Science.gov

Sample records for high-speed traffic part

  1. High-speed digital fiber optic links for satellite traffic

    NASA Technical Reports Server (NTRS)

    Daryoush, A. S.; Ackerman, E.; Saedi, R.; Kunath, R. R.; Shalkhauser, K.

    1989-01-01

    Large aperture phased array antennas operating at millimeter wave frequencies are designed for space-based communications and imaging platforms. Array elements are comprised of active T/R modules which are linked to the central processing unit through high-speed fiber-optic networks. The system architecture satisfying system requirements at millimeter wave frequency is T/R level data mixing where data and frequency reference signals are distributed independently before mixing at the T/R modules. This paper demonstrates design procedures of a low loss high-speed fiber-optic link used for transmission of data signals over 600-900 MHz bandwidth inside satellite. The fiber-optic link is characterized for transmission of analog and digital data. A dynamic range of 79 dB/MHz was measured for analog data over the bandwidth. On the other hand, for bursted SMSK satellite traffic at 220 Mbps rates, BER of 2 x 10 to the -7th was measured for E(b)/N(o) of 14.3 dB.

  2. High-speed digital fiber optic links for satellite traffic

    NASA Technical Reports Server (NTRS)

    Daryoush, A. S.; Ackerman, E.; Saedi, R.; Kunath, R. R.; Shalkhauser, K.

    1989-01-01

    Large aperture phased array antennas operating at millimeter wave frequencies are designed for space-based communications and imaging platforms. Array elements are comprised of active T/R modules which are linked to the central processing unit through high-speed fiber-optic networks. The system architecture satisfying system requirements at millimeter wave frequency is T/R level data mixing where data and frequency reference signals are distributed independently before mixing at the T/R modules. This paper demonstrates design procedures of a low loss high-speed fiber-optic link used for transmission of data signals over 600-900 MHz bandwidth inside satellite. The fiber-optic link is characterized for transmission of analog and digital data. A dynamic range of 79 dB/MHz was measured for analog data over the bandwidth. On the other hand, for bursted SMSK satellite traffic at 220 Mbps rates, BER of 2 x 10 to the -7th was measured for E(b)/N(o) of 14.3 dB.

  3. High-speed digital fiber optic links for satellite traffic

    NASA Astrophysics Data System (ADS)

    Daryoush, A. S.; Ackerman, E.; Saedi, R.; Kunath, R. R.; Shalkhauser, K.

    1989-09-01

    Large aperture phased array antennas operating at millimeter wave frequencies are designed for space-based communications and imaging platforms. Array elements are comprised of active T/R modules which are linked to the central processing unit through high-speed fiber-optic networks. The system architecture satisfying system requirements at millimeter wave frequency is T/R level data mixing where data and frequency reference signals are distributed independently before mixing at the T/R modules. This paper demonstrates design procedures of a low loss high-speed fiber-optic link used for transmission of data signals over 600-900 MHz bandwidth inside satellite. The fiber-optic link is characterized for transmission of analog and digital data. A dynamic range of 79 dB/MHz was measured for analog data over the bandwidth. On the other hand, for bursted SMSK satellite traffic at 220 Mbps rates, BER of 2 x 10 to the -7th was measured for E(b)/N(o) of 14.3 dB.

  4. First Annual High-Speed Research Workshop, part 4

    NASA Technical Reports Server (NTRS)

    Whitehead, Allen H., Jr. (Compiler)

    1992-01-01

    Papers presented at the First Annual High Speed Research Workshop held in Williamsburg, Viginia, on May 14-16, 1991 are presented. This NASA-sponsored workshop provided a national forum for presenting and discussing important technology issues related to the definition of an economically viable and environmentally compatible High Speed Civil Transport. The sessions are developed around the technical components of NASA's Phase 1 High Speed Research Program which addresses the environmental issues of atmospheric emissions, community noise, and sonic boom. In particular, this part of the publication, Part 4, addresses high lift research and supersonic laminar flow control.

  5. High-speed and high-fidelity system and method for collecting network traffic

    DOEpatents

    Weigle, Eric H [Los Alamos, NM

    2010-08-24

    A system is provided for the high-speed and high-fidelity collection of network traffic. The system can collect traffic at gigabit-per-second (Gbps) speeds, scale to terabit-per-second (Tbps) speeds, and support additional functions such as real-time network intrusion detection. The present system uses a dedicated operating system for traffic collection to maximize efficiency, scalability, and performance. A scalable infrastructure and apparatus for the present system is provided by splitting the work performed on one host onto multiple hosts. The present system simultaneously addresses the issues of scalability, performance, cost, and adaptability with respect to network monitoring, collection, and other network tasks. In addition to high-speed and high-fidelity network collection, the present system provides a flexible infrastructure to perform virtually any function at high speeds such as real-time network intrusion detection and wide-area network emulation for research purposes.

  6. First Annual High-Speed Research Workshop, part 2

    NASA Technical Reports Server (NTRS)

    Whitehead, Allen H., Jr. (Compiler)

    1992-01-01

    This workshop provided a national forum for presenting and discussing important technology issues related to the definition of an economically viable and environmentally compatible High Speed Civil Transport. The workshop was organized into 13 sessions. This volume is part 2 of 4 and covers 4 of the 13 sessions: (1) source noise; (2) sonic boom (aerodynamic performance); (3) propulsion systems studies; and (4) emission reduction.

  7. First Annual High-Speed Research Workshop, part 3

    NASA Technical Reports Server (NTRS)

    Whitehead, Allen H., Jr. (Compiler)

    1992-01-01

    The First High-Speed Research (HSR) Workshop was hosted by NASA LaRC and was held 14-16 May 1991, in Williamsburg, Virginia. The purpose of the workshop was to provide a national forum for the government, industry, and university participants to present and discuss important technology issues related to the development of a commercially viable, environmentally compatible, U.S. High-Speed Civil Transport. The workshop sessions are organized around the major task elements in NASA's Phase 1 High-Speed Research Program which basically addresses the environmental issues of atmospheric emissions, community noise, and sonic boom.

  8. Study on node importance evaluation of the high-speed passenger traffic complex network based on the Structural Hole Theory

    NASA Astrophysics Data System (ADS)

    Zhang, Xu; Chen, Bingzhi

    2017-03-01

    Complex Network Theory can analyze the reliability of high-speed passenger traffic networks and also evaluate node importance. This paper conducts a systematic and in-depth research of importance of various nodes in the high-speed passenger traffic network so as to improve the high-speed passenger traffic network level. To study importance of network nodes can contribute to an in-depth understanding of the network structure. Therefore, the complex network is introduced and the node importance is evaluated. The characteristics of the complex network are briefly analyzed. In order to study the high-speed passenger traffic nodes, the network restraint coefficient, the network scale, the efficiency, the grade level, the partial clustering coefficient of degree and structural hole. Besides, the algorithm to calculate node importance is designed. Through analysis of the high-speed passenger network, the accuracy and practicability of the Complex Network Theory in evaluating node importance are pointed out. It is also proved that Complex Network Theory can help optimize high-speed passenger traffic networks and improve traffic efficiency.

  9. First Annual High-Speed Research Workshop, part 1

    NASA Technical Reports Server (NTRS)

    Whitehead, Allen H., Jr. (Compiler)

    1992-01-01

    The workshop was presented to provide a national forum for the government, industry, and university participants in the program to present and discuss important technology issues related to the development of a commercially viable, environmentally compatible U.S. High Speed Civil Transport. The workshop sessions were organized around the major task elements in NASA's Phase 1 High Speed Research Program which basically addressed the environmental issues of atmospheric emissions, community noise, and sonic boom. This volume is divided into three sessions entitled: Plenary Session (which gives overviews from NASA, Boeing, Douglas, GE, and Pratt & Whitney on the HSCT program); Airframe Systems Studies; and Atmospheric Effects.

  10. An Improved Discrete-Time Model for Heterogeneous High-Speed Train Traffic Flow

    NASA Astrophysics Data System (ADS)

    Xu, Yan; Jia, Bin; Li, Ming-Hua; Li, Xin-Gang

    2016-03-01

    This paper aims to present a simulation model for heterogeneous high-speed train traffic flow based on an improved discrete-time model (IDTM). In the proposed simulation model, four train control strategies, including departing strategy, traveling strategy, braking strategy, overtaking strategy, are well defined to optimize train movements. Based on the proposed simulation model, some characteristics of train traffic flow are investigated. Numerical results indicate that the departure time intervals, the station dwell time, the section length, and the ratio of fast trains have different influence on traffic capacity and train average velocity. The results can provide some theoretical support for the strategy making of railway departments. Supported by the National Basic Research Program of China under Grant No. 2012CB725400, the National Natural Science Foundation of China under Grant No. 71222101, the Research Foundation of State Key Laboratory of Rail Traffic Control and Safety under Grant No. RCS2014ZT16, and the Fundamental Research Funds for the Central Universities No. 2015YJS088, Beijing Jiaotong University

  11. Characterizing highly correlated video traffic in high-speed asynchronous transfer mode networks

    NASA Astrophysics Data System (ADS)

    Shroff, Ness; Schwartz, Mischa

    1996-04-01

    The enormous bandwidth potential of optical fiber has resulted in a worldwide effort to develop high-speed ATM networks, also called broadband integrated services digital networks (B-ISDN). Many of the applications that ATM networks will support will have a strong video component to them. Hence, it is important to understand the behavior of video traffic as it travels through these networks. To that end, we develop the generalized histogram model (GHM) to characterize 'highly correlated' traffic, such as motion JPEG or 'smoothed' MPEG traffic over ATM networks end-to- end. Using our GHM model we show how to determine the loss rate at any node in an ATM network. We find that, for highly correlated video sources, increasing the buffer size beyond a certain region called the 'cell region' only marginally decreases the probability of loss. This implies that large buffers cannot be used to control the loss for such sources. The analytical model provided in this paper can be used for admission control, and network dimensioning and design in ATM networks. We have validated our results using simulations of real traces of video sources.

  12. An Implementation of the SNR High Speed Network Communication Protocol (Receiver Part).

    DTIC Science & Technology

    1995-03-01

    This thesis work is to implement the receiver pan of the SNR high speed network transport protocol. The approach was to use the Systems of...the SCM specification itself. The result was a correctly functioning program which implemented the SNR protocol. The system was tested using different...part of the SNR high speed transport protocol; (2) testing and integration with the transmitter part of the SNR transport protocol on an FDDI data

  13. Inventory-transportation integrated optimization for maintenance spare parts of high-speed trains.

    PubMed

    Lin, Boliang; Wang, Jiaxi; Wang, Huasheng; Wang, Zhongkai; Li, Jian; Lin, Ruixi; Xiao, Jie; Wu, Jianping

    2017-01-01

    This paper presents a 0-1 programming model aimed at obtaining the optimal inventory policy and transportation mode for maintenance spare parts of high-speed trains. To obtain the model parameters for occasionally-replaced spare parts, a demand estimation method based on the maintenance strategies of China's high-speed railway system is proposed. In addition, we analyse the shortage time using PERT, and then calculate the unit time shortage cost from the viewpoint of train operation revenue. Finally, a real-world case study from Shanghai Depot is conducted to demonstrate our method. Computational results offer an effective and efficient decision support for inventory managers.

  14. Inventory-transportation integrated optimization for maintenance spare parts of high-speed trains

    PubMed Central

    Wang, Jiaxi; Wang, Huasheng; Wang, Zhongkai; Li, Jian; Lin, Ruixi; Xiao, Jie; Wu, Jianping

    2017-01-01

    This paper presents a 0–1 programming model aimed at obtaining the optimal inventory policy and transportation mode for maintenance spare parts of high-speed trains. To obtain the model parameters for occasionally-replaced spare parts, a demand estimation method based on the maintenance strategies of China’s high-speed railway system is proposed. In addition, we analyse the shortage time using PERT, and then calculate the unit time shortage cost from the viewpoint of train operation revenue. Finally, a real-world case study from Shanghai Depot is conducted to demonstrate our method. Computational results offer an effective and efficient decision support for inventory managers. PMID:28472097

  15. Assess the feasibility of the high-speed railway construction in China by measuring the traffic demand elastic

    NASA Astrophysics Data System (ADS)

    Yu, Nan; Cao, Yu

    2017-05-01

    The traffic demand elastic is proposed as a new indicator in this study to measure the feasibility of the high-speed railway construction in a more intuitive way. The Matrix Completion (MC) and Semi-Supervised Support Vector Machine (S3VM) are used to realize the measurement and prediction of this index on the basis of the satisfaction investigation on the 326 inter-city railways in china. It is demonstrated that instead of calculating the economic benefits brought by the construction of high-speed railway, this indicator can find the most urgent railways to be improved by directly evaluate the existing railway facilities from the perspective of transportation service improvement requirements.

  16. A New Apparatus for Measuring the Temperature at Machine Parts Rotating at High Speeds

    NASA Technical Reports Server (NTRS)

    Gnam, E.

    1945-01-01

    After a brief survey of the available methods for measuring the temperatures of machine parts at high speed, in particular turbine blades and rotors, an apparatus is described which is constructed on the principle of induction. Transmission of the measuring current by sliding contacts therefore is avoided. Up-to-date experiments show that it is possible to give the apparatus a high degree of sensitivity and accuracy. In comparison with sliding contact types, the present apparatus shows the important advantage that it operates for any length of time without wear, and that the contact difficulties, particularly occurring at high sliding speeds,are avoided.

  17. Metallographic problems of the production of parts from continuously cast high-speed steels

    NASA Astrophysics Data System (ADS)

    Supov, A. V.; Aleksandrova, N. M.; Paren'kov, S. A.; Kakabadze, R. V.; Pavlov, V. P.

    1998-09-01

    It has been assumed until recently that high-speed steels cannot be produced by the method of continuous casting. Numerous attempts to use this highly efficient technology for manufacturing such steels have failed because of breakage of the cast preforms. A solution was sought in improving the design of the continuous-casting machines (CCM), increasing the level of their automation, and using rational compositions of slag-forming mixtures (SFM). The idea was that a high-speed steel can be cast only in vertical CCM. The present work concerns regimes of secondary cooling under which the structures formed in high-speed steels provide a ductility sufficient for bending the continuously cast preform without failure. Steel R6M5 cast continuously in such a machine can easily be machined into hot-rolled preforms for sheets, wire, silver-steel rods, and other final products without a forging stage.

  18. Outsourcing a High Speed Internet Access Project: An Information Technology Class Case Study in Three Parts

    ERIC Educational Resources Information Center

    Platt, Richard G.; Carper, William B.; McCool, Michael

    2010-01-01

    In early 2004, the Hilton Hotels Corporation (HHC) required that all of its hotels (both owned and franchised) install high-speed Internet access (HSIA) in all of their rooms by June 2004. This case focuses on how one of its franchise properties located on the northern gulf coast of Florida (the Hilton Sandestin Beach Golf Resort &…

  19. Outsourcing a High Speed Internet Access Project: An Information Technology Class Case Study in Three Parts

    ERIC Educational Resources Information Center

    Platt, Richard G.; Carper, William B.; McCool, Michael

    2010-01-01

    In early 2004, the Hilton Hotels Corporation (HHC) required that all of its hotels (both owned and franchised) install high-speed Internet access (HSIA) in all of their rooms by June 2004. This case focuses on how one of its franchise properties located on the northern gulf coast of Florida (the Hilton Sandestin Beach Golf Resort &…

  20. Contributions to understanding the high speed machining effects on aeronautic part surface integrity

    NASA Astrophysics Data System (ADS)

    Jomaa, Walid

    To remain competitive, the aeronautic industry has increasing requirements for mechanical components and parts with high functional performance and longer in-service life. The improvement of the in-service life of components can be achieved by mastering and optimizing the surface integrity of the manufactured parts. Thus, the present study attempted to investigate, experimentally and theoretically, the tool/work material interactions on part surface integrity during the machining of aluminium alloys and hardened materials (low alloy steels) using orthogonal machining tests data. The studied materials are two aluminum alloys (6061-T6 and 7075-T651) and AISI 4340 steel. The AISI 4340 steel was machined after been induction heat treated to 58-60 HRC. These materials were selected in an attempt to provide a comprehensive study for the machining of metals with different behaviours (ductile and hard material). The proposed approach is built on three steps. First, we proposed a design of experiment (DOE) to analyse, experimentally, the chip formation and the resulting surface integrity during the high speed machining under dry condition. The orthogonal cutting mode, adopted in these experiments, allowed to explore, theoretically, the effects of technological (cutting speed and feed) and physical (cutting forces, temperature, shear angle, friction angle, and length Contact tool/chip) parameters on the chip formation mechanisms and the machined surface characteristics (residual stress, plastic deformation, phase transformation, etc.). The cutting conditions were chosen while maintaining a central composite design (CCD) with two factors (cutting speed and feed per revolution). For the aluminum 7075-T651, the results showed that the formation of BUE and the interaction between the tool edge and the iron-rich intermetallic particles are the main causes of the machined surface damage. The BUE formation increases with the cutting feed while the increase of the cutting speed

  1. First NASA/Industry High-Speed Research Configuration Aerodynamics Workshop. Part 1

    NASA Technical Reports Server (NTRS)

    Wood, Richard M. (Editor)

    1999-01-01

    This publication is a compilation of documents presented at the First NASA/Industry High Speed Research Configuration Aerodynamics Workshop held on February 27-29, 1996 at NASA Langley Research Center. The purpose of the workshop was to bring together the broad spectrum of aerodynamicists, engineers, and scientists working within the Configuration Aerodynamics element of the HSR Program to collectively evaluate the technology status and to define the needs within Computational Fluid Dynamics (CFD) Analysis Methodology, Aerodynamic Shape Design, Propulsion/Airframe Integration (PAI), Aerodynamic Performance, and Stability and Control (S&C) to support the development of an economically viable High Speed Civil Transport (HSCT) aircraft. To meet these objectives, papers were presented by representative from NASA Langley, Ames, and Lewis Research Centers; Boeing, McDonnell Douglas, Northrop-Grumman, Lockheed-Martin, Vigyan, Analytical Services, Dynacs, and RIACS.

  2. A Synchronization Algorithm and Implementation for High-Speed Block Codes Applications. Part 4

    NASA Technical Reports Server (NTRS)

    Lin, Shu; Zhang, Yu; Nakamura, Eric B.; Uehara, Gregory T.

    1998-01-01

    Block codes have trellis structures and decoders amenable to high speed CMOS VLSI implementation. For a given CMOS technology, these structures enable operating speeds higher than those achievable using convolutional codes for only modest reductions in coding gain. As a result, block codes have tremendous potential for satellite trunk and other future high-speed communication applications. This paper describes a new approach for implementation of the synchronization function for block codes. The approach utilizes the output of the Viterbi decoder and therefore employs the strength of the decoder. Its operation requires no knowledge of the signal-to-noise ratio of the received signal, has a simple implementation, adds no overhead to the transmitted data, and has been shown to be effective in simulation for received SNR greater than 2 dB.

  3. The development of the dental high-speed air turbine handpiece. Part 1.

    PubMed

    Dyson, J E; Darvell, B W

    1993-02-01

    The high-speed air turbine handpiece is currently used for most dental cutting procedures and has been in widespread use for more than thirty years. Although reports of its historical background have been previously published these have not dealt with all relevant developments and some inconsistencies exist. The history of the development of turbines and their application in dental cutting systems from the late 19th century to the present day is now reviewed. An historical account of the recognition of benefits that may accrue from rotary cutting at increased speeds is given and the various attempts that have been made to design equipment capable of high speeds are discussed. Consideration is given to the development of non-rotary cutting devices, as is the failure of these adequately to replace the air turbine handpiece for routine work. It is concluded that the air turbine handpiece will continue to hold a leading position in the field for some years to come but that future improvements would be facilitated by the development of an understanding of the theoretical aspects of its behaviour.

  4. Analysis of noise immunity at common circuits of the front end parts of high-speed transceivers

    NASA Astrophysics Data System (ADS)

    Kondratenko, S. V.

    2017-01-01

    Method of analyzing the impact of interference (noise) from power and ground circuits on the interface part of high-speed transceivers is presented. The method is based on the construction of special macro models of the studied devices with selected nodes of interest, analysis and calculation of the parameters of these macro models in the frequency domain. The comparison of different types of drivers as part of the transmitters it has been performed and the advantages of pseudo-LVDS drivers in terms of noise immunity has been shown, confirmed by calculations in the time domain.

  5. Pallet part and cant evaluation for grading and processing using high-speed ultrasound

    Treesearch

    M. Firoz Kabir; Philip A. Araman; Mark Schafer

    2003-01-01

    This paper presented the results of several years of testing the use of ultrasound to find structural defects in pallet parts and pallet cants used to produce pallet parts. To determine the magnitude of unsound defects, we inspected full length cants from seven saw mills from Virginia and West Virginia. Split, wane, shake, holes, decay, unsound knots, bark pocket, and...

  6. Volume-surface hardening of railroad transport parts by a high-speed water stream

    NASA Astrophysics Data System (ADS)

    Fedin, V. M.

    1996-09-01

    Large production volumes of rolling stock and track structure require the introduction of effective strengthening methods at a minimum expenditure. This stimulates a search for ways of increasing the service life of parts of railroad transport. Volume-surface hardening is an efficient method of thermal strengthening. The method consists in through or deep furnace or induction heating of parts before hardening and subsequent intense cooling. The hardenability of the steel used is consistent with the thickness of the strengthened layer, which creates a hardness gradient over the thickness of the parts, i.e., a high surface hardness and a ductile core. In turn, this creates a favorable distribution of internal stresses and provides a high cyclic endurance of the parts in operation. The possibility of using volume-surface hardening to strength railroad transport parts is considered with allowance for the special features of their production and operation.

  7. Review of the gas centrifuge until 1962. Part II: Principles of high-speed rotation

    NASA Astrophysics Data System (ADS)

    Whitley, Stanley

    1984-01-01

    The principles of the separation physics of the gas centrifuge were described in Part I of this review. In this second section the principles involved in spinning the rotors of these centrifuges are described. Three types of rotor can be identified, depending on the ratio of length to diameter. If the rotor is very short, length-diameter ratio less than one, it is gyroscopically stable and easy to spin. If the length-diameter ratio is in the region of 4 or 5, the rotor behaves as a rigid body and is relatively easy to accelerate to speed; however, it has a tendency at full speed to exhibit gyroscopic precessions. Finally, if the length-diameter ratio is very large, the rotor becomes easy to stabilize gyroscopically, but it is difficult to get it to speed because long rotors are very flexible and have resonant frequencies of flexure lower than the operating speed. The problems of these three types of centrifuge (the rotor dynamics, the bearings used to support the rotor, and the stress analysis of the rotating components) were investigated in the last century as part of classical mechanics because of the emergence of steam turbines during the latter part of the industrial revolution. These early principles are briefly reviewed, with particular reference to the work of De Laval, who invented the principle of self-balancing, Reynolds and Evershed, who developed hydrodynamic and magnetic bearing, respectively, and Chree, who did the most extensive early work on the stress analysis of tubes and discs. The work is described as it applies to the centrifuges developed in America and Germany during the war and in the Soviet Union after the war. The work of Beams in America is described in most detail, since he and his colleagues developed all three types of centrifuge during the Manhattan Project. The other work described is that of Groth and Beyerle, who developed subcritical machines in Germany during the war, and of Steenbeck and Zippe, who helped to develop both

  8. Rotating stall control in a high-speed stage with inlet distortion. Part 2: Circumferential distortion

    SciTech Connect

    Spakovszky, Z.S.; Weigl, H.J.; Paduano, J.D.; Schalkwyk, C.M. van; Suder, K.L.; Bright, M.M.

    1999-07-01

    This paper presents the first attempt to stabilize rotating stall in a single-stage transonic axial flow compressor with inlet distortion using active feedback control. The experiments were conducted at the NASA Lewis Research Center on a single-stage transonic core compressor inlet stage. An array of 12 jet injectors located upstream of the compressor was used for forced response testing and feedback stabilization. Results for a circumferential total pressure distortion of about one dynamic head and a 120 deg extent (DC(60){equals}0.61) are reported in this paper. Part 1 (Spaskovszky et al., 1999) reports results for radial distortion. Control laws were designed using empirical transfer function estimates determined from forced response results. Distortion introduces coupling between the harmonics of circumferential pressure perturbations, requiring multivariable identification and control design techniques. The compressor response displayed a strong first spatial harmonic, dominated by the well-known incompressible Moore-Greitzer mode. Steady axisymmetric injection of 4 percent of the compressor mass flow resulted in a 6.2 percent reduction of stalling mass flow. Constant gain feedback, using unsteady asymmetric injection, yielded a further range extension of 9 percent. A more sophisticated robust H{sub {infinity}} controller allowed a reduction in stalling mass flow of 10.2 percent relative to steady injection, yielding a total reduction in stalling mass flow of 16.4 percent.

  9. Pressure measurements and high speed visualizations of the cavitation phenomena at deep part load condition in a Francis turbine

    NASA Astrophysics Data System (ADS)

    Yamamoto, K.; Müller, A.; Favrel, A.; Landry, C.; Avellan, F.

    2014-03-01

    In a hydraulic power plant, it is essential to provide a reliable, sustainable and flexible energy supply. In recent years, in order to cover the variations of the renewable electricity production, hydraulic power plants are demanded to operate with more extended operating range. Under these off-design conditions, a hydraulic turbine is subject to cavitating swirl flow at the runner outlet. It is well-known that the helically/symmetrically shaped cavitation develops at the runner outlet in part load/full load condition, and it gives severe damage to the hydraulic systems under certain conditions. Although there have been many studies about partial and full load conditions, contributions reporting the deep part load condition are limited, and the cavitation behaviour at this condition is not yet understood. This study aims to unveil the cavitation phenomena at deep part load condition by high speed visualizations focusing on the draft tube cone as well as the runner blade channel, and pressure fluctuations associated with the phenomena were also investigated.

  10. Using hierarchical Bayesian binary probit models to analyze crash injury severity on high speed facilities with real-time traffic data.

    PubMed

    Yu, Rongjie; Abdel-Aty, Mohamed

    2014-01-01

    Severe crashes are causing serious social and economic loss, and because of this, reducing crash injury severity has become one of the key objectives of the high speed facilities' (freeway and expressway) management. Traditional crash injury severity analysis utilized data mainly from crash reports concerning the crash occurrence information, drivers' characteristics and roadway geometric related variables. In this study, real-time traffic and weather data were introduced to analyze the crash injury severity. The space mean speeds captured by the Automatic Vehicle Identification (AVI) system on the two roadways were used as explanatory variables in this study; and data from a mountainous freeway (I-70 in Colorado) and an urban expressway (State Road 408 in Orlando) have been used to identify the analysis result's consistence. Binary probit (BP) models were estimated to classify the non-severe (property damage only) crashes and severe (injury and fatality) crashes. Firstly, Bayesian BP models' results were compared to the results from Maximum Likelihood Estimation BP models and it was concluded that Bayesian inference was superior with more significant variables. Then different levels of hierarchical Bayesian BP models were developed with random effects accounting for the unobserved heterogeneity at segment level and crash individual level, respectively. Modeling results from both studied locations demonstrate that large variations of speed prior to the crash occurrence would increase the likelihood of severe crash occurrence. Moreover, with considering unobserved heterogeneity in the Bayesian BP models, the model goodness-of-fit has improved substantially. Finally, possible future applications of the model results and the hierarchical Bayesian probit models were discussed.

  11. ASBESTOS EXPOSURES DURING ROUTINE FLOOR TILE MAINTENANCE. PART 2: ULTRA HIGH SPEED BURNISHING AND WET-STRIPPING

    EPA Science Inventory

    This study was conducted to evaluate airborne asbestos concentrations during ultra high speed (UHS) burnishing and wet-stripping of asbestos-containing resilient floor tile under two levels of floor care condition (poor and good). Airborne asbestos concentrations were measured by...

  12. Bulk CMOS VLSI Technology Studies. Part 5. The Design and Implementation of a High Speed Integrated Circuit Functional Tester.

    DTIC Science & Technology

    2014-09-26

    SPEED INTEGRATED CIRCUIT FUNCTIONAL TESTER It Principal Investi-s tar J. Donald Trotter Associate Investigator Boyle Dwayne Robbins Mississippi State...3H * 7H . .......................................... ’ " "" : ’ " " 176 S REFERENCES 177 References Atlas, Joseph & Nielsen, Robert High-Speed Digital

  13. ASBESTOS EXPOSURES DURING ROUTINE FLOOR TILE MAINTENANCE. PART 2: ULTRA HIGH SPEED BURNISHING AND WET-STRIPPING

    EPA Science Inventory

    This study was conducted to evaluate airborne asbestos concentrations during ultra high speed (UHS) burnishing and wet-stripping of asbestos-containing resilient floor tile under two levels of floor care condition (poor and good). Airborne asbestos concentrations were measured by...

  14. The Aeroacoustics and Aerodynamics of High-Speed Coanda Devices, Part 1: Conventional Arrangement of Exit Nozzle and Surface

    NASA Astrophysics Data System (ADS)

    Carpenter, P. W.; Green, P. N.

    1997-12-01

    The literature on high-speed Coanda flows and its applications is reviewed. The lack of basic information for design engineers is noted. The present paper is based on an investigation of the aeroacoustics and aerodynamics of the high-speed Coanda flow that is formed when a supersonic jet issues from a radial nozzle and adheres to a tulip-shaped body of revolution. Schlieren and other flow visualization techniques together with theoretical methods are used to reveal the various features of this complex flow field. The acoustic characteristics were obtained from measurements with an array of microphones in an anechoic chamber. The emphasis is placed on those features of the aerodynamics and aeroacoustics which may be of general interest.

  15. High speed flywheel

    SciTech Connect

    McGrath, S.V.

    1990-01-01

    This invention relates generally to flywheels and relates more particularly to the construction of a high speed, low-mass flywheel. Flywheels with which this invention is to be compared include those constructed of circumferentially wound filaments or fibers held together by a matrix or bonding material. Flywheels of such construction are known to possess a relatively high hoop strength but a relatively low radial strength. Hoop-wound flywheels are, therefore, particularly susceptible to circumferential cracks, and the radial stress limitations of such a flywheel substantially limit its speed capabilities. It is an object of the present invention to provide a new and improved flywheel which experiences reduced radial stress at high operating speeds. Another object of the present invention is to provide flywheel whose construction allows for radial growth as flywheel speed increases while providing the necessary stiffness for transferring and maintaining kinetic energy within the flywheel. Still another object of the present invention is to provide a flywheel having concentrically-disposed component parts wherein rotation induced radial stresses at the interfaces of such component parts approach zero. Yet another object of the present invention is to provide a flywheel which is particularly well-suited for high speed applications. 5 figs.

  16. Preliminary study of high-speed machining

    SciTech Connect

    Jordan, R.E.

    1980-07-01

    The feasibility of a high speed machining process has been established for application to Bendix aluminum products, based upon information gained through visits to existing high speed machining facilities and by the completion of a representative Bendix part using this process. The need for an experimental high speed machining capability at Bendix for further process evaluation is established.

  17. High speed handpieces

    PubMed Central

    Bhandary, Nayan; Desai, Asavari; Shetty, Y Bharath

    2014-01-01

    High speed instruments are versatile instruments used by clinicians of all specialties of dentistry. It is important for clinicians to understand the types of high speed handpieces available and the mechanism of working. The centers for disease control and prevention have issued guidelines time and again for disinfection and sterilization of high speed handpieces. This article presents the recent developments in the design of the high speed handpieces. With a view to prevent hospital associated infections significant importance has been given to disinfection, sterilization & maintenance of high speed handpieces. How to cite the article: Bhandary N, Desai A, Shetty YB. High speed handpieces. J Int Oral Health 2014;6(1):130-2. PMID:24653618

  18. High Speed Research Program

    NASA Technical Reports Server (NTRS)

    Anderson, Robert E.; Corsiglia, Victor R.; Schmitz, Frederic H. (Technical Monitor)

    1994-01-01

    An overview of the NASA High Speed Research Program will be presented from a NASA Headquarters perspective. The presentation will include the objectives of the program and an outline of major programmatic issues.

  19. High-Speed Photography

    SciTech Connect

    Paisley, D.L.; Schelev, M.Y.

    1998-08-01

    The applications of high-speed photography to a diverse set of subjects including inertial confinement fusion, laser surgical procedures, communications, automotive airbags, lightning etc. are briefly discussed. (AIP) {copyright} {ital 1998 Society of Photo-Optical Instrumentation Engineers.}

  20. High speed door assembly

    DOEpatents

    Shapiro, Carolyn

    1993-01-01

    A high speed door assembly, comprising an actuator cylinder and piston rods, a pressure supply cylinder and fittings, an electrically detonated explosive bolt, a honeycomb structured door, a honeycomb structured decelerator, and a structural steel frame encasing the assembly to close over a 3 foot diameter opening within 50 milliseconds of actuation, to contain hazardous materials and vapors within a test fixture.

  1. High speed door assembly

    DOEpatents

    Shapiro, C.

    1993-04-27

    A high speed door assembly is described, comprising an actuator cylinder and piston rods, a pressure supply cylinder and fittings, an electrically detonated explosive bolt, a honeycomb structured door, a honeycomb structured decelerator, and a structural steel frame encasing the assembly to close over a 3 foot diameter opening within 50 milliseconds of actuation, to contain hazardous materials and vapors within a test fixture.

  2. Pre-compensation for continuous-path running trajectory error in high-speed machining of parts with varied curvature features

    NASA Astrophysics Data System (ADS)

    Jia, Zhenyuan; Song, Dening; Ma, Jianwei; Gao, Yuanyuan

    2017-01-01

    Parts with varied curvature features play increasingly critical roles in engineering, and are often machined under high-speed continuous-path running mode to ensure the machining efficiency. However, the continuous-path running trajectory error is significant during high-feed-speed machining, which seriously restricts the machining precision for such parts with varied curvature features. In order to reduce the continuous-path running trajectory error without sacrificing the machining efficiency, a pre-compensation method for the trajectory error is proposed. Based on the formation mechanism of the continuous-path running trajectory error analyzed, this error is estimated in advance by approximating the desired toolpath with spline curves. Then, an iterative error pre-compensation method is presented. By machining with the regenerated toolpath after pre-compensation instead of the uncompensated toolpath, the continuous-path running trajectory error can be effectively decreased without the reduction of the feed speed. To demonstrate the feasibility of the proposed pre-compensation method, a heart curve toolpath that possesses varied curvature features is employed. Experimental results indicate that compared with the uncompensated processing trajectory, the maximum and average machining errors for the pre-compensated processing trajectory are reduced by 67.19% and 82.30%, respectively. An easy to implement solution for high efficiency and high precision machining of the parts with varied curvature features is provided.

  3. The excitation of ground vibration by rail traffic: theory of vehicle track soil interaction and measurements on high-speed lines

    NASA Astrophysics Data System (ADS)

    Auersch, L.

    2005-06-01

    This article presents an integrated model for the computation of vehicle-track interaction and the ground vibrations of passing trains. A combined finite element and boundary element method is used to calculate the dynamic compliance of the track on realistic soil whereas multi-body models are used for the vehicle. The dynamic stiffness of the vehicle and that of the track are combined to calculate the dynamic axle loads due to the irregularities of the vehicle and the track as well as those due to sleeper passing excitation. These loads serve as input for the calculation of ground vibration near railway lines in the time and frequency domains. The theoretical methods and results have been proven by experiments in several respects and at several instances. First, on the occasion of the test and record runs of the Intercity Experimental, there was a very good quality of the vehicle and of the newly built track so that the deterministic parts of the excitation—the static load and the sleeper-passing component—could clearly be identified, the first being of minor importance apart from the track. Second, simultaneous measurements of the vehicle, the track and the soil at three different track situations were performed where we could verify the different parts of the stochastic excitation and their importance for the ground vibrations. The irregularities of the vehicle are dominant at high frequencies whereas the irregularities of the track are more important at lower frequencies. The comparison of the theory and the measurements also points to the phenomena of the vehicle-track resonance and the scattering of the quasi-static axle impulses by randomly varying soil.

  4. High Speed Video Insertion

    NASA Astrophysics Data System (ADS)

    Janess, Don C.

    1984-11-01

    This paper describes a means of inserting alphanumeric characters and graphics into a high speed video signal and locking that signal to an IRIG B time code. A model V-91 IRIG processor, developed by Instrumentation Technology Systems under contract to Instrumentation Marketing Corporation has been designed to operate in conjunction with the NAC model FHS-200 High Speed Video Camera which operates at 200 fields per second. The system provides for synchronizing the vertical and horizontal drive signals such that the vertical sync precisely coincides with five millisecond transitions in the IRIG time code. Additionally, the unit allows for the insertion of an IRIG time message as well as other data and symbols.

  5. High Speed Vortex Flows

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.; Wilcox, Floyd J., Jr.; Bauer, Steven X. S.; Allen, Jerry M.

    2000-01-01

    A review of the research conducted at the National Aeronautics and Space Administration (NASA), Langley Research Center (LaRC) into high-speed vortex flows during the 1970s, 1980s, and 1990s is presented. The data reviewed is for flat plates, cavities, bodies, missiles, wings, and aircraft. These data are presented and discussed relative to the design of future vehicles. Also presented is a brief historical review of the extensive body of high-speed vortex flow research from the 1940s to the present in order to provide perspective of the NASA LaRC's high-speed research results. Data are presented which show the types of vortex structures which occur at supersonic speeds and the impact of these flow structures to vehicle performance and control is discussed. The data presented shows the presence of both small- and large scale vortex structures for a variety of vehicles, from missiles to transports. For cavities, the data show very complex multiple vortex structures exist at all combinations of cavity depth to length ratios and Mach number. The data for missiles show the existence of very strong interference effects between body and/or fin vortices and the downstream fins. It was shown that these vortex flow interference effects could be both positive and negative. Data are shown which highlights the effect that leading-edge sweep, leading-edge bluntness, wing thickness, location of maximum thickness, and camber has on the aerodynamics of and flow over delta wings. The observed flow fields for delta wings (i.e. separation bubble, classical vortex, vortex with shock, etc.) are discussed in the context of' aircraft design. And data have been shown that indicate that aerodynamic performance improvements are available by considering vortex flows as a primary design feature. Finally a discussing of a design approach for wings which utilize vortex flows for improved aerodynamic performance at supersonic speed is presented.

  6. High speed flywheel

    DOEpatents

    McGrath, Stephen V.

    1991-01-01

    A flywheel for operation at high speeds utilizes two or more ringlike coments arranged in a spaced concentric relationship for rotation about an axis and an expansion device interposed between the components for accommodating radial growth of the components resulting from flywheel operation. The expansion device engages both of the ringlike components, and the structure of the expansion device ensures that it maintains its engagement with the components. In addition to its expansion-accommodating capacity, the expansion device also maintains flywheel stiffness during flywheel operation.

  7. High speed flywheel

    SciTech Connect

    McGrath, S.V.

    1991-05-07

    This patent describes a flywheel for operation at high speed which utilizes two or more ringlike components arranged in a spaced concentric relationship for rotation about an axis and an expansion device interposed between the components for accommodating radial growth of the components resulting from flywheel operation. The expansion device engages both of the ringlike components, and the structure of the expansion device ensures that it maintains its engagement with the components. In addition to its expansion-accommodating capacity, the expansion device also maintains flywheel stiffness during flywheel operation.

  8. High speed transient sampler

    DOEpatents

    McEwan, Thomas E.

    1995-01-01

    A high speed sampler comprises a meandered sample transmission line for transmitting an input signal, a straight strobe transmission line for transmitting a strobe signal, and a plurality of sampling gates along the transmission lines. The sampling gates comprise a four terminal diode bridge having a first strobe resistor connected from a first terminal of the bridge to the positive strobe line, a second strobe resistor coupled from the third terminal of the bridge to the negative strobe line, a tap connected to the second terminal of the bridge and to the sample transmission line, and a sample holding capacitor connected to the fourth terminal of the bridge. The resistance of the first and second strobe resistors is much higher than the signal transmission line impedance in the preferred system. This results in a sampling gate which applies a very small load on the sample transmission line and on the strobe generator. The sample holding capacitor is implemented using a smaller capacitor and a larger capacitor isolated from the smaller capacitor by resistance. The high speed sampler of the present invention is also characterized by other optimizations, including transmission line tap compensation, stepped impedance strobe line, a multi-layer physical layout, and unique strobe generator design. A plurality of banks of such samplers are controlled for concatenated or interleaved sample intervals to achieve long sample lengths or short sample spacing.

  9. High speed transient sampler

    DOEpatents

    McEwan, T.E.

    1995-11-28

    A high speed sampler comprises a meandered sample transmission line for transmitting an input signal, a straight strobe transmission line for transmitting a strobe signal, and a plurality of sampling gates along the transmission lines. The sampling gates comprise a four terminal diode bridge having a first strobe resistor connected from a first terminal of the bridge to the positive strobe line, a second strobe resistor coupled from the third terminal of the bridge to the negative strobe line, a tap connected to the second terminal of the bridge and to the sample transmission line, and a sample holding capacitor connected to the fourth terminal of the bridge. The resistance of the first and second strobe resistors is much higher than the signal transmission line impedance in the preferred system. This results in a sampling gate which applies a very small load on the sample transmission line and on the strobe generator. The sample holding capacitor is implemented using a smaller capacitor and a larger capacitor isolated from the smaller capacitor by resistance. The high speed sampler of the present invention is also characterized by other optimizations, including transmission line tap compensation, stepped impedance strobe line, a multi-layer physical layout, and unique strobe generator design. A plurality of banks of such samplers are controlled for concatenated or interleaved sample intervals to achieve long sample lengths or short sample spacing. 17 figs.

  10. High speed multiphoton imaging

    NASA Astrophysics Data System (ADS)

    Li, Yongxiao; Brustle, Anne; Gautam, Vini; Cockburn, Ian; Gillespie, Cathy; Gaus, Katharina; Lee, Woei Ming

    2016-12-01

    Intravital multiphoton microscopy has emerged as a powerful technique to visualize cellular processes in-vivo. Real time processes revealed through live imaging provided many opportunities to capture cellular activities in living animals. The typical parameters that determine the performance of multiphoton microscopy are speed, field of view, 3D imaging and imaging depth; many of these are important to achieving data from in-vivo. Here, we provide a full exposition of the flexible polygon mirror based high speed laser scanning multiphoton imaging system, PCI-6110 card (National Instruments) and high speed analog frame grabber card (Matrox Solios eA/XA), which allows for rapid adjustments between frame rates i.e. 5 Hz to 50 Hz with 512 × 512 pixels. Furthermore, a motion correction algorithm is also used to mitigate motion artifacts. A customized control software called Pscan 1.0 is developed for the system. This is then followed by calibration of the imaging performance of the system and a series of quantitative in-vitro and in-vivo imaging in neuronal tissues and mice.

  11. High speed quantitative digital microscopy

    NASA Technical Reports Server (NTRS)

    Castleman, K. R.; Price, K. H.; Eskenazi, R.; Ovadya, M. M.; Navon, M. A.

    1984-01-01

    Modern digital image processing hardware makes possible quantitative analysis of microscope images at high speed. This paper describes an application to automatic screening for cervical cancer. The system uses twelve MC6809 microprocessors arranged in a pipeline multiprocessor configuration. Each processor executes one part of the algorithm on each cell image as it passes through the pipeline. Each processor communicates with its upstream and downstream neighbors via shared two-port memory. Thus no time is devoted to input-output operations as such. This configuration is expected to be at least ten times faster than previous systems.

  12. High speed quantitative digital microscopy

    NASA Technical Reports Server (NTRS)

    Castleman, K. R.; Price, K. H.; Eskenazi, R.; Ovadya, M. M.; Navon, M. A.

    1984-01-01

    Modern digital image processing hardware makes possible quantitative analysis of microscope images at high speed. This paper describes an application to automatic screening for cervical cancer. The system uses twelve MC6809 microprocessors arranged in a pipeline multiprocessor configuration. Each processor executes one part of the algorithm on each cell image as it passes through the pipeline. Each processor communicates with its upstream and downstream neighbors via shared two-port memory. Thus no time is devoted to input-output operations as such. This configuration is expected to be at least ten times faster than previous systems.

  13. HIGH SPEED CAMERA

    DOEpatents

    Rogers, B.T. Jr.; Davis, W.C.

    1957-12-17

    This patent relates to high speed cameras having resolution times of less than one-tenth microseconds suitable for filming distinct sequences of a very fast event such as an explosion. This camera consists of a rotating mirror with reflecting surfaces on both sides, a narrow mirror acting as a slit in a focal plane shutter, various other mirror and lens systems as well as an innage recording surface. The combination of the rotating mirrors and the slit mirror causes discrete, narrow, separate pictures to fall upon the film plane, thereby forming a moving image increment of the photographed event. Placing a reflecting surface on each side of the rotating mirror cancels the image velocity that one side of the rotating mirror would impart, so as a camera having this short a resolution time is thereby possible.

  14. High speed civil transport

    NASA Technical Reports Server (NTRS)

    Bogardus, Scott; Loper, Brent; Nauman, Chris; Page, Jeff; Parris, Rusty; Steinbach, Greg

    1990-01-01

    The design process of the High Speed Civil Transport (HSCT) combines existing technology with the expectation of future technology to create a Mach 3.0 transport. The HSCT was designed to have a range in excess of 6000 nautical miles and carry up to 300 passengers. This range will allow the HSCT to service the economically expanding Pacific Basin region. Effort was made in the design to enable the aircraft to use conventional airports with standard 12,000 foot runways. With a takeoff thrust of 250,000 pounds, the four supersonic through-flow engines will accelerate the HSCT to a cruise speed of Mach 3.0. The 679,000 pound (at takeoff) HSCT is designed to cruise at an altitude of 70,000 feet, flying above most atmospheric disturbances.

  15. Is there really an eccentric action of the hamstrings during the swing phase of high-speed running? Part II: Implications for exercise.

    PubMed

    Van Hooren, Bas; Bosch, Frans

    2017-12-01

    We have previously argued that there may actually be no significant eccentric, but rather predominantly an isometric action of the hamstring muscle fibres during the swing phase of high-speed running when the attachment points of the hamstrings are moving apart. Based on this we suggested that isometric rather than eccentric exercises are a more specific way of conditioning the hamstrings for high-speed running. In this review we argue that some of the presumed beneficial adaptations following eccentric training may actually not be related to the eccentric muscle fibre action, but to other factors such as exercise intensity. Furthermore, we discuss several disadvantages associated with commonly used eccentric hamstring exercises. Subsequently, we argue that high-intensity isometric exercises in which the series elastic element stretches and recoils may be equally or even more effective at conditioning the hamstrings for high-speed running, since they also avoid some of the negative side effects associated with eccentric training. We provide several criteria that exercises should fulfil to effectively condition the hamstrings for high-speed running. Adherence to these criteria will guarantee specificity with regards to hamstrings functioning during running. Practical examples of isometric exercises that likely meet several criteria are provided.

  16. Is there really an eccentric action of the hamstrings during the swing phase of high-speed running? part I: A critical review of the literature.

    PubMed

    Van Hooren, Bas; Bosch, Frans

    2017-12-01

    It is widely assumed that there is an eccentric hamstring muscle fibre action during the swing phase of high-speed running. However, animal and modelling studies in humans show that the increasing distance between musculotendinous attachment points during forward swing is primarily due to passive lengthening associated with the take-up of muscle slack. Later in the swing phase, the contractile element (CE) maintains a near isometric action while the series elastic (tendinous) element first stretches as the knee extends, and then recoils causing the swing leg to forcefully retract prior to ground contact. Although modelling studies showed some active lengthening of the contractile (muscular) element during the mid-swing phase of high-speed running, we argue that the increasing distance between the attachment points should not be interpreted as an eccentric action of the CE due to the effects of muscle slack. Therefore, there may actually be no significant eccentric, but rather predominantly an isometric action of the hamstrings CE during the swing phase of high-speed running when the attachment points of the hamstrings are moving apart. Based on this, we propose that isometric rather than eccentric exercises are a more specific way of conditioning the hamstrings for high-speed running.

  17. High speed packet switching

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This document constitutes the final report prepared by Proteon, Inc. of Westborough, Massachusetts under contract NAS 5-30629 entitled High-Speed Packet Switching (SBIR 87-1, Phase 2) prepared for NASA-Greenbelt, Maryland. The primary goal of this research project is to use the results of the SBIR Phase 1 effort to develop a sound, expandable hardware and software router architecture capable of forwarding 25,000 packets per second through the router and passing 300 megabits per second on the router's internal busses. The work being delivered under this contract received its funding from three different sources: the SNIPE/RIG contract (Contract Number F30602-89-C-0014, CDRL Sequence Number A002), the SBIR contract, and Proteon. The SNIPE/RIG and SBIR contracts had many overlapping requirements, which allowed the research done under SNIPE/RIG to be applied to SBIR. Proteon funded all of the work to develop new router interfaces other than FDDI, in addition to funding the productization of the router itself. The router being delivered under SBIR will be a fully product-quality machine. The work done during this contract produced many significant findings and results, summarized here and explained in detail in later sections of this report. The SNIPE/RIG contract was completed. That contract had many overlapping requirements with the SBIR contract, and resulted in the successful demonstration and delivery of a high speed router. The development that took place during the SNIPE/RIG contract produced findings that included the choice of processor and an understanding of the issues surrounding inter processor communications in a multiprocessor environment. Many significant speed enhancements to the router software were made during that time. Under the SBIR contract (and with help from Proteon-funded work), it was found that a single processor router achieved a throughput significantly higher than originally anticipated. For this reason, a single processor router was

  18. High speed civil transport

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This report discusses the design and marketability of a next generation supersonic transport. Apogee Aeronautics Corporation has designated its High Speed Civil Transport (HSCT): Supercruiser HS-8. Since the beginning of the Concorde era, the general consensus has been that the proper time for the introduction of a next generation Supersonic Transport (SST) would depend upon the technical advances made in the areas of propulsion (reduction in emissions) and material composites (stronger, lighter materials). It is believed by many in the aerospace industry that these beforementioned technical advances lie on the horizon. With this being the case, this is the proper time to begin the design phase for the next generation HSCT. The design objective for a HSCT was to develop an aircraft that would be capable of transporting at least 250 passengers with baggage at a distance of 5500 nmi. The supersonic Mach number is currently unspecified. In addition, the design had to be marketable, cost effective, and certifiable. To achieve this goal, technical advances in the current SST's must be made, especially in the areas of aerodynamics and propulsion. As a result of these required aerodynamic advances, several different supersonic design concepts were reviewed.

  19. High Speed Ice Friction

    NASA Astrophysics Data System (ADS)

    Seymour-Pierce, Alexandra; Sammonds, Peter; Lishman, Ben

    2014-05-01

    Many different tribological experiments have been run to determine the frictional behaviour of ice at high speeds, ostensibly with the intention of applying results to everyday fields such as winter tyres and sports. However, experiments have only been conducted up to linear speeds of several metres a second, with few additional subject specific studies reaching speeds comparable to these applications. Experiments were conducted in the cold rooms of the Rock and Ice Physics Laboratory, UCL, on a custom built rotational tribometer based on previous literature designs. Preliminary results from experiments run at 2m/s for ice temperatures of 271 and 263K indicate that colder ice has a higher coefficient of friction, in accordance with the literature. These results will be presented, along with data from further experiments conducted at temperatures between 259-273K (in order to cover a wide range of the temperature dependent behaviour of ice) and speeds of 2-15m/s to produce a temperature-velocity-friction map for ice. The effect of temperature, speed and slider geometry on the deformation of ice will also be investigated. These speeds are approaching those exhibited by sports such as the luge (where athletes slide downhill on an icy track), placing the tribological work in context.

  20. High speed transition prediction

    NASA Technical Reports Server (NTRS)

    Gasperas, Gediminis

    1992-01-01

    The main objective of this work period was to develop, acquire and apply state-of-the-art tools for the prediction of transition at high speeds at NASA Ames. Although various stability codes as well as basic state codes were acquired, the development of a new Parabolized Stability Equation (PSE) code was minimal. The time that was initially allocated for development was used on other tasks, in particular for the Leading Edge Suction problem, in acquiring proficiency in various graphics tools, and in applying these tools to evaluate various Navier-Stokes and Euler solutions. The second objective of this work period was to attend the Transition and Turbulence Workshop at NASA Langley in July and August, 1991. A report on the Workshop follows. From July 8, 1991 to August 2, 1991, the author participated in the Transition and Turbulence Workshop at NASA Langley. For purposes of interest here, analysis can be said to consist of solving simplified governing equations by various analytical methods, such as asymptotic methods, or by use of very meager computer resources. From the composition of the various groups at the Workshop, it can be seen that analytical methods are generally more popular in Great Britain than they are in the U.S., possibly due to historical factors and the lack of computer resources. Experimenters at the Workshop were mostly concerned with subsonic flows, and a number of demonstrations were provided, among which were a hot-wire experiment to probe the boundary layer on a rotating disc, a hot-wire rake to map a free shear layer behind a cylinder, and the use of heating strips on a flat plate to control instability waves and consequent transition. A highpoint of the demonstrations was the opportunity to observe the rather noisy 'quiet' supersonic pilot tunnel in operation.

  1. Machine Vision Techniques For High Speed Videography

    NASA Astrophysics Data System (ADS)

    Hunter, David B.

    1984-11-01

    The priority associated with U.S. efforts to increase productivity has led to, among other things, the development of Machine Vision systems for use in manufacturing automation requirements. Many such systems combine solid state television cameras and data processing equipment to facilitate high speed, on-line inspection and real time dimensional measurement of parts and assemblies. These parts are often randomly oriented and spaced on a conveyor belt under continuous motion. Television imagery of high speed events has historically been achieved by use of pulsed (strobe) illumination or high speed shutter techniques synchronized with a camera's vertical blanking to separate write and read cycle operation. Lack of synchronization between part position and camera scanning in most on-line applications precludes use of this vertical interval illumination technique. Alternatively, many Machine Vision cameras incorporate special techniques for asynchronous, stop-motion imaging. Such cameras are capable of imaging parts asynchronously at rates approaching 60 hertz while remaining compatible with standard video recording units. Techniques for asynchronous, stop-motion imaging have not been incorporated in cameras used for High Speed Videography. Imaging of these events has alternatively been obtained through the utilization of special, high frame rate cameras to minimize motion during the frame interval. High frame rate cameras must undoubtedly be utilized for recording of high speed events occurring at high repetition rates. However, such cameras require very specialized, and often expensive, video recording equipment. It seems, therefore, that Machine Vision cameras with capability for asynchronous, stop-motion imaging represent a viable approach for cost effective video recording of high speed events occurring at repetition rates up to 60 hertz.

  2. Investigations of detail design issues for the high speed acoustic wind tunnel using a 60th scale model tunnel. Part 1: Tests with open circuits

    NASA Technical Reports Server (NTRS)

    Barna, P. Stephen

    1991-01-01

    This report summarizes the tests on the 1:60 scale model of the High Speed Acoustic Wind Tunnel (HSAWT) performed during the period of November 1989 to December 1990. Throughout the testing the tunnel was operated in the 'open circuit mode', that is when the airflow was induced by a powerful exhaust fan located outside the tunnel circuit. The tests were first performed with the closed test section and were subsequently repeated with the open test section. While operating with the open test section, a novel device, called the 'nozzle-diffuser,' was also tested in order to establish its usefulness of increasing pressure recovery in the first diffuser. The tests established the viability of the tunnel design. The flow distribution in each tunnel component was found acceptable and pressure recovery in the diffusers were found satisfactory. The diffusers appeared to operate without flow separation. All tests were performed at NASA LaRC.

  3. An experimental investigation of the chopping of helicopter main rotor tip vortices by the tail rotor. Part 2: High speed photographic study

    NASA Technical Reports Server (NTRS)

    Cary, Charles M.

    1987-01-01

    The interaction of a free vortex and a rotor was recorded photographically using oil smoke and stroboscopic illumination. The incident vortex is normal to the plane of the rotor and crosses the rotor plane. This idealized aerodynamic experiment most nearly corresponds to helicopter flight conditions in which a tip vortex from the main rotor is incident upon the tail rotor while hovering. The high speed photographs reveal important features not observed using conventional photography where the image is the time average of varying instantaneous images. Most prominent is the strong interaction between the rotor tip vortex system and the incident vortex, resulting in the roll-up of the incident vortex around the (stronger) tip vortices and the resulting rapid destabilization of the deformed incident vortex. The viscous interaction is clearly shown also. Other forms of instabilities or wave-like behavior may be apparent from further analysis of the photographs.

  4. Gated high speed optical detector

    NASA Technical Reports Server (NTRS)

    Green, S. I.; Carson, L. M.; Neal, G. W.

    1973-01-01

    The design, fabrication, and test of two gated, high speed optical detectors for use in high speed digital laser communication links are discussed. The optical detectors used a dynamic crossed field photomultiplier and electronics including dc bias and RF drive circuits, automatic remote synchronization circuits, automatic gain control circuits, and threshold detection circuits. The equipment is used to detect binary encoded signals from a mode locked neodynium laser.

  5. 8-Foot High Speed Tunnel

    NASA Technical Reports Server (NTRS)

    1936-01-01

    Control panel below the test section of the 8-Foot High Speed Tunnel (8-Foot HST). Authorized July 17, 1933, construction of the 8-Foot HST was paid for with funds from the Federal Public Works Administration. Manly Hood and Russell Robinson designed the unusual facility which could produce a 500 mph wind stream across an 8-Foot test section. The concrete shell was not part of the original design. Like most projects funded through New Deal programs, the PWA restricted the amount of money which could be spent on materials. The majority of funds were supposed to be expended on labor. Though originally, Hood and Robinson had planned a welded steel pressure vessel around the test section, PWA officials proposed the idea of concrete. This picture shows the test section inside the igloo-like structure with walls of 1-foot thick reinforced concrete. The thick walls were needed 'because of the Bernoulli effect, [which meant that] the text chamber had to withstand powerful, inwardly directed pressure. Operating personnel located inside the igloo were subjected to pressures equivalent to 10,000-foot altitude and had to wear oxygen masks and enter through airlocks. A heat exchanger removed the large quantities of heat generated by the big fan.'

  6. The Aeroacoustics and Aerodynamics of High-Speed Coanda Devices, Part 2: Effects of Modifications for Flow Control and Noise Reduction

    NASA Astrophysics Data System (ADS)

    Carpenter, P. W.; Smith, C.

    1997-12-01

    The paper describes two studies of the effects of flow control devices on the aerodynamics and aeroacoustics of a high-speed Coanda flow that is formed when a supersonic jet issues from a radial nozzle and adheres to a tulip-shaped body of revolution. Shadowgraphy and other flow-visualization techniques are used to reveal the various features of the complex flow fields. The acoustic characteristics are obtained from far- and near-field measurements with an array of microphones in an anechoic chamber. First the effects of incorporating a step between the annular exit slot and the Coanda surface are investigated. The step is incorporated to ensure that the breakaway pressure is raised to a level well above the maximum operating pressure. It substantially increases the complexity of the flow field and acoustic characteristics. In particular, it promotes the generation of two groups of discrete tones. A theoretical model based on a self-generated feedback loop is proposed to explain how these tones are generated. The second study investigates the effects of replacing the annular exit slot with a saw-toothed one with the aim of eliminating the discrete tones and thereby substantially reducing the level of noise generated.

  7. Investigations of detail design issues for the high speed acoustic wind tunnel using a 60th scale model tunnel. Part 2: Tests with the closed circuit

    NASA Technical Reports Server (NTRS)

    Barna, P. Stephen

    1991-01-01

    This report summarizes the tests on the 1:60 scale model of the High Speed Acoustic Wind Tunnel (HSAWT) performed during the period June - August 1991. Throughout the testing the tunnel was operated in the 'closed circuit mode,' that is when the airflow was set up by an axial flow fan, which was located inside the tunnel circuit and was directly driven by a motor. The tests were first performed with the closed test section and were subsequently repeated with the open test section, the latter operating with the nozzle-diffuser at its optimum setting. On this subject, reference is made to the report (1) issued January 1991, under contract 17-GFY900125, which summarizes the result obtained with the tunnel operating in the 'open circuit mode.' The tests confirmed the viability of the tunnel design, and the flow distributions in most of the tunnel components were considered acceptable. There were found, however, some locations where the flow distribution requires improvement. This applies to the flow upstream of the fan where the flow was found skewed, thus affecting the flow downstream. As a result of this, the flow appeared separated at the end of the large diffuser at the outer side. All tests were performed at NASA LaRC.

  8. Effect of expansion chamber geometry on atomization and spray dispersion characters of a flashing mixture containing inerts. Part II: High speed imaging measurements.

    PubMed

    Ju, Dehao; Shrimpton, John; Bowdrey, Moira; Hearn, Alex

    2012-08-01

    A breath activated, pressurized metered dose inhaler (pMDI) device (Oxette(®)) has been developed to replace the traditional cigarette. In this paper, internal and external spray characters are measured by high speed imaging along with sizing the residual droplets at the distance from the discharge orifice where the human oropharynx locates. Two different formulations with 95% and 98% mass fraction of HFA 134a and two prototype cigarette alternatives with different expansion chamber volumes have been analyzed. The internal and external flows issuing from early stage prototype Oxette(®) are discussed along with boiling and evaporation phenomena. The expansion and entrainment regions of the jet are observed and discussed with comparison to the turbulent round jet of a single phase. From the visualizations of internal flows in the earlier design, a small expansion chamber can hardly generate small bubbles, which is difficult to produce fine sprays. The larger the expansion chamber volume, the more room for the propellant evaporation, recirculation, bubble generation and growth, all of which produces finer sprays. Therefore the later prototype of Oxette(®) 2 made a significant improvement to produce fine sprays and facilitated development of the cigarette alternative. Furthermore, the characters of the spray generated by Oxette(®) are compared to that issuing from a pMDI by previous researchers, where the residual MMD is larger than that of a pMDI, because the Oxette(®) has a smaller expansion chamber and the geometry provides less opportunity for the recirculation due to restrictions of the design space. Although the formulation with higher mass fraction of HFA 134a can generate smaller droplets, it cannot produce steady puffs with relatively low mass flow rate. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. High-Speed Electrochemical Imaging.

    PubMed

    Momotenko, Dmitry; Byers, Joshua C; McKelvey, Kim; Kang, Minkyung; Unwin, Patrick R

    2015-09-22

    The design, development, and application of high-speed scanning electrochemical probe microscopy is reported. The approach allows the acquisition of a series of high-resolution images (typically 1000 pixels μm(-2)) at rates approaching 4 seconds per frame, while collecting up to 8000 image pixels per second, about 1000 times faster than typical imaging speeds used up to now. The focus is on scanning electrochemical cell microscopy (SECCM), but the principles and practicalities are applicable to many electrochemical imaging methods. The versatility of the high-speed scan concept is demonstrated at a variety of substrates, including imaging the electroactivity of a patterned self-assembled monolayer on gold, visualization of chemical reactions occurring at single wall carbon nanotubes, and probing nanoscale electrocatalysts for water splitting. These studies provide movies of spatial variations of electrochemical fluxes as a function of potential and a platform for the further development of high speed scanning with other electrochemical imaging techniques.

  10. SEAL FOR HIGH SPEED CENTRIFUGE

    DOEpatents

    Skarstrom, C.W.

    1957-12-17

    A seal is described for a high speed centrifuge wherein the centrifugal force of rotation acts on the gasket to form a tight seal. The cylindrical rotating bowl of the centrifuge contains a closure member resting on a shoulder in the bowl wall having a lower surface containing bands of gasket material, parallel and adjacent to the cylinder wall. As the centrifuge speed increases, centrifugal force acts on the bands of gasket material forcing them in to a sealing contact against the cylinder wall. This arrangememt forms a simple and effective seal for high speed centrifuges, replacing more costly methods such as welding a closure in place.

  11. High-speed civil transport study: Special factors

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Studies relating to environmental factors associated with high speed civil transports were conducted. Projected total engine emissions for year 2015 fleets of several subsonic/supersonic transport fleet scenarios, discussion of sonic boom reduction methods, discussion of community noise level requirements, fuels considerations, and air traffic control impact are presented.

  12. High speed multiwire photon camera

    NASA Technical Reports Server (NTRS)

    Lacy, Jeffrey L. (Inventor)

    1991-01-01

    An improved multiwire proportional counter camera having particular utility in the field of clinical nuclear medicine imaging. The detector utilizes direct coupled, low impedance, high speed delay lines, the segments of which are capacitor-inductor networks. A pile-up rejection test is provided to reject confused events otherwise caused by multiple ionization events occuring during the readout window.

  13. High speed multiwire photon camera

    NASA Technical Reports Server (NTRS)

    Lacy, Jeffrey L. (Inventor)

    1989-01-01

    An improved multiwire proportional counter camera having particular utility in the field of clinical nuclear medicine imaging. The detector utilizes direct coupled, low impedance, high speed delay lines, the segments of which are capacitor-inductor networks. A pile-up rejection test is provided to reject confused events otherwise caused by multiple ionization events occurring during the readout window.

  14. Pulse Detonation Engines for High Speed Flight

    NASA Technical Reports Server (NTRS)

    Povinelli, Louis A.

    2002-01-01

    Revolutionary concepts in propulsion are required in order to achieve high-speed cruise capability in the atmosphere and for low cost reliable systems for earth to orbit missions. One of the advanced concepts under study is the air-breathing pulse detonation engine. Additional work remains in order to establish the role and performance of a PDE in flight applications, either as a stand-alone device or as part of a combined cycle system. In this paper, we shall offer a few remarks on some of these remaining issues, i.e., combined cycle systems, nozzles and exhaust systems and thrust per unit frontal area limitations. Currently, an intensive experimental and numerical effort is underway in order to quantify the propulsion performance characteristics of this device. In this paper, we shall highlight our recent efforts to elucidate the propulsion potential of pulse detonation engines and their possible application to high-speed or hypersonic systems.

  15. High Speed Photometry for BUSCA

    NASA Astrophysics Data System (ADS)

    Cordes, O.; Reif, K.

    The camera BUSCA (Bonn University Simultaneous CAmera) is a standard instrument at the 2.2m telescope at Calar Alto Observatory (Spain) since 2001. At the moment some modifications of BUSCA are planned and partially realised. One major goal is the replacement of the old thick CCDs in the blue, yellow-green, and near-infrared channels. The newer CCDs have better cosmetics and performance in sensitivity. The other goal is to replace the old "Heidelberg"-style controller with a newly designed controller with the main focus on high-speed readout and on an advanced windowing mechanism. We present a theoretical analysis of the new controller design and its advantage in high speed photometry of rapidly pulsating stars. As an example PG1605+072 was chosen which was observed with BUSCA before in 2001 and 2002.

  16. High-speed rotorcraft propulsion

    NASA Technical Reports Server (NTRS)

    Rutherford, John W.; Fitzpatrick, Robert E.

    1991-01-01

    Recently completed high-speed rotorcraft design studies for NASA provide the basis to assess technology needs for the development of these aircraft. Preliminary analysis of several concepts possessing helicopter-like hover characteristics and cruise capabilities in the 450 knot regime, led to the selection of two concepts for further study. The concepts selected included the Rotor/Wing and the Tilt Wing. The two unique concepts use turbofan and turboshaft engines respectively. Designs, based on current technology for each, established a baseline configuration from which technology trade studies could be conducted. Propulsion technology goals from the IHPTET program established the advanced technolgy year. Due to high-speed requirements, each concept possesses its own unique propulsion challenges. Trade studies indicate that achieving th IHPTET Phase III goals significantly improves the effectiveness of both concepts. Increased engine efficiency is particularly important to VTOL aircraft by reducing gross weight.

  17. High-speed code validation

    NASA Technical Reports Server (NTRS)

    Barnwell, Richard W.; Rogers, R. Clayton; Pittman, James L.; Dwoyer, Douglas L.

    1987-01-01

    The topics are presented in viewgraph form and include the following: NFL body experiment; high-speed validation problems; 3-D Euler/Navier-Stokes inlet code; two-strut inlet configuration; pressure contours in two longitudinal planes; sidewall pressure distribution; pressure distribution on strut inner surface; inlet/forebody tests in 60 inch helium tunnel; pressure distributions on elliptical missile; code validations; small scale test apparatus; CARS nonintrusive measurements; optimized cone-derived waverider study; etc.

  18. Focused Mission High Speed Combatant

    DTIC Science & Technology

    2003-05-09

    hull types to determine which hull type best meets the requirements for the Focused Mission High Speed Combatant. The first step in the analysis...MAPC, uses parametric models and scaling to create high level designs of various hull types. The inputs are desired speed , range, payload, sea state...reached 10 SWATH vessels exhibit superior seakeeping at near zero speed compared to other hull forms 5 Assumes 2 equal-sized GE Gas Turbines 11

  19. High-speed GaInNAs laser diodes

    NASA Astrophysics Data System (ADS)

    Kondow, Masahiko; Nakahara, Kouji; Fujisaki, S.; Tanaka, Shigehisa; Kudo, M.; Taniguchi, Tadashi; Terano, A.; Uchiyama, H.

    2004-05-01

    The explosive growth of Internet/intranet traffic has created a strong demand for cost-effective high-speed light-sources to be used in local access networks and data links. The frequency of relaxation oscillation (fr) is a major factor that restricts the high-speed operation of laser diodes. To achieve a high fr, the material of an active layer should have a large differential gain. By using GaInNAs, very deep quantum wells, especially in the conduction band can be formed. Deep quantum wells bring a large differential gain. In this paper, we show how GaInNAs lasers can be applied in this application

  20. Review of high-speed fiber optic grating sensor systems

    NASA Astrophysics Data System (ADS)

    Udd, Eric; Benterou, Jerry; May, Chadd; Mihailov, Stephen J.; Lu, Ping

    2010-04-01

    Fiber grating sensors can be used to support a wide variety of high speed measurement applications. This includes measurements of vibrations on bridges, traffic monitoring on freeways, ultrasonic detection to support non-destructive tests on metal plates, and providing details of detonation events. This paper provides a brief overview of some of the techniques that have been used to support high speed measurements using fiber grating sensors over frequency ranges from 10s of kHz, to MHZ and finally toward frequencies approaching the GHz regime.

  1. Development of magnetically levitated high speed transport system in Japan

    SciTech Connect

    Sawada, Kazuo

    1996-07-01

    In Japan, huge passenger traffic moves through the Tokyo-Osaka corridor and the demand is mounting on one more high speed line besides the Tokaido Shinkansen. A magnetically levitated vehicle (JR Maglev) using superconducting magnets has been developed for the Tokyo-Osaka superspeed express. JR Maglev has many advantages over conventional rail systems. This paper describes the necessity of one more high speed line in this corridor, the reason the author chose Maglev, the scheme of this system, history of the development and outline of the new Yamanashi test line project.

  2. A high speed sequential decoder

    NASA Technical Reports Server (NTRS)

    Lum, H., Jr.

    1972-01-01

    The performance and theory of operation for the High Speed Hard Decision Sequential Decoder are delineated. The decoder is a forward error correction system which is capable of accepting data from binary-phase-shift-keyed and quadriphase-shift-keyed modems at input data rates up to 30 megabits per second. Test results show that the decoder is capable of maintaining a composite error rate of 0.00001 at an input E sub b/N sub o of 5.6 db. This performance has been obtained with minimum circuit complexity.

  3. High speed holographic digital recorder.

    PubMed

    Roberts, H N; Watkins, J W; Johnson, R H

    1974-04-01

    Concepts, feasibility experiments, and key component developments are described for a holographic digital record/reproduce system with the potential for 1.0 Gbit/sec rates and higher. Record rates of 500 Mbits/sec have been demonstrated with a ten-channel acoustooptic modulator array and a mode-locked, cavity-dumped argon-ion laser. Acoustooptic device technology has been advanced notably during the development of mode lockers, cavity dumpers, beam deflectors, and multichannel modulator arrays. The development of high speed multichannel photodetector arrays for the readout subsystem requires special attention. The feasibility of 1.0 Gbits/sec record rates has been demonstrated.

  4. High Speed Holographic Movie Camera

    NASA Astrophysics Data System (ADS)

    Hentschel, W.; Lauterborn, W.

    1985-08-01

    A high speed holographic movie camera system has been developed to investigate the dynamic behavior of cavitation bubbles in liquids. As a light source for holography, a high power multiply cavity-dumped argonion laser is used to record very long hologram series with framing rates up to 300 kHz. For separating successively recorded holograms, two spatial multiplexing techniques are applied simultaneously: rotation of the holographic plate or film and acousto-optic beam deflection. With the combination of these two techniques we achieve up to 4000 single holograms in one series.

  5. High Speed Holographic Movie Camera

    NASA Astrophysics Data System (ADS)

    Hentschel, W.; Lauterborn, W.

    1985-02-01

    A high speed holographic movie camera system has been developed in our laboratories at the Third Physical Institute of the University of Gdttingen. As a light source for holography a high power multiply cavity-dumped argonion laser is used to record very long hologram series with framing rates up to 300 kHz. For separating successively recorded holograms two spatial multiplexing techniques are applied simultaneously: rotating of the holographic plate or film and acousto-optic beam deflection. With the combination of these two techniques we achieve up to 4000 single holograms in one series.

  6. Flexible high-speed CODEC

    NASA Technical Reports Server (NTRS)

    Segallis, Greg P.; Wernlund, Jim V.; Corry, Glen

    1993-01-01

    This report is prepared by Harris Government Communication Systems Division for NASA Lewis Research Center under contract NAS3-25087. It is written in accordance with SOW section 4.0 (d) as detailed in section 2.6. The purpose of this document is to provide a summary of the program, performance results and analysis, and a technical assessment. The purpose of this program was to develop a flexible, high-speed CODEC that provides substantial coding gain while maintaining bandwidth efficiency for use in both continuous and bursted data environments for a variety of applications.

  7. High-Speed TCP Testing

    NASA Technical Reports Server (NTRS)

    Brooks, David E.; Gassman, Holly; Beering, Dave R.; Welch, Arun; Hoder, Douglas J.; Ivancic, William D.

    1999-01-01

    Transmission Control Protocol (TCP) is the underlying protocol used within the Internet for reliable information transfer. As such, there is great interest to have all implementations of TCP efficiently interoperate. This is particularly important for links exhibiting long bandwidth-delay products. The tools exist to perform TCP analysis at low rates and low delays. However, for extremely high-rate and lone-delay links such as 622 Mbps over geosynchronous satellites, new tools and testing techniques are required. This paper describes the tools and techniques used to analyze and debug various TCP implementations over high-speed, long-delay links.

  8. Remote Transmission at High Speed

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Omni and NASA Test Operations at Stennis entered a Dual-Use Agreement to develop the FOTR-125, a 125 megabit-per-second fiber-optic transceiver that allows accurate digital recordings over a great distance. The transceiver s fiber-optic link can be as long as 25 kilometers. This makes it much longer than the standard coaxial link, which can be no longer than 50 meters.The FOTR-125 utilizes laser diode transmitter modules and integrated receivers for the optical interface. Two transmitters and two receivers are employed at each end of the link with automatic or manual switchover to maximize the reliability of the communications link. NASA uses the transceiver in Stennis High-Speed Data Acquisition System (HSDAS). The HSDAS consists of several identical systems installed on the Center s test stands to process all high-speed data related to its propulsion test programs. These transceivers allow the recorder and HSDAS controls to be located in the Test Control Center in a remote location while the digitizer is located on the test stand.

  9. High-speed phosphor thermometry.

    PubMed

    Fuhrmann, N; Baum, E; Brübach, J; Dreizler, A

    2011-10-01

    Phosphor thermometry is a semi-invasive surface temperature measurement technique utilising the luminescence properties of doped ceramic materials. Typically, these phosphor materials are coated onto the object of interest and are excited by a short UV laser pulse. Up to now, primarily Q-switched laser systems with repetition rates of 10 Hz were employed for excitation. Accordingly, this diagnostic tool was not applicable to resolve correlated temperature transients at time scales shorter than 100 ms. This contribution reports on the first realisation of a high-speed phosphor thermometry system employing a highly repetitive laser in the kHz regime and a fast decaying phosphor. A suitable material was characterised regarding its temperature lifetime characteristic and its measurement precision. Additionally, the influence of laser power on the phosphor coating was investigated in terms of heating effects. A demonstration of this high-speed technique has been conducted inside the thermally highly transient system of an optically accessible internal combustion engine. Temperatures have been measured with a repetition rate of 6 kHz corresponding to one sample per crank angle degree at 1000 rpm.

  10. High-speed phosphor thermometry

    NASA Astrophysics Data System (ADS)

    Fuhrmann, N.; Baum, E.; Brübach, J.; Dreizler, A.

    2011-10-01

    Phosphor thermometry is a semi-invasive surface temperature measurement technique utilising the luminescence properties of doped ceramic materials. Typically, these phosphor materials are coated onto the object of interest and are excited by a short UV laser pulse. Up to now, primarily Q-switched laser systems with repetition rates of 10 Hz were employed for excitation. Accordingly, this diagnostic tool was not applicable to resolve correlated temperature transients at time scales shorter than 100 ms. This contribution reports on the first realisation of a high-speed phosphor thermometry system employing a highly repetitive laser in the kHz regime and a fast decaying phosphor. A suitable material was characterised regarding its temperature lifetime characteristic and its measurement precision. Additionally, the influence of laser power on the phosphor coating was investigated in terms of heating effects. A demonstration of this high-speed technique has been conducted inside the thermally highly transient system of an optically accessible internal combustion engine. Temperatures have been measured with a repetition rate of 6 kHz corresponding to one sample per crank angle degree at 1000 rpm.

  11. Environmental issues: noise, rail noise, and high-speed rail

    SciTech Connect

    Hall, F.L.; Welland, J.D.; Bragdon, C.R.; Houtman, J.W.; Immers, B.H.

    1987-01-01

    The six papers in the report deal with the following areas: the effect of noise barriers on the market value of adjacent residential properties; control of airport- and aircraft-related noise in the United States; a traffic-assignment model to reduce noise annoyance in urban networks; a survey of railroad occupational noise sources; a prediction procedure for rail transportation ground-borne noise and vibration; and high-speed rail in California: the dream, the process, and the reality.

  12. Experiments on high speed ejectors

    NASA Technical Reports Server (NTRS)

    Wu, J. J.

    1986-01-01

    Experimental studies were conducted to investigate the flow and the performance of thrust augmenting ejectors for flight Mach numbers in the range of 0.5 to 0.8, primary air stagnation pressures up to 107 psig (738 kPa), and primary air stagnation temperatures up to 1250 F (677 C). The experiment verified the existence of the second solution ejector flow, where the flow after complete mixing is supersonic. Thrust augmentation in excess of 1.2 was demonstrated for both hot and cold primary jets. The experimental ejector performed better than the corresponding theoretical optimal first solution ejector, where the mixed flow is subsonic. Further studies are required to realize the full potential of the second solution ejector. The research program was started by the Flight Dynamics Research Corporation (FDRC) to investigate the characteristic of a high speed ejector which augments thrust of a jet at high flight speeds.

  13. High-speed data search

    NASA Technical Reports Server (NTRS)

    Driscoll, James N.

    1994-01-01

    The high-speed data search system developed for KSC incorporates existing and emerging information retrieval technology to help a user intelligently and rapidly locate information found in large textual databases. This technology includes: natural language input; statistical ranking of retrieved information; an artificial intelligence concept called semantics, where 'surface level' knowledge found in text is used to improve the ranking of retrieved information; and relevance feedback, where user judgements about viewed information are used to automatically modify the search for further information. Semantics and relevance feedback are features of the system which are not available commercially. The system further demonstrates focus on paragraphs of information to decide relevance; and it can be used (without modification) to intelligently search all kinds of document collections, such as collections of legal documents medical documents, news stories, patents, and so forth. The purpose of this paper is to demonstrate the usefulness of statistical ranking, our semantic improvement, and relevance feedback.

  14. Small Scale High Speed Turbomachinery

    NASA Technical Reports Server (NTRS)

    London, Adam P. (Inventor); Droppers, Lloyd J. (Inventor); Lehman, Matthew K. (Inventor); Mehra, Amitav (Inventor)

    2015-01-01

    A small scale, high speed turbomachine is described, as well as a process for manufacturing the turbomachine. The turbomachine is manufactured by diffusion bonding stacked sheets of metal foil, each of which has been pre-formed to correspond to a cross section of the turbomachine structure. The turbomachines include rotating elements as well as static structures. Using this process, turbomachines may be manufactured with rotating elements that have outer diameters of less than four inches in size, and/or blading heights of less than 0.1 inches. The rotating elements of the turbomachines are capable of rotating at speeds in excess of 150 feet per second. In addition, cooling features may be added internally to blading to facilitate cooling in high temperature operations.

  15. Flexible High Speed Codec (FHSC)

    NASA Technical Reports Server (NTRS)

    Segallis, G. P.; Wernlund, J. V.

    1991-01-01

    The ongoing NASA/Harris Flexible High Speed Codec (FHSC) program is described. The program objectives are to design and build an encoder decoder that allows operation in either burst or continuous modes at data rates of up to 300 megabits per second. The decoder handles both hard and soft decision decoding and can switch between modes on a burst by burst basis. Bandspreading is low since the code rate is greater than or equal to 7/8. The encoder and a hard decision decoder fit on a single application specific integrated circuit (ASIC) chip. A soft decision applique is implemented using 300 K emitter coupled logic (ECL) which can be easily translated to an ECL gate array.

  16. High speed sampler and demultiplexer

    DOEpatents

    McEwan, T.E.

    1995-12-26

    A high speed sampling demultiplexer based on a plurality of sampler banks, each bank comprising a sample transmission line for transmitting an input signal, a strobe transmission line for transmitting a strobe signal, and a plurality of sampling gates at respective positions along the sample transmission line for sampling the input signal in response to the strobe signal. Strobe control circuitry is coupled to the plurality of banks, and supplies a sequence of bank strobe signals to the strobe transmission lines in each of the plurality of banks, and includes circuits for controlling the timing of the bank strobe signals among the banks of samplers. Input circuitry is included for supplying the input signal to be sampled to the plurality of sample transmission lines in the respective banks. The strobe control circuitry can repetitively strobe the plurality of banks of samplers such that the banks of samplers are cycled to create a long sample length. Second tier demultiplexing circuitry is coupled to each of the samplers in the plurality of banks. The second tier demultiplexing circuitry senses the sample taken by the corresponding sampler each time the bank in which the sampler is found is strobed. A plurality of such samples can be stored by the second tier demultiplexing circuitry for later processing. Repetitive sampling with the high speed transient sampler induces an effect known as ``strobe kickout``. The sample transmission lines include structures which reduce strobe kickout to acceptable levels, generally 60 dB below the signal, by absorbing the kickout pulses before the next sampling repetition. 16 figs.

  17. High speed sampler and demultiplexer

    DOEpatents

    McEwan, Thomas E.

    1995-01-01

    A high speed sampling demultiplexer based on a plurality of sampler banks, each bank comprising a sample transmission line for transmitting an input signal, a strobe transmission line for transmitting a strobe signal, and a plurality of sampling gates at respective positions along the sample transmission line for sampling the input signal in response to the strobe signal. Strobe control circuitry is coupled to the plurality of banks, and supplies a sequence of bank strobe signals to the strobe transmission lines in each of the plurality of banks, and includes circuits for controlling the timing of the bank strobe signals among the banks of samplers. Input circuitry is included for supplying the input signal to be sampled to the plurality of sample transmission lines in the respective banks. The strobe control circuitry can repetitively strobe the plurality of banks of samplers such that the banks of samplers are cycled to create a long sample length. Second tier demultiplexing circuitry is coupled to each of the samplers in the plurality of banks. The second tier demultiplexing circuitry senses the sample taken by the corresponding sampler each time the bank in which the sampler is found is strobed. A plurality of such samples can be stored by the second tier demultiplexing circuitry for later processing. Repetitive sampling with the high speed transient sampler induces an effect known as "strobe kickout". The sample transmission lines include structures which reduce strobe kickout to acceptable levels, generally 60 dB below the signal, by absorbing the kickout pulses before the next sampling repetition.

  18. Review of High-Speed Fiber Optic Grating Sensors Systems

    SciTech Connect

    Udd, E; Benterou, J; May, C; Mihailov, S J; Lu, P

    2010-03-24

    Fiber grating sensors can be used to support a wide variety of high speed measurement applications. This includes measurements of vibrations on bridges, traffic monitoring on freeways, ultrasonic detection to support non-destructive tests on metal plates and providing details of detonation events. This paper provides a brief overview of some of the techniques that have been used to support high speed measurements using fiber grating sensors over frequency ranges from 10s of kHz, to MHZ and finally toward frequencies approaching the GHz regime. Very early in the development of fiber grating sensor systems it was realized that a high speed fiber grating sensor system could be realized by placing an optical filter that might be a fiber grating in front of a detector so that spectral changes in the reflection from a fiber grating were amplitude modulated. In principal the only limitation on this type of system involved the speed of the output detector which with the development of high speed communication links moved from the regime of 10s of MHz toward 10s of GHz. The earliest deployed systems involved civil structures including measurements of the strain fields on composite utility poles and missile bodies during break tests, bridges and freeways. This was followed by a series of developments that included high speed fiber grating sensors to support nondestructive testing via ultrasonic wave detection, high speed machining and monitoring ship hulls. Each of these applications involved monitoring mechanical motion of structures and thus interest was in speeds up to a few 10s of MHz. Most recently there has been interest in using fiber grating to monitor the very high speed events such as detonations and this has led to utilization of fiber gratings that are consumed during an event that may require detection speeds of hundreds of MHz and in the future multiple GHz.

  19. An Investigation of the Aerodynamic Characteristics of an 0.08-Scale Model of the Chance Vought XF7U-1 Airplane in the Langley High-Speed 7-by 10-Foot Tunnel: TED No. DE308. Part 6; Estimated High-Speed Flying Qualities

    NASA Technical Reports Server (NTRS)

    Donlan, Charles J.; Kuhn, Richard E.

    1948-01-01

    An analysis of the estimated high-speed flying qualities of the Chance Vought XF7U-1 airplane in the Mach number range from 0.40 to 0.91 has been made, based on tests of an 0.08-scale model of this airplane in the Langley high-speed 7- by 10-foot wind tunnel. The analysis indicates longitudinal control-position instability at transonic speeds, but the accompanying trim changes are not large. Control-position maneuvering stability, however, is present for all speeds. Longitudinal lateral control appear adequate, but the damping of the short-period longitudinal and lateral oscillations at high altitudes is poor and may require artificial damping.

  20. High speed sampling circuit design for pulse laser ranging

    NASA Astrophysics Data System (ADS)

    Qian, Rui-hai; Gao, Xuan-yi; Zhang, Yan-mei; Li, Huan; Guo, Hai-chao; Guo, Xiao-kang; He, Shi-jie

    2016-10-01

    In recent years, with the rapid development of digital chip, high speed sampling rate analog to digital conversion chip can be used to sample narrow laser pulse echo. Moreover, high speed processor is widely applied to achieve digital laser echo signal processing algorithm. The development of digital chip greatly improved the laser ranging detection accuracy. High speed sampling and processing circuit used in the laser ranging detection system has gradually been a research hotspot. In this paper, a pulse laser echo data logging and digital signal processing circuit system is studied based on the high speed sampling. This circuit consists of two parts: the pulse laser echo data processing circuit and the data transmission circuit. The pulse laser echo data processing circuit includes a laser diode, a laser detector and a high sample rate data logging circuit. The data transmission circuit receives the processed data from the pulse laser echo data processing circuit. The sample data is transmitted to the computer through USB2.0 interface. Finally, a PC interface is designed using C# language, in which the sampling laser pulse echo signal is demonstrated and the processed laser pulse is plotted. Finally, the laser ranging experiment is carried out to test the pulse laser echo data logging and digital signal processing circuit system. The experiment result demonstrates that the laser ranging hardware system achieved high speed data logging, high speed processing and high speed sampling data transmission.

  1. Hypereutectoid high-speed steels

    SciTech Connect

    Kremnev, L.S.

    1986-01-01

    Half of the tungsten and molybdenum contained in R6M5 and R18 steels is concentrated in the undissolved eutectic carbides hindering austenitic grain gowth in hardening and providing the necessary strength and impact strength. This article describes the tungsten-free low-alloy high-speed steel 11M5F with a chemical composition of 1.03-1.10% C, 5.2-5.7% Mo, 3.8-4.2% Cr, 1.3-1.7% V, 0.3-0.6% Si, and 0.3% Ce. The properties of 11M5F and R6M5 steels are examined and compared. The results of production and laboratory tests of the cutting properties of tools of the steels developed showed their high effectiveness, especially of 11M5F steel with 1% A1. The life of tools of the tungsten-free steels is two or three times greater than the life of tools of R6M5 steel.

  2. High speed imager test station

    DOEpatents

    Yates, G.J.; Albright, K.L.; Turko, B.T.

    1995-11-14

    A test station enables the performance of a solid state imager (herein called a focal plane array or FPA) to be determined at high image frame rates. A programmable waveform generator is adapted to generate clock pulses at determinable rates for clock light-induced charges from a FPA. The FPA is mounted on an imager header board for placing the imager in operable proximity to level shifters for receiving the clock pulses and outputting pulses effective to clock charge from the pixels forming the FPA. Each of the clock level shifters is driven by leading and trailing edge portions of the clock pulses to reduce power dissipation in the FPA. Analog circuits receive output charge pulses clocked from the FPA pixels. The analog circuits condition the charge pulses to cancel noise in the pulses and to determine and hold a peak value of the charge for digitizing. A high speed digitizer receives the peak signal value and outputs a digital representation of each one of the charge pulses. A video system then displays an image associated with the digital representation of the output charge pulses clocked from the FPA. In one embodiment, the FPA image is formatted to a standard video format for display on conventional video equipment. 12 figs.

  3. High speed imager test station

    DOEpatents

    Yates, George J.; Albright, Kevin L.; Turko, Bojan T.

    1995-01-01

    A test station enables the performance of a solid state imager (herein called a focal plane array or FPA) to be determined at high image frame rates. A programmable waveform generator is adapted to generate clock pulses at determinable rates for clock light-induced charges from a FPA. The FPA is mounted on an imager header board for placing the imager in operable proximity to level shifters for receiving the clock pulses and outputting pulses effective to clock charge from the pixels forming the FPA. Each of the clock level shifters is driven by leading and trailing edge portions of the clock pulses to reduce power dissipation in the FPA. Analog circuits receive output charge pulses clocked from the FPA pixels. The analog circuits condition the charge pulses to cancel noise in the pulses and to determine and hold a peak value of the charge for digitizing. A high speed digitizer receives the peak signal value and outputs a digital representation of each one of the charge pulses. A video system then displays an image associated with the digital representation of the output charge pulses clocked from the FPA. In one embodiment, the FPA image is formatted to a standard video format for display on conventional video equipment.

  4. ADVANCED HIGH SPEED PROGRAMMABLE PREFORMING

    SciTech Connect

    Norris Jr, Robert E; Lomax, Ronny D; Xiong, Fue; Dahl, Jeffrey S; Blanchard, Patrick J

    2010-01-01

    Polymer-matrix composites offer greater stiffness and strength per unit weight than conventional materials resulting in new opportunities for lightweighting of automotive and heavy vehicles. Other benefits include design flexibility, less corrosion susceptibility, and the ability to tailor properties to specific load requirements. However, widespread implementation of structural composites requires lower-cost manufacturing processes than those that are currently available. Advanced, directed-fiber preforming processes have demonstrated exceptional value for rapid preforming of large, glass-reinforced, automotive composite structures. This is due to process flexibility and inherently low material scrap rate. Hence directed fiber performing processes offer a low cost manufacturing methodology for producing preforms for a variety of structural automotive components. This paper describes work conducted at the Oak Ridge National Laboratory (ORNL), focused on the development and demonstration of a high speed chopper gun to enhance throughput capabilities. ORNL and the Automotive Composites Consortium (ACC) revised the design of a standard chopper gun to expand the operational envelope, enabling delivery of up to 20kg/min. A prototype unit was fabricated and used to demonstrate continuous chopping of multiple roving at high output over extended periods. In addition fiber handling system modifications were completed to sustain the high output the modified chopper affords. These hardware upgrades are documented along with results of process characterization and capabilities assessment.

  5. Quiet High-Speed Fan

    NASA Technical Reports Server (NTRS)

    Lieber, Lysbeth; Repp, Russ; Weir, Donald S.

    1996-01-01

    A calibration of the acoustic and aerodynamic prediction methods was performed and a baseline fan definition was established and evaluated to support the quiet high speed fan program. A computational fluid dynamic analysis of the NASA QF-12 Fan rotor, using the DAWES flow simulation program was performed to demonstrate and verify the causes of the relatively poor aerodynamic performance observed during the fan test. In addition, the rotor flowfield characteristics were qualitatively compared to the acoustic measurements to identify the key acoustic characteristics of the flow. The V072 turbofan source noise prediction code was used to generate noise predictions for the TFE731-60 fan at three operating conditions and compared to experimental data. V072 results were also used in the Acoustic Radiation Code to generate far field noise for the TFE731-60 nacelle at three speed points for the blade passage tone. A full 3-D viscous flow simulation of the current production TFE731-60 fan rotor was performed with the DAWES flow analysis program. The DAWES analysis was used to estimate the onset of multiple pure tone noise, based on predictions of inlet shock position as a function of the rotor tip speed. Finally, the TFE731-60 fan rotor wake structure predicted by the DAWES program was used to define a redesigned stator with the leading edge configured to minimize the acoustic effects of rotor wake / stator interaction, without appreciably degrading performance.

  6. High-speed pressure clamp.

    PubMed

    Besch, Stephen R; Suchyna, Thomas; Sachs, Frederick

    2002-10-01

    We built a high-speed, pneumatic pressure clamp to stimulate patch-clamped membranes mechanically. The key control element is a newly designed differential valve that uses a single, nickel-plated piezoelectric bending element to control both pressure and vacuum. To minimize response time, the valve body was designed with minimum dead volume. The result is improved response time and stability with a threefold decrease in actuation latency. Tight valve clearances minimize the steady-state air flow, permitting us to use small resonant-piston pumps to supply pressure and vacuum. To protect the valve from water contamination in the event of a broken pipette, an optical sensor detects water entering the valve and increases pressure rapidly to clear the system. The open-loop time constant for pressure is 2.5 ms for a 100-mmHg step, and the closed-loop settling time is 500-600 micros. Valve actuation latency is 120 micros. The system performance is illustrated for mechanically induced changes in patch capacitance.

  7. The high speed civil transport and NASA's High Speed Research (HSR) program

    NASA Technical Reports Server (NTRS)

    Shaw, Robert J.

    1994-01-01

    Ongoing studies being conducted not only in this country but in Europe and Asia suggest that a second generation supersonic transport, or High-Speed Civil Transport (HSCT), could become an important part of the 21st century international air transportation system. However, major environmental compatibility and economic viability issues must be resolved if the HSCT is to become a reality. This talk will overview the NASA High-Speed Research (HSR) program which is aimed at providing the U.S. industry with a technology base to allow them to consider launching an HSCT program early in the next century. The talk will also discuss some of the comparable activities going on within Europe and Japan.

  8. High speed holographic cine-recorder

    NASA Astrophysics Data System (ADS)

    Snyder, Donald; Watts, David; Gordon, Joseph; Lysogorski, Charles; Powers, Aaron; Perry, John; Chenette, Eugene; Hudson, Roger; Young, Raymond

    2005-08-01

    Air Force Research Laboratory and North Dancer Labs researchers have completed the initial development and transition to operational use of a high-speed holographic movie system. This paper documents the first fully operational use of a novel and unique experimental capability for high-speed holographic movies and high-speed cinema interferometry. In this paper we document the initial experiments that were performed with the High Speed Holographic Recorder (HSHR) at the Munitions Directorate, Air Force Research Laboratory Site at Eglin, AFB, Florida. These experiments were performed to assess the possibilities for high-speed cine-laser holography combined with high-speed videography to document the formation and propagation of plumes of materials created by impact of high-speed projectiles. This paper details the development of the experimental procedures and initial results of this new tool. After successful integration and testing the system was delivered to Arnold Engineering Development Center.

  9. 49 CFR 38.175 - High-speed rail cars, monorails and systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 1 2011-10-01 2011-10-01 false High-speed rail cars, monorails and systems. 38....175 High-speed rail cars, monorails and systems. (a) All cars for high-speed rail systems, including... for high-platform, level boarding and shall comply with § 38.111(a) of this part for each type of...

  10. 49 CFR 38.175 - High-speed rail cars, monorails and systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 1 2014-10-01 2014-10-01 false High-speed rail cars, monorails and systems. 38....175 High-speed rail cars, monorails and systems. (a) All cars for high-speed rail systems, including... for high-platform, level boarding and shall comply with § 38.111(a) of this part for each type of...

  11. 49 CFR 38.175 - High-speed rail cars, monorails and systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false High-speed rail cars, monorails and systems. 38....175 High-speed rail cars, monorails and systems. (a) All cars for high-speed rail systems, including... for high-platform, level boarding and shall comply with § 38.111(a) of this part for each type of...

  12. 49 CFR 38.175 - High-speed rail cars, monorails and systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 1 2013-10-01 2013-10-01 false High-speed rail cars, monorails and systems. 38....175 High-speed rail cars, monorails and systems. (a) All cars for high-speed rail systems, including... for high-platform, level boarding and shall comply with § 38.111(a) of this part for each type of...

  13. 49 CFR 38.175 - High-speed rail cars, monorails and systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 1 2012-10-01 2012-10-01 false High-speed rail cars, monorails and systems. 38....175 High-speed rail cars, monorails and systems. (a) All cars for high-speed rail systems, including... for high-platform, level boarding and shall comply with § 38.111(a) of this part for each type of...

  14. Geosynchronous platform definition study. Volume 4, Part 2: Traffic analysis and system requirements for the new traffic model

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A condensed summary of the traffic analyses and systems requirements for the new traffic model is presented. The results of each study activity are explained, key analyses are described, and important results are highlighted.

  15. HIGH SPEED KERR CELL FRAMING CAMERA

    DOEpatents

    Goss, W.C.; Gilley, L.F.

    1964-01-01

    The present invention relates to a high speed camera utilizing a Kerr cell shutter and a novel optical delay system having no moving parts. The camera can selectively photograph at least 6 frames within 9 x 10/sup -8/ seconds during any such time interval of an occurring event. The invention utilizes particularly an optical system which views and transmits 6 images of an event to a multi-channeled optical delay relay system. The delay relay system has optical paths of successively increased length in whole multiples of the first channel optical path length, into which optical paths the 6 images are transmitted. The successively delayed images are accepted from the exit of the delay relay system by an optical image focusing means, which in turn directs the images into a Kerr cell shutter disposed to intercept the image paths. A camera is disposed to simultaneously view and record the 6 images during a single exposure of the Kerr cell shutter. (AEC)

  16. The unstable behavior of low and high-speed compressors

    SciTech Connect

    Day, I.J. . Whittle Lab.); Freeman, C. )

    1994-04-01

    By far the greater part of the understanding about stall and surge in axial compressors comes from work on low-speed laboratory machines. As a general rule, these machines do not model the compressibility effects present in high-speed compressors and therefore doubt has always existed about the application of low-speed results to high-speed machines. In recent years interest in active control has led to a number of studies of compressor stability in engine-type compressors. The instrumentation used in these experiments has been sufficiently detailed that, for the first time, adequate data are available to make direct comparisons between high-speed and low-speed compressors. This paper presents new data from an eight-stage fixed geometry engine compressor and compares then with low-speed laboratory data. The results show remarkable similarities in both the stalling and surging behavior of the two machines, particularly when the engine compressor is run at intermediate speeds. The engine results also show that, as in the laboratory tests, surge is precipitated by the onset of rotating stall. This is true even at very high speeds where it had previously been thought that surge might be the result of a blast wave moving through the compressor. This paper therefore contains new information about high-speed compressors and confirms that low-speed testing is an effective means of obtaining insight into the behavior of high-speed machines.

  17. Experimental high-speed network

    NASA Astrophysics Data System (ADS)

    McNeill, Kevin M.; Klein, William P.; Vercillo, Richard; Alsafadi, Yasser H.; Parra, Miguel V.; Dallas, William J.

    1993-09-01

    Many existing local area networking protocols currently applied in medical imaging were originally designed for relatively low-speed, low-volume networking. These protocols utilize small packet sizes appropriate for text based communication. Local area networks of this type typically provide raw bandwidth under 125 MHz. These older network technologies are not optimized for the low delay, high data traffic environment of a totally digital radiology department. Some current implementations use point-to-point links when greater bandwidth is required. However, the use of point-to-point communications for a total digital radiology department network presents many disadvantages. This paper describes work on an experimental multi-access local area network called XFT. The work includes the protocol specification, and the design and implementation of network interface hardware and software. The protocol specifies the Physical and Data Link layers (OSI layers 1 & 2) for a fiber-optic based token ring providing a raw bandwidth of 500 MHz. The protocol design and implementation of the XFT interface hardware includes many features to optimize image transfer and provide flexibility for additional future enhancements which include: a modular hardware design supporting easy portability to a variety of host system buses, a versatile message buffer design providing 16 MB of memory, and the capability to extend the raw bandwidth of the network to 3.0 GHz.

  18. High speed imaging - An important industrial tool

    NASA Technical Reports Server (NTRS)

    Moore, Alton; Pinelli, Thomas E.

    1986-01-01

    High-speed photography, which is a rapid sequence of photographs that allow an event to be analyzed through the stoppage of motion or the production of slow-motion effects, is examined. In high-speed photography 16, 35, and 70 mm film and framing rates between 64-12,000 frames per second are utilized to measure such factors as angles, velocities, failure points, and deflections. The use of dual timing lamps in high-speed photography and the difficulties encountered with exposure and programming the camera and event are discussed. The application of video cameras to the recording of high-speed events is described.

  19. Geosynchronous platform definition study. Volume 4, Part 1: Traffic analysis and system requirements for the baseline traffic model

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The traffic analyses and system requirements data generated in the study resulted in the development of two traffic models; the baseline traffic model and the new traffic model. The baseline traffic model provides traceability between the numbers and types of geosynchronous missions considered in the study and the entire spectrum of missions foreseen in the total national space program. The information presented pertaining to the baseline traffic model includes: (1) definition of the baseline traffic model, including identification of specific geosynchronous missions and their payload delivery schedules through 1990; (2) Satellite location criteria, including the resulting distribution of the satellite population; (3) Geosynchronous orbit saturation analyses, including the effects of satellite physical proximity and potential electromagnetic interference; and (4) Platform system requirements analyses, including satellite and mission equipment descriptions, the options and limitations in grouping satellites, and on-orbit servicing criteria (both remotely controlled and man-attended).

  20. High-Speed Ring Bus

    NASA Technical Reports Server (NTRS)

    Wysocky, Terry; Kopf, Edward, Jr.; Katanyoutananti, Sunant; Steiner, Carl; Balian, Harry

    2010-01-01

    The high-speed ring bus at the Jet Propulsion Laboratory (JPL) allows for future growth trends in spacecraft seen with future scientific missions. This innovation constitutes an enhancement of the 1393 bus as documented in the Institute of Electrical and Electronics Engineers (IEEE) 1393-1999 standard for a spaceborne fiber-optic data bus. It allows for high-bandwidth and time synchronization of all nodes on the ring. The JPL ring bus allows for interconnection of active units with autonomous operation and increased fault handling at high bandwidths. It minimizes the flight software interface with an intelligent physical layer design that has few states to manage as well as simplified testability. The design will soon be documented in the AS-1393 standard (Serial Hi-Rel Ring Network for Aerospace Applications). The framework is designed for "Class A" spacecraft operation and provides redundant data paths. It is based on "fault containment regions" and "redundant functional regions (RFR)" and has a method for allocating cables that completely supports the redundancy in spacecraft design, allowing for a complete RFR to fail. This design reduces the mass of the bus by incorporating both the Control Unit and the Data Unit in the same hardware. The standard uses ATM (asynchronous transfer mode) packets, standardized by ITU-T, ANSI, ETSI, and the ATM Forum. The IEEE-1393 standard uses the UNI form of the packet and provides no protection for the data portion of the cell. The JPL design adds optional formatting to this data portion. This design extends fault protection beyond that of the interconnect. This includes adding protection to the data portion that is contained within the Bus Interface Units (BIUs) and by adding to the signal interface between the Data Host and the JPL 1393 Ring Bus. Data transfer on the ring bus does not involve a master or initiator. Following bus protocol, any BIU may transmit data on the ring whenever it has data received from its host. There

  1. Update on Douglas' high-speed civil transport studies

    NASA Technical Reports Server (NTRS)

    Bunin, Bruce L.

    1992-01-01

    A summary is presented of high speed civil transport (HSCT) studies underway at Douglas Aircraft. A brief review is given of experience with design and development of advanced supersonic transport concepts and associated technology. A review is then presented of past NASA funded contract research studies focused on selection of appropriate concepts for high speed civil transport aircraft to be introduced in the year 2000 time frame for commercial service. Follow-on activities to those studies are then presented which were conducted under independent research studies as well as under further NASA funded efforts. Design Mach number selections and associated baseline design missions are then discussed along with forecasted passenger traffic and associated supersonic fleet sizes, and then proceeds into a discussion of individual issues related either to environmental acceptability or overall technology requirements in order to achieve the required economic viability of the program. A summary is given of current and future plans and activities.

  2. Lightweight, high speed bearing balls: A concept

    NASA Technical Reports Server (NTRS)

    Parker, R. J.

    1974-01-01

    Low mass bearing balls with hardened iron-plated surfaces can eliminate problems of low fatigue strength and flexure fatigue, and lead to increased life and reliability of high speed ball bearings. Low mass balls exert lower centrifugal forces on outer race of bearing thus eliminating detrimental effect of high speed operation.

  3. High Speed Video for Airborne Instrumentation Application

    NASA Technical Reports Server (NTRS)

    Tseng, Ting; Reaves, Matthew; Mauldin, Kendall

    2006-01-01

    A flight-worthy high speed color video system has been developed. Extensive system development and ground and environmental. testing hes yielded a flight qualified High Speed Video System (HSVS), This HSVS was initially used on the F-15B #836 for the Lifting Insulating Foam Trajectory (LIFT) project.

  4. Reducing Heating In High-Speed Cinematography

    NASA Technical Reports Server (NTRS)

    Slater, Howard A.

    1989-01-01

    Infrared-absorbing and infrared-reflecting glass filters simple and effective means for reducing rise in temperature during high-speed motion-picture photography. "Hot-mirror" and "cold-mirror" configurations, employed in projection of images, helps prevent excessive heating of scenes by powerful lamps used in high-speed photography.

  5. High-Speed Photography with Computer Control.

    ERIC Educational Resources Information Center

    Winters, Loren M.

    1991-01-01

    Describes the use of a microcomputer as an intervalometer for the control and timing of several flash units to photograph high-speed events. Applies this technology to study the oscillations of a stretched rubber band, the deceleration of high-speed projectiles in water, the splashes of milk drops, and the bursts of popcorn kernels. (MDH)

  6. High-Speed Photography with Computer Control.

    ERIC Educational Resources Information Center

    Winters, Loren M.

    1991-01-01

    Describes the use of a microcomputer as an intervalometer for the control and timing of several flash units to photograph high-speed events. Applies this technology to study the oscillations of a stretched rubber band, the deceleration of high-speed projectiles in water, the splashes of milk drops, and the bursts of popcorn kernels. (MDH)

  7. A simulation-based study of HighSpeed TCP and its deployment

    SciTech Connect

    Souza, Evandro de

    2003-05-01

    The current congestion control mechanism used in TCP has difficulty reaching full utilization on high speed links, particularly on wide-area connections. For example, the packet drop rate needed to fill a Gigabit pipe using the present TCP protocol is below the currently achievable fiber optic error rates. HighSpeed TCP was recently proposed as a modification of TCP's congestion control mechanism to allow it to achieve reasonable performance in high speed wide-area links. In this research, simulation results showing the performance of HighSpeed TCP and the impact of its use on the present implementation of TCP are presented. Network conditions including different degrees of congestion, different levels of loss rate, different degrees of bursty traffic and two distinct router queue management policies were simulated. The performance and fairness of HighSpeed TCP were compared to the existing TCP and solutions for bulk-data transfer using parallel streams.

  8. High-speed ACR/NEMA interface

    NASA Astrophysics Data System (ADS)

    Reijns, Gerard L.; Santilli, D.; Schellingerhout, G.; Jochem, A. J.; Ottes, Fenno P.; van Aken, I. W.

    1990-08-01

    The design and implementation of a standard high speed ACR-NEMA communications interface is described. The upper layers e.g. the Presentation layer, Session layer and part of the Transport/Network layer have been implemented in software. In order to reach the speed requirement of 8M byte/sec. the lower layers e.g. part of the Transport/Network layer and Data Link layer have been implemented in hardware. We have developed and built an interface for an IBM personal computer P5/2 model 50, working under the operating system OS/2. The PS/2, model 50 has been equipped with a fast micro-channel bus, which enables a large throughput. The operating systern OS/2 has a multitasking capability, which enables concurrent programming. In order to minimize the delays, we used this multitasking facility to create a number of parallel operating "threads". The Transport/Network layer functions have been implemented using a receive thread, two send threads and a device driver with three hardware registers. The time to transfer a packet by DMA, to initiate the DMA logic and to execute the required Kernal functions have each been measured and figures are shown. The Data Link layer provides for storage of two packets in two separate random access memories (RAM's). These two RAM's enable a pipelined operation, which minimizes the delay in the Data Link layer.

  9. The 1990 high-speed civil transport studies

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This summary report contains the results of the Douglas Aircraft Company system studies related to High-Speed Civil Transports (HSCT's). The tasks were performed under an 18-month extension of NASA Langley Research Center Contract NAS1-18378. The system studies were conducted to assess the emission impact of HSCT's at design Mach numbers ranging from 1.6 to 3.2. The tasks specifically addressed an HSCT market and economic assessment, development of supersonic route networks, and an atmospheric emissions scenario. The general results indicated: (1) market projections predict sufficient passenger traffic for the 2000 to 2025 time period to support a fleet of economically viable and environmentally compatible HSCT's; (2) the HSCT route structure to minimize supersonic overland traffic can be increased by innovative routing to avoid land masses; and (3) the atmospheric emission impact on ozone would be significantly lower for Mach 1.6 operations than for Mach 3.2 operations.

  10. A superconducting high-speed flywheel energy storage system

    NASA Astrophysics Data System (ADS)

    de Andrade, R.; Ferreira, A. C.; Sotelo, G. G.; Suemitsu, W. I.; Rolim, L. G. B.; Silva Neto, J. L.; Neves, M. A.; dos Santos, V. A.; da Costa, G. C.; Rosario, M.; Stephan, R.; Nicolsky, R.

    2004-08-01

    High-speed flywheel systems have been studied as compensators of voltage sags and momentary interruptions of energy. Besides the complexity of these systems, the main concerns are bearing losses. This work is part of the development of a superconducting high-speed flywheel energy storage prototype. In order to minimize the bearing losses, this system uses a superconducting axial thrust magnetic bearing in a vacuum chamber, which guarantees low friction losses, and a switched reluctance motor-generator to drive the flywheel system. Dynamic simulations made for this prototype, connected to the electric power network, show the viability of use it as a compensator.

  11. Assessment of rural soundscapes with high-speed train noise.

    PubMed

    Lee, Pyoung Jik; Hong, Joo Young; Jeon, Jin Yong

    2014-06-01

    In the present study, rural soundscapes with high-speed train noise were assessed through laboratory experiments. A total of ten sites with varying landscape metrics were chosen for audio-visual recording. The acoustical characteristics of the high-speed train noise were analyzed using various noise level indices. Landscape metrics such as the percentage of natural features (NF) and Shannon's diversity index (SHDI) were adopted to evaluate the landscape features of the ten sites. Laboratory experiments were then performed with 20 well-trained listeners to investigate the perception of high-speed train noise in rural areas. The experiments consisted of three parts: 1) visual-only condition, 2) audio-only condition, and 3) combined audio-visual condition. The results showed that subjects' preference for visual images was significantly related to NF, the number of land types, and the A-weighted equivalent sound pressure level (LAeq). In addition, the visual images significantly influenced the noise annoyance, and LAeq and NF were the dominant factors affecting the annoyance from high-speed train noise in the combined audio-visual condition. In addition, Zwicker's loudness (N) was highly correlated with the annoyance from high-speed train noise in both the audio-only and audio-visual conditions.

  12. Maintenance and repair of high-speed dental handpieces.

    PubMed

    Norkiewicz, D S; Sundberg, M A; Druckman, R F; Breault, L G

    2001-01-01

    High-speed dental handpieces constitute an integral part of the dental practice. A handpiece that is worn or malfunctions is inconvenient and may affect production. This article is designed to help practitioners understand the factors that contribute to handpiece wear and breakdown. Basic maintenance and options for repair also are discussed.

  13. High-speed LWR transients simulation for optimizing emergency response

    SciTech Connect

    Wulff, W.; Cheng, H.S.; Lekach, S.V.; Mallen, A.N.; Stritar, A.

    1984-11-19

    The purpose of computer-assisted emergency response in nuclear power plants, and the requirements for achieving such a response, are presented. An important requirement is the attainment of realistic high-speed plant simulations at the reactor site. Currently pursued development programs for plant simulations are reviewed. Five modeling principles are established and a criterion is presented for selecting numerical procedures and efficient computer hardware to achieve high-speed simulations. A newly developed technology for high-speed power plant simulation is described and results are presented. It is shown that simulation speeds ten times greater than real-time process-speeds are possible, and that plant instrumentation can be made part of the computational loop in a small, on-site minicomputer. Additional technical issues are presented which must still be resolved before the newly developed technology can be implemented in a nuclear power plant.

  14. The Fundamental Principles of High-speed Semi-diesel Engines. Part I: a General Discussion of the Subject of Fuel Injection in Diesel Engines and Detailed Descriptions of Many Types of Injection Nozzles

    NASA Technical Reports Server (NTRS)

    Buchner,

    1926-01-01

    Three questions relating to the technical progress in the utilization of heavy oils are discussed. The first question considers solid injection in high-speed automobile engines, the second concerns the development of the hot-bulb engine, and the third question relates to the need for a more thorough investigation of the processes on which the formatation of combustible, rapidly-burning mixtures depend.

  15. Lubrication and cooling for high speed gears

    NASA Technical Reports Server (NTRS)

    Townsend, D. P.

    1985-01-01

    The problems and failures occurring with the operation of high speed gears are discussed. The gearing losses associated with high speed gearing such as tooth mesh friction, bearing friction, churning, and windage are discussed with various ways shown to help reduce these losses and thereby improve efficiency. Several different methods of oil jet lubrication for high speed gearing are given such as into mesh, out of mesh, and radial jet lubrication. The experiments and analytical results for the various methods of oil jet lubrication are shown with the strengths and weaknesses of each method discussed. The analytical and experimental results of gear lubrication and cooling at various test conditions are presented. These results show the very definite need of improved methods of gear cooling at high speed and high load conditions.

  16. ERROR CORRECTION IN HIGH SPEED ARITHMETIC,

    DTIC Science & Technology

    The errors due to a faulty high speed multiplier are shown to be iterative in nature. These errors are analyzed in various aspects. The arithmetic coding technique is suggested for the improvement of high speed multiplier reliability. Through a number theoretic investigation, a large class of arithmetic codes for single iterative error correction are developed. The codes are shown to have near-optimal rates and to render a simple decoding method. The implementation of these codes seems highly practical. (Author)

  17. Agile Electromagnetics Exploiting High Speed Logic (AEEHSL).

    DTIC Science & Technology

    2014-09-26

    examination and alteration of codes and filter weights 3. READ Mode - This mode enables the reading or replaying of the data from the digital tape recorder...available in this subsystems are used to initialize the * radar, clock the code from the high-speed code storage memory to drive the code modulator, delay...correlation process. There is storage space within the high speed memory for 32 codes of length 64 bits or less. The radiated code can be changed by a

  18. High-speed mirror-scanning tracker

    NASA Astrophysics Data System (ADS)

    Tong, HengWei

    1999-06-01

    This paper introduces a high speed single-mirror scanner developed by us as a versatile tracker. It can be connected with a high speed camera, a TV tracker (or color video recorder) /measurer/recorder. It can be guided by a computer, a joystick (automatic or manual) or TV tracker. In this paper, we also present the advantages of our scanner contrasted with the limitations of fixed camera system. In addition, several usable projects of mirror scanner are discussed.

  19. Material constraints on high-speed design

    NASA Astrophysics Data System (ADS)

    Bucur, Diana; Militaru, Nicolae

    2015-02-01

    Current high-speed circuit designs with signal rates up to 100Gbps and above are implying constraints for dielectric and conductive materials and their dependence of frequency, for component elements and for production processes. The purpose of this paper is to highlight through various simulation results the frequency dependence of specific parameters like insertion and return loss, eye diagrams, group delay that are part of signal integrity analyses type. In low-power environment designs become more complex as the operation frequency increases. The need for new materials with spatial uniformity for dielectric constant is a need for higher data rates circuits. The fiber weave effect (FWE) will be analyzed through the eye diagram results for various dielectric materials in a differential signaling scheme given the fact that the FWE is a phenomenon that affects randomly the performance of the circuit on balanced/differential transmission lines which are typically characterized through the above mentioned approaches. Crosstalk between traces is also of concern due to propagated signals that have tight rise and fall times or due to high density of the boards. Criteria should be considered to achieve maximum performance of the designed system requiring critical electronic properties.

  20. Managing emergencies and abnormal situations in air traffic control (part I): taskwork strategies.

    PubMed

    Malakis, Stathis; Kontogiannis, Tom; Kirwan, Barry

    2010-07-01

    A lot of research in Air Traffic Control (ATC) has focused on human errors in decision making whilst little attention has been paid to the cognitive strategies employed by controllers in managing abnormal situations. This study looks into cognitive strategies in taskwork that enable controllers to become resilient decision-makers. Two field studies were carried out where novice and experienced controllers were observed in simulator training in emergency and unusual scenarios. A prototype model of taskwork strategies in air traffic management was developed and its construct validity was tested in the context of the field studies. A companion study (part II), follows that investigates aspects of teamwork in the same field and contributes to the development of a generic model of Taskwork & Teamwork strategies in Emergencies in Air traffic Management (T(2)EAM). The final section addresses the difficulties experienced by novice controllers and explains taskwork strategies employed by experts to manage uncertainty and balance workload in simulator emergencies. Copyright 2010 Elsevier Ltd. All rights reserved.

  1. High Speed Digital Camera Technology Review

    NASA Technical Reports Server (NTRS)

    Clements, Sandra D.

    2009-01-01

    A High Speed Digital Camera Technology Review (HSD Review) is being conducted to evaluate the state-of-the-shelf in this rapidly progressing industry. Five HSD cameras supplied by four camera manufacturers participated in a Field Test during the Space Shuttle Discovery STS-128 launch. Each camera was also subjected to Bench Tests in the ASRC Imaging Development Laboratory. Evaluation of the data from the Field and Bench Tests is underway. Representatives from the imaging communities at NASA / KSC and the Optical Systems Group are participating as reviewers. A High Speed Digital Video Camera Draft Specification was updated to address Shuttle engineering imagery requirements based on findings from this HSD Review. This draft specification will serve as the template for a High Speed Digital Video Camera Specification to be developed for the wider OSG imaging community under OSG Task OS-33.

  2. The VK-8L High - Speed Camera

    NASA Astrophysics Data System (ADS)

    Venatovsky, I. V.; Tsukanov, A. A.; Kirillov, V. A.

    1985-02-01

    To enhance the time resolution of high-speed cine equipment during the investigation of rapidly flowing processes, a light source to illumi late an object under test is represented b7 solid-state laser exposure devices operating in the mode of Q-factor flodulation. With a high-speed eine cafiera being run in the continuous scanning mode, these devices will permit a sequence of fra Mlles to be obtained within a short exposure time of 150 ns to 200 nanoseconds. At scanning speeds of up to 250 m/s this will ensure satisfactory image quality from the slear viewpoint. In the case of faster continuous scanuin speeds and of shorter exposure times, it becomes necessary to run the high-speed cauera in the fl ode of frame-by-frame cinematography.

  3. Scientific Visualization in High Speed Network Environments

    NASA Technical Reports Server (NTRS)

    Vaziri, Arsi; Kutler, Paul (Technical Monitor)

    1997-01-01

    In several cases, new visualization techniques have vastly increased the researcher's ability to analyze and comprehend data. Similarly, the role of networks in providing an efficient supercomputing environment have become more critical and continue to grow at a faster rate than the increase in the processing capabilities of supercomputers. A close relationship between scientific visualization and high-speed networks in providing an important link to support efficient supercomputing is identified. The two technologies are driven by the increasing complexities and volume of supercomputer data. The interaction of scientific visualization and high-speed networks in a Computational Fluid Dynamics simulation/visualization environment are given. Current capabilities supported by high speed networks, supercomputers, and high-performance graphics workstations at the Numerical Aerodynamic Simulation Facility (NAS) at NASA Ames Research Center are described. Applied research in providing a supercomputer visualization environment to support future computational requirements are summarized.

  4. High Speed Dynamics in Brittle Materials

    NASA Astrophysics Data System (ADS)

    Hiermaier, Stefan

    2015-06-01

    Brittle Materials under High Speed and Shock loading provide a continuous challenge in experimental physics, analysis and numerical modelling, and consequently for engineering design. The dependence of damage and fracture processes on material-inherent length and time scales, the influence of defects, rate-dependent material properties and inertia effects on different scales make their understanding a true multi-scale problem. In addition, it is not uncommon that materials show a transition from ductile to brittle behavior when the loading rate is increased. A particular case is spallation, a brittle tensile failure induced by the interaction of stress waves leading to a sudden change from compressive to tensile loading states that can be invoked in various materials. This contribution highlights typical phenomena occurring when brittle materials are exposed to high loading rates in applications such as blast and impact on protective structures, or meteorite impact on geological materials. A short review on experimental methods that are used for dynamic characterization of brittle materials will be given. A close interaction of experimental analysis and numerical simulation has turned out to be very helpful in analyzing experimental results. For this purpose, adequate numerical methods are required. Cohesive zone models are one possible method for the analysis of brittle failure as long as some degree of tension is present. Their recent successful application for meso-mechanical simulations of concrete in Hopkinson-type spallation tests provides new insight into the dynamic failure process. Failure under compressive loading is a particular challenge for numerical simulations as it involves crushing of material which in turn influences stress states in other parts of a structure. On a continuum scale, it can be modeled using more or less complex plasticity models combined with failure surfaces, as will be demonstrated for ceramics. Models which take microstructural

  5. High Speed and Slow Motion: The Technology of Modern High Speed Cameras

    ERIC Educational Resources Information Center

    Vollmer, Michael; Mollmann, Klaus-Peter

    2011-01-01

    The enormous progress in the fields of microsystem technology, microelectronics and computer science has led to the development of powerful high speed cameras. Recently a number of such cameras became available as low cost consumer products which can also be used for the teaching of physics. The technology of high speed cameras is discussed,…

  6. High Speed and Slow Motion: The Technology of Modern High Speed Cameras

    ERIC Educational Resources Information Center

    Vollmer, Michael; Mollmann, Klaus-Peter

    2011-01-01

    The enormous progress in the fields of microsystem technology, microelectronics and computer science has led to the development of powerful high speed cameras. Recently a number of such cameras became available as low cost consumer products which can also be used for the teaching of physics. The technology of high speed cameras is discussed,…

  7. High speed optical tomography for flow visualization

    NASA Technical Reports Server (NTRS)

    Snyder, Ray; Hesselink, Lambertus

    1987-01-01

    A novel optical architecture (based on holographic optical elements) for making high speed tomographic measurements is presented. The system is designed for making density or species concentration measurements in a nonsteady fluid or combustion flow. Performance evaluations of the optical system are discussed, and a test phase object was successfully reconstructed using this optical arrangement.

  8. Maneuverability Estimation of High-Speed Craft

    DTIC Science & Technology

    2015-06-01

    derived based on equations by Lewandowski and Denny- Hubble in order to find the fundamental maneuvering characteristics. The model is developed in...characteristic of high- speed craft. A mathematical model is derived based on equations by Lewandowski and Denny- Hubble in order to find the fundamental...33 C. EQUATIONS BY DENNY AND HUBBLE ................................................43 D. NOMOTO

  9. High speed hydrogen/graphite interaction

    NASA Technical Reports Server (NTRS)

    Kelly, A. J.; Hamman, R.; Sharma, O. P.; Harrje, D. T.

    1974-01-01

    Various aspects of a research program on high speed hydrogen/graphite interaction are presented. Major areas discussed are: (1) theoretical predictions of hydrogen/graphite erosion rates; (2) high temperature, nonequilibrium hydrogen flow in a nozzle; and (3) molecular beam studies of hydrogen/graphite erosion.

  10. High-Speed Sealift Technology. Volume 1

    DTIC Science & Technology

    1998-09-01

    Engineering Directorate Technology Projection Report HIGH-SPEED SEALIFT TECHNOLOGY Volume 1 BY OWEN K. RITTER MICHAEL T. TEMPLEMAN...7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Naval Surface Warfare Center,Carderock Division,Total Ship Systems Engineering Directorate...11 3.4.3.2 Diesel Engines

  11. Italian High-speed Airplane Engines

    NASA Technical Reports Server (NTRS)

    Bona, C F

    1940-01-01

    This paper presents an account of Italian high-speed engine designs. The tests were performed on the Fiat AS6 engine, and all components of that engine are discussed from cylinders to superchargers as well as the test set-up. The results of the bench tests are given along with the performance of the engines in various races.

  12. Impedance Matching for High Speed Optical Communication

    DTIC Science & Technology

    1988-06-01

    OPTICAL COMMUNICATION 16, PERaPNAL AUATHOR(S)ur. Kenry Zmuda IfTYJE OF REPORT 13b TIMý COVA5ED 14. DATE OF REPORT (Year, Month. Day) I5 PAGE COUNT EnaJ...294. 5. D. J. Nicholson and H. Zmuda, "Matching Structures for High Speed Optical Communication ", To be published in the Proceedings of Society of

  13. High-speed data word monitor

    NASA Technical Reports Server (NTRS)

    Wirth, M. N.

    1975-01-01

    Small, portable, self-contained device provides high-speed display of bit pattern or any selected portion of transmission, can suppress filler patterns so that display is not updated, and can freeze display so that specific event may be observed in detail.

  14. High-Speed Photometry of Catalina Sources

    NASA Astrophysics Data System (ADS)

    Warner, Brian; Woudt, Patrick A.

    2010-12-01

    High-speed photometry of cataclysmic variables selected from the Catalina Real-Time Transient (CRTS) survey results in orbital periods for 12 objects (10 dwarf novae and 2 polars). The period distribution for all CRTS sources has a pronounced peak near 80 minutes, confirming previous results from the Sloan Digital Sky Survey cataclysmic variables.

  15. Introduction of the M-85 high-speed rotorcraft concept

    NASA Technical Reports Server (NTRS)

    Stroub, Robert H.

    1991-01-01

    As a result of studying possible requirements for high-speed rotorcraft and studying many high-speed concepts, a new high-speed rotorcraft concept, designated as M-85, was derived. The M-85 is a helicopter that is reconfigured to a fixed-wing aircraft for high-speed cruise. The concept was derived as an approach to enable smooth, stable conversion between fixed-wing and rotary-wing while retaining hover and low-speed flight characteristics of a low disk loading helicopter. The name, M-85, reflects the high-speed goals of 0.85 Mach number at high altitude. For a high-speed rotorcraft, it is expected that a viable concept must be a cruise-efficient, fixed-wing aircraft so it may be attractive for a multiplicity of missions. It is also expected that a viable high-speed rotorcraft concept must be cruise efficient first and secondly, efficient in hover. What makes the M-85 unique is the large circular hub fairing that is large enough to support the aircraft during conversion between rotary-wind and fixed-wing modes. With the aircraft supported by this hub fairing, the rotor blades can be unloaded during the 100 percent change in rotor rpm. With the blades unloaded, the potential for vibratory loads would be lessened. In cruise, the large circular hub fairing would be part of the lifting system with additional lifting panels deployed for better cruise efficiency. In hover, the circular hub fairing would slightly reduce lift potential and/or decrease hover efficiency of the rotor system. The M-85 concept is described and estimated forward flight performance characteristics are presented in terms of thrust requirements and L/D with airspeed. The forward flight performance characteristics reflect recent completed wind tunnel tests of the wing concept. Also presented is a control system technique that is critical to achieving low oscillatory loads in rotary-wing mode. Hover characteristics, C(sub p) versus C(sub T) from test data, is discussed. Other techniques pertinent to

  16. WorldFIP offers high-speed strength

    SciTech Connect

    Beeston, J.W.

    1996-11-01

    WorldFIB has a 10-year track record in fieldbus standardization and a significant lead in installations already incorporating the ISA/IEC physical layer. This article briefly describes WorldFIP, its approach to interoperability, and how it sees its technology advancing in the future. WorldFIP is an industry `club` - a nonprofit association dedicated to an international standard fieldbus. Since it was founded, WorldFIP has made major contributions to the work of the ISA and IEC. As a result, WorldFIP already uses the ISA/IEC physical layer. Reflecting its dedication to open international standards, WorldFIP is a member of Fieldbus Foundation (FF) and has already achieved the status of a European standard. WorldFIP membership reflects many industry sectors, including petrochemical, discrete manufacturing, mass transportation, and utilities. Many sectors have been able to move faster than the petrochemical sector because they have less hazardous processes. They also often have high-speed machinery, leading to WorldFIP having a major strength in high-speed fieldbus. Because of this advanced open approach, WorldFIP members have had high-speed products on the market for several years. They also have in-depth experience designing and installing systems and solving real problems that arise in real installations. WorldFIP recognized from the beginning that a fieldbus had to support not just the needs for both real-time control and instrumentation but also the need to extract information about the plant and its equipment without disturbing the real-time world. It also recognized that those involved in automation, instrumentation, and control could easily specify their requirements in terms of cyclic variables, event variables, and messages. WorldFIP supports these needs by supporting three types of network traffic: (1) Cyclic: always transmitted on time. (2) Events: transmitted when occurring. (3) Messages: transmitted when required. 3 refs.

  17. Bufferless Ultra-High Speed All-Optical Packet Routing

    NASA Astrophysics Data System (ADS)

    Muttagi, Shrihari; Prince, Shanthi

    2011-10-01

    All-Optical network is still in adolescence to cope up with steep rise in data traffic at the backbone network. Routing of packets in optical network depends on the processing speed of the All-Optical routers, thus there is a need to enhance optical processing to curb the delay in packet forwarding unit. In the proposed scheme, the header processing takes place on fly, therefore processing delay is at its lower limit. The objective is to propose a framework which establishes high data rate transmission with least latency in data routing from source to destination. The Routing table and optical header pulses are converted into Pulse Position (PP) format, thus reducing the complexity and in turn the processing delay. Optical pulse matching is exercised which results in multi-output transmission. This results in ultra-high speed packet forwarding unit. In addition, this proposed scheme includes dispersion compensation unit, which makes the data reliable.

  18. Current situation: US tests under way. [High Speed Rail Transportation

    SciTech Connect

    Not Available

    1993-04-16

    Though US high-speed rail (HSR) activity is picking up, the technology is much farther advanced in Europe and Japan. Several HSR projects have been proposed for various parts of the country, but nearly all remain in the early developmental stages. The closest equivalent to regular high-speed rail service in the US still is provided by the Amtrak Metroliners running between New York and Washington. In late January, Amtrak began a three-month trial of a Swedish-built X2000 train on the New York-Washington run. Popularly known as the [open quotes]tilt train,[close quotes] it has a computer-guided suspension system that permits higher speeds on curves. The system enables trains to bank on curves, much as racing cars do, thus minimizing the queasiness that centrifugal force can cause. Passengers report feeling little or no discomfort when the X2000 tilts.

  19. High speed technology development and evaluation

    NASA Astrophysics Data System (ADS)

    Parker, D. R.; Brown, E. R.; Dickson, J. F.

    1986-10-01

    Semiconductor technology suited to high on-board data handling rates was investigated. Very high speed discrete logic and high speed gate arrays; single chip digital signal processors and single chip floating point processing peripherals; and analog CCD technologies and custom designed CCD chips for synthetic aperture radar applications were assessed. The 2 micron CMOS technology is highly reliable, supporting semicustom design techniques. Process JGC, the CCD technology, is highly reliable except for tolerance to ionizing radiation. Reliability of the ECL 16-bit serial-parallel parallel-serial converter junction isolated bipolar process, process WZA, is compromised by a design error and oxide contamination contributing to high leakage levels. The bipolar circuit is tolerant to an ionizing radiation of 20kRad. Step stress environmental testing to 200 C produces no failures in CMOS and CCD technologies, but accelerates the degradation of the oxide contaminated bipolar process. All technologies are susceptible to single event upsets.

  20. Abbreviated annealing of high-speed steel

    SciTech Connect

    Zablotskii, V.K.; Bartel, G.P.

    1987-07-01

    The authors investigate the structural and phase transformations during the heating, holding, and cooling of high-speed steels of two basic groups: tungsten (R18, R12, R12F3, and R12F4K5) and tungsten-molybdenum (R6M5, 10R6M5, R6M5K5, R8M3, 10R8M3, and R8M3K6S) steels in the forged state. They propose a cooling regime with complete alpha-gamma recrystallization whose implementation at a Soviet steel plant has made it possible to reduce the duration of heat treatment and increase productivity by 20% in cutting the annealed high-speed steels.

  1. High-speed massively parallel scanning

    DOEpatents

    Decker, Derek E.

    2010-07-06

    A new technique for recording a series of images of a high-speed event (such as, but not limited to: ballistics, explosives, laser induced changes in materials, etc.) is presented. Such technique(s) makes use of a lenslet array to take image picture elements (pixels) and concentrate light from each pixel into a spot that is much smaller than the pixel. This array of spots illuminates a detector region (e.g., film, as one embodiment) which is scanned transverse to the light, creating tracks of exposed regions. Each track is a time history of the light intensity for a single pixel. By appropriately configuring the array of concentrated spots with respect to the scanning direction of the detection material, different tracks fit between pixels and sufficient lengths are possible which can be of interest in several high-speed imaging applications.

  2. High speed flight effects on noise propagation

    NASA Astrophysics Data System (ADS)

    Burrin, R. H.; Ahuja, K. K.; Salikuddin, M.

    1987-01-01

    An experimental study to investigate the effects of source motion on sound propagation at high Mach numbers was devised to determine, in particular, if the large amplifications in the forward arc to high speeds, predicted by the 'convective amplification' factors normally used for low speeds, are realistic. An acoustic point source and a microphone, both immersed in flows up to a Mach number of 0.8, were used to obtain the convective amplification factors for comparison with predictions. The results confirmed the existence of high levels of noise propagating ahead of an aircraft flying at high speed. The commonly adopted prediction formula, namely (1 - M sub 0 cos theta sub E) exp -4, was categorically confirmed by the data for frequencies up to 5 kHz and Mach numbers of 0.2 to 0.8. At higher frequencies, the predictions are followed up to emission angles of 120 deg, but then deviate downward towards the direction of flight.

  3. High speed printing with polygon scan heads

    NASA Astrophysics Data System (ADS)

    Stutz, Glenn

    2016-03-01

    To reduce and in many cases eliminate the costs associated with high volume printing of consumer and industrial products, this paper investigates and validates the use of the new generation of high speed pulse on demand (POD) lasers in concert with high speed (HS) polygon scan heads (PSH). Associated costs include consumables such as printing ink and nozzles, provisioning labor, maintenance and repair expense as well as reduction of printing lines due to high through put. Targets that are applicable and investigated include direct printing on plastics, printing on paper/cardboard as well as printing on labels. Market segments would include consumer products (CPG), medical and pharmaceutical products, universal ID (UID), and industrial products. In regards to the POD lasers employed, the wavelengths include UV(355nm), Green (532nm) and IR (1064nm) operating within the repetition range of 180 to 250 KHz.

  4. High-speed tensile test instrument.

    PubMed

    Mott, P H; Twigg, J N; Roland, D F; Schrader, H S; Pathak, J A; Roland, C M

    2007-04-01

    A novel high-speed tensile test instrument is described, capable of measuring the mechanical response of elastomers at strain rates ranging from 10 to 1600 s(-1) for strains through failure. The device employs a drop weight that engages levers to stretch a sample on a horizontal track. To improve dynamic equilibrium, a common problem in high speed testing, equal and opposite loading was applied to each end of the sample. Demonstrative results are reported for two elastomers at strain rates to 588 s(-1) with maximum strains of 4.3. At the higher strain rates, there is a substantial inertial contribution to the measured force, an effect unaccounted for in prior works using the drop weight technique. The strain rates were essentially constant over most of the strain range and fill a three-decade gap in the data from existing methods.

  5. High speed receiver for capsule endoscope.

    PubMed

    Woo, S H; Yoon, K W; Moon, Y K; Lee, J H; Park, H J; Kim, T W; Choi, H C; Won, C H; Cho, J H

    2010-10-01

    In this study, a high-speed receiver for a capsule endoscope was proposed and implemented. The proposed receiver could receive 20 Mbps data that was sufficient to receive images with a higher resolution than conventional receivers. The receiver used a 1.2 GHz band to receive radio frequency (RF) signal, and demodulated the signal to an intermediate frequency (IF) stage (150 MHz). The demodulated signal was amplified, filtered, and under-sampled by a high-speed analog-to-digital converter (ADC). In order to decode the under-sampled data in real time, a simple frequency detection algorithm was selected and was implemented by using a FPGA. The implemented system could receive 20 Mbps data.

  6. High Speed Research Program Sonic Fatigue

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A. (Technical Monitor); Beier, Theodor H.; Heaton, Paul

    2005-01-01

    The objective of this sonic fatigue summary is to provide major findings and technical results of studies, initiated in 1994, to assess sonic fatigue behavior of structure that is being considered for the High Speed Civil Transport (HSCT). High Speed Research (HSR) program objectives in the area of sonic fatigue were to predict inlet, exhaust and boundary layer acoustic loads; measure high cycle fatigue data for materials developed during the HSR program; develop advanced sonic fatigue calculation methods to reduce required conservatism in airframe designs; develop damping techniques for sonic fatigue reduction where weight effective; develop wing and fuselage sonic fatigue design requirements; and perform sonic fatigue analyses on HSCT structural concepts to provide guidance to design teams. All goals were partially achieved, but none were completed due to the premature conclusion of the HSR program. A summary of major program findings and recommendations for continued effort are included in the report.

  7. DAC 22 High Speed Civil Transport Model

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Between tests, NASA research engineer Dave Hahne inspects a tenth-scale model of a supersonic transport model in the 30- by 60-Foot Tunnel at NASA Langley Research Center, Hampton, Virginia. The model is being used in support of NASA's High-Speed Research (HSR) program. Langley researchers are applying advance aerodynamic design methods to develop a wing leading-edge flap system which significantly improves low-speed fuel efficiency and reduces noise generated during takeoff operation. Langley is NASA's lead center for the agency's HSR program, aimed at developing technology to help U.S. industry compete in the rapidly expanding trans-oceanic transport market. A U.S. high-speed civil transport is expected to fly in about the year 2010. As envisioned, it would fly 300 passengers across the Pacific in about four hours at Mach 2.4 (approximately 1,600 mph/1950 kph) for a modest increase over business class fares.

  8. Safety issues in high speed machining

    NASA Astrophysics Data System (ADS)

    1994-05-01

    There are several risks related to High-Speed Milling, but they have not been systematically determined or studied so far. Increased loads by high centrifugal forces may result in dramatic hazards. Flying tools or fragments from a tool with high kinetic energy may damage surrounding people, machines and devices. In the project, mechanical risks were evaluated, theoretic values for kinetic energies of rotating tools were calculated, possible damages of the flying objects were determined and terms to eliminate the risks were considered. The noise levels of the High-Speed Machining center owned by the Helsinki University of Technology (HUT) and the Technical Research Center of Finland (VTT) in practical machining situation were measured and the results were compared to those after basic preventive measures were taken.

  9. Safety of high speed ground transportation systems. High speed passenger trains in freight railroad corridors: Operations and safety considerations. Final report, September 1993-April 1994

    SciTech Connect

    Ullman, K.B.; Bing, A.J.

    1994-12-01

    This report presents the results of a study into some operations and technical issues likely to be encountered when planning for high-speed rail passenger service on corridors that presently carry freight or commuter traffic. The study starts with a review of corridors designated under Section 1010 of the Intermodal Surface Transportation Efficiency Act (ISTEA) of 1991, a potential future high-speed corridors. After a review of signal, train control and braking systems presently used in the United States and elsewhere, the study provides analyses of the safety and operations impacts of introducing high-speed rail service on the hypothetical corridor. The safety analysis established a safety performance target based on present intercity rail safety performance, and reviewed the need for and benefits from safety improvements for high speed operation. The operations analysis concentrated on the impacts on track capacity and train delays of introducing a high-speed rail service on three hypothetical existing corridors with different track layouts and signal systems.

  10. Managing emergencies and abnormal situations in air traffic control (part II): teamwork strategies.

    PubMed

    Malakis, Stathis; Kontogiannis, Tom; Kirwan, Barry

    2010-07-01

    Team performance has been studied in many safety-critical organizations including aviation, nuclear power plant, offshore oil platforms and health organizations. This study looks into teamwork strategies that air traffic controllers employ to manage emergencies and abnormal situations. Two field studies were carried out in the form of observations of simulator training in emergency and unusual scenarios of novices and experienced controllers. Teamwork strategies covered aspects of team orientation and coordination, information exchange, change management and error handling. Several performance metrics were used to rate the efficiency of teamwork and test the construct validity of a prototype model of teamwork. This is a companion study to an earlier investigation of taskwork strategies in the same field (part I) and contributes to the development of a generic model for Taskwork and Teamwork strategies in Emergencies in Air traffic Management (T(2)EAM). Suggestions are made on how to use T(2)EAM to develop training programs, assess team performance and improve mishap investigations. Copyright 2010 Elsevier Ltd. All rights reserved.

  11. The NASA high-speed turboprop program

    NASA Technical Reports Server (NTRS)

    Dugan, J. F.; Miller, B. A.; Graber, E. J.; Sagerser, D. A.

    1980-01-01

    Technology readiness for Mach 0.7 to 0.8 turboprop powered aircraft with the potential for fuel savings and DOC reductions of up to 30 and 15 percent respectively relative to current in-service aircraft is addressed. The areas of propeller aeroacoustics, propeller structures, turboprop installed performance, aircraft cabin environment, and turboprop engine and aircraft studies are emphasized. Large scale propeller characteristics and high speed propeller flight research tests using a modified testbed aircraft are also considered.

  12. Data Capture Technique for High Speed Signaling

    DOEpatents

    Barrett, Wayne Melvin; Chen, Dong; Coteus, Paul William; Gara, Alan Gene; Jackson, Rory; Kopcsay, Gerard Vincent; Nathanson, Ben Jesse; Vranas, Paylos Michael; Takken, Todd E.

    2008-08-26

    A data capture technique for high speed signaling to allow for optimal sampling of an asynchronous data stream. This technique allows for extremely high data rates and does not require that a clock be sent with the data as is done in source synchronous systems. The present invention also provides a hardware mechanism for automatically adjusting transmission delays for optimal two-bit simultaneous bi-directional (SiBiDi) signaling.

  13. High Speed Blood and Fluid Transfusion Equipment

    DTIC Science & Technology

    2010-06-01

    it stores energy for heating fluid when not attached to an external power source, (2) that it provides for high heating and infusion rates, up to...8217 % High Speed Blood and Fluid Transfusion Equipment Final Report Prepared by: Rocky Research 1598 Foothill Drive Boulder City, NV 89005...University of Nevada School of Medicine Trauma Institute Department of Surgery 2040 W. Charleston Blvd #302 Las Vegas, NV 89102 Principal

  14. The high-speed camera ULTRACAM

    NASA Astrophysics Data System (ADS)

    Marsh, T. R.; Dhillon, V. S.

    2006-08-01

    ULTRACAM is a high-speed, tri-band CCD camera designed for observations of time variable celestial objects. Commissioned on the 4.2m WHT in La Palma, it has now been used for observations of many types of phenomena and objects including stellar occultations, accreting black-holes, neutron stars and white dwarfs, pulsars, eclipsing binaries and pulsating stars. In this paper we describe the salient features of ULTRACAM and discuss some of the results of its use.

  15. High-speed Digital Color Imaging Pyrometry

    DTIC Science & Technology

    2011-08-01

    and environment of the events. To overcome these challenges, we have characterized and calibrated a digital high-speed color camera that may be...correction) to determine their effect on the calculated temperature. Using this technique with a Phantom color camera , we measured the temperature of...constant value of approximately 1980~K. 15. SUBJECT TERMS Pyrometry, color camera 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT

  16. Laser Trigger For High Speed Camera

    NASA Astrophysics Data System (ADS)

    Chang, Rong-Seng; Lin, Chin-Wu; Cheng, Tung

    1987-09-01

    High speed camera coorperated with laser trigger to catch high speed unpredictable events has many applications: such as scoring system for the end game of missile interception, war head explosive study etc. When the event happening in a very short duration, the repetition rate of the laser ranging must be as high as 5K herze and the pulse duration should be less than 10 nsec. In some environment, like inside the aircraft, the abailable space for high speed camera to set up is limited, large film capacity camera could not be used. In order to use the small capacity film, the exact trigger time for the camera are especially important. The target velocity, camera acceleration characteristics, speed regulation, camera size, weight and the ruggedness are all be considered before the laser trigger be designed. Electric temporal gate is used to measure the time of flight ranging datum. The triangular distance measurement principle are also used to get the ranging when the base line i.e. the distance between the laser transmitter and receiver are large enough.

  17. MPLS switch architecture supporting Diffserv for high-speed switching and QoS

    NASA Astrophysics Data System (ADS)

    Lee, Tae-Won; Kim, Young-Chul; Lee, Mike M.

    2004-03-01

    In this paper, we propose the architecture of the MPLS switch supporting Differentiated Services in the MPLS-based network. The traffic conditioner consists of a classifier, a meter, and a marker. The VOQ-PHB module which combines input queue with each PHB queue is implemented to utilize the resources more efficiently, employing the Priority-iSLIP scheduling algorithm to support high-speed switching. The proposed MPLS switch architecture is modeled and synthesized by Very High Speed Integrated Circuits Hardware Description Language (VHDL), verified and then implemented by commercialized CAD tools to justify the validity of the proposed hardware architecture.

  18. Architectures and applications of high-speed vision

    NASA Astrophysics Data System (ADS)

    Watanabe, Yoshihiro; Oku, Hiromasa; Ishikawa, Masatoshi

    2014-11-01

    With the progress made in high-speed imaging technology, image processing systems that can process images at high frame rates, as well as their applications, are expected. In this article, we examine architectures for high-speed vision systems, and also dynamic image control, which can realize high-speed active optical systems. In addition, we also give an overview of some applications in which high-speed vision is used, including man-machine interfaces, image sensing, interactive displays, high-speed three-dimensional sensing, high-speed digital archiving, microvisual feedback, and high-speed intelligent robots.

  19. High-Speed Research Surveillance Symbology Assessment Experiment

    NASA Technical Reports Server (NTRS)

    Kramer, Lynda J.; Norman, R. Michael

    2000-01-01

    Ten pilots flew multiple approach and departure scenarios in a simulation experiment of the High-Speed Civil Transport to evaluate the utility of different airborne surveillance display concepts. The primary eXternal Visibility System (XVS) display and the Navigation Display (ND) were used to present tactical and strategic surveillance information, respectively, to the pilot. Three sensors, the Traffic Alert and Collision Avoidance System, radar, and the Automatic Dependent Surveillance-Broadcast system, were modeled for this simulation and the sensors surveillance information was presented in two different symbology sets to the pilot. One surveillance symbology set used unique symbol shapes to differentiate among the sensors, while the other set used common symbol shapes for the sensors. Surveillance information in the form of escape guidance from threatening traffic was also presented to the pilots. The surveillance information (sensors and escape guidance) was either presented head-up on the primary XVS display and head-down on the ND or head-down on the ND only. Both objective and subjective results demonstrated that the display concepts having surveillance information presented head-up and head-down have surveillance performance benefits over those concepts having surveillance information displayed head-down only. No significant symbology set differences were found for surveillance task performance.

  20. Driver assist behaviors for high-speed small UGVs

    NASA Astrophysics Data System (ADS)

    Yamauchi, Brian

    2011-05-01

    Currently deployed small UGVs operate at speeds up to around 6 mph and have proven their usefulness in explosives ordnance disposal (EOD) missions. As part of the TARDEC-funded Stingray Project, iRobot is investigating techniques to increase the speed of small UGVs so they can be useful in a wider range of missions, such as high-speed reconnaissance and infantry assault missions. We have developed a prototype Stingray PackBot, using wheels rather than tracks, that is capable of traveling at speeds up to 18 mph. A key issue when traveling at such speeds is how to maintain stability during sharp turns and over rough terrain. We are developing driver assist behaviors that will provide dynamic stability control for high-speed small UGVs using techniques such as dynamic weight shifting to limit oversteer and understeer. These driver assist behaviors will enable operators to use future high-speed small UGVs in high optempo infantry missions and keep warfighters out of harm's way.

  1. High-Speed Propeller for Aircraft

    NASA Technical Reports Server (NTRS)

    Sagerser, D. A.; Gatzen, B. S.

    1986-01-01

    Engine efficiency increased. Propeller blades required to be quite thin and highly swept to minimize compressibility losses and propeller noise during high-speed cruise. Use of 8 or 10 blades with highpropeller-power loading allows overall propeller diameter to be kept relatively small. Area-ruled spinner and integrated nacelle shape reduce compressibility losses in propeller hub region. Finally, large modern turboshaft engine and gearbox provide power to advanced propeller. Fuel savings of 30 to 50 percent over present systems anticipated. Propfan system adaptable to number of applications, such as highspeed (subsonic) business and general-aviation aircraft, and military aircraft including V/STOL.

  2. Pulsed laser triggered high speed microfluidic switch

    NASA Astrophysics Data System (ADS)

    Wu, Ting-Hsiang; Gao, Lanyu; Chen, Yue; Wei, Kenneth; Chiou, Pei-Yu

    2008-10-01

    We report a high-speed microfluidic switch capable of achieving a switching time of 10 μs. The switching mechanism is realized by exciting dynamic vapor bubbles with focused laser pulses in a microfluidic polydimethylsiloxane (PDMS) channel. The bubble expansion deforms the elastic PDMS channel wall and squeezes the adjacent sample channel to control its fluid and particle flows as captured by the time-resolved imaging system. A switching of polystyrene microspheres in a Y-shaped channel has also been demonstrated. This ultrafast laser triggered switching mechanism has the potential to advance the sorting speed of state-of-the-art microscale fluorescence activated cell sorting devices.

  3. Flow imaging by high speed transmission tomography.

    PubMed

    Johansen, Geir Anton; Hampel, Uwe; Hjertaker, Bjørn Tore

    2010-01-01

    Fourth generation medical X-ray scanners using a gantry with a rotating X-ray source and a fixed circular detector array as sensor head, are too slow for imaging of the process dynamics for instance in multiphase flows. To avoid inconsistent measurements and motion blurring, all measurements need to be carried out in a short time compared to the time constants of the process dynamics. Two different high speed tomographic imaging systems are presented here demonstrating that image rates of several thousand images per second is possible. Copyright 2009 Elsevier Ltd. All rights reserved.

  4. Characterization and Compensation of High Speed Digitizers

    SciTech Connect

    Fong, P; Teruya, A; Lowry, M

    2005-04-04

    Increasingly, ADC technology is being pressed into service for single single-shot instrumentation applications that were formerly served by vacuum-tube based oscilloscopes and streak cameras. ADC technology, while convenient, suffers significant performance impairments. Thus, in these demanding applications, a quantitative and accurate representation of these impairments is critical to an understanding of measurement accuracy. We have developed a phase-plane behavioral model, implemented it in SIMULINK and applied it to interleaved, high-speed ADCs (up to 4 gigasamples/sec). We have also developed and demonstrated techniques to effectively compensate for these impairments based upon the model.

  5. High Speed Solid State Circuit Breaker

    NASA Technical Reports Server (NTRS)

    Podlesak, Thomas F.

    1993-01-01

    The U.S. Army Research Laboratory, Fort Monmouth, NJ, has developed and is installing two 3.3 MW high speed solid state circuit breakers at the Army's Pulse Power Center. These circuit breakers will interrupt 4160V three phase power mains in no more than 300 microseconds, two orders of magnitude faster than conventional mechanical contact type circuit breakers. These circuit breakers utilize Gate Turnoff Thyristors (GTO's) and are currently utility type devices using air cooling in an air conditioned enclosure. Future refinements include liquid cooling, either water or two phase organic coolant, and more advanced semiconductors. Each of these refinements promises a more compact, more reliable unit.

  6. An SAE high speed ring bus overview

    NASA Astrophysics Data System (ADS)

    Kroeger, Brian W.; Shih, Hubert

    An overview of the protocols and important features of the SAE high-speed ring bus (HSRB) standard is presented here, along with the functional design of a typical ring interface unit architecture. The counterrotating ring topology, with both loopback and bypass mechanisms, provides the high degree of fault tolerance desirable in many military and avionic systems. The error-detection, fault-detection, and recovery mechanisms are briefly described to illustrate the robustness of the HSRB system. The reserved-priority token-passing protocol is shown to provide efficient and deterministic performance, uselful in real-time applications where messages must be transmitted predictably, quickly, and reliably.

  7. Some problems of high speed travel

    PubMed Central

    Reader, D. C.

    1975-01-01

    Some aspects of high speed flight are examined to investigate whether increase in speed implies any lowering of safety standards. The problem of circadian dysrhythmia is discussed and methods of attenuating its effects are explained and some new hypnotic drugs are mentioned. The risk of decompression has been quantified and predictions have been made for risks in commercial service. Cosmic radiation in supersonic aircraft is unlikely to limit commercial operation or significantly increase risks to passengers and crew. The supersonic boom is likely to limit the terrain over which supersonic aircraft can operate and regulations covering engine noise on the ground could restrict some flights. PMID:1208294

  8. The Hubble Space Telescope high speed photometer

    NASA Technical Reports Server (NTRS)

    Vancitters, G. W., Jr.; Bless, R. C.; Dolan, J. F.; Elliot, J. L.; Robinson, E. L.; White, R. L.

    1988-01-01

    The Hubble Space Telescope will provide the opportunity to perform precise astronomical photometry above the disturbing effects of the atmosphere. The High Speed Photometer is designed to provide the observatory with a stable, precise photometer with wide dynamic range, broad wavelenth coverage, time resolution in the microsecond region, and polarimetric capability. Here, the scientific requirements for the instrument are examined, the unique design features of the photometer are explored, and the improvements to be expected over the performance of ground-based instruments are projected.

  9. High Speed SPM of Functional Materials

    SciTech Connect

    Huey, Bryan D.

    2015-08-14

    The development and optimization of applications comprising functional materials necessitates a thorough understanding of their static and dynamic properties and performance at the nanoscale. Leveraging High Speed SPM and concepts enabled by it, efficient measurements and maps with nanoscale and nanosecond temporal resolution are uniquely feasible. This includes recent enhancements for topographic, conductivity, ferroelectric, and piezoelectric properties as originally proposed, as well as newly developed methods or improvements to AFM-based mechanical, friction, thermal, and photoconductivity measurements. The results of this work reveal fundamental mechanisms of operation, and suggest new approaches for improving the ultimate speed and/or efficiency, of data storage systems, magnetic-electric sensors, and solar cells.

  10. Finite element methods for high speed flows

    NASA Technical Reports Server (NTRS)

    Loehner, R.; Morgan, K.; Peraire, J.; Zienkiewicz, O. C.

    1985-01-01

    An explicit finite element based solution procedure for solving the equations of compressible viscous high speed flow is presented. The method uses domain splitting to advance the solution with different timesteps on different portions of the mesh. For steady inviscid flows, adaptive mesh refinement procedures are successfully employed to enhance the definition of discontinuities. Preliminary ideas on the application of adaptive mesh refinement to the solution of problems involving steady viscous flow are presented. Sample timings are given for the performance of the finite element code on modern supercomputers.

  11. Conclusions from high-speed rotorcraft studies

    NASA Technical Reports Server (NTRS)

    Conway, Scott

    1991-01-01

    Under the tutelage of NASA-Ames, evaluations have been made of the technology required for high-speed rotorcraft flight with a view to the performance potential and development risks of several candidate configurations. Configurational performance limitations were associated with rotor performance at high Mach numbers and advance ratios, nacelle interference effects on rotor flow, and wing/rotor aeroelastic stability requirements. Attention is given to tiltwing, tilt-for-VTOL/fold-for-cruise rotor, and conventional tiltrotor configurations capable of carrying 30 passengers for the intercity commuter market.

  12. Continuous QKD and high speed data encryption

    NASA Astrophysics Data System (ADS)

    Zbinden, Hugo; Walenta, Nino; Guinnard, Olivier; Houlmann, Raphael; Wen, Charles Lim Ci; Korzh, Boris; Lunghi, Tommaso; Gisin, Nicolas; Burg, Andreas; Constantin, Jeremy; Legré, Matthieu; Trinkler, Patrick; Caselunghe, Dario; Kulesza, Natalia; Trolliet, Gregory; Vannel, Fabien; Junod, Pascal; Auberson, Olivier; Graf, Yoan; Curchod, Gilles; Habegger, Gilles; Messerli, Etienne; Portmann, Christopher; Henzen, Luca; Keller, Christoph; Pendl, Christian; Mühlberghuber, Michael; Roth, Christoph; Felber, Norbert; Gürkaynak, Frank; Schöni, Daniel; Muheim, Beat

    2013-10-01

    We present the results of a Swiss project dedicated to the development of high speed quantum key distribution and data encryption. The QKD engine features fully automated key exchange, hardware key distillation based on finite key security analysis, efficient authentication and wavelength division multiplexing of the quantum and the classical channel and one-time pas encryption. The encryption device allows authenticated symmetric key encryption (e.g AES) at rates of up to 100 Gb/s. A new quantum key can uploaded up to 1000 times second from the QKD engine.

  13. High-speed spectroradiometer for remote sensing.

    PubMed

    Miyazaki, T; Shimizu, H; Yasuoka, Y

    1987-11-15

    A high-speed spectroradiometer designed for spectral reflectance measurement in remote sensing is described. This instrument uses a monochromatic grating and a photomultiplier system for light detection and sweeps over the 400-850-nm wavelength spectral range with the spectral resolution of 2 nm within 1 s. The instrument has the inherent advantage of portability and speed of operation which make it particularly suitable for field work in the area of fast moving surfaces, e.g., water with wave motion. Some applications of its use in laboratory and field experiments also have been presented. The instrument would seem to be an appropriate instrument for ground data collection in remote sensing.

  14. High-speed multispectral confocal biomedical imaging

    PubMed Central

    Carver, Gary E.; Locknar, Sarah A.; Morrison, William A.; Krishnan Ramanujan, V.; Farkas, Daniel L.

    2014-01-01

    Abstract. A new approach for generating high-speed multispectral confocal images has been developed. The central concept is that spectra can be acquired for each pixel in a confocal spatial scan by using a fast spectrometer based on optical fiber delay lines. This approach merges fast spectroscopy with standard spatial scanning to create datacubes in real time. The spectrometer is based on a serial array of reflecting spectral elements, delay lines between these elements, and a single element detector. The spatial, spectral, and temporal resolution of the instrument is described and illustrated by multispectral images of laser-induced autofluorescence in biological tissues. PMID:24658777

  15. Thermomechanical phenomena in high speed rubbing

    NASA Technical Reports Server (NTRS)

    Kennedy, F. E.

    1980-01-01

    An analytical approach is presented for the modeling of the thermomechanical interactions which occur in high speed sliding situations. These sliding contact problems which are characterized by active and interrelated thermal and mechanical phenomena could be called 'rub energetics' problems. Analytical models were developed to simulate two different rub situations: high energy braking of disk brakes and high speed rubs of gas path seals in turbine engines. The models proved to be particularly useful in predicting the severe temperatures and deformations near hot contact patches on the rubbing surfaces. The size of the hot patches is generally determined by normal load and the properties of the contacting materials. Temperatures at the contact patches can approach the melting point of the materials, especially at high sliding velocities. These high temperatures can lead to large amounts of near-surface deformation and high wear rates. Decreased contact temperatures can result from using materials with increased thermal conductivity and increased heat capacity or choosing mechanical properties (decreased stiffness, yield stress or coefficient of thermal expansion) which give larger hot spot size.

  16. High-speed civil transport study

    NASA Technical Reports Server (NTRS)

    1989-01-01

    A system study of the potential for a high-speed commercial transport has addressed technological, economic, and environmental constraints. Market projections indicate a need for fleets of transports with supersonic or greater cruise speeds by the year 2000 to 2005. The associated design requirements called for a vehicle to carry 250 to 300 passengers over a range of 5,000 to 6,000 nautical miles. The study was initially unconstrained in terms of vehicle characteristic, such as cruise speed, propulsion systems, fuels, or structural materials. Analyses led to a focus on the most promising vehicle concepts. These were concepts that used a kerosene-type fuel and cruised at Mach numbers between 2.0 to 3.2. Further systems study identified the impact of environmental constraints (for community noise, sonic boom, and engine emissions) on economic attractiveness and technological needs. Results showed that current technology cannot produce a viable high-speed civil transport; significant advances are required to reduce takeoff gross weight and allow for both economic attractiveness and environmental accepatability. Specific technological requirements were identified to meet these needs.

  17. Study of high-speed civil transports

    NASA Technical Reports Server (NTRS)

    1989-01-01

    A systems study to identify the economic potential for a high-speed commercial transport (HSCT) has considered technology, market characteristics, airport infrastructure, and environmental issues. Market forecasts indicate a need for HSCT service in the 2000/2010 time frame conditioned on economic viability and environmental acceptability. Design requirements focused on a 300 passenger, 3 class service, and 6500 nautical mile range based on the accelerated growth of the Pacific region. Compatibility with existing airports was an assumed requirement. Mach numbers between 2 and 25 were examined in conjunction with the appropriate propulsion systems, fuels, structural materials, and thermal management systems. Aircraft productivity was a key parameter with aircraft worth, in comparison to aircraft price, being the airline-oriented figure of merit. Aircraft screening led to determination that Mach 3.2 (TSJF) would have superior characteristics to Mach 5.0 (LNG) and the recommendation that the next generation high-speed commercial transport aircraft use a kerosene fuel. The sensitivity of aircraft performance and economics to environmental constraints (e.g., sonic boom, engine emissions, and airport/community noise) was identified together with key technologies. In all, current technology is not adequate to produce viable HSCTs for the world marketplace. Technology advancements must be accomplished to meet environmental requirements (these requirements are as yet undetermined for sonic boom and engine emissions). High priority is assigned to aircraft gross weight reduction which benefits both economics and environmental aspects. Specific technology requirements are identified and national economic benefits are projected.

  18. ACTS High-Speed VSAT Demonstrated

    NASA Technical Reports Server (NTRS)

    Tran, Quang K.

    1999-01-01

    The Advanced Communication Technology Satellite (ACTS) developed by NASA has demonstrated the breakthrough technologies of Ka-band transmission, spot-beam antennas, and onboard processing. These technologies have enabled the development of very small and ultrasmall aperture terminals (VSAT s and USAT's), which have capabilities greater than have been possible with conventional satellite technologies. The ACTS High Speed VSAT (HS VSAT) is an effort at the NASA Glenn Research Center at Lewis Field to experimentally demonstrate the maximum user throughput data rate that can be achieved using the technologies developed and implemented on ACTS. This was done by operating the system uplinks as frequency division multiple access (FDMA), essentially assigning all available time division multiple access (TDMA) time slots to a single user on each of two uplink frequencies. Preliminary results show that, using a 1.2-m antenna in this mode, the High Speed VSAT can achieve between 22 and 24 Mbps of the 27.5 Mbps burst rate, for a throughput efficiency of 80 to 88 percent.

  19. High-speed civil transport study. Summary

    NASA Technical Reports Server (NTRS)

    1989-01-01

    A system of study of the potential for a high speed commercial transport aircraft addressed technology, economic, and environmental constraints. Market projections indicated a need for fleets of transport with supersonic or greater cruise speeds by the years 2000 to 2005. The associated design requirements called for a vehicle to carry 250 to 300 passengers over a range of 5000 to 6000 nautical miles. The study was initially unconstrained in terms of vehicle characteristics, such as cruise speed, propulsion systems, fuels, or structural materials. Analyses led to a focus on the most promising vehicle concepts. These were concepts that used a kerosene type fuel and cruised at Mach numbers between 2.0 to 3.2. Further systems study identified the impact of environmental constraints (for community noise, sonic boom, and engine emissions) on economic attractiveness and technological needs. Results showed that current technology cannot produce a viable high speed civil transport. Significant advances are needed to take off gross weight and allow for both economic attractiveness and environment acceptability. Specific technological requirements were identified to meet these needs.

  20. High-speed optogenetic circuit mapping

    NASA Astrophysics Data System (ADS)

    Augustine, George J.; Chen, Susu; Gill, Harin; Katarya, Malvika; Kim, Jinsook; Kudolo, John; Lee, Li M.; Lee, Hyunjeong; Lo, Shun Qiang; Nakajima, Ryuichi; Park, Min-Yoon; Tan, Gregory; Tang, Yanxia; Teo, Peggy; Tsuda, Sachiko; Wen, Lei; Yoon, Su-In

    2013-03-01

    Scanning small spots of laser light allows mapping of synaptic circuits in brain slices from transgenic mice expressing channelrhodopsin-2 (ChR2). These light spots photostimulate presynaptic neurons expressing ChR2, while postsynaptic responses can be monitored in neurons that do not express ChR2. Correlating the location of the light spot with the amplitude of the postsynaptic response elicited at that location yields maps of the spatial organization of the synaptic circuits. This approach yields maps within minutes, which is several orders of magnitude faster than can be achieved with conventional paired electrophysiological methods. We have applied this high-speed technique to map local circuits in many brain regions. In cerebral cortex, we observed that maps of excitatory inputs to pyramidal cells were qualitatively different from those measured for interneurons within the same layers of the cortex. In cerebellum, we have used this approach to quantify the convergence of molecular layer interneurons on to Purkinje cells. The number of converging interneurons is reduced by treatment with gap junction blockers, indicating that electrical synapses between interneurons contribute substantially to the spatial convergence. Remarkably, gap junction blockers affect convergence in sagittal cerebellar slices but not in coronal slices, indicating sagittal polarization of electrical coupling between interneurons. By measuring limb movement or other forms of behavioral output, this approach also can be used in vivo to map brain circuits non-invasively. In summary, ChR2-mediated high-speed mapping promises to revolutionize our understanding of brain circuitry.

  1. Applications for high-speed infrared imaging

    NASA Astrophysics Data System (ADS)

    Richards, Austin A.

    2005-03-01

    The phrase high-speed imaging is generally associated with short exposure times, fast frame rates or both. Supersonic projectiles, for example, are often impossible to see with the unaided eye, and require strobe photography to stop their apparent motion. It is often necessary to image high-speed objects in the infrared region of the spectrum, either to detect them or to measure their surface temperature. Conventional infrared cameras have time constants similar to the human eye, so they too, are often at a loss when it comes to photographing fast-moving hot targets. Other types of targets or scenes such as explosions change very rapidly with time. Visualizing those changes requires an extremely high frame rate combined with short exposure times in order to slow down a dynamic event so that it can be studied and quantified. Recent advances in infrared sensor technology and computing power have pushed the envelope of what is possible to achieve with commercial IR camera systems.

  2. MM-122: High speed civil transport

    NASA Technical Reports Server (NTRS)

    Demarest, Bill; Anders, Kurt; Manchec, John; Yang, Eric; Overgaard, Dan; Kalkwarf, Mike

    1992-01-01

    The rapidly expanding Pacific Rim market along with other growing markets indicates that the future market potential for a high speed civil transport is great indeed. The MM-122 is the answer to the international market desire for a state of the art, long range, high speed civil transport. It will carry 250 passengers a distance of 5200 nm at over twice the speed of sound. The MM-122 is designed to incorporate the latest technologies in the areas of control systems, propulsions, aerodynamics, and materials. The MM-122 will accomplish these goals using the following design parameters. First, a double delta wing planform with highly swept canards and an appropriately area ruled fuselage will be incorporated to accomplish desired aerodynamic characteristics. Propulsion will be provided by four low bypass variable cycle turbofan engines. A quad-redundant fly-by-wire flight control system will be incorporated to provide appropriate static stability and level 1 handling qualities. Finally, the latest in conventional metallic and modern composite materials will be used to provide desired weight and performance characteristics. The MM-122 incorporates the latest in technology and cost minimization techniques to provide a viable solution to this future market potential.

  3. Pressure Distribution Over Airfoils at High Speeds

    NASA Technical Reports Server (NTRS)

    Briggs, L J; Dryden, H L

    1927-01-01

    This report deals with the pressure distribution over airfoils at high speeds, and describes an extension of an investigation of the aerodynamic characteristics of certain airfoils which was presented in NACA Technical Report no. 207. The results presented in report no. 207 have been confirmed and extended to higher speeds through a more extensive and systematic series of tests. Observations were also made of the air flow near the surface of the airfoils, and the large changes in lift coefficients were shown to be associated with a sudden breaking away of the flow from the upper surface. The tests were made on models of 1-inch chord and comparison with the earlier measurements on models of 3-inch chord shows that the sudden change in the lift coefficient is due to compressibility and not to a change in the Reynolds number. The Reynolds number still has a large effect, however, on the drag coefficient. The pressure distribution observations furnish the propeller designer with data on the load distribution at high speeds, and also give a better picture of the air-flow changes.

  4. Analysis of coupling between high-speed railway and common speed railway system in transportation corridor

    NASA Astrophysics Data System (ADS)

    Zhou, Hongchang; Li, Haijun; Chen, Xiaohong; Zhu, Changfeng

    2017-04-01

    The high-speed railway and common speed railway subsystems as important components of the railway transportation system, can make railway traffic organization more orderly, when there are a rational division and balance development between them. In order to quantitatively evaluate the coordinate relations between high-speed railway subsystem and common speed railway subsystem, this paper takes the railway transportation corridor from Baoji to Lanzhou as an example. Firstly, using Logit model and grey forecasting model predict the passenger volume, passenger turnover and time value of high-speed railway and common speed railway in the Baoji-Lanzhou corridor. And then, the coupling forecast model of these two subsystems is established. Lastly, the coupling and coupling coordination of these two subsystems using are predicted and analyzed at theatrically level.

  5. Application of high-speed videography in sports analysis

    NASA Astrophysics Data System (ADS)

    Smith, Sarah L.

    1993-01-01

    The goal of sport biomechanists is to provide information to coaches and athletes about sport skill technique that will assist them in obtaining the highest levels of athletic performance. Within this technique evaluation process, two methodological approaches can be taken to study human movement. One method describes the motion being performed; the second approach focuses on understanding the forces causing the motion. It is with the movement description method that video image recordings offer a means for athletes, coaches, and sport biomechanists to analyze sport performance. Staff members of the Technique Evaluation Program provide video recordings of sport performance to athletes and coaches during training sessions held at the Olympic Training Center in Colorado Springs, Colorado. These video records are taken to provide a means for the qualitative evaluation or the quantitative analysis of sport skills as performed by elite athletes. High-speed video equipment (NAC HVRB-200 and NAC HSV-400 Video Systems) is used to capture various sport movement sequences that will permit coaches, athletes, and sport biomechanists to evaluate and/or analyze sport performance. The PEAK Performance Motion Measurement System allows sport biomechanists to measure selected mechanical variables appropriate to the sport being analyzed. Use of two high-speed cameras allows for three-dimensional analysis of the sport skill or the ability to capture images of an athlete's motion from two different perspectives. The simultaneous collection and synchronization of force data provides for a more comprehensive analysis and understanding of a particular sport skill. This process of combining force data with motion sequences has been done extensively with cycling. The decision to use high-speed videography rather than normal speed video is based upon the same criteria that are used in other settings. The rapidness of the sport movement sequence and the need to see the location of body parts

  6. Characteristics of Six Propellers Including the High-Speed Range

    NASA Technical Reports Server (NTRS)

    Theodorsen, Theodore; Stickle, George W; Brevoort, M J

    1937-01-01

    This investigation is part of an extensive experimental study that has been carried out at full scale in the NACA 20-foot tunnel, the purpose of which has been to furnish information in regard to the functioning of the propeller-cowling-nacelle unit under all conditions of take-off, climbing, and normal flight. This report presents the results of tests of six propellers in the normal and high-speed flight range and also includes a study of the take-off characteristics.

  7. High-speed optical links for UAV applications

    NASA Astrophysics Data System (ADS)

    Chen, C.; Grier, A.; Malfa, M.; Booen, E.; Harding, H.; Xia, C.; Hunwardsen, M.; Demers, J.; Kudinov, K.; Mak, G.; Smith, B.; Sahasrabudhe, A.; Patawaran, F.; Wang, T.; Wang, A.; Zhao, C.; Leang, D.; Gin, J.; Lewis, M.; Nguyen, D.; Quirk, K.

    2017-02-01

    High speed optical backbone links between a fleet of UAVs is an integral part of the Facebook connectivity architecture. To support the architecture, the optical terminals need to provide high throughput rates (in excess of tens of Gbps) while achieving low weight and power consumption. The initial effort is to develop and demonstrate an optical terminal capable of meeting the data rate requirements and demonstrate its functions for both air-air and air-ground engagements. This paper is a summary of the effort to date.

  8. A high speed CMOS A/D converter

    NASA Technical Reports Server (NTRS)

    Wiseman, Don R.; Whitaker, Sterling R.

    1992-01-01

    This paper presents a high speed analog-to-digital (A/D) converter. The converter is a 7 bit flash converter with one half LSB accuracy. Typical parts will function at approximately 200 MHz. The converter uses a novel comparator circuit that is shown to out perform more traditional comparators, and thus increases the speed of the converter. The comparator is a clocked, precharged circuit that offers very fast operation with a minimal offset voltage (2 mv). The converter was designed using a standard 1 micron digital CMOS process and is 2,244 microns by 3,972 microns.

  9. Visualization of high speed phenomena using high-speed infrared camera

    NASA Astrophysics Data System (ADS)

    Yaoita, T.; Marcotte, F.

    2017-02-01

    The standard infrared camera has taken certain integration time with the photography per once, it was unsuitable for high-speed photography. By the infrared camera which can buffer photography data efficiently continually, high-speed photography of 2,000fps is enabled in 320X240 pixels and 11,000fps in128X100 pixels by windowing mode. The heat generation of specimen phenomenon is used for the monitoring of the start point of the destruction and the thermometry of combustion gases.

  10. Neutron and high speed photogrammetric arcjet diagnosis

    NASA Technical Reports Server (NTRS)

    Stewart, P. A. E.; Rogers, J. D.; Fowler, P. H.; Deininger, W. D.; Taylor, A. D.

    1989-01-01

    Two methods for real time internal diagnostics of arcjet engines are described. One method uses cold, thermal, or epithermal neutrons. Cold neutrons are used to detect the presence and location of hydrogenous propellants. Thermal neutrons are used to delineate the edge contours of anode and cathode surfaces and to measure stress/strain. Epithermal neutrons are used to measure temperatures on arcjet surfaces, bulk material temperatures, and point temperatures in bulk materials. It is found that this method, with an exposure time of 10 min, produces at temperature accuracy for W or Re of + or - 2.5 C. The other method uses visible-light high-speed photogrammetry to obtain images of the transient behavior of the arc during start-up and to relate this behavior to electrial supply characteristics such as voltage, current, and ripple.

  11. High Speed Photography In The United Kingdom

    NASA Astrophysics Data System (ADS)

    Lunn, George H.

    1989-06-01

    At the 13th Congress in Tokyo, I presented a paper with this title in which some early history was mentioned followed by a more detailed study of the activities of the main research groups in Britain from the period between 1950 and 1978. On this occasion, some early topics will be mentioned. The period since 1978 has seen quite a few changes in that research is now more in the hands of commercial groups as opposed to the previous governmental laboratories. It is true that the pricipal camera systems have reached towards their physical limits. However other new techniques are still expanding, for example, Lasers, Holography and Videography. The new systems are principally in the hands of major or specialist companies with the offical and industrial research groups using their products. The Association for High Speed Photography continues to encourage both researchers and users by providing oportunities for users, suppliers and manufacturers to meet and discuss.

  12. Merging of high speed argon plasma jets

    SciTech Connect

    Case, A.; Messer, S.; Brockington, S.; Wu, L.; Witherspoon, F. D.; Elton, R.

    2013-01-15

    Formation of an imploding plasma liner for the plasma liner experiment (PLX) requires individual plasma jets to merge into a quasi-spherical shell of plasma converging on the origin. Understanding dynamics of the merging process requires knowledge of the plasma phenomena involved. We present results from the study of the merging of three plasma jets in three dimensional geometry. The experiments were performed using HyperV Technologies Corp. 1 cm Minirailguns with a preionized argon plasma armature. The vacuum chamber partially reproduces the port geometry of the PLX chamber. Diagnostics include fast imaging, spectroscopy, interferometry, fast pressure probes, B-dot probes, and high speed spatially resolved photodiodes, permitting measurements of plasma density, temperature, velocity, stagnation pressure, magnetic field, and density gradients. These experimental results are compared with simulation results from the LSP 3D hybrid PIC code.

  13. Design of a high speed business transport

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The design of a High Speed Business Transport (HSBT) was considered by the Aeronautical Design Class during the academic year 1989 to 1990. The project was chosen to offer an opportunity to develop user friendliness for some computer codes such as WAVE DRAG, supplied by NASA/Langley, and to experiment with several design lessons developed by Dr. John McMasters and his colleages at Boeing. Central to these design lessons was an appeal to marketing and feasibility considerations. There was an emphasis upon simplified analytical techniques to study trades and to stimulate creative thinking before committing to extensive analytical activity. Two designs stood out among all the rest because of the depth of thought and consideration of alternatives. One design, the Aurora, used a fixed wing design to satisfy the design mission: the Viero used a swept wing configuration to overcome problems related to supersonic flight. A summary of each of these two designs is given.

  14. Active control system for high speed windmills

    DOEpatents

    Avery, Don E.

    1988-01-01

    A pump stroke is matched to the operating speed of a high speed windmill. The windmill drives a hydraulic pump for a control. Changes in speed of a wind driven shaft open supply and exhaust valves to opposite ends of a hydraulic actuator to lengthen and shorten an oscillating arm thereby lengthening and shortening the stroke of an output pump. Diminishing wind to a stall speed causes the valves to operate the hydraulic cylinder to shorten the oscillating arm to zero. A pressure accumulator in the hydraulic system provides the force necessary to supply the hydraulic fluid under pressure to drive the actuator into and out of the zero position in response to the windmill shaft speed approaching and exceeding windmill stall speed.

  15. High speed civil transport aerodynamic optimization

    NASA Technical Reports Server (NTRS)

    Ryan, James S.

    1994-01-01

    This is a report of work in support of the Computational Aerosciences (CAS) element of the Federal HPCC program. Specifically, CFD and aerodynamic optimization are being performed on parallel computers. The long-range goal of this work is to facilitate teraflops-rate multidisciplinary optimization of aerospace vehicles. This year's work is targeted for application to the High Speed Civil Transport (HSCT), one of four CAS grand challenges identified in the HPCC FY 1995 Blue Book. This vehicle is to be a passenger aircraft, with the promise of cutting overseas flight time by more than half. To meet fuel economy, operational costs, environmental impact, noise production, and range requirements, improved design tools are required, and these tools must eventually integrate optimization, external aerodynamics, propulsion, structures, heat transfer, controls, and perhaps other disciplines. The fundamental goal of this project is to contribute to improved design tools for U.S. industry, and thus to the nation's economic competitiveness.

  16. High-speed multichannel optical switching

    SciTech Connect

    Mikaelian, A.L.; Salakhutdinov, V.K.

    1994-12-31

    The programmable interconnection between N input and N output channels based on a matrix of microholograms is considered. Such a system can be used for optical switching having high speed, about gigabits-per-second. An example of such a system using bacteriorhodopsin film is investigated both theoretically and experimentally. The thickness of bacteriorhodopsin was 50 {micro}m and the cell size 3cmx2cm. To maintain interconnects each microhologram was regenerated by means of a routing system composed of a He-Ne laser, deflectors and optical elements. Experimentally, 20 channels were used. The diameter of the microhologram was 1 mm, and the diffraction efficiency was about 2%. The tests and calculations show the possibility of arranging 10{sup 4} switching channels with speed about 1 gigabit per second.

  17. Technology needs for high-speed rotorcraft

    NASA Technical Reports Server (NTRS)

    Rutherford, John; Orourke, Matthew; Martin, Christopher; Lovenguth, Marc; Mitchell, Clark

    1991-01-01

    A study to determine the technology development required for high-speed rotorcraft development was conducted. The study begins with an initial assessment of six concepts capable of flight at, or greater than 450 knots with helicopter-like hover efficiency (disk loading less than 50 pfs). These concepts were sized and evaluated based on measures of effectiveness and operational considerations. Additionally, an initial assessment of the impact of technology advances on the vehicles attributes was made. From these initial concepts a tilt wing and rotor/wing concepts were selected for further evaluation. A more detailed examination of conversion and technology trade studies were conducted on these two vehicles, each sized for a different mission.

  18. High-speed electrical motor evaluation

    SciTech Connect

    Not Available

    1989-02-03

    Under this task, MTI conducted a general review of state-of-the-art high-speed motors. The purpose of this review was to assess the operating parameters, limitations and performance of existing motor designs, and to establish commercial sources for a motor compatible with the requirements of the Brayton-cycle system. After the motor requirements were established, a list of motor types, manufacturers and designs capable of achieving the requisite performance was compiled. This list was based on an in-house evaluation of designs. Following the establishment of these options, a technical evaluation of the designs selected was conducted. In parallel with their evaluations, MTI focused on the establishment of commercial sources.

  19. High-speed spatial scanning pyrometer

    NASA Technical Reports Server (NTRS)

    Cezairliyan, A.; Chang, R. F.; Foley, G. M.; Miller, A. P.

    1993-01-01

    A high-speed spatial scanning pyrometer has been designed and developed to measure spectral radiance temperatures at multiple target points along the length of a rapidly heating/cooling specimen in dynamic thermophysical experiments at high temperatures (above about 1800 K). The design, which is based on a self-scanning linear silicon array containing 1024 elements, enables the pyrometer to measure spectral radiance temperatures (nominally at 650 nm) at 1024 equally spaced points along a 25-mm target length. The elements of the array are sampled consecutively every 1 microsec, thereby permitting one cycle of measurements to be completed in approximately 1 msec. Procedures for calibration and temperature measurement as well as the characteristics and performance of the pyrometer are described. The details of sources and estimated magnitudes of possible errors are given. An example of measurements of radiance temperatures along the length of a tungsten rod, during its cooling following rapid resistive pulse heating, is presented.

  20. High-speed digital wireless battlefield network

    NASA Astrophysics Data System (ADS)

    Dao, Son K.; Zhang, Yongguang; Shek, Eddie C.; van Buer, Darrel

    1999-07-01

    In the past two years, the Digital Wireless Battlefield Network consortium that consists of HRL Laboratories, Hughes Network Systems, Raytheon, and Stanford University has participated in the DARPA TRP program to leverage the efforts in the development of commercial digital wireless products for use in the 21st century battlefield. The consortium has developed an infrastructure and application testbed to support the digitized battlefield. The consortium has implemented and demonstrated this network system. Each member is currently utilizing many of the technology developed in this program in commercial products and offerings. These new communication hardware/software and the demonstrated networking features will benefit military systems and will be applicable to the commercial communication marketplace for high speed voice/data multimedia distribution services.

  1. Very high-speed digital holography

    NASA Astrophysics Data System (ADS)

    Pérez López, Carlos; Mendoza Santoyo, Fernando; Rodríguez Vera, Ramón; Moreno, David; Barrientos, Bernardino

    2006-08-01

    It is reported for the first time the use of a high speed camera in digital holography with an out of plane sensitivity. The camera takes the image plane holograms of a cw laser illuminated rectangular framed polyester material at a rate of 5000 per second, that is a spacing of 200 microseconds between holograms, and 512 by 500 pixels at 10 bit resolution. The freely standing object has a random movement due to non controlled environmental air currents. As is usual with this technique each digital hologram is Fourier processed in order to obtain upon comparison with a consecutive digital hologram the phase map of the displacement. High quality results showing the amplitude and direction of the random movement are presented.

  2. Very high speed cw digital holographic interferometry

    NASA Astrophysics Data System (ADS)

    Pérez-López, Carlos; de La Torre-Ibarra, Manuel H.; Mendoza Santoyo, Fernando

    2006-10-01

    It is reported for the first time the use of a very high speed camera in digital holographic interferometry with an out of plane sensitivity setup. The image plane holograms of a spherical latex balloon illuminated by a cw laser were acquired at a rate of 4000 frames per second, representing a time spacing between holograms of 250 microseconds, for 512 × 512 pixels at 8 bits resolution. Two types of tests were accomplished for a proof of principle of the technique, one with no constrains on the object which meant random movements due to non controlled environmental air currents, and the other with specific controlled conditions on the object. Results presented correspond to a random sample of sequential digital holograms, chosen from a 1 second exposure, individually Fourier processed in order to perform the usual comparison by subtraction between consecutive pairs thus obtaining the phase map of the object out of plane displacement, shown as a movie.

  3. High speed nanotechnology-based photodetector

    NASA Astrophysics Data System (ADS)

    Kurtz, Russell M.; Pradhan, Ranjit D.; Parfenov, Alexander V.; Holmstedt, Jason; Esterkin, Vladimir; Menon, Naresh; Aye, Tin M.; Chua, Kang-Bin; Schindler, Axel; Balandin, Alexander A.; Nichter, James E.

    2005-08-01

    An inexpensive, easily integrated, 40 Gbps photoreceiver operating in the communications band would revolutionize the telecommunications industry. While generation of 40 Gbps data is not difficult, its reception and decoding require specific technologies. We present a 40 Gbps photoreceiver that exceeds the capabilities of current devices. This photoreceiver is based on a technology we call "nanodust." This new technology enables nanoscale photodetectors to be embedded in matrices made from a different semiconductor, or directly integrated into a CMOS amplification circuit. Photoreceivers based on quantum dust technology can be designed to operate in any spectral region, including the telecommunications bands near 1.31 and 1.55 micrometers. This technology also lends itself to normal-incidence detection, enabling a large detector size with its associated increase in sensitivity, even at high speeds and reception wavelengths beyond the capability of silicon.

  4. Development of a Revolutionary High Speed Spindle

    NASA Technical Reports Server (NTRS)

    Agba, Emmanuel I.

    1999-01-01

    This report presents the development of a hydraulic motor driven spindle system to be employed for high speed machining of composite materials and metals. The spindle system is conceived to be easily retrofitted into conventional milling machines. The need for the hydraulic spindle arises because of the limitations placed on conventional electric motor driven spindles by the low cutting power and the presence of vibrational phenomena associated with voltage frequency at high rotational speeds. Also, the electric motors are usually large and expensive when power requirements are moderately high. In contrast, hydraulic motor driven spindles promise a distinct increase in spindle life over the conventional electric motor driven spindles. In this report, existing technologies applicable to spindle holder for severe operating conditions were reviewed, conceptual designs of spindle holder system were developed and evaluated, and a detailed design of an acceptable concept was conducted. Finally, a rapid prototype of the design was produced for design evaluation.

  5. Active control system for high speed windmills

    DOEpatents

    Avery, D.E.

    1988-01-12

    A pump stroke is matched to the operating speed of a high speed windmill. The windmill drives a hydraulic pump for a control. Changes in speed of a wind driven shaft open supply and exhaust valves to opposite ends of a hydraulic actuator to lengthen and shorten an oscillating arm thereby lengthening and shortening the stroke of an output pump. Diminishing wind to a stall speed causes the valves to operate the hydraulic cylinder to shorten the oscillating arm to zero. A pressure accumulator in the hydraulic system provides the force necessary to supply the hydraulic fluid under pressure to drive the actuator into and out of the zero position in response to the windmill shaft speed approaching and exceeding windmill stall speed. 4 figs.

  6. TOPICAL REVIEW: Plasmas in high speed aerodynamics

    NASA Astrophysics Data System (ADS)

    Bletzinger, P.; Ganguly, B. N.; Van Wie, D.; Garscadden, A.

    2005-02-01

    A review is presented of the studies in the former Soviet Union and in the USA of the mutual interactions of plasmas and high speed flows and shocks. There are reports from as early as the 1980s of large changes in the standoff distance ahead of a blunt body in ballistic tunnels, significantly reduced drag and modifications of travelling shocks in bounded weakly ionized gases. Energy addition to the flow results in an increase in the local sound speed that leads to expected modifications of the flow and changes to the pressure distribution around a vehicle due to the decrease in local Mach number. The critical question was, did a plasma provide a significant energy multiplier for the system? There have been a large number of experimental studies on the influence of a weakly ionized plasma on relatively low Mach number shocks and inherently also on the influence of the shock on the plasma. This literature is reviewed and illustrated with representative examples. The convergence through more controlled experiments and improved modelling to a physics understanding of the effects being essentially due to heating is outlined. It is demonstrated that the heating in many cases is global; however, tailored experiments with positive columns, dielectric barrier discharges and focused microwave plasmas can produce very localized heating. The latter appears more attractive for energy efficiency in flow control. Tailored localized ionization and thermal effects are also of interest for high speed inlet shock control and for producing reliable ignition for short residence time combustors, and work in these areas is also reviewed.

  7. Computation of high-speed reacting flows

    NASA Astrophysics Data System (ADS)

    Clutter, James Keith

    A computational study has been conducted for high-speed reacting flows relevant to munition problems, including shock-induced combustion and gun muzzle blast. The theoretical model considers inviscid and viscous flows, multi-species, finite rate chemical reaction schemes, and turbulence. Both the physical and numerical aspects are investigated to determine their impact on simulation accuracy. A range of hydrogen and oxygen reaction mechanisms are evaluated for the shock-induced combustion flow scenario. Characteristics of the mechanisms such as the induction time, heat release rate, and second explosion limit are found to impact the accuracy of the computation. On the numerical side, reaction source term treatments, including logarithmic weighting and scaling modifications, are investigated to determine their effectiveness in addressing numerical errors caused by disparate length scales between chemical reactions and fluid dynamics. It is demonstrated that these techniques can enhance solution accuracy. Computations of shock-induced combustion have also been performed using a κ-ɛ model to account for the turbulent transport of species and heat. An algebraic model of the temperature fluctuations has been used to estimate the impact of the turbulent effect on the chemical reaction source terms. The turbulence effects when represented with the current models are found to be minimal in the shock-induced combustion flow investigated in the present work. For the gun system simulations, computations for both a large caliber howitzer and small caliber firearms are carried out. A reduced kinetic scheme and an algebraic turbulence model are employed. The present approach, which accounts for the chemical reaction aspects of the gun muzzle blast problem, is found to improve the prediction of peak overpressures and can capture the effects produced by small caliber firearm sound suppressors. The present study has established the numerical and physical requirements for

  8. High-speed shutter for mirror cameras

    NASA Astrophysics Data System (ADS)

    Trofimenko, Vladimir V.; Klimashin, V. P.; Drozhbin, Yu. A.

    1999-06-01

    High-speed mirror cameras are mainly used for investigations of quick processes in a wide spectral range of radiation including ultraviolet and infrared regions (from 0.2 to 11 micrometer). High-speed shutters for these cameras must be non-selective and when opened must transmit the whole radiation without refraction, absorption and scattering. Electromechanical, electrodynamic and induction-dynamic shutters possess such properties because their optical channels contain no medium. Electromechanical shutters are devices where the displacement of the working blind which opens or closes an aperture is produced by a spring. Such shutters are relatively slow and are capable of closing an aperture of 50 mm in diameter in 10 - 15 ms. Electrodynamic and induction-dynamic shutters are devices where displacement of a blind is produced by the electromagnetic interaction between circuits with electric currents. In induction-dynamic shutter the secondary circuit is current-conducting blind itself in which a short-circuited loop forms. The latter is more quick because of the lower mass of its moveable secondary circuit. For this reason induction-dynamic shutters with a flat primary circuit coil and a tightly fitted to it load- bearing aluminum plate have been investigated. The blind which opens or closes an aperture was attached to this plate. The dependencies of cut-off time on the form, size and the number of turns of the primary circuit coil, on size, type of material, thickness and weight of the load-bearing plate and the blind, as well as on capacitance in the discharge circuit and the capacitor voltage have been investigated. The influence of the environmental atmosphere on the cut-off time was also studied. For this purpose the shutter was placed into the chamber where vacuum up to 10- atm could be produced. As a result the values of the above mentioned parameters have been optimized and the designs of the shutters which are shown have been developed.

  9. Advanced MOSFET technologies for high-speed circuits and EPROM

    SciTech Connect

    Wu, A.T.T.

    1987-01-01

    In the first part of the thesis, two novel source-side injection EPROM (SI-EPROM) devices capable of 5-volt only, high-speed programming are studied. Both devices are asymmetrical n-channel stacked-gate MOSFETs, each with a short weak gate-control channel region introduced close to the source. Under high gate bias, a strong-channel electric field for hot-electron generation is created in this local region even at a relatively low drain voltage. Furthermore, the gate oxide field in this region is highly favorable for hot-electron injection into the floating-gate. As a results, a programming speed of 10..mu..s at a drain voltage of 5 volts was demonstrated with one of the SI-EPROM devices fabricated. In the second part of the thesis, technology design considerations accompanying MOSFET scaling are studied for high-speed analog circuits and densely packed digital circuits. It is shown that for sub-micron technologies, especially those for CMOS, the drain/source junction capacitances dominate device parasitic capacitances in digital applications. A novel MOS device structure that employs the COO and DOO schemes is described.

  10. Assessment of modern methods in numerical simulations of high speed flows

    NASA Technical Reports Server (NTRS)

    Pindera, M. Z.; Yang, H. Q.; Przekwas, A. J.; Tucker, K.

    1992-01-01

    Results of extensive studies on CFD algorithms for 2D inviscid flows in Cartesian and body fitted coordinates geometries are reviewed. These studies represent part of an ongoing investigation of combustion instabilities involving the interactions of high-speed nonlinear acoustic waves. Four numerical methods for the treatment of high speed flows are compared, namely, Roe-Sweby TVD, Yee symmetric TVD; Osher-Chakravarthy TVD; and the Colella's multi-dimensional Godunov method.

  11. Plastic straw: future of high-speed signaling

    PubMed Central

    Song, Ha Il; Jin, Huxian; Bae, Hyeon-Min

    2015-01-01

    The ever-increasing demand for bandwidth triggered by mobile and video Internet traffic requires advanced interconnect solutions satisfying functional and economic constraints. A new interconnect called E-TUBE is proposed as a cost-and-power-effective all-electrical-domain wideband waveguide solution for high-speed high-volume short-reach communication links. The E-TUBE achieves an unprecedented level of performance in terms of bandwidth-per-carrier frequency, power, and density without requiring a precision manufacturing process unlike conventional optical/waveguide solutions. The E-TUBE exhibits a frequency-independent loss-profile of 4 dB/m and has nearly 20-GHz bandwidth over the V band. A single-sideband signal transmission enabled by the inherent frequency response of the E-TUBE renders two-times data throughput without any physical overhead compared to conventional radio frequency communication technologies. This new interconnect scheme would be attractive to parties interested in high throughput links, including but not limited to, 100/400 Gbps chip-to-chip communications. PMID:26525653

  12. Plastic straw: future of high-speed signaling

    NASA Astrophysics Data System (ADS)

    Song, Ha Il; Jin, Huxian; Bae, Hyeon-Min

    2015-11-01

    The ever-increasing demand for bandwidth triggered by mobile and video Internet traffic requires advanced interconnect solutions satisfying functional and economic constraints. A new interconnect called E-TUBE is proposed as a cost-and-power-effective all-electrical-domain wideband waveguide solution for high-speed high-volume short-reach communication links. The E-TUBE achieves an unprecedented level of performance in terms of bandwidth-per-carrier frequency, power, and density without requiring a precision manufacturing process unlike conventional optical/waveguide solutions. The E-TUBE exhibits a frequency-independent loss-profile of 4 dB/m and has nearly 20-GHz bandwidth over the V band. A single-sideband signal transmission enabled by the inherent frequency response of the E-TUBE renders two-times data throughput without any physical overhead compared to conventional radio frequency communication technologies. This new interconnect scheme would be attractive to parties interested in high throughput links, including but not limited to, 100/400 Gbps chip-to-chip communications.

  13. Plastic straw: future of high-speed signaling.

    PubMed

    Song, Ha Il; Jin, Huxian; Bae, Hyeon-Min

    2015-11-03

    The ever-increasing demand for bandwidth triggered by mobile and video Internet traffic requires advanced interconnect solutions satisfying functional and economic constraints. A new interconnect called E-TUBE is proposed as a cost-and-power-effective all-electrical-domain wideband waveguide solution for high-speed high-volume short-reach communication links. The E-TUBE achieves an unprecedented level of performance in terms of bandwidth-per-carrier frequency, power, and density without requiring a precision manufacturing process unlike conventional optical/waveguide solutions. The E-TUBE exhibits a frequency-independent loss-profile of 4 dB/m and has nearly 20-GHz bandwidth over the V band. A single-sideband signal transmission enabled by the inherent frequency response of the E-TUBE renders two-times data throughput without any physical overhead compared to conventional radio frequency communication technologies. This new interconnect scheme would be attractive to parties interested in high throughput links, including but not limited to, 100/400 Gbps chip-to-chip communications.

  14. STARMAP: protocol for high-speed fiber optic networks

    NASA Astrophysics Data System (ADS)

    Irvine-Halliday, Dave; Fapojuwo, Abraham O.; Pye, S. G.

    1993-02-01

    STARMAP is a new, active star-configured, multiple access protocol designed particularly for very high-speed fiber optic LANs but equally applicable to lower speed copper based systems. The main features include: collision-free operation; no packet retransmissions; bounded access delay time; high degree of service fairness; no back-off algorithm required; an integrated data/voice transmission capability; a Universal, a Selective and a Local (Global & Selective) Broadcast capability; very high security; Local Selective Broadcast packets never leave the local hub; a relative insensitivity to `Master' hub failure; preemptive and nonpreemptive priority packet service scheme; novel variable delay register in the hubs; excellent natural diagnostic capability; Loop Creating Links significantly improve network performance; true parallel transmissions. Computer simulations of example STARMAP networks show that at typical values of the offered traffic load, the network throughput exceeds the link bit rate and in the limit, approaches a value equal to the product of the link bit rate and the number of hubs in the network. The useful life of twisted wire pair and coaxial cable based networks may be significantly extended due to the substantial increases in network throughput achievable.

  15. Color Analysis in Air Traffic Control Displays. Part 1: Radar Displays

    DTIC Science & Technology

    2006-10-01

    controllers use several displays at their workstation. This report includes displays used at two types of air traffic facilities: the en route air...traffic control center, referenced as en route facilities, and the terminal radar approach control, referenced as TRACON facili- ties. Typically, a...decision-making. For example, operational controllers at some en route facilities use Display System Replace- ment (DSR) as the primary display; they

  16. Regulation of the Dynamic Live Load Factor for Calculation of Bridge Structures on High-Speed Railway Mainlines

    NASA Astrophysics Data System (ADS)

    Dyachenko, Leonid K.; Benin, Andrey V.

    2017-06-01

    When the high-speed railway traffic is being organized, it becomes necessary to elaborate bridge design standards for high-speed railways (HSR). Methodology of studying the issues of HSR bridge design is based on the comprehensive analysis of domestic research as well as international experience in design, construction and operation of high-speed railways. Serious requirements are imposed on the HSR artificial structures, which raise a number of scientific tasks associated mainly with the issues of the dynamic interaction of the rolling stock and the bridge elements. To ensure safety of traffic and reliability of bridges during the whole period of operation one needs to resolve the dynamic problems of various types of high-speed trains moving along the structures. The article analyses dependences of the magnitude of inertial response on the external stress parameters and proposes a simplified method of determination of the dynamic live load factor caused by the passage of high-speed trains. The usefulness of the given research arises from the reduction of complexity of the complicated dynamic calculations needed to describe a high-speed train travelling along the artificial structures.

  17. Sensor study for high speed autonomous operations

    NASA Astrophysics Data System (ADS)

    Schneider, Anne; La Celle, Zachary; Lacaze, Alberto; Murphy, Karl; Del Giorno, Mark; Close, Ryan

    2015-06-01

    As robotic ground systems advance in capabilities and begin to fulfill new roles in both civilian and military life, the limitation of slow operational speed has become a hindrance to the wide-spread adoption of these systems. For example, military convoys are reluctant to employ autonomous vehicles when these systems slow their movement from 60 miles per hour down to 40. However, these autonomous systems must operate at these lower speeds due to the limitations of the sensors they employ. Robotic Research, with its extensive experience in ground autonomy and associated problems therein, in conjunction with CERDEC/Night Vision and Electronic Sensors Directorate (NVESD), has performed a study to specify system and detection requirements; determined how current autonomy sensors perform in various scenarios; and analyzed how sensors should be employed to increase operational speeds of ground vehicles. The sensors evaluated in this study include the state of the art in LADAR/LIDAR, Radar, Electro-Optical, and Infrared sensors, and have been analyzed at high speeds to study their effectiveness in detecting and accounting for obstacles and other perception challenges. By creating a common set of testing benchmarks, and by testing in a wide range of real-world conditions, Robotic Research has evaluated where sensors can be successfully employed today; where sensors fall short; and which technologies should be examined and developed further. This study is the first step to achieve the overarching goal of doubling ground vehicle speeds on any given terrain.

  18. High speed point derivative microseismic detector

    DOEpatents

    Uhl, James Eugene; Warpinski, Norman Raymond; Whetten, Ernest Blayne

    1998-01-01

    A high speed microseismic event detector constructed in accordance with the present invention uses a point derivative comb to quickly and accurately detect microseismic events. Compressional and shear waves impinging upon microseismic receiver stations disposed to collect waves are converted into digital data and analyzed using a point derivative comb including assurance of quiet periods prior to declaration of microseismic events. If a sufficient number of quiet periods have passed, the square of a two point derivative of the incoming digital signal is compared to a trip level threshold exceeding the determined noise level to declare a valid trial event. The squaring of the derivative emphasizes the differences between noise and signal, and the valid event is preferably declared when the trip threshold has been exceeded over a temporal comb width to realize a comb over a given time period. Once a trial event has been declared, the event is verified through a spatial comb, which applies the temporal event comb to additional stations. The detector according to the present invention quickly and accurately detects initial compressional waves indicative of a microseismic event which typically exceed the ambient cultural noise level by a small amount, and distinguishes the waves from subsequent larger amplitude shear waves.

  19. High speed point derivative microseismic detector

    DOEpatents

    Uhl, J.E.; Warpinski, N.R.; Whetten, E.B.

    1998-06-30

    A high speed microseismic event detector constructed in accordance with the present invention uses a point derivative comb to quickly and accurately detect microseismic events. Compressional and shear waves impinging upon microseismic receiver stations disposed to collect waves are converted into digital data and analyzed using a point derivative comb including assurance of quiet periods prior to declaration of microseismic events. If a sufficient number of quiet periods have passed, the square of a two point derivative of the incoming digital signal is compared to a trip level threshold exceeding the determined noise level to declare a valid trial event. The squaring of the derivative emphasizes the differences between noise and signal, and the valid event is preferably declared when the trip threshold has been exceeded over a temporal comb width to realize a comb over a given time period. Once a trial event has been declared, the event is verified through a spatial comb, which applies the temporal event comb to additional stations. The detector according to the present invention quickly and accurately detects initial compressional waves indicative of a microseismic event which typically exceed the ambient cultural noise level by a small amount, and distinguishes the waves from subsequent larger amplitude shear waves. 9 figs.

  20. Exhaust emissions from high speed passenger ferries

    NASA Astrophysics Data System (ADS)

    Cooper, D. A.

    Exhaust emission measurements have been carried out on-board three high-speed passenger ferries (A, B and C) during normal service routes. Ship A was powered by conventional, medium-speed, marine diesel engines, Ship B by gas turbine engines and Ship C conventional, medium-speed, marine diesel engines equipped with selective catalytic reduction (SCR) systems for NO x abatement. All ships had similar auxiliary engines (marine diesels) for generating electric power on-board. Real-world emission factors of NOx, SO2, CO, CO 2, NMVOC, CH4, N2O, NH3, PM and PAH at steady-state engine loads and for complete voyages were determined together with an estimate of annual emissions. In general, Ship B using gas turbines showed favourable NO x, PM and PAH emissions but at the expense of higher fuel consumption and CO 2 emissions. Ship C with the SCR had the lowest NO x emissions but highest NH 3 emissions especially during harbour approaches and stops. The greatest PM and PAH specific emissions were measured from auxiliary engines operating at low engine loads during harbour stops. Since all ships used a low-sulphur gas oil, SO 2 emissions were relatively low in all cases.

  1. High speed exhaust gas recirculation valve

    SciTech Connect

    Fensom, Rod; Kidder, David J.

    2005-01-18

    In order to minimize pollutants such as Nox, internal combustion engines typically include an exhaust gas recirculation (EGR) valve that can be used to redirect a portion of exhaust gases to an intake conduit, such as an intake manifold, so that the redirected exhaust gases will be recycled. It is desirable to have an EGR valve with fast-acting capabilities, and it is also desirable to have the EGR valve take up as little space as possible. An exhaust gas recirculation valve is provided that includes an exhaust passage tube, a valve element pivotally mounted within the exhaust passage tube, a linear actuator; and a gear train. The gear train includes a rack gear operatively connected to the linear actuator, and at least one rotatable gear meshing with the rack gear and operatively connected to the valve element to cause rotation of the valve element upon actuation of the linear actuator. The apparatus provides a highly compact package having a high-speed valve actuation capability.

  2. Technology needs for high speed rotorcraft (3)

    NASA Technical Reports Server (NTRS)

    Detore, Jack; Conway, Scott

    1991-01-01

    The spectrum of vertical takeoff and landing (VTOL) type aircraft is examined to determine which aircraft are most likely to achieve high subsonic cruise speeds and have hover qualities similar to a helicopter. Two civil mission profiles are considered: a 600-n.mi. mission for a 15- and a 30-passenger payload. Applying current technology, only the 15- and 30-passenger tiltfold aircraft are capable of attaining the 450-knot design goal. The two tiltfold aircraft at 450 knots and a 30-passenger tiltrotor at 375 knots were further developed for the Task II technology analysis. A program called High-Speed Total Envelope Proprotor (HI-STEP) is recommended to meet several of these issues based on the tiltrotor concept. A program called Tiltfold System (TFS) is recommended based on the tiltrotor concept. A task is identified to resolve the best design speed from productivity and demand considerations based on the technology that emerges from the recommended programs. HI-STEP's goals are to investigate propulsive efficiency, maneuver loads, and aeroelastic stability. Programs currently in progress that may meet the other technology needs include the Integrated High Performance Turbine Engine Technology (IHPTET) (NASA Lewis) and the Advanced Structural Concepts Program funded through NASA Langley.

  3. Cryogenic, high speed, turbopump bearing cooling requirements

    NASA Technical Reports Server (NTRS)

    Dolan, Fred J.; Gibson, Howard G.; Cannon, James L.; Cody, Joe C.

    1988-01-01

    Although the Space Shuttle Main Engine (SSME) has repeatedly demonstrated the capability to perform during launch, the High Pressure Oxidizer Turbopump (HPOTP) main shaft bearings have not met their 7.5 hour life requirement. A tester is being employed to provide the capability of subjecting full scale bearings and seals to speeds, loads, propellants, temperatures, and pressures which simulate engine operating conditions. The tester design permits much more elaborate instrumentation and diagnostics than could be accommodated in an SSME turbopump. Tests were made to demonstrate the facilities; and the devices' capabilities, to verify the instruments in its operating environment and to establish a performance baseline for the flight type SSME HPOTP Turbine Bearing design. Bearing performance data from tests are being utilized to generate: (1) a high speed, cryogenic turbopump bearing computer mechanical model, and (2) a much improved, very detailed thermal model to better understand bearing internal operating conditions. Parametric tests were also made to determine the effects of speed, axial loads, coolant flow rate, and surface finish degradation on bearing performance.

  4. Computation of High Speed Jet Noise

    NASA Technical Reports Server (NTRS)

    Freund, Jonathan B.

    2002-01-01

    The objective of this work was to use direct numerical simulation (DNS) techniques to study the physics of noise generation by a high-speed turbulent jet. A Mach 0.9, Reynolds number 3,600 jet was selected because of available experimental data. New numerical methods for generating disturbances at the nozzle and computing far-field sound were developed and reported in the course of this work. Over 25 million mesh points were used in the simulations which ran for over 50,000 timesteps and required over 50,000 processor hours on state-of-the-art parallel computer systems to complete. Figures show a visualization of the jet and sound field, a comparison of the mean flow development with the experiment, a directivity comparison with the experiment, and time spectrum comparison with the experiment. Agreement is seen to be excellent. These are fully document in the attached references. Full details of the work, detailed achievements and conclusions are discussed in appendices, which are copies of publications that resulted from this work. We have studied noise mechanisms in supersonic jets, the refraction of sound by turbulence in subsonic jets, and noise sources in conjunction with a DNS of a Mach 0.9 jet.

  5. 8-Foot High Speed Tunnel (HST)

    NASA Technical Reports Server (NTRS)

    1953-01-01

    Semi-automatic readout equipment installed in the 1950s used for data recording and reduction in the 8-Foot High Speed Tunnel (HST). A 1957 NACA report on wind tunnel facilities at Langley included these comments on the data recording and reduction equipment for the 8-foot HST: 'The data recording and reduction equipment used for handling steady force and pressure information at the Langley 8-foot transonic tunnel is similar to that described for the Langley 16-foot transonic tunnel. Very little dynamic data recording equipment, however, is available.' The description of the 16-foot transonic tunnel equipment is as follows: 'A semiautomatic force data readout system provides tabulated raw data and punch card storage of raw data concurrent with the operation of the wind tunnel. Provision is made for 12 automatic channels of strain gage-data output, and eight channels of four-digit manually operated inputs are available for tabulating and punching constants, configuration codes, and other information necessary for data reduction and identification. The data are then processed on electronic computing machines to obtain the desired coefficients. These coefficients and their proper identification are then machine tabulated to provide a printed record of the results. The punched cards may also be fed into an automatic plotting device for the preparation of plots necessary for data analysis.'

  6. High Speed Fibre Optic Backbone LAN

    NASA Astrophysics Data System (ADS)

    Tanimoto, Masaaki; Hara, Shingo; Kajita, Yuji; Kashu, Fumitoshi; Ikeuchi, Masaru; Hagihara, Satoshi; Tsuzuki, Shinji

    1987-09-01

    Our firm has developed the SUMINET-4100 series, a fibre optic local area network (LAN), to serve the communications system trunk line needs for facilities, such as steel refineries, automobile plants and university campuses, that require large transmission capacity, and for the backbone networks used in intelligent building systems. The SUMINET-4100 series is already in service in various fields of application. Of the networks available in this series, the SUMINET-4150 has a trunk line speed of 128 Mbps and the multiplexer used for time division multiplexing (TDM) was enabled by designing an ECL-TTL gate array (3000 gates) based custom LSI. The synchronous, full-duplex V.24 and V.3.5 interfaces (SUMINET-2100) are provided for use with general purpose lines. And the IBM token ring network, the SUMINET-3200, designed for heterogeneous PCs and the Ethernet can all be connected to sub loops. Further, the IBM 3270 TCA and 5080 CADAM can be connected in the local mode. Interfaces are also provided for the NTT high-speed digital service, the digital PBX systems, and the Video CODEC system. The built-in loop monitor (LM) and network supervisory processor (NSP) provide management of loop utilization and send loop status signals to the host CPU's network configuration and control facility (NCCF). These built-in functions allow both the computer system and LAN to be managed from a single source at the host. This paper outlines features of the SUMINET-4150 and provides an example of its installation.

  7. High-speed Civil Transport Aircraft Emissions

    NASA Technical Reports Server (NTRS)

    Miake-Lye, Richard C.; Matulaitis, J. A.; Krause, F. H.; Dodds, Willard J.; Albers, Martin; Hourmouziadis, J.; Hasel, K. L.; Lohmann, R. P.; Stander, C.; Gerstle, John H.

    1992-01-01

    Estimates are given for the emissions from a proposed high speed civil transport (HSCT). This advanced technology supersonic aircraft would fly in the lower stratosphere at a speed of roughly Mach 1.6 to 3.2 (470 to 950 m/sec or 920 to 1850 knots). Because it would fly in the stratosphere at an altitude in the range of 15 to 23 km commensurate with its design speed, its exhaust effluents could perturb the chemical balance in the upper atmosphere. The first step in determining the nature and magnitude of any chemical changes in the atmosphere resulting from these proposed aircraft is to identify and quantify the chemically important species they emit. Relevant earlier work is summarized, dating back to the Climatic Impact Assessment Program of the early 1970s and current propulsion research efforts. Estimates are provided of the chemical composition of an HSCT's exhaust, and these emission indices are presented. Other aircraft emissions that are not due to combustion processes are also summarized; these emissions are found to be much smaller than the exhaust emissions. Future advances in propulsion technology, in experimental measurement techniques, and in understanding upper atmospheric chemistry may affect these estimates of the amounts of trace exhaust species or their relative importance.

  8. High speed imaging in icing windtunnel tests

    NASA Astrophysics Data System (ADS)

    de Pauw, Dennis; Graham, Percival; Dolatabadi, Ali

    2012-11-01

    The detailed visualization and behavior of a spray impinging on a hydrophilic, and superhydrophobic aerodynamic shape in isothermal room and icing conditions can provide deep understanding of in-flight icing. A superhydrophobic coating has a very low surface energy so it can be used to counteract the ice accumulation. It also reduces the adhesion strength of ice to the surface which ensures easier removal of the ice during flight. The focus of the experiments primarily lies on the fundamental study of multiple droplet, i.e. spray, impact on a NACA 0012 airfoil in room and icing conditions. Under such conditions, important icing features such as rivulets and runback flow are observed. This provides us with the basics of ice formation on an aerodynamic surface. The study also focuses on the comparison between aluminum and superhydrophobic surfaces for ice accumulation in conditions which approach flight conditions. All the experiments are carried out in a small scale icing windtunnel using high speed photography with frame rates ranging from five thousand to fifty thousand frames per second.

  9. Flickering aurora studies using high speed cameras

    NASA Astrophysics Data System (ADS)

    McHarg, M. G.; Stenbaek-Nielsen, H. C.; Samara, M.; Michell, R.; Hampton, D. L.; Haaland, R. K.

    2009-12-01

    We report on observations of flickering aurora using two different digital camera systems. The first, a high speed Phantom 7 camera with a Video Scope HS 1845 HS image intensifier coupled with an 50mm lens provides fast frame rates with data recorded at 200 and 400 frames per second with a 512x384 pixel, 11.8x8.8 degree FOV. The second system is an Andor Electron-Multiplying Charge Couple Device (EMCCD) running at 33 frames per second using a 256 by 256 format covering 16x16 degrees field of view. Both systems made observations of flickering aurora in the magnetic zenith, using optical filters transmitting the prompt blue and red emissions of nitrogen. The Andor system was deployed at the Poker Flat rocket range near Fairbanks AK, while the Phantom system was deployed approximately 400 miles north of Poker Flat at Toolik Lake observatory. We find both narrow band low frequency (~5-10 Hz) and wider band, higher frequency (50- 70 Hz) oscillations in the optical intensity of flickering aurora. Direct comparison of the optical data and the dispersion relation for ion cyclotron waves thought to be responsible for the modulation of electrons causing the intensity fluctuations seen in flickering aurora are presented.

  10. High speed ground transportation study. Executive summary

    SciTech Connect

    Not Available

    1992-10-01

    In 1991, the Washington State Legislature enacted Chapter 231, Laws of 1991 (SHB 1452), which directed that a comprehensive assessment be made of the feasibility of developing a high speed ground transportation (HSGT) system in the State of Washington. The legislation came about because there was a growing recognition that major transportation corridors were reaching unacceptable levels of congestion, and that even though most large metropolitan areas were developing specific plans to ease that congestion within their urban boundaries, intercity travel between those areas was becoming increasingly difficult. The study area included the State of Washington plus the Portland, OR urban area and the lower mainland of British Columbia. Two major corridors were identified and analyzed. The study was not meant to focus on the technologies but rather on the economic, environmental, institutional and financial feasibility of implementing HSGT in this state. The study was not meant to be a siting study. Alignments and station locations were assumed only to test feasibility, and to evaluate corridors and service areas. Specific location decisions will require more detailed engineering and operations studies.

  11. High speed curved position sensitive detector

    DOEpatents

    Hendricks, Robert W.; Wilson, Jack W.

    1989-01-01

    A high speed curved position sensitive porportional counter detector for use in x-ray diffraction, the detection of 5-20 keV photons and the like. The detector employs a planar anode assembly of a plurality of parallel metallic wires. This anode assembly is supported between two cathode planes, with at least one of these cathode planes having a serpentine resistive path in the form of a meander having legs generally perpendicular to the anode wires. This meander is produced by special microelectronic fabrication techniques whereby the meander "wire" fans outwardly at the cathode ends to produce the curved aspect of the detector, and the legs of the meander are small in cross-section and very closely spaced whereby a spatial resolution of about 50 .mu.m can be achieved. All of the other performance characteristics are about as good or better than conventional position sensitive proportional counter type detectors. Count rates of up to 40,000 counts per second with 0.5 .mu.s shaping time constants are achieved.

  12. CMOS Image Sensors for High Speed Applications.

    PubMed

    El-Desouki, Munir; Deen, M Jamal; Fang, Qiyin; Liu, Louis; Tse, Frances; Armstrong, David

    2009-01-01

    Recent advances in deep submicron CMOS technologies and improved pixel designs have enabled CMOS-based imagers to surpass charge-coupled devices (CCD) imaging technology for mainstream applications. The parallel outputs that CMOS imagers can offer, in addition to complete camera-on-a-chip solutions due to being fabricated in standard CMOS technologies, result in compelling advantages in speed and system throughput. Since there is a practical limit on the minimum pixel size (4∼5 μm) due to limitations in the optics, CMOS technology scaling can allow for an increased number of transistors to be integrated into the pixel to improve both detection and signal processing. Such smart pixels truly show the potential of CMOS technology for imaging applications allowing CMOS imagers to achieve the image quality and global shuttering performance necessary to meet the demands of ultrahigh-speed applications. In this paper, a review of CMOS-based high-speed imager design is presented and the various implementations that target ultrahigh-speed imaging are described. This work also discusses the design, layout and simulation results of an ultrahigh acquisition rate CMOS active-pixel sensor imager that can take 8 frames at a rate of more than a billion frames per second (fps).

  13. High speed image correlation for vibration analysis

    NASA Astrophysics Data System (ADS)

    Siebert, T.; Wood, R.; Splitthof, K.

    2009-08-01

    Digital speckle correlation techniques have already been successfully proven to be an accurate displacement analysis tool for a wide range of applications. With the use of two cameras, three dimensional measurements of contours and displacements can be carried out. With a simple setup it opens a wide range of applications. Rapid new developments in the field of digital imaging and computer technology opens further applications for these measurement methods to high speed deformation and strain analysis, e.g. in the fields of material testing, fracture mechanics, advanced materials and component testing. The high resolution of the deformation measurements in space and time opens a wide range of applications for vibration analysis of objects. Since the system determines the absolute position and displacements of the object in space, it is capable of measuring high amplitudes and even objects with rigid body movements. The absolute resolution depends on the field of view and is scalable. Calibration of the optical setup is a crucial point which will be discussed in detail. Examples of the analysis of harmonic vibration and transient events from material research and industrial applications are presented. The results show typical features of the system.

  14. High-Speed RaPToRS

    NASA Astrophysics Data System (ADS)

    Henchen, Robert; Esham, Benjamin; Becker, William; Pogozelski, Edward; Padalino, Stephen; Sangster, Thomas; Glebov, Vladimir

    2008-11-01

    The High-Speed Rapid Pneumatic Transport of Radioactive Samples (HS-RaPToRS) system, designed to quickly and safely move radioactive materials, was assembled and tested at the Mercury facility of the Naval Research Laboratory (NRL) in Washington D.C. A sample, which is placed inside a four-inch-diameter carrier, is activated before being transported through a PVC tube via airflow. The carrier travels from the reaction chamber to the end station where it pneumatically brakes prior to the gate. A magnetic latch releases the gate when the carrier arrives and comes to rest. The airflow, optical carrier-monitoring devices, and end gate are controlled manually or automatically with LabView software. The installation and testing of the RaPToRS system at NRL was successfully completed with transport times of less than 3 seconds. The speed of the carrier averaged 16 m/s. Prospective facilities for similar systems include the Laboratory for Laser Energetics and the National Ignition Facility.

  15. Proposal and preliminary design for a high speed civil transport aircraft. Swift: A high speed civil transport for the year 2000

    NASA Technical Reports Server (NTRS)

    Banuelos, Aerobel; Caballero, Maria L.; Fields, Richard S., Jr.; Ledesma, Martha E.; Murakami, Lynne A.; Reyes, Joe T.; Westra, Bryan W.

    1992-01-01

    To meet the needs of the growing passenger traffic market in light of an aging subsonic fleet, a new breed of aircraft must be developed. The Swift is an aircraft that will economically meet these needs by the year 2000. Swift is a 246 passenger, Mach 2.5, luxury airliner. It has been designed to provide the benefit of comfortable, high speed transportation in a safe manner with minimal environmental impact. This report will discuss the features of the Swift aircraft and establish a solid, foundation for this supersonic transport of tomorrow.

  16. Detecting and Blocking Network Attacks at Ultra High Speeds

    SciTech Connect

    Paxson, Vern

    2010-11-29

    Stateful, in-depth, in-line traffic analysis for intrusion detection and prevention has grown increasingly more difficult as the data rates of modern networks rise. One point in the design space for high-performance network analysis - pursued by a number of commercial products - is the use of sophisticated custom hardware. For very high-speed processing, such systems often cast the entire analysis process in ASICs. This project pursued a different architectural approach, which we term Shunting. Shunting marries a conceptually quite simple hardware device with an Intrusion Prevention System (IPS) running on commodity PC hardware. The overall design goal is was to keep the hardware both cheap and readily scalable to future higher speeds, yet also retain the unparalleled flexibility that running the main IPS analysis in a full general-computing environment provides. The Shunting architecture we developed uses a simple in-line hardware element that maintains several large state tables indexed by packet header fields, including IP/TCP flags, source and destination IP addresses, and connection tuples. The tables yield decision values the element makes on a packet-by-packet basis: forward the packet, drop it, or divert ('shunt') it through the IPS (the default). By manipulating table entries, the IPS can, on a fine-grained basis: (i) specify the traffic it wishes to examine, (ii) directly block malicious traffic, and (iii) 'cut through' traffic streams once it has had an opportunity to 'vet' them, or (iv) skip over large items within a stream before proceeding to further analyze it. For the Shunting architecture to yield benefits, it needs to operate in an environment for which the monitored network traffic has the property that - after proper vetting - much of it can be safely skipped. This property does not universally hold. For example, if a bank needs to examine all Web traffic involving its servers for regulatory compliance, then a monitor in front of one of the bank

  17. Status of NASA High-Speed Research Program

    NASA Technical Reports Server (NTRS)

    Whitehead, Allen H., Jr.

    1998-01-01

    This paper provides an overview of the NASA High-Speed Research (HSR) Program dedicated to establishing the technology foundation to support the US transport industry's decision for an environmentally acceptable, economically viable 300 passenger, 5000 n.mi., Mach 2.4 aircraft. The HSR program, begun in 1990, is supported by a team of US aerospace companies. The international economic stakes are high. The projected market for more than 500 High-Speed Civil Transport (HSCT) airplanes introduced between the years 2000 and 2015 translates to more than $200 billion in aircraft sales, and the potential of 140,000 new jobs. The paper addresses the history of supersonic commercial air transportation beginning with the Concorde and TU-144 developments in the early 1960 time period. The technology goals for the HSR program are derived from market study results, projections on environmental requirements, and technical goals for each discipline area referenced to the design and operational features of the Concorde. Progress since the inception of the program is reviewed and a summary of some of the lessons learned will be highlighted. An outline is presented of the remaining technological challenges. Emphasis in this paper will be on the traditional aeronautical technologies that lead to higher performance to ensure economic viability. Specific discussion will center around aerodynamic performance, flight deck research, materials and structures development and propulsion systems. The environmental barriers to the HSCT and that part of the HSR program that addresses those technologies are reviewed and assessed in a companion paper.

  18. Application Of CO2 Lasers To High Speed Blanking

    NASA Astrophysics Data System (ADS)

    Grenier, L. E.

    1986-11-01

    While laser cutting of sheetmetal has attained wide acceptance in the automotive industry for the purposes of prototyping and very limited preproduction work, the production rates possible with currently available systems have precluded the use of this technique in a production environment. The device design to be described embodies a high speed X-Y positioner carrying a cutting head with limited Z-axis capability. This approach confers two main benefits, first, production rate is limited only by laser power, since the positioner technology selected will permit movement at rates up to 1.5 m/s (60 in/s), second, the use of a high speed non-contact surface follower to control the Z-axis movement reduces the need to clamp the workpiece rigidly to a precision reference surface. The realized reduction of the clamping requirement permits some latitude in the feed methods that can be employed, allowing the use of coil or sheet feeding as appropriate. The author will provide estimated production rates for the proposed design and demonstrate that a suitable choice of laser source and material feed will permit the production of parts at a rate and cost comparable to conventional blanking with the advantage of much greater flexibility and reduced retooling time.

  19. High Speed Civil Transport-737 Landings at Wallops Island

    NASA Technical Reports Server (NTRS)

    1996-01-01

    NASA pilot Michael Wusk makes a 'windowless landing' aboard a NASA 737 research aircraft in flight tests aimed at developing technology for a future supersonic airliner. Cameras in the nose of the airplane relayed images to a computer screen in the aircrafts otherwise 'blind' research cockpit. Computer graphics were overlaid on the image to give cues to the pilot during approaches and landings. Researchers are hoping that by enhancing the pilots vision with high-resolution video displays aircraft designers of the future can do away with the expensive, mechanically-drooping nose of early supersonic transports. The tests were conducted in flights at NASAs Wallops Flights Facility, Wallops, Va. From November 1995 through January 1996. The flight deck systems research is part of the joint NASA-US industry High-Speed Research (HSR) Program, aimed at developing technologies for an economically viable, environmentally friendly high-speed civil transport around the turn of the century. The work is directed by the HSR Program Office, located at NASA Langley Research Center, Hampton.Va.

  20. Design of a high-speed electrochemical scanning tunneling microscope.

    PubMed

    Yanson, Y I; Schenkel, F; Rost, M J

    2013-02-01

    In this paper, we present a bottom-up approach to designing and constructing a high-speed electrochemical scanning tunneling microscope (EC-STM). Using finite element analysis (FEA) calculations of the frequency response of the whole mechanical loop of the STM, we analyzed several geometries to find the most stable one that could facilitate fast scanning. To test the FEA results, we conducted measurements of the vibration amplitudes using a prototype STM setup. Based on the FEA analysis and the measurement results, we identified the potentially most disturbing vibration modes that could impair fast scanning. By modifying the design of some parts of the EC-STM, we reduced the amplitudes as well as increased the resonance frequencies of these modes. Additionally, we designed and constructed an electrochemical flow-cell that allows STM imaging in a flowing electrolyte, and built a bi-potentiostat to achieve electrochemical potential control during the measurements. Finally, we present STM images acquired during high-speed imaging in air as well as in an electrochemical environment using our newly-developed EC-STM.

  1. The 1989 high-speed civil transport studies

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The results of the Douglas Aircraft Company system studies related to high speed civil transports (HSCT) are discussed. The studies were conducted to assess the environmental compatibility of a high speed civil transport at a design Mach number of 3.2. Sonic boom minimization, external noise, and engine emissions were assessed together with the effect of the laminar flow control (LFC) technology on vehicle gross weight. The general results indicated that a sonic boom loudness level of 90-PLdB at Mach 3.2 may not be achievable for a practical design; the high flow engine cycle concept shows promise of achieving the sideline FAR Part 36 noise limit, but may not achieve the aircraft range design goal of 6,500 nautical miles; the rich burn/quick quench (RB/QQ) combustor concept shows promise for achieving low EINO sub x levels when combined with a premixed pilot stage/advanced technology, high power stage duct burner in the Pratt and Whitney variable steam control engine (VSCE); and full chord wing LFC has significant performance and economic advantages relative to the turbulent wing baseline.

  2. Acoustic emission monitoring of high speed grinding of silicon nitride

    PubMed

    Hwang; Whitenton; Hsu; Blessing; Evans

    2000-03-01

    Acoustic emission (AE) monitoring of a machining process offers real-time sensory input which could provide tool condition and part quality information that is critical to effective process control. However, the choice of sensor, its placement, and how to process the data and extract useful information are challenging application-specific questions which researchers must consider. Here we report an effort to resolve these questions for the case of high speed grinding of silicon nitride using an electroplated single-layered diamond wheel. A grinding experiment was conducted at a wheel speed of 149 m s-1 and continued until the end of the useful wheel life. AE signal data were then collected for each complete pass at given grinding times throughout the useful wheel life. We found that the amplitude of the AE signal monotonically increases with wheel wear, as do grinding forces and energy. Furthermore, the signal power contained in the AE signal proportionally increases with the associated grinding power, which suggests that the AE signal could provide quantitative information of wheel wear in high-speed grinding, and could also be used to determine when the grinding wheel needs replacement.

  3. Status of NASA High-Speed Research Program

    NASA Technical Reports Server (NTRS)

    Whitehead, Allen H., Jr.

    1998-01-01

    This paper provides an overview of the NASA High-Speed Research (HSR) Program dedicated to establishing the technology foundation to support the US transport industry's decision for an environmentally acceptable, economically viable 300 passenger, 5000 n.mi., Mach 2.4 aircraft. The HSR program, begun in 1990, is supported by a team of US aerospace companies. The international economic stakes are high. The projected market for more than 500 High-Speed Civil Transport (HSCT) airplanes introduced between the years 2000 and 2015 translates to more than $200 billion in aircraft sales, and the potential of 140,000 new jobs. The paper addresses the history of supersonic commercial air transportation beginning with the Concorde and TU-144 developments in the early 1960 time period. The technology goals for the HSR program are derived from market study results, projections on environmental requirements, and technical goals for each discipline area referenced to the design and operational features of the Concorde. Progress since the inception of the program is reviewed and a summary of some of the lessons learned will be highlighted. An outline is presented of the remaining technological challenges. Emphasis in this paper will be on the traditional aeronautical technologies that lead to higher performance to ensure economic viability. Specific discussion will center around aerodynamic performance, flight deck research, materials and structures development and propulsion systems. The environmental barriers to the HSCT and that part of the HSR program that addresses those technologies are reviewed and assessed in a companion paper.

  4. High-Speed Data Recorder for Space, Geodesy, and Other High-Speed Recording Applications

    NASA Technical Reports Server (NTRS)

    Taveniku, Mikael

    2013-01-01

    A high-speed data recorder and replay equipment has been developed for reliable high-data-rate recording to disk media. It solves problems with slow or faulty disks, multiple disk insertions, high-altitude operation, reliable performance using COTS hardware, and long-term maintenance and upgrade path challenges. The current generation data recor - ders used within the VLBI community are aging, special-purpose machines that are both slow (do not meet today's requirements) and are very expensive to maintain and operate. Furthermore, they are not easily upgraded to take advantage of commercial technology development, and are not scalable to multiple 10s of Gbit/s data rates required by new applications. The innovation provides a softwaredefined, high-speed data recorder that is scalable with technology advances in the commercial space. It maximally utilizes current technologies without being locked to a particular hardware platform. The innovation also provides a cost-effective way of streaming large amounts of data from sensors to disk, enabling many applications to store raw sensor data and perform post and signal processing offline. This recording system will be applicable to many applications needing realworld, high-speed data collection, including electronic warfare, softwaredefined radar, signal history storage of multispectral sensors, development of autonomous vehicles, and more.

  5. Photodetector having high speed and sensitivity

    DOEpatents

    Morse, Jeffrey D.; Mariella, Jr., Raymond P.

    1991-01-01

    The present invention provides a photodetector having an advantageous combination of sensitivity and speed; it has a high sensitivity while retaining high speed. In a preferred embodiment, visible light is detected, but in some embodiments, x-rays can be detected, and in other embodiments infrared can be detected. The present invention comprises a photodetector having an active layer, and a recombination layer. The active layer has a surface exposed to light to be detected, and comprises a semiconductor, having a bandgap graded so that carriers formed due to interaction of the active layer with the incident radiation tend to be swept away from the exposed surface. The graded semiconductor material in the active layer preferably comprises Al.sub.1-x Ga.sub.x As. An additional sub-layer of graded In.sub.1-y Ga.sub.y As may be included between the Al.sub.1-x Ga.sub.x As layer and the recombination layer. The recombination layer comprises a semiconductor material having a short recombination time such as a defective GaAs layer grown in a low temperature process. The recombination layer is positioned adjacent to the active layer so that carriers from the active layer tend to be swept into the recombination layer. In an embodiment, the photodetector may comprise one or more additional layers stacked below the active and recombination layers. These additional layers may include another active layer and another recombination layer to absorb radiation not absorbed while passing through the first layers. A photodetector having a stacked configuration may have enhanced sensitivity and responsiveness at selected wavelengths such as infrared.

  6. Chromotomosynthesis for high speed hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Bostick, Randall L.; Perram, Glen P.

    2012-09-01

    A rotating direct vision prism, chromotomosynthetic imaging (CTI) system operating in the visible creates hyperspectral imagery by collecting a set of 2D images with each spectrally projected at a different rotation angle of the prism. Mathematical reconstruction techniques that have been well tested in the field of medical physics are used to reconstruct the data to produce the 3D hyperspectral image. The instrument operates with a 100 mm focusing lens in the spectral range of 400-900 nm with a field of view of 71.6 mrad and angular resolution of 0.8-1.6 μrad. The spectral resolution is 0.6 nm at the shortest wavelengths, degrading to over 10 nm at the longest wavelengths. Measurements using a pointlike target show that performance is limited by chromatic aberration. The accuracy and utility of the instrument is assessed by comparing the CTI results to spatial data collected by a wideband image and hyperspectral data collected using a liquid crystal tunable filter (LCTF). The wide-band spatial content of the scene reconstructed from the CTI data is of same or better quality as a single frame collected by the undispersed imaging system with projections taken at every 1°. Performance is dependent on the number of projections used, with projections at 5° producing adequate results in terms of target characterization. The data collected by the CTI system can provide spatial information of equal quality as a comparable imaging system, provide high-frame rate slitless 1-D spectra, and generate 3-D hyperspectral imagery which can be exploited to provide the same results as a traditional multi-band spectral imaging system. While this prototype does not operate at high speeds, components exist which will allow for CTI systems to generate hyperspectral video imagery at rates greater than 100 Hz. The instrument has considerable potential for characterizing bomb detonations, muzzle flashes, and other battlefield combustion events.

  7. Photogrammetric Techniques Using High-Speed Cineradiography

    NASA Astrophysics Data System (ADS)

    Nusholtz, Guy S.; Bender, Max; Suggitt, Bryan R.; Kaiker, Patricia S.; Muscott, Gail J.

    1986-01-01

    A high-speed 16-mm cineradiographic system previously developed at the University of Michigan Transportation Research Institute for use in biomechanics research has been undergoing a continuous upgrading in capability. In addition to changes in the structural aspect of the cineradiography, improvements have been made in the procedures used to obtain better image quality as well as methods for interpretation of the digitized results. The current improvements in the system include: 1) filtering the X-ray source before penetration of the subject to increase image contrast as well as to protect the image tube; 2) pre-processing of the film to increase its effective speed; 3) development of a neutral density radio-contrast media for outlining anatomical structure without using the vascular system; and 4) development of procedures for obtaining analytical information about motion of non-rigid anatomical structures from digitized film. This system now consists of either a 35-mm Photosonics 4B, a 16-mm Photosonics 1B, or a 16-mm Milliken which views a 50-mm (2-inch) diameter output of a P-11 phosphor of a high gain, four-stage magnetically focused image intensifier tube, gated on and off synchronously with the motion picture camera shutter. A lens optically couples the input photocathode of the image tube to an X-ray fluorescent (rare earth) screen image produced by a smoothed DC X-ray generator of a conventional type. The system is capable of looking at a large spectrum of anatomical structures under a wide range of dynamic loading conditions.

  8. High Speed/ Low Effluent Process for Ethanol

    SciTech Connect

    M. Clark Dale

    2006-10-30

    n this project, BPI demonstrated a new ethanol fermentation technology, termed the High Speed/ Low Effluent (HS/LE) process on both lab and large pilot scale as it would apply to wet mill and/or dry mill corn ethanol production. The HS/LE process allows very rapid fermentations, with 18 to 22% sugar syrups converted to 9 to 11% ethanol ‘beers’ in 6 to 12 hours using either a ‘consecutive batch’ or ‘continuous cascade’ implementation. This represents a 5 to 8X increase in fermentation speeds over conventional 72 hour batch fermentations which are the norm in the fuel ethanol industry today. The ‘consecutive batch’ technology was demonstrated on a large pilot scale (4,800 L) in a dry mill corn ethanol plant near Cedar Rapids, IA (Xethanol Biofuels). The pilot demonstrated that 12 hour fermentations can be accomplished on an industrial scale in a non-sterile industrial environment. Other objectives met in this project included development of a Low Energy (LE) Distillation process which reduces the energy requirements for distillation from about 14,000 BTU/gal steam ($0.126/gal with natural gas @ $9.00 MCF) to as low as 0.40 KW/gal electrical requirements ($0.022/gal with electricity @ $0.055/KWH). BPI also worked on the development of processes that would allow application of the HS/LE fermentation process to dry mill ethanol plants. A High-Value Corn ethanol plant concept was developed to produce 1) corn germ/oil, 2) corn bran, 3) ethanol, 4) zein protein, and 5) nutritional protein, giving multiple higher value products from the incoming corn stream.

  9. High-speed Oil Engines for Vehicles. Part II

    NASA Technical Reports Server (NTRS)

    Hausfelder, Ludwig

    1927-01-01

    Further progress toward the satisfactory solution of the difficult problem of the distribution and atomization of the injected fuel was made by extensive experimentation with various fuel valves, nozzles, and atomizing devices. Valuable information was also obtained through numerous experimental researches on the combustion of oils and the manner of introducing the combustion air into the cylinder, as well as on the physical processes of atomization, the determination of the size of drops, etc. These researches led to the conclusion that it is possible, even without producing great turbulence in the combustion chamber and at moderate pump pressure, if the degree of atomization and the penetrative power of the fuel jet are adapted to the shape of the combustion chamber and to the dimensions of the cylinder.

  10. Perceived Benefits and Barriers to the Use of High-Speed Broadband in Ireland's Second-Level Schools

    ERIC Educational Resources Information Center

    Coyne, Bryan; Devitt, Niamh; Lyons, Seán; McCoy, Selina

    2015-01-01

    As part of Ireland's National Digital Strategy, high-speed broadband is being rolled out to all second-level schools to support greater use of information and communication technology (ICT) in education. This programme signals a move from slow and unreliable broadband connections for many schools to a guaranteed high-speed connection with…

  11. Perceived Benefits and Barriers to the Use of High-Speed Broadband in Ireland's Second-Level Schools

    ERIC Educational Resources Information Center

    Coyne, Bryan; Devitt, Niamh; Lyons, Seán; McCoy, Selina

    2015-01-01

    As part of Ireland's National Digital Strategy, high-speed broadband is being rolled out to all second-level schools to support greater use of information and communication technology (ICT) in education. This programme signals a move from slow and unreliable broadband connections for many schools to a guaranteed high-speed connection with…

  12. 8-Foot High Speed Tunnel (HST

    NASA Technical Reports Server (NTRS)

    1957-01-01

    Interior view of the slotted throat test section installed in the 8-Foot High Speed Tunnel (HST) in 1950. The slotted region is about 160 inches in length. In this photograph, the sting-type model support is seen straight on. In a NASA report, the test section is described as follows: 'The test section of the Langley 8-foot transonic tunnel is dodecagonal in cross section and has a cross-sectional area of about 43 square feet. Longitudinal slots are located between each of the 12 wall panels to allow continuous operation through the transonic speed range. The slots contain about 11 percent of the total periphery of the test section. Six of the twelve panels have windows in them to allow for schlieren observations. The entire test section is enclosed in a hemispherical shaped chamber.' John Becker noted that the tunnel's 'final achievement was the development and use in routine operations of the first transonic slotted throat. The investigations of wing-body shapes in this tunnel led to Whitcomb's discovery of the transonic area rule.' James Hansen described the origins of the the slotted throat as follows: 'In 1946 Langley physicist Ray H. Wright conceived a way to do transonic research effectively in a wind tunnel by placing slots in the throat of the test section. The concept for what became known as the slotted-throat or slotted-wall tunnel came to Wright not as a solution to the chronic transonic problem, but as a way to get rid of wall interference (i.e., the mutual effect of two or more meeting waves or vibrations of any kind caused by solid boundaries) at subsonic speeds. For most of the year before Wright came up with this idea, he had been trying to develop a theoretical understanding of wall interference in the 8-Foot HST, which was then being repowered for Mach 1 capability.' When Wright presented these ideas to John Stack, the response was enthusiastic but neither Wright nor Stack thought of slotted-throats as a solution to the transonic problem, only

  13. High Speed Link Radiated Emission Reduction

    NASA Astrophysics Data System (ADS)

    Bisognin, P.; Pelissou, P.; Cissou, R.; Giniaux, M.; Vargas, O.

    2016-05-01

    To control the radiated emission of high-speed link and associated unit, the current approach is to implement overall harness shielding on cables bundles. This method is very efficient in the HF/ VHF (high frequency/ very high frequency) and UHF (ultra-high frequency) ranges when the overall harness shielding is properly bonded on EMC back-shell. Unfortunately, with the increasing frequency, the associated half wavelength matches with the size of Sub-D connector that is the case for the L band. Therefore, the unit connectors become the main source of interference emission. For the L-band and S-band, the current technology of EMC back-shell leaves thin aperture matched with the L band half wavelength and therefore, the shielding effectiveness is drastically reduced. In addition, overall harness shielding means significant increases of the harness mass.Airbus D&S Toulouse and Elancourt investigated a new solution to avoid the need of overall harness shielding. The objective is to procure EM (Electro-Magnetic) clean unit connected to cables bundles free of any overall harness shielding. The proposed solution is to implement EMC common mode filtering on signal interfaces directly on unit PCB as close as possible the unit connector.Airbus D&S Elancourt designed and manufactured eight mock-ups of LVDS (Low Voltage Differential Signaling) interface PCBs' with different solutions of filtering. After verification of the signal integrity, three mock-ups were retained (RC filter and two common mode choke coil) in addition to the reference one (without EMC filter).Airbus D&S Toulouse manufactured associated LVDS cable bundles and integrated the RX (Receiver) and TX (Transmitter) LVDS boards in shielded boxes.Then Airbus D&S performed radiated emission measurement of the LVDS links subassemblies (e.g. RX and TX boxes linked by LVDS cables) according to the standard test method. This paper presents the different tested solutions and main conclusions on the feasibility of such

  14. High-speed dual Langmuir probe.

    PubMed

    Lobbia, Robert B; Gallimore, Alec D

    2010-07-01

    In an effort to temporally resolve the electron density, electron temperature, and plasma potential for turbulent plasma discharges, a unique high-speed dual Langmuir probe (HDLP) has been developed. A traditional single Langmuir probe of cylindrical geometry (exposed to the plasma) is swept simultaneously with a nearby capacitance and noise compensating null probe (fully insulated from the plasma) to enable bias sweep rates on a microsecond timescale. Traditional thin-sheath Langmuir probe theory is applied for interpretation of the collected probe data. Data at a sweep rate of 100 kHz are presented; however the developed system is capable of running at 1 MHz-near the upper limit of the applied electrostatic Langmuir probe theory for the investigated plasma conditions. Large sets (100,000 sweeps at each of 352 spatial locations) of contiguous turbulent plasma properties are collected using simple electronics for probe bias driving and current measurement attaining 80 dB signal-to-noise measurements with dc to 1 MHz bandwidth. Near- and far-field plume measurements with the HDLP system are performed downstream from a modern Hall effect thruster where the time-averaged plasma properties exhibit the approximate ranges: electron density n(e) from (1x10(15))-(5x10(16)) m(-3), electron temperature T(e) from 1 to 3.5 eV, and plasma potential V(p) from 5 to 15 V. The thruster discharge of 200 V (constant anode potential) and 2 A (average discharge current) displays strong, 2.2 A peak-to-peak, current oscillations at 19 kHz, characteristic of the thruster "breathing mode" ionization instability. Large amplitude discharge current fluctuations are typical for most Hall thrusters, yet the HDLP system reveals the presence of the same 19 kHz fluctuations in n(e)(t), T(e)(t), and V(p)(t) throughout the entire plume with peak-to-peak divided by mean plasma properties that average 94%. The propagation delays between the discharge current fluctuations and the corresponding plasma

  15. High speed operation of permanent magnet machines

    NASA Astrophysics Data System (ADS)

    El-Refaie, Ayman M.

    This work proposes methods to extend the high-speed operating capabilities of both the interior PM (IPM) and surface PM (SPM) machines. For interior PM machines, this research has developed and presented the first thorough analysis of how a new bi-state magnetic material can be usefully applied to the design of IPM machines. Key elements of this contribution include identifying how the unique properties of the bi-state magnetic material can be applied most effectively in the rotor design of an IPM machine by "unmagnetizing" the magnet cavity center posts rather than the outer bridges. The importance of elevated rotor speed in making the best use of the bi-state magnetic material while recognizing its limitations has been identified. For surface PM machines, this research has provided, for the first time, a clear explanation of how fractional-slot concentrated windings can be applied to SPM machines in order to achieve the necessary conditions for optimal flux weakening. A closed-form analytical procedure for analyzing SPM machines designed with concentrated windings has been developed. Guidelines for designing SPM machines using concentrated windings in order to achieve optimum flux weakening are provided. Analytical and numerical finite element analysis (FEA) results have provided promising evidence of the scalability of the concentrated winding technique with respect to the number of poles, machine aspect ratio, and output power rating. Useful comparisons between the predicted performance characteristics of SPM machines equipped with concentrated windings and both SPM and IPM machines designed with distributed windings are included. Analytical techniques have been used to evaluate the impact of the high pole number on various converter performance metrics. Both analytical techniques and FEA have been used for evaluating the eddy-current losses in the surface magnets due to the stator winding subharmonics. Techniques for reducing these losses have been

  16. Simple high-speed confocal line-scanning microscope.

    PubMed

    Im, Kang-Bin; Han, Sumin; Park, Hwajoon; Kim, Dongsun; Kim, Beop-Min

    2005-06-27

    Using a line scan camera and an acousto-optic deflector (AOD), we constructed a high-speed confocal laser line-scanning microscope that can generate confocal images (512 x 512 pixels) with up to 191 frames/s without any mechanically moving parts. The line scanner consists of an AOD and a cylindrical lens, which creates a line focus sweeping over the sample. The measured resolutions in z (depth), x (perpendicular to line focus), and y (direction of line focus) directions are 3.3 mum, 0.7 mum and 0.9 mum, respectively, with a 50x objective lens. This confocal microscope may be useful for analyzing fast phenomena during biological and chemical interactions and for fast 3D image reconstruction.

  17. High-Speed Civil Transport Will Revolutionize Air Travel

    NASA Technical Reports Server (NTRS)

    1998-01-01

    NASA is developing advanced technologies that will allow industry to build a high-speed civil transport that will revolutionize overseas air travel. The technology challenges include developing low-cost materials and structural concepts as well as supersonic engines that can meet stringent noise and emissions standards. NASA's goal is to provide enabling technologies that will reduce the travel time to the Far East by 50 percent within 25 years, and do so at today's subsonic ticket prices. This research is part of NASA's Aeronautics and Space Transportation Technology (ASTT) Enterprise's strategy to sustain U.S. leadership in aeronautics and space. The Enterprise has set bold goals that are grouped into Three Pillars: Global Civil Aviation, Revolutionary Technology Leaps and Access to Space.

  18. Titanium Aluminide Applications in the High Speed Civil Transport

    NASA Technical Reports Server (NTRS)

    Bartolotta, Paul A.; Krause, David L.

    1999-01-01

    It is projected that within the next two decades, overseas air travel will increase to over 600,000 passengers per day. The High Speed Civil Transport (HSCT) is a second-generation supersonic commercial aircraft proposed to meet this demand. The expected fleet of 500 to 1500 aircraft is required to meet EPA environmental goals; the HSCT propulsion system requires advanced technologies to reduce exhaust and noise pollution. A part of the resultant strategy for noise attenuation is the use of an extremely large exhaust nozzle. In the nozzle, several critical components are fabricated from titanium aluminide: the divergent nap uses wrought gamma; the nozzle sidewall is a hybrid fabrication of both wrought gamma face sheet and cast gamma substructure. This paper describes the HSCT program and the use of titanium aluminide for its components.

  19. High speed imaging technology: yesterday, today, and tomorrow

    NASA Astrophysics Data System (ADS)

    Pendley, Gil J.

    2003-07-01

    The purpose of this discussion is to familiarize readers with an overview of high-speed imaging technology as a means of analyzing objects in motion that occur too fast for the eye to see or conventional photography or video to capture. This information is intended to provide a brief historical narrative from the inception of high-speed imaging in the USA and the acceptance of digital video technology to augment or replace high-speed motion picture cameras. It is not intended a definitive work on the subject. For those interested in greater detail, such as application techniques, formulae, very high-speed and ultra speed technology etc. I recommend the latest text on the subject: High Speed Photography and Photonics first published in 1997 by Focal Press in the UK and copyrighted by the Association for High Speed Photography in the United Kingdom.

  20. High-Speed Edge-Detecting Line Scan Smart Camera

    NASA Technical Reports Server (NTRS)

    Prokop, Norman F.

    2012-01-01

    A high-speed edge-detecting line scan smart camera was developed. The camera is designed to operate as a component in a NASA Glenn Research Center developed inlet shock detection system. The inlet shock is detected by projecting a laser sheet through the airflow. The shock within the airflow is the densest part and refracts the laser sheet the most in its vicinity, leaving a dark spot or shadowgraph. These spots show up as a dip or negative peak within the pixel intensity profile of an image of the projected laser sheet. The smart camera acquires and processes in real-time the linear image containing the shock shadowgraph and outputting the shock location. Previously a high-speed camera and personal computer would perform the image capture and processing to determine the shock location. This innovation consists of a linear image sensor, analog signal processing circuit, and a digital circuit that provides a numerical digital output of the shock or negative edge location. The smart camera is capable of capturing and processing linear images at over 1,000 frames per second. The edges are identified as numeric pixel values within the linear array of pixels, and the edge location information can be sent out from the circuit in a variety of ways, such as by using a microcontroller and onboard or external digital interface to include serial data such as RS-232/485, USB, Ethernet, or CAN BUS; parallel digital data; or an analog signal. The smart camera system can be integrated into a small package with a relatively small number of parts, reducing size and increasing reliability over the previous imaging system..

  1. Chicago-St. Louis high speed rail plan

    SciTech Connect

    Stead, M.E.

    1994-12-31

    The Illinois Department of Transportation (IDOT), in cooperation with Amtrak, undertook the Chicago-St. Louis High Speed Rail Financial and Implementation Plan study in order to develop a realistic and achievable blueprint for implementation of high speed rail in the Chicago-St. Louis corridor. This report presents a summary of the Price Waterhouse Project Team`s analysis and the Financial and Implementation Plan for implementing high speed rail service in the Chicago-St. Louis corridor.

  2. Water Containment Systems for Testing High-Speed Flywheels

    NASA Technical Reports Server (NTRS)

    Trase, Larry; Thompson, Dennis

    2006-01-01

    Water-filled containers are used as building blocks in a new generation of containment systems for testing high-speed flywheels. Such containment systems are needed to ensure safety by trapping high-speed debris in the event of centrifugal breakup or bearing failure. Traditional containment systems for testing flywheels consist mainly of thick steel rings. The effectiveness of this approach to shielding against high-speed debris was demonstrated in a series of tests.

  3. 33 CFR 84.24 - High-speed craft.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false High-speed craft. 84.24 Section... RULES ANNEX I: POSITIONING AND TECHNICAL DETAILS OF LIGHTS AND SHAPES § 84.24 High-speed craft. (a) The masthead light of high-speed craft with a length to breadth ratio of less than 3.0 may be placed at a...

  4. 33 CFR 84.24 - High-speed craft.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false High-speed craft. 84.24 Section... RULES ANNEX I: POSITIONING AND TECHNICAL DETAILS OF LIGHTS AND SHAPES § 84.24 High-speed craft. (a) The masthead light of high-speed craft with a length to breadth ratio of less than 3.0 may be placed at a...

  5. 33 CFR 84.24 - High-speed craft.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false High-speed craft. 84.24 Section... RULES ANNEX I: POSITIONING AND TECHNICAL DETAILS OF LIGHTS AND SHAPES § 84.24 High-speed craft. (a) The masthead light of high-speed craft with a length to breadth ratio of less than 3.0 may be placed at a...

  6. High-speed integrated electroabsorption modulators

    NASA Astrophysics Data System (ADS)

    Johnson, John E.; Morton, Paul A.; Park, Yong-Kwan; Ketelsen, Leonard J. P.; Grenko, J. A.; Miller, Thomas J.; Sputz, Sharon K.; Tanbun-Ek, Tawee; Vandenberg, J. M.; Yadvish, R. D.; Fullowan, Thomas R.; Sciortino, Paul F., Jr.; Sergent, A. M.; Tsang, Won-Tien

    1997-04-01

    The explosive growth in internet, multimedia and wireless traffic in recent years is rapidly exhausting capacity in public networks worldwide, forcing network service providers to aggressively install new lines and upgrade old ones. Fortunately, technological breakthroughs in the areas of erbium-doped fiber amplifiers (EDFA's), passive wavelength demultiplexers and low chirp sources have made all-optical dense wavelength-division multiplexed (WDM) systems a cost- effective way to utilize the vast bandwidth already available in the embedded fiber plant. WDM systems offer additional operational advantages, including high ultimate capacity, bit-rate transparency, flexible growth strategies, and the potential to use all-optical wavelength routing in future broadband network architectures. Commercial WDM systems operating at the OC-48 (2.5 Gbit/s) line rate are now available, and OC-192 (10 Gbit/s) terminal equipment which is under development will further enhance the capacity of these systems. One of the keys to viable WDM systems is the availability of inexpensive low-chirp optical transmitters. By taking advantage of photonic integrated circuit technology, it is possible to produce monolithically integrated DFB laser/EA modulators (EML's) with low chirp, low drive voltage and high extinction ratio, in a single compact package. In this talk we discuss the operating characteristics of these devices and their relationship to WDM system performance.

  7. An Investigation of the Aerodynamic Characteristics of an 0.08-Scale Model of the Chance Vought XF7U-1 Airplane in the Langley High-Speed 7- by 10-Foot Tunnel. Part IV - Aileron Characteristics TED No. NACA DE308. Part 4; Aileron Characteristics, TED No. NACA DE308

    NASA Technical Reports Server (NTRS)

    Goodson, Kenneth W.; Myers, Boyd C., II

    1947-01-01

    Tests have been conducted in the Langley high-speed 7- by 10-foot tunnel over a Mach number range from 0.40 to 0.91 to determine the stability and control characteristics of an 0.08-scale model of the Chance Vought XF7U-1 airplane. The aileron characteristics of the complete model are presented in the present report with a very limited analysis of the results.

  8. An Investigation of the Aerodynamic Characteristics of an 0.08-Scale Model of the Chance Vought XF7U-1 Airplane in the Langley High-Speed 7- by 10-Foot Tunnel. Part II - Basic Lateral Stability Characteristics TED No. NACA DE308. Part 2; Basic Lateral Stability Charactistics, TED No. NACA DE308

    NASA Technical Reports Server (NTRS)

    Kemp, William B., Jr.; Goodson, Kenneth W.; Kuhn, Richard E.

    1947-01-01

    Tests have been conducted in the Langley high-speed 7- by 10-foot tunnel over a Mach number range from 0.40 to 0.91 to determine the stability and control characteristics of an 0.08-scale model of the Chance Vought XF7U-1 airplane. The basic lateral stability characteristics of the complete model with undeflected control surfaces are presented in the present report with a very limited analysis of the results.

  9. An Investigation of the Aerodynamic Characteristics of an 0.08-Scale Model of the Chance Vought XF7U-1 Airplane in the Langley High-Speed 7- by 10-Foot Tunnel. Part III - Longitudinal-Control Characteristics TED No. NACA DE308. Part 3; Longitudinal-Control Characteristics, TED No. NACA DE308

    NASA Technical Reports Server (NTRS)

    Kuhn, Richard E.; King, Thomas J., Jr.

    1947-01-01

    Tests have been conducted in the Langley high speed 7- by 10-foot tunnel over a Mach number range from 0.40 to 0.91 to determine the stability and control characteristics of an 0,08-scale model of the Chance Vought XF7U-1 airplane. The longitudinal-control characteristics of the complete model are presented in the present report with a limited analysis of the results.

  10. High-speed wireless optical LANs

    NASA Astrophysics Data System (ADS)

    Oe, Kunishige; Sato, Syuichi; Okayama, Motoyuki; Kubota, Toshihiro

    2001-11-01

    Study on high speed indoor wireless optical LAN system enabling 100Mbps signal transmission with low bit error rate (10-9) is presented. To realize the optical LAN system handling 100 Mbps signal, a directed line of sight (LOS) system is adopted as the optical receiver sensitivity for a bit error rate of 10-9 for 100 Mbps signals is fairly large. In the system, new approaches are introduced: WDM technology which enables bi-directional transmission in full duplex manner is applied using a 1.3 micrometers laser diode for down-link and 0.65 micrometers red laser diode for up-link light sources. As the wavelengths of the two lasers are quite separated from each other, this WDM technology brings an advantage that two kind of semiconductor materials can be used for detectors; GaInAs is used for down-link while Si is applied for up-link. GaInAs PD cannot detect the up-link laser light of 0.65 micrometers and Si PD or APD cannot detect the down-link laser light of 1.3micrometers . Therefore full duplex transmission can be achieved in this configuration. In the indoor wireless optical LAN system, one of the critical points is the transmitter configuration for down- link which enables to deliver optical power enough for 100 Mbps transmission to user areas as wide as possible with inexpensive prices. To realize the point, a special 1.3micrometers laser diode, a spot-size converter integrated laser (SS-LD), is introduced in company with convex lens and an object lens to deliver optical power to areas as wide as possible. As the far-field patterns of the SS-LD are fairly narrow, most of the output power of the LD could be collected to and spread wide by the object lens of 40 magnifications. Using the device, 3m diameter circle area in the plane 2m apart from the 1.3micrometers SS-LD emitting 20 mW optical power, could receive optical power above the receiver sensitivity for a bit error rate of 10-9 for 100 Mbps signals. The visible red light is convenient for not only position

  11. 8-Foot High Speed Tunnel (HST)

    NASA Image and Video Library

    1957-03-19

    Interior view of the slotted throat test section installed in the 8-Foot High Speed Tunnel (HST) in 1950. The slotted region is about 160 inches in length. In this photograph, the sting-type model support is seen straight on. In a NASA report, the test section is described as follows: The test section of the Langley 8-foot transonic tunnel is dodecagonal in cross section and has a cross-sectional area of about 43 square feet. Longitudinal slots are located between each of the 12 wall panels to allow continuous operation through the transonic speed range. The slots contain about 11 percent of the total periphery of the test section. Six of the twelve panels have windows in them to allow for schlieren observations. The entire test section is enclosed in a hemispherical shaped chamber. John Becker noted that the tunnel s final achievement was the development and use in routine operations of the first transonic slotted throat. The investigations of wing-body shapes in this tunnel led to Whitcomb s discovery of the transonic area rule. James Hansen described the origins of the the slotted throat as follows: In 1946 Langley physicist Ray H. Wright conceived a way to do transonic research effectively in a wind tunnel by placing slots in the throat of the test section. The concept for what became known as the slotted-throat or slotted-wall tunnel came to Wright not as a solution to the chronic transonic problem, but as a way to get rid of wall interference (i.e., the mutual effect of two or more meeting waves or vibrations of any kind caused by solid boundaries) at subsonic speeds. For most of the year before Wright came up with this idea, he had been trying to develop a theoretical understanding of wall interference in the 8-Foot HST, which was then being repowered for Mach 1 capability. When Wright presented these ideas to John Stack, the response was enthusiastic but neither Wright nor Stack thought of slotted-throats as a solution to the transonic problem, only the

  12. Aromatic hydrocarbons in the atmospheric environment: Part I. Indoor versus outdoor sources, the influence of traffic

    NASA Astrophysics Data System (ADS)

    Ilgen, Elke; Karfich, Natascha; Levsen, Karsten; Angerer, Jürgen; Schneider, Peter; Heinrich, Joachim; Wichmann, H.-Erich; Dunemann, Lothar; Begerow, Jutta

    Six aromatic hydrocarbons (benzene, toluene, ethylbenzene and the three isomeric xylenes) were monitored in the indoor and outdoor air of 115 private non-smoker homes (˜380 rooms), about half of which were located in two city streets in Hannover (Northern Germany) with high traffic density, the other half in rural areas with hardly any traffic at all. This environmental monitoring was complemented by human biomonitoring (i.e. the determination of aromatic hydrocarbons in blood and exhaled air). Particular attention was paid to benzene as a result of its carcinogenicity. In the city streets with high traffic density, an average benzene concentration of 3.1 μg m -3 and in the rural areas of 1.8 μg m -3 was found in these non-smoker homes (all data=geometric means), which reflects the influence of the traffic (automobile exhaust) on the benzene level found indoors. Source identification is also possible by determining the indoor/outdoor ( I/ O) concentration ratio. For the rooms facing the city street, this I/ O ratio is close to 1 for all aromatic hydrocarbons studied with the exception of toluene ( I/ O=3.5), while in the rural areas I/ O ratios for the individual compounds ranging in 6-9 were determined, with the exception of benzene where the I/ O ratio is only 1.5. These I/ O ratios in the city street with high traffic density indicate that an equilibrium between indoor and outdoor air is almost reached. Indoor sources prevail only in the case of toluene. In contrast, in the rural area, indoor sources dominate for all aromatic hydrocarbons except benzene, the indoor level of which is mainly influenced by the outdoor air even in areas of very low traffic density. However, weak indoor sources must exist also for this compound even in non-smoker homes. The internal exposure of the non-smoking inhabitants of these homes to benzene is very low. Depending on the living area, mean values of 61-67 ng l -1 benzene in blood and 0.9-1.2 μg m -3 in the exhaled air were

  13. Designing High Speed Printed Circuit Boards Using DxDesigner and Expedition

    NASA Technical Reports Server (NTRS)

    Navarro, Robert

    2007-01-01

    Mentor's DxDesigner and Expedition schematic capture and printed circuit board tools were chosen to implement a custom high speed signal processing board containing many high pin count Field Programmable Gate Arrays and many high speed serial connections with data rates over 2 Gigasamples/sec. The methodology used to place the parts and route the board involved the interaction of both the DxDesigner and Expedition tools. The basic design philosophy was to specify as much as possible through design constraints at the schematic level. This paper will explore implementing that philosophy in both tools to facilitate part placement and trace routing.

  14. High speed data transmission for the SSC solenoidal detector

    NASA Astrophysics Data System (ADS)

    Leskovar, B.

    1991-04-01

    High speed data transmission using fiber optics for the Superconducting Super Collider solenoidal detector has been studied. The solenoidal detector system will consist of nine subsystems involving more than a total 10(exp 7) channels of readout electronics. Consequently, a new high performance data acquisition system, incorporating high-speed optical fiber networks, will be required to process this large quantity of data.

  15. The Advantages of ISDN for High-Speed Remote Access.

    ERIC Educational Resources Information Center

    Galvin, Mark; Hauf, Al

    1997-01-01

    Explains why ISDN (integrated services digital network) is the most practical solution for high-speed remote access, including reliability, cost, flexibility, scaleability, standards, and manageability. Other data transmission options are discussed, including asymmetric digital subscriber lines (ADSL), high-speed digital subscriber lines (HDSL),…

  16. 14 CFR 23.253 - High speed characteristics.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false High speed characteristics. 23.253 Section 23.253 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... Requirements § 23.253 High speed characteristics. If a maximum operating speed VMO/MMO is established...

  17. HIGH-SPEED GC/MS FOR AIR ANALYSIS

    EPA Science Inventory

    High speed or fast gas chromatography (FGC) consists of narrow bandwidth injection into a high-speed carrier gas stream passing through a short column leading to a fast detector. Many attempts have been made to demonstrate FGC, but until recently no practical method for routin...

  18. Seakeeping Analysis of Small Displacement High-Speed Vessels

    DTIC Science & Technology

    2003-03-01

    72 73 74 75 76 77 78 79 80 81 82 83 VI. LIST OF REFERENCES [1] Kennell, Colen. Design ... trends in High-Speed Transport. Marine Technology, Vol. 35, No. 3, July 1998, pp.127-134. [2] Ritter, Owen K., Templeman, Michael T. High-Speed

  19. HIGH-SPEED GC/MS FOR AIR ANALYSIS

    EPA Science Inventory

    High speed or fast gas chromatography (FGC) consists of narrow bandwidth injection into a high-speed carrier gas stream passing through a short column leading to a fast detector. Many attempts have been made to demonstrate FGC, but until recently no practical method for routin...

  20. 14 CFR 23.253 - High speed characteristics.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false High speed characteristics. 23.253 Section... Requirements § 23.253 High speed characteristics. If a maximum operating speed VMO/MMO is established under § 23.1505(c), the following speed increase and recovery characteristics must be met: (a) Operating...

  1. 14 CFR 23.253 - High speed characteristics.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false High speed characteristics. 23.253 Section... Requirements § 23.253 High speed characteristics. If a maximum operating speed VMO/MMO is established under § 23.1505(c), the following speed increase and recovery characteristics must be met: (a) Operating...

  2. 14 CFR 23.253 - High speed characteristics.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false High speed characteristics. 23.253 Section... Requirements § 23.253 High speed characteristics. Link to an amendment published at 76 FR 75755, December 2, 2011. If a maximum operating speed VMO/MMO is established under § 23.1505(c), the following speed...

  3. 14 CFR 23.253 - High speed characteristics.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false High speed characteristics. 23.253 Section... Requirements § 23.253 High speed characteristics. If a maximum operating speed VMO/MMO is established under § 23.1505(c), the following speed increase and recovery characteristics must be met: (a) Operating...

  4. High-Speed Video Analysis of Damped Harmonic Motion

    ERIC Educational Resources Information Center

    Poonyawatpornkul, J.; Wattanakasiwich, P.

    2013-01-01

    In this paper, we acquire and analyse high-speed videos of a spring-mass system oscillating in glycerin at different temperatures. Three cases of damped harmonic oscillation are investigated and analysed by using high-speed video at a rate of 120 frames s[superscript -1] and Tracker Video Analysis (Tracker) software. We present empirical data for…

  5. Structural vulnerability and intervention of high speed railway networks

    NASA Astrophysics Data System (ADS)

    Zhang, Jianhua; Hu, Funian; Wang, Shuliang; Dai, Yang; Wang, Yixing

    2016-11-01

    This paper employs complex network theory to assess the structural vulnerability of high speed railway networks subjected to two different malicious attacks. Chinese, US and Japanese high speed railway networks are used to discuss the vulnerable characteristics of systems. We find that high speed railway networks are very fragile when suffering serious disturbances and two attack rules can cause analogous damages to one high speed railway network, which illustrates that the station with large degree possesses high betweenness, vice versa. Meanwhile, we discover that Japanese high speed railway network has the best global connectivity, but Chinese high speed railway network has the best local connectivity and possesses the largest transport capacity. Moreover, we find that there exist several redundant paths in Chinese high speed railway network and discover the critical stations of three HSRNs. Furthermore, the nearest-link method is adopted to implement topological interventions and to improve the connectivity and reliability of high speed railway networks. In addition, the feasibility and effectiveness of topological interventions are shown by simulations.

  6. 33 CFR 84.24 - High-speed craft.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... of the isosceles triangle formed by the side lights and masthead light when seen in end elevation is... RULES ANNEX I: POSITIONING AND TECHNICAL DETAILS OF LIGHTS AND SHAPES § 84.24 High-speed craft. (a) The masthead light of high-speed craft with a length to breadth ratio of less than 3.0 may be placed at...

  7. 33 CFR 84.24 - High-speed craft.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... of the isosceles triangle formed by the side lights and masthead light when seen in end elevation is... RULES ANNEX I: POSITIONING AND TECHNICAL DETAILS OF LIGHTS AND SHAPES § 84.24 High-speed craft. (a) The masthead light of high-speed craft with a length to breadth ratio of less than 3.0 may be placed at...

  8. High-Speed Video Analysis of Damped Harmonic Motion

    ERIC Educational Resources Information Center

    Poonyawatpornkul, J.; Wattanakasiwich, P.

    2013-01-01

    In this paper, we acquire and analyse high-speed videos of a spring-mass system oscillating in glycerin at different temperatures. Three cases of damped harmonic oscillation are investigated and analysed by using high-speed video at a rate of 120 frames s[superscript -1] and Tracker Video Analysis (Tracker) software. We present empirical data for…

  9. Topology and grid adaption for high-speed flow computations

    NASA Astrophysics Data System (ADS)

    Abolhassani, Jamshid S.; Tiwari, Surendra N.

    1989-03-01

    This study investigates the effects of grid topology and grid adaptation on numerical solutions of the Navier-Stokes equations. In the first part of this study, a general procedure is presented for computation of high-speed flow over complex three-dimensional configurations. The flow field is simulated on the surface of a Butler wing in a uniform stream. Results are presented for Mach number 3.5 and a Reynolds number of 2,000,000. The O-type and H-type grids have been used for this study, and the results are compared together and with other theoretical and experimental results. The results demonstrate that while the H-type grid is suitable for the leading and trailing edges, a more accurate solution can be obtained for the middle part of the wing with an O-type grid. In the second part of this study, methods of grid adaption are reviewed and a method is developed with the capability of adapting to several variables. This method is based on a variational approach and is an algebraic method. Also, the method has been formulated in such a way that there is no need for any matrix inversion. This method is used in conjunction with the calculation of hypersonic flow over a blunt-nose body. A movie has been produced which shows simultaneously the transient behavior of the solution and the grid adaption.

  10. Topology and grid adaption for high-speed flow computations

    NASA Technical Reports Server (NTRS)

    Abolhassani, Jamshid S.; Tiwari, Surendra N.

    1989-01-01

    This study investigates the effects of grid topology and grid adaptation on numerical solutions of the Navier-Stokes equations. In the first part of this study, a general procedure is presented for computation of high-speed flow over complex three-dimensional configurations. The flow field is simulated on the surface of a Butler wing in a uniform stream. Results are presented for Mach number 3.5 and a Reynolds number of 2,000,000. The O-type and H-type grids have been used for this study, and the results are compared together and with other theoretical and experimental results. The results demonstrate that while the H-type grid is suitable for the leading and trailing edges, a more accurate solution can be obtained for the middle part of the wing with an O-type grid. In the second part of this study, methods of grid adaption are reviewed and a method is developed with the capability of adapting to several variables. This method is based on a variational approach and is an algebraic method. Also, the method has been formulated in such a way that there is no need for any matrix inversion. This method is used in conjunction with the calculation of hypersonic flow over a blunt-nose body. A movie has been produced which shows simultaneously the transient behavior of the solution and the grid adaption.

  11. Low and High Speed STOVL Configurations in Ground Effect

    NASA Technical Reports Server (NTRS)

    Holdeman, James D. (Technical Monitor); Vukits, Thomas J.

    2004-01-01

    The problem of hot gas ingestion in V/STOL and STOVL aircraft has motivated a set of experimental studies. Two-, three-, and four-jet configurations in cross flow were studied in ground effect. The results presented here were based on a quantitative, concentration measurement technique know as marker nephelometry. The effects of configuration, velocity ratio (freestream over jet velocity), model height, and inlet suction were investigated. The experiments were conducted in three parts. In the first part, comparisons of low speed two-, three-, and four-jet configurations were made. Measurements were made in the planes beneath the models in ground effect. As the number of jets increased, the vortical structures in the flowfield were found to move further upstream due to the increased total momentum. In the second part of the experiments, measurements were made at the inlet entry plane of the low speed two- and three-jet configurations in ground effect. The results indicated that ingestion occurred intermittently, especially in the upper portions of the inlets. The highest levels of concentrations were measured at a model height of two jet diameters. As the model height increased, the concentration levels decreased. Finally, a high speed, two-jet configuration without inlet suction was studied. The flowfield structures were generally found to move further downstream as the jet velocity increased at a constant velocity ratio.

  12. Space Qualified High Speed Reed Solomon Encoder

    NASA Technical Reports Server (NTRS)

    Gambles, Jody W.; Winkert, Tom

    1993-01-01

    This paper reports a Class S CCSDS recommendation Reed Solomon encoder circuit baselined for several NASA programs. The chip is fabricated using United Technologies Microelectronics Center's UTE-R radiation-hardened gate array family, contains 64,000 p-n transistor pairs, and operates at a sustained output data rate of 200 MBits/s. The chip features a pin selectable message interleave depth of from 1 to 8 and supports output block lengths of 33 to 255 bytes. The UTE-R process is reported to produce parts that are radiation hardened to 16 Rads (Si) total dose and 1.0(exp -10) errors/bit-day.

  13. The use of high-speed imaging in education

    NASA Astrophysics Data System (ADS)

    Kleine, H.; McNamara, G.; Rayner, J.

    2017-02-01

    Recent improvements in camera technology and the associated improved access to high-speed camera equipment have made it possible to use high-speed imaging not only in a research environment but also specifically for educational purposes. This includes high-speed sequences that are created both with and for a target audience of students in high schools and universities. The primary goal is to engage students in scientific exploration by providing them with a tool that allows them to see and measure otherwise inaccessible phenomena. High-speed imaging has the potential to stimulate students' curiosity as the results are often surprising or may contradict initial assumptions. "Live" demonstrations in class or student- run experiments are highly suitable to have a profound influence on student learning. Another aspect is the production of high-speed images for demonstration purposes. While some of the approaches known from the application of high speed imaging in a research environment can simply be transferred, additional techniques must often be developed to make the results more easily accessible for the targeted audience. This paper describes a range of student-centered activities that can be undertaken which demonstrate how student engagement and learning can be enhanced through the use of high speed imaging using readily available technologies.

  14. High speed cineradiography using electronic imaging

    NASA Astrophysics Data System (ADS)

    Lucero, J. P.; Fry, D. A.; Gaskill, W. E.; Henderson, R. L.; Crawford, T. R.; Carey, N. E.

    1992-12-01

    The Los Alamos National Laboratory has constructed and is now operating a cineradiography system for imaging and evaluation of ballistic interaction events at the 1200 meter range of the Terminal Effects Research and Analysis (TERA) Group at the New Mexico Institute of Mining and Technology. Cineradiography is part of a complete firing, tracking, and analysis system at the range. The cine system consists of flash x-ray sources illuminating a one-half meter by two meter fast phosphor screen which is viewed by gated-intensified high resolution still video cameras via turning mirrors. The entire system is armored to protect against events containing up to 13.5 kg of high explosive. Digital images are available for immediate display and processing. The system is capable of frame rates up to 10(exp 5)/sec for up to five total images.

  15. High-speed cineradiography using electronic imaging

    NASA Astrophysics Data System (ADS)

    Lucero, Jacob P.; Fry, David A.; Gaskill, William E.; Henderson, R. L.; Crawford, Ted R.; Carey, N. E.

    1993-01-01

    The Los Alamos National Laboratory has constructed and is now operating a cineradiography system for imaging and evaluation of ballistic interaction events at the 1200 meter range of the Terminal Effects Research and Analysis (TERA) Group at the New Mexico Institute of Mining and Technology. Cineradiography is part of a complete firing, tracking, and analysis system at the range. The cine system consists of flash x-ray sources illuminating a one-half meter by two meter fast phosphor screen which is viewed by gated-intensified high resolution still video cameras via turning mirrors. The entire system is armored to protect against events containing up to 13.5 kg of high explosive. Digital images are available for immediate display and processing. The system is capable of frame rates up to 105/sec for up to five total images.

  16. Engine technology challenges for a 21st century high speed civil transport

    NASA Technical Reports Server (NTRS)

    Shaw, Robert J.

    1991-01-01

    Recent NASA funded studies by Boeing and Douglas suggest an opportunity exists for a 21st Century High Speed Civil Transport (HSCT) to become part of the international air transportation system. However, before this opportunity for high speed travel can be realized, certain environmental and and economic barrier issues must be overcome. These challenges are outlined. Research activities which NASA has planned to address these barrier issues and to provide a technology base to allow U.S. manufacturers to make an informed go/no go decision on developing the HSCT are discussed.

  17. Propulsion challenges for a 21st century economically viable, environmentally compatible High-Speed Civil Transport

    NASA Technical Reports Server (NTRS)

    Shaw, Robert J.

    1991-01-01

    Recent NASA funded studies suggest an opportunity exists for a 21st Century High Speed Civil Transport (HSCT) to become part of the international air transportation system. However, before this opportunity for high speed travel can be realized, certain environmental and economic barrier issues must be overcome. These challenges are outlined. Research activities which NASA has planned to address these barrier issues and provide a technology base to allow the U.S. manufacturers to make an informed go/no go decision on developing an HSCT are discussed.

  18. Development of High Speed Inverter Rotary Compressor for the Air-conditioning System

    NASA Astrophysics Data System (ADS)

    Kang, Seoung-Min; Yang, Eun-soo; Shin, Jin-Ung; Park, Joon-Hong; Lee, Se-Dong; Ha, Jong-Hun; Son, Young-Boo; Lee, Byeong-Chul

    2015-08-01

    In order to meet the various operating loads of an air-conditioning system, an inverter compressor with a wide operational range is necessary. One of the ways to achieve a wide operation range is to drive a small capacity compressor at high speed. Moreover, it is possible to maximize the efficiency in part-load operation condition close to actual operating conditions and to reduce the cost by compact design of a small capacity compressor. In addition, the shortage of maximum capacity, due to the small rated capacity, is covered through high speed operation. However, in general, if the compressor operates at high speed, problems occurs such as reduced efficiency due to friction, increased noise, increased amount of oil discharge and decreased durability of the main components. In order to solve these problems the following have been investigated: optimized dimension parameters of the compression chamber, enhanced shaft design and the structure for the reduction of oil discharge and noise at high speed operation. Finally the high speed inverter rotary compressor with high efficiency and more compact size has been developed as compared with the conventional rotary compressor.

  19. Turbomachinery technology for high-speed civil flight

    NASA Technical Reports Server (NTRS)

    Saunders, Neal T.; Glassman, Arthur J.

    1989-01-01

    NASA Lewis' research and technology efforts applicable to turbomachinery for high-speed flight are discussed. The potential benefits and cycle requirements for advanced variable cycle engines and the supersonic throughflow fan engine for a high-speed civil transport application are presented. The supersonic throughflow fan technology program is discussed. Technology efforts in the basic discipline areas addressing the severe operating conditions associated with high-speed flight turbomachinery are reviewed. Included are examples of work in internal fluid mechanics, high-temperature materials, structural analysis, instrumentation and controls.

  20. High Speed Measurements using Fiber-optic Bragg Grating Sensors

    SciTech Connect

    Benterou, J J; May, C A; Udd, E; Mihailov, S J; Lu, P

    2011-03-26

    Fiber grating sensors may be used to monitor high-speed events that include catastrophic failure of structures, ultrasonic testing and detonations. This paper provides insights into the utility of fiber grating sensors to measure structural changes under extreme conditions. An emphasis is placed on situations where there is a structural discontinuity. Embedded chirped fiber Bragg grating (CFBG) sensors can track the very high-speed progress of detonation waves (6-9 km/sec) inside energetic materials. This paper discusses diagnostic instrumentation and analysis techniques used to measure these high-speed events.

  1. High-speed optical 3D sensing and its applications

    NASA Astrophysics Data System (ADS)

    Watanabe, Yoshihiro

    2016-12-01

    This paper reviews high-speed optical 3D sensing technologies for obtaining the 3D shape of a target using a camera. The focusing speed is from 100 to 1000 fps, exceeding normal camera frame rates, which are typically 30 fps. In particular, contactless, active, and real-time systems are introduced. Also, three example applications of this type of sensing technology are introduced, including surface reconstruction from time-sequential depth images, high-speed 3D user interaction, and high-speed digital archiving.

  2. Trend on High-speed Power Line Communication Technology

    NASA Astrophysics Data System (ADS)

    Ogawa, Osamu

    High-speed power line communication (PLC) is useful technology to easily build the communication networks, because construction of new infrastructure is not necessary. In Europe and America, PLC has been used for broadband networks since the beginning of 21th century. In Japan, high-speed PLC was deregulated only indoor usage in 2006. Afterward it has been widely used for home area network, LAN in hotels and school buildings and so on. And recently, PLC is greatly concerned as communication technology for smart grid network. In this paper, the author surveys the high-speed PLC technology and its current status.

  3. High-speed AFM of human chromosomes in liquid

    NASA Astrophysics Data System (ADS)

    Picco, L. M.; Dunton, P. G.; Ulcinas, A.; Engledew, D. J.; Hoshi, O.; Ushiki, T.; Miles, M. J.

    2008-09-01

    Further developments of the previously reported high-speed contact-mode AFM are described. The technique is applied to the imaging of human chromosomes at video rate both in air and in water. These are the largest structures to have been imaged with high-speed AFM and the first imaging in liquid to be reported. A possible mechanism that allows such high-speed contact-mode imaging without significant damage to the sample is discussed in the context of the velocity dependence of the measured lateral force on the AFM tip.

  4. High speed measurements using fiber-optic Bragg gratings

    NASA Astrophysics Data System (ADS)

    Benterou, Jerry; May, Chadd; Udd, Eric; Mihailov, Stephen J.; Lu, Ping

    2011-06-01

    Fiber grating sensors may be used to monitor high-speed events that include catastrophic failure of structures, ultrasonic testing and detonations. This paper provides insights into the utility of fiber grating sensors to measure structural changes under extreme conditions. An emphasis is placed on situations where there is a structural discontinuity. Embedded chirped fiber Bragg grating (CFBG) sensors can track the very high-speed progress of detonation waves (6-9 km/sec) inside energetic materials. This paper discusses diagnostic instrumentation and analysis techniques used to measure these high-speed events.

  5. High-speed digital project, HSD test capability

    NASA Astrophysics Data System (ADS)

    Markley, R. E.; Elarton, J. L.; Allen, C. T.

    1994-04-01

    Establishing a high-speed digital (HSD) test capability for the Digital Waveform Synthesizer (DWS) multichip module (MCM) has required the development of several areas: a detailed test plan for the MCM; design, fabrication and proving of the high-speed test console; and the specification, design, and development of the high-speed test and environmental conditioning interface to the DWS. These development activities have been successfully completed at the Allied Signal Inc., Kansas City Division (KCD), and the test capability described herein is currently supporting DWS MCM testing and can be adapted to similar HSD module testing.

  6. Generalized Deterministic Traffic Rules

    NASA Astrophysics Data System (ADS)

    Fuks, Henryk; Boccara, Nino

    We study a family of deterministic models for highway traffic flow which generalize cellular automaton rule 184. This family is parameterized by the speed limit m and another parameter k that represents a "degree of aggressiveness" in driving, strictly related to the distance between two consecutive cars. We compare two driving strategies with identical maximum throughput: "conservative" driving with high speed limit and "aggressive" driving with low speed limit. Those two strategies are evaluated in terms of accident probability. We also discuss fundamental diagrams of generalized traffic rules and examine limitations of maximum achievable throughput. Possible modifications of the model are considered.

  7. Traffic camera system development

    NASA Astrophysics Data System (ADS)

    Hori, Toshi

    1997-04-01

    The intelligent transportation system has generated a strong need for the development of intelligent camera systems to meet the requirements of sophisticated applications, such as electronic toll collection (ETC), traffic violation detection and automatic parking lot control. In order to achieve the highest levels of accuracy in detection, these cameras must have high speed electronic shutters, high resolution, high frame rate, and communication capabilities. A progressive scan interline transfer CCD camera, with its high speed electronic shutter and resolution capabilities, provides the basic functions to meet the requirements of a traffic camera system. Unlike most industrial video imaging applications, traffic cameras must deal with harsh environmental conditions and an extremely wide range of light. Optical character recognition is a critical function of a modern traffic camera system, with detection and accuracy heavily dependent on the camera function. In order to operate under demanding conditions, communication and functional optimization is implemented to control cameras from a roadside computer. The camera operates with a shutter speed faster than 1/2000 sec. to capture highway traffic both day and night. Consequently camera gain, pedestal level, shutter speed and gamma functions are controlled by a look-up table containing various parameters based on environmental conditions, particularly lighting. Lighting conditions are studied carefully, to focus only on the critical license plate surface. A unique light sensor permits accurate reading under a variety of conditions, such as a sunny day, evening, twilight, storms, etc. These camera systems are being deployed successfully in major ETC projects throughout the world.

  8. High-speed optical packet processing technologies based on novel optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Takenouchi, Hirokazu; Takahashi, Ryo; Takahata, Kiyoto; Nakahara, Tatsushi; Suzuki, Hiroyuki

    2004-10-01

    To cope with the explosive growth of IP traffic, we must increase both the link capacity between nodes and the node throughput. These requirements have stimulated research on photonic networks that use optical technologies. Optical packet switching (OPS) is an attractive solution because it maximizes the use of the network bandwidth. The key functions in achieving such networks include synchronization, label processing, compression/decompression, regeneration, and buffering for high-speed asynchronous optical packets. However, it is impractical to implement such functions by using all-optical approaches. We have proposed a new optoelectronic system composed of a packet-by-packet optical clock-pulse generator (OCG), an all-optical serial-to-parallel converter (SPC), a photonic parallel-to-serial converter (PSC), and CMOS circuitry. The OCG provides a single optical pulse synchronized with the incoming packet, and the SPC carries out a parallel conversion of the incoming packet. The parallel converted data are processed in the smart CMOS circuit, and reconstructed into an optical packet by the photonic PSC. Our system makes it possible to carry out various functions for high-speed asynchronous optical packets. This paper reviews our recent work on high-speed optical packet processing technologies such as buffering, packet compression/decompression, and label swapping, which are key technologies for constructing future OPS networks.

  9. High-speed seal and bearing test facility

    NASA Technical Reports Server (NTRS)

    Panos, Jean B.

    1994-01-01

    The following topics are discussed in this viewgraph presentation: high speed seal/bearing rig background, project status, facility features, test rig capabilities, EMD testing advantages, and future opportunities.

  10. High speed demodulation systems for fiber optic grating sensors

    NASA Technical Reports Server (NTRS)

    Udd, Eric (Inventor); Weisshaar, Andreas (Inventor)

    2002-01-01

    Fiber optic grating sensor demodulation systems are described that offer high speed and multiplexing options for both single and multiple parameter fiber optic grating sensors. To attain very high speeds for single parameter fiber grating sensors ratio techniques are used that allow a series of sensors to be placed in a single fiber while retaining high speed capability. These methods can be extended to multiparameter fiber grating sensors. Optimization of speeds can be obtained by minimizing the number of spectral peaks that must be processed and it is shown that two or three spectral peak measurements may in specific multiparameter applications offer comparable or better performance than processing four spectral peaks. Combining the ratio methods with minimization of peak measurements allows very high speed measurement of such important environmental effects as transverse strain and pressure.

  11. Design of high speed camera based on CMOS technology

    NASA Astrophysics Data System (ADS)

    Park, Sei-Hun; An, Jun-Sick; Oh, Tae-Seok; Kim, Il-Hwan

    2007-12-01

    The capacity of a high speed camera in taking high speed images has been evaluated using CMOS image sensors. There are 2 types of image sensors, namely, CCD and CMOS sensors. CMOS sensor consumes less power than CCD sensor and can take images more rapidly. High speed camera with built-in CMOS sensor is widely used in vehicle crash tests and airbag controls, golf training aids, and in bullet direction measurement in the military. The High Speed Camera System made in this study has the following components: CMOS image sensor that can take about 500 frames per second at a resolution of 1280*1024; FPGA and DDR2 memory that control the image sensor and save images; Camera Link Module that transmits saved data to PC; and RS-422 communication function that enables control of the camera from a PC.

  12. High speed testing of the hollow roller bearing

    NASA Astrophysics Data System (ADS)

    Bowen, W. L.; Murphy, T. W., Jr.

    1980-08-01

    This bearing with its preloaded, hollow rollers has the qualities required for high speed operation. Roller hollowness improves cooling ability and its lighter weight reduces the centrifugal force against the raceway. Preloading between inner and outer races for 360 deg insures good roller guidance and minimizes roller skidding. However, the problems of operating a full complement of rollers at very high speeds were unknown. Also, limitations caused by roller bending fatigue needed investigation. To answer these questions, a high speed test machine was constructed and a hollow roller test bearing was designed for operation at 3 million DN. This paper describes the construction of a high speed test cell and subsequent testing of a full complement, preloaded, 115 mm hollow roller bearing. Testing culminated in a successful endurance test of 1000 hours at 26,100 RPM (3 million DN). The results verified several advantages regarding roller stability and antiskidding qualities as well as demonstrating a unique fail-safe condition.

  13. High Speed Balancing Applied to the T700 Engine

    NASA Technical Reports Server (NTRS)

    Walton, J.; Lee, C.; Martin, M.

    1989-01-01

    The work performed under Contracts NAS3-23929 and NAS3-24633 is presented. MTI evaluated the feasibility of high-speed balancing for both the T700 power turbine rotor and the compressor rotor. Modifications were designed for the existing Corpus Christi Army Depot (CCAD) T53/T55 high-speed balancing system for balancing T700 power turbine rotors. Tests conducted under these contracts included a high-speed balancing evaluation for T700 power turbines in the Army/NASA drivetrain facility at MTI. The high-speed balancing tests demonstrated the reduction of vibration amplitudes at operating speed for both low-speed balanced and non-low-speed balanced T700 power turbines. In addition, vibration data from acceptance tests of T53, T55, and T700 engines were analyzed and a vibration diagnostic procedure developed.

  14. Discharge characteristics of a high speed fuel injection system

    NASA Technical Reports Server (NTRS)

    Matthews, Robertson

    1925-01-01

    Discussed here are some discharge characteristics of a fuel injection system intended primarily for high speed service. The system consisted of a cam actuated fuel pump, a spring loaded automatic injection valve, and a connecting tube.

  15. Thermomechanical simulations and experimental validation for high speed incremental forming

    NASA Astrophysics Data System (ADS)

    Ambrogio, Giuseppina; Gagliardi, Francesco; Filice, Luigino; Romero, Natalia

    2016-10-01

    Incremental sheet forming (ISF) consists in deforming only a small region of the workspace through a punch driven by a NC machine. The drawback of this process is its slowness. In this study, a high speed variant has been investigated from both numerical and experimental points of view. The aim has been the design of a FEM model able to perform the material behavior during the high speed process by defining a thermomechanical model. An experimental campaign has been performed by a CNC lathe with high speed to test process feasibility. The first results have shown how the material presents the same performance than in conventional speed ISF and, in some cases, better material behavior due to the temperature increment. An accurate numerical simulation has been performed to investigate the material behavior during the high speed process confirming substantially experimental evidence.

  16. The High Speed Photometer for the Space Telescope

    NASA Technical Reports Server (NTRS)

    Bless, R. C.

    1982-01-01

    An overview of the high speed photometer (HSP), its optics and detectors, its electronics, its mechanical structure, and some observational considerations are presented. The capabilities and limitations of the HSP are outlined.

  17. The flight of an autogiro at high speed

    NASA Technical Reports Server (NTRS)

    Bennett, J A J

    1933-01-01

    This report presents a method for computing the flight performance of an autogiro at high speed, the velocity component along the blades being accounted for by calculation of the profile drag and the equation for zero torque.

  18. High-speed vertical cavity surface emitting lasers

    SciTech Connect

    Lear, K.L.; Ochiai, M.; Hietala, V.M.

    1997-03-01

    High speed modulation and pulsing are reported for oxide-confined vertical cavity surface emitting laser diodes (VCSELs) with inverted doping and proton implantation to reduce the extrinsic limitations.

  19. A Study of Quality of Service Communication for High-Speed Packet-Switching Computer Sub-Networks

    NASA Technical Reports Server (NTRS)

    Cui, Zhenqian

    1999-01-01

    In this thesis, we analyze various factors that affect quality of service (QoS) communication in high-speed, packet-switching sub-networks. We hypothesize that sub-network-wide bandwidth reservation and guaranteed CPU processing power at endpoint systems for handling data traffic are indispensable to achieving hard end-to-end quality of service. Different bandwidth reservation strategies, traffic characterization schemes, and scheduling algorithms affect the network resources and CPU usage as well as the extent that QoS can be achieved. In order to analyze those factors, we design and implement a communication layer. Our experimental analysis supports our research hypothesis. The Resource ReSerVation Protocol (RSVP) is designed to realize resource reservation. Our analysis of RSVP shows that using RSVP solely is insufficient to provide hard end-to-end quality of service in a high-speed sub-network. Analysis of the IEEE 802.lp protocol also supports the research hypothesis.

  20. Reduced Order Modeling For High Speed Flows with Moving Shocks

    DTIC Science & Technology

    2001-12-03

    use of Proper Orthogonal Decomposition ( POD ) for reduced order modeling (ROM)of fluid problems is extended to high-speed compressible fluid flows. The...challenge in using POD for high-speed flows is presented by the presence of moving discontinuities in the flow field. To ovecome these difficulties...difficulty. The accuracy and order reduction of the domain decomposition POD /ROM approach is quantified for each application. ROMs with as large as three

  1. High speed data transmission at the Superconducting Super Collider

    SciTech Connect

    Leskovar, B. )

    1991-04-01

    In this paper high speed data transmission using fiber optics in the data acquisition system of the Superconducting Super Collider has been investigated. Emphasis is placed on the high speed data transmission system overview, the local data network and on subassemblies, such as optical transmitters and receivers. Also, the performance of candidate subassemblies having a low power dissipation for the data acquisition system is discussed.

  2. High-speed ground transportation: some current and future alternatives

    SciTech Connect

    Morita, T.

    1984-01-01

    High-speed ground transportation (HSGT), the value of time, and the social and technological considerations of inter-city transportation are discussed in this article. A particularly promising mode of high-speed ground transportation (MAGLEV) is discussed in some detail. An average speed for HSGT service, 400 kilometers per hour, seems to be attainable. In conclusion, the proposal for a hypersonic subway will be analyzed. 2 figures, 1 table.

  3. Application Of High Speed Photography In Science And Technology

    NASA Astrophysics Data System (ADS)

    Wu Ji-Zong, Wu; Yu-Ju, Lin

    1983-03-01

    The service works in high-speed photography carried out by the Department of Precision Instruments, Tianjin University are described in this paper. A compensation type high-speed camera was used in these works. The photographic methods adopted and better results achieved in the studies of several technical fields, such as velocity field of flow of overflow surface of high dam, combustion process of internal combustion engine, metal cutting, electrical are welding, experiment of piling of steel tube piles for supporting the marine platforms and characteristics of motion of wrist watch escape mechanism and so on are illustrated in more detail. As the extension of human visual organs and for increasing the abi-lities of observing and studying the high-speed processes, high-speed photography plays a very important role. In order to promote the application and development on high-speed photography, we have carried out the consultative and service works inside and outside Tianjin Uni-versity. The Pentazet 35 compensation type high-speed camera, made in East Germany, was used to record the high-speed events in various kinds of technical investigations and necessary results have been ob-tained. 1. Measurement of flow velocity on the overflow surface of high dam. In the design of a key water control project with high head, it is extremely necessary to determinate various characteristics of flow velocity field on the overflow surface of high dam. Since the water flow on the surface of high overflow dam possesses the features of large flow velocity and shallow water depth, therefore it is difficult to use the conventional current meters such as pilot tube, miniature cur-rent meter or electrical measuring methods of non-electrical quantities for studying this problem. Adopting the high-speed photographic method to study analogously the characteristics of flow velocity field on the overflow surface of high dam is a kind of new measuring method. People

  4. High-Speed Optical Diagnostics of Laser-Interactions

    NASA Astrophysics Data System (ADS)

    Bin Suaidi, Mohamad Kadim

    Available from UMI in association with The British Library. The interaction of an 8 ns, 10 mJ and 1.06 μm infrared pulse of radiation from a Q-switched Nd-YAG laser with water near a solid boundary is studied using high speed photographic techniques. The laser-liquid interaction has been used to generate high frequency sound waves by the mechanism of dielectric breakdown of the liquid around the beam waist of the focused laser beam. This leads to the production of a short duration plasma which rapidly heats and vaporises the surrounding liquid giving rise to a vapour cavity and the formation of a cavitation bubble resulting in the emission of a spherical acoustic wave. The acoustic transient associated with the breakdown, in turn interacted with a liquid-polymer interface leading to the generation of acoustic waves at this boundary and the propagation of stress-waves in the solid. Diagnostics of the laser-interaction events are recorded using a Mach-Zehnder interferometer illuminated by a sub-nanosecond nitrogen laser-pumped dye laser and computer-controlled video-imaging and capture systems. Measurements of the transient pressure distributions from the digitally recorded interferograms are carried out using a process known as Abel inversion. Dynamic photoelastic studies of the stress-waves propagation in the solid are performed using a circular polariscope arrangement thus producing the photoelastic fringe patterns. Identification of the wave structures are greatly enhanced by also recording the events in schlieren and focused shadowgraphy as well as by the combination of the above techniques. The initial part of the project also involved the design and development of a nitrogen laser and tunable dye laser system. The short-duration and high peak power output pulse of the nitrogen laser is then used to pump the dye laser giving sufficiently high power output with good spectral linewidth to provide an ideal light source for high-speed photography of the laser

  5. The 1989 high-speed civil transport studies

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The results are presented for the Douglas Aircraft Company system studies related to high speed civil transports (HSCTs). The system studies were conducted to assess the environmental compatibility of a HSCT at a design Mach number of 3.2. Sonic boom minimization, exterior noise, and engine emissions were assessed together with the effect of a laminar flow control (LFC) technology on vehicle gross weight. The general results indicated that (1) achievement of a 90 PLdB sonic boom loudness level goal at Mach 3.2 may not be practical; (2) the high flow engine cycle concept shows promise of achieving the side line FAR Part 36 noise limit but may not achieve the aircraft range design goal of 6,500 nautical miles; (3) the rich burn/quick quench (RB/QQ) combustor concept shows promise for achieving low EINO(sub x) levels when combined with a premixed pilot stage/advanced technology high power stage duct burner in the P and W variable stream control engine (VSCE); and (4) full chord wing LFC has significant performance and economic advantages relative to the turbulent wing baseline.

  6. Specification and analysis of a high speed transport protocol

    NASA Astrophysics Data System (ADS)

    Tipici, Huseyin A.

    1993-06-01

    While networks have been getting faster, perceived throughput at the application has not always increased accordingly and the bottleneck has moved to the communications processing part of the system. The issues that cause the performance bottlenecks in the current transport protocols are discussed in this thesis, and a further study on a high speed transport protocol which tries to overcome these difficulties with some unique features is presented. By using the Systems of Communicating Machines (SCM) model as a framework, a refined and improved version of the formal protocol specification is built over the previous work, and it is analyzed to verify that the protocol is free from logical errors such as deadlock, unspecified reception, unexecuted transitions and blocking loops. The analysis is conducted in two phases which consists of the application of the associated system state analysis and the simulation of the protocol using the programming language ADA. The thesis also presents the difficulties encountered during the course of the analysis, and suggests possible solutions to some of the problems.

  7. High Speed Photometry and Spectroscopy of Novae at Quiescence

    NASA Astrophysics Data System (ADS)

    Egan, J. M.; Woudt, P. A.; Warner, B.; Williams, R. E.; Steeghs, D. T. H.; Ribeiro, V. A. R. M.

    2014-12-01

    We present spectroscopy of Nova Velorum 1999 (V382 Vel) and Nova Sagittarii 1936c (V630 Sgr) obtained with the Southern African Large Telescope in May and July 2012 as part of our ongoing observing campaign of old novae. The SALT spectrum of V382 Vel is dominated by broad Hα emission associated with the nova shell. The other Balmer lines in the spectrum are narrower and single-peaked, with Hβ at similar line strength as He II 4686Å. The SALT spectrum of V630 Sgr is dominated by He II 4686Å, emission lines are double-peaked (except the lines of the He II Pickering series) and show clear variations in multiple spectra obtained over one-quarter of the binary orbit. Additional high speed photometry of V382 Vel has been obtained in 2012 using the new SHOC photometer of the South African Astronomical Observatory. It shows the emergence of large amplitude quasi-periodic variability with periodicities around ˜ 30 minutes, not seen previously.

  8. 8-Foot High Speed Tunnel (8-Foot HST)

    NASA Technical Reports Server (NTRS)

    1936-01-01

    Control panel below the test section of the 8-Foot High Speed Tunnel (8-Foot HST). Authorized July 17, 1933, construction of the 8-Foot HST was paid for with funds from the Federal Public Works Administration. Manly Hood and Russell Robinson designed the unusual facility which could produce a 500 mph wind stream across an 8-Foot test section. The concrete shell was not part of the original design. Like most projects funded through New Deal programs, the PWA restricted the amount of money which could be spent on materials. The majority of funds were supposed to be expended on labor. Though originally, Hood and Robinson had planned a welded steel pressure vessel around the test section, PWA officials proposed the idea of concrete. This picture shows the test section inside the igloo-like structure with walls of 1-foot thick reinforced concrete. The thick walls were needed 'because of the Bernoulli effect, [which meant that] the text chamber had to withstand powerful, inwardly directed pressure. Operating personnel located inside the igloo were subjected to pressures equivalent to 10,000-foot altitude and had to wear oxygen masks and enter through airlocks. A heat exchanger removed the large quantities of heat generated by the big fan.'

  9. Development of a Large Scale, High Speed Wheel Test Facility

    NASA Technical Reports Server (NTRS)

    Kondoleon, Anthony; Seltzer, Donald; Thornton, Richard; Thompson, Marc

    1996-01-01

    Draper Laboratory, with its internal research and development budget, has for the past two years been funding a joint effort with the Massachusetts Institute of Technology (MIT) for the development of a large scale, high speed wheel test facility. This facility was developed to perform experiments and carry out evaluations on levitation and propulsion designs for MagLev systems currently under consideration. The facility was developed to rotate a large (2 meter) wheel which could operate with peripheral speeds of greater than 100 meters/second. The rim of the wheel was constructed of a non-magnetic, non-conductive composite material to avoid the generation of errors from spurious forces. A sensor package containing a multi-axis force and torque sensor mounted to the base of the station, provides a signal of the lift and drag forces on the package being tested. Position tables mounted on the station allow for the introduction of errors in real time. A computer controlled data acquisition system was developed around a Macintosh IIfx to record the test data and control the speed of the wheel. This paper describes the development of this test facility. A detailed description of the major components is presented. Recently completed tests carried out on a novel Electrodynamic (EDS) suspension system, developed by MIT as part of this joint effort are described and presented. Adaptation of this facility for linear motor and other propulsion and levitation testing is described.

  10. Materials, structures, and devices for high-speed electronics

    NASA Technical Reports Server (NTRS)

    Woollam, John A.; Snyder, Paul G.

    1992-01-01

    Advances in materials, devices, and instrumentation made under this grant began with ex-situ null ellipsometric measurements of simple dielectric films on bulk substrates. Today highly automated and rapid spectroscopic ellipsometers are used for ex-situ characterization of very complex multilayer epitaxial structures. Even more impressive is the in-situ capability, not only for characterization but also for the actual control of the growth and etching of epitaxial layers. Spectroscopic ellipsometry has expanded from the research lab to become an integral part of the production of materials and structures for state of the art high speed devices. Along the way, it has contributed much to our understanding of the growth characteristics and material properties. The following areas of research are summarized: Si3N4 on GaAs, null ellipsometry; diamondlike carbon films; variable angle spectroscopic ellipsometry (VASE) development; GaAs-AlGaAs heterostructures; Ta-Cu diffusion barrier films on GaAs; GaAs-AlGaAs superlattices and multiple quantum wells; superconductivity; in situ elevated temperature measurements of III-V's; optical constants of thermodynamically stable InGaAs; doping dependence of optical constants of GaAs; in situ ellipsometric studies of III-V epitaxial growth; photothermal spectroscopy; microellipsometry; and Si passivation and Si/SiGe strained-layer superlattices.

  11. High-Speed Recording of Test Data on Hard Disks

    NASA Technical Reports Server (NTRS)

    Lagarde, Paul M., Jr.; Newnan, Bruce

    2003-01-01

    Disk Recording System (DRS) is a systems-integration computer program for a direct-to-disk (DTD) high-speed data acquisition system (HDAS) that records rocket-engine test data. The HDAS consists partly of equipment originally designed for recording the data on tapes. The tape recorders were replaced with hard-disk drives, necessitating the development of DRS to provide an operating environment that ties two computers, a set of five DTD recorders, and signal-processing circuits from the original tape-recording version of the HDAS into one working system. DRS includes three subsystems: (1) one that generates a graphical user interface (GUI), on one of the computers, that serves as a main control panel; (2) one that generates a GUI, on the other computer, that serves as a remote control panel; and (3) a data-processing subsystem that performs tasks on the DTD recorders according to instructions sent from the main control panel. The software affords capabilities for dynamic configuration to record single or multiple channels from a remote source, remote starting and stopping of the recorders, indexing to prevent overwriting of data, and production of filtered frequency data from an original time-series data file.

  12. Peripheral processors for high-speed simulation. [helicopter cockpit simulator

    NASA Technical Reports Server (NTRS)

    Karplus, W. J.

    1977-01-01

    This paper describes some of the results of a study directed to the specification and procurement of a new cockpit simulator for an advanced class of helicopters. A part of the study was the definition of a challenging benchmark problem, and detailed analyses of it were made to assess the suitability of a variety of simulation techniques. The analyses showed that a particularly cost-effective approach to the attainment of adequate speed for this extremely demanding application is to employ a large minicomputer acting as host and controller for a special-purpose digital peripheral processor. Various realizations of such peripheral processors, all employing state-of-the-art electronic circuitry and a high degree of parallelism and pipelining, are available or under development. The types of peripheral processors array processors, simulation-oriented processors, and arrays of processing elements - are analyzed and compared. They are particularly promising approaches which should be suitable for high-speed simulations of all kinds, the cockpit simulator being a case in point.

  13. High Speed Genetic Lips Detection by Dynamic Search Domain Control

    NASA Astrophysics Data System (ADS)

    Akashi, Takuya; Wakasa, Yuji; Tanaka, Kanya; Karungaru, Stephen; Fukumi, Minoru

    In this paper, high-speed size and orientation invariant lips detection of a talking person in an active scene using template matching and genetic algorithms is proposed. As part of the objectives, we also try to acquire numerical parameters to represent the lips. The information is very important for many applications, where high performance is required, such as audio-visual speech recognition, speaker identification systems, robot perception and personal mobile devices interfaces. The difficulty in lips detection is mainly due to deformations and geometric changes of the lips during speech and the active scene by free camera motion. In order to enhance the performance in speed and accuracy, initially, the performance is improved on a single still image, that is, the base of video processing. Our proposed system is based on template matching using genetic algorithms (GA). Only one template is prepared per experiment. The template is the closed mouth of a subject, because the application is for personal devices. In our previous study, the main problem was trade-off between search accuracy and search speed. To overcome this problem, we use two methods: scaling window and dynamic search domain control (SD-Control). We therefore focus on the population size of the GA, because it has a direct effect on search accuracy and speed. The effectiveness of the proposed system is demonstrated by performing computer simulations. We achieved a lips detection accuracy of 91.33% at an average processing time of 33.70 milliseconds per frame.

  14. High-speed line scanning confocal microscope for biological imaging

    NASA Astrophysics Data System (ADS)

    Jung, Seung-Hwan; Kim, Chang-Keun; Ju, Sung-Bin; Cho, Yong-Jin; Jeong, Hyun-Woo; Kim, Beop-Min

    2007-02-01

    We constructed a high-speed laser line-scanning confocal microscope (LSCM) using He-Ne laser (633 nm), a line CCD camera, and an acousto-optic deflector (AOD). The line scanner consists of an AOD and a cylindrical lens, which create a line focus sweeping over the sample. The line scanner generates two-dimensional confocal images (512× 512 pixel image) up to 191 frames per second with no mechanically-moving parts. This system is configured as an inverted microscope for imaging biological organisms or tissues. Images of various biological samples were obtained including rabbit cornea, onion cells, mouse melanoma tumor cells (B16BL6), and human breast tumor cells (BT-20). The frame rate may be further improved up to over 700 frames per second when the image size is reduced (512×128 pixel image). This system may be useful for analyzing fast phenomena during biological and chemical interactions and for imaging 3D structures rapidly.

  15. Quality of service on high-speed data networks

    NASA Astrophysics Data System (ADS)

    Barbero, Ezio; Antonelli, Ferruccio

    1995-02-01

    Since the beginning of this century the issue of `quality' has been gaining increasing importance in a number of fields of human activities. For telecommunication services, too, the quality perceived by customers has been taken into account early on as an issue of strategic importance. Whilst for telephony the Quality of Service (QoS) has been already investigated and identified in terms of parameters and related test methodology, the situation for high speed data services (i.e. CBDS/SMDS, Frame Relay, etc.), provided by means of high speed network based on Asynchronous Transfer Moe (ATM) or Metropolitan Area Network technologies, can still be considered `under study'. There is a death of experience not only in terms of measurement instruments and procedures, but also in terms of knowledge of the relationship between the QoS provided at a network level and the quality perceived by the user on his or her terminal. The complexity of the equipment involved in setting up an end-to-end solution based on high speed data communications makes the problems of knowledge and supply of quality very hard to solve. Starting from the experience gained in carrying out high- speed network field trials based on Metropolitan Area Networks and, more recently, on ATM technology, the paper mainly deals with the problem of defining, measuring and then offering a specific QoS. First, the issue of what the user expects from the `high-speed network' is addressed. This analysis is carried out trying to gather what is peculiar to high-speed data communications from the user standpoint. Next, the focus is on how to cope with the requirements due to users' expectations, while carefully considering the basic principles of quality. Finally, a solution is proposed, starting from the experience gained from high speed networks installed in Italy.

  16. Custom ASIC development for high-speed Viterbi decoding

    NASA Astrophysics Data System (ADS)

    Miller, S. P.; Becker, N.; Johnson, P. N.

    A high-speed, emitter-coupled logic (ECL) gate array which greatly facilitates the implementation of very-high-speed Viterbi algorithm processors has been developed. These high-speed Viterbi decoders were incorporated into two bandwidth-efficient, jointly optimized coded modulation systems with baseband information rates of 140 and 200 Mb/s. The 200-Mb/s system was developed for NASA under the advanced modulation technology development program. The octal phase shift keying (8PSK) modulation technique used in these systems requires symbol rates of 60 and 75 Msymbol/s. The gate array device also has the potential for use in similar systems with symbol rates in excess of 100 Msymbol/s. Some details of the coded modulation systems that require the implementation of high-speed Viterbi processors are provided to demonstrate current practical applications and the need for this processing capability. The specific gate array design is described in conjunction with the performance goals and measured parameters of the completed device. Performance measurements obtained from high-speed coded modulation systems that use the gate array are also presented to show the performance obtained.

  17. High-speed imaging system for observation of discharge phenomena

    NASA Astrophysics Data System (ADS)

    Tanabe, R.; Kusano, H.; Ito, Y.

    2008-11-01

    A thin metal electrode tip instantly changes its shape into a sphere or a needlelike shape in a single electrical discharge of high current. These changes occur within several hundred microseconds. To observe these high-speed phenomena in a single discharge, an imaging system using a high-speed video camera and a high repetition rate pulse laser was constructed. A nanosecond laser, the wavelength of which was 532 nm, was used as the illuminating source of a newly developed high-speed video camera, HPV-1. The time resolution of our system was determined by the laser pulse width and was about 80 nanoseconds. The system can take one hundred pictures at 16- or 64-microsecond intervals in a single discharge event. A band-pass filter at 532 nm was placed in front of the camera to block the emission of the discharge arc at other wavelengths. Therefore, clear images of the electrode were recorded even during the discharge. If the laser was not used, only images of plasma during discharge and thermal radiation from the electrode after discharge were observed. These results demonstrate that the combination of a high repetition rate and a short pulse laser with a high speed video camera provides a unique and powerful method for high speed imaging.

  18. Ultra-high-speed spectropolarimeter based on photoelastic modulator.

    PubMed

    Zhang, Rui; Li, Kewu; Chen, Yuanyuan; Wen, Tingdun; Zhang, Minjuan; Wang, Yaoli; Xue, Peng; Wang, Zhibin

    2016-10-20

    Combined with the advantages of photoelastic modulator (PEM) ultra-high-speed modulation, this paper presents a method of ultra-high-speed spectropolarimeter based on PEM. The method provides the necessary measuring instruments for ultra-high-speed polarization spectroscopy. The main idea of this method is that an intensity modulator consisting of two retarders is placed before the PEM. The incident light under test goes through two retarders to the PEM. The interference signals are obtained by the PEM modulation. The different Stokes element interference signals are modulated by the PEM at different positions of the optical path difference. This method realizes the separation of Stokes element interference signals. The interference signals corresponding to each element are extracted, and the incident light Stokes element spectra can be obtained from the Fourier transforms of the interference signals. The modulation frequency of the PEM is high (tens to hundreds of kilohertz), so this method can realize ultra-high-speed full polarization spectroscopy. A prototype ultra-high-speed spectropolarimeter based on PEM was designed and tested. If the single-sided Fourier transformation is used, the single-sided interferogram scanning time is approximately 5 μs (i.e., the prototype is capable of scanning 20,000 interferograms per second). Polychromatic light polarization spectroscopy is measured by the prototype. The experimental results show that the average error of the prototype is less than 0.03.

  19. Tank Tests of Two Floats for High-speed Seaplanes

    NASA Technical Reports Server (NTRS)

    Bell, Joe W

    1933-01-01

    At the request of the Bureau of Aeronautics, Navy Department, a study of the design of floats especially suitable for use on high-speed seaplanes was undertaken in the N.A.C.A. tank. This note give the results obtained in tests of one-quarter full-size models of two floats for high-speed seaplanes. One was a float similar to that used on the Macchi high-speed seaplane which competed in the 1926 Schneider Trophy races, and the other a float designed at the N.A.C.A. tank in an attempt to improve on the water performance of the Macchi float. The model of the latter showed considerably better water performance than the model of the Macchi float.

  20. The application of high-speed digital image correlation.

    SciTech Connect

    Reu, Phillip L.; Miller, Timothy J.

    2008-02-01

    Digital image correlation (DIC) is a method of using digital images to calculate two-dimensional displacement and deformation or for stereo systems three-dimensional shape, displacement, and deformation. While almost any imaging system can be used with DIC, there are some important challenges when working with the technique in high- and ultra-high-speed applications. This article discusses three of these challenges: camera sensor technology, camera frame rate, and camera motion mitigation. Potential solutions are treated via three demonstration experiments showing the successful application of high-speed DIC for dynamic events. The application and practice of DIC at high speeds, rather than the experimental results themselves, provide the main thrust of the discussion.

  1. High-speed digital signal normalization for feature identification

    NASA Technical Reports Server (NTRS)

    Ortiz, J. A.; Meredith, B. D.

    1983-01-01

    A design approach for high speed normalization of digital signals was developed. A reciprocal look up table technique is employed, where a digital value is mapped to its reciprocal via a high speed memory. This reciprocal is then multiplied with an input signal to obtain the normalized result. Normalization improves considerably the accuracy of certain feature identification algorithms. By using the concept of pipelining the multispectral sensor data processing rate is limited only by the speed of the multiplier. The breadboard system was found to operate at an execution rate of five million normalizations per second. This design features high precision, a reduced hardware complexity, high flexibility, and expandability which are very important considerations for spaceborne applications. It also accomplishes a high speed normalization rate essential for real time data processing.

  2. High-speed optical correlator with coaxial holographic system

    NASA Astrophysics Data System (ADS)

    Ikeda, Kanami; Watanabe, Eriko

    2015-09-01

    A high-speed volume holographic optical correlator is developed, which takes advantage of a coaxial holographic system. We have realized this high-speed correlator using an optimal design of the signal pattern, which improves the shift multiplex recording shift pitch. The speed of this correlator was further improved by increasing the number of pixels in the spatial light modulator and using a high speed rotating actuator. This correlation system successfully achieved an equal error rate of 0% by performing optical correlation over 900 times. It also achieved optical correlation experiment, at a shift pitch of 2.45 µm and a disk rotation speed of 900 rpm. In terms of optical correlation calculation speed, it yielded a peak interval of 542 ns, which corresponds to 1.846 × 106 frames per second.

  3. Material requirements for the High Speed Civil Transport

    NASA Technical Reports Server (NTRS)

    Stephens, Joseph R.; Hecht, Ralph J.; Johnson, Andrew M.

    1993-01-01

    Under NASA-sponsored High Speed Research (HSR) programs, the materials and processing requirements have been identified for overcoming the environmental and economic barriers of the next generation High Speed Civil Transport (HSCT) propulsion system. The long (2 to 5 hours) supersonic cruise portion of the HSCT cycle will place additional durability requirements on all hot section engine components. Low emissions combustor designs will require high temperature ceramic matrix composite liners to meet an emission goal of less than 5g NO(x) per Kg fuel burned. Large axisymmetric and two-dimensional exhaust nozzle designs are now under development to meet or exceed FAR 36 Stage III noise requirements, and will require lightweight, high temperature metallic, intermetallic, and ceramic matrix composites to reduce nozzle weight and meet structural and acoustic component performance goals. This paper describes and discusses the turbomachinery, combustor, and exhaust nozzle requirements of the High Speed Civil Transport propulsion system.

  4. Material requirements for the High Speed Civil Transport

    NASA Technical Reports Server (NTRS)

    Stephens, Joseph R.; Hecht, Ralph J.; Johnson, Andrew M.

    1993-01-01

    Under NASA-sponsored High Speed Research (HSR) programs, the materials and processing requirements have been identified for overcoming the environmental and economic barriers of the next generation High Speed Civil Transport (HSCT) propulsion system. The long (2 to 5 hours) supersonic cruise portion of the HSCT cycle will place additional durability requirements on all hot section engine components. Low emissions combustor designs will require high temperature ceramic matrix composite liners to meet an emission goal of less than 5g NO(x) per Kg fuel burned. Large axisymmetric and two-dimensional exhaust nozzle designs are now under development to meet or exceed FAR 36 Stage III noise requirements, and will require lightweight, high temperature metallic, intermetallic, and ceramic matrix composites to reduce nozzle weight and meet structural and acoustic component performance goals. This paper describes and discusses the turbomachinery, combustor, and exhaust nozzle requirements of the High Speed Civil Transport propulsion system.

  5. LIHSP: Lucky Imaging And High Speed Photometry at LCOGT

    NASA Astrophysics Data System (ADS)

    Bianco, Federica; Street, R.; Tsapras, Y.; Shporer, A.; Tufts, J.; Lister, T.; Gomez, E.; Rosing, W.; Brown, T.; LCOGT Team

    2011-05-01

    Las Cumbres Observatory Global Telescope Network (LCOGT) is building a world wide telescope network with an emphasis on time domain astronomy. The final LCOGT network will have at least 40 telescopes in at least 7 sites around the world to continuously cover the dark sky in both hemispheres: two 2.0m telescopes, already available on Haleakala - HI, USA (FTN), and Siding Spring - Australia (FTS), roughly fifteen 1m, and twenty-five 0.4m telescopes now in various stages of construction and commissioning. We are integrating our telescopes with high speed EMCCD cameras to provide high speed photometry as well as lucky imaging capabilities. Here we present our first generation high speed solutions, already installed at FTN and FTS and currently being integrated into our robotic system. Similar facilities are being fabricated for the 0.4m network, and designed for the 1m network.

  6. Raindrop demise in a high-speed projectile flowfield

    NASA Astrophysics Data System (ADS)

    Moylan, Bruce Emerson

    This research examined current approaches used to model raindrop demise in high-speed missile flowfields. Historical correlations derived from shock tube data do not capture all of the critical non-dimensional parameters and temporal droplet shape change and as such are not accurate. In addition, while droplet demise studies in shock tubes provide valuable data for code validation, it was established that the data cannot be directly used to develop projectile induced droplet demise estimates. A numerical approach was developed based on the Smooth Particle Hydrodynamics-C (SPHC) code to model the entire temporal evolution of the macroscopic droplet demise process from shock crossing to catastrophic break-up. As part of this effort, an extended algebraic equation of state was developed for water including the supercooled region. A series of unit problems was simulated to verify that the numerical method was able to capture the required flow field instabilities and relevant physics inherent in drop demise. The numerical approach was then used to investigate the internal environment of the water drop during the demise process. Highlights of this investigation included the capture of wave instabilities on the surface of the drop, wave crest stripping of small water droplets, the likely cause of the lateral droplet dilation, and the internal temporal droplet pressure and velocity distribution. The SPHC simulations suggest that for a Weber number range of 5000--40,000, the Kelvin-Helmholtz instability is the primary mechanism driving mass stripping and that spherical droplets are stable against Rayleigh-Taylor instabilities. This conclusion is supported by recently obtained droplet demise empirical data.

  7. 76 FR 13928 - Amendment to the International Traffic in Arms Regulations: Replacement Parts/Components and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-15

    ... ITAR coverage to where diversion of the embedded defense article is a realistic and practical concern... replacement parts when they are embedded into a larger assembly such that they can be removed without... rule to cover defense articles embedded into ``a higher level assembly that is not an end...

  8. Secondary Containment Design for a High Speed Centrifuge

    SciTech Connect

    Snyder, K.W.

    1999-03-01

    Secondary containment for high speed rotating machinery, such as a centrifuge, is extremely important for operating personnel safety. Containment techniques can be very costly, ungainly and time consuming to construct. A novel containment concept is introduced which is fabricated out of modular sections of polycarbonate glazed into a Unistrut metal frame. A containment study for a high speed centrifuge is performed which includes the development of parameters for secondary containment design. The Unistrut/polycarbonate shield framing concept is presented including design details and proof testing procedures. The economical fabrication and modularity of the design indicates a usefulness for this shielding system in a wide variety of containment scenarios.

  9. Multiply-agile encryption in high speed communication networks

    SciTech Connect

    Pierson, L.G.; Witzke, E.L.

    1997-05-01

    Different applications have different security requirements for data privacy, data integrity, and authentication. Encryption is one technique that addresses these requirements. Encryption hardware, designed for use in high-speed communications networks, can satisfy a wide variety of security requirements if that hardware is key-agile, robustness-agile and algorithm-agile. Hence, multiply-agile encryption provides enhanced solutions to the secrecy, interoperability and quality of service issues in high-speed networks. This paper defines these three types of agile encryption. Next, implementation issues are discussed. While single-algorithm, key-agile encryptors exist, robustness-agile and algorithm-agile encryptors are still research topics.

  10. High-speed multiplexing of keyboard data inputs

    NASA Technical Reports Server (NTRS)

    Anderson, T. O. (Inventor)

    1981-01-01

    A high speed multiplexing system is described in which keyboard entered data is sequentially and automatically sampled by the multiplexing system for input to a computer. A sequencer is provided which sequentially and automatically controls the multiplexer to sample each keyboard input in accordance with a predetermined sampling sequence. Whenever keyboard entered data appears on input lines to the multiplexer, the system inputs the keyboard data to the computer during a brief time interval in which the multiplexer remains at the particular keyboard address or port. Thus, a high speed sampling circuit is provided whereby the only operator action required is data entry through a keyboard. Priority or interrupt systems are not required.

  11. High speed propeller acoustics and aerodynamics - A boundary element approach

    NASA Technical Reports Server (NTRS)

    Farassat, F.; Myers, M. K.; Dunn, M. H.

    1989-01-01

    The Boundary Element Method (BEM) is applied in this paper to the problems of acoustics and aerodynamics of high speed propellers. The underlying theory is described based on the linearized Ffowcs Williams-Hawkings equation. The surface pressure on the blade is assumed unknown in the aerodynamic problem. It is obtained by solving a singular integral equation. The acoustic problem is then solved by moving the field point inside the fluid medium and evaluating some surface and line integrals. Thus the BEM provides a powerful technique in calculation of high speed propeller aerodynamics and acoustics.

  12. Technology needs for high-speed rotorcraft, volume 1

    NASA Technical Reports Server (NTRS)

    Wilkerson, J. B.; Schneider, J. J.; Bartie, K. M.

    1991-01-01

    High-speed rotorcraft concepts and the technology needed to extend rotorcraft cruise speeds up to 450 knots (while retaining the helicopter attributes of low downwash velocities) were identified. Task I identified 20 concepts with high-speed potential. These concepts were qualitatively evaluated to determine the five most promising ones. These five concepts were designed with optimum wing loading and disk loading to a common NASA-defined military transport mission. The optimum designs were quantitatively compared against 11 key criteria and ranked accordingly. The two highest ranking concepts were selected for the further study.

  13. High speed propeller acoustics and aerodynamics - A boundary element approach

    NASA Technical Reports Server (NTRS)

    Farassat, F.; Myers, M. K.; Dunn, M. H.

    1989-01-01

    The Boundary Element Method (BEM) is applied in this paper to the problems of acoustics and aerodynamics of high speed propellers. The underlying theory is described based on the linearized Ffowcs Williams-Hawkings equation. The surface pressure on the blade is assumed unknown in the aerodynamic problem. It is obtained by solving a singular integral equation. The acoustic problem is then solved by moving the field point inside the fluid medium and evaluating some surface and line integrals. Thus the BEM provides a powerful technique in calculation of high speed propeller aerodynamics and acoustics.

  14. Proceedings: High-speed rail and maglev workshop

    SciTech Connect

    Not Available

    1993-04-01

    On October 30 and 31, 1991, the EPRI Public and Advanced Transportation Program sponsored a workshop on high-speed rail (HSR) and maglev. The purpose of this workshop was to provide utility managers with increased knowledge about these technologies, public policy regarding them, and their potential costs and benefits to utilities, including induced economic development. With this information, utilities should be better prepared to make decisions related to the development of these high speed intercity passenger options in their service areas. A main goal, achieved by the workshop, was to provide EPRI and its member utilities with ideas and information for developing an assessment and research agenda on these technologies.

  15. Magneto-optical system for high speed real time imaging

    NASA Astrophysics Data System (ADS)

    Baziljevich, M.; Barness, D.; Sinvani, M.; Perel, E.; Shaulov, A.; Yeshurun, Y.

    2012-08-01

    A new magneto-optical system has been developed to expand the range of high speed real time magneto-optical imaging. A special source for the external magnetic field has also been designed, using a pump solenoid to rapidly excite the field coil. Together with careful modifications of the cryostat, to reduce eddy currents, ramping rates reaching 3000 T/s have been achieved. Using a powerful laser as the light source, a custom designed optical assembly, and a high speed digital camera, real time imaging rates up to 30 000 frames per seconds have been demonstrated.

  16. Magneto-optical system for high speed real time imaging.

    PubMed

    Baziljevich, M; Barness, D; Sinvani, M; Perel, E; Shaulov, A; Yeshurun, Y

    2012-08-01

    A new magneto-optical system has been developed to expand the range of high speed real time magneto-optical imaging. A special source for the external magnetic field has also been designed, using a pump solenoid to rapidly excite the field coil. Together with careful modifications of the cryostat, to reduce eddy currents, ramping rates reaching 3000 T/s have been achieved. Using a powerful laser as the light source, a custom designed optical assembly, and a high speed digital camera, real time imaging rates up to 30 000 frames per seconds have been demonstrated.

  17. Multiplexed broadband beam steering system utilizing high speed MEMS mirrors.

    PubMed

    Knoernschild, Caleb; Kim, Changsoon; Lu, Felix P; Kim, Jungsang

    2009-04-27

    We present a beam steering system based on micro-electromechanical systems technology that features high speed steering of multiple laser beams over a broad wavelength range. By utilizing high speed micromirrors with a broadband metallic coating, our system has the flexibility to simultaneously incorporate a wide range of wavelengths and multiple beams. We demonstrate reconfiguration of two independent beams at different wavelengths (780 and 635 nm) across a common 5x5 array with 4 micros settling time. Full simulation of the optical system provides insights on the scalability of the system. Such a system can provide a versatile tool for applications where fast laser multiplexing is necessary.

  18. Ethylene Trace-gas Techniques for High-speed Flows

    NASA Technical Reports Server (NTRS)

    Davis, David O.; Reichert, Bruce A.

    1994-01-01

    Three applications of the ethylene trace-gas technique to high-speed flows are described: flow-field tracking, air-to-air mixing, and bleed mass-flow measurement. The technique involves injecting a non-reacting gas (ethylene) into the flow field and measuring the concentration distribution in a downstream plane. From the distributions, information about flow development, mixing, and mass-flow rates can be dtermined. The trace-gas apparatus and special considerations for use in high-speed flow are discussed. A description of each application, including uncertainty estimates is followed by a demonstrative example.

  19. High-speed and reconfigurable all-optical signal processing for phase and amplitude modulated signals

    NASA Astrophysics Data System (ADS)

    Khaleghi, Salman

    Technology has empowered people in all walks of life to generate, store, and communicate enormous amounts of data. Recent technological advances in high-speed backbone data networks, together with the growing trend toward bandwidth-demanding applications such as data and video sharing, cloud computing, and data collection systems, have created a need for higher capacities in signal transmission and signal processing. Optical communication systems have long benefited from the large bandwidth of optical signals (beyond tera-hertz) to transmit information. Through the use of optical signal processing techniques, this Ph.D. dissertation explores the potential of very-high-speed optics to assist electronics in processing huge amounts of data at high speeds. Optical signal processing brings together various fields of optics and signal processing---nonlinear devices and processes, analog and digital signals, and advanced data modulation formats---to achieve high-speed signal processing functions that can potentially operate at the line rate of fiber optic communications. Information can be encoded in amplitude, phase, wavelength, polarization, and spatial features of an optical wave to achieve high-capacity transmission. Many advances in the key enabling technologies have led to recent research in optical signal processing for digital signals that are encoded in one or more of these dimensions. Optical Kerr nonlinearities have femto-second response times that have been exploited for fast processing of optical signals. Various optical nonlinearities and chromatic dispersions have enabled key sub-system applications such as wavelength conversion, multicasting, multiplexing, demultiplexing, and tunable optical delays. In this Ph.D. dissertation, we employ these recent advances in the enabling technologies for high-speed optical signal processing to demonstrate various techniques that can process phase- and amplitude-encoded optical signals at the line rate of optics. We use

  20. A high speed camera with auto adjustable ROI for product's outline dimension measurement

    NASA Astrophysics Data System (ADS)

    Wang, Qian; Wei, Ping; Ke, Jun; Gao, Jingjing

    2014-11-01

    Currently most domestic factories still manually detect machine arbors to decide if they meet industry standards. This method is costly, low efficient, and easy to misjudge the qualified arbors or miss the unqualified ones, thus seriously affects factories' efficiency and credibility. In this paper, we design a specific high-speed camera system with auto adjustable ROI for machine arbor's outline dimension measurement. The entire system includes an illumination part, a camera part, a mechanic structure part and a signal processing part based on FPGA. The system will help factories to realize automatic arbor measurement, and improve their efficiency and reduce their cost.

  1. Safety of high speed ground transportation systems: Safety of advanced braking concepts for high speed ground transportation systems. Final report

    SciTech Connect

    Wagner, D.P.; Ahlbeck, D.R.; Luedeke, J.F.; Cook, S.D.; Dielman, M.A.

    1995-09-01

    The objective of this study is to develop qualitative and quantitative information on the various braking strategies used in high-speed ground transportation systems in support of the Federal Railroad Administration (FRA). The approach employed in this study is composed of two steps: first, build a technical understanding of the various braking strategies, and second, perform a safety analysis for each system. The systems considered in this study include seven operating high-speed rail transportation systems and three existing magnetic levitation systems. The principal technique used in the system safety analysis is Failure Modes and Effects Analysis (FMEA), an inductive approach to identifying system failure modes that depends on a thorough understanding of the system design and operation. Key elements derived from the system safety analysis are the fault-tolerant and fail-safe characteristics of the braking systems. The report concludes with recommended guidance on the structure of potential future regulations governing high-speed rail braking systems.

  2. Influence of sterilization on the corrosion resistance of high-speed dental handpieces.

    PubMed

    Angelini, E

    1992-03-01

    Ball bearings of high-speed dental handpieces were sterilized by various procedures and examined under scanning electron microscopy for evidence of corrosion. The metallic parts of ball bearings (rings and spheres), if not correctly lubricated, were dramatically corroded in chemical vapor and steam sterilizer. The nonmetallic parts (the retainers made of phenolic resins) appeared to be more sensitive to heat treatments, as revealed by the occurrence of darkening and embrittlement phenomena. In the absence of correct lubrication procedures, the performance of high-speed dental handpieces appears to be adversely influenced by sterilization, mostly in wet environments. On the other hand, daily maintenance that follows the manufacturer's instructions reduces and delays the damage to a great extent.

  3. Modelling Of Residual Stresses Induced By High Speed Milling Process

    SciTech Connect

    Desmaison, Olivier; Mocellin, Katia; Jardin, Nicolas

    2011-05-04

    Maintenance processes used in heavy industries often include high speed milling operations. The reliability of the post-process material state has to be studied. Numerical simulation appears to be a very interesting way to supply an efficient residual stresses (RS) distribution prediction.Because the adiabatic shear band and the serrated chip shaping are features of the austenitic stainless steel high speed machining, a 2D high speed orthogonal cutting model is briefly presented. This finite element model, developed on Forge registered software, is based on data taken from Outeiro and al.'s paper [1]. A new behaviour law fully coupling Johnson-Cook's constitutive law and Latham and Cockcroft's damage model is detailed in this paper. It ensures results that fit those found in literature.Then, the numerical tools used on the 2D model are integrated to a 3D high speed milling model. Residual stresses distribution is analysed, on the surface and into the depth of the material. Various revolutions and passes of the two teeth hemispheric mill on the workpiece are simulated. Thus the sensitivity of the residual stresses generation to the cutting conditions can be discussed. In order to validate the 3D model, a comparison of the cutting forces measured by EDF R and D to those given by numerical simulations is achieved.

  4. Numerical Simulation of High-Speed Turbulent Reacting Flows

    NASA Technical Reports Server (NTRS)

    Givi, P.; Taulbee, D. B.; Madnia, C. K.; Jaberi, F. A.; Colucci, P. J.; Gicquel, L. Y. M.; Adumitroaie, V.; James, S.

    1999-01-01

    The objectives of this research are: (1) to develop and implement a new methodology for large eddy simulation of (LES) of high-speed reacting turbulent flows. (2) To develop algebraic turbulence closures for statistical description of chemically reacting turbulent flows.

  5. Fiber laser for high speed laser transfer printing

    NASA Astrophysics Data System (ADS)

    Petkovšek, Rok; Novak, Vid; Agrež, Vid

    2017-01-01

    High speed industrial laser transfer printing requires high power lasers that can deliver pulses on demand and having arbitrary pulse duration in range of few nanoseconds to milliseconds or more. A special kind of MOPA fiber laser is presented using wavelength multiplexing to achieve pulses on demand with minimal transients. The system is further tested in printing application.

  6. The Lag Model Applied to High Speed Flows

    NASA Technical Reports Server (NTRS)

    Olsen, Michael E.; Coakley, Thomas J.; Lillard, Randolph P.

    2005-01-01

    The Lag model has shown great promise in prediction of low speed and transonic separations. The predictions of the model, along with other models (Spalart-Allmaras and Menter SST) are assessed for various high speed flowfields. In addition to skin friction and separation predictions, the prediction of heat transfer are compared among these models, and some fundamental building block flowfields, are investigated.

  7. Nanopatterned Quantum Dot Lasers for High Speed, High Efficiency, Operation

    DTIC Science & Technology

    2015-04-27

    SECURITY CLASSIFICATION OF: Quantum dot (QD) active regions hold potential for realizing extremely high performance semiconductor diode lasers...2009 31-Dec-2014 Approved for Public Release; Distribution Unlimited Final Report: Nanopatterned Quantum Dot Lasers for High Speed, High Efficiency...Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 quantum dots , nanopatterning, MOCVD, laser REPORT DOCUMENTATION PAGE 11

  8. High-speed-propeller wind-tunnel aeroacoustic results

    NASA Technical Reports Server (NTRS)

    Jeracki, R. J.; Dittmar, J. H.

    1980-01-01

    Some aerodynamic concepts are presented together with an explanation of how these concepts are applied to advanced propeller design. The unique features of this propulsion system are addressed with emphasis on the design concepts being considered for the high speed turboprop. More particular emphasis is given to the blade sweep, long blade chords, and the large number of blades.

  9. Incorporating YBCO Coated Conductors in High-speed Superconducting Generators

    DTIC Science & Technology

    2008-07-01

    4.0 kW/lb (8.82 kW/kg). The machine configuration chosen by GE for design was a homopolar inductor alternator (HIA) which locates the...extremely severe ac loss environment. Even if this is ultimately impossible for high speed generators, it may not preclude lower speed motors and

  10. High-Speed Computer-Controlled Switch-Matrix System

    NASA Technical Reports Server (NTRS)

    Spisz, E.; Cory, B.; Ho, P.; Hoffman, M.

    1985-01-01

    High-speed computer-controlled switch-matrix system developed for communication satellites. Satellite system controlled by onboard computer and all message-routing functions between uplink and downlink beams handled by newly developed switch-matrix system. Message requires only 2-microsecond interconnect period, repeated every millisecond.

  11. Optimum Design of High Speed Prop-Rotors

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Aditi

    1992-01-01

    The objective of this research is to develop optimization procedures to provide design trends in high speed prop-rotors. The necessary disciplinary couplings are all considered within a closed loop optimization process. The procedures involve the consideration of blade aeroelastic, aerodynamic performance, structural and dynamic design requirements. Further, since the design involves consideration of several different objectives, multiobjective function formulation techniques are developed.

  12. High-speed cylindrical collapse of two perfect fluids

    NASA Astrophysics Data System (ADS)

    Sharif, M.; Ahmad, Zahid

    2007-09-01

    In this paper, the study of the gravitational collapse of cylindrically distributed two perfect fluid system has been carried out. It is assumed that the collapsing speeds of the two fluids are very large. We explore this condition by using the high-speed approximation scheme. There arise two cases, i.e., bounded and vanishing of the ratios of the pressures with densities of two fluids given by c s , d s . It is shown that the high-speed approximation scheme breaks down by non-zero pressures p 1, p 2 when c s , d s are bounded below by some positive constants. The failure of the high-speed approximation scheme at some particular time of the gravitational collapse suggests the uncertainty on the evolution at and after this time. In the bounded case, the naked singularity formation seems to be impossible for the cylindrical two perfect fluids. For the vanishing case, if a linear equation of state is used, the high-speed collapse does not break down by the effects of the pressures and consequently a naked singularity forms. This work provides the generalisation of the results already given by Nakao and Morisawa (Prog Theor Phys 113:73, 2005) for the perfect fluid.

  13. Ultra-high-speed bionanoscope for cell and microbe imaging

    NASA Astrophysics Data System (ADS)

    Etoh, T. Goji; Vo Le, Cuong; Kawano, Hiroyuki; Ishikawa, Ikuko; Miyawaki, Atshushi; Dao, Vu T. S.; Nguyen, Hoang Dung; Yokoi, Sayoko; Yoshida, Shigeru; Nakano, Hitoshi; Takehara, Kohsei; Saito, Yoshiharu

    2008-11-01

    We are developing an ultra-high-sensitivity and ultra-high-speed imaging system for bioscience, mainly for imaging of microbes with visible light and cells with fluorescence emission. Scarcity of photons is the most serious problem in applications of high-speed imaging to the scientific field. To overcome the problem, the system integrates new technologies consisting of (1) an ultra-high-speed video camera with sub-ten-photon sensitivity with the frame rate of more than 1 mega frames per second, (2) a microscope with highly efficient use of light applicable to various unstained and fluorescence cell observations, and (3) very powerful long-pulse-strobe Xenon lights and lasers for microscopes. Various auxiliary technologies to support utilization of the system are also being developed. One example of them is an efficient video trigger system, which detects a weak signal of a sudden change in a frame under ultra-high-speed imaging by canceling high-frequency fluctuation of illumination light. This paper outlines the system with its preliminary evaluation results.

  14. High speed CMOS/SOS standard cell notebook

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The NASA/MSFC high speed CMOS/SOS standard cell family, designed to be compatible with the PR2D (Place, Route in 2-Dimensions) automatic layout program, is described. Standard cell data sheets show the logic diagram, the schematic, the truth table, and propagation delays for each logic cell.

  15. High-speed video processing and display system

    NASA Astrophysics Data System (ADS)

    Dagtekin, Mustafa; DeMarco, Stephen C.; Ramanath, Rajeev; Snyder, Wesley E.

    2000-04-01

    A video processing and display system for performing high speed geometrical image transformations has been designed. It involves looking up the video image by using a pointer memory. The system supports any video format which does not exceed the clock rate that the system supports. It also is capable of changing the brightness and colormap of the image through hardware.

  16. High-speed pulse-shape generator, pulse multiplexer

    DOEpatents

    Burkhart, Scott C.

    2002-01-01

    The invention combines arbitrary amplitude high-speed pulses for precision pulse shaping for the National Ignition Facility (NIF). The circuitry combines arbitrary height pulses which are generated by replicating scaled versions of a trigger pulse and summing them delayed in time on a pulse line. The combined electrical pulses are connected to an electro-optic modulator which modulates a laser beam. The circuit can also be adapted to combine multiple channels of high speed data into a single train of electrical pulses which generates the optical pulses for very high speed optical communication. The invention has application in laser pulse shaping for inertial confinement fusion, in optical data links for computers, telecommunications, and in laser pulse shaping for atomic excitation studies. The invention can be used to effect at least a 10.times. increase in all fiber communication lines. It allows a greatly increased data transfer rate between high-performance computers. The invention is inexpensive enough to bring high-speed video and data services to homes through a super modem.

  17. Modelling Of Residual Stresses Induced By High Speed Milling Process

    NASA Astrophysics Data System (ADS)

    Desmaison, Olivier; Mocellin, Katia; Jardin, Nicolas

    2011-05-01

    Maintenance processes used in heavy industries often include high speed milling operations. The reliability of the post-process material state has to be studied. Numerical simulation appears to be a very interesting way to supply an efficient residual stresses (RS) distribution prediction. Because the adiabatic shear band and the serrated chip shaping are features of the austenitic stainless steel high speed machining, a 2D high speed orthogonal cutting model is briefly presented. This finite element model, developed on Forge® software, is based on data taken from Outeiro & al.'s paper [1]. A new behaviour law fully coupling Johnson-Cook's constitutive law and Latham and Cockcroft's damage model is detailed in this paper. It ensures results that fit those found in literature. Then, the numerical tools used on the 2D model are integrated to a 3D high speed milling model. Residual stresses distribution is analysed, on the surface and into the depth of the material. Various revolutions and passes of the two teeth hemispheric mill on the workpiece are simulated. Thus the sensitivity of the residual stresses generation to the cutting conditions can be discussed. In order to validate the 3D model, a comparison of the cutting forces measured by EDF R&D to those given by numerical simulations is achieved.

  18. Analysis of high speed flow, thermal and structural interactions

    NASA Technical Reports Server (NTRS)

    Thornton, Earl A.

    1994-01-01

    Research for this grant focused on the following tasks: (1) the prediction of severe, localized aerodynamic heating for complex, high speed flows; (2) finite element adaptive refinement methodology for multi-disciplinary analyses; (3) the prediction of thermoviscoplastic structural response with rate-dependent effects and large deformations; (4) thermoviscoplastic constitutive models for metals; and (5) coolant flow/structural heat transfer analyses.

  19. Geometric Acoustics in High-Speed Boundary Layers

    NASA Astrophysics Data System (ADS)

    Parziale, N. J.; Shepherd, J. E.; Hornung, H. G.

    A key mechanism responsible for the instability of high-speed boundary layers are the high-frequency modes discovered by Mack [1]. These modes are primarily acoustic in nature, are always present if the edge Mach number is sufficiently large, and are the dominant instability mechanism when the wall temperature is sufficiently low compared to the recovery temperature.

  20. Cosmic ray modulation by high-speed solar wind fluxes

    NASA Technical Reports Server (NTRS)

    Dorman, L. I.; Kaminer, N. S.; Kuzmicheva, A. E.; Mymrina, N. V.

    1985-01-01

    Cosmic ray intensity variations connected with recurrent high-speed fluxes (HSF) of solar wind are investigated. The increase of intensity before the Earth gets into a HSF, north-south anisotropy and diurnal variation of cosmic rays inside a HSF as well as the characteristics of Forbush decreases are considered.

  1. Penetrating injury from high-speed motor vehicle collision

    PubMed Central

    Daniels, Alan H.

    2015-01-01

    We present the case history of a post motor vehicle crash victim with lower extremity fractures and decreased blood flow. Emergent Angipgraphy revealed a foreign body which was later operated and removed. The case emphasizes that High-speed motor vehicle accidents commonly lead to penetrating injury from objects within and outside of the vehicle. PMID:26229302

  2. HIGH SPEED GC/MS FOR AIR ANALYSIS

    EPA Science Inventory

    A high speed GC/MS system consisting of a gas chromatograph equipped with a narrow bandwidth injection accessory and using a time-of-flight mass spectrometer detector has been adapted for analysis of ambient whole air samples which have been collected in passivated canisters. ...

  3. 14 CFR 25.253 - High-speed characteristics.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false High-speed characteristics. 25.253 Section...-speed characteristics. (a) Speed increase and recovery characteristics. The following speed increase and... inadvertent speed increases (including upsets in pitch and roll) must be simulated with the airplane trimmed...

  4. 14 CFR 25.253 - High-speed characteristics.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false High-speed characteristics. 25.253 Section...-speed characteristics. (a) Speed increase and recovery characteristics. The following speed increase and... inadvertent speed increases (including upsets in pitch and roll) must be simulated with the airplane trimmed...

  5. High-Speed Computer-Controlled Switch-Matrix System

    NASA Technical Reports Server (NTRS)

    Spisz, E.; Cory, B.; Ho, P.; Hoffman, M.

    1985-01-01

    High-speed computer-controlled switch-matrix system developed for communication satellites. Satellite system controlled by onboard computer and all message-routing functions between uplink and downlink beams handled by newly developed switch-matrix system. Message requires only 2-microsecond interconnect period, repeated every millisecond.

  6. Faster than "g", Revisited with High-Speed Imaging

    ERIC Educational Resources Information Center

    Vollmer, Michael; Mollmann, Klaus-Peter

    2012-01-01

    The introduction of modern high-speed cameras in physics teaching provides a tool not only for easy visualization, but also for quantitative analysis of many simple though fast occurring phenomena. As an example, we present a very well-known demonstration experiment--sometimes also discussed in the context of falling chimneys--which is commonly…

  7. Numerical Simulation of High-Speed Turbulent Reacting Flows

    NASA Technical Reports Server (NTRS)

    Jaberi, F. A.; Colucci, P. J.; James, S.; Givi, P.

    1996-01-01

    The purpose of this research is to continue our efforts in advancing the state of knowledge in large eddy simulation (LES) methods for computational analysis of high-speed reacting turbulent flows. We have just completed the first year of Phase 3 of this research.

  8. High speed flow cytometric separation of viable cells

    DOEpatents

    Sasaki, Dennis T.; Van den Engh, Gerrit J.; Buckie, Anne-Marie

    1995-01-01

    Hematopoietic cell populations are separated to provide cell sets and subsets as viable cells with high purity and high yields, based on the number of original cells present in the mixture. High-speed flow cytometry is employed using light characteristics of the cells to separate the cells, where high flow speeds are used to reduce the sorting time.

  9. High speed flow cytometric separation of viable cells

    DOEpatents

    Sasaki, D.T.; Van den Engh, G.J.; Buckie, A.M.

    1995-11-14

    Hematopoietic cell populations are separated to provide cell sets and subsets as viable cells with high purity and high yields, based on the number of original cells present in the mixture. High-speed flow cytometry is employed using light characteristics of the cells to separate the cells, where high flow speeds are used to reduce the sorting time.

  10. A high-speed distortionless predictive image-compression scheme

    NASA Technical Reports Server (NTRS)

    Cheung, K.-M.; Smyth, P.; Wang, H.

    1990-01-01

    A high-speed distortionless predictive image-compression scheme that is based on differential pulse code modulation output modeling combined with efficient source-code design is introduced. Experimental results show that this scheme achieves compression that is very close to the difference entropy of the source.

  11. Florida's high-speed rail and maglev projects

    SciTech Connect

    Smith, C.H. )

    1990-04-01

    The author discusses how the State of Florida has taken an innovative approach to meeting its future needs for an efficient transportation system that will complement its extensive highway network and aviation system. This new concept is a statewide, high-speed, fixed guideway ground transportation system. The technologies will include advanced electrified wheels-on-rail trains and magnetically levitated and propelled vehicles.

  12. Penetrating injury from high-speed motor vehicle collision.

    PubMed

    Daniels, Alan H

    2015-01-01

    We present the case history of a post motor vehicle crash victim with lower extremity fractures and decreased blood flow. Emergent Angipgraphy revealed a foreign body which was later operated and removed. The case emphasizes that High-speed motor vehicle accidents commonly lead to penetrating injury from objects within and outside of the vehicle.

  13. Analysis of javelin throwing by high-speed photography

    NASA Astrophysics Data System (ADS)

    Yamamoto, Yoshitaka; Matsuoka, Rutsu; Ishida, Yoshihisa; Seki, Kazuichi

    1999-06-01

    A xenon multiple exposure light source device was manufactured to record the trajectory of a flying javelin, and a wind tunnel experiment was performed with some javelin models to analyze the flying characteristics of the javelin. Furthermore, form of javelin throwing by athletes was recorded to estimate the characteristics in the form of each athlete using a high speed cameras.

  14. Faster than "g", Revisited with High-Speed Imaging

    ERIC Educational Resources Information Center

    Vollmer, Michael; Mollmann, Klaus-Peter

    2012-01-01

    The introduction of modern high-speed cameras in physics teaching provides a tool not only for easy visualization, but also for quantitative analysis of many simple though fast occurring phenomena. As an example, we present a very well-known demonstration experiment--sometimes also discussed in the context of falling chimneys--which is commonly…

  15. Towards a high-speed quantum random number generator

    NASA Astrophysics Data System (ADS)

    Stucki, Damien; Burri, Samuel; Charbon, Edoardo; Chunnilall, Christopher; Meneghetti, Alessio; Regazzoni, Francesco

    2013-10-01

    Randomness is of fundamental importance in various fields, such as cryptography, numerical simulations, or the gaming industry. Quantum physics, which is fundamentally probabilistic, is the best option for a physical random number generator. In this article, we will present the work carried out in various projects in the context of the development of a commercial and certified high speed random number generator.

  16. Research in high speed fiber optics local area networks

    NASA Technical Reports Server (NTRS)

    Tobagi, F. A.

    1986-01-01

    The design of high speed local area networks (HSLAN) for communication among distributed devices requires solving problems in three areas: the network medium and its topology, the medium access control, and the network interface. Considerable progress was already made in the first two areas. Accomplishments are divided into two groups according to their theoretical or experimental nature. A brief summary is given.

  17. Improved Kinetic Models for High-Speed Combustion Simulation

    DTIC Science & Technology

    2008-06-01

    TYPE 3. DATES COVERED (From - To) June 2008 Final 18 May 2006 – 18 June 2008 4 . TITLE AND SUBTITLE IMPROVED KINETIC MODELS FOR HIGH-SPEED...44 4 Results and Discussion...19 4 . Multi-Step, Sequential Process Leading to Formation of Phenyl from Benzyl (Scheme 1) ....20 5. Generic Chemical Activation Reaction System

  18. New seed-cotton reclaimer for high speed roller gins

    USDA-ARS?s Scientific Manuscript database

    An experimental laboratory prototype reclaimer is being developed by the USDA-ARS in cooperation with Lummus Corporation. The objective of the project is to develop a seed-cotton reclaimer for high speed roller ginning that has a higher operational capacity and reduced seed loss in comparison to cur...

  19. Low-Cost High-Speed Techniques for Real-Time Simulation of Power Electronic Systems

    DTIC Science & Technology

    2007-06-01

    simulations. The other parts of the math model (switching logic, PWM control functions) are more readily converted into FPGA functions. Some progress has...7 3.3 High-Speed Real-Time Simulation with the FPGA ..................... 8 4.0 STABILITY ANALYSIS...increasing use of higher- frequency, pulse-width modulation ( PWM ) controllers a need arose for higher-speed, but lower cost, real-time simulators. This

  20. Holistic design in high-speed optical interconnects

    NASA Astrophysics Data System (ADS)

    Saeedi, Saman

    Integrated circuit scaling has enabled a huge growth in processing capability, which necessitates a corresponding increase in inter-chip communication bandwidth. As bandwidth requirements for chip-to-chip interconnection scale, deficiencies of electrical channels become more apparent. Optical links present a viable alternative due to their low frequency-dependent loss and higher bandwidth density in the form of wavelength division multiplexing. As integrated photonics and bonding technologies are maturing, commercialization of hybrid-integrated optical links are becoming a reality. Increasing silicon integration leads to better performance in optical links but necessitates a corresponding co-design strategy in both electronics and photonics. In this light, holistic design of high-speed optical links with an in-depth understanding of photonics and state-of-the-art electronics brings their performance to unprecedented levels. This thesis presents developments in high-speed optical links by co-designing and co-integrating the primary elements of an optical link: receiver, transmitter, and clocking. In the first part of this thesis a 3D-integrated CMOS/Silicon-photonic receiver will be presented. The electronic chip features a novel design that employs a low-bandwidth TIA front-end, double-sampling and equalization through dynamic offset modulation. Measured results show -14.9dBm of sensitivity and energy eciency of 170fJ/b at 25Gb/s. The same receiver front-end is also used to implement source-synchronous 4-channel WDM-based parallel optical receiver. Quadrature ILO-based clocking is employed for synchronization and a novel frequency-tracking method that exploits the dynamics of IL in a quadrature ring oscillator to increase the effective locking range. An adaptive body-biasing circuit is designed to maintain the per-bit-energy consumption constant across wide data-rates. The prototype measurements indicate a record-low power consumption of 153fJ/b at 32Gb/s. The

  1. HSTCP-LP: A Protocol for Low-Priority Bulk Data Transfer in High-Speed High-RTT Networks

    SciTech Connect

    Kuzmanovic, A

    2004-05-21

    This work presents HSTCP-LP (High-Speed TCP Low Priority), a high-speed TCP stack whose goal is to utilize only the excess network bitrate (bandwidth) as compared to the ''fair-share'' of bitrate as targeted by other TCP variants. By giving a strict priority to all non-HSTCP-LP cross-traffic flows, HSTCP-LP enables a simple two-class prioritization without any support from the network. It enables large file backups to proceed without impeding ongoing traffic, a functionality that would otherwise require a multi-priority or separate network. One class of applications for HSTCP-LP is low-priority background file transfer over high-speed networks. Examples are bulk data transfers of huge scientific data across the Internet, database replication, or Internet content distribution. A second class of applications is available bitrate optimization (e.g., to select a mirror server with the highest available bitrate). Current techniques first estimate the available bitrate and then download data via a transport protocol. HSTCP-LP, since it only uses excess/available bitrate, is able to estimate available bitrate while doing a useful data transfer.

  2. Sampling optimization for high-speed weigh-in-motion measurements using in-pavement strain-based sensors

    NASA Astrophysics Data System (ADS)

    Zhang, Zhiming; Huang, Ying; Bridgelall, Raj; Palek, Leonard; Strommen, Robert

    2015-06-01

    Weigh-in-motion (WIM) measurement has been widely used for weight enforcement, pavement design, freight management, and intelligent transportation systems to monitor traffic in real-time. However, to use such sensors effectively, vehicles must exit the traffic stream and slow down to match their current capabilities. Hence, agencies need devices with higher vehicle passing speed capabilities to enable continuous weight measurements at mainline speeds. The current practices for data acquisition at such high speeds are fragmented. Deployment configurations and settings depend mainly on the experiences of operation engineers. To assure adequate data, most practitioners use very high frequency measurements that result in redundant samples, thereby diminishing the potential for real-time processing. The larger data memory requirements from higher sample rates also increase storage and processing costs. The field lacks a sampling design or standard to guide appropriate data acquisition of high-speed WIM measurements. This study develops the appropriate sample rate requirements as a function of the vehicle speed. Simulations and field experiments validate the methods developed. The results will serve as guidelines for future high-speed WIM measurements using in-pavement strain-based sensors.

  3. Intersection Monitor for Traffic-Light-Preemption System

    NASA Technical Reports Server (NTRS)

    Bachelder, Aaron; Foster, Conrad

    2006-01-01

    The figure shows an intersection monitor that is a key subsystem of an emergency traffic-light-preemption system that could be any of the systems described in the three immediately preceding articles and in Systems Would Preempt Traffic Lights for Emergency Vehicles (NPO-30573), NASA Tech Briefs, Vol. 28, No. 10 (October 2004), page 36. This unit is so named because it is installed at an intersection, where it monitors the phases (in the sense of timing) of the traffic lights. The mode of operation of this monitor is independent of the type of traffic-light-controller hardware or software in use at the intersection. Moreover, the design of the monitor is such that (1) the monitor does not, by itself, affect the operation of the traffic- light controller and (2) in the event of a failure of the monitor, the trafficlight controller continues to function normally (albeit without preemption). The monitor is installed in series with the traffic-light controller at an intersection. The control signals of interest are monitored by use of high-impedance taps on affected control lines. These taps are fully isolated and further protected by high-voltage diodes that prevent any voltages or short circuits that arise within the monitor from affecting the controller. The signals from the taps are processed digitally and cleaned up by use of high-speed logic gates, and the resulting data are passed on to other parts of the traffic-light-preemption intersection subsystem. The data are compared continuously with data from vehicles and used to calculate timing for reliable preemption of the traffic lights. The pedestrian crossing at the intersection is also monitored, and pedestrians are warned not to cross during preemption.

  4. Technical, engineering, and economic feasibility of a high-speed ground corridor. Research report

    SciTech Connect

    Harrison, R.; Suliman, M.; McCullough, B.F.

    1993-05-01

    Despite the considerable effort devoted to transportation planning and design system development over the past 30 years, there has not been widespread application of the resulting new technology. This is now changing. As city freeways become increasingly congested, the need to incorporate design innovations that provide for safe and efficient transportation facilities becomes greater than ever. As the paper reports, advanced technology in information systems, automation, and telecommunications can potentially yield not only cost savings and productivity improvement, but new developments in transportation as well. The study, providing an overview of the state of the art of this technology, explores the research opportunities available for implementing such technology in the creation of a safe and efficient high-speed ground corridor, one that will be capable of meeting the alarming projected traffic demand of the future.

  5. A Practical Approach to Portscan Detection in Very High-Speed Links

    NASA Astrophysics Data System (ADS)

    Mikians, Jakub; Barlet-Ros, Pere; Sanjuàs-Cuxart, Josep; Solé-Pareta, Josep

    Port scans are continuously used by both worms and human attackers to probe for vulnerabilities in Internet facing systems. In this paper, we present a new method to efficiently detect TCP port scans in very high-speed links. The main idea behind our approach is to early discard those handshake packets that are not strictly needed to reliably detect port scans. We show that with just a couple of Bloom filters to track active servers and TCP handshakes we can easily discard about 85% of all handshake packets with negligible loss in accuracy. This significantly reduces both the memory requirements and CPU cost per packet. We evaluated our algorithm using packet traces and live traffic from 1 and 10 GigE academic networks. Our results show that our method requires less than 1 MB to accurately monitor a 10 Gb/s link, which perfectly fits in the cache memory of nowadays' general-purpose processors.

  6. High-speed imaging of explosive eruptions: applications and perspectives

    NASA Astrophysics Data System (ADS)

    Taddeucci, Jacopo; Scarlato, Piergiorgio; Gaudin, Damien; Capponi, Antonio; Alatorre-Ibarguengoitia, Miguel-Angel; Moroni, Monica

    2013-04-01

    Explosive eruptions, being by definition highly dynamic over short time scales, necessarily call for observational systems capable of relatively high sampling rates. "Traditional" tools, like as seismic and acoustic networks, have recently been joined by Doppler radar and electric sensors. Recent developments in high-speed camera systems now allow direct visual information of eruptions to be obtained with a spatial and temporal resolution suitable for the analysis of several key eruption processes. Here we summarize the methods employed to gather and process high-speed videos of explosive eruptions, and provide an overview of the several applications of these new type of data in understanding different aspects of explosive volcanism. Our most recent set up for high-speed imaging of explosive eruptions (FAMoUS - FAst, MUltiparametric Set-up,) includes: 1) a monochrome high speed camera, capable of 500 frames per second (fps) at high-definition (1280x1024 pixel) resolution and up to 200000 fps at reduced resolution; 2) a thermal camera capable of 50-200 fps at 480-120x640 pixel resolution; and 3) two acoustic to infrasonic sensors. All instruments are time-synchronized via a data logging system, a hand- or software-operated trigger, and via GPS, allowing signals from other instruments or networks to be directly recorded by the same logging unit or to be readily synchronized for comparison. FAMoUS weights less than 20 kg, easily fits into four, hand-luggage-sized backpacks, and can be deployed in less than 20' (and removed in less than 2', if needed). So far, explosive eruptions have been recorded in high-speed at several active volcanoes, including Fuego and Santiaguito (Guatemala), Stromboli (Italy), Yasur (Vanuatu), and Eyjafiallajokull (Iceland). Image processing and analysis from these eruptions helped illuminate several eruptive processes, including: 1) Pyroclasts ejection. High-speed videos reveal multiple, discrete ejection pulses within a single Strombolian

  7. Packet Drop Avoidance for High-speed network transmission protocol

    SciTech Connect

    Jin, Guojun

    2004-05-01

    As network bandwidth continues to grow and longer paths are used to exchange large scientific data between storage systems and GRID computation, it has become increasingly obvious that there is a need to deploy a packet drop avoidance mechanism into network transmission protocols. Current end-to-end congestion avoidance mechanisms used in Transmission Control Protocol (TCP) have worked well on low bandwidth delay product networks, but with newer high-bandwidth delay networks they have shown to be inefficient and prone to unstable. This is largely due to increased network bandwidth coupled with changes in internet traffic patterns. These changes come from a variety of new network applications that are being developed to take advantage of the increased network bandwidth. This paper will examine the end-to-end congestion avoidance mechanism and perform a step-by-step analysis of its theory. In addition we will propose an alternative approach developed as part of a new network transmission protocol. Our alternative protocol uses a packet drop avoidance (PDA) mechanism built on top of the maximum burst size (MBS) theory combined with a real-time available bandwidth algorithm.

  8. Safety of high speed guided ground transportation systems: Magnetic and electric field testing of the Washington Metropolitan Area transit authority metrorail system. Volume 1. Analysis. Final report, September 1992-March 1993

    SciTech Connect

    Dietrich, F.M.; Papas, P.N.; Jacobs, W.L.; Ferro, W.E.

    1993-06-01

    The safety of magnetically levitated (maglev) and high speed rail (HSR) trains proposed for application in the United States is the responsibility of the Federal Railroad Administration (FRA). Plans for near future US applications include maglev technology (e.g. in Orlando, FL and Pittsburgh, PA) and high speed rail (e.g. the French Train a Grande Vitesse (TGV) in the Texas Triangle, between Dallas-Fort Worth, Houston and San Antonio, and along five designated high speed corridors). Concerns exist regarding the potential safety, environmental and health effects on the public and on transportation workers due to electrification along new or existing rail corridors, and to maglev and high speed rail operations. Therefore, the characterization of electric and magnetic fields (EMF) produced by both steady (dc) and alternating currents (ac) at power frequency (50 Hz in Europe and 60 Hz in the U.S.) and above, in the Extreme Low Frequency (ELF) range (3-3000 Hz) is of interest. An EMF survey of the Washington Metrorail (WMATA) transit system was performed, as part of a comprehensive comparative EMF safety assessment of the German Transrapid (TR-07) maglev system with other existing and advanced rail systems. The report provides the Analysis (Vol. I) of results, and detailed data and statistical summaries (Vol. II, Appendices) of representative EMF profiles on vehicles and facilities typical of this transit electrotechnology (third rail dc). EMF data represent a range of train operating conditions and locations (in vehicles, stations and waysides), as well as in traffic control and electrical power supply facilities.

  9. Handling qualities of the High Speed Civil Transport

    NASA Technical Reports Server (NTRS)

    Solies, U. Peter

    1994-01-01

    The low speed handling qualities of a High Speed Civil Transport class aircraft have been investigated by using data of the former Advanced Supersonic Transport (AST) 105. The operation of such vehicles in the airport terminal area is characterized by 'backside' performance. Main objectives of this research effort were: (Q) determination of the nature and magnitude of the speed instability associated with the backside of the thrust required curve; (2) confirmation of the validity of existing MIL-SPEC handling qualities criteria; (3) safety of operation of the vehicle in the event of autothrottle failure; and (4) correlation of required engine responsiveness with level of speed instability. Preliminary findings comprise the following: (1) The critical velocity for speed instability was determined to be 196 knots, well above the projected approach speed of 155 knots. This puts the vehicle far on the backside of its thrust required curve. While the aircraft can be configured to have static and dynamic stability at this trim point, a significant speed instability emerges, if a pilot or autopilot attempts flight path control with elevator and/or canard control surfaces only. This requires a properly configured autothrottle and/or variable aerodynamic drag devices which can provide speed stability; (2) An AST 105 type vehicle meets MIL-SPEC criteria only in part. While the damping criteria for phugoid and short period motion are met easily, the AST 105 falls short of the required minimum short period frequency, meaning that the HSCT is too sluggish in pitch to meet the military criteria. Obviously the military specification do not consider a vehicle with such high pitch inertia. With regard to speed stability and flight path stability criteria, the vehicle meets levels 2 and 3 of the military requirements, indicating that it would be landed safety with manual controls in case of an autothrottle failure, even though the pilot workload would be high; and (3) This requires

  10. High-speed velocity measurements on an EFI-system

    NASA Astrophysics Data System (ADS)

    Prinse, W. C.; van't Hof, P. G.; Cheng, L. K.; Scholtes, J. H. G.

    2007-01-01

    For the development of an Exploding Foil Initiator for Insensitive Munitions applications the following topics are of interest: the electrical circuit, the exploding foil, the velocity of the flyer, the driver explosive, the secondary flyer and the acceptor explosive. Several parameters of the EFI have influences on the velocity of the flyer. To investigate these parameters a Fabry-Perot Velocity Interferometer System (F-PVIS) has been used. The light to and from the flyer is transported by a multimode fibre terminated with a GRIN-lens. By this method the velocity of very tiny objects (0.1 mm), can be measured. The velocity of flyer can be recorded with nanosecond resolution, depending on the Fabry-Perot etalon and the streak camera. With this equipment the influence of the dimensions of the exploding foil and the flyer on the velocity and the acceleration of the flyer are investigated. Also the integrity of the flyer during flight can be analyzed. To characterize the explosive material, to be used as driver explosive in EFI's, the initiation behaviour of the explosive has been investigated by taking pictures of the explosion with a high speed framing and streak camera. From these pictures the initiation distance and the detonation behaviour of the explosive has been analyzed. Normally, the driver explosive initiates the acceptor explosive (booster) by direct contact. This booster explosive is embedded in the main charge of the munitions. The combination of initiator, booster explosive and main charge explosive is called the detonation train. In this research the possibility of initiation of the booster by an intermediate flyer is investigated. This secondary flyer can be made of different materials, like aluminium, steel and polyester with different sizes. With the aid of the F-PVIS the acceleration of the secondary flyer is investigated. This reveals the influence of the thickness and density of the flyer on the acceleration and final velocity. Under certain

  11. Acoustics of dual-stream high-speed jets

    NASA Astrophysics Data System (ADS)

    Debiasi, Marco Tullio

    2000-10-01

    This work presents the results of noise measurements in high-speed, round jets whose Mach number and velocity simulate the conditions of jet engines at take-off. The Mach number of the jet potential core ranged from 1.27 to 1.77 and the velocity ranged from 550 m/s to 1010 m/s. Most of the jets were silenced with a coflow that prevented the formation of Mach waves, a dominant contribution to supersonic jet noise. This method, called Mach Wave Elimination, relies on the shielding effect of the coflow which makes the motion of the eddies subsonic with respect to the surrounding streams, thus impeding the creation of Mach waves. Schlieren photography and pitot probe surveys were used to detect the principal features and the growth rate of the jets. Microphone measurements were performed inside an anechoic chamber at many positions around the jet exit. The results were corrected for the microphone response and for the effect of human sensitivity to sound. Equal-thrust comparison of different experimental results shows that elimination of Mach waves is very effective in reducing noise in the direction of strongest emission. Except for localized shock-associated components, noise emission was found to be insensitive to nozzle exit pressure and to depend principally on the values of fully-expanded Mach number and velocity in the jet potential core. Jets with a shorter Mach wave emitting region exhibited better noise suppression. Best results were obtained with an eccentric coflow that allows the shear layer of the upper part of the jet to grow naturally while silencing the jet in the downward direction. Coflows are capable of reducing the near-field screech peaks by up to 10 dB in imperfectly-expanded jets. Scaling the experimental results to a fall-size engine shows that eccentric coflows reduce the noise perceived in the direction of peak emission by up to 11 dB. Preliminary analysis of the application of this silencing technique to engine design indicates that Mach

  12. 75 FR 25927 - Vehicle/Track Interaction Safety Standards; High-Speed and High Cant Deficiency Operations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-10

    ... the vehicles and the track over which they operate must be considered within a systems approach that... Transportation Federal Railroad Administration 49 CFR Parts 213 and 238 Vehicle/Track Interaction Safety... Administration 49 CFR Parts 213 and 238 RIN 2130-AC09 Vehicle/Track Interaction Safety Standards; High-Speed and...

  13. Dynamic Air Traffic Control Simulation of Profile Descent and High-Speed Approach Fuel Conservation Procedures.

    DTIC Science & Technology

    1980-05-01

    Significant differences are indicated by paired numbers D-19 II I AI Z~if 0..0 o C - 4 0 41 4 U if I *0if~0I .0 004 Nif ~ .0.~ - if~O 4N~ ~ 4I-~ I if I...0 .. _ _ _ _ _ _ U - _ _ _ _ -> C! a 1. U U U 00 ~ ~ . U0 00 4c. . C4 0 -* 0 U a.01 U >0 f 00 0 0U 0 0 >1 9 -: 9 -C 000 44 m. mN~ N C4 m > C1 4: 9 U

  14. High-speed two-dimensional laser scanner based on Bragg gratings stored in photothermorefractive glass.

    PubMed

    Yaqoob, Zahid; Arain, Muzammil A; Riza, Nabeel A

    2003-09-10

    A high-speed free-space wavelength-multiplexed optical scanner with high-speed wavelength selection coupled with narrowband volume Bragg gratings stored in photothermorefractive (PTR) glass is reported. The proposed scanner with no moving parts has a modular design with a wide angular scan range, accurate beam pointing, low scanner insertion loss, and two-dimensional beam scan capabilities. We present a complete analysis and design procedure for storing multiple tilted Bragg-grating structures in a single PTR glass volume (for normal incidence) in an optimal fashion. Because the scanner design is modular, many PTR glass volumes (each having multiple tilted Bragg-grating structures) can be stacked together, providing an efficient throughput with operations in both the visible and the infrared (IR) regions. A proof-of-concept experimental study is conducted with four Bragg gratings in independent PTR glass plates, and both visible and IR region scanner operations are demonstrated.

  15. Assessment of the Effects of High-Speed Aircraft in the Stratosphere: 1998

    NASA Technical Reports Server (NTRS)

    Kawa, S. Randolph; Anderson, James G.; Baughcum, Steven L.; Brock, Charles A.; Brune, William H.; Cohen, Ronald C.; Kinnison, Douglas E.; Newman, Paul A.; Rodriquez, Jose M.; Stolarski, Richard S.; hide

    1999-01-01

    This report assesses the potential atmospheric impacts of a proposed fleet of high-speed civil transport (HSCT) aircraft. The purpose of the report is to assess the effects of HSCT's on atmospheric composition and climate in order to provide a scientific basis for making technical, commercial, and environmental policy decisions regarding the HSCT fleet. The work summarized here was carried out as part of NASA's Atmospheric Effects of Aviation Project (a component of the High-Speed Research Program) as well as other NASA, U.S., and international research programs. The principal focus is on change in stratospheric ozone concentrations. The impact on climate change is also a concern. The report describes progress in understanding atmospheric processes, the current state of understanding of HSCT emissions, numerical model predictions of HSCT impacts, the principal uncertainties in atmospheric predictions, and the associated sensitivities in predicted effects of HSCT's.

  16. An ASIC memory buffer controller for a high speed disk system

    NASA Technical Reports Server (NTRS)

    Hodson, Robert F.; Campbell, Steve

    1993-01-01

    The need for large capacity, high speed mass memory storage devices has become increasingly evident at NASA during the past decade. High performance mass storage systems are crucial to present and future NASA systems. Spaceborne data storage system requirements have grown in response to the increasing amounts of data generated and processed by orbiting scientific experiments. Predictions indicate increases in the volume of data by orders of magnitude during the next decade. Current predictions are for storage capacities on the order of terabits (Tb), with data rates exceeding one gigabit per second (Gbps). As part of the design effort for a state of the art mass storage system, NASA Langley has designed a 144 CMOS ASIC to support high speed data transfers. This paper discusses the system architecture, ASIC design and some of the lessons learned in the development process.

  17. A HIGH SPEED VACUUM CENTRIFUGE SUITABLE FOR THE STUDY OF FILTERABLE VIRUSES

    PubMed Central

    Bauer, Johannes H.; Pickels, Edward G.

    1936-01-01

    1. A high speed centrifuge is described in which the speed is limited only by the strength of the material of which the rotor is made. It carries sixteen tubes, each of which conveniently accommodates 7 cc. of fluid. 2. The centrifuge operates in a very high vacuum and therefore requires only a small amount of driving energy. The arrangement has been found to eliminate the possibility of producing injurious frictional heat. 3. The rotating parts are supported by anair-bearing and are driven by compressed air. 4. The centrifuge has been successfully operated at a speed of 30,000 revolutions per minute, representing a maximum centrifugal force in the fluid of 95,000 times gravity. 5 Celluloid tubes used for centrifugation of fluid at high speeds are described. 6. Experiments are described in which good sedimentation of the yellow fever virus was obtained. PMID:19870550

  18. Assessment of the Effects of High-Speed Aircraft in the Stratosphere: 1998

    NASA Technical Reports Server (NTRS)

    Kawa, S. Randolph; Anderson, James G.; Baughcum, Steven L.; Brock, Charles A.; Brune, William H.; Cohen, Ronald C.; Kinnison, Douglas E.; Newman, Paul A.; Rodriguez, Jose M.; Stolarski, Richard S.; Waugh, Darryn; Wofsy, Steven C.

    1999-01-01

    This report assesses the potential atmospheric impacts of a proposed fleet of high-speed civil transport (HSCT) aircraft. The purpose of the report is to assess the effects of HSCT's on atmospheric composition and climate in order to provide a scientific basis for making technical, commercial, and environmental policy decisions regarding the HSCT fleet. The work summarized here was carried out as part of NASA's Atmospheric Effects of Aviation Project (a component of the High-Speed Research Program) as well as other NASA, U.S., and international research programs. The principal focus is on change in stratospheric ozone concentrations. The impact on climate change is also a concern. The report describes progress in understanding atmospheric processes, the current state of understanding of HSCT emissions, numerical model predictions of HSCT impacts, the principal uncertainties in atmospheric predictions, and the associated sensitivities in predicted effects of HSCT'S.

  19. Concept development of a Mach 3.0 high-speed civil transport

    NASA Technical Reports Server (NTRS)

    Robins, A. Warner; Dollyhigh, Samuel M.; Beissner, Fred L., Jr.; Geiselhart, Karl; Martin, Glenn L.; Shields, E. W.; Swanson, E. E.; Coen, Peter G.; Morris, Shelby J., Jr.

    1988-01-01

    A baseline concept for a Mach 3.0 high-speed civil transport concept was developed as part of a national program with the goal that concepts and technologies be developed which will enable an effective long-range high-speed civil transport system. The Mach 3.0 concept reported represents an aggressive application of advanced technology to achieve the design goals. The level of technology is generally considered to be that which could have a demonstrated availability date of 1995 to 2000. The results indicate that aircraft are technically feasible that could carry 250 passengers at Mach 3.0 cruise for a 6500 nautical mile range at a size, weight and performance level that allows it to fit into the existing world airport structure. The details of the configuration development, aerodynamic design, propulsion system design and integration, mass properties, mission performance, and sizing are presented.

  20. An ASIC memory buffer controller for a high speed disk system

    NASA Technical Reports Server (NTRS)

    Hodson, Robert F.; Campbell, Steve

    1993-01-01

    The need for large capacity, high speed mass memory storage devices has become increasingly evident at NASA during the past decade. High performance mass storage systems are crucial to present and future NASA systems. Spaceborne data storage system requirements have grown in response to the increasing amounts of data generated and processed by orbiting scientific experiments. Predictions indicate increases in the volume of data by orders of magnitude during the next decade. Current predictions are for storage capacities on the order of terabits (Tb), with data rates exceeding one gigabit per second (Gbps). As part of the design effort for a state of the art mass storage system, NASA Langley has designed a 144 CMOS ASIC to support high speed data transfers. This paper discusses the system architecture, ASIC design and some of the lessons learned in the development process.

  1. The numerical simulation of a high-speed axial flow compressor

    NASA Technical Reports Server (NTRS)

    Mulac, Richard A.; Adamczyk, John J.

    1991-01-01

    The advancement of high-speed axial-flow multistage compressors is impeded by a lack of detailed flow-field information. Recent development in compressor flow modeling and numerical simulation have the potential to provide needed information in a timely manner. The development of a computer program is described to solve the viscous form of the average-passage equation system for multistage turbomachinery. Programming issues such as in-core versus out-of-core data storage and CPU utilization (parallelization, vectorization, and chaining) are addressed. Code performance is evaluated through the simulation of the first four stages of a five-stage, high-speed, axial-flow compressor. The second part addresses the flow physics which can be obtained from the numerical simulation. In particular, an examination of the endwall flow structure is made, and its impact on blockage distribution assessed.

  2. Retrieving eruptive vent conditions from dynamical properties of unsteady volcanic plume using high-speed imagery and numerical simulations

    NASA Astrophysics Data System (ADS)

    Tournigand, Pierre-Yves; Taddeucci, Jacopo; José Peña Fernandez, Juan; Gaudin, Damien; Sesterhenn, Jörn; Scarlato, Piergiorgio; Del Bello, Elisabetta

    2016-04-01

    Vent conditions are key parameters controlling volcanic plume dynamics and the ensuing different hazards, such as human health issues, infrastructure damages, and air traffic disruption. Indeed, for a given magma and vent geometry, plume development and stability over time mainly depend on the mass eruption rate, function of the velocity and density of the eruptive mixture at the vent, where direct measurements are impossible. High-speed imaging of eruptive plumes and numerical jet simulations were here non-dimensionally coupled to retrieve eruptive vent conditions starting from measurable plume parameters. High-speed videos of unsteady, momentum-driven volcanic plumes (jets) from Strombolian to Vulcanian activity from three different volcanoes (Sakurajima, Japan, Stromboli, Italy, and Fuego, Guatemala) were recorded in the visible and the thermal spectral ranges by using an Optronis CR600x2 (1280x1024 pixels definition, 500 Hz frame rate) and a FLIR SC655 (640x480 pixels definition, 50 Hz frame rate) cameras. Atmospheric effects correction and pre-processing of the thermal videos were performed to increase measurement accuracy. Pre-processing consists of the extraction of the plume temperature gradient over time, combined with a temperature threshold in order to remove the image background. The velocity and the apparent surface temperature fields of the plumes, and their changes over timescales of tenths of seconds, were then measured by particle image velocimetry and thermal image analysis, respectively, of the pre-processed videos. The parameters thus obtained are representative of the outer plume surface, corresponding to its boundary shear layer at the interface with the atmosphere, and may significantly differ from conditions in the plume interior. To retrieve information on the interior of the plume, and possibly extrapolate it even at the eruptive vent level, video-derived plume parameters were non-dimensionally compared to the results of numerical

  3. Impact of extremely high speed logic technology on radar performance

    NASA Astrophysics Data System (ADS)

    Reedy, E. K.; Efurd, R. B.; Yoder, M. N.

    Limitations related to the utilization of digital procedures in radar systems are connected with the difference between the throughput rates of the digital devices and the required throughput rate for broadband, multiple-range-gated radar signals. The present investigation is concerned with the feasibility of innovative uses of extremely high speed integrated circuits in radar. The probable technologies for high speed electronics are related to silicon, gallium arsenide, and Josephson junctions. Attention is given to the classical implementation of a coherent-on-receive system, aspects of phase error memory coherent-on-receive coherent oscillator correction, phase error memory coherent-on-receive video correction, processing at IF, and a comparative performance tradeoff.

  4. Coronal holes and high-speed wind streams

    NASA Technical Reports Server (NTRS)

    Zirker, J. B.

    1977-01-01

    Coronal holes, regions of unusually low density and low temperature in the solar corona, are identified as Bartel's M regions, i.e., sources of high-speed wind streams that produce recurrent geomagnetic variations. Throughout the Skylab period the polar caps of the sun were coronal holes, and at lower latitudes the most persistent and recurrent holes were equatorial extensions of the polar caps. The holes rotated 'rigidly' at the equatorial synodic rate. They formed in regions of unipolar photospheric magnetic field, and their internal magnetic fields diverged rapidly with increasing distance from the sun. The geometry of the magnetic field in the inner corona seems to control both the physical properties of the holes and the global distribution of high-speed wind streams in the heliosphere. Phenomenological models for the birth and decay of coronal holes have been proposed.

  5. Numerical Investigation of Aerodynamic Characteristics of High Speed Train

    NASA Astrophysics Data System (ADS)

    Ali, J. S. Mohamed; Omar, Ashraf Ali; Ali, Muhammad ‘Atif B.; Baseair, Abdul Rahman Bin Mohd

    2017-03-01

    In this work, initially the effect of nose shape on the drag characteristics of a high speed train is studied. Then the influence of cross winds on the aerodynamics and hence the stability of such modern high speed trains is analyzed. CFD analysis was conducted using STAR-CCM+ on trains with different features and important aerodynamic coefficients such as the drag, side force and rolling moment coefficients have been calculated for yaw angles of crosswinds ranging from 0° to 90°. The results show that the modification on train nose shape can reduce the drag up to more than 50%. It was also found that, bogie faring only reduces small percentage of drag but significantly contributed to higher rolling moment and side force coefficient hence induced train instability.

  6. Noise isolation system for high-speed circuits

    DOEpatents

    McNeilly, David R.

    1986-01-01

    A noise isolation circuit is provided that consists of a dual function bypass which confines high-speed switching noise to the component or circuit which generates it and isolates the component or circuit from high-frequency noise transients which may be present on the ground and power supply busses. A local circuit ground is provided which is coupled to the system ground by sufficient impedance to force the dissipation of the noise signal in the local circuit or component generating the noise. The dual function bypass network couples high-frequency noise signals generated in the local component or circuit through a capacitor to the local ground while isolating the component or circuit from noise signals which may be present on the power supply busses or system ground. The network is an effective noise isolating system and is applicable to both high-speed analog and digital circuits.

  7. Noise isolation system for high-speed circuits

    DOEpatents

    McNeilly, D.R.

    1983-12-29

    A noise isolation circuit is provided that consists of a dual function bypass which confines high-speed switching noise to the component or circuit which generates it and isolates the component or circuit from high-frequency noise transients which may be present on the ground and power supply busses. A local circuit ground is provided which is coupled to the system ground by sufficient impedance to force the dissipation of the noise signal in the local circuit or component generating the noise. The dual function bypass network couples high-frequency noise signals generated in the local component or circuit through a capacitor to the local ground while isolating the component or circuit from noise signals which may be present on the power supply busses or system ground. The network is an effective noise isolating system and is applicable to both high-speed analog and digital circuits.

  8. High-speed oblique drop impact on thin liquid films

    NASA Astrophysics Data System (ADS)

    Guo, Yisen; Lian, Yongsheng

    2017-08-01

    We numerically investigate high-speed drop impact on thin liquid films with a focus on oblique impact. The flow behavior is described by solving the incompressible Navier-Stokes equations using the variable density pressure projection method. The phase interfaces are captured using the moment-of-fluid method. The numerical method is validated against experiments and theoretical predictions. Our study on high-speed oblique impact reveals that the tangential velocity can significantly alter impact phenomena: a higher tangential velocity leads to a lower lamella height and radius on the side behind the advancing drop, and the higher tangential velocity also leads to stronger vortices at the drop and film interface due to Kelvin-Helmholtz instability. Our investigation on the effect of liquid film thickness shows that a thinner liquid film leads to an earlier crown breakup. Last, our study shows that lowering the film density can prompt earlier splashing.

  9. TDRSS Augmentation for Launch and Ascent High Speed Navigation Filter

    NASA Technical Reports Server (NTRS)

    Holt, Greg .

    2007-01-01

    An investigation was performed to evaluate the feasibility and possible advantages of augmenting the High Speed Trajectory Determination (HSTD) ground navigation filter with measurements from the Tracking & Data Relay Satellite System (TDRSS) constellation. The proposed communications system strategy for Constellation uses TDRSS rather than ground S-band, so the capability of replacing the S-band navigation capability with TDRSS was considered. HSTD simulations were performed with combinations of S-band, C-band, and TDRSS measurements. Several assumptions are made with regard to measurement biases and signal noise characteristics to produce first-look level accuracies. Preliminary results show that solutions using TDRSS instead of S-band have similar or improved performance from the view of filter covariance and may be a feasible alternative. These results also show that TDRSS tracking alone gives poorer observations and resulting performance Operational and other constraints to the use of TDRSS in a high-speed ground navigation filter are not addressed.

  10. MEMS-based high speed scanning probe microscopy.

    PubMed

    Disseldorp, E C M; Tabak, F C; Katan, A J; Hesselberth, M B S; Oosterkamp, T H; Frenken, J W M; van Spengen, W M

    2010-04-01

    The high speed performance of a scanning probe microscope (SPM) is improved if a microelectromechanical systems (MEMS) device is employed for the out-of-plane scanning motion. We have carried out experiments with MEMS high-speed z-scanners (189 kHz fundamental resonance frequency) in both atomic force microscope and scanning tunneling microscope modes. The experiments show that with the current MEMS z-scanner, lateral tip speeds of 5 mm/s can be achieved with full feedback on surfaces with significant roughness. The improvement in scan speed, obtained with MEMS scanners, increases the possibilities for SPM observations of dynamic processes. Even higher speed MEMS scanners with fundamental resonance frequencies in excess of a megahertz are currently under development.

  11. High-Speed Jet Noise Reduction NASA Perspective

    NASA Technical Reports Server (NTRS)

    Huff, Dennis L.; Handy, J. (Technical Monitor)

    2001-01-01

    History shows that the problem of high-speed jet noise reduction is difficult to solve. the good news is that high performance military aircraft noise is dominated by a single source called 'jet noise' (commercial aircraft have several sources). The bad news is that this source has been the subject of research for the past 50 years and progress has been incremental. Major jet noise reduction has been achieved through changing the cycle of the engine to reduce the jet exit velocity. Smaller reductions have been achieved using suppression devices like mixing enhancement and acoustic liners. Significant jet noise reduction without any performance loss is probably not possible! Recent NASA Noise Reduction Research Programs include the High Speed Research Program, Advanced Subsonic Technology Noise Reduction Program, Aerospace Propulsion and Power Program - Fundamental Noise, and Quiet Aircraft Technology Program.

  12. High speed magneto-resistive random access memory

    NASA Technical Reports Server (NTRS)

    Wu, Jiin-Chuan (Inventor); Stadler, Henry L. (Inventor); Katti, Romney R. (Inventor)

    1992-01-01

    A high speed read MRAM memory element is configured from a sandwich of magnetizable, ferromagnetic film surrounding a magneto-resistive film which may be ferromagnetic or not. One outer ferromagnetic film has a higher coercive force than the other and therefore remains magnetized in one sense while the other may be switched in sense by a switching magnetic field. The magneto-resistive film is therefore sensitive to the amplitude of the resultant field between the outer ferromagnetic films and may be constructed of a high resistivity, high magneto-resistive material capable of higher sensing currents. This permits higher read voltages and therefore faster read operations. Alternate embodiments with perpendicular anisotropy, and in-plane anisotropy are shown, including an embodiment which uses high permeability guides to direct the closing flux path through the magneto-resistive material. High density, high speed, radiation hard, memory matrices may be constructed from these memory elements.

  13. Coronal holes and high-speed wind streams

    NASA Technical Reports Server (NTRS)

    Zirker, J. B.

    1977-01-01

    Coronal holes, regions of unusually low density and low temperature in the solar corona, are identified as Bartel's M regions, i.e., sources of high-speed wind streams that produce recurrent geomagnetic variations. Throughout the Skylab period the polar caps of the sun were coronal holes, and at lower latitudes the most persistent and recurrent holes were equatorial extensions of the polar caps. The holes rotated 'rigidly' at the equatorial synodic rate. They formed in regions of unipolar photospheric magnetic field, and their internal magnetic fields diverged rapidly with increasing distance from the sun. The geometry of the magnetic field in the inner corona seems to control both the physical properties of the holes and the global distribution of high-speed wind streams in the heliosphere. Phenomenological models for the birth and decay of coronal holes have been proposed.

  14. Design of high speed proprotors using multiobjective optimization techniques

    NASA Technical Reports Server (NTRS)

    Mccarthy, Thomas R.; Chattopadhyay, Aditi

    1993-01-01

    A multidisciplinary optimization procedure is developed for the design of high speed proprotors. The objectives are to simultaneously maximize the propulsive efficiency in high speed cruise without sacrificing the rotor figure of merit in hover. Since the problem involves multiple design objectives, multiobjective function formulation techniques are used. A derailed two-celled isotropic box beam is used to model the load carrying member within the rotor blade. Constraints are imposed on rotor blade aeroelastic stability in cruise, the first natural frequency in hover and total blade weight. Both aerodynamic and structural design variables are used. The results obtained using both techniques are compared to the reference rotor and show significant aerodynamic performance improvements without sacrificing dynamic and aeroelastic stability requirements.

  15. Zonal analysis of two high-speed inlets

    NASA Technical Reports Server (NTRS)

    Dilley, A. D.; Switzer, G. F.; Eppard, W. M.

    1991-01-01

    Using a zonal technique, thin layer Navier-Stokes solutions for two high speed inlet geometries are presented and compared with experimental data. The first configuration consists of a 3-D inlet preceded by a sharp flat plate. Results with two different grids demonstrate the importance of adequate grid refinement in high speed internal flow computations. The fine grid solution has reasonably good agreement with experimental heat transfer and pressure values inside the inlet. The other configuration consists of a 3-D inlet mounted on a research hypersonic forebody. Numerical results for this configuration have good agreement with experimental pressure data along the forebody, but not inside the inlet. A more refined grid calculation is currently being done to better predict the flowfield in the inlet.

  16. High Speed Photography What Role Does It Play In Mining?

    NASA Astrophysics Data System (ADS)

    Crosby, William A.

    1987-09-01

    High speed photography is being employed to help improve the efficiency of a number of different mining activities. Its principal use, however, is as an aid in the optimization of blasting operations. Blasts are commonly of very short duration and great benefit can thus be gained by being able to observe the events at a suitably selected slow motion over an extended period of time. This paper presents an overview of some of the high speed photographic applications in both surface and underground operations using qualitative and quantitative techniques. The primary use is the direct photography of the blast, the analysis of the resulting films representing the bulk of the optimization work. Other applications are designed to check out individual blast components, particularly evaluating blast tamping, and actual delay element times for such accessories as detonating relays, down-the-hole delays and other delaying and initiating systems.

  17. Ultra-high-speed optical and electronic distributed devices

    SciTech Connect

    Hietala, V.M.; Plut, T.A.; Kravitz, S.H.; Vawter, G.A.; Wendt, J.R.; Armendariz, M.G.

    1995-08-01

    This report summarizes work on the development of ultra-high-speed semiconductor optical and electronic devices. High-speed operation is achieved by velocity matching the input stimulus to the output signal along the device`s length. Electronic devices such as field-effect transistors (FET`s), should experience significant speed increases by velocity matching the electrical input and output signals along the device. Likewise, optical devices, which are typically large, can obtain significant bandwidths by velocity matching the light being generated, detected or modulated with the electrical signal on the device`s electrodes. The devices discussed in this report utilize truly distributed electrical design based on slow-wave propagation to achieve velocity matching.

  18. Development of a High Speed Crowbar for LANSCE

    NASA Astrophysics Data System (ADS)

    Friedrichs, C.; Lyles, J.; Doub, J. M.

    1997-05-01

    Each of the four 200 Mhz Final Power Amplifiers (FPAs) in the LANSCE proton linac has its own capacitor bank and crowbar. The dissipation in the 10 ohm crowbar limiting resistor is 67 kW, and oil cooling is used. Our stated upgrade goal was to substantially reduce the limiting resistor dissipation and eliminate the oil cooling. Early tests showed that the fault energy quickly rose to unacceptable levels as the current limiting resistance was reduced. FPA arcs are normally quenched by interrupting the FPA modulator current, and the crowbar waits 10 microseconds for this to occur. The successful upgrade strategy was to replace the 10 ohm resistor with a 3 ohm air cooled resistor and to add a high speed crowbar circuit which operates only if there are simultaneous arcs in the FPA and its modulator. This paper describes the high speed circuit and its interface with the existing crowbar. Test results are also given.

  19. Detection of object vibrations from high speed infrared images

    NASA Astrophysics Data System (ADS)

    Paunescu, Gabriela; Lutzmann, Peter

    2016-10-01

    Remote detection of vibrational features from an object is important for many short range civil applications, but it is also of interest for long range applications in the defense and security area. The well-established laser Doppler vibrometry technique is widely used as a high-sensitivity, non-contact method. The development of camera technology in recent years made image-based methods reliable passive alternatives for vibration and dynamic measurements. Very sensitive applications have been demonstrated using high speed cameras in the visual spectral range. However, for long range applications, where turbulence becomes a limiting factor, image acquisition in the short- to mid-wave IR region would be desirable, as the atmospheric effects attenuate at longer wavelength. In this paper, we investigate experimentally the vibration detection from short- and mid-wave IR image sequences using high speed imaging technique. Experiments on the extraction of vibration signature under strong local turbulence conditions are presented.

  20. A High-speed Characterization Technique for Solar Silicon

    NASA Technical Reports Server (NTRS)

    Lehmann, V.; Foell, H.; Bernewitz, L.; Grabmaier, J. G.

    1984-01-01

    High-speed crystal growth techniques demand high-speed characterization techniques to allow a timely feed-back of information to the crystal growers. The unique properties of the Si electrolyte-contact (SEC) provide for an extremely fast and simple measurement of the light-induced photo-current for any piece of Si without lengthy preparation of the specimen. Electropolishing at high anodic current densities allows for insitu generation of fresh surfaces whereas preferential etching of defects in various modes is possible at low current densities. In n-type Si a simple estimation of the minority-carrier diffusion length is possible in many cases. Laser-scanning enables local probing of the photocurrent and provides data about the homogeneity of a sample. The experimental realization of the method is described in detail and examples are given and discussed.

  1. Characterizing pyrotechnic igniter output with high-speed schlieren imaging

    NASA Astrophysics Data System (ADS)

    Skaggs, M. N.; Hargather, M. J.; Cooper, M. A.

    2017-01-01

    Small-scale pyrotechnic igniter output has been characterized using a high-speed schlieren imaging system for observing critical features of the post-combustion flow. The diagnostic, with laser illumination, was successfully applied towards the quantitative characterization of the output from Ti/KClO_4 and TiH_{1.65}/KClO_4 pyrotechnic igniters. The high-speed image sequences showed shock motion, burned gas expansion, and particle motion. A statistical-based analysis methodology for tracking the full-field shock motion enabled straightforward comparisons across the experimental parameters of pyrotechnic material and initial density. This characterization of the mechanical energy of the shock front within the post-combustion environment is a necessary addition to the large body of literature focused on pyrotechnic combustion behavior within the powder bed. Ultimately, understanding the role that the combustion behavior has on the resulting multiphase environment is required for tailored igniter development and comparative performance assessments.

  2. High-speed wavefront modulation in complex media (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Turtaev, Sergey; Leite, Ivo T.; Cizmár, TomáÅ.¡

    2017-02-01

    Using spatial light modulators(SLM) to control light propagation through scattering media is a critical topic for various applications in biomedical imaging, optical micromanipulation, and fibre endoscopy. Having limited switching rate, typically 10-100Hz, current liquid-crystal SLM can no longer meet the growing demands of high-speed imaging. A new way based on binary-amplitude holography implemented on digital micromirror devices(DMD) has been introduced recently, allowing to reach refreshing rates of 30kHz. Here, we summarise the advantages and limitations in speed, efficiency, scattering noise, and pixel cross-talk for each device in ballistic and diffusive regimes, paving the way for high-speed imaging through multimode fibres.

  3. Popping a Hole in High-Speed Pursuits

    NASA Technical Reports Server (NTRS)

    2005-01-01

    NASA s Plum Brook Station, a 6,400-acre, remote test installation site for Glenn Research Center, houses unique, world-class test facilities, including the world s largest space environment simulation chamber and the world s only laboratory capable of full-scale rocket engine firings and launch vehicle system level tests at high-altitude conditions. Plum Brook Station performs complex and innovative ground tests for the U.S. Government (civilian and military), the international aerospace community, as well as the private sector. Popping a Hole in High-Speed Pursuits Recently, Plum Brook Station s test facilities and NASA s engineering experience were combined to improve a family of tire deflating devices (TDDs) that helps law enforcement agents safely, simply, and successfully stop fleeing vehicles in high-speed pursuit

  4. Investigation Of Vapor Explosion Mechanisms Using High Speed Photography

    NASA Astrophysics Data System (ADS)

    Armstrong, Donn R.; Anderson, Richard P.

    1983-03-01

    The vapor explosion, a physical interaction between hot and cold liquids that causes the explosive vaporization of the cold liquid, is a hazard of concern in such diverse industries as metal smelting and casting, paper manufacture, and nuclear power generation. Intensive work on this problem worldwide, for the past 25 years has generated a number of theories and mechanisms proposed to explain vapor explosions. High speed photography has been the major instrument used to test the validity of the theories and to provide the observations that have lead to new theories. Examples are given of experimental techniques that have been used to investigate vapor explosions. Detailed studies of specific mechanisms have included microsecond flash photograph of contact boiling and high speed cinematography of shock driven breakup of liquid drops. Other studies looked at the explosivity of various liquid pairs using cinematography inside a pulsed nuclear reactor and x-ray cinematography of a thermite-sodium interaction.

  5. Field-based high-speed imaging of explosive eruptions

    NASA Astrophysics Data System (ADS)

    Taddeucci, J.; Scarlato, P.; Freda, C.; Moroni, M.

    2012-12-01

    Explosive eruptions involve, by definition, physical processes that are highly dynamic over short time scales. Capturing and parameterizing such processes is a major task in eruption understanding and forecasting, and a task that necessarily requires observational systems capable of high sampling rates. Seismic and acoustic networks are a prime tool for high-frequency observation of eruption, recently joined by Doppler radar and electric sensors. In comparison with the above monitoring systems, imaging techniques provide more complete and direct information of surface processes, but usually at a lower sampling rate. However, recent developments in high-speed imaging systems now allow such information to be obtained with a spatial and temporal resolution suitable for the analysis of several key eruption processes. Our most recent set up for high-speed imaging of explosive eruptions (FAMoUS - FAst, MUltiparametric Set-up,) includes: 1) a monochrome high speed camera, capable of 500 frames per second (fps) at high-definition (1280x1024 pixel) resolution and up to 200000 fps at reduced resolution; 2) a thermal camera capable of 50-200 fps at 480-120x640 pixel resolution; and 3) two acoustic to infrasonic sensors. All instruments are time-synchronized via a data logging system, a hand- or software-operated trigger, and via GPS, allowing signals from other instruments or networks to be directly recorded by the same logging unit or to be readily synchronized for comparison. FAMoUS weights less than 20 kg, easily fits into four, hand-luggage-sized backpacks, and can be deployed in less than 20' (and removed in less than 2', if needed). So far, explosive eruptions have been recorded in high-speed at several active volcanoes, including Fuego and Santiaguito (Guatemala), Stromboli (Italy), Yasur (Vanuatu), and Eyjafiallajokull (Iceland). Image processing and analysis from these eruptions helped illuminate several eruptive processes, including: 1) Pyroclasts ejection. High-speed

  6. Initial Experiments of High-Speed Drive System Windage Losses

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.; Hurrell, Michael J.

    2010-01-01

    High speed gearing performance is very important to the overall drive system efficiency. Certain losses such as gear meshing and bearing drag can be minimized by design changes such as pressure angle of the gears and the geometry and type of bearings being used. One component that can have a large effect on the overall performance of high-speed drive systems is the parasitic drag known as gear windage. This loss mechanism is not well understood and minimizing this component is usually accomplished through much trial and error. The results presented in this paper will document some of the design parameter effects on the amount of windage losses. A new test facility at NASA Glenn has been assembled to systematically study the design variables. Results from recent tests will be presented. The tests are for a single gear, with and without lubricants, and some initial studies using shrouds

  7. Initial Experiments of High-Speed Drive System Windage Losses

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.; Hurrell, Michael J.

    2011-01-01

    High speed gearing performance is very important to the overall drive system efficiency. Certain losses such as gear meshing and bearing drag can be minimized by design changes such as pressure angle of the gears and the geometry and type of bearings being used. One component that can have a large effect on the overall performance of high-speed drive systems is the parasitic drag known as gear windage. This loss mechanism is not well understood and minimizing this component is usually accomplished through much trial and error. The results presented in this paper will document some of the design parameter effects on the amount of windage losses. A new test facility at NASA Glenn has been assembled to systematically study the design variables. Results from recent tests will be presented. The tests are for a single gear, with and without lubricants, and some initial studies using shrouds.

  8. Robust adaptive cruise control of high speed trains.

    PubMed

    Faieghi, Mohammadreza; Jalali, Aliakbar; Mashhadi, Seyed Kamal-e-ddin Mousavi

    2014-03-01

    The cruise control problem of high speed trains in the presence of unknown parameters and external disturbances is considered. In particular a Lyapunov-based robust adaptive controller is presented to achieve asymptotic tracking and disturbance rejection. The system under consideration is nonlinear, MIMO and non-minimum phase. To deal with the limitations arising from the unstable zero-dynamics we do an output redefinition such that the zero-dynamics with respect to new outputs becomes stable. Rigorous stability analyses are presented which establish the boundedness of all the internal states and simultaneously asymptotic stability of the tracking error dynamics. The results are presented for two common configurations of high speed trains, i.e. the DD and PPD designs, based on the multi-body model and are verified by several numerical simulations.

  9. Open tube guideway for high speed air cushioned vehicles

    NASA Technical Reports Server (NTRS)

    Goering, R. S. (Inventor)

    1974-01-01

    This invention is a tubular shaped guideway for high-speed air-cushioned supported vehicles. The tubular guideway is split and separated such that the sides of the guideway are open. The upper portion of the tubular guideway is supported above the lower portion by truss-like structural members. The lower portion of the tubular guideway may be supported by the terrain over which the vehicle travels, on pedestals or some similar structure.

  10. Afterpulse time spectra of high-speed photon detectors

    NASA Astrophysics Data System (ADS)

    Leskovar, B.

    1985-01-01

    Recent progress of understanding of the afterpulse time spectra of high-speed photon detectors using photoemission and secondary emission processes is reviewed and summarized. Furthermore, the afterpulse time spectra of high-gain conventionally designed and microchannel plate photon detectors was investigated. Specifically, the devices studied included RCA 8850, RCA 8854 and ITT F 4129g photomultipliers. Descriptions are given of the measuring techniques.

  11. High Speed Trimaran (HST) Seatrain Experiments, Model 5714

    DTIC Science & Technology

    2013-12-01

    Architecture and Engeering Department Code 80. The following people contributed to the suc- cess of this test program; Mr. Gabor Karafiath, Code 8500 for...Francisco Rodriguez all from code 3613 for model propeller manufacture, Mr. Donnie Walker Code 854 and Mr. Dennis Mullinix under contract for...globalsecurity.org/military/systems/ship/inls.htm. [3] Gabor Karafiath, Bryson Metcalf, and Jesse Geisbert. "Seatrain for High Capacity, High Speed, Ocean

  12. High-speed high-efficiency photodetectors based on heterostructures

    NASA Astrophysics Data System (ADS)

    Korolkov, V. I.

    Recent advances in the development of high-speed high-efficiency heterostructure photodetectors (HPs) are reviewed. It is noted that the performance of semiconductor photodetectors has been improved by forbidden bandwidth control. Various types of HPs are examined, including modifications of heterophotodiodes and detectors with internal amplification; avalanche photodiodes; bipolar phototransistors; and planar photoresistance devices and field-effect phototransistors. These devices are compared in terms of speed and efficiency.

  13. Numerical Simulation of High-Speed Turbulent Reacting Flows

    NASA Technical Reports Server (NTRS)

    Givi, P.; Taulbee, D. B.; Madnia, C. K.; Jaberi, F. A.; Colucci, P. J.; Gicquel, L. Y. M.; Adumitroaie, V.; James, S.

    1999-01-01

    The objectives of this research are: (1) to develop and implement a new methodology for large eddy simulation of (LES) of high-speed reacting turbulent flows. (2) To develop algebraic turbulence closures for statistical description of chemically reacting turbulent flows. We have just completed the third year of Phase III of this research. This is the Final Report of our activities on this research sponsored by the NASA LaRC.

  14. High-Speed Tests of Radial-Engine Cowlings

    NASA Technical Reports Server (NTRS)

    Robinson, Russell G.; Becker, John V.

    1939-01-01

    The drag characteristics of eight radial-engine cowlings have been determined over a wide speed range in the N.A.C.A. 8-foot high-speed wind tunnel. The pressure distribution over all cowlings was measured, to and above the speed of the compressibility burble, as an aid in interpreting the force tests. One-fifth-scale models of radial-engine cowlings on a wing-nacelle combination mere used in the tests.

  15. Engineering models of high speed penetration into geological shields

    NASA Astrophysics Data System (ADS)

    Ben-Dor, Gabi; Dubinsky, Anatoly; Elperin, Tov

    2014-03-01

    The survey is dedicated to approximate empirical and analytical models which were suggested for describing high-speed penetration into geological shields. This review differs from the previously published reviews on this topic in the following respects: (i) includes a large number of models; (ii) describes models suggested during recent years; (iii) much attention is given to models which have been originally published in Russian and are not well known in the West. References list includes 81 items.

  16. Design of a high-speed real-time symbiont

    NASA Technical Reports Server (NTRS)

    Grunby, E. I.

    1972-01-01

    The problems involved, approach taken, and solution arrived at are described in a software study to design a high speed, real time symbiont for analog telemetry processing. The symbiont design is based on the need for transferring data from one I/O device to another without significant use of core space or central processor time. The queues, programmed wait states, and teletype commands incorporated in the symbiont design are discussed.

  17. High Speed Aerodynamic Characteristics of the GAF0PH Aerofoil

    DTIC Science & Technology

    1980-09-01

    upper surface of the aerofoil for angles of incidence greater than 210. POSTAL ADDRESS: Chief Superintendent, Aeronautical Research Laboratories, Box...kCLAERO-.NOTE3 98 -AR-002-223 -LEVEL m DEPARTMENT OF DEFENCE 00 DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION AERONAUTICAL RESEARCH LABORATORIES...MELBOURNE, VICTORIA AERODYNAMICS NOTE 398 ’,\\ HIGH SPEED AERODYNAMIC CHARACTERISTICS OF THE GAFPH AEROFOIL by ~B D :, . , .IR-© Approved for Public Release

  18. High Speed Rail (HSR) in the United States

    DTIC Science & Technology

    2009-12-08

    450,000 long-term jobs.53 48 HM Treasury and Department for Transport, The Eddington Transport Study...and Transport Research) #655, 2009, p. 13, http://www.vti.se/EPiBrowser/Publikationer%20-%20English/ R655Eng.pdf. 51 Eddington Transport Study, 2006...www.gao.gov/new.items/d09317.pdf. 56 Eddington Transport Study, 2006, p. 208. High Speed Rail (HSR) in the United States Congressional Research

  19. Transfer With SNR High-Speed Transport Protocol.

    DTIC Science & Technology

    1995-12-01

    To validate SNR as a high speed transport protocol, efficient means of transferring large data files are required. The problem is that no file...transfer program is currently implemented for SNR . The SNR protocol was described in IEEE Transactions on Communications 91 Vol. 38 #11. The approach taken...was to modify the Trivial File Transfer Protocol (TFTP) and use it with the SNR Receiver and Transmitter implementations in both the FDDI and Ethernet

  20. High Speed, High Accuracy Stage for Advanced Lithography. Phase I

    DTIC Science & Technology

    2007-11-02

    noise and 5nm LSB of our laser interferometer. Zerodur Mounting bar Base expended in this direction Sensor heads Interferometer mirror ...state of the art. Their CORE machine claims an accuracy of 80nm over a 6- inch square field. This machine uses high-speed mirrors to scan multiple...variety of optical paths. If the laboratory is not quiet (e.g. if the interferometer mirror is moving, or if people are talking in the laboratory

  1. NASA/GE Collaboration on Open Rotors - High Speed Testing

    NASA Technical Reports Server (NTRS)

    VanZante, Dale E.

    2011-01-01

    A low-noise open rotor system is being tested in collaboration with General Electric and CFM International, a 50/50 joint company between Snecmaand GE. Candidate technologies for lower noise will be investigated as well as installation effects such as pylon integration. Current test status for the 8x6 SWT high speed testing is presented as well as future scheduled testing which includes the FAA/CLEEN test entry. The tunnel blockage and propeller thrust calibration configurations are shown.

  2. ONR/Hughes High Speed Towed Array System (HSTAS)

    DTIC Science & Technology

    1978-01-01

    see Figure 1) was conceived, designed, and fabricated. The system was successfully sea tested in July of 1977 in Exuma Sound in the Bahamas aboard...than PVC which is known to produce lower self noise levels at the water temperatures of Exuma Sound. 3 IIi ADMINISTRATIVE INFORMATIONj The High Speed...in Exuma Sound during the perioe L6 to 22 July 1977. All the goals set forth in Section II of this report were met within the opera- ttonal constraints

  3. Kinematic and Kinetic Evaluation of High Speed Backward Running

    DTIC Science & Technology

    1999-06-30

    Presented to the Department of Exercise and Movement Science and the Graduate School of the University of Oregon in partial fulfillment of the...dissertation prepared by Alan W. Arata in partial fulfillment of the requirements for the Doctor of Philosophy degree in the Department of Exercise and...Department of Exercise and Movement Science to be taken June 1999 Title: KINEMATIC AND KINETIC EVALUATION OF HIGH SPEED BACKWARD RUNNING Approved

  4. High Speed Video Applications In The Pharmaceutical Industry

    NASA Astrophysics Data System (ADS)

    Stapley, David

    1985-02-01

    The pursuit of quality is essential in the development and production of drugs. The pursuit of excellence is relentless, a never ending search. In the pharmaceutical industry, we all know and apply wide-ranging techniques to assure quality production. We all know that in reality none of these techniques are perfect for all situations. We have all experienced, the damaged foil, blister or tube, the missing leaflet, the 'hard to read' batch code. We are all aware of the need to supplement the traditional techniques of fault finding. This paper shows how high speed video systems can be applied to fully automated filling and packaging operations as a tool to aid the company's drive for high quality and productivity. The range of products involved totals some 350 in approximately 3,000 pack variants, encompassing creams, ointments, lotions, capsules, tablets, parenteral and sterile antibiotics. Pharmaceutical production demands diligence at all stages, with optimum use of the techniques offered by the latest technology. Figure 1 shows typical stages of pharmaceutical production in which quality must be assured, and highlights those stages where the use of high speed video systems have proved of value to date. The use of high speed video systems begins with the very first use of machine and materials: commissioning and validation, (the term used for determining that a process is capable of consistently producing the requisite quality) and continues to support inprocess monitoring, throughout the life of the plant. The activity of validation in the packaging environment is particularly in need of a tool to see the nature of high speed faults, no matter how infrequently they occur, so that informed changes can be made precisely and rapidly. The prime use of this tool is to ensure that machines are less sensitive to minor variations in component characteristics.

  5. 26. "AIR INSTALLATIONS; EDWARDS AIR FORCE BASE, CALIFORNIA; HIGH SPEED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. "AIR INSTALLATIONS; EDWARDS AIR FORCE BASE, CALIFORNIA; HIGH SPEED TEST TRACK." Drawing No. 10-259. One inch to 400 feet plan of original 10,000-foot sled track. No date. No D.O. series number. No headings as above. - Edwards Air Force Base, South Base Sled Track, Edwards Air Force Base, North of Avenue B, between 100th & 140th Streets East, Lancaster, Los Angeles County, CA

  6. Determination of aminocresol isomers by high-speed liquid chromatography.

    PubMed

    Sakurai, H; Kito, M

    Aminocresol isomers (4-hydroxy-m-toluidine [II], 3-hydroxy-p-toluidine [II], 2-hydroxy-p-toluidine [III]) and p-aminophenol have been separated and determined by a high-speed liquid Chromatographie method. Since this method is applicable in aqueous media, it was used to investigate the suitability of a haemin-cysteine system as a model for the cytochrome P-450 mono-oxygenase system, by determination of the [I], [II], [III] and p-aminophenol formed.

  7. High-speed OCT light sources and systems [Invited

    PubMed Central

    Klein, Thomas; Huber, Robert

    2017-01-01

    Imaging speed is one of the most important parameters that define the performance of optical coherence tomography (OCT) systems. During the last two decades, OCT speed has increased by over three orders of magnitude. New developments in wavelength-swept lasers have repeatedly been crucial for this development. In this review, we discuss the historical evolution and current state of the art of high-speed OCT systems, with focus on wavelength swept light sources and swept source OCT systems. PMID:28270988

  8. Calibration of high-speed imaging by laser triangulation.

    PubMed

    Larsson, Hans; Hertegård, Stellan

    2004-01-01

    A method was developed for absolute calibration of endoscopic vocal fold images using laser triangulation. The laser is attached to a rigid endoscope with 8-degrees angle in relation to the optical axis of the endoscope. A special software is used for calibration and measurements from high-speed images. The equipment can provide measurements both in horizontal and vertical planes, and can be used for calibrated measurements of vocal fold length, amplitude of vocal fold vibrations and vertical movements.

  9. High speed cylindrical rolling element bearing analysis 'CYBEAN' - Analytic formulation

    NASA Technical Reports Server (NTRS)

    Kleckner, R. J.; Pirvics, J.; Castelli, V.

    1979-01-01

    This paper documents the analytic foundation and software architecture for the computerized mathematical simulation of high speed cylindrical rolling element bearing behavior. The software, CYBEAN (CYlindrical BEaring ANalysis), considers a flexible, variable geometry outer ring, EHD films, roller centrifugal and quasidynamic loads, roller tilt and skew, mounting fits, cage and flange interactions. The representation includes both steady state and time transient simulation of thermal interactions internal to and coupled with the surroundings of the bearing. A sample problem illustrating program use is presented.

  10. Diode Laser Diagnostics of High Speed Flows (Postprint)

    DTIC Science & Technology

    2006-10-01

    high speed flows are required. Generally, wall measurements (e.g. pressure, temperature , and heat flux) dominate the instrumentation suite routinely...from 500 to 2000 psf. Unvitiated (cold) flows have also been studied. III. Experiment TDLAS employs single mode diode lasers that are temperature ...too high because it does not account for the entropy rise due to wall friction. Therefore, the pitot pressure and thermocouple temperature probe

  11. Strain rate effect in high-speed wire drawing process

    NASA Astrophysics Data System (ADS)

    He, S.; Van Houtte, P.; Van Bael, A.; Mei, F.; Sarban, A.; Boesman, P.; Galvez, F.; Atienza, J. M.

    2002-05-01

    This paper presents a study on the strain rate effect during high-speed wire drawing process by means of finite element simulation. Based on the quasistatic stresses obtained by normal tensile tests and dynamic stresses at high strain rates by split Hopkinson pressure bar tests, the wire drawing process was simulated for low carbon steel and high carbon steel. The results show that both the deformation process and the final properties of drawn wires are influenced by the strain rate.

  12. The dynamics of a high-speed Jovian jet

    NASA Technical Reports Server (NTRS)

    Maxworthy, T.

    1984-01-01

    New measurements of the velocity field in the neighborhood of the high-speed jet located at approximately 24 deg N latitude in the Jovian atmosphere are presented. The maximum zonal velocity is found to be 182 + or - 10 m/s, located at 23.7 + or - 0.2 deg N and representing the largest velocity measured on the planet. The distinctive cloud markings found close to this latitude are discussed and possible dynamical consequences presented.

  13. NASA High-Speed 2D Photogrammetric Measurement System

    NASA Technical Reports Server (NTRS)

    Dismond, Harriett R.

    2012-01-01

    The object of this report is to provide users of the NASA high-speed 2D photogrammetric measurement system with procedures required to obtain drop-model trajectory and impact data for full-scale and sub-scale models. This guide focuses on use of the system for vertical drop testing at the NASA Langley Landing and Impact Research (LandIR) Facility.

  14. High Speed Optical Photometry of LMXBs and CVs

    NASA Astrophysics Data System (ADS)

    Mason, Paul A.; Robinson, Edward L.; Gomez, Sebastian; Gonzalez, Emmanuel; Lopez, Isaac D.; Monroy, Lorena; Price, Alex

    2013-02-01

    High speed photometry of several accreting binaries was obtained using the McDonald Observatory 2.1m telescope and ARGOS CCD photometer. A broad-band filter (BVR) was used in order to maximize flux and maintain a short (1-10s) integration time on faint targets. Such observations obtained over several years allow for variability study over time scales covering many orders of magnitude. Observations and analysis for several binaries are summarized.

  15. Pulse laser high speed schlieren photographic system and its application

    NASA Astrophysics Data System (ADS)

    Lin, Yuju; Li, Shicheng; Wang, Qingyou; Ni, Wenjun; Xiang, Yong

    1989-06-01

    Two models of a pulsed Q-switched ruby laser high speed schlieren photographic system are introduced. The models are described and results are presented from tests using each model. One model is used to record the armor-piercing process of the terminal trajectory and the chamber shooting process of the midway trajectory. The other model is used to study the detonating mechanism of high energy dynamite. Also, possibilities for future development of the system are considered.

  16. High-Speed Tests of Conventional Radial-Engine Cowlings

    NASA Technical Reports Server (NTRS)

    Robinson, Russell G; Becker, John V

    1942-01-01

    The drag characteristics of eight radial-engine cowlings have been determined over a wide speed range in the NACA 8-foot high-speed wind tunnel. The pressure distribution over all cowlings was measured, to and above the speed of the compressibility burble, as an aid in interpreting the force tests. One-fifth-scale models of radial-engine cowlings on a wing-nacelle combination were used in the tests.

  17. Novel Applications of High Speed Optical-Injection Locked Lasers

    DTIC Science & Technology

    2010-07-31

    frequency response of high speed phototransistors . We have also shown the OIL lasers can significantly extend the reach of optical communications, to I20km...speed InP Heterojunction PhotoTransistors (HPTs). 1 HPT test wafers have been designed and taped out, consisting of single ended HPTs... phototransistors . Light transmitted by the lens fiber and waveguide into the base of the transistor modulates the base current in the device. The

  18. Gearbox Reliability Collaborative High-Speed Shaft Calibration

    SciTech Connect

    Keller, J.; McNiff, B.

    2014-09-01

    Instrumentation has been added to the high-speed shaft, pinion, and tapered roller bearing pair of the Gearbox Reliability Collaborative gearbox to measure loads and temperatures. The new shaft bending moment and torque instrumentation was calibrated and the purpose of this document is to describe this calibration process and results, such that the raw shaft bending and torque signals can be converted to the proper engineering units and coordinate system reference for comparison to design loads and simulation model predictions.

  19. High speed commercial transport fuels considerations and research needs

    NASA Technical Reports Server (NTRS)

    Lee, C. M.; Niedzwiecki, R. W.

    1989-01-01

    NASA is currently evaluating the potential of incorporating High Speed Civil Transport (HSCT) aircraft in the commercial fleet in the beginning of the 21st century. NASA sponsored HSCT enabling studies currently underway with airframers and engine manufacturers, are addressing a broad range of technical, environmental, economic, and related issues. Supersonic cruise speeds for these aircraft were originally focused in the Mach 2 to 5 range. At these flight speeds, both jet fuels and liquid methane were considered potential fuel candidates. For the year 2000 to 2010, cruise Mach numbers of 2 to 3+ are projected for aircraft fuel with thermally stable liquid jet fuels. For 2015 and beyond, liquid methane fueled aircraft cruising at Mach numbers of 4+ may be viable candidates. Operation at supersonic speeds will be much more severe than those encountered at subsonic flight. One of the most critical problems is the potential deterioration of the fuel due to the high temperature environment. HSCT fuels will not only be required to provide the energy necessary for flight, but will also be subject to aerodynamic heating and, will be required to serve as the primary heat sink for cooling the engine and airframe. To define fuel problems for high speed flight, a fuels workshop was conducted at NASA Lewis Research Center. The purpose of the workshop was to gather experts on aviation fuels, airframe fuel systems, airport infrastructure, and combustion systems to discuss high speed fuel alternatives, fuel supply scenarios, increased thermal stability approaches and measurements, safety considerations, and to provide directional guidance for future R and D efforts. Subsequent follow-up studies defined airport infrastructure impacts of high speed fuel candidates. The results of these activities are summarized. In addition, an initial case study using modified in-house refinery simulation model Gordian code (1) is briefly discussed. This code can be used to simulate different

  20. Ultra high speed image processing techniques. [electronic packaging techniques

    NASA Technical Reports Server (NTRS)

    Anthony, T.; Hoeschele, D. F.; Connery, R.; Ehland, J.; Billings, J.

    1981-01-01

    Packaging techniques for ultra high speed image processing were developed. These techniques involve the development of a signal feedthrough technique through LSI/VLSI sapphire substrates. This allows the stacking of LSI/VLSI circuit substrates in a 3 dimensional package with greatly reduced length of interconnecting lines between the LSI/VLSI circuits. The reduced parasitic capacitances results in higher LSI/VLSI computational speeds at significantly reduced power consumption levels.