Sample records for high-speed research program

  1. The 1995 NASA High-Speed Research Program Sonic Boom Workshop. Volume 1

    NASA Technical Reports Server (NTRS)

    Baize, Daniel G. (Editor)

    1996-01-01

    The High-Speed Research Program and NASA Langley Research Center sponsored the NASA High-Speed Research Program Sonic Boom Workshop on September 12-13, 1995. The workshop was designed to bring together NASAs scientists and engineers and their counterparts in industry, other Government agencies, and academia working together in the sonic boom element of NASAs High-Speed Research Program. Specific objectives of this workshop were to (1) report the progress and status of research in sonic boom propagation, acceptability, and design; (2) promote and disseminate this technology within the appropriate technical communities; (3) help promote synergy among the scientists working in the Program; and (4) identify technology pacing the development of viable reduced-boom High-Speed Civil Transport concepts. The Workshop included these sessions: Session 1 - Sonic Boom Propagation (Theoretical); Session 2 - Sonic Boom Propagation (Experimental); and Session 3 - Acceptability Studies - Human and Animal.

  2. 1995 NASA High-Speed Research Program Sonic Boom Workshop. Volume 2; Configuration Design, Analysis, and Testing

    NASA Technical Reports Server (NTRS)

    Baize, Daniel G. (Editor)

    1999-01-01

    The High-Speed Research Program and NASA Langley Research Center sponsored the NASA High-Speed Research Program Sonic Boom Workshop on September 12-13, 1995. The workshop was designed to bring together NASAs scientists and engineers and their counterparts in industry, other Government agencies, and academia working together in the sonic boom element of NASAs High-Speed Research Program. Specific objectives of this workshop were to: (1) report the progress and status of research in sonic boom propagation, acceptability, and design; (2) promote and disseminate this technology within the appropriate technical communities; (3) help promote synergy among the scientists working in the Program; and (4) identify technology pacing, the development C, of viable reduced-boom High-Speed Civil Transport concepts. The Workshop was organized in four sessions: Sessions 1 Sonic Boom Propagation (Theoretical); Session 2 Sonic Boom Propagation (Experimental); Session 3 Acceptability Studies-Human and Animal; and Session 4 - Configuration Design, Analysis, and Testing.

  3. 1997 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 2; High Lift

    NASA Technical Reports Server (NTRS)

    Baize, Daniel G. (Editor)

    1999-01-01

    The High-Speed Research Program and NASA Langley Research Center sponsored the NASA High-Speed Research Program Aerodynamic Performance Workshop on February 25-28, 1997. The workshop was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in areas of Configuration Aerodynamics (transonic and supersonic cruise drag, prediction and minimization), High-Lift, Flight Controls, Supersonic Laminar Flow Control, and Sonic Boom Prediction. The workshop objectives were to (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientist and engineers working HSCT aerodynamics. In particular, single- and multi-point optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT Motion Simulator results were presented along with executives summaries for all the Aerodynamic Performance technology areas.

  4. Critical Life Prediction Research on Boron-Enhanced Ti-6A1-4V

    DTIC Science & Technology

    2007-05-01

    2.4 High Modulus Ti-6Al-2Fe-0.1Si-0.6B “T” Extrusions for HSCT program. Ref. Government Contract No. NASI -20220: High Speed Research-Airframe...0.1Si-0.6B “T” Extrusions for HSCT program. Ref. Government Contract No. NASI -20220: High Speed Research-Airframe Technology report. with the focus...baseline Ti-6Al-4V (Government Contract No. NASI -20220, High Speed Research-Airframe Technology Report, 1997: 3-5, 14, 26). 1 in 3 in 16 In

  5. 1997 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 1; Configuration Aerodynamics

    NASA Technical Reports Server (NTRS)

    Baize, Daniel G. (Editor)

    1999-01-01

    The High-Speed Research Program and NASA Langley Research Center sponsored the NASA High-Speed Research Program Aerodynamic Performance Workshop on February 25-28, 1997. The workshop was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in area of Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High-Lift, Flight Controls, Supersonic Laminar Flow Control, and Sonic Boom Prediction. The workshop objectives were to (1) report the progress and status of HSCT aerodyamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientist and engineers working HSCT aerodynamics. In particular, single- and multi-point optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT Motion Simulator results were presented along with executive summaries for all the Aerodynamic Performance technology areas.

  6. 1997 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 1; Configuration Aerodynamics

    NASA Technical Reports Server (NTRS)

    Baize, Daniel G. (Editor)

    1999-01-01

    The High-Speed Research Program and NASA Langley Research Center sponsored the NASA High-Speed Research Program Aerodynamic Performance Workshop on February 25-28, 1997. The workshop was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in areas of Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High-Lift, Flight Controls, Supersonic Laminar Flow Control, and Sonic Boom Prediction. The workshop objectives were to (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientist and engineers working HSCT aerodynamics. In particular, single- and multi-point optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT Motion Simulator results were presented along with executive summaries for all the Aerodynamic Performance technology areas.

  7. 1997 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 1; Configuration Aerodynamics

    NASA Technical Reports Server (NTRS)

    Baize, Daniel G. (Editor)

    1999-01-01

    The High-Speed Research Program and NASA Langley Research Center sponsored the NASA High-Speed Research Program Aerodynamic Performance Workshop on February 25-28, 1997. The workshop was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in area of Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High-Lift, Flight Controls, Supersonic Laminar Flow Control, and Sonic Boom Prediction. The workshop objectives were to (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientist and engineers working HSCT aerodynamics. In particular, single- and multi-point optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT Motion Simulator results were presented along with executive summaries for all the Aerodynamic Performance technology areas.

  8. Aeronautics research and technology program and specific objectives

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Aeronautics research and technology program objectives in fluid and thermal physics, materials and structures, controls and guidance, human factors, multidisciplinary activities, computer science and applications, propulsion, rotorcraft, high speed aircraft, subsonic aircraft, and rotorcraft and high speed aircraft systems technology are addressed.

  9. 1999 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 2; High Lift

    NASA Technical Reports Server (NTRS)

    Hahne, David E. (Editor)

    1999-01-01

    The High-Speed Research Program sponsored the NASA High-Speed Research Program Aerodynamic Performance Review on February 8-12, 1999 in Anaheim, California. The review was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in areas of: Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization) and High-Lift. The review objectives were to: (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientist and engineers working HSCT aerodynamics. The HSR AP Technical Review was held simultaneously with the annual review of the following airframe technology areas: Materials and Structures, Environmental Impact, Flight Deck, and Technology Integration Thus, a fourth objective of the Review was to promote synergy between the Aerodynamic Performance technology area and the other technology areas within the airframe element of the HSR Program. This Volume 2/Part 1 publication presents the High-Lift Configuration Development session.

  10. High-Speed Jet Noise Reduction NASA Perspective

    NASA Technical Reports Server (NTRS)

    Huff, Dennis L.; Handy, J. (Technical Monitor)

    2001-01-01

    History shows that the problem of high-speed jet noise reduction is difficult to solve. the good news is that high performance military aircraft noise is dominated by a single source called 'jet noise' (commercial aircraft have several sources). The bad news is that this source has been the subject of research for the past 50 years and progress has been incremental. Major jet noise reduction has been achieved through changing the cycle of the engine to reduce the jet exit velocity. Smaller reductions have been achieved using suppression devices like mixing enhancement and acoustic liners. Significant jet noise reduction without any performance loss is probably not possible! Recent NASA Noise Reduction Research Programs include the High Speed Research Program, Advanced Subsonic Technology Noise Reduction Program, Aerospace Propulsion and Power Program - Fundamental Noise, and Quiet Aircraft Technology Program.

  11. Reference H Piloted Assessment (LaRC.1) Pilot Briefing Guide

    NASA Technical Reports Server (NTRS)

    Jackson, E. Bruce; Raney, David L.; Hahne, David E.; Derry, Stephen D.; Glaab, Louis J.

    1999-01-01

    This document describes the purpose of and method by which an assessment of the Boeing Reference H High-Speed Civil Transport design was evaluated in the NASA Langley Research Center's Visual/Motion Simulator in January 1997. Six pilots were invited to perform approximately 60 different Mission Task Elements that represent most normal and emergency flight operations of concern to the High Speed Research program. The Reference H design represents a candidate configuration for a High-Speed Civil Transport, a second generation supersonic civilian transport aircraft. The High-Speed Civil Transport is intended to be economically sound and environmentally safe while carrying passengers and cargo at supersonic speeds with a trans-Pacific range. This simulation study was designated "LaRC. 1" for the purposes of planning, scheduling and reporting within the Guidance and Flight Controls super-element of the High-Speed Research program. The study was based upon Cycle 3 release of the Reference H simulation model.

  12. First NASA/Industry High Speed Research Program Nozzle Symposium

    NASA Technical Reports Server (NTRS)

    Long-Davis, Mary Jo

    1999-01-01

    The First High Speed Research (HSR) Nozzle Symposium was hosted by NASA Lewis Research Center on November 17-19, 1992 in Cleveland, Ohio, and was sponsored by the HSR Source Noise Working Group. The purpose of this symposium was to provide a national forum for the government, industry, and university participants in the program to present and discuss important low noise nozzle research results and technology issues related to the development of appropriate nozzles for a commercially viable, environmentally compatible, U.S. High-Speed Civil Transport. The HSR Phase I research program was initiated in FY90 and is approaching the first major milestone (end of FY92) relative to an initial FAR 36 Stage 3 nozzle noise assessment. Significant research results relative to that milestone were presented. The opening session provided a brief overview of the Program and status of the Phase H plan. The next five sessions were technically oriented and highlighted recent significant analytical and experimental accomplishments. The last Session included a panel discussion by the Session Chairs, summarizing the progress seen to date and discussing issues relative to further advances in technology necessary to achieve the Program Goals. Attendance at the Symposium was by invitation only and included only industry, academic, and government participants who are actively involved in the High-Speed Research Program. The technology presented in this meeting is considered commercially sensitive.

  13. First Annual High-Speed Research Workshop, part 4

    NASA Technical Reports Server (NTRS)

    Whitehead, Allen H., Jr. (Compiler)

    1992-01-01

    Papers presented at the First Annual High Speed Research Workshop held in Williamsburg, Viginia, on May 14-16, 1991 are presented. This NASA-sponsored workshop provided a national forum for presenting and discussing important technology issues related to the definition of an economically viable and environmentally compatible High Speed Civil Transport. The sessions are developed around the technical components of NASA's Phase 1 High Speed Research Program which addresses the environmental issues of atmospheric emissions, community noise, and sonic boom. In particular, this part of the publication, Part 4, addresses high lift research and supersonic laminar flow control.

  14. First Annual High-Speed Research Workshop, part 1

    NASA Technical Reports Server (NTRS)

    Whitehead, Allen H., Jr. (Compiler)

    1992-01-01

    The workshop was presented to provide a national forum for the government, industry, and university participants in the program to present and discuss important technology issues related to the development of a commercially viable, environmentally compatible U.S. High Speed Civil Transport. The workshop sessions were organized around the major task elements in NASA's Phase 1 High Speed Research Program which basically addressed the environmental issues of atmospheric emissions, community noise, and sonic boom. This volume is divided into three sessions entitled: Plenary Session (which gives overviews from NASA, Boeing, Douglas, GE, and Pratt & Whitney on the HSCT program); Airframe Systems Studies; and Atmospheric Effects.

  15. High Speed Research Program Sonic Fatigue

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A. (Technical Monitor); Beier, Theodor H.; Heaton, Paul

    2005-01-01

    The objective of this sonic fatigue summary is to provide major findings and technical results of studies, initiated in 1994, to assess sonic fatigue behavior of structure that is being considered for the High Speed Civil Transport (HSCT). High Speed Research (HSR) program objectives in the area of sonic fatigue were to predict inlet, exhaust and boundary layer acoustic loads; measure high cycle fatigue data for materials developed during the HSR program; develop advanced sonic fatigue calculation methods to reduce required conservatism in airframe designs; develop damping techniques for sonic fatigue reduction where weight effective; develop wing and fuselage sonic fatigue design requirements; and perform sonic fatigue analyses on HSCT structural concepts to provide guidance to design teams. All goals were partially achieved, but none were completed due to the premature conclusion of the HSR program. A summary of major program findings and recommendations for continued effort are included in the report.

  16. Flow-Visualization Techniques Used at High Speed by Configuration Aerodynamics Wind-Tunnel-Test Team

    NASA Technical Reports Server (NTRS)

    Lamar, John E. (Editor)

    2001-01-01

    This paper summarizes a variety of optically based flow-visualization techniques used for high-speed research by the Configuration Aerodynamics Wind-Tunnel Test Team of the High-Speed Research Program during its tenure. The work of other national experts is included for completeness. Details of each technique with applications and status in various national wind tunnels are given.

  17. First Annual High-Speed Research Workshop, part 3

    NASA Technical Reports Server (NTRS)

    Whitehead, Allen H., Jr. (Compiler)

    1992-01-01

    The First High-Speed Research (HSR) Workshop was hosted by NASA LaRC and was held 14-16 May 1991, in Williamsburg, Virginia. The purpose of the workshop was to provide a national forum for the government, industry, and university participants to present and discuss important technology issues related to the development of a commercially viable, environmentally compatible, U.S. High-Speed Civil Transport. The workshop sessions are organized around the major task elements in NASA's Phase 1 High-Speed Research Program which basically addresses the environmental issues of atmospheric emissions, community noise, and sonic boom.

  18. Differences in energy expenditure during high-speed versus standard-speed yoga: A randomized sequence crossover trial.

    PubMed

    Potiaumpai, Melanie; Martins, Maria Carolina Massoni; Rodriguez, Roberto; Mooney, Kiersten; Signorile, Joseph F

    2016-12-01

    To compare energy expenditure and volume of oxygen consumption and carbon dioxide production during a high-speed yoga and a standard-speed yoga program. Randomized repeated measures controlled trial. A laboratory of neuromuscular research and active aging. Sun-Salutation B was performed, for eight minutes, at a high speed versus and a standard-speed separately while oxygen consumption was recorded. Caloric expenditure was calculated using volume of oxygen consumption and carbon dioxide production. Difference in energy expenditure (kcal) of HSY and SSY. Significant differences were observed in energy expenditure between yoga speeds with high-speed yoga producing significantly higher energy expenditure than standard-speed yoga (MD=18.55, SE=1.86, p<0.01). Significant differences were also seen between high-speed and standard-speed yoga for volume of oxygen consumed and carbon dioxide produced. High-speed yoga results in a significantly greater caloric expenditure than standard-speed yoga. High-speed yoga may be an effective alternative program for those targeting cardiometabolic markers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Applied high-speed imaging for the icing research program at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Slater, Howard; Owens, Jay; Shin, Jaiwon

    1992-01-01

    The Icing Research Tunnel at NASA Lewis Research Center provides scientists a scaled, controlled environment to simulate natural icing events. The closed-loop, low speed, refrigerated wind tunnel offers the experimental capability to test for icing certification requirements, analytical model validation and calibration techniques, cloud physics instrumentation refinement, advanced ice protection systems, and rotorcraft icing methodology development. The test procedures for these objectives all require a high degree of visual documentation, both in real-time data acquisition and post-test image processing. Information is provided to scientific, technical, and industrial imaging specialists as well as to research personnel about the high-speed and conventional imaging systems will be on the recent ice protection technology program. Various imaging examples for some of the tests are presented. Additional imaging examples are available from the NASA Lewis Research Center's Photographic and Printing Branch.

  20. Applied high-speed imaging for the icing research program at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Slater, Howard; Owens, Jay; Shin, Jaiwon

    1991-01-01

    The Icing Research Tunnel at NASA Lewis Research Center provides scientists a scaled, controlled environment to simulate natural icing events. The closed-loop, low speed, refrigerated wind tunnel offers the experimental capability to test for icing certification requirements, analytical model validation and calibration techniques, cloud physics instrumentation refinement, advanced ice protection systems, and rotorcraft icing methodology development. The test procedures for these objectives all require a high degree of visual documentation, both in real-time data acquisition and post-test image processing. Information is provided to scientific, technical, and industrial imaging specialists as well as to research personnel about the high-speed and conventional imaging systems will be on the recent ice protection technology program. Various imaging examples for some of the tests are presented. Additional imaging examples are available from the NASA Lewis Research Center's Photographic and Printing Branch.

  1. NASA/LaRC jet plume research

    NASA Technical Reports Server (NTRS)

    Seiner, John M.; Ponton, Michael K.; Manning, James C.

    1992-01-01

    The following provides a summary for research being conducted by NASA/LaRC and its contractors and grantees to develop jet engine noise suppression technology under the NASA High Speed Research (HSR) program for the High Speed Civil Transport (HSCT). The objective of this effort is to explore new innovative concepts for reducing noise to Federally mandated guidelines with minimum compromise on engine performance both in take-off and cruise. The research program is divided into four major technical areas: (1) jet noise research on advanced nozzles; (2) plume prediction and validation; (3) passive and active control; and (4) methodology for noise prediction.

  2. UV Raman and Fluorescence for Multi-Species Measurement in Hydrocarbon-Fueled High-Speed Propulsion

    NASA Technical Reports Server (NTRS)

    Skaggs, Patricia Annette; Nandula, Sastri P.; Pitz, Robert W.

    1999-01-01

    This report documents work performed through the NASA Graduate Student Researchers Program, Grant No. NGT3-52316. Research performed included investigation of two-line fluorescence imaging of OH for temperature measurement and an investigation of negative flame speeds for modeling of premixed turbulent flames. The laboratory work and initial analysis of the fluorescence imaging was performed at NASA Glen Research Center with follow up analysis at Vanderbilt University. The negative flame speed investigation was performed using an opposed jet flow simulation program at Vanderbilt University. The fluorescence imaging work is presented first followed by the negative flame speed investigation.

  3. The atmospheric effects of stratospheric aircraft: A third program report

    NASA Technical Reports Server (NTRS)

    Stolarski, Richard S. (Editor); Wesoky, Howard L. (Editor)

    1993-01-01

    A third report from the Atmospheric Effects of Stratospheric Aircraft (AESA) component of NASA's High-Speed Research Program (HSRP) is presented. Market and technology considerations continue to provide an impetus for high-speed civil transport research. A recent United Nations Environment Program scientific assessment showed that considerable uncertainty still exists about the possible impact of aircraft on the atmosphere. The AESA was designed to develop the body of scientific knowledge necessary for the evaluation of the impact of stratospheric aircraft on the atmosphere. The first Program report presented the basic objectives and plans for AESA. This third report marks the midpoint of the program and presents the status of the ongoing research on the impact of stratospheric aircraft on the atmosphere as reported at the third annual AESA Program meeting in June 1993. The focus of the program is on predicted atmospheric changes resulting from projected HSCT emissions. Topics reported on cover how high-speed civil transports (HSCT) might affect stratospheric ozone, emissions scenarios and databases to assess potential atmospheric effects from HSCT's, calculated results from 2-D zonal mean models using emissions data, engine trace constituent measurements, and exhaust plume/aircraft wake vortex interactions.

  4. The atmospheric effects of stratospheric aircraft

    NASA Technical Reports Server (NTRS)

    Stolarski, Richard S. (Editor); Wesoky, Howard L. (Editor)

    1993-01-01

    This document presents a second report from the Atmospheric Effects of Stratospheric Aircraft (AESA) component of NASA's High-Speed Research Program (HSRP). This document presents a second report from the Atmospheric Effects of Stratospheric Aircraft (AESA) component of NASA's High Speed Research Program (HSRP). Market and technology considerations continue to provide an impetus for high-speed civil transport research. A recent United Nations Environment Program scientific assessment has shown that considerable uncertainty still exists about the possible impact of aircraft on the atmosphere. The AESA was designed to develop the body of scientific knowledge necessary for the evaluation of the impact of stratospheric aircraft on the atmosphere. The first Program report presented the basic objectives and plans for AESA. This second report presents the status of the ongoing research as reported by the principal investigators at the second annual AESA Program meeting in May 1992: Laboratory studies are probing the mechanism responsible for many of the heterogeneous reactions that occur on stratospheric particles. Understanding how the atmosphere redistributes aircraft exhaust is critical to our knowing where the perturbed air will go and for how long it will remain in the stratosphere. The assessment of fleet effects is dependent on the ability to develop scenarios which correctly simulate fleet operations.

  5. EC95-42960-4

    NASA Image and Video Library

    1995-02-15

    NASA's single-seat F-16XL makes a drag chute landing at the Dryden Flight Research Center, Edwards, California. The aircraft was most recently used in the Cranked-Arrow Wing Aerodynamics Project (CAWAP) to test boundary layer pressures and distribution. Previously it had been used in a program to investigate the characteristics of sonic booms for NASA's High Speed Research Program. Data from the program will be used in the development of a high speed civilian transport. During the series of sonic boom research flights, the F-16XL was used to probe the shock waves being generated by a NASA SR-71 and record their shape and intensity.

  6. High speed hydrogen/graphite interaction

    NASA Technical Reports Server (NTRS)

    Kelly, A. J.; Hamman, R.; Sharma, O. P.; Harrje, D. T.

    1974-01-01

    Various aspects of a research program on high speed hydrogen/graphite interaction are presented. Major areas discussed are: (1) theoretical predictions of hydrogen/graphite erosion rates; (2) high temperature, nonequilibrium hydrogen flow in a nozzle; and (3) molecular beam studies of hydrogen/graphite erosion.

  7. NASA Aeronautics: Research and Technology Program Highlights

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This report contains numerous color illustrations to describe the NASA programs in aeronautics. The basic ideas involved are explained in brief paragraphs. The seven chapters deal with Subsonic aircraft, High-speed transport, High-performance military aircraft, Hypersonic/Transatmospheric vehicles, Critical disciplines, National facilities and Organizations & installations. Some individual aircraft discussed are : the SR-71 aircraft, aerospace planes, the high-speed civil transport (HSCT), the X-29 forward-swept wing research aircraft, and the X-31 aircraft. Critical disciplines discussed are numerical aerodynamic simulation, computational fluid dynamics, computational structural dynamics and new experimental testing techniques.

  8. U.S. Supersonic Commercial Aircraft: Assessing NASA's High Speed Research Program

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The legislatively mandated objectives of the National Aeronautics and Space Administration (NASA) include "the improvement of the usefulness, performance, speed, safety, and efficiency of aeronautical and space vehicles" and "preservation of the United States' preeminent position in aeronautics and space through research and technology development related to associated manufacturing processes." Most of NASA's activities are focused on the space-related aspects of these objectives. However, NASA also conducts important work related to aeronautics. NASA's High Speed Research (HSR) Program is a focused technology development program intended to enable the commercial development of a high speed (i.e., supersonic) civil transport (HSCT). However, the HSR Program will not design or test a commercial airplane (i.e., an HSCT); it is industry's responsibility to use the results of the HSR Program to develop an HSCT. An HSCT would be a second generation aircraft with much better performance than first generation supersonic transports (i.e., the Concorde and the Soviet Tu-144). The HSR Program is a high risk effort: success requires overcoming many challenging technical problems involving the airframe, propulsion system, and integrated aircraft. The ability to overcome all of these problems to produce an affordable HSCT is far from certain. Phase I of the HSR Program was completed in fiscal year 1995; it produced critical information about the ability of an HSCT to satisfy environmental concerns (i-e., noise and engine emissions). Phase II (the final phase according to current plans) is scheduled for completion in 2002. Areas of primary emphasis are propulsion, airframe materials and structures, flight deck systems, aerodynamic performance, and systems integration.

  9. Design and Test of Fan/Nacelle Models Quiet High-Speed Fan

    NASA Technical Reports Server (NTRS)

    Miller, Christopher J. (Technical Monitor); Weir, Donald

    2003-01-01

    The Quiet High-Speed Fan program is a cooperative effort between Honeywell Engines & Systems (formerly AlliedSignal Engines & Systems) and the NASA Glenn Research Center. Engines & Systems has designed an advanced high-speed fan that will be tested on the Ultra High Bypass Propulsion Simulator in the NASA Glenn 9 x 15 foot wind tunnel, currently scheduled for the second quarter of 2000. An Engines & Systems modern fan design will be used as a baseline. A nacelle model is provided that is characteristic of a typical, modern regional aircraft nacelle and meets all of the program test objectives.

  10. NASA's High Speed Research Program - An introduction and status report

    NASA Technical Reports Server (NTRS)

    Wesoky, Howard L.; Prather, Michael J.; Kayten, Gerald G.

    1990-01-01

    NASA's High Speed Research Program (HSRP) gives attention to the potential environmental effects of a next-generation SST in three areas of concern: atmospheric pollution, airport community noise, and sonic boom. Research has accordingly been undertaken in such fields as the validation of ozone depletion predictions, the feasibility a 90-percent NO(x) emissions reduction to minimize ozone-layer impacts, economically viable compliance with FAR 36 Stage 3 airport community noise levels, and the comparative advantages of efficient subsonic flight over land masses or low-sonic-boom-optimized configurations. Interim HSRP milestones for 1991 and 1992 are noted.

  11. Headquarters summary reports

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The status is summarized of the NASA sponsored involvement in high speed civil transport research and technology, including major cooperative efforts. That involvement is currently focussed on the High Speed Research Program. The program goals are an acceptable level of ozone depletion or sonic boom, the definition of which is a regulatory and political process. The HSRP goal is to provide technical bases for acceptability criteria. Community noise is currently regulated, and it seems clear that HSCT aircraft will have to comply with at least the spirit of the current subsonic constraint, FAR 36, Stage 3.

  12. EC95-42960-5

    NASA Image and Video Library

    1995-02-15

    NASA's single-seat F-16XL makes a drag chute landing on the runway at Edwards Air Force Base in California's Mojave Desert. The aircraft was most recently used in the Cranked-Arrow Wing Aerodynamics Project (CAWAP) to test boundary layer pressures and distribution. Previously it had been used in a program to investigate the characteristics of sonic booms for NASA's High Speed Research Program. Data from the program will be used in the development of a high speed civilian transport. During the series of sonic boom research flights, the F-16XL was used to probe the shock waves being generated by a NASA SR-71 and record their shape and intensity.

  13. The evolution of the high-speed civil transport

    NASA Technical Reports Server (NTRS)

    Spearman, M. Leroy

    1994-01-01

    Current research directed toward the technology requirements for a high-speed civil transport (HSCT) airplane is an outgrowth of many years of activity related to air transportation. The purpose was to review some of the events that provided the background upon which current research programs are built. The review will include the subsonic era of transport aircraft and some events of the supersonic era that are related to the development of commercial supersonic transport aircraft. These events include the early NASA in-house studies and industry evaluations, the U.S. Supersonic Transport (SST) Program, the follow-on NASA supersonic cruise research programs, and the issuance of the National Aeronautical Research and Development (R&D) goals. Observations are made concerning some of the factors, both technical and nontechnical, that have had an impact on HSCT studies.

  14. Turbofan Noise Studied in Unique Model Research Program in NASA Glenn's 9- by 15-Foot Low-Speed Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Hughes, Christopher E.

    2001-01-01

    A comprehensive aeroacoustic research program called the Source Diagnostic Test was recently concluded in NASA Glenn Research Center's 9- by 15-Foot Low Speed Wind Tunnel. The testing involved representatives from Glenn, NASA Langley Research Center, GE Aircraft Engines, and the Boeing Company. The technical objectives of this research were to identify the different source mechanisms of noise in a modern, high-bypass turbofan aircraft engine through scale-model testing and to make detailed acoustic and aerodynamic measurements to more fully understand the physics of how turbofan noise is generated.

  15. 1998 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 2; High Lift

    NASA Technical Reports Server (NTRS)

    McMillin, S. Naomi (Editor)

    1999-01-01

    NASA's High-Speed Research Program sponsored the 1998 Aerodynamic Performance Technical Review on February 9-13, in Los Angeles, California. The review was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in areas of Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High-Lift, and Flight Controls. The review objectives were to (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientists and engineers working HSCT aerodynamics. In particular, single- and multi-point optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT simulation results were presented along with executive summaries for all the Aerodynamic Performance technology areas. The HSR Aerodynamic Performance Technical Review was held simultaneously with the annual review of the following airframe technology areas: Materials and Structures, Environmental Impact, Flight Deck, and Technology Integration. Thus, a fourth objective of the Review was to promote synergy between the Aerodynamic Performance technology area and the other technology areas of the HSR Program.

  16. High-speed inlet research program and supporting analysis

    NASA Technical Reports Server (NTRS)

    Coltrin, Robert E.

    1990-01-01

    The technology challenges faced by the high speed inlet designer are discussed by describing the considerations that went into the design of the Mach 5 research inlet. It is shown that the emerging three dimensional viscous computational fluid dynamics (CFD) flow codes, together with small scale experiments, can be used to guide larger scale full inlet systems research. Then, in turn, the results of the large scale research, if properly instrumented, can be used to validate or at least to calibrate the CFD codes.

  17. Lessons Learned in the High-Speed Aerodynamic Research Programs of the NACA/NASA

    NASA Technical Reports Server (NTRS)

    Spearman, M. Leroy

    2004-01-01

    The achievement of flight with manned, powered, heavier-than-air aircraft in 1903 marked the beginning of a new era in the means of transportation. A special advantage for aircraft was in speed. However, when an aircraft penetrates the air at very high speeds, the disturbed air is compressed and there are changes in the density, pressure and temperature of the air. These compressibility effects change the aerodynamic characteristics of an aircraft and introduce problems in drag, stability and control. Many aircraft designed in the post-World War II era were plagued with the effects of compressibility. Accordingly, the study of the aerodynamic behavior of aircraft, spacecraft and missiles at high-speed became a major part of the research activity of the NACA/NASA. The intent of the research was to determine the causes and provide some solutions for the aerodynamic problems resulting from the effects of compressibility. The purpose of this paper is to review some of the high-speed aerodynamic research work conducted at the Langley Research Center from the viewpoint of the author who has been active in much of the effort.

  18. Some aerodynamic discoveries and related NACA/NASA research programs following World War 2

    NASA Technical Reports Server (NTRS)

    Spearman, M. L.

    1984-01-01

    The World War 2 time period ushered in a new era in aeronautical research and development. The air conflict during the war highlighted the need of aircraft with agility, high speed, long range, large payload capability, and in addition, introduced a new concept in air warfare through the use of guided missiles. Following the war, the influx of foreign technology, primarily German, led to rapid advances in jet propulsion and speed, and a host of new problem areas associated with high-speed flight designs were revealed. The resolution of these problems led to a rash of new design concepts and many of the lessons learned, in principle, are still effective today. In addition to the technical lessons learned related to aircraft development programs, it might also be noted that some lessons involving the political and philosophical nature of aircraft development programs are worth attention.

  19. Impact and promise of NASA aeropropulsion technology

    NASA Technical Reports Server (NTRS)

    Saunders, Neal T.; Bowditch, David N.

    1990-01-01

    The aeropropulsion industry in the U.S. has established an enviable record of leading the world in aeropropulsion for commercial and military aircraft. NASA's aeropropulsion program (primarily conducted through the Lewis Research Center) has significantly contributed to that success through research and technology advances and technology demonstration. Some past NASA contributions to engines in current aircraft are reviewed, and technologies emerging from current research programs for the aircraft of the 1990's are described. Finally, current program thrusts toward improving propulsion systems in the 2000's for subsonic commercial aircraft and higher speed aircraft such as the High-Speed Civil Transport and the National Aerospace Plane are discussed.

  20. 1998 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 1; Configuration Aerodynamics

    NASA Technical Reports Server (NTRS)

    McMillin, S. Naomi (Editor)

    1999-01-01

    NASA's High-Speed Research Program sponsored the 1998 Aerodynamic Performance Technical Review on February 9-13, in Los Angeles, California. The review was designed to bring together NASA and industry HighSpeed Civil Transport (HSCT) Aerodynamic Performance technology development participants in areas of. Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High-Lift, and Flight Controls. The review objectives were to: (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientists and engineers working HSCT aerodynamics. In particular, single and multi-point optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT simulation results were presented along with executive summaries for all the Aerodynamic Performance technology areas. The HSR Aerodynamic Performance Technical Review was held simultaneously with the annual review of the following airframe technology areas: Materials and Structures, Environmental Impact, Flight Deck, and Technology Integration. Thus, a fourth objective of the Review was to promote synergy between the Aerodynamic Performance technology area and the other technology areas of the HSR Program.

  1. 1998 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 1; Configuration Aerodynamics

    NASA Technical Reports Server (NTRS)

    McMillin, S. Naomi (Editor)

    1999-01-01

    NASA's High-Speed Research Program sponsored the 1998 Aerodynamic Performance Technical Review on February 9-13, in Los Angeles, California. The review was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in areas of Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High-Lift, and Flight Controls. The review objectives were to (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientists and engineers working HSCT aerodynamics. In particular, single and multi-point optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT simulation results were presented along with executive summaries for all the Aerodynamic Performance technology areas. The HSR Aerodynamic Performance Technical Review was held simultaneously with the annual review of the following airframe technology areas: Materials and Structures, Environmental Impact, Flight Deck, and Technology Integration. Thus, a fourth objective of the Review was to promote synergy between the Aerodynamic Performance technology area and the other technology areas of the HSR Program.

  2. Low-Speed Stability-and-Control and Ground-Effects Measurements on the Industry Reference High Speed Civil Transport

    NASA Technical Reports Server (NTRS)

    Kemmerly, Guy T.; Campbell, Bryan A.; Banks, Daniel W.; Yaros, Steven F.

    1999-01-01

    As a part of a national effort to develop an economically feasible High Speed Civil Transport (HSCT), a single configuration has been accepted as the testing baseline by the organizations working in the High Speed Research (HSR) program. The configuration is based on a design developed by the Boeing Company and is referred to as the Reference H (Ref H). The data contained in this report are low-speed stability-and-control and ground-effect measurements obtained on a 0.06 scale model of the Ref H in a subsonic tunnel.

  3. Summary and recent results from the NASA advanced High Speed Propeller Research Program

    NASA Technical Reports Server (NTRS)

    Mitchell, G. A.; Mikkelson, D. C.

    1982-01-01

    Advanced high-speed propellers offer large performance improvements for aircraft that cruise in the Mach 0.7 to 0.8 speed regime. The current status of the NASA research program on high-speed propeller aerodynamics, acoustics, and aeroelastics is described. Recent wind tunnel results for five 8- to 10-blade advanced models are compared with analytical predictions. Test results show that blade sweep was important in achieving net efficiencies near 80 percent at Mach 0.8 and reducing near-field cruise noise by dB. Lifting line and lifting surface aerodynamic analysis codes are under development and some initial lifting line results are compared with propeller force and probe data. Some initial laser velocimeter measurements of the flow field velocities of an 8-bladed 45 deg swept propeller are shown. Experimental aeroelastic results indicate that cascade effects and blade sweep strongly affect propeller aeroelastic characteristics. Comparisons of propeller near-field noise data with linear acoustic theory indicate that the theory adequate predicts near-field noise for subsonic tip speeds but overpredicts the noise for supersonic tip speeds. Potential large gains in propeller efficiency of 7 to 11 percent at Mach 0.8 may be possible with advanced counter-rotation propellers.

  4. A heterogeneous hierarchical architecture for real-time computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skroch, D.A.; Fornaro, R.J.

    The need for high-speed data acquisition and control algorithms has prompted continued research in the area of multiprocessor systems and related programming techniques. The result presented here is a unique hardware and software architecture for high-speed real-time computer systems. The implementation of a prototype of this architecture has required the integration of architecture, operating systems and programming languages into a cohesive unit. This report describes a Heterogeneous Hierarchial Architecture for Real-Time (H{sup 2} ART) and system software for program loading and interprocessor communication.

  5. Status of NASA High-Speed Research Program

    NASA Technical Reports Server (NTRS)

    Whitehead, Allen H., Jr.

    1998-01-01

    This paper provides an overview of the NASA High-Speed Research (HSR) Program dedicated to establishing the technology foundation to support the US transport industry's decision for an environmentally acceptable, economically viable 300 passenger, 5000 n.mi., Mach 2.4 aircraft. The HSR program, begun in 1990, is supported by a team of US aerospace companies. The international economic stakes are high. The projected market for more than 500 High-Speed Civil Transport (HSCT) airplanes introduced between the years 2000 and 2015 translates to more than $200 billion in aircraft sales, and the potential of 140,000 new jobs. The paper addresses the history of supersonic commercial air transportation beginning with the Concorde and TU-144 developments in the early 1960 time period. The technology goals for the HSR program are derived from market study results, projections on environmental requirements, and technical goals for each discipline area referenced to the design and operational features of the Concorde. Progress since the inception of the program is reviewed and a summary of some of the lessons learned will be highlighted. An outline is presented of the remaining technological challenges. Emphasis in this paper will be on the traditional aeronautical technologies that lead to higher performance to ensure economic viability. Specific discussion will center around aerodynamic performance, flight deck research, materials and structures development and propulsion systems. The environmental barriers to the HSCT and that part of the HSR program that addresses those technologies are reviewed and assessed in a companion paper.

  6. Research of x-ray nondestructive detector for high-speed running conveyor belt with steel wire ropes

    NASA Astrophysics Data System (ADS)

    Wang, Junfeng; Miao, Changyun; Wang, Wei; Lu, Xiaocui

    2008-03-01

    An X-ray nondestructive detector for high-speed running conveyor belt with steel wire ropes is researched in the paper. The principle of X-ray nondestructive testing (NDT) is analyzed, the general scheme of the X-ray nondestructive testing system is proposed, and the nondestructive detector for high-speed running conveyor belt with steel wire ropes is developed. The hardware of system is designed with Xilinx's VIRTEX-4 FPGA that embeds PowerPC and MAC IP core, and its network communication software based on TCP/IP protocol is programmed by loading LwIP to PowerPC. The nondestructive testing of high-speed conveyor belt with steel wire ropes and network transfer function are implemented. It is a strong real-time system with rapid scanning speed, high reliability and remotely nondestructive testing function. The nondestructive detector can be applied to the detection of product line in industry.

  7. High Speed Research Program Structural Acoustics Multi-Year Summary Report

    NASA Technical Reports Server (NTRS)

    Beier, Theodor H.; Bhat, Waman V.; Rizzi, Stephen A.; Silcox, Richard J.; Simpson, Myles A.

    2005-01-01

    This report summarizes the work conducted by the Structural Acoustics Integrated Technology Development (ITD) Team under NASA's High Speed Research (HSR) Phase II program from 1993 to 1999. It is intended to serve as a reference for future researchers by documenting the results of the interior noise and sonic fatigue technology development activities conducted during this period. For interior noise, these activities included excitation modeling, structural acoustic response modeling, development of passive treatments and active controls, and prediction of interior noise. For sonic fatigue, these activities included loads prediction, materials characterization, sonic fatigue code development, development of response reduction techniques, and generation of sonic fatigue design requirements. Also included are lessons learned and recommendations for future work.

  8. 70 Years of Aeropropulsion Research at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Reddy, Dhanireddy R.

    2013-01-01

    This paper presents a brief overview of air-breathing propulsion research conducted at the NASA Glenn Research Center (GRC) over the past 70 years. It includes a historical perspective of the center and its various stages of propulsion research in response to the countrys different periods of crises and growth opportunities. GRCs research and technology development covered a broad spectrum, from a short-term focus on improving the energy efficiency of aircraft engines to advancing the frontier technologies of high-speed aviation in the supersonic and hypersonic speed regimes. This paper highlights major research programs, showing their impact on industry and aircraft propulsion, and briefly discusses current research programs and future aeropropulsion technology trends in related areas

  9. High Speed Research Noise Prediction Code (HSRNOISE) User's and Theoretical Manual

    NASA Technical Reports Server (NTRS)

    Golub, Robert (Technical Monitor); Rawls, John W., Jr.; Yeager, Jessie C.

    2004-01-01

    This report describes a computer program, HSRNOISE, that predicts noise levels for a supersonic aircraft powered by mixed flow turbofan engines with rectangular mixer-ejector nozzles. It fully documents the noise prediction algorithms, provides instructions for executing the HSRNOISE code, and provides predicted noise levels for the High Speed Research (HSR) program Technology Concept (TC) aircraft. The component source noise prediction algorithms were developed jointly by Boeing, General Electric Aircraft Engines (GEAE), NASA and Pratt & Whitney during the course of the NASA HSR program. Modern Technologies Corporation developed an alternative mixer ejector jet noise prediction method under contract to GEAE that has also been incorporated into the HSRNOISE prediction code. Algorithms for determining propagation effects and calculating noise metrics were taken from the NASA Aircraft Noise Prediction Program.

  10. Impact and promise of NASA aeropropulsion technology

    NASA Technical Reports Server (NTRS)

    Saunders, Neal T.; Bowditch, David N.

    1987-01-01

    The aeropropulsion industry in the United States has established an enviable record of leading the world in aeropropulsion for commercial and military aircraft. The NASA aeropropulsion propulsion program (primarily conducted through the Lewis Research Center) has significantly contributed to that success through research and technology advances and technology demonstrations such as the Refan, Engine Component Improvement, and the Energy Efficient Engine Programs. Some past NASA contributions to engines in current aircraft are reviewed, and technologies emerging from current research programs for the aircraft of the 1990's are described. Finally, current program thrusts toward improving propulsion systems in the 2000's for subsonic commercial aircraft and higher speed aircraft such as the High-Speed Civil Transport and the National Aerospace Plane (NASP) are discussed.

  11. High resolution infrared datasets useful for validating stratospheric models

    NASA Technical Reports Server (NTRS)

    Rinsland, Curtis P.

    1992-01-01

    An important objective of the High Speed Research Program (HSRP) is to support research in the atmospheric sciences that will improve the basic understanding of the circulation and chemistry of the stratosphere and lead to an interim assessment of the impact of a projected fleet of High Speed Civil Transports (HSCT's) on the stratosphere. As part of this work, critical comparisons between models and existing high quality measurements are planned. These comparisons will be used to test the reliability of current atmospheric chemistry models. Two suitable sets of high resolution infrared measurements are discussed.

  12. Assessment of the Effects of High-Speed Aircraft in the Stratosphere: 1998

    NASA Technical Reports Server (NTRS)

    Kawa, S. Randolph; Anderson, James G.; Baughcum, Steven L.; Brock, Charles A.; Brune, William H.; Cohen, Ronald C.; Kinnison, Douglas E.; Newman, Paul A.; Rodriquez, Jose M.; Stolarski, Richard S.; hide

    1999-01-01

    This report assesses the potential atmospheric impacts of a proposed fleet of high-speed civil transport (HSCT) aircraft. The purpose of the report is to assess the effects of HSCT's on atmospheric composition and climate in order to provide a scientific basis for making technical, commercial, and environmental policy decisions regarding the HSCT fleet. The work summarized here was carried out as part of NASA's Atmospheric Effects of Aviation Project (a component of the High-Speed Research Program) as well as other NASA, U.S., and international research programs. The principal focus is on change in stratospheric ozone concentrations. The impact on climate change is also a concern. The report describes progress in understanding atmospheric processes, the current state of understanding of HSCT emissions, numerical model predictions of HSCT impacts, the principal uncertainties in atmospheric predictions, and the associated sensitivities in predicted effects of HSCT's.

  13. Assessment of the Effects of High-Speed Aircraft in the Stratosphere: 1998

    NASA Technical Reports Server (NTRS)

    Kawa, S. Randolph; Anderson, James G.; Baughcum, Steven L.; Brock, Charles A.; Brune, William H.; Cohen, Ronald C.; Kinnison, Douglas E.; Newman, Paul A.; Rodriguez, Jose M.; Stolarski, Richard S.; hide

    1999-01-01

    This report assesses the potential atmospheric impacts of a proposed fleet of high-speed civil transport (HSCT) aircraft. The purpose of the report is to assess the effects of HSCT's on atmospheric composition and climate in order to provide a scientific basis for making technical, commercial, and environmental policy decisions regarding the HSCT fleet. The work summarized here was carried out as part of NASA's Atmospheric Effects of Aviation Project (a component of the High-Speed Research Program) as well as other NASA, U.S., and international research programs. The principal focus is on change in stratospheric ozone concentrations. The impact on climate change is also a concern. The report describes progress in understanding atmospheric processes, the current state of understanding of HSCT emissions, numerical model predictions of HSCT impacts, the principal uncertainties in atmospheric predictions, and the associated sensitivities in predicted effects of HSCT'S.

  14. 1999 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 2; High Lift

    NASA Technical Reports Server (NTRS)

    Hahne, David E. (Editor)

    1999-01-01

    NASA's High-Speed Research Program sponsored the 1999 Aerodynamic Performance Technical Review on February 8-12, 1999 in Anaheim, California. The review was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in the areas of Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High Lift, and Flight Controls. The review objectives were to (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among die scientists and engineers working on HSCT aerodynamics. In particular, single and midpoint optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT simulation results were presented, along with executive summaries for all the Aerodynamic Performance technology areas. The HSR Aerodynamic Performance Technical Review was held simultaneously with the annual review of the following airframe technology areas: Materials and Structures, Environmental Impact, Flight Deck, and Technology Integration. Thus, a fourth objective of the Review was to promote synergy between the Aerodynamic Performance technology area and the other technology areas of the HSR Program. This Volume 2/Part 2 publication covers the tools and methods development session.

  15. Enabling propulsion materials for high-speed civil transport engines

    NASA Technical Reports Server (NTRS)

    Stephens, Joseph R.; Herbell, Thomas P.

    1992-01-01

    NASA Headquarters and LeRC have advocated an Enabling Propulsion Materials Program (EPM) to begin in FY-92. The High Speed Research Phase 1 program which began in FY-90 has focused on the environmental acceptability of a High Speed Civil Transport (HSCT). Studies by industry, including Boeing, McDonnell Douglas, GE Aircraft Engines, and Pratt & Whitney Aircraft, and in-house studies by NASA concluded that NO(x) emissions and airport noise reduction can only be economically achieved by revolutionary advancements in materials technologies. This is especially true of materials for the propulsion system where the combustor is the key to maintaining low emissions, and the exhaust nozzle is the key to reducing airport noise to an acceptable level. Both of these components will rely on high temperature composite materials that can withstand the conditions imposed by commercial aircraft operations. The proposed EPM program will operate in conjunction with the HSR Phase 1 Program and the planned HSR Phase 2 program slated to start in FY-93. Components and subcomponents developed from advanced materials will be evaluated in the HSR Phase 2 Program.

  16. 1999 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 1; Configuration Aerodynamics

    NASA Technical Reports Server (NTRS)

    Hahne, David E. (Editor)

    1999-01-01

    NASA's High-Speed Research Program sponsored the 1999 Aerodynamic Performance Technical Review on February 8-12, 1999 in Anaheim, California. The review was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in the areas of Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High Lift, and Flight Controls. The review objectives were to: (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientists and engineers working on HSCT aerodynamics. In particular, single and midpoint optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT simulation results were presented, along with executive summaries for all the Aerodynamic Performance technology areas. The HSR Aerodynamic Performance Technical Review was held simultaneously with the annual review of the following airframe technology areas: Materials and Structures, Environmental Impact, Flight Deck, and Technology Integration. Thus, a fourth objective of the Review was to promote synergy between the Aerodynamic Performance technology area and the other technology areas of the HSR Program. This Volume 1/Part 1 publication covers configuration aerodynamics.

  17. 1999 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 1; Configuration Aerodynamics

    NASA Technical Reports Server (NTRS)

    Hahne, David E. (Editor)

    1999-01-01

    NASA's High-Speed Research Program sponsored the 1999 Aerodynamic Performance Technical Review on February 8-12, 1999 in Anaheim, California. The review was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in the areas of Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High Lift, and Flight Controls. The review objectives were to (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientists and engineers working on HSCT aerodynamics. In particular, single and midpoint optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT simulation results were presented, along with executive summaries for all the Aerodynamic Performance technology areas. The HSR Aerodynamic Performance Technical Review was held simultaneously with the annual review of the following airframe technology areas: Materials and Structures, Environmental Impact, Flight Deck, and Technology Integration. Thus, a fourth objective of the Review was to promote synergy between the Aerodynamic Performance technology area and the other technology areas of the HSR Program. This Volume 1/Part 2 publication covers the design optimization and testing sessions.

  18. High speed photography, videography, and photonics IV; Proceedings of the Meeting, San Diego, CA, Aug. 19, 20, 1986

    NASA Technical Reports Server (NTRS)

    Ponseggi, B. G. (Editor)

    1986-01-01

    Various papers on high-speed photography, videography, and photonics are presented. The general topics addressed include: photooptical and video instrumentation, streak camera data acquisition systems, photooptical instrumentation in wind tunnels, applications of holography and interferometry in wind tunnel research programs, and data analysis for photooptical and video instrumentation.

  19. The NASA Altitude Wind Tunnel (AWT): Its role in advanced icing research and development

    NASA Technical Reports Server (NTRS)

    Blaha, B. J.; Shaw, R. J.

    1985-01-01

    Currently experimental aircraft icing research is severely hampered by limitations of ground icing simulation facilities. Existing icing facilities do not have the size, speed, altitude, and icing environment simulation capabilities to allow accurate studies to be made of icing problems occurring for high speed fixed wing aircraft and rotorcraft. Use of the currently dormant NASA Lewis Altitude Wind Tunnel (AWT), as a proposed high speed propulsion and adverse weather facility, would allow many such problems to be studied. The characteristics of the AWT related to adverse weather simulation and in particular to icing simulation are discussed, and potential icing research programs using the AWT are also included.

  20. Bibliography on propulsion airframe integration technologies for high-speed civil transport applications, 1980-1991

    NASA Technical Reports Server (NTRS)

    Anderson, David J.; Mizukami, Masashi

    1993-01-01

    NASA has initiated the High Speed Research (HSR) program with the goal to develop technologies for a new generation, economically viable, environmentally acceptable, supersonic transport (SST) called the High Speed Civil Transport (HSCT). A significant part of this effort is expected to be in multidisciplinary systems integration, such as in propulsion airframe integration (PAI). In order to assimilate the knowledge database on PAI for SST type aircraft, a bibliography on this subject was compiled. The bibliography with over 1200 entries, full abstracts, and indexes. Related topics are also covered, such as the following: engine inlets, engine cycles, nozzles, existing supersonic cruise aircraft, noise issues, computational fluid dynamics, aerodynamics, and external interference. All identified documents from 1980 through early 1991 are included; this covers the latter part of the NASA Supersonic Cruise Research (SCR) program and the beginnings of the HSR program. In addition, some pre-1980 documents of significant merit or reference value are also included. The references were retrieved via a computerized literature search using the NASA RECON database system.

  1. SR-71 flyover

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This clip, running about 14 seconds in length, shows the NASA SR-71 (No. 844) lighting off the afterburners on a low pass over the Dryden Flight Research Center. Two SR-71A aircraft on loan from the U.S. Air Force have been used for high-speed, high-altitude research at the NASA Dryden Flight Research Center, Edwards, California, since 1991. One of them was later returned to the Air Force. A third SR-71 on loan from the Air Force is an SR-71B used for training but not for flight research. Developed for the U.S. Air Force as reconnaissance aircraft more than 30 years ago, SR-71 aircraft are still the world's fastest and highest-flying production aircraft. These aircraft can fly more than 2200 miles per hour (Mach 3+ or more than three times the speed of sound) and at altitudes of over 85,000 feet. This operating environment makes the aircraft excellent platforms to carry out research and experiments in a variety of areas--aerodynamics, propulsion, structures, thermal protection materials, high-speed and high-temperature instrumentation, atmospheric studies, and sonic-boom characterization. Data from the SR-71 high-speed research program may be used to aid designers of future supersonic or hypersonic aircraft and propulsion systems, including a possible high-speed civil transport. The SR-71 program at Dryden has been part of the NASA overall high-speed aeronautical research program, and projects have involved other NASA research centers, other government agencies, universities, and commercial firms. One of the first major experiments to be flown in the NASA SR-71 program was a laser air-data collection system. This system used laser light instead of air pressure to produce airspeed and attitude reference data such as angle of attack and angle of sideslip. These data are normally obtained with small tubes and vanes extending into the air stream, or from tubes with flush openings on the aircraft outer skin. The flights provided information on the presence of atmospheric particles at altitudes of 80,000 feet and above where future hypersonic aircraft will be operating. The system used six sheets of laser light projected from the bottom of one of the two 'A' models. As microscopic-sized atmospheric particles passed between the two beams, direction and speed were measured and processed into standard speed and attitude references. An earlier laser air-data collection system was successfully tested at Dryden on an F-l04 testbed. The first of a series of flights using the SR-71 as a science camera platform for the NASA Jet Propulsion Laboratory was flown in March 1993. From the nosebay of the aircraft, an upward-looking ultraviolet video camera studied a variety of celestial objects in wavelengths that are blocked to ground-based astronomers. The SR-71 has also been used in a project for researchers at the University of California-Los Angeles (UCLA) who are investigating the use of charged chlorine atoms to protect and rebuild the ozone layer. The SR-71, operating as a testbed, has been used to assist in the development of a commercial satellite-based instant wireless personal communications network, called the IRIDIUM system, under a NASA commercialization assistance program. In addition, the SR-71 has been used in a program to study ways of reducing sonic boom overpressures that are heard on the ground much like sharp thunderclaps when an aircraft exceeds the speed of sound. Data from this study could eventually lead to aircraft designs that would reduce the 'peak' of sonic booms and minimize the startle affect they produce on the ground. Instruments at precise locations on the ground recorded the sonic booms as the aircraft passed overhead at known altitudes and speeds. An F-16XL aircraft was also used in this study. It was flown behind the SR-71 to 'probe' the near-field shockwave while instrumentation recorded the pressures and other atmospheric parameters. The aircraft has also been used most recently to evaluate a new concept for space propulsion called the Linear Aerospike Rocket Engine, which could be used in the X-33 advanced technology demonstrator for a next generation reusable launch vehicle.

  2. High-Speed Research: Sonic Boom, volume 1

    NASA Technical Reports Server (NTRS)

    Darden, Christine M. (Compiler)

    1992-01-01

    A High-Speed Sonic Boom Workshop was held at LaRC of Feb. 25-27, 1992. The purpose was to make presentations on current research activities and accomplishments and to assess progress in the area of sonic boom since the program was initiated in FY-90. Twenty-nine papers were presented during the 2-1/2 day workshop. Attendees included representatives from academia, industry, and government who are actively involved in sonic-boom research. Volume 1 contains papers related to atmospheric effects on the sonic-boom signature during propagation and on acceptability studies.

  3. First NASA/Industry High-Speed Research Configuration Aerodynamics Workshop

    NASA Technical Reports Server (NTRS)

    Wood, Richard M. (Editor)

    1999-01-01

    This publication is a compilation of documents presented at the First NASA/Industry High Speed Research Configuration Aerodynamics Workshop held on February 27-29, 1996 at NASA Langley Research Center. The purpose of the workshop was to bring together the broad spectrum of aerodynamicists, engineers, and scientists working within the Configuration Aerodynamics element of the HSR Program to collectively evaluate the technology status and to define the needs within Computational Fluid Dynamics (CFD) Analysis Methodology, Aerodynamic Shape Design, Propulsion/Airframe Integration (PAI), Aerodynamic Performance, and Stability and Control (S&C) to support the development of an economically viable High Speed Civil Transport (HSCT) aircraft. To meet these objectives, papers were presented by representative from NASA Langley, Ames, and Lewis Research Centers; Boeing, McDonnell Douglas, Northrop-Grumman, Lockheed-Martin, Vigyan, Analytical Services, Dynacs, and RIACS.

  4. First NASA/Industry High-Speed Research Configuration Aerodynamics Workshop. Pt. 2

    NASA Technical Reports Server (NTRS)

    Wood, Richard M. (Editor)

    1999-01-01

    This publication is a compilation of documents presented at the First NASA Industry High Speed Research Configuration Aerodynamics Workshop held on February 27-29, 1996 at NASA Langley Research Center. The purpose of the workshop was to bring together the broad spectrum of aerodynamicists, engineers, and scientists working within the Configuration Aerodynamics element of the HSR Program to collectively evaluate the technology status and to define the needs within Computational Fluid Dynamics (CFD) Analysis Methodology, Aerodynamic Shape Design, Propulsion/Airframe Integration (PAI), Aerodynamic Performance, and Stability and Control (S&C) to support the development of an economically viable High Speed Civil Transport (HSCT) aircraft. To meet these objectives, papers were presented by representatives from NASA Langley, Ames, and Lewis Research Centers; Boeing, McDonnell Douglas, Northrop-Grumman, Lockheed-Martin, Vigyan, Analytical Services, Dynacs, and RIACS.

  5. First NASA/Industry High-Speed Research Configuration Aerodynamics Workshop. Part 1

    NASA Technical Reports Server (NTRS)

    Wood, Richard M. (Editor)

    1999-01-01

    This publication is a compilation of documents presented at the First NASA/Industry High Speed Research Configuration Aerodynamics Workshop held on February 27-29, 1996 at NASA Langley Research Center. The purpose of the workshop was to bring together the broad spectrum of aerodynamicists, engineers, and scientists working within the Configuration Aerodynamics element of the HSR Program to collectively evaluate the technology status and to define the needs within Computational Fluid Dynamics (CFD) Analysis Methodology, Aerodynamic Shape Design, Propulsion/Airframe Integration (PAI), Aerodynamic Performance, and Stability and Control (S&C) to support the development of an economically viable High Speed Civil Transport (HSCT) aircraft. To meet these objectives, papers were presented by representative from NASA Langley, Ames, and Lewis Research Centers; Boeing, McDonnell Douglas, Northrop-Grumman, Lockheed-Martin, Vigyan, Analytical Services, Dynacs, and RIACS.

  6. High-Speed Research: Sonic Boom, volume 2

    NASA Technical Reports Server (NTRS)

    Darden, Christine M. (Compiler)

    1992-01-01

    A High-Speed Sonic Boom Workshop was held at NASA Langley Research Center on February 25-27, 1992. The purpose of the workshop was to make presentations on current research activities and accomplishments and to assess progress in the area of sonic boom since the program was initiated in FY-90. Twenty-nine papers were presented during the 2-1/2 day workshop. Attendees included representatives from academia, industry, and government who are actively involved in sonic-boom research. Volume 2 contains papers related to low sonic-boom design and analysis using both linear theory and higher order computational fluid dynamics (CFD) methods.

  7. Large eddy simulations and direct numerical simulations of high speed turbulent reacting flows

    NASA Technical Reports Server (NTRS)

    Givi, Peyman; Madnia, Cyrus K.; Steinberger, Craig J.

    1990-01-01

    This research is involved with the implementation of advanced computational schemes based on large eddy simulations (LES) and direct numerical simulations (DNS) to study the phenomenon of mixing and its coupling with chemical reactions in compressible turbulent flows. In the efforts related to LES, a research program to extend the present capabilities of this method was initiated for the treatment of chemically reacting flows. In the DNS efforts, the focus is on detailed investigations of the effects of compressibility, heat release, and non-equilibrium kinetics modelings in high speed reacting flows. Emphasis was on the simulations of simple flows, namely homogeneous compressible flows, and temporally developing high speed mixing layers.

  8. X-15: Extending the Frontiers of Flight

    NASA Technical Reports Server (NTRS)

    Jenkins, Dennis R.

    2007-01-01

    A history of the design and achievements of the high-speed, 1950s-era X-15 airplane is presented. The following chapters are included: A New Science; A Hypersonic Research Airplane; Conflict and Innovation; The Million-Horsepower Engine; High Range and Dry Lakes; Preparations; The Flight Program; and the Research Program. Selected biographies, flight logs and physical characteristics of the X-15 Airplane are included in the appendices.

  9. Reynolds Number Effects on a Supersonic Transport at Transonic Conditions

    NASA Technical Reports Server (NTRS)

    Wahls, R. N.; Owens, L. R.; Rivers, S. M. B.

    2001-01-01

    A High Speed Civil Transport configuration was tested in the National Transonic Facility at the NASA Langley Research Center as part of NASA's High Speed Research Program. The primary purposes of the tests were to assess Reynolds number scale effects and the high Reynolds number aerodynamic characteristics of a realistic, second generation supersonic transport while providing data for the assessment of computational methods. The tests included longitudinal and lateral/directional studies at low speed high-lift and transonic conditions across a range of Reynolds numbers from that available in conventional wind tunnels to near flight conditions. Results are presented which focus on both the Reynolds number and static aeroelastic sensitivities of longitudinal characteristics at Mach 0.90 for a configuration without an empennage.

  10. Review of V/STOL lift/cruise fan technology

    NASA Technical Reports Server (NTRS)

    Rolls, L. S.; Quigley, H. C.; Perkins, R. G., Jr.

    1976-01-01

    This paper presents an overview of supporting technology programs conducted to reduce the risk in the joint NASA/Navy Lift/Cruise Fan Research and Technology Aircraft Program. The aeronautical community has endeavored to combine the low-speed and lifting capabilities of the helicopter with the high-speed capabilities of the jet aircraft; recent developments have indicated a lift/cruise fan propulsion system may provide these desired characteristics. NASA and the Navy have formulated a program that will provide a research and technology aircraft to furnish viability of the lift/cruise fan aircraft through flight experiences and obtain data on designs for future naval and civil V/STOL aircraft. The supporting technology programs discussed include: (1) design studies for operational aircraft, a research and technology aircraft, and associated propulsion systems; (2) wind-tunnel tests of several configurations; (3) propulsion-system thrust vectoring tests; and (4) simulation. These supporting technology programs have indicated that a satisfactory research and technology aircraft program can be accomplished within the current level of technology.

  11. SR-71 flight

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The movie clip shown here runs about 13 seconds and shows an air-to-air shot of the front of the SR-71 aircraft and a head-on view of it coming in for a landing. Two SR-71A aircraft on loan from the U.S. Air Force have been used for high-speed, high-altitude research at the NASA Dryden Flight Research Center, Edwards, California, since 1991. One of them was later returned to the Air Force. A third SR-71 on loan from the Air Force is an SR-71B used for training but not for flight research. Developed for the U.S. Air Force as reconnaissance aircraft more than 30 years ago, SR-71 aircraft are still the world's fastest and highest-flying production aircraft. These aircraft can fly more than 2200 miles per hour (Mach 3+ or more than three times the speed of sound) and at altitudes of over 85,000 feet. This operating environment makes the aircraft excellent platforms to carry out research and experiments in a variety of areas--aerodynamics, propulsion, structures, thermal protection materials, high-speed and high-temperature instrumentation, atmospheric studies, and sonic-boom characterization. Data from the SR-71 high-speed research program may be used to aid designers of future supersonic or hypersonic aircraft and propulsion systems, including a possible high-speed civil transport. The SR-71 program at Dryden has been part of the NASA overall high-speed aeronautical research program, and projects have involved other NASA research centers, other government agencies, universities, and commercial firms. One of the first major experiments to be flown in the NASA SR-71 program was a laser air-data collection system. This system used laser light instead of air pressure to produce airspeed and attitude reference data such as angle of attack and angle of sideslip. These data are normally obtained with small tubes and vanes extending into the air stream, or from tubes with flush openings on the aircraft outer skin. The flights provided information on the presence of atmospheric particles at altitudes of 80,000 feet and above where future hypersonic aircraft will be operating. The system used six sheets of laser light projected from the bottom of one of the two 'A' models. As microscopic-sized atmospheric particles passed between the two beams, direction and speed were measured and processed into standard speed and attitude references. An earlier laser air-data collection system was successfully tested at Dryden on an F-l04 testbed. The first of a series of flights using the SR-71 as a science camera platform for the NASA Jet Propulsion Laboratory was flown in March 1993. From the nosebay of the aircraft, an upward-looking ultraviolet video camera studied a variety of celestial objects in wavelengths that are blocked to ground-based astronomers. The SR-71 has also been used in a project for researchers at the University of California-Los Angeles (UCLA) who are investigating the use of charged chlorine atoms to protect and rebuild the ozone layer. The SR-71, operating as a testbed, has been used to assist in the development of a commercial satellite-based instant wireless personal communications network, called the IRIDIUM system, under a NASA commercialization assistance program. In addition, the SR-71 has been used in a program to study ways of reducing sonic boom overpressures that are heard on the ground much like sharp thunderclaps when an aircraft exceeds the speed of sound. Data from this study could eventually lead to aircraft designs that would reduce the 'peak' of sonic booms and minimize the startle affect they produce on the ground. Instruments at precise locations on the ground recorded the sonic booms as the aircraft passed overhead at known altitudes and speeds. An F-16XL aircraft was also used in this study. It was flown behind the SR-71 to 'probe' the near-field shockwave while instrumentation recorded the pressures and other atmospheric parameters. The aircraft has also been used most recently to evaluate a new concept for space propulsion called the Linear Aerospike Rocket Engine, which could be used in the X-33 advanced technology demonstrator for a next generation reusable launch vehicle.

  12. XUNET experimental high-speed network testbed CRADA 1136, DOE TTI No. 92-MULT-020-B2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palmer, R.E.

    1996-04-01

    XUNET is a research program with AT&T and other partners to study high-speed wide area communication between local area networks over a backbone using Asynchronous Transfer Mode (ATM) switches. Important goals of the project are to develop software techniques for network control and management, and applications for high-speed networks. The project entails building a testbed between member sites to explore performance issues for mixed network traffic such as congestion control, multimedia communications protocols, segmentation and reassembly of ATM cells, and overall data throughput rates.

  13. Flexible high-speed CODEC

    NASA Technical Reports Server (NTRS)

    Segallis, Greg P.; Wernlund, Jim V.; Corry, Glen

    1993-01-01

    This report is prepared by Harris Government Communication Systems Division for NASA Lewis Research Center under contract NAS3-25087. It is written in accordance with SOW section 4.0 (d) as detailed in section 2.6. The purpose of this document is to provide a summary of the program, performance results and analysis, and a technical assessment. The purpose of this program was to develop a flexible, high-speed CODEC that provides substantial coding gain while maintaining bandwidth efficiency for use in both continuous and bursted data environments for a variety of applications.

  14. Research and Applications in Aeroelasticity and Structural Dynamics at the NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Abel, Irving

    1997-01-01

    An overview of recently completed programs in aeroelasticity and structural dynamics research at the NASA Langley Research Center is presented. Methods used to perform flutter clearance studies in the wind-tunnel on a high performance fighter are discussed. Recent advances in the use of smart structures and controls to solve aeroelastic problems, including flutter and gust response are presented. An aeroelastic models program designed to support an advanced high speed civil transport is described. An extension to transonic small disturbance theory that better predicts flows involving separation and reattachment is presented. The results of a research study to determine the effects of flexibility on the taxi and takeoff characteristics of a high speed civil transport are presented. The use of photogrammetric methods aboard Space Shuttle to measure spacecraft dynamic response is discussed. Issues associated with the jitter response of multi-payload spacecraft are discussed. Finally a Space Shuttle flight experiment that studied the control of flexible spacecraft is described.

  15. Stratified charge rotary aircraft engine technology enablement program

    NASA Technical Reports Server (NTRS)

    Badgley, P. R.; Irion, C. E.; Myers, D. M.

    1985-01-01

    The multifuel stratified charge rotary engine is discussed. A single rotor, 0.7L/40 cu in displacement, research rig engine was tested. The research rig engine was designed for operation at high speeds and pressures, combustion chamber peak pressure providing margin for speed and load excursions above the design requirement for a high is advanced aircraft engine. It is indicated that the single rotor research rig engine is capable of meeting the established design requirements of 120 kW, 8,000 RPM, 1,379 KPA BMEP. The research rig engine, when fully developed, will be a valuable tool for investigating, advanced and highly advanced technology components, and provide an understanding of the stratified charge rotary engine combustion process.

  16. An overview of the fundamental aerodynamics branch's research activities in wing leading-edge vortex flows at supersonic speeds

    NASA Technical Reports Server (NTRS)

    Miller, D. S.; Wood, R. M.; Covell, P. F.

    1986-01-01

    For the past 3 years, a research program pertaining to the study of wing leading edge vortices at supersonic speeds has been conducted in the Fundamental Aerodynamics Branch of the High-Speed Aerodynamics Division at the Langley Research Center. The purpose of the research is to provide an understanding of the factors governing the formation and the control of wing leading-edge vortices and to evaluate the use of these vortices for improving supersonic aerodynamic performance. The studies include both experimental and theoretical investigations and focus primarily on planform, thickness and camber effects for delta wings. An overview of this research activity is presented.

  17. NASA thrusts in high-speed aeropropulsion research and development: An overview

    NASA Technical Reports Server (NTRS)

    Ziemianski, Joseph A.

    1990-01-01

    NASA is conducting aeronautical research over a broad range of Mach numbers. In addition to the advanced conventional takeoff or landing (CTOL) propulsion research described elsewhere, NASA Lewis has intensified its efforts towards propulsion technology for selected high speed flight applications. In a companion program, NASA Langley has also accomplished significant research in supersonic combustion ramjet (SCRAM) propulsion. An unclassified review is presented of the propulsion research results that are applicable for supersonic to hypersonic vehicles. This overview not only provides a preview of the more detailed presentations which follow, it also presents a viewpoint on future research directions by calling attention to the unique cycles, components, and facilities involved in this expanding area of work.

  18. High-speed polarization-encoded quantum key distribution based on silicon photonic integrated devices

    NASA Astrophysics Data System (ADS)

    Bunandar, Darius; Urayama, Junji; Boynton, Nicholas; Martinez, Nicholas; Derose, Christopher; Lentine, Anthony; Davids, Paul; Camacho, Ryan; Wong, Franco; Englund, Dirk

    We present a compact polarization-encoded quantum key distribution (QKD) transmitter near a 1550-nm wavelength implemented on a CMOS-compatible silicon-on-insulator photonics platform. The transmitter generates arbitrary polarization qubits at gigahertz bandwidth with an extinction ratio better than 30 dB using high-speed carrier-depletion phase modulators. We demonstrate the performance of this device by generating secret keys at a rate of 1 Mbps in a complete QKD field test. Our work shows the potential of using advanced photonic integrated circuits to enable high-speed quantum-secure communications. This work was supported by the SECANT QKD Grand Challenge, the Samsung Global Research Outreach Program, and the Air Force Office of Scientific Research.

  19. ECN-15662

    NASA Image and Video Library

    1981-05-21

    The Dryden C-140 JetStar during testing of advanced propfan designs. Dryden conducted flight research in 1981-1982 on several designs. The technology was developed under the direction of the Lewis Research Center (today the Glenn Research Center, Cleveland, OH) under the Advanced Turboprop Program. Under that program, Langley Research Center in Virginia oversaw work on accoustics and noise reduction. These efforts were intended to develop a high-speed and fuel-efficient turboprop system.

  20. Passenger rail equipment research in the U.S.

    DOT National Transportation Integrated Search

    2002-03-22

    In 1989 the Federal Railroad Administration (FRA) initiated a program of research into the safety aspects of high-speed passenger train systems. Collision safety the balancing of collision avoidance measures of the system with the crashworthiness...

  1. Goldstone R/D High Speed Data Acquisition System

    NASA Technical Reports Server (NTRS)

    Deutsch, L. J.; Jurgens, R. F.; Brokl, S. S.

    1984-01-01

    A digital data acquisition system that meets the requirements of several users (initially the planetary radar program) is planned for general use at Deep Space Station 14 (DSS 14). The system, now partially complete, is controlled by VAX 11/780 computer that is programmed in high level languages. A DEC Data Controller is included for moderate-speed data acquisition, low speed data display, and for a digital interface to special user-provided devices. The high-speed data acquisition is performed in devices that are being designed and built at JPL. Analog IF signals are converted to a digitized 50 MHz real signal. This signal is filtered and mixed digitally to baseband after which its phase code (a PN sequence in the case of planetary radar) is removed. It may then be accumulated (or averaged) and fed into the VAX through an FPS 5210 array processor. Further data processing before entering the VAX is thus possible (computation and accumulation of the power spectra, for example). The system is to be located in the research and development pedestal at DSS 14 for easy access by researchers in radio astronomy as well as telemetry processing and antenna arraying.

  2. Automatic braking system modification for the Advanced Transport Operating Systems (ATOPS) Transportation Systems Research Vehicle (TSRV)

    NASA Technical Reports Server (NTRS)

    Coogan, J. J.

    1986-01-01

    Modifications were designed for the B-737-100 Research Aircraft autobrake system hardware of the Advanced Transport Operating Systems (ATOPS) Program at Langley Research Center. These modifications will allow the on-board flight control computer to control the aircraft deceleration after landing to a continuously variable level for the purpose of executing automatic high speed turn-offs from the runway. A bread board version of the proposed modifications was built and tested in simulated stopping conditions. Test results, for various aircraft weights, turnoff speed, winds, and runway conditions show that the turnoff speeds are achieved generally with errors less than 1 ft/sec.

  3. Aeropropulsion 1987. Session 6: High-Speed Propulsion Technology

    NASA Technical Reports Server (NTRS)

    1987-01-01

    NASA is conducting aeronautical research over a broad range of Mach numbers. In addition to the advanced CTOL propulsion research described in a separate session, the Lewis Research Center has intensified its efforts towards propulsion technology for selected high-speed flight applications. In a companion program, the Langley Research Center has also accomplished excellent research in Supersonic Combustion Ramjet (SCRAM) propulsion. What is presented in this session is an unclassified review of some of the propulsion research results that are applicable for supersonic to hypersonic vehicles. Not only is a review provided for several key work areas, it also presents a viewpoint on future research directions by calling attention to cycles, components, and facilities involved in this rapidly expanding field of work.

  4. On-line high-speed rail defect detection, phase III : research results.

    DOT National Transportation Integrated Search

    2005-10-01

    The Federal Railroad Administration (FRA) Office of Research and Developments Track and Structures Program sponsored a study for developing and testing a rail defect detection system based on ultrasonic guided waves and non-contact probing. Curren...

  5. Application of TURBO-AE to Flutter Prediction: Aeroelastic Code Development

    NASA Technical Reports Server (NTRS)

    Hoyniak, Daniel; Simons, Todd A.; Stefko, George (Technical Monitor)

    2001-01-01

    The TURBO-AE program has been evaluated by comparing the obtained results to cascade rig data and to prediction made from various in-house programs. A high-speed fan cascade, a turbine cascade, a turbine cascade and a fan geometry that shower flutter in torsion mode were analyzed. The steady predictions for the high-speed fan cascade showed the TURBO-AE predictions to match in-house codes. However, the predictions did not match the measured blade surface data. Other researchers also reported similar disagreement with these data set. Unsteady runs for the fan configuration were not successful using TURBO-AE .

  6. Atmospheric effects of stratospheric aircraft - A status report from NASA's High-Speed Research Program

    NASA Technical Reports Server (NTRS)

    Wesoky, Howard L.; Prather, Michael J.

    1991-01-01

    Studies have indicated that, with sufficient technology development, future high-speed civil transport aircraft could be economically competitive with long-haul subsonic aircraft. However, uncertainty about atmospheric pollution, along with community noise and sonic boom, continues to be a major concern which is being addressed in the planned six-year High-Speed Research Program begun in 1990. Building on NASA's research in atmospheric science and emissions reduction, current analytical predictions indicate that an operating range may exist at altitudes below 20 km (i.e., corresponding to a cruise Mach number of approximately 2.4) where the goal level of 5 gm equivalent NO2 emissions/kg fuel will deplete less than one percent of column ozone. Because it will not be possible to directly measure the impact of an aircraft fleet on the atmosphere, the only means of assessment will be prediction. The process of establishing credibility for the predicted effects will likely be complex and involve continued model development and testing against climatological patterns. In particular, laboratory simulation of heterogeneous chemistry and other effects, and direct measurements of well understood tracers in the troposphere and stratosphere are being used to improve the current models.

  7. A Comparative Propulsion System Analysis for the High-Speed Civil Transport

    NASA Technical Reports Server (NTRS)

    Berton, Jeffrey J.; Haller, William J.; Senick, Paul F.; Jones, Scott M.; Seidel, Jonathan A.

    2005-01-01

    Six of the candidate propulsion systems for the High-Speed Civil Transport are the turbojet, turbine bypass engine, mixed flow turbofan, variable cycle engine, Flade engine, and the inverting flow valve engine. A comparison of these propulsion systems by NASA's Glenn Research Center, paralleling studies within the aircraft industry, is presented. This report describes the Glenn Aeropropulsion Analysis Office's contribution to the High-Speed Research Program's 1993 and 1994 propulsion system selections. A parametric investigation of each propulsion cycle's primary design variables is analytically performed. Performance, weight, and geometric data are calculated for each engine. The resulting engines are then evaluated on two airframer-derived supersonic commercial aircraft for a 5000 nautical mile, Mach 2.4 cruise design mission. The effects of takeoff noise, cruise emissions, and cycle design rules are examined.

  8. Testing the Gossamer Albatross II

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The Gossamer Albatross II is seen here during a test flight at NASA's Dryden Flight Research Center, Edwards, California. The original Gossamer Albatross is best known for completing the first completely human powered flight across the English Channel on June 12, 1979. The Albatross II was the backup craft for the Channel flight. It was fitted with a small battery-powered electric motor and flight instruments for the NASA research program in low-speed flight. NASA completed its flight testing of the Gossamer Albatross II and began analysis of the results in April, 1980. During the six week program, 17 actual data gathering flights and 10 other flights were flown here as part of the joint NASA Langley/Dryden flight research program. The lightweight craft, carrying a miniaturized instrumentation system, was flown in three configurations; using human power, with a small electric motor, and towed with the propeller removed. Results from the program contributed to data on the unusual aerodynamic, performance, stability, and control characteristics of large, lightweight aircraft that fly at slow speeds for application to future high altitude aircraft. The Albatross' design and research data contributed to numerous later high altitude projects, including the Pathfinder.

  9. Assembling the Gossamer Albatross II in hangar

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The Gossamer Albatross II is seen here being assembled in a hangar at the Dryden Flight Research Center, Edwards, California. The original Gossamer Albatross is best known for completing the first completely human powered flight across the English Channel on June 12, 1979. The Albatross II was the backup craft for the Channel flight. The aircraft was fitted with a small battery-powered electric motor and flight instruments for the NASA research program in low-speed flight. NASA completed its flight testing of the Gossamer Albatross II and began analysis of the results in April, 1980. During the six week program, 17 actual data gathering flights and 10 other flights were flown here as part of the joint NASA Langley/Dryden flight research program. The lightweight craft, carrying a miniaturized instrumentation system, was flown in three configurations; using human power, with a small electric motor, and towed with the propeller removed. Results from the program contributed to data on the unusual aerodynamic, performance, stability, and control characteristics of large, lightweight aircraft that fly at slow speeds for application to future high altitude aircraft. The Albatross' design and research data contributed to numerous later high altitude projects, including the Pathfinder.

  10. Modeling Compressibility Effects in High-Speed Turbulent Flows

    NASA Technical Reports Server (NTRS)

    Sarkar, S.

    2004-01-01

    Man has strived to make objects fly faster, first from subsonic to supersonic and then to hypersonic speeds. Spacecraft and high-speed missiles routinely fly at hypersonic Mach numbers, M greater than 5. In defense applications, aircraft reach hypersonic speeds at high altitude and so may civilian aircraft in the future. Hypersonic flight, while presenting opportunities, has formidable challenges that have spurred vigorous research and development, mainly by NASA and the Air Force in the USA. Although NASP, the premier hypersonic concept of the eighties and early nineties, did not lead to flight demonstration, much basic research and technology development was possible. There is renewed interest in supersonic and hypersonic flight with the HyTech program of the Air Force and the Hyper-X program at NASA being examples of current thrusts in the field. At high-subsonic to supersonic speeds, fluid compressibility becomes increasingly important in the turbulent boundary layers and shear layers associated with the flow around aerospace vehicles. Changes in thermodynamic variables: density, temperature and pressure, interact strongly with the underlying vortical, turbulent flow. The ensuing changes to the flow may be qualitative such as shocks which have no incompressible counterpart, or quantitative such as the reduction of skin friction with Mach number, large heat transfer rates due to viscous heating, and the dramatic reduction of fuel/oxidant mixing at high convective Mach number. The peculiarities of compressible turbulence, so-called compressibility effects, have been reviewed by Fernholz and Finley. Predictions of aerodynamic performance in high-speed applications require accurate computational modeling of these "compressibility effects" on turbulence. During the course of the project we have made fundamental advances in modeling the pressure-strain correlation and developed a code to evaluate alternate turbulence models in the compressible shear layer.

  11. Impact of Environmental Issues on the High-Speed Civil Transport

    NASA Technical Reports Server (NTRS)

    Whitehead, Allen H., Jr.

    1998-01-01

    This paper provides an overview of the impact of environmental issues on the design and operation of the proposed High-Speed Civil Transport (HSCT). This proposal for a new generation commercial supersonic transport is being pursued by NASA and its US industry partners in the NASA High-Speed Research (HSR) Program. A second related paper describes the overall HSR Program, including a history of supersonic transport development that led to the present program, and a brief outline of the structure of the two-phase program and its management structure. The specific objectives are to address the four major barrier environmental issues and show their impact on the design of the airplane and potentially, its mode of operation. A brief historical perspective shows how HSR Phase I addressed these environmental topics and, with the successful completion of that program, led to the successful advocacy for the Phase II effort that followed. The Phase II program elements were discussed in the earlier paper and addressed technology programs to enhance the economic viability of the HSCT. Since many of the regulations that may effect the certification and operation of the HSCT are either not in place or well documented, a brief treatise is provided to address the status of the rules and the potential impact on the viability of the HSCT.

  12. Large eddy simulations and direct numerical simulations of high speed turbulent reacting flows

    NASA Technical Reports Server (NTRS)

    Givi, Peyman; Madnia, C. K.; Steinberger, C. J.; Tsai, A.

    1991-01-01

    This research is involved with the implementations of advanced computational schemes based on large eddy simulations (LES) and direct numerical simulations (DNS) to study the phenomenon of mixing and its coupling with chemical reactions in compressible turbulent flows. In the efforts related to LES, a research program was initiated to extend the present capabilities of this method for the treatment of chemically reacting flows, whereas in the DNS efforts, focus was on detailed investigations of the effects of compressibility, heat release, and nonequilibrium kinetics modeling in high speed reacting flows. The efforts to date were primarily focussed on simulations of simple flows, namely, homogeneous compressible flows and temporally developing hign speed mixing layers. A summary of the accomplishments is provided.

  13. SR-71 Pilot Stephen (Steve) D. Ishmael

    NASA Technical Reports Server (NTRS)

    1992-01-01

    NASA research pilot Stephen D. Ishmael is pictured here in front of an SR-71 Blackbird on the ramp at the Dryden Flight Research Center, Edwards, California. Ishmael was one of two NASA research pilots assigned to the SR-71 high speed research program in the early 1990s at NASA's Dryden Flight Research Facility (redesignated the Dryden Flight Research Center in 1994), Edwards, California. Ishmael became a NASA research pilot in 1977. Data from the SR-71 program will be used to aid designers of future supersonic aircraft and propulsion systems. Two SR-71 aircraft have been used by NASA as testbeds for high-speed and high-altitude aeronautical research. The aircraft, an SR-71A and an SR-71B pilot trainer aircraft, have been based here at NASA's Dryden Flight Research Center, Edwards, California. They were transferred to NASA after the U.S. Air Force program was cancelled. As research platforms, the aircraft can cruise at Mach 3 for more than one hour. For thermal experiments, this can produce heat soak temperatures of over 600 degrees Fahrenheit (F). This operating environment makes these aircraft excellent platforms to carry out research and experiments in a variety of areas -- aerodynamics, propulsion, structures, thermal protection materials, high-speed and high-temperature instrumentation, atmospheric studies, and sonic boom characterization. The SR-71 was used in a program to study ways of reducing sonic booms or over pressures that are heard on the ground, much like sharp thunderclaps, when an aircraft exceeds the speed of sound. Data from this Sonic Boom Mitigation Study could eventually lead to aircraft designs that would reduce the 'peak' overpressures of sonic booms and minimize the startling affect they produce on the ground. One of the first major experiments to be flown in the NASA SR-71 program was a laser air data collection system. It used laser light instead of air pressure to produce airspeed and attitude reference data, such as angle of attack and sideslip, which are normally obtained with small tubes and vanes extending into the airstream. One of Dryden's SR-71s was used for the Linear Aerospike Rocket Engine, or LASRE Experiment. Another earlier project consisted of a series of flights using the SR-71 as a science camera platform for NASA's Jet Propulsion Laboratory in Pasadena, California. An upward-looking ultraviolet video camera placed in the SR-71's nosebay studied a variety of celestial objects in wavelengths that are blocked to ground-based astronomers. Earlier in its history, Dryden had a decade of past experience at sustained speeds above Mach 3. Two YF-12A aircraft and an SR-71 designated as a YF-12C were flown at the center between December 1969 and November 1979 in a joint NASA/USAF program to learn more about the capabilities and limitations of high-speed, high-altitude flight. The YF-12As were prototypes of a planned interceptor aircraft based on a design that later evolved into the SR-71 reconnaissance aircraft. Dave Lux was the NASA SR-71 project manger for much of the decade of the 1990s, followed by Steve Schmidt. Developed for the USAF as reconnaissance aircraft more than 30 years ago, SR-71s are still the world's fastest and highest-flying production aircraft. The aircraft can fly at speeds of more than 2,200 miles per hour (Mach 3+, or more than three times the speed of sound) and at altitudes of over 85,000 feet. The Lockheed Skunk Works (now Lockheed Martin) built the original SR-71 aircraft. Each aircraft is 107.4 feet long, has a wingspan of 55.6 feet, and is 18.5 feet high (from the ground to the top of the rudders, when parked). Gross takeoff weight is about 140,000 pounds, including a possible fuel weight of 80,280 pounds. The airframes are built almost entirely of titanium and titanium alloys to withstand heat generated by sustained Mach 3 flight. Aerodynamic control surfaces consist of all-moving vertical tail surfaces, ailerons on the outer wings, and elevators on the trailing edges between the engine exhaust nozzles. The two SR-71s at Dryden have been assigned the following NASA tail numbers: NASA 844 (A model), military serial 61-7980 and NASA 831 (B model), military serial 61-7956. From 1990 through 1994, Dryden also had another 'A' model, NASA 832, military serial 61-7971. This aircraft was returned to the USAF inventory and was the first aircraft reactivated for USAF reconnaissance purposes in 1995. It has since returned to Dryden along with SR-71A 61-7967.

  14. A review of technologies applicable to low-speed flight of high-performance aircraft investigated in the Langley 14- x 22-foot subsonic tunnel

    NASA Technical Reports Server (NTRS)

    Paulson, John W., Jr.; Quinto, P. Frank; Banks, Daniel W.; Kemmerly, Guy T.; Gatlin, Gregory M.

    1988-01-01

    An extensive research program has been underway at the NASA Langley Research Center to define and develop the technologies required for low-speed flight of high-performance aircraft. This 10-year program has placed emphasis on both short takeoff and landing (STOL) and short takeoff and vertical landing (STOVL) operations rather than on regular up and away flight. A series of NASA in-house as well as joint projects have studied various technologies including high lift, vectored thrust, thrust-induced lift, reversed thrust, an alternate method of providing trim and control, and ground effects. These technologies have been investigated on a number of configurations ranging from industry designs for advanced fighter aircraft to generic wing-canard research models. Test conditions have ranged from hover (or static) through transition to wing-borne flight at angles of attack from -5 to 40 deg at representative thrust coefficients.

  15. Multiprocessor programming environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, M.B.; Fornaro, R.

    Programming tools and techniques have been well developed for traditional uniprocessor computer systems. The focus of this research project is on the development of a programming environment for a high speed real time heterogeneous multiprocessor system, with special emphasis on languages and compilers. The new tools and techniques will allow a smooth transition for programmers with experience only on single processor systems.

  16. Propulsion technology challenges for turn-of-the-century commercial aircraft

    NASA Technical Reports Server (NTRS)

    Ziemianski, Joseph A.; Ball, Calvin L.

    1993-01-01

    This paper highlights the efforts being performed or sponsored by NASA, in cooperation with the U.S. civil aviation industry, to address the propulsion system technological challenges that must be met in order to ensure a viable future for the industry. Both the subsonic and supersonic aeropropulsion programs are considered. Subsonic transport propulsion program elements, including ultra-high-bypass-ratio turbofans with attendant noise reduction efforts, high-efficiency cores, and combustor emissions reductions are discussed in terms of goals, technical issues, and problem solutions. Similarly, the high-speed research propulsion efforts addressing a high-speed commercial transport are reviewed in terms of environmental barrier issues, such as oxides of nitrogen and noise reduction, and the related economic issues.

  17. Synchronizing Photography For High-Speed-Engine Research

    NASA Technical Reports Server (NTRS)

    Chun, K. S.

    1989-01-01

    Light flashes when shaft reaches predetermined angle. Synchronization system facilitates visualization of flow in high-speed internal-combustion engines. Designed for cinematography and holographic interferometry, system synchronizes camera and light source with predetermined rotational angle of engine shaft. 10-bit resolution of absolute optical shaft encoder adapted, and 2 to tenth power combinations of 10-bit binary data computed to corresponding angle values. Pre-computed angle values programmed into EPROM's (erasable programmable read-only memories) to use as angle lookup table. Resolves shaft angle to within 0.35 degree at rotational speeds up to 73,240 revolutions per minute.

  18. SR-71 Pilot Rogers E. Smith

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Research pilot Rogers E. Smith is shown here in front of the SR-71 Blackbird he flew for NASA. Rogers was one of the two original NASA research pilots assigned to the SR-71 high speed research program at NASA's Ames-Dryden Flight Research Facility (later, Dryden Flight Research Center, Edwards, California. Smith has been a NASA research pilot at Dryden since 1982. Data from the SR-71 program will be used to aid designers of future supersonic aircraft and propulsion systems. The SR-71 is capable of flying more than 2200 mph (Mach 3+) and at altitudes of over 80,000 feet. Two SR-71 aircraft have been used by NASA as testbeds for high-speed and high-altitude aeronautical research. The aircraft, an SR-71A and an SR-71B pilot trainer aircraft, have been based here at NASA's Dryden Flight Research Center, Edwards, California. They were transferred to NASA after the U.S. Air Force program was cancelled. As research platforms, the aircraft can cruise at Mach 3 for more than one hour. For thermal experiments, this can produce heat soak temperatures of over 600 degrees Fahrenheit (F). This operating environment makes these aircraft excellent platforms to carry out research and experiments in a variety of areas -- aerodynamics, propulsion, structures, thermal protection materials, high-speed and high-temperature instrumentation, atmospheric studies, and sonic boom characterization. The SR-71 was used in a program to study ways of reducing sonic booms or over pressures that are heard on the ground, much like sharp thunderclaps, when an aircraft exceeds the speed of sound. Data from this Sonic Boom Mitigation Study could eventually lead to aircraft designs that would reduce the 'peak' overpressures of sonic booms and minimize the startling affect they produce on the ground. One of the first major experiments to be flown in the NASA SR-71 program was a laser air data collection system. It used laser light instead of air pressure to produce airspeed and attitude reference data, such as angle of attack and sideslip, which are normally obtained with small tubes and vanes extending into the airstream. One of Dryden's SR-71s was used for the Linear Aerospike Rocket Engine, or LASRE Experiment. Another earlier project consisted of a series of flights using the SR-71 as a science camera platform for NASA's Jet Propulsion Laboratory in Pasadena, California. An upward-looking ultraviolet video camera placed in the SR-71's nosebay studied a variety of celestial objects in wavelengths that are blocked to ground-based astronomers. Earlier in its history, Dryden had a decade of past experience at sustained speeds above Mach 3. Two YF-12A aircraft and an SR-71 designated as a YF-12C were flown at the center between December 1969 and November 1979 in a joint NASA/USAF program to learn more about the capabilities and limitations of high-speed, high-altitude flight. The YF-12As were prototypes of a planned interceptor aircraft based on a design that later evolved into the SR-71 reconnaissance aircraft. Dave Lux was the NASA SR-71 project manger for much of the decade of the 1990s, followed by Steve Schmidt. Developed for the USAF as reconnaissance aircraft more than 30 years ago, SR-71s are still the world's fastest and highest-flying production aircraft. The aircraft can fly at speeds of more than 2,200 miles per hour (Mach 3+, or more than three times the speed of sound) and at altitudes of over 85,000 feet. The Lockheed Skunk Works (now Lockheed Martin) built the original SR-71 aircraft. Each aircraft is 107.4 feet long, has a wingspan of 55.6 feet, and is 18.5 feet high (from the ground to the top of the rudders, when parked). Gross takeoff weight is about 140,000 pounds, including a possible fuel weight of 80,280 pounds. The airframes are built almost entirely of titanium and titanium alloys to withstand heat generated by sustained Mach 3 flight. Aerodynamic control surfaces consist of all-moving vertical tail surfaces, ailerons on the outer wings, and elevators on the trailing edges between the engine exhaust nozzles. The two SR-71s at Dryden have been assigned the following NASA tail numbers: NASA 844 (A model), military serial 61-7980 and NASA 831 (B model), military serial 61-7956. From 1990 through 1994, Dryden also had another 'A' model, NASA 832, military serial 61-7971. This aircraft was returned to the USAF inventory and was the first aircraft reactivated for USAF reconnaissance purposes in 1995. It has since returned to Dryden along with SR-71A 61-7967.

  19. Smaller Footprint Drilling System for Deep and Hard Rock Environments; Feasibility of Ultra-High-Speed Diamond Drilling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arnis Judzis; Alan Black; Homer Robertson

    2006-03-01

    The two phase program addresses long-term developments in deep well and hard rock drilling. TerraTek believes that significant improvements in drilling deep hard rock will be obtained by applying ultra-high rotational speeds (greater than 10,000 rpm). The work includes a feasibility of concept research effort aimed at development that will ultimately result in the ability to reliably drill ''faster and deeper'' possibly with smaller, more mobile rigs. The principle focus is on demonstration testing of diamond bits rotating at speeds in excess of 10,000 rpm to achieve high rate of penetration (ROP) rock cutting with substantially lower inputs of energymore » and loads. The significance of the ultra-high rotary speed drilling system is the ability to drill into rock at very low weights on bit and possibly lower energy levels. The drilling and coring industry today does not practice this technology. The highest rotary speed systems in oil field and mining drilling and coring today run less than 10,000 rpm--usually well below 5,000 rpm. This document details the progress to date on the program entitled ''Smaller Footprint Drilling System for Deep and Hard Rock Environments: Feasibility of Ultra-High-Speed Diamond Drilling'' for the period starting 1 October 2004 through 30 September 2005. Additionally, research activity from 1 October 2005 through 28 February 2006 is included in this report: (1) TerraTek reviewed applicable literature and documentation and convened a project kick-off meeting with Industry Advisors in attendance. (2) TerraTek designed and planned Phase I bench scale experiments. Some difficulties continue in obtaining ultra-high speed motors. Improvements have been made to the loading mechanism and the rotational speed monitoring instrumentation. New drill bit designs have been provided to vendors for production. A more consistent product is required to minimize the differences in bit performance. A test matrix for the final core bit testing program has been completed. (3) TerraTek is progressing through Task 3 ''Small-scale cutting performance tests''. (4) Significant testing has been performed on nine different rocks. (5) Bit balling has been observed on some rock and seems to be more pronounces at higher rotational speeds. (6) Preliminary analysis of data has been completed and indicates that decreased specific energy is required as the rotational speed increases (Task 4). This data analysis has been used to direct the efforts of the final testing for Phase I (Task 5). (7) Technology transfer (Task 6) has begun with technical presentations to the industry (see Judzis).« less

  20. Open Rotor Research at NASA Glenn

    NASA Technical Reports Server (NTRS)

    VanZante, Dale E.

    2011-01-01

    A low-noise open rotor system is being tested in collaboration with General Electric and CFM International, a 50/50 joint company between Snecma and GE. Candidate technologies for lower noise will be investigated as well as installation effects such as pylon integration. The research program in both the low and high-speed wind tunnels is reviewed. Some detailed flowfield and acoustics measurements acquired for an internal NASA program are highlighted. The publically available research data is presented also.

  1. Review of NASA's (National Aeronautics and Space Administration) Numerical Aerodynamic Simulation Program

    NASA Technical Reports Server (NTRS)

    1984-01-01

    NASA has planned a supercomputer for computational fluid dynamics research since the mid-1970's. With the approval of the Numerical Aerodynamic Simulation Program as a FY 1984 new start, Congress requested an assessment of the program's objectives, projected short- and long-term uses, program design, computer architecture, user needs, and handling of proprietary and classified information. Specifically requested was an examination of the merits of proceeding with multiple high speed processor (HSP) systems contrasted with a single high speed processor system. The panel found NASA's objectives and projected uses sound and the projected distribution of users as realistic as possible at this stage. The multiple-HSP, whereby new, more powerful state-of-the-art HSP's would be integrated into a flexible network, was judged to present major advantages over any single HSP system.

  2. Material requirements for the High Speed Civil Transport

    NASA Technical Reports Server (NTRS)

    Stephens, Joseph R.; Hecht, Ralph J.; Johnson, Andrew M.

    1993-01-01

    Under NASA-sponsored High Speed Research (HSR) programs, the materials and processing requirements have been identified for overcoming the environmental and economic barriers of the next generation High Speed Civil Transport (HSCT) propulsion system. The long (2 to 5 hours) supersonic cruise portion of the HSCT cycle will place additional durability requirements on all hot section engine components. Low emissions combustor designs will require high temperature ceramic matrix composite liners to meet an emission goal of less than 5g NO(x) per Kg fuel burned. Large axisymmetric and two-dimensional exhaust nozzle designs are now under development to meet or exceed FAR 36 Stage III noise requirements, and will require lightweight, high temperature metallic, intermetallic, and ceramic matrix composites to reduce nozzle weight and meet structural and acoustic component performance goals. This paper describes and discusses the turbomachinery, combustor, and exhaust nozzle requirements of the High Speed Civil Transport propulsion system.

  3. F-16XL Ship #2 in hangar for Laminar Flow Glove mounting

    NASA Technical Reports Server (NTRS)

    1995-01-01

    NASA's two-seat F-16XL research aircraft is shown in the modification hangar at the Dryden Flight Research Center, Edwards, California, during installation of a titanium 'glove' on the upper surface of its modified left wing. The aircraft subsequently concluded a 13 month-long, 45-flight research program which investigated drawing off a small portion of the boundary-layer air in order to provide laminar -- or smooth -- flow over a major portion of a wing flying at supersonic speeds. A turbo-compressor in the aircraft's fuselage provided suction to draw air through more than 10 million tiny laser-drilled holes in the glove via a manifold system employing 20 valves. Data obtained during the program could assist designers of future high-speed aircraft in developing a more efficient civil transport.

  4. F-16XL Ship #2 Laminar Flow Glove mounting

    NASA Technical Reports Server (NTRS)

    1995-01-01

    NASA's two-seat F-16XL research aircraft is shown in the modification hangar at NASA's Dryden Flight Research Center, Edwards, California, during installation of a titanium 'glove' on the upper surface of its modified left wing. The aircraft subsequently carried out a 13-month-long, 45-flight research program which investigated drawing off a small part of the boundary-layer air in order to provide laminar--or smooth--flow over a major portion of a wing flying at supersonic speeds. A turbo-compressor in the aircraft's fuselage provided suction to draw air through more than 10 million tiny laser-drilled holes in the glove via a manifold system employing 20 valves. Data obtained during the program could assist designers of future aircraft in developing a more efficient high-speed civil transport.

  5. Reynolds Number Effects on a Supersonic Transport at Subsonic High-Lift Conditions (Invited)

    NASA Technical Reports Server (NTRS)

    Owens, L.R.; Wahls, R. A.

    2001-01-01

    A High Speed Civil Transport configuration was tested in the National Transonic Facility at the NASA Langley Research Center as part of NASA's High Speed Research Program. The primary purposes of the tests were to assess Reynolds number scale effects and high Reynolds number aerodynamic characteristics of a realistic, second generation supersonic transport while providing data for the assessment of computational methods. The tests included longitudinal and lateral/directional studies at transonic and low-speed, high-lift conditions across a range of Reynolds numbers from that available in conventional wind tunnels to near flight conditions. Results are presented which focus on Reynolds number and static aeroelastic sensitivities of longitudinal characteristics at Mach 0.30 for a configuration without an empennage. A fundamental change in flow-state occurred between Reynolds numbers of 30 to 40 million, which is characterized by significantly earlier inboard leading-edge separation at the high Reynolds numbers. Force and moment levels change but Reynolds number trends are consistent between the two states.

  6. Onboard Systems Record Unique Videos of Space Missions

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Ecliptic Enterprises Corporation, headquartered in Pasadena, California, provided onboard video systems for rocket and space shuttle launches before it was tasked by Ames Research Center to craft the Data Handling Unit that would control sensor instruments onboard the Lunar Crater Observation and Sensing Satellite (LCROSS) spacecraft. The technological capabilities the company acquired on this project, as well as those gained developing a high-speed video system for monitoring the parachute deployments for the Orion Pad Abort Test Program at Dryden Flight Research Center, have enabled the company to offer high-speed and high-definition video for geosynchronous satellites and commercial space missions, providing remarkable footage that both informs engineers and inspires the imagination of the general public.

  7. NASA information sciences and human factors program

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Data Systems Program consists of research and technology devoted to controlling, processing, storing, manipulating, and analyzing space-derived data. The objectives of the program are to provide the technology advancements needed to enable affordable utilization of space-derived data, to increase substantially the capability for future missions of on-board processing and recording and to provide high-speed, high-volume computational systems that are anticipated for missions such as the evolutionary Space Station and Earth Observing System.

  8. NASA-UVa light aerospace alloy and structure technology program supplement: Aluminum-based materials for high speed aircraft

    NASA Technical Reports Server (NTRS)

    Starke, E. A., Jr.

    1993-01-01

    This report on the NASA-UVa Light Aerospace Alloy and Structure Technology Program Supplement: Aluminum-Based Materials for High Speed Aircraft covers the period from January 1, 1992 to June 30, 1992. The objective of the research is to develop aluminum alloys and aluminum matrix composites for the airframe which can efficiently perform in the HSCT environment for periods as long as 60,000 hours (certification for 120,000 hours) and, at the same time, meet the cost and weight requirements for an economically viable aircraft. Current industry baselines focus on flight at Mach 2.4. The research covers four major materials systems: (1) ingot metallurgy 2XXX, 6XXX, and 8XXX alloys, (2) powder metallurgy 2XXX alloys, (3) rapidly solidified, dispersion strengthened Al-Fe-X alloys, and (4) discontinuously reinforced metal matrix composites. There are ten major tasks in the program which also include evaluation and trade-off studies by Boeing and Douglas aircraft companies.

  9. NASA-UVa light aerospace alloy and structures technology program supplement: Aluminum-based materials for high speed aircraft

    NASA Technical Reports Server (NTRS)

    Starke, E. A., Jr. (Editor)

    1995-01-01

    This report on the NASA-UVa light aerospace alloy and structure technology program supplement: Aluminum-Based Materials for High Speed Aircraft covers the period from July 1, 1992. The objective of the research is to develop aluminum alloys and aluminum matrix composites for the airframe which can efficiently perform in the HSCT environment for periods as long as 60,000 hours (certification for 120,000 hours) and, at the same time, meet the cost and weight requirements for an economically viable aircraft. Current industry baselines focus on flight at Mach 2.4. The research covers four major materials systems: (1) Ingot metallurgy 2XXX, 6XXX, and 8XXX alloys, (2) Powder metallurgy 2XXX alloys, (3) Rapidly solidified, dispersion strengthened Al-Fe-X alloys, and (4) Discontinuously reinforced metal matrix composites. There are ten major tasks in the program which also include evaluation and trade-off studies by Boeing and Douglas aircraft companies.

  10. Impact Properties of Metal Fan Containment Materials Being Evaluated for the High-Speed Civil Transport (HSCT)

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Under the Enabling Propulsion Materials (EPM) program - a partnership between NASA, Pratt & Whitney, and GE Aircraft Engines - the Materials and Structures Divisions of the NASA Lewis Research Center are involved in developing a fan-containment system for the High-Speed Civil Transport (HSCT). The program calls for a baseline system to be designed by the end of 1995, with subsequent testing of innovative concepts. Five metal candidate materials are currently being evaluated for the baseline system in the Structures Division's Ballistic Impact Facility. This facility was developed to provide the EPM program with cost-efficient and timely impact test data. At the facility, material specimens are impacted at speeds up to 350 m/sec by projectiles of various sizes and shapes to assess the specimens' ability to absorb energy and withstand impact. The tests can be conducted at either room or elevated temperatures. Posttest metallographic analysis is conducted to improve understanding of the failure modes. A dynamic finite element program is used to simulate the events and both guide the testing as well as aid in designing the fan-containment system.

  11. An assessment of the impact of the Department of Defense very high speed integrated circuit program

    NASA Astrophysics Data System (ADS)

    1982-01-01

    The technical and economic effects of the Department of Defense's (DoD) development program for very-high-speed integrated circuits (VHSIC) are examined. The probable effects of this program on the domestic aspects and international position of the integrated-circuit (IC) industry as they relate to the interests of the general public and the DoD are considered. The report presents a review of the unique DoD needs that motivate VHSIC research and development; an estimate of the degree of which these needs are likely to be met by the VHSIC program; a discussion of the effects of the program's demands for manpower, materials, and design and processing technologies; the problems connected with the program's technology export controls; and an assessment of the impact of the program on the structure of the U.S. integrated-circuit industry, its continued development and production of civilian consumer products, and its international competitive position.

  12. Advancement and Application of Multi-Phase CFD Modeling to High Speed Supercavitating Flows

    DTIC Science & Technology

    2013-08-13

    5a. CONTRACT NUMBER 5b. GRANT NUMBER N00014-09-1-0042 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Jules W. Lindau and Michael P. Kinzel 5d. PROJECT...REPORT U b. ABSTRACT U c. THIS PAGE U 17. LIMITATION OF ABSTRACT U 18. NUMBER OF PAGES 29 19a. NAME OF RESPONSIBLE PERSON Jules W. Lindau...Application of Multi-Phase CFD Modeling to High Speed Supercavitating Flows Michael P. Kinzel Jules W. Lindau Penn State University Applied Research

  13. Innovative Airbreathing Propulsion Concepts for High-speed Applications

    NASA Technical Reports Server (NTRS)

    Whitlow, Woodrow, Jr.

    2002-01-01

    The current cost to launch payloads to low earth orbit (LEO) is approximately loo00 U.S. dollars ($) per pound ($22000 per kilogram). This high cost limits our ability to pursue space science and hinders the development of new markets and a productive space enterprise. This enterprise includes NASA's space launch needs and those of industry, universities, the military, and other U.S. government agencies. NASA's Advanced Space Transportation Program (ASTP) proposes a vision of the future where space travel is as routine as in today's commercial air transportation systems. Dramatically lower launch costs will be required to make this vision a reality. In order to provide more affordable access to space, NASA has established new goals in its Aeronautics and Space Transportation plan. These goals target a reduction in the cost of launching payloads to LEO to $lo00 per pound ($2200 per kilogram) by 2007 and to $100' per pound by 2025 while increasing safety by orders of magnitude. Several programs within NASA are addressing innovative propulsion systems that offer potential for reducing launch costs. Various air-breathing propulsion systems currently are being investigated under these programs. The NASA Aerospace Propulsion and Power Base Research and Technology Program supports long-term fundamental research and is managed at GLenn Research Center. Currently funded areas relevant to space transportation include hybrid hyperspeed propulsion (HHP) and pulse detonation engine (PDE) research. The HHP Program currently is addressing rocket-based combined cycle and turbine-based combined cycle systems. The PDE research program has the goal of demonstrating the feasibility of PDE-based hybrid-cycle and combined cycle propulsion systems that meet NASA's aviation and access-to-space goals. The ASTP also is part of the Base Research and Technology Program and is managed at the Marshall Space Flight Center. As technologies developed under the Aerospace Propulsion and Power Base Research and Technology Program mature, they are incorporated into ASTP. One example of this is rocket-based combined cycle systems that are being considered as part of ASTP. The NASA Ultra Efficient Engine Technology (UEET) Program has the goal of developing propulsion system component technology that is relevant to a wide range of vehicle missions. In addition to subsonic and supersonic speed regimes, it includes the hypersonic speed regime. More specifically, component technologies for turbine-based combined cycle engines are being developed as part of UEET.

  14. Experiments on high speed ejectors

    NASA Technical Reports Server (NTRS)

    Wu, J. J.

    1986-01-01

    Experimental studies were conducted to investigate the flow and the performance of thrust augmenting ejectors for flight Mach numbers in the range of 0.5 to 0.8, primary air stagnation pressures up to 107 psig (738 kPa), and primary air stagnation temperatures up to 1250 F (677 C). The experiment verified the existence of the second solution ejector flow, where the flow after complete mixing is supersonic. Thrust augmentation in excess of 1.2 was demonstrated for both hot and cold primary jets. The experimental ejector performed better than the corresponding theoretical optimal first solution ejector, where the mixed flow is subsonic. Further studies are required to realize the full potential of the second solution ejector. The research program was started by the Flight Dynamics Research Corporation (FDRC) to investigate the characteristic of a high speed ejector which augments thrust of a jet at high flight speeds.

  15. Survey of supersonic combustion ramjet research at Langley

    NASA Technical Reports Server (NTRS)

    Northam, G. B.; Anderson, G. Y.

    1986-01-01

    The Hypersonic Propulsion Branch at NASA Langley Research Center has maintained an active research program in supersonic combustion ramjet (scramjet) and high speed ramjet propulsion since the 1960s. The focus for this research has centered on propulsion for manned reuseable vehicles with cryogenic hydrogen fuel. This paper presents some highlights of this research. The design philosophy of the Langley fixed-geometry airframe-integrated modular scramjet is discussed. The component development and research programs that have supported the successful demonstration of the engine concept using subscale engine module hardware is reviewed and a brief summary of the engine tests presented. An extensive bibliography of research supported by the Langley program is also included.

  16. Performance of Simple Gas Foil Thrust Bearings in Air

    NASA Technical Reports Server (NTRS)

    Bruckner, Robert J.

    2012-01-01

    Foil bearings are self-acting hydrodynamics devices used to support high speed rotating machinery. The advantages that they offer to process fluid lubricated machines include: high rotational speed capability, no auxiliary lubrication system, non-contacting high speed operation, and improved damping as compared to rigid hydrodynamic bearings. NASA has had a sporadic research program in this technology for almost 6 decades. Advances in the technology and understanding of foil journal bearings have enabled several new commercial products in recent years. These products include oil-free turbochargers for both heavy trucks and automobiles, high speed electric motors, microturbines for distributed power generation, and turbojet engines. However, the foil thrust bearing has not received a complimentary level of research and therefore has become the weak link of oil-free turbomachinery. In an effort to both provide machine designers with basic performance parameters and to elucidate the underlying physics of foil thrust bearings, NASA Glenn Research Center has completed an effort to experimentally measure the performance of simple gas foil thrust bearing in air. The database includes simple bump foil supported thrust bearings with full geometry and manufacturing techniques available to the user. Test conditions consist of air at ambient pressure and temperatures up to 500 C and rotational speeds to 55,000 rpm. A complete set of axial load, frictional torque, and rotational speed is presented for two different compliant sub-structures and inter-pad gaps. Data obtained from commercially available foil thrust bearings both with and without active cooling is presented for comparison. A significant observation made possible by this data set is the speed-load capacity characteristic of foil thrust bearings. Whereas for the foil journal bearing the load capacity increases linearly with rotational speed, the foil thrust bearing operates in the hydrodynamic high speed limit. In this case, the load capacity is constant and in fact often decreases with speed if other factors such as thermal conditions and runner distortions are permitted to dominate the bearing performance.

  17. Safety management of complex research operators

    NASA Technical Reports Server (NTRS)

    Brown, W. J.

    1981-01-01

    Complex research and technology operations present varied potential hazards which are addressed in a disciplined, independent safety review and approval process. Potential hazards vary from high energy fuels to hydrocarbon fuels, high pressure systems to high voltage systems, toxic chemicals to radioactive materials and high speed rotating machinery to high powered lasers. A Safety Permit System presently covers about 600 potentially hazardous operations. The Safety Management Program described is believed to be a major factor in maintaining an excellent safety record.

  18. The Center for Aerospace Research: A NASA Center of Excellence at North Carolina Agricultural and Technical State University

    NASA Technical Reports Server (NTRS)

    Lai, Steven H.-Y.

    1992-01-01

    This report documents the efforts and outcomes of our research and educational programs at NASA-CORE in NCA&TSU. The goal of the center was to establish a quality aerospace research base and to develop an educational program to increase the participation of minority faculty and students in the areas of aerospace engineering. The major accomplishments of this center in the first year are summarized in terms of three different areas, namely, the center's research programs area, the center's educational programs area, and the center's management area. In the center's research programs area, we focus on developing capabilities needed to support the development of the aerospace plane and high speed civil transportation system technologies. In the educational programs area, we developed an aerospace engineering option program ready for university approval.

  19. The atmospheric effects of stratospheric aircraft: A fourth program report

    NASA Technical Reports Server (NTRS)

    Stolarski, Richard S. (Editor); Wesoky, Howard L. (Editor); Wofsy, Steven C.; Ravishankara, A. R.; Rodriguez, Jose M.; Grose, William L.

    1995-01-01

    This document presents the fourth report from the Atmospheric Effects of Stratospheric Aircraft (AESA) component of NASA's High-Speed Research Program (HSRP). Market and technology considerations continue to provide an impetus for high-speed civil transport research. A recent AESA interim assessment report and a review of that report have shown that considerable uncertainty still exists about the possible impact of aircraft on the atmosphere. The AESA has been designed to develop the body of scientific knowledge necessary for the evaluation of the impact of stratospheric aircraft on the atmosphere. The first Program report presented the basic objectives and plans for AESA. This fourth report comes after the interim assessment and sets forth directions for the 1995 assessment at the end of AESA Phase 1. It also sets forth the goals and directions for AESA Phase 2, as reported at the 1994 Atmospheric Effects of Aviation Project (AEAP) annual meeting held in June. The focus of the Phase 2 effort is to obtain the best possible closure on the outstanding problems identified in the interim assessment and NASA/NRC review. Topics discussed in this report include how high-speed civil transports (HSCT) might affect stratospheric ozone, emissions scenarios and databases to assess potential atmospheric effects from HSCT's, calculated results from 2-D zonal mean models using emissions data, engine trace constituent measurements.

  20. 76 FR 8397 - Environmental Impact Statement for the Chicago, IL to St. Louis, MO High Speed Rail Program Corridor

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-14

    ... the Chicago, IL to St. Louis, MO High Speed Rail Program Corridor AGENCY: Federal Railroad... (EIS) for the Chicago, IL to St. Louis, MO High Speed Rail Corridor Program in compliance with the... Joliet and St. Louis to support additional passenger trains. The EIS will consider increasing the number...

  1. Hypersonic code efficiency and validation studies

    NASA Technical Reports Server (NTRS)

    Bennett, Bradford C.

    1992-01-01

    Renewed interest in hypersonic and supersonic flows spurred the development of the Compressible Navier-Stokes (CNS) code. Originally developed for external flows, CNS was modified to enable it to also be applied to internal high speed flows. In the initial phase of this study CNS was applied to both internal flow applications and fellow researchers were taught to run CNS. The second phase of this research was the development of surface grids over various aircraft configurations for the High Speed Research Program (HSRP). The complex nature of these configurations required the development of improved surface grid generation techniques. A significant portion of the grid generation effort was devoted to testing and recommending modifications to early versions of the S3D surface grid generation code.

  2. An Overview-NASA LeRC Structures Program

    NASA Technical Reports Server (NTRS)

    Zaretsky, Erwin V.

    1997-01-01

    The Structures and Acoustics Division of the NASA Lewis Research Center has its genesis dating back to 1943. It has been an independent Division at Lewis since 1979. Its two primary capabilities are performance and life analysis of static and dynamic systems such as those found in aircraft and spacecraft propulsion systems and experimental verification of these analyses. Research is conducted in-house, through university grants and contracts, and through cooperative programs with industry. Our work directly supports NASA's Advanced Subsonic Technology (AST), Smart Green Engine, Fast Quiet Engine, High-Temperature Materials and Processing (HiTEMP), Hybrid Hyperspeed Propulsion, Rotorcraft, High-Speed Research (HSR), and Aviation Safety Program (AvSP). A general overview is given discussing these programs and other technologies that are being developed at NASA LeRC.

  3. Digital optical computers at the optoelectronic computing systems center

    NASA Technical Reports Server (NTRS)

    Jordan, Harry F.

    1991-01-01

    The Digital Optical Computing Program within the National Science Foundation Engineering Research Center for Opto-electronic Computing Systems has as its specific goal research on optical computing architectures suitable for use at the highest possible speeds. The program can be targeted toward exploiting the time domain because other programs in the Center are pursuing research on parallel optical systems, exploiting optical interconnection and optical devices and materials. Using a general purpose computing architecture as the focus, we are developing design techniques, tools and architecture for operation at the speed of light limit. Experimental work is being done with the somewhat low speed components currently available but with architectures which will scale up in speed as faster devices are developed. The design algorithms and tools developed for a general purpose, stored program computer are being applied to other systems such as optimally controlled optical communication networks.

  4. Overview of mechanics of materials branch activities in the computational structures area

    NASA Technical Reports Server (NTRS)

    Poe, C. C., Jr.

    1992-01-01

    Base programs and system programs are discussed. The base programs include fundamental research of composites and metals for airframes leading to characterization of advanced materials, models of behavior, and methods for predicting damage tolerance. Results from the base programs support the systems programs, which change as NASA's missions change. The National Aerospace Plane (NASP), Advanced Composites Technology (ACT), Airframe Structural Integrity Program (Aging Aircraft), and High Speed Research (HSR) programs are currently being supported. Airframe durability is one of the key issues in each of these system programs. The base program has four major thrusts, which will be reviewed subsequently. Additionally, several technical highlights will be reviewed for each thrust.

  5. Main Building (4800) at Dryden FRC

    NASA Image and Video Library

    1991-09-05

    The X-1E research aircraft provides a striking view at the entrance of NASA's Dryden Flight Research Center, Edwards, California. The X-1E, one of the three original X-1 aircraft modified with a raised cockpit canopy and an ejection seat, was flown at the facility between 1953 and 1958 to investigate speeds at twice that of sound, and also to evaluate a thin wing designed for high-speed flight. The Dryden complex was originally established in 1946 as a small high-speed flight station to support the X-1 program. The X-1 was the first aircraft to fly at supersonic speeds. The main administrative building is to the rear of the X-1E and is the center of a research installation that has grown to more than 450 government employees and nearly 400 civilian contractors. Located on the northwest "shore" of Rogers Dry Lake, the Dryden Center was built around the original administrative-hangar building constructed in 1954 at a cost of $3.8 million. Since then many additional support and operational facilities have been built including a number of unique test facilities such as the Thermalstructures Research Facility, Flow Visualization Facility, and the newest addition, the Integrated Test Facility.

  6. An information retrieval system for research file data

    Treesearch

    Joan E. Lengel; John W. Koning

    1978-01-01

    Research file data have been successfully retrieved at the Forest Products Laboratory through a high-speed cross-referencing system involving the computer program FAMULUS as modified by the Madison Academic Computing Center at the University of Wisconsin. The method of data input, transfer to computer storage, system utilization, and effectiveness are discussed....

  7. EC95-42939-8

    NASA Image and Video Library

    1995-02-02

    Photographed outside their hangar at the Dryden Flight Research Center, Edwards, California, part of Dryden's F-16 fleet is, left to right; an F-16A, the F-16XL no. 1, and the F-16 AFTI. The F-16A (NASA 516), the only civil registered F-16 in existence, was transferred to Dryden from Langley, and was primarily used in engine tests and for parts. It was subsequently transfered from Dryden. The single-seat F-16XL no. 1 (NASA 849) was most recently used in the Cranked-Arrow Wing Aerodynamics Project (CAWAP) to test boundary layer pressures and distribution. Previously it had been used in a program to investigate the characteristics of sonic booms for NASA's High Speed Research Program. Data from the program will be used in the development of a high speed civilian transport. During the series of sonic boom research flights, the F-16XL was used to probe the shock waves being generated by a NASA SR-71 and record their shape and intensity. The Advanced Fighter Technology Integration (AFTI) F-16 was used to develop and demonstrate technologies to improve navigation and a pilot's ability to find and destroy enemy ground targets day or night, including adverse weather. Earlier research in the joint NASA-Air Force AFTI F-16 program demonstrated voice actuated controls, helmet-mounted sighting and integration of forward-mounted canards with the standard flight control system to achieve uncoupled flight.

  8. 75 FR 16552 - High-Speed Intercity Passenger Rail (HSIPR) Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-01

    ..., energy savings from traffic diversions from other modes, employment of green building and manufacturing... selections for the High-Speed Intercity Passenger Rail (HSIPR) Program. This notice builds on the program...

  9. Technology Research, Integration, and Demonstration (TRIAD) Program, Delivery Order 0013: High Strain Rate Tension Testing of Titanium 6-2-4-2S at Temperature

    DTIC Science & Technology

    2016-06-01

    ASSIGNED DISTRIBUTION STATEMENT. *//Signature// //Signature// BRIAN T. GOCKEL MICHAEL S. BROWN, Chief Program Manager Hypersonic Sciences Branch...Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington...STATEMENT A: Approved for public release. Distribution is unlimited. Figure 3. Room-Temperature High-Speed DIC Tensile Setup A slack adapter was

  10. Safety management of complex research operations

    NASA Technical Reports Server (NTRS)

    Brown, W. J.

    1981-01-01

    Complex research and technology operations present many varied potential hazards which must be addressed in a disciplined independent safety review and approval process. The research and technology effort at the Lewis Research Center is divided into programmatic areas of aeronautics, space and energy. Potential hazards vary from high energy fuels to hydrocarbon fuels, high pressure systems to high voltage systems, toxic chemicals to radioactive materials and high speed rotating machinery to high powered lasers. A Safety Permit System presently covers about 600 potentially hazardous operations. The Safety Management Program described in this paper is believed to be a major factor in maintaining an excellent safety record at the Lewis Research Center.

  11. Small Business Innovation Research (SBIR) Program, FY 1994. Program Solicitation 94.1, Closing Date: 14 January 1994

    DTIC Science & Technology

    1994-01-01

    is to design and develop a diode laser and ssociated driver circuitry with i•eh peak power, high pulse repetition frequency (PRF), and good beam...Computer modeling tools shall be used to design and optimize breadboard model of a multi-terminal high speed ring bus for flight critical applications... design , fabricate, and test a fiber optic interface device which will improve coupling of high energy, pulsed lasers into commercial fiber optics at a

  12. Aeroassist Key to Returning From Space and the Case for AFE

    NASA Technical Reports Server (NTRS)

    Williams, Louis J.; Putnam, Terrill W.; Morris, Robert

    1997-01-01

    The Aeroassist Flight Experiment (AFE) is important in the development of a substantial and cost-competitive space industry. It is a research program to develop the technology base needed to design a new class of advanced entry vehicles that will play a key role in establishing a mature U.S. space presence in the next century. A dynamic and economical space program in the 21st century will include many operations involving the return of satellites, materials, and products from high Earth orbits (HEO), lunar bases, and planetary missions. The common and dominant characteristics of vehicles returning from such missions will be their very high speed as they approach the Earth. This high speed must be reduced substantially before the returning vehicle can be landed safely on Earth or placed in low Earth orbit (LEO), where the Space Shuttle operates now and the Space Station Freedom will operate in the future. LEO is a strategic that will always play a critical role in any space program. Its location just beyond earth's appreciable atmosphere can be reached from earth with the lowest cost in energy, and it is the natural and convenient spaceport location. In the next century LEO will contain a broad complex of assembly, research, repair, and production facilities. Their effective and cost-competitive use will require a class of routine workhorse transportation vehicles whose importance might be over-looked at a time when dramatic space exploration is occurring. Yet it is these vehicles, the Aeroassisted Space Transfer Vehicles (ASTV's) that will provide that solid transportation base on which a productive space industry will grow. The ASTV's will be assembled in orbit and will never return to earth's surface. They will be used to transfer people and material from high locations to LEO. They will reduce their high velocities in the outer reaches of the earth's atmosphere where aerodynamic drag will slow them to the appropriate speed for LEO. They will then maneuver out of the atmosphere and into a desired orbit. The present consensus is that this is the only cost-effective method of reducing the speed of such vehicles to the required level. The ASTV's will operate at very high altitudes where the atmosphere is exceptionally thin and the flight data need for their safe and efficient design are not adequately known. Much critical scientific research must be done to build the technology base needed to make such a design. The research program discussed in this publication, the AFE, is specifically aimed at acquiring the knowledge for this technology base.

  13. Terminal-area STOL operating systems experiments program

    NASA Technical Reports Server (NTRS)

    Smith, D. W.; Watson, D.; Christensen, J. V.

    1972-01-01

    A system study to determine the application of short takeoff aircraft for a high speed, short haul air transportation service was conducted. The study focused on developing information which will aid in choosing system concepts, design criteria, operating procedures, landing guidance systems, air traffic control systems, and airborne avionics and flight control systems. A terminal area STOL operating system experiments program was developed. The objectives, program approach, program schedule, typical experiments, research facilities to be used, and program status are discussed.

  14. Internal fluid mechanics research on supercomputers for aerospace propulsion systems

    NASA Technical Reports Server (NTRS)

    Miller, Brent A.; Anderson, Bernhard H.; Szuch, John R.

    1988-01-01

    The Internal Fluid Mechanics Division of the NASA Lewis Research Center is combining the key elements of computational fluid dynamics, aerothermodynamic experiments, and advanced computational technology to bring internal computational fluid mechanics (ICFM) to a state of practical application for aerospace propulsion systems. The strategies used to achieve this goal are to: (1) pursue an understanding of flow physics, surface heat transfer, and combustion via analysis and fundamental experiments, (2) incorporate improved understanding of these phenomena into verified 3-D CFD codes, and (3) utilize state-of-the-art computational technology to enhance experimental and CFD research. Presented is an overview of the ICFM program in high-speed propulsion, including work in inlets, turbomachinery, and chemical reacting flows. Ongoing efforts to integrate new computer technologies, such as parallel computing and artificial intelligence, into high-speed aeropropulsion research are described.

  15. High-Speed Research: Sonic Boom, Volume 1

    NASA Technical Reports Server (NTRS)

    Edwards, Thomas A. (Editor)

    1994-01-01

    The second High-Speed Research Program Sonic Boom Workshop was held at NASA Ames Research Center May 12-14, 1993. The workshop was organized into three sessions dealing with atmospheric propagation, acceptability, and configuration design. Volume 1 includes papers on atmospheric propagation and acceptability studies. Significant progress is noted in these areas in the time since the previous workshop a year earlier. In particular, several papers demonstrate an improved capability to model the effect of atmospheric turbulence on sonic booms. This is a key issue in determining the stability and acceptability of shaped sonic booms. In the area of acceptability, the PLdB metric has withstood considerable scrutiny and is validated as a loudness metric for a wide variety of sonic boom shapes. The differential loudness of asymmetric sonic booms is better understood, too.

  16. X-15 test pilots - in a lighter mood

    NASA Technical Reports Server (NTRS)

    1966-01-01

    The X-15 pilots clown around in front of the #2 aircraft.From left to right: USAF Capt. Joseph Engle, USAF Maj. Robert Rushworth, NASA test pilot John 'Jack' McKay, USAF Maj. William 'Pete' Knight, NASA test pilot Milton Thompson, and NASA test pilot William Dana. First flown in 1959 from the NASA High Speed Flight Station (later renamed the Dryden Flight Research Center), the rocket powered X-15 was developed to provide data on aerodynamics, structures, flight controls and the physiological aspects of high speed, high altitude flight. Three were built by North American Aviation for NASA and the U.S. Air Force. They made a total of 199 flights during a highly successful research program lasting almost ten years, following which its speed and altitude records for winged aircraft remained unbroken until the Space Shuttle first returned from earth orbit in 1981. The X-15's main rocket engine provided thrust for the first 80 to 120 seconds of a 10 to 11 minute flight; the aircraft then glided to a 200 mph landing. The X-15 reached altitudes of 354,200 feet (67.08 miles) and a speed of 4,520 mph (Mach 6.7).

  17. Two-Dimensional Bifurcated Inlet/Engine Tests Completed in 10- by 10-Foot Supersonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Saunders, John D.

    1999-01-01

    A Two-Dimensional Bifurcated (2DB) Inlet was successfully tested in NASA Lewis Research Center s 10- by 10-Foot Supersonic Wind Tunnel. These tests were the culmination of a collaborative effort between the Boeing Company, General Electric, Pratt & Whitney, and Lewis. Extensive support in-house at Lewis contributed significantly to the progress and accomplishment of this test. The results, which met or exceeded many of the High-Speed Research (HSR) Program goals, were used to revise system studies within the HSR Program. The HSR Program is focused on developing low-noise, low-polluting, high-efficiency supersonic commercial aircraft. A supersonic inlet is an important component of an efficient, low-noise vehicle.

  18. Aeropropulsion 1987. Session 5: Subsonic Propulsion Technology

    NASA Technical Reports Server (NTRS)

    1987-01-01

    NASA is conducting aeropropulsion research over a broad range of Mach numbers. In addition to the high-speed propulsion research described, major progress was recorded in research aimed at the subsonic flight regimes of interest to many commercial and military users. Recent progress and future directions in such areas as small engine technology, rotorcraft transmissions, icing, Hot Section Technology (HOST) and the Advanced Turboprop Program (ATP) are covered.

  19. Hypersonic research engine/aerothermodynamic integration model: Experimental results. Volume 3: Mach 7 component integration and performance

    NASA Technical Reports Server (NTRS)

    Andrews, E. H., Jr.; Mackley, E. A.

    1976-01-01

    The NASA Hypersonic Research Engine Project was undertaken to design, develop, and construct a hypersonic research ramjet engine for high performance and to flight test the developed concept on the X-15-2A airplane over the speed range from Mach 3 to 8. Computer program results are presented here for the Mach 7 component integration and performance tests.

  20. Aeropropulsion '87. Session 5: Subsonic propulsion technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1987-11-01

    NASA is conducting aeropropulsion research over a broad range of Mach numbers. In addition to the high-speed propulsion research described, major progress was recorded in research aimed at the subsonic flight regimes of interest to many commercial and military users. Recent progress and future directions in such areas as small engine technology, rotorcraft transmissions, icing, Hot Section Technology (HOST) and the Advanced Turboprop Program (ATP) are covered.

  1. Large eddy simulations and direct numerical simulations of high speed turbulent reacting flows

    NASA Technical Reports Server (NTRS)

    Givi, P.; Madnia, C. K.; Steinberger, C. J.; Frankel, S. H.

    1992-01-01

    The basic objective of this research is to extend the capabilities of Large Eddy Simulations (LES) and Direct Numerical Simulations (DNS) for the computational analyses of high speed reacting flows. In the efforts related to LES, we were primarily involved with assessing the performance of the various modern methods based on the Probability Density Function (PDF) methods for providing closures for treating the subgrid fluctuation correlations of scalar quantities in reacting turbulent flows. In the work on DNS, we concentrated on understanding some of the relevant physics of compressible reacting flows by means of statistical analysis of the data generated by DNS of such flows. In the research conducted in the second year of this program, our efforts focused on the modeling of homogeneous compressible turbulent flows by PDF methods, and on DNS of non-equilibrium reacting high speed mixing layers. Some preliminary work is also in progress on PDF modeling of shear flows, and also on LES of such flows.

  2. Development, Analysis and Testing of the High Speed Research Flexible Semispan Model

    NASA Technical Reports Server (NTRS)

    Schuster, David M.; Spain, Charles V.; Turnock, David L.; Rausch, Russ D.; Hamouda, M-Nabil; Vogler, William A.; Stockwell, Alan E.

    1999-01-01

    This report presents the work performed by Lockheed Martin Engineering and Sciences (LMES) in support of the High Speed Research (HSR) Flexible Semispan Model (FSM) wind-tunnel test. The test was conducted in order to assess the aerodynamic and aeroelastic character of a flexible high speed civil transport wing. Data was acquired for the purpose of code validation and trend evaluation for this type of wing. The report describes a number of activities in preparing for and conducting the wind-tunnel test. These included coordination of the design and fabrication, development of analytical models, analysis/hardware correlation, performance of laboratory tests, monitoring of model safety issues, and wind-tunnel data acquisition and reduction. Descriptions and relevant evaluations associated with the pretest data are given in sections 1 through 6, followed by pre- and post-test flutter analysis in section 7, and the results of the aerodynamics/loads test in section 8. Finally, section 9 provides some recommendations based on lessons learned throughout the FSM program.

  3. Effectiveness of voluntary conservation agreements: case study of endangered whales and commercial whale watching.

    PubMed

    Wiley, David N; Moller, Just C; Pace, Richard M; Carlson, Carole

    2008-04-01

    The use of voluntary approaches to achieve conservation goals is becoming increasingly popular. Nevertheless, few researchers have quantitatively evaluated their efficacy. In 1998 industry, government agencies, and nongovernmental organizations established a voluntary conservation program for whale watching in the northeast region of the United States, with the intent to avoid collisions with and harassment of endangered whales by commercial and recreational whale-watching vessels. One important aspect of the program was the establishment of 3 speed zones within specific distances of whales. We wanted to determine the level of compliance with this aspect of the program to gauge its efficacy and gain insights into the effectiveness of voluntary measures as a conservation tool. Inconspicuous observers accompanied 46 commercial whale-watching trips from 12 companies in 2003 (n= 35) and 2004 (n= 11). During each trip, vessel position and speed were collected at 5-second intervals with a GPS receiver. Binoculars with internal laser rangefinders and digital compasses were used to record range and bearing to sighted whales. We mapped whale locations with ArcGIS. We created speed-zone buffers around sighted whales and overlaid them with vessel-track and speed data to evaluate compliance. Speeds in excess of those recommended by the program were considered noncompliant. We judged the magnitude of noncompliance by comparing a vessel's maximum speed within a zone to its maximum recorded trip speed. The level of noncompliance was high (mean 0.78; company range 0.74-0.88), some companies were more compliant than others (p= 0.02), noncompliance was significantly higher in zones farther from whales (p < 0.001), and operators approached the maximum speed capabilities of their vessel in all zones. The voluntary conservation program did not achieve the goal of substantially limiting vessel speed near whales. Our results support the need for conservation programs to have quantifiable metrics and frequent evaluation to ensure efficacy.

  4. Materials research for high-speed civil transport and generic hypersonics: Composites durability

    NASA Technical Reports Server (NTRS)

    Allen-Lilly, Heather; Cregger, Eric; Hoffman, Daniel; Mccool, Jim

    1995-01-01

    This report covers a portion of an ongoing investigation of the durability of composites for the High Speed Civil Transport (HSCT) program. Candidate HSCT composites need to possess the high-temperature capability required for supersonic flight. This program was designed to initiate the design, analysis, fabrication, and testing of equipment intended for use in validating the long-term durability of materials for the HSCT. This equipment includes thermally actuated compression and tension fixtures, hydraulic-actuated reversible load fixtures, and thermal chambers. This equipment can be used for the durability evaluation of both composite and adhesive materials. Thermally actuated fixtures are recommended for fatigue cycling when long-term thermomechanical fatigue (TMF) data are required on coupon-sized tension or compression specimens. Long term durability testing plans for polymer matrix composite specimens are included.

  5. Design and Evaluation of a Dynamic Dilemma Zone System for a High Speed Rural Intersection : Research Summary

    DOT National Transportation Integrated Search

    2012-08-01

    Improving traffic safety is a priority transportation issue. A tremendous amount of : resources has been invested on improving safety and efficiency at signalized : intersections. Although programs such as driver education, red-light camera : deploym...

  6. Development of a quiet supersonic wind tunnel with a cryogenic adaptive nozzle

    NASA Technical Reports Server (NTRS)

    Wolf, Stephen W. D.

    1992-01-01

    Aspects of the design and construction of the Laminar Flow Supersonic Wind Tunnel at the NASA-Ames Fluid Mechanics Laboratory are discussed. The wind tunnel is to be used as part of the NASA High Speed Research Program (HSRP).

  7. Atmospheric effects of stratospheric aircraft: An evaluation of NASA's interim assessment

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The advent of high-speed civil transport aircraft (HSCT's) some 25 years ago generated considerable concern about potential impacts on the stratosphere. With interest in such aircraft again increasing, NASA initiated an assessment of the potential stratospheric impacts of a substantial increase in the use of HSCT's. This assessment was intended to examine, from the standpoint of present scientific understanding, the potential atmospheric impacts of a fleet of high-speed civil transports flying supersonically in the lower stratosphere. The program was initiated in 1991, and the bulk of its research is scheduled to be completed in 1995. In early 1993 NASA asked the National Research Council to review its efforts. This report documents its findings and recommendations.

  8. An introduction to high speed aircraft noise prediction

    NASA Technical Reports Server (NTRS)

    Wilson, Mark R.

    1992-01-01

    The Aircraft Noise Prediction Program's High Speed Research prediction system (ANOPP-HSR) is introduced. This mini-manual is an introduction which gives a brief overview of the ANOPP system and the components of the HSR prediction method. ANOPP information resources are given. Twelve of the most common ANOPP-HSR control statements are described. Each control statement's purpose and format are stated and relevant examples are provided. More detailed examples of the use of the control statements are presented in the manual along with ten ANOPP-HSR templates. The purpose of the templates is to provide the user with working ANOPP-HSR programs which can be modified to serve particular prediction requirements. Also included in this manual is a brief discussion of common errors and how to solve these problems. The appendices include the following useful information: a summary of all ANOPP-HSR functional research modules, a data unit directory, a discussion of one of the more complex control statements, and input data unit and table examples.

  9. FTA low-speed urban Maglev research program : updated lessons learned.

    DOT National Transportation Integrated Search

    2012-11-01

    In 1999, the Federal Transit Administration (FTA) initiated the Low-Speed Urban Magnetic Levitation (Urban Maglev) Program to develop magnetic levitation technology that offers a cost-effective, reliable, and environmentally-sound transit option for ...

  10. The Summer Robotic Autonomy Course

    NASA Technical Reports Server (NTRS)

    Nourbakhsh, Illah R.

    2002-01-01

    We offered a first Robotic Autonomy course this summer, located at NASA/Ames' new NASA Research Park, for approximately 30 high school students. In this 7-week course, students worked in ten teams to build then program advanced autonomous robots capable of visual processing and high-speed wireless communication. The course made use of challenge-based curricula, culminating each week with a Wednesday Challenge Day and a Friday Exhibition and Contest Day. Robotic Autonomy provided a comprehensive grounding in elementary robotics, including basic electronics, electronics evaluation, microprocessor programming, real-time control, and robot mechanics and kinematics. Our course then continued the educational process by introducing higher-level perception, action and autonomy topics, including teleoperation, visual servoing, intelligent scheduling and planning and cooperative problem-solving. We were able to deliver such a comprehensive, high-level education in robotic autonomy for two reasons. First, the content resulted from close collaboration between the CMU Robotics Institute and researchers in the Information Sciences and Technology Directorate and various education program/project managers at NASA/Ames. This collaboration produced not only educational content, but will also be focal to the conduct of formative and summative evaluations of the course for further refinement. Second, CMU rapid prototyping skills as well as the PI's low-overhead perception and locomotion research projects enabled design and delivery of affordable robot kits with unprecedented sensory- locomotory capability. Each Trikebot robot was capable of both indoor locomotion and high-speed outdoor motion and was equipped with a high-speed vision system coupled to a low-cost pan/tilt head. As planned, follow the completion of Robotic Autonomy, each student took home an autonomous, competent robot. This robot is the student's to keep, as she explores robotics with an extremely capable tool in the midst of a new community for roboticists. CMU provided undergraduate course credit for this official course, 16-162U, for 13 students, with all other students receiving course credit from National Hispanic University.

  11. Reynolds Number Effects on the Stability and Control Characteristics of a Supersonic Transport

    NASA Technical Reports Server (NTRS)

    Owens, L. R.; Wahls, R. A.; Elzey, M. B.; Hamner, M. P.

    2002-01-01

    A High Speed Civil Transport (HSCT) configuration was tested in the National Transonic Facility at the NASA Langley Research Center as part of NASA's High Speed Research Program. A series of tests included longitudinal and lateral/directional studies at transonic and low speed, high-lift conditions across a range of Reynolds numbers from that available in conventional wind tunnels to near flight conditions. Results presented focus on Reynolds number sensitivities of the stability and control characteristics at Mach 0.30 and 0.95 for a complete HSCT aircraft configuration including empennage. The angle of attack where the pitching-moment departure occurred increased with higher Reynolds numbers for both the landing and transonic configurations. The stabilizer effectiveness increased with Reynolds number for both configurations. The directional stability also increased with Reynolds number for both configurations. The landing configuration without forebody chines exhibited a large yawing-moment departure at high angles of attack and zero sideslip that varied with increasing Reynolds numbers. This departure characteristic nearly disappeared when forebody chines were added. The landing configuration's rudder effectiveness also exhibited sensitivities to changes in Reynolds number.

  12. LES, DNS and RANS for the analysis of high-speed turbulent reacting flows

    NASA Technical Reports Server (NTRS)

    Adumitroaie, V.; Colucci, P. J.; Taulbee, D. B.; Givi, P.

    1995-01-01

    The purpose of this research is to continue our efforts in advancing the state of knowledge in large eddy simulation (LES), direct numerical simulation (DNS), and Reynolds averaged Navier Stokes (RANS) methods for the computational analysis of high-speed reacting turbulent flows. In the second phase of this work, covering the period 1 Aug. 1994 - 31 Jul. 1995, we have focused our efforts on two programs: (1) developments of explicit algebraic moment closures for statistical descriptions of compressible reacting flows and (2) development of Monte Carlo numerical methods for LES of chemically reacting flows.

  13. Maglev program test plan. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    deBenedet, D.; Gilchrist, A.J.; Karanian, L.A.

    1992-07-01

    Maglev systems represent a promising evolution in the high-speed ground transportation, offering speeds in excess of 300 mph along with the potential for low operating costs and minimal environmental impact. The goal of this effort is to investigate the feasibility and viability of maglev systems in the United States. The emergence of a sophisticated technology such as maglev requires a need for a coordinated research test program and the determination of test requirements to identify and mitigate development risk and to maximize the use of domestic resources. The study is directed toward the identification and characterization of maglev systems developmentmore » risks tied to a preliminary system architecture. Research objectives are accomplished by surveying experiences from previous maglev development programs, both foreign and domestic, and interviews with individuals involved with maglev research and testing. Findings include ninety-four distinct development risks and twenty risk types. Planning and implementation requirements are identified for a maglev test program, including the development of a facilities strategy to meet any operational concepts that evolve out of early development effort. Also specified is the logical development flow and associated long-lead support needs for sub-scale and full-scale testing.« less

  14. Research related to variable sweep aircraft development

    NASA Technical Reports Server (NTRS)

    Polhamus, E. C.; Toll, T. A.

    1981-01-01

    Development in high speed, variable sweep aircraft research is reviewed. The 1946 Langley wind tunnel studies related to variable oblique and variable sweep wings and results from the X-5 and the XF1OF variable sweep aircraft are discussed. A joint program with the British, evaluation of the British "Swallow", development of the outboard pivot wing/aft tail configuration concept by Langley, and the applied research program that followed and which provided the technology for the current, variable sweep military aircraft is outlined. The relative state of variable sweep as a design option is also covered.

  15. FTA Low-speed urban maglev research program lessons learned : March 2009.

    DOT National Transportation Integrated Search

    2009-03-01

    In 1999, the Federal Transit Administration initiated the Low-Speed Urban Magnetic Levitation (UML) Program to develop magnetic levitation technology that offers a cost effective, reliable, and environmentally sound transit option for urban mass tran...

  16. 2008 13th Expeditionary Warfare Conference

    DTIC Science & Technology

    2008-10-23

    Ships 6 Joint High Speed Vessel (JHSV) • Program Capability – High speed lift ship capable of transporting cargo and personnel across intra... high - speed aluminum trimaran hullform that enables the ship to reach sustainable speeds of over 40 knots and range in excess of 3,500 nautical miles...advancing concepts for a very high speed , manned submersible,

  17. Computer program for analysis of high speed, single row, angular contact, spherical roller bearing, SASHBEAN. Volume 2: Mathematical formulation and analysis

    NASA Technical Reports Server (NTRS)

    Aggarwal, Arun K.

    1993-01-01

    Spherical roller bearings have typically been used in applications with speeds limited to about 5000 rpm and loads limited for operation at less than about 0.25 million DN. However, spherical roller bearings are now being designed for high load and high speed applications including aerospace applications. A computer program, SASHBEAN, was developed to provide an analytical tool to design, analyze, and predict the performance of high speed, single row, angular contact (including zero contact angle), spherical roller bearings. The material presented is the mathematical formulation and analytical methods used to develop computer program SASHBEAN. For a given set of operating conditions, the program calculates the bearings ring deflections (axial and radial), roller deflections, contact areas stresses, depth and magnitude of maximum shear stresses, axial thrust, rolling element and cage rotational speeds, lubrication parameters, fatigue lives, and rates of heat generation. Centrifugal forces and gyroscopic moments are fully considered. The program is also capable of performing steady-state and time-transient thermal analyses of the bearing system.

  18. Design, manufacture and spin test of high contact ratio helicopter transmission utilizing Self-Aligning Bearingless Planetary (SABP)

    NASA Technical Reports Server (NTRS)

    Folenta, Dezi; Lebo, William

    1988-01-01

    A 450 hp high ratio Self-Aligning Bearingless Planetary (SABP) for a helicopter application was designed, manufactured, and spin tested under NASA contract NAS3-24539. The objective of the program was to conduct research and development work on a high contact ratio helical gear SABP to reduce weight and noise and to improve efficiency. The results accomplished include the design, manufacturing, and no-load spin testing of two prototype helicopter transmissions, rated at 450 hp with an input speed of 35,000 rpm and an output speed of 350 rpm. The weight power density ratio of these gear units is 0.33 lb hp. The measured airborne noise at 35,000 rpm input speed and light load is 94 dB at 5 ft. The high speed, high contact ratio SABP transmission appears to be significantly lighter and quieter than comtemporary helicopter transmissions. The concept of the SABP is applicable not only to high ratio helicopter type transmissions but also to other rotorcraft and aircraft propulsion systems.

  19. X-Wing RSRA - 80 Knot Taxi Test

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The Rotor Systems Research Aircraft/X-Wing, a vehicle that was used to demonstrate an advanced rotor/fixed wing concept called X-Wing, is shown here during high-speed taxi tests at NASA's Ames-Dryden Flight Research Facility (later redesignated Dryden Flight Research Center), Edwards, California, on 4 November 1987. During these tests, the vehicle made three taxi tests at speeds of up to 138 knots. On the third run, the RSRA/X-Wing lifted off the runway to a 25-foot height for about 16 seconds. This liftoff maneuver was pre-planned as an aid to evaluations for first flight. At the controls were NASA pilot G. Warren Hall and Sikorsky pilot W. Faull. The unusual aircraft that resulted from the Ames Research Center/Army X-Wing Project was flown at the Ames-Dryden Flight Research Facility (now Dryden Flight Research Center), Edwards, California, beginning in the spring of 1984, with a follow-on program beginning in 1986. The program, was conceived to provide an efficient combination of the vertical lift characteristic of conventional helicopters and the high cruise speed of fixed-wing aircraft. It consisted of a hybrid vehicle called the NASA/Army Rotor Systems Research Aircraft (RSRA), which was equipped with advanced X-wing rotor systems. The program began in the early 1970s to investigate ways to increase the speed of rotor aircraft, as well as their performance, reliability, and safety . It also sought to reduce the noise, vibration, and maintenance costs of helicopters. Sikorsky Aircraft Division of United Technologies Laboratories built two RSRA aircraft. NASA's Langley Research Center, Hampton, Virginia, did some initial testing and transferred the program to Ames Research Center, Mountain View, California, for an extensive flight research program conducted by Ames and the Army. The purpose of the 1984 tests was to demonstrate the fixed-wing capability of the helicopter/airplane hybrid research vehicle and explore its flight envelope and flying qualities. These tests, flown by Ames pilot G. Warren Hall and Army Maj (soon promoted to Lt. Col.) Patrick Morris, began in May and continued until October 1984, when the RSRA vehicle returned to Ames. The project manager at Dryden for the flights was Wen Painter. These early tests were preparatory for a future X-Wing rotor flight test project to be sponsored by NASA, the Defense Advanced Research Projects Agency (DARPA), and Sikorsky Aircraft. A later derivative X-Wing flew in 1987. The modified RSRA was developed to provide a vehicle for in-flight investigation and verification of new helicopter rotor-system concepts and supporting technology. The RSRA could be configured to fly as an airplane with fixed wings, as a helicopter, or as a compound vehicle that could transition between the two configurations. NASA and DARPA selected Sikorsky in 1984 to convert one of the original RSRAs to the new demonstrator aircraft for the X-Wing concept. Developers of X-Wing technology did not view the X-Wing as a replacement for either helicopters (rotor aircraft) or fixed-wing aircraft. Instead, they envisioned it as an aircraft with special enhanced capabilities to perform missions that call for the low-speed efficiency and maneuverability of helicopters combined with the high cruise speed of fixed-wing aircraft. Some such missions include air-to-air and air-to-ground tactical operations, airborne early warning, electronic intelligence, antisubmarine warfare, and search and rescue. The follow-on X-Wing project was managed by James W. Lane, chief of the RSRA/X-Wing Project Office, Ames Research Center. Coordinating the Ames-Dryden flight effort in 1987 was Jack Kolf. The X-Wing project was a joint effort of NASA-Ames, DARPA, the U.S. Army, and Sikorsky Aircraft, Stratford, Connecticut. The modified X-Wing aircraft was delivered to Ames-Dryden by Sikorsky Aircraft on September 25, 1986. Following taxi tests, initial flights in the aircraft mode without main rotors attached took place at Dryden in December 1997. Ames research pilot G. Warren Hall and Sikorsky's W. Richard Faull were the pilots. The contract with Sikorsky ended that month, and the program ended in January 1988.

  20. Aeroacoustics analysis and community noise overview

    NASA Technical Reports Server (NTRS)

    Golub, Robert A.; Soderman, Paul T.

    1992-01-01

    The goals of the High Speed Research Program are focused on three major environmental issues: atmospheric effect, airport community noise, and sonic booms. The issues are basic concerns that require better understanding before further HSRP endeavors can be addresses. This paper discusses airport community noise and aeroacoustic analysis.

  1. Materials research for High Speed Civil Transport and generic hypersonics: Adhesive durability

    NASA Technical Reports Server (NTRS)

    Allen, Mark R.

    1995-01-01

    This report covers a portion of an ongoing investigation of the durability of adhesives for the High Speed Civil Transport (HSCT) program. Candidate HSCT adhesives need to possess the high-temperature capability required for supersonic flight. This program was designed to initiate an understanding of the behavior of candidate HSCT materials when subjected to combined mechanical and thermal loads. Two adhesives (K3A and FM57) and two adherends (IM7/K3B polymeric composite and the titanium alloy Ti-6Al-4V) were used to fabricate thick adherend lap shear specimens. Due to processing problems, only the FM57/titanium bonds could be fabricated successfully. These are currently undergoing thermomechanical fatigue (TMF) testing. There is an acute need for an adhesive to secondarily bond polymeric composite adherends or, alternately, polymeric composites that remain stable at the processing temperatures of today's adhesives.

  2. X-36 Tailless Fighter Agility Research Aircraft on lakebed during high-speed taxi tests

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The NASA/McDonnell Douglas Corporation (MDC) X-36 Tailless Fighter Agility Research Aircraft undergoes high-speed taxi tests on Rogers Dry Lake at NASA Dryden Flight Research Center, Edwards, California, on October 17, 1996. The aircraft was tested at speeds up to 85 knots. Normal takeoff speed would be 110 knots. More taxi and radio frequency tests were slated before it's first flight would be made. This took place on May 17, 1997. The NASA/Boeing X-36 Tailless Fighter Agility Research Aircraft program successfully demonstrated the tailless fighter design using advanced technologies to improve the maneuverability and survivability of possible future fighter aircraft. The program met or exceeded all project goals. For 31 flights during 1997 at the Dryden Flight Research Center, Edwards, California, the project team examined the aircraft's agility at low speed / high angles of attack and at high speed / low angles of attack. The aircraft's speed envelope reached up to 206 knots (234 mph). This aircraft was very stable and maneuverable. It handled very well. The X-36 vehicle was designed to fly without the traditional tail surfaces common on most aircraft. Instead, a canard forward of the wing was used as well as split ailerons and an advanced thrust-vectoring nozzle for directional control. The X-36 was unstable in both pitch and yaw axes, so an advanced, single-channel digital fly-by-wire control system (developed with some commercially available components) was put in place to stabilize the aircraft. Using a video camera mounted in the nose of the aircraft and an onboard microphone, the X-36 was remotely controlled by a pilot in a ground station virtual cockpit. A standard fighter-type head-up display (HUD) and a moving-map representation of the vehicle's position within the range in which it flew provided excellent situational awareness for the pilot. This pilot-in-the-loop approach eliminated the need for expensive and complex autonomous flight control systems and the risks associated with their inability to deal with unknown or unforeseen phenomena in flight. Fully fueled the X-36 prototype weighed approximately 1,250 pounds. It was 19 feet long and three feet high with a wingspan of just over 10 feet. A Williams International F112 turbofan engine provided close to 700 pounds of thrust. A typical research flight lasted 35 to 45 minutes from takeoff to touchdown. A total of 31 successful research flights were flown from May 17, 1997, to November 12, 1997, amassing 15 hours and 38 minutes of flight time. The aircraft reached an altitude of 20,200 feet and a maximum angle of attack of 40 degrees. In a follow-on effort, the Air Force Research Laboratory (AFRL), Wright-Patterson Air Force Base, Ohio, contracted with Boeing to fly AFRL's Reconfigurable Control for Tailless Fighter Aircraft (RESTORE) software as a demonstration of the adaptability of the neural-net algorithm to compensate for in-flight damage or malfunction of effectors, such as flaps, ailerons and rudders. Two RESTORE research flights were flown in December 1998, proving the viability of the software approach. The X-36 aircraft flown at the Dryden Flight Research Center in 1997 was a 28-percent scale representation of a theoretical advanced fighter aircraft. The Boeing Phantom Works (formerly McDonnell Douglas) in St. Louis, Missouri, built two of the vehicles in a cooperative agreement with the Ames Research Center, Moffett Field, California.

  3. X-36 Tailless Fighter Agility Research Aircraft on lakebed during high-speed taxi tests

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The NASA/McDonnell Douglas Corporation (MDC) X-36 Tailless Fighter Agility Research Aircraft undergoes high-speed taxi tests on Rogers Dry Lake at NASA Dryden Flight Research Center, Edwards, California, on October 17, 1996. The aircraft was tested at speeds up to 85 knots. Normal takeoff speed would be 110 knots. The NASA/Boeing X-36 Tailless Fighter Agility Research Aircraft program successfully demonstrated the tailless fighter design using advanced technologies to improve the maneuverability and survivability of possible future fighter aircraft. The program met or exceeded all project goals. For 31 flights during 1997 at the Dryden Flight Research Center, Edwards, California, the project team examined the aircraft's agility at low speed / high angles of attack and at high speed / low angles of attack. The aircraft's speed envelope reached up to 206 knots (234 mph). This aircraft was very stable and maneuverable. It handled very well. The X-36 vehicle was designed to fly without the traditional tail surfaces common on most aircraft. Instead, a canard forward of the wing was used as well as split ailerons and an advanced thrust-vectoring nozzle for directional control. The X-36 was unstable in both pitch and yaw axes, so an advanced, single-channel digital fly-by-wire control system (developed with some commercially available components) was put in place to stabilize the aircraft. Using a video camera mounted in the nose of the aircraft and an onboard microphone, the X-36 was remotely controlled by a pilot in a ground station virtual cockpit. A standard fighter-type head-up display (HUD) and a moving-map representation of the vehicle's position within the range in which it flew provided excellent situational awareness for the pilot. This pilot-in-the-loop approach eliminated the need for expensive and complex autonomous flight control systems and the risks associated with their inability to deal with unknown or unforeseen phenomena in flight. Fully fueled the X-36 prototype weighed approximately 1,250 pounds. It was 19 feet long and three feet high with a wingspan of just over 10 feet. A Williams International F112 turbofan engine provided close to 700 pounds of thrust. A typical research flight lasted 35 to 45 minutes from takeoff to touchdown. A total of 31 successful research flights were flown from May 17, 1997, to November 12, 1997, amassing 15 hours and 38 minutes of flight time. The aircraft reached an altitude of 20,200 feet and a maximum angle of attack of 40 degrees. In a follow-on effort, the Air Force Research Laboratory (AFRL), Wright-Patterson Air Force Base, Ohio, contracted with Boeing to fly AFRL's Reconfigurable Control for Tailless Fighter Aircraft (RESTORE) software as a demonstration of the adaptability of the neural-net algorithm to compensate for in-flight damage or malfunction of effectors, such as flaps, ailerons and rudders. Two RESTORE research flights were flown in December 1998, proving the viability of the software approach. The X-36 aircraft flown at the Dryden Flight Research Center in 1997 was a 28-percent scale representation of a theoretical advanced fighter aircraft. The Boeing Phantom Works (formerly McDonnell Douglas) in St. Louis, Missouri, built two of the vehicles in a cooperative agreement with the Ames Research Center, Moffett Field, California.

  4. Assessment of Creep Capability of HSR-EPM Turbine Airfoil Alloys

    NASA Technical Reports Server (NTRS)

    MacKay, Rebecca A.; Garg, Anita; Ritzert, Frank J.; Locci, Ivan E.

    2007-01-01

    The High Speed Civil Transport (HSCT) mission of the High Speed Research-Enabling Propulsion Materials (HSR-EPM) Program represented a unique challenge for turbine airfoil materials because the highest operating temperatures occur during climb and supersonic cruise. The accumulated hot time of an HSCT engine before overhaul is many thousands of hours. This is significantly different from subsonic engines, where the maximum operating temperatures occur during takeoff and thrust reverse after landing, and the accumulated hot time before overhaul is about 300 hr. The goal of airfoil alloy development under the HSR-EPM Program was to develop an alloy with a 75 F increase in creep rupture capability over the average Rene N5/PWA 1484 baseline. Airfoil alloy development under the HSR-EPM Program pursued a path that led to evolutionary mechanical behavior improvements, resulting from increased amounts of high density, refractory metals. The purpose of the present paper is to describe the experimental work that was performed at NASA Glenn Research Center after the HSR-EPM Program ended. Emphasis will be placed on the creep behavior of coated specimens, as well as on the development and progression of phase instabilities during creep deformation. Mitigation techniques that were used to reduce phase instabilities are also discussed. Most of the work described in this report was performed at NASA Glenn during the years 2000 and 2001.

  5. Teaching high-speed photography and photo-instrumentation

    NASA Astrophysics Data System (ADS)

    Davidhazy, Andrew

    2005-03-01

    As the tools available to the high speed photographer have become more powerful the underlying technology has increased in complexity and often is beyond the reach of most practitioners in terms of in-the-field troubleshooting or adaptation and this specialization has also driven many systems beyond the reach of high school, community college and undergraduate, non-research funded, universities. In spite of this and with the belief that fundamental techniques, reasoning and approaches have not changed much over the years, several courses in photo-instrumentation at the Imaging and Photographic Technology program at the Rochester Institute of Technology present to a couple dozen undergraduate students a year the principles associated with a various imaging systems and techniques for visualization and data analysis of high speed or "invisible" phenomena. This paper reviews the objectives and philosophy of these courses in the context of a total imaging technology education. It describes and illustrates current topics included in the program. In brief, calibration and time measurement concepts, instantaneous and repetitive time sampling equipment, various visualization technologies, strip and streak cameras and applications using film and improvised digital recorders, basic velocimetry techniques including sensitometric velocimetry and synchro-ballistic photography plus other related techniques are introduced to undergraduate students.

  6. Movement amplitude and tempo change in piano performance

    NASA Astrophysics Data System (ADS)

    Palmer, Caroline

    2004-05-01

    Music performance places stringent temporal and cognitive demands on individuals that should yield large speed/accuracy tradeoffs. Skilled piano performance, however, shows consistently high accuracy across a wide variety of rates. Movement amplitude may affect the speed/accuracy tradeoff, so that high accuracy can be obtained even at very fast tempi. The contribution of movement amplitude changes in rate (tempo) is investigated with motion capture. Cameras recorded pianists with passive markers on hands and fingers, who performed on an electronic (MIDI) keyboard. Pianists performed short melodies at faster and faster tempi until they made errors (altering the speed/accuracy function). Variability of finger movements in the three motion planes indicated most change in the plane perpendicular to the keyboard across tempi. Surprisingly, peak amplitudes of motion before striking the keys increased as tempo increased. Increased movement amplitudes at faster rates may reduce or compensate for speed/accuracy tradeoffs. [Work supported by Canada Research Chairs program, HIMH R01 45764.

  7. A summary of wind tunnel research on tilt rotors from hover to cruise flight

    NASA Technical Reports Server (NTRS)

    Poisson-Quinton, PH.; Cook, W. L.

    1972-01-01

    An experimental research program has been conducted on a series of tilt rotors designed for a range of blade twist in various wind tunnel facilities. The objective was to obtain precise results on the influence of blade twist and aeroelasticity on tilt rotor performance, from hover to high speed cruise Mach number of about 0.7. global forces on the rotor, local loads and blade torsional deflection measurements were compared with theoretical predictions inside a large Reynolds-Mach envelope. Testing techniques developed during the program are described.

  8. 49 CFR 213.305 - Designation of qualified individuals; general qualifications.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... college level engineering program, supplemented by special on the job training emphasizing the techniques... of high speed track provided by the employer or by a college level engineering program, supplemented... maintenance of high speed track provided by the employer or by a college level engineering program...

  9. 49 CFR 213.305 - Designation of qualified individuals; general qualifications.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... college level engineering program, supplemented by special on the job training emphasizing the techniques... of high speed track provided by the employer or by a college level engineering program, supplemented... maintenance of high speed track provided by the employer or by a college level engineering program...

  10. 49 CFR 213.305 - Designation of qualified individuals; general qualifications.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... college level engineering program, supplemented by special on the job training emphasizing the techniques... of high speed track provided by the employer or by a college level engineering program, supplemented... maintenance of high speed track provided by the employer or by a college level engineering program...

  11. New hypersonic facility capability at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Haas, Jeffrey E.; Chamberlin, Roger; Dicus, John H.

    1989-01-01

    Four facility activities are underway at NASA Lewis Research Center to develop new hypersonic propulsion test capability. Two of these efforts consist of upgrades to existing operational facilities. The other two activities will reactivate facilities that have been in a standby condition for over 15 years. These four activities are discussed and the new test facilities NASA Lewis will have in place to support evolving high speed research programs are described.

  12. University of Rochester, Laboratory for Laser Energetics

    NASA Astrophysics Data System (ADS)

    1987-01-01

    In FY86 the Laboratory has produced a list of accomplishments in which it takes pride. LLE has met every laser-fusion program milestone to date in a program of research for direct-drive ultraviolet laser fusion originally formulated in 1981. LLE scientists authored or co-authored 135 scientific papers during 1985 to 1986. The collaborative experiments with NRL, LANL, and LLNL have led to a number of important ICF results. The cryogenic target system developed by KMS Fusion for LLE will be used in future high-density experiments on OMEGA to demonstrate the compression of thermonuclear fuel to 100 to 200 times that of solid (20 to 40 g/cm) in a test of the direct-drive concept, as noted in the National Academy of Sciences' report. The excellence of the advanced technology efforts at LLE is illustrated by the establishment of the Ultrafast Science Center by the Department of Defense through the Air Force Office of Scientific Research. Research in the Center will concentrate on bridging the gap between high-speed electronics and ultrafast optics by providing education, research, and development in areas critical to future communications and high-speed computer systems. The Laboratory for Laser Energetics continues its pioneering work on the interaction of intense radiation with matter. This includes inertial-fusion and advanced optical and optical electronics research; training people in the technology and applications of high-power, short-pulse lasers; and interacting with the scientific community, business, industry, and government to promote the growth of laser technology.

  13. The Florida Prostate Cancer Research Training Opportunities for Outstanding Leaders (ReTOOL) Program: Creating Opportunities for Minority HBCU Students

    DTIC Science & Technology

    2014-03-01

    community outreach.” How has the ReTOOL program impacted you? “The ReTOOL Program has gotten me closer to doing what I love (making people happy ...features two story buildings with fun playgrounds, a pool and free resident parking. Tanglewood Village Amenities • High Speed Internet Access • Laundry...Rooms • Cable Television • Water • Local Phone Service • Evening Security Patrols • Recreation Rooms • Free Parking (Tanglewood Only) Please

  14. Aeropropulsion 1987

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Papers from the Aeropropulsion '87 Conference, held at the NASA Lewis Research Center (LeRC), are presented. Unclassified presentations by LeRC and NASA Headquarters senior management and many LeRC technical authors covered the philosophy and major directions of the LeRC aeropropulsion program, and presented a broad spectrum of recent research results in materials, structures, internal fluid mechanics, instrumentation and controls, and both subsonic and high-speed propulsion technology.

  15. Verification and Quantification of Single Event Effects on High Speed SRAM in Terrestrial Environments

    NASA Technical Reports Server (NTRS)

    Huff, H.; You, Z.; Williams, T.; Nichols, T.; Attia, J.; Fogarty, T. N.; Kirby, K.; Wilkins, R.; Lawton, R.

    1998-01-01

    As integrated circuits become more sensitive to charged particles and neutrons, anomalous performance due to single event effects (SEE) is a concern and requires experimental verification and quantification. The Center for Applied Radiation Research (CARR) at Prairie View A&M University has developed experiments as a participant in the NASA ER-2 Flight Program, the APEX balloon flight program and the Student Launch Program. Other high altitude and ground level experiments of interest to DoD and commercial applications are being developed. The experiment characterizes the SEE behavior of high speed and high density SRAM's. The system includes a PC-104 computer unit, an optical drive for storage, a test board with the components under test, and a latchup detection and reset unit. The test program will continuously monitor the stored checkerboard data pattern in the SW and record errors. Since both the computer and the optical drive contain integrated circuits, they are also vulnerable to radiation effects. A latchup detection unit with discrete components will monitor the test program and reset the system when necessary. The first results will be obtained from the NASA ER-2 flights, which are now planned to take place in early 1998 from Dryden Research Center in California. The series of flights, at altitudes up to 70,000 feet, and a variety of flight profiles should yield a distribution of conditions for correlating SEES. SEE measurements will be performed from the time of aircraft power-up on the ground throughout the flight regime until systems power-off after landing.

  16. SR-71B - in flight over snow-capped mountains

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Dryden's SR-71B, NASA 831, slices across the snowy southern Sierra Nevada Mountains of California after being refueled by an Air Force Flight Test Center tanker during a recent flight. The Mach 3 aircraft, on loan to NASA by the U.S. Air Force, were flown by the Dryden Flight Research Center, Edwards, California, during the decade of the 1990s as testbeds for high-speed, high-altitude aeronautical research. Capable of flying more than 2200 mph and at altitudes of over 80,000 feet, they were excellent platforms for research and experiments in aerodynamics, propulsion, structures, thermal protection materials, atmospheric studies, and sonic boom characterization. Two SR-71 aircraft have been used by NASA as testbeds for high-speed and high-altitude aeronautical research. The aircraft, an SR-71A and an SR-71B pilot trainer aircraft, have been based here at NASA's Dryden Flight Research Center, Edwards, California. They were transferred to NASA after the U.S. Air Force program was cancelled. As research platforms, the aircraft can cruise at Mach 3 for more than one hour. For thermal experiments, this can produce heat soak temperatures of over 600 degrees Fahrenheit (F). This operating environment makes these aircraft excellent platforms to carry out research and experiments in a variety of areas -- aerodynamics, propulsion, structures, thermal protection materials, high-speed and high-temperature instrumentation, atmospheric studies, and sonic boom characterization. The SR-71 was used in a program to study ways of reducing sonic booms or over pressures that are heard on the ground much like sharp thunderclaps when an aircraft exceeds the speed of sound. Data from this Sonic Boom Mitigation Study could eventually lead to aircraft designs that would reduce the 'peak' overpressures of sonic booms and minimize the startle affect they produce on the ground. One of the first major experiments to be flown in the NASA SR-71 program was a laser air data collection system. It used laser light instead of air pressure to produce airspeed and attitude reference data, such as angle of attack and sideslip, which are normally obtained with small tubes and vanes extending into the airstream. One of Dryden's SR-71s was used for the Linear Aerospike, or LASRE Experiment. Another earlier project consisted of a series of flights using the SR-71 as a science camera platform for NASA's Jet Propulsion Laboratory in Pasadena, California. An upward-looking ultraviolet video camera placed in the SR-71's nosebay studied a variety of celestial objects in wavelengths that are blocked to ground-based astronomers. Dryden has had a decade of past experience at sustained speeds above Mach 3. Two YF-12A aircraft and an SR-71 designated as a YF-12C were flown at the center between December 1969 and November 1979 in a joint NASA/USAF program to learn more about the capabilities and limitations of high-speed, high-altitude flight. The YF-12As were prototypes of a planned interceptor aircraft based on a design that later evolved into the SR-71 reconnaissance aircraft. Dave Lux was the NASA SR-71 project manger for much of the decade of the 1990s, followed by Steve Schmidt. Developed for the USAF as reconnaissance aircraft more than 30 years ago, SR-71s are still the world's fastest and highest-flying production aircraft. The aircraft can fly at speeds of more than 2,200 miles per hour (Mach 3+ or more than three times the speed of sound) and at altitudes of over 85,000 feet. The Lockheed Skunk Works (now Lockheed Martin) built the original SR-71 aircraft. Each aircraft is 107.4 feet long, has a wingspan of 55.6 feet, and is 18.5 feet high (from the ground to the top of the rudders, when parked). Gross takeoff weight is about 140,000 pounds, including a possible fuel weight of 80,280 pounds. The airframes are built almost entirely of titanium and titanium alloys to withstand heat generated by sustained Mach 3 flight. Aerodynamic control surfaces consist of all-moving vertical tail surfaces, ailerons on the outer wings, and elevators on the trailing edges between the engine exhaust nozzles. The two SR-71s at Dryden have been assigned the following NASA tail numbers: NASA 844 (A model), military serial 61-7980 and NASA 831 (B model), military serial 61-7956. From 1990 through 1994, Dryden also had another 'A' model, NASA 832, military serial 61-7971. This aircraft was returned to the USAF inventory and was the first aircraft reactivated for USAF reconnaissance purposes in 1995. It has since returned to Dryden along with SR-71A 61-7967.

  17. 78 FR 28940 - Environmental Impact Statement for the Atlanta to Charlotte Portion of the Southeast High Speed...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-16

    ... the Atlanta to Charlotte Portion of the Southeast High Speed Rail Corridor AGENCY: Federal Rail... potential passenger rail improvements between Atlanta, GA and Charlotte, NC, along the Southeast High-Speed... federal High-Speed Intercity Passenger Rail (HSIPR) program and includes the development of a Passenger...

  18. The Ames Vertical Gun Range

    NASA Technical Reports Server (NTRS)

    Karcz, J. S.; Bowling, D.; Cornelison, C.; Parrish, A.; Perez, A.; Raiche, G.; Wiens, J.-P.

    2016-01-01

    The Ames Vertical Gun Range (AVGR) is a national facility for conducting laboratory- scale investigations of high-speed impact processes. It provides a set of light-gas, powder, and compressed gas guns capable of accelerating projectiles to speeds up to 7 km s(exp -1). The AVGR has a unique capability to vary the angle between the projectile-launch and gravity vectors between 0 and 90 deg. The target resides in a large chamber (diameter approximately 2.5 m) that can be held at vacuum or filled with an experiment-specific atmosphere. The chamber provides a number of viewing ports and feed-throughs for data, power, and fluids. Impacts are observed via high-speed digital cameras along with investigation-specific instrumentation, such as spectrometers. Use of the range is available via grant proposals through any Planetary Science Research Program element of the NASA Research Opportunities in Space and Earth Sciences (ROSES) calls. Exploratory experiments (one to two days) are additionally possible in order to develop a new proposal.

  19. Edward (Ed) T. Schneider in Front of SR-71 Blackbird

    NASA Technical Reports Server (NTRS)

    1995-01-01

    SR-71 research pilot Ed Schneider is pictured here in front of an SR-71 Blackbird on the ramp at the Dryden Flight Research Center, Edwards, California. Schneider became a NASA research pilot at Dryden in 1983. Data from the SR-71 program will be used to aid designers of future supersonic aircraft and propulsion systems. He retired as a NASA research pilot in September 2000. Two SR-71 aircraft have been used by NASA as testbeds for high-speed and high-altitude aeronautical research. The aircraft, an SR-71A and an SR-71B pilot trainer aircraft, have been based here at NASA's Dryden Flight Research Center, Edwards, California. They were transferred to NASA after the U.S. Air Force program was cancelled. As research platforms, the aircraft can cruise at Mach 3 for more than one hour. For thermal experiments, this can produce heat soak temperatures of over 600 degrees Fahrenheit (F). This operating environment makes these aircraft excellent platforms to carry out research and experiments in a variety of areas -- aerodynamics, propulsion, structures, thermal protection materials, high-speed and high-temperature instrumentation, atmospheric studies, and sonic boom characterization. The SR-71 was used in a program to study ways of reducing sonic booms or over pressures that are heard on the ground, much like sharp thunderclaps, when an aircraft exceeds the speed of sound. Data from this Sonic Boom Mitigation Study could eventually lead to aircraft designs that would reduce the 'peak' overpressures of sonic booms and minimize the startling affect they produce on the ground. One of the first major experiments to be flown in the NASA SR-71 program was a laser air data collection system. It used laser light instead of air pressure to produce airspeed and attitude reference data, such as angle of attack and sideslip, which are normally obtained with small tubes and vanes extending into the airstream. One of Dryden's SR-71s was used for the Linear Aerospike Rocket Engine, or LASRE Experiment. Another earlier project consisted of a series of flights using the SR-71 as a science camera platform for NASA's Jet Propulsion Laboratory in Pasadena, California. An upward-looking ultraviolet video camera placed in the SR-71's nosebay studied a variety of celestial objects in wavelengths that are blocked to ground-based astronomers. Earlier in its history, Dryden had a decade of past experience at sustained speeds above Mach 3. Two YF-12A aircraft and an SR-71 designated as a YF-12C were flown at the center between December 1969 and November 1979 in a joint NASA/USAF program to learn more about the capabilities and limitations of high-speed, high-altitude flight. The YF-12As were prototypes of a planned interceptor aircraft based on a design that later evolved into the SR-71 reconnaissance aircraft. Dave Lux was the NASA SR-71 project manger for much of the decade of the 1990s, followed by Steve Schmidt. Developed for the USAF as reconnaissance aircraft more than 30 years ago, SR-71s are still the world's fastest and highest-flying production aircraft. The aircraft can fly at speeds of more than 2,200 miles per hour (Mach 3+, or more than three times the speed of sound) and at altitudes of over 85,000 feet. The Lockheed Skunk Works (now Lockheed Martin) built the original SR-71 aircraft. Each aircraft is 107.4 feet long, has a wingspan of 55.6 feet, and is 18.5 feet high (from the ground to the top of the rudders, when parked). Gross takeoff weight is about 140,000 pounds, including a possible fuel weight of 80,280 pounds. The airframes are built almost entirely of titanium and titanium alloys to withstand heat generated by sustained Mach 3 flight. Aerodynamic control surfaces consist of all-moving vertical tail surfaces, ailerons on the outer wings, and elevators on the trailing edges between the engine exhaust nozzles. The two SR-71s at Dryden have been assigned the following NASA tail numbers: NASA 844 (A model), military serial 61-7980 and NASA 831 (B model), military serial 61-7956. From 1990 through 1994, Dryden also had another 'A' model, NASA 832, military serial 61-7971. This aircraft was returned to the USAF inventory and was the first aircraft reactivated for USAF reconnaissance purposes in 1995. It has since returned to Dryden along with SR-71A 61-7967.

  20. International Opportunities and Programs at NSF

    NASA Astrophysics Data System (ADS)

    Wodarczyk, F.

    2006-05-01

    The National Science Foundation's Office of International Science and Engineering (OISE) promotes the development of an integrated, Foundation-wide international strategy for international science and engineering activities both inside and outside NSF and manages international programs that are innovative, catalytic, and responsive to a broad range of NSF interests. Specifically, OISE supports programs to expand and enhance leading-edge international research and education opportunities for U.S. scientists and engineers, especially at the early career stage. It works to build and strengthen effective institutional partnerships throughout the global science and engineering research and education community, and it supports international collaborations in NSF's priority research areas. This talk will highlight opportunities for international collaboration for individuals at all levels of their careers, from student to established researcher, with examples of supported programs. Some recent activities focus on bringing together researchers in scientific disciplines and experts in cyberinfrastructure to promote and enable international data collection, manipulation, storage, and sharing via high-speed networks.

  1. SR-71 Ship #1 on Ramp

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This photo shows a head-on shot of NASA's SR-71A aircraft on the ramp at NASA's Dryden Flight Research Center, Edwards, California. NASA operated two SR-71s, an SR-71A and an SR- 71B pilot trainer aircraft, both based at Dryden, at that particular point in time. The SR-71 was designed and built by the Lockheed Skunk Works, now the Lockheed Martin Skunk Works. Studies have shown that less than 20 percent of the total thrust used to fly at Mach 3 is produced by the basic engine itself. The balance of the total thrust is produced by the unique design of the engine inlet and 'moveable spike' system at the front of the engine nacelles, and by the ejector nozzles at the exhaust which burn air compressed in the engine bypass system. Data from the SR-71 high speed research program will be used to aid designers of future supersonic/hypersonic aircraft and propulsion systems, including a high speed civil transport. Two SR-71 aircraft have been used by NASA as testbeds for high-speed and high-altitude aeronautical research. The aircraft, an SR-71A and an SR-71B pilot trainer aircraft, have been based here at NASA's Dryden Flight Research Center, Edwards, California. They were transferred to NASA after the U.S. Air Force program was cancelled. As research platforms, the aircraft can cruise at Mach 3 for more than one hour. For thermal experiments, this can produce heat soak temperatures of over 600 degrees Fahrenheit (F). This operating environment makes these aircraft excellent platforms to carry out research and experiments in a variety of areas -- aerodynamics, propulsion, structures, thermal protection materials, high-speed and high-temperature instrumentation, atmospheric studies, and sonic boom characterization. The SR-71 was used in a program to study ways of reducing sonic booms or over pressures that are heard on the ground, much like sharp thunderclaps, when an aircraft exceeds the speed of sound. Data from this Sonic Boom Mitigation Study could eventually lead to aircraft designs that would reduce the 'peak' overpressures of sonic booms and minimize the startling affect they produce on the ground. One of the first major experiments to be flown in the NASA SR-71 program was a laser air data collection system. It used laser light instead of air pressure to produce airspeed and attitude reference data, such as angle of attack and sideslip, which are normally obtained with small tubes and vanes extending into the airstream. One of Dryden's SR-71s was used for the Linear Aerospike Rocket Engine, or LASRE Experiment. Another earlier project consisted of a series of flights using the SR-71 as a science camera platform for NASA's Jet Propulsion Laboratory in Pasadena, California. An upward-looking ultraviolet video camera placed in the SR-71's nosebay studied a variety of celestial objects in wavelengths that are blocked to ground-based astronomers. Earlier in its history, Dryden had a decade of past experience at sustained speeds above Mach 3. Two YF-12A aircraft and an SR-71 designated as a YF-12C were flown at the center between December 1969 and November 1979 in a joint NASA/USAF program to learn more about the capabilities and limitations of high-speed, high-altitude flight. The YF-12As were prototypes of a planned interceptor aircraft based on a design that later evolved into the SR-71 reconnaissance aircraft. Dave Lux was the NASA SR-71 project manger for much of the decade of the 1990s, followed by Steve Schmidt. Developed for the USAF as reconnaissance aircraft more than 30 years ago, SR-71s are still the world's fastest and highest-flying production aircraft. The aircraft can fly at speeds of more than 2,200 miles per hour (Mach 3+, or more than three times the speed of sound) and at altitudes of over 85,000 feet. The Lockheed Skunk Works (now Lockheed Martin) built the original SR-71 aircraft. Each aircraft is 107.4 feet long, has a wingspan of 55.6 feet, and is 18.5 feet high (from the ground to the top of the rudders, when parked). Gross takeoff weight is about 140,000 pounds, including a possible fuel weight of 80,280 pounds. The airframes are built almost entirely of titanium and titanium alloys to withstand heat generated by sustained Mach 3 flight. Aerodynamic control surfaces consist of all-moving vertical tail surfaces, ailerons on the outer wings, and elevators on the trailing edges between the engine exhaust nozzles. The two SR-71s at Dryden have been assigned the following NASA tail numbers: NASA 844 (A model), military serial 61-7980 and NASA 831 (B model), military serial 61-7956. From 1990 through 1994, Dryden also had another 'A' model, NASA 832, military serial 61-7971. This aircraft was returned to the USAF inventory and was the first aircraft reactivated for USAF reconnaissance purposes in 1995. It has since returned to Dryden along with SR-71A 61-7967.

  2. EC94-42645-9

    NASA Image and Video Library

    1994-06-27

    The modified F-18 High Alpha Research Vehicle (HARV) carries out air flow studies on a flight from the Dryden Flight Research Center, Edwards, California. Using oil, researchers were able to track the air flow across the wing at different speeds and angles of attack. A thrust vectoring system had been installed on the engines' exhaust nozzles for the high angle of attack research program. The thrust vectoring system, linked to the aircraft's flight control system, moves a set of three paddles on each engine to redirect thrust for directional control and increased maneuverability at angles of attack at up to 70 degrees.

  3. Development of high-speed rolling-element bearings. A historical and technical perspective

    NASA Technical Reports Server (NTRS)

    Zaretsky, E. V.

    1982-01-01

    Research on large-bore ball and roller bearings for aircraft engines is described. Tapered roller bearings and small-bore bearings are discussed. Temperature capabilities of rolling element bearings for aircraft engines have moved from 450 to 589 K (350 to 600 F) with increased reliability. High bearing speeds to 3 million DN can be achieved with a reliability exceeding that which was common in commercial aircraft. Capabilities of available bearing steels and lubricants were defined and established. Computer programs for the analysis and design of rolling element bearings were developed and experimentally verified. The reported work is a summary of NASA contributions to high performance engine and transmission bearing capabilities.

  4. Method for upgrading the performance at track transitions for high-speed service : next generation high-speed rail program

    DOT National Transportation Integrated Search

    2001-09-01

    High-speed trains in the speed range of 100 to 160 mph require tracks of nearly perfect geometry and mechanical uniformity, when subjected to moving wheel loads. Therefore, this report briefly describes the remedies being used by various railroads to...

  5. "Fan-Tip-Drive" High-Power-Density, Permanent Magnet Electric Motor and Test Rig Designed for a Nonpolluting Aircraft Propulsion Program

    NASA Technical Reports Server (NTRS)

    Brown, Gerald V.; Kascak, Albert F.

    2004-01-01

    A scaled blade-tip-drive test rig was designed at the NASA Glenn Research Center. The rig is a scaled version of a direct-current brushless motor that would be located in the shroud of a thrust fan. This geometry is very attractive since the allowable speed of the armature is approximately the speed of the blade tips (Mach 1 or 1100 ft/s). The magnetic pressure generated in the motor acts over a large area and, thus, produces a large force or torque. This large force multiplied by the large velocity results in a high-power-density motor.

  6. An airline study of advanced technology requirements for advanced high speed commercial transport engines. 2: Engine preliminary design assessment

    NASA Technical Reports Server (NTRS)

    Sallee, G. P.

    1973-01-01

    The advanced technology requirements for an advanced high speed commercial transport engine are presented. The results of the phase 2 study effort cover the following areas: (1) general review of preliminary engine designs suggested for a future aircraft, (2) presentation of a long range view of airline propulsion system objectives and the research programs in noise, pollution, and design which must be undertaken to achieve the goals presented, (3) review of the impact of propulsion system unreliability and unscheduled maintenance on cost of operation, (4) discussion of the reliability and maintainability requirements and guarantees for future engines.

  7. Mixing Process in Ejector Nozzles Studied at Lewis' Aero-Acoustic Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The NASA Lewis Research Center has been studying mixing processes in ejector nozzles for its High Speed Research (HSR) Program. This work is directed at finding ways to minimize the noise of a future supersonic airliner. Much of the noise such an airplane would generate would come from the nozzle, where a hot, high-speed jet exits the engine. Several different nozzle configurations were used to produce nozzle systems with different acoustical and aerodynamic characteristics. The acoustical properties were measured by an array of microphones in an anechoic chamber, and the aerodynamics were measured by traditional pressure and temperature instruments as well as by Laser Doppler Velocimetry (LDV), a technique for visualizing the airflow pattern without disturbing it. These measurements were put together and compared for different configurations to examine the relationships between mixing and noise generation. The mixer-ejector nozzle with the installed flow-visualization windows (foreground), the optical equipment and the supporting structure for the Laser Doppler Velocimetry flow visualization (midfield), and the sound-absorbing wedges used to create an anechoic environment for acoustic testing (background) is shown. The High Speed Research Program is a NASA-funded effort, in cooperation with the U.S. aerospace industry, to develop enabling technologies for a future supersonic airliner. One of the technological barriers being addressed is noise generated during near-airport operation. The mixer-ejector nozzle concept is being examined as a way to reduce jet noise while maintaining thrust. Ambient air is mixed with the high-velocity engine exhaust to reduce the jet velocity and hence the noise generated by the jet. The model was designed and built by Pratt & Whitney under NASA contract. The test, completed in June 1995, was conducted in Lewis' Aero-Acoustic Propulsion Laboratory.

  8. AGARD Index of Publications 1983-1985

    DTIC Science & Technology

    1987-06-01

    a high performance high speed General Aviation propeller the advent of the highly loaded program...distribution data at high speed and CLmax data at low speed are NS3-3036# Saab-.;cania, Linkoping (Sweden). described. A flight wing pressure survey which...also well with predictions based on wind tunnel data. flight at high speed and wind tunnel measurements on a half Reynolds Number and transition

  9. South Carolina southeast high speed rail corridor improvement study

    DOT National Transportation Integrated Search

    2001-02-01

    The Southeast Rail Corridor was originally designated as a high-speed corridor in Section 1010 of the Intermodal Surface Transportation Efficiency Act (ISTEA) of 1991. More specifically, it involved the high-speed grade-crossing improvement program o...

  10. X-15 #3 with test pilot Bill Dana

    NASA Technical Reports Server (NTRS)

    1967-01-01

    NASA research pilot Bill Dana is seen here next to the X-15 #3 (56-6672) rocket-powered aircraft after a flight. William H. Dana is Chief Engineer at NASA's Dryden Flight Research Center, Edwards, California. Formerly an aerospace research pilot at Dryden, Dana flew the F-15 HIDEC research aircraft and the Advanced Fighter Technology Integration/F-16 aircraft. Dana flew the famed X-15 research airplane 16 times, reaching a top speed of 3,897 miles per hour and a peak altitude of 306,900 feet (over 58 miles high). The X-15 research aircraft was developed to provide in-flight information and data on aerodynamics, structures, flight controls, and the physiological aspects of high-speed, high-altitude flight. A follow on program used the aircraft as a testbed to carry various scientific experiments beyond the Earth's atmosphere on a repeated basis. The X-15 was a rocket-powered aircraft 50 ft long with a wingspan of 22 ft. It was a missile-shaped vehicle with an unusual wedge-shaped vertical tail, thin stubby wings, and unique side fairings that extended along the side of the fuselage. The X-15 weighed about 14,000 lb empty and approximately 34,000 lb at launch. The XLR-99 rocket engine, manufactured by Thiokol Chemical Corp., was pilot controlled and was capable of developing 57,000 lb of thrust. North American Aviation built three X-15 aircraft for the program. For flight in the dense air of the usable atmosphere, the X-15 used conventional aerodynamic controls such as rudder surfaces on the vertical stabilizers to control yaw and movable horizontal stabilizers to control pitch when moving in synchronization or roll when moved differentially. For flight in the thin air outside of the appreciable Earth's atmosphere, the X-15 used a reaction control system. Hydrogen peroxide thrust rockets located on the nose of the aircraft provided pitch and yaw control. Those on the wings provided roll control. Because of the large fuel consumption, the X-15 was air launched from a B-52 aircraft at 45,000 ft and a speed of about 500 mph. Depending on the mission, the rocket engine provided thrust for the first 80 to 120 sec of flight. The remainder of the normal 10 to 11 min. flight was powerless and ended with a 200-mph glide landing. Generally, one of two types of X-15 flight profiles was used; a high-altitude flight plan that called for the pilot to maintain a steep rate of climb, or a speed profile that called for the pilot to push over and maintain a level altitude. The X-15 was flown over a period of nearly 10 years -- June 1959 to Oct. 1968 -- and set the world's unofficial speed and altitude records of 4,520 mph (Mach 6.7) and 354,200 ft in a program to investigate all aspects of manned hypersonic flight. Information gained from the highly successful X-15 program contributed to the development of the Mercury, Gemini, and Apollo manned spaceflight programs, and also the Space Shuttle program. The X-15s made a total of 199 flights, and were manufactured by North American Aviation. X-15-1, serial number 56-6670, is now located at the National Air and Space Museum, Washington DC. North American X-15A-2, serial number 56-6671, is at the United States Air Force Museum, Wright-Patterson AFB, Ohio.X-15-3, serial number 56-6672, crashed on 15 November 1967, resulting in the death of Maj. Michael J. Adams.

  11. X-15 with test pilot Bill Dana

    NASA Technical Reports Server (NTRS)

    1966-01-01

    NASA research pilot Bill Dana is seen here next to the X-15 #3 rocket-powered aircraft after a flight. William H. Dana is Chief Engineer at NASA's Dryden Flight Research Center, Edwards, California. Formerly an aerospace research pilot at Dryden, Dana flew the F-15 HiDEC research aircraft and the Advanced Fighter Technology Integration/F-16 aircraft. Dana flew the famed X-15 research airplane 16 times, reaching a top speed of 3,897 miles per hour and a peak altitude of 310,000 feet (almost 59 miles high). The X-15 research aircraft was developed to provide in-flight information and data on aerodynamics, structures, flight controls, and the physiological aspects of high-speed, high-altitude flight. A follow on program used the aircraft as a testbed to carry various scientific experiments beyond the Earth's atmosphere on a repeated basis. The X-15 was a rocket-powered aircraft 50 ft long with a wingspan of 22 ft. It was a missile-shaped vehicle with an unusual wedge-shaped vertical tail, thin stubby wings, and unique side fairings that extended along the side of the fuselage. The X-15 weighed about 14,000 lb empty and approximately 34,000 lb at launch. The XLR-99 rocket engine, manufactured by Thiokol Chemical Corp., was pilot controlled and was capable of developing 57,000 lb of thrust. North American Aviation made 3 X-15 aircraft for the program. For flight in the dense air of the usable atmosphere, the X-15 used conventional aerodynamic controls such as rudder surfaces on the vertical stabilizers to control yaw and canted horizontal surfaces on the tail to control pitch when moving in synchronization or roll when moved differentially. For flight in the thin air outside of the appreciable Earth's atmosphere, the X-15 used a reaction control system. Hydrogen peroxide thrust rockets located on the nose of the aircraft provided pitch and yaw control. Those on the wings provided roll control. Because of the large fuel consumption, the X-15 was air launched from a B-52 aircraft at 45,000 ft and a speed of about 500 mph. Depending on the mission, the rocket engine provided thrust for the first 80 to 120 sec of flight. The remainder of the normal 10 to 11 min. flight was powerless and ended with a 200-mph glide landing. Generally, one of two types of X-15 flight profiles was used; a high-altitude flight plan that called for the pilot to maintain a steep rate of climb, or a speed profile that called for the pilot to push over and maintain a level altitude. The X-15 was flown over a period of nearly 10 years -- June 1959 to Oct. 1968 -- and set the world's unofficial speed and altitude records of 4,520 mph (Mach 6.7) and 354,200 ft in a program to investigate all aspects of manned hypersonic flight. Information gained from the highly successful X-15 program contributed to the development of the Mercury, Gemini, and Apollo manned spaceflight programs, and also the Space Shuttle program. The X-15s made a total of 199 flights, and were manufactured by North American Aviation. X-15-1, serial number 56-6670, is now located at the National Air and Space museum, Washington DC. North American X-15A-2, serial number 56-6671, is at the United States Air Force Museum, Wright-Patterson AFB, Ohio. The X-15-3, serial number 56-6672, crashed on 15 November 1967, resulting in the death of Maj. Michael J. Adams.

  12. Evaluation of non-freeway rumble strips - phase II.

    DOT National Transportation Integrated Search

    2015-03-01

    MDOTs rumble strip program for two-lane high speed rural highways was initiated in 2008 and : continued through 2010. This program included implementation of centerline rumble strips (CLRS) : on nearly 5,400 miles of two-lane high speed roads that...

  13. Materials Test Program, Contact Power Collection for High Speed Tracked Vehicles

    DOT National Transportation Integrated Search

    1971-01-01

    A test program is defined for determining the failure modes and wear characteristics for brushes used to collect electrical power from the wayside for high speed tracked vehicles. Simulation of running conditions and the necessary instrumentation for...

  14. Boundary Layer Transition Experiments in Support of the Hypersonics Program

    NASA Technical Reports Server (NTRS)

    Berry, Scott A.; Chen, Fang-Jenq; Wilder, Michael C.; Reda, Daniel C.

    2007-01-01

    Two experimental boundary layer transition studies in support of fundamental hypersonics research are reviewed. The two studies are the HyBoLT flight experiment and a new ballistic range effort. Details are provided of the objectives and approach associated with each experimental program. The establishment of experimental databases from ground and flight are to provide better understanding of high-speed flows and data to validate and guide the development of simulation tools.

  15. Testing of Face-milled Spiral Bevel Gears at High-speed and Load

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.

    2001-01-01

    Spiral bevel gears are an important drive system components of rotorcraft (helicopters) currently in use. In this application the spiral bevel gears are required to transmit very high torque at high rotational speed. Available experimental data on the operational characteristics for thermal and structural behavior is relatively small in comparison to that found for parallel axis gears. An ongoing test program has been in place at NASA Glenn Research Center over the last ten years to investigate their operational behavior at operating conditions found in aerospace applications. This paper will summarize the results of the tests conducted on face-milled spiral bevel gears. The data from the pinion member (temperature and stress) were taken at conditions from slow-roll to 14400 rpm and up to 537 kW (720 hp). The results have shown that operating temperature is affected by the location of the lubricating jet with respect to the point it is injected and the operating conditions that are imposed. Also the stress measured from slow-roll to very high rotational speed, at various torque levels, indicated little dynamic affect over the rotational speeds tested.

  16. SMALLER FOOTPRINT DRILLING SYSTEM FOR DEEP AND HARD ROCK ENVIRONMENTS; FEASIBILITY OF ULTRA-HIGH SPEED DIAMOND DRILLING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alan Black; Arnis Judzis

    2004-10-01

    The two phase program addresses long-term developments in deep well and hard rock drilling. TerraTek believes that significant improvements in drilling deep hard rock will be obtained by applying ultra-high (greater than 10,000 rpm) rotational speeds. The work includes a feasibility of concept research effort aimed at development and test results that will ultimately result in the ability to reliably drill ''faster and deeper'' possibly with rigs having a smaller footprint to be more mobile. The principle focus is on demonstration testing of diamond bits rotating at speeds in excess of 10,000 rpm to achieve high rate of penetration rockmore » cutting with substantially lower inputs of energy and loads. The project draws on TerraTek results submitted to NASA's ''Drilling on Mars'' program. The objective of that program was to demonstrate miniaturization of a robust and mobile drilling system that expends small amounts of energy. TerraTek successfully tested ultrahigh speed ({approx}40,000 rpm) small kerf diamond coring. Adaptation to the oilfield will require innovative bit designs for full hole drilling or continuous coring and the eventual development of downhole ultra-high speed drives. For domestic operations involving hard rock and deep oil and gas plays, improvements in penetration rates is an opportunity to reduce well costs and make viable certain field developments. An estimate of North American hard rock drilling costs is in excess of $1,200 MM. Thus potential savings of $200 MM to $600 MM are possible if drilling rates are doubled [assuming bit life is reasonable]. The net result for operators is improved profit margin as well as an improved position on reserves. The significance of the ''ultra-high rotary speed drilling system'' is the ability to drill into rock at very low weights on bit and possibly lower energy levels. The drilling and coring industry today does not practice this technology. The highest rotary speed systems in oil field and mining drilling and coring today run less than 10,000 rpm--usually well below 5,000 rpm. This document details the progress to date on the program entitled ''SMALLER FOOTPRINT DRILLING SYSTEM FOR DEEP AND HARD ROCK ENVIRONMENTS; FEASIBILITY OF ULTRA-HIGH SPEED DIAMOND DRILLING'' for the period starting June 23, 2003 through September 30, 2004. TerraTek has reviewed applicable literature and documentation and has convened a project kick-off meeting with Industry Advisors in attendance. TerraTek has designed and planned Phase I bench scale experiments. Some difficulties in obtaining ultra-high speed motors for this feasibility work were encountered though they were sourced mid 2004. TerraTek is progressing through Task 3 ''Small-scale cutting performance tests''. Some improvements over early NASA experiments have been identified.« less

  17. SMALLER FOOTPRINT DRILLING SYSTEM FOR DEEP AND HARD ROCK ENVIRONMENTS; FEASIBILITY OF ULTRA-HIGH SPEED DIAMOND DRILLING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alan Black; Arnis Judzis

    2004-10-01

    The two phase program addresses long-term developments in deep well and hard rock drilling. TerraTek believes that significant improvements in drilling deep hard rock will be obtained by applying ultra-high (greater than 10,000 rpm) rotational speeds. The work includes a feasibility of concept research effort aimed at development and test results that will ultimately result in the ability to reliably drill ''faster and deeper'' possibly with rigs having a smaller footprint to be more mobile. The principle focus is on demonstration testing of diamond bits rotating at speeds in excess of 10,000 rpm to achieve high rate of penetration rockmore » cutting with substantially lower inputs of energy and loads. The project draws on TerraTek results submitted to NASA's ''Drilling on Mars'' program. The objective of that program was to demonstrate miniaturization of a robust and mobile drilling system that expends small amounts of energy. TerraTek successfully tested ultrahigh speed ({approx}40,000 rpm) small kerf diamond coring. Adaptation to the oilfield will require innovative bit designs for full hole drilling or continuous coring and the eventual development of downhole ultra-high speed drives. For domestic operations involving hard rock and deep oil and gas plays, improvements in penetration rates is an opportunity to reduce well costs and make viable certain field developments. An estimate of North American hard rock drilling costs is in excess of $1,200 MM. Thus potential savings of $200 MM to $600 MM are possible if drilling rates are doubled [assuming bit life is reasonable]. The net result for operators is improved profit margin as well as an improved position on reserves. The significance of the ''ultra-high rotary speed drilling system'' is the ability to drill into rock at very low weights on bit and possibly lower energy levels. The drilling and coring industry today does not practice this technology. The highest rotary speed systems in oil field and mining drilling and coring today run less than 10,000 rpm--usually well below 5,000 rpm. This document details the progress to date on the program entitled ''SMALLER FOOTPRINT DRILLING SYSTEM FOR DEEP AND HARD ROCK ENVIRONMENTS; FEASIBILITY OF ULTRA-HIGH SPEED DIAMOND DRILLING'' for the period starting June 23, 2003 through September 30, 2004. (1) TerraTek has reviewed applicable literature and documentation and has convened a project kick-off meeting with Industry Advisors in attendance. (2) TerraTek has designed and planned Phase I bench scale experiments. Some difficulties in obtaining ultra-high speed motors for this feasibility work were encountered though they were sourced mid 2004. (3) TerraTek is progressing through Task 3 ''Small-scale cutting performance tests''. Some improvements over early NASA experiments have been identified.« less

  18. Summary of 1989 - 1990 aeronautics design projects

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Four design projects were completed at Auburn University this year under the sponsorship of the NASA/Universities Space Research Association Advanced Design Program. The topics discussed are the design of a high speed civil transport; the design of a 79 passenger, high efficiency, commercial transport; the design of a low cost short takeof vertical landing export fighter; and the design of an ozone monitoring vehicle.

  19. Computer Analysis Of High-Speed Roller Bearings

    NASA Technical Reports Server (NTRS)

    Coe, H.

    1988-01-01

    High-speed cylindrical roller-bearing analysis program (CYBEAN) developed to compute behavior of cylindrical rolling-element bearings at high speeds and with misaligned shafts. With program, accurate assessment of geometry-induced roller preload possible for variety of out-ring and housing configurations and loading conditions. Enables detailed examination of bearing performance and permits exploration of causes and consequences of bearing skew. Provides general capability for assessment of designs of bearings supporting main shafts of engines. Written in FORTRAN IV.

  20. SR-71 Research Engineer Marta Bohn-Meyer

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This 1992 photo shows SR-71 flight engineer Marta Bohn-Meyer in front of one of NASA's SR-71 aircraft on the ramp at the Ames-Dryden Flight Research Facility (later, Dryden Flight Research Center), Edwards, California. An aerospace engineer who has been at Dryden since 1979, Bohn-Meyer is the first female crew member ever assigned to fly in the SR-71. Data from the SR-71 program carried out by NASA will be used to aid designers of future supersonic aircraft and propulsion systems. Two SR-71 aircraft have been used by NASA as testbeds for high-speed and high-altitude aeronautical research. The aircraft, an SR-71A and an SR-71B pilot trainer aircraft, have been based here at NASA's Dryden Flight Research Center, Edwards, California. They were transferred to NASA after the U.S. Air Force program was cancelled. As research platforms, the aircraft can cruise at Mach 3 for more than one hour. For thermal experiments, this can produce heat soak temperatures of over 600 degrees Fahrenheit (F). This operating environment makes these aircraft excellent platforms to carry out research and experiments in a variety of areas -- aerodynamics, propulsion, structures, thermal protection materials, high-speed and high-temperature instrumentation, atmospheric studies, and sonic boom characterization. The SR-71 was used in a program to study ways of reducing sonic booms or over pressures that are heard on the ground, much like sharp thunderclaps, when an aircraft exceeds the speed of sound. Data from this Sonic Boom Mitigation Study could eventually lead to aircraft designs that would reduce the 'peak' overpressures of sonic booms and minimize the startling affect they produce on the ground. One of the first major experiments to be flown in the NASA SR-71 program was a laser air data collection system. It used laser light instead of air pressure to produce airspeed and attitude reference data, such as angle of attack and sideslip, which are normally obtained with small tubes and vanes extending into the airstream. One of Dryden's SR-71s was used for the Linear Aerospike Rocket Engine, or LASRE Experiment. Another earlier project consisted of a series of flights using the SR-71 as a science camera platform for NASA's Jet Propulsion Laboratory in Pasadena, California. An upward-looking ultraviolet video camera placed in the SR-71's nosebay studied a variety of celestial objects in wavelengths that are blocked to ground-based astronomers. Earlier in its history, Dryden had a decade of past experience at sustained speeds above Mach 3. Two YF-12A aircraft and an SR-71 designated as a YF-12C were flown at the center between December 1969 and November 1979 in a joint NASA/USAF program to learn more about the capabilities and limitations of high-speed, high-altitude flight. The YF-12As were prototypes of a planned interceptor aircraft based on a design that later evolved into the SR-71 reconnaissance aircraft. Dave Lux was the NASA SR-71 project manger for much of the decade of the 1990s, followed by Steve Schmidt. Developed for the USAF as reconnaissance aircraft more than 30 years ago, SR-71s are still the world's fastest and highest-flying production aircraft. The aircraft can fly at speeds of more than 2,200 miles per hour (Mach 3+, or more than three times the speed of sound) and at altitudes of over 85,000 feet. The Lockheed Skunk Works (now Lockheed Martin) built the original SR-71 aircraft. Each aircraft is 107.4 feet long, has a wingspan of 55.6 feet, and is 18.5 feet high (from the ground to the top of the rudders, when parked). Gross takeoff weight is about 140,000 pounds, including a possible fuel weight of 80,280 pounds. The airframes are built almost entirely of titanium and titanium alloys to withstand heat generated by sustained Mach 3 flight. Aerodynamic control surfaces consist of all-moving vertical tail surfaces, ailerons on the outer wings, and elevators on the trailing edges between the engine exhaust nozzles. The two SR-71s at Dryden have been assigned the following NASA tail numbers: NASA 844 (A model), military serial 61-7980 and NASA 831 (B model), military serial 61-7956. From 1990 through 1994, Dryden also had another 'A' model, NASA 832, military serial 61-7971. This aircraft was returned to the USAF inventory and was the first aircraft reactivated for USAF reconnaissance purposes in 1995. It has since returned to Dryden along with SR-71A 61-7967.

  1. Fluid dynamic mechanisms and interactions within separated flows

    NASA Astrophysics Data System (ADS)

    Dutton, J. C.; Addy, A. L.

    1990-02-01

    The significant results of a joint research effort investigating the fundamental fluid dynamic mechanisms and interactions within high-speed separated flows are presented in detail. The results have obtained through analytical and numerical approaches, but with primary emphasis on experimental investigations of missile and projectile base flow-related configurations. The objectives of the research program focus on understanding the component mechanisms and interactions which establish and maintain high-speed separated flow regions. The analytical and numerical efforts have centered on unsteady plume-wall interactions in rocket launch tubes and on predictions of the effects of base bleed on transonic and supersonic base flowfields. The experimental efforts have considered the development and use of a state-of-the-art two component laser Doppler velocimeter (LDV) system for experiments with planar, two-dimensional, small-scale models in supersonic flows. The LDV experiments have yielded high quality, well documented mean and turbulence velocity data for a variety of high-speed separated flows including initial shear layer development, recompression/reattachment processes for two supersonic shear layers, oblique shock wave/turbulent boundary layer interactions in a compression corner, and two-stream, supersonic, near-wake flow behind a finite-thickness base.

  2. XB-70A during take-off

    NASA Image and Video Library

    1965-08-17

    Viewed from the front the #1 XB-70A (62-0001) is shown climbing out during take-off. Most flights were scheduled during the morning hours to take advantage of the cooler ambient air temperatures for improved propulsion efficiencies. The wing tips are extended straight out to provide a maximum lifting wing surface. The XB-70A, capable of flying three times the speed of sound, was the world's largest experimental aircraft in the 1960s. Two XB-70A aircraft were built. Ship #1 was flown by NASA in a high speed flight research program.

  3. CNSFV code development, virtual zone Navier-Stokes computations of oscillating control surfaces and computational support of the laminar flow supersonic wind tunnel

    NASA Technical Reports Server (NTRS)

    Klopfer, Goetz H.

    1993-01-01

    The work performed during the past year on this cooperative agreement covered two major areas and two lesser ones. The two major items included further development and validation of the Compressible Navier-Stokes Finite Volume (CNSFV) code and providing computational support for the Laminar Flow Supersonic Wind Tunnel (LFSWT). The two lesser items involve a Navier-Stokes simulation of an oscillating control surface at transonic speeds and improving the basic algorithm used in the CNSFV code for faster convergence rates and more robustness. The work done in all four areas is in support of the High Speed Research Program at NASA Ames Research Center.

  4. 2nd NASA CFD Validation Workshop

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The purpose of the workshop was to review NASA's progress in CFD validation since the first workshop (held at Ames in 1987) and to affirm the future direction of the NASA CFD validation program. The first session consisted of overviews of CFD validation research at each of the three OAET research centers and at Marshall Space Flight Center. The second session consisted of in-depth technical presentations of the best examples of CFD validation work at each center (including Marshall). On the second day the workshop divided into three working groups to discuss CFD validation progress and needs in the subsonic, high-speed, and hypersonic speed ranges. The emphasis of the working groups was on propulsion.

  5. Dryden Test Pilots 1990 - Smolka, Fullerton, Schneider, Dana, Ishmael, Smith, and McMurtry

    NASA Technical Reports Server (NTRS)

    1990-01-01

    It was a windy afternoon on Rogers Dry Lake as the research pilots of the National Aeronautics and Space Administration's Ames-Dryden Flight Research Facility gathered for a photo shoot. It was a special day too, the 30th anniversary of the first F-104 flight by research pilot Bill Dana. To celebrate, a fly over of Building 4800, in formation, was made with Bill in a Lockheed F-104 (826), Gordon Fullerton in a Northrop T-38, and Jim Smolka in a McDonnell Douglas F/A-18 (841) on March 23, 1990. The F-18 (841), standing on the NASA ramp is a backdrop for the photo of (Left to Right) James W. (Smoke) Smolka, C. Gordon Fullerton, Edward T. (Ed) Schneider, William H. (Bill) Dana, Stephen D. (Steve) Ishmael, Rogers E. Smith, and Thomas C. (Tom) McMurtry. Smolka joined NASA Ames-Dryden Flight Research Facility in September 1985. He has been the project pilot on the F-15 Advanced Control Technology for Integrated Vehicles (ACTIVE) research and F-15 Aeronautical Research Aircraft programs. He has also flown as a pilot on the NASA B-52 launch aircraft, as a co-project pilot on the F-16XL Supersonic Laminar Flow Control aircraft and the F-18 High Angle-of-Attack Research Vehicle (HARV) aircraft. Other aircraft he has flown in research programs are the F-16, F-111, F-104 and the T-38 as support. Fullerton, joined NASA's Ames-Dryden Flight Research Facility in November 1986. He was project pilot on the NASA/Convair 990 aircraft to test space shuttle landing gear components, project pilot on the F-18 Systems Research Aircraft, and project pilot on the B-52 launch aircraft, where he was involved in six air launches of the commercially developed Pegasus space launch vehicle. Other assignments include a variety of flight research and support activities in multi-engine and high performance aircraft such as, F-15, F-111, F-14, X-29, MD-11 and DC-8. Schneider arrived at the NASA Ames-Dryden Flight Research Facility on July 5, 1982, as a Navy Liaison Officer, becoming a NASA research pilot one year later. He has been project pilot for the F-18 High Angle-of-Attack program (HARV), project pilot for the F-15 aeronautical research aircraft, the NASA B-52 launch aircraft, and the SR-71 'Blackbird' aircraft. His past research work at Dryden has included participation in the F-8 Digital Fly-By-Wire, the FAA/NASA 720 Controlled Impact Demonstration, the F-14 Automatic Rudder Interconnect and Laminar Flow programs, and the F-104 Aeronautical Research and Microgravity programs. Dana joined the NASA's High-Speed Flight Station on October 1, 1958. As a research pilot, he was involved in some of the most significant aeronautical programs carried out at the Center. In the late 1960s and in the 1970s Dana was a project pilot on the lifting body program, flying the wingless M2-F1, HL-10, M2-F3, and the X-24B vehicles. He was a project pilot on the hypersonic X-15 research aircraft and flew the rocket-powered vehicle 16 times, reaching a speed of 3,897 mph and an altitude of 310,000 feet. Bill was the pilot on the final (199th) flight of the 10-year program. Other research and support programs Dana participated in were the F-15 Highly Integrated Digital Electronic Control (HIDEC), the F-18 High Angle-of-Attack Research Vehicle (HARV), YF-12, F-104, F-16, PA-30, and T-38. In 1993 Dana became Chief Engineer at NASA's Ames-Dryden Flight Research Facility (soon to be renamed the Dryden Flight Research Center). Ishmael was a research pilot at NASA's Dryden Flight Research Center from January 1977 until the spring of 1995, when he became manager of Dryden's Reusable Launch Vehicle (RLV) programs. In 1996 he became NASA's X-33 Deputy Manager for Flight Test and Operation. As a research pilot he served as the chief project pilot on two major aeronautical research programs, the SR-71 High Speed Research program and the F-16XL Laminar Flow Technology program. He took part in the X-29 Forward-Swept-Wing program, and gave support to other pilots' research flights in a T-38 and F-104 aircraft. Smith became a research pilot at NASA's Ames-Dryden Flight Research Facility in August 1982. In the spring of 1995 he became Chief of the Flight Crew Branch where currently there are 8 other NASA pilots and 2 flight engineers. Smith has also been a co-project pilot on two major aeronautical programs at Dryden. They are the integrated thrust vectoring F-15 ACTIVE and the SR-71 'Blackbird' Research programs. Other research programs that he has been associated with are the F-104 Zero 'G' tests, F-18 HARV, X-29 Forward-Swept-Wing, with support flights being flown in a T-38 and F-104. McMurtry has been a pilot at NASA's Dryden since joining the Flight Research Center in November 1967. In 1981, Tom became Chief Pilot a position he held until February 1986, when he was appointed Chief of the Research Aircraft Operations Division. McMurtry has been project pilot for the AD-1 Oblique Wing program, the F-15 Digital Electronic Engine Control (DEEC) project and the F-8 Supercritical Wing program. He was co- project pilot on the F-15 ACTIVE program, F-8 Digital Fly-By-Wire program and on several remotely piloted research vehicle programs such as the FAA/NASA 720 Controlled Impact Demonstration and the sub-scale F-15 spin research project. He has also been a co-project pilot on the NASA 747 Shuttle Carrier Aircraft.

  6. Dynamic Test Program, Contact Power Collection for High Speed Tracked Vehicles

    DOT National Transportation Integrated Search

    1973-01-01

    A laboratory test program is defined for determining the dynamic characteristics of a contact power collection system for a high speed tracked vehicle. The use of a hybrid computer is conjuntion with hydraulic exciters to simulate the expected dynami...

  7. Research and development of ultrasonic tomography technology for three-dimensional imaging of internal rail flaws : modeling and simulation.

    DOT National Transportation Integrated Search

    2013-04-01

    This report covers the work performed under the FRA High-Speed BAA 20102011 program to demonstrate the technology of ultrasonic tomography for 3-D imaging of internal rail flaws. There is a need to develop new technologies that are able to quantif...

  8. The atmospheric effects of stratospheric aircraft: A topical review

    NASA Technical Reports Server (NTRS)

    Johnston, Harold S.; Prather, M. J.; Watson, R. T.

    1991-01-01

    In the late 1960s the aircraft industry became interested in developing a fleet of supersonic transports (SSTs). Between 1972 and 1975, the Climatic Impact Assessment Program (CIAP) studied the possible environmental impact of SSTs. For environmental and economic reasons, the fleet of SSTs was not developed. The Upper Atmosphere Research Program (UARP) has recently undertaken the responsibility of directing scientific research needed to assess the atmospheric impact of supersonic transports. The UARP and the High-Speed Research Program asked Harold Johnston to review the current understanding of aircraft emissions and their effect on the stratosphere. Johnston and his colleagues have recently re-examined the SST problem using current models for stratospheric ozone chemistry. A unique view is given here of the current scientific issues and the lessons learned since the beginning of CIAP, and it links the current research program with the assessment process that began two years ago.

  9. SR-71A on Ramp with Dual Max Afterburner Engines Firing

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This night shot shows one of NASA's SR-71 Blackbird research aircraft on the ramp at the Dryden Flight Research Center, Edwards, California, with both engines running in max afterburner. Two SR-71 aircraft have been used by NASA as testbeds for high-speed and high-altitude aeronautical research. The aircraft, an SR-71A and an SR-71B pilot trainer aircraft, have been based here at NASA's Dryden Flight Research Center, Edwards, California. They were transferred to NASA after the U.S. Air Force program was cancelled. As research platforms, the aircraft can cruise at Mach 3 for more than one hour. For thermal experiments, this can produce heat soak temperatures of over 600 degrees Fahrenheit (F). This operating environment makes these aircraft excellent platforms to carry out research and experiments in a variety of areas -- aerodynamics, propulsion, structures, thermal protection materials, high-speed and high-temperature instrumentation, atmospheric studies, and sonic boom characterization. The SR-71 was used in a program to study ways of reducing sonic booms or over pressures that are heard on the ground, much like sharp thunderclaps, when an aircraft exceeds the speed of sound. Data from this Sonic Boom Mitigation Study could eventually lead to aircraft designs that would reduce the 'peak' overpressures of sonic booms and minimize the startling affect they produce on the ground. One of the first major experiments to be flown in the NASA SR-71 program was a laser air data collection system. It used laser light instead of air pressure to produce airspeed and attitude reference data, such as angle of attack and sideslip, which are normally obtained with small tubes and vanes extending into the airstream. One of Dryden's SR-71s was used for the Linear Aerospike Rocket Engine, or LASRE Experiment. Another earlier project consisted of a series of flights using the SR-71 as a science camera platform for NASA's Jet Propulsion Laboratory in Pasadena, California. An upward-looking ultraviolet video camera placed in the SR-71's nosebay studied a variety of celestial objects in wavelengths that are blocked to ground-based astronomers. Earlier in its history, Dryden had a decade of past experience at sustained speeds above Mach 3. Two YF-12A aircraft and an SR-71 designated as a YF-12C were flown at the center between December 1969 and November 1979 in a joint NASA/USAF program to learn more about the capabilities and limitations of high-speed, high-altitude flight. The YF-12As were prototypes of a planned interceptor aircraft based on a design that later evolved into the SR-71 reconnaissance aircraft. Dave Lux was the NASA SR-71 project manger for much of the decade of the 1990s, followed by Steve Schmidt. Developed for the USAF as reconnaissance aircraft more than 30 years ago, SR-71s are still the world's fastest and highest-flying production aircraft. The aircraft can fly at speeds of more than 2,200 miles per hour (Mach 3+, or more than three times the speed of sound) and at altitudes of over 85,000 feet. The Lockheed Skunk Works (now Lockheed Martin) built the original SR-71 aircraft. Each aircraft is 107.4 feet long, has a wingspan of 55.6 feet, and is 18.5 feet high (from the ground to the top of the rudders, when parked). Gross takeoff weight is about 140,000 pounds, including a possible fuel weight of 80,280 pounds. The airframes are built almost entirely of titanium and titanium alloys to withstand heat generated by sustained Mach 3 flight. Aerodynamic control surfaces consist of all-moving vertical tail surfaces, ailerons on the outer wings, and elevators on the trailing edges between the engine exhaust nozzles. The two SR-71s at Dryden have been assigned the following NASA tail numbers: NASA 844 (A model), military serial 61-7980 and NASA 831 (B model), military serial 61-7956. From 1990 through 1994, Dryden also had another 'A' model, NASA 832, military serial 61-7971. This aircraft was returned to the USAF inventory and was the first aircraft reactivated for USAF reconnaissance purposes in 1995. It has since returned to Dryden along with SR-71A 61-7967.

  10. Concepts for on-board satellite image registration. Volume 3: Impact of VLSI/VHSIC on satellite on-board signal processing

    NASA Technical Reports Server (NTRS)

    Aanstoos, J. V.; Snyder, W. E.

    1981-01-01

    Anticipated major advances in integrated circuit technology in the near future are described as well as their impact on satellite onboard signal processing systems. Dramatic improvements in chip density, speed, power consumption, and system reliability are expected from very large scale integration. Improvements are expected from very large scale integration enable more intelligence to be placed on remote sensing platforms in space, meeting the goals of NASA's information adaptive system concept, a major component of the NASA End-to-End Data System program. A forecast of VLSI technological advances is presented, including a description of the Defense Department's very high speed integrated circuit program, a seven-year research and development effort.

  11. Atmospheric Ionizing Radiation (AIR) Project Review

    NASA Technical Reports Server (NTRS)

    Singleterry, R. C., Jr.; Wilson, J. W.; Whitehead, A. H.; Goldhagen, P. E.

    1999-01-01

    The National Council on Radiation Protection and Measurement (NCRP) and the National Academy of Science (NAS) established that the uncertainty in the data and models associated with the high-altitude radiation environment could and should be reduced. In response, the National Aeronautics and Space Administration (NASA) and the U.S. Department of Energy Environmental Measurements Laboratory (EML) created the Atmospheric Ionizing Radiation (AIR) Project under the auspices of the High Speed Research (HSR) Program Office at the Langley Research Center. NASA's HSR Program was developed to address the potential of a second-generation supersonic transport. A critical element focussed on the environmental issues, including the threat to crew and passengers posed by atmospheric radiation. Various international investigators were solicited to contribute instruments to fly on an ER-2 aircraft at altitudes similar to those proposed for the High Speed Civil Transport (HSCT). A list of participating investigators, their institutions, and instruments with quantities measured is presented. The flight series took place at solar minimum (radiation maximum) with northern, southern, and east/west flights. The investigators analyzed their data and presented preliminary results at the AIR Workshop in March, 1998. A review of these results are included.

  12. Sensitivity of Runway Occupancy Time (ROT) to Various Rollout and Turnoff (ROTO) Factors. Volume 1

    NASA Technical Reports Server (NTRS)

    Goldthorpe, S. H.

    1997-01-01

    The Terminal Area Productivity (TAP) research program was initiated by NASA to increase the airport capacity for transport aircraft operations. One element of the research program is called Low Visibility Landing and Surface Operations (LVLASO). A goal of the LVLASO research is to develop transport aircraft technologies which reduce Runway Occupancy Time (ROT) so that it does not become the limiting factor in the terminal area operations that determine the capacity of a runway. Under LVLASO, the objective of this study was to determine the sensitivity of ROT to various factors associated with the Rollout and Turnoff (ROTO) operation for transport aircraft. The following operational factors were studied and are listed in the order of decreasing ROT sensitivity: ice/flood runway surface condition, exit entrance ground speed, number of exits, high-speed exit locations and spacing, aircraft type, touchdown ground speed standard deviation, reverse thrust and braking method, accurate exit prediction capability, maximum reverse thrust availability, spiral-arc vs. circle-arc exit geometry, dry/slush/wet/snow runway surface condition, maximum allowed deceleration, auto asymmetric braking on exit, do not stow reverse thrust before the exit, touchdown longitudinal location standard deviation, flap setting, anti-skid efficiency, crosswind conditions, stopping on the exit and touchdown lateral offset.

  13. Sensitivity of Runway Occupancy Time (ROT) to Various Rollout and Turnoff (ROTO) Factors. Volume 2; Complete Set of Plotted Data

    NASA Technical Reports Server (NTRS)

    Goldthorpe, S. H.

    1997-01-01

    The Terminal Area Productivity (TAP) research program was initiated by NASA to increase the airport capacity for transport aircraft operations. One element of the research program is called Low Visibility Landing and Surface Operations (LVLASO). A goal of the LVLASO research is to develop transport aircraft technologies which reduce Runway Occupancy Time (ROT) so that it does not become the limiting factor in the terminal area operations that determine the capacity of a runway. Under LVLASO, the objective of this study was to determine the sensitivity of ROT to various factors associated with the Rollout and Turnoff (ROTO) operation for transport aircraft. The following operational factors were studied and are listed in the order of decreasing ROT sensitivity: ice/flood runway surface condition, exit entrance ground speed, number of exits, high-speed exit locations and spacing, aircraft type, touchdown ground speed standard deviation, reverse thrust and braking method, accurate exit prediction capability, maximum reverse thrust availability, spiral-arc vs. circle-arc exit geometry, dry/slush/wet/snow runway surface condition, maximum allowed deceleration, auto asymmetric braking on exit, do not stow reverse thrust before the exit, touchdown longitudinal location standard deviation, flap setting, anti-skid efficiency, crosswind conditions, stopping on the exit and touchdown lateral offset.

  14. High-Lift Engine Aeroacoustics Technology (HEAT) Test Program Overview

    NASA Technical Reports Server (NTRS)

    Zuniga, Fanny A.; Smith, Brian E.

    1999-01-01

    The NASA High-Speed Research program developed the High-Lift Engine Aeroacoustics Technology (HEAT) program to demonstrate satisfactory interaction between the jet noise suppressor and high-lift system of a High-Speed Civil Transport (HSCT) configuration at takeoff, climb, approach and landing conditions. One scheme for reducing jet exhaust noise generated by an HSCT is the use of a mixer-ejector system which would entrain large quantities of ambient air into the nozzle exhaust flow through secondary inlets in order to cool and slow the jet exhaust before it exits the nozzle. The effectiveness of such a noise suppression device must be evaluated in the presence of an HSCT wing high-lift system before definitive assessments can be made concerning its acoustic performance. In addition, these noise suppressors must provide the required acoustic attenuation while not degrading the thrust efficiency of the propulsion system or the aerodynamic performance of the high-lift devices on the wing. Therefore, the main objective of the HEAT program is to demonstrate these technologies and understand their interactions on a large-scale HSCT model. The HEAT program is a collaborative effort between NASA-Ames, Boeing Commercial Airplane Group, Douglas Aircraft Corp., Lockheed-Georgia, General Electric and NASA - Lewis. The suppressor nozzles used in the tests were Generation 1 2-D mixer-ejector nozzles made by General Electric. The model used was a 13.5%-scale semi-span model of a Boeing Reference H configuration.

  15. Demonstration and evaluation of the Heed the Speed pedestrian safety program : traffic tech.

    DOT National Transportation Integrated Search

    2012-07-01

    Research has shown that higher vehicular speeds are : related to increased pedestrian injury severity and death. : It is unclear, however, if lowering vehicle speeds in residential : areas would result in lower frequency of pedestrian-involved : cras...

  16. The Dryden Flight Research Center at Edwards Air Force Base is NASA's premier center for atmospheric flight research to validate high-risk aerospace technology.

    NASA Image and Video Library

    2001-07-25

    Since the 1940s the Dryden Flight Research Center, Edwards, California, has developed a unique and highly specialized capability for conducting flight research programs. The organization, made up of pilots, scientists, engineers, technicians, and mechanics, has been and will continue to be leaders in the field of advanced aeronautics. Located on the northwest "shore" of Rogers Dry Lake, the complex was built around the original administrative-hangar building constructed in 1954. Since then many additional support and operational facilities have been built including a number of unique test facilities such as the Thermalstructures Research Facility, Flow Visualization Facility, and the Integrated Test Facility. One of the most prominent structures is the space shuttle program's Mate-Demate Device and hangar in Area A to the north of the main complex. On the lakebed surface is a Compass Rose that gives pilots an instant compass heading. The Dryden complex originated at Edwards Air Force Base in support of the X-1 supersonic flight program. As other high-speed aircraft entered research programs, the facility became permanent and grew from a staff of five engineers in 1947 to a population in 2006 of nearly 1100 full-time government and contractor employees.

  17. Diskless supercomputers: Scalable, reliable I/O for the Tera-Op technology base

    NASA Technical Reports Server (NTRS)

    Katz, Randy H.; Ousterhout, John K.; Patterson, David A.

    1993-01-01

    Computing is seeing an unprecedented improvement in performance; over the last five years there has been an order-of-magnitude improvement in the speeds of workstation CPU's. At least another order of magnitude seems likely in the next five years, to machines with 500 MIPS or more. The goal of the ARPA Teraop program is to realize even larger, more powerful machines, executing as many as a trillion operations per second. Unfortunately, we have seen no comparable breakthroughs in I/O performance; the speeds of I/O devices and the hardware and software architectures for managing them have not changed substantially in many years. We have completed a program of research to demonstrate hardware and software I/O architectures capable of supporting the kinds of internetworked 'visualization' workstations and supercomputers that will appear in the mid 1990s. The project had three overall goals: high performance, high reliability, and scalable, multipurpose system.

  18. The F-18 systems research aircraft facility

    NASA Technical Reports Server (NTRS)

    Sitz, Joel R.

    1992-01-01

    To help ensure that new aerospace initiatives rapidly transition to competitive U.S. technologies, NASA Dryden Flight Research Facility has dedicated a systems research aircraft facility. The primary goal is to accelerate the transition of new aerospace technologies to commercial, military, and space vehicles. Key technologies include more-electric aircraft concepts, fly-by-light systems, flush airdata systems, and advanced computer architectures. Future aircraft that will benefit are the high-speed civil transport and the National AeroSpace Plane. This paper describes the systems research aircraft flight research vehicle and outlines near-term programs.

  19. High-speed low-power voltage-programmed driving scheme for AMOLED displays

    NASA Astrophysics Data System (ADS)

    Xingheng, Xia; Weijing, Wu; Xiaofeng, Song; Guanming, Li; Lei, Zhou; Lirong, Zhang; Miao, Xu; Lei, Wang; Junbiao, Peng

    2015-12-01

    A new voltage-programmed driving scheme named the mixed parallel addressing scheme is presented for AMOLED displays, in which one compensation interval can be divided into the first compensation frame and the consequent N -1 post-compensation frames without periods of initialization and threshold voltage detection. The proposed driving scheme has the advantages of both high speed and low driving power due to the mixture of the pipeline technology and the threshold voltage one-time detection technology. Corresponding to the proposed driving scheme, we also propose a new voltage-programmed compensation pixel circuit, which consists of five TFTs and two capacitors (5T2C). In-Zn-O thin-film transistors (IZO TFTs) are used to build the proposed 5T2C pixel circuit. It is shown that the non-uniformity of the proposed pixel circuit is considerably reduced compared with that of the conventional 2T1C pixel circuit. The number of frames (N) preserved in the proposed driving scheme are measured and can be up to 35 with the variation of the OLED current remaining in an acceptable range. Moreover, the proposed voltage-programmed driving scheme can be more valuable for an AMOLED display with high resolution, and may also be applied to other compensation pixel circuits. Project supported by the State Key Development Program for Basic Research of China (No. 2015CB655000) the National Natural Science Foundation of China (Nos. 61204089, 61306099, 61036007, 51173049, U1301243), and the Fundamental Research Funds for the Central Universities (Nos. 2013ZZ0046, 2014ZZ0028).

  20. Smaller Footprint Drilling System for Deep and Hard Rock Environments; Feasibility of Ultra-High-Speed Diamond Drilling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    TerraTek, A Schlumberger Company

    2008-12-31

    The two phase program addresses long-term developments in deep well and hard rock drilling. TerraTek believes that significant improvements in drilling deep hard rock will be obtained by applying ultra-high rotational speeds (greater than 10,000 rpm). The work includes a feasibility of concept research effort aimed at development that will ultimately result in the ability to reliably drill 'faster and deeper' possibly with smaller, more mobile rigs. The principle focus is on demonstration testing of diamond bits rotating at speeds in excess of 10,000 rpm to achieve high rate of penetration (ROP) rock cutting with substantially lower inputs of energymore » and loads. The significance of the 'ultra-high rotary speed drilling system' is the ability to drill into rock at very low weights on bit and possibly lower energy levels. The drilling and coring industry today does not practice this technology. The highest rotary speed systems in oil field and mining drilling and coring today run less than 10,000 rpm - usually well below 5,000 rpm. This document provides the progress through two phases of the program entitled 'Smaller Footprint Drilling System for Deep and Hard Rock Environments: Feasibility of Ultra-High-Speed Diamond Drilling' for the period starting 30 June 2003 and concluding 31 March 2009. The accomplishments of Phases 1 and 2 are summarized as follows: (1) TerraTek reviewed applicable literature and documentation and convened a project kick-off meeting with Industry Advisors in attendance (see Black and Judzis); (2) TerraTek designed and planned Phase I bench scale experiments (See Black and Judzis). Improvements were made to the loading mechanism and the rotational speed monitoring instrumentation. New drill bit designs were developed to provided a more consistent product with consistent performance. A test matrix for the final core bit testing program was completed; (3) TerraTek concluded small-scale cutting performance tests; (4) Analysis of Phase 1 data indicated that there is decreased specific energy as the rotational speed increases; (5) Technology transfer, as part of Phase 1, was accomplished with technical presentations to the industry (see Judzis, Boucher, McCammon, and Black); (6) TerraTek prepared a design concept for the high speed drilling test stand, which was planned around the proposed high speed mud motor concept. Alternative drives for the test stand were explored; a high speed hydraulic motor concept was finally used; (7) The high speed system was modified to accommodate larger drill bits than originally planned; (8) Prototype mud turbine motors and the high speed test stand were used to drive the drill bits at high speed; (9) Three different rock types were used during the testing: Sierra White granite, Crab Orchard sandstone, and Colton sandstone. The drill bits used included diamond impregnated bits, a polycrystalline diamond compact (PDC) bit, a thermally stable PDC (TSP) bit, and a hybrid TSP and natural diamond bit; and (10) The drill bits were run at rotary speeds up to 5500 rpm and weight on bit (WOB) to 8000 lbf. During Phase 2, the ROP as measured in depth of cut per bit revolution generally increased with increased WOB. The performance was mixed with increased rotary speed, with the depth cut with the impregnated drill bit generally increasing and the TSP and hybrid TSP drill bits generally decreasing. The ROP in ft/hr generally increased with all bits with increased WOB and rotary speed. The mechanical specific energy generally improved (decreased) with increased WOB and was mixed with increased rotary speed.« less

  1. F-100A on lakebed

    NASA Technical Reports Server (NTRS)

    1955-01-01

    North American F-100A (52-5778) Super Sabre is parked on the Rogers Dry Lakebed at Edwards Air Force Base, California, 1955. This photo shows the large tail on the F-100A. When the basic research was completed on this F-100A another program was assigned. On March 5, 1957 two aeronautical engineers and a test pilot from NACA High-Speed Flight Station took the airplane to participate in a Gunnery Operations program at Nellis Air Force Base, Nevada. When the program was completed the aircraft returned for other assignments to NACA, at Edwards, California.

  2. New technology in turbine aerodynamics

    NASA Technical Reports Server (NTRS)

    Glassman, A. J.; Moffitt, T. P.

    1972-01-01

    A cursory review is presented of some of the recent work that has been done in turbine aerodynamic research at NASA-Lewis Research Center. Topics discussed include the aerodynamic effect of turbine coolant, high work-factor (ratio of stage work to square of blade speed) turbines, and computer methods for turbine design and performance prediction. An extensive bibliography is included. Experimental cooled-turbine aerodynamics programs using two-dimensional cascades, full annular cascades, and cold rotating turbine stage tests are discussed with some typical results presented. Analytically predicted results for cooled blade performance are compared to experimental results. The problems and some of the current programs associated with the use of very high work factors for fan-drive turbines of high-bypass-ratio engines are discussed. Turbines currently being investigated make use of advanced blading concepts designed to maintain high efficiency under conditions of high aerodynamic loading. Computer programs have been developed for turbine design-point performance, off-design performance, supersonic blade profile design, and the calculation of channel velocities for subsonic and transonic flow fields. The use of these programs for the design and analysis of axial and radial turbines is discussed.

  3. 2007 Expeditionary Warfare Conference (12th)

    DTIC Science & Technology

    2007-10-25

    Ships 10 Joint High Speed Vessel (JHSV) Today • Program Capability – High speed lift ship capable of transporting cargo and personnel across...develop technologies that will: – Improve the capability to transfer cargo between Sea Base platforms – Provide for high speed / heavy lift...state actors for legitimacy and influence over the relevant population” Joint High Speed Vessel In-Service Amphibs LCAC & Ship to Shore

  4. X-43A departs NASA Dryden Flight Research Center for first free-flight attempt.

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The first X-43A hypersonic research aircraft and its modified Pegasus booster rocket were carried aloft by NASA's NB-52B carrier aircraft from Dryden Flight Research Center at Edwards Air Force Base, Calif., on June 2, 2001 for the first of three high-speed free flight attempts. About an hour and 15 minutes later the Pegasus booster was released from the B-52 to accelerate the X-43A to its intended speed of Mach 7. Before this could be achieved, the combined Pegasus and X-43A 'stack' lost control about eight seconds after ignition of the Pegasus rocket motor. The mission was terminated and explosive charges ensured the Pegasus and X-43A fell into the Pacific Ocean in a cleared Navy range area. A NASA investigation board is being assembled to determine the cause of the incident. Work continues on two other X-43A vehicles, the first of which could fly by late 2001. Central to the X-43A program is its integration of an air-breathing 'scramjet' engine that could enable a variety of high-speed aerospace craft, and promote cost-effective access to space. The 12-foot, unpiloted research vehicle was developed and built for NASA by MicroCraft Inc., Tullahoma, Tenn. The booster was built by Orbital Sciences Corp. at Chandler, Ariz. The X-43A flights are the first actual flight tests of an aircraft powered by a scramjet engine capable of operating at hypersonic speeds (above Mach 5, or five times the speed of sound). Some 90 minutes after takeoff, the Pegasus will launch from a B-52, rocketing the X-43A to Mach 7 at 95,000 feet altitude, or Mach 10 at 105,000 feet altitude. The X-43A will be powered by its revolutionary air-breathing supersonic-combustion ramjet or 'scramjet' engine. The X-43A will then fly a pre-programmed trajectory, conducting aerodynamic and propulsion experiments as it descends until it splashes into the Pacific Ocean.

  5. Repeatable, accurate, and high speed multi-level programming of memristor 1T1R arrays for power efficient analog computing applications.

    PubMed

    Merced-Grafals, Emmanuelle J; Dávila, Noraica; Ge, Ning; Williams, R Stanley; Strachan, John Paul

    2016-09-09

    Beyond use as high density non-volatile memories, memristors have potential as synaptic components of neuromorphic systems. We investigated the suitability of tantalum oxide (TaOx) transistor-memristor (1T1R) arrays for such applications, particularly the ability to accurately, repeatedly, and rapidly reach arbitrary conductance states. Programming is performed by applying an adaptive pulsed algorithm that utilizes the transistor gate voltage to control the SET switching operation and increase programming speed of the 1T1R cells. We show the capability of programming 64 conductance levels with <0.5% average accuracy using 100 ns pulses and studied the trade-offs between programming speed and programming error. The algorithm is also utilized to program 16 conductance levels on a population of cells in the 1T1R array showing robustness to cell-to-cell variability. In general, the proposed algorithm results in approximately 10× improvement in programming speed over standard algorithms that do not use the transistor gate to control memristor switching. In addition, after only two programming pulses (an initialization pulse followed by a programming pulse), the resulting conductance values are within 12% of the target values in all cases. Finally, endurance of more than 10(6) cycles is shown through open-loop (single pulses) programming across multiple conductance levels using the optimized gate voltage of the transistor. These results are relevant for applications that require high speed, accurate, and repeatable programming of the cells such as in neural networks and analog data processing.

  6. Development of Filtered Rayleigh Scattering for Accurate Measurement of Gas Velocity

    NASA Technical Reports Server (NTRS)

    Miles, Richard B.; Lempert, Walter R.

    1995-01-01

    The overall goals of this research were to develop new diagnostic tools capable of capturing unsteady and/or time-evolving, high-speed flow phenomena. The program centers around the development of Filtered Rayleigh Scattering (FRS) for velocity, temperature, and density measurement, and the construction of narrow linewidth laser sources which will be capable of producing an order MHz repetition rate 'burst' of high power pulses.

  7. Data Acquisition Systems

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Technology developed during a joint research program with Langley and Kinetic Systems Corporation led to Kinetic Systems' production of a high speed Computer Automated Measurement and Control (CAMAC) data acquisition system. The study, which involved the use of CAMAC equipment applied to flight simulation, significantly improved the company's technical capability and produced new applications. With Digital Equipment Corporation, Kinetic Systems is marketing the system to government and private companies for flight simulation, fusion research, turbine testing, steelmaking, etc.

  8. Speed breeding is a powerful tool to accelerate crop research and breeding.

    PubMed

    Watson, Amy; Ghosh, Sreya; Williams, Matthew J; Cuddy, William S; Simmonds, James; Rey, María-Dolores; Asyraf Md Hatta, M; Hinchliffe, Alison; Steed, Andrew; Reynolds, Daniel; Adamski, Nikolai M; Breakspear, Andy; Korolev, Andrey; Rayner, Tracey; Dixon, Laura E; Riaz, Adnan; Martin, William; Ryan, Merrill; Edwards, David; Batley, Jacqueline; Raman, Harsh; Carter, Jeremy; Rogers, Christian; Domoney, Claire; Moore, Graham; Harwood, Wendy; Nicholson, Paul; Dieters, Mark J; DeLacy, Ian H; Zhou, Ji; Uauy, Cristobal; Boden, Scott A; Park, Robert F; Wulff, Brande B H; Hickey, Lee T

    2018-01-01

    The growing human population and a changing environment have raised significant concern for global food security, with the current improvement rate of several important crops inadequate to meet future demand 1 . This slow improvement rate is attributed partly to the long generation times of crop plants. Here, we present a method called 'speed breeding', which greatly shortens generation time and accelerates breeding and research programmes. Speed breeding can be used to achieve up to 6 generations per year for spring wheat (Triticum aestivum), durum wheat (T. durum), barley (Hordeum vulgare), chickpea (Cicer arietinum) and pea (Pisum sativum), and 4 generations for canola (Brassica napus), instead of 2-3 under normal glasshouse conditions. We demonstrate that speed breeding in fully enclosed, controlled-environment growth chambers can accelerate plant development for research purposes, including phenotyping of adult plant traits, mutant studies and transformation. The use of supplemental lighting in a glasshouse environment allows rapid generation cycling through single seed descent (SSD) and potential for adaptation to larger-scale crop improvement programs. Cost saving through light-emitting diode (LED) supplemental lighting is also outlined. We envisage great potential for integrating speed breeding with other modern crop breeding technologies, including high-throughput genotyping, genome editing and genomic selection, accelerating the rate of crop improvement.

  9. Above-real-time training (ARTT) improves transfer to a simulated flight control task.

    PubMed

    Donderi, D C; Niall, Keith K; Fish, Karyn; Goldstein, Benjamin

    2012-06-01

    The aim of this study was to measure the effects of above-real-time-training (ARTT) speed and screen resolution on a simulated flight control task. ARTT has been shown to improve transfer to the criterion task in some military simulation experiments. We tested training speed and screen resolution in a project, sponsored by Defence Research and Development Canada, to develop components for prototype air mission simulators. For this study, 54 participants used a single-screen PC-based flight simulation program to learn to chase and catch an F-18A fighter jet with another F-18A while controlling the chase aircraft with a throttle and side-stick controller. Screen resolution was varied between participants, and training speed was varied factorially across two sessions within participants. Pretest and posttest trials were at high resolution and criterion (900 knots) speed. Posttest performance was best with high screen resolution training and when one ARTT training session was followed by a session of criterion speed training. ARTT followed by criterion training improves performance on a visual-motor coordination task. We think that ARTT influences known facilitators of transfer, including similarity to the criterion task and contextual interference. Use high-screen resolution, start with ARTT, and finish with criterion speed training when preparing a mission simulation.

  10. This photo shows a head-on view of NASA's SR-71B on the ramp at the Air Force's Plant 42 in Palmdale, California, shortly before delivery to DFRC

    NASA Image and Video Library

    1991-07-24

    This photo shows a head-on view of NASA's SR-71B, used for pilot proficiency and training, on the ramp at the Air Force's Plant 42 in Palmdale, California, shortly before delivery to the Ames-Dryden Flight Research Facility (later, Dryden Flight Research Center) at Edwards, California. NASA operated two of these unique aircraft, an SR-71A, for high-speed, high altitude research, and this SR- 71B pilot trainer for most of the decade of the 1990s. The "B" model is special because of its raised rear cockpit, which provided a second pilot position so a trainer and an experienced pilot could both see what was going on during flights. The SR-71 was designed and built by the Lockheed Skunk Works, now the Lockheed Martin Skunk Works. Studies have shown that less than 20 percent of the total thrust used to fly at Mach 3 is produced by the basic engine itself. The balance of the total thrust is produced by the unique design of the engine inlet and "moveable spike" system at the front of the engine nacelles, and by the ejector nozzles at the exhaust which burn air compressed in the engine bypass system. Data from the SR-71 high speed research program will be used to aid designers of future supersonic/hypersonic aircraft and propulsion systems, including a high speed civil transport.

  11. X-15 mock-up with test pilot Milt Thompson

    NASA Technical Reports Server (NTRS)

    1993-01-01

    NASA research pilot Milt Thompson is seen here with the mock-up of X-15 #3 that was later installed at the NASA Dryden Flight Research Center, Edwards, California. Milton 0. Thompson was a research pilot, Chief Engineer and Director of Research Projects during a long career at the NASA Dryden Flight Research Center. Thompson was hired as an engineer at the flight research facility on 19 March 1956, when it was still under the auspices of NACA. He became a research pilot on 25 May 1958. Thompson was one of the 12 NASA, Air Force, and Navy pilots to fly the X-15 rocket-powered research aircraft between 1959 and 1968. He began flying X-15s on 29 October 1963. He flew the aircraft 14 times during the following two years, reaching a maximum speed of 3723 mph (Mach 5.42) and a peak altitude of 214,100 feet on separate flights. (On a different flight, he reached a Mach number of 5.48 but his mph was only 3712.) Thompson concluded his active flying career in 1968, becoming Director of Research Projects. In 1975 he was appointed Chief Engineer and retained the position until his death on 8 August 1993. The X-15 was a rocket powered aircraft 50 ft long with a wingspan of 22 ft. It was a missile-shaped vehicle with an unusual wedge-shaped vertical tail, thin stubby wings, and unique side fairings that extended along the side of the fuselage. The X-15 weighed about 14,000 lb empty and approximately 34,000 lb at launch. The XLR-99 rocket engine, manufactured by Thiokol Chemical Corp., was pilot controlled and was capable of developing 57,000 lb of thrust. North American Aviation built three X-15 aircraft for the program. The X-15 research aircraft was developed to provide in-flight information and data on aerodynamics, structures, flight controls, and the physiological aspects of high-speed, high-altitude flight. A follow on program used the aircraft as a testbed to carry various scientific experiments beyond the Earth's atmosphere on a repeated basis. For flight in the dense air of the usable atmosphere, the X-15 used conventional aerodynamic controls such as rudder surfaces on the vertical stabilizers to control yaw and movable horizontal stabilizers to control pitch when moving in synchronization or roll when moved differentially. For flight in the thin air outside of the appreciable Earth's atmosphere, the X-15 used a reaction control system. Hydrogen peroxide thrust rockets located on the nose of the aircraft provided pitch and yaw control. Those on the wings provided roll control. Because of the large fuel consumption, the X-15 was air launched from a B-52 aircraft at 45,000 ft and a speed of about 500 mph. Depending on the mission, the rocket engine provided thrust for the first 80 to 120 sec of flight. The remainder of the normal 10 to 11 min. flight was powerless and ended with a 200-mph glide landing. Generally, one of two types of X-15 flight profiles was used; a high-altitude flight plan that called for the pilot to maintain a steep rate of climb, or a speed profile that called for the pilot to push over and maintain a level altitude. The X-15 was flown over a period of nearly 10 years -- June 1959 to Oct. 1968 -- and set the world's unofficial speed and altitude records of 4,520 mph (Mach 6.7) and 354,200 ft in a program to investigate all aspects of manned hypersonic flight. Information gained from the highly successful X-15 program contributed to the development of the Mercury, Gemini, and Apollo manned spaceflight programs, and also the Space Shuttle program. The X-15s made a total of 199 flights, and were manufactured by North American Aviation. X-15-1, serial number 56-6670, is now located at the National Air and Space Museum, Washington DC. North American X-15A-2, serial number 56-6671, is at the United States Air Force Museum, Wright-Patterson AFB, Ohio. The X-15-3, serial number 56-6672, crashed on 15 November 1967, resulting in the death of Maj. Michael J. Adams.

  12. X-15 mock-up with test pilot Milt Thompson

    NASA Technical Reports Server (NTRS)

    1993-01-01

    NASA research pilot Milt Thompson stands next to a mock-up of X-15 number 3 that was later installed at the NASA Dryden Flight Research Center, Edwards, California. Milton 0. Thompson was a research pilot, Chief Engineer and Director of Research Projects during a long career at the NASA Dryden Flight Research Center. Thompson was hired as an engineer at the flight research facility on 19 March 1956, when it was still under the auspices of NACA. He became a research pilot on 25 May 1958. Thompson was one of the 12 NASA, Air Force, and Navy pilots to fly the X-15 rocket-powered research aircraft between 1959 and 1968. He began flying X-15s on 29 October 1963. He flew the aircraft 14 times during the following two years, reaching a maximum speed of 3723 mph (Mach 5.42) and a peak altitude of 214,100 feet on separate flights. Thompson concluded his active flying career in 1968, becoming Director of Research Projects. In 1975 he was appointed Chief Engineer and retained the position until his death on 8 August 1993. The X-15 was a rocket-powered aircraft 50 ft long with a wingspan of 22 ft. It was a missile-shaped vehicle with an unusual wedge-shaped vertical tail, thin stubby wings, and unique side fairings that extended along the side of the fuselage. The X-15 weighed about 14,000 lb empty and approximately 34,000 lb at launch. The XLR-99 rocket engine, manufactured by Thiokol Chemical Corp., was pilot controlled and was capable of developing 57,000 lb of thrust. North American Aviation built three X-15 aircraft for the program. The X-15 research aircraft was developed to provide in-flight information and data on aerodynamics, structures, flight controls, and the physiological aspects of high-speed, high-altitude flight. A follow-on program used the aircraft as a testbed to carry various scientific experiments beyond the Earth's atmosphere on a repeated basis. For flight in the dense air of the usable atmosphere, the X-15 used conventional aerodynamic controls such as rudder surfaces on the vertical stabilizers to control yaw and moving horizontal stabilizers which control pitch when moving in synchronization or roll when moved differentially. For flight in the thin air outside of the appreciable Earth's atmosphere, the X-15 used a reaction control system. Hydrogen peroxide thrust rockets located on the nose of the aircraft provided pitch and yaw control. Those on the wings provided roll control. Because of the large fuel consumption, the X-15 was air launched from a B-52 aircraft at 45,000 ft and a speed of about 500 mph. Depending on the mission, the rocket engine provided thrust for the first 80 to 120 sec of flight. The remainder of the normal 10 to 11 min. flight was powerless and ended with a 200-mph glide landing. Generally, one of two types of X-15 flight profiles was used; a high-altitude flight plan that called for the pilot to maintain a steep rate of climb, or a speed profile that called for the pilot to push over and maintain a level altitude. The X-15 was flown over a period of nearly 10 years -- June 1959 to Oct. 1968 -- and set the world's unofficial speed and altitude records of 4,520 mph (Mach 6.7) and 354,200 ft in a program to investigate all aspects of manned hypersonic flight. Information gained from the highly successful X-15 program contributed to the development of the Mercury, Gemini, and Apollo manned spaceflight programs, and also the Space Shuttle program. The X-15s made a total of 199 flights, and were manufactured by North American Aviation. X-15-1, serial number 56-6670, is now located at the National Air and Space Museum, Washington DC. North American X-15A-2, serial number 56-6671, is at the United States Air Force Museum, Wright-Patterson AFB, Ohio. The X-15-3, serial number 56-6672, crashed on 15 Novemebr 1967, resulting in the death of Maj. Michael J. Adams.

  13. X-15 #3 with test pilot Milt Thompson

    NASA Technical Reports Server (NTRS)

    1964-01-01

    NASA research pilot Milt Thompson stands next to the X-15 #3 ship after a research flight. Milton 0. Thompson was a research pilot, Chief Engineer and Director of Research Projects during a long career at the NASA Dryden Flight Research Center. Thompson was hired as an engineer at the Flight Research Facility on March 19, 1956, when it was still under the auspices of NACA. He became a research pilot on May 25, 1958. Thompson was one of the 12 NASA, Air Force, and Navy pilots to fly the X-15 rocket-powered research aircraft between 1959 and 1968. He began flying X-15s on October 29, 1963. He flew the aircraft 14 times during the following two years, reaching a maximum speed of 3723 mph (Mach 5.42) and a peak altitude of 214,100 feet on separate flights. Thompson concluded his active flying career in 1968, becoming Director of Research Projects. In 1975 he was appointed Chief Engineer and retained the position until his death on August 8, 1993. The X-15 was a rocket-powered aircraft 50 ft long with a wingspan of 22 ft. It was a missile-shaped vehicle with an unusual wedge-shaped vertical tail, thin stubby wings, andunique side fairings that extended along the side of the fuselage. The X-15 weighed about 14,000 lb empty and approximately 34,000 lb at launch. The XLR-99 rocket engine, manufactured by Thiokol Chemical Corp., was pilot controlled and was capable of developing 57,000 lb of thrust. North American Aviation built three X-15 aircraft for the program. The X-15 research aircraft was developed to provide in-flight information and data on aerodynamics, structures, flight controls, and the physiological aspects of high-speed, high-altitude flight. A follow-on program used the aircraft as a testbed to carry various scientific experiments beyond the Earth's atmosphere on a repeated basis. For flight in the dense air of the usable atmosphere, the X-15 used conventional aerodynamic controls such as rudders on the vertical stabilizers to control yaw and movable horizontal stabilizers to control pitch when moving in synchronization or roll when moved differentially. For flight in the thin air outside of the appreciable Earth's atmosphere, the X-15 used a ballistic control system. Hydrogen peroxide thrust rockets located on the nose of the aircraft provided pitch and yaw control. Those on the wings provided roll control. Because of the large fuel consumption, the X-15 was air launched from a B-52 aircraft at 45,000 ft and a speed of about 500 mph. Depending on the mission, the rocket engine provided thrust for the first 80 to 120 sec of flight. The remainder of the normal 10 to 11 min. flight was powerless and ended with a 200-mph glide landing. Generally, one of two types of X-15 flight profiles was used; a high-altitude flight plan that called for the pilot to maintain a steep rate of climb, or a speed profile that called for the pilot to push over and maintain a level altitude. The X-15 was flown over a period of nearly 10 years -- June 1959 to Oct. 1968 -- and set the world's unofficial speed and altitude records of 4,520 mph (Mach 6.7) and 354,200 ft in a program to investigate all aspects of manned hypersonic flight. Information gained from the highly successful X-15 program contributed to the development of the Mercury, Gemini, and Apollo manned spaceflight programs, and also the Space Shuttle program. The X-15s made a total of 199 flights, and were manufactured by North American Aviation. X-15-1, serial number 56-6670, is now located at the National Air and Space Museum, Washington DC. North American X-15A-2, serial number 56-6671, is at the United States Air Force Museum, Wright-Patterson AFB, Ohio. X-15-3, serial number 56-6672, crashed on 15 November 1967, resulting in the death of Maj. Michael J. Adams.

  14. Concept Development of a Mach 2.4 High-Speed Civil Transport

    NASA Technical Reports Server (NTRS)

    Fenbert, James W.; Ozoroski, Lori P.; Geiselhart, Karl A.; Shields, Elwood W.; McElroy, Marcus O.

    1999-01-01

    In support of the NASA High-Speed Research Program, a Mach 2.4 high-speed civil transport concept was developed to serve as a baseline for studies to assess advanced technologies required for a feasible year 2005 entry-into-service vehicle. The configuration was designed to carry 251 passengers at Mach 2.4 cruise with a 6500-n.mi. range and operate in the existing world airport structure. The details of the configuration development, aerodynamic design, propulsion system and integration, mass properties, sizing, and mission performance are presented. The baseline configuration has a wing area of 9l00 sq ft and a takeoff gross weight of 614300 lb. The four advanced turbine bypass engines have 39 000 lb thrust with a weight of 9950 lb each, yielding a vehicle takeoff thrust-to-weight ratio of 0.254 and a takeoff wing loading of 67.5 lb/sq ft. The configuration was sized by the 11000-ft takeoff field length requirement and the usable fuel volume limit, which results in a rotation speed of 179 knots and an end-of-mission landing approach velocity of 134 knots.

  15. Materials Research for High Speed Civil Transport and Generic Hypersonics-Metals Durability

    NASA Technical Reports Server (NTRS)

    Schulz, Paul; Hoffman, Daniel

    1996-01-01

    This report covers a portion of an ongoing investigation of the durability of titanium alloys for the High Speed Civil Transport (HSCT). Candidate alloys need to possess an acceptable combination of properties including strength and toughness as well as fatigue and corrosion resistance when subjected to the HSCT operational environment. These materials must also be capable of being processed into required product forms while maintaining their properties. Processing operations being considered for this airplane include forming, welding, adhesive bonding, and superplastic forming with or without diffusion bonding. This program was designed to develop the material properties database required to lower the risk of using advanced titanium alloys on the HSCT.

  16. Lower Stratospheric Measurement Issues Workshop Report

    NASA Technical Reports Server (NTRS)

    Schmeltekopf, Arthur L.

    1992-01-01

    The Lower Stratospheric Measurement Issues workshop was held on 17-19 Oct. 1990. The 3-day workshop was sponsored by the Atmospheric Effects of Stratospheric Aircraft (AESA) component of the High Speed Research Program (HSRP). Its purpose was to provide a scientific forum for addressing specific issues regarding chemistry and transport in the lower stratosphere, for which measurements are essential to an assessment of the environmental impact of a projected fleet of high speed civil transports (HSCTs). The objective of the workshop was to obtain vigorous and critical review of the following topics: (1) atmospheric measurements needed for the assessment; (2) present capability for making those measurements; and (3) areas in instrumentation or platform development essential to making the measurements.

  17. EC95-42939-3

    NASA Image and Video Library

    1995-02-02

    The support crew for the F-16A, the F-16XL no. 1, and the F-16 AFTI are, top row, left to right: Randy Weaver; mechanic, Susan Ligon; mechanic, Bob Garcia; Crew Chief, Rich Kelly; mechanic, Dale Edminister; Avionics Technician. Bottom row, left to right, Art Cope; mechanic, John Huffman; Avionics Technician, Jaime Garcia; Avionics Technician, Don Griffith, Avionics Tech. Co-op student. The F-16A (NASA 516), the only civil registered F-16 in existence, was transferred to Dryden from Langley, and was primarily used in engine tests and for parts. It was subsequently transfered from Dryden. The single-seat F-16XL no. 1 (NASA 849) was most recently used in the Cranked-Arrow Wing Aerodynamics Project (CAWAP) to test boundary layer pressures and distribution. Previously it had been used in a program to investigate the characteristics of sonic booms for NASA's High Speed Research Program. Data from the program will be used in the development of a high speed civilian transport. During the series of sonic boom research flights, the F-16XL was used to probe the shock waves being generated by a NASA SR-71 and record their shape and intensity. The Advanced Fighter Technology Integration (AFTI) F-16 was used to develop and demonstrate technologies to improve navigation and a pilot's ability to find and destroy enemy ground targets day or night, including adverse weather. Earlier research in the joint NASA-Air Force AFTI F-16 program demonstrated voice actuated controls, helmet-mounted sighting and integration of forward-mounted canards with the standard flight control system to achieve uncoupled flight.

  18. EC95-42939-5

    NASA Image and Video Library

    1995-02-02

    The support crew for the F-16A, the F-16XL no. 1, and the F-16 AFTI are, top row, left to right: Randy Weaver; mechanic, Susan Ligon; mechanic, Bob Garcia; Crew Chief, Rich Kelly; mechanic, Dale Edminister; Avionics Technician. Bottom row, left to right, Art Cope; mechanic, John Huffman; Avionics Technician, Jaime Garcia; Avionics Technician, Don Griffith, Avionics Tech. Co-op student. The F-16A (NASA 516), the only civil registered F-16 in existence, was transferred to Dryden from Langley, and was primarily used in engine tests and for parts. It was subsequently transfered from Dryden. The single-seat F-16XL no. 1 (NASA 849) was most recently used in the Cranked-Arrow Wing Aerodynamics Project (CAWAP) to test boundary layer pressures and distribution. Previously it had been used in a program to investigate the characteristics of sonic booms for NASA's High Speed Research Program. Data from the program will be used in the development of a high speed civilian transport. During the series of sonic boom research flights, the F-16XL was used to probe the shock waves being generated by a NASA SR-71 and record their shape and intensity. The Advanced Fighter Technology Integration (AFTI) F-16 was used to develop and demonstrate technologies to improve navigation and a pilot's ability to find and destroy enemy ground targets day or night, including adverse weather. Earlier research in the joint NASA-Air Force AFTI F-16 program demonstrated voice actuated controls, helmet-mounted sighting and integration of forward-mounted canards with the standard flight control system to achieve uncoupled flight.

  19. SR-71 - Taxi on Ramp with Engines

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This photo shows a head-on shot of NASA's SR-71A aircraft taxiing on the ramp at NASA's Dryden Flight Research Center, Edwards, California, heat waves from its engines blurring the hangars in the background. Two SR-71 aircraft have been used by NASA as testbeds for high-speed and high-altitude aeronautical research. The aircraft, an SR-71A and an SR-71B pilot trainer aircraft, have been based here at NASA's Dryden Flight Research Center, Edwards, California. They were transferred to NASA after the U.S. Air Force program was cancelled. As research platforms, the aircraft can cruise at Mach 3 for more than one hour. For thermal experiments, this can produce heat soak temperatures of over 600 degrees Fahrenheit (F). This operating environment makes these aircraft excellent platforms to carry out research and experiments in a variety of areas -- aerodynamics, propulsion, structures, thermal protection materials, high-speed and high-temperature instrumentation, atmospheric studies, and sonic boom characterization. The SR-71 was used in a program to study ways of reducing sonic booms or over pressures that are heard on the ground, much like sharp thunderclaps, when an aircraft exceeds the speed of sound. Data from this Sonic Boom Mitigation Study could eventually lead to aircraft designs that would reduce the 'peak' overpressures of sonic booms and minimize the startling affect they produce on the ground. One of the first major experiments to be flown in the NASA SR-71 program was a laser air data collection system. It used laser light instead of air pressure to produce airspeed and attitude reference data, such as angle of attack and sideslip, which are normally obtained with small tubes and vanes extending into the airstream. One of Dryden's SR-71s was used for the Linear Aerospike Rocket Engine, or LASRE Experiment. Another earlier project consisted of a series of flights using the SR-71 as a science camera platform for NASA's Jet Propulsion Laboratory in Pasadena, California. An upward-looking ultraviolet video camera placed in the SR-71's nosebay studied a variety of celestial objects in wavelengths that are blocked to ground-based astronomers. Earlier in its history, Dryden had a decade of past experience at sustained speeds above Mach 3. Two YF-12A aircraft and an SR-71 designated as a YF-12C were flown at the center between December 1969 and November 1979 in a joint NASA/USAF program to learn more about the capabilities and limitations of high-speed, high-altitude flight. The YF-12As were prototypes of a planned interceptor aircraft based on a design that later evolved into the SR-71 reconnaissance aircraft. Dave Lux was the NASA SR-71 project manger for much of the decade of the 1990s, followed by Steve Schmidt. Developed for the USAF as reconnaissance aircraft more than 30 years ago, SR-71s are still the world's fastest and highest-flying production aircraft. The aircraft can fly at speeds of more than 2,200 miles per hour (Mach 3+, or more than three times the speed of sound) and at altitudes of over 85,000 feet. The Lockheed Skunk Works (now Lockheed Martin) built the original SR-71 aircraft. Each aircraft is 107.4 feet long, has a wingspan of 55.6 feet, and is 18.5 feet high (from the ground to the top of the rudders, when parked). Gross takeoff weight is about 140,000 pounds, including a possible fuel weight of 80,280 pounds. The airframes are built almost entirely of titanium and titanium alloys to withstand heat generated by sustained Mach 3 flight. Aerodynamic control surfaces consist of all-moving vertical tail surfaces, ailerons on the outer wings, and elevators on the trailing edges between the engine exhaust nozzles. The two SR-71s at Dryden have been assigned the following NASA tail numbers: NASA 844 (A model), military serial 61-7980 and NASA 831 (B model), military serial 61-7956. From 1990 through 1994, Dryden also had another 'A' model, NASA 832, military serial 61-7971. This aircraft was returned to the USAF inventory and was the first aircraft reactivated for USAF reconnaissance purposes in 1995. It has since returned to Dryden along with SR-71A 61-7967.

  20. SR-71B - Mach 3 Trainer in Flight at Sunset

    NASA Technical Reports Server (NTRS)

    1995-01-01

    An SR-71B Blackbird aircraft, based at NASA's Dryden Flight Research Center, Edwards, California, is seen here silhouetted against the golden colors of a sunset sky on a 1995 flight. Two SR-71 aircraft have been used by NASA as testbeds for high-speed and high-altitude aeronautical research. The aircraft, an SR-71A and an SR-71B pilot trainer aircraft, have been based here at NASA's Dryden Flight Research Center, Edwards, California. They were transferred to NASA after the U.S. Air Force program was cancelled. As research platforms, the aircraft can cruise at Mach 3 for more than one hour. For thermal experiments, this can produce heat soak temperatures of over 600 degrees Fahrenheit (F). This operating environment makes these aircraft excellent platforms to carry out research and experiments in a variety of areas -- aerodynamics, propulsion, structures, thermal protection materials, high-speed and high-temperature instrumentation, atmospheric studies, and sonic boom characterization. The SR-71 was used in a program to study ways of reducing sonic booms or over pressures that are heard on the ground, much like sharp thunderclaps, when an aircraft exceeds the speed of sound. Data from this Sonic Boom Mitigation Study could eventually lead to aircraft designs that would reduce the 'peak' overpressures of sonic booms and minimize the startling affect they produce on the ground. One of the first major experiments to be flown in the NASA SR-71 program was a laser air data collection system. It used laser light instead of air pressure to produce airspeed and attitude reference data, such as angle of attack and sideslip, which are normally obtained with small tubes and vanes extending into the airstream. One of Dryden's SR-71s was used for the Linear Aerospike Rocket Engine, or LASRE Experiment. Another earlier project consisted of a series of flights using the SR-71 as a science camera platform for NASA's Jet Propulsion Laboratory in Pasadena, California. An upward-looking ultraviolet video camera placed in the SR-71's nosebay studied a variety of celestial objects in wavelengths that are blocked to ground-based astronomers. Earlier in its history, Dryden had a decade of past experience at sustained speeds above Mach 3. Two YF-12A aircraft and an SR-71 designated as a YF-12C were flown at the center between December 1969 and November 1979 in a joint NASA/USAF program to learn more about the capabilities and limitations of high-speed, high-altitude flight. The YF-12As were prototypes of a planned interceptor aircraft based on a design that later evolved into the SR-71 reconnaissance aircraft. Dave Lux was the NASA SR-71 project manger for much of the decade of the 1990s, followed by Steve Schmidt. Developed for the USAF as reconnaissance aircraft more than 30 years ago, SR-71s are still the world's fastest and highest-flying production aircraft. The aircraft can fly at speeds of more than 2,200 miles per hour (Mach 3+, or more than three times the speed of sound) and at altitudes of over 85,000 feet. The Lockheed Skunk Works (now Lockheed Martin) built the original SR-71 aircraft. Each aircraft is 107.4 feet long, has a wingspan of 55.6 feet, and is 18.5 feet high (from the ground to the top of the rudders, when parked). Gross takeoff weight is about 140,000 pounds, including a possible fuel weight of 80,280 pounds. The airframes are built almost entirely of titanium and titanium alloys to withstand heat generated by sustained Mach 3 flight. Aerodynamic control surfaces consist of all-moving vertical tail surfaces, ailerons on the outer wings, and elevators on the trailing edges between the engine exhaust nozzles. The two SR-71s at Dryden have been assigned the following NASA tail numbers: NASA 844 (A model), military serial 61-7980 and NASA 831 (B model), military serial 61-7956. From 1990 through 1994, Dryden also had another 'A' model, NASA 832, military serial 61-7971. This aircraft was returned to the USAF inventory and was the first aircraft reactivated for USAF reconnaissance purposes in 1995. It has since returned to Dryden along with SR-71A 61-7967.

  1. SR-71 in Flight over Rogers Dry Lakebed

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This photo shows NASA Dryden Flight Research Center's SR-71B, tail number 831, over Rogers Dry Lakebed during a July 1995 flight. Two SR-71 aircraft have been used by NASA as testbeds for high-speed and high-altitude aeronautical research. The aircraft, an SR-71A and an SR-71B pilot trainer aircraft, have been based here at NASA's Dryden Flight Research Center, Edwards, California. They were transferred to NASA after the U.S. Air Force program was cancelled. As research platforms, the aircraft can cruise at Mach 3 for more than one hour. For thermal experiments, this can produce heat soak temperatures of over 600 degrees Fahrenheit (F). This operating environment makes these aircraft excellent platforms to carry out research and experiments in a variety of areas -- aerodynamics, propulsion, structures, thermal protection materials, high-speed and high-temperature instrumentation, atmospheric studies, and sonic boom characterization. The SR-71 was used in a program to study ways of reducing sonic booms or over pressures that are heard on the ground, much like sharp thunderclaps, when an aircraft exceeds the speed of sound. Data from this Sonic Boom Mitigation Study could eventually lead to aircraft designs that would reduce the 'peak' overpressures of sonic booms and minimize the startling affect they produce on the ground. One of the first major experiments to be flown in the NASA SR-71 program was a laser air data collection system. It used laser light instead of air pressure to produce airspeed and attitude reference data, such as angle of attack and sideslip, which are normally obtained with small tubes and vanes extending into the airstream. One of Dryden's SR-71s was used for the Linear Aerospike Rocket Engine, or LASRE Experiment. Another earlier project consisted of a series of flights using the SR-71 as a science camera platform for NASA's Jet Propulsion Laboratory in Pasadena, California. An upward-looking ultraviolet video camera placed in the SR-71's nosebay studied a variety of celestial objects in wavelengths that are blocked to ground-based astronomers. Earlier in its history, Dryden had a decade of past experience at sustained speeds above Mach 3. Two YF-12A aircraft and an SR-71 designated as a YF-12C were flown at the center between December 1969 and November 1979 in a joint NASA/USAF program to learn more about the capabilities and limitations of high-speed, high-altitude flight. The YF-12As were prototypes of a planned interceptor aircraft based on a design that later evolved into the SR-71 reconnaissance aircraft. Dave Lux was the NASA SR-71 project manger for much of the decade of the 1990s, followed by Steve Schmidt. Developed for the USAF as reconnaissance aircraft more than 30 years ago, SR-71s are still the world's fastest and highest-flying production aircraft. The aircraft can fly at speeds of more than 2,200 miles per hour (Mach 3+, or more than three times the speed of sound) and at altitudes of over 85,000 feet. The Lockheed Skunk Works (now Lockheed Martin) built the original SR-71 aircraft. Each aircraft is 107.4 feet long, has a wingspan of 55.6 feet, and is 18.5 feet high (from the ground to the top of the rudders, when parked). Gross takeoff weight is about 140,000 pounds, including a possible fuel weight of 80,280 pounds. The airframes are built almost entirely of titanium and titanium alloys to withstand heat generated by sustained Mach 3 flight. Aerodynamic control surfaces consist of all-moving vertical tail surfaces, ailerons on the outer wings, and elevators on the trailing edges between the engine exhaust nozzles. The two SR-71s at Dryden have been assigned the following NASA tail numbers: NASA 844 (A model), military serial 61-7980 and NASA 831 (B model), military serial 61-7956. From 1990 through 1994, Dryden also had another 'A' model, NASA 832, military serial 61-7971. This aircraft was returned to the USAF inventory and was the first aircraft reactivated for USAF reconnaissance purposes in 1995. It has since returned to Dryden along with SR-71A 61-7967.

  2. SR-71B - Mach 3 Trainer in Flight at Sunset

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The setting sun peeks beneath a SR-71B Blackbird, silhouetted against the orange hues of the western sky on a 1995 flight from at NASA's Dryden Flight Research Center, Edwards, California. Two SR-71 aircraft have been used by NASA as testbeds for high-speed and high-altitude aeronautical research. The aircraft, an SR-71A and an SR-71B pilot trainer aircraft, have been based here at NASA's Dryden Flight Research Center, Edwards, California. They were transferred to NASA after the U.S. Air Force program was cancelled. As research platforms, the aircraft can cruise at Mach 3 for more than one hour. For thermal experiments, this can produce heat soak temperatures of over 600 degrees Fahrenheit (F). This operating environment makes these aircraft excellent platforms to carry out research and experiments in a variety of areas -- aerodynamics, propulsion, structures, thermal protection materials, high-speed and high-temperature instrumentation, atmospheric studies, and sonic boom characterization. The SR-71 was used in a program to study ways of reducing sonic booms or over pressures that are heard on the ground, much like sharp thunderclaps, when an aircraft exceeds the speed of sound. Data from this Sonic Boom Mitigation Study could eventually lead to aircraft designs that would reduce the 'peak' overpressures of sonic booms and minimize the startling affect they produce on the ground. One of the first major experiments to be flown in the NASA SR-71 program was a laser air data collection system. It used laser light instead of air pressure to produce airspeed and attitude reference data, such as angle of attack and sideslip, which are normally obtained with small tubes and vanes extending into the airstream. One of Dryden's SR-71s was used for the Linear Aerospike Rocket Engine, or LASRE Experiment. Another earlier project consisted of a series of flights using the SR-71 as a science camera platform for NASA's Jet Propulsion Laboratory in Pasadena, California. An upward-looking ultraviolet video camera placed in the SR-71's nosebay studied a variety of celestial objects in wavelengths that are blocked to ground-based astronomers. Earlier in its history, Dryden had a decade of past experience at sustained speeds above Mach 3. Two YF-12A aircraft and an SR-71 designated as a YF-12C were flown at the center between December 1969 and November 1979 in a joint NASA/USAF program to learn more about the capabilities and limitations of high-speed, high-altitude flight. The YF-12As were prototypes of a planned interceptor aircraft based on a design that later evolved into the SR-71 reconnaissance aircraft. Dave Lux was the NASA SR-71 project manger for much of the decade of the 1990s, followed by Steve Schmidt. Developed for the USAF as reconnaissance aircraft more than 30 years ago, SR-71s are still the world's fastest and highest-flying production aircraft. The aircraft can fly at speeds of more than 2,200 miles per hour (Mach 3+, or more than three times the speed of sound) and at altitudes of over 85,000 feet. The Lockheed Skunk Works (now Lockheed Martin) built the original SR-71 aircraft. Each aircraft is 107.4 feet long, has a wingspan of 55.6 feet, and is 18.5 feet high (from the ground to the top of the rudders, when parked). Gross takeoff weight is about 140,000 pounds, including a possible fuel weight of 80,280 pounds. The airframes are built almost entirely of titanium and titanium alloys to withstand heat generated by sustained Mach 3 flight. Aerodynamic control surfaces consist of all-moving vertical tail surfaces, ailerons on the outer wings, and elevators on the trailing edges between the engine exhaust nozzles. The two SR-71s at Dryden have been assigned the following NASA tail numbers: NASA 844 (A model), military serial 61-7980 and NASA 831 (B model), military serial 61-7956. From 1990 through 1994, Dryden also had another 'A' model, NASA 832, military serial 61-7971. This aircraft was returned to the USAF inventory and was the first aircraft reactivated for USAF reconnaissance purposes in 1995. It has since returned to Dryden along with SR-71A 61-7967.

  3. SR-71 Tail #844 Landing at Edwards Air Force Base

    NASA Technical Reports Server (NTRS)

    1996-01-01

    With distinctive heat waves trailing behind its engines, NASA Dryden Flight Research Center's SR-71A, tail number 844, lands at the Edwards AFB runway after a 1996 flight. Two SR-71 aircraft have been used by NASA as testbeds for high-speed and high-altitude aeronautical research. The aircraft, an SR-71A and an SR-71B pilot trainer aircraft, have been based here at NASA's Dryden Flight Research Center, Edwards, California. They were transferred to NASA after the U.S. Air Force program was cancelled. As research platforms, the aircraft can cruise at Mach 3 for more than one hour. For thermal experiments, this can produce heat soak temperatures of over 600 degrees Fahrenheit (F). This operating environment makes these aircraft excellent platforms to carry out research and experiments in a variety of areas -- aerodynamics, propulsion, structures, thermal protection materials, high-speed and high-temperature instrumentation, atmospheric studies, and sonic boom characterization. The SR-71 was used in a program to study ways of reducing sonic booms or over pressures that are heard on the ground, much like sharp thunderclaps, when an aircraft exceeds the speed of sound. Data from this Sonic Boom Mitigation Study could eventually lead to aircraft designs that would reduce the 'peak' overpressures of sonic booms and minimize the startling affect they produce on the ground. One of the first major experiments to be flown in the NASA SR-71 program was a laser air data collection system. It used laser light instead of air pressure to produce airspeed and attitude reference data, such as angle of attack and sideslip, which are normally obtained with small tubes and vanes extending into the airstream. One of Dryden's SR-71s was used for the Linear Aerospike Rocket Engine, or LASRE Experiment. Another earlier project consisted of a series of flights using the SR-71 as a science camera platform for NASA's Jet Propulsion Laboratory in Pasadena, California. An upward-looking ultraviolet video camera placed in the SR-71's nosebay studied a variety of celestial objects in wavelengths that are blocked to ground-based astronomers. Earlier in its history, Dryden had a decade of past experience at sustained speeds above Mach 3. Two YF-12A aircraft and an SR-71 designated as a YF-12C were flown at the center between December 1969 and November 1979 in a joint NASA/USAF program to learn more about the capabilities and limitations of high-speed, high-altitude flight. The YF-12As were prototypes of a planned interceptor aircraft based on a design that later evolved into the SR-71 reconnaissance aircraft. Dave Lux was the NASA SR-71 project manger for much of the decade of the 1990s, followed by Steve Schmidt. Developed for the USAF as reconnaissance aircraft more than 30 years ago, SR-71s are still the world's fastest and highest-flying production aircraft. The aircraft can fly at speeds of more than 2,200 miles per hour (Mach 3+, or more than three times the speed of sound) and at altitudes of over 85,000 feet. The Lockheed Skunk Works (now Lockheed Martin) built the original SR-71 aircraft. Each aircraft is 107.4 feet long, has a wingspan of 55.6 feet, and is 18.5 feet high (from the ground to the top of the rudders, when parked). Gross takeoff weight is about 140,000 pounds, including a possible fuel weight of 80,280 pounds. The airframes are built almost entirely of titanium and titanium alloys to withstand heat generated by sustained Mach 3 flight. Aerodynamic control surfaces consist of all-moving vertical tail surfaces, ailerons on the outer wings, and elevators on the trailing edges between the engine exhaust nozzles. The two SR-71s at Dryden have been assigned the following NASA tail numbers: NASA 844 (A model), military serial 61-7980 and NASA 831 (B model), military serial 61-7956. From 1990 through 1994, Dryden also had another 'A' model, NASA 832, military serial 61-7971. This aircraft was returned to the USAF inventory and was the first aircraft reactivated for USAF reconnaissance purposes in 1995. It has since returned to Dryden along with SR-71A 61-7967.

  4. SR-71A - in Flight View from Tanker during an Airborne Refueling

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This photo shows a USAF tanker aircraft Boom Operator's or 'Boomer's' view of NASA Dryden Flight Research Center's SR-71A, tail number 844, following air refueling during a 1997 flight. Two SR-71 aircraft have been used by NASA as testbeds for high-speed and high-altitude aeronautical research. The aircraft, an SR-71A and an SR-71B pilot trainer aircraft, have been based here at NASA's Dryden Flight Research Center, Edwards, California. They were transferred to NASA after the U.S. Air Force program was cancelled. As research platforms, the aircraft can cruise at Mach 3 for more than one hour. For thermal experiments, this can produce heat soak temperatures of over 600 degrees Fahrenheit (F). This operating environment makes these aircraft excellent platforms to carry out research and experiments in a variety of areas -- aerodynamics, propulsion, structures, thermal protection materials, high-speed and high-temperature instrumentation, atmospheric studies, and sonic boom characterization. The SR-71 was used in a program to study ways of reducing sonic booms or over pressures that are heard on the ground, much like sharp thunderclaps, when an aircraft exceeds the speed of sound. Data from this Sonic Boom Mitigation Study could eventually lead to aircraft designs that would reduce the 'peak' overpressures of sonic booms and minimize the startling affect they produce on the ground. One of the first major experiments to be flown in the NASA SR-71 program was a laser air data collection system. It used laser light instead of air pressure to produce airspeed and attitude reference data, such as angle of attack and sideslip, which are normally obtained with small tubes and vanes extending into the airstream. One of Dryden's SR-71s was used for the Linear Aerospike Rocket Engine, or LASRE Experiment. Another earlier project consisted of a series of flights using the SR-71 as a science camera platform for NASA's Jet Propulsion Laboratory in Pasadena, California. An upward-looking ultraviolet video camera placed in the SR-71's nosebay studied a variety of celestial objects in wavelengths that are blocked to ground-based astronomers. Earlier in its history, Dryden had a decade of past experience at sustained speeds above Mach 3. Two YF-12A aircraft and an SR-71 designated as a YF-12C were flown at the center between December 1969 and November 1979 in a joint NASA/USAF program to learn more about the capabilities and limitations of high-speed, high-altitude flight. The YF-12As were prototypes of a planned interceptor aircraft based on a design that later evolved into the SR-71 reconnaissance aircraft. Dave Lux was the NASA SR-71 project manger for much of the decade of the 1990s, followed by Steve Schmidt. Developed for the USAF as reconnaissance aircraft more than 30 years ago, SR-71s are still the world's fastest and highest-flying production aircraft. The aircraft can fly at speeds of more than 2,200 miles per hour (Mach 3+, or more than three times the speed of sound) and at altitudes of over 85,000 feet. The Lockheed Skunk Works (now Lockheed Martin) built the original SR-71 aircraft. Each aircraft is 107.4 feet long, has a wingspan of 55.6 feet, and is 18.5 feet high (from the ground to the top of the rudders, when parked). Gross takeoff weight is about 140,000 pounds, including a possible fuel weight of 80,280 pounds. The airframes are built almost entirely of titanium and titanium alloys to withstand heat generated by sustained Mach 3 flight. Aerodynamic control surfaces consist of all-moving vertical tail surfaces, ailerons on the outer wings, and elevators on the trailing edges between the engine exhaust nozzles. The two SR-71s at Dryden have been assigned the following NASA tail numbers: NASA 844 (A model), military serial 61-7980 and NASA 831 (B model), military serial 61-7956. From 1990 through 1994, Dryden also had another 'A' model, NASA 832, military serial 61-7971. This aircraft was returned to the USAF inventory and was the first aircraft reactivated for USAF reconnaissance purposes in 1995. It has since returned to Dryden along with SR-71A 61-7967.

  5. SR-71A - in Flight over Southern Sierra Nevada Mountains

    NASA Technical Reports Server (NTRS)

    1997-01-01

    NASA Dryden Flight Research Center's SR-71A, tail number 844, banks away over the Sierra Nevada mountains after air refueling from a USAF tanker during a 1997 flight. Two SR-71 aircraft have been used by NASA as testbeds for high-speed and high-altitude aeronautical research. The aircraft, an SR-71A and an SR-71B pilot trainer aircraft, have been based here at NASA's Dryden Flight Research Center, Edwards, California. They were transferred to NASA after the U.S. Air Force program was cancelled. As research platforms, the aircraft can cruise at Mach 3 for more than one hour. For thermal experiments, this can produce heat soak temperatures of over 600 degrees Fahrenheit (F). This operating environment makes these aircraft excellent platforms to carry out research and experiments in a variety of areas -- aerodynamics, propulsion, structures, thermal protection materials, high-speed and high-temperature instrumentation, atmospheric studies, and sonic boom characterization. The SR-71 was used in a program to study ways of reducing sonic booms or over pressures that are heard on the ground, much like sharp thunderclaps, when an aircraft exceeds the speed of sound. Data from this Sonic Boom Mitigation Study could eventually lead to aircraft designs that would reduce the 'peak' overpressures of sonic booms and minimize the startling affect they produce on the ground. One of the first major experiments to be flown in the NASA SR-71 program was a laser air data collection system. It used laser light instead of air pressure to produce airspeed and attitude reference data, such as angle of attack and sideslip, which are normally obtained with small tubes and vanes extending into the airstream. One of Dryden's SR-71s was used for the Linear Aerospike Rocket Engine, or LASRE Experiment. Another earlier project consisted of a series of flights using the SR-71 as a science camera platform for NASA's Jet Propulsion Laboratory in Pasadena, California. An upward-looking ultraviolet video camera placed in the SR-71's nosebay studied a variety of celestial objects in wavelengths that are blocked to ground-based astronomers. Earlier in its history, Dryden had a decade of past experience at sustained speeds above Mach 3. Two YF-12A aircraft and an SR-71 designated as a YF-12C were flown at the center between December 1969 and November 1979 in a joint NASA/USAF program to learn more about the capabilities and limitations of high-speed, high-altitude flight. The YF-12As were prototypes of a planned interceptor aircraft based on a design that later evolved into the SR-71 reconnaissance aircraft. Dave Lux was the NASA SR-71 project manger for much of the decade of the 1990s, followed by Steve Schmidt. Developed for the USAF as reconnaissance aircraft more than 30 years ago, SR-71s are still the world's fastest and highest-flying production aircraft. The aircraft can fly at speeds of more than 2,200 miles per hour (Mach 3+, or more than three times the speed of sound) and at altitudes of over 85,000 feet. The Lockheed Skunk Works (now Lockheed Martin) built the original SR-71 aircraft. Each aircraft is 107.4 feet long, has a wingspan of 55.6 feet, and is 18.5 feet high (from the ground to the top of the rudders, when parked). Gross takeoff weight is about 140,000 pounds, including a possible fuel weight of 80,280 pounds. The airframes are built almost entirely of titanium and titanium alloys to withstand heat generated by sustained Mach 3 flight. Aerodynamic control surfaces consist of all-moving vertical tail surfaces, ailerons on the outer wings, and elevators on the trailing edges between the engine exhaust nozzles. The two SR-71s at Dryden have been assigned the following NASA tail numbers: NASA 844 (A model), military serial 61-7980 and NASA 831 (B model), military serial 61-7956. From 1990 through 1994, Dryden also had another 'A' model, NASA 832, military serial 61-7971. This aircraft was returned to the USAF inventory and was the first aircraft reactivated for USAF reconnaissance purposes in 1995. It has since returned to Dryden along with SR-71A 61-7967.

  6. SR-71B - in Flight - View from Air Force Tanker

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This look-down view shows NASA 831, an SR-71B flown by Dryden Flight Research Center, Edwards, California, as it cruises over the Mojave Desert. The photo was from an Air Force refueling tanker taken on a 1997 mission. Two SR-71 aircraft have been used by NASA as testbeds for high-speed and high-altitude aeronautical research. The aircraft, an SR-71A and an SR-71B pilot trainer aircraft, have been based here at NASA's Dryden Flight Research Center, Edwards, California. They were transferred to NASA after the U.S. Air Force program was cancelled. As research platforms, the aircraft can cruise at Mach 3 for more than one hour. For thermal experiments, this can produce heat soak temperatures of over 600 degrees Fahrenheit (F). This operating environment makes these aircraft excellent platforms to carry out research and experiments in a variety of areas -- aerodynamics, propulsion, structures, thermal protection materials, high-speed and high-temperature instrumentation, atmospheric studies, and sonic boom characterization. The SR-71 was used in a program to study ways of reducing sonic booms or over pressures that are heard on the ground, much like sharp thunderclaps, when an aircraft exceeds the speed of sound. Data from this Sonic Boom Mitigation Study could eventually lead to aircraft designs that would reduce the 'peak' overpressures of sonic booms and minimize the startling affect they produce on the ground. One of the first major experiments to be flown in the NASA SR-71 program was a laser air data collection system. It used laser light instead of air pressure to produce airspeed and attitude reference data, such as angle of attack and sideslip, which are normally obtained with small tubes and vanes extending into the airstream. One of Dryden's SR-71s was used for the Linear Aerospike Rocket Engine, or LASRE Experiment. Another earlier project consisted of a series of flights using the SR-71 as a science camera platform for NASA's Jet Propulsion Laboratory in Pasadena, California. An upward-looking ultraviolet video camera placed in the SR-71's nosebay studied a variety of celestial objects in wavelengths that are blocked to ground-based astronomers. Earlier in its history, Dryden had a decade of past experience at sustained speeds above Mach 3. Two YF-12A aircraft and an SR-71 designated as a YF-12C were flown at the center between December 1969 and November 1979 in a joint NASA/USAF program to learn more about the capabilities and limitations of high-speed, high-altitude flight. The YF-12As were prototypes of a planned interceptor aircraft based on a design that later evolved into the SR-71 reconnaissance aircraft. Dave Lux was the NASA SR-71 project manger for much of the decade of the 1990s, followed by Steve Schmidt. Developed for the USAF as reconnaissance aircraft more than 30 years ago, SR-71s are still the world's fastest and highest-flying production aircraft. The aircraft can fly at speeds of more than 2,200 miles per hour (Mach 3+, or more than three times the speed of sound) and at altitudes of over 85,000 feet. The Lockheed Skunk Works (now Lockheed Martin) built the original SR-71 aircraft. Each aircraft is 107.4 feet long, has a wingspan of 55.6 feet, and is 18.5 feet high (from the ground to the top of the rudders, when parked). Gross takeoff weight is about 140,000 pounds, including a possible fuel weight of 80,280 pounds. The airframes are built almost entirely of titanium and titanium alloys to withstand heat generated by sustained Mach 3 flight. Aerodynamic control surfaces consist of all-moving vertical tail surfaces, ailerons on the outer wings, and elevators on the trailing edges between the engine exhaust nozzles. The two SR-71s at Dryden have been assigned the following NASA tail numbers: NASA 844 (A model), military serial 61-7980 and NASA 831 (B model), military serial 61-7956. From 1990 through 1994, Dryden also had another 'A' model, NASA 832, military serial 61-7971. This aircraft was returned to the USAF inventory and was the first aircraft reactivated for USAF reconnaissance purposes in 1995. It has since returned to Dryden along with SR-71A 61-7967.

  7. SR-71 Mid-air Refueling with KC-135 Tanker

    NASA Technical Reports Server (NTRS)

    1995-01-01

    NASA Dryden Flight Research Center's SR-71B, tail number 831, is seen here receiving air refueling from a USAF tanker during a July, 1995 flight. Two SR-71 aircraft have been used by NASA as testbeds for high-speed and high-altitude aeronautical research. The aircraft, an SR-71A and an SR-71B pilot trainer aircraft, have been based here at NASA's Dryden Flight Research Center, Edwards, California. They were transferred to NASA after the U.S. Air Force program was cancelled. As research platforms, the aircraft can cruise at Mach 3 for more than one hour. For thermal experiments, this can produce heat soak temperatures of over 600 degrees Fahrenheit (F). This operating environment makes these aircraft excellent platforms to carry out research and experiments in a variety of areas -- aerodynamics, propulsion, structures, thermal protection materials, high-speed and high-temperature instrumentation, atmospheric studies, and sonic boom characterization. The SR-71 was used in a program to study ways of reducing sonic booms or over pressures that are heard on the ground, much like sharp thunderclaps, when an aircraft exceeds the speed of sound. Data from this Sonic Boom Mitigation Study could eventually lead to aircraft designs that would reduce the 'peak' overpressures of sonic booms and minimize the startling affect they produce on the ground. One of the first major experiments to be flown in the NASA SR-71 program was a laser air data collection system. It used laser light instead of air pressure to produce airspeed and attitude reference data, such as angle of attack and sideslip, which are normally obtained with small tubes and vanes extending into the airstream. One of Dryden's SR-71s was used for the Linear Aerospike Rocket Engine, or LASRE Experiment. Another earlier project consisted of a series of flights using the SR-71 as a science camera platform for NASA's Jet Propulsion Laboratory in Pasadena, California. An upward-looking ultraviolet video camera placed in the SR-71's nosebay studied a variety of celestial objects in wavelengths that are blocked to ground-based astronomers. Earlier in its history, Dryden had a decade of past experience at sustained speeds above Mach 3. Two YF-12A aircraft and an SR-71 designated as a YF-12C were flown at the center between December 1969 and November 1979 in a joint NASA/USAF program to learn more about the capabilities and limitations of high-speed, high-altitude flight. The YF-12As were prototypes of a planned interceptor aircraft based on a design that later evolved into the SR-71 reconnaissance aircraft. Dave Lux was the NASA SR-71 project manger for much of the decade of the 1990s, followed by Steve Schmidt. Developed for the USAF as reconnaissance aircraft more than 30 years ago, SR-71s are still the world's fastest and highest-flying production aircraft. The aircraft can fly at speeds of more than 2,200 miles per hour (Mach 3+, or more than three times the speed of sound) and at altitudes of over 85,000 feet. The Lockheed Skunk Works (now Lockheed Martin) built the original SR-71 aircraft. Each aircraft is 107.4 feet long, has a wingspan of 55.6 feet, and is 18.5 feet high (from the ground to the top of the rudders, when parked). Gross takeoff weight is about 140,000 pounds, including a possible fuel weight of 80,280 pounds. The airframes are built almost entirely of titanium and titanium alloys to withstand heat generated by sustained Mach 3 flight. Aerodynamic control surfaces consist of all-moving vertical tail surfaces, ailerons on the outer wings, and elevators on the trailing edges between the engine exhaust nozzles. The two SR-71s at Dryden have been assigned the following NASA tail numbers: NASA 844 (A model), military serial 61-7980 and NASA 831 (B model), military serial 61-7956. From 1990 through 1994, Dryden also had another 'A' model, NASA 832, military serial 61-7971. This aircraft was returned to the USAF inventory and was the first aircraft reactivated for USAF reconnaissance purposes in 1995. It has since returned to Dryden along with SR-71A 61-7967.

  8. SR-71 Ship #1 on Ramp

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This look-down, front view of NASA's SR-71A aircraft shows the Blackbird on the ramp at the Dryden Flight Research Center, Edwards, California. Two SR-71 aircraft have been used by NASA as testbeds for high-speed and high-altitude aeronautical research. The aircraft, an SR-71A and an SR-71B pilot trainer aircraft, have been based here at NASA's Dryden Flight Research Center, Edwards, California. They were transferred to NASA after the U.S. Air Force program was cancelled. As research platforms, the aircraft can cruise at Mach 3 for more than one hour. For thermal experiments, this can produce heat soak temperatures of over 600 degrees Fahrenheit (F). This operating environment makes these aircraft excellent platforms to carry out research and experiments in a variety of areas -- aerodynamics, propulsion, structures, thermal protection materials, high-speed and high-temperature instrumentation, atmospheric studies, and sonic boom characterization. The SR-71 was used in a program to study ways of reducing sonic booms or over pressures that are heard on the ground, much like sharp thunderclaps, when an aircraft exceeds the speed of sound. Data from this Sonic Boom Mitigation Study could eventually lead to aircraft designs that would reduce the 'peak' overpressures of sonic booms and minimize the startling affect they produce on the ground. One of the first major experiments to be flown in the NASA SR-71 program was a laser air data collection system. It used laser light instead of air pressure to produce airspeed and attitude reference data, such as angle of attack and sideslip, which are normally obtained with small tubes and vanes extending into the airstream. One of Dryden's SR-71s was used for the Linear Aerospike Rocket Engine, or LASRE Experiment. Another earlier project consisted of a series of flights using the SR-71 as a science camera platform for NASA's Jet Propulsion Laboratory in Pasadena, California. An upward-looking ultraviolet video camera placed in the SR-71's nosebay studied a variety of celestial objects in wavelengths that are blocked to ground-based astronomers. Earlier in its history, Dryden had a decade of past experience at sustained speeds above Mach 3. Two YF-12A aircraft and an SR-71 designated as a YF-12C were flown at the center between December 1969 and November 1979 in a joint NASA/USAF program to learn more about the capabilities and limitations of high-speed, high-altitude flight. The YF-12As were prototypes of a planned interceptor aircraft based on a design that later evolved into the SR-71 reconnaissance aircraft. Dave Lux was the NASA SR-71 project manger for much of the decade of the 1990s, followed by Steve Schmidt. Developed for the USAF as reconnaissance aircraft more than 30 years ago, SR-71s are still the world's fastest and highest-flying production aircraft. The aircraft can fly at speeds of more than 2,200 miles per hour (Mach 3+, or more than three times the speed of sound) and at altitudes of over 85,000 feet. The Lockheed Skunk Works (now Lockheed Martin) built the original SR-71 aircraft. Each aircraft is 107.4 feet long, has a wingspan of 55.6 feet, and is 18.5 feet high (from the ground to the top of the rudders, when parked). Gross takeoff weight is about 140,000 pounds, including a possible fuel weight of 80,280 pounds. The airframes are built almost entirely of titanium and titanium alloys to withstand heat generated by sustained Mach 3 flight. Aerodynamic control surfaces consist of all-moving vertical tail surfaces, ailerons on the outer wings, and elevators on the trailing edges between the engine exhaust nozzles. The two SR-71s at Dryden have been assigned the following NASA tail numbers: NASA 844 (A model), military serial 61-7980 and NASA 831 (B model), military serial 61-7956. From 1990 through 1994, Dryden also had another 'A' model, NASA 832, military serial 61-7971. This aircraft was returned to the USAF inventory and was the first aircraft reactivated for USAF reconnaissance purposes in 1995. It has since returned to Dryden along with SR-71A 61-7967.

  9. Historical Review of Uncommanded Lateral-Directional Motions at Transonic Conditions

    NASA Technical Reports Server (NTRS)

    Chambers, Joseph R.; Hall, Robert M.

    2003-01-01

    This paper presents the results of a survey of past experiences with uncommanded lateral-directional motions at transonic speeds during specific military aircraft programs. The effort was undertaken to provide qualitative and quantitative information on past airplane programs that might be of use to the participants in the joint NASA/Navy/Air Force Abrupt Wing Stall (AWS) Program. The AWS Program was initiated because of the experiences of the F/A-l8E/F development program, during which unexpected, severe wing-drop motions were encountered by preproduction aircraft at transonic conditions. These motions were judged to be significantly degrading to the primary mission requirements of the aircraft. Although the problem was subsequently solved for the production version of the F/A-l8E/F, a high-level review panel emphasized the poor understanding of such phenomena and issued a strong recommendation to: "Initiate a national research effort to thoroughly and systematically study the wing drop phenomena." A comprehensive, cooperative NASA/Navy/Air Force AWS Program was designed to respond to provide the required technology requirements. As part of the AWS Program, a work element was directed at a historical review of wing-drop experiences in past aircraft development programs at high subsonic and transonic speeds. In particular, information was requested regarding: specific aircraft configurations that exhibited uncommanded motions and the nature of the motions; geometric characteristics of the air- planes; flight conditions involved in occurrences; relevant data, including wind-tunnel, computational, and flight sources; figures of merit used for analyses; and approaches used to alleviate the problem. An attempt was also made to summarize some of the more important lessons learned from past experiences, and to recommend specific research efforts. In addition to providing technical information to assist the AWS research objectives, the study produced fundamental information regarding the historical challenge of uncommanded lateral-directional motions at transonic conditions and the associated aerodynamic phenomena.

  10. Historical Review of Uncommanded Lateral-Directional Motions At Transonic Conditions (Invited)

    NASA Technical Reports Server (NTRS)

    Chambers, Joseph R.; Hall, Robert M.

    2003-01-01

    This paper presents the results of a survey of past experiences with uncommanded lateral-directional motions at transonic speeds during specific military aircraft programs. The effort was undertaken to provide qualitative and quantitative information on past airplane programs that might be of use to the participants in the joint NASA/Navy/Air Force Abrupt Wing Stall (AWS) Program. The AWS Program was initiated because of the experiences of the F/A-18E/F development program, during which unexpected, severe wing-drop motions were encountered by preproduction aircraft at transonic conditions. These motions were judged to be significantly degrading to the primary mission requirements of the aircraft. Although the problem was subsequently solved for the production version of the F/A-l8E/F, a high-level review panel emphasized the poor understanding of such phenomena and issued a strong recommendation to: Initiate a national research effort to thoroughly and systematically study the wing drop phenomena. A comprehensive, cooperative NASA/Navy/Air Force AWS Program was designed to respond to provide the required technology requirements. As part of the AWS Program, a work element was directed at a historical review of wing-drop experiences in past aircraft development programs at high subsonic and transonic speeds. In particular, information was requested regarding: specific aircraft configurations that exhibited uncommanded motions and the nature of the motions; geometric characteristics of the air- planes; flight conditions involved in occurrences; relevant data, including wind-tunnel, computational, and flight sources; figures of merit used for analyses; and approaches used to alleviate the problem. An attempt was also made to summarize some of the more important lessons learned from past experiences, and to recommend specific research efforts. In addition to providing technical information to assist the AWS research objectives, the study produced fundamental information regarding the historical challenge of uncommanded lateral-directional motions at transonic conditions and the associated aerodynamic phenomena.

  11. Supersonic Combustion in Air-Breathing Propulsion Systems for Hypersonic Flight

    NASA Astrophysics Data System (ADS)

    Urzay, Javier

    2018-01-01

    Great efforts have been dedicated during the last decades to the research and development of hypersonic aircrafts that can fly at several times the speed of sound. These aerospace vehicles have revolutionary applications in national security as advanced hypersonic weapons, in space exploration as reusable stages for access to low Earth orbit, and in commercial aviation as fast long-range methods for air transportation of passengers around the globe. This review addresses the topic of supersonic combustion, which represents the central physical process that enables scramjet hypersonic propulsion systems to accelerate aircrafts to ultra-high speeds. The description focuses on recent experimental flights and ground-based research programs and highlights associated fundamental flow physics, subgrid-scale model development, and full-system numerical simulations.

  12. GaAs/Ge Solar Powered Aircraft

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony J.; Scheiman, David A.; Brinker, David J.

    1998-01-01

    Unmanned Aerial Vehicles (UAV) are being proposed for many applications for many applications including surveillance, mapping and atmospheric studies. These applications require a lightweight, low speed, medium to long duration aircraft. Due to the weight, speed, and altitude constraints imposed on such an aircraft, solar array generated electric power can be a viable alternative to air-breathing engines for certain missions. Development of such an aircraft is currently being funded under the Environmental Research Aircraft and Sensor Technology (ERAST) program. NASA Lewis Research Center (LeRC) has built a Solar Electric Airplane to demonstrate UAV technology. This aircraft utilizes high efficiency Applied Solar Energy Corporation (ASEC) GaAs/Ge space solar cells. The cells have been provided by the Air Force through the ManTech Office.

  13. Study of the application of advanced technologies to long-range transport aircraft. Volume 2: Research and development requirements

    NASA Technical Reports Server (NTRS)

    Lange, R. H.; Sturgeon, R. F.; Adams, W. E.; Bradley, E. S.; Cahill, J. F.; Eudaily, R. R.; Hancock, J. P.; Moore, J. W.

    1972-01-01

    Investigations were conducted to evaluate the relative benefits attainable through the exploitation of advanced technologies and to identify future research and development efforts required to permit the application of selected technologies to transport aircraft entering commercial operation in 1985. Results show that technology advances, particularly in the areas of composite materials, supercritical aerodynamics, and active control systems, will permit the development of long-range, high-payload commercial transports operating at high-subsonic speeds with direct operating costs lower than those of current aircraft. These advanced transports also achieve lower noise levels and lower engine pollutant emissions than current transports. Research and development efforts, including analytical investigations, laboratory test programs, and flight test programs, are required in essentially all technology areas to achieve the potential technology benefits.

  14. Quantitative Measurement of Vocal Fold Vibration in Male Radio Performers and Healthy Controls Using High-Speed Videoendoscopy

    PubMed Central

    Warhurst, Samantha; McCabe, Patricia; Heard, Rob; Yiu, Edwin; Wang, Gaowu; Madill, Catherine

    2014-01-01

    Purpose Acoustic and perceptual studies show a number of differences between the voices of radio performers and controls. Despite this, the vocal fold kinematics underlying these differences are largely unknown. Using high-speed videoendoscopy, this study sought to determine whether the vocal vibration features of radio performers differed from those of non-performing controls. Method Using high-speed videoendoscopy, recordings of a mid-phonatory/i/ in 16 male radio performers (aged 25–52 years) and 16 age-matched controls (aged 25–52 years) were collected. Videos were extracted and analysed semi-automatically using High-Speed Video Program, obtaining measures of fundamental frequency (f0), open quotient and speed quotient. Post-hoc analyses of sound pressure level (SPL) were also performed (n = 19). Pearson's correlations were calculated between SPL and both speed and open quotients. Results Male radio performers had a significantly higher speed quotient than their matched controls (t = 3.308, p = 0.005). No significant differences were found for f0 or open quotient. No significant correlation was found between either open or speed quotient with SPL. Discussion A higher speed quotient in male radio performers suggests that their vocal fold vibration was characterised by a higher ratio of glottal opening to closing times than controls. This result may explain findings of better voice quality, higher equivalent sound level and greater spectral tilt seen in previous research. Open quotient was not significantly different between groups, indicating that the durations of complete vocal fold closure were not different between the radio performers and controls. Further validation of these results is required to determine the aetiology of the higher speed quotient result and its implications for voice training and clinical management in performers. PMID:24971625

  15. Applied Computational Fluid Dynamics at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Holst, Terry L.; Kwak, Dochan (Technical Monitor)

    1994-01-01

    The field of Computational Fluid Dynamics (CFD) has advanced to the point where it can now be used for many applications in fluid mechanics research and aerospace vehicle design. A few applications being explored at NASA Ames Research Center will be presented and discussed. The examples presented will range in speed from hypersonic to low speed incompressible flow applications. Most of the results will be from numerical solutions of the Navier-Stokes or Euler equations in three space dimensions for general geometry applications. Computational results will be used to highlight the presentation as appropriate. Advances in computational facilities including those associated with NASA's CAS (Computational Aerosciences) Project of the Federal HPCC (High Performance Computing and Communications) Program will be discussed. Finally, opportunities for future research will be presented and discussed. All material will be taken from non-sensitive, previously-published and widely-disseminated work.

  16. High speed jet noise research at NASA Lewis

    NASA Astrophysics Data System (ADS)

    Krejsa, Eugene A.; Cooper, B. A.; Kim, C. M.; Khavaran, Abbas

    1992-04-01

    The source noise portion of the High Speed Research Program at NASA LeRC is focused on jet noise reduction. A number of jet noise reduction concepts are being investigated. These include two concepts, the Pratt & Whitney ejector suppressor nozzle and the General Electric (GE) 2D-CD mixer ejector nozzle, that rely on ejectors to entrain significant amounts of ambient air to mix with the engine exhaust to reduce the final exhaust velocity. Another concept, the GE 'Flade Nozzle' uses fan bypass air at takeoff to reduce the mixed exhaust velocity and to create a fluid shield around a mixer suppressor. Additional concepts are being investigated at Georgia Tech Research Institute and at NASA LeRC. These will be discussed in more detail in later figures. Analytical methods for jet noise prediction are also being developed. Efforts in this area include upgrades to the GE MGB jet mixing noise prediction procedure, evaluation of shock noise prediction procedures, and efforts to predict jet noise directly from the unsteady Navier-Stokes equation.

  17. High speed jet noise research at NASA Lewis

    NASA Technical Reports Server (NTRS)

    Krejsa, Eugene A.; Cooper, B. A.; Kim, C. M.; Khavaran, Abbas

    1992-01-01

    The source noise portion of the High Speed Research Program at NASA LeRC is focused on jet noise reduction. A number of jet noise reduction concepts are being investigated. These include two concepts, the Pratt & Whitney ejector suppressor nozzle and the General Electric (GE) 2D-CD mixer ejector nozzle, that rely on ejectors to entrain significant amounts of ambient air to mix with the engine exhaust to reduce the final exhaust velocity. Another concept, the GE 'Flade Nozzle' uses fan bypass air at takeoff to reduce the mixed exhaust velocity and to create a fluid shield around a mixer suppressor. Additional concepts are being investigated at Georgia Tech Research Institute and at NASA LeRC. These will be discussed in more detail in later figures. Analytical methods for jet noise prediction are also being developed. Efforts in this area include upgrades to the GE MGB jet mixing noise prediction procedure, evaluation of shock noise prediction procedures, and efforts to predict jet noise directly from the unsteady Navier-Stokes equation.

  18. Application of Multi-Frequency Modulation (MFM) for High-Speed Data Communications to a Voice Frequency Channel

    DTIC Science & Technology

    1990-06-01

    reader is cautioned that computer programs developed in this research may not have been exercised for all cases of interest. While every effort has been...Source of Funding Numbers _. Program Element No Project No I Task No I Work Unit Accession No 11 Title (Include security classflcation) APPLICATION OF...formats. Previous applications of these encoding formats were on industry standard computers (PC) over a 16-20 klIz channel. This report discusses the

  19. Turbulent Flame Speeds and NOx Kinetics of HHC Fuels with Contaminants and High Dilution Levels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, Eric; Krejci, Michael; Mathieu, Olivier

    2014-01-24

    This final report documents the technical results of the 3-year project entitled, “Turbulent Flame Speeds and NOx Kinetics of HHC Fuels with Contaminants and High Dilution Levels,” funded under the NETL of DOE. The research was conducted under six main tasks: 1) program management and planning; 2) turbulent flame speed measurements of syngas mixtures; 3) laminar flame speed measurements with diluents; 4) NOx mechanism validation experiments; 5) fundamental NOx kinetics; and 6) the effect of impurities on NOx kinetics. Experiments were performed using primary constant-volume vessels for laminar and turbulent flame speeds and shock tubes for ignition delay times andmore » species concentrations. In addition to the existing shock- tube and flame speed facilities, a new capability in measuring turbulent flame speeds was developed under this grant. Other highlights include an improved NOx kinetics mechanism; a database on syngas blends for real fuel mixtures with and without impurities; an improved hydrogen sulfide mechanism; an improved ammonia kintics mechanism; laminar flame speed data at high pressures with water addition; and the development of an inexpensive absorption spectroscopy diagnostic for shock-tube measurements of OH time histories. The Project Results for this work can be divided into 13 major sections, which form the basis of this report. These 13 topics are divided into the five areas: 1) laminar flame speeds; 2) Nitrogen Oxide and Ammonia chemical kinetics; 3) syngas impurities chemical kinetics; 4) turbulent flame speeds; and 5) OH absorption measurements for chemical kinetics.« less

  20. SR-71 - In-flight Close-up from Tanker

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This extreme close-up of the SR-71B operated by NASA's Dryden Flight Research Center, Edwards, California, gives an unusual view of the twin cockpit of Dryden's SR-71B, NASA 831, and its helmeted crew members. The photo was taken from an Air Force tanker refueling the Blackbird during a 1994 flight. The Mach 3 Blackbird aircraft were loaned to NASA by the U.S. Air Force for high-speed, high-altitude aeronautical research. Capable of flying more than 2200 mph and at altitudes of over 85,000 feet, they are excellent platforms for research and experiments in aerodynamics, propulsion, structures, thermal protection materials, atmospheric studies, and sonic boom characterization. Two SR-71 aircraft have been used by NASA as testbeds for high-speed and high-altitude aeronautical research. The aircraft, an SR-71A and an SR-71B pilot trainer aircraft, have been based here at NASA's Dryden Flight Research Center, Edwards, California. They were transferred to NASA after the U.S. Air Force program was cancelled. As research platforms, the aircraft can cruise at Mach 3 for more than one hour. For thermal experiments, this can produce heat soak temperatures of over 600 degrees Fahrenheit (F). This operating environment makes these aircraft excellent platforms to carry out research and experiments in a variety of areas -- aerodynamics, propulsion, structures, thermal protection materials, high-speed and high-temperature instrumentation, atmospheric studies, and sonic boom characterization. The SR-71 was used in a program to study ways of reducing sonic booms or over pressures that are heard on the ground, much like sharp thunderclaps, when an aircraft exceeds the speed of sound. Data from this Sonic Boom Mitigation Study could eventually lead to aircraft designs that would reduce the 'peak' overpressures of sonic booms and minimize the startling affect they produce on the ground. One of the first major experiments to be flown in the NASA SR-71 program was a laser air data collection system. It used laser light instead of air pressure to produce airspeed and attitude reference data, such as angle of attack and sideslip, which are normally obtained with small tubes and vanes extending into the airstream. One of Dryden's SR-71s was used for the Linear Aerospike Rocket Engine, or LASRE Experiment. Another earlier project consisted of a series of flights using the SR-71 as a science camera platform for NASA's Jet Propulsion Laboratory in Pasadena, California. An upward-looking ultraviolet video camera placed in the SR-71's nosebay studied a variety of celestial objects in wavelengths that are blocked to ground-based astronomers. Earlier in its history, Dryden had a decade of past experience at sustained speeds above Mach 3. Two YF-12A aircraft and an SR-71 designated as a YF-12C were flown at the center between December 1969 and November 1979 in a joint NASA/USAF program to learn more about the capabilities and limitations of high-speed, high-altitude flight. The YF-12As were prototypes of a planned interceptor aircraft based on a design that later evolved into the SR-71 reconnaissance aircraft. Dave Lux was the NASA SR-71 project manger for much of the decade of the 1990s, followed by Steve Schmidt. Developed for the USAF as reconnaissance aircraft more than 30 years ago, SR-71s are still the world's fastest and highest-flying production aircraft. The aircraft can fly at speeds of more than 2,200 miles per hour (Mach 3+, or more than three times the speed of sound) and at altitudes of over 85,000 feet. The Lockheed Skunk Works (now Lockheed Martin) built the original SR-71 aircraft. Each aircraft is 107.4 feet long, has a wingspan of 55.6 feet, and is 18.5 feet high (from the ground to the top of the rudders, when parked). Gross takeoff weight is about 140,000 pounds, including a possible fuel weight of 80,280 pounds. The airframes are built almost entirely of titanium and titanium alloys to withstand heat generated by sustained Mach 3 flight. Aerodynamic control surfaces consist of all-moving vertical tail surfaces, ailerons on the outer wings, and elevators on the trailing edges between the engine exhaust nozzles. The two SR-71s at Dryden have been assigned the following NASA tail numbers: NASA 844 (A model), military serial 61-7980 and NASA 831 (B model), military serial 61-7956. From 1990 through 1994, Dryden also had another 'A' model, NASA 832, military serial 61-7971. This aircraft was returned to the USAF inventory and was the first aircraft reactivated for USAF reconnaissance purposes in 1995. It has since returned to Dryden along with SR-71A 61-7967.

  1. Low-speed wind-tunnel investigation of the longitudinal characteristics of a large-scale variable wing-sweep fighter model in the high-lift configuration

    NASA Technical Reports Server (NTRS)

    Eckert, W. T.; Maki, R. L.

    1973-01-01

    The low-speed characteristics of a large-scale model of the U. S. Navy/Grumman F-14A aircraft were studied in tests conducted in the Ames Research Center 40- by 80-Foot Wind Tunnel. The primary purpose of the program was the determination of lift and stability levels and landing approach attitude of the aircraft in its high-lift configuration. Tests were conducted at wing angles of attack between minus 2 deg and 30 deg with zero yaw. Data were taken at Reynolds numbers ranging from 3.48 million to 9.64 million based on a wing mean aerodynamic chord of 7.36 ft. The model configuration was changed as required to show the effects of glove slat, wing slat leading-edge radius, cold flow ducting, flap deflection, direct lift control (spoilers), horizontal tail, speed brake, landing gear and missiles.

  2. Technology needs for high speed rotorcraft (3)

    NASA Technical Reports Server (NTRS)

    Detore, Jack; Conway, Scott

    1991-01-01

    The spectrum of vertical takeoff and landing (VTOL) type aircraft is examined to determine which aircraft are most likely to achieve high subsonic cruise speeds and have hover qualities similar to a helicopter. Two civil mission profiles are considered: a 600-n.mi. mission for a 15- and a 30-passenger payload. Applying current technology, only the 15- and 30-passenger tiltfold aircraft are capable of attaining the 450-knot design goal. The two tiltfold aircraft at 450 knots and a 30-passenger tiltrotor at 375 knots were further developed for the Task II technology analysis. A program called High-Speed Total Envelope Proprotor (HI-STEP) is recommended to meet several of these issues based on the tiltrotor concept. A program called Tiltfold System (TFS) is recommended based on the tiltrotor concept. A task is identified to resolve the best design speed from productivity and demand considerations based on the technology that emerges from the recommended programs. HI-STEP's goals are to investigate propulsive efficiency, maneuver loads, and aeroelastic stability. Programs currently in progress that may meet the other technology needs include the Integrated High Performance Turbine Engine Technology (IHPTET) (NASA Lewis) and the Advanced Structural Concepts Program funded through NASA Langley.

  3. High-frequency effects in antiferromagnetic Sr3Ir2O7

    NASA Astrophysics Data System (ADS)

    Williamson, Morgan; Seinige, Heidi; Shen, Shida; Wang, Cheng; Cao, Gang; Zhou, Jianshi; Goodenough, John; Tsoi, Maxim

    Antiferromagnetic (AFM) spintronics is one of many promising routes for `beyond the CMOS' technologies where unique properties of AFM materials are exploited to achieve new and improved functionalities. AFMs are especially interesting for high-speed memory applications thanks to their high natural frequencies. Here we report the effects of high-frequency (microwave) currents on transport properties of antiferromagnetic Mott insulator Sr3Ir2O7. The microwaves at 3-7 GHz were found to affect the material's current-voltage characteristic and produce resonance-like features that we tentatively associate with the dissipationless magnonics recently predicted to occur in antiferromagnetic insulators subject to ac electric fields. Our observations support the potential of antiferromagnetic materials for high-speed/high-frequency spintronic applications. This work was supported in part by C-SPIN, one of six centers of STARnet, a Semiconductor Research Corporation program, sponsored by MARCO and DARPA, by NSF Grants DMR-1207577, DMR-1265162, DMR-1600057, and DMR-1122603, and by the King Abdullah University of Science and Technology (KAUST) Office of Sponsored Research (OSR) under Award No. OSR-2015-CRG4-2626.

  4. Preliminary design of a high speed civil transport: The Opus 0-001

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Based on research into the technology and issues surrounding the design, development, and operation of a second generation High Speed Civil Transport, HSCT, the Opus 0-001 team completed the preliminary design of a sixty passenger, three engine aircraft. The design of this aircraft was performed using a computer program which the team wrote. This program automatically computed the geometric, aerodynamic, and performance characteristic of an aircraft whose preliminary geometry was specified. The Opus 0-001 aircraft was designed for a cruise Mach number of 2.2, a range of 4,700 nautical miles and its design was based in current or very near term technology. Its small size was a consequence of an emphasis on a profitable, low cost program, capable of delivering tomorrow's passengers in style and comfort at prices that make it an attractive competitor to both current and future subsonic transport aircraft. Several hundred thousand cases of Cruise Mach number, aircraft size and cost breakdown were investigated to obtain costs and revenues for which profit was calculated. The projected unit flyaway cost was $92.0 million per aircraft.

  5. Configuration Aerodynamics: Past - Present - Future

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.; Agrawal, Shreekant; Bencze, Daniel P.; Kulfan, Robert M.; Wilson, Douglas L.

    1999-01-01

    The Configuration Aerodynamics (CA) element of the High Speed Research (HSR) program is managed by a joint NASA and Industry team, referred to as the Technology Integration Development (ITD) team. This team is responsible for the development of a broad range of technologies for improved aerodynamic performance and stability and control characteristics at subsonic to supersonic flight conditions. These objectives are pursued through the aggressive use of advanced experimental test techniques and state of the art computational methods. As the HSR program matures and transitions into the next phase the objectives of the Configuration Aerodynamics ITD are being refined to address the drag reduction needs and stability and control requirements of High Speed Civil Transport (HSCT) aircraft. In addition, the experimental and computational tools are being refined and improved to meet these challenges. The presentation will review the work performed within the Configuration Aerodynamics element in 1994 and 1995 and then discuss the plans for the 1996-1998 time period. The final portion of the presentation will review several observations of the HSR program and the design activity within Configuration Aerodynamics.

  6. X-15 #2 with test pilot Joe Walker

    NASA Technical Reports Server (NTRS)

    1961-01-01

    Joe Walker is seen here after a flight in front of the X-15 #2 (56-6671) rocket-powered research aircraft. Joseph A. Walker was a Chief Research Pilot at the NASA Dryden Flight Research Center during the mid-1960s. He joined NACA in March 1945, and served as project pilot at the Edwards flight research facility on such pioneering research projects as the D-558-1, D-558-2, X-1, X-3, X-4, X-5, and the X-15. He also flew programs involving the F-100, F-101, F-102, F-104, and the B-47. Walker made the first NASA X-15 flight on March 25, 1960. He flew the research aircraft 24 times and achieved its highest altitude. He attained a speed of 4,104 mph (Mach 5.92) during a flight on June 27, 1962, and reached an altitude of 354,200 feet (67.08 miles) on August 22, 1963 (his last X-15 flight). This was one of three flights by Walker that achieved altitudes over 50 miles. Walker was killed on June 8, 1966, when his F-104 collided with the XB-70. The X-15 was a rocket-powered aircraft 50 ft long with a wingspan of 22 ft. It was a missile-shaped vehicle with an unusual wedge-shaped vertical tail, thin stubby wings, and unique fairings that extended along the side of the fuselage. The X-15 weighed about 14,000 lb empty and approximately 34,000 lb at launch. The XLR-99 rocket engine, manufactured by Thiokol Chemical Corp., was pilot controlled and was capable of developing 57,000 lb of rated thrust (actual thrust reportedly climbed to 60,000 lb). North American Aviation built three X-15 aircraft for the program. The X-15 research aircraft was developed to provide in-flight information and data on aerodynamics, structures, flight controls, and the physiological aspects of high-speed, high-altitude flight. A follow-on program used the aircraft as a testbed to carry various scientific experiments beyond the Earth's atmosphere on a repeated basis. For flight in the dense air of the usable atmosphere, the X-15 used conventional aerodynamic controls such as rudder surfaces on the vertical stabilizers to control yaw and canted horizontal surfaces on the tail to control pitch when moving in synchronization or roll when moved differentially. For flight in the thin air outside of the appreciable Earth's atmosphere, the X-15 used a reaction control system. Hydrogen peroxide thrust rockets located on the nose of the aircraft provided pitch and yaw control. Those on the wings provided roll control. Because of the large fuel consumption, the X-15 was air launched from a B-52 aircraft at 45,000 ft and a speed of about 500 mph. Depending on the mission, the rocket engine provided thrust for the first 80 to 120 sec of flight. The remainder of the normal 10 to 11 min. flight was powerless and ended with a 200-mph glide landing. Generally, one of two types of X-15 flight profiles was used: a high-altitude flight plan that called for the pilot to maintain a steep rate of climb, or a speed profile that called for the pilot to push over and maintain a level altitude. The X-15 was flown over a period of nearly 10 years--June 1959 to Oct. 1968--and set the world's unofficial speed and altitude records of 4,520 mph (Mach 6.7) and 354,200 ft (over 67 mi) in a program to investigate all aspects of piloted hypersonic flight. Information gained from the highly successful X-15 program contributed to the development of the Mercury, Gemini, and Apollo manned spaceflight programs, and also the Space Shuttle program. The X-15s made a total of 199 flights and were manufactured by North American Aviation. X-15-1, serial number 56-6670, is now located at the National Air and Space Museum, Washington DC. North American X-15A-2, serial number 56-6671, is at the United States Air Force Museum, Wright-Patterson AFB, Ohio. The X-15-3, serial number 56-6672, crashed on 15 November 1967, resulting in the death of Maj. Michael J. Adams.

  7. Assessment of computational issues associated with analysis of high-lift systems

    NASA Technical Reports Server (NTRS)

    Balasubramanian, R.; Jones, Kenneth M.; Waggoner, Edgar G.

    1992-01-01

    Thin-layer Navier-Stokes calculations for wing-fuselage configurations from subsonic to hypersonic flow regimes are now possible. However, efficient, accurate solutions for using these codes for two- and three-dimensional high-lift systems have yet to be realized. A brief overview of salient experimental and computational research is presented. An assessment of the state-of-the-art relative to high-lift system analysis and identification of issues related to grid generation and flow physics which are crucial for computational success in this area are also provided. Research in support of the high-lift elements of NASA's High Speed Research and Advanced Subsonic Transport Programs which addresses some of the computational issues is presented. Finally, fruitful areas of concentrated research are identified to accelerate overall progress for high lift system analysis and design.

  8. Theoretical study of thermodynamic properties and reaction rates of importance in the high-speed research program

    NASA Technical Reports Server (NTRS)

    Langhoff, Stephen; Bauschlicher, Charles; Jaffe, Richard

    1992-01-01

    One of the primary goals of NASA's high-speed research program is to determine the feasibility of designing an environmentally safe commercial supersonic transport airplane. The largest environmental concern is focused on the amount of ozone destroying nitrogen oxides (NO(x)) that would be injected into the lower stratosphere during the cruise portion of the flight. The limitations placed on NO(x) emission require more than an order of magnitude reduction over current engine designs. To develop strategies to meet this goal requires first gaining a fundamental understanding of the combustion chemistry. To accurately model the combustor requires a computational fluid dynamics approach that includes both turbulence and chemistry. Since many of the important chemical processes in this regime involve highly reactive radicals, an experimental determination of the required thermodynamic data and rate constants is often very difficult. Unlike experimental approaches, theoretical methods are as applicable to highly reactive species as stable ones. Also our approximation of treating the dynamics classically becomes more accurate with increasing temperature. In this article we review recent progress in generating thermodynamic properties and rate constants that are required to understand NO(x) formation in the combustion process. We also describe our one-dimensional modeling efforts to validate an NH3 combustion reaction mechanism. We have been working in collaboration with researchers at LeRC, to ensure that our theoretical work is focused on the most important thermodynamic quantities and rate constants required in the chemical data base.

  9. Ongoing Fixed Wing Research within the NASA Langley Aeroelasticity Branch

    NASA Technical Reports Server (NTRS)

    Bartels, Robert; Chwalowski, Pawel; Funk, Christie; Heeg, Jennifer; Hur, Jiyoung; Sanetrik, Mark; Scott, Robert; Silva, Walter; Stanford, Bret; Wiseman, Carol

    2015-01-01

    The NASA Langley Aeroelasticity Branch is involved in a number of research programs related to fixed wing aeroelasticity and aeroservoelasticity. These ongoing efforts are summarized here, and include aeroelastic tailoring of subsonic transport wing structures, experimental and numerical assessment of truss-braced wing flutter and limit cycle oscillations, and numerical modeling of high speed civil transport configurations. Efforts devoted to verification, validation, and uncertainty quantification of aeroelastic physics in a workshop setting are also discussed. The feasibility of certain future civil transport configurations will depend on the ability to understand and control complex aeroelastic phenomena, a goal that the Aeroelasticity Branch is well-positioned to contribute through these programs.

  10. NASA-UVA Light Aerospace Alloy and Structures Technology Program (LA2ST). Research on Materials for the High Speed Civil Transport

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.; Starke, Edgar A., Jr.; Kelly, Robert G.; Scully, John R.; Stoner, Glenn E.; Wert, John A.

    1997-01-01

    Since 1986, the NASA-Langley Research Center has sponsored the NASA-UVa Light Alloy and Structures Technology (LA2ST) Program at the University of Virginia (UVa). The fundamental objective of the LA2ST program is to conduct interdisciplinary graduate student research on the performance of next generation, light-weight aerospace alloys, composites and thermal gradient structures. The LA2ST program has aimed to product relevant data and basic understanding of material mechanical response, environmental/corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; measurement and modeling advances; and a pool of educated graduate students for aerospace technologies. The scope of the LA2ST Program is broad. Research areas include: (1) Mechanical and Environmental Degradation Mechanisms in Advanced Light Metals and Composites, (2) Aerospace Materials Science, (3) Mechanics of materials for Aerospace Structures, and (4) Thermal Gradient Structures. A substantial series of semi-annual progress reports issued since 1987 documents the technical objectives, experimental or analytical procedures, and detailed results of graduate student research in these topical areas.

  11. Functional training improves club head speed and functional fitness in older golfers.

    PubMed

    Thompson, Christian J; Cobb, Karen Myers; Blackwell, John

    2007-02-01

    Functional training programs have been used in a variety of rehabilitation settings with documented success. Based on that success, the concept of functional training has gained popularity in applied fitness settings to enhance sport performance. However, there has been little or no research studying the efficacy of functional training programs on the improvement of sport performance or functional fitness. Thus, it was the purpose of this study to determine the effect of a progressive functional training program on club head speed and functional fitness in older male golfers. Eighteen male golfers (age: 70.7 +/- 9.1 [SD] years) were randomly assigned to an exercise (N = 11) or control (N = 7) group. The exercise group participated in an 8-week progressive functional training program including flexibility exercises, core stability exercises, balance exercises, and resistance exercises. Pre- and postmeasurements included club head speed of a driver by radar (exercise and Control) and Fullerton Senior Fitness Test measurements (exercise only). One-way analysis of covariance was performed on club head speed measurements using pretest measurements as the covariate. Paired t-tests were performed to analyze Senior Fitness Test variables. After the intervention, maximal club head speed increased in the exercise group (127.3 +/- 13.4 to 133.6 +/- 14.2 km x hr(-1)) compared with the control group (134.5 +/- 14.6 to 133.3 +/- 11.2 km x hr(-1); p < 0.05). Additionally, improvements (p < 0.05) were detected for most Senior Fitness Test variables in the exercise group. In summary, this functional training program resulted in significant improvements in club head speed and several components of functional fitness. Future research should continue to examine the effect of functional training programs on sport performance and functional fitness in older adults.

  12. Ramjet Model and Technicians in the 8- by 6-Foot Supersonic Wind Tunnel

    NASA Image and Video Library

    1952-02-21

    A researcher at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory checks the setup of a RJM-2 ramjet model in the test section of the 8- by 6-Foot Supersonic Wind Tunnel. The 8- by 6 was not only the laboratory’s first large supersonic wind tunnel, but it was also the NACA’s first facility capable of testing an operating engine at supersonic speeds. The 8- by 6-foot tunnel has been used to study engine inlets, fuel injectors, flameholders, exit nozzles, and controls on ramjet and turbojet propulsion systems. The 8-foot wide and 6-foot tall test section consisted of 1-inch thick steel plates with hatches on the floor and ceiling to facilitate the installation of the test article. The two windows seen on the right wall allowed photographic equipment to be set up. The test section was modified in 1956 to accommodate transonic research. NACA engineers drilled 4,700 holes into the test section walls to reduce transonic pressure disturbances and shock waves. NACA Lewis undertook an extensive research program on ramjets in the 1940s using several of its facilities. Ramjets provide a very simple source of propulsion. They are basically a tube which ingests high speed air, ignites it, and then expels the heated air at a significantly higher velocity. Ramjets are extremely efficient and powerful but can only operate at high speeds. Therefore, they require a booster rocket or aircraft drop to accelerate them to high speeds before they can operate.

  13. Coupled Aerodynamic and Structural Sensitivity Analysis of a High-Speed Civil Transport

    NASA Technical Reports Server (NTRS)

    Mason, B. H.; Walsh, J. L.

    2001-01-01

    An objective of the High Performance Computing and Communication Program at the NASA Langley Research Center is to demonstrate multidisciplinary shape and sizing optimization of a complete aerospace vehicle configuration by using high-fidelity, finite-element structural analysis and computational fluid dynamics aerodynamic analysis. In a previous study, a multi-disciplinary analysis system for a high-speed civil transport was formulated to integrate a set of existing discipline analysis codes, some of them computationally intensive, This paper is an extension of the previous study, in which the sensitivity analysis for the coupled aerodynamic and structural analysis problem is formulated and implemented. Uncoupled stress sensitivities computed with a constant load vector in a commercial finite element analysis code are compared to coupled aeroelastic sensitivities computed by finite differences. The computational expense of these sensitivity calculation methods is discussed.

  14. X-15 ship #1 on lakebed

    NASA Technical Reports Server (NTRS)

    1960-01-01

    The X-15 aircraft, ship #1 (56-6670), sits on the lakebed early in its illustrious career of high speed flight research. The X-15 was a rocket-powered aircraft 50 ft long with a wingspan of 22 ft. It was a missile-shaped vehicle with an unusual wedge-shaped vertical tail, thin stubby wings, and unique side fairings that extended along the side of the fuselage. The X-15 weighed about 14,000 lb empty and approximately 34,000 lb at launch. The XLR-99 rocket engine, manufactured by Thiokol Chemical Corp., was pilot controlled and was capable of developing 57,000 lb of thrust. North American Aviation made three X-15 aircraft for the program. The X-15 research aircraft was developed to provide in-flight information and data on aerodynamics, structures, flight controls, and the physiological aspects of high-speed, high-altitude flight. A follow on program used the aircraft as a testbed to carry various scientific experiments beyond the Earth's atmosphere on a repeated basis. For flight in the dense air of the usable atmosphere, the X-15 used conventional aerodynamic controls such as rudder surfaces on the vertical stabilizers to control yaw and canted horizontal surfaces on the tail to control pitch when moving in synchronization or roll when moved differentially. For flight in the thin air outside of the appreciable Earth's atmosphere, the X-15 used a reaction control system. Hydrogen peroxide thrust rockets located on the nose of the aircraft provided pitch and yaw control. Those on the wings provided roll control. Because of the large fuel consumption, the X-15 was air launched from a B-52 aircraft at 45,000 ft and a speed of about 500 mph. Depending on the mission, the rocket engine provided thrust for the first 80 to 120 sec of flight. The remainder of the normal 10 to 11 min. flight was powerless and ended with a 200-mph glide landing. Generally, one of two types of X-15 flight profiles was used; a high-altitude flight plan that called for the pilot to maintain a steep rate of climb, or a speed profile that called for the pilot to push over and maintain a level altitude. The X-15 was flown over a period of nearly 10 years -- June 1959 to Oct. 1968 -- and set the world's unofficial speed and altitude records of 4,520 mph (Mach 6.7) and 354,200 ft in a program to investigate all aspects of manned hypersonic flight. Information gained from the highly successful X-15 program contributed to the development of the Mercury, Gemini, and Apollo manned spaceflight programs, and also the Space Shuttle program. The X-15s made a total of 199 flights, and were manufactured by North American Aviation. X-15-1, serial number 56-6670, is now located at the National Air and Space museum, Washington DC. North American X-15A-2, serial number 56-6671, is at the United States Air Force Museum, Wright-Patterson AFB, Ohio. The X-15-3, serial number 56-6672, crashed on 15 November 1967, resulting in the death of Maj. Michael J. Adams.

  15. Avionic Pictorial Tunnel-/Pathway-/Highway-In-The-Sky Workshops

    NASA Technical Reports Server (NTRS)

    Parrish, Russell V. (Compiler)

    2003-01-01

    In 1994-96, Langley Research Center held a series of interactive workshops investigating highway-in-the-sky concepts, which enable precise flight path control. These workshops brought together government and industry display designers and pilots to discuss and fly various concepts in an iterative manner. The primary emphasis of the first workshops was the utility and usability of pathways and the pros and cons of various features available. The final workshops were focused on the specific applications to the eXternal Visibility System (XVS) of the NASA High-speed Research Program, which was concerned with replacement of the forward windows in a High-speed Civil Transport with electronic displays and high resolution video cameras to enable a "No-Droop" configuration. The primary concerns in the XVS application were the prevention of display clutter and obscuration of hazards, as the camera image was the primary means of traffic separation in clear visibility conditions. These concerns were not so prominent in the first workshops, which assumed a Synthetic Vision System application in which hazard locations are known and obscuration is handled easily. The resulting consensus concept has been used since in simulation and flight test activities of many Government programs. and other concepts have been influenced by the workshop discussions.

  16. NASA advanced turboprop research and concept validation program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitlow, J.B. Jr.; Sievers, G.K.

    1988-01-01

    NASA has determined by experimental and analytical effort that use of advanced turboprop propulsion instead of the conventional turbofans in the older narrow-body airline fleet could reduce fuel consumption for this type of aircraft by up to 50 percent. In cooperation with industry, NASA has defined and implemented an Advanced Turboprop (ATP) program to develop and validate the technology required for these new high-speed, multibladed, thin, swept propeller concepts. This paper presents an overview of the analysis, model-scale test, and large-scale flight test elements of the program together with preliminary test results, as available.

  17. Evaluating safety and operations of high-speed signalized intersections.

    DOT National Transportation Integrated Search

    2010-03-01

    This Final Report reviews a research effort to evaluate the safety and operations of high-speed intersections in the State of : Oregon. In particular, this research effort focuses on four-leg, signalized intersections with speed limits of 45 mph or :...

  18. Evaluating safety and operation of high-speed intersections.

    DOT National Transportation Integrated Search

    2010-03-01

    This Final Report reviews a research effort to evaluate the safety and operations of high-speed intersections in the State of : Oregon. In particular, this research effort focuses on four-leg, signalized intersections with speed limits of 45 mph or :...

  19. Supersonic Combustion Research at NASA

    NASA Technical Reports Server (NTRS)

    Drummond, J. P.; Danehy, Paul M.; Gaffney, Richard L., Jr.; Tedder, Sarah A.; Cutler, Andrew D.; Bivolaru, Daniel

    2007-01-01

    This paper discusses the progress of work to model high-speed supersonic reacting flow. The purpose of the work is to improve the state of the art of CFD capabilities for predicting the flow in high-speed propulsion systems, particularly combustor flowpaths. The program has several components including the development of advanced algorithms and models for simulating engine flowpaths as well as a fundamental experimental and diagnostic development effort to support the formulation and validation of the mathematical models. The paper will provide details of current work on experiments that will provide data for the modeling efforts along with the associated nonintrusive diagnostics used to collect the data from the experimental flowfield. Simulation of a recent experiment to partially validate the accuracy of a combustion code is also described.

  20. Design and Test of Fan/Nacelle Models Quiet High-Speed Fan Design

    NASA Technical Reports Server (NTRS)

    Miller, Christopher J. (Technical Monitor); Repp, Russ; Gentile, David; Hanson, David; Chunduru, Srinivas

    2003-01-01

    The primary objective of the Quiet High-Speed Fan (QHSF) program was to develop an advanced high-speed fan design that will achieve a 6 dB reduction in overall fan noise over a baseline configuration while maintaining similar performance. The program applies and validates acoustic, aerodynamic, aeroelastic, and mechanical design tools developed by NASA, US industry, and academia. The successful fan design will be used in an AlliedSignal Engines (AE) advanced regional engine to be marketed in the year 2000 and beyond. This technology is needed to maintain US industry leadership in the regional turbofan engine market.

  1. High speed imaging - An important industrial tool

    NASA Technical Reports Server (NTRS)

    Moore, Alton; Pinelli, Thomas E.

    1986-01-01

    High-speed photography, which is a rapid sequence of photographs that allow an event to be analyzed through the stoppage of motion or the production of slow-motion effects, is examined. In high-speed photography 16, 35, and 70 mm film and framing rates between 64-12,000 frames per second are utilized to measure such factors as angles, velocities, failure points, and deflections. The use of dual timing lamps in high-speed photography and the difficulties encountered with exposure and programming the camera and event are discussed. The application of video cameras to the recording of high-speed events is described.

  2. Development and performance evaluation of high speed cryogenic turboexpanders at BARC, India

    NASA Astrophysics Data System (ADS)

    Chakravarty, A.; Menon, R. S.; Goyal, M.; Ahmed, N.; Jadhav, M.; Rane, T.; Nair, S. R.; Kumar, J.; Kumar, N.; Bharti, S. K.; Jain, A.; Joemon, V.

    2017-12-01

    Turboexpanders are a key focus area for Bhabha Atomic Research Centre (BARC), Mumbai, India in the program for development of helium refrigerators and liquefiers for intra departmental requirements. To start with, a turbine impeller with major diameter 16 mm and design speed of 264,000 RPM, suited for use in the 1st stage of a modified Claude cycle/reverse Brayton cycle based standard helium liquefier/refrigerator, is developed. Later on, a second series of turboexpander with the same major diameter (16 mm) and design speed of 260,000 RPM is developed with “splitter” blades at the major diameter end. Yet another turboexpander series, size 16.5 mm and design speed 168,000 RPM, is also developed suited for use in the 2nd stage of a standard helium liquefier/refrigerator. The present article describes these turboexpander development efforts at BARC, including results obtained during field trials with the BARC helium refrigerator and liquefier.

  3. Department of Physics' Involvement of the Impact Testing Project of the High Speed Civil Transport Program (HSCT)

    NASA Technical Reports Server (NTRS)

    VonMeerwall, Ernst D.

    1994-01-01

    The project involved the impact testing of a kevlar-like woven polymer material, PBO. The purpose was to determine whether this material showed any promise as a lightweight replacement material for jet engine fan containment. The currently used metal fan containment designs carry a high drag penalty due to their weight. Projectiles were fired at samples of PBO by means of a 0.5 inch diameter Helium powered gun. The Initial plan was to encase the samples inside a purpose-built steel "hot box" for heating and ricochet containment. The research associate's responsibility was to develop the data acquisition programs and techniques necessary to determine accurately the impacting projectile's velocity. Beyond this, the Research Associate's duties include any physical computations, experimental design, and data analysis necessary.

  4. Investigation of High-alpha Lateral-directional Control Power Requirements for High-performance Aircraft

    NASA Technical Reports Server (NTRS)

    Foster, John V.; Ross, Holly M.; Ashley, Patrick A.

    1993-01-01

    Designers of the next-generation fighter and attack airplanes are faced with the requirements of good high-angle-of-attack maneuverability as well as efficient high speed cruise capability with low radar cross section (RCS) characteristics. As a result, they are challenged with the task of making critical design trades to achieve the desired levels of maneuverability and performance. This task has highlighted the need for comprehensive, flight-validated lateral-directional control power design guidelines for high angles of attack. A joint NASA/U.S. Navy study has been initiated to address this need and to investigate the complex flight dynamics characteristics and controls requirements for high-angle-of-attack lateral-directional maneuvering. A multi-year research program is underway which includes ground-based piloted simulation and flight validation. This paper will give a status update of this program that will include a program overview, description of test methodology and preliminary results.

  5. Investigation of high-alpha lateral-directional control power requirements for high-performance aircraft

    NASA Technical Reports Server (NTRS)

    Foster, John V.; Ross, Holly M.; Ashley, Patrick A.

    1993-01-01

    Designers of the next-generation fighter and attack airplanes are faced with the requirements of good high angle-of-attack maneuverability as well as efficient high speed cruise capability with low radar cross section (RCS) characteristics. As a result, they are challenged with the task of making critical design trades to achieve the desired levels of maneuverability and performance. This task has highlighted the need for comprehensive, flight-validated lateral-directional control power design guidelines for high angles of attack. A joint NASA/U.S. Navy study has been initiated to address this need and to investigate the complex flight dynamics characteristics and controls requirements for high angle-of-attack lateral-directional maneuvering. A multi-year research program is underway which includes groundbased piloted simulation and flight validation. This paper will give a status update of this program that will include a program overview, description of test methodology and preliminary results.

  6. SPEED READING--IS THE PRESENT EMPHASIS DESIRABLE.

    ERIC Educational Resources Information Center

    BERGER, ALLEN

    THE RESEARCH RESULTS FOR SEVEN AREAS OF THE SPEED READING CONTROVERSY ARE REPORTED. TERMINOLOGY FOR THE PROGRAM IS A PROBLEM AREA. MANY PEOPLE CONTEND THAT SPEED READING IS NOT READING IN THE TRADITIONAL SENSE. MEASUREMENT IS OFTEN LIMITED OR EMPHASIZES READING RATE ONLY. FIRMS, ESPECIALLY THOSE NOT CLOSELY CONNECTED WITH SCHOOLS, SOMETIMES MAKE…

  7. Large-scale Advanced Prop-fan (LAP) high speed wind tunnel test report

    NASA Technical Reports Server (NTRS)

    Campbell, William A.; Wainauski, Harold S.; Arseneaux, Peter J.

    1988-01-01

    High Speed Wind Tunnel testing of the SR-7L Large Scale Advanced Prop-Fan (LAP) is reported. The LAP is a 2.74 meter (9.0 ft) diameter, 8-bladed tractor type rated for 4475 KW (6000 SHP) at 1698 rpm. It was designated and built by Hamilton Standard under contract to the NASA Lewis Research Center. The LAP employs thin swept blades to provide efficient propulsion at flight speeds up to Mach .85. Testing was conducted in the ONERA S1-MA Atmospheric Wind Tunnel in Modane, France. The test objectives were to confirm that the LAP is free from high speed classical flutter, determine the structural and aerodynamic response to angular inflow, measure blade surface pressures (static and dynamic) and evaluate the aerodynamic performance at various blade angles, rotational speeds and Mach numbers. The measured structural and aerodynamic performance of the LAP correlated well with analytical predictions thereby providing confidence in the computer prediction codes used for the design. There were no signs of classical flutter throughout all phases of the test up to and including the 0.84 maximum Mach number achieved. Steady and unsteady blade surface pressures were successfully measured for a wide range of Mach numbers, inflow angles, rotational speeds and blade angles. No barriers were discovered that would prevent proceeding with the PTA (Prop-Fan Test Assessment) Flight Test Program scheduled for early 1987.

  8. High Speed Surface Thermocouples Interface to Wireless Transmitters

    DTIC Science & Technology

    2017-03-15

    Government and/or Private Sector Use Being able to measure high-speed surface temperatures in hostile environments where wireless transmission of the data...09/16/2016 See Item 16 Draft Reg Repro 16. REMARKS Eric Gingrich, COR I Item 0: High Speed Surface Thermocouples Interface to Wireless ...Speed Surface Thermocouples Interface to Wireless Transmitters W56HZV-16-C-0149 Sb. GRANT NUMBER Sc. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Sd. PROJECT

  9. Assessment of risks for high-speed rail grade crossings on the Empire Corridor : next generation high-speed rail program

    DOT National Transportation Integrated Search

    2000-08-01

    The report describes a risk-based approach for assessing the implications of higher train speeds on highway-railroad grade crossing safety, and allocating limited resources to best reduce this risk. To predict accident frequency, an existing DOT mode...

  10. Ignition of the Pegasus rocket moments after release from the B-52 signaled acceleration of the X-43

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The first X-43A hypersonic research aircraft and its modified Pegasus booster rocket were carried aloft by NASA's NB-52B carrier aircraft from Dryden Flight Research Center at Edwards Air Force Base, Calif., on June 2, 2001 for the first of three high-speed free flight attempts. About an hour and 15 minutes later the Pegasus booster was released from the B-52 to accelerate the X-43A to its intended speed of Mach 7. Before this could be achieved, the combined Pegasus and X-43A 'stack' lost control about eight seconds after ignition of the Pegasus rocket motor. The mission was terminated and explosive charges ensured the Pegasus and X-43A fell into the Pacific Ocean in a cleared Navy range area. A NASA investigation board is being assembled to determine the cause of the incident. Work continues on two other X-43A vehicles, the first of which could fly by late 2001. Central to the X-43A program is its integration of an air-breathing 'scramjet' engine that could enable a variety of high-speed aerospace craft, and promote cost-effective access to space. The 12-foot, unpiloted research vehicle was developed and built for NASA by MicroCraft Inc., Tullahoma, Tenn. The booster was built by Orbital Sciences Corp. at Chandler, Ariz. The X-43A flights are the first actual flight tests of an aircraft powered by a scramjet engine capable of operating at hypersonic speeds (above Mach 5, or five times the speed of sound). Some 90 minutes after takeoff, the Pegasus will launch from a B-52, rocketing the X-43A to Mach 7 at 95,000 feet altitude, or Mach 10 at 105,000 feet altitude. The X-43A will be powered by its revolutionary air-breathing supersonic-combustion ramjet or 'scramjet' engine. The X-43A will then fly a pre-programmed trajectory, conducting aerodynamic and propulsion experiments as it descends until it splashes into the Pacific Ocean.

  11. The X-43A/Pegasus combination dropped into the Pacific Ocean after losing control early in the first

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The first X-43A hypersonic research aircraft and its modified Pegasus booster rocket were carried aloft by NASA's NB-52B carrier aircraft from Dryden Flight Research Center at Edwards Air Force Base, Calif., on June 2, 2001 for the first of three high-speed free flight attempts. About an hour and 15 minutes later the Pegasus booster was released from the B-52 to accelerate the X-43A to its intended speed of Mach 7. Before this could be achieved, the combined Pegasus and X-43A 'stack' lost control about eight seconds after ignition of the Pegasus rocket motor. The mission was terminated and explosive charges ensured the Pegasus and X-43A fell into the Pacific Ocean in a cleared Navy range area. A NASA investigation board is being assembled to determine the cause of the incident. Work continues on two other X-43A vehicles, the first of which could fly by late 2001. Central to the X-43A program is its integration of an air-breathing 'scramjet' engine that could enable a variety of high-speed aerospace craft, and promote cost-effective access to space. The 12-foot, unpiloted research vehicle was developed and built for NASA by MicroCraft Inc., Tullahoma, Tenn. The booster was built by Orbital Sciences Corp. at Chandler, Ariz. The X-43A flights are the first actual flight tests of an aircraft powered by a scramjet engine capable of operating at hypersonic speeds (above Mach 5, or five times the speed of sound). Some 90 minutes after takeoff, the Pegasus will launch from a B-52, rocketing the X-43A to Mach 7 at 95,000 feet altitude, or Mach 10 at 105,000 feet altitude. The X-43A will be powered by its revolutionary air-breathing supersonic-combustion ramjet or 'scramjet' engine. The X-43A will then fly a pre-programmed trajectory, conducting aerodynamic and propulsion experiments as it descends until it splashes into the Pacific Ocean.

  12. X-4 with Pilot Joe Walker, Preflight Briefing

    NASA Technical Reports Server (NTRS)

    1952-01-01

    In this 1952 photograph NACA test pilot Joe Walker (on left) is seen discussing tests points to be flown on the X-4 aircraft with NACA research engineer Donald Bellman. The X-4 Bantam, a single-place, low swept-wing, semi-tailless aircraft, was designed and built by Northrop Aircraft, Inc. It had no horizontal tail surfaces and its mission was to obtain in-flight data on the stability and control of semi-tailless aircraft at high subsonic speeds. The Northrop X-4, Bantam, was a single-place, swept-wing, semi-tailless airplane designed and built to investigate that configuration at transonic speeds (defined as speeds just below and just above the speed of sound, but in this case, the testing was done primarily at just below the speed of sound). The hope of some aerodynamicists was that eliminating the horizontal tail would also do away with stability problems at transonic speeds resulting from the interaction of supersonic shock waves from the wings and the horizontal stabilizers. Northrop Aircraft, Inc. built two X-4 aircraft, the first of which proved to be mechanically unsound. However, ship number 2, with a thicker trailing edge on the wings and elevon, was very reliable. Ship 1 was then grounded and used as parts for ship 2. While being tested from 1950 to 1953 at the NACA High-Speed Flight Research Station (predecessor of today's NASA Dryden Flight Research Center, Edwards, California), the X-4's semi-tailless configuration exhibited inherent longitudinal stability problems (porpoising) as it approached the speed of sound. The X-4 was a small twinjet-engine airplane that had no horizontal tail surfaces, depending instead on combined elevator and aileron control surfaces (called elevons) for control in pitch and roll attitudes. Data gathered from the aircraft's blunt elevon research were helpful in the design of the Bell X-2, which had ailerons with blunted trailing edges. The NACA X-4 program also provided substantial data on the interactions of combined pitching, rolling, and yawing motions. This interaction was soon to become critical to upcoming high-performance military fighters. The X-4, ship 2, flew 82 research flights from 1950 to 1953. With a minimal lift-to-drag ratio of less than 3, the X-4 performance was similar to the soon-to-be-developed X-15. With this similarity in mind, NACA conducted approach and landing studies of X-15-generation aircraft using the X-4. The X-4, retired in 1954, ended its days as a pilot trainer.

  13. X-43A departs NASA Dryden Flight Research Center for first free-flight attempt

    NASA Image and Video Library

    2001-06-02

    The first X-43A hypersonic research aircraft and its modified Pegasus booster rocket were carried aloft by NASA's NB-52B carrier aircraft from Dryden Flight Research Center at Edwards Air Force Base, Calif., on June 2, 2001 for the first of three high-speed free flight attempts. About an hour and 15 minutes later the Pegasus booster was released from the B-52 to accelerate the X-43A to its intended speed of Mach 7. Before this could be achieved, the combined Pegasus and X-43A "stack" lost control about eight seconds after ignition of the Pegasus rocket motor. The mission was terminated and explosive charges ensured the Pegasus and X-43A fell into the Pacific Ocean in a cleared Navy range area. A NASA investigation board is being assembled to determine the cause of the incident. Work continues on two other X-43A vehicles, the first of which could fly by late 2001. Central to the X-43A program is its integration of an air-breathing "scramjet" engine that could enable a variety of high-speed aerospace craft, and promote cost-effective access to space. The 12-foot, unpiloted research vehicle was developed and built for NASA by MicroCraft Inc., Tullahoma, Tenn. The booster was built by Orbital Sciences Corp. at Chandler, Ariz.

  14. Feedback interventions and driving speed: A parametric and comparative analysis

    PubMed Central

    Houten, Ron Van; Nau, Paul A.

    1983-01-01

    Five experiments were conducted to assess the effects of several variables on the efficacy of feedback in reducing driving speed. Experiment 1 systematically varied the criterion used to define speeding, and results showed that the use of a lenient criterion (20 km/hr over the speed limit), which allowed for the posting of high percentages of drivers not speeding, was more effective in reducing speeding than the use of a stringent criterion (10 km/hr over the speed limit). In Experiment 2 an analysis revealed that posting feedback reduced speeding on a limited access highway and the effects persisted to some degree up to 6 km. Experiments 3 and 4 compared the effectiveness of an unmanned parked police vehicle (Experiment 3) and a police air patrol speeding program (Experiment 4) with the feedback sign and determined whether the presence of either of these enforcement variables could potentiate the efficacy of the sign. The results of both experiments demonstrated that although the two enforcement programs initially produced larger effects than the feedback sign, the magnitude of their effect attenuated over time. Experiment 5 compared the effectiveness of a traditional enforcement program with a warning program which included handing out a flier providing feedback on the number and types of accidents occuring on the road during the past year. This experiment demonstrated that the warning program produced a marked reduction in speeding and the traditional enforcement program did not. Furthermore, the warning program and a feedback sign together produced an even greater reduction in speeding than either alone. PMID:16795666

  15. John B. McKay after X-15 flight #3-27-44

    NASA Image and Video Library

    1964-03-13

    John B. McKay was one of the first pilots assigned to the X-15 flight research program at NASA's Flight Research Center, Edwards, Calif. As a civilian research pilot and aeronautical engineer, he made 30 flights in X-15s from October 28, 1960, until September 8, 1966. His peak altitude was 295,600 feet, and his highest speed was 3863 mph (Mach 5.64). McKay was with the NACA and NASA from February 8,1951 until October 5, 1971 and specialized in high-speed flight research programs. He began as an NACA intern, but assumed pilot status on July 11, 1952. In addition to the X-l5, he flew such experimental aircraft as the D-558-1, D-558-2, X-lB, and the X-lE. He has also served as a research pilot on flight programs involving the F-100, F-102, F-104, and the F-107. Born on December 8, 1922, in Portsmouth, Va., McKay graduated from Virginia Polytechnic Institute in 195O with a Bachelor of Science degree in Aeronautical Engineering. During World War II he served as a Navy pilot in the Pacific Theater, earning the Air Medal and Two Clusters, and a Presidential Unit Citation. McKay wrote several technical papers, and was a member of the American Institute of Aeronautics and Astronautics, as well as the Society of Experimental Test Pilots. He passed away on April 27, 1975.

  16. X-15 and XB-70 parked on NASA ramp

    NASA Technical Reports Server (NTRS)

    1967-01-01

    The X-15A-2 with drop tanks and ablative coating is shown parked on the NASA ramp in front of the XB-70. These aircraft represent two different approaches to flight research. The X-15 was a research airplane in the purest sense, whereas the XB-70 was an experimental bomber intended for production but diverted to research when production was cancelled by changes in the Department of Defense's offensive doctrine. The X-15A-2 had been modified from its original configuration with a longer fuselage and drop tanks. To protect it against aerodynamic heating, researchers had coated it with an ablative coating covered by a layer of white paint. These changes allowed the X-15A-2 to reach a maximum speed of Mach 6.7, although it could be sustained for only a brief period. The XB-70, by contrast, was designed for prolonged high-altitude cruise flight at Mach 3. The aircraft's striking shape--with a long forward fuselage, canards, a large delta wing, twin fins, and a box-like engine bay--allowed it to ride its own Mach 3 shockwave, so to speak. A joint NASA-Air Force program used the aircraft to collect data in support of the U.S supersonic transport (SST) program, which never came to fruition because of environmental concerns. X-15: The X-15 was a rocket-powered aircraft. The original three aircraft were about 50 ft long with a wingspan of 22 ft. The modified #2 aircraft (X-15A-2 was longer.) They were a missile-shaped vehicles with unusual wedge-shaped vertical tails, thin stubby wings, and unique side fairings that extended along the side of the fuselage. The X-15 weighed about 14,000 lb empty and approximately 34,000 lb at launch. The XLR-99 rocket engine, manufactured by Thiokol Chemical Corp., was pilot controlled and was rated at 57,000 lb of thrust, although there are indications that it actually achieved up to 60,000 lb. North American Aviation built three X-15 aircraft for the program. The X-15 research aircraft was developed to provide in-flight information and data on aerodynamics, structures, flight controls, and the physiological aspects of high-speed, high-altitude flight. A follow-on program used the aircraft as testbeds to carry various scientific experiments beyond the Earth's atmosphere on a repeated basis. For flight in the dense air of the usable atmosphere, the X-15 used conventional aerodynamic controls such as rudder surfaces on the vertical stabilizers to control yaw and movable horizontal stabilizers to control pitch when moving in synchronization or roll when moved differentially. For flight in the thin air outside of the appreciable Earth's atmosphere, the X-15 used a reaction control system. Hydrogen peroxide thrust rockets located on the nose of the aircraft provided pitch and yaw control. Those on the wings provided roll control. Because of the large fuel consumption, the X-15 was air launched from a B-52 aircraft at approximately 45,000 ft and a speed of about 500 mph. Depending on the mission, the rocket engine provided thrust for the first 80 to 120 sec of flight. The remainder of the normal 10 to 11 min. flight was powerless and ended with a 200-mph glide landing. Generally, one of two types of X-15 flight profiles was used; a high-altitude flight plan that called for the pilot to maintain a steep rate of climb, or a speed profile that called for the pilot to push over and maintain a level altitude. The X-15 was flown over a period of nearly 10 years -- June 1959 to Oct. 1968 -- and set the world's unofficial speed and altitude records of 4,520 mph (Mach 6.7) and 354,200 ft in a program to investigate all aspects of manned hypersonic flight. Information gained from the highly successful X-15 program contributed to the development of the Mercury, Gemini, and Apollo manned spaceflight programs, and also the Space Shuttle program. The X-15s made a total of 199 flights, and were manufactured by North American Aviation. X-15-1, serial number 56-6670, is now located at the National Air and Space Museum, Washington DC. North American X-15A-2, serial number 56-6671, is at the United States Air Force Museum, Wright-Patterson AFB, Ohio. X-15-3, serial number 56-6672, crashed on 15 November 1967, resulting in the death of Maj. Michael J. Adams. XB-70: The XB-70 was the world's largest experimental aircraft. It was capable of flight at speeds of three times the speed of sound (roughly 2,000 miles per hour) at altitudes of 70,000 feet. It was used to collect in-flight information for use in the design of future supersonic aircraft, military and civilian. The major objectives of the XB-70 flight research program were to study the airplane's stability and handling characteristics, to evaluate its response to atmospheric turbulence, and to determine the aerodynamic and propulsion performance. In addition there were secondary objectives to measure the noise and friction associated with airflow over the airplane and to determine the levels and extent of the engine noise during takeoff, landing, and ground operations. The XB-70 was about 186 feet long, 33 feet high, with a wingspan of 105 feet. Originally conceived as an advanced bomber for the United States Air Force, the XB-70 was limited to production of two aircraft when it was decided to limit the aircraft's mission to flight research. The first flight of the XB-70 was made on Sept. 21, 1964. The number two XB-70 was destroyed in a mid-air collision on June 8, 1966. Program management of the NASA-USAF research effort was assigned to NASA in March 1967. The final flight was flown on Feb. 4, 1969. Designed by North American Aviation (later North American Rockwell and still later, a division of Boeing) the XB-70 had a long fuselage with a canard or horizontal stabilizer mounted just behind the crew compartment. It had a sharply swept 65.6-percent delta wing. The outer portion of the wing could be folded down in flight to provide greater lateral-directional stability. The airplane had two windshields. A moveable outer windshield was raised for high-speed flight to reduce drag and lowered for greater visibility during takeoff and landing. The forward fuselage was constructed of riveted titanium frames and skin. The remainder of the airplane was constructed almost entirely of stainless steel. The skin was a brazed stainless-steel honeycomb material. Six General Electric YJ93-3 turbojet engines, each in the 30,000-pound-thrust class, powered the XB-70. Internal geometry of the inlets was controllable to maintain the most efficient airflow to the engines.

  17. Evaluating safety and operation of high-speed signalized intersections : final report, March 2010.

    DOT National Transportation Integrated Search

    2010-03-01

    This Final Report reviews a research effort to evaluate the safety and operations of high-speed intersections in the State of : Oregon. In particular, this research effort focuses on four-leg, signalized intersections with speed limits of 45 mph or :...

  18. DFRC F-16 aircraft fleet and support crew

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The support crew for the F-16A, the F-16XL no. 1, and the F-16 AFTI are, top row, left to right: Randy Weaver; mechanic, Susan Ligon; mechanic, Bob Garcia; Crew Chief, Rich Kelly; mechanic, Dale Edminister; Avionics Technician. Bottom row, left to right, Art Cope; mechanic, John Huffman; Avionics Technician, Jaime Garcia; Avionics Technician, Don Griffith, Avionics Tech. Co-op student. The F-16A (NASA 516), the only civil registered F-16 in existence, was transferred to Dryden from Langley, and is primarily used in engine tests and for parts. Although it is flight-worthy, it is not currently flown at Dryden. The single-seat F-16XL no. 1 (NASA 849) was most recently used in the Cranked-Arrow Wing Aerodynamics Project (CAWAP) to test boundary layer pressures and distribution. Previously it had been used in a program to investigate the characteristics of sonic booms for NASA's High Speed Research Program. Data from the program will be used in the development of a high speed civilian transport. During the series of sonic boom research flights, the F-16XL was used to probe the shock waves being generated by a NASA SR-71 and record their shape and intensity. The Advanced Fighter Technology Integration (AFTI) F-16 was used to develop and demonstrate technologies to improve navigation and a pilot's ability to find and destroy enemy ground targets day or night, including adverse weather. Earlier research in the joint NASA-Air Force AFTI F-16 program demonstrated voice actuated controls, helmet-mounted sighting and integration of forward-mounted canards with the standard flight control system to achieve uncoupled flight.

  19. X-1E on Display Stand at Dryden

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Bell Aircraft Corporation X-1E is shown in this artistic night photo taken in February 1996. This aircraft is displayed on a pedestal in front of the main building (4800) at NASA Dryden Flight Research Center, Edwards, California. There were four versions of the Bell X-1 rocket-powered research aircraft that flew at the NACA High-Speed Flight Research Station, Edwards, California. The bullet-shaped X-1 aircraft were built by Bell Aircraft Corporation, Buffalo, N.Y. for the U.S. Army Air Forces (after 1947, U.S. Air Force) and the National Advisory Committee for Aeronautics (NACA). The X-1 Program was originally designated the XS-1 for EXperimental Supersonic. The X-1's mission was to investigate the transonic speed range (speeds from just below to just above the speed of sound) and, if possible, to break the 'sound barrier.' Three different X-1s were built and designated: X-1-1, X-1-2 (later modified to become the X-1E), and X-1-3. The basic X-1 aircraft were flown by a large number of different pilots from 1946 to 1951. The X-1 Program not only proved that humans could go beyond the speed of sound, it reinforced the understanding that technological barriers could be overcome. The X-1s pioneered many structural and aerodynamic advances including extremely thin, yet extremely strong wing sections; supersonic fuselage configurations; control system requirements; powerplant compatibility; and cockpit environments. The X-1 aircraft were the first transonic-capable aircraft to use an all-moving stabilizer. The flights of the X-1s opened up a new era in aviation. The first X-1 was air-launched unpowered from a Boeing B-29 Superfortress on January 25, 1946. Powered flights began in December 1946. On October 14, 1947, the X-1-1, piloted by Air Force Captain Charles 'Chuck' Yeager, became the first aircraft to exceed the speed of sound, reaching about 700 miles per hour (Mach 1.06) and an altitude of 43,000 feet. The number 2 X-1 was modified and redesignated the X-1E. The modifications included adding a conventional canopy, an ejection seat, a low-pressure fuel system of increased capacity, and a thinner high-speed wing. The X-1E was used to obtain in-flight data at twice the speed of sound, with particular emphasis placed on investigating the improvements achieved with the high-speed wing. These wings, made by Stanley Aircraft, were only 3-3/8-inches thick at the root and had 343 gauges installed in them to measure structural loads and aerodynamic heating. The X-1E used its rocket engine to power it up to a speed of 1,471 miles per hour (Mach 2.24) and to an altitude of 73,000 feet. Like the X-1 it was air-launched. The X-1 aircraft were almost 31 feet long and had a wingspan of 28 feet. The X-1 was built of conventional aluminum stressed-skin construction to extremely high structural standards. The X-1E was also 31 feet long but had a wingspan of only 22 feet, 10 inches. It was powered by a Reaction Motors, Inc., XLR-8-RM-5, four-chamber rocket engine. As did all X-1 rocket engines, the LR-8-RM-5 engine did not have throttle capability, but instead, depended on ignition of any one chamber or group of chambers to vary speed.

  20. SR-71A in Flight with Test Fixture Mounted Atop the Aft Section of the Aircraft

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This close-up, head-on view of NASA's SR-71A Blackbird in flight shows the aircraft with an experimental test fixture mounted on the back of the airplane. Two SR-71 aircraft have been used by NASA as testbeds for high-speed and high-altitude aeronautical research. The aircraft, an SR-71A and an SR-71B pilot trainer aircraft, have been based here at NASA's Dryden Flight Research Center, Edwards, California. They were transferred to NASA after the U.S. Air Force program was cancelled. As research platforms, the aircraft can cruise at Mach 3 for more than one hour. For thermal experiments, this can produce heat soak temperatures of over 600 degrees Fahrenheit (F). This operating environment makes these aircraft excellent platforms to carry out research and experiments in a variety of areas -- aerodynamics, propulsion, structures, thermal protection materials, high-speed and high-temperature instrumentation, atmospheric studies, and sonic boom characterization. The SR-71 was used in a program to study ways of reducing sonic booms or over pressures that are heard on the ground, much like sharp thunderclaps, when an aircraft exceeds the speed of sound. Data from this Sonic Boom Mitigation Study could eventually lead to aircraft designs that would reduce the 'peak' overpressures of sonic booms and minimize the startling affect they produce on the ground. One of the first major experiments to be flown in the NASA SR-71 program was a laser air data collection system. It used laser light instead of air pressure to produce airspeed and attitude reference data, such as angle of attack and sideslip, which are normally obtained with small tubes and vanes extending into the airstream. One of Dryden's SR-71s was used for the Linear Aerospike Rocket Engine, or LASRE Experiment. Another earlier project consisted of a series of flights using the SR-71 as a science camera platform for NASA's Jet Propulsion Laboratory in Pasadena, California. An upward-looking ultraviolet video camera placed in the SR-71's nosebay studied a variety of celestial objects in wavelengths that are blocked to ground-based astronomers. Earlier in its history, Dryden had a decade of past experience at sustained speeds above Mach 3. Two YF-12A aircraft and an SR-71 designated as a YF-12C were flown at the center between December 1969 and November 1979 in a joint NASA/USAF program to learn more about the capabilities and limitations of high-speed, high-altitude flight. The YF-12As were prototypes of a planned interceptor aircraft based on a design that later evolved into the SR-71 reconnaissance aircraft. Dave Lux was the NASA SR-71 project manger for much of the decade of the 1990s, followed by Steve Schmidt. Developed for the USAF as reconnaissance aircraft more than 30 years ago, SR-71s are still the world's fastest and highest-flying production aircraft. The aircraft can fly at speeds of more than 2,200 miles per hour (Mach 3+, or more than three times the speed of sound) and at altitudes of over 85,000 feet. The Lockheed Skunk Works (now Lockheed Martin) built the original SR-71 aircraft. Each aircraft is 107.4 feet long, has a wingspan of 55.6 feet, and is 18.5 feet high (from the ground to the top of the rudders, when parked). Gross takeoff weight is about 140,000 pounds, including a possible fuel weight of 80,280 pounds. The airframes are built almost entirely of titanium and titanium alloys to withstand heat generated by sustained Mach 3 flight. Aerodynamic control surfaces consist of all-moving vertical tail surfaces, ailerons on the outer wings, and elevators on the trailing edges between the engine exhaust nozzles. The two SR-71s at Dryden have been assigned the following NASA tail numbers: NASA 844 (A model), military serial 61-7980 and NASA 831 (B model), military serial 61-7956. From 1990 through 1994, Dryden also had another 'A' model, NASA 832, military serial 61-7971. This aircraft was returned to the USAF inventory and was the first aircraft reactivated for USAF reconnaissance purposes in 1995. It has since returned to Dryden along with SR-71A 61-7967.

  1. SR-71 - In-flight from Tanker

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Dryden's SR-71B, NASA 831, slices across the snow-covered southern Sierra Nevada Mountains of California after being refueled by an Air Force tanker during a 1994 flight. Two SR-71 aircraft have been used by NASA as testbeds for high-speed and high-altitude aeronautical research. The aircraft, an SR-71A and an SR-71B pilot trainer aircraft, have been based here at NASA's Dryden Flight Research Center, Edwards, California. They were transferred to NASA after the U.S. Air Force program was cancelled. As research platforms, the aircraft can cruise at Mach 3 for more than one hour. For thermal experiments, this can produce heat soak temperatures of over 600 degrees Fahrenheit (F). This operating environment makes these aircraft excellent platforms to carry out research and experiments in a variety of areas -- aerodynamics, propulsion, structures, thermal protection materials, high-speed and high-temperature instrumentation, atmospheric studies, and sonic boom characterization. The SR-71 was used in a program to study ways of reducing sonic booms or over pressures that are heard on the ground, much like sharp thunderclaps, when an aircraft exceeds the speed of sound. Data from this Sonic Boom Mitigation Study could eventually lead to aircraft designs that would reduce the 'peak' overpressures of sonic booms and minimize the startling affect they produce on the ground. One of the first major experiments to be flown in the NASA SR-71 program was a laser air data collection system. It used laser light instead of air pressure to produce airspeed and attitude reference data, such as angle of attack and sideslip, which are normally obtained with small tubes and vanes extending into the airstream. One of Dryden's SR-71s was used for the Linear Aerospike Rocket Engine, or LASRE Experiment. Another earlier project consisted of a series of flights using the SR-71 as a science camera platform for NASA's Jet Propulsion Laboratory in Pasadena, California. An upward-looking ultraviolet video camera placed in the SR-71's nosebay studied a variety of celestial objects in wavelengths that are blocked to ground-based astronomers. Earlier in its history, Dryden had a decade of past experience at sustained speeds above Mach 3. Two YF-12A aircraft and an SR-71 designated as a YF-12C were flown at the center between December 1969 and November 1979 in a joint NASA/USAF program to learn more about the capabilities and limitations of high-speed, high-altitude flight. The YF-12As were prototypes of a planned interceptor aircraft based on a design that later evolved into the SR-71 reconnaissance aircraft. Dave Lux was the NASA SR-71 project manger for much of the decade of the 1990s, followed by Steve Schmidt. Developed for the USAF as reconnaissance aircraft more than 30 years ago, SR-71s are still the world's fastest and highest-flying production aircraft. The aircraft can fly at speeds of more than 2,200 miles per hour (Mach 3+, or more than three times the speed of sound) and at altitudes of over 85,000 feet. The Lockheed Skunk Works (now Lockheed Martin) built the original SR-71 aircraft. Each aircraft is 107.4 feet long, has a wingspan of 55.6 feet, and is 18.5 feet high (from the ground to the top of the rudders, when parked). Gross takeoff weight is about 140,000 pounds, including a possible fuel weight of 80,280 pounds. The airframes are built almost entirely of titanium and titanium alloys to withstand heat generated by sustained Mach 3 flight. Aerodynamic control surfaces consist of all-moving vertical tail surfaces, ailerons on the outer wings, and elevators on the trailing edges between the engine exhaust nozzles. The two SR-71s at Dryden have been assigned the following NASA tail numbers: NASA 844 (A model), military serial 61-7980 and NASA 831 (B model), military serial 61-7956. From 1990 through 1994, Dryden also had another 'A' model, NASA 832, military serial 61-7971. This aircraft was returned to the USAF inventory and was the first aircraft reactivated for USAF reconnaissance purposes in 1995. It has since returned to Dryden along with SR-71A 61-7967.

  2. SR-71 Pilots and Crew (Smith, Meyer, Bohn-Meyer, Ishmael)

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The two pilot-engineer teams that flew the SR-71 aircraft at the NASA Ames-Dryden Flight Research Facility (later, Dryden Flight Research Center, Edwards, California, are, from left, pilot Rogers Smith, flight engineers Robert Meyer and Marta Bohn-Meyer, and pilot Steven Ishmael. The Meyers are the first husband-wife team of aeronautical engineers at Dryden on flight status. Two SR-71 aircraft have been used by NASA as testbeds for high-speed and high-altitude aeronautical research. The aircraft, an SR-71A and an SR-71B pilot trainer aircraft, have been based here at NASA's Dryden Flight Research Center, Edwards, California. They were transferred to NASA after the U.S. Air Force program was cancelled. As research platforms, the aircraft can cruise at Mach 3 for more than one hour. For thermal experiments, this can produce heat soak temperatures of over 600 degrees Fahrenheit (F). This operating environment makes these aircraft excellent platforms to carry out research and experiments in a variety of areas -- aerodynamics, propulsion, structures, thermal protection materials, high-speed and high-temperature instrumentation, atmospheric studies, and sonic boom characterization. The SR-71 was used in a program to study ways of reducing sonic booms or over pressures that are heard on the ground, much like sharp thunderclaps, when an aircraft exceeds the speed of sound. Data from this Sonic Boom Mitigation Study could eventually lead to aircraft designs that would reduce the 'peak' overpressures of sonic booms and minimize the startling affect they produce on the ground. One of the first major experiments to be flown in the NASA SR-71 program was a laser air data collection system. It used laser light instead of air pressure to produce airspeed and attitude reference data, such as angle of attack and sideslip, which are normally obtained with small tubes and vanes extending into the airstream. One of Dryden's SR-71s was used for the Linear Aerospike Rocket Engine, or LASRE Experiment. Another earlier project consisted of a series of flights using the SR-71 as a science camera platform for NASA's Jet Propulsion Laboratory in Pasadena, California. An upward-looking ultraviolet video camera placed in the SR-71's nosebay studied a variety of celestial objects in wavelengths that are blocked to ground-based astronomers. Earlier in its history, Dryden had a decade of past experience at sustained speeds above Mach 3. Two YF-12A aircraft and an SR-71 designated as a YF-12C were flown at the center between December 1969 and November 1979 in a joint NASA/USAF program to learn more about the capabilities and limitations of high-speed, high-altitude flight. The YF-12As were prototypes of a planned interceptor aircraft based on a design that later evolved into the SR-71 reconnaissance aircraft. Dave Lux was the NASA SR-71 project manger for much of the decade of the 1990s, followed by Steve Schmidt. Developed for the USAF as reconnaissance aircraft more than 30 years ago, SR-71s are still the world's fastest and highest-flying production aircraft. The aircraft can fly at speeds of more than 2,200 miles per hour (Mach 3+, or more than three times the speed of sound) and at altitudes of over 85,000 feet. The Lockheed Skunk Works (now Lockheed Martin) built the original SR-71 aircraft. Each aircraft is 107.4 feet long, has a wingspan of 55.6 feet, and is 18.5 feet high (from the ground to the top of the rudders, when parked). Gross takeoff weight is about 140,000 pounds, including a possible fuel weight of 80,280 pounds. The airframes are built almost entirely of titanium and titanium alloys to withstand heat generated by sustained Mach 3 flight. Aerodynamic control surfaces consist of all-moving vertical tail surfaces, ailerons on the outer wings, and elevators on the trailing edges between the engine exhaust nozzles. The two SR-71s at Dryden have been assigned the following NASA tail numbers: NASA 844 (A model), military serial 61-7980 and NASA 831 (B model), military serial 61-7956. From 1990 through 1994, Dryden also had another 'A' model, NASA 832, military serial 61-7971. This aircraft was returned to the USAF inventory and was the first aircraft reactivated for USAF reconnaissance purposes in 1995. It has since returned to Dryden along with SR-71A 61-7967.

  3. SR-71 Pilots and Crew (Smith, Meyer, Bohn-Meyer, Ishmael)

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The two pilot-engineer teams that flew the SR-71 aircraft at the NASA Ames-Dryden Flight Research Facility (later, Dryden Flight Research Center), Edwards, California, are, from top of ladder, pilot Rogers Smith, flight engineer Robert Meyer, pilot Steven Ishmael, and flight engineer Marta Bohn-Meyer. The Meyers are the first husband-wife team of aeronautical engineers at Dryden on flight status. Two SR-71 aircraft have been used by NASA as testbeds for high-speed and high-altitude aeronautical research. The aircraft, an SR-71A and an SR-71B pilot trainer aircraft, have been based here at NASA's Dryden Flight Research Center, Edwards, California. They were transferred to NASA after the U.S. Air Force program was cancelled. As research platforms, the aircraft can cruise at Mach 3 for more than one hour. For thermal experiments, this can produce heat soak temperatures of over 600 degrees Fahrenheit (F). This operating environment makes these aircraft excellent platforms to carry out research and experiments in a variety of areas -- aerodynamics, propulsion, structures, thermal protection materials, high-speed and high-temperature instrumentation, atmospheric studies, and sonic boom characterization. The SR-71 was used in a program to study ways of reducing sonic booms or over pressures that are heard on the ground, much like sharp thunderclaps, when an aircraft exceeds the speed of sound. Data from this Sonic Boom Mitigation Study could eventually lead to aircraft designs that would reduce the 'peak' overpressures of sonic booms and minimize the startling affect they produce on the ground. One of the first major experiments to be flown in the NASA SR-71 program was a laser air data collection system. It used laser light instead of air pressure to produce airspeed and attitude reference data, such as angle of attack and sideslip, which are normally obtained with small tubes and vanes extending into the airstream. One of Dryden's SR-71s was used for the Linear Aerospike Rocket Engine, or LASRE Experiment. Another earlier project consisted of a series of flights using the SR-71 as a science camera platform for NASA's Jet Propulsion Laboratory in Pasadena, California. An upward-looking ultraviolet video camera placed in the SR-71's nosebay studied a variety of celestial objects in wavelengths that are blocked to ground-based astronomers. Earlier in its history, Dryden had a decade of past experience at sustained speeds above Mach 3. Two YF-12A aircraft and an SR-71 designated as a YF-12C were flown at the center between December 1969 and November 1979 in a joint NASA/USAF program to learn more about the capabilities and limitations of high-speed, high-altitude flight. The YF-12As were prototypes of a planned interceptor aircraft based on a design that later evolved into the SR-71 reconnaissance aircraft. Dave Lux was the NASA SR-71 project manger for much of the decade of the 1990s, followed by Steve Schmidt. Developed for the USAF as reconnaissance aircraft more than 30 years ago, SR-71s are still the world's fastest and highest-flying production aircraft. The aircraft can fly at speeds of more than 2,200 miles per hour (Mach 3+, or more than three times the speed of sound) and at altitudes of over 85,000 feet. The Lockheed Skunk Works (now Lockheed Martin) built the original SR-71 aircraft. Each aircraft is 107.4 feet long, has a wingspan of 55.6 feet, and is 18.5 feet high (from the ground to the top of the rudders, when parked). Gross takeoff weight is about 140,000 pounds, including a possible fuel weight of 80,280 pounds. The airframes are built almost entirely of titanium and titanium alloys to withstand heat generated by sustained Mach 3 flight. Aerodynamic control surfaces consist of all-moving vertical tail surfaces, ailerons on the outer wings, and elevators on the trailing edges between the engine exhaust nozzles. The two SR-71s at Dryden have been assigned the following NASA tail numbers: NASA 844 (A model), military serial 61-7980 and NASA 831 (B model), military serial 61-7956. From 1990 through 1994, Dryden also had another 'A' model, NASA 832, military serial 61-7971. This aircraft was returned to the USAF inventory and was the first aircraft reactivated for USAF reconnaissance purposes in 1995. It has since returned to Dryden along with SR-71A 61-7967.

  4. Multiple pure tone noise generated by fans at supersonic tip speeds

    NASA Technical Reports Server (NTRS)

    Sofrin, T. G.; Pickett, G. F.

    1974-01-01

    The existence of clusters of pure tones at integral multiples of shaft speed has been noted for supersonic-tip-speed operation of fans and compressors. A continuing program to explore this phenomenon, often called combination-tone noise, has been in effect for several years. This paper reviews the research program, which involves a wide range of engines, compressor rigs, and special apparatus. Elements of the aerodynamics of the blade-associated shock waves are outlined and causes of blade-to-blade shock inequalities, responsible for the multiple tones, are described.

  5. Research on an optoelectronic measurement system of dynamic envelope measurement for China Railway high-speed train

    NASA Astrophysics Data System (ADS)

    Zhao, Ziyue; Gan, Xiaochuan; Zou, Zhi; Ma, Liqun

    2018-01-01

    The dynamic envelope measurement plays very important role in the external dimension design for high-speed train. Recently there is no digital measurement system to solve this problem. This paper develops an optoelectronic measurement system by using monocular digital camera, and presents the research of measurement theory, visual target design, calibration algorithm design, software programming and so on. This system consists of several CMOS digital cameras, several luminous targets for measuring, a scale bar, data processing software and a terminal computer. The system has such advantages as large measurement scale, high degree of automation, strong anti-interference ability, noise rejection and real-time measurement. In this paper, we resolve the key technology such as the transformation, storage and calculation of multiple cameras' high resolution digital image. The experimental data show that the repeatability of the system is within 0.02mm and the distance error of the system is within 0.12mm in the whole workspace. This experiment has verified the rationality of the system scheme, the correctness, the precision and effectiveness of the relevant methods.

  6. Preliminary structural sizing of a Mach 3.0 high-speed civil transport model

    NASA Technical Reports Server (NTRS)

    Blackburn, Charles L.

    1992-01-01

    An analysis has been performed pertaining to the structural resizing of a candidate Mach 3.0 High Speed Civil Transport (HSCT) conceptual design using a computer program called EZDESIT. EZDESIT is a computer program which integrates the PATRAN finite element modeling program to the COMET finite element analysis program for the purpose of calculating element sizes or cross sectional dimensions. The purpose of the present report is to document the procedure used in accomplishing the preliminary structural sizing and to present the corresponding results.

  7. A Study of Running Safety and Ride Comfort of Floating Tracks for High-Speed Train

    NASA Astrophysics Data System (ADS)

    Watanabe, Tsutomu; Sogabe, Masamichi; Yamazaki, Takayuki

    In order to reduce train-induced vibration, many floating tracks have been used, however, for only low-speed trains because we are not sure whether riding comfort and running safety can be maintained on floating tracks for high speed train. The authors, in this study, carried out an analysis of dynamic response and running quality of various floating tracks for high-speed train like Shinkansen. We used a simulation program, DIASTARS for the analysis. In this program, the Shinkansen vehicle is represented by a model of three dimensions consisting of a body, two trucks, and four wheelsets connected to each other with springs and dampers. The floating tracks were modeled by three-dimensional finite element method. In this study, the wheel load fluctuation and vehicle body accelerations were investigated by a dynamic interaction analysis between the vehicle and track with the train speed as parameters.

  8. Smaller Footprint Drilling System for Deep and Hard Rock Environments; Feasibility of Ultra-High-Speed Diamond Drilling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arnis Judzis; Homer Robertson; Alan Black

    2006-06-22

    The two phase program addresses long-term developments in deep well and hard rock drilling. TerraTek believes that significant improvements in drilling deep hard rock will be obtained by applying ultra-high rotational speeds (greater than 10,000 rpm). The work includes a feasibility of concept research effort aimed at development that will ultimately result in the ability to reliably drill ''faster and deeper'' possibly with smaller, more mobile rigs. The principle focus is on demonstration testing of diamond bits rotating at speeds in excess of 10,000 rpm to achieve high rate of penetration (ROP) rock cutting with substantially lower inputs of energymore » and loads. The significance of the ''ultra-high rotary speed drilling system'' is the ability to drill into rock at very low weights on bit and possibly lower energy levels. The drilling and coring industry today does not practice this technology. The highest rotary speed systems in oil field and mining drilling and coring today run less than 10,000 rpm-usually well below 5,000 rpm. This document details the progress at the end of Phase 1 on the program entitled ''Smaller Footprint Drilling System for Deep and Hard Rock Environments: Feasibility of Ultra-High-Speed Diamond Drilling'' for the period starting 1 March 2006 and concluding 30 June 2006. (Note: Results from 1 September 2005 through 28 February 2006 were included in the previous report (see Judzis, Black, and Robertson)). Summarizing the accomplished during Phase 1: {lg_bullet} TerraTek reviewed applicable literature and documentation and convened a project kickoff meeting with Industry Advisors in attendance (see Black and Judzis). {lg_bullet} TerraTek designed and planned Phase I bench scale experiments (See Black and Judzis). Some difficulties continued in obtaining ultra-high speed motors. Improvements were made to the loading mechanism and the rotational speed monitoring instrumentation. New drill bit designs were developed to provided a more consistent product with consistent performance. A test matrix for the final core bit testing program was completed. {lg_bullet} TerraTek concluded Task 3 ''Small-scale cutting performance tests.'' {sm_bullet} Significant testing was performed on nine different rocks. {sm_bullet} Five rocks were used for the final testing. The final tests were based on statistical design of experiments. {sm_bullet} Two full-faced bits, a small diameter and a large diameter, were run in Berea sandstone. {lg_bullet} Analysis of data was completed and indicates that there is decreased specific energy as the rotational speed increases (Task 4). Data analysis from early trials was used to direct the efforts of the final testing for Phase I (Task 5). {lg_bullet} Technology transfer (Task 6) was accomplished with technical presentations to the industry (see Judzis, Boucher, McCammon, and Black).« less

  9. New technology in turbine aerodynamics.

    NASA Technical Reports Server (NTRS)

    Glassman, A. J.; Moffitt, T. P.

    1972-01-01

    Cursory review of some recent work that has been done in turbine aerodynamic research. Topics discussed include the aerodynamic effect of turbine coolant, high work-factor (ratio of stage work to square of blade speed) turbines, and computer methods for turbine design and performance prediction. Experimental cooled-turbine aerodynamics programs using two-dimensional cascades, full annular cascades, and cold rotating turbine stage tests are discussed with some typical results presented. Analytically predicted results for cooled blade performance are compared to experimental results. The problems and some of the current programs associated with the use of very high work factors for fan-drive turbines of high-bypass-ratio engines are discussed. Computer programs have been developed for turbine design-point performance, off-design performance, supersonic blade profile design, and the calculation of channel velocities for subsonic and transonic flowfields. The use of these programs for the design and analysis of axial and radial turbines is discussed.

  10. Initial Piloted Simulation Evaluation of the Reference-H High-Speed Civil Transport Design During Takeoff and Recovery From Limit Flight Conditions

    NASA Technical Reports Server (NTRS)

    Glaab, Louis J.

    1999-01-01

    An initial assessment of a proposed High-Speed Civil Transport (HSCT) was conducted in the fall of 1995 at the NASA Langley Research Center. This configuration, known as the Industry Reference-H (Ref.-H), was designed by the Boeing Aircraft Company as part of their work in the High Speed Research program. It included a conventional tail, a cranked-arrow wing, four mixed-flow turbofan engines, and capacity for transporting approximately 300 passengers. The purpose of this assessment was to evaluate and quantify operational aspects of the Reference-H configuration from a pilot's perspective with the additional goal of identifying design strengths as well as any potential configuration deficiencies. This study was aimed at evaluating the Ref.-H configuration at many points of the aircraft's envelope to determine the suitability of the vehicle to accomplish typical mission profiles as well as emergency or envelope-limit conditions. Pilot-provided Cooper-Harper ratings and comments constituted the primary vehicle evaluation metric. The analysis included simulated real-time piloted evaluations, performed in a 6 degree of freedom motion base NASA Langley Visual-Motion Simulator, combined with extensive bath analysis. The assessment was performed using the third major release of the simulation data base (known as Ref.-H cycle 2B).

  11. 76 FR 63659 - Notice Pursuant to the National Cooperative Research and Production Act of 1993; Cooperative...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-13

    ... Production Act of 1993; Cooperative Research Group on Pre-Ignition Prevention Program Notice is hereby given... Research Group on Pre-Ignition Prevention Programs (``P3'') has filed written notifications simultaneously... planned activity is to develop a fundamental understanding of the factors that lead to low speed pre...

  12. NASA's Dryden Flight Research Center is situated immediately adjacent to the compass rose on the bed of Rogers Dry Lake at Edwards Air Force Base, Calif.

    NASA Image and Video Library

    2001-07-25

    Since the 1940s the Dryden Flight Research Center, Edwards, California, has developed a unique and highly specialized capability for conducting flight research programs. The organization, made up of pilots, scientists, engineers, technicians, and mechanics, has been and will continue to be leaders in the field of advanced aeronautics. Located on the northwest "shore" of Rogers Dry Lake, the complex was built around the original administrative-hangar building constructed in 1954. Since then many additional support and operational facilities have been built including a number of unique test facilities such as the Thermalstructures Research Facility, Flow Visualization Facility, and the Integrated Test Facility. One of the most prominent structures is the space shuttle program's Mate-Demate Device and hangar in Area A to the north of the main complex. On the lakebed surface is a Compass Rose that gives pilots an instant compass heading. The Dryden complex originated at Edwards Air Force Base in support of the X-1 supersonic flight program. As other high-speed aircraft entered research programs, the facility became permanent and grew from a staff of five engineers in 1947 to a population in 2006 of nearly 1100 full-time government and contractor employees.

  13. An Assessment of the Impact of the Department of Defense Very-High-Speed Integrated Circuit Program.

    DTIC Science & Technology

    1982-01-01

    analysis, statistical inference, device physics and other such products of basic research. Examples of such information would be: analyses of properties of...TB , for a n-p-n silicon transitor with 1018 cm- 3 base-doping, TB = Wb 2/2Dw becomes 0.4 ps in this limit so that the base contributes little to delay

  14. Titanium Aluminide Technologies Successfully Transferred From HSR Program to RLV VentureStar Program

    NASA Technical Reports Server (NTRS)

    Bartolotta, Paul A.

    2000-01-01

    Through a cost-share contract, BFGoodrich Aerostructures group successfully fabricated three titanium aluminide (gamma TiAl) truss core structures using technologies pioneered in the High-Speed Research (HSR) program at the NASA Glenn Research Center at Lewis Field. The truss core subelement is approximately 60-cm (24-in.) long by 14-cm (5.5-in.) wide by 6-cm (2.5-in.) deep. To fabricate this subelement, BFGoodrich first obtained gamma TiAl sheets from Plansee (Austria) which produced the sheets using techniques developed collaboratively by Glenn, Pratt & Whitney, and Plansee. This new gamma TiAl production technology has significantly lowered the cost of gamma TiAl sheet (approx. 75-percent decrease) and has made the production of larger gamma TiAl sheets possible (approx. 60-percent increase).

  15. An analysis for high speed propeller-nacelle aerodynamic performance prediction. Volume 2: User's manual

    NASA Technical Reports Server (NTRS)

    Egolf, T. Alan; Anderson, Olof L.; Edwards, David E.; Landgrebe, Anton J.

    1988-01-01

    A user's manual for the computer program developed for the prediction of propeller-nacelle aerodynamic performance reported in, An Analysis for High Speed Propeller-Nacelle Aerodynamic Performance Prediction: Volume 1 -- Theory and Application, is presented. The manual describes the computer program mode of operation requirements, input structure, input data requirements and the program output. In addition, it provides the user with documentation of the internal program structure and the software used in the computer program as it relates to the theory presented in Volume 1. Sample input data setups are provided along with selected printout of the program output for one of the sample setups.

  16. STARS: An Integrated, Multidisciplinary, Finite-Element, Structural, Fluids, Aeroelastic, and Aeroservoelastic Analysis Computer Program

    NASA Technical Reports Server (NTRS)

    Gupta, K. K.

    1997-01-01

    A multidisciplinary, finite element-based, highly graphics-oriented, linear and nonlinear analysis capability that includes such disciplines as structures, heat transfer, linear aerodynamics, computational fluid dynamics, and controls engineering has been achieved by integrating several new modules in the original STARS (STructural Analysis RoutineS) computer program. Each individual analysis module is general-purpose in nature and is effectively integrated to yield aeroelastic and aeroservoelastic solutions of complex engineering problems. Examples of advanced NASA Dryden Flight Research Center projects analyzed by the code in recent years include the X-29A, F-18 High Alpha Research Vehicle/Thrust Vectoring Control System, B-52/Pegasus Generic Hypersonics, National AeroSpace Plane (NASP), SR-71/Hypersonic Launch Vehicle, and High Speed Civil Transport (HSCT) projects. Extensive graphics capabilities exist for convenient model development and postprocessing of analysis results. The program is written in modular form in standard FORTRAN language to run on a variety of computers, such as the IBM RISC/6000, SGI, DEC, Cray, and personal computer; associated graphics codes use OpenGL and IBM/graPHIGS language for color depiction. This program is available from COSMIC, the NASA agency for distribution of computer programs.

  17. X-Wing Research Vehicle in Hangar

    NASA Technical Reports Server (NTRS)

    1987-01-01

    One of the most unusual experimental flight vehicles appearing at NASA's Ames-Dryden Flight Research Facility (later redesignated Dryden Flight Research Center) in the 1980s was the Rotor Systems Research Aircraft (RSRA) X-Wing aircraft, seen here on the ramp. The craft was developed originally and then modified by Sikorsky Aircraft for a joint NASA-Defense Advanced Research Projects Agency (DARPA) program and was rolled out 19 August 1986. Taxi tests and initial low-altitude flight tests without the main rotor attached were carried out at Dryden before the program was terminated in 1988. The unusual aircraft that resulted from the Ames Research Center/Army X-Wing Project was flown at the Ames-Dryden Flight Research Facility (now Dryden Flight Research Center), Edwards, California, beginning in the spring of 1984, with a follow-on program beginning in 1986. The program, was conceived to provide an efficient combination of the vertical lift characteristic of conventional helicopters and the high cruise speed of fixed-wing aircraft. It consisted of a hybrid vehicle called the NASA/Army Rotor Systems Research Aircraft (RSRA), which was equipped with advanced X-wing rotor systems. The program began in the early 1970s to investigate ways to increase the speed of rotor aircraft, as well as their performance, reliability, and safety . It also sought to reduce the noise, vibration, and maintenance costs of helicopters. Sikorsky Aircraft Division of United Technologies Laboratories built two RSRA aircraft. NASA's Langley Research Center, Hampton, Virginia, did some initial testing and transferred the program to Ames Research Center, Mountain View, California, for an extensive flight research program conducted by Ames and the Army. The purpose of the 1984 tests was to demonstrate the fixed-wing capability of the helicopter/airplane hybrid research vehicle and explore its flight envelope and flying qualities. These tests, flown by Ames pilot G. Warren Hall and Army Maj (soon promoted to Lt. Col.) Patrick Morris, began in May and continued until October 1984, when the RSRA vehicle returned to Ames. The project manager at Dryden for the flights was Wen Painter. These early tests were preparatory for a future X-Wing rotor flight test project to be sponsored by NASA, the Defense Advanced Research Projects Agency (DARPA), and Sikorsky Aircraft. A later derivative X-Wing flew in 1987. The modified RSRA was developed to provide a vehicle for in-flight investigation and verification of new helicopter rotor-system concepts and supporting technology. The RSRA could be configured to fly as an airplane with fixed wings, as a helicopter, or as a compound vehicle that could transition between the two configurations. NASA and DARPA selected Sikorsky in 1984 to convert one of the original RSRAs to the new demonstrator aircraft for the X-Wing concept. Developers of X-Wing technology did not view the X-Wing as a replacement for either helicopters (rotor aircraft) or fixed-wing aircraft. Instead, they envisioned it as an aircraft with special enhanced capabilities to perform missions that call for the low-speed efficiency and maneuverability of helicopters combined with the high cruise speed of fixed-wing aircraft. Some such missions include air-to-air and air-to-ground tactical operations, airborne early warning, electronic intelligence, antisubmarine warfare, and search and rescue. The follow-on X-Wing project was managed by James W. Lane, chief of the RSRA/X-Wing Project Office, Ames Research Center. Coordinating the Ames-Dryden flight effort in 1987 was Jack Kolf. The X-Wing project was a joint effort of NASA-Ames, DARPA, the U.S. Army, and Sikorsky Aircraft, Stratford, Connecticut. The modified X-Wing aircraft was delivered to Ames-Dryden by Sikorsky Aircraft on September 25, 1986. Following taxi tests, initial flights in the aircraft mode without main rotors attached took place at Dryden in December 1997. Ames research pilot G. Warren Hall and Sikorsky's W. Richard Faull were the pilots. The contract with Sikorsky ended that month, and the program ended in January 1988.

  18. X-Wing Research Vehicle

    NASA Technical Reports Server (NTRS)

    1986-01-01

    One of the most unusual experimental flight vehicles appearing at NASA's Ames-Dryden Flight Research Facility (later redesignated Dryden Flight Research Center) in the 1980s was the Rotor Systems Research Aircraft (RSRA) X-Wing aircraft, seen here on the ramp. The craft was developed originally and then modified by Sikorsky Aircraft for a joint NASA-Defense Advanced Research Projects Agency (DARPA) program and was rolled out 19 August 1986. Taxi tests and initial low-altitude flight tests without the main rotor attached were carried out at Dryden before the program was terminated in 1988. The unusual aircraft that resulted from the Ames Research Center/Army X-Wing Project was flown at the Ames-Dryden Flight Research Facility (now Dryden Flight Research Center), Edwards, California, beginning in the spring of 1984, with a follow-on program beginning in 1986. The program, was conceived to provide an efficient combination of the vertical lift characteristic of conventional helicopters and the high cruise speed of fixed-wing aircraft. It consisted of a hybrid vehicle called the NASA/Army Rotor Systems Research Aircraft (RSRA), which was equipped with advanced X-wing rotor systems. The program began in the early 1970s to investigate ways to increase the speed of rotor aircraft, as well as their performance, reliability, and safety . It also sought to reduce the noise, vibration, and maintenance costs of helicopters. Sikorsky Aircraft Division of United Technologies Laboratories built two RSRA aircraft. NASA's Langley Research Center, Hampton, Virginia, did some initial testing and transferred the program to Ames Research Center, Mountain View, California, for an extensive flight research program conducted by Ames and the Army. The purpose of the 1984 tests was to demonstrate the fixed-wing capability of the helicopter/airplane hybrid research vehicle and explore its flight envelope and flying qualities. These tests, flown by Ames pilot G. Warren Hall and Army Maj (soon promoted to Lt. Col.) Patrick Morris, began in May and continued until October 1984, when the RSRA vehicle returned to Ames. The project manager at Dryden for the flights was Wen Painter. These early tests were preparatory for a future X-Wing rotor flight test project to be sponsored by NASA, the Defense Advanced Research Projects Agency (DARPA), and Sikorsky Aircraft. A later derivative X-Wing flew in 1987. The modified RSRA was developed to provide a vehicle for in-flight investigation and verification of new helicopter rotor-system concepts and supporting technology. The RSRA could be configured to fly as an airplane with fixed wings, as a helicopter, or as a compound vehicle that could transition between the two configurations. NASA and DARPA selected Sikorsky in 1984 to convert one of the original RSRAs to the new demonstrator aircraft for the X-Wing concept. Developers of X-Wing technology did not view the X-Wing as a replacement for either helicopters (rotor aircraft) or fixed-wing aircraft. Instead, they envisioned it as an aircraft with special enhanced capabilities to perform missions that call for the low-speed efficiency and maneuverability of helicopters combined with the high cruise speed of fixed-wing aircraft. Some such missions include air-to-air and air-to-ground tactical operations, airborne early warning, electronic intelligence, antisubmarine warfare, and search and rescue. The follow-on X-Wing project was managed by James W. Lane, chief of the RSRA/X-Wing Project Office, Ames Research Center. Coordinating the Ames-Dryden flight effort in 1987 was Jack Kolf. The X-Wing project was a joint effort of NASA-Ames, DARPA, the U.S. Army, and Sikorsky Aircraft, Stratford, Connecticut. The modified X-Wing aircraft was delivered to Ames-Dryden by Sikorsky Aircraft on 25 September 1986. Following taxi tests, initial flights in the aircraft mode without main rotors attached took place at Dryden in December 1997. Ames research pilot G. Warren Hall and Sikorsky's W. Richard Faull were the pilots. The contract with Sikorsky ended that month, and the program ended in January 1988.

  19. Research on high-speed railway's vibration analysis checking based on intelligent mobile terminal

    NASA Astrophysics Data System (ADS)

    Li, Peigang; Xie, Shulin; Zhao, Xuefeng

    2017-04-01

    Recently, the development of high-speed railway meets the requirement of society booming and it has gradually become the first choice for long-length journey. Since ensuring the safety and stable operation are of great importance to high-speed trains owing to its unique features, vibration analysis checking is one of main means to be adopted. Due to the popularization of Smartphone, in this research, a novel public-participating method to achieve high-speed railway's vibration analysis checking based on smartphone and an inspection application of high-speed railway line built in the intelligent mobile terminal were proposed. Utilizing the accelerometer, gyroscope, GPS and other high-performance sensors which were integrated in smartphone, the application can obtain multiple parameters like acceleration, angle, etc and pinpoint the location. Therefore, through analyzing the acceleration data in time domain and frequency domain using fast Fourier transform, the research compared much of data from monitoring tests under different measure conditions and measuring points. Furthermore, an idea of establishing a system about analysis checking was outlined in paper. It has been validated that the smartphone-based high-speed railway line inspection system is reliable and feasible on the high-speed railway lines. And it has more advantages, such as convenience, low cost and being widely used. Obviously, the research has important practical significance and broad application prospects.

  20. Upper Temperature Limit of Environmental Barrier Coatings for Enabling Propulsion Materials Established

    NASA Technical Reports Server (NTRS)

    Lee, Kang N.; Fox, Dennis S.; Robinson, R. Craig

    2001-01-01

    Silicon-based ceramics, such as SiC/SiC composites and Si3N4, are the prime candidates for hot section structural components of next-generation gas turbines. A key barrier to such an application is the rapid recession of silicon-based ceramics in combustion environments because of the volatilization of silica scale by water vapor (refs. 1 and 2). Environmental barrier coatings (EBC's) were developed to prevent recession in the High Speed Research--Enabling Propulsion Materials (HSR-EPM) Program (refs. 3 and 4). An investigation under the Ultra-Efficient Engine Technology Program was undertaken at the NASA Glenn Research Center to establish the upper temperature limit of the EPM EBC.

  1. Fred Hutchinson Cancer Research Center, Seattle, Washington: Laboratories for the 21st Century Case Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2001-12-01

    This case study was prepared by participants in the Laboratories for the 21st Century program, a joint endeavor of the U.S. Environmental Protection Agency and the U.S. Department of Energy's Federal Energy Management Program. The goal of this program is to foster greater energy efficiency in new laboratory buildings for both the public and the private sectors. Retrofits of existing laboratories are also encouraged. The energy-efficient features of the laboratories in the Fred Hutchinson Cancer Research Center complex in Seattle, Washington, include extensive use of efficient lighting, variable-air-volume controls, variable-speed drives, motion sensors, and high-efficiency chillers and motors. With aboutmore » 532,000 gross square feet, the complex is estimated to use 33% less electrical energy than most traditional research facilities consume because of its energy-efficient design and features.« less

  2. Fred Hutchinson Cancer Research Center, Seattle, Washington: Laboratories for the 21st Century Case Studies (Revision)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2002-03-01

    This case study was prepared by participants in the Laboratories for the 21st Century program, a joint endeavor of the U.S. Environmental Protection Agency and the U.S. Department of Energy's Federal Energy Management Program. The goal of this program is to foster greater energy efficiency in new laboratory buildings for both the public and the private sectors. Retrofits of existing laboratories are also encouraged. The energy-efficient features of the laboratories in the Fred Hutchinson Cancer Research Center complex in Seattle, Washington, include extensive use of efficient lighting, variable-air-volume controls, variable-speed drives, motion sensors, and high-efficiency chillers and motors. With aboutmore » 532,000 gross square feet, the complex is estimated to use 33% less electrical energy than most traditional research facilities consume because of its energy-efficient design and features.« less

  3. X-15 Mated to B-52 Captive Flight

    NASA Technical Reports Server (NTRS)

    1960-01-01

    High-altitude contrails frame the B-52 mothership as it carries the X-15 aloft for a research flight on 13 April 1960 on Air Force Maj. Robert M. White's first X-15 flight. The X-15s were air-launched so that they would have enough rocket fuel to reach their high speed and altitude test points. For this early research flight, the X-15 was equipped with a pair of XLR-11 rocket engines until the XLR-99 was available. The X-15s made a total of 199 flights over a period of nearly 10 years--1959 to 1968--and set unofficial world speed and altitude records of 4,520 mph (Mach 6.7) and 354,200 feet. Information gained from the highly successful X-15 program contributed to the development of the Mercury, Gemini, and Apollo piloted spaceflight programs, and also the Space Shuttle program. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported the development of parachute recovery systems used to recover the space shuttle solid rocket booster casings. It also supported eight orbiter (space shuttle) drag chute tests in 1990. In addition, the B-52 served as the air launch platform for the first six Pegasus space boosters. During its many years of service, the B-52 has undergone several modifications. The first major modification was made by North American Aviation (now part of Boeing) in support of the X-15 program. This involved creating a launch-panel-operator station for monitoring the status of the test vehicle being carried, cutting a large notch in the right inboard wing flap to accommodate the vertical tail of the X-15 aircraft, and installing a wing pylon that enables the B-52 to carry research vehicles and test articles to be air-launched/dropped. Located on the right wing, between the inboard engine pylon and the fuselage, this wing pylon was subjected to extensive testing prior to its use. For each test vehicle the B-52 carried, minor changes were made to the launch-panel operator's station. Built originally by the Boeing Company, the NASA B-52 is powered by eight Pratt & Whitney J57-19 turbojet engines, each of which produce 12,000 pounds of thrust. The aircraft's normal launch speed has been Mach 0.8 (about 530 miles per hour) and its normal drop altitude has been 40,000 to 45,000 feet. It is 156 feet long and has a wing span of 185 feet. The heaviest load it has carried was the No. 2 X-15 aircraft at 53,100 pounds. Project manager for the aircraft is Roy Bryant.

  4. Updated Electronic Testbed System

    NASA Technical Reports Server (NTRS)

    Brewer, Kevin L.

    2001-01-01

    As we continue to advance in exploring space frontiers, technology must also advance. The need for faster data recovery and data processing is crucial. In this, the less equipment used, and lighter that equipment is, the better. Because integrated circuits become more sensitive in high altitude, experimental verification and quantification is required. The Center for Applied Radiation Research (CARR) at Prairie View A&M University was awarded a grant by NASA to participate in the NASA ER-2 Flight Program, the APEX balloon flight program, and the Student Launch Program. These programs are to test anomalous errors in integrated circuits due to single event effects (SEE). CARR had already begun experiments characterizing the SEE behavior of high speed and high density SRAM's. The research center built a error testing system using a PC-104 computer unit, an Iomega Zip drive for storage, a test board with the components under test, and a latchup detection and reset unit. A test program was written to continuously monitor a stored data pattern in the SRAM chip and record errors. The devices under test were eight 4Mbit memory chips totaling 4Mbytes of memory. CARR was successful at obtaining data using the Electronic TestBed System (EBS) in various NASA ER-2 test flights. These series of high altitude flights of up to 70,000 feet, were effective at yielding the conditions which single event effects usually occur. However, the data received from the series of flights indicated one error per twenty-four hours. Because flight test time is very expensive, the initial design proved not to be cost effective. The need for orders of magnitude with more memory became essential. Therefore, a project which could test more memory within a given time was created. The goal of this project was not only to test more memory within a given time, but also to have a system with a faster processing speed, and which used less peripherals. This paper will describe procedures used to build an updated Electronic Testbed System.

  5. Application of slender wing benefits to military aircraft

    NASA Technical Reports Server (NTRS)

    Polhamus, E. C.

    1983-01-01

    A review is provided of aerodynamic research conducted at the Langley Research Center with respect to the application of slender wing benefits in the design of high-speed military aircraft, taking into account the supersonic performance and leading-edge vortex flow associated with very highly sweptback wings. The beginning of the development of modern classical swept wing jet aircraft is related to the German Me 262 project during World War II. In the U.S., a theoretical study conducted by Jones (1945) pointed out the advantages of the sweptback wing concept. Developments with respect to variable sweep wings are discussed, taking into account early research in 1946, a joint program of the U.S. with the United Kingdom, the tactical aircraft concept, and the important part which the Langley variable-sweep research program played in the development of the F-111, F-14, and B-1. Attention is also given to hybrid wings, vortex flow theory development, and examples of flow design technology.

  6. NACA Aircraft on Lakebed - D-558-2, X-1B, and X-1E

    NASA Technical Reports Server (NTRS)

    1955-01-01

    Early NACA research aircraft on the lakebed at the High Speed Research Station in 1955: Left to right: X-1E, D-558-2, X-1B There were four versions of the original Bell X-1 rocket-powered research aircraft that flew at the NACA High-Speed Flight Research Station, Edwards, California. The bullet-shaped X-1 aircraft were built by Bell Aircraft Corporation, Buffalo, N.Y. for the U.S. Army Air Forces (after 1947, U.S. Air Force) and the National Advisory Committee for Aeronautics (NACA). The X-1 Program was originally designated the XS-1 for EXperimental Supersonic. The X-1's mission was to investigate the transonic speed range (speeds from just below to just above the speed of sound) and, if possible, to break the 'sound barrier.' Three different X-1s were built and designated: X-1-1, X-1-2 (later modified to become the X-1E), and X-1-3. The basic X-1 aircraft were flown by a large number of different pilots from 1946 to 1951. The X-1 Program not only proved that humans could go beyond the speed of sound, it reinforced the understanding that technological barriers could be overcome. The X-1s pioneered many structural and aerodynamic advances including extremely thin, yet extremely strong wing sections; supersonic fuselage configurations; control system requirements; powerplant compatibility; and cockpit environments. The X-1 aircraft were the first transonic-capable aircraft to use an all-moving stabilizer. The flights of the X-1s opened up a new era in aviation. The first X-1 was air-launched unpowered from a Boeing B-29 Superfortress on January 25, 1946. Powered flights began in December 1946. On October 14, 1947, the X-1-1, piloted by Air Force Captain Charles 'Chuck' Yeager, became the first aircraft to exceed the speed of sound, reaching about 700 miles per hour (Mach 1.06) and an altitude of 43,000 feet. The number 2 X-1 was modified and redesignated the X-1E. The modifications included adding a conventional canopy, an ejection seat, a low-pressure fuel system of increased capacity, and a thinner high-speed wing. The X-1E was used to obtain in-flight data at twice the speed of sound, with particular emphasis placed on investigating the improvements achieved with the high-speed wing. These wings, made by Stanley Aircraft, were only 3-3/8-inches thick at the root and had 343 gauges installed in them to measure structural loads and aerodynamic heating. The X-1E used its rocket engine to power it up to a speed of 1,471 miles per hour (Mach 2.24) and to an altitude of 73,000 feet. Like the X-1 it was air-launched. The X-1 aircraft were almost 31 feet long and had a wingspan of 28 feet. The X-1 was built of conventional aluminum stressed-skin construction to extremely high structural standards. The X-1E was also 31 feet long but had a wingspan of only 22 feet, 10 inches. It was powered by a Reaction Motors, Inc., XLR-8-RM-5, four-chamber rocket engine. As did all X-1 rocket engines, the LR-8-RM-5 engine did not have throttle capability, but instead, depended on ignition of any one chamber or group of chambers to vary speed. The X-1A, X-1B, and the X-1D were growth versions of the X-1. They were almost five feet longer, almost 2,500 pounds heavier and had conventional canopies. The X-1A and X-1B were modified to have ejection seats. Their mission was to continue the X-1 studies at higher speeds and altitudes. The X-1A began this research after the X-1D was destroyed in an explosion on a captive flight before it made any research flights. On December 12, 1953, Major Charles Yeager flew the X-1A up to a speed of 1,612 miles per hour (almost two-and-a-half times the speed of sound). Then on August 26, 1954, Major Arthur Murray took the X-1A up to an altitude of 90,440 feet. Those two performances were the records for the X-1 program. Later the X-1A was also destroyed after being jettisoned from the carrier aircraft because of an explosion. The X-1B was fitted with 300 thermocouples for exploratory aerodynamic heating tests. It also was the first aircraft to fly with a reaction control system, a prototype of the system used on the X-15. The X-1C was cancelled before production. Three D-558-2 'Skyrockets' were built by Douglas Aircraft, Inc. for NACA and the Navy. The mission of the D-558-2 program was to investigate the flight characteristics of a swept-wing aircraft at high supersonic speeds. Particular attention was given to the problem of 'pitch-up,' a phenomenon often encountered with swept-wing configured aircraft. The D-558-2 was a single-place, 35-degree swept-wing aircraft measuring 42 feet in length. It was 12 feet, 8 inches in height and had a wingspan of 25 feet. Fully fueled it weighed from about 10,572 pounds to 15,787 pounds depending on configuration. The first of the three D-558-IIs had a Westinghouse J34-40 jet engine and took off under its own power. The second was equipped with a turbojet engine replaced in 1950 with a Reaction Motors Inc. LR8-RM-6 rocket engine. This aircraft was modified so it could be air-launched from a P2B-1S (Navy designation for the B-29) carrier aircraft. The third Skyrocket had the jet engine and the rocket engine but was also modified so it could be air-launched. The jet engine was for takeoff and climbing to altitude and the four-chambered rocket engine was for reaching supersonic speeds. The rocket engine was rated at 6,000 pounds of thrust. The D-558-2 was first flown on Feb. 4, 1948, by John Martin, a Douglas test pilot. A NACA pilot, Scott Crossfield, became the first person to fly faster than twice the speed of sound when he piloted the D-558-II to its maximum speed of 1,291 miles per hour on Nov. 20, 1953. Its peak altitude, 83,235 feet, a record in its day, was reached with USMC Lt. Col. Marion Carl behind the controls.

  7. F-16XL Ship #2 during last flight viewed from below showing shock fence on left wing

    NASA Technical Reports Server (NTRS)

    1996-01-01

    A special 'shock fence' installed beneath the leading edge of the left wing is visible in this underside aerial view of NASA's F-16XL #2 research aircraft. The small structure assisted researchers in NASA's Supersonic Laminar Flow Control (SLFC) program in controlling the shock wave coming off the F-16XL's engine air inlet when the craft flew at speeds above Mach 1, or the speed of sound. The two-seat F-16XL, one of two 'XLs' flown by NASA's Drdyen Flight Research Center, Edwards, California, flew 45 missions comprising over 90 flight hours during the SLFC project, much of it at supersonic speeds up to Mach 2 and altitudes up to 55,000 feet. The project demonstrated that laminar -- or smooth -- airflow could be achieved over a major portion of a wing at supersonic speeds by use of a suction system. Data acquired during the program will be used to develop a design code calibration database which could assist designers in reducing aerodynamic drag of a proposed second-generation supersonic transport.

  8. Using Teleducation and Field Experiences to further the Understanding of Coastal Environments

    NASA Astrophysics Data System (ADS)

    Macko, S. A.; Szuba, T. A.; Shugart, H.

    2007-05-01

    This project is an outreach and education program with a partner in the K-12 schools at Accomack County on the Eastern Shore of Virginia. It endeavors to build a community knowledgeable of the importance the ocean plays daily in our lives, and our own impact on the ocean. It is an program built in stages that: 1) Establish high speed live interactive classes (teleducation) linkages with the Eastern Shore High Schools with earth science teachers enabling them to remotely participate in University of Virginia classes in Oceanography (designed on a faculty development basis or acquire NSTA certification in Earth Science Education, as well as participation by seniors in the Accomack Schools; 2) Establish field experiences for teachers and selected students that involve travel to both the Virginia Coast Reserve Long Term Ecological Research (VCR/LTER) Center, UVA to observe first- hand the science programs at those locations and participate in cutting edge coastal marine research efforts. These experiences improve student understanding of the ocean-atmosphere biogeophysical system and encourage students to explore the sciences as a field of study and possible vocation. Advanced high school students and science teachers from Accomack County Public Schools participated in an experience involving field and laboratory methods employed in a NSF-sponsored study of the coupled natural-human dynamics on the Eastern Shore of Virginia over the past 500 years (NSF-Biocomplexity). Students and teachers worked with researchers of the VCR facility in Oyster, VA, collected sediment cores from Chesapeake Bay tributaries, and traveled to the Organic Geochemistry Laboratory at UVA, in Charlottesville, VA to prepare and analyze samples for isotopic and palynological information. In a first of its kind connectivity, in June/July, 2006, using high speed internet connections, a summer class in Oceanography was live, interactively broadcast (teleducation) from UVA to Arcadia High School on the Eastern Shore, allowing teachers in the Accomack School district to receive university credit without leaving their home classrooms 250 miles from UVA.

  9. High speed turboprop aeroacoustic study (counterrotation). Volume 2: Computer programs

    NASA Technical Reports Server (NTRS)

    Whitfield, C. E.; Mani, R.; Gliebe, P. R.

    1990-01-01

    The isolated counterrotating high speed turboprop noise prediction program developed and funded by GE Aircraft Engines was compared with model data taken in the GE Aircraft Engines Cell 41 anechoic facility, the Boeing Transonic Wind Tunnel, and in the NASA-Lewis 8 x 6 and 9 x 15 wind tunnels. The predictions show good agreement with measured data under both low and high speed simulated flight conditions. The installation effect model developed for single rotation, high speed turboprops was extended to include counter rotation. The additional effect of mounting a pylon upstream of the forward rotor was included in the flow field modeling. A nontraditional mechanism concerning the acoustic radiation from a propeller at angle of attack was investigated. Predictions made using this approach show results that are in much closer agreement with measurement over a range of operating conditions than those obtained via traditional fluctuating force methods. The isolated rotors and installation effects models were combined into a single prediction program. The results were compared with data taken during the flight test of the B727/UDF (trademark) engine demonstrator aircraft.

  10. High speed turboprop aeroacoustic study (counterrotation). Volume 2: Computer programs

    NASA Astrophysics Data System (ADS)

    Whitfield, C. E.; Mani, R.; Gliebe, P. R.

    1990-07-01

    The isolated counterrotating high speed turboprop noise prediction program developed and funded by GE Aircraft Engines was compared with model data taken in the GE Aircraft Engines Cell 41 anechoic facility, the Boeing Transonic Wind Tunnel, and in the NASA-Lewis 8 x 6 and 9 x 15 wind tunnels. The predictions show good agreement with measured data under both low and high speed simulated flight conditions. The installation effect model developed for single rotation, high speed turboprops was extended to include counter rotation. The additional effect of mounting a pylon upstream of the forward rotor was included in the flow field modeling. A nontraditional mechanism concerning the acoustic radiation from a propeller at angle of attack was investigated. Predictions made using this approach show results that are in much closer agreement with measurement over a range of operating conditions than those obtained via traditional fluctuating force methods. The isolated rotors and installation effects models were combined into a single prediction program. The results were compared with data taken during the flight test of the B727/UDF (trademark) engine demonstrator aircraft.

  11. In-pavement fiber Bragg grating sensors for high-speed weigh-in-motion measurements

    NASA Astrophysics Data System (ADS)

    Al-Tarawneh, Mu'ath; Huang, Ying

    2017-04-01

    The demand on high-speed weigh-in-motion (WIM) measurement rises significantly in last decade to collect weight information for traffic managements especially after the introduction of weigh-station bypass programs such as Pre-Pass. In this study, a three-dimension glass fiber-reinforced polymer packaged fiber Bragg grating sensor (3D GFRP-FBG) is introduced to be embedded inside flexible pavements for weigh-in-motion (WIM) measurement at high speed. Sensitivity study showed that the developed sensor is very sensitive to the passing weights at high speed. Field tests also validated that the developed sensor was able to detect weights at a vehicle driving speed up to 55mph, which can be applied for WIM measurements at high speed.

  12. Use of coolant for high-speed tooth preparation: a survey of pediatric dentistry residency program directors in the United States.

    PubMed

    Kupietzky, Ari; Vargas, Karen G; Waggoner, William F; Fuks, Anna B

    2010-01-01

    To determine current teaching policies regarding the use of coolant type during tooth preparation with high-speed hand-pieces in pediatric dental residency programs in the US. A 17-question survey was electronically mailed to 63 program directors with one follow-up. Multiple-choice questions asked about school and program teaching of cavity preparation with or without water coolant, including hypothetical clinical situations. Fifty-two (83%) program directors returned the survey. Fifty-two percent taught both dry and water coolant methods, 6% taught dry cutting exclusively, and 42% did not teach the dry method and always used water coolant. Dry techniques were used primarily for special needs patients with poor swallow reflexes (50%) and for young children undergoing sedation (41%). Air coolant was taught more frequently in programs in the Midwest (77%) and South (85%) vs. the Northeast (32%) and West (50%) (P<.01). Forty-four percent of combined programs and 60% of hospital programs taught water spray use exclusively, while all university programs taught the dry cutting technique (P<.01). A majority of program directors teach the use of air coolant alone for high-speed preparation of teeth. University and combined programs were more likely to teach the method compared with hospital based ones.

  13. AO corrected satellite imaging from Mount Stromlo

    NASA Astrophysics Data System (ADS)

    Bennet, F.; Rigaut, F.; Price, I.; Herrald, N.; Ritchie, I.; Smith, C.

    2016-07-01

    The Research School of Astronomy and Astrophysics have been developing adaptive optics systems for space situational awareness. As part of this program we have developed satellite imaging using compact adaptive optics systems for small (1-2 m) telescopes such as those operated by Electro Optic Systems (EOS) from the Mount Stromlo Observatory. We have focused on making compact, simple, and high performance AO systems using modern high stroke high speed deformable mirrors and EMCCD cameras. We are able to track satellites down to magnitude 10 with a Strehl in excess of 20% in median seeing.

  14. Reynolds Number Effects on Leading Edge Radius Variations of a Supersonic Transport at Transonic Conditions

    NASA Technical Reports Server (NTRS)

    Rivers, S. M. B.; Wahls, R. A.; Owens, L. R.

    2001-01-01

    A computational study focused on leading-edge radius effects and associated Reynolds number sensitivity for a High Speed Civil Transport configuration at transonic conditions was conducted as part of NASA's High Speed Research Program. The primary purposes were to assess the capabilities of computational fluid dynamics to predict Reynolds number effects for a range of leading-edge radius distributions on a second-generation supersonic transport configuration, and to evaluate the potential performance benefits of each at the transonic cruise condition. Five leading-edge radius distributions are described, and the potential performance benefit including the Reynolds number sensitivity for each is presented. Computational results for two leading-edge radius distributions are compared with experimental results acquired in the National Transonic Facility over a broad Reynolds number range.

  15. Laryngeal High-Speed Videoendoscopy: Rationale and Recommendation for Accurate and Consistent Terminology

    PubMed Central

    Deliyski, Dimitar D.; Hillman, Robert E.

    2015-01-01

    Purpose The authors discuss the rationale behind the term laryngeal high-speed videoendoscopy to describe the application of high-speed endoscopic imaging techniques to the visualization of vocal fold vibration. Method Commentary on the advantages of using accurate and consistent terminology in the field of voice research is provided. Specific justification is described for each component of the term high-speed videoendoscopy, which is compared and contrasted with alternative terminologies in the literature. Results In addition to the ubiquitous high-speed descriptor, the term endoscopy is necessary to specify the appropriate imaging technology and distinguish among modalities such as ultrasound, magnetic resonance imaging, and nonendoscopic optical imaging. Furthermore, the term video critically indicates the electronic recording of a sequence of optical still images representing scenes in motion, in contrast to strobed images using high-speed photography and non-optical high-speed magnetic resonance imaging. High-speed videoendoscopy thus concisely describes the technology and can be appended by the desired anatomical nomenclature such as laryngeal. Conclusions Laryngeal high-speed videoendoscopy strikes a balance between conciseness and specificity when referring to the typical high-speed imaging method performed on human participants. Guidance for the creation of future terminology provides clarity and context for current and future experiments and the dissemination of results among researchers. PMID:26375398

  16. F-15B ACTIVE - First supersonic yaw vectoring flight

    NASA Technical Reports Server (NTRS)

    1996-01-01

    On Wednesday, April 24, 1996, the F-15 Advanced Control Technology for Integrated Vehicles (ACTIVE) aircraft achieved its first supersonic yaw vectoring flight at Dryden Flight Research Center, Edwards, California. ACTIVE is a joint NASA, U.S. Air Force, McDonnell Douglas Aerospace (MDA) and Pratt & Whitney (P&W) program. The team will assess performance and technology benefits during flight test operations. Current plans call for approximately 60 flights totaling 100 hours. 'Reaching this milestone is very rewarding. We hope to set some more records before we're through,' stated Roger W. Bursey, P&W's pitch-yaw balance beam nozzle (PYBBN) program manager. A pair of P&W PYBBNs vectored (horizontally side-to-side, pitch is up and down) the thrust for the MDA manufactured F-15 research aircraft. Power to reach supersonic speeds was provided by two high-performance F100-PW-229 engines that were modified with the multi-directional thrust vectoring nozzles. The new concept should lead to significant increases in performance of both civil and military aircraft flying at subsonic and supersonic speeds.

  17. Inlet Unstart Propulsion Integration Wind Tunnel Test Program Completed for High-Speed Civil Transport

    NASA Technical Reports Server (NTRS)

    Porro, A. Robert

    2000-01-01

    One of the propulsion system concepts to be considered for the High-Speed Civil Transport (HSCT) is an underwing, dual-propulsion, pod-per-wing installation. Adverse transient phenomena such as engine compressor stall and inlet unstart could severely degrade the performance of one of these propulsion pods. The subsequent loss of thrust and increased drag could cause aircraft stability and control problems that could lead to a catastrophic accident if countermeasures are not in place to anticipate and control these detrimental transient events. Aircraft system engineers must understand what happens during an engine compressor stall and inlet unstart so that they can design effective control systems to avoid and/or alleviate the effects of a propulsion pod engine compressor stall and inlet unstart. The objective of the Inlet Unstart Propulsion Airframe Integration test program was to assess the underwing flow field of a High-Speed Civil Transport propulsion system during an engine compressor stall and subsequent inlet unstart. Experimental research testing was conducted in the 10- by 10-Foot Supersonic Wind Tunnel at the NASA Glenn Research Center at Lewis Field. The representative propulsion pod consisted of a two-dimensional, bifurcated inlet mated to a live turbojet engine. The propulsion pod was mounted below a large flat plate that acted as a wing simulator. Because of the plate s long length (nominally 10-ft wide by 18-ft long), realistic boundary layers could form at the inlet cowl plane. Transient instrumentation was used to document the aerodynamic flow-field conditions during an unstart sequence. Acquiring these data was a significant technical challenge because a typical unstart sequence disrupts the local flow field for about only 50 msec. Flow surface information was acquired via static pressure taps installed in the wing simulator, and intrusive pressure probes were used to acquire flow-field information. These data were extensively analyzed to determine the impact of the unstart transient on the surrounding flow field. This wind tunnel test program was a success, and for the first time, researchers acquired flow-field aerodynamic data during a supersonic propulsion system engine compressor stall and inlet unstart sequence. In addition to obtaining flow-field pressure data, Glenn researchers determined other properties such as the transient flow angle and Mach number. Data are still being reduced, and a comprehensive final report will be released during calendar year 2000.

  18. Investigation of chemically-reacting supersonic internal flows

    NASA Technical Reports Server (NTRS)

    Chitsomboon, T.; Tiwari, S. N.

    1985-01-01

    This report covers work done on the research project Analysis and Computation of Internal Flow Field in a Scramjet Engine. The work is supported by the NASA Langley Research Center (Computational Methods Branch of the High-Speed Aerodynamics Division) through research grant NAG1-423. The governing equations of two-dimensional chemically-reacting flows are presented together with the global two-step chemistry model. The finite-difference algorithm used is illustrated and the method of circumventing the stiffness is discussed. The computer program developed is used to solve two model problems of a premixed chemically-reacting flow. The results obtained are physically reasonable.

  19. A training program for nurse scientists to promote intervention translation.

    PubMed

    Santacroce, Sheila Judge; Leeman, Jennifer; Song, Mi-Kyung

    To reduce the burden of chronic illness, prevention and management interventions must be efficacious, adopted and implemented with fidelity, and reach those at greatest risk. Yet, many research-tested interventions are slow to translate into practice. This paper describes how The University of North Carolina at Chapel Hill School of Nursing's NINR-funded institutional pre- and postdoctoral research-training program is addressing the imperative to speed knowledge translation across the research cycle. The training emphasizes six research methods ("catalysts") to speed translation: stakeholder engagement, patient-centered outcomes, intervention optimization and sequential multiple randomized trials (SMART), pragmatic trials, mixed methods approaches, and dissemination and implementation science strategies. Catalysts are integrated into required coursework, biweekly scientific and integrative seminars, and experiential research training. Trainee and program success is evaluated based on benchmarks applicable to all PhD program students, supplemented by indicators specific to the catalysts. Trainees must also demonstrate proficiency in at least two of the six catalysts in their scholarly products. Proficiency is assessed through their works in progress presentations and peer reviews at T32 integrative seminars. While maintaining the emphasis on theory-based interventions, we have integrated six catalysts into our ongoing research training to expedite the dynamic process of intervention development, testing, dissemination and implementation. Through a variety of training activities, our research training focused on theory-based interventions and the six catalysts will generate future nurse scientists who speed translation of theory-based interventions into practice to maximize health outcomes for patients, families, communities and populations affected by chronic illness. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. McDonnell FH-1 Phantom Destroyed for the NACA Crash Fire Program

    NASA Image and Video Library

    1955-04-21

    Researchers at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory purposely wreck a McDonnell FH-1 Phantom as part of the laboratory’s Crash Fire Program. NACA Lewis researchers created the program in 1949 to investigate methods for improving survival rates for take-off and landing-type crashes. In these types of crashes, the passengers often survived the impact only to perish in the ensuing fire. Previously there had been little information on the nature of post-crash fires, and it was difficult to use analytical studies in this area. Irving Pinkel, Chief of the Lewis Flight Propulsion Division, was the primary researcher. He enlisted flight safety specialist and aeronautics researchers G. Merritt Preston and Gerard Pesman, mechanical engineer Dugald Black, and others. The tests were conducted at the nearby Ravenna Arsenal using decommissioned Air Force fighter and transport aircraft. The pilotless aircraft were accelerated down a rail on a 1700-foot track at take-off speeds and run into barriers to simulate a variety of different types of crashes. The first barrier stripped off the landing gears and another briefly sent the aircraft off the ground before it crashed into a dirt mound. Telemetry and high-speed cameras were crucial elements in these studies. NACA Lewis photographer Bill Wynne developed a method for inserting timekeeping devices on test film that were able to show time to one thousandth of a second.

  1. Fuzzy Logic Enhanced Digital PIV Processing Software

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.

    1999-01-01

    Digital Particle Image Velocimetry (DPIV) is an instantaneous, planar velocity measurement technique that is ideally suited for studying transient flow phenomena in high speed turbomachinery. DPIV is being actively used at the NASA Glenn Research Center to study both stable and unstable operating conditions in a high speed centrifugal compressor. Commercial PIV systems are readily available which provide near real time feedback of the PIV image data quality. These commercial systems are well designed to facilitate the expedient acquisition of PIV image data. However, as with any general purpose system, these commercial PIV systems do not meet all of the data processing needs required for PIV image data reduction in our compressor research program. An in-house PIV PROCessing (PIVPROC) code has been developed for reducing PIV data. The PIVPROC software incorporates fuzzy logic data validation for maximum information recovery from PIV image data. PIVPROC enables combined cross-correlation/particle tracking wherein the highest possible spatial resolution velocity measurements are obtained.

  2. The Nozzle Acoustic Test Rig: an Acoustic and Aerodynamic Free-jet Facility

    NASA Technical Reports Server (NTRS)

    Castner, Raymond S.

    1994-01-01

    The nozzle acoustic test rig (NATR) was built at NASA Lewis Research Center to support the High Speed Research Program. The facility is capable of measuring the acoustic and aerodynamic performance of aircraft engine nozzle concepts. Trade-off studies are conducted to compare performance and noise during simulated low-speed flight and takeoff. Located inside an acoustically treated dome with a 62-ft radius, the NATR is a free-jet that has a 53-in. diameter and is driven by an air ejector. This ejector is operated with 125 lb/s of compressed air, at 125 psig, to achieve 375 lb/s at Mach 0.3. Acoustic and aerodynamic data are collected from test nozzles mounted in the free-jet flow. The dome serves to protect the surrounding community from high noise levels generated by the nozzles, and to provide an anechoic environment for acoustic measurements. Information presented in this report summarizes free-jet performance, fluid support systems, and data acquisition capabilities of the NATR.

  3. Design of a GaAs/Ge Solar Array for Unmanned Aerial Vehicles

    NASA Technical Reports Server (NTRS)

    Scheiman, David A.; Brinker, David J.; Bents, David J.; Colozza, Anthony J.

    1995-01-01

    Unmanned Aerial Vehicles (UAV) are being proposed for many applications including surveillance, mapping and atmospheric studies. These applications require a lightweight, low speed, medium to long duration airplane. Due to the weight, speed, and altitude constraints imposed on such aircraft, solar array generated electric power is a viable alternative to air-breathing engines. Development of such aircraft is currently being funded under the Environmental Research Aircraft and Sensor Technology (ERAST) program. NASA Lewis Research Center (LeRC) is currently building a Solar Electric Airplane to demonstrate UAV technology. This aircraft utilizes high efficiency Applied Solar Energy Corporation (ASEC) GaAs/Ge space solar cells. The cells have been provided by the Air Force through the ManTech Office. Expected completion of the plane is early 1995, with the airplane currently undergoing flight testing using battery power.

  4. Design of a GaAs/Ge solar array for unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Scheiman, David A.; Brinker, David J.; Bents, David J.; Colozza, Anthony J.

    1995-03-01

    Unmanned Aerial Vehicles (UAV) are being proposed for many applications including surveillance, mapping and atmospheric studies. These applications require a lightweight, low speed, medium to long duration airplane. Due to the weight, speed, and altitude constraints imposed on such aircraft, solar array generated electric power is a viable alternative to air-breathing engines. Development of such aircraft is currently being funded under the Environmental Research Aircraft and Sensor Technology (ERAST) program. NASA Lewis Research Center (LeRC) is currently building a Solar Electric Airplane to demonstrate UAV technology. This aircraft utilizes high efficiency Applied Solar Energy Corporation (ASEC) GaAs/Ge space solar cells. The cells have been provided by the Air Force through the ManTech Office. Expected completion of the plane is early 1995, with the airplane currently undergoing flight testing using battery power.

  5. Human Response to Simulated Low-Intensity Sonic Booms

    NASA Technical Reports Server (NTRS)

    Sullivan, Brenda M.

    2004-01-01

    NASA's High Speed Research (HSR ) program in the 1990s was intended to develop a technology base for a future High-Speed Civil Transport (HSCT). As part of this program, the NASA Langley Research Center sonic boom simulator (SBS) was built and used for a series of tests on subjective response to sonic booms. At the end of the HSR program, an HSCT was deemed impractical, but since then interest in supersonic flight has reawakened, this time focusing on a smaller aircraft suitable for a business jet. To respond to this interest, the Langley sonic boom simulator has been refurbished. The upgraded computer-controlled playback system is based on an SGI O2 computer, in place of the previous DEC MicroVAX. As the frequency response of the booth is not flat, an equalization filter is required. Because of the changes made during the renovation (new loudspeakers), the previous equalization filter no longer performed as well as before, so a new equalization filter has been designed. Booms to be presented in the booth are preprocessed using the filter. When the preprocessed signals are presented into the booth and measured with a microphone, the results are very similar to the intended shapes. Signals with short rise times and sharp "corners" are observed to have a small amount of "ringing" in the response. During the HSR program a considerable number of subjective tests were completed in the SBS. A summary of that research is given in Leatherwood et al. (Individual reports are available at http://techreports.larc.nasa.gov/ltrs/ltrs.html.) Topics of study included shaped sonic booms, asymmetrical booms, realistic (recorded) boom waveforms, indoor and outdoor booms shapes, among other factors. One conclusion of that research was that a loudness metric, like the Stevens Perceived Level (PL), predicted human reaction much more accurately than overpressure or unweighted sound pressure level. Structural vibration and rattle were not included in these studies.

  6. Aeroacoustics of advanced propellers

    NASA Technical Reports Server (NTRS)

    Groeneweg, John F.

    1990-01-01

    The aeroacoustics of advanced, high speed propellers (propfans) are reviewed from the perspective of NASA research conducted in support of the Advanced Turboprop Program. Aerodynamic and acoustic components of prediction methods for near and far field noise are summarized for both single and counterrotation propellers in uninstalled and configurations. Experimental results from tests at both takeoff/approach and cruise conditions are reviewed with emphasis on: (1) single and counterrotation model tests in the NASA Lewis 9 by 15 (low speed) and 8 by 6 (high speed) wind tunnels, and (2) full scale flight tests of a 9 ft (2.74 m) diameter single rotation wing mounted tractor and a 11.7 ft (3.57 m) diameter counterrotation aft mounted pusher propeller. Comparisons of model data projected to flight with full scale flight data show good agreement validating the scale model wind tunnel approach. Likewise, comparisons of measured and predicted noise level show excellent agreement for both single and counterrotation propellers. Progress in describing angle of attack and installation effects is also summarized. Finally, the aeroacoustic issues associated with ducted propellers (very high bypass fans) are discussed.

  7. Data Acquisition Systems

    NASA Technical Reports Server (NTRS)

    1994-01-01

    In the mid-1980s, Kinetic Systems and Langley Research Center determined that high speed CAMAC (Computer Automated Measurement and Control) data acquisition systems could significantly improve Langley's ARTS (Advanced Real Time Simulation) system. The ARTS system supports flight simulation R&D, and the CAMAC equipment allowed 32 high performance simulators to be controlled by centrally located host computers. This technology broadened Kinetic Systems' capabilities and led to several commercial applications. One of them is General Atomics' fusion research program. Kinetic Systems equipment allows tokamak data to be acquired four to 15 times more rapidly. Ford Motor company uses the same technology to control and monitor transmission testing facilities.

  8. Recent advances in active noise and vibration control at NASA Langley Research Center

    NASA Astrophysics Data System (ADS)

    Gibbs, Gary P.; Cabell, Randolph H.; Palumbo, Daniel L.; Silcox, Richard J.; Turner, Travis L.

    2002-11-01

    Over the past 15 years NASA has investigated the use of active control technology for aircraft interior noise. More recently this work has been supported through the Advanced Subsonic Technology Noise Reduction Program (1994-2001), High Speed Research Program (1994-1999), and through the Quiet Aircraft Technology Program (2000-present). The interior environment is recognized as an important element in flight safety, crew communications and fatigue, as well as passenger comfort. This presentation will overview research in active noise and vibration control relating to interior noise being investigated by NASA. The research to be presented includes: active control of aircraft fuselage sidewall transmission due to turbulent boundary layer or jet noise excitation, active control of interior tones due to propeller excitation of aircraft structures, and adaptive stiffening of structures for noise, vibration, and fatigue control. Work on actuator technology ranging from piezoelectrics, shape memory actuators, and fluidic actuators will be described including applications. Control system technology will be included that is experimentally based, real-time, and adaptive.

  9. Development of a 300,000-pixel ultrahigh-speed high-sensitivity CCD

    NASA Astrophysics Data System (ADS)

    Ohtake, H.; Hayashida, T.; Kitamura, K.; Arai, T.; Yonai, J.; Tanioka, K.; Maruyama, H.; Etoh, T. Goji; Poggemann, D.; Ruckelshausen, A.; van Kuijk, H.; Bosiers, Jan T.

    2006-02-01

    We are developing an ultrahigh-speed, high-sensitivity broadcast camera that is capable of capturing clear, smooth slow-motion videos even where lighting is limited, such as at professional baseball games played at night. In earlier work, we developed an ultrahigh-speed broadcast color camera1) using three 80,000-pixel ultrahigh-speed, highsensitivity CCDs2). This camera had about ten times the sensitivity of standard high-speed cameras, and enabled an entirely new style of presentation for sports broadcasts and science programs. Most notably, increasing the pixel count is crucially important for applying ultrahigh-speed, high-sensitivity CCDs to HDTV broadcasting. This paper provides a summary of our experimental development aimed at improving the resolution of CCD even further: a new ultrahigh-speed high-sensitivity CCD that increases the pixel count four-fold to 300,000 pixels.

  10. In Vitro Cold Transference of Bases and Restorations.

    DTIC Science & Technology

    1980-07-01

    Donald D. Peters, COL, DC and Robert A. Augsburger, MAJ, DC Dr. Peters, an Army colonel, is Assistant Director, Endodontic Residency Training Program...United States Army Institute of Dental Research, Washington, DC 20012 Dr. Augsburger is Chief, Department of Endodontics , William Beaumont Army...by eight different operative grinding techniques. JAOA 58(5):49-59, 1959. 4. Zach, L. and Cohen, G. Biology of high speed rotary operative dental

  11. Qualitative and quantitative imaging in microgravity combustion

    NASA Technical Reports Server (NTRS)

    Weiland, Karen J.

    1995-01-01

    An overview of the imaging techniques implemented by researchers in the microgravity combustion program shows that for almost any system, imaging of the flame may be accomplished in a variety of ways. Standard and intensified video, high speed, and infrared cameras and fluorescence, laser schlieren, rainbow schlieren, soot volume fraction, and soot temperature imaging have all been used in the laboratory and many in reduced gravity to make the necessary experimental measurements.

  12. Real-Time On-Board Airborne Demonstration of High-Speed On-Board Data Processing for Science Instruments (HOPS)

    NASA Technical Reports Server (NTRS)

    Beyon, Jeffrey Y.; Ng, Tak-Kwong; Davis, Mitchell J.; Adams, James K.; Bowen, Stephen C.; Fay, James J.; Hutchinson, Mark A.

    2015-01-01

    The project called High-Speed On-Board Data Processing for Science Instruments (HOPS) has been funded by NASA Earth Science Technology Office (ESTO) Advanced Information Systems Technology (AIST) program since April, 2012. The HOPS team recently completed two flight campaigns during the summer of 2014 on two different aircrafts with two different science instruments. The first flight campaign was in July, 2014 based at NASA Langley Research Center (LaRC) in Hampton, VA on the NASA's HU-25 aircraft. The science instrument that flew with HOPS was Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) CarbonHawk Experiment Simulator (ACES) funded by NASA's Instrument Incubator Program (IIP). The second campaign was in August, 2014 based at NASA Armstrong Flight Research Center (AFRC) in Palmdale, CA on the NASA's DC-8 aircraft. HOPS flew with the Multifunctional Fiber Laser Lidar (MFLL) instrument developed by Excelis Inc. The goal of the campaigns was to perform an end-to-end demonstration of the capabilities of the HOPS prototype system (HOPS COTS) while running the most computationally intensive part of the ASCENDS algorithm real-time on-board. The comparison of the two flight campaigns and the results of the functionality tests of the HOPS COTS are presented in this paper.

  13. Information Management for a Large Multidisciplinary Project

    NASA Technical Reports Server (NTRS)

    Jones, Kennie H.; Randall, Donald P.; Cronin, Catherine K.

    1992-01-01

    In 1989, NASA's Langley Research Center (LaRC) initiated the High-Speed Airframe Integration Research (HiSAIR) Program to develop and demonstrate an integrated environment for high-speed aircraft design using advanced multidisciplinary analysis and optimization procedures. The major goals of this program were to evolve the interactions among disciplines and promote sharing of information, to provide a timely exchange of information among aeronautical disciplines, and to increase the awareness of the effects each discipline has upon other disciplines. LaRC historically has emphasized the advancement of analysis techniques. HiSAIR was founded to synthesize these advanced methods into a multidisciplinary design process emphasizing information feedback among disciplines and optimization. Crucial to the development of such an environment are the definition of the required data exchanges and the methodology for both recording the information and providing the exchanges in a timely manner. These requirements demand extensive use of data management techniques, graphic visualization, and interactive computing. HiSAIR represents the first attempt at LaRC to promote interdisciplinary information exchange on a large scale using advanced data management methodologies combined with state-of-the-art, scientific visualization techniques on graphics workstations in a distributed computing environment. The subject of this paper is the development of the data management system for HiSAIR.

  14. Investigations for Supersonic Transports at Transonic and Supersonic Conditions

    NASA Technical Reports Server (NTRS)

    Rivers, S. Melissa B.; Owens, Lewis R.; Wahls, Richard A.

    2007-01-01

    Several computational studies were conducted as part of NASA s High Speed Research Program. Results of turbulence model comparisons from two studies on supersonic transport configurations performed during the NASA High-Speed Research program are given. The effects of grid topology and the representation of the actual wind tunnel model geometry are also investigated. Results are presented for both transonic conditions at Mach 0.90 and supersonic conditions at Mach 2.48. A feature of these two studies was the availability of higher Reynolds number wind tunnel data with which to compare the computational results. The transonic wind tunnel data was obtained in the National Transonic Facility at NASA Langley, and the supersonic data was obtained in the Boeing Polysonic Wind Tunnel. The computational data was acquired using a state of the art Navier-Stokes flow solver with a wide range of turbulence models implemented. The results show that the computed forces compare reasonably well with the experimental data, with the Baldwin-Lomax with Degani-Schiff modifications and the Baldwin-Barth models showing the best agreement for the transonic conditions and the Spalart-Allmaras model showing the best agreement for the supersonic conditions. The transonic results were more sensitive to the choice of turbulence model than were the supersonic results.

  15. SR-71A - in Flight from Below at Takeoff

    NASA Technical Reports Server (NTRS)

    1997-01-01

    With landing gear retracting, NASA Dryden Flight Research Center's SR-71A Blackbird, tail number 844, powers its way off the Edwards AFB runway with two Pratt & Whitney JT11D-20 engines rated at 34,000 pounds of thrust each, on a 1997 flight. Two SR-71 aircraft have been used by NASA as testbeds for high-speed and high-altitude aeronautical research. The aircraft, an SR-71A and an SR-71B pilot trainer aircraft, have been based here at NASA's Dryden Flight Research Center, Edwards, California. They were transferred to NASA after the U.S. Air Force program was cancelled. As research platforms, the aircraft can cruise at Mach 3 for more than one hour. For thermal experiments, this can produce heat soak temperatures of over 600 degrees Fahrenheit (F). This operating environment makes these aircraft excellent platforms to carry out research and experiments in a variety of areas -- aerodynamics, propulsion, structures, thermal protection materials, high-speed and high-temperature instrumentation, atmospheric studies, and sonic boom characterization. The SR-71 was used in a program to study ways of reducing sonic booms or over pressures that are heard on the ground, much like sharp thunderclaps, when an aircraft exceeds the speed of sound. Data from this Sonic Boom Mitigation Study could eventually lead to aircraft designs that would reduce the 'peak' overpressures of sonic booms and minimize the startling affect they produce on the ground. One of the first major experiments to be flown in the NASA SR-71 program was a laser air data collection system. It used laser light instead of air pressure to produce airspeed and attitude reference data, such as angle of attack and sideslip, which are normally obtained with small tubes and vanes extending into the airstream. One of Dryden's SR-71s was used for the Linear Aerospike Rocket Engine, or LASRE Experiment. Another earlier project consisted of a series of flights using the SR-71 as a science camera platform for NASA's Jet Propulsion Laboratory in Pasadena, California. An upward-looking ultraviolet video camera placed in the SR-71's nosebay studied a variety of celestial objects in wavelengths that are blocked to ground-based astronomers. Earlier in its history, Dryden had a decade of past experience at sustained speeds above Mach 3. Two YF-12A aircraft and an SR-71 designated as a YF-12C were flown at the center between December 1969 and November 1979 in a joint NASA/USAF program to learn more about the capabilities and limitations of high-speed, high-altitude flight. The YF-12As were prototypes of a planned interceptor aircraft based on a design that later evolved into the SR-71 reconnaissance aircraft. Dave Lux was the NASA SR-71 project manger for much of the decade of the 1990s, followed by Steve Schmidt. Developed for the USAF as reconnaissance aircraft more than 30 years ago, SR-71s are still the world's fastest and highest-flying production aircraft. The aircraft can fly at speeds of more than 2,200 miles per hour (Mach 3+, or more than three times the speed of sound) and at altitudes of over 85,000 feet. The Lockheed Skunk Works (now Lockheed Martin) built the original SR-71 aircraft. Each aircraft is 107.4 feet long, has a wingspan of 55.6 feet, and is 18.5 feet high (from the ground to the top of the rudders, when parked). Gross takeoff weight is about 140,000 pounds, including a possible fuel weight of 80,280 pounds. The airframes are built almost entirely of titanium and titanium alloys to withstand heat generated by sustained Mach 3 flight. Aerodynamic control surfaces consist of all-moving vertical tail surfaces, ailerons on the outer wings, and elevators on the trailing edges between the engine exhaust nozzles. The two SR-71s at Dryden have been assigned the following NASA tail numbers: NASA 844 (A model), military serial 61-7980 and NASA 831 (B model), military serial 61-7956. From 1990 through 1994, Dryden also had another 'A' model, NASA 832, military serial 61-7971. This aircraft was returned to the USAF inventory and was the first aircraft reactivated for USAF reconnaissance purposes in 1995. It has since returned to Dryden along with SR-71A 61-7967.

  16. SR-71 Ship #1 on Ramp

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This look-down view of NASA's SR-71A aircraft shows the Blackbird on the ramp at the Dryden Flight Research Center, Edwards, California, with Rogers Dry Lake in the background. NASA operated two SR-71s, an SR-71A and an SR- 71B pilot trainer aircraft at that point in time, both based at Dryden. Two SR-71 aircraft have been used by NASA as testbeds for high-speed and high-altitude aeronautical research. The aircraft, an SR-71A and an SR-71B pilot trainer aircraft, have been based here at NASA's Dryden Flight Research Center, Edwards, California. They were transferred to NASA after the U.S. Air Force program was cancelled. As research platforms, the aircraft can cruise at Mach 3 for more than one hour. For thermal experiments, this can produce heat soak temperatures of over 600 degrees Fahrenheit (F). This operating environment makes these aircraft excellent platforms to carry out research and experiments in a variety of areas -- aerodynamics, propulsion, structures, thermal protection materials, high-speed and high-temperature instrumentation, atmospheric studies, and sonic boom characterization. The SR-71 was used in a program to study ways of reducing sonic booms or over pressures that are heard on the ground, much like sharp thunderclaps, when an aircraft exceeds the speed of sound. Data from this Sonic Boom Mitigation Study could eventually lead to aircraft designs that would reduce the 'peak' overpressures of sonic booms and minimize the startling affect they produce on the ground. One of the first major experiments to be flown in the NASA SR-71 program was a laser air data collection system. It used laser light instead of air pressure to produce airspeed and attitude reference data, such as angle of attack and sideslip, which are normally obtained with small tubes and vanes extending into the airstream. One of Dryden's SR-71s was used for the Linear Aerospike Rocket Engine, or LASRE Experiment. Another earlier project consisted of a series of flights using the SR-71 as a science camera platform for NASA's Jet Propulsion Laboratory in Pasadena, California. An upward-looking ultraviolet video camera placed in the SR-71's nosebay studied a variety of celestial objects in wavelengths that are blocked to ground-based astronomers. Earlier in its history, Dryden had a decade of past experience at sustained speeds above Mach 3. Two YF-12A aircraft and an SR-71 designated as a YF-12C were flown at the center between December 1969 and November 1979 in a joint NASA/USAF program to learn more about the capabilities and limitations of high-speed, high-altitude flight. The YF-12As were prototypes of a planned interceptor aircraft based on a design that later evolved into the SR-71 reconnaissance aircraft. Dave Lux was the NASA SR-71 project manger for much of the decade of the 1990s, followed by Steve Schmidt. Developed for the USAF as reconnaissance aircraft more than 30 years ago, SR-71s are still the world's fastest and highest-flying production aircraft. The aircraft can fly at speeds of more than 2,200 miles per hour (Mach 3+, or more than three times the speed of sound) and at altitudes of over 85,000 feet. The Lockheed Skunk Works (now Lockheed Martin) built the original SR-71 aircraft. Each aircraft is 107.4 feet long, has a wingspan of 55.6 feet, and is 18.5 feet high (from the ground to the top of the rudders, when parked). Gross takeoff weight is about 140,000 pounds, including a possible fuel weight of 80,280 pounds. The airframes are built almost entirely of titanium and titanium alloys to withstand heat generated by sustained Mach 3 flight. Aerodynamic control surfaces consist of all-moving vertical tail surfaces, ailerons on the outer wings, and elevators on the trailing edges between the engine exhaust nozzles. The two SR-71s at Dryden have been assigned the following NASA tail numbers: NASA 844 (A model), military serial 61-7980 and NASA 831 (B model), military serial 61-7956. From 1990 through 1994, Dryden also had another 'A' model, NASA 832, military serial 61-7971. This aircraft was returned to the USAF inventory and was the first aircraft reactivated for USAF reconnaissance purposes in 1995. It has since returned to Dryden along with SR-71A 61-7967.

  17. SR-71B - in Flight with F-18 Chase Aircraft - View from Air Force Tanker

    NASA Technical Reports Server (NTRS)

    1996-01-01

    NASA 831, an SR-71B operated by the Dryden Flight Research Center, Edwards, California, cruises over the Mojave Desert with an F/A-18 Hornet flying safety chase. They were photographed on a 1996 mission from an Air Force refueling tanker The F/A-18 Hornet is used primarily as a safety chase and support aircraft at Dryden. As support aircraft, the F-18s are used for safety chase, pilot proficiency and aerial photography. Two SR-71 aircraft have been used by NASA as testbeds for high-speed and high-altitude aeronautical research. The aircraft, an SR-71A and an SR-71B pilot trainer aircraft, have been based here at NASA's Dryden Flight Research Center, Edwards, California. They were transferred to NASA after the U.S. Air Force program was cancelled. As research platforms, the aircraft can cruise at Mach 3 for more than one hour. For thermal experiments, this can produce heat soak temperatures of over 600 degrees Fahrenheit (F). This operating environment makes these aircraft excellent platforms to carry out research and experiments in a variety of areas -- aerodynamics, propulsion, structures, thermal protection materials, high-speed and high-temperature instrumentation, atmospheric studies, and sonic boom characterization. The SR-71 was used in a program to study ways of reducing sonic booms or over pressures that are heard on the ground, much like sharp thunderclaps, when an aircraft exceeds the speed of sound. Data from this Sonic Boom Mitigation Study could eventually lead to aircraft designs that would reduce the 'peak' overpressures of sonic booms and minimize the startling affect they produce on the ground. One of the first major experiments to be flown in the NASA SR-71 program was a laser air data collection system. It used laser light instead of air pressure to produce airspeed and attitude reference data, such as angle of attack and sideslip, which are normally obtained with small tubes and vanes extending into the airstream. One of Dryden's SR-71s was used for the Linear Aerospike Rocket Engine, or LASRE Experiment. Another earlier project consisted of a series of flights using the SR-71 as a science camera platform for NASA's Jet Propulsion Laboratory in Pasadena, California. An upward-looking ultraviolet video camera placed in the SR-71's nosebay studied a variety of celestial objects in wavelengths that are blocked to ground-based astronomers. Earlier in its history, Dryden had a decade of past experience at sustained speeds above Mach 3. Two YF-12A aircraft and an SR-71 designated as a YF-12C were flown at the center between December 1969 and November 1979 in a joint NASA/USAF program to learn more about the capabilities and limitations of high-speed, high-altitude flight. The YF-12As were prototypes of a planned interceptor aircraft based on a design that later evolved into the SR-71 reconnaissance aircraft. Dave Lux was the NASA SR-71 project manger for much of the decade of the 1990s, followed by Steve Schmidt. Developed for the USAF as reconnaissance aircraft more than 30 years ago, SR-71s are still the world's fastest and highest-flying production aircraft. The aircraft can fly at speeds of more than 2,200 miles per hour (Mach 3+, or more than three times the speed of sound) and at altitudes of over 85,000 feet. The Lockheed Skunk Works (now Lockheed Martin) built the original SR-71 aircraft. Each aircraft is 107.4 feet long, has a wingspan of 55.6 feet, and is 18.5 feet high (from the ground to the top of the rudders, when parked). Gross takeoff weight is about 140,000 pounds, including a possible fuel weight of 80,280 pounds. The airframes are built almost entirely of titanium and titanium alloys to withstand heat generated by sustained Mach 3 flight. Aerodynamic control surfaces consist of all-moving vertical tail surfaces, ailerons on the outer wings, and elevators on the trailing edges between the engine exhaust nozzles. The two SR-71s at Dryden have been assigned the following NASA tail numbers: NASA 844 (A model), military serial 61-7980 and NASA 831 (B model), military serial 61-7956. From 1990 through 1994, Dryden also had another 'A' model, NASA 832, military serial 61-7971. This aircraft was returned to the USAF inventory and was the first aircraft reactivated for USAF reconnaissance purposes in 1995. It has since returned to Dryden along with SR-71A 61-7967.

  18. SR-71A Taking Off with Test Fixture Mounted Atop the Aft Section of the Aircraft and F-18 Chase Airc

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This photo shows a NASA's SR-71A Blackbird, followed by a NASA F/A-18 chase plane, taking off from the runway at the Dryden Flight Research Center, Edwards, California, on a 1999 flight. Two SR-71 aircraft have been used by NASA as testbeds for high-speed and high-altitude aeronautical research. The aircraft, an SR-71A and an SR-71B pilot trainer aircraft, have been based here at NASA's Dryden Flight Research Center, Edwards, California. They were transferred to NASA after the U.S. Air Force program was cancelled. As research platforms, the aircraft can cruise at Mach 3 for more than one hour. For thermal experiments, this can produce heat soak temperatures of over 600 degrees Fahrenheit (F). This operating environment makes these aircraft excellent platforms to carry out research and experiments in a variety of areas -- aerodynamics, propulsion, structures, thermal protection materials, high-speed and high-temperature instrumentation, atmospheric studies, and sonic boom characterization. The SR-71 was used in a program to study ways of reducing sonic booms or over pressures that are heard on the ground, much like sharp thunderclaps, when an aircraft exceeds the speed of sound. Data from this Sonic Boom Mitigation Study could eventually lead to aircraft designs that would reduce the 'peak' overpressures of sonic booms and minimize the startling affect they produce on the ground. One of the first major experiments to be flown in the NASA SR-71 program was a laser air data collection system. It used laser light instead of air pressure to produce airspeed and attitude reference data, such as angle of attack and sideslip, which are normally obtained with small tubes and vanes extending into the airstream. One of Dryden's SR-71s was used for the Linear Aerospike Rocket Engine, or LASRE Experiment. Another earlier project consisted of a series of flights using the SR-71 as a science camera platform for NASA's Jet Propulsion Laboratory in Pasadena, California. An upward-looking ultraviolet video camera placed in the SR-71's nosebay studied a variety of celestial objects in wavelengths that are blocked to ground-based astronomers. Earlier in its history, Dryden had a decade of past experience at sustained speeds above Mach 3. Two YF-12A aircraft and an SR-71 designated as a YF-12C were flown at the center between December 1969 and November 1979 in a joint NASA/USAF program to learn more about the capabilities and limitations of high-speed, high-altitude flight. The YF-12As were prototypes of a planned interceptor aircraft based on a design that later evolved into the SR-71 reconnaissance aircraft. Dave Lux was the NASA SR-71 project manger for much of the decade of the 1990s, followed by Steve Schmidt. Developed for the USAF as reconnaissance aircraft more than 30 years ago, SR-71s are still the world's fastest and highest-flying production aircraft. The aircraft can fly at speeds of more than 2,200 miles per hour (Mach 3+, or more than three times the speed of sound) and at altitudes of over 85,000 feet. The Lockheed Skunk Works (now Lockheed Martin) built the original SR-71 aircraft. Each aircraft is 107.4 feet long, has a wingspan of 55.6 feet, and is 18.5 feet high (from the ground to the top of the rudders, when parked). Gross takeoff weight is about 140,000 pounds, including a possible fuel weight of 80,280 pounds. The airframes are built almost entirely of titanium and titanium alloys to withstand heat generated by sustained Mach 3 flight. Aerodynamic control surfaces consist of all-moving vertical tail surfaces, ailerons on the outer wings, and elevators on the trailing edges between the engine exhaust nozzles. The two SR-71s at Dryden have been assigned the following NASA tail numbers: NASA 844 (A model), military serial 61-7980 and NASA 831 (B model), military serial 61-7956. From 1990 through 1994, Dryden also had another 'A' model, NASA 832, military serial 61-7971. This aircraft was returned to the USAF inventory and was the first aircraft reactivated for USAF reconnaissance purposes in 1995. It has since returned to Dryden along with SR-71A 61-7967.

  19. 16. Photocopy of photograph (original in the Langley Research Center ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) (LAL-12470) ELEVATION OF 8-FOOT HIGH SPEED WIND TUNNEL. - NASA Langley Research Center, 8-Foot High Speed Wind Tunnel, 641 Thornell Avenue, Hampton, Hampton, VA

  20. The Road to Mach 10: A History of the X-43A Hypersonic Flight Test Program at NASA Dryden -- Origins to First Flight

    NASA Technical Reports Server (NTRS)

    Peebles, Curtis

    2006-01-01

    The NASA Dryden Flight Research Center, in partnership with the NASA Langley Research Center and industrial contractors, conducted the first flight tests of a supersonic combustion ramjet (scramjet) in 2004. This was a revolutionary airbreathing engine able to operate at speeds above Mach 5, which carries potential for both high-speed atmospheric flight and as a space launcher. For the Dryden engineers, the X-43 program was the culmination of a nearly 60-year history of flight research, going back to the early days of supersonic flight, and to rocket planes such as the X-1, D-558-II Skyrocket, and the X-15. For the propulsion community, it marked a turning point in a quest that had taken nearly as long. The scramjet engine did not arise from the work of a single individual or from a single technological breakthrough. It evolved instead from work under way on ramjets in the early 1950s, and from research programs at the National Advisory Committee for Aeronautics (NACA) Lewis Research Center, at the U.S. Army Aberdeen Proving Ground, and by the U.S. Navy. Studies developed in the course of these disparate projects raised the possibility of supersonic combustion. Many researchers had considered the notion impractical due to the difficulty of stabilizing a flame front in a supersonic airflow. NACA researchers at Lewis attempted to test the idea's feasibility by burning aluminum borohydride in a supersonic wind tunnel. Sustained burning was believed to have been observed at Mach 1.5, Mach 2, and Mach 3 for as long as two seconds.

  1. The X-43A/Pegasus combination dropped into the Pacific Ocean after losing control early in the first free-flight attempt

    NASA Image and Video Library

    2001-06-02

    The first X-43A hypersonic research aircraft and its modified Pegasus booster rocket were carried aloft by NASA's NB-52B carrier aircraft from Dryden Flight Research Center at Edwards Air Force Base, Calif., on June 2, 2001 for the first of three high-speed free flight attempts. About an hour and 15 minutes later the Pegasus booster was released from the B-52 to accelerate the X-43A to its intended speed of Mach 7. Before this could be achieved, the combined Pegasus and X-43A "stack" lost control about eight seconds after ignition of the Pegasus rocket motor. The mission was terminated and explosive charges ensured the Pegasus and X-43A fell into the Pacific Ocean in a cleared Navy range area. A NASA investigation board is being assembled to determine the cause of the incident. Work continues on two other X-43A vehicles, the first of which could fly by late 2001. Central to the X-43A program is its integration of an air-breathing "scramjet" engine that could enable a variety of high-speed aerospace craft, and promote cost-effective access to space. The 12-foot, unpiloted research vehicle was developed and built for NASA by MicroCraft Inc., Tullahoma, Tenn. The booster was built by Orbital Sciences Corp. at Chandler, Ariz.

  2. Ignition of the Pegasus rocket moments after release from the B-52 signaled acceleration of the X-43A/Pegasus combination over the Pacific Ocean

    NASA Image and Video Library

    2001-06-02

    The first X-43A hypersonic research aircraft and its modified Pegasus booster rocket were carried aloft by NASA's NB-52B carrier aircraft from Dryden Flight Research Center at Edwards Air Force Base, Calif., on June 2, 2001 for the first of three high-speed free flight attempts. About an hour and 15 minutes later the Pegasus booster was released from the B-52 to accelerate the X-43A to its intended speed of Mach 7. Before this could be achieved, the combined Pegasus and X-43A "stack" lost control about eight seconds after ignition of the Pegasus rocket motor. The mission was terminated and explosive charges ensured the Pegasus and X-43A fell into the Pacific Ocean in a cleared Navy range area. A NASA investigation board is being assembled to determine the cause of the incident. Work continues on two other X-43A vehicles, the first of which could fly by late 2001. Central to the X-43A program is its integration of an air-breathing "scramjet" engine that could enable a variety of high-speed aerospace craft, and promote cost-effective access to space. The 12-foot, unpiloted research vehicle was developed and built for NASA by MicroCraft Inc., Tullahoma, Tenn. The booster was built by Orbital Sciences Corp. at Chandler, Ariz.

  3. Moments after release from NASA's B-52 carrier aircraft, the X-43A/Pegasus "stack" is seen before ignition of the Pegasus rocket motor on

    NASA Image and Video Library

    2001-06-02

    The first X-43A hypersonic research aircraft and its modified Pegasus booster rocket were carried aloft by NASA's NB-52B carrier aircraft from Dryden Flight Research Center at Edwards Air Force Base, Calif., on June 2, 2001 for the first of three high-speed free flight attempts. About an hour and 15 minutes later the Pegasus booster was released from the B-52 to accelerate the X-43A to its intended speed of Mach 7. Before this could be achieved, the combined Pegasus and X-43A "stack" lost control about eight seconds after ignition of the Pegasus rocket motor. The mission was terminated and explosive charges ensured the Pegasus and X-43A fell into the Pacific Ocean in a cleared Navy range area. A NASA investigation board is being assembled to determine the cause of the incident. Work continues on two other X-43A vehicles, the first of which could fly by late 2001. Central to the X-43A program is its integration of an air-breathing "scramjet" engine that could enable a variety of high-speed aerospace craft, and promote cost-effective access to space. The 12-foot, unpiloted research vehicle was developed and built for NASA by MicroCraft Inc., Tullahoma, Tenn. The booster was built by Orbital Sciences Corp. at Chandler, Ariz.

  4. Acoustic and Emission Characteristics of Small, High-Speed Internal Combustion Engines

    DOT National Transportation Integrated Search

    1981-07-01

    The intent of this study is to obtain information on small high-speed engines so that their effect on the urban environment may be assessed, and if necessary, programs devised to reduce the noise and other emissions from vehicles using these highly d...

  5. Ocean Surface Wave Optical Roughness: Analysis of Innovative Measurements

    DTIC Science & Technology

    2013-12-16

    relationship of MSS to wind speed, and at times has shown a reversal of the Cox-Munk linear relationship. Furthermore, we observe measurable changes in...1985]. The variable speed allocation method has the effect of aliasing (cb) to slower waves, thereby increasing the exponent –m. Our analysis based ...RaDyO) program. The primary research goals of the program are to (1) examine time -dependent oceanic radiance distribution in relation to dynamic

  6. Evaluating the effectiveness of a post-license education program for young novice drivers in Belgium.

    PubMed

    Brijs, Kris; Cuenen, Ariane; Brijs, Tom; Ruiter, Robert A C; Wets, Geert

    2014-05-01

    The disproportionately large number of traffic accidents of young novice drivers highlights the need for an effective driver education program. The Goals for Driving Education (GDE) matrix shows that driver education must target both lower and higher levels of driver competences. Research has indicated that current education programs do not emphasize enough the higher levels, for example awareness and insight. This has raised the importance of insight programs. On the Road (OtR), a Flemish post-license driver education program, is such an insight program that aims to target these higher levels. The program focus is on risky driving behavior like speeding and drink driving. In addition, the program addresses risk detection and risk-related knowledge. The goal of the study was to do an effect evaluation of this insight program at immediate post-test and 2 months follow-up. In addition, the study aimed to generalize the results of this program to comparable programs in order to make usable policy recommendations. A questionnaire based on the Theory of Planned Behavior (TPB) was used in order to measure participants' safety consciousness of speeding and drink driving. Moreover, we focused on risk detection and risk-related knowledge. Participants (N=366) were randomly assigned to a baseline-follow-up group or a post-test-follow-up group. Regarding speeding and driving, we found OtR to have little effect on the TPB variables. Regarding risk detection, we found no significant effect, even though participants clearly needed substantial improvement when stepping into the program. Regarding risk-related knowledge, the program did result in a significant improvement at post-test and follow-up. It is concluded that the current program format is a good starting point, but that it requires further attention to enhance high level driving skills. Program developers are encouraged to work in a more evidence-based manner when they select target variables and methods to influence these variables. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. 6. FAN HOUSE OF 8FOOT HIGH SPEED TUNNEL. AIR INTAKES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. FAN HOUSE OF 8-FOOT HIGH SPEED TUNNEL. AIR INTAKES AND FILTERS ARE ENCLOSED IN THE UPPER LEVEL STRUCTURE. - NASA Langley Research Center, 8-Foot High Speed Wind Tunnel, 641 Thornell Avenue, Hampton, Hampton, VA

  8. Role of large-scale motions to turbulent inertia in turbulent pipe and channel flows

    NASA Astrophysics Data System (ADS)

    Hwang, Jinyul; Lee, Jin; Sung, Hyung Jin

    2015-11-01

    The role of large-scale motions (LSMs) to the turbulent inertia (TI) term (the wall-normal gradient of the Reynolds shear stress) is examined in turbulent pipe and channel flows at Reτ ~ 930 . The TI term in the mean momentum equation represents the net force of inertia exerted by the Reynolds shear stress. Although the turbulence statistics characterizing the internal turbulent flows are similar close to the wall, the TI term differs in the logarithmic region due to the different characteristics of LSMs (λx > 3 δ) . The contribution of the LSMs to the TI term and the Reynolds shear stress in the channel flow is larger than that in the pipe flow. The LSMs in the logarithmic region act like a mean momentum source (where TI >0) even the TI profile is negative above the peak of the Reynolds shear stress. The momentum sources carried by the LSMs are related to the low-speed regions elongated in the downstream, revealing that momentum source-like motions occur in the upstream position of the low-speed structure. The streamwise extent of this structure is relatively long in the channel flow, whereas the high-speed regions on the both sides of the low-speed region in the channel flow are shorter and weaker than those in the pipe flow. This work was supported by the Creative Research Initiatives (No. 2015-001828) program of the National Research Foundation of Korea (MSIP) and partially supported by KISTI under the Strategic Supercomputing Support Program.

  9. Microprocessor Control of Low Speed VSTOL Flight.

    DTIC Science & Technology

    1979-06-08

    Analog IAS Indicated Air Speed I/O Input/Output KIAS Knots, Indicated Air Speed NATOPS Naval Air Training and Operating Procedures Standardization SAS...computer programming necessary in the research, and contain, in the form of computer- generated time histories, the results of the project. -17- I...of the aircraft causes airflow over the wings and therefore produces aerodynamic lift. As the transition progresses, wing- generated lift gradually

  10. Impact of neurocognition on social and role functioning in individuals at clinical high risk for psychosis.

    PubMed

    Carrión, Ricardo E; Goldberg, Terry E; McLaughlin, Danielle; Auther, Andrea M; Correll, Christoph U; Cornblatt, Barbara A

    2011-08-01

    Cognitive deficits have been well documented in schizophrenia and have been shown to impair quality of life and to compromise everyday functioning. Recent studies of adolescents and young adults at high risk for developing psychosis show that neurocognitive impairments are detectable before the onset of psychotic symptoms. However, it remains unclear how cognitive impairments affect functioning before the onset of psychosis. The authors assessed cognitive impairment in adolescents at clinical high risk for psychosis and examined its impact on social and role functioning. A sample of 127 treatment-seeking patients at clinical high risk for psychosis and a group of 80 healthy comparison subjects were identified and recruited for research in the Recognition and Prevention Program. At baseline, participants were assessed with a comprehensive neurocognitive battery as well as measures of social and role functioning. Relative to healthy comparison subjects, clinical high-risk patients showed significant impairments in the domains of processing speed, verbal memory, executive function, working memory, visuospatial processing, motor speed, sustained attention, and language. Clinical high-risk patients also displayed impaired social and role functioning at baseline. Among patients with attenuated positive symptoms, processing speed was related to social and role functioning at baseline. These findings demonstrate that cognitive and functional impairments are detectable in patients at clinical high risk for psychosis before the onset of psychotic illness and that processing speed appears to be an important cognitive predictor of poor functioning.

  11. Impact of Neurocognition on Social and Role Functioning in Individuals at Clinical High Risk for Psychosis

    PubMed Central

    Carrión, Ricardo E.; Goldberg, Terry E.; McLaughlin, Danielle; Auther, Andrea M.; Correll, Christoph U.; Cornblatt, Barbara A.

    2011-01-01

    Objective Cognitive deficits have been well documented in schizophrenia and have been shown to impair quality of life and to compromise everyday functioning. Recent studies of adolescents and young adults at high risk for developing psychosis show that neurocognitive impairments are detectable before the onset of psychotic symptoms. However, it remains unclear how cognitive impairments affect functioning before the onset of psychosis. The authors assessed cognitive impairment in adolescents at clinical high risk for psychosis and examined its impact on social and role functioning. Method A sample of 127 treatment-seeking patients at clinical high risk for psychosis and a group of 80 healthy comparison subjects were identified and recruited for research in the Recognition and Prevention Program. At baseline, participants were assessed with a comprehensive neurocognitive battery as well as measures of social and role functioning. Results Relative to healthy comparison subjects, clinical high-risk patients showed significant impairments in the domains of processing speed, verbal memory, executive function, working memory, visuospatial processing, motor speed, sustained attention, and language. Clinical high-risk patients also displayed impaired social and role functioning at baseline. Among patients with attenuated positive symptoms, processing speed was related to social and role functioning at baseline. Conclusions These findings demonstrate that cognitive and functional impairments are detectable in patients at clinical high risk for psychosis before the onset of psychotic illness and that processing speed appears to be an important cognitive predictor of poor functioning. PMID:21536691

  12. Research notes : safety at high-speed intersections.

    DOT National Transportation Integrated Search

    2010-04-01

    A 2010 study for ODOT by researchers at the Oregon State University School of Civil and Construction Engineering titled, Evaluating Safety and Operations of High-Speed Signalized Intersections, examined effective means for improving safety at isolate...

  13. Impact of high-κ dielectric and metal nanoparticles in simultaneous enhancement of programming speed and retention time of nano-flash memory

    NASA Astrophysics Data System (ADS)

    Pavel, Akeed A.; Khan, Mehjabeen A.; Kirawanich, Phumin; Islam, N. E.

    2008-10-01

    A methodology to simulate memory structures with metal nanocrystal islands embedded as floating gate in a high-κ dielectric material for simultaneous enhancement of programming speed and retention time is presented. The computational concept is based on a model for charge transport in nano-scaled structures presented earlier, where quantum mechanical tunneling is defined through the wave impedance that is analogous to the transmission line theory. The effects of substrate-tunnel dielectric conduction band offset and metal work function on the tunneling current that determines the programming speed and retention time is demonstrated. Simulation results confirm that a high-κ dielectric material can increase programming current due to its lower conduction band offset with the substrate and also can be effectively integrated with suitable embedded metal nanocrystals having high work function for efficient data retention. A nano-memory cell designed with silver (Ag) nanocrystals embedded in Al 2O 3 has been compared with similar structure consisting of Si nanocrystals in SiO 2 to validate the concept.

  14. The X-43A hypersonic research aircraft and its modified Pegasus booster rocket recently underwent c

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The first of three X-43A hypersonic research aircraft and its modified Pegasus booster rocket recently underwent combined systems testing while mounted to NASA's NB-52B carrier aircraft at the Dryden Flight Research Center, Edwards, Calif. The combined systems test was one of the last major milestones in the Hyper-X research program before the first X-43A flight. The X-43A flights will be the first actual flight tests of an aircraft powered by a revolutionary supersonic-combustion ramjet ('scramjet') engine capable of operating at hypersonic speeds (above Mach 5, or five times the speed of sound). The 12-foot, unpiloted research vehicle was developed and built by MicroCraft Inc., Tullahoma, Tenn., under NASA contract. The booster was built by Orbital Sciences Corp., Dulles, Va.,After being air-launched from NASA's venerable NB-52 mothership, the booster will accelerate the X-43A to test speed and altitude. The X-43A will then separate from the rocket and fly a pre-programmed trajectory, conducting aerodynamic and propulsion experiments until it descends into the Pacific Ocean. Three research flights are planned, two at Mach 7 and one at Mach 10.

  15. The X-43A hypersonic research aircraft and its modified Pegasus booster rocket nestled under the wi

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The X-43A hypersonic research aircraft and its modified Pegasus booster rocket are nestled under the wing of NASA's NB-52B carrier aircraft during pre-flight systems testing at the Dryden Flight Research Center, Edwards, Calif. The combined systems test was one of the last major milestones in the Hyper-X research program before the first X-43A flight. The X-43A flights will be the first actual flight tests of an aircraft powered by a revolutionary supersonic-combustion ramjet ('scramjet') engine capable of operating at hypersonic speeds (above Mach 5, or five times the speed of sound). The 12-foot, unpiloted research vehicle was developed and built by MicroCraft Inc., Tullahoma, Tenn., under NASA contract. The booster was built by Orbital Sciences Corp., Dulles, Va. After being air-launched from NASA's venerable NB-52 mothership, the booster will accelerate the X-43A to test speed and altitude. The X-43A will then separate from the rocket and fly a pre-programmed trajectory, conducting aerodynamic and propulsion experiments until it descends into the Pacific Ocean. Three research flights are planned, two at Mach 7 and one at Mach 10.

  16. High resolution image processing on low-cost microcomputers

    NASA Technical Reports Server (NTRS)

    Miller, R. L.

    1993-01-01

    Recent advances in microcomputer technology have resulted in systems that rival the speed, storage, and display capabilities of traditionally larger machines. Low-cost microcomputers can provide a powerful environment for image processing. A new software program which offers sophisticated image display and analysis on IBM-based systems is presented. Designed specifically for a microcomputer, this program provides a wide-range of functions normally found only on dedicated graphics systems, and therefore can provide most students, universities and research groups with an affordable computer platform for processing digital images. The processing of AVHRR images within this environment is presented as an example.

  17. 15. Photocopy of photograph (original in the Langley Research Center ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) (L12000.1) ELEVATION OF 8-FOOT HIGH SPEED WIND TUNNEL, c. 1935. - NASA Langley Research Center, 8-Foot High Speed Wind Tunnel, 641 Thornell Avenue, Hampton, Hampton, VA

  18. High Pressure Low NOx Emissions Research: Recent Progress at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Chi-Ming, Lee; Tacina, Kathleen M.; Wey, Changlie

    2007-01-01

    In collaboration with U.S. aircraft engine companies, NASA Glenn Research Center has contributed to the advancement of low emissions combustion systems. For the High Speed Research Program (HSR), a 90% reduction in nitrogen oxides (NOx) emissions (relative to the then-current state of the art) has been demonstrated in sector rig testing at General Electric Aircraft Engines (GEAE). For the Advanced Subsonic Technology Program (AST), a 50% reduction in NOx emissions relative to the 1996 International Civil Aviation Organization (ICAO) standards has been at demonstrated in sector rigs at both GEAE and Pratt & Whitney (P&W). During the Ultra Efficient Engine Technology Program (UEET), a 70% reduction in NOx emissions, relative to the 1996 ICAO standards, was achieved in sector rig testing at Glenn in the world class Advanced Subsonic Combustion Rig (ASCR) and at contractor facilities. Low NOx combustor development continues under the Fundamental Aeronautics Program. To achieve these reductions, experimental and analytical research has been conducted to advance the understanding of emissions formation in combustion processes. Lean direct injection (LDI) concept development uses advanced laser-based non-intrusive diagnostics and analytical work to complement the emissions measurements and to provide guidance for concept improvement. This paper describes emissions results from flametube tests of a 9- injection-point LDI fuel/air mixer tested at inlet pressures up to 5500 kPa. Sample results from CFD and laser diagnostics are also discussed.

  19. High-speed Civil Transport Aircraft Emissions

    NASA Technical Reports Server (NTRS)

    Miake-Lye, Richard C.; Matulaitis, J. A.; Krause, F. H.; Dodds, Willard J.; Albers, Martin; Hourmouziadis, J.; Hasel, K. L.; Lohmann, R. P.; Stander, C.; Gerstle, John H.

    1992-01-01

    Estimates are given for the emissions from a proposed high speed civil transport (HSCT). This advanced technology supersonic aircraft would fly in the lower stratosphere at a speed of roughly Mach 1.6 to 3.2 (470 to 950 m/sec or 920 to 1850 knots). Because it would fly in the stratosphere at an altitude in the range of 15 to 23 km commensurate with its design speed, its exhaust effluents could perturb the chemical balance in the upper atmosphere. The first step in determining the nature and magnitude of any chemical changes in the atmosphere resulting from these proposed aircraft is to identify and quantify the chemically important species they emit. Relevant earlier work is summarized, dating back to the Climatic Impact Assessment Program of the early 1970s and current propulsion research efforts. Estimates are provided of the chemical composition of an HSCT's exhaust, and these emission indices are presented. Other aircraft emissions that are not due to combustion processes are also summarized; these emissions are found to be much smaller than the exhaust emissions. Future advances in propulsion technology, in experimental measurement techniques, and in understanding upper atmospheric chemistry may affect these estimates of the amounts of trace exhaust species or their relative importance.

  20. Optimization design of wind turbine drive train based on Matlab genetic algorithm toolbox

    NASA Astrophysics Data System (ADS)

    Li, R. N.; Liu, X.; Liu, S. J.

    2013-12-01

    In order to ensure the high efficiency of the whole flexible drive train of the front-end speed adjusting wind turbine, the working principle of the main part of the drive train is analyzed. As critical parameters, rotating speed ratios of three planetary gear trains are selected as the research subject. The mathematical model of the torque converter speed ratio is established based on these three critical variable quantity, and the effect of key parameters on the efficiency of hydraulic mechanical transmission is analyzed. Based on the torque balance and the energy balance, refer to hydraulic mechanical transmission characteristics, the transmission efficiency expression of the whole drive train is established. The fitness function and constraint functions are established respectively based on the drive train transmission efficiency and the torque converter rotating speed ratio range. And the optimization calculation is carried out by using MATLAB genetic algorithm toolbox. The optimization method and results provide an optimization program for exact match of wind turbine rotor, gearbox, hydraulic mechanical transmission, hydraulic torque converter and synchronous generator, ensure that the drive train work with a high efficiency, and give a reference for the selection of the torque converter and hydraulic mechanical transmission.

  1. Bio-Intelligence: A Research Program Facilitating the Development of New Paradigms for Tomorrow's Patient Care

    NASA Astrophysics Data System (ADS)

    Phan, Sieu; Famili, Fazel; Liu, Ziying; Peña-Castillo, Lourdes

    The advancement of omics technologies in concert with the enabling information technology development has accelerated biological research to a new realm in a blazing speed and sophistication. The limited single gene assay to the high throughput microarray assay and the laborious manual count of base-pairs to the robotic assisted machinery in genome sequencing are two examples to name. Yet even more sophisticated, the recent development in literature mining and artificial intelligence has allowed researchers to construct complex gene networks unraveling many formidable biological puzzles. To harness these emerging technologies to their full potential to medical applications, the Bio-intelligence program at the Institute for Information Technology, National Research Council Canada, aims to develop and exploit artificial intelligence and bioinformatics technologies to facilitate the development of intelligent decision support tools and systems to improve patient care - for early detection, accurate diagnosis/prognosis of disease, and better personalized therapeutic management.

  2. Generation 1.5 High Speed Civil Transport (HSCT) Exhaust Nozzle Program

    NASA Technical Reports Server (NTRS)

    Thayer, E. B.; Gamble, E. J.; Guthrie, A. R.; Kehret, D. F.; Barber, T. J.; Hendricks, G. J.; Nagaraja, K. S.; Minardi, J. E.

    2004-01-01

    The objective of this program was to conduct an experimental and analytical evaluation of low noise exhaust nozzles suitable for future High-Speed Civil Transport (HSCT) aircraft. The experimental portion of the program involved parametric subscale performance model tests of mixer/ejector nozzles in the takeoff mode, and high-speed tests of mixer/ejectors converted to two-dimensional convergent-divergent (2-D/C-D), plug, and single expansion ramp nozzles (SERN) in the cruise mode. Mixer/ejector results show measured static thrust coefficients at secondary flow entrainment levels of 70 percent of primary flow. Results of the high-speed performance tests showed that relatively long, straight-wall, C-D nozzles could meet supersonic cruise thrust coefficient goal of 0.982; but the plug, ramp, and shorter C-D nozzles required isentropic contours to reach the same level of performance. The computational fluid dynamic (CFD) study accurately predicted mixer/ejector pressure distributions and shock locations. Heat transfer studies showed that a combination of insulation and convective cooling was more effective than film cooling for nonafterburning, low-noise nozzles. The thrust augmentation study indicated potential benefits for use of ejector nozzles in the subsonic cruise mode if the ejector inlet contains a sonic throat plane.

  3. Computational Fluid Dynamics Program at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Holst, Terry L.

    1989-01-01

    The Computational Fluid Dynamics (CFD) Program at NASA Ames Research Center is reviewed and discussed. The technical elements of the CFD Program are listed and briefly discussed. These elements include algorithm research, research and pilot code development, scientific visualization, advanced surface representation, volume grid generation, and numerical optimization. Next, the discipline of CFD is briefly discussed and related to other areas of research at NASA Ames including experimental fluid dynamics, computer science research, computational chemistry, and numerical aerodynamic simulation. These areas combine with CFD to form a larger area of research, which might collectively be called computational technology. The ultimate goal of computational technology research at NASA Ames is to increase the physical understanding of the world in which we live, solve problems of national importance, and increase the technical capabilities of the aerospace community. Next, the major programs at NASA Ames that either use CFD technology or perform research in CFD are listed and discussed. Briefly, this list includes turbulent/transition physics and modeling, high-speed real gas flows, interdisciplinary research, turbomachinery demonstration computations, complete aircraft aerodynamics, rotorcraft applications, powered lift flows, high alpha flows, multiple body aerodynamics, and incompressible flow applications. Some of the individual problems actively being worked in each of these areas is listed to help define the breadth or extent of CFD involvement in each of these major programs. State-of-the-art examples of various CFD applications are presented to highlight most of these areas. The main emphasis of this portion of the presentation is on examples which will not otherwise be treated at this conference by the individual presentations. Finally, a list of principal current limitations and expected future directions is given.

  4. An Evolutionary Method for Financial Forecasting in Microscopic High-Speed Trading Environment.

    PubMed

    Huang, Chien-Feng; Li, Hsu-Chih

    2017-01-01

    The advancement of information technology in financial applications nowadays have led to fast market-driven events that prompt flash decision-making and actions issued by computer algorithms. As a result, today's markets experience intense activity in the highly dynamic environment where trading systems respond to others at a much faster pace than before. This new breed of technology involves the implementation of high-speed trading strategies which generate significant portion of activity in the financial markets and present researchers with a wealth of information not available in traditional low-speed trading environments. In this study, we aim at developing feasible computational intelligence methodologies, particularly genetic algorithms (GA), to shed light on high-speed trading research using price data of stocks on the microscopic level. Our empirical results show that the proposed GA-based system is able to improve the accuracy of the prediction significantly for price movement, and we expect this GA-based methodology to advance the current state of research for high-speed trading and other relevant financial applications.

  5. Safe accommodation of bicyclists on high-speed roadways in Maryland : research report.

    DOT National Transportation Integrated Search

    2016-12-01

    This study investigated bicycle infrastructure design options and treatments to facilitate safe accommodation of bicyclists : on high-speed roadways. The bicycle safety research literature, design guidelines from federal, state, and international : h...

  6. Transonic Resonance Demonstrated To Be a Source of Internal Noise From Mixer-Ejector Nozzles

    NASA Technical Reports Server (NTRS)

    Zaman, Khairul B.

    2002-01-01

    During noise field studies with mixer-ejector nozzles in NASA's High-Speed Research program, tones were often encountered. The tones would persist in the simulated "cutback" condition (shortly after takeoff). Unfortunately, we did not understand their origin and, thus, could not develop a logical approach for suppressing them. We naturally questioned whether or not some of those tones were due to the transonic resonance. This was studied with a 1/13th scale model of the High-Speed Civil Transport nozzle. The first objective was to determine if indeed tones could be detected in the radiated noise. The next objective was to diagnose if those tones were due to the transonic resonance. Agreement of the frequencies with the correlation equation and the effect of boundary layer tripping were to be used in the diagnosis.

  7. High speed semiconductor lasers and integrated receivers for microwave and millimeter wave signal transmission

    NASA Technical Reports Server (NTRS)

    Eastman, L. F.; Wicks, G. W.

    1987-01-01

    This project was proposed to be a three-year contract, but was cut off after one year (1987) of support. Sufficient progress was made to allow continuation for a year on minimal internal funds before proper support levels were received from a combination of ONR, RADC, and IBM contracts at about the start of 1989. A major DARPA grant, expected to start August 1, 1990, will sharply expand this effort to include several faculty members. During the course of this project, two students did thesis research, one Ph.D. on lasers and one M.S. on high speed photodetectors. These theses were finished in September 1988, nine months after the contract was cut off. This report covers excerpts from those theses as well as information obtained on other programs since that time.

  8. Non-volatile memory based on the ferroelectric photovoltaic effect

    PubMed Central

    Guo, Rui; You, Lu; Zhou, Yang; Shiuh Lim, Zhi; Zou, Xi; Chen, Lang; Ramesh, R.; Wang, Junling

    2013-01-01

    The quest for a solid state universal memory with high-storage density, high read/write speed, random access and non-volatility has triggered intense research into new materials and novel device architectures. Though the non-volatile memory market is dominated by flash memory now, it has very low operation speed with ~10 μs programming and ~10 ms erasing time. Furthermore, it can only withstand ~105 rewriting cycles, which prevents it from becoming the universal memory. Here we demonstrate that the significant photovoltaic effect of a ferroelectric material, such as BiFeO3 with a band gap in the visible range, can be used to sense the polarization direction non-destructively in a ferroelectric memory. A prototype 16-cell memory based on the cross-bar architecture has been prepared and tested, demonstrating the feasibility of this technique. PMID:23756366

  9. Research on the tool holder mode in high speed machining

    NASA Astrophysics Data System (ADS)

    Zhenyu, Zhao; Yongquan, Zhou; Houming, Zhou; Xiaomei, Xu; Haibin, Xiao

    2018-03-01

    High speed machining technology can improve the processing efficiency and precision, but also reduce the processing cost. Therefore, the technology is widely regarded in the industry. With the extensive application of high-speed machining technology, high-speed tool system has higher and higher requirements on the tool chuck. At present, in high speed precision machining, several new kinds of clip heads are as long as there are heat shrinkage tool-holder, high-precision spring chuck, hydraulic tool-holder, and the three-rib deformation chuck. Among them, the heat shrinkage tool-holder has the advantages of high precision, high clamping force, high bending rigidity and dynamic balance, etc., which are widely used. Therefore, it is of great significance to research the new requirements of the machining tool system. In order to adapt to the requirement of high speed machining precision machining technology, this paper expounds the common tool holder technology of high precision machining, and proposes how to select correctly tool clamping system in practice. The characteristics and existing problems are analyzed in the tool clamping system.

  10. Worldwide Report, Arms Control.

    DTIC Science & Technology

    1985-07-30

    reports that a two-million watt laser will soon be tested at the missile testing range of White Sands, New Mexico , in accordance with the Pentagon’s plan...European program dubbed "Eureka." The consortium will develop research in the area of software for high-speed computers, radar, electro-optics and...Excerpts] The PUERTO RICO LIBRE journal, published in New York by the Committee in Solidarity With Puerto Rico, has published an article in which the

  11. Structural Affects on the Slamming Pressures of High-Speed Planing Craft

    NASA Astrophysics Data System (ADS)

    Ikeda, Christine; Taravella, Brandon; Judge, Carolyn

    2015-11-01

    High-speed planing craft are subjected to repeated slamming events in waves that can be very extreme depending on the wave topography, impact angle of the ship, forward speed of the ship, encounter angle, and height out of the water. The current work examines this fluid-structure interaction problem through the use of wedge drop experiments and a CFD code. In the first set of experiments, a rigid 20-degree deadrise angle wedge was dropped from a range of heights (0 <= H <= 0 . 6 m) and while pressures and accelerations of the slam even were measured. The second set of experiments involved a flexible-bottom 15-degree deadrise angle wedge that was dropped from from the same range of heights. In these second experiments, the pressures, accelerations, and strain field were measured. Both experiments are compared with a non-linear boundary value flat cylinder theory code in order to compare the pressure loading. The code assumes a rigid structure, therefore, the results between the code and the first experiment are in good agreement. The second experiment shows pressure magnitudes that are lower than the predictions due to the energy required to deform the structure. Funding from University of New Orleans Office of Research and Sponsored Programs and the Office of Naval Research.

  12. 21. Photocopy of photograph (original in the Langley Research Center ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) (NACA 16900) DETAIL VIEW OF CONTROL/MONITORING STATION IN 8-FOOT HIGH SPEED WIND TUNNEL, c. 1930s. - NASA Langley Research Center, 8-Foot High Speed Wind Tunnel, 641 Thornell Avenue, Hampton, Hampton, VA

  13. 17. Photocopy of photograph (original in the Langley Research Center ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) (L86-10,257) DETAIL VIEW OF EXTERIOR OF COOLING TOWER FOR 8- FOOT HIGH SPEED WIND TUNNEL. - NASA Langley Research Center, 8-Foot High Speed Wind Tunnel, 641 Thornell Avenue, Hampton, Hampton, VA

  14. 19. Photocopy of photograph (original in the Langley Research Center ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) (L79758) INTERIOR VIEW SHOWING TURNING VANES AND PERSONNEL IN THE 8-FOOT HIGH SPEED WIND TUNNEL. - NASA Langley Research Center, 8-Foot High Speed Wind Tunnel, 641 Thornell Avenue, Hampton, Hampton, VA

  15. 18. Photocopy of photograph (original in the Langley Research Center ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) (L86-10235) INTERIOR VIEW SHOWING TURNING VANES IN 8-FOOT HIGH SPEED WIND TUNNEL. - NASA Langley Research Center, 8-Foot High Speed Wind Tunnel, 641 Thornell Avenue, Hampton, Hampton, VA

  16. 13. Photocopy of photograph (original in the Langley Research Center ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) AERIAL VIEW OF 8-FOOT HIGH SPEED WIND TUNNEL IN FOREGROUND. NOTE COOLING TOWER AT LEFT CENTER. - NASA Langley Research Center, 8-Foot High Speed Wind Tunnel, 641 Thornell Avenue, Hampton, Hampton, VA

  17. 20. Photocopy of photograph (original in the Langley Research Center ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) INTERIOR VIEW SHOWING TURNING VANES AND PERSONNEL IN THE 8-FOOT HIGH SPEED WIND TUNNEL. - NASA Langley Research Center, 8-Foot High Speed Wind Tunnel, 641 Thornell Avenue, Hampton, Hampton, VA

  18. 11. INTERIOR VIEW OF 8FOOT HIGH SPEED WIND TUNNEL. SAME ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. INTERIOR VIEW OF 8-FOOT HIGH SPEED WIND TUNNEL. SAME CAMERA POSITION AS VA-118-B-10 LOOKING IN THE OPPOSITE DIRECTION. - NASA Langley Research Center, 8-Foot High Speed Wind Tunnel, 641 Thornell Avenue, Hampton, Hampton, VA

  19. The use of high-speed imaging in education

    NASA Astrophysics Data System (ADS)

    Kleine, H.; McNamara, G.; Rayner, J.

    2017-02-01

    Recent improvements in camera technology and the associated improved access to high-speed camera equipment have made it possible to use high-speed imaging not only in a research environment but also specifically for educational purposes. This includes high-speed sequences that are created both with and for a target audience of students in high schools and universities. The primary goal is to engage students in scientific exploration by providing them with a tool that allows them to see and measure otherwise inaccessible phenomena. High-speed imaging has the potential to stimulate students' curiosity as the results are often surprising or may contradict initial assumptions. "Live" demonstrations in class or student- run experiments are highly suitable to have a profound influence on student learning. Another aspect is the production of high-speed images for demonstration purposes. While some of the approaches known from the application of high speed imaging in a research environment can simply be transferred, additional techniques must often be developed to make the results more easily accessible for the targeted audience. This paper describes a range of student-centered activities that can be undertaken which demonstrate how student engagement and learning can be enhanced through the use of high speed imaging using readily available technologies.

  20. X-15 test pilots - Thompson, Dana, and McKay

    NASA Technical Reports Server (NTRS)

    1966-01-01

    NASA pilots Milton O. Thompson, William H. 'Bill' Dana, and John B. 'Jack' McKay are seen here in front of the #2 X-15 (56-6671) rocket-powered research aircraft. Among them, the three NASA research pilots made 59 flights in the X-15 (14 for Thompson, 16 for Dana, and 29 for McKay). The X-15 was a rocket-powered aircraft 50 ft long with a wingspan of 22 ft. It was a missile-shaped vehicle with an unusual wedge-shaped vertical tail, thin stubby wings, and unique fairings that extended along the side of the fuselage. The X-15 weighed about 14,000 lb empty and approximately 34,000 lb at launch. The XLR-99 rocket engine, manufactured by Thiokol Chemical Corp., was pilot controlled and was capable of developing 57,000 lb of rated thrust (actual thrust reportedly climbed to 60,000 lb). North American Aviation built three X-15 aircraft for the program. The X-15 research aircraft was developed to provide in-flight information and data on aerodynamics, structures, flight controls, and the physiological aspects of high-speed, high-altitude flight. A follow-on program used the aircraft as a testbed to carry various scientific experiments beyond the Earth's atmosphere on a repeated basis. For flight in the dense air of the usable atmosphere, the X-15 used conventional aerodynamic controls such as rudder surfaces on the vertical stabilizers to control yaw and canted horizontal surfaces on the tail to control pitch when moving in synchronization or roll when moved differentially. For flight in the thin air outside of the appreciable Earth's atmosphere, the X-15 used a reaction control system. Hydrogen peroxide thrust rockets located on the nose of the aircraft provided pitch and yaw control. Those on the wings provided roll control. Because of the large fuel consumption, the X-15 was air launched from a B-52 aircraft at 45,000 ft and a speed of about 500 mph. Depending on the mission, the rocket engine provided thrust for the first 80 to 120 sec of flight. The remainder of the normal 10 to 11 min. flight was powerless and ended with a 200-mph glide landing. Generally, one of two types of X-15 flight profiles was used: a high-altitude flight plan that called for the pilot to maintain a steep rate of climb, or a speed profile that called for the pilot to push over and maintain a level altitude. The X-15 was flown over a period of nearly 10 years--June 1959 to Oct. 1968--and set the world's unofficial speed and altitude records of 4,520 mph (Mach 6.7) and 354,200 ft (over 67 mi) in a program to investigate all aspects of piloted hypersonic flight. Information gained from the highly successful X-15 program contributed to the development of the Mercury, Gemini, and Apollo manned spaceflight programs, and also the Space Shuttle program. The X-15s made a total of 199 flights and were manufactured by North American Aviation. X-15-1, serial number 56-6670, is now located at the National Air and Space Museum, Washington DC. North American X-15A-2, serial number 56-6671, is at the United States Air Force Museum, Wright-Patterson AFB, Ohio. The X-15-3, serial number 56-6672, crashed on 15 November 1967, resulting in the death of Maj. Michael J. Adams.

  1. X-15 landing on lakebed

    NASA Technical Reports Server (NTRS)

    1961-01-01

    The North American X-15 settles to the lakebed after a research flight from what is now the NASA Dryden Flight Research Center, Edwards, California. The X-15 was a rocket-powered aircraft 50 ft long with a wingspan of 22 ft. It was a missile-shaped vehicle with an unusual wedge-shaped vertical tail, thin stubby wings, and unique fairings that extended along the side of the fuselage. The X-15 weighed about 14,000 lb empty and approximately 34,000 lb at launch. The XLR-99 rocket engine, manufactured by Thiokol Chemical Corp., was pilot controlled and was capable of developing 57,000 lb of rated thrust (actual thrust reportedly climbed to 60,000 lb). North American Aviation built three X-15 aircraft for the program. The X-15 research aircraft was developed to provide in-flight information and data on aerodynamics, structures, flight controls, and the physiological aspects of high-speed, high-altitude flight. A follow-on program used the aircraft as a testbed to carry various scientific experiments beyond the Earth's atmosphere on a repeated basis. For flight in the dense air of the usable atmosphere, the X-15 used conventional aerodynamic controls such as rudder surfaces on the vertical stabilizers to control yaw and canted horizontal surfaces on the tail to control pitch when moving in synchronization or roll when moved differentially. For flight in the thin air outside of the appreciable Earth's atmosphere, the X-15 used a reaction control system. Hydrogen peroxide thrust rockets located on the nose of the aircraft provided pitch and yaw control. Those on the wings provided roll control. Because of the large fuel consumption, the X-15 was air launched from a B-52 aircraft at 45,000 ft and a speed of about 500 mph. Depending on the mission, the rocket engine provided thrust for the first 80 to 120 sec of flight. The remainder of the normal 10 to 11 min. flight was powerless and ended with a 200-mph glide landing. Generally, one of two types of X-15 flight profiles was used: a high-altitude flight plan that called for the pilot to maintain a steep rate of climb, or a speed profile that called for the pilot to push over and maintain a level altitude. The X-15 was flown over a period of nearly 10 years--June 1959 to Oct. 1968--and set the world's unofficial speed and altitude records of 4,520 mph (Mach 6.7) and 354,200 ft (over 67 mi) in a program to investigate all aspects of piloted hypersonic flight. Information gained from the highly successful X-15 program contributed to the development of the Mercury, Gemini, and Apollo manned spaceflight programs, and also the Space Shuttle program. The X-15s made a total of 199 flights and were manufactured by North American Aviation. X-15-1, serial number 56-6670, is now located at the National Air and Space Museum, Washington DC. North American X-15A-2, serial number 56-6671, is at the United States Air Force Museum, Wright-Patterson AFB, Ohio. The X-15-3, serial number 56-6672, crashed on 15 November 1967, resulting in the death of Maj. Michael J. Adams.

  2. Impact of VLSI/VHSIC on satellite on-board signal processing

    NASA Astrophysics Data System (ADS)

    Aanstoos, J. V.; Ruedger, W. H.; Snyder, W. E.; Kelly, W. L.

    Forecasted improvements in IC fabrication techniques, such as the use of X-ray lithography, are expected to yield submicron circuit feature sizes within the decade of the 1980s. As dimensions decrease, reliability, cost, speed, power consumption and density improvements will be realized which have a significant impact on the capabilities of onboard spacecraft signal processing functions. This will in turn result in increases of the intelligence that may be deployed on spaceborne remote sensing platforms. Among programs oriented toward such goals are the silicon-based Very High Speed Integrated Circuit (VHSIC) researches sponsored by the U.S. Department of Defense, and efforts toward the development of GaAs devices which will compete with silicon VLSI technology for future applications. GaAs has an electron mobility which is five to six times that of silicon, and promises commensurate computation speed increases under low field conditions.

  3. Safety and economic impacts of photo radar program.

    PubMed

    Chen, Greg

    2005-12-01

    Unsafe speed is one of the major traffic safety challenges facing motorized nations. In 2003, unsafe speed contributed to 31 percent of all fatal collisions, causing a loss of 13,380 lives in the United States alone. The economic impact of speeding is tremendous. According to NHTSA, the cost of unsafe speed related collisions to the American society exceeds 40 billion US dollars per year. In response, automated photo radar speed enforcement programs have been implemented in many countries. This study assesses the economic impacts of a large-scale photo radar program in British Columbia. The knowledge generated from this study could inform policy makers and project managers in making informed decisions with regard to this highly effective and efficient, yet very controversial program. This study establishes speed and safety effects of photo radar programs by summarizing two physical impact investigations in British Columbia. It then conducts a cost-benefit analysis to assess the program's economic impacts. The cost-benefit analysis takes into account both societal and funding agency's perspectives. It includes a comprehensive account of major impacts. It uses willingness to pay principle to value human lives saved and injuries avoided. It incorporates an extended sensitivity analysis to quantify the robustness of base case conclusions. The study reveals an annual net benefit of approximately 114 million in year 2001 Canadian dollars to British Columbians. The study also finds a net annual saving of over 38 million Canadian dollars for the Insurance Corporation of British Columbia (ICBC) that funded the program. These results are robust under almost all alternative scenarios tested. The only circumstance under which the net benefit of the program turns negative is when the real safety effects were one standard deviation below the estimated values, which is possible but highly unlikely. Automated photo radar traffic safety enforcement can be an effective and efficient means to manage traffic speed, reduce collisions and injuries, and combat the huge resulting economic burden to society. The cost-effectiveness of the program takes on special meaning and urgency when considering the present and future government funding constraints. The application of the program, however, should be planned and implemented with caution. Every effort should be made to focus on and to promote the program on safety improvement grounds. The program can be easily terminated because of political considerations, if the public perceives it as a cash cow to enhance government revenue.

  4. A Study of the IEEE 802.16 MAC Layer and its Utility in Augmenting the ADNS Architecture to Provide Adaptable Intra-Strike Group High-Speed Packet Switched Data, Imagery, and Voice Communications

    DTIC Science & Technology

    2005-09-01

    This research explores the need for a high throughput, high speed network for use in a network centric wartime environment and how commercial...Automated Digital Network System (ADNS). This research explores the need for a high-throughput, high-speed network for use in a network centric ...1 C. DEPARTMENT OF DEFENSE (DOD) DESIRED END STATE ..............2 1. DOD Transformation to Network Centric Warfare (NCW) Operations

  5. High performance computing and communications: Advancing the frontiers of information technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-12-31

    This report, which supplements the President`s Fiscal Year 1997 Budget, describes the interagency High Performance Computing and Communications (HPCC) Program. The HPCC Program will celebrate its fifth anniversary in October 1996 with an impressive array of accomplishments to its credit. Over its five-year history, the HPCC Program has focused on developing high performance computing and communications technologies that can be applied to computation-intensive applications. Major highlights for FY 1996: (1) High performance computing systems enable practical solutions to complex problems with accuracies not possible five years ago; (2) HPCC-funded research in very large scale networking techniques has been instrumental inmore » the evolution of the Internet, which continues exponential growth in size, speed, and availability of information; (3) The combination of hardware capability measured in gigaflop/s, networking technology measured in gigabit/s, and new computational science techniques for modeling phenomena has demonstrated that very large scale accurate scientific calculations can be executed across heterogeneous parallel processing systems located thousands of miles apart; (4) Federal investments in HPCC software R and D support researchers who pioneered the development of parallel languages and compilers, high performance mathematical, engineering, and scientific libraries, and software tools--technologies that allow scientists to use powerful parallel systems to focus on Federal agency mission applications; and (5) HPCC support for virtual environments has enabled the development of immersive technologies, where researchers can explore and manipulate multi-dimensional scientific and engineering problems. Educational programs fostered by the HPCC Program have brought into classrooms new science and engineering curricula designed to teach computational science. This document contains a small sample of the significant HPCC Program accomplishments in FY 1996.« less

  6. High-speed, Low Voltage, Miniature Electro-optic Modulators Based on Hybrid Photonic-Crystal/Polymer/Sol-Gel Technology

    DTIC Science & Technology

    2012-02-01

    code) 01/02/2012 FINAL 15/11/2008 - 15/11/2011 High-speed, Low Voltage, Miniature Electro - optic Modulators Based on Hybrid Photonic-Crystal/Polymer... optic modulator, silicon photonics, integrated optics, electro - optic polymer, avionics, optical communications, sol-gel, nanotechnology U U U UU 25...2011 Program Manager: Dr. Charles Y-C Lee High-speed, Low Voltage, Miniature Electro - optic Modulators Based on Hybrid Photonic-Crystal/Polymer/Sol

  7. Parametric Study of Advanced Mixing of Fuel/Oxidant System in High Speed Gaseous Flows and Experimental Validation Planning

    DTIC Science & Technology

    2001-08-30

    Body with Thermo-Chemical destribution of Heat-Protected System . In: Physical and Gasdynamic Phenomena in Supersonic Flows Over Bodies. Edit. By...Final Report on ISTC Contract # 1809p Parametric Study of Advanced Mixing of Fuel/Oxidant System in High Speed Gaseous Flows and Experimental...of Advanced Mixing of Fuel/Oxidant System in High Speed Gaseous Flows and Experimental Validation Planning 5c. PROGRAM ELEMENT NUMBER 5d. PROJECT

  8. Effects of two different programs of modern sports dancing on motor coordination, strength, and speed.

    PubMed

    Uzunovic, Slavoljub; Kostic, Radmila; Zivkovic, Dobrica

    2010-09-01

    This study aimed to determine the effects of two different programs of modern sports dancing on coordination, strength, and speed in 60 beginner-level female dancers, aged 13 and 14 yrs. The subjects were divided into two experimental groups (E1 and E2), each numbering 30 subjects, drawn from local dance clubs. In order to determine motor coordination, strength, and speed, we used 15 measurements. The groups were tested before and after the experimental programs. Both experimental programs lasted for 18 wks, with training sessions twice a week for 60 minutes. The subjects from the E1 group trained according to a new experimental program of disco dance (DD) modern sports dance, and the E2 group trained according to the classic DD program of the same kind for beginner selections. The obtained results were assessed by statistical analysis: a paired-samples t-test and MANCOVA/ANCOVA. The results indicated that following the experimental programs, both groups showed a statistically significant improvement in the evaluated skills, but the changes among the E1 group subjects were more pronounced. The basic assumption of this research was confirmed, that the new experimental DD program has a significant influence on coordination, strength, and speed. In relation to these changes, the application of the new DD program was recommended for beginner dancers.

  9. Pilot Neil Armstrong in the X-15 #1 cockpit

    NASA Technical Reports Server (NTRS)

    1961-01-01

    NASA pilot Neil Armstrong is seen here in the cockpit of the X-15 ship #1 (56-6670) after a research flight. A U.S. Navy pilot in the Korean War who flew 78 combat missions in F9F-2 jet fighters and who was awarded the Air Medal and two Gold Stars, Armstrong graduated from Purdue University in 1955 with a bachelor degree in aeronautical engineering. That same year, he joined the National Advisory Committee for Aeronautics' Lewis Flight Propulsion Laboratory in Cleveland, Ohio (today, the NASA Glenn Research Center). In July 1955, Armstrong transferred to the High-Speed Flight Station (HSFS, as Dryden Flight Research Center was then called) as an aeronautical research engineer. Soon thereafter, he became a research pilot. For the first few years at the HSFS, Armstrong worked on a number of projects. He was a pilot on the Navy P2B-1S used to launch the D-558-2 and also flew the F-100A, F-100C, F-101, F-104A, and X-5. His introduction to rocket flight came on August 15, 1957, with his first flight (of four, total) on the X-1B. He then became one of the first three NASA pilots to fly the X-15, the others being Joe Walker and Jack McKay. (Scott Crossfield, a former NACA pilot, flew the X-15 first but did so as a North American Aviation pilot.) The X-15 was a rocket-powered aircraft. The original three aircraft were about 50 ft long with a wingspan of 22 ft. The modified #2 aircraft (X-15A-2 was longer.) They were a missile-shaped vehicles with unusual wedge-shaped vertical tails, thin stubby wings, and unique side fairings that extended along the side of the fuselage. The X-15 weighed about 14,000 lb empty and approximately 34,000 lb at launch. The XLR-99 rocket engine, manufactured by Thiokol Chemical Corp., was pilot controlled and was rated at 57,000 lb of thrust, although there are indications that it actually achieved up to 60,000 lb. North American Aviation built three X-15 aircraft for the program. The X-15 research aircraft was developed to provide in-flight information and data on aerodynamics, structures, flight controls, and the physiological aspects of high-speed, high-altitude flight. A follow-on program used the aircraft as testbeds to carry various scientific experiments beyond the Earth's atmosphere on a repeated basis. For flight in the dense air of the usable atmosphere, the X-15 used conventional aerodynamic controls such as rudder surfaces on the vertical stabilizers to control yaw and movable horizontal stabilizers to control pitch when moving in synchronization or roll when moved differentially. For flight in the thin air outside of the appreciable Earth's atmosphere, the X-15 used a reaction control system. Hydrogen peroxide thrust rockets located on the nose of the aircraft provided pitch and yaw control. Those on the wings provided roll control. Because of the large fuel consumption, the X-15 was air launched from a B-52 aircraft at approximately 45,000 ft and a speed of about 500 mph. Depending on the mission, the rocket engine provided thrust for the first 80 to 120 sec of flight. The remainder of the normal 10 to 11 min. flight was powerless and ended with a 200-mph glide landing. Generally, one of two types of X-15 flight profiles was used; a high-altitude flight plan that called for the pilot to maintain a steep rate of climb, or a speed profile that called for the pilot to push over and maintain a level altitude. The X-15 was flown over a period of nearly 10 years -- June 1959 to Oct. 1968 -- and set the world's unofficial speed and altitude records of 4,520 mph (Mach 6.7) and 354,200 ft in a program to investigate all aspects of manned hypersonic flight. Information gained from the highly successful X-15 program contributed to the development of the Mercury, Gemini, and Apollo manned spaceflight programs, and also the Space Shuttle program. The X-15s made a total of 199 flights, and were manufactured by North American Aviation. X-15-1, serial number 56-6670, is now located at the National Air and Space Museum, Washington DC. North American X-15A-2, serial number 56-6671, is at the United States Air Force Museum, Wright-Patterson AFB, Ohio. X-15-3, serial number 56-6672, crashed on 15 November 1967, resulting in the death of Maj. Michael J. Adams.

  10. An assessment of high-speed rail safety issues and research needs

    DOT National Transportation Integrated Search

    1990-12-01

    The objectives of the study were to provide the Federal Railroad Administration Office of Research and Development with the following information: A general description and operating characteristics of high-speed rail systems likely to be installed i...

  11. The joint NASA/Goddard-University of Maryland research program in charged particle and high energy photon detector technology

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The first measurements of Fe charge states in two coronal hole-association high speed streams, using the sensor on ISEE-3, are presented. Eight event intervals from the January to June 1983 timeframe were chosen for the study of magnetotail dynamics and its relationship to substorm activity and the possible formation of plasmoids. Techniques are being explored for measurement of secondary electrons which are characteristically emitted when ions hit a target material. Efforts are continuing to understand kilometer wavelength shock associated radio events. An all-sky survey of fast X-ray transients of duration of 5 to 10,000 s was completed. Research using high resolution gamma-ray spectroscopy of celestial sources in the 20 keV to 20 MeV range to search for and study narrow lines in low-energy gamma-ray spectrum continues. Research in high energy radiation from pulsars is being conducted.

  12. HiSPoD: a program for high-speed polychromatic X-ray diffraction experiments and data analysis on polycrystalline samples

    DOE PAGES

    Sun, Tao; Fezzaa, Kamel

    2016-06-17

    Here, a high-speed X-ray diffraction technique was recently developed at the 32-ID-B beamline of the Advanced Photon Source for studying highly dynamic, yet non-repeatable and irreversible, materials processes. In experiments, the microstructure evolution in a single material event is probed by recording a series of diffraction patterns with extremely short exposure time and high frame rate. Owing to the limited flux in a short pulse and the polychromatic nature of the incident X-rays, analysis of the diffraction data is challenging. Here, HiSPoD, a stand-alone Matlab-based software for analyzing the polychromatic X-ray diffraction data from polycrystalline samples, is described. With HiSPoD,more » researchers are able to perform diffraction peak indexing, extraction of one-dimensional intensity profiles by integrating a two-dimensional diffraction pattern, and, more importantly, quantitative numerical simulations to obtain precise sample structure information.« less

  13. Scientific Visualization in High Speed Network Environments

    NASA Technical Reports Server (NTRS)

    Vaziri, Arsi; Kutler, Paul (Technical Monitor)

    1997-01-01

    In several cases, new visualization techniques have vastly increased the researcher's ability to analyze and comprehend data. Similarly, the role of networks in providing an efficient supercomputing environment have become more critical and continue to grow at a faster rate than the increase in the processing capabilities of supercomputers. A close relationship between scientific visualization and high-speed networks in providing an important link to support efficient supercomputing is identified. The two technologies are driven by the increasing complexities and volume of supercomputer data. The interaction of scientific visualization and high-speed networks in a Computational Fluid Dynamics simulation/visualization environment are given. Current capabilities supported by high speed networks, supercomputers, and high-performance graphics workstations at the Numerical Aerodynamic Simulation Facility (NAS) at NASA Ames Research Center are described. Applied research in providing a supercomputer visualization environment to support future computational requirements are summarized.

  14. 14. Photocopy of photograph (original in the Langley Research Center ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) (L-90-2684) AERIAL VIEW OF THE 8-FOOT HIGH SPEED TUNNEL (FOREGROUND) AND THE 8-FOOT TRANSONIC PRESSURE TUNNEL (REAR). - NASA Langley Research Center, 8-Foot High Speed Wind Tunnel, 641 Thornell Avenue, Hampton, Hampton, VA

  15. F-16XL ship #1 CAWAP flight

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The single-seat F-16XL (ship #1) makes another run during the Cranked-Arrow Wing Aerodynamic Project (CAWAP) at Dryden Flight Research Center, Edwards, California. The modified airplane features a delta 'cranked-arrow' wing with strips of tubing along the leading edge to the trailing edge to sense static on the wing and obtain pressure distribution data. The right wing receives data on pressure distribution and the left wing has three types of instrumentation - preston tubes to measure local skin friction, boundary layer rakes to measure boundary layer profiles (the layer where the air interacts with the surfaces of a moving aircraft), and hot films to determine boundary layer transition locations. The program also gathered aero data on two wing planforms for NASA's High Speed Research Program. The first flight of CAWAP occurred on November 21, 1995, and the test program ended in April 1996.

  16. F-16XL ship #1 - CAWAP outboard rake #7

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This photo shows the #7 outboard rake on the left wing of NASA's single-seat F-16XL (ship #1) used for the Cranked-Arrow Wing Aerodynamic Project (CAWAP) at Dryden Flight Research Center, Edwards, California. The modified airplane features a delta 'cranked-arrow' wing with strips of tubing along the leading edge to the trailing edge to sense static on the wing and obtain pressure distribution data. The right wing receives data on pressure distribution and the left wing has three types of instrumentation - preston tubes to measure local skin friction, boundary layer rakes to measure boundary layer profiles (the layer where the air interacts with the surfaces of a moving aircraft), and hot films to determine boundary layer transition locations. The program also gathered aero data on two wing planforms for NASA's High Speed Research Program. The first flight of CAWAP occurred on November 21, 1995, and the test program ended in April 1996.

  17. High-speed sorting of grains by color and surface texture

    USDA-ARS?s Scientific Manuscript database

    A high-speed, low-cost, image-based sorting device was developed to detect and separate grains with different colors/textures. The device directly combines a complementary metal–oxide–semiconductor (CMOS) color image sensor with a field-programmable gate array (FPGA) that was programmed to execute ...

  18. Dynamic and thermal analysis of high speed tapered roller bearings under combined loading

    NASA Technical Reports Server (NTRS)

    Crecelius, W. J.; Milke, D. R.

    1973-01-01

    The development of a computer program capable of predicting the thermal and kinetic performance of high-speed tapered roller bearings operating with fluid lubrication under applied axial, radial and moment loading (five degrees of freedom) is detailed. Various methods of applying lubrication can be considered as well as changes in bearing internal geometry which occur as the bearing is brought to operating speeds, loads and temperatures.

  19. Analyses of track shift under high-speed vehicle-track interaction : safety of high speed ground transportation systems

    DOT National Transportation Integrated Search

    1997-06-01

    This report describes analysis tools to predict shift under high-speed vehicle- : track interaction. The analysis approach is based on two fundamental models : developed (as part of this research); the first model computes the track lateral : residua...

  20. Investigating technical challenges and research needs related to shared corridors for high speed passenger and railroad freight operations.

    DOT National Transportation Integrated Search

    2013-05-01

    The development of both incremental and dedicated high-speed rail lines in the United States poses a number of questions. Despite nearly 50 years of international experience in planning, designing, building and operating high-speed passenger infrastr...

  1. An Assessment of Gigabit Ethernet Technology and Its Applications at the NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Bakes, Catherine Murphy; Kim, Chan M.; Ramos, Calvin T.

    2000-01-01

    This paper describes Gigabit Ethernet and its role in supporting R&D programs at NASA Glenn. These programs require an advanced high-speed network capable of transporting multimedia traffic, including real-time visualization, high- resolution graphics, and scientific data. GigE is a 1 Gbps extension to 10 and 100 Mbps Ethernet. The IEEE 802.3z and 802.3ab standards define the MAC layer and 1000BASE-X and 1000BASE-T physical layer specifications for GigE. GigE switches and buffered distributors support IEEE 802.3x flow control. The paper also compares GigE with ATM in terms of quality of service, data rate, throughput, scalability, interoperability, network management, and cost of ownership.

  2. Computational fluid dynamics research

    NASA Technical Reports Server (NTRS)

    Chandra, Suresh; Jones, Kenneth; Hassan, Hassan; Mcrae, David Scott

    1992-01-01

    The focus of research in the computational fluid dynamics (CFD) area is two fold: (1) to develop new approaches for turbulence modeling so that high speed compressible flows can be studied for applications to entry and re-entry flows; and (2) to perform research to improve CFD algorithm accuracy and efficiency for high speed flows. Research activities, faculty and student participation, publications, and financial information are outlined.

  3. Maglev vehicles and superconductor technology: Integration of high-speed ground transportation into the air travel system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, L.R.; Rote, D.M.; Hull, J.R.

    1989-04-01

    This study was undertaken to (1) evaluate the potential contribution of high-temperature superconductors (HTSCs) to the technical and economic feasibility of magnetically levitated (maglev) vehicles, (2) determine the status of maglev transportation research in the United States and abroad, (3) identify the likelihood of a significant transportation market for high-speed maglev vehicles, and (4) provide a preliminary assessment of the potential energy and economic benefits of maglev systems. HTSCs should be considered as an enhancing, rather than an enabling, development for maglev transportation because they should improve reliability and reduce energy and maintenance costs. Superconducting maglev transportation technologies were developedmore » in the United States in the late 1960s and early 1970s. Federal support was withdrawn in 1975, but major maglev transportation programs were continued in Japan and West Germany, where full-scale prototypes now carry passengers at speeds of 250 mi/h in demonstration runs. Maglev systems are generally viewed as very-high-speed train systems, but this study shows that the potential market for maglev technology as a train system, e.g., from one downtown to another, is limited. Rather, aircraft and maglev vehicles should be seen as complementing rather than competing transportation systems. If maglev systems were integrated into major hub airport operations, they could become economical in many relatively high-density US corridors. Air traffic congestion and associated noise and pollutant emissions around airports would also be reduced. 68 refs., 26 figs., 16 tabs.« less

  4. Speeding Up Ecological and Evolutionary Computations in R; Essentials of High Performance Computing for Biologists

    PubMed Central

    Visser, Marco D.; McMahon, Sean M.; Merow, Cory; Dixon, Philip M.; Record, Sydne; Jongejans, Eelke

    2015-01-01

    Computation has become a critical component of research in biology. A risk has emerged that computational and programming challenges may limit research scope, depth, and quality. We review various solutions to common computational efficiency problems in ecological and evolutionary research. Our review pulls together material that is currently scattered across many sources and emphasizes those techniques that are especially effective for typical ecological and environmental problems. We demonstrate how straightforward it can be to write efficient code and implement techniques such as profiling or parallel computing. We supply a newly developed R package (aprof) that helps to identify computational bottlenecks in R code and determine whether optimization can be effective. Our review is complemented by a practical set of examples and detailed Supporting Information material (S1–S3 Texts) that demonstrate large improvements in computational speed (ranging from 10.5 times to 14,000 times faster). By improving computational efficiency, biologists can feasibly solve more complex tasks, ask more ambitious questions, and include more sophisticated analyses in their research. PMID:25811842

  5. An Overview of High Temperature Seal Development and Testing Capabilities at the NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Demange, Jeffrey J.; Taylor, Shawn C.; Dunlap, Patrick H.; Steinetz, Bruce M.; Finkbeiner, Joshua R.; Proctor, Margaret P.

    2014-01-01

    The NASA Glenn Research Center (GRC), partnering with the University of Toledo, has a long history of developing and testing seal technologies for high-temperature applications. The GRC Seals Team has conducted research and development on high-temperature seal technologies for applications including advanced propulsion systems, thermal protection systems (airframe and control surface thermal seals), high-temperature preloading technologies, and other extreme-environment seal applications. The team has supported several high-profile projects over the past 30 years and has partnered with numerous organizations, including other government entities, academic institutions, and private organizations. Some of these projects have included the National Aerospace Space Plane (NASP), Space Shuttle Space Transport System (STS), the Multi-Purpose Crew Vehicle (MPCV), and the Dream Chaser Space Transportation System, as well as several high-speed vehicle programs for other government organizations. As part of the support for these programs, NASA GRC has developed unique seal-specific test facilities that permit evaluations and screening exercises in relevant environments. The team has also embarked on developing high-temperature preloaders to help maintain seal functionality in extreme environments. This paper highlights several propulsion-related projects that the NASA GRC Seals Team has supported over the past several years and will provide an overview of existing testing capabilities

  6. The performance and application of high speed long life LH2 hybrid bearings for reusable rocket engine turbomachinery

    NASA Technical Reports Server (NTRS)

    Hannum, N. P.; Nielson, C. E.

    1983-01-01

    Data are presented for two different experimental programs which were conducted to investigate the characteristics of a hybrid (hydrostatic/ball) bearing operating in liquid hydrogen. The same bearing design was used in both programs. Analytical predictions were made of the bearing characteristics and are compared with the experimental results when possible. The first program used a bearing tester to determine the steady state, transient, and cyclic life characteristics of the bearing over a wide range of operating conditions. The second program demonstrated the feasibility of applying hybrid bearings to an actual high speed turbopump by retrofitting and then testing an existing liquid hydrogen turbopump with the bearings.

  7. NASA Glenn High Pressure Low NOx Emissions Research

    NASA Technical Reports Server (NTRS)

    Tacina, Kathleen M.; Wey, Changlie

    2008-01-01

    In collaboration with U.S. aircraft engine companies, NASA Glenn Research Center has contributed to the advancement of low emissions combustion systems. For the High Speed Research Program (HSR), a 90% reduction in nitrogen oxides (NOx) emissions (relative to the then-current state of the art) has been demonstrated in sector rig testing at General Electric Aircraft Engines (GEAE). For the Advanced Subsonic Technology Program (AST), a 50% reduction in NOx emissions relative to the 1996 International Civil Aviation Organization (ICAO) standards has been demonstrated in sector rigs at both GEAE and Pratt & Whitney (P&W). During the Ultra Efficient Engine Technology Program (UEET), a 70% reduction in NOx emissions, relative to the 1996 ICAO standards, was achieved in sector rig testing at Glenn in the world class Advanced Subsonic Combustion Rig (ASCR) and at contractor facilities. Low NOx combustor development continues under the Fundamental Aeronautics Program. To achieve these reductions, experimental and analytical research has been conducted to advance the understanding of emissions formation in combustion processes. Lean direct injection (LDI) concept development uses advanced laser-based non-intrusive diagnostics and analytical work to complement the emissions measurements and to provide guidance for concept improvement. This paper describes emissions results from flametube tests of a 9-injection-point LDI fuel/air mixer tested at inlet pressures up to 5500 kPa. Sample results from CFD and laser diagnostics are also discussed.

  8. Bearing, gearing, and lubrication technology

    NASA Technical Reports Server (NTRS)

    Anderson, W. J.

    1978-01-01

    Results of selected NASA research programs on rolling-element and fluid-film bearings, gears, and elastohydrodynamic lubrication are reported. Advances in rolling-element bearing material technology, which have resulted in a significant improvement in fatigue life, and which make possible new applications for rolling bearings, are discussed. Research on whirl-resistant, fluid-film bearings, suitable for very high-speed applications, is discussed. An improved method for predicting gear pitting life is reported. An improved formula for calculating the thickness of elastohydrodynamic films (the existence of which help to define the operating regime of concentrated contact mechanisms such as bearings, gears, and cams) is described.

  9. NASA's search for the solar connection. I. [OSO Skylab, Solar Maximum Mission

    NASA Technical Reports Server (NTRS)

    Chapman, R. W.

    1979-01-01

    NASA's solar research, which leans toward the study of the sun as a star, is surveyed. The Orbiting Solar Observatory (OSO) program is covered, which yielded data such as spectras of 140-400 A wavelength of the entire solar disk. Attention is also given to the results obtained by Skylab, such as data showing that whenever a large coronal hole exists near the sun's equator, a stream of high-speed solar wind will be observed at the earth. Finally areas of future research, such as a concerted study of flare phenomenon, are discussed.

  10. Recent radial turbine research at the NASA Lewis Research Center.

    NASA Technical Reports Server (NTRS)

    Rohlik, H. E.; Kofskey, M. G.

    1972-01-01

    The major results obtained in several recent experimental programs on small radial inflow turbines for space applications are presented and discussed. Specifically, experimental and analytical work associated with these systems that has included examination of blade-shroud clearance, blade loading, and exit diffuser design, is considered. Results indicate high efficiency over a wide range of specific speed, and also insensitivity to clearance and blade loading in the radial part of the rotor. The exit diffuser investigation indicated that a conventional conical outer wall may not provide the velocity variation consistent with minimum overall diffuser loss.

  11. A Diagnostic System for Studying Energy Partitioning and Assessing the Response of the Ionosphere during HAARP Modification Experiments

    NASA Technical Reports Server (NTRS)

    Djuth, Frank T.; Elder, John H.; Williams, Kenneth L.

    1996-01-01

    This research program focused on the construction of several key radio wave diagnostics in support of the HF Active Auroral Ionospheric Research Program (HAARP). Project activities led to the design, development, and fabrication of a variety of hardware units and to the development of several menu-driven software packages for data acquisition and analysis. The principal instrumentation includes an HF (28 MHz) radar system, a VHF (50 MHz) radar system, and a high-speed radar processor consisting of three separable processing units. The processor system supports the HF and VHF radars and is capable of acquiring very detailed data with large incoherent scatter radars. In addition, a tunable HF receiver system having high dynamic range was developed primarily for measurements of stimulated electromagnetic emissions (SEE). A separate processor unit was constructed for the SEE receiver. Finally, a large amount of support instrumentation was developed to accommodate complex field experiments. Overall, the HAARP diagnostics are powerful tools for studying diverse ionospheric modification phenomena. They are also flexible enough to support a host of other missions beyond the scope of HAARP. Many new research programs have been initiated by applying the HAARP diagnostics to studies of natural atmospheric processes.

  12. Multidisciplinary High-Fidelity Analysis and Optimization of Aerospace Vehicles. Part 2; Preliminary Results

    NASA Technical Reports Server (NTRS)

    Walsh, J. L.; Weston, R. P.; Samareh, J. A.; Mason, B. H.; Green, L. L.; Biedron, R. T.

    2000-01-01

    An objective of the High Performance Computing and Communication Program at the NASA Langley Research Center is to demonstrate multidisciplinary shape and sizing optimization of a complete aerospace vehicle configuration by using high-fidelity finite-element structural analysis and computational fluid dynamics aerodynamic analysis in a distributed, heterogeneous computing environment that includes high performance parallel computing. A software system has been designed and implemented to integrate a set of existing discipline analysis codes, some of them computationally intensive, into a distributed computational environment for the design of a high-speed civil transport configuration. The paper describes both the preliminary results from implementing and validating the multidisciplinary analysis and the results from an aerodynamic optimization. The discipline codes are integrated by using the Java programming language and a Common Object Request Broker Architecture compliant software product. A companion paper describes the formulation of the multidisciplinary analysis and optimization system.

  13. Solid Inflammability Boundary At Low-Speed (SIBAL)

    NASA Technical Reports Server (NTRS)

    T'ien, J.; Sacksteder, K.; Ferkul, P.; Pettegrew, R.; Street, K.; Kumar, A.; Tolejko, K.; Kleinhenz, J.; Piltch, N.

    2003-01-01

    This research program is concerned with the effect of low-speed flow on the spreading and extinction processes over solid fuels. The project has passed the Science Concept Review and the experiment is currently scheduled to be performed in the ISS Combustion Integrated Rack. We present an overview of recent and ongoing experimental and theoretical efforts.

  14. Regulation of the Dynamic Live Load Factor for Calculation of Bridge Structures on High-Speed Railway Mainlines

    NASA Astrophysics Data System (ADS)

    Dyachenko, Leonid K.; Benin, Andrey V.

    2017-06-01

    When the high-speed railway traffic is being organized, it becomes necessary to elaborate bridge design standards for high-speed railways (HSR). Methodology of studying the issues of HSR bridge design is based on the comprehensive analysis of domestic research as well as international experience in design, construction and operation of high-speed railways. Serious requirements are imposed on the HSR artificial structures, which raise a number of scientific tasks associated mainly with the issues of the dynamic interaction of the rolling stock and the bridge elements. To ensure safety of traffic and reliability of bridges during the whole period of operation one needs to resolve the dynamic problems of various types of high-speed trains moving along the structures. The article analyses dependences of the magnitude of inertial response on the external stress parameters and proposes a simplified method of determination of the dynamic live load factor caused by the passage of high-speed trains. The usefulness of the given research arises from the reduction of complexity of the complicated dynamic calculations needed to describe a high-speed train travelling along the artificial structures.

  15. Overview of Variable-Speed Power-Turbine Research

    NASA Technical Reports Server (NTRS)

    Welch, Gerard E.

    2011-01-01

    The vertical take-off and landing (VTOL) and high-speed cruise capability of the NASA Large Civil Tilt-Rotor (LCTR) notional vehicle is envisaged to enable increased throughput in the national airspace. A key challenge of the LCTR is the requirement to vary the main rotor speeds from 100% at take-off to near 50% at cruise as required to minimize mission fuel burn. The variable-speed power-turbine (VSPT), driving a fixed gear-ratio transmission, provides one approach for effecting this wide speed variation. The key aerodynamic and rotordynamic challenges of the VSPT were described in the FAP Conference presentation. The challenges include maintaining high turbine efficiency at high work factor, wide (60 deg.) of incidence variation in all blade rows due to the speed variation, and operation at low Reynolds numbers (with transitional flow). The PT -shaft of the VSPT must be designed for safe operation in the wide speed range required, and therefore poses challenges associated with rotordynamics. The technical challenges drive research activities underway at NASA. An overview of the NASA SRW VSPT research activities was provided. These activities included conceptual and preliminary aero and mechanical (rotordynamics) design of the VSPT for the LCTR application, experimental and computational research supporting the development of incidence tolerant blading, and steps toward component-level testing of a variable-speed power-turbine of relevance to the LCTR application.

  16. 75 FR 16564 - High-Speed Intercity Passenger Rail (HSIPR) Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-01

    ... services to avoid shipping delays. Application forms are available at http://www.fra.dot.gov/Pages/2243..., and 501--Intercity Passenger Rail Service Corridor Capital Assistance (codified at 49 U.S.C. chapter... High Speed Rail Corridors and Intercity Passenger Rail Service.'' This document incorporates interim...

  17. High speed CMOS/SOS standard cell notebook

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The NASA/MSFC high speed CMOS/SOS standard cell family, designed to be compatible with the PR2D (Place, Route in 2-Dimensions) automatic layout program, is described. Standard cell data sheets show the logic diagram, the schematic, the truth table, and propagation delays for each logic cell.

  18. D-558-2 LOX (Liquid OXygen) jettison on ramp

    NASA Technical Reports Server (NTRS)

    1956-01-01

    In this 1956 photograph the Douglas D-558-2 #1 is shown venting liquid oxigen (LOX). The photograph was taken in back of the NACA High-Speed Flight Station's new hangar and building on the main base at Edwards Air Force Base. The P2B-1S Superfortress (Navy version of the Air Force B-29) launch aircraft is parked in the background. The NACA acquired this aircraft on August 31, 1951, after Douglas had completed the contract flights. The Douglas plant later converted its powerplant to an all-rocket system that required launch from a mothership (the P2B-1S). Douglas returned the aircraft to the NACA on November 15, 1955. The High-Speed Flight Station intended to use it for tests of external stores at supersonic speeds. NACA research pilot John McKay made a single flight in the aircraft on September 17, 1956, but the NACA subsequently cancelled the program. The Douglas D-558-2 'Skyrockets' were among the early transonic research airplanes like the X-1, X-4, X-5, and X-92A. Three of the single-seat, swept-wing aircraft flew from 1948 to 1956 in a joint program involving the National Advisory Committee for Aeronautics (NACA), with its flight research done at the NACA's Muroc Flight Test Unit in Calif., redesignated in 1949 the High-Speed Flight Research Station (HSFRS). Also partners in the flight research were the Navy-Marine Corps and the Douglas Aircraft Co. The HSFRS became the High-Speed Flight Station in 1954 and is now known as the NASA Dryden Flight Research Center. The Skyrocket made aviation history when it became the first airplane to fly twice the speed of sound. The 2 in the aircraft's designation referred to the fact that the Skyrocket was the phase-two version of what had originally been conceived as a three-phase program, with the phase-one aircraft having straight wings. The third phase, which never came to fruition, would have involved constructing a mock-up of a combat-type aircraft embodying the results from the testing of the phase one and two aircraft. Douglas pilot John F. Martin made the first flight at Muroc Army Airfield (later renamed Edwards Air Force Base) in Calif. on February 4, 1948. The goals of the program were to investigate the characteristics of swept-wing aircraft at transonic and supersonic speeds with particular attention to pitch-up (uncommanded rotation of the nose of the airplane upwards)--a problem prevalent in high-speed service aircraft of that era, particularly at low speeds during take-off and landing and in tight turns. The three aircraft gathered a great deal of data about pitch-up and the coupling of lateral (yaw) and longitudinal (pitch) motions; wing and tail loads, lift, drag, and buffeting characteristics of swept-wing aircraft at transonic and supersonic speeds; and the effects of the rocket exhaust plume on lateral dynamic stability throughout the speed range. (Plume effects were a new experience for aircraft.) The number three aircraft also gathered information about the effects of external stores (bomb shapes, drop tanks) upon the aircraft's behavior in the transonic region (roughly 0.7 to 1.3 times the speed of sound). In correlation with data from other early transonic research aircraft such as the XF-92A, this information contributed to solutions to the pitch-up problem in swept-wing aircraft. The three airplanes flew a total of 313 times--123 by the number one aircraft (Bureau No. 37973--NACA 143), 103 by the second Skyrocket (Bureau No. 37974--NACA 144), and 87 by airplane number three (Bureau No. 37975--NACA 145). Skyrocket 143 flew all but one of its missions as part of the Douglas contractor program to test the airplane's performance. NACA aircraft 143 was initially powered by a Westinghouse J-34-40 turbojet engine configured only for ground take-offs, but in 1954-55 the contractor modified it to an all-rocket air-launch capability featuring an LR8-RM-6, 4-chamber Reaction Motors engine rated at 6,000 pounds of thrust at sea level (the Navy designation for the Air Force's LR-11 used in the X-1). In this configuration, NACA research pilot John McKay flew the airplane only once for familiarization on September 17, 1956. The 123 flights of NACA 143 served to validate wind-tunnel predictions of the airplane's performance, except for the fact that the airplane experienced less drag above Mach 0.85 than the wind tunnels had indicated. NACA 144 also began its flight program with a turbojet powerplant. NACA pilots Robert A. Champine and John H. Griffith flew 21 times in this configuration to test airspeed calibrations and to research longitudinal and lateral stability and control. In the process, during August of 1949 they encountered pitch-up problems, which NACA engineers recognized as serious because they could produce a limiting and dangerous restriction on flight performance. Hence, they determined to make a complete investigation of the problem. In 1950, Douglas replaced the turbojet with an LR-8 rocket engine, and its pilot, William B. Bridgeman, flew the aircraft seven times up to a speed of Mach 1.88 (1.88 times the speed of sound) and an altitude of 79,494 feet (the latter an unofficial world's altitude record at the time, achieved on August 15, 1951). In the rocket configuration, a Navy P2B (Navy version of the B-29) launched the airplane at approximately 30,000 feet after taking off from the ground with the Skyrocket attached beneath its bomb bay. During Bridgeman's supersonic flights, he encountered a violent rolling motion known as lateral instability that was less pronounced on the Mach 1.88 flight on August 7, 1951, than on a Mach 1.85 flight in June when he pushed over to a low angle of attack (angle of the fuselage or wing to the prevailing wind direction). The NACA engineers studied the behavior of the aircraft before beginning their own flight research in the airplane in September 1951. Over the next couple of years, NACA pilot A. Scott Crossfield flew the airplane 20 times to gather data on longitudinal and lateral stability and control, wing and tail loads, and lift, drag, and buffeting characteristics at speeds up to Mach 1.878. At that point, Marine Lt. Col. Marion Carl flew the airplane to a new (unofficial) altitude record of 83,235 feet on August 21, 1953, and to a maximum speed of Mach 1.728. Following Carl's completion of these flights for the Navy, NACA technicians at the High-Speed Flight Research Station (HSFRS) near Mojave, Calif., outfitted the LR-8 engine's cylinders with nozzle extensions to prevent the exhaust gas from affecting the rudders at supersonic speeds. This addition also increased the engine's thrust by 6.5 percent at Mach 1.7 and 70,000 feet. Even before Marion Carl had flown the Skyrocket, HSFRS Chief Walter C. Williams had petitioned NACA headquarters unsuccessfully to fly the aircraft to Mach 2 to garner the research data at that speed. Finally, after Crossfield had secured the agreement of the Navy's Bureau of Aeronautics, NACA director Hugh L. Dryden relaxed the organization's usual practice of leaving record setting to others and consented to attempting a flight to Mach 2. In addition to adding the nozzle extensions, the NACA flight team at the HSFRS chilled the fuel (alcohol) so more could be poured into the tank and waxed the fuselage to reduce drag. With these preparations and employing a flight plan devised by project engineer Herman O. Ankenbruck to fly to approximately 72,000 feet and push over into a slight dive, Crossfield made aviation history on November 20, 1953, when he flew to Mach 2.005 (1,291 miles per hour). He became the first pilot to reach Mach 2 in this, the only flight in which the Skyrocket flew that fast. Following this flight, Crossfield and NACA pilots Joseph A. Walker and John B. McKay flew the airplane for such purposes as to gather data on pressure distribution, structural loads, and structural heating, with the last flight in the program occurring on December 20, 1956, when McKay obtained dynamic stability data and sound-pressure levels at transonic speeds and above. Meanwhile, NACA 145 had completed 21 contractor flights by Douglas pilots Eugene F. May and Bill Bridgeman in November 1950. In this jet-and-rocket-propelled craft, Scott Crossfield and Walter Jones began the NACA's investigation of pitch-up lasting from September 1951 well into the summer of 1953. They flew the Skyrocket with a variety of wing-fence, wing-slat, and leading-edge chord extension configurations, performing various maneuvers as well as straight-and-level flying at transonic speeds. While fences significantly aided recovery from pitch-up conditions, leading edge chord extensions did not, disproving wind-tunnel tests to the contrary. Slats (long, narrow auxiliary airfoils) in the fully open position eliminated pitch-up except in the speed range around Mach 0.8 to 0.85. In June 1954, Crossfield began an investigation of the effects of external stores (bomb shapes and fuel tanks) upon the aircraft's transonic behavior. McKay and Stanley Butchart completed the NACA's investigation of this issue, with McKay flying the final mission on August 28, 1956. Besides setting several records, the Skyrocket pilots had gathered important data and understanding about what would and would not work to provide stable, controlled flight of a swept-wing aircraft in the transonic and supersonic flight regimes. The data they gathered also helped to enable a better correlation of wind-tunnel test results with actual flight values, enhancing the abilities of designers to produce more capable aircraft for the armed services, especially those with swept wings. Moreover, data on such matters as stability and control from this and other early research airplanes aided in the design of the century series of fighter airplanes, all of which featured the movable horizontal stabilizers first employed on the X-1 and D-558 series.

  19. Improvement in the light sensitivity of the ultrahigh-speed high-sensitivity CCD with a microlens array

    NASA Astrophysics Data System (ADS)

    Hayashida, T.,; Yonai, J.; Kitamura, K.; Arai, T.; Kurita, T.; Tanioka, K.; Maruyama, H.; Etoh, T. Goji; Kitagawa, S.; Hatade, K.; Yamaguchi, T.; Takeuchi, H.; Iida, K.

    2008-02-01

    We are advancing the development of ultrahigh-speed, high-sensitivity CCDs for broadcast use that are capable of capturing smooth slow-motion videos in vivid colors even where lighting is limited, such as at professional baseball games played at night. We have already developed a 300,000 pixel, ultrahigh-speed CCD, and a single CCD color camera that has been used for sports broadcasts and science programs using this CCD. However, there are cases where even higher sensitivity is required, such as when using a telephoto lens during a baseball broadcast or a high-magnification microscope during science programs. This paper provides a summary of our experimental development aimed at further increasing the sensitivity of CCDs using the light-collecting effects of a microlens array.

  20. Research on Streamlines and Aerodynamic Heating for Unstructured Grids on High-Speed Vehicles

    NASA Technical Reports Server (NTRS)

    DeJarnette, Fred R.; Hamilton, H. Harris (Technical Monitor)

    2001-01-01

    Engineering codes are needed which can calculate convective heating rates accurately and expeditiously on the surfaces of high-speed vehicles. One code which has proven to meet these needs is the Langley Approximate Three-Dimensional Convective Heating (LATCH) code. It uses the axisymmetric analogue in an integral boundary-layer method to calculate laminar and turbulent heating rates along inviscid surface streamlines. It requires the solution of the inviscid flow field to provide the surface properties needed to calculate the streamlines and streamline metrics. The LATCH code has been used with inviscid codes which calculated the flow field on structured grids, Several more recent inviscid codes calculate flow field properties on unstructured grids. The present research develops a method to calculate inviscid surface streamlines, the streamline metrics, and heating rates using the properties calculated from inviscid flow fields on unstructured grids. Mr. Chris Riley, prior to his departure from NASA LaRC, developed a preliminary code in the C language, called "UNLATCH", to accomplish these goals. No publication was made on his research. The present research extends and improves on the code developed by Riley. Particular attention is devoted to the stagnation region, and the method is intended for programming in the FORTRAN 90 language.

  1. NASA-UVA Light Aerospace Alloy and Structure Technology Program Supplement: Aluminum-Based Materials for High Speed Aircraft

    NASA Technical Reports Server (NTRS)

    Starke, E. A., Jr.

    1997-01-01

    This is the final report of the study "Aluminum-Based Materials for High Speed Aircraft" which had the objectives (1) to identify the most promising aluminum-based materials with respect to major structural use on the HSCT and to further develop those materials and (2) to assess the materials through detailed trade and evaluation studies with respect to their structural efficiency on the HSCT. The research team consisted of ALCOA, Allied-Signal, Boeing, McDonnell Douglas, Reynolds Metals and the University of Virginia. Four classes of aluminum alloys were investigated: (1) I/M 2XXX containing Li and I/M 2XXX without Li, (2) I/M 6XXX, (3) two P/M 2XXX alloys, and (4) two different aluminum-based metal matrix composites (MMC). The I/M alloys were targeted for a Mach 2.0 aircraft and the P/M and MMC alloys were targeted for a Mach 2.4 aircraft. Design studies were conducted using several different concepts including skin/stiffener (baseline), honeycomb sandwich, integrally stiffened and hybrid adaptations (conventionally stiffened thin-sandwich skins). Alloy development included fundamental studies of coarsening behavior, the effect of stress on nucleation and growth of precipitates, and fracture toughness as a function of temperature were an integral part of this program. The details of all phases of the research are described in this final report.

  2. Vertical Field of View Reference Point Study for Flight Path Control and Hazard Avoidance

    NASA Technical Reports Server (NTRS)

    Comstock, J. Raymond, Jr.; Rudisill, Marianne; Kramer, Lynda J.; Busquets, Anthony M.

    2002-01-01

    Researchers within the eXternal Visibility System (XVS) element of the High-Speed Research (HSR) program developed and evaluated display concepts that will provide the flight crew of the proposed High-Speed Civil Transport (HSCT) with integrated imagery and symbology to permit path control and hazard avoidance functions while maintaining required situation awareness. The challenge of the XVS program is to develop concepts that would permit a no-nose-droop configuration of an HSCT and expanded low visibility HSCT operational capabilities. This study was one of a series of experiments exploring the 'design space' restrictions for physical placement of an XVS display. The primary experimental issues here was 'conformality' of the forward display vertical position with respect to the side window in simulated flight. 'Conformality' refers to the case such that the horizon and objects appear in the same relative positions when viewed through the forward windows or display and the side windows. This study quantified the effects of visual conformality on pilot flight path control and hazard avoidance performance. Here, conformality related to the positioning and relationship of the artificial horizon line and associated symbology presented on the forward display and the horizon and associated ground, horizon, and sky textures as they would appear in the real view through a window presented in the side window display. No significant performance consequences were found for the non-conformal conditions.

  3. Propulsion system-flight control integration-flight evaluation and technology transition

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Gilyard, Glenn B.; Myers, Lawrence P.

    1990-01-01

    Integration of propulsion and flight control systems and their optimization offering significant performance improvement are assessed. In particular, research programs conducted by NASA on flight control systems and propulsion system-flight control interactions on the YF-12 and F-15 aircraft are addressed; these programs have demonstrated increased thrust, reduced fuel consumption, increased engine life, and improved aircraft performance. Focus is placed on altitude control, speed-Mach control, integrated controller design, as well as flight control systems and digital electronic engine control. A highly integrated digital electronic control program is analyzed and compared with a performance seeking control program. It is shown that the flight evaluation and demonstration of these technologies have been a key part in the transition of the concepts to production and operational use on a timely basis.

  4. An Evolutionary Method for Financial Forecasting in Microscopic High-Speed Trading Environment

    PubMed Central

    Li, Hsu-Chih

    2017-01-01

    The advancement of information technology in financial applications nowadays have led to fast market-driven events that prompt flash decision-making and actions issued by computer algorithms. As a result, today's markets experience intense activity in the highly dynamic environment where trading systems respond to others at a much faster pace than before. This new breed of technology involves the implementation of high-speed trading strategies which generate significant portion of activity in the financial markets and present researchers with a wealth of information not available in traditional low-speed trading environments. In this study, we aim at developing feasible computational intelligence methodologies, particularly genetic algorithms (GA), to shed light on high-speed trading research using price data of stocks on the microscopic level. Our empirical results show that the proposed GA-based system is able to improve the accuracy of the prediction significantly for price movement, and we expect this GA-based methodology to advance the current state of research for high-speed trading and other relevant financial applications. PMID:28316618

  5. 75 FR 68021 - Draft Finding of No Significant Impact on the Tier 1 Ohio 3C Quick Start Passenger Rail Tier-1...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-04

    ... purpose of the 3C ``Quick Start'' Passenger Rail Project is to reestablish intercity conventional speed... predictable and consistent travel times. It is intended to provide travel options and develop the passenger... through the High Speed Intercity Passenger Rail Program (HSIPR Program) administered by the FRA and funded...

  6. The X-43A hypersonic research aircraft and its modified Pegasus® booster rocket recently underwent combined systems testing while mounted to NASA's NB-52B carrier aircraft

    NASA Image and Video Library

    2001-03-15

    The first of three X-43A hypersonic research aircraft and its modified Pegasus® booster rocket recently underwent combined systems testing while mounted to NASA's NB-52B carrier aircraft at the Dryden Flight Research Center, Edwards, Calif. The combined systems test was one of the last major milestones in the Hyper-X research program before the first X-43A flight. The X-43A flights will be the first actual flight tests of an aircraft powered by a revolutionary supersonic-combustion ramjet ("scramjet") engine capable of operating at hypersonic speeds (above Mach 5, or five times the speed of sound). The 12-foot, unpiloted research vehicle was developed and built by MicroCraft Inc., Tullahoma, Tenn., under NASA contract. The booster was built by Orbital Sciences Corp., Dulles, Va.,After being air-launched from NASA's venerable NB-52 mothership, the booster will accelerate the X-43A to test speed and altitude. The X-43A will then separate from the rocket and fly a pre-programmed trajectory, conducting aerodynamic and propulsion experiments until it descends into the Pacific Ocean. Three research flights are planned, two at Mach 7 and one at Mach 10.

  7. The X-43A hypersonic research aircraft and its modified Pegasus® booster rocket nestled under the wing of NASA's NB-52B carrier aircraft during pre-flight systems testing

    NASA Image and Video Library

    2001-03-15

    The X-43A hypersonic research aircraft and its modified Pegasus® booster rocket are nestled under the wing of NASA's NB-52B carrier aircraft during pre-flight systems testing at the Dryden Flight Research Center, Edwards, Calif. The combined systems test was one of the last major milestones in the Hyper-X research program before the first X-43A flight. The X-43A flights will be the first actual flight tests of an aircraft powered by a revolutionary supersonic-combustion ramjet ("scramjet") engine capable of operating at hypersonic speeds (above Mach 5, or five times the speed of sound). The 12-foot, unpiloted research vehicle was developed and built by MicroCraft Inc., Tullahoma, Tenn., under NASA contract. The booster was built by Orbital Sciences Corp., Dulles, Va. After being air-launched from NASA's venerable NB-52 mothership, the booster will accelerate the X-43A to test speed and altitude. The X-43A will then separate from the rocket and fly a pre-programmed trajectory, conducting aerodynamic and propulsion experiments until it descends into the Pacific Ocean. Three research flights are planned, two at Mach 7 and one at Mach 10.

  8. Wind-Tunnel Results of Advanced High-Speed Propellers at Takeoff, Climb, and Landing Mach Numbers

    NASA Technical Reports Server (NTRS)

    Stefko, George L.; Jeracki, Robert J.

    1985-01-01

    Low-speed wind-tunnel performance tests of two advanced propellers have been completed at the NASA Lewis Research Center as part of the NASA Advanced Turboprop Program. The 62.2 cm (24.5 in.) diameter adjustable-pitch models were tested at Mach numbers typical of takeoff, initial climbout, and landing speeds (i.e., from Mach 0.10 to 0.34) at zero angle of attack in the NASA Lewis 10 by 10 Foot Supersonic Wind Tunnel. Both models had eight blades and a cruise-design-point operating condition of Mach 0.80, and 10.668 km (35,000 ft) I.S.A. altitude, a 243.8 m/s (800 ft/sec) tip speed, and a high power loading of 301 kW/sq m (37.5 shp/sq ft). Each model had its own integrally designed area-ruled spinner, but used the same specially contoured nacelle. These features reduced blade-section Mach numbers and relieved blade-root choking at the cruise condition. No adverse or unusual low-speed operating conditions were found during the test with either the straight blade SR-2 or the 45 deg swept SR-3 propeller. Typical efficiencies of the straight and 45 deg swept propellers were 50.2 and 54.9 percent, respectively, at a takeoff condition of Mach 0.20 and 53.7 and 59.1 percent, respectively, at a climb condition of Mach 0.34.

  9. Numerical Simulation of High-Speed Turbulent Reacting Flows

    NASA Technical Reports Server (NTRS)

    Jaberi, F. A.; Colucci, P. J.; James, S.; Givi, P.

    1996-01-01

    The purpose of this research is to continue our efforts in advancing the state of knowledge in large eddy simulation (LES) methods for computational analysis of high-speed reacting turbulent flows. We have just completed the first year of Phase 3 of this research.

  10. Enhancing the Understanding of Marine Ecosystems through Teleducation and Field Experiences

    NASA Astrophysics Data System (ADS)

    Macko, S.

    2006-12-01

    This project is an outreach and education program with a partner in the K-12 schools at Accomack County on the Eastern Shore of Virginia. It endeavors to build a community more knowledgeable of the importance the ocean plays daily in our lives, and our own impact on the ocean. It is an program built in stages that: 1) Establish high speed teleducation linkages with Eastern Shore of Virginia High Schools, for live interactive, classes (teleducation) for earth science teachers enabling them to remotely participate in University of Virginia classes in Oceanography (designed on a faculty development basis or acquire NSTA certification in Earth Science Education, as well as participation by seniors in the Accomack Schools; 2) Establish field experiences for teachers and selected students that involve travel to both the Virginia Coast Reserve Long Term Ecological Research (VCR/LTER) Center, UVA and the NOAA Beaufort, NC Laboratory to observe first- hand the science programs at those locations and participate in cutting edge coastal marine research efforts. These experiences will not only improve student understanding of the ocean-atmosphere biogeophysical system, but also encourage students to explore the sciences as a field of study and possible vocation. Advanced high school students and science teachers from Accomack County Public Schools participated in an experience involving field and laboratory methods employed in a NSF-sponsored study of the coupled natural-human dynamics on the Eastern Shore of Virginia over the past 500 years (NSF-Biocomplexity). Students and teachers worked with researchers of the VCR facility in Oyster, VA, collected sediment cores from Chesapeake Bay tributaries, and traveled to the Organic Geochemistry Laboratory at UVA, in Charlottesville, VA to prepare and analyze samples for isotopic and palynological information. In a first of its kind connectivity, in June/July, 2006, using high speed internet connections, a summer class in Oceanography was live, interactively broadcast (teleducation) from UVA to Arcadia High School on the Eastern Shore, allowing teachers in the Accomack School district to receive university credit without leaving their home classrooms 250 miles from UVA.

  11. Systems Engineering Methodology for Fuel Efficiency and its Application to the TARDEC Fuel Efficient Demonstrator (FED) Program

    DTIC Science & Technology

    2010-08-19

    highlight the benefits of regenerative braking . Parameters within the drive cycle may include vehicle speed, elevation/grade changes, road surface...assist to downsize the engine due to infinite maximum speed requirements • Drive cycle less suited to regenerative braking improvement compared to...will be cycle dependent. A high speed drive cycle may for example drive a focus on aerodynamic improvements, while high frequency of braking will

  12. Innovative and Community-Driven Communication Practices of the South Carolina Cancer Prevention and Control Research Network

    PubMed Central

    Brandt, Heather M.; Freedman, Darcy A.; Adams, Swann Arp; Young, Vicki M.; Ureda, John R.; McCracken, James Lyndon; Hébert, James R.

    2014-01-01

    The South Carolina Cancer Prevention and Control Research Network (SC-CPCRN) is 1 of 10 networks funded by the Centers for Disease Control and Prevention and the National Cancer Institute (NCI) that works to reduce cancer-related health disparities. In partnership with federally qualified health centers and community stakeholders, the SC-CPCRN uses evidence-based approaches (eg, NCI Research-tested Intervention Programs) to disseminate and implement cancer prevention and control messages, programs, and interventions. We describe the innovative stakeholder- and community-driven communication efforts conducted by the SC-CPCRN to improve overall health and reduce cancer-related health disparities among high-risk and disparate populations in South Carolina. We describe how our communication efforts are aligned with 5 core values recommended for dissemination and implementation science: 1) rigor and relevance, 2) efficiency and speed, 3) collaboration, 4) improved capacity, and 5) cumulative knowledge. PMID:25058673

  13. Innovative and community-driven communication practices of the South Carolina cancer prevention and control research network.

    PubMed

    Friedman, Daniela B; Brandt, Heather M; Freedman, Darcy A; Adams, Swann Arp; Young, Vicki M; Ureda, John R; McCracken, James Lyndon; Hébert, James R

    2014-07-24

    The South Carolina Cancer Prevention and Control Research Network (SC-CPCRN) is 1 of 10 networks funded by the Centers for Disease Control and Prevention and the National Cancer Institute (NCI) that works to reduce cancer-related health disparities. In partnership with federally qualified health centers and community stakeholders, the SC-CPCRN uses evidence-based approaches (eg, NCI Research-tested Intervention Programs) to disseminate and implement cancer prevention and control messages, programs, and interventions. We describe the innovative stakeholder- and community-driven communication efforts conducted by the SC-CPCRN to improve overall health and reduce cancer-related health disparities among high-risk and disparate populations in South Carolina. We describe how our communication efforts are aligned with 5 core values recommended for dissemination and implementation science: 1) rigor and relevance, 2) efficiency and speed, 3) collaboration, 4) improved capacity, and 5) cumulative knowledge.

  14. How differential deflection of the inboard and outboard leading-edge flaps affected the handling qua

    NASA Technical Reports Server (NTRS)

    2002-01-01

    How differential deflection of the inboard and outboard leading-edge flaps affected the handling qualities of this modified F/A-18A was evaluated during the first check flight in the Active Aeroelastic Wing program at NASA's Dryden Flight Research Center. The Active Aeroelastic Wing program at NASA's Dryden Flight Research Center seeks to determine the advantages of twisting flexible wings for primary maneuvering roll control at transonic and supersonic speeds, with traditional control surfaces such as ailerons and leading-edge flaps used to aerodynamically induce the twist. From flight test and simulation data, the program intends to develop structural modeling techniques and tools to help design lighter, more flexible high aspect-ratio wings for future high-performance aircraft, which could translate to more economical operation or greater payload capability. AAW flight tests began in November, 2002 with checkout and parameter-identification flights. Based on data obtained during the first flight series, new flight control software will be developed and a second series of research flights will then evaluate the AAW concept in a real-world environment. The program uses wings that were modified to the flexibility of the original pre-production F-18 wing. Other modifications include a new actuator to operate the outboard leading edge flap over a greater range and rate, and a research flight control system to host the aeroelastic wing control laws. The Active Aeroelastic Wing Program is jointly funded and managed by the Air Force Research Laboratory and NASA Dryden Flight Research Center, with Boeing's Phantom Works as prime contractor for wing modifications and flight control software development. The F/A-18A aircraft was provided by the Naval Aviation Systems Test Team and modified for its research role by NASA Dryden technicians.

  15. A Review of Hypersonics Aerodynamics, Aerothermodynamics and Plasmadynamics Activities within NASA's Fundamental Aeronautics Program

    NASA Technical Reports Server (NTRS)

    Salas, Manuel D.

    2007-01-01

    The research program of the aerodynamics, aerothermodynamics and plasmadynamics discipline of NASA's Hypersonic Project is reviewed. Details are provided for each of its three components: 1) development of physics-based models of non-equilibrium chemistry, surface catalytic effects, turbulence, transition and radiation; 2) development of advanced simulation tools to enable increased spatial and time accuracy, increased geometrical complexity, grid adaptation, increased physical-processes complexity, uncertainty quantification and error control; and 3) establishment of experimental databases from ground and flight experiments to develop better understanding of high-speed flows and to provide data to validate and guide the development of simulation tools.

  16. Proprioceptive Actuation Design for Dynamic Legged locomotion

    NASA Astrophysics Data System (ADS)

    Kim, Sangbae; Wensing, Patrick; Biomimetic Robotics Lab Team

    Designing an actuator system for highly-dynamic legged locomotion exhibited by animals has been one of the grand challenges in robotics research. Conventional actuators designed for manufacturing applications have difficulty satisfying challenging requirements for high-speed locomotion, such as the need for high torque density and the ability to manage dynamic physical interactions. It is critical to introduce a new actuator design paradigm and provide guidelines for its incorporation in future mobile robots for research and industry. To this end, we suggest a paradigm called proprioceptive actuation, which enables highly- dynamic operation in legged machines. Proprioceptive actuation uses collocated force control at the joints to effectively control contact interactions at the feet under dynamic conditions. In the realm of legged machines, this paradigm provides a unique combination of high torque density, high-bandwidth force control, and the ability to mitigate impacts through backdrivability. Results show that the proposed design provides an impact mitigation factor that is comparable to other quadruped designs with series springs to handle impact. The paradigm is shown to enable the MIT Cheetah to manage the application of contact forces during dynamic bounding, with results given down to contact times of 85ms and peak forces over 450N. As a result, the MIT Cheetah achieves high-speed 3D running up to 13mph and jumping over an 18-inch high obstacle. The project is sponsored by DARPA M3 program.

  17. NASA high performance computing and communications program

    NASA Technical Reports Server (NTRS)

    Holcomb, Lee; Smith, Paul; Hunter, Paul

    1993-01-01

    The National Aeronautics and Space Administration's HPCC program is part of a new Presidential initiative aimed at producing a 1000-fold increase in supercomputing speed and a 100-fold improvement in available communications capability by 1997. As more advanced technologies are developed under the HPCC program, they will be used to solve NASA's 'Grand Challenge' problems, which include improving the design and simulation of advanced aerospace vehicles, allowing people at remote locations to communicate more effectively and share information, increasing scientist's abilities to model the Earth's climate and forecast global environmental trends, and improving the development of advanced spacecraft. NASA's HPCC program is organized into three projects which are unique to the agency's mission: the Computational Aerosciences (CAS) project, the Earth and Space Sciences (ESS) project, and the Remote Exploration and Experimentation (REE) project. An additional project, the Basic Research and Human Resources (BRHR) project exists to promote long term research in computer science and engineering and to increase the pool of trained personnel in a variety of scientific disciplines. This document presents an overview of the objectives and organization of these projects as well as summaries of individual research and development programs within each project.

  18. Spherical roller bearing analysis. SKF computer program SPHERBEAN. Volume 3: Program correlation with full scale hardware tests

    NASA Technical Reports Server (NTRS)

    Kleckner, R. J.; Rosenlieb, J. W.; Dyba, G.

    1980-01-01

    The results of a series of full scale hardware tests comparing predictions of the SPHERBEAN computer program with measured data are presented. The SPHERBEAN program predicts the thermomechanical performance characteristics of high speed lubricated double row spherical roller bearings. The degree of correlation between performance predicted by SPHERBEAN and measured data is demonstrated. Experimental and calculated performance data is compared over a range in speed up to 19,400 rpm (0.8 MDN) under pure radial, pure axial, and combined loads.

  19. Scramjet nozzle design and analysis as applied to a highly integrated hypersonic research airplane

    NASA Technical Reports Server (NTRS)

    Small, W. J.; Weidner, J. P.; Johnston, P. J.

    1976-01-01

    Engine-nozzle airframe integration at hypersonic speeds was conducted by using a high-speed research aircraft concept as a focus. Recently developed techniques for analysis of scramjet-nozzle exhaust flows provide a realistic analysis of complex forces resulting from the engine-nozzle airframe coupling. By properly integrating the engine-nozzle propulsive system with the airframe, efficient, controlled and stable flight results over a wide speed range.

  20. Pressure distribution data from tests of 2.29-meter (7.5-ft.) span EET high-lift research model in Langley 4- by 7-meter tunnel

    NASA Technical Reports Server (NTRS)

    Morgan, H. L., Jr.

    1982-01-01

    A 2.29 m (7.5 ft.) span high-lift research model equipped with full-span leading-edge slat and part-span double-slotted trailing-edge flap was tested in the Langley 4- by 7-Meter Tunnel to determine the low speed performance characteristics of a representative high aspect ratio suprcritical wing. These tests were performed in support of the Energy Efficient Transport (EET) program which is one element of the Aircraft Energy Efficiency (ACEE) project. Static longitudinal forces and moments and chordwise pressure distributions at three spanwise stations were measured for cruise, climb, two take-off flap, and two landing flap wing configurations. The tabulated and plotted pressure distribution data is presented without analysis or discussion.

  1. Performance analysis of LDPC codes on OOK terahertz wireless channels

    NASA Astrophysics Data System (ADS)

    Chun, Liu; Chang, Wang; Jun-Cheng, Cao

    2016-02-01

    Atmospheric absorption, scattering, and scintillation are the major causes to deteriorate the transmission quality of terahertz (THz) wireless communications. An error control coding scheme based on low density parity check (LDPC) codes with soft decision decoding algorithm is proposed to improve the bit-error-rate (BER) performance of an on-off keying (OOK) modulated THz signal through atmospheric channel. The THz wave propagation characteristics and channel model in atmosphere is set up. Numerical simulations validate the great performance of LDPC codes against the atmospheric fading and demonstrate the huge potential in future ultra-high speed beyond Gbps THz communications. Project supported by the National Key Basic Research Program of China (Grant No. 2014CB339803), the National High Technology Research and Development Program of China (Grant No. 2011AA010205), the National Natural Science Foundation of China (Grant Nos. 61131006, 61321492, and 61204135), the Major National Development Project of Scientific Instrument and Equipment (Grant No. 2011YQ150021), the National Science and Technology Major Project (Grant No. 2011ZX02707), the International Collaboration and Innovation Program on High Mobility Materials Engineering of the Chinese Academy of Sciences, and the Shanghai Municipal Commission of Science and Technology (Grant No. 14530711300).

  2. Laryngeal High-Speed Videoendoscopy: Rationale and Recommendation for Accurate and Consistent Terminology

    ERIC Educational Resources Information Center

    Deliyski, Dimitar D.; Hillman, Robert E.; Mehta, Daryush D.

    2015-01-01

    Purpose: The authors discuss the rationale behind the term "laryngeal high-speed videoendoscopy" to describe the application of high-speed endoscopic imaging techniques to the visualization of vocal fold vibration. Method: Commentary on the advantages of using accurate and consistent terminology in the field of voice research is…

  3. Experimental quiet engine program

    NASA Technical Reports Server (NTRS)

    Cornell, W. G.

    1975-01-01

    Full-scale low-tip-speed fans, a full-scale high-tip-speed fan, scale model versions of fans, and two full-scale high-bypass-ratio turbofan engines, were designed, fabricated, tested, and evaluated. Turbine noise suppression was investigated. Preliminary design studies of flight propulsion system concepts were used in application studies to determine acoustic-economic tradeoffs. Salient results are as follows: tradeoff evaluation of fan tip speed and blade loading; systematic data on source noise characteristics and suppression effectiveness; documentation of high- and low-fan-speed aerodynamic and acoustic technology; aerodynamic and acoustic evaluation of acoustic treatment configurations, casing tip bleed, serrated and variable pitch rotor blades, leaned outlet guide vanes, slotted tip casings, rotor blade shape modifications, and inlet noise suppression; systematic evaluation of aerodynamic and acoustic effects; flyover noise projections of engine test data; turbine noise suppression technology development; and tradeoff evaluation of preliminary design high-fan-speed and low-fan-speed flight engines.

  4. High performance computing and communications program

    NASA Technical Reports Server (NTRS)

    Holcomb, Lee

    1992-01-01

    A review of the High Performance Computing and Communications (HPCC) program is provided in vugraph format. The goals and objectives of this federal program are as follows: extend U.S. leadership in high performance computing and computer communications; disseminate the technologies to speed innovation and to serve national goals; and spur gains in industrial competitiveness by making high performance computing integral to design and production.

  5. Effect of a coteaching handwriting program for first graders: one-group pretest-posttest design.

    PubMed

    Case-Smith, Jane; Holland, Terri; Lane, Alison; White, Susan

    2012-01-01

    We examined the effects of a cotaught handwriting and writing program on first-grade students grouped by low, average, and high baseline legibility. The program's aim was to increase legibility, handwriting speed, writing fluency, and written expression in students with diverse learning needs. Thirty-six first-grade students in two classrooms participated in a 12-wk handwriting and writing program cotaught by teachers and an occupational therapist. Students were assessed at pretest, posttest, and 6-mo follow-up using the Evaluation Tool of Children's Handwriting-Manuscript (ETCH-M) and the Woodcock-Johnson Writing Fluency and Writing Samples tests. Students made large gains in ETCH-M legibility (η² = .74), speed (η²s = .52-.65), Writing Fluency (η² = .58), and Writing Samples (η² = .59). Students with initially low legibility improved most in legibility; progress on the other tests was similar across low-, average-, and high-performing groups. This program appeared to benefit first-grade students with diverse learning needs and to increase handwriting legibility and speed and writing fluency. Copyright © 2012 by the American Occupational Therapy Association, Inc.

  6. High speed research system study. Advanced flight deck configuration effects

    NASA Technical Reports Server (NTRS)

    Swink, Jay R.; Goins, Richard T.

    1992-01-01

    In mid-1991 NASA contracted with industry to study the high-speed civil transport (HSCT) flight deck challenges and assess the benefits, prior to initiating their High Speed Research Program (HSRP) Phase 2 efforts, then scheduled for FY-93. The results of this nine-month effort are presented, and a number of the most significant findings for the specified advanced concepts are highlighted: (1) a no nose-droop configuration; (2) a far forward cockpit location; and (3) advanced crew monitoring and control of complex systems. The results indicate that the no nose-droop configuration is critically dependent upon the design and development of a safe, reliable, and certifiable Synthetic Vision System (SVS). The droop-nose configuration would cause significant weight, performance, and cost penalties. The far forward cockpit location, with the conventional side-by-side seating provides little economic advantage; however, a configuration with a tandem seating arrangement provides a substantial increase in either additional payload (i.e., passengers) or potential downsizing of the vehicle with resulting increases in performance efficiencies and associated reductions in emissions. Without a droop nose, forward external visibility is negated and takeoff/landing guidance and control must rely on the use of the SVS. The technologies enabling such capabilities, which de facto provides for Category 3 all-weather operations on every flight independent of weather, represent a dramatic benefits multiplier in a 2005 global ATM network: both in terms of enhanced economic viability and environmental acceptability.

  7. Hera - The HEASARC's New Data Analysis Service

    NASA Technical Reports Server (NTRS)

    Pence, William

    2006-01-01

    Hera is the new computer service provided by the HEASARC at the NASA Goddard Space Flight Center that enables qualified student and professional astronomical researchers to immediately begin analyzing scientific data from high-energy astrophysics missions. All the necessary resources needed to do the data analysis are freely provided by Hera, including: * the latest version of the hundreds of scientific analysis programs in the HEASARC's HEASOFT package, as well as most of the programs in the Chandra CIAO package and the XMM-Newton SAS package. * high speed access to the terabytes of data in the HEASARC's high energy astrophysics Browse data archive. * a cluster of fast Linw workstations to run the software * ample local disk space to temporarily store the data and results. Some of the many features and different modes of using Hera are illustrated in this poster presentation.

  8. Field Test Data for Detecting Vibrations of a Building Using High-Speed Video Cameras

    DTIC Science & Technology

    2017-10-01

    ARL-TR-8185 ● OCT 2017 US Army Research Laboratory Field Test Data for Detecting Vibrations of a Building Using High -Speed Video...Field Test Data for Detecting Vibrations of a Building Using High -Speed Video Cameras by Caitlin P Conn and Geoffrey H Goldman Sensors and...June 2016 – October 2017 4. TITLE AND SUBTITLE Field Test Data for Detecting Vibrations of a Building Using High -Speed Video Cameras 5a. CONTRACT

  9. Big Data over a 100G network at Fermilab

    DOE PAGES

    Garzoglio, Gabriele; Mhashilkar, Parag; Kim, Hyunwoo; ...

    2014-06-11

    As the need for Big Data in science becomes ever more relevant, networks around the world are upgrading their infrastructure to support high-speed interconnections. To support its mission, the high-energy physics community as a pioneer in Big Data has always been relying on the Fermi National Accelerator Laboratory to be at the forefront of storage and data movement. This need was reiterated in recent years with the data-taking rate of the major LHC experiments reaching tens of petabytes per year. At Fermilab, this resulted regularly in peaks of data movement on the Wide area network (WAN) in and out ofmore » the laboratory of about 30 Gbit/s and on the Local are network (LAN) between storage and computational farms of 160 Gbit/s. To address these ever increasing needs, as of this year Fermilab is connected to the Energy Sciences Network (ESnet) through a 100 Gb/s link. To understand the optimal system-and application-level configuration to interface computational systems with the new highspeed interconnect, Fermilab has deployed a Network Research & Development facility connected to the ESnet 100G Testbed. For the past two years, the High Throughput Data Program (HTDP) has been using the Testbed to identify gaps in data movement middleware [5] when transferring data at these high-speeds. The program has published evaluations of technologies typically used in High Energy Physics, such as GridFTP [4], XrootD [9], and Squid [8]. Furthermore, this work presents the new R&D facility and the continuation of the evaluation program.« less

  10. Big Data over a 100G network at Fermilab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garzoglio, Gabriele; Mhashilkar, Parag; Kim, Hyunwoo

    As the need for Big Data in science becomes ever more relevant, networks around the world are upgrading their infrastructure to support high-speed interconnections. To support its mission, the high-energy physics community as a pioneer in Big Data has always been relying on the Fermi National Accelerator Laboratory to be at the forefront of storage and data movement. This need was reiterated in recent years with the data-taking rate of the major LHC experiments reaching tens of petabytes per year. At Fermilab, this resulted regularly in peaks of data movement on the Wide area network (WAN) in and out ofmore » the laboratory of about 30 Gbit/s and on the Local are network (LAN) between storage and computational farms of 160 Gbit/s. To address these ever increasing needs, as of this year Fermilab is connected to the Energy Sciences Network (ESnet) through a 100 Gb/s link. To understand the optimal system-and application-level configuration to interface computational systems with the new highspeed interconnect, Fermilab has deployed a Network Research & Development facility connected to the ESnet 100G Testbed. For the past two years, the High Throughput Data Program (HTDP) has been using the Testbed to identify gaps in data movement middleware [5] when transferring data at these high-speeds. The program has published evaluations of technologies typically used in High Energy Physics, such as GridFTP [4], XrootD [9], and Squid [8]. Furthermore, this work presents the new R&D facility and the continuation of the evaluation program.« less

  11. Research on mechanical and sensoric set-up for high strain rate testing of high performance fibers

    NASA Astrophysics Data System (ADS)

    Unger, R.; Schegner, P.; Nocke, A.; Cherif, C.

    2017-10-01

    Within this research project, the tensile behavior of high performance fibers, such as carbon fibers, is investigated under high velocity loads. This contribution (paper) focuses on the clamp set-up of two testing machines. Based on a kinematic model, weight optimized clamps are designed and evaluated. By analyzing the complex dynamic behavior of conventional high velocity testing machines, it has been shown that the impact typically exhibits an elastic characteristic. This leads to barely predictable breaking speeds and will not work at higher speeds when acceleration force exceeds material specifications. Therefore, a plastic impact behavior has to be achieved, even at lower testing speeds. This type of impact behavior at lower speeds can be realized by means of some minor test set-up adaptions.

  12. A programmable computational image sensor for high-speed vision

    NASA Astrophysics Data System (ADS)

    Yang, Jie; Shi, Cong; Long, Xitian; Wu, Nanjian

    2013-08-01

    In this paper we present a programmable computational image sensor for high-speed vision. This computational image sensor contains four main blocks: an image pixel array, a massively parallel processing element (PE) array, a row processor (RP) array and a RISC core. The pixel-parallel PE is responsible for transferring, storing and processing image raw data in a SIMD fashion with its own programming language. The RPs are one dimensional array of simplified RISC cores, it can carry out complex arithmetic and logic operations. The PE array and RP array can finish great amount of computation with few instruction cycles and therefore satisfy the low- and middle-level high-speed image processing requirement. The RISC core controls the whole system operation and finishes some high-level image processing algorithms. We utilize a simplified AHB bus as the system bus to connect our major components. Programming language and corresponding tool chain for this computational image sensor are also developed.

  13. Clinical and Translational Science Awards: can they increase the efficiency and speed of clinical and translational research?

    PubMed

    Heller, Caren; de Melo-Martín, Inmaculada

    2009-04-01

    Most agree that the recent decades-long boom in biomedical research discoveries has not had a sufficient effect on the public's health. To overcome some of the barriers to speeding clinical and translational (C/T) research, the National Institutes of Health has established the Institutional Clinical and Translational Science Award (CTSA). To explore whether the CTSA proposal addresses major C/T barriers and whether funded institutions offer adequate solutions, the authors reviewed the obstacles to C/T research described in the literature and examined the completeness of the solutions offered by the 12 initial CTSA awardees. Through an analysis of the literature, the authors categorized C/T barriers into three categories (research workforce, research operations, and organizational silos). They then analyzed each CTSA proposal regarding the types of programs offered to address these barriers. They found that, in general, institutions developed detailed programs to address research workforce and research operations barriers but had limited to no solutions for organizational silos. The authors suggest that differences in how barriers are addressed are consistent with the degree of control that CTSA centers have over these obstacles and solutions. They argue that although CTSA centers might have an important role in successfully addressing some of the barriers to C/T research, CTSA centers might ultimately have difficulties achieving their purported goal of facilitating and increasing the efficiency and speed of C/T research because of a lack of control over solutions to some important obstacles facing such research.

  14. Software and hardware complex for research and management of the separation process

    NASA Astrophysics Data System (ADS)

    Borisov, A. P.

    2018-01-01

    The article is devoted to the development of a program for studying the operation of an asynchronous electric drive using vector-algorithmic switching of windings, as well as the development of a hardware-software complex for controlling parameters and controlling the speed of rotation of an asynchronous electric drive for investigating the operation of a cyclone. To study the operation of an asynchronous electric drive, a method was used in which the average value of flux linkage is found and a method for vector-algorithmic calculation of the power and electromagnetic moment of an asynchronous electric drive feeding from a single-phase network is developed, with vector-algorithmic commutation, and software for calculating parameters. The software part of the complex allows to regulate the speed of rotation of the motor by vector-algorithmic switching of transistors or, using pulse-width modulation (PWM), set any engine speed. Also sensors are connected to the hardware-software complex at the inlet and outlet of the cyclone. The developed cyclone with an inserted complex allows to receive high efficiency of product separation at various entrance speeds. At an inlet air speed of 18 m / s, the cyclone’s maximum efficiency is achieved. For this, it is necessary to provide the rotational speed of an asynchronous electric drive with a frequency of 45 Hz.

  15. CAM: A high-performance cellular-automaton machine

    NASA Astrophysics Data System (ADS)

    Toffoli, Tommaso

    1984-01-01

    CAM is a high-performance machine dedicated to the simulation of cellular automata and other distributed dynamical systems. Its speed is about one-thousand times greater than that of a general-purpose computer programmed to do the same task; in practical terms, this means that CAM can show the evolution of cellular automata on a color monitor with an update rate, dynamic range, and spatial resolution comparable to those of a Super-8 movie, thus permitting intensive interactive experimentation. Machines of this kind can open up novel fields of research, and in this context it is important that results be easy to obtain, reproduce, and transmit. For these reasons, in designing CAM it was important to achieve functional simplicity, high flexibility, and moderate production cost. We expect that many research groups will be able to own their own copy of the machine to do research with.

  16. Design and Operating Characteristics of High-Speed, Small-Bore Cylindrical-Roller Bearings

    NASA Technical Reports Server (NTRS)

    Pinel, Stanley, I.; Signer, Hans R.; Zaretsky, Erwin V.

    2000-01-01

    The computer program SHABERTH was used to analyze 35-mm-bore cylindrical roller bearings designed and manufactured for high-speed turbomachinery applications. Parametric tests of the bearings were conducted on a high-speed, high-temperature bearing tester and the results were compared with the computer predictions. Bearings with a channeled inner ring were lubricated through the inner ring, while bearings with a channeled outer ring were lubricated with oil jets. Tests were run with and without outer-ring cooling. The predicted bearing life decreased with increasing speed because of increased contact stresses caused by centrifugal load. Lower temperatures, less roller skidding, and lower power losses were obtained with channeled inner rings. Power losses calculated by the SHABERTH computer program correlated reasonably well with the test results. The Parker formula for XCAV (used in SHABERTH as a measure of oil volume in the bearing cavity) needed to be adjusted to reflect the prevailing operating conditions. The XCAV formula will need to be further refined to reflect roller bearing lubrication, ring design, cage design, and location of the cage-controlling land.

  17. Computational Fluid Dynamics (CFD) Image of Hyper-X Research Vehicle at Mach 7 with Engine Operating

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This computational fluid dynamics (CFD) image shows the Hyper-X vehicle at a Mach 7 test condition with the engine operating. The solution includes both internal (scramjet engine) and external flow fields, including the interaction between the engine exhaust and vehicle aerodynamics. The image illustrates surface heat transfer on the vehicle surface (red is highest heating) and flowfield contours at local Mach number. The last contour illustrates the engine exhaust plume shape. This solution approach is one method of predicting the vehicle performance, and the best method for determination of vehicle structural, pressure and thermal design loads. The Hyper-X program is an ambitious series of experimental flights to expand the boundaries of high-speed aeronautics and develop new technologies for space access. When the first of three aircraft flies, it will be the first time a non-rocket engine has powered a vehicle in flight at hypersonic speeds--speeds above Mach 5, equivalent to about one mile per second or approximately 3,600 miles per hour at sea level. Hyper-X, the flight vehicle for which is designated as X-43A, is an experimental flight-research program seeking to demonstrate airframe-integrated, 'air-breathing' engine technologies that promise to increase payload capacity for future vehicles, including hypersonic aircraft (faster than Mach 5) and reusable space launchers. This multiyear program is currently underway at NASA Dryden Flight Research Center, Edwards, California. The Hyper-X schedule calls for its first flight later this year (2000). Hyper-X is a joint program, with Dryden sharing responsibility with NASA's Langley Research Center, Hampton, Virginia. Dryden's primary role is to fly three unpiloted X-43A research vehicles to validate engine technologies and hypersonic design tools as well as the hypersonic test facility at Langley. Langley manages the program and leads the technology development effort. The Hyper-X Program seeks to significantly expand the speed boundaries of air-breathing propulsion by being the first aircraft to demonstrate an airframe-integrated, scramjet-powered free flight. Scramjets (supersonic-combustion ramjets) are ramjet engines in which the airflow through the whole engine remains supersonic. Scramjet technology is challenging because only limited testing can be performed in ground facilities. Long duration, full-scale testing requires flight research. Scramjet engines are air-breathing, capturing their oxygen from the atmosphere. Current spacecraft, such as the Space Shuttle, are rocket powered, so they must carry both fuel and oxygen for propulsion. Scramjet technology-based vehicles need to carry only fuel. By eliminating the need to carry oxygen, future hypersonic vehicles will be able to carry heavier payloads. Another unique aspect of the X-43A vehicle is the airframe integration. The body of the vehicle itself forms critical elements of the engine. The forebody acts as part of the intake for airflow and the aft section serves as the nozzle. The X-43A vehicles were manufactured by Micro Craft, Inc., Tullahoma, Tennessee. Orbital Sciences Corporation, Chandler, Arizona, built the Pegasus rocket booster used to launch the X-43 vehicles. For the Dryden research flights, the Pegasus rocket booster and attached X-43 will be air launched by Dryden's B-52 'Mothership.' After release from the B-52, the booster will accelerate the X-43A vehicle to the established test conditions (Mach 7 to 10) at an altitude of approximately 100,000 feet where the X-43 will separate from the booster and fly under its own power and preprogrammed control.

  18. 22. Photocopy of photograph (original in the Langley Research Center ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) (L64110) DIVING SUIT REQUIRED FOR WORKING IN 8- FOOT HIGH SPEED WIND TUNNEL; ROY H. WRIGHT, DESIGNER OF THE INNOVATIVE SLOTTED SECTION OF TUNNEL IS IN THE SUIT. - NASA Langley Research Center, 8-Foot High Speed Wind Tunnel, 641 Thornell Avenue, Hampton, Hampton, VA

  19. Pilot Comments for High Speed Research Cycle 3 Simulations Study (LaRC.1)

    NASA Technical Reports Server (NTRS)

    Bailey, Melvin L. (Editor); Jackson, E. Bruce (Technical Monitor)

    2000-01-01

    This is a compilation of pilot comments from the Boeing High Speed Research Aircraft, Cycle 3 Simulation Study (LaRC.1) conducted from January to March 1997 at NASA Langley Research Center. This simulation study was conducted using the Visual Motion Simulator. The comments are direct tape transcriptions and have been edited for spelling only.

  20. The numerical simulation of a high-speed axial flow compressor

    NASA Technical Reports Server (NTRS)

    Mulac, Richard A.; Adamczyk, John J.

    1991-01-01

    The advancement of high-speed axial-flow multistage compressors is impeded by a lack of detailed flow-field information. Recent development in compressor flow modeling and numerical simulation have the potential to provide needed information in a timely manner. The development of a computer program is described to solve the viscous form of the average-passage equation system for multistage turbomachinery. Programming issues such as in-core versus out-of-core data storage and CPU utilization (parallelization, vectorization, and chaining) are addressed. Code performance is evaluated through the simulation of the first four stages of a five-stage, high-speed, axial-flow compressor. The second part addresses the flow physics which can be obtained from the numerical simulation. In particular, an examination of the endwall flow structure is made, and its impact on blockage distribution assessed.

  1. Lessons learned from LNG safety research.

    PubMed

    Koopman, Ronald P; Ermak, Donald L

    2007-02-20

    During the period from 1977 to 1989, the Lawrence Livermore National Laboratory (LLNL) conducted a liquefied gaseous fuels spill effects program under the sponsorship of the US Department of Energy, Department of Transportation, Gas Research Institute and others. The goal of this program was to develop and validate tools that could be used to predict the effects of a large liquefied gas spill through the execution of large scale field experiments and the development of computer models to make predictions for conditions under which tests could not be performed. Over the course of the program, three series of LNG spill experiments were performed to study cloud formation, dispersion, combustion and rapid phase transition (RPT) explosions. The purpose of this paper is to provide an overview of this program, the lessons learned from 12 years of research as well as some recommendations for the future. The general conclusion from this program is that cold, dense gas related phenomena can dominate the dispersion of a large volume, high release rate spill of LNG especially under low ambient wind speed and stable atmospheric conditions, and therefore, it is necessary to include a detailed and validated description of these phenomena in computer models to adequately predict the consequences of a release. Specific conclusions include: * LNG vapor clouds are lower and wider than trace gas clouds and tend to follow the downhill slope of terrain due to dampened vertical turbulence and gravity flow within the cloud. Under low wind speed, stable atmospheric conditions, a bifurcated, two lobed structure develops. * Navier-Stokes models provide the most complete description of LNG dispersion, while more highly parameterized Lagrangian models were found to be well suited to emergency response applications. * The measured heat flux from LNG vapor cloud burns exceeded levels necessary for third degree burns and were large enough to ignite most flammable materials. * RPTs are of two types, source generated and enrichment generated, and were observed to increase the burn area by a factor of two and to extend the downwind burn distance by 65%. Additional large scale experiments and model development are recommended.

  2. Applications of High-speed motion analysis system on Solid Rocket Motor (SRM)

    NASA Astrophysics Data System (ADS)

    Liu, Yang; He, Guo-qiang; Li, Jiang; Liu, Pei-jin; Chen, Jian

    2007-01-01

    High-speed motion analysis system could record images up to 12,000fps and analyzed with the image processing system. The system stored data and images directly in electronic memory convenient for managing and analyzing. The high-speed motion analysis system and the X-ray radiography system were established the high-speed real-time X-ray radiography system, which could diagnose and measure the dynamic and high-speed process in opaque. The image processing software was developed for improve quality of the original image for acquiring more precise information. The typical applications of high-speed motion analysis system on solid rocket motor (SRM) were introduced in the paper. The research of anomalous combustion of solid propellant grain with defects, real-time measurement experiment of insulator eroding, explosion incision process of motor, structure and wave character of plume during the process of ignition and flameout, measurement of end burning of solid propellant, measurement of flame front and compatibility between airplane and missile during the missile launching were carried out using high-speed motion analysis system. The significative results were achieved through the research. Aim at application of high-speed motion analysis system on solid rocket motor, the key problem, such as motor vibrancy, electrical source instability, geometry aberrance, and yawp disturbance, which damaged the image quality, was solved. The image processing software was developed which improved the capability of measuring the characteristic of image. The experimental results showed that the system was a powerful facility to study instantaneous and high-speed process in solid rocket motor. With the development of the image processing technique, the capability of high-speed motion analysis system was enhanced.

  3. F-16XL-2 Supersonic Laminar Flow Control Flight Test Experiment

    NASA Technical Reports Server (NTRS)

    Anders, Scott G.; Fischer, Michael C.

    1999-01-01

    The F-16XL-2 Supersonic Laminar Flow Control Flight Test Experiment was part of the NASA High-Speed Research Program. The goal of the experiment was to demonstrate extensive laminar flow, to validate computational fluid dynamics (CFD) codes and design methodology, and to establish laminar flow control design criteria. Topics include the flight test hardware and design, airplane modification, the pressure and suction distributions achieved, the laminar flow achieved, and the data analysis and code correlation.

  4. Highly-reliable fly-by-light/power-by-wire technology

    NASA Technical Reports Server (NTRS)

    Pitts, Felix L.

    1993-01-01

    This paper presents in viewgraph format an overview of the program at NASA Langley Research Center to develop fly-by-light/power-by-wire (FBL/PBW) technology. Benefits of FBL/PBW include intrinsic electromagnetic interference (EMI) immunity and lifetime immunity to signal EMI of optics; simplified certification; the elimination of hydraulics, engine bleed air, and variable speed, constant frequency drive; and weight and volume reduction. The paper summarizes a study on the electromagnetic environmental effects on FBL/PBW systems. The paper concludes with FY 1993 plans.

  5. Gait Speed among Older Participants Enrolled in an Evidence-Based Fall Risk Reduction Program: A Subgroup Analysis.

    PubMed

    Cho, Jinmyoung; Smith, Matthew Lee; Shubert, Tiffany E; Jiang, Luohua; Ahn, SangNam; Ory, Marcia G

    2015-01-01

    Functional decline is a primary risk factor for institutionalization and mortality among older adults. Although community-based fall risk reduction programs have been widely disseminated, little is known about their impact on gait speed, a key indicator of functional performance. Changes in functional performance between baseline and post-intervention were examined by means of timed up and go (TUG), a standardized functional assessment test administered to participants enrolled in A Matter of Balance/Volunteer Lay Leader (AMOB/VLL) model, an evidence-based fall risk reduction program. This study included 71 participants enrolled in an AMOB/VLL program in the Brazos Valley and South Plain regions of Texas. Paired t-tests were employed to assess program effects on gait speed at baseline and post-intervention for all participants and by subgroups of age, sex, living status, delivery sites, and self-rated health. The Bonferroni correction was applied to adjust inflated Type I error rate associated with performing multiple t-tests, for which p-values <0.0042 (i.e., 0.5/12 comparisons) were deemed statistically significant. Overall, gait speed of enrolled participants improved from baseline to post-intervention (t = 3.22, p = 0.002). Significant changes in TUG scores were observed among participants who lived with others (t = 4.45, p < 0.001), rated their health as excellent, very good, or good (t = 3.05, p = 0.003), and attended program workshops at senior centers (t = 3.52, p = 0.003). Findings suggest community-based fall risk reduction programs can improve gait speed for older adults. More translational research is needed to understand factors related to the effectiveness of fall risk reduction programs in various populations and settings.

  6. D-558-2 being mounted to P2B-1S launch aircraft

    NASA Technical Reports Server (NTRS)

    1953-01-01

    This 1953 NACA High-Speed Flight Research Station photograph shows the Douglas D-558-2 #2 Skyrocket (NACA 144), prior to flight, being towed under the P2B-1S (Navy designation for the Air Force B-29) launch vehicle (NACA 137) for attachment. In this view the tail of the Skyrocket is almost aligned with the opening cut to fit in the bottom of the P2B-1S. The photograph also shows the large hydraulic jacks used to elevate the P2B-1S launch vehicle. The Douglas D-558-2 'Skyrockets' were among the early transonic research airplanes like the X-1, X-4, X-5, and X-92A. Three of the single-seat, swept-wing aircraft flew from 1948 to 1956 in a joint program involving the National Advisory Committee for Aeronautics (NACA), with its flight research done at the NACA's Muroc Flight Test Unit in Calif., redesignated in 1949 the High-Speed Flight Research Station (HSFRS). Also partners in the flight research were the Navy-Marine Corps and the Douglas Aircraft Co. The HSFRS became the High-Speed Flight Station in 1954 and is now known as the NASA Dryden Flight Research Center. The Skyrocket made aviation history when it became the first airplane to fly twice the speed of sound. The 2 in the aircraft's designation referred to the fact that the Skyrocket was the phase-two version of what had originally been conceived as a three-phase program, with the phase-one aircraft having straight wings. The third phase, which never came to fruition, would have involved constructing a mock-up of a combat-type aircraft embodying the results from the testing of the phase one and two aircraft. Douglas pilot John F. Martin made the first flight at Muroc Army Airfield (later renamed Edwards Air Force Base) in Calif. on February 4, 1948. The goals of the program were to investigate the characteristics of swept-wing aircraft at transonic and supersonic speeds with particular attention to pitch-up (uncommanded rotation of the nose of the airplane upwards)--a problem prevalent in high-speed service aircraft of that era, particularly at low speeds during take-off and landing and in tight turns. The three aircraft gathered a great deal of data about pitch-up and the coupling of lateral (yaw) and longitudinal (pitch) motions; wing and tail loads, lift, drag, and buffeting characteristics of swept-wing aircraft at transonic and supersonic speeds; and the effects of the rocket exhaust plume on lateral dynamic stability throughout the speed range. (Plume effects were a new experience for aircraft.) The number three aircraft also gathered information about the effects of external stores (bomb shapes, drop tanks) upon the aircraft's behavior in the transonic region (roughly 0.7 to 1.3 times the speed of sound). In correlation with data from other early transonic research aircraft such as the XF-92A, this information contributed to solutions to the pitch-up problem in swept-wing aircraft. The three airplanes flew a total of 313 times--123 by the number one aircraft (Bureau No. 37973--NACA 143), 103 by the second Skyrocket (Bureau No. 37974--NACA 144), and 87 by airplane number three (Bureau No. 37975--NACA 145). Skyrocket 143 flew all but one of its missions as part of the Douglas contractor program to test the airplane's performance. NACA aircraft 143 was initially powered by a Westinghouse J-34-40 turbojet engine configured only for ground take-offs, but in 1954-55 the contractor modified it to an all-rocket air-launch capability featuring an LR8-RM-6, 4-chamber Reaction Motors engine rated at 6,000 pounds of thrust at sea level (the Navy designation for the Air Force's LR-11 used in the X-1). In this configuration, NACA research pilot John McKay flew the airplane only once for familiarization on September 17, 1956. The 123 flights of NACA 143 served to validate wind-tunnel predictions of the airplane's performance, except for the fact that the airplane experienced less drag above Mach 0.85 than the wind tunnels had indicated. NACA 144 also began its flight program with a turbojet powerplant. NACA pilots Robert A. Champine and John H. Griffith flew 21 times in this configuration to test airspeed calibrations and to research longitudinal and lateral stability and control. In the process, during August of 1949 they encountered pitch-up problems, which NACA engineers recognized as serious because they could produce a limiting and dangerous restriction on flight performance. Hence, they determined to make a complete investigation of the problem. In 1950, Douglas replaced the turbojet with an LR-8 rocket engine, and its pilot, William B. Bridgeman, flew the aircraft seven times up to a speed of Mach 1.88 (1.88 times the speed of sound) and an altitude of 79,494 feet (the latter an unofficial world's altitude record at the time, achieved on August 15, 1951). In the rocket configuration, a Navy P2B (Navy version of the B-29) launched the airplane at approximately 30,000 feet after taking off from the ground with the Skyrocket attached beneath its bomb bay. During Bridgeman's supersonic flights, he encountered a violent rolling motion known as lateral instability that was less pronounced on the Mach 1.88 flight on August 7, 1951, than on a Mach 1.85 flight in June when he pushed over to a low angle of attack (angle of the fuselage or wing to the prevailing wind direction). The NACA engineers studied the behavior of the aircraft before beginning their own flight research in the airplane in September 1951. Over the next couple of years, NACA pilot A. Scott Crossfield flew the airplane 20 times to gather data on longitudinal and lateral stability and control, wing and tail loads, and lift, drag, and buffeting characteristics at speeds up to Mach 1.878. At that point, Marine Lt. Col. Marion Carl flew the airplane to a new (unofficial) altitude record of 83,235 feet on August 21, 1953, and to a maximum speed of Mach 1.728. Following Carl's completion of these flights for the Navy, NACA technicians at the High-Speed Flight Research Station (HSFRS) near Mojave, Calif., outfitted the LR-8 engine's cylinders with nozzle extensions to prevent the exhaust gas from affecting the rudders at supersonic speeds. This addition also increased the engine's thrust by 6.5 percent at Mach 1.7 and 70,000 feet. Even before Marion Carl had flown the Skyrocket, HSFRS Chief Walter C. Williams had petitioned NACA headquarters unsuccessfully to fly the aircraft to Mach 2 to garner the research data at that speed. Finally, after Crossfield had secured the agreement of the Navy's Bureau of Aeronautics, NACA director Hugh L. Dryden relaxed the organization's usual practice of leaving record setting to others and consented to attempting a flight to Mach 2. In addition to adding the nozzle extensions, the NACA flight team at the HSFRS chilled the fuel (alcohol) so more could be poured into the tank and waxed the fuselage to reduce drag. With these preparations and employing a flight plan devised by project engineer Herman O. Ankenbruck to fly to approximately 72,000 feet and push over into a slight dive, Crossfield made aviation history on November 20, 1953, when he flew to Mach 2.005 (1,291 miles per hour). He became the first pilot to reach Mach 2 in this, the only flight in which the Skyrocket flew that fast. Following this flight, Crossfield and NACA pilots Joseph A. Walker and John B. McKay flew the airplane for such purposes as to gather data on pressure distribution, structural loads, and structural heating, with the last flight in the program occurring on December 20, 1956, when McKay obtained dynamic stability data and sound-pressure levels at transonic speeds and above. Meanwhile, NACA 145 had completed 21 contractor flights by Douglas pilots Eugene F. May and Bill Bridgeman in November 1950. In this jet-and-rocket-propelled craft, Scott Crossfield and Walter Jones began the NACA's investigation of pitch-up lasting from September 1951 well into the summer of 1953. They flew the Skyrocket with a variety of wing-fence, wing-slat, and leading-edge chord extension configurations, performing various maneuvers as well as straight-and-level flying at transonic speeds. While fences significantly aided recovery from pitch-up conditions, leading edge chord extensions did not, disproving wind-tunnel tests to the contrary. Slats (long, narrow auxiliary airfoils) in the fully open position eliminated pitch-up except in the speed range around Mach 0.8 to 0.85. In June 1954, Crossfield began an investigation of the effects of external stores (bomb shapes and fuel tanks) upon the aircraft's transonic behavior. McKay and Stanley Butchart completed the NACA's investigation of this issue, with McKay flying the final mission on August 28, 1956. Besides setting several records, the Skyrocket pilots had gathered important data and understanding about what would and would not work to provide stable, controlled flight of a swept-wing aircraft in the transonic and supersonic flight regimes. The data they gathered also helped to enable a better correlation of wind-tunnel test results with actual flight values, enhancing the abilities of designers to produce more capable aircraft for the armed services, especially those with swept wings. Moreover, data on such matters as stability and control from this and other early research airplanes aided in the design of the century series of fighter airplanes, all of which featured the movable horizontal stabilizers first employed on the X-1 and D-558 series.

  7. Real-time data reduction capabilities at the Langley 7 by 10 foot high speed tunnel

    NASA Technical Reports Server (NTRS)

    Fox, C. H., Jr.

    1980-01-01

    The 7 by 10 foot high speed tunnel performs a wide range of tests employing a variety of model installation methods. To support the reduction of static data from this facility, a generalized wind tunnel data reduction program had been developed for use on the Langley central computer complex. The capabilities of a version of this generalized program adapted for real time use on a dedicated on-site computer are discussed. The input specifications, instructions for the console operator, and full descriptions of the algorithms are included.

  8. Effects of roadside memorials on traffic flow.

    PubMed

    Tay, Richard; Churchill, Anthony; de Barros, Alexandre G

    2011-01-01

    Despite their growing popularity in North America, little research has been conducted on understanding the effects of roadside memorials on drivers' behaviour. In this study, we examined the short-term effects of roadside memorials on traffic speed and headways on a high speed intercity freeway as well as its long-term effect on traffic speed on a high speed urban freeway. Our study found that the placement of roadside memorials did not have any significant effect on traffic speeds or headways, either in the short or long term. Therefore, concerns about the negative effects on driver behaviour were not supported by this research, at least with regards to speeding and following too closely. However, no positive effects on safety were found either. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Tribology in secondary wood machining

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ko, P.L.; Hawthorne, H.M.; Andiappan, J.

    Secondary wood manufacturing covers a wide range of products from furniture, cabinets, doors and windows, to musical instruments. Many of these are now mass produced in sophisticated, high speed numerical controlled machines. The performance and the reliability of the tools are key to an efficient and economical manufacturing process as well as to the quality of the finished products. A program concerned with three aspects of tribology of wood machining, namely, tool wear, tool-wood friction characteristics and wood surface quality characterization, was set up in the Integrated Manufacturing Technologies Institute (IMTI) of the National Research Council of Canada. The studiesmore » include friction and wear mechanism identification and modeling, wear performance of surface-engineered tool materials, friction-induced vibration and cutting efficiency, and the influence of wear and friction on finished products. This research program underlines the importance of tribology in secondary wood manufacturing and at the same time adds new challenges to tribology research since wood is a complex, heterogeneous, material and its behavior during machining is highly sensitive to the surrounding environments and to the moisture content in the work piece.« less

  10. Translating research into practice: speeding the adoption of innovative health care programs.

    PubMed

    Bradley, Elizabeth H; Webster, Tashonna R; Baker, Dorothy; Schlesinger, Mark; Inouye, Sharon K; Barth, Michael C; Lapane, Kate L; Lipson, Debra; Stone, Robyn; Koren, Mary Jane

    2004-07-01

    For this study, the authors conducted case studies of four varied clinical programs to learn key factors influencing the diffusion and adoption of evidence-based innovations in health care. They found that the success and speed of the adoption/diffusion process depend on: the roles of senior management and clinical leadership; the generation of credible supportive data; an infrastructure dedicated to translating the innovation from research into practice; the extent to which changes in organizational culture are required; and the amount of coordination needed across departments or disciplines. The translation process also depends on the characteristics and resources of the adopting organization, and on the degree to which people believe that the innovation responds to immediate and significant pressures in their environment.

  11. Performance and Durability Assessment of Two Emission Control Technologies Installed on a Legacy High-Speed Marine Diesel Engine

    DTIC Science & Technology

    2015-11-05

    program investigated cost- effective technologies to reduce emissions from legacy marine engines. High-speed, high-population engine models in both...respectively) were driven by health effects and environmental impacts. The U.S. Navy assessed its contribution to the domestic marine emission inventory...greatest potential. A laboratory developmental assessment was followed by a shipboard evaluation. Effective technology concepts applied to high

  12. High-Pressure Turbulent Flame Speeds and Chemical Kinetics of Syngas Blends with and without Impurities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petersen, Eric; Mathieu, Olivier; Morones, Anibal

    This Final Report documents the entire four years of the project, from October 1, 2013 through September 30, 2017. This project was concerned with the chemical kinetics of fuel blends with high-hydrogen content in the presence of impurities. Emphasis was also on the design and construction of a new, high-pressure turbulent flame speed facility and the use of ignition delay times and flame speeds to elucidate the diluent and impurity effects on the fuel chemistry at gas turbine engine conditions and to also validate the chemical kinetics models. The project was divided into five primary tasks: 1) Project Management andmore » Program Planning; 2) Turbulent Flame Speed Measurements at Atmospheric Pressure; 3) Experiments and Kinetics of Syngas Blends with Impurities; 4) Design and Construction of a High-Pressure Turbulent Flame Speed Facility; and 5) High-Pressure Turbulent Flame Speed Measurements. Details on the execution and results of each of these tasks are provided in the main report.« less

  13. DYNALIST II : A Computer Program for Stability and Dynamic Response Analysis of Rail Vehicle Systems : Volume 4. Revised User's Manual.

    DOT National Transportation Integrated Search

    1976-07-01

    The Federal Railroad Administration (FRA) is sponsoring research, development, and demonstration programs to provide improved safety, performance, speed, reliability, and maintainability of rail transportation systems at reduced life-cycle costs. A m...

  14. X-15A-2 with full-scale ablative coating (pink X-15) in Building 4821

    NASA Technical Reports Server (NTRS)

    1967-01-01

    In June 1967, the X-15A-2 rocket-powered research aircraft received a full-scale ablative coating to protect the craft from the high temperatures associated with hypersonic flight (above Mach 5). This pink eraser-like substance, applied to the X-15A-2 aircraft (56-6671), was then covered with a white sealant coat before flight. This coating would help the #2 aircraft reach the record speed of 4,520 mph (Mach 6.7). The basic X-15 was a rocket-powered aircraft 50 ft long with a wingspan of 22 ft. However, the X-15A-2 had been elongated to 52 ft 5 in. Like the other two X-15s, it was a missile-shaped vehicle with an unusual wedge-shaped vertical tail, thin stubby wings, and unique side fairings that extended along the side of the fuselage. The X-15 weighed about 14,000 lb empty and approximately 34,000 lb at launch. The XLR-99 rocket engine, manufactured by Thiokol Chemical Corp., was pilot controlled and was capable of developing 57,000 lb of thrust. North American Aviation built three X-15 aircraft for the program. The X-15 research aircraft was developed to provide in-flight information and data on aerodynamics, structures, flight controls, and the physiological aspects of high-speed, high-altitude flight. A follow-on program used the aircraft as a testbed to carry various scientific experiments beyond the Earth's atmosphere on a repeated basis. For flight in the dense air of the usable atmosphere, the X-15 used conventional aerodynamic controls such as rudder surfaces on the vertical stabilizers to control yaw and movable horizontal stabilizers to control pitch when moving in synchronization or roll when moved differentially. For flight in the thin air outside of the appreciable Earth's atmosphere, the X-15 used a reaction control system. Hydrogen peroxide thrust rockets located on the nose of the aircraft provided pitch and yaw control. Those on the wings provided roll control. Because of the large fuel consumption, the X-15 was air launched from a B-52 aircraft at 45,000 ft and a speed of about 500 mph. Depending on the mission, the rocket engine provided thrust for the first 80 to 120 sec of flight. The remainder of the normal 10 to 11 min. flight was powerless and ended with a 200-mph glide landing. Generally, one of two types of X-15 flight profiles was used; a high-altitude flight plan that called for the pilot to maintain a steep rate of climb, or a speed profile that called for the pilot to push over and maintain a level altitude. The X-15 was flown over a period of nearly 10 years -- June 1959 to Oct. 1968 -- and set the world's unofficial speed and altitude records of 4,520 mph (Mach 6.7) and 354,200 ft in a program to investigate all aspects of manned hypersonic flight. Information gained from the highly successful X-15 program contributed to the development of the Mercury, Gemini, and Apollo manned spaceflight programs, and also the Space Shuttle program. The X-15s made a total of 199 flights, and were manufactured by North American Aviation. X-15-1, serial number 56-6670, is now located at the National Air and Space Museum, Washington DC. North American X-15A-2, serial number 56-6671, is at the United States Air Force Museum, Wright-Patterson AFB, Ohio. X-15-3, serial number 56-6672, crashed on 15 November 1967, resulting in the death of Maj. Michael J. Adams.

  15. X-15A-2 with full scale ablative coating (pink X-15) on NASA ramp

    NASA Technical Reports Server (NTRS)

    1967-01-01

    In June 1967, the X-15A-2 rocket powered research aircraft received a full-scale ablative coating to protect the craft from the high temperatures associated with supersonic flight. This pink eraser-like substance, applied to the #2 aircraft (56-6671), was then covered with a white sealant coat before flight. This coating would help the #2 aircraft reach the record speed of 4,520 mph (Mach 6.7). The X-15 was a rocket-powered aircraft 50 ft long with a wingspan of 22 ft. However, the X-15A-2 had been elongated to 52 ft 5 in. Like the other two X-15s, it was a missile-shaped vehicle with an unusual wedge-shaped vertical tail, thin stubby wings, and unique side fairings that extended along the side of the fuselage. The X-15 weighed about14,000 lb empty and approximately 34,000 lb at launch. The XLR-99 rocket engine, manufactured by Thiokol Chemical Corp., was pilot controlled and was capable of developing 57,000 lb of thrust. North American Aviation built three X-15 aircraft for the program. The X-15 research aircraft was developed to provide in-flight information and data on aerodynamics, structures, flight controls, and the physiological aspects of high-speed, high-altitude flight. A follow on program used the aircraft as a testbed to carry various scientific experiments beyond the Earth's atmosphere on a repeated basis. For flight in the dense air of the usable atmosphere, the X-15 used conventional aerodynamic controls such as rudder surfaces on the vertical stabilizers to control yaw and movable horizontal stabilizers to control pitch when moving in synchronization or roll when moved differentially. For flight in the thin air outside of the appreciable Earth's atmosphere, the X-15 used a reaction control system. Hydrogen peroxide thrust rockets located on the nose of the aircraft provided pitch and yaw control. Those on the wings provided roll control. Because of the large fuel consumption, the X-15 was air launched from a B-52 aircraft at 45,000 ft and a speed of about 500 mph. Depending on the mission, the rocket engine provided thrust for the first 80 to 120 sec of flight. The remainder of the normal 10 to 11 min. flight was powerless and ended with a 200-mph glide landing. Generally, one of two types of X-15 flight profiles was used; a high-altitude flight plan that called for the pilot to maintain a steep rate of climb, or a speed profile that called for the pilot to push over and maintain a level altitude. The X-15 was flown over a period of nearly 10 years -- June 1959 to Oct. 1968 -- and set the world's unofficial speed and altitude records of 4,520 mph (Mach 6.7) and 354,200 ft in a program to investigate all aspects of piloted hypersonic flight. Information gained fromthe highly successful X-15 program contributed to the development of the Mercury, Gemini, and Apollo piloted spaceflight programs, and also the Space Shuttle program. The X-15s made a total of 199 flights, and were manufactured by North American Aviation. X-15-1, serial number 56-6670, is now located at the National Air and Space Museum, Washington DC. North American X-15A-2, serial number 56-6671, is at the United States Air Force Museum, Wright-Patterson AFB, Ohio. X-15-3, serial number 56-6672, crashed on 15 November 1967, resulting in the death of Maj. Michael J Adams.

  16. F-16XL Ship #2 during last flight viewed from tanker showing titanium laminar flow glove on left win

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Dryden research pilot Dana Purifoy drops NASA F-16XL #848 away from the tanker in the 44th flight in the Supersonic Laminar Flow Control program recently. The flight test portion of the program ended with the 45th and last data collection flight Nov. 26, 1996. The project demonstrated that laminar--or smooth--airflow could be achieved over a major portion of a wing at supersonic speeds by use of a suction system. The system drew turbulent boundary-layer air through millions of tiny laser-drilled holes in a titanium 'glove' fitted to the upper left wing. About 90 hours of flight time were logged by the unique aircraft during the 13-month flight research program, much of it at speeds of Mach 2. Data acquired during the program will be used to develop a design code calibration database which could assist designers in reducing aerodynamic drag of a proposed second-generation supersonic transport.

  17. D-558-2 in flight with F-86 chase

    NASA Technical Reports Server (NTRS)

    1950-01-01

    This 1950s photograph shows the Douglas D-558-2 and the North American F-86 Sabre chase aircraft in-flight. Both aircraft display early examples of sweptwing airfoils. The Douglas D-558-2 'Skyrockets' were among the early transonic research airplanes like the X-1, X-4, X-5, and X-92A. Three of the single-seat, swept-wing aircraft flew from 1948 to 1956 in a joint program involving the National Advisory Committee for Aeronautics (NACA), with its flight research done at the NACA's Muroc Flight Test Unit in Calif., redesignated in 1949 the High-Speed Flight Research Station (HSFRS); the Navy-Marine Corps; and the Douglas Aircraft Co. The HSFRS became the High-Speed Flight Station in 1954 and is now known as the NASA Dryden Flight Research Center. The Skyrocket made aviation history when it became the first airplane to fly twice the speed of sound. The 2 in the aircraft's designation referred to the fact that the Skyrocket was the phase-two version of what had originally been conceived as a three-phase program, with the phase-one aircraft having straight wings. The third phase, which never came to fruition, would have involved constructing a mock-up of a combat-type aircraft embodying the results from the testing of the phase one and two aircraft. Douglas pilot John F. Martin made the first flight at Muroc Army Airfield (later renamed Edwards Air Force Base) in Calif. on February 4, 1948. The goals of the program were to investigate the characteristics of swept-wing aircraft at transonic and supersonic speeds with particular attention to pitch-up (uncommanded rotation of the nose of the airplane upwards)--a problem prevalent in high-speed service aircraft of that era, particularly at low speeds during take-off and landing and in tight turns. The three aircraft gathered a great deal of data about pitch-up and the coupling of lateral (yaw) and longitudinal (pitch) motions; wing and tail loads, lift, drag, and buffeting characteristics of swept-wing aircraft at transonic and supersonic speeds; and the effects of the rocket exhaust plume on lateral dynamic stability throughout the speed range. (Plume effects were a new experience for aircraft.) The number three aircraft also gathered information about the effects of external stores (bomb shapes, drop tanks) upon the aircraft's behavior in the transonic region (roughly 0.7 to 1.3 times the speed of sound). In correlation with data from other early transonic research aircraft such as the XF-92A, this information contributed to solutions to the pitch-up problem in swept-wing aircraft. The three airplanes flew a total of 313 times--123 by the number one aircraft (Bureau No. 37973--NACA 143), 103 by the second Skyrocket (Bureau No. 37974--NACA 144), and 87 by airplane number three (Bureau No. 37975--NACA 145). Skyrocket 143 flew all but one of its missions as part of the Douglas contractor program to test the airplane's performance. NACA aircraft 143 was initially powered by a Westinghouse J-34-40 turbojet engine configured only for ground take-offs, but in 1954-55 the contractor modified it to an all-rocket air-launch capability featuring an LR8-RM-6, 4-chamber Reaction Motors engine rated at 6,000 pounds of thrust at sea level (the Navy designation for the Air Force's LR-11 used in the X-1). In this configuration, NACA research pilot John McKay flew the airplane only once for familiarization on September 17, 1956. The 123 flights of NACA 143 served to validate wind-tunnel predictions of the airplane's performance, except for the fact that the airplane experienced less drag above Mach 0.85 than the wind tunnels had indicated. NACA 144 also began its flight program with a turbojet powerplant. NACA pilots Robert A. Champine and John H. Griffith flew 21 times in this configuration to test airspeed calibrations and to research longitudinal and lateral stability and control. In the process, during August of 1949 they encountered pitch-up problems, which NACA engineers recognized as serious because they could produce a limiting and dangerous restriction on flight performance. Hence, they determined to make a complete investigation of the problem. In 1950, Douglas replaced the turbojet with an LR-8 rocket engine, and its pilot, William B. Bridgeman, flew the aircraft seven times up to a speed of Mach 1.88 (1.88 times the speed of sound) and an altitude of 79,494 feet (the latter an unofficial world's altitude record at the time, achieved on August 15, 1951). In the rocket configuration, a Navy P2B (Navy version of the B-29) launched the airplane at approximately 30,000 feet after taking off from the ground with the Skyrocket attached beneath its bomb bay. During Bridgeman's supersonic flights, he encountered a violent rolling motion known as lateral instability that was less pronounced on the Mach 1.88 flight on August 7, 1951, than on a Mach 1.85 flight in June when he pushed over to a low angle of attack (angle of the fuselage or wing to the prevailing wind direction). The NACA engineers studied the behavior of the aircraft before beginning their own flight research in the airplane in September 1951. Over the next couple of years, NACA pilot A. Scott Crossfield flew the airplane 20 times to gather data on longitudinal and lateral stability and control, wing and tail loads, and lift, drag, and buffeting characteristics at speeds up to Mach 1.878. At that point, Marine Lt. Col. Marion Carl flew the airplane to a new (unofficial) altitude record of 83,235 feet on August 21, 1953, and to a maximum speed of Mach 1.728. Following Carl's completion of these flights for the Navy, NACA technicians at the High-Speed Flight Research Station (HSFRS) near Mojave, Calif., outfitted the LR-8 engine's cylinders with nozzle extensions to prevent the exhaust gas from affecting the rudders at supersonic speeds. This addition also increased the engine's thrust by 6.5 percent at Mach 1.7 and 70,000 feet. Even before Marion Carl had flown the Skyrocket, HSFRS Chief Walter C. Williams had petitioned NACA headquarters unsuccessfully to fly the aircraft to Mach 2 to garner the research data at that speed. Finally, after Crossfield had secured the agreement of the Navy's Bureau of Aeronautics, NACA director Hugh L. Dryden relaxed the organization's usual practice of leaving record setting to others and consented to attempting a flight to Mach 2. In addition to adding the nozzle extensions, the NACA flight team at the HSFRS chilled the fuel (alcohol) so more could be poured into the tank and waxed the fuselage to reduce drag. With these preparations and employing a flight plan devised by project engineer Herman O. Ankenbruck to fly to approximately 72,000 feet and push over into a slight dive, Crossfield made aviation history on November 20, 1953, when he flew to Mach 2.005 (1,291 miles per hour). He became the first pilot to reach Mach 2 in this, the only flight in which the Skyrocket flew that fast. Following this flight, Crossfield and NACA pilots Joseph A. Walker and John B. McKay flew the airplane for such purposes as to gather data on pressure distribution, structural loads, and structural heating, with the last flight in the program occurring on December 20, 1956, when McKay obtained dynamic stability data and sound-pressure levels at transonic speeds and above. Meanwhile, NACA 145 had completed 21 contractor flights by Douglas pilots Eugene F. May and Bill Bridgeman in November 1950. In this jet-and-rocket-propelled craft, Scott Crossfield and Walter Jones began the NACA's investigation of pitch-up lasting from September 1951 well into the summer of 1953. They flew the Skyrocket with a variety of wing-fence, wing-slat, and leading-edge chord extension configurations, performing various maneuvers as well as straight-and-level flying at transonic speeds. While fences significantly aided recovery from pitch-up conditions, leading edge chord extensions did not, disproving wind-tunnel tests to the contrary. Slats (long, narrow auxiliary airfoils) in the fully open position eliminated pitch-up except in the speed range around Mach 0.8 to 0.85. In June 1954, Crossfield began an investigation of the effects of external stores (bomb shapes and fuel tanks) upon the aircraft's transonic behavior. McKay and Stanley Butchart completed the NACA's investigation of this issue, with McKay flying the final mission on August 28, 1956. Besides setting several records, the Skyrocket pilots had gathered important data and understanding about what would and would not work to provide stable, controlled flight of a swept-wing aircraft in the transonic and supersonic flight regimes. The data they gathered also helped to enable a better correlation of wind-tunnel test results with actual flight values, enhancing the abilities of designers to produce more capable aircraft for the armed services, especially those with swept wings. Moreover, data on such matters as stability and control from this and other early research airplanes aided in the design of the century series of fighter airplanes, all of which featured the movable horizontal stabilizers first employed on the X-1 and D-558 series.

  18. E56-2607

    NASA Image and Video Library

    1956-10-08

    Famed astronaut Neil A. Armstrong, the first man to set foot on the moon during the historic Apollo 11 space mission in July 1969, served for seven years as a research pilot at the NACA-NASA High-Speed Flight Station, now the Dryden Flight Research Center, at Edwards, California, before he entered the space program. Armstrong joined the National Advisory Committee for Aeronautics (NACA) at the Lewis Flight Propulsion Laboratory (later NASA's Lewis Research Center, Cleveland, Ohio, and today the Glenn Research Center) in 1955. Later that year, he transferred to the High-Speed Flight Station at Edwards as an aeronautical research scientist and then as a pilot, a position he held until becoming an astronaut in 1962. He was one of nine NASA astronauts in the second class to be chosen. As a research pilot Armstrong served as project pilot on the F-100A and F-100C aircraft, F-101, and the F-104A. He also flew the X-1B, X-5, F-105, F-106, B-47, KC-135, and Paresev. He left Dryden with a total of over 2450 flying hours. He was a member of the USAF-NASA Dyna-Soar Pilot Consultant Group before the Dyna-Soar project was cancelled, and studied X-20 Dyna-Soar approaches and abort maneuvers through use of the F-102A and F5D jet aircraft. Armstrong was actively engaged in both piloting and engineering aspects of the X-15 program from its inception. He completed the first flight in the aircraft equipped with a new flow-direction sensor (ball nose) and the initial flight in an X-15 equipped with a self-adaptive flight control system. He worked closely with designers and engineers in development of the adaptive system, and made seven flights in the rocket plane from December 1960 until July 1962. During those fights he reached a peak altitude of 207,500 feet in the X-15-3, and a speed of 3,989 mph (Mach 5.74) in the X-15-1. Armstrong has a total of 8 days and 14 hours in space, including 2 hours and 48 minutes walking on the Moon. In March 1966 he was commander of the Gemini 8 or

  19. The X-43A hypersonic research aircraft and its modified Pegasus® booster rocket mounted to NASA's NB-52B carrier aircraft at the Dryden Flight Research Center, Edwards, California

    NASA Image and Video Library

    2001-03-13

    The first of three X-43A hypersonic research aircraft and its modified Pegasus® booster rocket recently underwent combined systems testing while mounted to NASA's NB-52B carrier aircraft at the Dryden Flight Research Center, Edwards, California. The combined systems test was one of the last major milestones in the Hyper-X research program before the first X-43A flight. One of the major goals of the Hyper-X program is flight validation of airframe-integrated, air-breathing propulsion system, which so far have only been tested in ground facilities, such as wind tunnels. The X-43A flights will be the first actual flight tests of an aircraft powered by a revolutionary supersonic-combustion ramjet ("scramjet") engine capable of operating at hypersonic speeds above Mach 5 (five times the speed of sound). The X-43A design uses the underbody of the aircraft to form critical elements of the engine. The forebody shape helps compress the intake airflow, while the aft section acts as a nozzle to direct thrust. The 12-foot, unpiloted research vehicle was developed and built by MicroCraft Inc., Tullahoma, Tenn., under NASA contract. The booster, built by Orbital Sciences Corp., Dulles, Va., will accelerate the X-43A after the X-43A/booster "stack" is air-launched from NASA's venerable NB-52 mothership. The X-43A will separate from the rocket at a predetermined altitude and speed and fly a pre-programmed trajectory, conducting aerodynamic and propulsion experiments until it descends into the Pacific Ocean. Three research flights are planned, two at Mach 7 and one at Mach 10.

  20. NACA Researcher Measures Ice on a Turbojet Engine Inlet

    NASA Image and Video Library

    1948-11-21

    The National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory conducted an extensive icing research program in the late 1940s that included studies in the Icing Research Tunnel and using specially modified aircraft. One facet of this program was the investigation of the effects of icing on turbojets. Although jet engines allowed aircraft to pass through inclement weather at high rates of speed, ice accumulation was still a concern. The NACA’s B-24M Liberator was initially reconfigured with a General Electric I-16 engine installed in the aircraft’s waist compartment with an air scoop and spray nozzles to produce the artificial icing conditions. The centrifugal engine appeared nearly impervious to the effects of icing. Axial-flow jet engines, however, were much more susceptible to icing damage. The inlet guide vanes were particularly vulnerable, but the cowling’s leading edge, the main bearing supports, and accessory housing could also ice up. If pieces of ice reached the engine’s internal components, the compressor blades could be damaged. To study this phenomenon, a Westinghouse 24C turbojet, seen in this photograph, was installed under the B-24M’s right wing. In January 1948 flight tests of the 24C in icing conditions began. Despite ice buildup into the second stage of the compressor, the engine was able to operate at takeoff speeds. Researchers found the ice on the inlet vanes resulted in half of the engine’s decreased performance.

Top