orders-of- magnitude faster than that possible with standard commercial FFP-TFS. The fastest switching time achieved is 2.5 microseconds. As the result, a new packet-switched media access control protocol is being designed to minimize the searching time. The filter scans only once through the entire optical region and then tunes to all the required channels one after another in a few microseconds. It can help update Rainbow-2 Broadcast-and-Select High-Speed Wavelength Division Multiplexing All-Optical network that currently has a circuit- switched protocol using standard FFP-TFS.

  13. High-speed, Low Voltage, Miniature Electro-optic Modulators Based on Hybrid Photonic-Crystal/Polymer/Sol-Gel Technology

    DTIC Science & Technology

    2012-02-01

    code) 01/02/2012 FINAL 15/11/2008 - 15/11/2011 High-speed, Low Voltage, Miniature Electro - optic Modulators Based on Hybrid Photonic-Crystal/Polymer... optic modulator, silicon photonics, integrated optics, electro - optic polymer, avionics, optical communications, sol-gel, nanotechnology U U U UU 25...2011 Program Manager: Dr. Charles Y-C Lee High-speed, Low Voltage, Miniature Electro - optic Modulators Based on Hybrid Photonic-Crystal/Polymer/Sol

  14. High-speed Light Peak optical link for high energy applications

    NASA Astrophysics Data System (ADS)

    Chang, F. X.; Chiang, F.; Deng, B.; Hou, J.; Hou, S.; Liu, C.; Liu, T.; Teng, P. K.; Wang, C. H.; Xu, T.; Ye, J.

    2014-11-01

    Optical links provide high speed data transmission with low mass fibers favorable for applications in high energy experiments. We report investigation of a compact Light Peak optical engine designed for data transmission at 4.8 Gbps. The module is assembled with bare die VCSEL, PIN diodes and a control IC aligned within a prism receptacle for light coupling to fiber ferrule. Radiation damage in the receptacle was examined with 60Co gamma ray. Radiation induced single event effects in the optical engine were studied with protons, neutrons and X-ray tests.

  15. System and method that suppresses intensity fluctuations for free space high-speed optical communication

    DOEpatents

    Berman, Gennady P.; Bishop, Alan R.; Nguyen, Dinh C.; Chernobrod, Boris M.; Gorshkov, Vacheslav N.

    2009-10-13

    A high-speed (Gbps), free space optical communication system is based on spectral encoding of radiation from a wide band light source, such as a laser. By using partially coherent laser beams in combination with a relatively slow photosensor, scintillations can be suppressed by orders of magnitude for distances of more than 10 km. To suppress the intensity fluctuations due to atmospheric turbulence, a source with partial transverse coherence in combination with slow response time photodetector is used. Information is encoded in the spectral domain of a wideband optical source by modulation of spectral amplitudes. A non-coherent light source with wide spectrum (an LED, for example) may be used for high-speed communication over short (less than about a mile) distances.

  16. High-speed real-time image compression based on all-optical discrete cosine transformation

    NASA Astrophysics Data System (ADS)

    Guo, Qiang; Chen, Hongwei; Wang, Yuxi; Chen, Minghua; Yang, Sigang; Xie, Shizhong

    2017-02-01

    In this paper, we present a high-speed single-pixel imaging (SPI) system based on all-optical discrete cosine transform (DCT) and demonstrate its capability to enable noninvasive imaging of flowing cells in a microfluidic channel. Through spectral shaping based on photonic time stretch (PTS) and wavelength-to-space conversion, structured illumination patterns are generated at a rate (tens of MHz) which is three orders of magnitude higher than the switching rate of a digital micromirror device (DMD) used in a conventional single-pixel camera. Using this pattern projector, high-speed image compression based on DCT can be achieved in the optical domain. In our proposed system, a high compression ratio (approximately 10:1) and a fast image reconstruction procedure are both achieved, which implicates broad applications in industrial quality control and biomedical imaging.

  17. Speckle noise reduction in high speed polarization sensitive spectral domain optical coherence tomography

    PubMed Central

    Götzinger, Erich; Pircher, Michael; Baumann, Bernhard; Schmoll, Tilman; Sattmann, Harald; Leitgeb, Rainer A.; Hitzenberger, Christoph K.

    2015-01-01

    We present a high speed polarization sensitive spectral domain optical coherence tomography system based on polarization maintaining fibers and two high speed CMOS line scan cameras capable of retinal imaging with up to 128 k A-lines/s. This high imaging speed strongly reduces motion artifacts and therefore averaging of several B-scans is possible, which strongly reduces speckle noise and improves image quality. We present several methods for averaging retardation and optic axis orientation, the best one providing a 5 fold noise reduction. Furthermore, a novel scheme of calculating images of degree of polarization uniformity is presented. We quantitatively compare the noise reduction depending on the number of averaged frames and discuss the limits of frame numbers that can usefully be averaged. PMID:21934820

  18. Novel uninterruptible self-determinate hybrid high-speed multimedia fiber optic wireless secure digital network

    NASA Astrophysics Data System (ADS)

    Lindsey, Lonnie

    2000-08-01

    One key to successful digital battlespace management is communications management. HF, UHF, VHF, CDMA, and SATCOM assets are difficult and complex to manage, and the modern digital battlespace adds new dimensions by including high volume multimedia transmissions, high-speed broadband data, and hyper-spectral sensor data. This environment requires more than the traditional voice transport-based communications system. The future sanctuary-based communication hub model will benefit from a novel uninterruptible self-determinate high bandwidth fiber optic system.

  19. Compact silica-on-silicon planar lightwave circuits for high speed optical signal processing

    NASA Astrophysics Data System (ADS)

    Callender, C. L.; Dumais, P.; Blanchetiere, C.; Jacob, S.; Ledderhof, C.; Smelser, C. W.; Yadav, K.; Albert, J.

    2012-02-01

    Silica-on-silicon planar lightwave circuit (PLC) technology is well established and provides a low loss and stable photonic device platform. However, limitations in size and integration of active components remain. Engineering of the layer structure in silica PLCs to achieve high-index contrast, compact device architectures and monolithically integrated optical nonlinearities is described. Modeling of properties of doped-silica layers provides a design strategy for optimization of waveguide loss and birefringence. Optical nonlinearities in poled silica layers have been demonstrated, and recent work to incorporate these into functional device structures and exploit them for high speed modulation is reported.

  20. High-speed video-based tracking of optically trapped colloids

    NASA Astrophysics Data System (ADS)

    Otto, O.; Gornall, J. L.; Stober, G.; Czerwinski, F.; Seidel, R.; Keyser, U. F.

    2011-04-01

    We have developed an optical tweezer setup, with high-speed and real-time position tracking, based on a CMOS camera technology. Our software encoded algorithm is cross-correlation based and implemented on a standard computer. By measuring the fluctuations of a confined colloid at 6000 frames s - 1, continuously for an hour, we show our technique is a viable alternative to quadrant photodiodes. The optical trap is calibrated by using power spectrum analysis and the Stokes method. The trap stiffness is independent of the camera frame rate and scales linearly with the applied laser power. The analysis of our data by Allan variance demonstrates single nanometer accuracy in position detection.

  1. High speed optical phased array using high contrast grating all-pass filters.

    PubMed

    Yang, Weijian; Sun, Tianbo; Rao, Yi; Megens, Mischa; Chan, Trevor; Yoo, Byung-Wook; Horsley, David A; Wu, Ming C; Chang-Hasnain, Connie J

    2014-08-25

    We report a high speed 8x8 optical phased array using tunable 1550 nm all-pass filters with ultrathin high contrast gratings (HCGs) as the microelectromechanical-actuated top reflectors. The all-pass filter design enables a highly efficient phase tuning (1.7 π) with a small actuation voltage (10 V) and actuation displacement of the HCG (50 nm). The microelectromechanical HCG structure facilitates a high phase tuning speed >0.5 MHz. Beam steering is experimentally demonstrated with the optical phased array.

  2. High-speed integrated optical logic based on the protein bacteriorhodopsin.

    PubMed

    Mathesz, Anna; Fábián, László; Valkai, Sándor; Alexandre, Daniel; Marques, Paulo V S; Ormos, Pál; Wolff, Elmar K; Dér, András

    2013-08-15

    The principle of all-optical logical operations utilizing the unique nonlinear optical properties of a protein was demonstrated by a logic gate constructed from an integrated optical Mach-Zehnder interferometer as a passive structure, covered by a bacteriorhodopsin (bR) adlayer as the active element. Logical operations were based on a reversible change of the refractive index of the bR adlayer over one or both arms of the interferometer. Depending on the operating point of the interferometer, we demonstrated binary and ternary logical modes of operation. Using an ultrafast transition of the bR photocycle (BR-K), we achieved high-speed (nanosecond) logical switching. This is the fastest operation of a protein-based integrated optical logic gate that has been demonstrated so far. The results are expected to have important implications for finding novel, alternative solutions in all-optical data processing research. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Dynamic Observation of Sweat Glands of Human Finger Tip Using All-Optical-Fiber High-Speed Optical Coherence Tomography

    NASA Astrophysics Data System (ADS)

    Ohmi, Masato; Nohara, Kenji; Ueda, Yoshihiro; Fuji, Toshie; Haruna, Masamitsu

    2005-06-01

    High-speed optical coherence tomography (OCT) makes it possible to perform a time-sequential imaging of biological tissue and small organs. In this paper, we demonstrate in vivo observation of dynamics of sweat glands of human finger tip using high-speed OCT with push-pull driven fiber-optic PZT phase modulators. Movement of a sweat droplet through a micro spiral duct can be tracked clearly. An interesting function of sweat glands is found out in time-sequential OCT imaging.

  4. High-speed Shack-Hartmann wavefront sensor design with commercial off-the-shelf optics.

    PubMed

    Widiker, Jeffrey J; Harris, Scott R; Duncan, Bradley D

    2006-01-10

    Several trade-offs relevant to the design of a two-dimensional high-speed Shack-Hartmann wavefront sensor are presented. Also outlined are some simple preliminary experiments that can be used to establish critical design specifications not already known. These specifications include angular uncertainty, maximum measurable wavefront tilt, and spatial resolution. A generic design procedure is then introduced to enable the adaptation of a limited selection of CCD cameras and lenslet arrays to the desired design specifications by use of commercial off-the-shelf optics. Although initially developed to aid in the design of high-speed (i.e., megahertz-frame-rate) Shack-Hartmann wavefront sensors, our method also works when used for slower CCD cameras. A design example of our procedure is provided.

  5. Large motion high cycle high speed optical fibers for space based applications.

    SciTech Connect

    Stromberg, Peter G.; Tandon, Rajan; Gibson, Cory S.; Reedlunn, Benjamin; Rasberry, Roger David; Rohr, Garth David

    2014-10-01

    Future remote sensing applications will require higher resolution and therefore higher data rates (up to perhaps 100 gigabits per second) while achieving lower mass and cost. A current limitation to the design space is high speed high bandwidth data does not cross movable gimbals because of cabling issues. This requires the detectors to be off gimbal. The ability to get data across the gimbal would open up efficiencies in designs where the detectors and the electronics can be placed anywhere on the system. Fiber optic cables provide light weight high speed high bandwidth connections. Current options are limited to 20,000 cycles as opposed to the 1,000,000 cycles needed for future space based applications. To extend this to the million+ regime, requires a thorough understanding of the failure mechanisms and the materials, proper selection of materials (e.g., glass and jacket material) allowable geometry changes to the cable, radiation hardness, etc.

  6. Perfect Optical Compensator With 1:1 Shutter Ratio Used For High Speed Camera

    NASA Astrophysics Data System (ADS)

    Zhihong, Rong

    1983-03-01

    An optical compensator used for high speed camera is described. The method of compensation, the analysis of the imaging quality and the result of experiment are introduced. The compensator consists of pairs of parallel mirrors. It can perform perfect compensation even at 1:1 shutter ratio. Using this compensator a high speed camera can be operated with no shutter and can obtain the same image sharpness as that of the intermittent camera. The advantages of this compensator are summarized as follows: . While compensating, the aberration correction of the objective would not be damaged. . There is no displacement and defocussing between the scanning image and the film in frame center during compensation. Increasing the exposure angle doesn't reduce the resolving power. . The compensator can also be used in the projector in place of the intermittent mechanism to practise continuous (non-intermittent) projection without shutter.

  7. Optical knife-edge displacement sensor for high-speed atomic force microscopy

    SciTech Connect

    Braunsmann, Christoph; Schäffer, Tilman E.; Prucker, Veronika

    2014-03-10

    We show that an optical knife-edge technique can be used to detect the parallel shift of an object with sub-nanometer resolution over a wide bandwidth. This allows to design simple, contact-free, and high-speed displacement sensors that can be implemented in high-speed atomic force microscope scanners. In an experimental setup, we achieved a root-mean-square sensor noise of 0.8 nm within a bandwidth from 1 Hz to 1.1 MHz. We used this sensor to detect and correct the nonlinear z-piezo displacement during force curves acquired with rates of up to 5 kHz. We discuss the fundamental resolution limit and the linearity of the sensor.

  8. Design and implementation of interface units for high speed fiber optics local area networks and broadband integrated services digital networks

    NASA Technical Reports Server (NTRS)

    Tobagi, Fouad A.; Dalgic, Ismail; Pang, Joseph

    1990-01-01

    The design and implementation of interface units for high speed Fiber Optic Local Area Networks and Broadband Integrated Services Digital Networks are discussed. During the last years, a number of network adapters that are designed to support high speed communications have emerged. This approach to the design of a high speed network interface unit was to implement package processing functions in hardware, using VLSI technology. The VLSI hardware implementation of a buffer management unit, which is required in such architectures, is described.

  9. Design of an Electro-Optic Modulator for High Speed Communications

    NASA Astrophysics Data System (ADS)

    Espinoza, David

    The telecommunications and computer technology industries have been requiring higher communications speeds at all levels for devices, components and interconnected systems. Optical devices and optical interconnections are a viable alternative over other traditional technologies such as copper-based interconnections. Latency reductions can be achieved through the use of optical interconnections. Currently, a particular architecture for optical interconnections is being studied at the University of Colorado at Boulder in the EMT/NANO project, called Broadcast Optical Interconnects for Global Communication in Many-Core Chip Multiprocessor. As with most types of networks, including optical networks, one of the most important components are modulators. Therefore adequate design and fabrication techniques for modulators contribute to higher modulation rates which lead to improve the efficiency and reductions in the latency of the optical network. Electro-optical modulators are presented in this study as an alternative to achieve this end. In recent years, nonlinear optical (NLO) materials have been used for the fabrication of high-speed electro-optical modulators. Polymers doped with chromophores are an alternative among NLO materials because they can develop large electro-optic coefficients and low dielectric constants. These two factors are critical for achieving high-speed modulation rates. These polymer-based electro-optical modulators can be fabricated using standard laboratory techniques, such as polymer spin-coating onto substrates, UV bleaching to achieve a refractive index variation and poling techniques to align the chromophores in cured polymers. The design of the electro-optic modulators require the use of the optical parameters of the materials to be used. Therefore the characterization of these materials is a required previous step. This characterization is performed by the fabrication of chromophores-doped polymer samples and conducting transmission and

  10. Recent advances in fiber optics components for high speed data transmission

    NASA Astrophysics Data System (ADS)

    Leskovar, B.

    1991-04-01

    The concept of guided lightwave communication along optical fibers has stimulated a major new technology over the past two decades. This technology profoundly impacts communication and instrumentation systems as well as computer interconnections and systems architecture. In this paper, the state of the art of optical transmitters, low loss fiber waveguides, receivers, and associated electronics components are reviewed and summarized for optical data transmission systems operating between 100 Mbit/s and 2.5 Gbit/s. Emphasis is placed on high speed data transmission subassemblies, such as time division multiplexers and demultiplexers, clock and data recovery circuits, as well as optical transmitters and receivers. In addition, the performance of candidate components of the wide band digital transmission systems intended for deployment in large detection systems for particle physics is discussed.

  11. High-speed adaptive optics line scan confocal retinal imaging for human eye.

    PubMed

    Lu, Jing; Gu, Boyu; Wang, Xiaolin; Zhang, Yuhua

    2017-01-01

    Continuous and rapid eye movement causes significant intraframe distortion in adaptive optics high resolution retinal imaging. To minimize this artifact, we developed a high speed adaptive optics line scan confocal retinal imaging system. A high speed line camera was employed to acquire retinal image and custom adaptive optics was developed to compensate the wave aberration of the human eye's optics. The spatial resolution and signal to noise ratio were assessed in model eye and in living human eye. The improvement of imaging fidelity was estimated by reduction of intra-frame distortion of retinal images acquired in the living human eyes with frame rates at 30 frames/second (FPS), 100 FPS, and 200 FPS. The device produced retinal image with cellular level resolution at 200 FPS with a digitization of 512×512 pixels/frame in the living human eye. Cone photoreceptors in the central fovea and rod photoreceptors near the fovea were resolved in three human subjects in normal chorioretinal health. Compared with retinal images acquired at 30 FPS, the intra-frame distortion in images taken at 200 FPS was reduced by 50.9% to 79.7%. We demonstrated the feasibility of acquiring high resolution retinal images in the living human eye at a speed that minimizes retinal motion artifact. This device may facilitate research involving subjects with nystagmus or unsteady fixation due to central vision loss.

  12. A home-built digital optical MRI console using high-speed serial links.

    PubMed

    Tang, Weinan; Wang, Weimin; Liu, Wentao; Ma, Yajun; Tang, Xin; Xiao, Liang; Gao, Jia-Hong

    2015-08-01

    To develop a high performance, cost-effective digital optical console for scalable multichannel MRI. The console system was implemented with flexibility and efficiency based on a modular architecture with distributed pulse sequencers. High-speed serial links were optimally utilized to interconnect the system, providing fast digital communication with a multi-gigabit data rate. The conventional analog radio frequency (RF) chain was replaced with a digital RF manipulation. The acquisition electronics were designed in close proximity to RF coils and preamplifiers, using a digital optical link to transmit the MR signal. A prototype of the console was constructed with a broad frequency range from direct current to 100 MHz. A temporal resolution of 1 μs was achieved for both the RF and gradient operations. The MR signal was digitized in the scanner room with an overall dynamic range between 16 and 24 bits and was transmitted to a master controller over a duplex optic fiber with a high data rate of 3.125 gigabits per second. High-quality phantom and human images were obtained using the prototype on both 0.36T and 1.5T clinical MRI scanners. A homemade digital optical MRI console with high-speed serial interconnection has been developed to better serve imaging research and clinical applications. © 2014 Wiley Periodicals, Inc.

  13. High-speed adaptive optics line scan confocal retinal imaging for human eye

    PubMed Central

    Wang, Xiaolin; Zhang, Yuhua

    2017-01-01

    Purpose Continuous and rapid eye movement causes significant intraframe distortion in adaptive optics high resolution retinal imaging. To minimize this artifact, we developed a high speed adaptive optics line scan confocal retinal imaging system. Methods A high speed line camera was employed to acquire retinal image and custom adaptive optics was developed to compensate the wave aberration of the human eye’s optics. The spatial resolution and signal to noise ratio were assessed in model eye and in living human eye. The improvement of imaging fidelity was estimated by reduction of intra-frame distortion of retinal images acquired in the living human eyes with frame rates at 30 frames/second (FPS), 100 FPS, and 200 FPS. Results The device produced retinal image with cellular level resolution at 200 FPS with a digitization of 512×512 pixels/frame in the living human eye. Cone photoreceptors in the central fovea and rod photoreceptors near the fovea were resolved in three human subjects in normal chorioretinal health. Compared with retinal images acquired at 30 FPS, the intra-frame distortion in images taken at 200 FPS was reduced by 50.9% to 79.7%. Conclusions We demonstrated the feasibility of acquiring high resolution retinal images in the living human eye at a speed that minimizes retinal motion artifact. This device may facilitate research involving subjects with nystagmus or unsteady fixation due to central vision loss. PMID:28257458

  14. Hard plastic cladding fiber (HPCF) based optical components for high speed short reach optical communications

    NASA Astrophysics Data System (ADS)

    Kim, Jun Ki; Kim, Dong Uk; Kim, Tae Young; Park, Chang Soo; Oh, Kyunghwan

    2006-09-01

    We developed the primary components applicable to HPCF links for short reach (SR) and very short reach (VSR) data communication systems. We fabricated 4x4 HPCF fused taper splitter, HPCF pigtailed VCSEL and PIN photodiode for high speed short reach communications and characterized back to back transmission performance of the link composed of these components by measuring eye diagrams and jitters. Adapting the fusion-tapering technique for glass optical fiber, we successfully fabricated a 4x4 HPCF fused taper coupler. The HPCF with a core diameter of 200μm and an outer diameter of 230μm had step refractive index of 1.45 and 1.40 for the core and the clad. The optimized fusion length and tapering waist which make minimum insertion loss of about 7dB and uniform output power splitting ratio with less than 0.5dB are 13mm and 150µm, respectively. As a light source for VSR networks, we chose a vertical cavity surface emitting laser (VCSEL) and developed a package with a HPCF pigtail. After positioning VCSEL and HPCF that made a minimum coupling loss, we glued the HPCF inside ceramic ferrule housing. In HPCF-PIN PD packaging, we added a micro polymer lens tip onto the HPCF ends to match the mode field area to the sensitive area of GaAs or InGaAs PIN PD. Coupling between a PIN PD chip and the lensed HPCF was optimized with the radius of curvature of 156µm with a low coupling loss of 0.3dB, which is compatible to conventional MMF-PD packaging. For 1.25 Gbps data rate, the eyes adequate to eye mask in gigabit Ethernet were wide open after all HPCF transmission link and no significant power penalty was observed.

  15. A hybrid high-speed atomic force-optical microscope for visualizing single membrane proteins on eukaryotic cells

    NASA Astrophysics Data System (ADS)

    Colom, Adai; Casuso, Ignacio; Rico, Felix; Scheuring, Simon

    2013-07-01

    High-speed atomic force microscopy is a powerful tool for studying structure and dynamics of proteins. So far, however, high-speed atomic force microscopy was restricted to well-controlled molecular systems of purified proteins. Here we integrate an optical microscopy path into high-speed atomic force microscopy, allowing bright field and fluorescence microscopy, without loss of high-speed atomic force microscopy performance. This hybrid high-speed atomic force microscopy/optical microscopy setup allows positioning of the high-speed atomic force microscopy tip with high spatial precision on an optically identified zone of interest on cells. We present movies at 960 ms per frame displaying aquaporin-0 array and single molecule dynamics in the plasma membrane of intact eye lens cells. This hybrid setup allows high-speed atomic force microscopy imaging on cells about 1,000 times faster than conventional atomic force microscopy/optical microscopy setups, and allows first time visualization of unlabelled membrane proteins on a eukaryotic cell under physiological conditions. This development advances high-speed atomic force microscopy from molecular to cell biology to analyse cellular processes at the membrane such as signalling, infection, transport and diffusion.

  16. A frequency and sensitivity tunable microresonator array for high-speed quantum processor readout

    NASA Astrophysics Data System (ADS)

    Whittaker, J. D.; Swenson, L. J.; Volkmann, M. H.; Spear, P.; Altomare, F.; Berkley, A. J.; Bumble, B.; Bunyk, P.; Day, P. K.; Eom, B. H.; Harris, R.; Hilton, J. P.; Hoskinson, E.; Johnson, M. W.; Kleinsasser, A.; Ladizinsky, E.; Lanting, T.; Oh, T.; Perminov, I.; Tolkacheva, E.; Yao, J.

    2016-01-01

    Superconducting microresonators have been successfully utilized as detection elements for a wide variety of applications. With multiplexing factors exceeding 1000 detectors per transmission line, they are the most scalable low-temperature detector technology demonstrated to date. For high-throughput applications, fewer detectors can be coupled to a single wire but utilize a larger per-detector bandwidth. For all existing designs, fluctuations in fabrication tolerances result in a non-uniform shift in resonance frequency and sensitivity, which ultimately limits the efficiency of bandwidth utilization. Here, we present the design, implementation, and initial characterization of a superconducting microresonator readout integrating two tunable inductances per detector. We demonstrate that these tuning elements provide independent control of both the detector frequency and sensitivity, allowing us to maximize the transmission line bandwidth utilization. Finally, we discuss the integration of these detectors in a multilayer fabrication stack for high-speed readout of the D-Wave quantum processor, highlighting the use of control and routing circuitry composed of single-flux-quantum loops to minimize the number of control wires at the lowest temperature stage.

  17. A frequency and sensitivity tunable microresonator array for high-speed quantum processor readout

    SciTech Connect

    Whittaker, J. D. Swenson, L. J.; Volkmann, M. H.; Spear, P.; Altomare, F.; Berkley, A. J.; Bunyk, P.; Harris, R.; Hilton, J. P.; Hoskinson, E.; Johnson, M. W.; Ladizinsky, E.; Lanting, T.; Oh, T.; Perminov, I.; Tolkacheva, E.; Yao, J.; Bumble, B.; Day, P. K.; Eom, B. H.; and others

    2016-01-07

    Superconducting microresonators have been successfully utilized as detection elements for a wide variety of applications. With multiplexing factors exceeding 1000 detectors per transmission line, they are the most scalable low-temperature detector technology demonstrated to date. For high-throughput applications, fewer detectors can be coupled to a single wire but utilize a larger per-detector bandwidth. For all existing designs, fluctuations in fabrication tolerances result in a non-uniform shift in resonance frequency and sensitivity, which ultimately limits the efficiency of bandwidth utilization. Here, we present the design, implementation, and initial characterization of a superconducting microresonator readout integrating two tunable inductances per detector. We demonstrate that these tuning elements provide independent control of both the detector frequency and sensitivity, allowing us to maximize the transmission line bandwidth utilization. Finally, we discuss the integration of these detectors in a multilayer fabrication stack for high-speed readout of the D-Wave quantum processor, highlighting the use of control and routing circuitry composed of single-flux-quantum loops to minimize the number of control wires at the lowest temperature stage.

  18. Optical signal processing for enabling high-speed, highly spectrally efficient and high capacity optical systems

    NASA Astrophysics Data System (ADS)

    Fazal, Muhammad Irfan

    may be possible. Recently, interest has increased in exploring the spatial dimension of light to increase capacity, both in fiber as well as free-space communication channels. The orbital angular momentum (OAM) of light, carried by Laguerre-Gaussian (LG) beams have the interesting property that, in theory, an infinite number of OAMs can be transmitted; which due to its inherent orthogonality will not affect each other. Thus, in theory, one can increase the channel capacity arbitrarily. However, in practice, the device dimensions will reduce the number of OAMs used. In addition to advanced modulation formats, it is expected that optical signal processing may play a role in the future development of more efficient optical transmission systems. The hope is that performing signal processing in the optical domain may reduce optical-to-electronic conversion inefficiencies, eliminate bottlenecks and take advantage of the ultrahigh bandwidth inherent in optics. While 40 to 50 Gbit/s electronic components are the peak of commercial technology and 100 Gbit/s capable RF components are still in their infancy, optical signal processing of these high-speed data signals may provide a potential solution. Furthermore, any optical processing system or sub-system must be capable of handling the wide array of data formats and data rates that networks may employ. The work presented in this Ph.D. dissertation attempts at addressing the issue of optical processing for advanced optical modulation formats, and particularly explores the state of the art in increasing the capacity of an optical link by a combination of wavelength/phase/polarization/OAM dimensions of light. Spatial multiplexing and demultiplexing of both coherently and directly detected signals at the 100 Gbit/s Ethernet standard is addressed. The application of a continuously tunable all-optical delay for all-optical functionality like time-slot interchange at high data-rates is presented. Moreover the interplay of chirp

  19. An enhanced high-speed multi-digit BCD adder using quantum-dot cellular automata

    NASA Astrophysics Data System (ADS)

    Ajitha, D.; Ramanaiah, K. V.; Sumalatha, V.

    2017-02-01

    The advent of development of high-performance, low-power digital circuits is achieved by a suitable emerging nanodevice called quantum-dot cellular automata (QCA). Even though many efficient arithmetic circuits were designed using QCA, there is still a challenge to implement high-speed circuits in an optimized manner. Among these circuits, one of the essential structures is a parallel multi-digit decimal adder unit with significant speed which is very attractive for future environments. To achieve high speed, a new correction logic formulation method is proposed for single and multi-digit BCD adder. The proposed enhanced single-digit BCD adder (ESDBA) is 26% faster than the carry flow adder (CFA)-based BCD adder. The multi-digit operations are also performed using the proposed ESDBA, which is cascaded innovatively. The enhanced multi-digit BCD adder (EMDBA) performs two 4-digit and two 8-digit BCD addition 50% faster than the CFA-based BCD adder with the nominal overhead of the area. The EMDBA performs two 4-digit BCD addition 24% faster with 23% decrease in the area, similarly for 8-digit operation the EMDBA achieves 36% increase in speed with 21% less area compared to the existing carry look ahead (CLA)-based BCD adder design. The proposed multi-digit adder produces significantly less delay of (N –1) + 3.5 clock cycles compared to the N* One digit BCD adder delay required by the conventional BCD adder method. It is observed that as per our knowledge this is the first innovative proposal for multi-digit BCD addition using QCA.

  20. Real-Time FPGA Processing for High-Speed Optical Frequency Domain Imaging

    PubMed Central

    Vakoc, Benjamin J.; Suter, Melissa J.; Yun, Seok-Hyun; Tearney, Guillermo J.; Bouma, Brett E.

    2010-01-01

    We present a novel algorithm for reconstructing interferograms acquired in optical frequency domain imaging (OFDI). The algorithm was developed specifically for processing in field programmable gate arrays (FPGAs) and featured the use of a finite-impulse-response (FIR) filter implementation of B-spline interpolation for efficiently re-sampling k-space. When implemented in FPGAs, the algorithm allowed for real-time processing of interferograms acquired with a high-speed OFDI system at 54 kHz and a sampling rate of 100 MS/s. PMID:19336296

  1. High Speed Optical Observations of Cataclysmic Variables: FL Ceti, BY Cam, and DQ Her

    NASA Astrophysics Data System (ADS)

    Mason, Paul A.; Gomez, S.; Robinson, E. L.; Andronov, I. L.; Gonzalez, R. I.

    2013-01-01

    We present photometric data on three cataclysmic variables. Broad-band CCD observations of FL Ceti, BY Cam, and DQ Her were obtained with 1-3s integrations at the Otto Struve, 2.1m, Telescope of McDonald Observatory. High speed optical photometry reveals details in these cataclysmic variables not possible using longer time integrations. In FL Ceti, the shortest period eclipsing polar known, the eclipse of two separate well localized accretion regions is resolved. In BY Cam and DQ Her, the spin period of the white dwarf is revealed. We discuss model constrains provided by these observations.

  2. High-speed fiber based polarization-sensitive optical coherence tomography of in vivo human skin.

    PubMed

    Saxer, C E; de Boer, J F; Park, B H; Zhao, Y; Chen, Z; Nelson, J S

    2000-09-15

    A high-speed single-mode fiber-based polarization-sensitive optical coherence tomography (PS OCT) system was developed. With a polarization modulator, Stokes parameters of reflected flight for four input polarization states are measured as a function of depth. A phase modulator in the reference arm of a Michelson interferometer permits independent control of the axial scan rate and carrier frequency. In vivo PS OCT images of human skin are presented, showing subsurface structures that are not discernible in conventional OCT images. A phase retardation image in tissue is calculated based on the reflected Stokes parameters of the four input polarization states.

  3. Optical fiber imaging for high speed plasma motion diagnostics: applied to low voltage circuit breakers.

    PubMed

    McBride, J W; Balestrero, A; Ghezzi, L; Tribulato, G; Cross, K J

    2010-05-01

    An integrated portable measurement system is described for the study of high speed and high temperature unsteady plasma flows such as those found in the vicinity of high current switching arcs. An array of optical fibers allows the formation of low spatial resolution images, with a maximum capture rate of 1 x 10(6) images per second (1 MHz), with 8 bit intensity resolution. Novel software techniques are reported to allow imaging of the arc; and to measure arc trajectories. Results are presented on high current (2 kA) discharge events in a model test fixture and on the application to a commercial low voltage circuit breaker.

  4. Optical fiber imaging for high speed plasma motion diagnostics: Applied to low voltage circuit breakers

    SciTech Connect

    McBride, J. W.; Balestrero, A.; Tribulato, G.; Ghezzi, L.; Cross, K. J.

    2010-05-15

    An integrated portable measurement system is described for the study of high speed and high temperature unsteady plasma flows such as those found in the vicinity of high current switching arcs. An array of optical fibers allows the formation of low spatial resolution images, with a maximum capture rate of 1x10{sup 6} images per second (1 MHz), with 8 bit intensity resolution. Novel software techniques are reported to allow imaging of the arc; and to measure arc trajectories. Results are presented on high current (2 kA) discharge events in a model test fixture and on the application to a commercial low voltage circuit breaker.

  5. FOCEX: A fiber-optic extender for a high speed parallel RS485 data cable

    NASA Astrophysics Data System (ADS)

    Meadows, J. T.; Anderson, J. T.; Cooper, P. S.; Engelfried, J.; Franzen, J. W.; Forster, B. G.; Levinson, F.; Rawls, J.; Haber, S.

    1995-05-01

    For longer-distant, high speed data links, optical fiber becomes most cost-effective than copper or other hard wire cable systems. Fermilab supplied to Finisar Corp. of Menlo Park, CA, a set of specifications for card functions, sizes and interconnector pin assignments. Finisar designed and assembled a set of fiber optical P.C. cards using 100 megabyte/sec commercial optoelectronics and a serialization and deserialization HOT-ROD chipset designed by GAZELLE Microcircuits, Inc. (A Tri Quint Semiconductors company). The cooperative effort between Fermilab and Finisar has allowed Fermilab to created a reliable 50 Megabytes/sec (40 bit parallel RS485 DART data bus) cable to cable extender using a virtually invisible Fiber Channel point-to-point(FC-0) fiber optical single-simplex system. The system is easily capable of sustaining a 50 megabytes/sec of data, control and status line throughput at distances of 1625 feet (500 meters) using standard multi-mode fiber.

  6. Spectral characteristics of optical discharge in a high-speed methane-air jet

    NASA Astrophysics Data System (ADS)

    Zudov, V. N.

    2017-06-01

    Results of gasdynamic and spectroscopic investigations of optical discharge in the subsupersonic flow of a homogeneous fuel-air (CH4 + air) mixtures are presented. The combustion was initiated and maintained by optical discharge created using a CO2 laser. The laser radiation propagated across the flow and was focused by a lens on the axis of the supersonic jet ( M = 2). Emission-spectroscopy techniques provided data on the composition of radiating combustion products and the intensity of components emitted in the region of optical discharge. Patterns of Toepler's visualization of the flow structure in the schlieren scheme are presented. The images were monitored by a high-speed video camera operating at an exposure time of 1.5 μs and a frame frequency of 1000 s-1.

  7. High speed QPPM direct detection optical communication receivers for FSDD intersatellite links

    NASA Technical Reports Server (NTRS)

    Davidson, Frederic M.; Sun, Xiaoli

    1993-01-01

    This final report consists of four separate reports, one for each project involved in this contract. The first report is entitled '325 Mbps QPPM (quaternary pulse position modulation) Direct Detection Free Space Optical Communication Encoder and Receiver,' which was our primary work. The second report is entitled 'Test Results of the 325 Mbps QPPM High Speed Data Transmission GaAs ASICs,' which describes our work in connection with Galaxy Microsystems, Inc. who produced these ASICs for NASA. The third report, 'Receiver Performance Analysis of BPPM Optical Communication Systems Using 1.3 micron Wavelength Transmitter and InGaAs PIN Photodiodes,' was prepared at the request of the NASA/Photonics Branch for their efforts in upgrading the 1773 optical fiber data bus. The fourth report, 'Photomultiplier Tubes for Use at 1.064 micron Wavelength,' was also prepared at the request of the NASA/Photonics Branch as a research project.

  8. Multiple component codes based generalized LDPC codes for high-speed optical transport.

    PubMed

    Djordjevic, Ivan B; Wang, Ting

    2014-07-14

    A class of generalized low-density parity-check (GLDPC) codes suitable for optical communications is proposed, which consists of multiple local codes. It is shown that Hamming, BCH, and Reed-Muller codes can be used as local codes, and that the maximum a posteriori probability (MAP) decoding of these local codes by Ashikhmin-Lytsin algorithm is feasible in terms of complexity and performance. We demonstrate that record coding gains can be obtained from properly designed GLDPC codes, derived from multiple component codes. We then show that several recently proposed classes of LDPC codes such as convolutional and spatially-coupled codes can be described using the concept of GLDPC coding, which indicates that the GLDPC coding can be used as a unified platform for advanced FEC enabling ultra-high speed optical transport. The proposed class of GLDPC codes is also suitable for code-rate adaption, to adjust the error correction strength depending on the optical channel conditions.

  9. High-Power, High-Speed Electro-Optic Pockels Cell Modulator

    NASA Technical Reports Server (NTRS)

    Hawthorne, Justin; Battle, Philip

    2013-01-01

    Electro-optic modulators rely on a change in the index of refraction for the optical wave as a function of an applied voltage. The corresponding change in index acts to delay the wavefront in the waveguide. The goal of this work was to develop a high-speed, high-power waveguide- based modulator (phase and amplitude) and investigate its use as a pulse slicer. The key innovation in this effort is the use of potassium titanyl phosphate (KTP) waveguides, making the highpower, polarization-based waveguide amplitude modulator possible. Furthermore, because it is fabricated in KTP, the waveguide component will withstand high optical power and have a significantly higher RF modulation figure of merit (FOM) relative to lithium niobate. KTP waveguides support high-power TE and TM modes - a necessary requirement for polarization-based modulation as with a Pockels cell. High-power fiber laser development has greatly outpaced fiber-based modulators in terms of its maturity and specifications. The demand for high-performance nonlinear optical (NLO) devices in terms of power handling, efficiency, bandwidth, and useful wavelength range has driven the development of bulk NLO options, which are limited in their bandwidth, as well as waveguide based LN modulators, which are limited by their low optical damage threshold. Today, commercially available lithium niobate (LN) modulators are used for laser formatting; however, because of photorefractive damage that can reduce transmission and increase requirements on bias control, LN modulators cannot be used with powers over several mW, dependent on wavelength. The high-power, high-speed modulators proposed for development under this effort will enable advancements in several exciting fields including lidarbased remote sensing, atomic interferometry, free-space laser communications, and others.

  10. High speed miniature motorized endoscopic probe for 3D optical frequency domain imaging

    NASA Astrophysics Data System (ADS)

    Li, Jianan; Feroldi, Fabio; Mo, Jianhua; Helderman, Frank; de Groot, Mattijs; de Boer, Johannes F.

    2013-03-01

    We present a miniature motorized endoscopic probe for Optical Frequency Domain Imaging with an outer diameter of 1.65 mm and a rotation speed of 3,000 - 12,500 rpm. This is the smallest motorized high speed OCT probe to our knowledge. The probe has a motorized distal end which provides a significant advantage over proximally driven probes since it does not require a drive shaft to transfer the rotational torque to the distal end of the probe and functions without a fiber rotary junction. The probe has a focal Full Width at Half Maximum of 9.6 μm and a working distance of 0.47 mm. We analyzed the non-uniform rotation distortion and found a location fluctuation of only 1.87° in repeated measurements of the same object. The probe was integrated in a high-speed Optical Frequency Domain Imaging setup at 1310 nm We demonstrated its performance with imaging ex vivo pig bronchial and in vivo goat lung.

  11. High-speed Optical Coherence Tomography for Management after Laser in Situ Keratomileusis

    PubMed Central

    Avila, Mariana; Li, Yan; Song, Jonathan C.; Huang, David

    2007-01-01

    PURPOSE: To report applications of optical coherence tomography (OCT) in the management of laser in situ keratomileusis (LASIK) related problems. SETTING: Doheny Eye Institute and Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA. METHODS: Five patients referred for LASIK-related problems were enrolled in a prospective observational study. Clinical examination, ultrasound (US) pachymetry, Placido ring slit-scanning corneal topography (Orbscan II, Bausch & Lomb), and high-speed corneal OCT were performed. RESULTS: In cases of regression and keratectasia, OCT provided thickness measurements of the cornea, flap, and posterior stromal bed. Locations of tissue loss and flap interface planes were identified in a case with a recut enhancement complication. The information was used to determine whether further laser ablation was safe, confirm keratectasia, and manage complications. Optical coherence tomography measurements of central corneal thickness agreed well with US pachymetry measurements (difference 6.4 mm G 11.7 [SD]) (P Z .026), while Orbscan significantly underestimated corneal thickness (-67.5 ± 72.5 μm) (P = .17). CONCLUSIONS: High-speed OCT provided noncontact imaging and measurement of LASIK anatomy. It was useful in monitoring LASIK results and evaluating complications. PMID:17081866

  12. In-plane deeply-etched optical MEMS notch filter with high-speed tunability

    NASA Astrophysics Data System (ADS)

    Sabry, Yasser M.; Eltagoury, Yomna M.; Shebl, Ahmed; Soliman, Mostafa; Sadek, Mohamed; Khalil, Diaa

    2015-12-01

    Notch filters are used in spectroscopy, multi-photon microscopy, fluorescence instrumentation, optical sensors and other life science applications. One type of notch filter is based on a fiber-coupled Fabry-Pérot cavity, which is formed by a reflector (external mirror) facing a dielectric-coated end of an optical fiber. Tailoring this kind of optical filter for different applications is possible because the external mirror has fewer mechanical and optical constraints. In this paper we present optical modeling and implementation of a fiber-coupled Fabry-Pérot filter based on dielectric-coated optical fiber inserted into a micromachined fiber groove facing a metallized micromirror, which is driven by a high-speed MEMS actuator. The optical MEMS chip is fabricated using deep reactive ion etching (DRIE) technology on a silicon on insulator wafer, where the optical axis is parallel to the substrate (in-plane) and the optical/mechanical components are self-aligned by the photolithographic process. The DRIE etching depth is 150 μm, chosen to increase the micromirror optical throughput and improving the out-of-plane stiffness of the MEMS actuator. The MEMS actuator type is closing-gap, while its quality factor is almost doubled by slotting the fixed plate. A low-finesse Fabry-Pérot interferometer is formed by the metallized surface of the micromirror and a cleaved end of a standard single-mode fiber, for characterization of the MEMS actuator stroke and resonance frequency. The actuator achieves a travel distance of 800 nm at a resonance frequency of 89.9 kHz. The notch filter characteristics were measured using an optical spectrum analyzer, and the filter exhibits a free spectral range up to 100 nm and a notch rejection ratio up to 20 dB around a wavelength of 1300 nm. The presented device provides batch processing and low-cost production of the filter.

  13. Multi-Color Quantum Dot Tracking Using a High-Speed Hyperspectral Line-Scanning Microscope

    PubMed Central

    Liu, Sheng; Byars, Jason M.; Lidke, Diane S.; Lidke, Keith A.

    2013-01-01

    Many cellular signaling processes are initiated by dimerization or oligomerization of membrane proteins. However, since the spatial scale of these interactions is below the diffraction limit of the light microscope, the dynamics of these interactions have been difficult to study on living cells. We have developed a novel high-speed hyperspectral microscope (HSM) to perform single particle tracking of up to 8 spectrally distinct species of quantum dots (QDs) at 27 frames per second. The distinct emission spectra of the QDs allows localization with ∼10 nm precision even when the probes are clustered at spatial scales below the diffraction limit. The capabilities of the HSM are demonstrated here by application of multi-color single particle tracking to observe membrane protein behavior, including: 1) dynamic formation and dissociation of Epidermal Growth Factor Receptor dimers; 2) resolving antigen induced aggregation of the high affinity IgE receptor, FcεR1; 3) four color QD tracking while simultaneously visualizing GFP-actin; and 4) high-density tracking for fast diffusion mapping. PMID:23717596

  14. Molecular-Based Optical Measurement Techniques for Transition and Turbulence in High-Speed Flow

    NASA Technical Reports Server (NTRS)

    Bathel, Brett F.; Danehy, Paul M.; Cutler, Andrew D.

    2013-01-01

    photogrammetry (for model attitude and deformation measurement) are excluded to limit the scope of this report. Other physical probes such as heat flux gauges, total temperature probes are also excluded. We further exclude measurement techniques that require particle seeding though particle based methods may still be useful in many high speed flow applications. This manuscript details some of the more widely used molecular-based measurement techniques for studying transition and turbulence: laser-induced fluorescence (LIF), Rayleigh and Raman Scattering and coherent anti-Stokes Raman scattering (CARS). These techniques are emphasized, in part, because of the prior experience of the authors. Additional molecular based techniques are described, albeit in less detail. Where possible, an effort is made to compare the relative advantages and disadvantages of the various measurement techniques, although these comparisons can be subjective views of the authors. Finally, the manuscript concludes by evaluating the different measurement techniques in view of the precision requirements described in this chapter. Additional requirements and considerations are discussed to assist with choosing an optical measurement technique for a given application.

  15. High-speed high-resolution optical coherence tomography at 800 and 1060 nm

    NASA Astrophysics Data System (ADS)

    Považay, B.; Hofer, B.; Hermann, B.; Torti, C.; Kajic, V.; Unterhuber, A.; Drexler, W.

    2008-09-01

    Two high speed systems for spectrometer based frequency domain optical coherence tomography are presented. A device operating at 800 nm, based on the Basler Sprint CMOS camera with linerates of up to 312,000 lps and a device based on the Goodrich SUI LHD 1024 px camera at 1060 nm with 47,000 lps are applied in a clinical environment to normal subjects. The feasibility of clinical high and ultra high-resolution optical coherence tomography (OCT) devices for retinal imaging at different wavelengths, capable of isotropic sampling with 70 to 600 frames per second at 512 depth scans/frame for widefield imaging and high density sampling at 1 Gvoxel are demostrated.

  16. High speed optical coherence microscopy with autofocus adjustment and a miniaturized endoscopic imaging probe

    PubMed Central

    Aguirre, Aaron D.; Sawinski, Juergen; Huang, Shu-Wei; Zhou, Chao; Denk, Winfried; Fujimoto, James G.

    2010-01-01

    Optical coherence microscopy (OCM) is a promising technique for high resolution cellular imaging in human tissues. An OCM system for high-speed en face cellular resolution imaging was developed at 1060 nm wavelength at frame rates up to 5 Hz with resolutions of < 4 µm axial and < 2 µm transverse. The system utilized a novel polarization compensation method to combat wavelength dependent source polarization and achieve broadband electro-optic phase modulation compatible with ultrahigh axial resolution. In addition, the system incorporated an auto-focusing feature that enables precise, near real-time alignment of the confocal and coherence gates in tissue, allowing user-friendly optimization of image quality during the imaging procedure. Ex vivo cellular images of human esophagus, colon, and cervix as well as in vivo results from human skin are presented. Finally, the system design is demonstrated with a miniaturized piezoelectric fiber-scanning probe which can be adapted for laparoscopic and endoscopic imaging applications. PMID:20389435

  17. Fiber-coupled high-speed asynchronous optical sampling with sub-50 fs time resolution.

    PubMed

    Krauss, N; Nast, A; Heinecke, D C; Kölbl, C; Barros, H G; Dekorsy, T

    2015-02-09

    We present a fiber-coupled pump-probe system with a sub-50 fs time resolution and a nanosecond time window, based on high-speed asynchronous optical sampling. By use of a transmission grism pulse compressor, we achieve pump pulses with a pulse duration of 42 fs, an average power of 300 mW and a peak power exceeding 5 kW at a pulse repetition rate of 1 GHz after 6 m of optical fiber. With this system we demonstrate thickness mapping of soft X-ray mirrors at a sub-nm thickness resolution on a cm(2) scan area. In addition, terahertz field generation with resolved spectral components of up to 3.5 THz at a GHz frequency resolution is demonstrated.

  18. High speed, high power one-dimensional beam steering from a 6-element optical phased array.

    PubMed

    Huang, W Ronny; Montoya, Juan; Kansky, Jan E; Redmond, Shawn M; Turner, George W; Sanchez-Rubio, Antonio

    2012-07-30

    Beam steering at high speed and high power is demonstrated from a 6-element optical phased array using coherent beam combining (CBC) techniques. The steering speed, defined as the inverse of the time to required to sweep the beam across the steering range, is 40 MHz and the total power is 396 mW. The measured central lobe FWHM width is 565 μrad. High on-axis intensity is maintained periodically by phase-locking the array via a stochastic-parallel-gradient-descent (SPGD) algorithm. A master-oscillator-power-amplifier (MOPA) configuration is used where the amplifier array elements are semiconductor slab-coupled-optical-waveguide-amplifiers (SCOWAs). The beam steering is achieved by LiNbO(3) phase modulators; the phase-locking occurs by current adjustment of the SCOWAs. The system can be readily scaled to GHz steering speed and multiwatt-class output.

  19. High speed 3D endoscopic optical frequency domain imaging probe for lung cancer diagnosis

    NASA Astrophysics Data System (ADS)

    Li, Jianan; Feroldi, Fabio; Mo, Jianhua; Helderman, Frank; de Groot, Mattijs; de Boer, Johannes F.

    2013-06-01

    We present a miniature motorized endoscopic probe for Optical Frequency Domain Imaging with an outer diameter of 1.65 mm and a rotation speed of 3,000 - 12,500 rpm. The probe has a motorized distal end which provides a significant advantage over proximally driven probes since it does not require a drive shaft to transfer the rotational torque to the distal end of the probe and functions without a fiber rotary junction. The probe has a focal Full Width at Half Maximum of 9.6 μm and a working distance of 0.47 mm. We analyzed the non-uniform rotation distortion and found a location fluctuation of only 1.87° in repeated measurements of the same object. The probe was integrated in a high-speed Optical Frequency Domain Imaging setup at 1310 nm. We demonstrated its performance with imaging ex vivo pig bronchial and in vivo goat lung.

  20. High-speed and low-power electro-optical DSP coprocessor.

    PubMed

    Tamir, Dan E; Shaked, Natan T; Wilson, Peter J; Dolev, Shlomi

    2009-08-01

    A fast, power-efficient electro-optical vector-by-matrix multiplier (VMM) architecture is presented. Careful design of an electrical unit supporting high-speed data transfer enables this architecture to overcome bottlenecks encountered by previous VMM architectures. Based on the proposed architecture, we present an electro-optical digital signal processing (DSP) coprocessor that can achieve a significant speedup of 2-3 orders of magnitude over existing DSP technologies and execute more than 16 teraflops. We show that it is feasible to implement the system using off-the-shelf components, analyze the performance of the architecture with respect to primitive DSP operations, and detail the use of the new architecture for several DSP applications.

  1. Fault-tolerance techniques for high-speed fiber-optic networks

    NASA Technical Reports Server (NTRS)

    Deruiter, John

    1991-01-01

    Four fiber optic network topologies (linear bus, ring, central star, and distributed star) are discussed relative to their application to high data throughput, fault tolerant networks. The topologies are also examined in terms of redundancy and the need to provide for single point, failure free (or better) system operation. Linear bus topology, although traditionally the method of choice for wire systems, presents implementation problems when larger fiber optic systems are considered. Ring topology works well for high speed systems when coupled with a token passing protocol, but it requires a significant increase in protocol complexity to manage system reconfiguration due to ring and node failures. Star topologies offer a natural fault tolerance, without added protocol complexity, while still providing high data throughput capability.

  2. Research on 1x2 all fiber high-speed magneto-optic switch

    NASA Astrophysics Data System (ADS)

    Lin, Shaohan; Weng, Zihua; Wang, Minfeng; Chen, Xu; Ruan, Jianjian

    2008-11-01

    In this paper two new types of 1x2 all fiber high-speed magneto-optic switches with thick film ferromagnetic bismuth-substituted rare-earth iron garnets are proposed and tested. Two types of magneto-optic switches are discussed by using two kinds of crystals. One is the ordinary switch which needs indurance magnetic field to maintain its state; And the other is latching type switch, the crystal remains in a given magnetic state for unlimited duration without energy supply. Circuits used to generate magnetic field are also discussed. The theoretical and experimental analysis of optical route, measurement of switching time and magnetic filed etc. are included. The extinction ratio of the switches are currently about 20 dB. It can be improved further by additional Faraday rotation created by another magneto-optic (MO) material in the light path. The switching time of MO material is under 100 ns, it can be ignored. Magnetic field should be able to change the voltage rapidly in order to obtain fast operating time of the optical switch. The inductance of the solenoid used for generating the required magnetic field is the bottleneck for rapid switching of the magnetic field in the MO material. The switching time of the two optical switch are discussed.

  3. Flexible Fiber-Optic High-Speed Imaging of Vocal Fold Vibration: A Preliminary Report.

    PubMed

    Woo, Peak; Baxter, Peter

    2017-03-01

    High-speed video (HSV) imaging of vocal fold vibration has been possible only through the rigid endoscope. This study reports that a fiberscope-based high-speed imaging system may allow HSV imaging of naturalistic voicing. Twenty-two subjects were recorded using a commercially available black and white high-speed camera (Photron Motion Tools, 256 × 120 pixel, 2000 frames per second, 8 second acquisition time). The camera gain is set to +6 db. The camera is coupled to a standard fiber-optic laryngoscope (Olympus ENF P-4) with a 300-W Xenon light. Image acquisition was done by asking the subject to perform repeated phonation at modal phonation. Video images were processed using commercial video editing and video noise reduction software (After effects, Magix, and Neat Video 4.1). After video processing, the video images were analyzed using digital kymography (DKG). The HSV black and white video acquired by the camera is gray and lacks contrast. By adjustment of image contrast, brightness, and gamma and using noise reduction software, the flexible laryngoscopy image can be converted to video image files suitable for DKG and waveform analysis. The increased noise still makes edge tracking for objective analysis difficult, but subjective analysis of DKG plot is possible. This is the first report of HSV acquisition in an unsedated patient using a fiberscope. Image enhancement and noise reduction can enhance the HSV to allow extraction of the digital kymogram. Further image enhancement may allow for objective analysis of the vibratory waveform. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  4. Secure Communications in High Speed Fiber Optical Networks Using Code Division Multiple Access (CDMA) Transmission

    SciTech Connect

    Han, I; Bond, S; Welty, R; Du, Y; Yoo, S; Reinhardt, C; Behymer, E; Sperry, V; Kobayashi, N

    2004-02-12

    This project is focused on the development of advanced components and system technologies for secure data transmission on high-speed fiber optic data systems. This work capitalizes on (1) a strong relationship with outstanding faculty at the University of California-Davis who are experts in high speed fiber-optic networks, (2) the realization that code division multiple access (CDMA) is emerging as a bandwidth enhancing technique for fiber optic networks, (3) the realization that CDMA of sufficient complexity forms the basis for almost unbreakable one-time key transmissions, (4) our concepts for superior components for implementing CDMA, (5) our expertise in semiconductor device processing and (6) our Center for Nano and Microtechnology, which is where the majority of the experimental work was done. Here we present a novel device concept, which will push the limits of current technology, and will simultaneously solve system implementation issues by investigating new state-of-the-art fiber technologies. This will enable the development of secure communication systems for the transmission and reception of messages on deployed commercial fiber optic networks, through the CDMA phase encoding of broad bandwidth pulses. CDMA technology has been developed as a multiplexing technology, much like wavelength division multiplexing (WDM) or time division multiplexing (TDM), to increase the potential number of users on a given communication link. A novel application of the techniques created for CDMA is to generate secure communication through physical layer encoding. Physical layer encoding devices are developed which utilize semiconductor waveguides with fast carrier response times to phase encode spectral components of a secure signal. Current commercial technology, most commonly a spatial light modulator, allows phase codes to be changed at rates of only 10's of Hertz ({approx}25ms response). The use of fast (picosecond to nanosecond) carrier dynamics of semiconductors, as

  5. Invited Article: Polarization diversity and modulation for high-speed optical communications: architectures and capacity

    NASA Astrophysics Data System (ADS)

    Shieh, William; Khodakarami, Hamid; Che, Di

    2016-07-01

    Polarization is one of the fundamental properties of optical waves. To cope with the exponential growth of the Internet traffic, optical communications has advanced by leaps and bounds within the last decade. For the first time, the polarization domain has been extensively explored for high-speed optical communications. In this paper, we discuss the general principle of polarization modulation in both Jones and Stokes spaces. We show that there is no linear optical device capable of transforming an arbitrary input polarization into one that is orthogonal to itself. This excludes the receiver self-polarization diversity architecture by splitting the signal into two branches, and then transferring one of the branches into orthogonal polarization. We next propose a novel Stokes vector (SV) detection architecture using four single-ended photodiodes (PD) that can recover a full set of SV. We then derive a closed-form expression for the information capacity of different SV detection architectures and compare the capacity of our proposed architectures with that of intensity-modulated directly-detected (IM/DD) method. We next study the 3-PD SV detection architecture where a subset of SV is detected, and devise a novel modulation algorithm that can achieve 2-dimensional modulation with the 3-PD detection. By using cost-effective SV receivers, polarization modulation and multiplexing offers a powerful solution for short-reach optical networks where the wavelength domain is quickly exhausted.

  6. VCSEL-based optical transceiver module for high-speed short-reach interconnect

    NASA Astrophysics Data System (ADS)

    Yagisawa, Takatoshi; Oku, Hideki; Mori, Tatsuhiro; Tsudome, Rie; Tanaka, Kazuhiro; Daikuhara, Osamu; Komiyama, Takeshi; Ide, Satoshi

    2017-02-01

    Interconnects have been more important in high-performance computing systems and high-end servers beside its improvements in computing capability. Recently, active optical cables (AOCs) have started being used for this purpose instead of conventionally used copper cables. The AOC enables to extend the transmission distance of the high-speed signals dramatically by its broadband characteristics, however, it tend to increase the cost. In this paper, we report our developed quad small form-factor pluggable (QSFP) AOC utilizing cost-effective optical-module technologies. These are a unique structure using generally used flexible printed circuit (FPC) in combination with an optical waveguide that enables low-cost high-precision assembly with passive alignment, a lens-integrated ferrule that improves productivity by eliminating a polishing process for physical contact of standard PMT connector for the optical waveguide, and an overdrive technology that enables 100 Gb/s (25 Gb/s × 4-channel) operation with low-cost 14 Gb/s vertical-cavity surfaceemitting laser (VCSEL) array. The QSFP AOC demonstrated clear eye opening and error-free operation at 100 Gb/s with high yield rate even though the 14 Gb/s VCSEL was used thanks to the low-coupling loss resulting from the highprecision alignment of optical devices and the over-drive technology.

  7. Optical biopsy in high-speed handheld miniaturized multifocal multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Kim, Daekeun; Kim, Ki Hean; Yazdanfar, Siavash; So, Peter T. C.

    2005-03-01

    Histological analysis is the clinical standard for assessing tissue health and the identification of pathological states. Its invasive nature dictates that its use should be minimized without compromising diagnostic accuracy. A promising method for minimally invasive histological analysis is optical biopsy, which provides cross sectional or 3D images without any physical sectionings. Optical biopsy method based on multiphoton excitation microscopy can image cross-sectional image for deep tissue structures with subcellular resolution based on tissue endogenous fluorescence molecules. Despite its suitability for tissue imaging, multiphoton microscopy has not been used for in vivo clinical applications due to both compactness and imaging speed problems. We are developing a high-speed, handheld, miniaturized multifocal multiphoton microscope (H2M4) as an optical biopsy probe to enable optical biopsy with subcellular resolution. We incorporate a compact raster scanning actuator based on optimizing a piezo-driven tip tilt mirror by increasing its bandwidth, and reducing its nonlinearity. For flexible light delivery, we choose a photonic bandgap crystal fiber, which transmits ultrashort pulsed laser delivery with reduced spectral distortion and pulse width broadening. We further demonstrate that this fiber produces minimal spatial mode distortion and can achieve comparable image point spread function (PSF) as free space delivery. We further investigate the applicability of multiphoton microscopy for clinical dermal investigation by imaging ex vivo human skins with both normal and abnormal physiologies. This demonstrates the performance of H2M4 and the possibility of optical biopsy for diagnosing skin diseases.

  8. Safety analysis and realization of safe information transmission optical LAN on high-speed railway

    NASA Astrophysics Data System (ADS)

    Tao, Ying; Wu, Chongqing; Li, Zuoyi

    2001-10-01

    High-speed railway that has been progressing very quickly is one of the greatest techniques in present time because of its high speed, economy, comfort, environment benefits and other advantages. And among all of these, safe is the backbone and lifeline, so the chief task in developing high-speed railway is to establish safety guarantee system. Also in this safety guarantee system, train control is one of the key techniques to guarantee safe train operation and to advance ability of transportation, so operation safe is located in the hardcore position. That is to say, it is imperative to set up a safe, real-time and reliable automatic train control system. And we can easily find out that this kind of system is now developed and applied in many countries. Important information related to train control, such as the received and transmitted information of track-sided equipment, is called safe information, because it deals with train operation's safe, reliability, and even directly with people's life and wealth. It is so important that if there were some kind of fault with its making, transmission, or processing, fatal accident would occur. So to some degree, it is impossible to transmit and process this information through present railway communication network because of the former's extreme importance and the latter's no safe capability. Therefore, a specific communication network that mainly considers about safe transmission and management should be established in order to realize the specific function for this specific information. High-speed railway safe information transmission optical LAN, which adopts optical fiber as transmission media and transmits safe information, is a kind of LAN designed for the request for safe, real-time and highly reliable automatic train control system in the process of our country's high-speed railway construction and commonly train speed. In this paper, after analyzing the characteristics of automatic train control system and the

  9. Electro-optical system for the high speed reconstruction of computed tomography images

    SciTech Connect

    Tresp, V.

    1989-01-01

    An electro-optical system for the high-speed reconstruction of computed tomography (CT) images has been built and studied. The system is capable of reconstructing high-contrast and high-resolution images at video rate (30 images per second), which is more than two orders of magnitude faster than the reconstruction rate achieved by special purpose digital computers used in commercial CT systems. The filtered back-projection algorithm which was implemented in the reconstruction system requires the filtering of all projections with a prescribed filter function. A space-integrating acousto-optical convolver, a surface acoustic wave filter and a digital finite-impulse response filter were used for this purpose and their performances were compared. The second part of the reconstruction, the back projection of the filtered projections, is computationally very expensive. An optical back projector has been built which maps the filtered projections onto the two-dimensional image space using an anamorphic lens system and a prism image rotator. The reconstructed image is viewed by a video camera, routed through a real-time image-enhancement system, and displayed on a TV monitor. The system reconstructs parallel-beam projection data, and in a modified version, is also capable of reconstructing fan-beam projection data. This extension is important since the latter are the kind of projection data actually acquired in high-speed X-ray CT scanners. The reconstruction system was tested by reconstructing precomputed projection data of phantom images. These were stored in a special purpose projection memory and transmitted to the reconstruction system as an electronic signal. In this way, a projection measurement system that acquires projections sequentially was simulated.

  10. High-speed pulse train amplification in semiconductor optical amplifiers with optimized bias current.

    PubMed

    Xia, Mingjun; Ghafouri-Shiraz, H; Hou, Lianping; Kelly, Anthony E

    2017-02-01

    In this paper, we have experimentally investigated the optimized bias current of semiconductor optical amplifiers (SOAs) to achieve high-speed input pulse train amplification with high gain and low distortion. Variations of the amplified output pulse duration with the amplifier bias currents have been analyzed and, compared to the input pulse duration, the amplified output pulse duration is broadened. As the SOA bias current decreases from the high level (larger than the saturated bias current) to the low level, the broadened pulse duration of the amplified output pulse initially decreases slowly and then rapidly. Based on the analysis, an optimized bias current of SOA for high-speed pulse train amplification is introduced. The relation between the SOA optimized bias current and the parameters of the input pulse train (pulse duration, power, and repetition rate) are experimentally studied. It is found that the larger the input pulse duration, the lower the input pulse power or a higher repetition rate can lead to a larger SOA optimized bias current, which corresponds to a larger optimized SOA gain. The effects of assist light injection and different amplifier temperatures on the SOA optimized bias current are studied and it is found that assist light injection can effectively increase the SOA optimized bias current while SOA has a lower optimized bias current at the temperature 20°C than that at other temperatures.

  11. Modeling and characteristic of the SMT Board Plug connector in high speed optical communication system

    NASA Astrophysics Data System (ADS)

    Wu, Haoran; Dong, Zhenzhen; Wang, Tanglin; Zhao, Heng; Feng, Junbo; Cui, Naidi; Teng, Jie; Guo, Jin

    2015-04-01

    Modeling and characteristic of the SMT Board Plug connector, which is used to connect micro optical transceiver to the main board, are proposed and analyzed in this paper. When the high speed signal transfers from the PCB of transceiver to main board through SMT Board Plug connector, the structure and material discontinuity of the connector causes insertion losses and impedance mismatches. This makes the performance of high speed digital system exacerbated. So it is essential to analyze the signal transfer characteristics of the connector and find out what factors affected the signal quality at the design stage of the digital system. To solve this problem, Ansoft's High Frequency Structure Simulator (HFSS), based on the finite element method, was employed to build accurate 3D models, analyze the effects of various structure parameters, and obtain the full-wave characteristics of the SMT Board Plug connectors in this paper. Then an equivalent circuit model was developed. The circuit parameters were extracted precisely in the frequency range of interests by using the curve fitting method in ADS software, and the result was in good agreement with HFSS simulations up to 8GHz with different structure parameters. At last, the measurement results of S-parameter and eye diagram were given and the S-parameters showed good coincidence between the measurement and HFSS simulation up to 4GHz.

  12. Optical observation of metal jet generated by high speed inclined collision

    NASA Astrophysics Data System (ADS)

    Mori, A.; Tanaka, S.; Hokamoto, K.

    2017-02-01

    Explosive welding, one of the high energy rate material processing, is known the technique to weld strongly for the dissimilar metal combinations. When a metal is collided to the other metal at high velocity with a certain angle, good welding is achieved in this technique. Important parameters of the explosive welding method are the collision velocity and the collision angle. And it is necessary to know these parameters to obtain the explosively welded materials of several metals combinations. However, the optical observation for the collision of metal plate accelerated by the explosive is difficult because of the obstruction by the spreading of detonation gas. In the present work a single-stage powder gun and high speed video camera were used to observe the inclined collision of metals at the high velocity. Projectile consisted by a metal disc and sabot was accelerated by the deflagration of a gunpowder and was collided to another metal disc set with a certain angle. Metal jet was generated at the collision point when the projectile was collided to the target disc in the range of suitable conditions. By using this observation system, a series of the flow from the high speed collision to the generation of metal jet could be taken photographs clearly. This investigation shows the experimental results of the similar and dissimilar metal collision, with comparing the visualization of a metal jet simulated numerically.

  13. An optical and H I study of NGC 5850 - Victim of a high-speed encounter?

    NASA Astrophysics Data System (ADS)

    Higdon, James L.; Buta, Ronald J.; Purcell, Guy B.

    1998-01-01

    We present optical CCD surface photometry and VLA H I observations of NGC 5850, one of the largest and brightest barred spirals of the inner ring variety in the sky. The broadband images reveal numerous morphological peculiarities, particularly in the spiral arms. Structural asymmetries are more obvious in H I, the most pronounced being a large-scale displacement of gas to the west and northwest of the nucleus. Most of the atomic hydrogen is concentrated in the prominent optical ring and faint spiral arms, with very low H I surface densities in the bulge and interarm regions. The H I surface density drops rapidly outside the arms, and we find no evidence for either large-scale tidal features or an extended gas disk above 0.05 M(solar)/sq pc. Overall, the intensity-weighted H I velocity field appears fairly regular, yet still shows clear deviations from circular rotation that we attribute to a warped oval disk and streaming motions across the arms. Radio continuum emission at 20 cm is dominated by a faint bulge component that peaks at the optical nucleus. The spiral arms are not detected. The absence of extended X-ray emission throughout the NGC 5846 group and the close similarity between NGC 5850's optical and H I morphologies argue against ram pressure stripping through a dense intergalactic medium as the cause of the galaxy's peculiar morphology. We attribute it instead to a high-speed encounter with the massive elliptical galaxy NGC 5846.

  14. High speed optical wireless data transmission system for particle sensors in high energy physics

    NASA Astrophysics Data System (ADS)

    Ali, W.; Corsini, R.; Ciaramella, E.; Dell'Orso, R.; Messineo, A.; Palla, F.

    2015-08-01

    High speed optical fiber or copper wire communication systems are frequently deployed for readout data links used in particle physics detectors. Future detector upgrades will need more bandwidth for data transfer, but routing requirements for new cables or optical fiber will be challenging due to space limitations. Optical wireless communication (OWC) can provide high bandwidth connectivity with an advantage of reduced material budget and complexity of cable installation and management. In a collaborative effort, Scuola Superiore Sant'Anna and INFN Pisa are pursuing the development of a free-space optical link that could be installed in a future particle physics detector or upgrade. We describe initial studies of an OWC link using the inner tracker of the Compact Muon Solenoid (CMS) detector as a reference architecture. The results of two experiments are described: the first to verify that the laser source transmission wavelength of 1550 nm will not introduce fake signals in silicon strip sensors while the second was to study the source beam diameter and its tolerance to misalignment. For data rates of 2.5 Gb/s and 10 Gb/s over a 10 cm working distance it was observed that a tolerance limit of ±0.25 mm to ±0.8 mm can be obtained for misaligned systems with source beam diameters of 0.38 mm to 3.5 mm, respectively.

  15. High-speed SPGD wavefront controller for an adaptive optics system without wavefront sensor

    NASA Astrophysics Data System (ADS)

    Wang, Caixia; Li, Xinyang; Li, Mei; Ye, Jongwei; Chen, Bo

    2010-10-01

    A non-conventional adaptive optics system based on direct system performance metric optimization is illustrated. The system does not require wave-front sensor which is difficult to work under the poor condition such as beam cleanup for the anomalous light beam. The system comprises a high speed wavefront controller based on Stochastic Parallel Gradient Descent (SPGD) Algorithm, a deformable mirror, a tip/tilt mirror and a far-field system performance metric sensor. The architecture of the wave-front controller is based on a combination of Field Programmable Gate Array (FPGA) and floating-point Digital Signal Processor (DSP). The Zernike coefficient information is applied to improve the iteration speed. The experimental results show that the beam cleanup system based on SPGD keep a high iteration speed. The controller can compensate the wavefront aberration and tilt excursion effectively.

  16. Audio extraction from silent high-speed video using an optical technique

    NASA Astrophysics Data System (ADS)

    Wang, Zhaoyang; Nguyen, Hieu; Quisberth, Jason

    2014-11-01

    It is demonstrated that audio information can be extracted from silent high-speed video with a simple and fast optical technique. The basic principle is that the sound waves can stimulate objects encountered in the traveling path to vibrate. The vibrations, although usually with small amplitudes, can be detected by using an image matching process. The proposed technique applies a subset-based image correlation approach to detect the motions of points on the surface of an object. It employs the Gauss-Newton algorithm and a few other measures to achieve very fast and highly accurate image matching. Because the detected vibrations are directly related to the sound waves, a simple model is introduced to reconstruct the original audio information of the sound waves. The proposed technique is robust and easy to implement, and its effectiveness has been verified by experiments.

  17. High-speed asynchronous optical sampling with sub-50fs time resolution.

    PubMed

    Gebs, R; Klatt, G; Janke, C; Dekorsy, T; Bartels, A

    2010-03-15

    We report an ultrafast time-domain spectroscopy system based on high-speed asynchronous optical sampling operating without mechanical scanner. The system uses two 1 GHz femtosecond oscillators that are offset-stabilized using high-bandwidth feedback electronics operating at the tenth repetition rate harmonics. Definition of the offset frequency, i.e. the time-delay scan rate, in the range of a few kilohertz is accomplished using direct-digital-synthesis electronics for the first time. The time-resolution of the system over the full available 1 ns time-delay window is determined by the laser pulse duration and is 45 fs. This represents a three-fold improvement compared to previous approaches where timing jitter was the limiting factor. Two showcase experiments are presented to verify the high time-resolution and sensitivity of the system.

  18. High Speed Optical Photometry of V1055 Orionis (=4U 0614+091)

    NASA Astrophysics Data System (ADS)

    Lopez, Isaac; Mason, P. A.; Robinson, E. L.

    2013-01-01

    V1055 Orionis (=4U 0614+091) is thought to be an ultra-compact binary containing a neutron star primary with a white dwarf companion. High-speed (10s) broad-band optical observations using the McDonald Observatory, 2.1m, Otto Struve Telescope were obtained on 13 nights in 2010, 2011, and 2012. The nightly mean brightness remained quite stable over the dataset. The light curve is dominated by complex oscillatory behavior reminiscent of the beating of hidden frequencies. A variety of photometric periods have been previously reported and none are found to be coherent periods in our dataset. Rather, a given night exhibits short lived quasi-periodic variations covering a variety of timescales, especially 10-40 min and even as long as two hours. This short period variability combined with recent spectroscopic abundance studies suggests that the likely donor in this binary is a white dwarf.

  19. High-speed stimulated hyperspectral Raman imaging using rapid acousto-optic delay lines.

    PubMed

    Alshaykh, Mohammed S; Liao, Chien-Sheng; Sandoval, Oscar E; Gitzinger, Gregory; Forget, Nicolas; Leaird, Daniel E; Cheng, Ji-Xin; Weiner, Andrew M

    2017-04-15

    Stimulated Raman scattering (SRS) is a powerful, label-free imaging technique that holds significant potential for medical imaging. To allow chemical specificity and minimize spectral distortion in the imaging of live species, a high-speed multiplex SRS imaging platform is needed. By combining a spectral focusing excitation technique with a rapid acousto-optic delay line, we demonstrate a hyperspectral SRS imaging platform capable of measuring a 3-dB spectral window of ∼200  cm-1 within 12.8 μs with a scan rate of 30 KHz. We present hyperspectral images of a mixture of two different microsphere polymers as well as live fungal cells mixed with human blood.

  20. Closed-loop results of a compact high-speed adaptive optics system with H∞ control

    NASA Astrophysics Data System (ADS)

    Frazier, Benjamin W.; Tyson, Robert K.; Ackman, Jacqueline; Smith, Mark

    2003-12-01

    We report on the results of experiments that demonstrate a robust control system for a general-purpose adaptive optics system and provide robust stability analysis for such a system. Using a commercially available high-speed CCD camera in the Shack-Hartmann wavefront sensor and a 37-actuator Xinetics deformable mirror, we are able to achieve closed-loop performance sufficient for many astronomical, vision science, or laser communications applications. The control system must be robust for the various applications and the entire system must be easily set-up, calibrated, and run by a minimally-trained operator. An H-infinity controller, which optimizes the closed-loop stability of a system, is implemented and analyzed.

  1. High-power high-speed single-mode diode lasers for optical intersatellite link applications

    NASA Astrophysics Data System (ADS)

    Li, Benjamin; Sha, WeiJian; Yeh, PingHui S.; Nagarajan, Radhakrishnan; Craig, Richard R.

    1998-05-01

    High power single-mode AlGaAs semiconductor lasers operating between 820 nm and 860 nm (SDL-5400 series diodes) have been successfully qualified for deployment in many free-space inter-satellite communication link programs. Traditionally these high power devices did not have sufficient bandwidth for direct high speed modulation because of large device and package parasitics. We have improved the device parasitics of the SDL-5430 laser diode, i.e. reduced the RC product, from 240 ps to about 40 ps. The initial measurements indicate that this device (SDL-5480) is suitable for high power optical inter-satellite link (OISL) applications at data rates greater than 1 Gbit/s. The preliminary life test indicates that the new device has better a reliability than the previous design.

  2. High-speed upper-airway imaging using full-range optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Jing, Joseph; Zhang, Jun; Loy, Anthony Chin; Wong, Brian J. F.; Chen, Zhongping

    2012-11-01

    Obstruction in the upper airway can often cause reductions in breathing or gas exchange efficiency and lead to rest disorders such as sleep apnea. Imaging diagnosis of the obstruction region has been accomplished using computed tomography (CT) and magnetic resonance imaging (MRI). However CT requires the use of ionizing radiation, and MRI typically requires sedation of the patient to prevent motion artifacts. Long-range optical coherence tomography (OCT) has the potential to provide high-speed three-dimensional tomographic images with high resolution and without the use of ionizing radiation. In this paper, we present work on the development of a long-range OCT endoscopic probe with 1.2 mm OD and 20 mm working distance used in conjunction with a modified Fourier domain swept source OCT system to acquire structural and anatomical datasets of the human airway. Imaging from the bottom of the larynx to the end of the nasal cavity is completed within 40 s.

  3. Unconventional optical imaging using a high-speed neural network based smart sensor

    NASA Astrophysics Data System (ADS)

    Arrasmith, William W.

    2006-05-01

    The advancement of neural network methods and technologies is finding applications in many fields and disciplines of interest to the defense, intelligence, and homeland security communities. Rapidly reconfigurable sensors for real or near-real time signal or image processing can be used for multi-functional purposes such as image compression, target tracking, image fusion, edge detection, thresholding, pattern recognition, and atmospheric turbulence compensation to name a few. A neural network based smart sensor is described that can accomplish these tasks individually or in combination, in real-time or near real-time. As a computationally intensive example, the case of optical imaging through volume turbulence is addressed. For imaging systems in the visible and near infrared part of the electromagnetic spectrum, the atmosphere is often the dominant factor in reducing the imaging system's resolution and image quality. The neural network approach described in this paper is shown to present a viable means for implementing turbulence compensation techniques for near-field and distributed turbulence scenarios. Representative high-speed neural network hardware is presented. Existing 2-D cellular neural network (CNN) hardware is capable of 3 trillion operations per second with peta-operations per second possible using current 3-D manufacturing processes. This hardware can be used for high-speed applications that require fast convolutions and de-convolutions. Existing 3-D artificial neural network technology is capable of peta-operations per second and can be used for fast array processing operations. Methods for optical imaging through distributed turbulence are discussed, simulation results are presented and computational and performance assessments are provided.

  4. High-speed optical shutter coupled to fast-readout CCD camera

    NASA Astrophysics Data System (ADS)

    Yates, George J.; Pena, Claudine R.; McDonald, Thomas E., Jr.; Gallegos, Robert A.; Numkena, Dustin M.; Turko, Bojan T.; Ziska, George; Millaud, Jacques E.; Diaz, Rick; Buckley, John; Anthony, Glen; Araki, Takae; Larson, Eric D.

    1999-04-01

    A high frame rate optically shuttered CCD camera for radiometric imaging of transient optical phenomena has been designed and several prototypes fabricated, which are now in evaluation phase. the camera design incorporates stripline geometry image intensifiers for ultra fast image shutters capable of 200ps exposures. The intensifiers are fiber optically coupled to a multiport CCD capable of 75 MHz pixel clocking to achieve 4KHz frame rate for 512 X 512 pixels from simultaneous readout of 16 individual segments of the CCD array. The intensifier, Philips XX1412MH/E03 is generically a Generation II proximity-focused micro channel plate intensifier (MCPII) redesigned for high speed gating by Los Alamos National Laboratory and manufactured by Philips Components. The CCD is a Reticon HSO512 split storage with bi-direcitonal vertical readout architecture. The camera main frame is designed utilizing a multilayer motherboard for transporting CCD video signals and clocks via imbedded stripline buses designed for 100MHz operation. The MCPII gate duration and gain variables are controlled and measured in real time and up-dated for data logging each frame, with 10-bit resolution, selectable either locally or by computer. The camera provides both analog and 10-bit digital video. The camera's architecture, salient design characteristics, and current test data depicting resolution, dynamic range, shutter sequences, and image reconstruction will be presented and discussed.

  5. Robust modulation formats recognition technique using wavelet transform for high speed optical networks

    NASA Astrophysics Data System (ADS)

    Guesmi, Latifa; Hraghi, Abir; Menif, Mourad

    2015-09-01

    There is a need, for high speed optical communication networks, in the monitoring process, to determine the modulation format type of a received signal. In this paper, we present a new achievement of modulation format recognition technique, where we proposed the use of wavelet transform of the detected signal in conjunction with the artificial neural network (ANN) algorithm. Besides, wavelet transform is one of the most popular candidates of the time-frequency transformations, where the wavelets are generated from a basic wavelet function by dilations and translations. We proved that this technique is capable of recognizing the multi-carriers modulation scheme with high accuracy under different transmission impairments such as chromatic dispersion (CD), differential group delay (DGD) and accumulated amplified spontaneous emission (ASE) noise with different ranges. Both the theoretical analysis and the simulation results showed that the wavelet transform not only can be used for modulation identification of optical communication signals, but also has a better classification accuracies under appropriate OSNR (optical signal-to-noise ratio) values.

  6. Triggering of high-speed neurite outgrowth using an optical microheater.

    PubMed

    Oyama, Kotaro; Zeeb, Vadim; Kawamura, Yuki; Arai, Tomomi; Gotoh, Mizuho; Itoh, Hideki; Itabashi, Takeshi; Suzuki, Madoka; Ishiwata, Shin'ichi

    2015-11-16

    Optical microheating is a powerful non-invasive method for manipulating biological functions such as gene expression, muscle contraction, and cell excitation. Here, we demonstrate its potential usage for regulating neurite outgrowth. We found that optical microheating with a water-absorbable 1,455-nm laser beam triggers directional and explosive neurite outgrowth and branching in rat hippocampal neurons. The focused laser beam under a microscope rapidly increases the local temperature from 36 °C to 41 °C (stabilized within 2 s), resulting in the elongation of neurites by more than 10 μm within 1 min. This high-speed, persistent elongation of neurites was suppressed by inhibitors of both microtubule and actin polymerization, indicating that the thermosensitive dynamics of these cytoskeletons play crucial roles in this heat-induced neurite outgrowth. Furthermore, we showed that microheating induced the regrowth of injured neurites and the interconnection of neurites. These results demonstrate the efficacy of optical microheating methods for the construction of arbitrary neural networks.

  7. The fiber-optic high-speed data bus for a new generation of military aircraft

    NASA Astrophysics Data System (ADS)

    Uhlhorn, Roger W.

    1991-02-01

    The avionic suite for the next generation of military aircraft is being designed with component and module commonality in mind in order to control recurring costs and capitalize on economy of scale. The backbone of the suite fashioned out of these modular building blocks is the fiber-optic bit-serial time-division multiplexed high-speed data bus (HSDB), operating at 50 Mb/s, which provides command and control communications among most of the aircraft subsystems and can be used to provide communications for a fly-by-light flight-control system or for the block transfer of data between mass memories and data processors. The fiber-optic HSDB is examined from the top down, beginning with an overview of the evolution of avionic architectures. A review is given of the standardization activity associated with development of the network, the protocols chosen to implement the desired communication functions, configuration options, and the fiber-optic components used in the bus interfaces or other active nodes of the network. It is believed that the utility of the bus extends beyond aircraft to spacecraft, ships, and land vehicles.

  8. Optical transceiver frontend for high speed bus STANAG 3910 with one fiber only

    NASA Astrophysics Data System (ADS)

    Tilly, Bodo

    The 200/280 micron glass fiber bus system is planned to be installed into the European Fighter Aircraft (EFA). Hybrid integration includes an optical fiber bidirectional T-coupler for aeronautical use. This mode of acting saves 50 percent of the cost intensive glass fiber installation, one reflective star coupler included, and therefore doubles the reliability of the new system. Significant transceiver frontend requirements had to be considered due to the concept of high speed bus STANAG 3910. In particular it is the intertransmission dynamic range on the receiver side: control of 23 dB signal level swing within the short time of 2 microseconds. And the optical power output of 0.5 dBm at the wavelength of 830 nm with the rise and fall times of 10 ns, using a surface emitting light emitting diode on the transmitter side. The data rate is 20 Mbit/s encoded in Manchester 2 format. That requires a wide receiver bandwidth (greater than 30 MHz) and a wide dynamic range (greater than 25 dB) to guarantee a bit error rate less than or equal to 10 (exp -10). The minimum optical power obtained is -37 dBm. Further details with values near to theoretical limits are given.

  9. High-speed swept source optical coherence Doppler tomography for deep brain microvascular imaging

    NASA Astrophysics Data System (ADS)

    Chen, Wei; You, Jiang; Gu, Xiaochun; Du, Congwu; Pan, Yingtian

    2016-12-01

    Noninvasive microvascular imaging using optical coherence Doppler tomography (ODT) has shown great promise in brain studies; however, high-speed microcirculatory imaging in deep brain remains an open quest. A high-speed 1.3 μm swept-source ODT (SS-ODT) system is reported which was based on a 200 kHz vertical-cavity-surface-emitting laser. Phase errors induced by sweep-trigger desynchronization were effectively reduced by spectral phase encoding and instantaneous correlation among the A-scans. Phantom studies have revealed a significant reduction in phase noise, thus an enhancement of minimally detectable flow down to 268.2 μm/s. Further in vivo validation was performed, in which 3D cerebral-blood-flow (CBF) networks in mouse brain over a large field-of-view (FOV: 8.5 × 5 × 3.2 mm3) was scanned through thinned skull. Results showed that fast flows up to 3 cm/s in pial vessels and minute flows down to 0.3 mm/s in arterioles or venules were readily detectable at depths down to 3.2 mm. Moreover, the dynamic changes of the CBF networks elicited by acute cocaine such as heterogeneous responses in various vessel compartments and at different cortical layers as well as transient ischemic events were tracked, suggesting the potential of SS-ODT for brain functional imaging that requires high flow sensitivity and dynamic range, fast frame rate and a large FOV to cover different brain regions.

  10. High-speed swept source optical coherence Doppler tomography for deep brain microvascular imaging

    PubMed Central

    Chen, Wei; You, Jiang; Gu, Xiaochun; Du, Congwu; Pan, Yingtian

    2016-01-01

    Noninvasive microvascular imaging using optical coherence Doppler tomography (ODT) has shown great promise in brain studies; however, high-speed microcirculatory imaging in deep brain remains an open quest. A high-speed 1.3 μm swept-source ODT (SS-ODT) system is reported which was based on a 200 kHz vertical-cavity-surface-emitting laser. Phase errors induced by sweep-trigger desynchronization were effectively reduced by spectral phase encoding and instantaneous correlation among the A-scans. Phantom studies have revealed a significant reduction in phase noise, thus an enhancement of minimally detectable flow down to 268.2 μm/s. Further in vivo validation was performed, in which 3D cerebral-blood-flow (CBF) networks in mouse brain over a large field-of-view (FOV: 8.5 × 5 × 3.2 mm3) was scanned through thinned skull. Results showed that fast flows up to 3 cm/s in pial vessels and minute flows down to 0.3 mm/s in arterioles or venules were readily detectable at depths down to 3.2 mm. Moreover, the dynamic changes of the CBF networks elicited by acute cocaine such as heterogeneous responses in various vessel compartments and at different cortical layers as well as transient ischemic events were tracked, suggesting the potential of SS-ODT for brain functional imaging that requires high flow sensitivity and dynamic range, fast frame rate and a large FOV to cover different brain regions. PMID:27934907

  11. High-Speed Widely-Tunable 90% Quantum-Efficiency Resonant Cavity Enhanced p-i-n Photodiodes

    DTIC Science & Technology

    1998-12-01

    REPORT unclassified b . ABSTRACT unclassified c. THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 8:45am - 9...00am WB2 High-Speed Widely-Tunable >90% Quantum-Efficiency Resonant Cavity Enhanced p-i-n Photodiodes Necmi Biyiklia. Ibrahim Kimukinb. Orhan ...Bilkent, Ankara 06533, Turkey. b Department of Physics, Bilkent University, Bilkent, Ankara 06533, Turkey. c Department of Electrical and Computer

  12. High-Speed Microscale Optical Tracking Using Digital Frequency-Domain Multiplexing.

    PubMed

    Maclachlan, Robert A; Riviere, Cameron N

    2009-06-01

    Position-sensitive detectors (PSDs), or lateral-effect photodiodes, are commonly used for high-speed, high-resolution optical position measurement. This paper describes the instrument design for multidimensional position and orientation measurement based on the simultaneous position measurement of multiple modulated sources using frequency-domain-multiplexed (FDM) PSDs. The important advantages of this optical configuration in comparison with laser/mirror combinations are that it has a large angular measurement range and allows the use of a probe that is small in comparison with the measurement volume. We review PSD characteristics and quantitative resolution limits, consider the lock-in amplifier measurement system as a communication link, discuss the application of FDM to PSDs, and make comparisons with time-domain techniques. We consider the phase-sensitive detector as a multirate DSP problem, explore parallels with Fourier spectral estimation and filter banks, discuss how to choose the modulation frequencies and sample rates that maximize channel isolation under design constraints, and describe efficient digital implementation. We also discuss hardware design considerations, sensor calibration, probe construction and calibration, and 3-D measurement by triangulation using two sensors. As an example, we characterize the resolution, speed, and accuracy of an instrument that measures the position and orientation of a 10 mm × 5 mm probe in 5 degrees of freedom (DOF) over a 30-mm cube with 4-μm peak-to-peak resolution at 1-kHz sampling.

  13. Simulink models for performance analysis of high speed DQPSK modulated optical link

    NASA Astrophysics Data System (ADS)

    Sharan, Lucky; Rupanshi, Chaubey, V. K.

    2016-03-01

    This paper attempts to present the design approach for development of simulation models to study and analyze the transmission of 10 Gbps DQPSK signal over a single channel Peer to Peer link using Matlab Simulink. The simulation model considers the different optical components used in link design with their behavior represented initially by theoretical interpretation, including the transmitter topology, Mach Zehnder Modulator(MZM) module and, the propagation model for optical fibers etc. thus allowing scope for direct realization in experimental configurations. It provides the flexibility to incorporate the various photonic components as either user-defined or fixed and, can also be enhanced or removed from the model as per the design requirements. We describe the detailed operation and need of every component model and its representation in Simulink blocksets. Moreover the developed model can be extended in future to support Dense Wavelength Division Multiplexing (DWDM) system, thereby allowing high speed transmission with N × 40 Gbps systems. The various compensation techniques and their influence on system performance can be easily investigated by using such models.

  14. High-Speed Microscale Optical Tracking Using Digital Frequency-Domain Multiplexing

    PubMed Central

    MacLachlan, Robert A.; Riviere, Cameron N.

    2010-01-01

    Position-sensitive detectors (PSDs), or lateral-effect photodiodes, are commonly used for high-speed, high-resolution optical position measurement. This paper describes the instrument design for multidimensional position and orientation measurement based on the simultaneous position measurement of multiple modulated sources using frequency-domain-multiplexed (FDM) PSDs. The important advantages of this optical configuration in comparison with laser/mirror combinations are that it has a large angular measurement range and allows the use of a probe that is small in comparison with the measurement volume. We review PSD characteristics and quantitative resolution limits, consider the lock-in amplifier measurement system as a communication link, discuss the application of FDM to PSDs, and make comparisons with time-domain techniques. We consider the phase-sensitive detector as a multirate DSP problem, explore parallels with Fourier spectral estimation and filter banks, discuss how to choose the modulation frequencies and sample rates that maximize channel isolation under design constraints, and describe efficient digital implementation. We also discuss hardware design considerations, sensor calibration, probe construction and calibration, and 3-D measurement by triangulation using two sensors. As an example, we characterize the resolution, speed, and accuracy of an instrument that measures the position and orientation of a 10 mm × 5 mm probe in 5 degrees of freedom (DOF) over a 30-mm cube with 4-μm peak-to-peak resolution at 1-kHz sampling. PMID:20428484

  15. High speed ultra short pulse fiber ring laser using photonic crystal fiber nonlinear optical loop mirror

    NASA Astrophysics Data System (ADS)

    Ma, Shaozhen; Li, Wenbo; Hu, Hongyu; Dutta, Niloy K.

    2012-06-01

    A scheme to generate high speed optical pulse train with ultra short pulse width is proposed and experimentally studied. Two-step compression is used in the scheme: 20 GHz and 40 GHz pulse trains generated from a rational harmonic actively mode-locked fiber ring laser is compressed to a full width at half-maximum (FWHM) of ~ 1.5 ps using adiabatic soliton compression with dispersion shifted fibers (DSF). The pulse trains then undergo a pedestal removal process by transmission through a cascaded two photonic crystal fiber (PCF)-nonlinear optical loop mirrors (NOLM) realized using a double-ring structure. The shortest output pulse width obtained was ~ 610 fs for 20 GHz pulse train and ~ 570 fs for 40 GHz pulse train. The signal to noise ratio of the RF spectrum of the output pulse train is larger than 30 dB. Theoretical simulation of the NOLM transmission is conducted using split-step Fourier method. The results show that two cascaded NOLMs can improve the compression result compared to that for a single NOLM transmission.

  16. Simulink models for performance analysis of high speed DQPSK modulated optical link

    SciTech Connect

    Sharan, Lucky Rupanshi, Chaubey, V. K.

    2016-03-09

    This paper attempts to present the design approach for development of simulation models to study and analyze the transmission of 10 Gbps DQPSK signal over a single channel Peer to Peer link using Matlab Simulink. The simulation model considers the different optical components used in link design with their behavior represented initially by theoretical interpretation, including the transmitter topology, Mach Zehnder Modulator(MZM) module and, the propagation model for optical fibers etc. thus allowing scope for direct realization in experimental configurations. It provides the flexibility to incorporate the various photonic components as either user-defined or fixed and, can also be enhanced or removed from the model as per the design requirements. We describe the detailed operation and need of every component model and its representation in Simulink blocksets. Moreover the developed model can be extended in future to support Dense Wavelength Division Multiplexing (DWDM) system, thereby allowing high speed transmission with N × 40 Gbps systems. The various compensation techniques and their influence on system performance can be easily investigated by using such models.

  17. Investigations of high-speed optical transmission systems employing Absolute Added Correlative Coding (AACC)

    NASA Astrophysics Data System (ADS)

    Dong-Nhat, Nguyen; Elsherif, Mohamed A.; Malekmohammadi, Amin

    2016-07-01

    A novel multilevel modulation format based on partial-response signaling called Absolute Added Correlative Coding (AACC) is proposed and numerically demonstrated for high-speed fiber-optic communication systems. A bit error rate (BER) estimation model for the proposed multilevel format has also been developed. The performance of AACC is examined and compared against other prevailing On-Off-Keying and multilevel modulation formats e.g. non-return-to-zero (NRZ), 50% return-to-zero (RZ), 67% carrier-suppressed return-to-zero (CS-RZ), duobinary and four-level pulse-amplitude modulation (4-PAM) in terms of receiver sensitivity, spectral efficiency and dispersion tolerance. Calculated receiver sensitivity at a BER of 10-9 and chromatic dispersion tolerance of the proposed system are ˜-28.3 dBm and ˜336 ps/nm, respectively. The performance of AACC is delineated to be improved by 7.8 dB in terms of receiver sensitivity compared to 4-PAM in back-to-back scenario. The comparison results also show a clear advantage of AACC in achieving longer fiber transmission distance due to the higher dispersion tolerance in optical access networks.

  18. High-speed imaging optical techniques for shockwave and droplets atomization analysis

    NASA Astrophysics Data System (ADS)

    Slangen, Pierre R.; Lauret, Pierre; Heymes, Frederic; Aprin, Laurent; Lecysyn, Nicolas

    2016-12-01

    Droplets atomization by shockwave can act as a consequence in domino effects on an industrial facility: aggression of a storage tank (projectile from previous event, for example) can cause leakage of hazardous material (toxic and flammable). As the accident goes on, a secondary event can cause blast generation, impacting the droplets and resulting in their atomization. Therefore, exchange surface increase impacts the evaporation rate. This can be an issue in case of dispersion of such a cloud. The experiments conducted in the lab generate a shockwave with an open-ended shock tube to break up liquid droplets. As the expected shockwave speed is about 400 m/s (˜Mach 1.2), the interaction with falling drops is very short. High-speed imaging is performed at about 20,000 fps. The shockwave is measured using both overpressure sensors: particle image velocimetry and pure in line shadowgraphy. The size of fragmented droplets is optically measured by direct shadowgraphy simultaneously in different directions. In these experiments, secondary breakups of a droplet into an important number of smaller droplets from the shockwave-induced flow are shown. The results of the optical characterizations are discussed in terms of shape, velocity, and size.

  19. Proven high-reliability assembly methods applied to avionics fiber-optics high-speed transceivers

    NASA Astrophysics Data System (ADS)

    Lauzon, Jocelyn; Leduc, Lorrain; Bessette, Daniel; Bélanger, Nicolas; Larose, Robert; Dion, Bruno

    2012-06-01

    Harsh environment avionics applications require operating temperature ranges that can extend to, and exceed -50 to 115°C. For obvious maintenance, management and cost arguments, product lifetimes as long as 20 years are also sought. This leads to mandatory long-term hermeticity that cannot be obtained with epoxy or silicone sealing; but only with glass seal or metal solder or brazing. A hermetic design can indirectly result in the required RF shielding of the component. For fiber-optics products, these specifications need to be compatible with the smallest possible size, weight and power consumption. The products also need to offer the best possible high-speed performances added to the known EMI immunity in the transmission lines. Fiber-optics transceivers with data rates per fiber channel up to 10Gbps are now starting to be offered on the market for avionics applications. Some of them are being developed by companies involved in the "normal environment" telecommunications market that are trying to ruggedize their products packaging in order to diversify their customer base. Another approach, for which we will present detailed results, is to go back to the drawing boards and design a new product that is adapted to proven MIL-PRF-38534 high-reliability packaging assembly methods. These methods will lead to the introduction of additional requirements at the components level; such as long-term high-temperature resistance for the fiber-optic cables. We will compare both approaches and demonstrate the latter, associated with the redesign, is the preferable one. The performance of the fiber-optic transceiver we have developed, in terms of qualification tests such as temperature cycling, constant acceleration, hermeticity, residual gaz analysis, operation under random vibration and mechanical shocks and accelerated lifetime tests will be presented. The tests are still under way, but so far, we have observed no performance degradation of such a product after more than

  20. Adaptive software-defined coded modulation for ultra-high-speed optical transport

    NASA Astrophysics Data System (ADS)

    Djordjevic, Ivan B.; Zhang, Yequn

    2013-10-01

    In optically-routed networks, different wavelength channels carrying the traffic to different destinations can have quite different optical signal-to-noise ratios (OSNRs) and signal is differently impacted by various channel impairments. Regardless of the data destination, an optical transport system (OTS) must provide the target bit-error rate (BER) performance. To provide target BER regardless of the data destination we adjust the forward error correction (FEC) strength. Depending on the information obtained from the monitoring channels, we select the appropriate code rate matching to the OSNR range that current channel OSNR falls into. To avoid frame synchronization issues, we keep the codeword length fixed independent of the FEC code being employed. The common denominator is the employment of quasi-cyclic (QC-) LDPC codes in FEC. For high-speed implementation, low-complexity LDPC decoding algorithms are needed, and some of them will be described in this invited paper. Instead of conventional QAM based modulation schemes, we employ the signal constellations obtained by optimum signal constellation design (OSCD) algorithm. To improve the spectral efficiency, we perform the simultaneous rate adaptation and signal constellation size selection so that the product of number of bits per symbol × code rate is closest to the channel capacity. Further, we describe the advantages of using 4D signaling instead of polarization-division multiplexed (PDM) QAM, by using the 4D MAP detection, combined with LDPC coding, in a turbo equalization fashion. Finally, to solve the problems related to the limited bandwidth of information infrastructure, high energy consumption, and heterogeneity of optical networks, we describe an adaptive energy-efficient hybrid coded-modulation scheme, which in addition to amplitude, phase, and polarization state employs the spatial modes as additional basis functions for multidimensional coded-modulation.

  1. A reciprocating optical in situ tribometer with high-speed data acquisition

    NASA Astrophysics Data System (ADS)

    Becker, S.; Popp, U.; Greiner, C.

    2016-08-01

    Tribology is the science of interacting surfaces in relative motion. Processes like the transition from static to dynamic friction are fast and complex, especially as the contacting interface is buried. A direct view at the interface, in order to gain a deeper understanding of the interaction between the materials, is therefore of great interest. The reciprocating optical in situ tribometer introduced here observes the interface of two contacting materials (one of them being optical transparent) with a high-speed camera, taking up to 230 000 frames per second. The camera is attached to an optical microscope with a magnification of up to 2500 times. Friction forces are measured by an analog laser detection setup, with a maximum sampling rate of 500 kHz. The sliding motion of the materials is realized by two displacement units. A linear positioning stage allows velocities between 500 nm/s and 100 mm/s for a maximum distance of 200 mm. For smaller velocities, and to exclude breakaway torque, a piezo actuator can be used. The maximum displacement distance of the piezo actuator is 120 μm. The smallest applicable normal load on the samples is 0.5 N which is applied by the dead weights. Tribological experiments to investigate the transition from static to dynamic friction have been performed with morphologically textured brass hemispheres in contact with the sapphire discs. Sapphire was chosen for its high hardness and optical transparency. These experiments revealed, due to the high data acquisition possible with the new setup, a so far unobserved effect during the transition from static to dynamic friction.

  2. Transportable optical ground station for high-speed free-space laser communication

    NASA Astrophysics Data System (ADS)

    Shrestha, Amita; Brechtelsbauer, Martin

    2012-10-01

    Near real-time data downlinks from aircrafts, satellites and high altitude platforms via high-speed laser commu- nication links is an important research topic at the Institute of Communications and Navigation of the German Aerospace Center (DLR). Ground stations for such scenarios are usually fixed at a certain location. With a mo- tivation to provide a ground station that is quickly and easily deployed anywhere in the world, a transportable optical ground station (TOGS) has been developed. TOGS features a pneumatically deployable Cassegrain-type telescope with main mirror diameter of 60 cm, including optical tracking and receiving system. For calibration of position and attitude, multiple sensors like dual-antenna GPS and inclination sensors have been installed. In order to realize these systems, robust software that operates and controls them is essential. The software is platform independent and is aimed to be used on both mobile and ground terminals. It includes implementa- tion of accurate pointing, acquisition and tracking algorithms, hardware drivers, and user interfaces. Important modules of the software are GPS tracking, optical tracking, star- and satellite tracking, and calibration of the TOGS itself. Recently, a first successful data-downlink from an aircraft to TOGS using GPS tracking has been performed. To streamline the software development and testing process, some simulation environments like mount simulator, aircraft path simulator, tracking camera simulator and tracking error analysis tool have also been developed. This paper presents the overall hardware/software structure of the TOGS, and gives results of the tracking accuracy improvement techniques like GPS extrapolation and optical tracking.

  3. Improved optical performance monitoring technique based on nonlinear optics for high-speed WDM Nyquist systems

    NASA Astrophysics Data System (ADS)

    Guesmi, Latifa; Menif, Mourad

    2016-04-01

    The field of fiber optics nonlinearity is more discussed last years due to such remarkable enhancement in the nonlinear processes efficiency. In this paper, and for optical performance monitoring (OPM), a new achievement of nonlinear effects has been investigated. The use of cross-phase modulation (XPM) and four-wave mixing (FWM) effects between input optical signal and inserted continuous-wave probe has proposed for impairments monitoring. Indeed, transmitting a multi-channels phase modulated signal at high data rate (1 Tbps WDM Nyquist NRZ- DP-QPSK) improves the sensitivity and the dynamic range monitoring. It was observed by simulation results that various optical parameters including optical power, wavelength, chromatic dispersion (CD), polarization mode dispersion (PMD), optical signal-to-noise ratio (OSNR), Q-factor and so on, can be monitored. Also, the effect of increasing the channel spacing between WDM signals is studied and proved its use for FWM power monitoring.

  4. Monolithic, High-Speed Fiber-Optic Switching Array for Lidar

    NASA Technical Reports Server (NTRS)

    Suckow, Will; Roberts, Tony; Switzer, Gregg; Terwilliger, Chelle

    2011-01-01

    Current fiber switch technologies use mechanical means to redirect light beams, resulting in slow switch time, as well as poor reliability due to moving parts wearing out quickly at high speeds. A non-mechanical ability to switch laser output into one of multiple fibers within a fiber array can provide significant power, weight, and costs savings to an all-fiber system. This invention uses an array of crystals that act as miniature prisms to redirect light as an electric voltage changes the prism s properties. At the heart of the electro-optic fiber-optic switch is an electro- optic crystal patterned with tiny prisms that can deflect the beam from the input fiber into any one of the receiving fibers arranged in a linear array when a voltage is applied across the crystal. Prism boundaries are defined by a net dipole moment in the crystal lattice that has been poled opposite to the surrounding lattice fabricated using patterned, removable microelectrodes. When a voltage is applied across the crystal, the resulting electric field changes the index of refraction within the prism boundaries relative to the surrounding substrate, causing light to deflect slightly according to Snell s Law. There are several materials that can host the necessary monolithic poled pattern (including, but not limited to, SLT, KTP, LiNbO3, and Mg:LiNbO3). Be cause this is a solid-state system without moving parts, it is very fast, and does not wear down easily. This invention is applicable to all fiber networks, as well as industries that use such networks. The unit comes in a compact package, can handle both low and high voltages, and has a high reliability (100,000 hours without maintenance).

  5. Assessing trophic linkages in and around offshore wind farms using two high-speed optical sensors

    NASA Astrophysics Data System (ADS)

    Dudeck, Tim; Hufnagl, Marc; Auch, Dominik; Eckhardt, André; Möller, Klas-Ove; van Beusekom, Justus; Walter, Bettina; Möllmann, Christian; Floeter, Jens

    2016-04-01

    In search for clean, renewable energy sources European countries have built and planned numerous Offshore Wind Farms (OWF) in the North Sea region. While some research has been carried out on their influence on marine mammals and bottom-dwelling organisms, less is known about fish and lower trophic levels in these areas. Yet, marine mammals purposely seek these structures and there are indications that there are higher chances of fish encounters. However, the local bottom-up effects probably driving these aggregations of higher trophic level organisms are poorly understood. In this study we show preliminary results of primary and secondary production in and around German OWFs in the North Sea using a Laser Optical Particle Counter and a Video Plankton Recorder. With the two sensors working simultaneously on the TRIAXUS system at high speed, we were able to investigate and ground-truth size-spectrum changes on a very high spatial resolution making it possible to detect OWF effects from local to larger scales. Our results show new possibilities in OWF research and the necessity to collect highly resolved field data for meaningful results in these dynamic environments. Furthermore, the use of size spectra simplifies the integration of energy flow through low and medium trophic levels into biogeochemical models by using only a single automatically measurable variable such as size.

  6. High-Speed Imaging Optical Pyrometry for Study of Boron Nitride Nanotube Generation

    NASA Technical Reports Server (NTRS)

    Inman, Jennifer A.; Danehy, Paul M.; Jones, Stephen B.; Lee, Joseph W.

    2014-01-01

    A high-speed imaging optical pyrometry system is designed for making in-situ measurements of boron temperature during the boron nitride nanotube synthesis process. Spectrometer measurements show molten boron emission to be essentially graybody in nature, lacking spectral emission fine structure over the visible range of the electromagnetic spectrum. Camera calibration experiments are performed and compared with theoretical calculations to quantitatively establish the relationship between observed signal intensity and temperature. The one-color pyrometry technique described herein involves measuring temperature based upon the absolute signal intensity observed through a narrowband spectral filter, while the two-color technique uses the ratio of the signals through two spectrally separated filters. The present study calibrated both the one- and two-color techniques at temperatures between 1,173 K and 1,591 K using a pco.dimax HD CMOS-based camera along with three such filters having transmission peaks near 550 nm, 632.8 nm, and 800 nm.

  7. Dynamical hologram generation for high speed optical trapping of smart droplet microtools.

    PubMed

    Lanigan, P M P; Munro, I; Grace, E J; Casey, D R; Phillips, J; Klug, D R; Ces, O; Neil, M A A

    2012-07-01

    This paper demonstrates spatially selective sampling of the plasma membrane by the implementation of time-multiplexed holographic optical tweezers for Smart Droplet Microtools (SDMs). High speed (>1000fps) dynamical hologram generation was computed on the graphics processing unit of a standard display card and controlled by a user friendly LabView interface. Time multiplexed binary holograms were displayed in real time and mirrored to a ferroelectric Spatial Light Modulator. SDMs were manufactured with both liquid cores (as previously described) and solid cores, which confer significant advantages in terms of stability, polydispersity and ease of use. These were coated with a number of detergents, the most successful based upon lipids doped with transfection reagents. In order to validate these, trapped SDMs were maneuvered up to the plasma membrane of giant vesicles containing Nile Red and human biliary epithelial (BE) colon cancer cells with green fluorescent labeled protein (GFP)-labeled CAAX (a motif belonging to the Ras protein). Bright field and fluorescence images showed that successful trapping and manipulation of multiple SDMs in x, y, z was achieved with success rates of 30-50% and that subsequent membrane-SDM interactions led to the uptake of Nile Red or GFP-CAAX into the SDM.

  8. Fibre optic sensors for high speed hypervelocity impact studies and low velocity drop tests

    NASA Astrophysics Data System (ADS)

    Jackson, D. A.; Cole, M. J.; Burchell, M. J.; Webb, D. J.

    2011-05-01

    The initial aim of this project was to develop a non-contact fibre optic based displacement sensor to operate in the harsh environment of a 'Light Gas Gun' (LGG), which can 'fire' small particles at velocities ranging from 1-8.4 km/s. The LGG is used extensively for research in aerospace to analyze the effects of high speed impacts on materials. Ideally the measurement should be made close to the centre of the impact to minimise corruption of the data from edge effects and survive the impact. A further requirement is that it should operate at a stand-off distance of ~ 8cm. For these reasons we chose to develop a pseudo con-focal intensity sensor, which demonstrated resolution comparable with conventional PVDF sensors combined with high survivability and low cost. A second sensor was developed based on 'Fibre Bragg Gratings' (FBG) which although requiring contact with the target the low weight and very small contact area had minimal effect on the dynamics of the target. The FBG was mounted either on the surface of the target or tangentially between a fixed location. The output signals from the FBG were interrogated in time by a new method. Measurements were made on composite and aluminium plates in the LGG and on low speed drop tests. The particle momentum for the drop tests was chosen to be similar to that of the particles used in the LGG.

  9. Dynamical hologram generation for high speed optical trapping of smart droplet microtools

    PubMed Central

    Lanigan, P. M. P.; Munro, I.; Grace, E. J.; Casey, D. R.; Phillips, J.; Klug, D. R.; Ces, O.; Neil, M. A. A.

    2012-01-01

    This paper demonstrates spatially selective sampling of the plasma membrane by the implementation of time-multiplexed holographic optical tweezers for Smart Droplet Microtools (SDMs). High speed (>1000fps) dynamical hologram generation was computed on the graphics processing unit of a standard display card and controlled by a user friendly LabView interface. Time multiplexed binary holograms were displayed in real time and mirrored to a ferroelectric Spatial Light Modulator. SDMs were manufactured with both liquid cores (as previously described) and solid cores, which confer significant advantages in terms of stability, polydispersity and ease of use. These were coated with a number of detergents, the most successful based upon lipids doped with transfection reagents. In order to validate these, trapped SDMs were maneuvered up to the plasma membrane of giant vesicles containing Nile Red and human biliary epithelial (BE) colon cancer cells with green fluorescent labeled protein (GFP)-labeled CAAX (a motif belonging to the Ras protein). Bright field and fluorescence images showed that successful trapping and manipulation of multiple SDMs in x, y, z was achieved with success rates of 30-50% and that subsequent membrane-SDM interactions led to the uptake of Nile Red or GFP-CAAX into the SDM. PMID:22808432

  10. Characterizing shock waves in hydrogel using high speed imaging and a fiber-optic probe hydrophone

    NASA Astrophysics Data System (ADS)

    Anderson, Phillip A.; Betney, M. R.; Doyle, H. W.; Tully, B.; Ventikos, Y.; Hawker, N. A.; Roy, Ronald A.

    2017-05-01

    The impact of a stainless steel disk-shaped projectile launched by a single-stage light gas gun is used to generate planar shock waves with amplitudes on the order of 102MPa in a hydrogel target material. These shock waves are characterized using ultra-high-speed imaging as well as a fiber-optic probe hydrophone. Although the hydrogel equation of state (EOS) is unknown, the combination of these measurements with conservation of mass and momentum allows us to calculate pressure. It is also shown that although the hydrogel behaves similarly to water, the use of a water EOS underpredicts pressure amplitudes in the hydrogel by ˜10 % at the shock front. Further, the water EOS predicts pressures approximately 2% higher than those determined by conservation laws for a given value of the shock velocity. Shot to shot repeatability is controlled to within 10%, with the shock speed and pressure increasing as a function of the velocity of the projectile at impact. Thus the projectile velocity may be used as an adequate predictor of shock conditions in future work with a restricted suite of diagnostics.

  11. High-Speed GPU-Based Fully Three-Dimensional Diffuse Optical Tomographic System.

    PubMed

    Saikia, Manob Jyoti; Kanhirodan, Rajan; Mohan Vasu, Ram

    2014-01-01

    We have developed a graphics processor unit (GPU-) based high-speed fully 3D system for diffuse optical tomography (DOT). The reduction in execution time of 3D DOT algorithm, a severely ill-posed problem, is made possible through the use of (1) an algorithmic improvement that uses Broyden approach for updating the Jacobian matrix and thereby updating the parameter matrix and (2) the multinode multithreaded GPU and CUDA (Compute Unified Device Architecture) software architecture. Two different GPU implementations of DOT programs are developed in this study: (1) conventional C language program augmented by GPU CUDA and CULA routines (C GPU), (2) MATLAB program supported by MATLAB parallel computing toolkit for GPU (MATLAB GPU). The computation time of the algorithm on host CPU and the GPU system is presented for C and Matlab implementations. The forward computation uses finite element method (FEM) and the problem domain is discretized into 14610, 30823, and 66514 tetrahedral elements. The reconstruction time, so achieved for one iteration of the DOT reconstruction for 14610 elements, is 0.52 seconds for a C based GPU program for 2-plane measurements. The corresponding MATLAB based GPU program took 0.86 seconds. The maximum number of reconstructed frames so achieved is 2 frames per second.

  12. High-Speed GPU-Based Fully Three-Dimensional Diffuse Optical Tomographic System

    PubMed Central

    Saikia, Manob Jyoti; Kanhirodan, Rajan; Mohan Vasu, Ram

    2014-01-01

    We have developed a graphics processor unit (GPU-) based high-speed fully 3D system for diffuse optical tomography (DOT). The reduction in execution time of 3D DOT algorithm, a severely ill-posed problem, is made possible through the use of (1) an algorithmic improvement that uses Broyden approach for updating the Jacobian matrix and thereby updating the parameter matrix and (2) the multinode multithreaded GPU and CUDA (Compute Unified Device Architecture) software architecture. Two different GPU implementations of DOT programs are developed in this study: (1) conventional C language program augmented by GPU CUDA and CULA routines (C GPU), (2) MATLAB program supported by MATLAB parallel computing toolkit for GPU (MATLAB GPU). The computation time of the algorithm on host CPU and the GPU system is presented for C and Matlab implementations. The forward computation uses finite element method (FEM) and the problem domain is discretized into 14610, 30823, and 66514 tetrahedral elements. The reconstruction time, so achieved for one iteration of the DOT reconstruction for 14610 elements, is 0.52 seconds for a C based GPU program for 2-plane measurements. The corresponding MATLAB based GPU program took 0.86 seconds. The maximum number of reconstructed frames so achieved is 2 frames per second. PMID:24891848

  13. High speed dynamic characterization of an E. coli population using advanced optical methods (DDM and DFM)

    NASA Astrophysics Data System (ADS)

    Zhang, Rongjing; Wilson, Laurence

    2012-02-01

    The motility of microbes/bacteria in a complex environment, especially the average motility of the whole group of microorganisms, is directly related to behavior such as virulence, biofilm formation, etc. It is challenging to use traditional tracking methods to quantify the average motility of a large population. It is even more challenging when the environment is constantly changing. Two optical methods were developed to solve the problem: differential dynamic microscopy (DDM) and dark field flickering microscopy (DFM). The key features of bacteria motility were quantified automatically: average swimming speed, motile fraction, diffusion coefficient, cell body rotation speed and flagellar bundle rotation speed. This method is able to measure ˜10^4 cells simultaneously. With the help of a high speed camera, the timescale of the dynamic measurement can be in a wide range from 10-4 s to 10^5 s. Using this tool, temperature effects on E. coli motility were studied. Potential biomedically-relevant applications will also be discussed.

  14. High Speed Switches for Reconfigurable Optical Logic Arrays and Optical Interconnections

    DTIC Science & Technology

    2007-11-02

    VCSELs with heterojunction phototransistors (HPTs) and photothyristors produced several families of high performance optical switches with alternatively...components - such as heterojunction phototransistors (HPTs), photothyristors (PNPNs), or p-i-n photodiodes (PINs) - and with electronics, such as...heterojunction phototransistors (3T-HPTs) and a VCSEL, demonstrated optical switching and optoelectronic signal conversion at >200 Mb/s (0.8 ns rise time

  15. Role of trimer-trimer interaction of bacteriorhodopsin studied by optical spectroscopy and high-speed atomic force microscopy.

    PubMed

    Yamashita, Hayato; Inoue, Keiichi; Shibata, Mikihiro; Uchihashi, Takayuki; Sasaki, Jun; Kandori, Hideki; Ando, Toshio

    2013-10-01

    Bacteriorhodopsin (bR) trimers form a two-dimensional hexagonal lattice in the purple membrane of Halobacterium salinarum. However, the physiological significance of forming the lattice has long been elusive. Here, we study this issue by comparing properties of assembled and non-assembled bR trimers using directed mutagenesis, high-speed atomic force microscopy (HS-AFM), optical spectroscopy, and a proton pumping assay. First, we show that the bonds formed between W12 and F135 amino acid residues are responsible for trimer-trimer association that leads to lattice assembly; the lattice is completely disrupted in both W12I and F135I mutants. HS-AFM imaging reveals that both crystallized D96N and non-crystallized D96N/W12I mutants undergo a large conformational change (i.e., outward E-F loop displacement) upon light-activation. However, lattice disruption significantly reduces the rate of conformational change under continuous light illumination. Nevertheless, the quantum yield of M-state formation, measured by low-temperature UV-visible spectroscopy, and proton pumping efficiency are unaffected by lattice disruption. From these results, we conclude that trimer-trimer association plays essential roles in providing bound retinal with an appropriate environment to maintain its full photo-reactivity and in maintaining the natural photo-reaction pathway. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Final Report and Documentation for the Optical Backplane/Interconnect for High Speed Communication LDRD

    SciTech Connect

    ROBERTSON, PERRY J.; CHEN, HELEN Y.; BRANDT, JAMES M.; SULLIVAN, CHARLES T.; PIERSON, LYNDON G.; WITZKE, EDWARD L.; GASS, KARL

    2001-03-01

    Current copper backplane technology has reached the technical limits of clock speed and width for systems requiring multiple boards. Currently, bus technology such as VME and PCI (types of buses) will face severe limitations are the bus speed approaches 100 MHz. At this speed, the physical length limit of an unterminated bus is barely three inches. Terminating the bus enables much higher clock rates but at drastically higher power cost. Sandia has developed high bandwidth parallel optical interconnects that can provide over 40 Gbps throughput between circuit boards in a system. Based on Sandia's unique VCSEL (Vertical Cavity Surface Emitting Laser) technology, these devices are compatible with CMOS (Complementary Metal Oxide Semiconductor) chips and have single channel bandwidth in excess of 20 GHz. In this project, we are researching the use of this interconnect scheme as the physical layer of a greater ATM (Asynchronous Transfer Mode) based backplane. There are several advantages to this technology including small board space, lower power and non-contact communication. This technology is also easily expandable to meet future bandwidth requirements in excess of 160 Gbps sometimes referred to as UTOPIA 6. ATM over optical backplane will enable automatic switching of wide high-speed circuits between boards in a system. In the first year we developed integrated VCSELs and receivers, identified fiber ribbon based interconnect scheme and a high level architecture. In the second year, we implemented the physical layer in the form of a PCI computer peripheral card. A description of future work including super computer networking deployment and protocol processing is included.

  17. High-speed indoor optical wireless communication system with single channel imaging receiver.

    PubMed

    Wang, Ke; Nirmalathas, Ampalavanapillai; Lim, Christina; Skafidas, Efstratios

    2012-04-09

    In this paper we experimentally investigate a gigabit indoor optical wireless communication system with single channel imaging receiver. It is shown that the use of single channel imaging receiver rejects most of the background light. This single channel imaging receiver is composed of an imaging lens and a small photo-sensitive area photodiode attached on a 2-axis actuator. The actuator and photodiode are placed on the focal plane of the lens to search for the focused light spot. The actuator is voice-coil based and it is low cost and commercially available. With this single channel imaging receiver, bit rate as high as 12.5 Gbps has been successfully demonstrated and the maximum error-free (BER<10⁻⁹) beam footprint is even larger than 1 m. Compared with our previous experimental results with a single wide field-of-view non-imaging receiver, an improvement in error-free beam footprint of >20% has been achieved. When this system is integrated with our recently proposed optical wireless based indoor localization system, both high speed wireless communication and mobility can be provided to users over the entire room. Furthermore, theoretical analysis has been carried out and the simulation results agree well with the experiments. In addition, since the rough location information of the user is available in our proposed system, instead of searching for the focused light spot over a large area on the focal plane of the lens, only a small possible area needs to be scanned. By further pre-setting a proper comparison threshold when searching for the focused light spot, the time needed for searching can be further reduced.

  18. Intrinsic imperfection of self-differencing single-photon detectors harms the security of high-speed quantum cryptography systems

    NASA Astrophysics Data System (ADS)

    Jiang, Mu-Sheng; Sun, Shi-Hai; Tang, Guang-Zhao; Ma, Xiang-Chun; Li, Chun-Yan; Liang, Lin-Mei

    2013-12-01

    Thanks to the high-speed self-differencing single-photon detector (SD-SPD), the secret key rate of quantum key distribution (QKD), which can, in principle, offer unconditionally secure private communications between two users (Alice and Bob), can exceed 1 Mbit/s. However, the SD-SPD may contain loopholes, which can be exploited by an eavesdropper (Eve) to hack into the unconditional security of the high-speed QKD systems. In this paper, we analyze the fact that the SD-SPD can be remotely controlled by Eve in order to spy on full information without being discovered, then proof-of-principle experiments are demonstrated. Here, we point out that this loophole is introduced directly by the operating principle of the SD-SPD, thus, it cannot be removed, except for the fact that some active countermeasures are applied by the legitimate parties.

  19. Is blue optical filter necessary in high speed phosphor-based white light LED visible light communications?

    PubMed

    Sung, Jiun-Yu; Chow, Chi-Wai; Yeh, Chien-Hung

    2014-08-25

    Optical blue filter is usually regarded as a critical optical component for high speed phosphor-based white light emitting diode (LED) visible-light-communication (VLC). However, the optical blue filter plays different roles in VLC when using modulations of on-off keying (OOK) or discrete multi-tone (DMT). We show that in the DMT VLC system, the blue optical filter may be unnecessary, and even degrade the transmission performance (by reducing the optical signal-to-noise ratio (SNR)). Analyses and verifications by experiments are performed. To the best of our knowledge, this is the first time the function of blue filters in VLC is explicitly analyzed.

  20. Development of novel high-speed en face optical coherence tomography system using KTN optical beam deflector

    NASA Astrophysics Data System (ADS)

    Ohmi, Masato; Fukuda, Akihiro; Miyazu, Jun; Ueno, Masahiro; Toyoda, Seiji; Kobayashi, Junya

    2015-02-01

    We developed a novel high-speed en face optical coherence tomography (OCT) system using a KTa1-xNbxO3 (KTN) optical beam deflector. Using the imaging system, fast scanning was performed at 200 kHz by the KTN beam deflector, while slow scanning was performed at 400 Hz by the galvanometer mirror. In a preliminary experiment, we obtained en face OCT images of a human fingerprint at 400 fps. This is the highest speed reported in time-domain en face OCT imaging and is comparable to the speed of swept-source OCT. A 3D-OCT image of a sweat gland was also obtained by our imaging system.

  1. Thermo-optic silica PLC devices for applications in high speed optical signal processing

    NASA Astrophysics Data System (ADS)

    Blanchetiere, Chantal; Callender, Claire L.; Jacob, Sarkis; Ledderhof, Christopher J.; Dumais, Patrick; Celo, Dritan; Chen, Lawrence R.; Samadi, Payman

    2011-08-01

    The optimization of a 2×2 silica-on-silicon Mach-Zehnder interferometer (MZI) thermo-optic switch is presented. The device consists of 2 multimode interference (MMI) couplers as splitter and combiner with metal heater strips for phase control. The switching characteristics of the devices have been examined in detail as a function of several parameters. The electrical power consumption of the switch has been reduced by a factor of 2 by etching trenches alongside the waveguide heaters located on the arms of the MZI, and the polarization dependent loss has been controlled and reduced through adjustment of top cladding properties. The effect on the response time of the switch of these design changes has been investigated. Detailed characterization of the devices will be presented, and trade-offs in optimization discussed. Incorporation of these device elements into increasingly complex components for new applications in optical signal processing will be demonstrated.

  2. Management of dispersion, nonlinearity and polarization-dependent effects in high-speed reconfigurable WDM fiber optic communication systems

    NASA Astrophysics Data System (ADS)

    Luo, Ting

    As optical communications approach more data bandwidth, longer transmission distance, and more reconfigurability, dispersion, nonlinearity and polarization-dependent effects are becoming key issues for future all-optical fiber optic systems and networks. For ≥10 Gbit/s optical fiber transmission systems, it is critical that chromatic dispersion and polarization-mode-dispersion be well monitored and compensated using some type of dispersion monitoring and compensation. On the other hand, dispersive and nonlinear effects in optical fiber systems can also be beneficial and have applications on pulse management, all-optical signal processing and network function, which will be essential for high bite-rate optical networks and replacing the expensive optical-electrical-optical (O/E/O) conversion. In this Ph.D. dissertation, we present a detailed research on dispersion, nonlinearity, and polarization-dependent effects in high-speed optical communication systems. We have demonstrated: (i) A dynamic channel-spacing tunable multi-wavelength Erbium-doped fiber laser; (ii) Chromatic-dispersion-insensitive PMD monitoring by tracking the radio-frequency extracted from the vestigial-sideband; (iii) A method for simultaneous chromatic and polarization-mode dispersions monitoring by adding a frequency-shifted carrier; (iv) Polarization-insensitive optical parametric amplification by depolarizing the pump; (v) All optical chromatic dispersion monitoring potential for ultra-high speed (>40 Gbit/s) optical systems using cross-phase modulation in a highly nonlinear fiber; (vi) A novel fiber-based autocorrelator using polarimetric four-wave mixing effect and a tunable differential-group-delay element; (vii) A simple all-fiber-based autocorrelator by measuring the degree-of-polarization; and (viii) Reduction of pattern dependent data distortion in a stimulated Brillouin scattering based slow light element. These techniques will play key roles in future high-speed dynamic WDM optical

  3. A High-Speed Optical Modem Communication System for CORK Seafloor Observatories

    NASA Astrophysics Data System (ADS)

    Farr, N.; Tivey, M.; Ware, J.; Pontbriand, C.; Pelletier, L. P.

    2014-12-01

    High-speed communications underwater is an increasing requirement for data intensive seafloor sensors. Acoustic modems provide dependable long-range communications underwater, but data rates are limited to <57Kbps. Free-water optical modems (OMs) offer high data rate, 10Mbps communications over a range of 200 m - a distance for ROVs, AUVs or wire-lowered packages to communicate without the need to directly plug-in or retrieve the instrument. Over the past 4 years, we have demonstrated the functionality and utility of OM technology using a CORK borehole observatory as a test case. A CORK represents all of the basic components required for a seafloor observatory: a stable environment for long-term continuous measurements of earth and ocean phenomena, access to a unique environment below the seafloor and a standard communication interface. The CORK-OM features a high-bandwidth, low-latency optical system based on LED emitters and PMT receivers and an acoustic command and control system. OM tests established a communication link from 20 to 200 meters range at rates of 1, 5 and 10 Mbps with no bit errors. The seafloor OM was plugged into the CORK's existing underwater wet mateable connector and provided additional power to the CORK to boost the data rate to 1 Hz from the normal 1 minute sample period. To communicate with the seafloor CORK-OM, a number of different modalities were used. One method was an OM mounted to a CTD frame on a lowered wire from a ship with an SDSL link over the conducting wire. Other methods utilized OMs mounted to both ROV Jason and submersible Alvin. We deployed OMs at two CORKs in 2012 in the northeast pacific at sites 857D and 1025C. The CORKs were visited in 2013 by a vessel of opportunity to download data and were put into sleep mode. The CORKs were revisited in 2014, woken up and successfully interrogated for data. ALVIN retrieved the CORK-OMs for corrosion, biofouling and battery performance assessment. We also performed tests of a next

  4. Optical Flow-Field Techniques Used for Measurements in High-Speed Centrifugal Compressors

    NASA Technical Reports Server (NTRS)

    Skoch, Gary J.

    1999-01-01

    The overall performance of a centrifugal compressor depends on the performance of the impeller and diffuser as well as on the interactions occurring between these components. Accurate measurements of the flow fields in each component are needed to develop computational models that can be used in compressor design codes. These measurements must be made simultaneously over an area that covers both components so that researchers can understand the interactions occurring between the two components. Optical measurement techniques are being used at the NASA Lewis Research Center to measure the velocity fields present in both the impeller and diffuser of a 4:1 pressure ratio centrifugal compressor operating at several conditions ranging from design flow to surge. Laser Doppler Velocimetry (LDV) was used to measure the intrablade flows present in the impeller, and the results were compared with analyses obtained from two three-dimensional viscous codes. The development of a region of low throughflow velocity fluid within this high-speed impeller was examined and compared with a similar region first observed in a large low-speed centrifugal impeller at Lewis. Particle Image Velocimetry (PIV) is a relatively new technique that has been applied to measuring the diffuser flow fields. PIV can collect data rapidly in the diffuser while avoiding the light-reflection problems that are often encountered when LDV is used. The Particle Image Velocimeter employs a sheet of pulsed laser light that is introduced into the diffuser in a quasi-radial direction through an optical probe inserted near the diffuser discharge. The light sheet is positioned such that its centerline is parallel to the hub and shroud surfaces and such that it is parallel to the diffuser vane, thereby avoiding reflections from the solid surfaces. Seed particles small enough to follow the diffuser flow are introduced into the compressor at an upstream location. A high-speed charge-coupled discharge (CCD) camera is

  5. High-speed spectral calibration by complex FIR filter in phase-sensitive optical coherence tomography

    PubMed Central

    Kim, Sangmin; Raphael, Patrick D.; Oghalai, John S.; Applegate, Brian E.

    2016-01-01

    Swept-laser sources offer a number of advantages for Phase-sensitive Optical Coherence Tomography (PhOCT). However, inter- and intra-sweep variability leads to calibration errors that adversely affect phase sensitivity. While there are several approaches to overcoming this problem, our preferred method is to simply calibrate every sweep of the laser. This approach offers high accuracy and phase stability at the expense of a substantial processing burden. In this approach, the Hilbert phase of the interferogram from a reference interferometer provides the instantaneous wavenumber of the laser, but is computationally expensive. Fortunately, the Hilbert transform may be approximated by a Finite Impulse-Response (FIR) filter. Here we explore the use of several FIR filter based Hilbert transforms for calibration, explicitly considering the impact of filter choice on phase sensitivity and OCT image quality. Our results indicate that the complex FIR filter approach is the most robust and accurate among those considered. It provides similar image quality and slightly better phase sensitivity than the traditional FFT-IFFT based Hilbert transform while consuming fewer resources in an FPGA implementation. We also explored utilizing the Hilbert magnitude of the reference interferogram to calculate an ideal window function for spectral amplitude calibration. The ideal window function is designed to carefully control sidelobes on the axial point spread function. We found that after a simple chromatic correction, calculating the window function using the complex FIR filter and the reference interferometer gave similar results to window functions calculated using a mirror sample and the FFT-IFFT Hilbert transform. Hence, the complex FIR filter can enable accurate and high-speed calibration of the magnitude and phase of spectral interferograms. PMID:27446666

  6. High-Speed Photography

    SciTech Connect

    Paisley, D.L.; Schelev, M.Y.

    1998-08-01

    The applications of high-speed photography to a diverse set of subjects including inertial confinement fusion, laser surgical procedures, communications, automotive airbags, lightning etc. are briefly discussed. (AIP) {copyright} {ital 1998 Society of Photo-Optical Instrumentation Engineers.}

  7. Comparison of optic disc margin identified by color disc photography and high-speed ultrahigh-resolution optical coherence tomography.

    PubMed

    Manassakorn, Anita; Ishikawa, Hiroshi; Kim, Jong S; Wollstein, Gadi; Bilonick, Richard A; Kagemann, Larry; Gabriele, Michelle L; Sung, Kyung Rim; Mumcuoglu, Tarkan; Duker, Jay S; Fujimoto, James G; Schuman, Joel S

    2008-01-01

    To determine the correspondence between optic disc margins evaluated using disc photography (DP) and optical coherence tomography (OCT). From May 1, 2005, through November 10, 2005, 17 healthy volunteers (17 eyes) had raster scans (180 frames, 501 samplings per frame) centered on the optic disc taken with stereo-optic DP and high-speed ultrahigh-resolution OCT (hsUHR-OCT). Two image outputs were derived from the hsUHR-OCT data set: an en face hsUHR-OCT fundus image and a set of 180 frames of cross-sectional images. Three ophthalmologists independently and in a masked, randomized fashion marked the disc margin on the DP, hsUHR-OCT fundus, and cross-sectional images using custom software. Disc size (area and horizontal and vertical diameters) and location of the geometric disc center were compared among the 3 types of images. The hsUHR-OCT fundus image definition showed a significantly smaller disc size than the DP definition (P <.001, mixed-effects analysis). The hsUHR-OCT cross-sectional image definition showed a significantly larger disc size than the DP definition (P <.001). The geometric disc center location was similar among the 3 types of images except for the y-coordinate, which was significantly smaller in the hsUHR-OCT fundus images than in the DP images. The optic disc margin as defined by hsUHR-OCT was significantly different than the margin defined by DP.

  8. LGSD/NGSD: high speed optical CMOS imagers for E-ELT adaptive optics

    NASA Astrophysics Data System (ADS)

    Downing, Mark; Kolb, Johann; Balard, Philippe; Dierickx, Bart; Defernez, Arnaud; Feautrier, Philippe; Finger, Gert; Fryer, Martin; Gach, Jean-Luc; Guillaume, Christian; Hubin, Norbert; Jerram, Paul; Jorden, Paul; Meyer, Manfred; Payne, Andrew; Pike, Andrew; Reyes, Javier; Simpson, Robert; Stadler, Eric; Stent, Jeremy; Swift, Nick

    2014-07-01

    The success of the next generation of instruments for ELT class telescopes will depend upon improving the image quality by exploiting sophisticated Adaptive Optics (AO) systems. One of the critical components of the AO systems for the E-ELT has been identified as the optical Laser/Natural Guide Star WFS detector. The combination of large format, 1760×1680 pixels to finely sample the wavefront and the spot elongation of laser guide stars, fast frame rate of 700 frames per second (fps), low read noise (< 3e-), and high QE (> 90%) makes the development of this device extremely challenging. Design studies concluded that a highly integrated Backside Illuminated CMOS Imager built on High Resistivity silicon as the most likely technology to succeed. Two generations of the CMOS Imager are being developed: a) the already designed and manufactured NGSD (Natural Guide Star Detector), a quarter-sized pioneering device of 880×840 pixels capable of meeting first light needs of the E-ELT; b) the LGSD (Laser Guide Star Detector), the larger full size device. The detailed design is presented including the approach of using massive parallelism (70,400 ADCs) to achieve the low read noise at high pixel rates of ~3 Gpixel/s and the 88 channel LVDS 220Mbps serial interface to get the data off-chip. To enable read noise closer to the goal of 1e- to be achieved, a split wafer run has allowed the NGSD to be manufactured in the more speculative, but much lower read noise, Ultra Low Threshold Transistors in the unit cell. The NGSD has come out of production, it has been thinned to 12μm, backside processed and packaged in a custom 370pin Ceramic PGA (Pin Grid Array). First results of tests performed both at e2v and ESO are presented.

  9. Efficient, High-Speed, Monolithic Optoelectronic Circuits Using Quantum- Confined Structures

    DTIC Science & Technology

    1991-07-25

    quantum - wells , and L is the effective cavity length of the DBR laser measured between the equivalent reflection planes of the multielement mirrors...waveguide structures can be formed Once the implant is annealed, the mirror layers as well as the quantum - well active region intermixes . The I-V...summarize our progress in the materials and processing as well as the device areas. 14. SUBJECT TERMS Semiconductor lasers, quantum -wire lasers

  10. Properties of multiple quantum wells and their use in high-speed detectors and modulators

    NASA Technical Reports Server (NTRS)

    Bhattacharya, Pallab

    1988-01-01

    Quantum well systems lattice matched to GaAs and InP have emerged as important materials for use in long wavelength optoelectronic devices. Intrinsic problems associated with the growth of these quantum wells by molecular beam epitaxy are discussed and the luminescence properties of state-of-art quantum wells, using novel growth techniques are described. Finally, the properties of detectors, modulators and integrated devices made with these heterojunction materials are described and discussed.

  11. Novel monolithic integration scheme for high-speed electroabsorption modulators and semiconductor optical amplifiers using cascaded structure.

    PubMed

    Lin, Fang-Zheng; Wu, Tsu-Hsiu; Chiu, Yi-Jen

    2009-06-08

    A new monolithic integration scheme, namely cascaded-integration (CI), for improving high-speed optical modulation is proposed and demonstrated. High-speed electroabsorption modulators (EAMs) and semiconductor optical amplifiers (SOAs) are taken as the integrated elements of CI. This structure is based on an optical waveguide defined by cascading segmented EAMs with segmented SOAs, while high-impedance transmission lines (HITLs) are used for periodically interconnecting EAMs, forming a distributive optical re-amplification and re-modulation. Therefore, not only the optical modulation can be beneficial from SOA gain, but also high electrical reflection due to EAM low characteristic impedance can be greatly reduced. Two integration schemes, CI and conventional single-section (SS), with same total EAM- and SOA- lengths are fabricated and compared to examine the concept. Same modulation-depth against with EAM bias (up to 5V) as well as SOA injection current (up to 60mA) is found in both structures. In comparison with SS, a < 1dB extra optical-propagation loss in CI is measured due to multi-sections of electrical-isolation regions between EAMs and SOAs, suggesting no significant deterioration in CI on DC optical modulation efficiency. Lower than -12dB of electrical reflection from D.C. to 30GHz is observed in CI, better than -5dB reflection in SS for frequency of above 5GHz. Superior high-speed electrical properties in CI structure can thus lead to higher speed of electrical-to-optical (EO) response, where -3dB bandwidths are >30GHz and 13GHz for CI and SS respectively. Simulation results on electrical and EO response are quite consistent with measurement, confirming that CI can lower the driving power at high-speed regime, while the optical loss is still kept the same level. Taking such distributive advantage (CI) with optical gain, not only higher-speed modulation with high output optical power can be attained, but also the trade-off issue due to impedance mismatch

  12. Wide-field high-speed space-division multiplexing optical coherence tomography using an integrated photonic device

    PubMed Central

    Huang, Yongyang; Badar, Mudabbir; Nitkowski, Arthur; Weinroth, Aaron; Tansu, Nelson; Zhou, Chao

    2017-01-01

    Space-division multiplexing optical coherence tomography (SDM-OCT) is a recently developed parallel OCT imaging method in order to achieve multi-fold speed improvement. However, the assembly of fiber optics components used in the first prototype system was labor-intensive and susceptible to errors. Here, we demonstrate a high-speed SDM-OCT system using an integrated photonic chip that can be reliably manufactured with high precisions and low per-unit cost. A three-layer cascade of 1 × 2 splitters was integrated in the photonic chip to split the incident light into 8 parallel imaging channels with ~3.7 mm optical delay in air between each channel. High-speed imaging (~1s/volume) of porcine eyes ex vivo and wide-field imaging (~18.0 × 14.3 mm2) of human fingers in vivo were demonstrated with the chip-based SDM-OCT system. PMID:28856055

  13. Experimental demonstration of a novel indoor optical wireless localization system for high-speed personal area networks.

    PubMed

    Wang, Ke; Nirmalathas, Ampalavanapillai; Lim, Christina; Skafidas, Efstratios

    2015-04-01

    In this Letter, we propose a novel indoor localization system based on optical wireless technology. By using the same architecture as the high-speed full-duplex indoor optical wireless communication system, the "search and scan" process, and the added transmission power and beam footprint information in the "search and scan" message, indoor localization functionality is achieved. Proof-of-concept experiments are carried out, and results show that an average error of <15  cm is achieved with a localization beam size of 1 m. In addition, the major localization-accuracy-limiting factors are analyzed both theoretically and experimentally. When incorporated with the optical wireless communication system, high-speed indoor wireless personal area networks can be achieved.

  14. Characterization of outer retinal morphology with high-speed, ultrahigh-resolution optical coherence tomography.

    PubMed

    Srinivasan, Vivek J; Monson, Bryan K; Wojtkowski, Maciej; Bilonick, Richard A; Gorczynska, Iwona; Chen, Royce; Duker, Jay S; Schuman, Joel S; Fujimoto, James G

    2008-04-01

    To visualize, quantitatively assess, and interpret outer retinal morphology by using high-speed, ultrahigh-resolution (UHR) OCT. Retinal imaging was performed in the ophthalmic clinic in a cross-section of 43 normal subjects with a 3.5-microm, axial-resolution, high-speed, UHR OCT prototype instrument, using a radial scan pattern (24 images, 1500 axial scans). Outer retinal layers were automatically segmented and measured. High-definition imaging was performed with a 2.8-microm axial-resolution, high-speed, UHR OCT research prototype instrument, to visualize the finer features in the outer retina. Quantitative maps of outer retinal layers showed clear differences between the cone-dominated fovea and the rod-dominated parafovea and perifovea, indicating that photoreceptor morphology can explain the appearance of the outer retina in high-speed, UHR OCT images. Finer, scattering bands were visualized in the outer retina using high-definition imaging and were interpreted by comparison to known anatomy. High-speed UHR OCT enables quantification of scattering layers in the outer retina. An interpretation of these features is presented and supported by quantitative measurements in normal subjects and comparison with known anatomy. The thick scattering region of the outer retina previously attributed to the retinal pigment epithelium (RPE) is shown to consist of distinct scattering bands corresponding to the photoreceptor outer segment tips, RPE, and Bruch's membrane. These results may advance understanding of the outer retinal appearance in OCT images. The normative measurements may also aid in future investigations of outer retinal changes in age-related macular degeneration and other diseases.

  15. High-speed optical beam alignment based on a motion control technique for three-dimensional microelectromechanical systems optical switch modules

    NASA Astrophysics Data System (ADS)

    Mizukami, Masato; Yamaguchi, Joji; Nemoto, Naru

    2011-07-01

    For optical axis alignment when light deflection control of a MEMS mirror is done at high speed, we propose a method based on identifying the quadratic surface shape. The method uses information about the optical power monitored when the mirror is inclined to a small angle. It is shown that the search for maximum optical power is possible by using this method. We also designed a control system with a band-stop filter for resonance frequency to decrease residual vibration generated when the mirror is moved at high speed. We confirm that the searchable level of optical power can be improved.

  16. Simultaneous observation of cavitation bubbles generated in biological tissue by high-speed optical and acoustic imaging methods

    NASA Astrophysics Data System (ADS)

    Suzuki, Kai; Iwasaki, Ryosuke; Takagi, Ryo; Yoshizawa, Shin; Umemura, Shin-ichiro

    2017-07-01

    Acoustic cavitation bubbles are useful for enhancing the heating effect in high-intensity focused ultrasound (HIFU) treatment. Many studies were conducted to investigate the behavior of such bubbles in tissue-mimicking materials, such as a transparent gel phantom; however, the detailed behavior in tissue was still unclear owing to the difficulty in optical observation. In this study, a new biological phantom was developed to observe cavitation bubbles generated in an optically shallow area of tissue. Two imaging methods, high-speed photography using light scattering and high-speed ultrasonic imaging, were used for detecting the behavior of the bubbles simultaneously. The results agreed well with each other for the area of bubble formation and the temporal change in the region of bubbles, suggesting that both methods are useful for visualizing the bubbles.

  17. Nonlinear optical microscopy for immunoimaging: a custom optimized system of high-speed, large-area, multicolor imaging.

    PubMed

    Li, Hui; Cui, Quan; Zhang, Zhihong; Fu, Ling; Luo, Qingming

    2015-02-01

    The nonlinear optical microscopy has become the current state-of-the-art for intravital imaging. Due to its advantages of high resolution, superior tissue penetration, lower photodamage and photobleaching, as well as intrinsic z-sectioning ability, this technology has been widely applied in immunoimaging for a decade. However, in terms of monitoring immune events in native physiological environment, the conventional nonlinear optical microscope system has to be optimized for live animal imaging. Generally speaking, three crucial capabilities are desired, including high-speed, large-area and multicolor imaging. Among numerous high-speed scanning mechanisms used in nonlinear optical imaging, polygon scanning is not only linearly but also dispersion-freely with high stability and tunable rotation speed, which can overcome disadvantages of multifocal scanning, resonant scanner and acousto-optical deflector (AOD). However, low frame rate, lacking large-area or multicolor imaging ability make current polygonbased nonlinear optical microscopes unable to meet the requirements of immune event monitoring. We built up a polygon-based nonlinear optical microscope system which was custom optimized for immunoimaging with high-speed, large-are and multicolor imaging abilities. Firstly, we validated the imaging performance of the system by standard methods. Then, to demonstrate the ability to monitor immune events, migration of immunocytes observed by the system based on typical immunological models such as lymph node, footpad and dorsal skinfold chamber are shown. Finally, we take an outlook for the possible advance of related technologies such as sample stabilization and optical clearing for more stable and deeper intravital immunoimaging. This study will be helpful for optimizing nonlinear optical microscope to obtain more comprehensive and accurate information of immune events.

  18. Nonlinear optical microscopy for immunoimaging: a custom optimized system of high-speed, large-area, multicolor imaging

    PubMed Central

    Li, Hui; Cui, Quan; Zhang, Zhihong; Luo, Qingming

    2015-01-01

    Background The nonlinear optical microscopy has become the current state-of-the-art for intravital imaging. Due to its advantages of high resolution, superior tissue penetration, lower photodamage and photobleaching, as well as intrinsic z-sectioning ability, this technology has been widely applied in immunoimaging for a decade. However, in terms of monitoring immune events in native physiological environment, the conventional nonlinear optical microscope system has to be optimized for live animal imaging. Generally speaking, three crucial capabilities are desired, including high-speed, large-area and multicolor imaging. Among numerous high-speed scanning mechanisms used in nonlinear optical imaging, polygon scanning is not only linearly but also dispersion-freely with high stability and tunable rotation speed, which can overcome disadvantages of multifocal scanning, resonant scanner and acousto-optical deflector (AOD). However, low frame rate, lacking large-area or multicolor imaging ability make current polygonbased nonlinear optical microscopes unable to meet the requirements of immune event monitoring. Methods We built up a polygon-based nonlinear optical microscope system which was custom optimized for immunoimaging with high-speed, large-are and multicolor imaging abilities. Results Firstly, we validated the imaging performance of the system by standard methods. Then, to demonstrate the ability to monitor immune events, migration of immunocytes observed by the system based on typical immunological models such as lymph node, footpad and dorsal skinfold chamber are shown. Finally, we take an outlook for the possible advance of related technologies such as sample stabilization and optical clearing for more stable and deeper intravital immunoimaging. Conclusions This study will be helpful for optimizing nonlinear optical microscope to obtain more comprehensive and accurate information of immune events. PMID:25694951

  19. Novel Architecture for High Speed and High Fidelity Readout of a Quantum Annealing Processor

    NASA Astrophysics Data System (ADS)

    Altomare, Fabio; Berkley, Andrew J.; Harris, Richard; Hoskinson, Emile M.; Johnson, Mark W.; Lanting, Trevor M.; Uchaikin, Sergey; Whittaker, Jed D.; Bunyk, Paul; Tolkacheva, Elena; Perminov, Ilya

    2014-03-01

    Hysteretic dc SQUIDs provide an easy method to read the state of hundreds of qubits[1]. However, this approach becomes impractical for circuits with an even larger number of qubits due to heating when dc SQUIDs switch, the relatively slow retrapping dynamics of high quality devices, and suboptimal scaling of the number of control lines with increasing numbers of qubits. The D-Wave Two processor uses an architecture that addresses all three of these issues. This new architecture makes use of Quantum Flux Parametron based shift registers that transfer the classical information produced as the output of the quantum annealing algorithm to a small number of fast non-dissipative and high fidelity microwave readout devices. We will provide an introduction to our implementation, and present data pertaining to readout performance from a 512-qubit quantum annealing processor.

  20. Long Wavelength Multiple Quantum Well Lasers for High-Speed Modulation Applications

    DTIC Science & Technology

    1992-02-01

    Laboratory Air Force Systems Command Griffiss Air Force Base , NY 13441-5700 This report has been reviewed by the Rome Laboratory Public Affairs Office (PA...this document. 3 2. Technical Report 2.1 Introduction Early work on quantum well lasers for 1.3g.m operation was almost exclusively based upon LPE, and...InGaAlAs based (graded-index separate confinement heterostructure) GRIN-SCH quantum well laser at 1.3gm was among the first of a small number of papers

  1. SPLASSH: Open source software for camera-based high-speed, multispectral in-vivo optical image acquisition.

    PubMed

    Sun, Ryan; Bouchard, Matthew B; Hillman, Elizabeth M C

    2010-08-02

    Camera-based in-vivo optical imaging can provide detailed images of living tissue that reveal structure, function, and disease. High-speed, high resolution imaging can reveal dynamic events such as changes in blood flow and responses to stimulation. Despite these benefits, commercially available scientific cameras rarely include software that is suitable for in-vivo imaging applications, making this highly versatile form of optical imaging challenging and time-consuming to implement. To address this issue, we have developed a novel, open-source software package to control high-speed, multispectral optical imaging systems. The software integrates a number of modular functions through a custom graphical user interface (GUI) and provides extensive control over a wide range of inexpensive IEEE 1394 Firewire cameras. Multispectral illumination can be incorporated through the use of off-the-shelf light emitting diodes which the software synchronizes to image acquisition via a programmed microcontroller, allowing arbitrary high-speed illumination sequences. The complete software suite is available for free download. Here we describe the software's framework and provide details to guide users with development of this and similar software.

  2. SPLASSH: Open source software for camera-based high-speed, multispectral in-vivo optical image acquisition

    PubMed Central

    Sun, Ryan; Bouchard, Matthew B.; Hillman, Elizabeth M. C.

    2010-01-01

    Camera-based in-vivo optical imaging can provide detailed images of living tissue that reveal structure, function, and disease. High-speed, high resolution imaging can reveal dynamic events such as changes in blood flow and responses to stimulation. Despite these benefits, commercially available scientific cameras rarely include software that is suitable for in-vivo imaging applications, making this highly versatile form of optical imaging challenging and time-consuming to implement. To address this issue, we have developed a novel, open-source software package to control high-speed, multispectral optical imaging systems. The software integrates a number of modular functions through a custom graphical user interface (GUI) and provides extensive control over a wide range of inexpensive IEEE 1394 Firewire cameras. Multispectral illumination can be incorporated through the use of off-the-shelf light emitting diodes which the software synchronizes to image acquisition via a programmed microcontroller, allowing arbitrary high-speed illumination sequences. The complete software suite is available for free download. Here we describe the software’s framework and provide details to guide users with development of this and similar software. PMID:21258475

  3. High-speed impact test using an inertial mass and an optical interferometer

    NASA Astrophysics Data System (ADS)

    Jin, T.; Watanabe, K.; Prayogi, I. A.; Takita, A.; Mitatha, S.; Djamal, M.; Jia, H. Z.; Hou, W. M.; Fujii, Y.

    2013-07-01

    A high-speed impact testing method for evaluating mechanical properties of materials is proposed using an inertial mass and a dual beat-frequencies laser Doppler interferometer (DB-LDI). In this method, an inertial mass levitated using an aerostatic linear bearing is made to collide with the material being tested at a high initial velocity. During the collision, the velocity of the mass, which is even higher than the critical velocity (±0.56 m/s) defined by the frequency difference of the Zeeman laser, is accurately measured using the DB-LDI. The position, acceleration, and impact force of the mass are calculated from the measured velocity. Using the proposed method, the mechanical properties of a visco-elastic material under a high-speed impact loading condition can be accurately evaluated.

  4. High-Speed Large-Alphabet Quantum Key Distribution Using Photonic Integrated Circuits

    DTIC Science & Technology

    2014-01-28

    OSA Topical Meeting on Applications of Lasers for Sensing & Free Space Optical Communications. 01- OCT-13, . : , TOTAL: 1 07/04/2013 12.00...Awarded Awards Graduate Students CHIP INTEGRATED SINGLE PHOTON GENERATION BY ACTIVE TIME MULTIPLEXING COMPACTLY-INTEGRATED OPTICAL DETECTORS AND...Fiber CHIP INTEGRATED SINGLE PHOTON GENERATION BY ACTIVE TIME MULTIPLEXING Chip-Scale Hyperentanglement Analysis, Generation, and SWAP Gates 5a: 5a

  5. High-speed directly modulated 1.5μm quantum dot lasers

    NASA Astrophysics Data System (ADS)

    Banyoudeh, Saddam; Abdollahinia, Alireza; Eyal, Ori; Schnabel, Florian; Sichkovskyi, Vitalii; Eisenstein, Gadi; Reithmaier, Johann P.

    2016-03-01

    Due to the discrete density of states distribution and spatial localization of carriers in quantum dot (QD) material, the dynamics should be strongly enhanced in comparison to quantum well material. Based on improved 1.5 μm InAs/InGaAlAs/InP QD gain material short cavity ridge waveguide lasers were fabricated. Devices with cavity, lengths of 230 to 338 μm with high reflection coatings on the backside exhibit record value for any QD laser in small and large signal modulation performance with up to 15 GHz and 36 GBit/s, respectively, obtained at 14 °C. Due to the high temperature stability of threshold current and external differential efficiency, the lasers exhibit also nearly constant modulation bandwidth between 14-60 °C.

  6. High-speed fiber-based polarization-sensitive optical coherence tomography of in vivo human skin

    SciTech Connect

    Saxer, Christopher E.; Boer, Johannes F. de; Park, B. Hyle; Zhao, Yonghua; Chen, Zhongping; Nelson, J. Stuart

    2000-09-15

    A high-speed single-mode fiber-based polarization-sensitive optical coherence tomography (PS OCT) system was developed. With a polarization modulator, Stokes parameters of reflected flight for four input polarization states are measured as a function of depth. A phase modulator in the reference arm of a Michelson interferometer permits independent control of the axial scan rate and carrier frequency. In vivo PS OCT images of human skin are presented, showing subsurface structures that are not discernible in conventional OCT images. A phase retardation image in tissue is calculated based on the reflected Stokes parameters of the four input polarization states. (c) 2000 Optical Society of America.

  7. All-optical beam control with high speed using image-induced blazed gratings in coherent media

    SciTech Connect

    Zhao, L.; Duan Wenhui; Yelin, S. F.

    2010-07-15

    Based on the theory of electromagnetically induced transparency, we study the formation of all-optical blazed transmission gratings in a coherently driven three-level atomic system using intensity-modulated images in coupling fields. Also, we analyze the feasibility of high-speed (megahertz) modulation for the induced gratings by means of image-bearing flat-top pulse trains. Consequently, continuous-wave probe fields can be efficiently and rapidly deflected in free space. When more sophisticated images are adopted, our scheme can provide further possibilities of all-optical beam splitting and fanning.

  8. High speed intravascular photoacoustic imaging with fast optical parametric oscillator laser at 1.7 μm

    PubMed Central

    Piao, Zhonglie; Ma, Teng; Li, Jiawen; Wiedmann, Maximilian T.; Huang, Shenghai; Yu, Mingyue; Kirk Shung, K.; Zhou, Qifa; Kim, Chang-Seok; Chen, Zhongping

    2015-01-01

    Intravascular photoacoustic imaging at 1.7 μm spectral band has shown promising capabilities for lipid-rich vulnerable atherosclerotic plaque detection. In this work, we report a high speed catheter-based integrated intravascular photoacoustic/intravascular ultrasound (IVPA/IVUS) imaging system with a 500 Hz optical parametric oscillator laser at 1725 nm. A lipid-mimicking phantom and atherosclerotic rabbit abdominal aorta were imaged at 1 frame per second, which is two orders of magnitude faster than previously reported in IVPA imaging with the same wavelength. Clear photoacoustic signals by the absorption of lipid rich deposition demonstrated the ability of the system for high speed vulnerable atherosclerotic plaques detection. PMID:26339072

  9. High speed intravascular photoacoustic imaging with fast optical parametric oscillator laser at 1.7 μm.

    PubMed

    Piao, Zhonglie; Ma, Teng; Li, Jiawen; Wiedmann, Maximilian T; Huang, Shenghai; Yu, Mingyue; Kirk Shung, K; Zhou, Qifa; Kim, Chang-Seok; Chen, Zhongping

    2015-08-24

    Intravascular photoacoustic imaging at 1.7 μm spectral band has shown promising capabilities for lipid-rich vulnerable atherosclerotic plaque detection. In this work, we report a high speed catheter-based integrated intravascular photoacoustic/intravascular ultrasound (IVPA/IVUS) imaging system with a 500 Hz optical parametric oscillator laser at 1725 nm. A lipid-mimicking phantom and atherosclerotic rabbit abdominal aorta were imaged at 1 frame per second, which is two orders of magnitude faster than previously reported in IVPA imaging with the same wavelength. Clear photoacoustic signals by the absorption of lipid rich deposition demonstrated the ability of the system for high speed vulnerable atherosclerotic plaques detection.

  10. High-speed tunable and fixed-wavelength VCSELs for short-reach optical links and interconnects

    NASA Astrophysics Data System (ADS)

    Larsson, A.; Gustavsson, J. S.; Haglund, Å.; Kögel, B.; Bengtsson, J.; Westbergh, P.; Haglund, E.; Baveja, P. P.

    2012-03-01

    This paper presents a review of recent work on high speed tunable and fixed wavelength vertical cavity surface emitting lasers (VCSELs) at Chalmers University of Technology. All VCSELs are GaAs-based, employ an oxide aperture for current and/or optical confinement, and emit around 850 nm. With proper active region and cavity designs, and techniques for reducing capacitance and thermal impedance, our fixed wavelength VCSELs have reached a modulation bandwidth of 23 GHz, which has enabled error-free 40 Gbps back-to-back transmission and 35 Gbps transmission over 100 m of multimode fiber. A MEMS-technology for wafer scale integration of tunable high speed VCSELs has also been developed. A tuning range of 24 nm and a modulation bandwidth of 6 GHz have been achieved, enabling error-free back-to-back transmission at 5 Gbps.

  11. High speed intravascular photoacoustic imaging with fast optical parametric oscillator laser at 1.7 μm

    NASA Astrophysics Data System (ADS)

    Piao, Zhonglie; Ma, Teng; Li, Jiawen; Wiedmann, Maximilian T.; Huang, Shenghai; Yu, Mingyue; Kirk Shung, K.; Zhou, Qifa; Kim, Chang-Seok; Chen, Zhongping

    2015-08-01

    Intravascular photoacoustic imaging at 1.7 μm spectral band has shown promising capabilities for lipid-rich vulnerable atherosclerotic plaque detection. In this work, we report a high speed catheter-based integrated intravascular photoacoustic/intravascular ultrasound (IVPA/IVUS) imaging system with a 500 Hz optical parametric oscillator laser at 1725 nm. A lipid-mimicking phantom and atherosclerotic rabbit abdominal aorta were imaged at 1 frame per second, which is two orders of magnitude faster than previously reported in IVPA imaging with the same wavelength. Clear photoacoustic signals by the absorption of lipid rich deposition demonstrated the ability of the system for high speed vulnerable atherosclerotic plaques detection.

  12. Measurement of radial expansion and tumbling motion of a high-speed rotor using an optical sensor system

    NASA Astrophysics Data System (ADS)

    Günther, P.; Dreier, F.; Pfister, T.; Czarske, J.; Haupt, T.; Hufenbach, W.

    2011-01-01

    In order to investigate the load capacity and the strength properties of high-speed rotors, dynamic deformation and vibration measurements are of importance, in particular at lightweight composite devices which cannot be simulated reliably. This is a challenging task in metrology since non-contact inspection techniques are required which offer micron uncertainties and high temporal resolution simultaneously, also under vacuum conditions. In order to meet these requirements, a non-incremental laser Doppler distance sensor system was developed using fiber and diffractive optics. In this paper we present for the first time high-speed deformation measurements of a cylindrical steel rotor using this novel sensor system. The radial rotor expansion of only some microns was determined despite the presence of an unsteady tumbling motion of the rotor, which was measured simultaneously. Future prospects are discussed including the possibility to measure non-metallic devices such as fiber-reinforced composites.

  13. High speed and adaptable error correction for megabit/s rate quantum key distribution.

    PubMed

    Dixon, A R; Sato, H

    2014-12-02

    Quantum Key Distribution is moving from its theoretical foundation of unconditional security to rapidly approaching real world installations. A significant part of this move is the orders of magnitude increases in the rate at which secure key bits are distributed. However, these advances have mostly been confined to the physical hardware stage of QKD, with software post-processing often being unable to support the high raw bit rates. In a complete implementation this leads to a bottleneck limiting the final secure key rate of the system unnecessarily. Here we report details of equally high rate error correction which is further adaptable to maximise the secure key rate under a range of different operating conditions. The error correction is implemented both in CPU and GPU using a bi-directional LDPC approach and can provide 90-94% of the ideal secure key rate over all fibre distances from 0-80 km.

  14. High speed and adaptable error correction for megabit/s rate quantum key distribution

    PubMed Central

    Dixon, A. R.; Sato, H.

    2014-01-01

    Quantum Key Distribution is moving from its theoretical foundation of unconditional security to rapidly approaching real world installations. A significant part of this move is the orders of magnitude increases in the rate at which secure key bits are distributed. However, these advances have mostly been confined to the physical hardware stage of QKD, with software post-processing often being unable to support the high raw bit rates. In a complete implementation this leads to a bottleneck limiting the final secure key rate of the system unnecessarily. Here we report details of equally high rate error correction which is further adaptable to maximise the secure key rate under a range of different operating conditions. The error correction is implemented both in CPU and GPU using a bi-directional LDPC approach and can provide 90–94% of the ideal secure key rate over all fibre distances from 0–80 km. PMID:25450416

  15. High-speed rapid single-flux-quantum (RSFQ) Batcher-banyan switching core

    NASA Astrophysics Data System (ADS)

    Zinoviev, Dmitry Y.

    1996-11-01

    We have carried out a paper feasibility study of the implementation of most common packet switching cores (crossbar, Batcher-banyan, time-division shared bus, and token ring) using the superconductor rapid single flux quantum (RSFQ) digital technology. According to our estimates, the best performance-to-complexity ratio may be obtained for the Batcher-banyan network. For example, a 128 by 128 switching core with self-routing (but without address translation, contention resolution, and broadcast features), consisting of about 180,000 Josephson junctions with the internal clock frequency of 60 GHz could handle a workload of 7.5 Tbps. This core could fit on a single 1 cm by 1 cm chip and dissipate as low as 45 mW. The estimated parameters are achievable using a simple 1.5-micrometer niobium- trilayer technology.

  16. Ultra-high speed optical signal processing through third-order fiber nonlinearity (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Kikuchi, Kazuro

    2005-04-01

    Third-order optical nonlinearity in optical fibers has many attractive applications to all-optical signal processing that will be employed in future large-capacity photonic networks. After reviewing the third-order nonlinear optical property of optical fibers, we describe our recent experimental results on all-optical signal processing functions such as wideband wavelength conversion, ultrafast gate switching, and ultrafast pulse reshaping. These functions are based on self-phase modulation (SPM), cross-phase modulation (XPM), and four-wave mixing (FWM) in nonlinear fibers.

  17. High-speed mid-infrared hyperspectral imaging using quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Kelley, David B.; Goyal, Anish K.; Zhu, Ninghui; Wood, Derek A.; Myers, Travis R.; Kotidis, Petros; Murphy, Cara; Georgan, Chelsea; Raz, Gil; Maulini, Richard; Müller, Antoine

    2017-05-01

    We report on a standoff chemical detection system using widely tunable external-cavity quantum cascade lasers (ECQCLs) to illuminate target surfaces in the mid infrared (λ = 7.4 - 10.5 μm). Hyperspectral images (hypercubes) are acquired by synchronously operating the EC-QCLs with a LN2-cooled HgCdTe camera. The use of rapidly tunable lasers and a high-frame-rate camera enables the capture of hypercubes with 128 x 128 pixels and >100 wavelengths in <0.1 s. Furthermore, raster scanning of the laser illumination allowed imaging of a 100-cm2 area at 5-m standoff. Raw hypercubes are post-processed to generate a hypercube that represents the surface reflectance relative to that of a diffuse reflectance standard. Results will be shown for liquids (e.g., silicone oil) and solid particles (e.g., caffeine, acetaminophen) on a variety of surfaces (e.g., aluminum, plastic, glass). Signature spectra are obtained for particulate loadings of RDX on glass of <1 μg/cm2.

  18. Transient response of a plate convolved with a mechanical shaker using high speed optical interferometry

    NASA Astrophysics Data System (ADS)

    Perez-Lopez, C.; Sanchez Preciado, J.

    2015-08-01

    Transient response analysis is widely used in mechanical systems; with a single stimulation the mechanical behavior of the system could be characterized. Commonly, the entrance used in transient systems is a delta function, due to the possibility of stimulate the system in a wide range of frequencies. Unfortunately, the Dirac function is not easy to achieve. For this work we stimulated a mechanical shaker with a step function obtaining a Gaussian-type displacement of the spike. The spike is then used as the entrance signal for a square elastic plate. The measurement of the convolved transient response of an elastic plate is obtained by means of a high speed camera working at 10,000 fps with an out of plane speckle interferometer. Experimental results are shown.

  19. Noninvasive volumetric imaging and morphometry of the rodent retina with high-speed, ultrahigh-resolution optical coherence tomography.

    PubMed

    Srinivasan, Vivek J; Ko, Tony H; Wojtkowski, Maciej; Carvalho, Mariana; Clermont, Allen; Bursell, Sven-Erik; Song, Qin Hui; Lem, Janis; Duker, Jay S; Schuman, Joel S; Fujimoto, James G

    2006-12-01

    To demonstrate high-speed, ultrahigh-resolution optical coherence tomography (OCT) for noninvasive, in vivo, three-dimensional imaging of the retina in rat and mouse models. A high-speed, ultrahigh-resolution OCT system using spectral, or Fourier domain, detection has been developed for small animal retinal imaging. Imaging is performed with a contact lens and postobjective scanning. An axial image resolution of 2.8 mum is achieved with a spectrally broadband superluminescent diode light source with a bandwidth of approximately 150 nm at approximately 900-nm center wavelength. Imaging can be performed at 24,000 axial scans per second, which is approximately 100 times faster than previous ultrahigh-resolution OCT systems. High-definition and three-dimensional retinal imaging is performed in vivo in mouse and rat models. High-speed, ultrahigh-resolution OCT enabled high-definition, high transverse pixel density imaging of the murine retina and visualization of all major intraretinal layers. Raster scan protocols enabled three-dimensional volumetric imagingand comprehensive retinal segmentation algorithms allowed measurement of retinal layers. An OCT fundus image, akin to a fundus photograph was generated by axial summation of three-dimensional OCT data, thus enabling precise registration of OCT measurements to retinal fundus features. High-speed, ultrahigh-resolution OCT enables imaging of retinal architectural morphology in small animal models. OCT fundus images allow precise registration of OCT images and repeated measurements with respect to retinal fundus features. Three-dimensional OCT imaging enables visualization and quantification of retinal structure, which promises to allow repeated, noninvasive measurements to track disease progression, thereby reducing the need for killing the animal for histology. This capability can accelerate basic research studies in rats and mice and their translation into clinical patient care.

  20. Scalable optical quantum computer

    SciTech Connect

    Manykin, E A; Mel'nichenko, E V

    2014-12-31

    A way of designing a scalable optical quantum computer based on the photon echo effect is proposed. Individual rare earth ions Pr{sup 3+}, regularly located in the lattice of the orthosilicate (Y{sub 2}SiO{sub 5}) crystal, are suggested to be used as optical qubits. Operations with qubits are performed using coherent and incoherent laser pulses. The operation protocol includes both the method of measurement-based quantum computations and the technique of optical computations. Modern hybrid photon echo protocols, which provide a sufficient quantum efficiency when reading recorded states, are considered as most promising for quantum computations and communications. (quantum computer)

  1. Optically encoded nanoparticles for detecting single biomolecules and viruses: rapid analysis of two-color colocalization data by high-speed computing.

    PubMed

    Wang, Geoffrey; Agrawal, Amit; Nie, Shuming; Wang, May

    2005-01-01

    Nanometer-sized particles such as luminescent quantum dots (QDs) and energy-transfer nanoparticles have unique optical, electronic, and structural properties (e.g., signal brightness, photostability, and multicolor light emission) that are not available from traditional organic dyes and fluorescent proteins. Here we report the use of color-coded nanoparticles and dual-color fluorescence correlation for real-time detection of single native biomolecules and viruses in a microfluidic channel. Using green and red nanoparticles to simultaneously recognize two binding sites on a single target, we show that individual molecules of genes, proteins, and intact viruses can be detected and identified in complex mixtures without target amplification or probe/target separation. When combined with high-speed computing such as image segmentation and parallel computing, these nanoparticle probes raise new opportunities in molecular diagnostics, bioterrorism agent detection, and intracellular single-molecule imaging.

  2. High speed data encryption and decryption using stimulated Brillouin scattering effect in optical fiber

    NASA Astrophysics Data System (ADS)

    Yi, Lilin; Zhang, Tao; Hu, Weisheng

    2011-11-01

    A novel all-optical encryption/decryption method based on stimulated Brillouin scattering (SBS) effect in optical fiber is proposed for the first time. The operation principle is explained in detail and the encryption and decryption performance is experimentally evaluated. The encryption keys could be the SBS gain amplitude, bandwidth, central wavelength and spectral shape, which are configurable and flexibly controlled by the users. We experimentally demonstrate the SBS encryption/decryption process of a 10.86-Gb/s non-return-to-zero (NRZ) data by using both phase-modulated and current-dithered Brillouin pumps for proof-of-concept. Unlike the traditional optical encryption methods of chaotic communications and optical code-division-multiplexing access (OCDMA), the SBS based encryption/decryption technique can directly upgrade the current optical communication system to a secure communication system without changing the terminal transceivers, which is completely compatible with the current optical communication systems.

  3. A high speed surface-mount optical data link for military applications

    NASA Astrophysics Data System (ADS)

    Acarlar, M. S.; Plourde, J. K.; Snodgrass, M. L.

    The design and performance of the AT&T ODL (optical data link) 250H, a low-profile surface-mount optical data link suitable for use in harsh military environments at data rates up to 250 Mb/s, is described. This optical data link consists of a transmitter and a receiver, each self-contained in a compact package which may be used on both sides of standard electronic module circuit boards. Packages are hermetically enclosed and contain no organic materials. The transmitter and receiver operate at an optical wavelength of 1.3 microns. Each uses a pigtail which may be selected to interface with either 62.5/125 or 100/140-microns multimode optical fiber. The electrical input and output signals are 100 K ECL (emitter coupled logic) compatible. From -55 C to +125 C this link typically allows for approximately 20 dB of optical loss in a system.

  4. A scheme of optical interconnection for super high speed parallel computer

    NASA Astrophysics Data System (ADS)

    Mao, Youju; Lv, Yi; Liu, Jiang; Dang, Mingrui

    2004-11-01

    An optical cross connection network which adopts coarse wavelength division multiplexing (CWDM) and data packet is introduced. It can be used to realize communication between multi-CPU and multi-MEM in parallel computing system. It provides an effective way to upgrade the capability of parallel computer by combining optical wavelength division multiplexing (WDM) and data packet switching technology. CWDM used in network construction, optical cross connection (OXC) based on optical switch arrays, and data packet format used in network construction were analyzed. We have also done the optimizing analysis of the number of optical switches needed in different scales of network in this paper. The architecture of the optical interconnection for 8 wavelength channels and 128 bits parallel transmission has been researched. Finally, a parallel transmission system with 4 nodes, 8 channels per node, has been designed.

  5. Simulation of autosoliton optical pulses in high-speed fibreoptic communication systems

    SciTech Connect

    Latkin, A I

    2005-03-31

    The propagation of a pulse in a fibreoptic communication link with periodically included regenerators - nonlinear optical loop mirrors, is studied. The autosoliton propagation regime of the optical pulse is revealed. It is shown that the inclusion of a ring mirror to the communication link leads to a substantial increase in the transmission distance of the pulse at a small negative average dispersion in the link. (optical communication)

  6. A High-Speed Optical Diagnostic that uses Interference Filters to Measure Doppler Shifts

    SciTech Connect

    S.F. Paul; C. Cates; M. Mauel; D. Maurer; G. Navratil; M. Shilov

    2004-08-09

    A high-speed, non-invasive velocity diagnostic has been developed for measuring plasma rotation. The Doppler shift is determined by employing two detectors that view line emission from the identical volume of plasma. Each detector views through an interference filter having a passband that varies linearly with wavelength. One detector views the plasma through a filter whose passband has a negative slope and the second detector views through one with a positive slope. Because each channel views the same volume of plasma, the ratio of the amplitudes is not sensitive to variations in plasma emission. With suitable knowledge of the filter characteristics and the relative gain, the Doppler shift is readily obtained in real time from the ratio of two channels without needing a low throughput spectrometer. The systematic errors--arising from temperature drifts, stability, and frequency response of the detectors and amplifiers, interference filter linearity, and ability to thoroughly homogenize the light from the fiber bundle--can be characterized well enough to obtain velocity data with + or - 1 km/sec with a time resolution of 0.3 msec.

  7. Protection of orbital station optics against high-speed damaging elements

    NASA Astrophysics Data System (ADS)

    Merkulov, Yu. Yu.; Solk, S. V.; Lebedev, O. A.

    2017-06-01

    Various protection of optical devices, arranged in the orbital stations against "space debris" and probable terrorist acts in space are examined in the paper. The materials, transparent in visible spectrum and applied for development of transparent armor, are given. Variants and prospects for creation of new materials intended to protect optical devices in space are considered.

  8. Optical Design of Plant Canopy Measurement System and Fabrication of Two-Dimensional High-Speed Metal-Semiconductor-Metal Photodetector Arrays

    NASA Technical Reports Server (NTRS)

    Sarto, Anthony; VanZeghbroeck, Bart; Vanderbilt, Vern C.

    1996-01-01

    Electrical and optical designs for the prototype plant canopy architecture measurement system, including specified component and parts lists, are presented. Six single Metal-Semiconductor-Metal (MSM) detectors are mounted in high-speed packages.

  9. A high-speed, large-capacity, 'jukebox' optical disk system

    NASA Technical Reports Server (NTRS)

    Ammon, G. J.; Calabria, J. A.; Thomas, D. T.

    1985-01-01

    Two optical disk 'jukebox' mass storage systems which provide access to any data in a store of 10 to the 13th bits (1250G bytes) within six seconds have been developed. The optical disk jukebox system is divided into two units, including a hardware/software controller and a disk drive. The controller provides flexibility and adaptability, through a ROM-based microcode-driven data processor and a ROM-based software-driven control processor. The cartridge storage module contains 125 optical disks housed in protective cartridges. Attention is given to a conceptual view of the disk drive unit, the NASA optical disk system, the NASA database management system configuration, the NASA optical disk system interface, and an open systems interconnect reference model.

  10. A high-speed, large-capacity, 'jukebox' optical disk system

    NASA Technical Reports Server (NTRS)

    Ammon, G. J.; Calabria, J. A.; Thomas, D. T.

    1985-01-01

    Two optical disk 'jukebox' mass storage systems which provide access to any data in a store of 10 to the 13th bits (1250G bytes) within six seconds have been developed. The optical disk jukebox system is divided into two units, including a hardware/software controller and a disk drive. The controller provides flexibility and adaptability, through a ROM-based microcode-driven data processor and a ROM-based software-driven control processor. The cartridge storage module contains 125 optical disks housed in protective cartridges. Attention is given to a conceptual view of the disk drive unit, the NASA optical disk system, the NASA database management system configuration, the NASA optical disk system interface, and an open systems interconnect reference model.

  11. High-speed two-photon calcium imaging of neuronal population activity using acousto-optic deflectors.

    PubMed

    Grewe, Benjamin F; Helmchen, Fritjof

    2014-06-02

    Two-photon calcium imaging of neuronal populations allows optical measurements of spiking activity in living animals. However, laser-scanning microscopes with galvanometric scan mirrors are too slow to capture population activity on a millisecond timescale. This protocol describes a two-photon microscope that is based on two-dimensional laser scanning with acousto-optic deflectors (AODs), enabling high-speed in vivo recording of neuronal population activity at temporal resolutions of several hundred hertz. The detailed construction plan of the AOD-based microscope is accompanied by equally detailed optimization procedures. We also introduce a novel random-access pattern scanning (RAPS) technique for high-speed in vivo measurements of neuronal population activity. AOD-based RAPS can measure calcium transients in neocortical neuronal populations, revealing spike trains with near-millisecond precision. The current limitations of the AOD-based microscope are discussed, and we provide an outlook of its future applications. © 2014 Cold Spring Harbor Laboratory Press.

  12. DEVELOPMENT OF AN OPTICAL SYSTEM FOR HIGH-SPEED, SMALL-SCALE VELOCITY MEASUREMENTS

    SciTech Connect

    Davies, H. R.; Chapman, D. J.; Proud, W. G.; Vine, T. A.

    2009-12-28

    An optical system was developed to allow the accurate focussing and alignment of small samples for velocity analysis with streak photography Even at low magnifications, a narrow streak slit means that any vibration or instability in the system greatly reduces the accuracy of the velocity measurements achieved. The optical system was designed to reduce the effects of such vibration. A spatial mount and rotation stage were modified to allow three spatial axis and rotational freedom of a custom-made sample mount. Markers within the sample mount were used to achieve precise alignment of the sample with the optical axis of the streak camera.

  13. Scalable optical quantum computer

    NASA Astrophysics Data System (ADS)

    Manykin, E. A.; Mel'nichenko, E. V.

    2014-12-01

    A way of designing a scalable optical quantum computer based on the photon echo effect is proposed. Individual rare earth ions Pr3+, regularly located in the lattice of the orthosilicate (Y2SiO5) crystal, are suggested to be used as optical qubits. Operations with qubits are performed using coherent and incoherent laser pulses. The operation protocol includes both the method of measurement-based quantum computations and the technique of optical computations. Modern hybrid photon echo protocols, which provide a sufficient quantum efficiency when reading recorded states, are considered as most promising for quantum computations and communications.

  14. High speed liquid crystal over silicon display based on the flexoelectro-optic effect.

    PubMed

    Chen, Jing; Morris, Stephen M; Wilkinson, Timothy D; Freeman, Jon P; Coles, Harry J

    2009-04-27

    One of the key technologies to evolve in the displays market in recent years is liquid crystal over silicon (LCOS) microdisplays. Traditional LCOS devices and applications such as rear projection televisions, have been based on intensity modulation electro-optical effects, however, recent developments have shown that multi-level phase modulation from these devices is extremely sought after for applications such as holographic projectors, optical correlators and adaptive optics. Here, we propose alternative device geometry based on the flexoelectric-optic effect in a chiral nematic liquid crystal. This device is capable of delivering a multilevel phase shift at response times less than 100 microsec which has been verified by phase shift interferometry using an LCOS test device. The flexoelectric on silicon device, due to its remarkable characteristics, enables the next generation of holographic devices to be realized.

  15. Linear-wavenumber spectrometer for high-speed spectral-domain optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Gelikonov, V. M.; Gelikonov, G. V.; Shilyagin, P. A.

    2009-03-01

    An equidistant (in the wavenumber) spectrometer based on a diffraction grating, a compensation prism, and a CCD linear array is developed and implemented for spectral-domain optical coherence tomography. A criterion is introduced for estimating the level of residual nonequidistance. This criterion allows one to determine the threshold compensation level necessary for obtaining the spectrally limited spatial resolution. The method is tested in spectral-domain optical coherent tomography systems at wavelengths of 1270 and 830 nm.

  16. High-speed optical object recognition processor with massive holographic memory

    NASA Astrophysics Data System (ADS)

    Chao, Tien-Hsin; Zhou, Hanying; Reyes, George F.

    2002-09-01

    Real-time object recognition using a compact grayscale optical correlator will be introduced. A holographic memory module for storing a large bank of optimum correlation filters to accommodate large data throughput rate needed for many real-world applications has also been developed. System architecture of the optical processor and the holographic memory will be presented. Application examples of this object recognition technology will also be demonstrated.

  17. High-Speed Optical Wide-Area Data-Communication Network

    NASA Technical Reports Server (NTRS)

    Monacos, Steve P.

    1994-01-01

    Proposed fiber-optic wide-area network (WAN) for digital communication balances input and output flows of data with its internal capacity by routing traffic via dynamically interconnected routing planes. Data transmitted optically through network by wavelength-division multiplexing in synchronous or asynchronous packets. WAN implemented with currently available technology. Network is multiple-ring cyclic shuffle exchange network ensuring traffic reaches its destination with minimum number of hops.

  18. High-Speed Optical Wide-Area Data-Communication Network

    NASA Technical Reports Server (NTRS)

    Monacos, Steve P.

    1994-01-01

    Proposed fiber-optic wide-area network (WAN) for digital communication balances input and output flows of data with its internal capacity by routing traffic via dynamically interconnected routing planes. Data transmitted optically through network by wavelength-division multiplexing in synchronous or asynchronous packets. WAN implemented with currently available technology. Network is multiple-ring cyclic shuffle exchange network ensuring traffic reaches its destination with minimum number of hops.

  19. Closed-loop motor control using high-speed fiber optics

    NASA Technical Reports Server (NTRS)

    Dawson, Reginald (Inventor); Rodriquiz, Dagobert (Inventor)

    1991-01-01

    A closed-loop control system for controlling the operation of one or more servo motors or other controllable devices is described. The system employs a fiber optics link immune to electromagnetic interference, for transmission of control signals from a controller or controllers at a remote station to the power electronics located in proximity to the motors or other devices at the local station. At the remote station the electrical control signals are time-multiplexed, converted to a formatted serial bit stream, and converted to light signals for transmission over a single fiber of the fiber optics link. At the local station, the received optical signals are reconstructed as electrical control signals for the controlled motors or other devices. At the local station, an encoder sensor linked to the driven device generates encoded feedback signals which provide information as to a condition of the controlled device. The encoded signals are placed in a formatted serial bit stream, multiplexed, and transmitted as optical signals over a second fiber of the fiber optic link which closes the control loop of the closed-loop motor controller. The encoded optical signals received at the remote station are demultiplexed, reconstructed and coupled to the controller(s) as electrical feedback signals.

  20. Designing coherent optical wireless systems for high speed indoor telecom applications

    NASA Astrophysics Data System (ADS)

    Kamalakis, Thomas; Kanakis, Panagiotis; Bogris, Adonis; Dalakas, Vasilis; Dede, Georgia

    2016-01-01

    This paper focuses on several design issues of coherent optical wireless systems as a means of providing high data rate optical links in indoor environments enabling the realization of ultra-broadband wireless local area networks. We show how the performance specifications can be translated into signal-to-noise ratio requirements inside the coverage area, taking into account the laser phase noise mitigation scheme. We then discuss the power budget details using Gaussian beam optics incorporating the transceiver positioning and the optical systems used at the transmitter and receiver side. We also treat the influence of ambient light noise. We show that coherent optical wireless systems are characterized by excellent signal-to-noise performance enabling networking at very high data rates. Our results indicate that 2 Gb/s and 10 Gb/s data rates can be easily sustained at 3 m distances over a circular coverage area of 1 m radius using Class-1 lasers for the transmitter and the local oscillator. We also discuss the power gain compared to intensity modulated/direct detection optical wireless and show that it can be as high as 20 dB, especially near the edge of the coverage area.

  1. Quantitative assessment of rat corneal thickness and morphology during stem cell therapy by high-speed optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Lal, Cerine; McGrath, James; Subhash, Hrebesh; Rani, Sweta; Ritter, Thomas; Leahy, Martin

    2016-03-01

    Optical Coherence Tomography (OCT) is a non-invasive 3 dimensional optical imaging modality that enables high resolution cross sectional imaging in biological tissues and materials. Its high axial and lateral resolution combined with high sensitivity, imaging depth and wide field of view makes it suitable for wide variety of high resolution medical imaging applications at clinically relevant speed. With the advent of swept source lasers, the imaging speed of OCT has increased considerably in recent years. OCT has been used in ophthalmology to study dynamic changes occurring in the cornea and iris, thereby providing physiological and pathological changes that occur within the anterior segment structures such as in glaucoma, during refractive surgery, lamellar keratoplasty and corneal diseases. In this study, we assess the changes in corneal thickness in the anterior segment of the eye during wound healing process in a rat corneal burn model following stem cell therapy using high speed swept source OCT.

  2. High speed line-scan confocal imaging of stimulus-evoked intrinsic optical signals in the retina

    PubMed Central

    Li, Yang-Guo; Liu, Lei; Amthor, Franklin; Yao, Xin-Cheng

    2010-01-01

    A rapid line-scan confocal imager was developed for functional imaging of the retina. In this imager, an acousto-optic deflector (AOD) was employed to produce mechanical vibration- and inertia-free light scanning, and a high-speed (68,000 Hz) linear CCD camera was used to achieve sub-cellular and sub-millisecond spatiotemporal resolution imaging. Two imaging modalities, i.e., frame-by-frame and line-by-line recording, were validated for reflected light detection of intrinsic optical signals (IOSs) in visible light stimulus activated frog retinas. Experimental results indicated that fast IOSs were tightly correlated with retinal stimuli, and could track visible light flicker stimulus frequency up to at least 2 Hz. PMID:20125743

  3. Sub-micron resolution high-speed spectral domain optical coherence tomography in quality inspection for printed electronics

    NASA Astrophysics Data System (ADS)

    Czajkowski, J.; Lauri, J.; Sliz, R.; Fält, P.; Fabritius, T.; Myllylä, R.; Cense, B.

    2012-04-01

    We present the use of sub-micron resolution optical coherence tomography (OCT) in quality inspection for printed electronics. The device used in the study is based on a supercontinuum light source, Michelson interferometer and high-speed spectrometer. The spectrometer in the presented spectral-domain optical coherence tomography setup (SD-OCT) is centered at 600 nm and covers a 400 nm wide spectral region ranging from 400 nm to 800 nm. Spectra were acquired at a continuous rate of 140,000 per second. The full width at half maximum of the point spread function obtained from a Parylene C sample was 0:98 m. In addition to Parylene C layers, the applicability of sub-micron SD-OCT in printed electronics was studied using PET and epoxy covered solar cell, a printed RFID antenna and a screen-printed battery electrode. A commercial SD-OCT system was used for reference measurements.

  4. A novel power-efficient high-speed clock management unit using quantum-dot cellular automata

    NASA Astrophysics Data System (ADS)

    Abutaleb, M. M.

    2017-04-01

    Quantum-dot cellular automata (QCA) is one of the most attractive alternatives for complementary metal-oxide semiconductor technology. The QCA widely supports a new paradigm in the field of nanotechnology that has the potential for high density, low power, and high speed. The clock manager is an essential building block in the new microwave and radio frequency integrated circuits. This paper describes a novel QCA-based clock management unit (CMU) that provides innovative clocking capabilities. The proposed CMU is achieved by utilizing edge-triggered D-type flip-flops (D-FFs) in the design of frequency synthesizer and phase splitter. Edge-triggered D-FF structures proposed in this paper have the successful QCA implementation and simulation with the least complexity and power dissipation as compared to earlier structures. The frequency synthesizer is used to generate new clock frequencies from the reference clock frequency based on a combination of power-of-two frequency dividers. The phase splitter is integrated with the frequency synthesizer to generate four clock signals that are 90o out of phase with each other. This paper demonstrates that the proposed QCA CMU structure has a superior performance. Furthermore, the proposed CMU is straightforwardly scalable due to the use of modular component architecture.

  5. Improved key integrity checking for high-speed quantum key distribution using combinatorial group testing with strongly selective family design

    NASA Astrophysics Data System (ADS)

    Fang, Junbin; Jiang, Zoe L.; Ren, Kexin; Luo, Yunhan; Chen, Zhe; Liu, Weiping; Wang, Xuan; Niu, Xiamu; Yiu, S. M.; Hui, Lucas C. K.

    2014-06-01

    Key integrity checking is a necessary process in practical quantum key distribution (QKD) to check whether there is any error bit escaped from the previous error correction procedure. The traditional single-hash method may become a bottleneck in high-speed QKD since it has to discard all the key bits even if just one error bit exists. In this paper, we propose an improved scheme using combinatorial group testing (CGT) based on strong selective family design to verify key integrity in fine granularity and consequently improve the total efficiency of key generation after the error correction procedure. Code shortening technique and parallel computing are also applied to enhance the scheme's flexibility and to accelerate the computation. Experimental results show that the scheme can identify the rare error bits precisely and thus avoid dropping the great majority of correct bits, while the overhead is reasonable. For a -bit key, the disclosed information for public comparison is 800 bits (about 0.076 % of the key bits), reducing 256 bits when compared with the previous CGT scheme. Besides, with an Intel® quad-cores CPU at 3.40 GHz and 8 GB RAM, the computational times are 3.0 and 6.3 ms for hashing and decoding, respectively, which are reasonable in real applications and will not cause significant latency in practical QKD systems.

  6. High Speed and High Spatial Density Parameter Measurement Using Fiber Optic Sensing Technology

    NASA Technical Reports Server (NTRS)

    Parker, Allen R. Jr. (Inventor); Chan, Hon Man (Inventor); Richards, William Lance (Inventor); Piazza, Anthony (Inventor); Hamory, Philip J (Inventor)

    2017-01-01

    The present invention is an improved fiber optic sensing system (FOSS) having the ability to provide both high spatial resolution and high frequency strain measurements. The inventive hybrid FOSS fiber combines sensors from high acquisition speed and low spatial resolution Wavelength-Division Multiplexing (WDM) systems and from low acquisition speed and high spatial resolution Optical Frequency Domain Reflection (OFDR) systems. Two unique light sources utilizing different wavelengths are coupled with the hybrid FOSS fiber to generate reflected data from both the WDM sensors and OFDR sensors operating on a single fiber optic cable without incurring interference from one another. The two data sets are then de-multiplexed for analysis, optionally with conventionally-available WDM and OFDR system analyzers.

  7. The implementation of high speed digital PSD in optically pumping magnetometers

    NASA Astrophysics Data System (ADS)

    Chen, Jun; Cheng, Defu; Zhou, Zhijian; Ma, Ming; Wang, Chao; Hu, Ruifan

    2017-01-01

    The 4He optically pumping magnetometer is a kind of high resolution instrument for measuring magnetic field intensity. Its response speed cannot meet the requirements in some experiments. By analyzing many factors, Phase Sensitive Detector (PSD) which is the key part of the lock-in amplifier processes data at a very slow speed is found. To improve its performance, this paper introduces a parallel digital phase sensitive detector based on coordinate rotation digital computer (CORDIC) algorithm. The cost time of the parallel digital phase sensitive detector is only 5.1% of the previous one. It can greatly enhance the response speed of the 4He optically pumping magnetometer.

  8. Electron quantum optics as quantum signal processing

    NASA Astrophysics Data System (ADS)

    Roussel, B.; Cabart, C.; Fève, G.; Thibierge, E.; Degiovanni, P.

    2017-03-01

    The recent developments of electron quantum optics in quantum Hall edge channels have given us new ways to probe the behavior of electrons in quantum conductors. It has brought new quantities called electronic coherences under the spotlight. In this paper, we explore the relations between electron quantum optics and signal processing through a global review of the various methods for accessing single- and two-electron coherences in electron quantum optics. We interpret electron quantum optics interference experiments as analog signal processing converting quantum signals into experimentally observable quantities such as current averages and correlations. This point of view also gives us a procedure to obtain quantum information quantities from electron quantum optics coherences. We illustrate these ideas by discussing two mode entanglement in electron quantum optics. We also sketch how signal processing ideas may open new perspectives for representing electronic coherences in quantum conductors and understand the properties of the underlying many-body electronic state.

  9. Time-Resolved Optical Measurements of Fuel-Air Mixedness in Windowless High Speed Research Combustors

    NASA Technical Reports Server (NTRS)

    Nguyen, Quang-Viet

    1998-01-01

    Fuel distribution measurements in gas turbine combustors are needed from both pollution and fuel-efficiency standpoints. In addition to providing valuable data for performance testing and engine development, measurements of fuel distributions uniquely complement predictive numerical simulations. Although equally important as spatial distribution, the temporal distribution of the fuel is an often overlooked aspect of combustor design and development. This is due partly to the difficulties in applying time-resolved diagnostic techniques to the high-pressure, high-temperature environments inside gas turbine engines. Time-resolved measurements of the fuel-to-air ratio (F/A) can give researchers critical insights into combustor dynamics and acoustics. Beginning in early 1998, a windowless technique that uses fiber-optic, line-of-sight, infrared laser light absorption to measure the time-resolved fluctuations of the F/A (refs. 1 and 2) will be used within the premixer section of a lean-premixed, prevaporized (LPP) combustor in NASA Lewis Research Center's CE-5 facility. The fiber-optic F/A sensor will permit optical access while eliminating the need for film-cooled windows, which perturb the flow. More importantly, the real-time data from the fiber-optic F/A sensor will provide unique information for the active feedback control of combustor dynamics. This will be a prototype for an airborne sensor control system.

  10. Optical data storage for high-speed data processing and archiving

    NASA Astrophysics Data System (ADS)

    Boldis, M.; Uherek, F.; Chovan, J.

    2010-12-01

    With the invention of first laser before 50 years has been proved generation of intense, focused and narrow light beam of one wavelength, also at the same time were fulfilled assumptions for creation memories on light base - Optical Data Storages. Contemporary dynamic memories operate on base electrical impulses, manufactured as matrix arranged MOSFET transistors with capacitors, and reach time delay (latency time) in ones nanoseconds. Transfer data rates are above ones of Gbps. Current storages are approaching technologically threshold parameters, what may be barrier to further development, whereas Optical Data storages multiple exceed transfer data rates of contemporary memories, not require reverse O/E/O signal transformation, operate in pico-seconds (ps) and work at low energetic levels of femto- Joules. New end-user services lay still bigger emphasis for transferred and stored data volumes, transfer rates, quality of transmission and data processing, whereby they partly pushing out contemporary storages and create place for optical memory elements used in telecommunication networks and in devices. Optical storages with their several-fold higherdensity, high transmission rates, better quality and small dimensions are becoming a new trend for dynamic buffer or balancing memories, used for long-term data archiving in plasmonic nano-structures within Holographic Data storages.

  11. Studies of dynamic processes in biomedicine by high-speed spectral optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Wojtkowski, M.; Kowalczyk, A.

    2007-02-01

    This contribution demonstrates potential of Spectral Optical Coherence Tomography (SOCT) for studies of dynamic processes in biomedicine occurring at various time scales. Several examples from ophthalmology, optometry, surgery, neurology are given to illustrate the extension of SOCT beyond pure morphological investigations.

  12. High-Speed Electro-Optic Modulator Integrated with Graphene-Boron Nitride Heterostructure and Photonic Crystal Nanocavity

    SciTech Connect

    Gao, Yuanda; Shiue, Ren-Jye; Gan, Xuetao; Li, Luozhou; Peng, Cheng; Meric, Inanc; Wang, Lei; Szep, Attila; Walker, Dennis; Hone, James; Englund, Dirk

    2015-03-11

    Nanoscale and power-efficient electro-optic (EO) modulators are essential components for optical interconnects that are beginning to replace electrical wiring for intra- and interchip communications.1-4 Silicon-based EO modulators show sufficient figures of merits regarding device footprint, speed, power consumption, and modulation depth.5-11 However, the weak electro-optic effect of silicon still sets a technical bottleneck for these devices, motivating the development of modulators based on new materials. Graphene, a two-dimensional carbon allotrope, has emerged as an alternative active material for optoelectronic applications owing to its exceptional optical and electronic properties.12-14 Here, we demonstrate a high-speed graphene electro-optic modulator based on a graphene-boron nitride (BN) heterostructure integrated with a silicon photonic crystal nanocavity. Strongly enhanced light-matter interaction of graphene in a submicron cavity enables efficient electrical tuning of the cavity reflection. We observe a modulation depth of 3.2 dB and a cutoff frequency of 1.2 GHz.

  13. Three-dimensional optical reconstruction of vocal fold kinematics using high-speed video with a laser projection system

    PubMed Central

    Luegmair, Georg; Mehta, Daryush D.; Kobler, James B.; Döllinger, Michael

    2015-01-01

    Vocal fold kinematics and its interaction with aerodynamic characteristics play a primary role in acoustic sound production of the human voice. Investigating the temporal details of these kinematics using high-speed videoendoscopic imaging techniques has proven challenging in part due to the limitations of quantifying complex vocal fold vibratory behavior using only two spatial dimensions. Thus, we propose an optical method of reconstructing the superior vocal fold surface in three spatial dimensions using a high-speed video camera and laser projection system. Using stereo-triangulation principles, we extend the camera-laser projector method and present an efficient image processing workflow to generate the three-dimensional vocal fold surfaces during phonation captured at 4000 frames per second. Initial results are provided for airflow-driven vibration of an ex vivo vocal fold model in which at least 75% of visible laser points contributed to the reconstructed surface. The method captures the vertical motion of the vocal folds at a high accuracy to allow for the computation of three-dimensional mucosal wave features such as vibratory amplitude, velocity, and asymmetry. PMID:26087485

  14. Three-Dimensional Optical Reconstruction of Vocal Fold Kinematics Using High-Speed Video With a Laser Projection System.

    PubMed

    Luegmair, Georg; Mehta, Daryush D; Kobler, James B; Döllinger, Michael

    2015-12-01

    Vocal fold kinematics and its interaction with aerodynamic characteristics play a primary role in acoustic sound production of the human voice. Investigating the temporal details of these kinematics using high-speed videoendoscopic imaging techniques has proven challenging in part due to the limitations of quantifying complex vocal fold vibratory behavior using only two spatial dimensions. Thus, we propose an optical method of reconstructing the superior vocal fold surface in three spatial dimensions using a high-speed video camera and laser projection system. Using stereo-triangulation principles, we extend the camera-laser projector method and present an efficient image processing workflow to generate the three-dimensional vocal fold surfaces during phonation captured at 4000 frames per second. Initial results are provided for airflow-driven vibration of an ex vivo vocal fold model in which at least 75% of visible laser points contributed to the reconstructed surface. The method captures the vertical motion of the vocal folds at a high accuracy to allow for the computation of three-dimensional mucosal wave features such as vibratory amplitude, velocity, and asymmetry.

  15. Non-contact rapid optical coherence elastography by high-speed 4D imaging of elastic waves

    NASA Astrophysics Data System (ADS)

    Song, Shaozhen; Yoon, Soon Joon; Ambroziński, Łukasz; Pelivanov, Ivan; Li, David; Gao, Liang; Shen, Tueng T.; O'Donnell, Matthew; Wang, Ruikang K.

    2017-02-01

    Shear wave OCE (SW-OCE) uses an OCT system to track propagating mechanical waves, providing the information needed to map the elasticity of the target sample. In this study we demonstrate high speed, 4D imaging to capture transient mechanical wave propagation. Using a high-speed Fourier domain mode-locked (FDML) swept-source OCT (SS-OCT) system operating at 1.62 MHz A-line rate, the equivalent volume rate of mechanical wave imaging is 16 kvps (kilo-volumes per second), and total imaging time for a 6 x 6 x 3 mm volume is only 0.32 s. With a displacement sensitivity of 10 nanometers, the proposed 4D imaging technique provides sufficient temporal and spatial resolution for real-time optical coherence elastography (OCE). Combined with a new air-coupled, high-frequency focused ultrasound stimulator requiring no contact or coupling media, this near real-time system can provide quantitative information on localized viscoelastic properties. SW-OCE measurements are demonstrated on tissue-mimicking phantoms and porcine cornea under various intra-ocular pressures. In addition, elasticity anisotropy in the cornea is observed. Images of the mechanical wave group velocity, which correlates with tissue elasticity, show velocities ranging from 4-20 m/s depending on pressure and propagation direction. These initial results strong suggest that 4D imaging for real-time OCE may enable high-resolution quantitative mapping of tissue biomechanical properties in clinical applications.

  16. Visualization of hair follicles using high-speed optical coherence tomography based on a Fourier domain mode locking laser

    NASA Astrophysics Data System (ADS)

    Tsai, M.-T.; Chang, F.-Y.

    2012-04-01

    In this study, a swept-source optical coherence tomography (SS-OCT) system with a Fourier domain mode locking (FDML) laser is proposed for a dermatology study. The homemade FDML laser is one kind of frequency-sweeping light source, which can provide output power of >20 mW and an output spectrum of 65 nm in bandwidth centered at 1300 nm, enabling imaging with an axial resolution of 12 μm in the OCT system. To eliminate the forward scans from the laser output and insert the delayed backward scans, a Mach-Zehnder configuration is implemented. Compared with conventional frequency-sweeping light sources, the FDML laser can achieve much higher scan rates, as high as ˜240 kHz, which can provide a three-dimensional imaging rate of 4 volumes/s. Furthermore, the proposed high-speed SS-OCT system can provide three-dimensional (3D) images with reduced motion artifacts. Finally, a high-speed SS-OCT system is used to visualize hair follicles, demonstrating the potential of this technology as a tool for noninvasive diagnosis of alopecia.

  17. High-definition and 3-dimensional imaging of macular pathologies with high-speed ultrahigh-resolution optical coherence tomography.

    PubMed

    Srinivasan, Vivek J; Wojtkowski, Maciej; Witkin, Andre J; Duker, Jay S; Ko, Tony H; Carvalho, Mariana; Schuman, Joel S; Kowalczyk, Andrzej; Fujimoto, James G

    2006-11-01

    To assess high-speed ultrahigh-resolution optical coherence tomography (OCT) image resolution, acquisition speed, image quality, and retinal coverage for the visualization of macular pathologies. Retrospective cross-sectional study. Five hundred eighty-eight eyes of 327 patients with various macular pathologies. High-speed ultrahigh-resolution OCT images were obtained in 588 eyes of 327 patients with selected macular diseases. Ultrahigh-resolution OCT using Fourier/spectral domain detection achieves approximately 3-mum axial image resolutions, acquisition speeds of approximately 25 000 axial scans per second, and >3 times finer resolution and >50 times higher speed than standard OCT. Three scan protocols were investigated. The first acquires a small number of high-definition images through the fovea. The second acquires a raster series of high-transverse pixel density images. The third acquires 3-dimensional OCT data using a dense raster pattern. Three-dimensional OCT can generate OCT fundus images that enable precise registration of OCT images with the fundus. Using the OCT fundus images, OCT results were correlated with standard ophthalmoscopic examination techniques. High-definition macular pathologies. Macular holes, age-related macular degeneration, epiretinal membranes, diabetic retinopathy, retinal dystrophies, central serous chorioretinopathy, and other pathologies were imaged and correlated with ophthalmic examination, standard OCT, fundus photography, and fluorescein angiography, where applicable. High-speed ultrahigh-resolution OCT generates images of retinal pathologies with improved quality, more comprehensive retinal coverage, and more precise registration than standard OCT. The speed preserves retinal topography, thus enabling the visualization of subtle changes associated with disease. High-definition high-transverse pixel density OCT images improve visualization of photoreceptor and pigment epithelial morphology, as well as thin intraretinal and

  18. Electro-optic modulation for high-speed characterization of entangled photon pairs

    SciTech Connect

    Lukens, Joseph M.; Odele, Ogaga D.; Leaird, Daniel E.; Weiner, Andrew M.

    2015-11-10

    In this study, we demonstrate a new biphoton manipulation and characterization technique based on electro-optic intensity modulation and time shifting. By applying fast modulation signals with a sharply peaked cross-correlation to each photon from an entangled pair, it is possible to measure temporal correlations with significantly higher precision than that attainable using standard single-photon detection. Low-duty-cycle pulses and maximal-length sequences are considered as modulation functions, reducing the time spread in our correlation measurement by a factor of five compared to our detector jitter. With state-of-the-art electro-optic components, we expect the potential to surpass the speed of any single-photon detectors currently available.

  19. Electro-optic modulation for high-speed characterization of entangled photon pairs

    DOE PAGES

    Lukens, Joseph M.; Odele, Ogaga D.; Leaird, Daniel E.; ...

    2015-11-10

    In this study, we demonstrate a new biphoton manipulation and characterization technique based on electro-optic intensity modulation and time shifting. By applying fast modulation signals with a sharply peaked cross-correlation to each photon from an entangled pair, it is possible to measure temporal correlations with significantly higher precision than that attainable using standard single-photon detection. Low-duty-cycle pulses and maximal-length sequences are considered as modulation functions, reducing the time spread in our correlation measurement by a factor of five compared to our detector jitter. With state-of-the-art electro-optic components, we expect the potential to surpass the speed of any single-photon detectors currentlymore » available.« less

  20. Implementation of a high-speed face recognition system that uses an optical parallel correlator.

    PubMed

    Watanabe, Eriko; Kodate, Kashiko

    2005-02-10

    We implement a fully automatic fast face recognition system by using a 1000 frame/s optical parallel correlator designed and assembled by us. The operational speed for the 1:N (i.e., matching one image against N, where N refers to the number of images in the database) identification experiment (4000 face images) amounts to less than 1.5 s, including the preprocessing and postprocessing times. The binary real-only matched filter is devised for the sake of face recognition, and the system is optimized by the false-rejection rate (FRR) and the false-acceptance rate (FAR), according to 300 samples selected by the biometrics guideline. From trial 1:N identification experiments with the optical parallel correlator, we acquired low error rates of 2.6% FRR and 1.3% FAR. Facial images of people wearing thin glasses or heavy makeup that rendered identification difficult were identified with this system.

  1. Low-noise, high-speed detector development for optical turbulence fluctuation measurements for NSTX

    SciTech Connect

    Schoenbeck, N. L.; Fonck, R. J.; McKee, G. R.; Smith, D.; Uzun-Kaymak, I. U.; Winz, G.; Ellington, S. D.; Jaehnig, K.

    2010-10-15

    A new beam emission spectroscopy (BES) diagnostic is under development. Photon-noise limited measurements of neutral beam emissions are achieved using photoconductive photodiodes with a novel frequency-compensated broadband preamplifier. The new BES system includes a next-generation preamplifier and upgraded optical coupling system. Notable features of the design are surface-mount components, minimized stray capacitance, a wide angular acceptance photodiode, a differential output line driver, reduced input capacitance, doubling of the frequency range, net reduced electronic noise, and elimination of the need for a cryogenic cooling system. The irreducible photon noise dominates the noise up to 800 kHz for a typical input power of 60 nW. This new assembly is being integrated into an upgraded multichannel optical detector assembly for a new BES system on the NSTX experiment.

  2. A Novel, High-Resolution, High-Speed Fiber-Optic Temperature Sensor for Oceanographic Applications

    DTIC Science & Technology

    2015-05-11

    sharp thermo -gradient underwater. Keywords— Fiber-optic thermometer; Fabry-Pérot interferometer; ocean microstructure; turbulence I...in this paper is based on a FP cavity formed by thin crystalline silicon film attached to the end face of a single-mode fiber. Due to the thermo ...the dynamic temperature variations associated with a strong microstructure thermo -gradient is demonstrated. A. Sensitivity (a) (b) Fig. 1. (a

  3. A Versatile Link for High-Speed, Radiation Resistant Optical Transmission in LHC Upgrades

    NASA Astrophysics Data System (ADS)

    Xiang, A.; Gong, D.; Hou, S.; Huffman, T.; Kwan, S.; Liu, K.; Liu, T.; Prosser, A.; Soos, C.; Su, D.; Teng, P.; Troska, J.; Vasey, F.; Weidberg, T.; Ye, J.

    The Versatile Link project is developing a general purpose physical layer optical link with high bandwidth, radiation resistance and magnetic-field tolerance that meets the requirements of LHC upgrade experiments. This paper presents recent work on system specifications, front-end transceiver prototypes, passive components studies and commercial back-end transceiver evaluations. System optical power budgets are specified for single mode (1310nm) and multi-mode (850nm) links, with a target data rate of 4.8 Gbps and a transmission length of 150 meters. Noise and interference penalties are simulated using the 10GbE link model and verified by bit error ratio measurement on reference links. The power margin is particularly constrained by radiation degradation of the front-end receivers. We report the power budgets for all link variants where at least 1.8 dB safety margins are maintained. The Versatile Transceiver (VTRx) - the front-end module to be installed on-detector - is based on a commercial small form pluggable (SFP+) package, modified to optimize size and mass, assembled to host a qualified laser, PIN photodiode, custom-designed radiation tolerant laser driver and receiving amplifier. A set of VTRxs with validated components have been prototyped and compliance tested. We also present the radiation test results on front-end components and passive components. The total fluence tests for lasers and PINs have been carried out with pions and neutrons up to 4 x 1015/cm2. SEU tests have been performed on PIN photodiodes and the full receiver optical subassembly. Radiation induced absorption in a number of single mode and multi-mode fibers, at -25¡C and up to 500 kGy, have been measured and high performance candidates identified. Commercial off-of-the-shelf parts have been examined for use as back-end transceivers. Compliance tests on SFP+, 4+4 parallel optical engines and SNAP 12 transmitter/receivers have been completed.

  4. Low Voltage, High Speed & High Contrast Electrooptical Thin Film Devices for Free Space Optical Interconnects

    DTIC Science & Technology

    2007-11-02

    Space Optical Interconnects (FSOI) for future ultra fast computing /communications systems. Fabry - Perot thin film Electrooptic(EO) modulators (STFP...low modulation voltages.This is enabled by Fabry - Perot (F-P) etalons of the EO film as modulators either in the reflection or transmission mode. In...Tuning’ of a F-P EOLM with respect to thickness variation for high extinction ratios. Demonstration of ’proof-of concept’ of a ’Self Tuned Fabry - Perot

  5. Optical interconnects for in-plane high-speed signal distribution at 10 Gb/s: Analysis and demonstration

    NASA Astrophysics Data System (ADS)

    Chang, Yin-Jung

    With decreasing transistor size, increasing chip speed, and larger numbers of processors in a system, the performance of a module/system is being limited by the off-chip and off-module bandwidth-distance products. Optical links have moved from fiber-based long distance communications to the cabinet level of 1m--100m, and recently to the backplane-level (10cm--1m). Board-level inter-chip parallel optical interconnects have been demonstrated recently by researchers from Intel, IBM, Fujitsu, NTT and a few research groups in universities. However, the board-level signal/clock distribution function using optical interconnects, the lightwave circuits, the system design, a practically convenient integration scheme committed to the implementation of a system prototype have not been explored or carefully investigated. In this dissertation, the development of a board-level 1 x 4 optical-to-electrical signal distribution at 10Gb/s is presented. In contrast to other prototypes demonstrating board-level parallel optical interconnects that have been drawing much attention for the past decade, the optical link design for the high-speed signal broadcasting is even more complicated and the pitch between receivers could be varying as opposed to fixed-pitch design that has been widely-used in the parallel optical interconnects. New challenges for the board-level high-speed signal broadcasting include, but are not limited to, a new optical link design, a lightwave circuit as a distribution network, and a novel integration scheme that can be a complete radical departure from the traditional assembly method. One of the key building blocks in the lightwave circuit is the distribution network in which a 1 x 4 multimode interference (MMI) splitter is employed. MMI devices operating at high data rates are important in board-level optical interconnects and need to be characterized in the application of board-level signal broadcasting. To determine the speed limitations of MMI devices, the

  6. Adaptive Optics System with Deformable Composite Mirror and High Speed, Ultra-Compact Electronics

    NASA Astrophysics Data System (ADS)

    Chen, Peter C.; Knowles, G. J.; Shea, B. G.

    2006-06-01

    We report development of a novel adaptive optics system for optical astronomy. Key components are very thin Deformable Mirrors (DM) made of fiber reinforced polymer resins, subminiature PMN-PT actuators, and low power, high bandwidth electronics drive system with compact packaging and minimal wiring. By using specific formulations of fibers, resins, and laminate construction, we are able to fabricate mirror face sheets that are thin (< 2mm), have smooth surfaces and excellent optical shape. The mirrors are not astigmatic and do not develop surface irregularities when cooled. The actuators are small footprint multilayer PMN-PT ceramic devices with large stroke (2- 20 microns), high linearity, low hysteresis, low power, and flat frequency response to >2 KHz. By utilizing QorTek’s proprietary synthetic impendence power supply technology, all the power, control, and signal extraction for many hundreds to 1000s of actuators and sensors can be implemented on a single matrix controller printed circuit board co-mounted with the DM. The matrix controller, in turn requires only a single serial bus interface, thereby obviating the need for massive wiring harnesses. The technology can be scaled up to multi-meter aperture DMs with >100K actuators.

  7. Optical Coherence and Quantum Optics

    NASA Astrophysics Data System (ADS)

    Mandel, Leonard; Wolf, Emil

    1995-09-01

    The advent of lasers in the 1960s led to the development of many new fields in optical physics. This book is a systematic treatment of one of these fields--the broad area that deals with the coherence and fluctuation of light. The authors begin with a review of probability theory and random processes, and follow this with a thorough discussion of optical coherence theory within the framework of classical optics. They next treat the theory of photoelectric detection of light and photoelectric correlation. They then discuss in some detail quantum systems and effects. The book closes with two chapters devoted to laser theory and one on the quantum theory of nonlinear optics. The sound introduction to coherence theory and the quantum nature of light and the chapter-end exercises will appeal to graduate students and newcomers to the field. Researchers will find much of interest in the new results on coherence-induced spectral line shifts, nonclassical states of light, higher-order squeezing, and quantum effects of down-conversion. Written by two of the world's most highly regarded optical physicists, this book is required reading of all physicists and engineers working in optics.

  8. Data Relay Board with Protocol for High-Speed, Free-Space Optical Communications

    NASA Technical Reports Server (NTRS)

    Wright, Malcolm; Clare, Loren; Gould, Gary; Pedyash, Maxim

    2004-01-01

    In a free-space optical communication system, the mitigation of transient outages through the incorporation of error-control methods is of particular concern, the outages being caused by scintillation fades and obscurants. The focus of this innovative technology is the development of a data relay system for a reliable high-data-rate free-spacebased optical-transport network. The data relay boards will establish the link, maintain synchronous connection, group the data into frames, and provide for automatic retransmission (ARQ) of lost or erred frames. A certain Quality of Service (QoS) can then be ensured, compatible with the required data rate. The protocol to be used by the data relay system is based on the draft CCSDS standard data-link protocol Proximity-1, selected by orbiters to multiple lander assets in the Mars network, for example. In addition to providing data-link protocol capabilities for the free-space optical link and buffering the data, the data relay system will interface directly with user applications over Gigabit Ethernet and/or with highspeed storage resources via Fibre Channel. The hardware implementation is built on a network-processor-based architecture. This technology combines the power of a hardware switch capable of data switching and packet routing at Gbps rates, with the flexibility of a software- driven processor that can host highly adaptive and reconfigurable protocols used, for example, in wireless local-area networks (LANs). The system will be implemented in a modular multi-board fashion. The main hardware elements of the data relay system are the new data relay board developed by Rockwell Scientific, a COTS Gigabit Ethernet board for user interface, and a COTS Fibre Channel board that connects to local storage. The boards reside in a cPCI back plane, and can be housed in a VME-type enclosure.

  9. High-speed imaging of human retina in vivo with swept-source optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Lim, H.; Mujat, M.; Kerbage, C.; Lee, E. C.; Chen, Y.; Chen, Teresa C.; de Boer, J. F.

    2006-12-01

    We present the first demonstration of human retinal imaging in vivo using optical frequency domain imaging (OFDI) in the 800-nm range. With 460-μW incident power on the eye, the sensitivity is 91 dB at maximum and >85 dB over 2-mm depth range. The axial resolution is 13 μm in air. We acquired images of retina at 43,200 depth profiles per second and a continuous acquisition speed of 84 frames/s (512 A-lines per frame) could be maintained over more than 2 seconds.

  10. Optical high-speed 3D metrology in harsh environments: recording structural data of railway lines (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Hofler, H.; Baulig, C.; Blug, A.; Dambacher, M.; Dimopoulos, N.; Wolfelschneider, H.

    2005-06-01

    This paper reports measurement results and some design details of railway measurement systems based on optical principles. The quality of railway lines is crucial for reliability and safety and therefore to be controlled regularly. Special measuring vehicles operate permanently on all railway lines, even during regular traffic situations. Therefore the measurement systems used to record the data have to be fast enough even at high speeds and robust enough to provide reliable data under almost any environmental conditions. The application of optical methods is advantageous concerning accuracy and speed but of course limited by external influences. We report here measures enabling even a sensitive optical measurement principle, the phase measurement technique, to be applied under these harsh environmental conditions. Exemplarily the optical and mechanical design of a clearance profile scanner is described. It is shown how to make the sensor insensitive against environmental conditions like contamination by dust or water or temperature changes. Measurement results of this scanner and of another system to measure the position of the contact wire are presented.

  11. Thermomechanical Actuator-Based Three-Axis Optical Scanner for High-Speed Two-Photon Endomicroscope Imaging

    PubMed Central

    Chen, Shih-Chi; Choi, Heejin; So, Peter T. C.; Culpepper, Martin L.

    2015-01-01

    This paper presents the design and characterization of a three-axis thermomechanical actuator-based endoscopic scanner for obtaining ex vivo two-photon images. The scanner consisted of two sub-systems: 1) an optical system (prism, gradient index lens, and optical fiber) that was used to deliver and collect light during imaging and 2) a small-scale silicon electromechanical scanner that could raster scan the focal point of the optics through a specimen. The scanner can be housed within a 7 mm Ø endoscope port and can scan at the speed of 3 kHz × 100 Hz × 30 Hz along three axes throughout a 125 × 125 × 100 μm3 volume. The high-speed thermomechanical actuation was achieved through the use of geometric contouring, pulsing technique, and mechanical frequency multiplication (MFM), where MFM is a new method for increasing the device cycling speed by pairing actuators of unequal forward and returning stroke speeds. Sample cross-sectional images of 15-μm fluorescent beads are presented to demonstrate the resolution and optical cross-sectioning capability of the two-photon imaging system. PMID:25673965

  12. Development of high-speed and wide-angle visible observation diagnostics on Experimental Advanced Superconducting Tokamak using catadioptric optics

    SciTech Connect

    Yang, J. H.; Hu, L. Q.; Zang, Q.; Han, X. F.; Shao, C. Q.; Sun, T. F.; Chen, H.; Wang, T. F.; Li, F. J.; Hu, A. L.; Yang, X. F.

    2013-08-15

    A new wide-angle endoscope for visible light observation on the Experimental Advanced Superconducting Tokamak (EAST) has been recently developed. The head section of the optical system is based on a mirror reflection design that is similar to the International Thermonuclear Experimental Reactor-like wide-angle observation diagnostic on the Joint European Torus. However, the optical system design has been simplified and improved. As a result, the global transmittance of the system is as high as 79.6% in the wavelength range from 380 to 780 nm, and the spatial resolution is <5 mm for the full depth of field (4000 mm). The optical system also has a large relative aperture (1:2.4) and can be applied in high-speed camera diagnostics. As an important diagnostic tool, the optical system has been installed on the HT-7 (Hefei Tokamak-7) for its final experimental campaign, and the experiments confirmed that it can be applied to the investigation of transient processes in plasma, such as ELMy eruptions in H-mode, on EAST.

  13. Development of high-speed and wide-angle visible observation diagnostics on Experimental Advanced Superconducting Tokamak using catadioptric optics.

    PubMed

    Yang, J H; Yang, X F; Hu, L Q; Zang, Q; Han, X F; Shao, C Q; Sun, T F; Chen, H; Wang, T F; Li, F J; Hu, A L

    2013-08-01

    A new wide-angle endoscope for visible light observation on the Experimental Advanced Superconducting Tokamak (EAST) has been recently developed. The head section of the optical system is based on a mirror reflection design that is similar to the International Thermonuclear Experimental Reactor-like wide-angle observation diagnostic on the Joint European Torus. However, the optical system design has been simplified and improved. As a result, the global transmittance of the system is as high as 79.6% in the wavelength range from 380 to 780 nm, and the spatial resolution is <5 mm for the full depth of field (4000 mm). The optical system also has a large relative aperture (1:2.4) and can be applied in high-speed camera diagnostics. As an important diagnostic tool, the optical system has been installed on the HT-7 (Hefei Tokamak-7) for its final experimental campaign, and the experiments confirmed that it can be applied to the investigation of transient processes in plasma, such as ELMy eruptions in H-mode, on EAST.

  14. Energy efficient rateless codes for high speed data transfer over free space optical channels

    NASA Astrophysics Data System (ADS)

    Prakash, Geetha; Kulkarni, Muralidhar; Acharya, U. S.

    2015-03-01

    Terrestrial Free Space Optical (FSO) links transmit information by using the atmosphere (free space) as a medium. In this paper, we have investigated the use of Luby Transform (LT) codes as a means to mitigate the effects of data corruption induced by imperfect channel which usually takes the form of lost or corrupted packets. LT codes, which are a class of Fountain codes, can be used independent of the channel rate and as many code words as required can be generated to recover all the message bits irrespective of the channel performance. Achieving error free high data rates with limited energy resources is possible with FSO systems if error correction codes with minimal overheads on the power can be used. We also employ a combination of Binary Phase Shift Keying (BPSK) with provision for modification of threshold and optimized LT codes with belief propagation for decoding. These techniques provide additional protection even under strong turbulence regimes. Automatic Repeat Request (ARQ) is another method of improving link reliability. Performance of ARQ is limited by the number of retransmissions and the corresponding time delay. We prove through theoretical computations and simulations that LT codes consume less energy per bit. We validate the feasibility of using energy efficient LT codes over ARQ for FSO links to be used in optical wireless sensor networks within the eye safety limits.

  15. A high-speed 0.35μm CMOS optical communication link

    NASA Astrophysics Data System (ADS)

    Goosen, Marius E.; Venter, Petrus J.; du Plessis, Monuko; Bogalecki, Alfons W.; Alberts, Antonie C.; Rademeyer, Pieter

    2012-01-01

    The idea of integrating a light emitter and detector in the cost effective and mature technology which is CMOS remains an attractive one. Silicon light emitters, used in avalanche breakdown, are demonstrated to switch at frequencies above 1 GHz whilst still being electrically detected, a three-fold increase on previous reported results. Utilizing novel BEOLstack reflectors and increased array sizes have resulted in an increased power efficiency allowing multi-Mb/s data rates. In this paper we present an all-silicon optical communication link with data rates exceeding 10 Mb/s at a bit error rate of less than 10-12, representing a ten-fold increase over the previous fastest demonstrated silicon data link. Data rates exceeding 40 Mb/s are also presented and evaluated. The quality of the optical link is established using both eye diagram measurements as well as a digital communication system setup. The digital communication system setup comprises the generation of 232-1 random data, 8B/10B encoding and decoding, data recovery and the subsequent bit error counting.

  16. Natural motion of the optic nerve head revealed by high speed phase-sensitive OCT

    NASA Astrophysics Data System (ADS)

    OHara, Keith; Schmoll, Tilman; Vass, Clemens; Leitgeb, Rainer A.

    2013-03-01

    We use phase-sensitive optical coherence tomography (OCT) to measure the deformation of the optic nerve head during the pulse cycle, motivated by the possibility that these deformations might be indicative of the progression of glaucoma. A spectral-domain OCT system acquired 100k A-scans per second, with measurements from a pulse-oximeter recorded simultaneously, correlating OCT data to the subject's pulse. Data acquisition lasted for 2 seconds, to cover at least two pulse cycles. A frame-rate of 200-400 B-scans per second results in a sufficient degree of correlated speckle between successive frames that the phase-differences between fames can be extracted. Bulk motion of the entire eye changes the phase by several full cycles between frames, but this does not severely hinder extracting the smaller phase-changes due to differential motion within a frame. The central cup moves about 5 μm/s relative to the retinal-pigment-epithelium edge, with tissue adjacent to blood vessels showing larger motion.

  17. High-speed optoelectronic IC for multi-standards of optical storage system

    NASA Astrophysics Data System (ADS)

    Cha, Sanghyun; Jeong, Hawoong; Go, Chaedong; Park, Deukhee; Lee, Changseok; Kwon, Kyoungsoo; Lee, Jeashin

    2010-05-01

    The conventional scheme of optical pick-up unit (OPU) should require two or three optoelectronic integrated circuits (OEICs) to cover triple-wavelength λ =780nm, 650nm and 405nm). In order to reduce cost and waste of resources, onechip solution of the OEIC is required. In this paper, the OEIC is designed which can cover triple-wavelength and three optical storage standards which are compact disk (CD), digital versatile disk (DVD) and Blue-Ray. The OEIC has dualarrays of photodiodes because focus of laser is varied depending on wavelength. One of arrays senses the laser of λ =780nm and another senses the lasers of λ =650nm and λ =405nm. For low power consumption and small die area, one wideband transimpedance amplifier (TIA) is used for two photodiodes which are for CD and DVD or Blue-Ray, respectively. And two small size switches are included to select photodiodes. The PIN fingerdiode with N+ fingercathode is integrated to guarantee high performances for λ =405nm and 650nm. And the isolation area between adjacent photodiodes is made by floated P+ implant for reducing power-loss. The measured cutoff bandwidth of the OEIC is 210MHz for λ =405nm. The OEIC is fabricated in a 0.6- μm BiCMOS technology and dissipates 150mW for a single supply voltage of 5V. The active area is 1.4x1.2mm2.

  18. Simultaneous high-speed and long-range imaging with optically subsampled OCT (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Siddiqui, Meena; Tozburun, Serhat; Vakoc, Benjamin J.

    2016-03-01

    Current implementations of OCT can either image over long depth ranges with slower imaging speeds, or at high imaging speeds with more limited depth ranges. The simultaneous operation at multi-centimeter depth ranges and MHz-scale A-line rates is challenging due to limitations in the electronic bandwidths of current digitizers and data transfer buses. The lack of multi-cm depth range, MHz-speed OCT hinders the translation of the imaging technology to sites and organs with complex geometries and expansive fields. Here we describe a first demonstration of a simultaneous cm-scale depth range and MHz-scale A-line rate OCT platform. We describe the principles behind data compression by optically subsampled OCT, the development and performance of a novel subsampled OCT wavelength stepped source operating at 19 MHz A-line rates, the extension of passive quadrature demodulation architectures to GHz-scale acquisition bandwidths, and the first ever integration of these technologies into a subsampled OCT system capable of acquiring volume data at video-rates across multi-cm depth ranges. We use this platform to demonstrate depth resolved measurements over large fields that exhibit complex topography such as the face. The performance, limitations, and the next stages of technical development for this optically subsampled OCT platform are summarized. This platform may open new opportunities for camera-like OCT deployments in sites and organs that are inaccessible to current OCT technologies.

  19. High-speed duplex optical wireless communication system for indoor personal area networks.

    PubMed

    Wang, Ke; Nirmalathas, Ampalavanapillai; Lim, Christina; Skafidas, Efstratios

    2010-11-22

    In this paper a new hybrid wireless access system incorporating high bandwidth line-of-sight free space optical wireless and radio frequency localization is proposed and demonstrated. This system is capable of supporting several gigabits/second up-stream and down-stream data transmission and ideally suited for high bandwidth indoor applications such as personal area networks. A radio frequency signal is used to achieve localization of subscribers, offering limited mobility to subscribers within a practical office scenario. Even with the modest transmitted power of 5 dBm, we demonstrate satisfactory performance of bit error rates better than 10(-9) over the entire room in the presence of strong background light. Using simulations, the effectiveness of the proposed system architecture is investigated and the key performance trade-offs identified. Proof-of-concept experiments have also been carried out to validate simulation model, and initial experimental results successfully demonstrate the feasibility of the system capable of supporting 2.5 Gbps over a 1-2 m optical wireless link (limited by the length of the sliding rail used in the experiment) with a 45 degrees diffused beam in an indoor environment for the first time.

  20. Quasi-phase-matched electro-optic modulators for high-speed signal processing

    NASA Astrophysics Data System (ADS)

    Toney, James E.; Stenger, Vincent E.; Busch, James; Pontius, Peter; Clabough, Michael; Pollick, Andrea; Sriram, Sri

    2013-01-01

    This paper reports on the design, fabrication and testing of quasi-phase-matched (QPM) lithium niobate electro-optic modulators optimized for the 40-60 GHz frequency range. The device used a single-drive, coplanar-waveguide (cpw) electrode structure that provided a good balance between impedance and RF loss, and a DC Vπ.L product of approximately 10 V.cm. Ferroelectric domain engineering enabled push-pull operation with a single drive, while achieving low chirp. A custom developed pulsed poling process was used to fabricate periodic domain QPM structures in lithium niobate. QPM periods were in the range of 3 mm to 4.5 mm, depending on the design frequency. The pulse method enabled precise domain definition with a minimum of overpoling. Low-loss diffused optical waveguides were fabricated by an annealed proton exchange (APE) process. By operating in both co-propagating and counter-propagating modes, the QPM devices can be used to implement dual band RF bandpass filters simultaneously covering both 10-20 GHz and 40-60 GHz frequency bands. Arrays of QPM device structures demonstrated in this work form the basis for a reconfigurable RF photonic filter. The RF photonic QPM technology enables efficient concurrent antenna remoting and filtering functionality. Applications of the technology include fiber radio for cellular access and finite impulse response filters for wideband electronic warfare receivers.

  1. High-speed full range complex Fourier-domain optical coherence tomography using sinusoidal phase-modulating interferometry

    NASA Astrophysics Data System (ADS)

    Bu, Peng; Wang, Xiangzhao; Sasaki, Osami; Wei, Xunbin

    2007-11-01

    High-speed full-range complex Fourier domain optical coherence tomography (FDOCT) using sinusoidal phase-modulating interferometry is proposed. A high-rate two-dimensional (2-D) CCD camera is used to record time-sequential sinusoidally phase-modulated 2-D spectral interferograms, from which the complex 2-D spectral interferograms corresponding to each frame of the 2-D CCD camera are extracted by Fourier transform method. By taking inverse Fourier transform of the complex spectral interferograms, full-range B-scan images free of the complex conjugate ambiguity as well as dc and autocorrelation noises are obtained at intervals of the frame period of the 2-D CCD camera. Time-sequential cross-sectional imaging of human skin ex vivo with the proposed method is demonstrated.

  2. Full-range imaging of eye accommodation by high-speed long-depth range optical frequency domain imaging

    PubMed Central

    Furukawa, Hiroyuki; Hiro-Oka, Hideaki; Satoh, Nobuyuki; Yoshimura, Reiko; Choi, Donghak; Nakanishi, Motoi; Igarashi, Akihito; Ishikawa, Hitoshi; Ohbayashi, Kohji; Shimizu, Kimiya

    2010-01-01

    We describe a high-speed long-depth range optical frequency domain imaging (OFDI) system employing a long-coherence length tunable source and demonstrate dynamic full-range imaging of the anterior segment of the eye including from the cornea surface to the posterior capsule of the crystalline lens with a depth range of 12 mm without removing complex conjugate image ambiguity. The tunable source spanned from 1260 to 1360 nm with an average output power of 15.8 mW. The fast A-scan rate of 20,000 per second provided dynamic OFDI and dependence of the whole anterior segment change on time following abrupt relaxation from the accommodated to the relaxed status, which was measured for a healthy eye and that with an intraocular lens. PMID:21258564

  3. Quantum Optics: An Introduction

    NASA Astrophysics Data System (ADS)

    Vogel, Werner; Welsch, Dirk-Gunnar; Wallentowitz, Sascha

    2005-12-01

    This is the third, completely updated and supplemented edition of the acknowledged "Lectures on Quantum Optics" by W. Vogel and D.-G. Welsch. It offers theoretical concepts of quantum optics, with special emphasis on current research trends. Quantum-state reconstruction and laser-driven quantized motion of trapped atoms are new topics that are included in the revised edition. The rigorous development of quantum optics in the context of quantum field theory and the attention spent to details make the book valuable to graduate students as well as to researchers in related areas. From the contents: 1. Introduction; 2. Elements of quantum electrodynamics; 3. Quantum states of bosonic systems; 4. Phase-space representations; 5. Quantum theory of damping; 6. Photoelectric detection of light; 7. Quantum-state reconstruction; 8. Non-classical states; 9. Leaky optical cavities; 10. Theory of resonance fluorescence; 11. A single atom in a high-Q cavity; 12. Laser-driven quantized motion of a trapped atom; 13. Forces on atoms in electromagnetic fields (NEW CHAPTER!)

  4. High-speed all-optical logic inverter based on stimulated Raman scattering in silicon nanocrystal.

    PubMed

    Sen, Mrinal; Das, Mukul K

    2015-11-01

    In this paper, we propose a new device architecture for an all-optical logic inverter (NOT gate), which is cascadable with a similar device. The inverter is based on stimulated Raman scattering in silicon nanocrystal waveguides, which are embedded in a silicon photonic crystal structure. The Raman response function of silicon nanocrystal is evaluated to explore the transfer characteristic of the inverter. A maximum product criterion for the noise margin is taken to analyze the cascadability of the inverter. The time domain response of the inverter, which explores successful inversion operation at 100 Gb/s, is analyzed. Propagation delay of the inverter is on the order of 5 ps, which is less than the delay in most of the electronic logic families as of today. Overall dimension of the device is around 755  μm ×15  μm, which ensures integration compatibility with the matured silicon industry.

  5. Training issues in high-speed fiber-optic and radio communication systems

    NASA Astrophysics Data System (ADS)

    Chen, Hong

    Training is an integral phase of information transmission over a wired or wireless channel. During the training period, channel estimation, frequency synchronization, and timing recovery are conducted for enabling a reliable information bit recovery at the receiver. This thesis proposes and verifies in simulation several new ideas and methods that facilitate the training process, optimize the performance of parameter estimation, and maintain a delicate balance between training and data transmission. The goal is to achieve energy-efficient communications over time-varying frequency-selective fiber optic links and radio channels. Its contributions towards combating dispersive fiber optic channels include a novel description of polarization mode dispersion effects in single-mode fibers, allowing the traditional training and equalization techniques to be applied in compensating the polarization mode dispersion, and an original training-based approach that compensates the first-order polarization mode dispersion at low cost. For radio communications, this thesis addresses three important design issues in utilizing the orthogonal frequency division multiplexing (OFDM) technique. OFDM has gained increasing interest, due to its high spectral efficiency and robustness against multipath fading. The main disadvantages of OFDM are its low power efficiency caused by the high peak-to-average power ratio of OFDM signals, and its high sensitivity to frequency synchronization errors. Among our contributions are a fast algorithm that efficiently reduces the peak-to-average power ratio of OFDM signals at low overhead, an extensive comparison of frequency offset tracking algorithms, and finally, closed-form expressions of optimal training length that enables fast training length adjustment to maximize system throughput under varying channel conditions.

  6. Quantum teleportation of optical quantum gates.

    PubMed

    Bartlett, Stephen D; Munro, William J

    2003-03-21

    We show that a universal set of gates for quantum computation with optics can be quantum teleported through the use of EPR entangled states, homodyne detection, and linear optics and squeezing operations conditioned on measurement outcomes. This scheme may be used for fault-tolerant quantum computation in any optical scheme (qubit or continuous-variable). The teleportation of nondeterministic nonlinear gates employed in linear optics quantum computation is discussed.

  7. High-speed nano-optical photodetector for free space communication

    NASA Astrophysics Data System (ADS)

    Kurtz, Russell M.; Alim, Khan A.; Pradhan, Ranjit D.; Esterkin, Vladimir; Savant, Gajendra D.; Venkatasubramanian, Rama; Lee, Minjoo Larry; Ghosh, Suchismita; Calizo, Irene; Balandin, Alexander A.

    2007-04-01

    An inexpensive, easily integrated, sensitive photoreceiver operating in the communications band with a 50-GHz bandwidth would revolutionize the free-space communication industry. While generation of 50-GHz carrier AM or FM signals is not difficult, its reception and heterodyning require specific, known technologies, generally based on silicon semiconductors. We present a 50 GHz photoreceiver that exceeds the capabilities of current devices. The proposed photoreceiver is based on a technology we call Nanodust. This new technology enables nano-optical photodetectors to be directly embedded in silicon matrices, or into CMOS reception/heterodyning circuits. Photoreceivers based on Nanodust technology can be designed to operate in any spectral region, the most important to date being the telecommunications band near 1.55 micrometers. Unlike current photodetectors that operate in this spectral region, Nanodust photodetectors can be directly integrated with standard CMOS and silicon-based circuitry. Nanodust technology lends itself well to normal-incidence signal reception, significantly increasing the reception area without compromising the bandwidth. Preliminary experiments have demonstrated a free-space responsivity of 50 μA/(W/cm2), nearly an order of magnitude greater than that offered by current 50-GHz detectors. We expect to increase the Nanodust responsivity significantly in upcoming experiments.

  8. High speed optical metrology solution for after etch process monitoring and control

    NASA Astrophysics Data System (ADS)

    Charley, Anne-Laure; Leray, Philippe; Pypen, Wouter; Cheng, Shaunee; Verma, Alok; Mattheus, Christine; Wisse, Baukje; Cramer, Hugo; Niesing, Henk; Kruijswijk, Stefan

    2014-04-01

    Monitoring and control of the various processes in the semiconductor require precise metrology of relevant features. Optical Critical Dimension metrology (OCD) is a non-destructive solution, offering the capability to measure profiles of 2D and 3D features. OCD has an intrinsic averaging over a larger area, resulting in good precision and suppression of local variation. We have studied the feasibility of process monitoring and control in AEI (after etch inspection) applications, using the same angular resolved scatterometer as used for CD, overlay and focus metrology in ADI (after develop inspection) applications1. The sensor covers the full azimuthal-angle range and a large angle-of-incidence range in a single acquisition. The wavelength can be selected between 425nm and 700nm, to optimize for sensitivity for the parameters of interest and robustness against other process variation. In this paper we demonstrate the validity of the OCD data through the measurement and comparison with the reference metrology of multiple wafers at different steps of the imec N14 fabrication process in order to show that this high precision OCD tool can be used for process monitoring and control.

  9. On the optimum signal constellation design for high-speed optical transport networks.

    PubMed

    Liu, Tao; Djordjevic, Ivan B

    2012-08-27

    In this paper, we first describe an optimum signal constellation design algorithm, which is optimum in MMSE-sense, called MMSE-OSCD, for channel capacity achieving source distribution. Secondly, we introduce a feedback channel capacity inspired optimum signal constellation design (FCC-OSCD) to further improve the performance of MMSE-OSCD, inspired by the fact that feedback channel capacity is higher than that of systems without feedback. The constellations obtained by FCC-OSCD are, however, OSNR dependent. The optimization is jointly performed together with regular quasi-cyclic low-density parity-check (LDPC) code design. Such obtained coded-modulation scheme, in combination with polarization-multiplexing, is suitable as both 400 Gb/s and multi-Tb/s optical transport enabling technology. Using large girth LDPC code, we demonstrate by Monte Carlo simulations that a 32-ary signal constellation, obtained by FCC-OSCD, outperforms previously proposed optimized 32-ary CIPQ signal constellation by 0.8 dB at BER of 10(-7). On the other hand, the LDPC-coded 16-ary FCC-OSCD outperforms 16-QAM by 1.15 dB at the same BER.

  10. Low-cost and high-speed optical mark reader based on an intelligent line camera

    NASA Astrophysics Data System (ADS)

    Hussmann, Stephan; Chan, Leona; Fung, Celine; Albrecht, Martin

    2003-08-01

    Optical Mark Recognition (OMR) is thoroughly reliable and highly efficient provided that high standards are maintained at both the planning and implementation stages. It is necessary to ensure that OMR forms are designed with due attention to data integrity checks, the best use is made of features built into the OMR, used data integrity is checked before the data is processed and data is validated before it is processed. This paper describes the design and implementation of an OMR prototype system for marking multiple-choice tests automatically. Parameter testing is carried out before the platform and the multiple-choice answer sheet has been designed. Position recognition and position verification methods have been developed and implemented in an intelligent line scan camera. The position recognition process is implemented into a Field Programmable Gate Array (FPGA), whereas the verification process is implemented into a micro-controller. The verified results are then sent to the Graphical User Interface (GUI) for answers checking and statistical analysis. At the end of the paper the proposed OMR system will be compared with commercially available system on the market.

  11. High-Speed Optical Library System Using Digital Versatile Disk Random Access Memory

    NASA Astrophysics Data System (ADS)

    Tanabe, Takaya; Ura, Tetsu; Yamamoto, Manabu

    2000-02-01

    A high-data-transfer-rate optical storage system using a redundant array of inexpensive libraries (RAIL) has been developed and tested. It incorporates multiple libraries, where each library consists of dual digital versatile disk (DVD) random access memory (RAM) drives and a single robotic hand and holds 2.6 GB DVD disks. To increase the reliability of data storage and at the same time to eliminate the need for read-after-write verification, which doubles the recording time, a redundant array of inexpensive drives (RAID) 4 algorithm is implemented in the control unit of the storage system. Data sent by the host is transferred to a control unit, which stripes the data into five data groups plus one parity unit. The striped and parity data is sent to individual libraries and written to the DVD disks. This system writes and retrieves data with a transfer rate of approximately 6 MB/s, using write and read control methods that minimize the data striping overhead. This reliable library system can be used for networked multimedia applications.

  12. Magnetic stage with environmental control for optical microscopy and high-speed nano- and microrheology

    NASA Astrophysics Data System (ADS)

    Aprelev, Pavel; McKinney, Bonni; Walls, Chadwick; Kornev, Konstanin G.

    2017-07-01

    A novel design of a low-field magnetic stage for optical microscopy of droplets and films within a controlled environment is described. The stage consists of five magnetic coils with a 3D magnetic sensor in a feedback control loop, which allows one to manipulate magnetic nano- and microprobes with microtesla fields. A locally uniform time-dependent field within the focal plane of the microscope objective enables one to rotate the probes in a precisely set manner and observe their motion. The probe tracking protocol was developed to follow the probe rotation in real time and relate it with the viscosity of the host liquid. Using this magnetic stage, a method for measuring mPa s-level viscosity of nanoliter droplets and micron thick films in a 10-20 s timeframe is presented and validated. The viscosity of a rapidly changing liquid can be tracked by using only a few visible probes rotating simultaneously. Vapor pressure and temperature around the sample can be controlled to directly measure viscosity as a function of equilibrium vapor pressure; this addresses a significant challenge in characterization of volatile nanodroplets and thin films. Thin films of surfactant solutions undergoing phase transitions upon solvent evaporation were studied and their rheological properties were related to morphological changes in the material.

  13. High-speed imaging of remotely induced shear waves using phase-sensitive optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Song, Shaozhen; Le, Nhan Minh; Huang, Zhihong; Wang, Ruikang K.

    2015-03-01

    Shear wave optical coherence elastography (SW-OCE) is a quantitative approach to assess tissue structures and elasticity with high resolution, based on OCT. Shear wave imaging (SWI) is the foundation of shear wave elasticity imaging (SWEI), which is a quantitative approach to assess tissue structures and pathological status. In order to enhance elastography resolution to micron scale, the shear waves needs to be highly localized, with short wavelength and high frequency (second order of kHz), which also places stricter requirement on the temporal resolution requirements of SWI device. In this paper, we introduced two approaches to remotely induce high frequency shear waves within tissue samples: ultrasound acoustic radiation force impulse (ARFI), and high energy nanosecond pulsed laser. The maximum frequency of pulsed laser induced shear waves in tissue-mimicking phantoms can go up to 25 kHz, which is not possible to be captured and tracked by other SWI modalities. We use a custom-built SWI-OCT system to visualize and capture the nanometer scale shear waves, achieving a spatial resolution up to 15 um and frame rate of up to 92 kHz. The dynamic wave propagation data was then used for the reconstruction of localized wave velocity and elasticity. This study demonstrates the non-contact shear wave generation with pulsed laser source, and ultra-fast, high-resolution sectional acoustical wave tracking with remarkable sensitivity, promising a future clinical application for a high-resolution quantitative mapping of elasticity in vivo, non-contact and real time in OCT-accessible tissue, especially in ocular tissues.

  14. LGSD/NGSD: high speed visible CMOS imagers for E-ELT adaptive optics

    NASA Astrophysics Data System (ADS)

    Downing, Mark; Kolb, Johann; Dierickx, Bart; Defernez, Arnaud; Feautrier, Philippe; Fryer, Martin; Gach, Jean-Luc; Jerram, Paul; Jorden, Paul; Meyer, Manfred; Pike, Andrew; Reyes, Javier; Stadler, Eric; Swift, Nick

    2016-08-01

    The success of the next generation of instruments for ELT class telescopes will depend upon improving the image quality by exploiting sophisticated Adaptive Optics (AO) systems. One of the critical components of the AO systems for the European Extremely Large Telescope (E-ELT) has been identified as the Large Visible Laser/Natural Guide Star AO Wavefront Sensing (WFS) detector. The combination of large format, 1600x1600 pixels to finely sample the wavefront and the spot elongation of laser guide stars (LGS), fast frame rate of 700 frames per second (fps), low read noise (< 3e-), and high QE (> 90%) makes the development of this device extremely challenging. Results of design studies concluded that a highly integrated Backside Illuminated CMOS Imager built on High Resistivity silicon as the most suitable technology. Two generations of the CMOS Imager are planned: a) a smaller `pioneering' device of > 800x800 pixels capable of meeting first light needs of the E-ELT. The NGSD, the topic of this paper, is the first iteration of this device; b) the larger full sized device called LGSD. The NGSD has come out of production, it has been thinned to 12μm, backside processed and packaged in a custom 370pin Ceramic PGA (Pin Grid Array). Results of comprehensive tests performed both at e2v and ESO are presented that validate the choice of CMOS Imager as the correct technology for the E-ELT Large Visible WFS Detector. These results along with plans for a second iteration to improve two issues of hot pixels and cross-talk are presented.

  15. Quantum optics, what next?

    NASA Astrophysics Data System (ADS)

    Cirac, J. Ignacio; Kimble, H. Jeff

    2017-01-01

    Quantum optics is a well-established field that spans from fundamental physics to quantum information science. In the coming decade, areas including computation, communication and metrology are all likely to experience scientific and technological advances supported by this far-reaching research field.

  16. Ultra-high Speed Optical Imaging of Ultrasound-activated Microbubbles in Mesenteric Microvessels

    NASA Astrophysics Data System (ADS)

    Chen, Hong

    Ultrasound contrast agent microbubbles have gained widespread applications in diagnostic and therapeutic ultrasound. Animal studies of bioeffects induced by ultrasound-activated microbubbles have demonstrated that microbubbles can cause microvessel damage. Much scientific attention has been attracted to such microvascular bioeffects, not only because of the related safety concerns, but also because of the potential useful applications of microbubbles in the intravascular delivery of drugs and genetic materials into target tissues. A significant challenge in using microbubbles in medical ultrasound is the lack of knowledge about how the microbubbles behave in blood vessels when exposed to ultrasound and how their interactions with ultrasound cause vascular damage. Although extensive studies were performed in the past to study the dynamics of microbubbles, most of those studies were performed in vitro and did not directly address the clinical environment in which microbubbles are injected into blood vessels. In this thesis work, a synchronized optical-acoustic system was set up for ultrahigh speed imaging of insonated microbubbles in microvessels. The recorded images revealed the formation of microjets penetrating the microbubbles, as well as vessel distention (motion outward against the surrounding tissue) and vessel invagination (motion inward toward the lumen) caused by the expansion and collapse of the microbubbles, respectively. Contrary to current paradigms which propose that microbubbles damage vessels either by distending them or by forming liquid jets impinging on them, microbubbles translation and jetting were in the direction away from the nearest vessel wall; furthermore, invagination typically exceeded distention in arterioles and venules. Vessel invagination was found to be associated with vascular damage. These studies suggest that vessel invagination may be a newly discovered potential mechanism for vascular damage by ultrasound-activated microbubbles

  17. Microcirculation imaging based on full-range high-speed spectral domain correlation mapping optical coherence tomography.

    PubMed

    Subhash, Hrebesh M; Leahy, Martin J

    2014-02-01

    Microcirculation imaging is a key parameter for studying the pathophysiological processes of various disease conditions, in both clinical and fundamental research. A full-range spectral-domain correlation mapping optical coherence tomography (cm-OCT) method to obtain a complex-conjugate-free, full-range depth-resolved microcirculation map is presented. The proposed system is based on a high-speed spectrometer at 91 kHz with a modified scanning protocol to achieve higher acquisition speed to render cm-OCT images with high-speed and wide scan range. The mirror image elimination is based on linear phase modulation of B-frames by introducing a slight off-set of the probe beam with respect to the lateral scanning fast mirror's pivot axis. An algorithm that exploits the Hilbert transform to obtain a complex-conjugate-free image in conjunction with the cm-OCT algorithm is used to obtain full-range imaging of microcirculation within tissue beds in vivo. The estimated sensitivity of the system was around 105 dB near the zero-delay line with ∼20  dB roll-off from ±0.5 to ±3  mm imaging-depth position. The estimated axial and lateral resolutions are ∼12 and ∼30   μm, respectively. A direct consequence of this complex conjugate artifact elimination is the enhanced flow imaging sensitivity for deep tissue imaging application by imaging through the most sensitive zero-delay line and doubling the imaging range.

  18. Innovations of wide-field optical-sectioning fluorescence microscopy: toward high-speed volumetric bio-imaging with simplicity

    NASA Astrophysics Data System (ADS)

    Yu, Jiun-Yann

    result in certain degrees of photo-damages because of the high focal intensity at the scanning point. In order to overcome such an issue, several wide-field optical-sectioning techniques have been proposed and demonstrated, although not without introducing new limitations and compromises such as low signal-to-background ratios and reduced axial resolutions. As a result, single-point-scanning optical-sectioning techniques remain the most widely used instrumentations for volumetric imaging of living biological systems to date. In order to develop wide-field optical-sectioning techniques that has equivalent optical performance as single-point-scanning ones, this thesis first introduces the mechanisms and limitations of existing wide-field optical-sectioning techniques, and then brings in our innovations that aim to overcome these limitations. We demonstrate, theoretically and experimentally, that our proposed wide-field optical-sectioning techniques can achieve diffraction-limited optical sectioning, low out-of-focus excitation and high-frame-rate imaging in living biological systems. In addition to such imaging capabilities, our proposed techniques can be instrumentally simple and economic, and are straightforward for implementation on conventional wide-field microscopes. These advantages together show the potential of our innovations to be widely used for high-speed, volumetric fluorescence imaging of living biological systems.

  19. High-speed underwater optical wireless communication using a blue GaN-based micro-LED.

    PubMed

    Tian, Pengfei; Liu, Xiaoyan; Yi, Suyu; Huang, Yuxin; Zhang, Shuailong; Zhou, Xiaolin; Hu, Laigui; Zheng, Lirong; Liu, Ran

    2017-01-23

    High-speed underwater optical wireless communication (UOWC) was achieved using an 80 μm blue-emitting GaN-based micro-LED. The micro-LED has a peak emission wavelength of ~440 nm and an underwater power attenuation of 1 dB/m in tap water. The -3 dB electrical-to-optical modulation bandwidth of the packaged micro-LED increases with increasing current and saturates at ~160 MHz. At an underwater distance of 0.6 m, 800 Mb/s data rate was achieved with a bit error rate (BER) of 1.3 × 10-3, below the forward error correction (FEC) criteria. And we obtained 100 Mb/s data communication speed with a received light output power of -40 dBm and a BER of 1.9 × 10-3, suggesting that UOWC with extended distance can be achieved. Through reflecting the light emission beam by mirrors within a water tank, we experimentally demonstrated a 200 Mb/s data rate with a BER of 3.0 × 10-6 at an underwater distance of 5.4 m.

  20. Optical quantum computing.

    PubMed

    O'Brien, Jeremy L

    2007-12-07

    In 2001, all-optical quantum computing became feasible with the discovery that scalable quantum computing is possible using only single-photon sources, linear optical elements, and single-photon detectors. Although it was in principle scalable, the massive resource overhead made the scheme practically daunting. However, several simplifications were followed by proof-of-principle demonstrations, and recent approaches based on cluster states or error encoding have dramatically reduced this worrying resource overhead, making an all-optical architecture a serious contender for the ultimate goal of a large-scale quantum computer. Key challenges will be the realization of high-efficiency sources of indistinguishable single photons, low-loss, scalable optical circuits, high-efficiency single-photon detectors, and low-loss interfacing of these components.

  1. Chiral quantum optics

    NASA Astrophysics Data System (ADS)

    Lodahl, Peter; Mahmoodian, Sahand; Stobbe, Søren; Rauschenbeutel, Arno; Schneeweiss, Philipp; Volz, Jürgen; Pichler, Hannes; Zoller, Peter

    2017-01-01

    Advanced photonic nanostructures are currently revolutionizing the optics and photonics that underpin applications ranging from light technology to quantum-information processing. The strong light confinement in these structures can lock the local polarization of the light to its propagation direction, leading to propagation-direction-dependent emission, scattering and absorption of photons by quantum emitters. The possibility of such a propagation-direction-dependent, or chiral, light-matter interaction is not accounted for in standard quantum optics and its recent discovery brought about the research field of chiral quantum optics. The latter offers fundamentally new functionalities and applications: it enables the assembly of non-reciprocal single-photon devices that can be operated in a quantum superposition of two or more of their operational states and the realization of deterministic spin-photon interfaces. Moreover, engineered directional photonic reservoirs could lead to the development of complex quantum networks that, for example, could simulate novel classes of quantum many-body systems.

  2. Chiral quantum optics.

    PubMed

    Lodahl, Peter; Mahmoodian, Sahand; Stobbe, Søren; Rauschenbeutel, Arno; Schneeweiss, Philipp; Volz, Jürgen; Pichler, Hannes; Zoller, Peter

    2017-01-25

    Advanced photonic nanostructures are currently revolutionizing the optics and photonics that underpin applications ranging from light technology to quantum-information processing. The strong light confinement in these structures can lock the local polarization of the light to its propagation direction, leading to propagation-direction-dependent emission, scattering and absorption of photons by quantum emitters. The possibility of such a propagation-direction-dependent, or chiral, light-matter interaction is not accounted for in standard quantum optics and its recent discovery brought about the research field of chiral quantum optics. The latter offers fundamentally new functionalities and applications: it enables the assembly of non-reciprocal single-photon devices that can be operated in a quantum superposition of two or more of their operational states and the realization of deterministic spin-photon interfaces. Moreover, engineered directional photonic reservoirs could lead to the development of complex quantum networks that, for example, could simulate novel classes of quantum many-body systems.

  3. Compact LED-based full-field optical coherence microscopy for high-resolution high-speed in vivo imaging

    NASA Astrophysics Data System (ADS)

    Ogien, Jonas; Dubois, Arnaud

    2017-02-01

    This work reports on a compact full-field optical coherence microscopy (FF-OCM) setup specifically designed to meet the needs for in vivo imaging, illuminated by a high-brightness broadband light emitting diode (LED). Broadband LEDs have spectra potentially large enough to provide imaging spatial resolutions similar to those reached using conventional halogen lamps, but their radiance can be much higher, which leads to high speed acquisition and makes in vivo imaging possible. We introduce a FF-OCM setup using a 2.3 W broadband LED, with an interferometer designed to be as compact as possible in order to provide the basis for a portable system that will make it possible to fully benefit from the capacity for in vivo imaging by providing the ability to image any region of interest in real-time. The interferometer part of the compact FF-OCM setup weighs 210 g for a size of 11x11x5 cm3. Using this setup, a sub-micron axial resolution was reached, with a detection sensitivity of 68 dB at an imaging rate of 250 Hz. Due to the high imaging rate, the sensitivity could be improved by accumulation while maintaining an acquisition time short enough for in vivo imaging. It was possible to reach a sensitivity of 75 dB at a 50 Hz imaging rate. High resolution in vivo human skin images were obtained with this setup and compared with images of excised human skin, showing high similarity.

  4. Parallelized multi–graphics processing unit framework for high-speed Gabor-domain optical coherence microscopy

    PubMed Central

    Tankam, Patrice; Santhanam, Anand P.; Lee, Kye-Sung; Won, Jungeun; Canavesi, Cristina; Rolland, Jannick P.

    2014-01-01

    Abstract. Gabor-domain optical coherence microscopy (GD-OCM) is a volumetric high-resolution technique capable of acquiring three-dimensional (3-D) skin images with histological resolution. Real-time image processing is needed to enable GD-OCM imaging in a clinical setting. We present a parallelized and scalable multi-graphics processing unit (GPU) computing framework for real-time GD-OCM image processing. A parallelized control mechanism was developed to individually assign computation tasks to each of the GPUs. For each GPU, the optimal number of amplitude-scans (A-scans) to be processed in parallel was selected to maximize GPU memory usage and core throughput. We investigated five computing architectures for computational speed-up in processing 1000×1000 A-scans. The proposed parallelized multi-GPU computing framework enables processing at a computational speed faster than the GD-OCM image acquisition, thereby facilitating high-speed GD-OCM imaging in a clinical setting. Using two parallelized GPUs, the image processing of a 1×1×0.6  mm3 skin sample was performed in about 13 s, and the performance was benchmarked at 6.5 s with four GPUs. This work thus demonstrates that 3-D GD-OCM data may be displayed in real-time to the examiner using parallelized GPU processing. PMID:24695868

  5. Parallelized multi-graphics processing unit framework for high-speed Gabor-domain optical coherence microscopy.

    PubMed

    Tankam, Patrice; Santhanam, Anand P; Lee, Kye-Sung; Won, Jungeun; Canavesi, Cristina; Rolland, Jannick P

    2014-07-01

    Gabor-domain optical coherence microscopy (GD-OCM) is a volumetric high-resolution technique capable of acquiring three-dimensional (3-D) skin images with histological resolution. Real-time image processing is needed to enable GD-OCM imaging in a clinical setting. We present a parallelized and scalable multi-graphics processing unit (GPU) computing framework for real-time GD-OCM image processing. A parallelized control mechanism was developed to individually assign computation tasks to each of the GPUs. For each GPU, the optimal number of amplitude-scans (A-scans) to be processed in parallel was selected to maximize GPU memory usage and core throughput. We investigated five computing architectures for computational speed-up in processing 1000×1000 A-scans. The proposed parallelized multi-GPU computing framework enables processing at a computational speed faster than the GD-OCM image acquisition, thereby facilitating high-speed GD-OCM imaging in a clinical setting. Using two parallelized GPUs, the image processing of a 1×1×0.6  mm3 skin sample was performed in about 13 s, and the performance was benchmarked at 6.5 s with four GPUs. This work thus demonstrates that 3-D GD-OCM data may be displayed in real-time to the examiner using parallelized GPU processing.

  6. Dynamic Aberration Correction for Conformal Window of High-Speed Aircraft Using Optimized Model-Based Wavefront Sensorless Adaptive Optics.

    PubMed

    Dong, Bing; Li, Yan; Han, Xin-Li; Hu, Bin

    2016-09-02

    For high-speed aircraft, a conformal window is used to optimize the aerodynamic performance. However, the local shape of the conformal window leads to large amounts of dynamic aberrations varying with look angle. In this paper, deformable mirror (DM) and model-based wavefront sensorless adaptive optics (WSLAO) are used for dynamic aberration correction of an infrared remote sensor equipped with a conformal window and scanning mirror. In model-based WSLAO, aberration is captured using Lukosz mode, and we use the low spatial frequency content of the image spectral density as the metric function. Simulations show that aberrations induced by the conformal window are dominated by some low-order Lukosz modes. To optimize the dynamic correction, we can only correct dominant Lukosz modes and the image size can be minimized to reduce the time required to compute the metric function. In our experiment, a 37-channel DM is used to mimic the dynamic aberration of conformal window with scanning rate of 10 degrees per second. A 52-channel DM is used for correction. For a 128 × 128 image, the mean value of image sharpness during dynamic correction is 1.436 × 10(-5) in optimized correction and is 1.427 × 10(-5) in un-optimized correction. We also demonstrated that model-based WSLAO can achieve convergence two times faster than traditional stochastic parallel gradient descent (SPGD) method.

  7. Low power consumption high speed CMOS dual-modulus 15/16 prescaler for optical and wireless communications

    NASA Astrophysics Data System (ADS)

    Liu, Hui-Min; Zhang, Xiao-Xing; Dai, Yu-Jie; Lv, Ying-Jie

    2011-09-01

    Frequency synthesizer is an important part of optical and wireless communication system. Low power comsumption prescaler is one of the most critical unit of frequency synthesizer. For the frequency divider, it must be programmable for channel selection in multi-channel communication systems. A dual-modulus prescaler (DMP) is needed to provide variable division ratios. DMP is considered as a critical power dissipative block since it always operates at full speed. This paper introduces a high speed and low power complementary metal oxide semiconductor (CMOS) 15/16 DMP based on true single-phase-clock (TSPC) and transmission gates (TGs) cell. A conventional TSPC is optimized in terms of devices size, and it is resimulated. The TSPC is used in the synchronous and asynchronous counter. TGs are used in the control logic. The DMP circuit is implemented in 0.18 μm CMOS process. The simulation results are provided. The results show wide operating frequency range from 7.143 MHz to 4.76 GHz and it comsumes 3.625 mW under 1.8 V power supply voltage at 4.76 GHz.

  8. Substrate-Dependence of the Freezing Dynamics of Supercooled Water Films: A High-Speed Optical Microscope Study.

    PubMed

    Pach, Elzbieta; Rodríguez, Laura; Verdaguer, Albert

    2017-09-18

    The freezing of supercooled water films on silicon-based surfaces was investigated using a high-speed camera coupled to an optical microscope. We were able to study in detail the two phases or stages in during water freezing; the first stage, faster, when dendritic grow occurs co-planar with the cold surface of the substrate and the second stage, slower, when the ice formed on the surface grows vertically until all the film is frozen. Several differentiated processes were identified during the freezing: two dimensional dendrite growing on the substrate interface, vertical dendrite growing, formation and evolution of ice domains, trapping of air bubbles in ice and freezing of the water film surface. We found all this process to be dependent on the supercooling temperature and the substrate used. Dendrite/ice front growing was found to be dependent on thermal properties of the substrate but could not to be unequivocally related to them. Finally for low supercooling it was observed a direct relationship between the morphology of the dendrites formed in the first stage, which depends on the substrate and the roughness and shape of the surface of the ice, when frozen of the film was completed.

  9. Parallelized multi-graphics processing unit framework for high-speed Gabor-domain optical coherence microscopy

    NASA Astrophysics Data System (ADS)

    Tankam, Patrice; Santhanam, Anand P.; Lee, Kye-Sung; Won, Jungeun; Canavesi, Cristina; Rolland, Jannick P.

    2014-07-01

    Gabor-domain optical coherence microscopy (GD-OCM) is a volumetric high-resolution technique capable of acquiring three-dimensional (3-D) skin images with histological resolution. Real-time image processing is needed to enable GD-OCM imaging in a clinical setting. We present a parallelized and scalable multi-graphics processing unit (GPU) computing framework for real-time GD-OCM image processing. A parallelized control mechanism was developed to individually assign computation tasks to each of the GPUs. For each GPU, the optimal number of amplitude-scans (A-scans) to be processed in parallel was selected to maximize GPU memory usage and core throughput. We investigated five computing architectures for computational speed-up in processing 1000×1000 A-scans. The proposed parallelized multi-GPU computing framework enables processing at a computational speed faster than the GD-OCM image acquisition, thereby facilitating high-speed GD-OCM imaging in a clinical setting. Using two parallelized GPUs, the image processing of a 1×1×0.6 mm3 skin sample was performed in about 13 s, and the performance was benchmarked at 6.5 s with four GPUs. This work thus demonstrates that 3-D GD-OCM data may be displayed in real-time to the examiner using parallelized GPU processing.

  10. Dynamic Aberration Correction for Conformal Window of High-Speed Aircraft Using Optimized Model-Based Wavefront Sensorless Adaptive Optics

    PubMed Central

    Dong, Bing; Li, Yan; Han, Xin-li; Hu, Bin

    2016-01-01

    For high-speed aircraft, a conformal window is used to optimize the aerodynamic performance. However, the local shape of the conformal window leads to large amounts of dynamic aberrations varying with look angle. In this paper, deformable mirror (DM) and model-based wavefront sensorless adaptive optics (WSLAO) are used for dynamic aberration correction of an infrared remote sensor equipped with a conformal window and scanning mirror. In model-based WSLAO, aberration is captured using Lukosz mode, and we use the low spatial frequency content of the image spectral density as the metric function. Simulations show that aberrations induced by the conformal window are dominated by some low-order Lukosz modes. To optimize the dynamic correction, we can only correct dominant Lukosz modes and the image size can be minimized to reduce the time required to compute the metric function. In our experiment, a 37-channel DM is used to mimic the dynamic aberration of conformal window with scanning rate of 10 degrees per second. A 52-channel DM is used for correction. For a 128 × 128 image, the mean value of image sharpness during dynamic correction is 1.436 × 10−5 in optimized correction and is 1.427 × 10−5 in un-optimized correction. We also demonstrated that model-based WSLAO can achieve convergence two times faster than traditional stochastic parallel gradient descent (SPGD) method. PMID:27598161

  11. Optimization of PAM-4 transmitters based on lumped silicon photonic MZMs for high-speed short-reach optical links.

    PubMed

    Zhou, Shiyu; Wu, Hsin-Ta; Sadeghipour, Khosrov; Scarcella, Carmelo; Eason, Cormac; Rensing, Marc; Power, Mark J; Antony, Cleitus; O'Brien, Peter; Townsend, Paul D; Ossieur, Peter

    2017-02-20

    We demonstrate how to optimize the performance of PAM-4 transmitters based on lumped Silicon Photonic Mach-Zehnder Modulators (MZMs) for short-reach optical links. Firstly, we analyze the trade-off that occurs between extinction ratio and modulation loss when driving an MZM with a voltage swing less than the MZM's Vπ. This is important when driver circuits are realized in deep submicron CMOS process nodes. Next, a driving scheme based upon a switched capacitor approach is proposed to maximize the achievable bandwidth of the combined lumped MZM and CMOS driver chip. This scheme allows the use of lumped MZM for high speed optical links with reduced RF driver power consumption compared to the conventional approach of driving MZMs (with transmission line based electrodes) with a power amplifier. This is critical for upcoming short-reach link standards such as 400Gb/s 802.3 Ethernet. The driver chip was fabricated using a 65nm CMOS technology and flip-chipped on top of the Silicon Photonic chip (fabricated using IMEC's ISIPP25G technology) that contains the MZM. Open eyes with 4dB extinction ratio for a 36Gb/s (18Gbaud) PAM-4 signal are experimentally demonstrated. The electronic driver chip has a core area of only 0.11mm2 and consumes 236mW from 1.2V and 2.4V supply voltages. This corresponds to an energy efficiency of 6.55pJ/bit including Gray encoder and retiming, or 5.37pJ/bit for the driver circuit only.

  12. High-speed solar-blind UV photodetectors using high-Al content Al0.64Ga0.36N/Al0.34Ga0.66N multiple quantum wells

    NASA Astrophysics Data System (ADS)

    Muhtadi, Sakib; Hwang, Seong Mo; Coleman, Antwon L.; Lunev, Alexander; Asif, Fatima; Chava, V. S. N.; Chandrashekhar, M. V. S.; Khan, Asif

    2017-01-01

    We demonstrate high-external quantum efficiency (˜50%) solar-blind AlGaN p-n junction photodetectors with high-Al content multiple quantum wells (MQWs). A peak responsivity of 0.1 A/W at 250 nm, which falls >103 by 280 nm, indicates that the optical absorption is dominated by the MQW structures. At a reverse bias of 0.5 V, the dark current is <0.1 pA. The readout RC-limited time response is measured as 0.4 µs, and an achievable detector RC-limited time response of 2 ns is estimated. The devices do not show internal gain, which accounts for their high speed.

  13. Fourier domain mode locking at 1050 nm for ultra-high-speed optical coherence tomography of the human retina at 236,000 axial scans per second.

    PubMed

    Huber, R; Adler, D C; Srinivasan, V J; Fujimoto, J G

    2007-07-15

    A Fourier domain mode-locked (FDML) laser at 1050 nm for ultra-high-speed optical coherence tomography (OCT) imaging of the human retina is demonstrated. Achievable performance, physical limitations, design rules, and scaling principles for FDML operation and component choice in this wavelength range are discussed. The fiber-based FDML laser operates at a sweep rate of 236 kHz over a 63 nm tuning range, with 7 mW average output power. Ultra-high-speed retinal imaging is demonstrated at 236,000 axial scans per second. This represents a speed improvement of approximately10x over typical high-speed OCT systems, paving the way for densely sampled volumetric data sets and new imaging protocols.

  14. PREFACE: Quantum Optics III

    NASA Astrophysics Data System (ADS)

    Orszag, M.; Retamal, J. C.; Saavedra, C.; Wallentowitz, S.

    2007-06-01

    All the 50 years of conscious pondering did not bring me nearer to an answer to the question `what is light quanta?'. Nowadays, every rascal believes, he knows it, however, he is mistaken. (A Einstein, 1951 in a letter to M Besso) Quantum optics has played a key role in physics in the last several decades. On the other hand, in these early decades of the information age, the flow of information is becoming more and more central to our daily life. Thus, the related fields of quantum information theory as well as Bose-Einstein condensation have acquired tremendous importance in the last couple of decades. In Quantum Optics III, a fusion of these fields appears in a natural way. Quantum Optics III was held in Pucón, Chile, in 27-30 of November, 2006. This beautiful location in the south of Chile is near the lake Villarrica and below the snow covered volcano of the same name. This fantastic environment contributed to a relaxed atmosphere, suitable for informal discussion and for the students to have a chance to meet the key figures in the field. The previous Quantum Optics conferences took place in Santiago, Chile (Quantum Optics I, 2000) and Cozumel, Mexico (Quantum Optics II, 2004). About 115 participants from 19 countries attended and participated in the meeting to discuss a wide variety of topics such as quantum-information processing, experiments related to non-linear optics and squeezing, various aspects of entanglement including its sudden death, correlated twin-photon experiments, light storage, decoherence-free subspaces, Bose-Einstein condensation, discrete Wigner functions and many more. There was a strong Latin-American participation from Argentina, Brazil, Chile, Colombia, Peru, Uruguay, Venezuela and Mexico, as well as from Europe, USA, China, and Australia. New experimental and theoretical results were presented at the conference. In Latin-America a quiet revolution has taken place in the last twenty years. Several groups working in quantum optics and

  15. High-speed ultrahigh resolution optical coherence tomography before and after ranibizumab for age-related macular degeneration.

    PubMed

    Witkin, Andre J; Vuong, Laurel N; Srinivasan, Vivek J; Gorczynska, Iwona; Reichel, Elias; Baumal, Caroline R; Rogers, Adam H; Schuman, Joel S; Fujimoto, James G; Duker, Jay S

    2009-05-01

    To evaluate intraretinal anatomy in patients with exudative age-related macular degeneration (AMD) using high-speed ultrahigh resolution optical coherence tomography (hsUHR-OCT) before and 1 month after intravitreal injection of ranibizumab. Retrospective case series. Twelve eyes of 12 patients. A broad bandwidth superluminescent diode laser light source and spectral/Fourier domain signal detection were used to create a prototype hsUHR-OCT instrument with 3.5 mum axial image resolution and approximately 25,000 lines/second acquisition speed. Twelve eyes of 12 patients with exudative AMD were imaged with hsUHR-OCT before and 1 month after intravitreal ranibizumab injection. High pixel density and raster-scanned 3-dimensional (3D) OCT data sets were generated. Three-dimensional imaging software was used to calculate subretinal/retinal pigment epithelium fluid volume and volume of the fibrovascular lesion. Qualitative and quantitative analysis of hsUHR-OCT images and 3D data sets. All eyes had some degree of normalization of macular contour after intravitreal ranibizumab. The inner/outer photoreceptor segment junction visualized on hsUHR-OCT was discontinuous, overlying the fibrovascular lesion in all 12 of 12 eyes both before and after treatment; 9 of 12 eyes had focal areas of thinning of the outer nuclear layer, which remained after treatment. Volumetric measurements were possible in 8 of 12 eyes with 3D-rendering software. Fibrovascular lesion volume did not change significantly after treatment. hsUHR-OCT is capable of unprecedented imaging speed and resolution, making it a valuable instrument in measuring in vivo intraretinal pathology. All 12 eyes had some normalization of macular contour. Fibrovascular lesion volume did not change significantly 1 month after treatment, suggesting that ranibizumab does not cause much initial regression of preexisting neovascular tissue. Photoreceptor abnormalities remained in all patients after treatment of wet AMD, suggesting

  16. Quantum and Nonlinear Optical Imaging

    DTIC Science & Technology

    2007-11-02

    Quantum and Nonlinear Optical Imaging Final Report Robert W. Boyd, Institute of Optics, University of Rochester, Rochester, NY 14627 716-275-2329...boyd@optics.rochester.edu July 1, 2004 Year 1 Accomplishments This project is aimed at developing quantum and nonlinear optical techniques for...importantly began the experimental portion of the research. We showed theoretically that the quantum statistical features of spontaneous parametric

  17. High-speed endless optical polarization stabilization using calibrated waveplates and field-programmable gate array-based digital controller.

    PubMed

    Hidayat, Ariya; Koch, Benjamin; Zhang, Hongbin; Mirvoda, Vitali; Lichtinger, Manfred; Sandel, David; Noé, Reinhold

    2008-11-10

    A truly endless polarization stabilization experiment with a tracking speed of 15 krad/s is presented. The high-speed polarization tracking is realized by using calibrated lithium niobate linear retardation waveplates as the polarization transformers combined with a very fast digital controller running on a field-programmable gate array (FPGA).

  18. Quantum optical rotatory dispersion

    PubMed Central

    Tischler, Nora; Krenn, Mario; Fickler, Robert; Vidal, Xavier; Zeilinger, Anton; Molina-Terriza, Gabriel

    2016-01-01

    The phenomenon of molecular optical activity manifests itself as the rotation of the plane of linear polarization when light passes through chiral media. Measurements of optical activity and its wavelength dependence, that is, optical rotatory dispersion, can reveal information about intricate properties of molecules, such as the three-dimensional arrangement of atoms comprising a molecule. Given a limited probe power, quantum metrology offers the possibility of outperforming classical measurements. This has particular appeal when samples may be damaged by high power, which is a potential concern for chiroptical studies. We present the first experiment in which multiwavelength polarization-entangled photon pairs are used to measure the optical activity and optical rotatory dispersion exhibited by a solution of chiral molecules. Our work paves the way for quantum-enhanced measurements of chirality, with potential applications in chemistry, biology, materials science, and the pharmaceutical industry. The scheme that we use for probing wavelength dependence not only allows one to surpass the information extracted per photon in a classical measurement but also can be used for more general differential measurements. PMID:27713928

  19. Quantum optical rotatory dispersion.

    PubMed

    Tischler, Nora; Krenn, Mario; Fickler, Robert; Vidal, Xavier; Zeilinger, Anton; Molina-Terriza, Gabriel

    2016-10-01

    The phenomenon of molecular optical activity manifests itself as the rotation of the plane of linear polarization when light passes through chiral media. Measurements of optical activity and its wavelength dependence, that is, optical rotatory dispersion, can reveal information about intricate properties of molecules, such as the three-dimensional arrangement of atoms comprising a molecule. Given a limited probe power, quantum metrology offers the possibility of outperforming classical measurements. This has particular appeal when samples may be damaged by high power, which is a potential concern for chiroptical studies. We present the first experiment in which multiwavelength polarization-entangled photon pairs are used to measure the optical activity and optical rotatory dispersion exhibited by a solution of chiral molecules. Our work paves the way for quantum-enhanced measurements of chirality, with potential applications in chemistry, biology, materials science, and the pharmaceutical industry. The scheme that we use for probing wavelength dependence not only allows one to surpass the information extracted per photon in a classical measurement but also can be used for more general differential measurements.

  20. Introduction to optical quantum cryptography

    NASA Astrophysics Data System (ADS)

    Adamski, Tomasz

    2008-01-01

    In recent years very fast progress in the domain of Optical Quantum Cryptography is observed both in theoretical and practical aspects. The paper is a short tutorial review of basic concepts of Optical Quantum Cryptography (OQC) and Quantum Key Distribution (QKD).

  1. Reconfigurable high-speed optical fibre networks: Optical wavelength conversion and switching using VCSELs to eliminate channel collisions

    NASA Astrophysics Data System (ADS)

    Boiyo, Duncan Kiboi; Chabata, T. V.; Kipnoo, E. K. Rotich; Gamatham, R. R. G.; Leitch, A. W. R.; Gibbon, T. B.

    2017-01-01

    We experimentally provide an alternative solution to channel collisions through up-wavelength conversion and switching by using vertical cavity surface-emitting lasers (VCSELs). This has been achieved by utilizing purely optical wavelength conversion on VCSELs at the low attenuation, 1550 nm transmission window. The corresponding transmission and bit error-rate (BER) performance evaluation is also presented. In this paper, two 1550 nm VCSELs with 50-150 GHz channel spacing are modulated with a 10 Gb/s NRZ PRBS 27-1 data and their interferences investigated. A channel interference penalty range of 0.15-1.63 dB is incurred for 150-50 GHz channel spacing without transmission. To avoid channel collisions and to minimize high interference penalties, the transmitting VCSEL with data is injected into the side-mode of a slave VCSEL to obtain a new up converted wavelength. A 16 dB extinction ratio of the incoming wavelength is achieved when a 15 dBm transmitting beam is injected into the side-mode of a -4.5 dBm slave VCSEL. At 8.5 Gb/s, a 1.1 dB conversion and a 0.5 dB transmission penalties are realized when the converted wavelength is transmitted over a 24.7 km G.655 fibre. This work offers a low-cost, effective wavelength conversion and channel switching to reduce channel collision probability by reconfiguring channels at the node of networks.

  2. Quantifying the high-speed running and sprinting profiles of elite female soccer players during competitive matches using an Optical Player Tracking System.

    PubMed

    Mara, Jocelyn K; Thompson, Kevin G; Pumpa, Kate L; Morgan, Stuart

    2016-09-06

    The aim of this study was to determine the high-speed running and sprinting profiles of elite female soccer players during competitive matches using a new Optical Player Tracking System. Eight stationary video cameras were positioned at vantage points surrounding the soccer field so that when each camera view was combined the entire field could be viewed simultaneously. Following each match, an optical player tracking system detected the coordinates (x,y) of each player for every video frame. Algorithms applied to the x and y coordinates were used to determine activity variables for twelve elite female players across seven competitive matches. Players covered 9,220-10,581 m of total distance, 1,772-2,917 m of high-speed running (3.4-5.3 m·s) distance and 417-850 m of sprinting (>5.4 m·s) distance, with variations between positional groups (p < 0.001, partial η = 0.444-0.488). Similarly, the number of high-speed runs differed between positional groups (p = 0.002, partial η = 0.342) and a large proportion of high-speed runs (81-84 %) and sprints (71-78 %) were performed over distances less than 10 m. Mean time between high-speed runs (13.9 s ± 4.4) and sprints (86.5 s ± 38.0) varied according to playing position (p < 0.001, partial η = 0.409) and time period of the match (p < 0.001, partial η = 0.113 - 0.310). The results of this study can be used to design match-specific conditioning drills, and shows that coaches should take an individualised approach to training load monitoring according to position.

  3. The NACA High-Speed Motion-Picture Camera Optical Compensation at 40,000 Photographs Per Second

    NASA Technical Reports Server (NTRS)

    Miller, Cearcy D

    1946-01-01

    The principle of operation of the NACA high-speed camera is completely explained. This camera, operating at the rate of 40,000 photographs per second, took the photographs presented in numerous NACA reports concerning combustion, preignition, and knock in the spark-ignition engine. Many design details are presented and discussed, details of an entirely conventional nature are omitted. The inherent aberrations of the camera are discussed and partly evaluated. The focal-plane-shutter effect of the camera is explained. Photographs of the camera are presented. Some high-speed motion pictures of familiar objects -- photoflash bulb, firecrackers, camera shutter -- are reproduced as an illustration of the quality of the photographs taken by the camera.

  4. Simultaneous imaging of multiple focal planes for three-dimensional microscopy using ultra-high-speed adaptive optics.

    PubMed

    Duocastella, Martí; Sun, Bo; Arnold, Craig B

    2012-05-01

    Traditional white-light and fluorescent imaging techniques provide powerful methods to extract high-resolution information from two-dimensional (2-D) sections, but to retrieve information from a three-dimensional (3-D) volume they require relatively slow scanning methods that result in increased acquisition time. Using an ultra-high speed liquid lens, we circumvent this problem by simultaneously acquiring images from multiple focal planes. We demonstrate this method by imaging microparticles and cells flowing in 3-D microfluidic channels.

  5. High Speed Quantum Key Distribution System Supports One-Time Pad Encryption of Real-Time Video

    DTIC Science & Technology

    2006-01-01

    enough to directly sample signals at GHz rates, but the SerDes is. Part of the startup configuration procedure involves aligning the quantum channels...programmable gate array (FPGA) and gigabit Ethernet serializers/deserializers ( SerDes ): one for the classical channel and four for the quantum...portions of the PCB pair are shown in figure 3. Each PCB contains an FPGA and a pair of SerDes . Each SerDes can support up to four bi-directional

  6. Monolithically integrated quantum dot optical modulator with Semiconductor optical amplifier for short-range optical communications

    NASA Astrophysics Data System (ADS)

    Yamamoto, Naokatsu; Akahane, Kouichi; Umezawa, Toshimasa; Kawanishi, Tetsuya

    2015-04-01

    A monolithically integrated quantum dot (QD) optical gain modulator (OGM) with a QD semiconductor optical amplifier (SOA) was successfully developed. Broadband QD optical gain material was used to achieve Gbps-order high-speed optical data transmission, and an optical gain change as high as approximately 6-7 dB was obtained with a low OGM voltage of 2.0 V. Loss of optical power due to insertion of the device was also effectively compensated for by the SOA section. Furthermore, it was confirmed that the QD-OGM/SOA device helped achieve 6.0-Gbps error-free optical data transmission over a 2.0-km-long photonic crystal fiber. We also successfully demonstrated generation of Gbps-order, high-speed, and error-free optical signals in the >5.5-THz broadband optical frequency bandwidth larger than the C-band. These results suggest that the developed monolithically integrated QD-OGM/SOA device will be an advantageous and compact means of increasing the usable optical frequency channels for short-reach communications.

  7. Static gain saturation in quantum dot semiconductor optical amplifiers.

    PubMed

    Meuer, Christian; Kim, Jungho; Laemmlin, Matthias; Liebich, Sven; Capua, Amir; Eisenstein, Gadi; Kovsh, Alexey R; Mikhrin, Sergey S; Krestnikov, Igor L; Bimberg, Dieter

    2008-05-26

    Measurements of saturated amplified spontaneous emission-spectra of quantum dot semiconductor optical amplifiers demonstrate efficient replenishment of the quantum-dot ground state population from excited states. This saturation behavior is perfectly modeled by a rate equation model. We examined experimentally the dependence of saturation on the drive current and the saturating optical pump power as well as on the pump wavelength. A coherent noise spectral hole is observed with which we assess dynamical properties and propose optimization of the SOA operating parameters for high speed applications.

  8. A high speed three-dimensional spectral domain optical coherence tomography with <2 μm axial resolution using wide bandwidth femtosecond mode-locked laser

    NASA Astrophysics Data System (ADS)

    Kuroda, Hiroto; Baba, Motoyoshi; Suzuki, Masayuki; Yoneya, Shin

    2013-06-01

    We have developed an ultra-high-resolution optical coherence tomography (OCT) equipment, using a 200 nm bandwidth spectrometer and a mode-locked femtosecond laser. We have characterized this OCT, obtaining high spatial resolution in the axial direction of less than 2 μm in air via single scanning, within only 20 ms. This corresponds to an ultra-high resolution of less than 1.3 μm for measurements at the fundus retina. High resolution and high speed imaging enables us to selectively obtain a clear three dimensional (3D) lamina cribrosa itself from a 3D optic disc (OD) image in vivo.

  9. Semi-physical simulation of aerodynamic effect on quartz optical window in the high-altitude and high-speed environment

    NASA Astrophysics Data System (ADS)

    Fan, Da; Ming, Xing; Liu, Xinyue; Wang, Guoming; Guo, Wenji

    2017-04-01

    Under the semi-physical simulation model, the aerodynamic pressure, aerodynamic heat effect taking place on the outer surface of optical window in the high-altitude and high-speed environment are analyzed. The first step, based on Reynolds Averaged Navier-Stokes equations, combining CFD simulation technology, aerodynamic pressure and aerodynamic heat loading on optical window were computed in different flying situation. Then, based on the calculated pressure and temperature data caused by aerodynamic effect on the optical window, experiments on aerodynamic effect simulation equipment were conducted. Theoretical and practical simulation results showed that the imaging performance of optical system was not affected by the deformation of Fused quartz glass under the aerodynamic circumstance. The semi-physical simulation model makes advices for the optical window design work and the detection of aviation spectral camera imaging performance.

  10. Roadmap on quantum optical systems

    NASA Astrophysics Data System (ADS)

    Dumke, Rainer; Lu, Zehuang; Close, John; Robins, Nick; Weis, Antoine; Mukherjee, Manas; Birkl, Gerhard; Hufnagel, Christoph; Amico, Luigi; Boshier, Malcolm G.; Dieckmann, Kai; Li, Wenhui; Killian, Thomas C.

    2016-09-01

    This roadmap bundles fast developing topics in experimental optical quantum sciences, addressing current challenges as well as potential advances in future research. We have focused on three main areas: quantum assisted high precision measurements, quantum information/simulation, and quantum gases. Quantum assisted high precision measurements are discussed in the first three sections, which review optical clocks, atom interferometry, and optical magnetometry. These fields are already successfully utilized in various applied areas. We will discuss approaches to extend this impact even further. In the quantum information/simulation section, we start with the traditionally successful employed systems based on neutral atoms and ions. In addition the marvelous demonstrations of systems suitable for quantum information is not progressing, unsolved challenges remain and will be discussed. We will also review, as an alternative approach, the utilization of hybrid quantum systems based on superconducting quantum devices and ultracold atoms. Novel developments in atomtronics promise unique access in exploring solid-state systems with ultracold gases and are investigated in depth. The sections discussing the continuously fast-developing quantum gases include a review on dipolar heteronuclear diatomic gases, Rydberg gases, and ultracold plasma. Overall, we have accomplished a roadmap of selected areas undergoing rapid progress in quantum optics, highlighting current advances and future challenges. These exciting developments and vast advances will shape the field of quantum optics in the future.

  11. High speed handpieces

    PubMed Central

    Bhandary, Nayan; Desai, Asavari; Shetty, Y Bharath

    2014-01-01

    High speed instruments are versatile instruments used by clinicians of all specialties of dentistry. It is important for clinicians to understand the types of high speed handpieces available and the mechanism of working. The centers for disease control and prevention have issued guidelines time and again for disinfection and sterilization of high speed handpieces. This article presents the recent developments in the design of the high speed handpieces. With a view to prevent hospital associated infections significant importance has been given to disinfection, sterilization & maintenance of high speed handpieces. How to cite the article: Bhandary N, Desai A, Shetty YB. High speed handpieces. J Int Oral Health 2014;6(1):130-2. PMID:24653618

  12. Models of optical quantum computing

    NASA Astrophysics Data System (ADS)

    Krovi, Hari

    2017-03-01

    I review some work on models of quantum computing, optical implementations of these models, as well as the associated computational power. In particular, we discuss the circuit model and cluster state implementations using quantum optics with various encodings such as dual rail encoding, Gottesman-Kitaev-Preskill encoding, and coherent state encoding. Then we discuss intermediate models of optical computing such as boson sampling and its variants. Finally, we review some recent work in optical implementations of adiabatic quantum computing and analog optical computing. We also provide a brief description of the relevant aspects from complexity theory needed to understand the results surveyed.

  13. Quantum optics. Gravity meets quantum physics

    SciTech Connect

    Adams, Bernhard W.

    2015-02-27

    Albert Einstein’s general theory of relativity is a classical formulation but a quantum mechanical description of gravitational forces is needed, not only to investigate the coupling of classical and quantum systems but simply to give a more complete description of our physical surroundings. In this issue of Nature Photonics, Wen-Te Liao and Sven Ahrens reveal a link between quantum and gravitational physics. They propose that in the quantum-optical effect of superradiance, the world line of electromagnetic radiation is changed by the presence of a gravitational field.

  14. Optically controlled waveplate at a telecom wavelength using a ladder transition in Rb atoms for all-optical switching and high speed Stokesmetric imaging.

    PubMed

    Krishnamurthy, Subramanian; Tu, Y; Wang, Y; Tseng, S; Shahriar, M S

    2014-11-17

    We demonstrate an optically controlled waveplate at ~1323 nm using the 5S(1/2)-5P(1/2)-6S(1/2) ladder transition in a Rb vapor cell. The lower leg of the transitions represents the control beam, while the upper leg represents the signal beam. We show that we can place the signal beam in any arbitrary polarization state with a suitable choice of polarization of the control beam. Specifically, we demonstrate a differential phase retardance of ~180 degrees between the two circularly polarized components of a linearly polarized signal beam. We also demonstrate that the system can act as a Quarter Wave plate. The optical activity responsible for the phase retardation process is explained in terms of selection rules involving the Zeeman sublevels. As such, the system can be used to realize a fast Stokesmetric imaging system with a speed of ~3 MHz. When implemented using a tapered nano fiber embedded in a vapor cell, this system can be used to realize an ultra-low power all-optical switch as well as a Quantum Zeno Effect based all-optical logic gate by combining it with an optically controlled polarizer, previously demonstrated by us. We present numerical simulations of the system using a comprehensive model which incorporates all the relevant Zeeman sub-levels in the system, using a novel algorithm recently developed by us for efficient computation of the evolution of an arbitrary large scale quantum system.

  15. Quantum optics, cavity QED, and quantum optomechanics

    NASA Astrophysics Data System (ADS)

    Meystre, Pierre

    2013-05-01

    Quantum optomechanics provides a universal tool to achieve the quantum control of mechanical motion. It does that in devices spanning a vast range of parameters, with mechanical frequencies from a few Hertz to GHz, and with masses from 10-20 g to several kilos. Its underlying ideas can be traced back to the study of gravitational wave antennas, quantum optics, cavity QED and laser cooling which, when combined with the recent availability of advanced micromechanical and nanomechanical devices, opens a path to the realization of macroscopic mechanical systems that operate deep in the quantum regime. At the fundamental level this development paves the way to experiments that will lead to a more profound understanding of quantum mechanics; and from the point of view of applications, quantum optomechanical techniques will provide motion and force sensing near the fundamental limit imposed by quantum mechanics (quantum metrology) and significantly expand the toolbox of quantum information science. After a brief summary of key historical developments, the talk will give a broad overview of the current state of the art of quantum optomechanics, and comment on future prospects both in applied and in fundamental science. Work supported by NSF, ARO and the DARPA QuASAR and ORCHID programs.

  16. High-speed optical transmissions over a second- and third-order dispersion-managed DSF span with parametric tunable dispersion compensator.

    PubMed

    Tanizawa, Ken; Kurosu, Takayuki; Namiki, Shu

    2010-05-10

    A wideband and fast tunable chromatic dispersion compensator is one of the key components for the future high-speed optical transmissions. We have so far proposed and demonstrated a new tunable dispersion compensation scheme called parametric tunable dispersion compensator (P-TDC), which is based on the combination of parametric frequency conversion and frequency dependent dispersive media. The P-TDC has many attractive features such as a seamlessly wideband operation, wide tunable range and fast dispersion tuning. In fact, with appropriate configurations of dispersive media, the P-TDC can compensate the dispersion slope of transmission fibers even though the second-order dispersion is small. In this paper, we use such a P-TDC scheme and successfully achieve high-speed optical transmissions over a second- and third-order dispersion managed dispersion shifted fiber (DSF) span. The transmission experiments show low-penalty 172 Gbit/s return-to-zero on-off-keying transmissions over 126-km DSF. (c) 2010 Optical Society of America.

  17. Choroidal neovascularization analyzed on ultra-high speed swept source optical coherence tomography angiography compared to spectral domain optical coherence tomography angiography

    PubMed Central

    Novais, Eduardo A.; Adhi, Mehreen; Moult, Eric M.; Louzada, Ricardo N.; Cole, Emily D.; Husvogt, Lennart; Lee, ByungKun; Dang, Sabin; Regatieri, Caio V. S.; Witkin, André J.; Baumal, Caroline R.; Hornegger, Joachim; Jayaraman, Vijaysekhar; Fujimoto, James G; Duker, Jay S.; Waheed, Nadia K.

    2016-01-01

    Purpose To compare visualization of choroidal neovascularization (CNV) secondary to age-related macular degeneration (AMD) using an ultra-high speed swept-source (SS)-optical coherence tomography angiography (OCTA) prototype versus a spectral-domain (SD)-OCTA device. Design Comparative analysis of diagnostic instruments. Methods Patients were prospectively recruited to be imaged on SD-OCT and SS-OCT devices on the same day. The SD-OCT device employed is the RTVue Avanti that operates at ~840nm wavelength and 70,000 A-scans/second. The SS-OCT device used is an ultra-high speed long-wavelength prototype that operates at ~1050nm wavelength and 400,000 A-scans/second. Two observers independently measured the CNV area on OCTA en face images from the two devices using ImageJ. The non-parametric Wilcoxon signed-rank test was used to compare area measurements and p-values of <0.05 were considered statistically significant. Results Fourteen eyes from 13 patients were enrolled. The CNV in 11 eyes (78.6%) were classified as type-1, 2 eyes (14.3%) as type-2, and 1 eye (7.1%) as mixed type. Total CNV area measured using SS-OCT and SD-OCT 3mm × 3mm OCTA were 0.949 ± 1.168mm2 and 0.340 ± 0.301mm2, respectively (p=0.001). For the 6mm × 6mm OCTA the total CNV area using SS-OCT and SD-OCT were 1.218 ± 1.284mm2 and 0.604 ± 0.597mm2, respectively (p=0.0019). The field of view did not significantly affect the measured CNV area (p=0.19 and p=0.18 for SS-OCT and SD-OCT respectively). Conclusion SS-OCTA yielded significantly larger CNV areas than SD-OCTA. It is possible that SS-OCTA is better able to demarcate the full extent of CNV vasculature. PMID:26851725

  18. Rapid programmable/code-length-variable, time-domain bit-by-bit code shifting for high-speed secure optical communication.

    PubMed

    Gao, Zhensen; Dai, Bo; Wang, Xu; Kataoka, Nobuyuki; Wada, Naoya

    2011-05-01

    We propose and experimentally demonstrate a time-domain bit-by-bit code-shifting scheme that can rapidly program ultralong, code-length variable optical code by using only a dispersive element and a high-speed phase modulator for improving information security. The proposed scheme operates in the bit overlap regime and could eliminate the vulnerability of extracting the code by analyzing the fine structure of the time-domain spectral phase encoded signal. It is also intrinsically immune to eavesdropping via conventional power detection and differential-phase-shift-keying (DPSK) demodulation attacks. With this scheme, 10 Gbits/s of return-to-zero-DPSK data secured by bit-by-bit code shifting using up to 1024 chip optical code patterns have been transmitted over 49 km error free. The proposed scheme exhibits the potential for high-data-rate secure optical communication and to realize even one time pad.

  19. Two-tone intensity-modulated optical stimulus for self-referencing microwave characterization of high-speed photodetectors

    NASA Astrophysics Data System (ADS)

    Wang, Heng; Zhang, Shangjian; Zou, Xinhai; Zhang, Yali; Lu, Rongguo; Zhang, Zhiyao; Zhang, Xiaoxia; Liu, Yong

    2016-08-01

    The two-tone intensity modulated optical stimulus is proposed and demonstrated for measuring the high-frequency response of photodetectors. The method provides a narrow linewidth and wide bandwidth optical stimulus based on the two-tone modulation of a Mach-Zehnder electro-optical intensity modulator, and achieves the self-referenced measurement of photodetectors without the need for correcting the power variation of optical stimulus. Moreover, the two-tone intensity modulation method allows bias-independent measurement with doubled measuring frequency range. In the experiment, the consistency between our method and the conventional methods verifies the simple but accurate measurement.

  20. High-Speed Quantum Key Distribution Systems for Optical Fiber Networks in Campus and Metro Areas

    DTIC Science & Technology

    2008-01-01

    since low-cost vertical cavity surface emitting lasers (VCSELs) and silicon-based avalanche photodiodes (APDs) work at this wavelength very well. Our...The available detectors that operate in this wavelength are InGaAs avalanche photodiodes (APD) [20] and superconducting single-photon detectors [21...InGaAs APDs must be operated in a gated mode ( Geiger mode ) and the system clock rate is limited by the available gating frequency of the device

  1. High-speed x-ray video demonstrates significant skin movement errors with standard optical kinematics during rat locomotion

    PubMed Central

    Bauman, Jay M.; Chang, Young-Hui

    2009-01-01

    The sophistication of current rodent injury and disease models outpaces that of the most commonly used behavioral assays. The first objective of this study was to measure rat locomotion using high-speed x-ray video to establish an accurate baseline for rat hindlimb kinematics. The second objective was to quantify the kinematics errors due to skin movement artefacts by simultaneously recording and comparing hindlimb kinematics derived from skin markers and from direct visualization of skeletal landmarks. Joint angle calculations from skin-derived kinematics yielded errors as high as 39° in the knee and 31° in the hip around paw contact with respect to the x-ray data. Triangulation of knee position from the ankle and hip skin markers provided closer, albeit still inaccurate, approximations of bone-derived, x-ray kinematics. We found that soft tissue movement errors are the result of multiple factors, the most impressive of which is overall limb posture. Treadmill speed had surprisingly little effect on kinematics errors. These findings illustrate the significance and context of skin movement error in rodent kinematics. PMID:19900476

  2. High-speed X-ray video demonstrates significant skin movement errors with standard optical kinematics during rat locomotion.

    PubMed

    Bauman, Jay M; Chang, Young-Hui

    2010-01-30

    The sophistication of current rodent injury and disease models outpaces that of the most commonly used behavioral assays. The first objective of this study was to measure rat locomotion using high-speed X-ray video to establish an accurate baseline for rat hindlimb kinematics. The second objective was to quantify the kinematics errors due to skin movement artefacts by simultaneously recording and comparing hindlimb kinematics derived from skin markers and from direct visualization of skeletal landmarks. Joint angle calculations from skin-derived kinematics yielded errors as high as 39 degrees in the knee and 31 degrees in the hip around paw contact with respect to the X-ray data. Triangulation of knee position from the ankle and hip skin markers provided closer, albeit still inaccurate, approximations of bone-derived, X-ray kinematics. We found that soft tissue movement errors are the result of multiple factors, the most impressive of which is overall limb posture. Treadmill speed had surprisingly little effect on kinematics errors. These findings illustrate the significance and context of skin movement error in rodent kinematics. (c) 2009 Elsevier B.V. All rights reserved.

  3. Optically active quantum dots

    NASA Astrophysics Data System (ADS)

    Gerard, Valerie; Govan, Joseph; Loudon, Alexander; Baranov, Alexander V.; Fedorov, Anatoly V.; Gun'ko, Yurii K.

    2015-10-01

    The main goal of our research is to develop new types of technologically important optically active quantum dot (QD) based materials, study their properties and explore their biological applications. For the first time chiral II-VI QDs have been prepared by us using microwave induced heating with the racemic (Rac), D- and L-enantiomeric forms of penicillamine as stabilisers. Circular dichroism (CD) studies of these QDs have shown that D- and L-penicillamine stabilised particles produced mirror image CD spectra, while the particles prepared with a Rac mixture showed only a weak signal. It was also demonstrated that these QDs show very broad emission bands between 400 and 700 nm due to defects or trap states on the surfaces of the nanocrystals. These QDs have demonstrated highly specific chiral recognition of various biological species including aminoacids. The utilisation of chiral stabilisers also allowed the preparation of new water soluble white emitting CdS nano-tetrapods, which demonstrated circular dichroism in the band-edge region of the spectrum. Biological testing of chiral CdS nanotetrapods displayed a chiral bias for an uptake of the D- penicillamine stabilised nano-tetrapods by cancer cells. It is expected that this research will open new horizons in the chemistry of chiral nanomaterials and their application in nanobiotechnology, medicine and optical chemo- and bio-sensing.

  4. Implementation of wavelength selector based on electro-optic effect in Mach-Zehnder interferometers for high speed communications

    NASA Astrophysics Data System (ADS)

    Kumar, Santosh; Bisht, Ashish; Singh, Gurdeep; Choudhary, Kuldeep; Sharma, Divya

    2015-09-01

    The design of 4×1 and 8×1 wavelength selectors have been presented with complete functionality and configuration, which can be used as DWDM components in optical networks. The proposed optical logic unit is based on electro-optic effect in Mach-Zehnder interferometer (MZI). The Mach-Zehnder interferometer (MZI) structures collectively show the powerful capability in switching an input optical signal to a desired output port from a collection of output ports. A strategy for optical wavelength switching has been shown by constructing a design of wavelength selector using MZIs. The paper constitutes the mathematical description of proposed device and thereafter the wavelength switching behavior is analyzed using beam propagation method (BPM). The results are also verified with the help of MATLAB simulations and truth table.

  5. High Speed Research Program

    NASA Technical Reports Server (NTRS)

    Anderson, Robert E.; Corsiglia, Victor R.; Schmitz, Frederic H. (Technical Monitor)

    1994-01-01

    An overview of the NASA High Speed Research Program will be presented from a NASA Headquarters perspective. The presentation will include the objectives of the program and an outline of major programmatic issues.

  6. Quantum optics with interacting polaritons

    NASA Astrophysics Data System (ADS)

    Portolan, Stefano; Savasta, Salvatore

    The excitonic polariton concept was introduced already in 1958 by J. J. Hopfield. Although its description was based on a full quantum theory including light quantization, the investigations of the optical properties of excitons developed mainly independently of quantum optics. In this chapter we shall review exciton polariton quantum optical effects by means of some recent works and results that have appeared in the literature in both bulk semiconductors and in cavity embedded quantum wells. The first manifestation of excitonic quantum-optical coherent dynamics was observed experimentally 20 years later, in 1978, exploiting resonant hyper-parametric scattering. On the other hand, the possibility of generating entangled photon pairs by means of this resonant process was theoretically pointed out only lately in 1999, whereas the experimental evidence for the generation of ultraviolet polarization-entangled photon pairs by means of biexciton resonant parametric emission in a single crystal of semiconductor CuCl was reported only in 2004. The demonstrations of parametric amplification and parametric emission in semiconductor microcavities, together with the possibility of ultrafast optical manipulation and ease of integration of these micro-devices, have increased the interest in possible realization of nonclassical cavity-polariton states. In 2005 an experiment that probes polariton quantum correlations by exploiting quantum complementarity was proposed and realized. These results unequivocally proved that quantum optical effects at single photon level, arising from the interaction of light with electronic excitations of semiconductors and semiconductor nanostructures, were possible within these solid state systems, despite being far from isolated systems. The theoretical predictions that we review are based on a microscopic quantum theory of the nonlinear optical response of interacting electron systems relying on the dynamics controlled truncation scheme extended

  7. Entire thickness profiles of the epithelium and contact lens in vivo imaged with high speed and high resolution optical coherence tomography

    PubMed Central

    Tao, Aizhu; Shao, Yilei; Jiang, Hong; Ye, Yufeng; Lu, Fan; Shen, Meixiao; Zhu, Dexi; Wang, Jianhua

    2013-01-01

    Purpose To test the feasibility of measuring the entire thickness profiles of the epithelium and contact lens in vivo, using high speed and high resolution spectral domain optical coherence tomography (SD-OCT). Methods A custom-built, long scan depth SD-OCT was developed based on a CMOS camera and the axial resolution was about 5.1 µm in tissue. Five eyes of 5 subjects were imaged twice across the horizontal meridian before and while wearing one contact lens (CL). Semi-automatic measurement was done to yield the entire thickness profiles of the epithelium, total cornea, and contact lens after correcting for optical distortion. Results The full width and depth of the epithelium, ocular surface and contact lens were clearly visualized. The epithelial thickness (ET) at the center was 51.9 ± 3.5 µm, it remained at this thickness across the central 7 mm diameter and then increased at both temporal and nasal peripheries. The contact lens profile showed the thinnest point at the center with thickness of 100.3 ± 4.9 µm. The thickness increased towards the mid-periphery and then decreased at the edge. Conclusions This pilot study demonstrated the feasibility of using high speed CMOS-based OCT to evaluate the entire thickness profiles of the epithelium and contact lens in vivo. Further development will be needed to extend the scanning from 2D to 3D with a robust automatic image processing ability. PMID:23982471

  8. Peculiarities in application of DPSK higher-order modulation to high-speed fiber optic communication systems

    NASA Astrophysics Data System (ADS)

    Barbaniel, Eugeni S.

    1992-12-01

    Recently, significant progress was achieved in the creation of high bit-rate optic fiber communication systems based on single-mode technology. The reduction of semiconductor lasers emission band, the increase in the stability of their parameters, as well as the development of lightguides preserving polarization of the propagating optic emission have provided the possibility to apply efficient methods of signal transmission and processing allowing a great increase of the capacity and the range of communication. Heterodyning (homodyning), angular modulation of carriers, and signal division with a relatively small frequency spacing are only a few of them. Single-mode technology has also allowed implementation of discrete phase modulation with all the advantages inherent to it. However, together with the simplicity of technical implementation of the phase modulators based on the transversal electro-optic effect certain problems arise in the creation of demodulator functional units. They are caused due to a rather small wavelength (lambda) of the optic emission compared to the dimensions of optic elements and result in inaccurate signal phase relationships at various points on the optic circuit unless special measures are taken. Besides, it is extremely difficult to perform synchronization of the heterodyne oscillator required for coherent reception. Under these conditions the application of DPSK (or PDM) modulation, in particular, of higher orders becomes more preferable. In this case signal demodulation with PDM can be performed based on autocorrelation, correlation, or on coherent methods possessing their own peculiarities and restrictions in the optic frequency range.

  9. Nonlinear and quantum atom optics.

    PubMed

    Rolston, S L; Phillips, W D

    2002-03-14

    Coherent matter waves in the form of Bose-Einstein condensates have led to the development of nonlinear and quantum atom optics - the de Broglie wave analogues of nonlinear and quantum optics with light. In nonlinear atom optics, four-wave mixing of matter waves and mixing of combinations of light and matter waves have been observed; such progress culminated in the demonstration of phase-coherent matter-wave amplification. Solitons represent another active area in nonlinear atom optics: these non-dispersing propagating modes of the equation that governs Bose-Einstein condensates have been created experimentally, and observed subsequently to break up into vortices. Quantum atom optics is concerned with the statistical properties and correlations of matter-wave fields. A first step in this area is the measurement of reduced number fluctuations in a Bose-Einstein condensate partitioned into a series of optical potential wells.

  10. Coherent receiver design based on digital signal processing in optical high-speed intersatellite links with M-phase-shift keying

    NASA Astrophysics Data System (ADS)

    Schaefer, Semjon; Gregory, Mark; Rosenkranz, Werner

    2016-11-01

    We present simulative and experimental investigations of different coherent receiver designs for high-speed optical intersatellite links. We focus on frequency offset (FO) compensation in homodyne and intradyne detection systems. The considered laser communication terminal uses an optical phase-locked loop (OPLL), which ensures stable homodyne detection. However, the hardware complexity increases with the modulation order. Therefore, we show that software-based intradyne detection is an attractive alternative for OPLL-based homodyne systems. Our approach is based on digital FO and phase noise compensation, in order to achieve a more flexible coherent detection scheme. Analytic results will further show the theoretical impact of the different detection schemes on the receiver sensitivity. Finally, we compare the schemes in terms of bit error ratio measurements and optimal receiver design.

  11. High-speed 100 MHz strain monitor using fiber Bragg grating and optical filter for magnetostriction measurements under ultrahigh magnetic fields

    NASA Astrophysics Data System (ADS)

    Ikeda, Akihiko; Nomura, Toshihiro; Matsuda, Yasuhiro H.; Tani, Shuntaro; Kobayashi, Yohei; Watanabe, Hiroshi; Sato, Keisuke

    2017-08-01

    A high-speed 100 MHz strain monitor using a fiber Bragg grating, an optical filter, and a mode-locked optical fiber laser has been devised, whose resolution is Δ L /L ˜1 0-4. The strain monitor is sufficiently fast and robust for the magnetostriction measurements of materials under ultrahigh magnetic fields generated with destructive pulse magnets, where the sweep rate of the magnetic field is in the range of 10-100 T/μ s. As a working example, the magnetostriction of LaCoO3 was measured at room temperature, 115 K, and 7 ˜ 4.2 K up to a maximum magnetic field of 150 T. The smooth dependence on the squared magnetic field and the first-order transition were observed at 115 K and 7 ˜ 4.2 K, respectively, reflecting the field-induced spin state evolution.

  12. High Capacity High Speed Optical Data Storage System Based on Diffraction-Free Nanobeam. Final Report, 09-02-98 to 03-17-99

    SciTech Connect

    Tin Aye

    1999-06-16

    Physical Optics Corporation (POC) investigated the development of an optical data storage system built around a current well-engineered high-speed optical disk system with an innovative diffraction-free micro-optical element to produce a beam {approximately}250 nm wide with {approximately}4-5 mm depth of focus, allowing the system to address data at {approximately}100 Mbits/second and to store it 100 to 1,000 times more densely ({approximately}10 Gbit/in.{sup 2}) than in present systems. In Phase 1 of this project POC completed a thorough feasibility study by system design and analysis, successfully demonstrated fabrication of the key components, and conducted a proof-of-principle experimental demonstration. Specifically, production of a subwavelength ({approximately}380 nm) large depth of focus ({approximately}4-5 mm) addressing beam was demonstrated by fabricating a special microdiffractive optical element and recording this beam on a standard optical recording disk coated with a photopolymer material.

  13. Optically deviated focusing method based high-speed SD-OCT for in vivo retinal clinical applications

    NASA Astrophysics Data System (ADS)

    Wijesinghe, Ruchire Eranga; Park, Kibeom; Kim, Pilun; Oh, Jaeryung; Kim, Seong-Woo; Kim, Kwangtae; Kim, Beop-Min; Jeon, Mansik; Kim, Jeehyun

    2016-04-01

    The aim of this study is to provide accurately focused, high-resolution in vivo human retinal depth images using an optically deviated focusing method with spectral-domain optical coherence tomography (SD-OCT) system. The proposed method was applied to increase the retinal diagnosing speed of patients with various values of retinal distances (i.e., the distance between the crystalline eye lens and the retina). The increased diagnosing speed was facilitated through an optical modification in the OCT sample arm configuration. Moreover, the optical path length matching process was compensated using the proposed optically deviated focusing method. The developed system was mounted on a bench-top cradle to overcome the motion artifacts. Further, we demonstrated the capability of the system by carrying out in vivo retinal imaging experiments. The clinical trials confirmed that the system was effective in diagnosing normal and abnormal retinal layers as several retinal abnormalities were identified using non-averaged single-shot OCT images, which demonstrate the feasibility of the method for clinical applications.

  14. Quantum optics in coupled quantum dots

    NASA Astrophysics Data System (ADS)

    Garrido, Mauricio

    Coupled quantum dots present an active field of study, both at the fundamental and applied level, due to their atomic and molecular-like energy structure and the ability to design and tune their parameters. Being single-photon emitters, they are systems that behave fully according to the laws of quantum mechanics. The work presented here involved the experimental study of the electro-optical properties of Indium Arsenide, coupled quantum dots. Initial experiments involved the use of spectroscopic methods such as photoluminescence and photoluminescence excitation (PLE). Through such techniques, the top dot's hole energy level structure was mapped and different types of resonant absorption were identified. The characterization of these excited states and the knowledge of how to resonantly excite into them is an integral part of the development of certain controlled spin gates in quantum computation. Additionally, a shift of the spectra in the electric field was observed with varying excitation wavelength through and above the wetting layer, which allowed for direct measurement of the optically-created electric field within the device. This extends the quantum dots' capabilities to using them as electric-field nano-probes and opens up the possibility of an all-optical, fast switching mechanism. In the course of these studies, a novel data visualization method for PLE in this type of system was developed. Finally, to study correlated photon effects, a Hanbury Brown - Twiss experiment was built which revealed bunching and antibunching signals typical of quantum statistics in biexciton cascade emissions. This is an important step towards the experimental investigation of entangled states in coupled quantum dots.

  15. A linearly frequency-swept high-speed-rate multi-wavelength laser for optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Wang, Qiyu; Wang, Zhaoying; Yuan, Quan; Ma, Rui; Du, Tao; Yang, Tianxin

    2017-02-01

    We proposed and demonstrated a linearly frequency-swept multi-wavelength laser source for optical coherence tomography (OCT) eliminating the need of wavenumber space resampling in the postprocessing progress. The source consists of a multi-wavelength fiber laser source (MFS) and an optical sweeping loop. In this novel laser source, an equally spaced multi-wavelength laser is swept simultaneously by a certain step each time in the frequency domain in the optical sweeping loop. The sweeping step is determined by radio frequency (RF) signal which can be precisely controlled. Thus the sweeping behavior strictly maintains a linear relationship between time and frequency. We experimentally achieved linear time-frequency sweeping at a sweeping rate of 400 kHz with our laser source.

  16. Combined CATV and very-high-speed data transmission over a 1550-nm wavelength indoor optical wireless link

    NASA Astrophysics Data System (ADS)

    Chowdhury, M. I. Sakib; Kavehrad, Mohsen; Zhang, Weizhi; Deng, Peng

    2014-02-01

    We report details of an experimental demonstration involving a 15 meter pointed indoor optical wireless link in the 1550-nm wavelength range, that is comprised of a uni-directional Cable Television (CATV) signal and a bi-directional link comprised of two 10 Gbps data links. Four port wavelength division mux-demuxes have been used on both ends of the link. The CATV transmission system is connected to port 1 of the mux-demux. CATV signal consists of both analog and digital parts, and its bandwidth is 1 GHz. The laser is directly modulated by the CATV signal, and at the receiver end, the optical signal is demodulated and fed to a TV. Port 2 of the mux-demux is left unused. Ports 3 and 4 are used for the 10 Gbps links. A bit error rate tester has been used to generate the 10 Gbps signals that are converted to optical wavelengths by enhanced Small Form Factor Pluggable (SFP+) modules at both ends of the setup. Collimators are used at both ends to transmit the combined optical signal that is the output of the mux and to receive the optical signal by focusing it onto a single-mode fiber as the input of the demux. We present results on the CATV portion of the setup and the bit-error-rate performance of the two 10 Gbps links. This experiment shows the feasibility of using pointed optical links in datacenters as secondary links to alleviate the loads of highly utilized wired connections and improve the overall throughput performance of datacenters.

  17. High-speed elasticity-specific nonlinear Brillouin imaging/sensing via time-resolved optical (BISTRO) measurements

    NASA Astrophysics Data System (ADS)

    Meng, Zhaokai; Ballman, Charles W.; Petrov, Georgi I.; Yakovlev, Vladislav V.

    2016-03-01

    Viscoelastic properties of living cells are often directly related to the cell types and their physiological conditions. Unfortunately, all the currently existing methods for analysis of viscoelastic properties of cells, such as micropipette aspiration, atomic force microscopy and optical tweezers are intrinsically slow, limiting their applicability to study large population of cells, which are often needed for either fundamental or clinical studies. In this report, by incorporating the concept of impulsive stimulated Brillouin scattering (ISBS), we report a Brillouin Imaging and Sensing system via Time-Resolved Optical (BISTRO) measurements. We will prove the principle of the BISTRO system by presenting example microscopic measurements and flow/cell cytometry results [1].

  18. High-speed reconfigurable card-to-card optical interconnects based on hybrid free-space and multi-mode fiber propagations.

    PubMed

    Wang, Ke; Nirmalathas, Ampalavanapillai; Lim, Christina; Skafidas, Efstratios; Alameh, Kamal

    2013-12-16

    In this paper, a high-speed reconfigurable card-to-card optical interconnect architecture based on hybrid free-space and multi-mode fiber (MMF) propagation is proposed. The use of free-space signal transmission provides flexibility and reconfigurability and the MMF extends the achievable interconnection range. A printed-circuit-board (PCB) based integrated optical interconnect module is designed and developed and proof-of-concept demonstration experiments are carried out. Results show that 3 × 10 Gb/s reconfigurable optical interconnect is realized with ~12 cm free-space propagation and a 10 m MMF length. In addition, since air turbulence due to high temperature of electronic components and heat dissipation fans always exists in typical interconnect environments and it normally results in system performance degradation, its impact on the proposed reconfigurable optical interconnect scheme is also experimentally investigated. Results indicate that even with comparatively strong air turbulence, 3 × 10 Gb/s optical interconnects with flexibility can still be achieved and the power penalty is <0.7 dB.

  19. A high speed, portable, multi-function, weigh-in-motion (WIM) sensing system and a high performance optical fiber Bragg grating (FBG) demodulator

    NASA Astrophysics Data System (ADS)

    Zhang, Hongtao; Wei, Zhanxiong; Fan, Lingling; Yang, Shangming; Wang, Pengfei; Cui, Hong-Liang

    2010-04-01

    A high speed, portable, multi-function WIM sensing system based on Fiber Bragg Grating (FBG) technology is reported in this paper. This system is developed to measure the total weight, the distribution of weight of vehicle in motion, the distance of wheel axles and the distance between left and right wheels. In this system, a temperature control system and a real-time compensation system are employed to eliminate the drifts of optical fiber Fabry-Pérot tunable filter. Carbon Fiber Laminated Composites are used in the sensor heads to obtain high reliability and sensitivity. The speed of tested vehicles is up to 20 mph, the full scope of measurement is 4000 lbs, and the static resolution of sensor head is 20 lbs. The demodulator has high speed (500 Hz) data collection, and high stability. The demodulator and the light source are packed into a 17'' rack style enclosure. The prototype has been tested respectively at Stevens' campus and Army base. Some experiences of avoiding the pitfalls in developing this system are also presented in this paper.

  20. Optical implementation of quantum orienteering.

    PubMed

    Jeffrey, Evan R; Altepeter, Joseph B; Colci, Madalina; Kwiat, Paul G

    2006-04-21

    We present results from an optical implementation of quantum orienteering, a protocol for communicating directions in space using quantum bits. We show how different types of measurements and encodings can be used to increase the communication efficiency. In particular, if Alice and Bob use two spin- particles for communication and employ joint measurements, they do better than is possible with local operations and classical communication. Furthermore, by using oppositely oriented spins, the achievable communication efficiency is further increased. Finally, we discuss the limitations of an optical approach: our results highlight the usually overlooked nonequivalence of different physical encodings of quantum bits.

  1. Optical Implementation of Quantum Orienteering

    NASA Astrophysics Data System (ADS)

    Jeffrey, Evan R.; Altepeter, Joseph B.; Colci, Madalina; Kwiat, Paul G.

    2006-04-01

    We present results from an optical implementation of quantum orienteering, a protocol for communicating directions in space using quantum bits. We show how different types of measurements and encodings can be used to increase the communication efficiency. In particular, if Alice and Bob use two spin-1/2 particles for communication and employ joint measurements, they do better than is possible with local operations and classical communication. Furthermore, by using oppositely oriented spins, the achievable communication efficiency is further increased. Finally, we discuss the limitations of an optical approach: our results highlight the usually overlooked nonequivalence of different physical encodings of quantum bits.

  2. Optic nerve surface temperature during intradural anterior clinoidectomy: a comparison between high-speed diamond burr and ultrasonic bone curette.

    PubMed

    Kshettry, Varun R; Jiang, Xiaobing; Chotai, Silky; Ammirati, Mario

    2014-07-01

    Ultrasonic bone curettes are increasingly used in cranial base surgery. The heat generated by these devices during anterior clinoidectomy has not been evaluated. The purpose of this study was to compare the optic nerve surface temperature during intradural anterior clinoidectomy using the drill and ultrasonic bone curette. Ten fresh cadaver heads were used. During intradural clinoidectomy and optic nerve unroofing with either a 2-mm diamond burr drill or ultrasonic bone curette, temperature was measured along the medial cisternal and proximal intracanalicular segments of the optic nerve. Additional experiments were performed to determine optimal ultrasonic bone curette settings for anterior clinoidectomy. At the lateral cisternal segment, peak and mean temperature were significantly higher with the ultrasonic bone curette (peak 38.8 vs 29.3 °C, p = 0.03, mean 29.5 vs 22.6 °C, p = 0.003). At the proximal intracanalicular segment, only peak temperature was significantly higher with the ultrasonic bone curette (peak 32.0 vs 23.5 °C, p = 0.02, mean 26.9 vs 22.4 °C, p = 0.07). Using standard company settings, room temperature irrigation fluid was heated by the oscillating tip to peak temperature 36.1 °C without drilling. In order to maintain emitted irrigation fluid at room temperature, optimal settings were power 70 %, cool irrigation (5 °C) at 40 mL/min. Using these settings, the ultrasonic bone curette generated optic nerve surface temperature measurements similar to the drill. Further work is necessary to translate these findings into the operating room.

  3. Narrow-Linewidth Megahertz-Repetition-Rate Optical Parametric Oscillator for High-Speed Flow and Combustion Diagnostics

    DTIC Science & Technology

    2008-01-01

    seeded at the idler [12] using a single-frequency external- cavity diode laser ( ECDL ), two of which, at 780 and 827 nm, are available in our...cavity output coupler and placing a scattering card just after the exit of the optical isolator. The cw ECDL seed-laser beam is passed through the gain...which were selected due to the availability of an ECDL seed laser for line narrowing, as will be discussed in Subsection 3.C. However, when operated

  4. Optical Hybrid Quantum Information Processing

    NASA Astrophysics Data System (ADS)

    Takeda, Shuntaro; Furusawa, Akira

    Historically, two complementary approaches to optical quantum information processing have been pursued: qubits and continuous-variables, each exploiting either particle or wave nature of light. However, both approaches have pros and cons. In recent years, there has been a significant progress in combining both approaches with a view to realizing hybrid protocols that overcome the current limitations. In this chapter, we first review the development of the two approaches with a special focus on quantum teleportation and its applications. We then introduce our recent research progress in realizing quantum teleportation by a hybrid scheme, and mention its future applications to universal and fault-tolerant quantum information processing.

  5. Optical engineering application of modeled photosynthetically active radiation (PAR) for high-speed digital camera dynamic range optimization

    NASA Astrophysics Data System (ADS)

    Alves, James; Gueymard, Christian A.

    2009-08-01

    As efforts to create accurate yet computationally efficient estimation models for clear-sky photosynthetically active solar radiation (PAR) have succeeded, the range of practical engineering applications where these models can be successfully applied has increased. This paper describes a novel application of the REST2 radiative model (developed by the second author) in optical engineering. The PAR predictions in this application are used to predict the possible range of instantaneous irradiances that could impinge on the image plane of a stationary video camera designed to image license plates on moving vehicles. The overall spectral response of the camera (including lens and optical filters) is similar to the 400-700 nm PAR range, thereby making PAR irradiance (rather than luminance) predictions most suitable for this application. The accuracy of the REST2 irradiance predictions for horizontal surfaces, coupled with another radiative model to obtain irradiances on vertical surfaces, and to standard optical image formation models, enable setting the dynamic range controls of the camera to ensure that the license plate images are legible (unsaturated with adequate contrast) regardless of the time of day, sky condition, or vehicle speed. A brief description of how these radiative models are utilized as part of the camera control algorithm is provided. Several comparisons of the irradiance predictions derived from the radiative model versus actual PAR measurements under varying sky conditions with three Licor sensors (one horizontal and two vertical) have been made and showed good agreement. Various camera-to-plate geometries and compass headings have been considered in these comparisons. Time-lapse sequences of license plate images taken with the camera under various sky conditions over a 30-day period are also analyzed. They demonstrate the success of the approach at creating legible plate images under highly variable lighting, which is the main goal of this

  6. Low-noise and high-speed photodetection system using optical feedback with a current amplification function

    NASA Astrophysics Data System (ADS)

    Akiba, M.

    2015-09-01

    A photodetection system with an optical-feedback circuit accompanied by current amplification was fabricated to minimize the drawbacks associated with a transimpedance amplifier (TIA) with a very high resistance feedback resistor. Current amplification was implemented by extracting an output light from the same light source that emitted the feedback light. The current gain corresponds to the ratio of the photocurrent created by the output light to that created by the feedback light because the feedback current value is identical to the input photocurrent value generated by an input light to be measured. The current gain has no theoretical limit. The output light was detected by a photodiode with a TIA having a small feedback resistance. The expression for the input-referred noise current of the optical-feedback photodetection system was derived, and the trade-off between sensitivity and response, which is a characteristic of TIA, was found to considerably improve. An optical-feedback photodetection system with an InGaAs pin photodiode was fabricated. The measured noise equivalent power of the system was 1.7 fW/Hz1/2 at 10 Hz and 1.3 μm, which is consistent with the derived expression. The time response of the system was found to deteriorate with decreasing photocurrent. The 50% rise time for a light pulse input increased from 3.1 μs at a photocurrent of 10 nA to 15 μs at photocurrents below 10 pA. The bandwidth of the input-referred noise current was 7 kHz, which is consistent with rise times below 10 pA.

  7. High-speed optical three-axis vector magnetometry based on nonlinear Hanle effect in rubidium vapor

    NASA Astrophysics Data System (ADS)

    Azizbekyan, Hrayr; Shmavonyan, Svetlana; Khanbekyan, Aleksandr; Movsisyan, Marina; Papoyan, Aram

    2017-07-01

    The magnetic-field-compensation optical vector magnetometer based on the nonlinear Hanle effect in alkali metal vapor allowing two-axis measurement operation has been further elaborated for three-axis performance, along with significant reduction of measurement time. The upgrade was achieved by implementing a two-beam resonant excitation configuration and a fast maximum searching algorithm. Results of the proof-of-concept experiments, demonstrating 1 μT B-field resolution, are presented. The applied interest and capability of the proposed technique is analyzed.

  8. Measuring the accuracy of particle position and force in optical tweezers using high-speed video microscopy.

    PubMed

    Gibson, Graham M; Leach, Jonathan; Keen, Stephen; Wright, Amanda J; Padgett, Miles J

    2008-09-15

    We assess the performance of a CMOS camera for the measurement of particle position within optical tweezers and the associated autocorrelation function and power spectrum. Measurement of the displacement of the particle from the trap center can also be related to the applied force. By considering the Allan variance of these measurements, we show that such cameras are capable of reaching the thermal limits of nanometer and femtonewton accuracies, and hence are suitable for many of the applications that traditionally use quadrant photodiodes. As an example of a multi-particle measurement we show the hydrodynamic coupling between two particles.

  9. Demonstration of 20Gb/s polarization-insensitive wavelength switching system for high-speed free-space optical network

    NASA Astrophysics Data System (ADS)

    Qian, Feng-chen; Ye, Ya-lin; Wen, Yu; Duan, Tao; Feng, Huan

    2015-10-01

    A 20Gb/s polarization-insensitive all-optical wavelength switching system for high-speed free-space optical communication (FSO) network is experimentally demonstrated All-optical wavelength conversion (AOWC) is implemented using four-wave mixing (FWM) by highly-nonlinear fiber (HNLF). In the experimental setup, a simple actively mode-locked fiber ring laser (AML-FRL) with repetition frequency from 1 to 15 GHz is used to generate eight 2.5Gb/s tributary signals, which are multiplexed into one 20Gb/s optical data stream. At the receiver, the 20 Gb/s OTDM data stream is demultiplexed down to 2.5 Gb/s via a polarization-insensitive FWM scheme. The whole space communication distance is over 10 meters in building hallway. The experimental results show that this system can stably run over 24 hours at 10-9 BER level, thus the proposed architecture can work at higher rate with wavelength-division multiplexing (WDM) and high order modulation schemes.

  10. Modulating retroreflector architecture using multiple quantum wells for free-space optical communications

    NASA Astrophysics Data System (ADS)

    Gilbreath, G. Charmaine; Rabinovich, William S.; Mahon, Rita; Corson, Michael R.; Kline, John F.; Resnick, Joshua H.; Merk, H. C.; Vilcheck, Michael J.

    1998-12-01

    In this paper, we describe a demonstration using a Multiple Quantum Well modulator combined with an optical retroreflector which supported a high speed free space optical data link. Video images were transmitted over an 859 nanometer link at a rate of 460 kilo bits per second, where rate of modulation was limited by demonstration hardware, not the modulator. Reflection architectures for the modulator were used although transmission architectures have also been investigated but are not discussed in this paper. The modulator was a GaAs/Al0.3Ga0.7As quantum well which was designed and fabricated for use as a shutter at the Naval Research Laboratory. We believe these are the first results reported demonstrating a high speed free space optical data link using multiple quantum well shutters combined with retroreflectors for viable free space optical communications.

  11. High-speed time-reversed ultrasonically encoded (TRUE) optical focusing inside dynamic scattering media at 793 nm

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Lai, Puxiang; Ma, Cheng; Xu, Xiao; Suzuki, Yuta; Grabar, Alexander A.; Wang, Lihong V.

    2014-03-01

    Time-reversed ultrasonically encoded (TRUE) optical focusing is an emerging technique that focuses light deep into scattering media by phase-conjugating ultrasonically encoded diffuse light. In previous work, the speed of TRUE focusing was limited to no faster than 1 Hz by the response time of the photorefractive phase conjugate mirror, or the data acquisition and streaming speed of the digital camera; photorefractive-crystal-based TRUE focusing was also limited to the visible spectral range. These time-consuming schemes prevent this technique from being applied in vivo, since living biological tissue has a speckle decorrelation time on the order of a millisecond. In this work, using a Tedoped Sn2P2S6 photorefractive crystal at a near-infrared wavelength of 793 nm, we achieved TRUE focusing inside dynamic scattering media having a speckle decorrelation time as short as 7.7 ms. As the achieved speed approaches the tissue decorrelation rate, this work is an important step forward toward in vivo applications of TRUE focusing in deep tissue imaging, photodynamic therapy, and optical manipulation.

  12. A high-speed vertical optical trap for the mechanical testing of living cells at piconewton forces

    SciTech Connect

    Bodensiek, Kai Li, Weixing; Sánchez, Paula; Nawaz, Schanila; Schaap, Iwan A. T.

    2013-11-15

    Although atomic force microscopy is often the method of choice to probe the mechanical response of (sub)micrometer sized biomaterials, the lowest force that can be reliably controlled is limited to ≈0.1 nN. For soft biological samples, like cells, such forces can already lead to a strain large enough to enter the non-elastic deformation regime. To be able to investigate the response of single cells at lower forces we developed a vertical optical trap. The force can be controlled down to single piconewtons and most of the advantages of atomic force microscopy are maintained, such as the symmetrical application of forces at a wide range of loading rates. Typical consequences of moving the focus in the vertical direction, like the interferometric effect between the bead and the coverslip and a shift of focus, were quantified and found to have negligible effects on our measurements. With a fast responding force feedback loop we can achieve deformation rates as high as 50 μm/s, which allow the investigation of the elastic and viscous components of very soft samples. The potential of the vertical optical trap is demonstrated by measuring the linearity of the response of single cells at very low forces and a high bandwidth of deformation rates.

  13. High-speed polarization sensitive optical coherence tomography scan engine based on Fourier domain mode locked laser.

    PubMed

    Bonesi, Marco; Sattmann, Harald; Torzicky, Teresa; Zotter, Stefan; Baumann, Bernhard; Pircher, Michael; Götzinger, Erich; Eigenwillig, Christoph; Wieser, Wolfgang; Huber, Robert; Hitzenberger, Christoph K

    2012-11-01

    We report on a new swept source polarization sensitive optical coherence tomography scan engine that is based on polarization maintaining (PM) fiber technology. The light source is a Fourier domain mode locked laser with a PM cavity that operates in the 1300 nm wavelength regime. It is equipped with a PM buffer stage that doubles the fundamental sweep frequency of 54.5 kHz. The fiberization allows coupling of the scan engine to different delivery probes. In a first demonstration, we use the system for imaging human skin at an A-scan rate of 109 kHz. The system illuminates the sample with circularly polarized light and measures reflectivity, retardation, optic axis orientation, and Stokes vectors simultaneously. Furthermore, depolarization can be quantified by calculating the degree of polarization uniformity (DOPU). The high scanning speed of the system enables dense sampling in both, the x- and y-direction, which provides the opportunity to use 3D evaluation windows for DOPU calculation. This improves the spatial resolution of DOPU images considerably.

  14. Design of a high-speed optical dark-soliton detector using a phase-shifted waveguide Bragg grating in reflection.

    PubMed

    Ngo, Nam Quoc

    2007-12-01

    A theoretical study of a new application of a simple pi-phase-shifted waveguide Bragg grating (PSWBG) in reflection mode as a high-speed optical dark-soliton detector is presented. The PSWBG consists of two concatenated identical uniform waveguide Bragg gratings with a pi phase shift between them. The reflective PSWBG, with grating reflectivities equal to 0.9, a free spectral range of 1.91 THz, and a nonlinear phase response, can convert a 40 Gbit/s noisy dark-soliton signal into a high-quality 40 Gbit/s return-to-zero signal with a peak power level of approximately 17.5 dB greater than that by the existing Mach-Zehnder interferometer with free spectral range of 1.91 THz and a linear phase response.

  15. Anatomically correct visualization of the human upper airway using a high-speed long range optical coherence tomography system with an integrated positioning sensor

    NASA Astrophysics Data System (ADS)

    Jing, Joseph C.; Chou, Lidek; Su, Erica; Wong, Brian J. F.; Chen, Zhongping

    2016-12-01

    The upper airway is a complex tissue structure that is prone to collapse. Current methods for studying airway obstruction are inadequate in safety, cost, or availability, such as CT or MRI, or only provide localized qualitative information such as flexible endoscopy. Long range optical coherence tomography (OCT) has been used to visualize the human airway in vivo, however the limited imaging range has prevented full delineation of the various shapes and sizes of the lumen. We present a new long range OCT system that integrates high speed imaging with a real-time position tracker to allow for the acquisition of an accurate 3D anatomical structure in vivo. The new system can achieve an imaging range of 30 mm at a frame rate of 200 Hz. The system is capable of generating a rapid and complete visualization and quantification of the airway, which can then be used in computational simulations to determine obstruction sites.

  16. Investigation of Multiwavelength Optical Power Limiting Amplifier and its Applications in High-Speed Sonet Wavelength-Division Multiplexing Self-Healing Ring Network

    NASA Astrophysics Data System (ADS)

    Chen, Yung-Kuang; Liaw, Shien-Kuei; Chi, Sien

    A multiwavelength optical power limiting amplifier (OLA) for high-speed SONET self-healing ring (SHR) networks is reported. Four possible OLA configurations are investigated. We find that the configuration consisting of a high-gain common erbium-doped fiber amplifier (EDFA) followed by a grating-multiplexed multiple-power-EDFA module is the best scheme for multiwavelength power-limiting operation. A constant channel output of > 11 dBm, small inter-channel power variation of ≤ 0.5 dB, and fairly low noise figure are obtained within a large dynamic range of 45 dB. Network application in a SHR network is also demonstrated and the ring size of 150 km served by a single three-WDM-channel OLA at channel rates of 2.488 Gb/s is obtained.

  17. Anatomically correct visualization of the human upper airway using a high-speed long range optical coherence tomography system with an integrated positioning sensor

    PubMed Central

    Jing, Joseph C.; Chou, Lidek; Su, Erica; Wong, Brian J. F.; Chen, Zhongping

    2016-01-01

    The upper airway is a complex tissue structure that is prone to collapse. Current methods for studying airway obstruction are inadequate in safety, cost, or availability, such as CT or MRI, or only provide localized qualitative information such as flexible endoscopy. Long range optical coherence tomography (OCT) has been used to visualize the human airway in vivo, however the limited imaging range has prevented full delineation of the various shapes and sizes of the lumen. We present a new long range OCT system that integrates high speed imaging with a real-time position tracker to allow for the acquisition of an accurate 3D anatomical structure in vivo. The new system can achieve an imaging range of 30 mm at a frame rate of 200 Hz. The system is capable of generating a rapid and complete visualization and quantification of the airway, which can then be used in computational simulations to determine obstruction sites. PMID:27991580

  18. Anatomically correct visualization of the human upper airway using a high-speed long range optical coherence tomography system with an integrated positioning sensor.

    PubMed

    Jing, Joseph C; Chou, Lidek; Su, Erica; Wong, Brian J F; Chen, Zhongping

    2016-12-19

    The upper airway is a complex tissue structure that is prone to collapse. Current methods for studying airway obstruction are inadequate in safety, cost, or availability, such as CT or MRI, or only provide localized qualitative information such as flexible endoscopy. Long range optical coherence tomography (OCT) has been used to visualize the human airway in vivo, however the limited imaging range has prevented full delineation of the various shapes and sizes of the lumen. We present a new long range OCT system that integrates high speed imaging with a real-time position tracker to allow for the acquisition of an accurate 3D anatomical structure in vivo. The new system can achieve an imaging range of 30 mm at a frame rate of 200 Hz. The system is capable of generating a rapid and complete visualization and quantification of the airway, which can then be used in computational simulations to determine obstruction sites.

  19. High speed door assembly

    DOEpatents

    Shapiro, Carolyn

    1993-01-01

    A high speed door assembly, comprising an actuator cylinder and piston rods, a pressure supply cylinder and fittings, an electrically detonated explosive bolt, a honeycomb structured door, a honeycomb structured decelerator, and a structural steel frame encasing the assembly to close over a 3 foot diameter opening within 50 milliseconds of actuation, to contain hazardous materials and vapors within a test fixture.

  20. High speed door assembly

    DOEpatents

    Shapiro, C.

    1993-04-27

    A high speed door assembly is described, comprising an actuator cylinder and piston rods, a pressure supply cylinder and fittings, an electrically detonated explosive bolt, a honeycomb structured door, a honeycomb structured decelerator, and a structural steel frame encasing the assembly to close over a 3 foot diameter opening within 50 milliseconds of actuation, to contain hazardous materials and vapors within a test fixture.

  1. Architectures and applications of high-speed vision

    NASA Astrophysics Data System (ADS)

    Watanabe, Yoshihiro; Oku, Hiromasa; Ishikawa, Masatoshi

    2014-11-01

    With the progress made in high-speed imaging technology, image processing systems that can process images at high frame rates, as well as their applications, are expected. In this article, we examine architectures for high-speed vision systems, and also dynamic image control, which can realize high-speed active optical systems. In addition, we also give an overview of some applications in which high-speed vision is used, including man-machine interfaces, image sensing, interactive displays, high-speed three-dimensional sensing, high-speed digital archiving, microvisual feedback, and high-speed intelligent robots.

  2. Optimal signal constellation design for ultra-high-speed optical transport in the presence of nonlinear phase noise.

    PubMed

    Liu, Tao; Djordjevic, Ivan B

    2014-12-29

    In this paper, we first describe an optimal signal constellation design algorithm suitable for the coherent optical channels dominated by the linear phase noise. Then, we modify this algorithm to be suitable for the nonlinear phase noise dominated channels. In optimization procedure, the proposed algorithm uses the cumulative log-likelihood function instead of the Euclidian distance. Further, an LDPC coded modulation scheme is proposed to be used in combination with signal constellations obtained by proposed algorithm. Monte Carlo simulations indicate that the LDPC-coded modulation schemes employing the new constellation sets, obtained by our new signal constellation design algorithm, outperform corresponding QAM constellations significantly in terms of transmission distance and have better nonlinearity tolerance.

  3. Visualization of explosion phenomena using a high-speed video camera with an uncoupled objective lens by fiber-optic

    NASA Astrophysics Data System (ADS)

    Tokuoka, Nobuyuki; Miyoshi, Hitoshi; Kusano, Hideaki; Hata, Hidehiro; Hiroe, Tetsuyuki; Fujiwara, Kazuhito; Yasushi, Kondo

    2008-11-01

    Visualization of explosion phenomena is very important and essential to evaluate the performance of explosive effects. The phenomena, however, generate blast waves and fragments from cases. We must protect our visualizing equipment from any form of impact. In the tests described here, the front lens was separated from the camera head by means of a fiber-optic cable in order to be able to use the camera, a Shimadzu Hypervision HPV-1, for tests in severe blast environment, including the filming of explosions. It was possible to obtain clear images of the explosion that were not inferior to the images taken by the camera with the lens directly coupled to the camera head. It could be confirmed that this system is very useful for the visualization of dangerous events, e.g., at an explosion site, and for visualizations at angles that would be unachievable under normal circumstances.

  4. High performance fiber optic sensor based on self referenced FBGs and high-speed dual-wavelength pulse coding

    NASA Astrophysics Data System (ADS)

    Zaidi, Farhan; Nannipieri, Tiziano; Di Pasquale, Fabrizio

    2015-07-01

    We propose and experimentally demonstrate the feasibility of a highly efficient FBG-based quasi-distributed sensing system employing dual-wavelength cyclic pulse coding. Significant improvement in the measurement range, resolution and TDM multiplexing capabilities can be achieved, as well as crosstalk reduction with respect to a single wavelength TDM-based FBG interrogation scheme. The mechanism of noise reduction by quasi-periodic cyclic coding is experimentally demonstrated, pointing out significant improvement in accuracy with respect to dual-wavelength single pulse TDM-based FBG interrogation. The proposed technique can also enhance the sensing range of hybrid fiber optic sensor systems in which continuous monitoring of distributed and discrete points are simultaneously measured over the same sensing fiber.

  5. High-speed and high-sensitivity parallel spectral-domain optical coherence tomography using a supercontinuum light source.

    PubMed

    Barrick, Jessica; Doblas, Ana; Gardner, Michael R; Sears, Patrick R; Ostrowski, Lawrence E; Oldenburg, Amy L

    2016-12-15

    The three most important metrics in optical coherence tomography (OCT) are resolution, speed, and sensitivity. Because there is a complex interplay between these metrics, no previous work has obtained the best performance in all three metrics simultaneously. We demonstrate that a high-power supercontinuum source, in combination with parallel spectral-domain OCT, achieves an unparalleled combination of resolution, speed, and sensitivity. This system captures cross-sectional images spanning 4  mm×0.5  mm at 1,024,000 lines/s with 2×14  μm resolution (axial×transverse) at a sensitivity of 113 dB. Imaging using the proposed system is demonstrated on highly differentiated human bronchial epithelial cells to capture and spatially localize ciliary dynamics.

  6. High speed, wide velocity dynamic range Doppler optical coherence tomography (Part IV): split spectrum processing in rotary catheter probes.

    PubMed

    Vuong, Barry; Lee, Anthony M D; Luk, Timothy W H; Sun, Cuiru; Lam, Stephen; Lane, Pierre; Yang, Victor X D

    2014-04-07

    We report a technique for blood flow detection using split spectrum Doppler optical coherence tomography (ssDOCT) that shows improved sensitivity over existing Doppler OCT methods. In ssDOCT, the Doppler signal is averaged over multiple sub-bands of the interferogram, increasing the SNR of the Doppler signal. We explore the parameterization of this technique in terms of number of sub-band windows, width and overlap of the windows, and their effect on the Doppler signal to noise in a flow phantom. Compared to conventional DOCT, ssDOCT processing has increased flow sensitivity. We demonstrate the effectiveness of ssDOCT in-vivo for intravascular flow detection within a porcine carotid artery and for microvascular vessel detection in human pulmonary imaging, using rotary catheter probes. To our knowledge, this is the first report of visualizing in-vivo Doppler flow patterns adjacent to stent struts in the carotid artery.

  7. Gain engineering for all-optical microwave and high speed pulse generation in mode-locked fiber lasers

    NASA Astrophysics Data System (ADS)

    Li, Fangxin; Helmy, Amr S.

    2014-03-01

    Pulsed sources based on approaches that employ only photonic components and no RF components will be discussed in this talk. Several technologies have been explored to generate actively mode-locked sources using electronically driven fiber ring cavities. However, for these sources the pulse repetition rate is usually limited by the bandwidth of the intracavity modulator. Filtering of highly-stable low repetition rate optical combs utilizing cavities such as Fabry-Perot etalons can be used to overcome this limitation. This scheme is not flexible as it requires highly precise control of ultrahigh finesse etalons which limits the repetition rate to the free spectral range of the filter. Pulsed sources based on semiconductor devices offer many advantages, including large gain bandwidth, rapid tunability, long-term stability. In this work we introduce a novel, simple method to generate optical clock with wavelength tunability using two continuous wave (CW) lasers. The lasers are injected into a conventional SOAs-based fiber ring laser. The beating signal generated by these two lasers causes the modulation of the SOA gain saturation inside the cavity. Thus, the SOA provides gain and functions as the modulator as well as the gain medium. When the lasing mode inside the cavity is amplified, it also results in gain-induced four wave mixing. The proposed technique is particularly versatile, overcoming the bandwidth limitation of other techniques, which require RF sources. Moreover, this technique provides the possibility for hybrid integration as it is comprised of semiconductor chips that can be heterogeneously integrated on a Si platform.

  8. The ALMA high speed optical communication link is here: an essential component for reliable present and future operations

    NASA Astrophysics Data System (ADS)

    Filippi, G.; Ibsen, J.; Jaque, S.; Liello, F.; Ovando, N.; Astudillo, A.; Parra, J.; Saldias, Christian

    2016-07-01

    Announced in 2012, started in 2013 and completed in 2015, the ALMA high bandwidth communication system has become a key factor to achieve the operational and scientific goals of ALMA. This paper summarizes the technical, organizational, and operational goals of the ALMA Optical Link Project, focused in the creation and operation of an effective and sustainable communication infrastructure to connect the ALMA Operations Support Facility and Array Operations Site, both located in the Atacama Desert in the Northern region of Chile, with the point of presence of REUNA in Antofagasta, about 400km away, and from there to the Santiago Central Office in the Chilean capital through the optical infrastructure created by the EC-funded EVALSO project and now an integral part of the REUNA backbone. This new infrastructure completed in 2014 and now operated on behalf of ALMA by REUNA, the Chilean National Research and Education Network, uses state of the art technologies, like dark fiber from newly built cables and DWDM transmission, allowing extending the reach of high capacity communication to the remote region where the Observatory is located. The paper also reports on the results obtained during the first year and a half testing and operation period, where different operational set ups have been experienced for data transfer, remote collaboration, etc. Finally, the authors will present a forward look of the impact of it to both the future scientific development of the Chajnantor Plateau, where many installations area are (and will be) located, as well as the potential Chilean scientific backbone long term development.

  9. Volumetric in vivo imaging of intracochlear microstructures in mice by high-speed spectral domain optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Subhash, Hrebesh M.; Davila, Viviana; Sun, Hai; Nguyen-Huynh, Anh T.; Nuttall, Alfred L.; Wang, Ruikang K.

    2010-05-01

    There is considerable interest in developing new methods for in vivo imaging of the complex anatomy of the mammalian cochlea for clinical as well as fundamental studies. In this study, we explored, the feasibility of spectral domain optical coherence tomography (SD-OCT) for 3-D in vivo imaging of the cochlea in mice. The SD-OCT system employed in this study used a broadband light source centered at 1300 nm, and the imaging speed of the system was 47,000 A-scans per second using the InGaAs camera. The system was capable of providing fully processed, high-resolution B-scan images [512 (axial)×128 (lateral) pixels] at 280 frames per sec. The 3-D imaging acquisition time for a whole cochlea was ~0.45 sec. The traditional SD-OCT structural imaging algorithm was used to reconstruct 3-D cochlear morphology. We demonstrated that SD-OCT can be successfully used for in vivo imaging of important morphological features within the mouse cochlea, such as the otic capsule and structures within, including Reissner's membrane, the basilar membrane, tectorial membrane, organ of Corti, and modiolus of the apical and middle turns.

  10. High-speed highly temperature stable 980 nm VCSELs operating at 25 Gb/s at up to 85 °C for short reach optical interconnects

    NASA Astrophysics Data System (ADS)

    Mutig, Alex; Lott, James A.; Blokhin, Sergey A.; Moser, Philip; Wolf, Philip; Hofmann, Werner; Nadtochiy, Alexey M.; Bimberg, Dieter

    2011-03-01

    The progressive penetration of optical communication links into traditional copper interconnect markets greatly expands the applications of vertical cavity surface emitting lasers (VCSELs) for the next-generation of board-to-board, moduleto- module, chip-to-chip, and on-chip optical interconnects. Stability of the VCSEL parameters at high temperatures is indispensable for such applications, since these lasers typically reside directly on or near integrated circuit chips. Here we present 980 nm oxide-confined VCSELs operating error-free at bit rates up to 25 Gbit/s at temperatures as high as 85 °C without adjustment of the drive current and peak-to-peak modulation voltage. The driver design is therefore simplified and the power consumption of the driver electronics is lowered, reducing the production and operational costs. Small and large signal modulation experiments at various temperatures from 20 up to 85 °C for lasers with different oxide aperture diameters are presented in order to analyze the physical processes controlling the performance of the VCSELs. Temperature insensitive maximum -3 dB bandwidths of around 13-15 GHz for VCSELs with aperture diameters of 10 μm and corresponding parasitic cut-off frequencies exceeding 22 GHz are observed. Presented results demonstrate the suitability of our VCSELs for practical high speed and high temperature stable short-reach optical links.

  11. High Speed Video Insertion

    NASA Astrophysics Data System (ADS)

    Janess, Don C.

    1984-11-01

    This paper describes a means of inserting alphanumeric characters and graphics into a high speed video signal and locking that signal to an IRIG B time code. A model V-91 IRIG processor, developed by Instrumentation Technology Systems under contract to Instrumentation Marketing Corporation has been designed to operate in conjunction with the NAC model FHS-200 High Speed Video Camera which operates at 200 fields per second. The system provides for synchronizing the vertical and horizontal drive signals such that the vertical sync precisely coincides with five millisecond transitions in the IRIG time code. Additionally, the unit allows for the insertion of an IRIG time message as well as other data and symbols.

  12. Optical coherence elastography based on high speed imaging of single-hot laser-induced acoustic waves at 16 kHz frame rate

    NASA Astrophysics Data System (ADS)

    Song, Shaozhen; Hsieh, Bao-Yu; Wei, Wei; Shen, Tueng; Pelivanov, Ivan; O'Donnell, Matthew; Wang, Ruikang K.

    2016-03-01

    Shear wave OCE (SW-OCE) is a novel technique that relies on the detection of the localized shear wave speed to map tissue elasticity. In this study, we demonstrate high speed imaging to capture single-shot transient shear wave propagation for SW-OCE. The fast imaging speed is achieved using a Fourier domain mode-locked (FDML) high-speed swept-source OCT (SS-OCT) system. The frame rate of shear wave imaging is 16 kHz, at an A-line rate of ~1.62 MHz, enabling the detection of high-frequency shear waves up to 8 kHz in bandwidth. Several measures are taken to improve the phase-stability of the SS-OCT system, and the measured displacement sensitivity is ~10 nanometers. To facilitate non-contact elastography, shear waves are generated with the photo-thermal effect using an ultra-violet pulsed laser. High frequency shear waves launched by the pulsed laser contain shorter wavelengths and carry rich localized elasticity information. Benefiting from single-shot acquisition, each SWI scan only takes 2.5 milliseconds, and the reconstruction of the elastogram can be performed in real-time with ~20 Hz refresh rate. SW-OCE measurements are demonstrated on porcine cornea ex vivo. This study is the first demonstration of an all-optical method to perform real-time 3D SW-OCE. It is hoped that this technique will be applicable in the clinic to obtain high-resolution localized quantitative measurements of tissue biomechanical properties.

  13. High Speed Holographic Movie Camera

    NASA Astrophysics Data System (ADS)

    Hentschel, W.; Lauterborn, W.

    1985-08-01

    A high speed holographic movie camera system has been developed to investigate the dynamic behavior of cavitation bubbles in liquids. As a light source for holography, a high power multiply cavity-dumped argonion laser is used to record very long hologram series with framing rates up to 300 kHz. For separating successively recorded holograms, two spatial multiplexing techniques are applied simultaneously: rotation of the holographic plate or film and acousto-optic beam deflection. With the combination of these two techniques we achieve up to 4000 single holograms in one series.

  14. High Speed Holographic Movie Camera

    NASA Astrophysics Data System (ADS)

    Hentschel, W.; Lauterborn, W.

    1985-02-01

    A high speed holographic movie camera system has been developed in our laboratories at the Third Physical Institute of the University of Gdttingen. As a light source for holography a high power multiply cavity-dumped argonion laser is used to record very long hologram series with framing rates up to 300 kHz. For separating successively recorded holograms two spatial multiplexing techniques are applied simultaneously: rotating of the holographic plate or film and acousto-optic beam deflection. With the combination of these two techniques we achieve up to 4000 single holograms in one series.

  15. Remote Transmission at High Speed

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Omni and NASA Test Operations at Stennis entered a Dual-Use Agreement to develop the FOTR-125, a 125 megabit-per-second fiber-optic transceiver that allows accurate digital recordings over a great distance. The transceiver s fiber-optic link can be as long as 25 kilometers. This makes it much longer than the standard coaxial link, which can be no longer than 50 meters.The FOTR-125 utilizes laser diode transmitter modules and integrated receivers for the optical interface. Two transmitters and two receivers are employed at each end of the link with automatic or manual switchover to maximize the reliability of the communications link. NASA uses the transceiver in Stennis High-Speed Data Acquisition System (HSDAS). The HSDAS consists of several identical systems installed on the Center s test stands to process all high-speed data related to its propulsion test programs. These transceivers allow the recorder and HSDAS controls to be located in the Test Control Center in a remote location while the digitizer is located on the test stand.

  16. Sensing and three-dimensional imaging of cochlea and surrounding temporal bone using swept source high-speed optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Zhao, Mingtao; Chien, Wade W.; Taylor, Russ; Iordachita, Iulian; Huang, Yong; Niparko, John; Kang, Jin U.

    2013-03-01

    We describe a novel dual-functional optical coherence tomography (OCT) system with both a fiber probe using a sapphire ball lens for cross-sectional imaging and sensing, and a 3-D bulk scanner for 3-D OCT imaging. A theoretical sensitivity model for Common Path (CP)-OCT was proposed to assess its optimal performance based on an unbalanced photodetector configuration. A probe design with working distances (WD) 415μm and lateral resolution 11 μm was implemented with sensitivity up to 88dB. To achieve high-speed data processing and real-time three-dimensional visualization, we use graphics processing unit (GPU) based real-time signal processing and visualization to boost the computing performance of swept source optical coherence tomography. Both the basal turn and facial nerve bundles inside the cadaveric human cochlea temporal bone can be clearly identified and 3D images can be rendered with the OCT system, which was integrated with a flexible robotic arm for robotically assisted microsurgery.

  17. Optically simulated universal quantum computation

    NASA Astrophysics Data System (ADS)

    Francisco, D.; Ledesma, S.

    2008-04-01

    Recently, classical optics based systems to emulate quantum information processing have been proposed. The analogy is based on the possibility of encoding a quantum state of a system with a 2N-dimensional Hilbert space as an image in the input of an optical system. The probability amplitude of each state of a certain basis is associated with the complex amplitude of the electromagnetic field in a given slice of the laser wavefront. Temporal evolution is represented as the change of the complex amplitude of the field when the wavefront pass through a certain optical arrangement. Different modules that represent universal gates for quantum computation have been implemented. For instance, unitary operations acting on the qbits space (or U(2) gates) are represented by means of two phase plates, two spherical lenses and a phase grating in a typical image processing set up. In this work, we present CNOT gates which are emulated by means of a cube prism that splits a pair of adjacent rays incoming from the input image. As an example of application, we present an optical module that can be used to simulate the quantum teleportation process. We also show experimental results that illustrate the validity of the analogy. Although the experimental results obtained are promising and show the capability of the system for simulate the real quantum process, we must take into account that any classical simulation of quantum phenomena, has as fundamental limitation the impossibility of representing non local entanglement. In this classical context, quantum teleportation has only an illustrative interpretation.

  18. High Speed Vortex Flows

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.; Wilcox, Floyd J., Jr.; Bauer, Steven X. S.; Allen, Jerry M.

    2000-01-01

    A review of the research conducted at the National Aeronautics and Space Administration (NASA), Langley Research Center (LaRC) into high-speed vortex flows during the 1970s, 1980s, and 1990s is presented. The data reviewed is for flat plates, cavities, bodies, missiles, wings, and aircraft. These data are presented and discussed relative to the design of future vehicles. Also presented is a brief historical review of the extensive body of high-speed vortex flow research from the 1940s to the present in order to provide perspective of the NASA LaRC's high-speed research results. Data are presented which show the types of vortex structures which occur at supersonic speeds and the impact of these flow structures to vehicle performance and control is discussed. The data presented shows the presence of both small- and large scale vortex structures for a variety of vehicles, from missiles to transports. For cavities, the data show very complex multiple vortex structures exist at all combinations of cavity depth to length ratios and Mach number. The data for missiles show the existence of very strong interference effects between body and/or fin vortices and the downstream fins. It was shown that these vortex flow interference effects could be both positive and negative. Data are shown which highlights the effect that leading-edge sweep, leading-edge bluntness, wing thickness, location of maximum thickness, and camber has on the aerodynamics of and flow over delta wings. The observed flow fields for delta wings (i.e. separation bubble, classical vortex, vortex with shock, etc.) are discussed in the context of' aircraft design. And data have been shown that indicate that aerodynamic performance improvements are available by considering vortex flows as a primary design feature. Finally a discussing of a design approach for wings which utilize vortex flows for improved aerodynamic performance at supersonic speed is presented.

  19. High speed flywheel

    DOEpatents

    McGrath, Stephen V.

    1991-01-01

    A flywheel for operation at high speeds utilizes two or more ringlike coments arranged in a spaced concentric relationship for rotation about an axis and an expansion device interposed between the components for accommodating radial growth of the components resulting from flywheel operation. The expansion device engages both of the ringlike components, and the structure of the expansion device ensures that it maintains its engagement with the components. In addition to its expansion-accommodating capacity, the expansion device also maintains flywheel stiffness during flywheel operation.

  20. High speed flywheel

    SciTech Connect

    McGrath, S.V.

    1991-05-07

    This patent describes a flywheel for operation at high speed which utilizes two or more ringlike components arranged in a spaced concentric relationship for rotation about an axis and an expansion device interposed between the components for accommodating radial growth of the components resulting from flywheel operation. The expansion device engages both of the ringlike components, and the structure of the expansion device ensures that it maintains its engagement with the components. In addition to its expansion-accommodating capacity, the expansion device also maintains flywheel stiffness during flywheel operation.

  1. High speed transient sampler

    DOEpatents

    McEwan, Thomas E.

    1995-01-01

    A high speed sampler comprises a meandered sample transmission line for transmitting an input signal, a straight strobe transmission line for transmitting a strobe signal, and a plurality of sampling gates along the transmission lines. The sampling gates comprise a four terminal diode bridge having a first strobe resistor connected from a first terminal of the bridge to the positive strobe line, a second strobe resistor coupled from the third terminal of the bridge to the negative strobe line, a tap connected to the second terminal of the bridge and to the sample transmission line, and a sample holding capacitor connected to the fourth terminal of the bridge. The resistance of the first and second strobe resistors is much higher than the signal transmission line impedance in the preferred system. This results in a sampling gate which applies a very small load on the sample transmission line and on the strobe generator. The sample holding capacitor is implemented using a smaller capacitor and a larger capacitor isolated from the smaller capacitor by resistance. The high speed sampler of the present invention is also characterized by other optimizations, including transmission line tap compensation, stepped impedance strobe line, a multi-layer physical layout, and unique strobe generator design. A plurality of banks of such samplers are controlled for concatenated or interleaved sample intervals to achieve long sample lengths or short sample spacing.

  2. High speed transient sampler

    DOEpatents

    McEwan, T.E.

    1995-11-28

    A high speed sampler comprises a meandered sample transmission line for transmitting an input signal, a straight strobe transmission line for transmitting a strobe signal, and a plurality of sampling gates along the transmission lines. The sampling gates comprise a four terminal diode bridge having a first strobe resistor connected from a first terminal of the bridge to the positive strobe line, a second strobe resistor coupled from the third terminal of the bridge to the negative strobe line, a tap connected to the second terminal of the bridge and to the sample transmission line, and a sample holding capacitor connected to the fourth terminal of the bridge. The resistance of the first and second strobe resistors is much higher than the signal transmission line impedance in the preferred system. This results in a sampling gate which applies a very small load on the sample transmission line and on the strobe generator. The sample holding capacitor is implemented using a smaller capacitor and a larger capacitor isolated from the smaller capacitor by resistance. The high speed sampler of the present invention is also characterized by other optimizations, including transmission line tap compensation, stepped impedance strobe line, a multi-layer physical layout, and unique strobe generator design. A plurality of banks of such samplers are controlled for concatenated or interleaved sample intervals to achieve long sample lengths or short sample spacing. 17 figs.

  3. High speed multiphoton imaging

    NASA Astrophysics Data System (ADS)

    Li, Yongxiao; Brustle, Anne; Gautam, Vini; Cockburn, Ian; Gillespie, Cathy; Gaus, Katharina; Lee, Woei Ming

    2016-12-01

    Intravital multiphoton microscopy has emerged as a powerful technique to visualize cellular processes in-vivo. Real time processes revealed through live imaging provided many opportunities to capture cellular activities in living animals. The typical parameters that determine the performance of multiphoton microscopy are speed, field of view, 3D imaging and imaging depth; many of these are important to achieving data from in-vivo. Here, we provide a full exposition of the flexible polygon mirror based high speed laser scanning multiphoton imaging system, PCI-6110 card (National Instruments) and high speed analog frame grabber card (Matrox Solios eA/XA), which allows for rapid adjustments between frame rates i.e. 5 Hz to 50 Hz with 512 × 512 pixels. Furthermore, a motion correction algorithm is also used to mitigate motion artifacts. A customized control software called Pscan 1.0 is developed for the system. This is then followed by calibration of the imaging performance of the system and a series of quantitative in-vitro and in-vivo imaging in neuronal tissues and mice.

  4. High speed flywheel

    SciTech Connect

    McGrath, S.V.

    1990-01-01

    This invention relates generally to flywheels and relates more particularly to the construction of a high speed, low-mass flywheel. Flywheels with which this invention is to be compared include those constructed of circumferentially wound filaments or fibers held together by a matrix or bonding material. Flywheels of such construction are known to possess a relatively high hoop strength but a relatively low radial strength. Hoop-wound flywheels are, therefore, particularly susceptible to circumferential cracks, and the radial stress limitations of such a flywheel substantially limit its speed capabilities. It is an object of the present invention to provide a new and improved flywheel which experiences reduced radial stress at high operating speeds. Another object of the present invention is to provide flywheel whose construction allows for radial growth as flywheel speed increases while providing the necessary stiffness for transferring and maintaining kinetic energy within the flywheel. Still another object of the present invention is to provide a flywheel having concentrically-disposed component parts wherein rotation induced radial stresses at the interfaces of such component parts approach zero. Yet another object of the present invention is to provide a flywheel which is particularly well-suited for high speed applications. 5 figs.

  5. Optical resonators and quantum dots: An excursion into quantum optics, quantum information and photonics

    NASA Astrophysics Data System (ADS)

    Bianucci, Pablo

    Modern communications technology has encouraged an intimate connection between Semiconductor Physics and Optics, and this connection shows best in the combination of electron-confining structures with light-confining structures. Semiconductor quantum dots are systems engineered to trap electrons in a mesoscopic scale (the are composed of ≈ 10000 atoms), resulting in a behavior resembling that of atoms, but much richer. Optical microresonators are engineered to confine light, increasing its intensity and enabling a much stronger interaction with matter. Their combination opens a myriad of new directions, both in fundamental Physics and in possible applications. This dissertation explores both semiconductor quantum dots and microresonators, through experimental work done with semiconductor quantum dots and microsphere resonators spanning the fields of Quantum Optics, Quantum Information and Photonics; from quantum algorithms to polarization converters. Quantum Optics leads the way, allowing us to understand how to manipulate and measure quantum dots with light and to elucidate the interactions between them and microresonators. In the Quantum Information area, we present a detailed study of the feasibility of excitons in quantum dots to perform quantum computations, including an experimental demonstration of the single-qubit Deutsch-Jozsa algorithm performedin a single semiconductor quantum dot. Our studies in Photonics involve applications of microsphere resonators, which we have learned to fabricate and characterize. We present an elaborate description of the experimental techniques needed to study microspheres, including studies and proof of concept experiments on both ultra-sensitive microsphere sensors and whispering gallery mode polarization converters.

  6. Light weight, high-speed, and self-powered wireless fiber optic sensor (WiFOS) structural health monitor system for avionics and aerospace environments

    NASA Astrophysics Data System (ADS)

    Mendoza, Edgar A.; Kempen, Cornelia; Sun, Sunjian; Esterkin, Yan

    2014-09-01

    This paper describes recent progress towards the development of an innovative light weight, high-speed, and selfpowered wireless fiber optic sensor (WiFOS™) structural health monitor system suitable for the onboard and in-flight unattended detection, localization, and classification of load, fatigue, and structural damage in advanced composite materials commonly used in avionics and aerospace systems. The WiFOS™ system is based on ROI's advancements on monolithic photonic integrated circuit microchip technology, integrated with smart power management, on-board data processing, wireless data transmission optoelectronics, and self-power using energy harvesting tools such as solar, vibration, thermoelectric, and magneto-electric. The self-powered, wireless WiFOS™ system offers a versatile and powerful SHM tool to enhance the reliability and safety of avionics platforms, jet fighters, helicopters, commercial aircraft that use lightweight composite material structures, by providing comprehensive information about the structural integrity of the structure from a large number of locations. Immediate SHM applications are found in rotorcraft and aircraft, ships, submarines, and in next generation weapon systems, and in commercial oil and petrochemical, aerospace industries, civil structures, power utilities, portable medical devices, and biotechnology, homeland security and a wide spectrum of other applications.

  7. The Repeatability Assessment of Three-Dimensional Capsule-Intraocular Lens Complex Measurements by Means of High-Speed Swept-Source Optical Coherence Tomography

    PubMed Central

    Chang, Pingjun; Li, Jin; Savini, Giacomo; Huang, Jinhai; Huang, Shenghai; Zhao, Yinying; Liao, Na; Lin, Lei; Yu, Xiaoyu; Zhao, Yun-e

    2015-01-01

    Purpose To rebuild the three-dimensional (3-D) model of the anterior segment by high-speed swept-source optical coherence tomography (SSOCT) and evaluate the repeatability of measurement for the parameters of capsule-intraocular lens (C-IOL) complex. Methods Twenty-two pseudophakic eyes from 22 patients were enrolled. Three continuous SSOCT measurements were performed in all eyes and the tomograms obtained were used for 3-D reconstruction. The output data were used to evaluate the measurement repeatability. The parameters included postoperative aqueous depth (PAD), the area and diameter of the anterior capsule opening (Area and D), IOL tilt (IOL-T), horizontal, vertical, and space decentration of the IOL, anterior capsule opening, and IOL-anterior capsule opening. Results PAD, IOL-T, Area, D, and all decentration measurements showed high repeatability. Repeated measure analysis showed there was no statistically significant difference among the three continuous measurements (all P > .05). Pearson correlation analysis showed high correlation between each pair of them (all r >0.90, P<0.001). ICCs were all more than 0.9 for all parameters. The 95% LoAs of all parameters were narrow for comparison of three measurements, which showed high repeatability for three measurements. Conclusion SSOCT is available to be a new method for the 3-D measurement of C-IOL complex after cataract surgery. This method presented high repeatability in measuring the parameters of the C-IOL complex. PMID:26600254

  8. Observation of Transient Overcritical Currents in YBCO Thin Films using High-Speed Magneto-Optical Imaging and Dynamic Current Mapping

    NASA Astrophysics Data System (ADS)

    Wells, Frederick S.; Pan, Alexey V.; Golovchanskiy, Igor A.; Fedoseev, Sergey A.; Rozenfeld, Anatoly

    2017-01-01

    The dynamics of transient current distributions in superconducting YBa2Cu3O7‑δ thin films were investigated during and immediately following an external field ramp, using high-speed (real-time) Magneto-Optical Imaging and calculation of dynamic current profiles. A number of qualitatively unique and previously unobserved features are seen in this novel analysis of the evolution of supercurrent during penetration. As magnetic field ramps up from zero, the dynamic current profile is characterized by strong peaks, the magnitude of which exceed the conventional critical current density (as determined from static current profiles). These peaks develop close to the sample edges, initially resembling screening currents but quickly growing in intensity as the external field increases. A discontinuity in field and current behaviour is newly observed, indicating a novel transition from increasing peak current toward relaxation behaviour. After this transition, the current peaks move toward the centre of the sample while reducing in intensity as magnetic vortices penetrate inward. This motion slows exponentially with time, with the current distribution in the long-time limit reducing to the expected Kim-model profile.

  9. A novel optical apparatus for the study of rolling contact wear/fatigue based on a high-speed camera and multiple-source laser illumination.

    PubMed

    Bodini, I; Sansoni, G; Lancini, M; Pasinetti, S; Docchio, F

    2016-08-01

    Rolling contact wear/fatigue tests on wheel/rail specimens are important to produce wheels and rails of new materials for improved lifetime and performance, which are able to operate in harsh environments and at high rolling speeds. This paper presents a novel non-invasive, all-optical system, based on a high-speed video camera and multiple laser illumination sources, which is able to continuously monitor the dynamics of the specimens used to test wheel and rail materials, in a laboratory test bench. 3D macro-topography and angular position of the specimen are simultaneously performed, together with the acquisition of surface micro-topography, at speeds up to 500 rpm, making use of a fast camera and image processing algorithms. Synthetic indexes for surface micro-topography classification are defined, the 3D macro-topography is measured with a standard uncertainty down to 0.019 mm, and the angular position is measured on a purposely developed analog encoder with a standard uncertainty of 2.9°. The very small camera exposure time enables to obtain blur-free images with excellent definition. The system will be described with the aid of end-cycle specimens, as well as of in-test specimens.

  10. A novel optical apparatus for the study of rolling contact wear/fatigue based on a high-speed camera and multiple-source laser illumination

    NASA Astrophysics Data System (ADS)

    Bodini, I.; Sansoni, G.; Lancini, M.; Pasinetti, S.; Docchio, F.

    2016-08-01

    Rolling contact wear/fatigue tests on wheel/rail specimens are important to produce wheels and rails of new materials for improved lifetime and performance, which are able to operate in harsh environments and at high rolling speeds. This paper presents a novel non-invasive, all-optical system, based on a high-speed video camera and multiple laser illumination sources, which is able to continuously monitor the dynamics of the specimens used to test wheel and rail materials, in a laboratory test bench. 3D macro-topography and angular position of the specimen are simultaneously performed, together with the acquisition of surface micro-topography, at speeds up to 500 rpm, making use of a fast camera and image processing algorithms. Synthetic indexes for surface micro-topography classification are defined, the 3D macro-topography is measured with a standard uncertainty down to 0.019 mm, and the angular position is measured on a purposely developed analog encoder with a standard uncertainty of 2.9°. The very small camera exposure time enables to obtain blur-free images with excellent definition. The system will be described with the aid of end-cycle specimens, as well as of in-test specimens.

  11. A high-density EEG study of differences between three high speeds of simulated forward motion from optic flow in adult participants

    PubMed Central

    Vilhelmsen, Kenneth; van der Weel, F. R. (Ruud); van der Meer, Audrey L. H.

    2015-01-01

    A high-density EEG study was conducted to investigate evoked and oscillatory brain activity in response to high speeds of simulated forward motion. Participants were shown an optic flow pattern consisting of a virtual road with moving poles at either side of it, simulating structured forward motion at different driving speeds (25, 50, and 75 km/h) with a static control condition between each motion condition. Significant differences in N2 latencies and peak amplitudes between the three speeds of visual motion were found in parietal channels of interest P3 and P4. As motion speed increased, peak latency increased while peak amplitude decreased which might indicate that higher driving speeds are perceived as more demanding resulting in longer latencies, and as fewer neurons in the motion sensitive areas of the adult brain appear to be attuned to such high visual speeds this could explain the observed inverse relationship between speed and amplitude. In addition, significant differences between alpha de-synchronizations for forward motion and alpha synchronizations in the static condition were found in the parietal midline (PM) source. It was suggested that the alpha de-synchronizations reflect an activated state related to the visual processing of simulated forward motion, whereas the alpha synchronizations in response to the static condition reflect a deactivated resting period. PMID:26578903

  12. Observation of Transient Overcritical Currents in YBCO Thin Films using High-Speed Magneto-Optical Imaging and Dynamic Current Mapping

    PubMed Central

    Wells, Frederick S.; Pan, Alexey V.; Golovchanskiy, Igor A.; Fedoseev, Sergey A.; Rozenfeld, Anatoly

    2017-01-01

    The dynamics of transient current distributions in superconducting YBa2Cu3O7−δ thin films were investigated during and immediately following an external field ramp, using high-speed (real-time) Magneto-Optical Imaging and calculation of dynamic current profiles. A number of qualitatively unique and previously unobserved features are seen in this novel analysis of the evolution of supercurrent during penetration. As magnetic field ramps up from zero, the dynamic current profile is characterized by strong peaks, the magnitude of which exceed the conventional critical current density (as determined from static current profiles). These peaks develop close to the sample edges, initially resembling screening currents but quickly growing in intensity as the external field increases. A discontinuity in field and current behaviour is newly observed, indicating a novel transition from increasing peak current toward relaxation behaviour. After this transition, the current peaks move toward the centre of the sample while reducing in intensity as magnetic vortices penetrate inward. This motion slows exponentially with time, with the current distribution in the long-time limit reducing to the expected Kim-model profile. PMID:28067331

  13. Observation of Transient Overcritical Currents in YBCO Thin Films using High-Speed Magneto-Optical Imaging and Dynamic Current Mapping.

    PubMed

    Wells, Frederick S; Pan, Alexey V; Golovchanskiy, Igor A; Fedoseev, Sergey A; Rozenfeld, Anatoly

    2017-01-09

    The dynamics of transient current distributions in superconducting YBa2Cu3O7-δ thin films were investigated during and immediately following an external field ramp, using high-speed (real-time) Magneto-Optical Imaging and calculation of dynamic current profiles. A number of qualitatively unique and previously unobserved features are seen in this novel analysis of the evolution of supercurrent during penetration. As magnetic field ramps up from zero, the dynamic current profile is characterized by strong peaks, the magnitude of which exceed the conventional critical current density (as determined from static current profiles). These peaks develop close to the sample edges, initially resembling screening currents but quickly growing in intensity as the external field increases. A discontinuity in field and current behaviour is newly observed, indicating a novel transition from increasing peak current toward relaxation behaviour. After this transition, the current peaks move toward the centre of the sample while reducing in intensity as magnetic vortices penetrate inward. This motion slows exponentially with time, with the current distribution in the long-time limit reducing to the expected Kim-model profile.

  14. III-V alloy heterostructure high speed avalanche photodiodes

    NASA Technical Reports Server (NTRS)

    Law, H. D.; Nakano, K.; Tomasetta, L. R.

    1979-01-01

    Heterostructure avalanche photodiodes have been successfully fabricated in several III-V alloy systems: GaAlAs/GaAs, GaAlSb/GaAlSb, and InGaAsP/InP. These diodes cover optical wavelengths from 0.4 to 1.8 micron. Early stages of development show very encouraging results. High speed response of less than 35 ps and high quantum efficiency more than 95 percent have been obtained. The dark currents and the excess avalanche noise are also dicussed. A direct comparison of GaAlSb, GaAlAsSb, and In GaAsP avalanche photodiodes is given.

  15. III-V alloy heterostructure high speed avalanche photodiodes

    NASA Technical Reports Server (NTRS)

    Law, H. D.; Nakano, K.; Tomasetta, L. R.

    1979-01-01

    Heterostructure avalanche photodiodes have been successfully fabricated in several III-V alloy systems: GaAlAs/GaAs, GaAlSb/GaAlSb, and InGaAsP/InP. These diodes cover optical wavelengths from 0.4 to 1.8 micron. Early stages of development show very encouraging results. High speed response of less than 35 ps and high quantum efficiency more than 95 percent have been obtained. The dark currents and the excess avalanche noise are also dicussed. A direct comparison of GaAlSb, GaAlAsSb, and In GaAsP avalanche photodiodes is given.

  16. HIGH SPEED CAMERA

    DOEpatents

    Rogers, B.T. Jr.; Davis, W.C.

    1957-12-17

    This patent relates to high speed cameras having resolution times of less than one-tenth microseconds suitable for filming distinct sequences of a very fast event such as an explosion. This camera consists of a rotating mirror with reflecting surfaces on both sides, a narrow mirror acting as a slit in a focal plane shutter, various other mirror and lens systems as well as an innage recording surface. The combination of the rotating mirrors and the slit mirror causes discrete, narrow, separate pictures to fall upon the film plane, thereby forming a moving image increment of the photographed event. Placing a reflecting surface on each side of the rotating mirror cancels the image velocity that one side of the rotating mirror would impart, so as a camera having this short a resolution time is thereby possible.

  17. High speed civil transport

    NASA Technical Reports Server (NTRS)

    Bogardus, Scott; Loper, Brent; Nauman, Chris; Page, Jeff; Parris, Rusty; Steinbach, Greg

    1990-01-01

    The design process of the High Speed Civil Transport (HSCT) combines existing technology with the expectation of future technology to create a Mach 3.0 transport. The HSCT was designed to have a range in excess of 6000 nautical miles and carry up to 300 passengers. This range will allow the HSCT to service the economically expanding Pacific Basin region. Effort was made in the design to enable the aircraft to use conventional airports with standard 12,000 foot runways. With a takeoff thrust of 250,000 pounds, the four supersonic through-flow engines will accelerate the HSCT to a cruise speed of Mach 3.0. The 679,000 pound (at takeoff) HSCT is designed to cruise at an altitude of 70,000 feet, flying above most atmospheric disturbances.

  18. 25-Gbit/s burst-mode optical receiver using high-speed avalanche photodiode for 100-Gbit/s optical packet switching.

    PubMed

    Nada, Masahiro; Nakamura, Makoto; Matsuzaki, Hideaki

    2014-01-13

    25-Gbit/s error-free operation of an optical receiver is successfully demonstrated against burst-mode optical input signals without preambles. The receiver, with a high-sensitivity avalanche photodiode and burst-mode transimpedance amplifier, exhibits sufficient receiver sensitivity and an extremely quick response suitable for burst-mode operation in 100-Gbit/s optical packet switching.

  19. Research on high-speed single photon detector

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Yang, Hao; Wang, Di; Ma, Haiqiang; Luo, Kaihong; Sun, Zhibin; Zhai, Guangjie

    2010-10-01

    Single-photon detector based on an InGaAs avalanche photodiode is one of hot research on the quantum photon, and is one of the key technologies on quantum communication and quantum image. It is widely used in applications as high sensitive photon spectrum, high speed optic measurement and so on. A suitable delay and comparator with latch function circuit are used to prevent positive and negative transient pulses from influencing the detection of true photon induced avalanches. A dead time modulation feedback control circuit decreases the after-pulse. Especially, ECL difference circuit is the key of high speed single photon detector. In addition, the detector uses the hot tube fan-cooling method. From the performance test, the lowest temperature reaches -62°C, the minimum gate pulse width is 2ns (Full-Width-Half-Max, FWHM) and the dark counter rate is 2.5×10-6 ns-1 with a detection rate of 10MHz when the quantum efficiency is more than 10%.

  20. High-speed phosphor thermometry.

    PubMed

    Fuhrmann, N; Baum, E; Brübach, J; Dreizler, A

    2011-10-01

    Phosphor thermometry is a semi-invasive surface temperature measurement technique utilising the luminescence properties of doped ceramic materials. Typically, these phosphor materials are coated onto the object of interest and are excited by a short UV laser pulse. Up to now, primarily Q-switched laser systems with repetition rates of 10 Hz were employed for excitation. Accordingly, this diagnostic tool was not applicable to resolve correlated temperature transients at time scales shorter than 100 ms. This contribution reports on the first realisation of a high-speed phosphor thermometry system employing a highly repetitive laser in the kHz regime and a fast decaying phosphor. A suitable material was characterised regarding its temperature lifetime characteristic and its measurement precision. Additionally, the influence of laser power on the phosphor coating was investigated in terms of heating effects. A demonstration of this high-speed technique has been conducted inside the thermally highly transient system of an optically accessible internal combustion engine. Temperatures have been measured with a repetition rate of 6 kHz corresponding to one sample per crank angle degree at 1000 rpm.

  1. High-speed phosphor thermometry

    NASA Astrophysics Data System (ADS)

    Fuhrmann, N.; Baum, E.; Brübach, J.; Dreizler, A.

    2011-10-01

    Phosphor thermometry is a semi-invasive surface temperature measurement technique utilising the luminescence properties of doped ceramic materials. Typically, these phosphor materials are coated onto the object of interest and are excited by a short UV laser pulse. Up to now, primarily Q-switched laser systems with repetition rates of 10 Hz were employed for excitation. Accordingly, this diagnostic tool was not applicable to resolve correlated temperature transients at time scales shorter than 100 ms. This contribution reports on the first realisation of a high-speed phosphor thermometry system employing a highly repetitive laser in the kHz regime and a fast decaying phosphor. A suitable material was characterised regarding its temperature lifetime characteristic and its measurement precision. Additionally, the influence of laser power on the phosphor coating was investigated in terms of heating effects. A demonstration of this high-speed technique has been conducted inside the thermally highly transient system of an optically accessible internal combustion engine. Temperatures have been measured with a repetition rate of 6 kHz corresponding to one sample per crank angle degree at 1000 rpm.

  2. A Very Compact, High Speed and Rugged Acousto-Optic Tunable Filter for Wavelength Division Demultiplexing in Fiber Optic Communication Networks. Phase 1

    DTIC Science & Technology

    1995-06-30

    Novel concepts of near-collinear/collinear acousto - optic interactions have been investigated during this SBIR Phase I program. As a result, several...new acousto - optic tunable filters have been built and tested. The program is highlighted by: (1) Design, fabrication and experimental demonstration of...a novel TeO2 near-collinear acousto - optic tunable filter has been designed, fabricated and tested. The device exhibits a 1.29 nm spectral resolution

  3. High speed packet switching

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This document constitutes the final report prepared by Proteon, Inc. of Westborough, Massachusetts under contract NAS 5-30629 entitled High-Speed Packet Switching (SBIR 87-1, Phase 2) prepared for NASA-Greenbelt, Maryland. The primary goal of this research project is to use the results of the SBIR Phase 1 effort to develop a sound, expandable hardware and software router architecture capable of forwarding 25,000 packets per second through the router and passing 300 megabits per second on the router's internal busses. The work being delivered under this contract received its funding from three different sources: the SNIPE/RIG contract (Contract Number F30602-89-C-0014, CDRL Sequence Number A002), the SBIR contract, and Proteon. The SNIPE/RIG and SBIR contracts had many overlapping requirements, which allowed the research done under SNIPE/RIG to be applied to SBIR. Proteon funded all of the work to develop new router interfaces other than FDDI, in addition to funding the productization of the router itself. The router being delivered under SBIR will be a fully product-quality machine. The work done during this contract produced many significant findings and results, summarized here and explained in detail in later sections of this report. The SNIPE/RIG contract was completed. That contract had many overlapping requirements with the SBIR contract, and resulted in the successful demonstration and delivery of a high speed router. The development that took place during the SNIPE/RIG contract produced findings that included the choice of processor and an understanding of the issues surrounding inter processor communications in a multiprocessor environment. Many significant speed enhancements to the router software were made during that time. Under the SBIR contract (and with help from Proteon-funded work), it was found that a single processor router achieved a throughput significantly higher than originally anticipated. For this reason, a single processor router was

  4. High speed civil transport

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This report discusses the design and marketability of a next generation supersonic transport. Apogee Aeronautics Corporation has designated its High Speed Civil Transport (HSCT): Supercruiser HS-8. Since the beginning of the Concorde era, the general consensus has been that the proper time for the introduction of a next generation Supersonic Transport (SST) would depend upon the technical advances made in the areas of propulsion (reduction in emissions) and material composites (stronger, lighter materials). It is believed by many in the aerospace industry that these beforementioned technical advances lie on the horizon. With this being the case, this is the proper time to begin the design phase for the next generation HSCT. The design objective for a HSCT was to develop an aircraft that would be capable of transporting at least 250 passengers with baggage at a distance of 5500 nmi. The supersonic Mach number is currently unspecified. In addition, the design had to be marketable, cost effective, and certifiable. To achieve this goal, technical advances in the current SST's must be made, especially in the areas of aerodynamics and propulsion. As a result of these required aerodynamic advances, several different supersonic design concepts were reviewed.

  5. High Speed Ice Friction

    NASA Astrophysics Data System (ADS)

    Seymour-Pierce, Alexandra; Sammonds, Peter; Lishman, Ben

    2014-05-01

    Many different tribological experiments have been run to determine the frictional behaviour of ice at high speeds, ostensibly with the intention of applying results to everyday fields such as winter tyres and sports. However, experiments have only been conducted up to linear speeds of several metres a second, with few additional subject specific studies reaching speeds comparable to these applications. Experiments were conducted in the cold rooms of the Rock and Ice Physics Laboratory, UCL, on a custom built rotational tribometer based on previous literature designs. Preliminary results from experiments run at 2m/s for ice temperatures of 271 and 263K indicate that colder ice has a higher coefficient of friction, in accordance with the literature. These results will be presented, along with data from further experiments conducted at temperatures between 259-273K (in order to cover a wide range of the temperature dependent behaviour of ice) and speeds of 2-15m/s to produce a temperature-velocity-friction map for ice. The effect of temperature, speed and slider geometry on the deformation of ice will also be investigated. These speeds are approaching those exhibited by sports such as the luge (where athletes slide downhill on an icy track), placing the tribological work in context.

  6. Versatile wideband balanced detector for quantum optical homodyne tomography

    NASA Astrophysics Data System (ADS)

    Kumar, R.; Barrios, E.; MacRae, A.; Cairns, E.; Huntington, E. H.; Lvovsky, A. I.

    2012-11-01

    We present a comprehensive theory and an easy to follow method for the design and construction of a wideband homodyne detector for time-domain quantum measurements. We show how one can evaluate the performance of a detector in a specific time-domain experiment based on the electronic spectral characteristic of that detector. We then present and characterize a high-performance detector constructed using inexpensive, commercially available components such as low-noise high-speed operational amplifiers and high-bandwidth photodiodes. Our detector shows linear behavior up to a level of over 13 dB clearance between shot noise and electronic noise, in the range from DC to 100 MHz. The detector can be used for measuring quantum optical field quadratures both in the continuous-wave and pulsed regimes with standard commercial mode-locked lasers.

  7. Comparison of Two 1550 nm Ultra Narrow-Band Optical Infinite Impulse Response Filters for High-Speed Optical Signal Processing

    DTIC Science & Technology

    2000-01-01

    UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADPO1 1856 TITLE: Comparison of Two 1550 nm Ultra Narrow-Band Optical...etc. However, the component should be considered within [he context of the overall compilation report and not as a stand-alone technical report. The...parametric amplification: Demonstration of single-shot loading", Technical Digest of Conference on Optical Fiber Communication, pp. 201-202, 1998. 12

  8. High speed transition prediction

    NASA Technical Reports Server (NTRS)

    Gasperas, Gediminis

    1992-01-01

    The main objective of this work period was to develop, acquire and apply state-of-the-art tools for the prediction of transition at high speeds at NASA Ames. Although various stability codes as well as basic state codes were acquired, the development of a new Parabolized Stability Equation (PSE) code was minimal. The time that was initially allocated for development was used on other tasks, in particular for the Leading Edge Suction problem, in acquiring proficiency in various graphics tools, and in applying these tools to evaluate various Navier-Stokes and Euler solutions. The second objective of this work period was to attend the Transition and Turbulence Workshop at NASA Langley in July and August, 1991. A report on the Workshop follows. From July 8, 1991 to August 2, 1991, the author participated in the Transition and Turbulence Workshop at NASA Langley. For purposes of interest here, analysis can be said to consist of solving simplified governing equations by various analytical methods, such as asymptotic methods, or by use of very meager computer resources. From the composition of the various groups at the Workshop, it can be seen that analytical methods are generally more popular in Great Britain than they are in the U.S., possibly due to historical factors and the lack of computer resources. Experimenters at the Workshop were mostly concerned with subsonic flows, and a number of demonstrations were provided, among which were a hot-wire experiment to probe the boundary layer on a rotating disc, a hot-wire rake to map a free shear layer behind a cylinder, and the use of heating strips on a flat plate to control instability waves and consequent transition. A highpoint of the demonstrations was the opportunity to observe the rather noisy 'quiet' supersonic pilot tunnel in operation.

  9. Continuous QKD and high speed data encryption

    NASA Astrophysics Data System (ADS)

    Zbinden, Hugo; Walenta, Nino; Guinnard, Olivier; Houlmann, Raphael; Wen, Charles Lim Ci; Korzh, Boris; Lunghi, Tommaso; Gisin, Nicolas; Burg, Andreas; Constantin, Jeremy; Legré, Matthieu; Trinkler, Patrick; Caselunghe, Dario; Kulesza, Natalia; Trolliet, Gregory; Vannel, Fabien; Junod, Pascal; Auberson, Olivier; Graf, Yoan; Curchod, Gilles; Habegger, Gilles; Messerli, Etienne; Portmann, Christopher; Henzen, Luca; Keller, Christoph; Pendl, Christian; Mühlberghuber, Michael; Roth, Christoph; Felber, Norbert; Gürkaynak, Frank; Schöni, Daniel; Muheim, Beat

    2013-10-01

    We present the results of a Swiss project dedicated to the development of high speed quantum key distribution and data encryption. The QKD engine features fully automated key exchange, hardware key distillation based on finite key security analysis, efficient authentication and wavelength division multiplexing of the quantum and the classical channel and one-time pas encryption. The encryption device allows authenticated symmetric key encryption (e.g AES) at rates of up to 100 Gb/s. A new quantum key can uploaded up to 1000 times second from the QKD engine.

  10. Nonlinear optics quantum computing with circuit QED.

    PubMed

    Adhikari, Prabin; Hafezi, Mohammad; Taylor, J M

    2013-02-08

    One approach to quantum information processing is to use photons as quantum bits and rely on linear optical elements for most operations. However, some optical nonlinearity is necessary to enable universal quantum computing. Here, we suggest a circuit-QED approach to nonlinear optics quantum computing in the microwave regime, including a deterministic two-photon phase gate. Our specific example uses a hybrid quantum system comprising a LC resonator coupled to a superconducting flux qubit to implement a nonlinear coupling. Compared to the self-Kerr nonlinearity, we find that our approach has improved tolerance to noise in the qubit while maintaining fast operation.

  11. Experimental quantum forgery of quantum optical money

    NASA Astrophysics Data System (ADS)

    Bartkiewicz, Karol; Černoch, Antonín; Chimczak, Grzegorz; Lemr, Karel; Miranowicz, Adam; Nori, Franco

    2017-03-01

    Unknown quantum information cannot be perfectly copied (cloned). This statement is the bedrock of quantum technologies and quantum cryptography, including the seminal scheme of Wiesner's quantum money, which was the first quantum-cryptographic proposal. Surprisingly, to our knowledge, quantum money has not been tested experimentally yet. Here, we experimentally revisit the Wiesner idea, assuming a banknote to be an image encoded in the polarization states of single photons. We demonstrate that it is possible to use quantum states to prepare a banknote that cannot be ideally copied without making the owner aware of only unauthorized actions. We provide the security conditions for quantum money by investigating the physically-achievable limits on the fidelity of 1-to-2 copying of arbitrary sequences of qubits. These results can be applied as a security measure in quantum digital right management.

  12. Compact component for integrated quantum optic processing

    NASA Astrophysics Data System (ADS)

    Sahu, Partha Pratim

    2015-11-01

    Quantum interference is indispensable to derive integrated quantum optic technologies (1-2). For further progress in large scale integration of quantum optic circuit, we have introduced first time two mode interference (TMI) coupler as an ultra compact component. The quantum interference varying with coupling length corresponding to the coupling ratio is studied and the larger HOM dip with peak visibility ~0.963 ± 0.009 is found at half coupling length of TMI coupler. Our results also demonstrate complex quantum interference with high fabrication tolerance and quantum visibility in TMI coupler.

  13. Quantum nonlinear optics without photons

    NASA Astrophysics Data System (ADS)

    Stassi, Roberto; Macrı, Vincenzo; Kockum, Anton Frisk; Di Stefano, Omar; Miranowicz, Adam; Savasta, Salvatore; Nori, Franco

    2017-08-01

    Spontaneous parametric down-conversion is a well-known process in quantum nonlinear optics in which a photon incident on a nonlinear crystal spontaneously splits into two photons. Here we propose an analogous physical process where one excited atom directly transfers its excitation to a pair of spatially separated atoms with probability approaching 1. The interaction is mediated by the exchange of virtual rather than real photons. This nonlinear atomic process is coherent and reversible, so the pair of excited atoms can transfer the excitation back to the first one: the atomic analog of sum-frequency generation of light. The parameters used to investigate this process correspond to experimentally demonstrated values in ultrastrong circuit quantum electrodynamics. This approach can be extended to realize other nonlinear interatomic processes, such as four-atom mixing, and is an attractive architecture for the realization of quantum devices on a chip. We show that four-qubit mixing can efficiently implement quantum repetition codes and, thus, can be used for error-correction codes.

  14. Quantum reading of unitary optical devices

    SciTech Connect

    Dall'Arno, Michele; Bisio, Alessandro; D'Ariano, Giacomo Mauro

    2014-12-04

    We address the problem of quantum reading of optical memories, namely the retrieving of classical information stored in the optical properties of a media with minimum energy. We present optimal strategies for ambiguous and unambiguous quantum reading of unitary optical memories, namely when one's task is to minimize the probability of errors in the retrieved information and when perfect retrieving of information is achieved probabilistically, respectively. A comparison of the optimal strategy with coherent probes and homodyne detection shows that the former saves orders of magnitude of energy when achieving the same performances. Experimental proposals for quantum reading which are feasible with present quantum optical technology are reported.

  15. Quantum noise in optical interferometers

    SciTech Connect

    Voronov, Volodymyr G.; Weyrauch, Michael

    2010-05-15

    We study the photon counting noise in optical interferometers used for gravitational wave detection. In order to reduce quantum noise, a squeezed vacuum is injected into the usually unused input port. It is investigated under which conditions the gravitational wave signal may be amplified without increasing counting noise concurrently. Such a possibility was suggested as a consequence of the entanglement of the two output ports of a beam splitter. We find that amplification without concurrent increase of noise is not possible for reasonable squeezing parameters. Photon distributions for various beam splitter angles and squeezing parameters are calculated.

  16. On-chip quantum optics with quantum dot microcavities.

    PubMed

    Stock, E; Albert, F; Hopfmann, C; Lermer, M; Schneider, C; Höfling, S; Forchel, A; Kamp, M; Reitzenstein, S

    2013-02-06

    A novel concept for on-chip quantum optics using an internal electrically pumped microlaser is presented. The microlaser resonantly excites a quantum dot microcavity system operating in the weak coupling regime of cavity quantum electrodynamics. This work presents the first on-chip application of quantum dot microlasers, and also opens up new avenues for the integration of individual microcavity structures into larger photonic networks.

  17. High speed data transmission for the SSC solenoidal detector

    NASA Astrophysics Data System (ADS)

    Leskovar, B.

    1991-04-01

    High speed data transmission using fiber optics for the Superconducting Super Collider solenoidal detector has been studied. The solenoidal detector system will consist of nine subsystems involving more than a total 10(exp 7) channels of readout electronics. Consequently, a new high performance data acquisition system, incorporating high-speed optical fiber networks, will be required to process this large quantity of data.

  18. The Holy Grail of quantum optical communication

    SciTech Connect

    García-Patrón, Raúl; Navarrete-Benlloch, Carlos; Lloyd, Seth; Shapiro, Jeffrey H.; Cerf, Nicolas J.

    2014-12-04

    Optical parametric amplifiers together with phase-shifters and beamsplitters have certainly been the most studied objects in the field of quantum optics. Despite such an intensive study, optical parametric amplifiers still keep secrets from us. We will show how they hold the answer to one of the oldest problems in quantum communication theory, namely the calculation of the optimal communication rate of optical channels.

  19. High Speed Digital Camera Technology Review

    NASA Technical Reports Server (NTRS)

    Clements, Sandra D.

    2009-01-01

    A High Speed Digital Camera Technology Review (HSD Review) is being conducted to evaluate the state-of-the-shelf in this rapidly progressing industry. Five HSD cameras supplied by four camera manufacturers participated in a Field Test during the Space Shuttle Discovery STS-128 launch. Each camera was also subjected to Bench Tests in the ASRC Imaging Development Laboratory. Evaluation of the data from the Field and Bench Tests is underway. Representatives from the imaging communities at NASA / KSC and the Optical Systems Group are participating as reviewers. A High Speed Digital Video Camera Draft Specification was updated to address Shuttle engineering imagery requirements based on findings from this HSD Review. This draft specification will serve as the template for a High Speed Digital Video Camera Specification to be developed for the wider OSG imaging community under OSG Task OS-33.

  20. Electrical and optical control of optical gain in a coupled triple quantum dot system operating in telecommunication window

    NASA Astrophysics Data System (ADS)

    Mehmannavaz, Mohammad Reza; Sattari, Hamed

    2014-12-01

    We investigate the light amplification and gain without inversion (GWI) in triple quantum dot molecules in both steady-state and transient state. We demonstrate that the light amplification and GWI of a light pulse can be controlled through the rates of the incoherent pumping and tunneling between electronic levels. The required switching times for switching of a light pulse from absorption to gain and vice versa is then discussed. We obtain switching time at about 40 ps, which resembles a high-speed optical switch in nanostructure. The proposed approach in QDMs may provide some new possibilities for technological applications in optoelectronics and solid-state quantum information science.

  1. Optical Fiber Sensing Using Quantum Dots

    PubMed Central

    Jorge, Pedro; Martins, Manuel António; Trindade, Tito; Santos, José Luís; Farahi, Faramarz

    2007-01-01

    Recent advances in the application of semiconductor nanocrystals, or quantum dots, as biochemical sensors are reviewed. Quantum dots have unique optical properties that make them promising alternatives to traditional dyes in many luminescence based bioanalytical techniques. An overview of the more relevant progresses in the application of quantum dots as biochemical probes is addressed. Special focus will be given to configurations where the sensing dots are incorporated in solid membranes and immobilized in optical fibers or planar waveguide platforms.

  2. High-Speed Operation of Interband Cascade Lasers

    NASA Technical Reports Server (NTRS)

    Soibel, Alexander; Hill, Cory J.; Keo, Sam A.; Wright, Malcom W.; Farr, William H.; Yang, Rui Q.; Liu, H. C.

    2010-01-01

    Optical sources operating in the atmospheric window of 3-5 microns are of particular interest for the development of free-space optical communication link. It is more advantageous to operate the free-space optical communication link in 3-5-microns atmospheric transmission window than at the telecom wavelength of 1.5 m due to lower optical scattering, scintillation, and background radiation. However, the realization of optical communications at the longer wavelength has encountered significant difficulties due to lack of adequate optical sources and detectors operating in the desirable wavelength regions. Interband Cascade (IC) lasers are novel semiconductor lasers that have a great potential for the realization of high-power, room-temperature optical sources in the 3-5-microns wavelength region, yet no experimental work, until this one, was done on high-speed direct modulation of IC lasers. Here, highspeed interband cascade laser, operating at wavelength 3.0 m, has been developed and the first direct measurement of the laser modulation bandwidth has been performed using a unique, highspeed quantum well infrared photodetector (QWIP). The developed laser has modulation bandwidth exceeding 3 GHz. This constitutes a significant increase of the IC laser modulation bandwidth over currently existing devices. This result has demonstrated suitability of IC lasers as a mid-IR light source for multi-GHz free-space optical communications links

  3. A quantum optical firewall based on simple quantum devices

    NASA Astrophysics Data System (ADS)

    Amellal, H.; Meslouhi, A.; Hassouni, Y.; El Baz, M.

    2015-07-01

    In order to enhance the transmission security in quantum communications via coherent states, we propose a quantum optical firewall device to protect a quantum cryptosystem against eavesdropping through optical attack strategies. Similar to the classical model of the firewall, the proposed device gives legitimate users the possibility of filtering, controlling (input/output states) and making a decision (access or deny) concerning the traveling states. To prove the security and efficiency of the suggested optical firewall, we analyze its performances against the family of intercept and resend attacks, especially against one of the most prominent attack schemes known as "Faked State Attack."

  4. Quantum correlations among optical and vibrational quanta

    NASA Astrophysics Data System (ADS)

    Carlig, Sergiu; Macovei, Mihai A.

    2014-05-01

    We investigate the feasibility of correlating an optical cavity field and a vibrational phonon mode. A laser pumped quantum dot fixed on a nanomechanical resonator beam interacts as a whole with the optical resonator mode. When the quantum dot variables are faster than the optical and phonon ones, we obtain a final master equation describing the involved modes only. Increasing the temperature, which directly affects the vibrational degrees of freedom, one can as well influence the cavity photon intensity, i.e., the optical and phonon modes are correlated. Furthermore, the corresponding Cauchy-Schwarz inequality is violated demonstrating the quantum nature of those correlations.

  5. High-speed pressure clamp.

    PubMed

    Besch, Stephen R; Suchyna, Thomas; Sachs, Frederick

    2002-10-01

    We built a high-speed, pneumatic pressure clamp to stimulate patch-clamped membranes mechanically. The key control element is a newly designed differential valve that uses a single, nickel-plated piezoelectric bending element to control both pressure and vacuum. To minimize response time, the valve body was designed with minimum dead volume. The result is improved response time and stability with a threefold decrease in actuation latency. Tight valve clearances minimize the steady-state air flow, permitting us to use small resonant-piston pumps to supply pressure and vacuum. To protect the valve from water contamination in the event of a broken pipette, an optical sensor detects water entering the valve and increases pressure rapidly to clear the system. The open-loop time constant for pressure is 2.5 ms for a 100-mmHg step, and the closed-loop settling time is 500-600 micros. Valve actuation latency is 120 micros. The system performance is illustrated for mechanically induced changes in patch capacitance.

  6. Strongly correlated quantum walks in optical lattices.

    PubMed

    Preiss, Philipp M; Ma, Ruichao; Tai, M Eric; Lukin, Alexander; Rispoli, Matthew; Zupancic, Philip; Lahini, Yoav; Islam, Rajibul; Greiner, Markus

    2015-03-13

    Full control over the dynamics of interacting, indistinguishable quantum particles is an important prerequisite for the experimental study of strongly correlated quantum matter and the implementation of high-fidelity quantum information processing. We demonstrate such control over the quantum walk-the quantum mechanical analog of the classical random walk-in the regime where dynamics are dominated by interparticle interactions. Using interacting bosonic atoms in an optical lattice, we directly observed fundamental effects such as the emergence of correlations in two-particle quantum walks, as well as strongly correlated Bloch oscillations in tilted optical lattices. Our approach can be scaled to larger systems, greatly extending the class of problems accessible via quantum walks. Copyright © 2015, American Association for the Advancement of Science.

  7. Monolithically integrated quantum dot optical modulator with semiconductor optical amplifier for thousand and original band optical communication

    NASA Astrophysics Data System (ADS)

    Yamamoto, Naokatsu; Akahane, Kouichi; Umezawa, Toshimasa; Matsumoto, Atsushi; Kawanishi, Tetsuya

    2016-04-01

    A monolithically integrated quantum dot (QD) optical gain modulator (OGM) with a QD semiconductor optical amplifier (SOA) was successfully developed with T-band (1.0 µm waveband) and O-band (1.3 µm waveband) QD optical gain materials for Gbps-order, high-speed optical data generation. The insertion loss due to coupling between the device and the optical fiber was effectively compensated for by the SOA section. It was also confirmed that the monolithic QD-OGM/SOA device enabled >4.8 Gbps optical data generation with a clear eye opening in the T-band. Furthermore, we successfully demonstrated error-free 4.8 Gbps optical data transmissions in each of the six wavelength channels over a 10-km-long photonic crystal fiber using the monolithic QD-OGM/SOA device in multiple O-band wavelength channels, which were generated by the single QD gain chip. These results suggest that the monolithic QD-OGM/SOA device will be advantageous in ultra-broadband optical frequency systems that utilize the T+O-band for short- and medium-range optical communications.

  8. HIGH SPEED KERR CELL FRAMING CAMERA

    DOEpatents

    Goss, W.C.; Gilley, L.F.

    1964-01-01

    The present invention relates to a high speed camera utilizing a Kerr cell shutter and a novel optical delay system having no moving parts. The camera can selectively photograph at least 6 frames within 9 x 10/sup -8/ seconds during any such time interval of an occurring event. The invention utilizes particularly an optical system which views and transmits 6 images of an event to a multi-channeled optical delay relay system. The delay relay system has optical paths of successively increased length in whole multiples of the first channel optical path length, into which optical paths the 6 images are transmitted. The successively delayed images are accepted from the exit of the delay relay system by an optical image focusing means, which in turn directs the images into a Kerr cell shutter disposed to intercept the image paths. A camera is disposed to simultaneously view and record the 6 images during a single exposure of the Kerr cell shutter. (AEC)

  9. Optically active quantum-dot molecules.

    PubMed

    Shlykov, Alexander I; Baimuratov, Anvar S; Baranov, Alexander V; Fedorov, Anatoly V; Rukhlenko, Ivan D

    2017-02-20

    Chiral molecules made of coupled achiral semiconductor nanocrystals, also known as quantum dots, show great promise for photonic applications owing to their prospective uses as configurable building blocks for optically active structures, materials, and devices. Here we present a simple model of optically active quantum-dot molecules, in which each of the quantum dots is assigned a dipole moment associated with the fundamental interband transition between the size-quantized states of its confined charge carriers. This model is used to analytically calculate the rotatory strengths of optical transitions occurring upon the excitation of chiral dimers, trimers, and tetramers of general configurations. The rotatory strengths of such quantum-dot molecules are found to exceed the typical rotatory strengths of chiral molecules by five to six orders of magnitude. We also study how the optical activity of quantum-dot molecules shows up in their circular dichroism spectra when the energy gap between the molecular states is much smaller than the states' lifetime, and maximize the strengths of the circular dichroism peaks by optimizing orientations of the quantum dots in the molecules. Our analytical results provide clear design guidelines for quantum-dot molecules and can prove useful in engineering optically active quantum-dot supercrystals and photonic devices.

  10. Quantum optics and frontiers of physics: the third quantum revolution

    NASA Astrophysics Data System (ADS)

    Celi, Alessio; Sanpera, Anna; Ahufinger, Veronica; Lewenstein, Maciej

    2017-01-01

    The year 2015 was the International Year of Light. However, it also marked, the 20th anniversary of the first observation of Bose-Einstein condensation in atomic vapors by Eric Cornell, Carl Wieman and Wolfgang Ketterle. This discovery could be considered as one of the greatest achievements of quantum optics that has triggered an avalanche of further seminal discoveries and achievements. For this reason we devote this essay for the focus issue on ‘Quantum Optics in the International Year of Light’ to the recent revolutionary developments in quantum optics at the frontiers of all physics: atomic physics, molecular physics, condensed matter physics, high energy physics and quantum information science. We follow here the lines of the introduction to our book ‘Ultracold atoms in optical lattices: Simulating quantum many-body systems’ (Lewenstein et al 2012 Ultracold Atoms in Optical Lattices: Simulating Quantum Many-body Systems (Oxford: University Press)), and to a lesser extent the review article M Lewenstein et al (2007 Adv. Phys. 56 243). The book, however, was published in 2012, and many things has happened since then—the present essay is therefore upgraded to include the latest developments.

  11. Quantum ratchets for quantum communication with optical superlattices

    SciTech Connect

    Romero-Isart, Oriol; Garcia-Ripoll, Juan Jose

    2007-11-15

    We propose to use a quantum ratchet to transport quantum information in a chain of atoms trapped in an optical superlattice. The quantum ratchet is created by a continuous modulation of the optical superlattice which is periodic in time and in space. Though there is zero average force acting on the atoms, we show that indeed the ratchet effect permits atoms on even and odd sites to move along opposite directions. By loading the optical lattice with two-level bosonic atoms, this scheme permits us to perfectly transport a qubit or entangled state imprinted in one or more atoms to any desired position in the lattice. From the quantum computation point of view, the transport is achieved by a smooth concatenation of perfect swap gates. We analyze setups with noninteracting and interacting particles and in the latter case we use the tools of optimal control to design optimal modulations. We also discuss the feasibility of this method in current experiments.

  12. Quantum cryptography over underground optical fibers

    SciTech Connect

    Hughes, R.J.; Luther, G.G.; Morgan, G.L.; Peterson, C.G.; Simmons, C.

    1996-05-01

    Quantum cryptography is an emerging technology in which two parties may simultaneously generated shared, secret cryptographic key material using the transmission of quantum states of light whose security is based on the inviolability of the laws of quantum mechanics. An adversary can neither successfully tap the key transmissions, nor evade detection, owing to Heisenberg`s uncertainty principle. In this paper the authors describe the theory of quantum cryptography, and the most recent results from their experimental system with which they are generating key material over 14-km of underground optical fiber. These results show that optical-fiber based quantum cryptography could allow secure, real-time key generation over ``open`` multi-km node-to-node optical fiber communications links between secure ``islands.``

  13. Ultrafast free electron quantum optics

    NASA Astrophysics Data System (ADS)

    Becker, Maria Gabriel

    Free electron quantum optics is an emerging sub-field of physics that uses laser light, often in combination with nano-structures, to manipulate electrons in free space. Integration of femtosecond lasers into this technology is facilitating the move of free electron quantum optics into the ultrafast regime. A vision for this technology is ultrahigh temporal resolution in free electron time-of-flight experiments. Such a system would make fundamental physics studies involving small forces accessible that are not feasible with current technology. Realization of this vision will require an ultrafast source and an ultrafast detection scheme. Tungsten nano-tip sources capable of generating sub-100 fs electron pulses are already in use in our lab. Elsewhere, this type of source has been reported to emit on a sub-cycle timescale. Following up on a proposed scheme for observing sub-cycle emission, a two-color interferometer has been built and pump-probe electron emission measurements have been performed. Other efforts to develop ultrafast sources have involved implementing additional control parameters. GaAs has been investigated as a possible ultrafast source of spin-polarized electrons, and tungsten nano-tips have been modified with an ion beam to create a double tip source. Spin control and transverse separation control are expected to make studies of Pauli degeneracy pressure possible. The temporal resolution of current electronic particle detectors is ~1 ns. Schemes involving the interaction of laser pulses with nanostructures could improve this resolution by several orders of magnitude. As a first step towards a femtosecond electron switch, the temporal resolution of a nano-fabricated plasmonic antenna has been measured in a femtosecond pump-probe experiment. The possibility of an ultrafast diffraction switch has also been analyzed for nonrelativistic and relativistic electrons. In an application of a free electron time-of-flight system, the prediction of

  14. Deterministic linear optical quantum Toffoli gate

    NASA Astrophysics Data System (ADS)

    Huang, He-Liang; Bao, Wan-Su; Li, Tan; Li, Feng-Guang; Fu, Xiang-Qun; Zhang, Shuo; Zhang, Hai-Long; Wang, Xiang

    2017-09-01

    Quantum Toffoli gate is a crucial part of many quantum information processing schemes. We design a deterministic linear optical quantum Toffoli gate using three degrees of freedom of a single photon. The proposed setup does not require any ancilla photons and is experimentally feasible with current technology. Moreover, we show that our setup can be directly used to demonstrate that hypergraph states violate local realism in an extreme manner.

  15. Quantum Optics with Single Atoms and Photons

    DTIC Science & Technology

    2007-11-02

    Computation 2, 1 (2002). 2. “ Quantum teleportation of light beams,” T. C. Zhang, K. W. Goh, C. W. Chou, P. Lodahl, and H. J. Kimble, Phys. Rev. A67, 033802...code) Final Technical Report ONR Grant Number N00014-02-1-0828 Quantum Optics with Single Atoms and Photons Submitted to Office of Naval Research...exploit recently discovered pos- sibilities in the microscopic realm of quantum mechanics to accomplish tasks that would otherwise be impossible by

  16. Disturbance, the uncertainty principle and quantum optics

    NASA Technical Reports Server (NTRS)

    Martens, Hans; Demuynck, Willem M.

    1993-01-01

    It is shown how a disturbance-type uncertainty principle can be derived from an uncertainty principle for joint measurements. To achieve this, we first clarify the meaning of 'inaccuracy' and 'disturbance' in quantum mechanical measurements. The case of photon number and phase is treated as an example, and it is applied to a quantum non-demolition measurement using the optical Kerr effect.

  17. Vertical Emitting, Ring Geometry, Ultra-Low Threshold and Ultra-High Speed Quantum Well Lasers for Optical Interconnect

    DTIC Science & Technology

    1990-02-01

    substrates were fabricated to simulate the conditions to be expected in laser fabrication . Several methods of preparation for grating definition were...is evident, its height is the upper limited considered for laser fabrication . The left hand side of the figure shows the fabricated grating, its

  18. High-Speed Electrochemical Imaging.

    PubMed

    Momotenko, Dmitry; Byers, Joshua C; McKelvey, Kim; Kang, Minkyung; Unwin, Patrick R

    2015-09-22

    The design, development, and application of high-speed scanning electrochemical probe microscopy is reported. The approach allows the acquisition of a series of high-resolution images (typically 1000 pixels μm(-2)) at rates approaching 4 seconds per frame, while collecting up to 8000 image pixels per second, about 1000 times faster than typical imaging speeds used up to now. The focus is on scanning electrochemical cell microscopy (SECCM), but the principles and practicalities are applicable to many electrochemical imaging methods. The versatility of the high-speed scan concept is demonstrated at a variety of substrates, including imaging the electroactivity of a patterned self-assembled monolayer on gold, visualization of chemical reactions occurring at single wall carbon nanotubes, and probing nanoscale electrocatalysts for water splitting. These studies provide movies of spatial variations of electrochemical fluxes as a function of potential and a platform for the further development of high speed scanning with other electrochemical imaging techniques.

  19. Quantum and classical optics-emerging links

    NASA Astrophysics Data System (ADS)

    Eberly, J. H.; Qian, Xiao-Feng; Qasimi, Asma Al; Ali, Hazrat; Alonso, M. A.; Gutiérrez-Cuevas, R.; Little, Bethany J.; Howell, John C.; Malhotra, Tanya; Vamivakas, A. N.

    2016-06-01

    Quantum optics and classical optics are linked in ways that are becoming apparent as a result of numerous recent detailed examinations of the relationships that elementary notions of optics have with each other. These elementary notions include interference, polarization, coherence, complementarity and entanglement. All of them are present in both quantum and classical optics. They have historic origins, and at least partly for this reason not all of them have quantitative definitions that are universally accepted. This makes further investigation into their engagement in optics very desirable. We pay particular attention to effects that arise from the mere co-existence of separately identifiable and readily available vector spaces. Exploitation of these vector-space relationships are shown to have unfamiliar theoretical implications and new options for observation. It is our goal to bring emerging quantum-classical links into wider view and to indicate directions in which forthcoming and future work will promote discussion and lead to unified understanding.

  20. SEAL FOR HIGH SPEED CENTRIFUGE

    DOEpatents

    Skarstrom, C.W.

    1957-12-17

    A seal is described for a high speed centrifuge wherein the centrifugal force of rotation acts on the gasket to form a tight seal. The cylindrical rotating bowl of the centrifuge contains a closure member resting on a shoulder in the bowl wall having a lower surface containing bands of gasket material, parallel and adjacent to the cylinder wall. As the centrifuge speed increases, centrifugal force acts on the bands of gasket material forcing them in to a sealing contact against the cylinder wall. This arrangememt forms a simple and effective seal for high speed centrifuges, replacing more costly methods such as welding a closure in place.